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Preface

The papers in this volume were presented at the 1st International Conference on
Algorithmic Applications in Management (AAIM 2005), held June 22–25, 2005
in Xi’an, China. The topics cover algorithmic applications in most management-
related areas.

Submissions to the conference this year were conducted electronically. A to-
tal of 140 papers were submitted, of which 46 were accepted. The papers were
evaluated by an international Program Committee consisting of Franz Auren-
hammer, Sergey Bereg, Danny Z. Chen, Jian Chen, Zhixiang Chen, Edith Co-
hen, Xiaotie Deng, Michael Goldwasser, Jason Hartline, Wen-Lian Hsu, Haijun
Huang, Minghui Jiang, Ellis Johnson, Naoki Katoh, Masakazu Kojima, Moham-
mad Mahdian, Nimrod Megiddo, Zhongping Qin, Panos Pardalos, Chung Keung
Poon, Bruce Reed, Shouyang Wang, Peter Widmayer, Yinfeng Xu, Frances Yao,
Yinyu Ye and Binhai Zhu.

The submitted papers were from Canada, Chile, China, Finland, Germany,
Hong Kong, Iran, Israel, Japan, Korea, Malaysia, Mexico, Netherlands,
Singapore, UK and USA. Each paper was evaluated by at least two Program
Committee members, assisted in some cases by subreferees. In addition to
selected papers, the conference also included two invited presentations, by
Ellis Johnson and Yinyu Ye, and two invited papers, by Xujin Chen et al. and
Siu-Wing Cheng et al.

We thank all the people who made this meeting possible: the authors for sub-
mitting papers, the Program Committee members and external referees (listed
on the pages that follows) for their excellent work, and the two invited speakers.
Finally, we thank NSF of China and the School of Management, Xi’an Jiaotong
University for their support, and the local organizers and our colleagues for their
assistance.

June 2005 Nimrod Megiddo
Yinfeng Xu
Binhai Zhu
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Robust Airline Fleet Assignment: Imposing
Station Purity Using Station Decomposition

Ellis L. Johnson

Georgia Institute of Technology, Atlanta, Georgia, USA
ejohnson@isye.gatech.edu

Fleet assignment models are used by many airlines to assign aircraft to flights in a
schedule to maximize profit [1]. A major airline reported that the use of the fleet
assignment model increased annual profits by more than $100 million [3] a year
over three years. The results of fleet assignment models affect subsequent planning,
marketingandoperationalprocesseswithintheairline.Anticipatingtheseprocesses
and developing solutions favorable to them can further increase the benefits of fleet
assignment models. We develop fleet assignment solutions that increase planning
flexibility and reduce cost by imposing station purity, limiting the number of fleet
typesallowedtoserveeachairport in the schedule [4]. Imposingstationpurityonthe
fleetassignmentmodelcanlimitaircraftdispersioninthenetworkandmakesolutions
more robust relative to crew planning, maintenance planning and operations.

Because imposition of station purity constraints can significantly increase com-
putational difficulty, we develop a solution approach, station decomposition, which
takes advantage of airline network structure. Station decomposition is an instance
of Dantzig-Wolfe decomposition and uses a column generation approach to solving
the fleet assignment problem. We further improve the performance of station de-
compositionbydevelopingaprimal-dualmethodthat increasessolutionqualityand
reduces running times. This method can be applied generally within the Dantzig-
Wolfe decomposition framework to speed convergence. It avoids “instability of the
duals” and minimizes the “tailing” effect.

Station decomposition solutions can be highly fractional causing excessive run-
ning times in the branch-and-bound phase. We develop a “fix, price, and unfix”
heuristic to efficiently find integer solutions to the fleet assignment problem.

Station purity can provide benefits to airlines by reducing planned crew costs,
maintenance costs, and the impact of operational disruptions. We show that purity
can provide compelling benefits (up to $29 million per year) to airlines based on
reduced maintenance costs alone. Benefits associated with reduced crew costs are
estimated at $100million per year, giving $129million per year increased profit.We
would expect additional savings in operations.

References

1. Abara, J. (1989), “Applying Integer Linear Programming to the Fleet Assignment
Problem”, Interfaces 19 pp. 20-28.
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Computing the Arrow-Debreu Competitive
Market Equilibrium and Its Extensions

Yinyu Ye

Department of Management Science and Engineering,
Stanford University, Stanford, CA 94305, USA

yinyu-ye@stanford.edu

We consider the Arrow-Debreu competitive market equilibrium problem which
was first formulated by Leon Walras in 1874 [12]. In this problem every one in
a population of n players has an initial endowment of a divisible good and a
utility function for consuming all goods—own and others. Every player sells the
entire initial endowment and then uses the revenue to buy a bundle of goods
such that his or her utility function is maximized. Walras asked whether prices
could be set for everyone’s good such that this is possible. An answer was given
by Arrow and Debreu in 1954 [1] who showed that such equilibrium would exist
if the utility functions were concave. Their proof was non-constructive and did
not offer any algorithm to find such equilibrium prices.

Fisher was the first to consider algorithm to compute equilibrium prices for
a related and different model where players are divided into two catalogs: pro-
ducer and consumer. Consumers have money to buy good and maximize their
individual utility functions; producer sell their goods for money. The equilibrium
prices is an assignment of prices to goods so as when every consumer buys an
maximal bundle of goods then the market clears, meaning that all the money is
spent and all goods are sold. Fisher’s model is a special case of Walras’ model
when money is also considered a commodity so that Arrow and Debreu’s result
applies. Eisenberg and Gale [6, 8] gave a convex optimization setting to formu-
late Fisher’s model with linear utility functions. They constructed an concave
objective function that is maximized at the equilibrium. Thus, finding an equi-
librium became solve a convex optimization problem, and it could be solved by
using the Ellipsoid method in polynomial time. Here, polynomial time means
that one can compute an ε approximate equilibrium in a number of arithmetic
operations bounded by polynomial in n and log 1

ε . Devanur et al. [5] recently
developed a “combinatorial” algorithm for solving Fisher’s model with linear
utility functions. Both approaches, Eisenberg-Gale and Devanur et al., did not
apply to the more general Walras model.

Solving the Arrow-Debreu problem was proved to be more difficult. Eaves
[7] showed that the problem with linear utility can be formulated as a linear
complementarity problem (e.g. Cottle et al. [4]) so that Lemke’s algorithm could
compute the equilibrium, if it existed, in a finite time. It was also proved there
that the equilibrium solution values were rational as solutions to an n2-dimension
system of linear equations of the original rational inputs. More recently, however,

N. Megiddo, Y. Xu, and B. Zhu (Eds.): AAIM 2005, LNCS 3521, pp. 3–5, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



4 Y. Ye

Jain [9] has showed that Walras’s model can be also formulated as a convex
optimization, more precisely, a convex inequality problem, so that the Ellipsoid
method again can be used in solving it. Remarkably, it turned out that the very
same formulation was developed by Nenakhov and Primak [10] more than twenty
years earlier. They found out a clean set of posinomial inequalities to describe
the problem which is necessary and sufficient. This set of inequalities can be
logarithmically transferred into a set of convex inequality, which technique was
used for geometric programming in early 60’s.

The goal of this talk, based on the paper [13], is threefold. First, we de-
velop a polynomial-time interior-point algorithm to solve Fisher’s model with
linear utility. The complexity bound, O(n4 log 1

ε ), of the algorithm is significantly
lower than either the Ellipsoid or “combinatorial” algorithm mentioned above.
Secondly, we present an interior-point algorithm, which is not primal-dual, for
solving the Arrow-Debreu competitive market equilibrium problem with linear
utility. The algorithm has an efficient barrier function for every convex inequality
where the self-condordant coefficient is at most 2. Thus, the number of arith-
metic operations of the algorithm is again bounded by O(n4 log 1

ε ), which is
substantially lower than the one obtained by the ellipsoid method and in line
with the best complexity bound for linear programming of the same size. Fi-
nally, we generalize these results to homothetic and/or quasi-concave utilities,
and to the market equilibrium in the presence of economies of production and
non-exogenous activities.
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Complexity of Minimal Tree Routing
and Coloring�

Xujin Chena, Xiaodong Hua, and Xiaohua Jiab

a Institute of Applied Mathematics, Chinese Academy of Sciences,
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b Department of Computer Science, City University of Hong Kong,
Kowloon, Hong Kong, SAR China

{xchen, xdhu}@amss.ac.cn, jia@cs.cityu.edu.hk

Abstract. Let G be a undirected connected graph. Given a set of g
groups each being a subset of V (G), tree routing and coloring is to pro-
duce g trees in G and assign a color to each of them in such a way that
all vertices in every group are connected by one of produced trees and
no two trees sharing a common edge are assigned the same color. In this
paper we study how to find a tree routing and coloring that uses minimal
number of colors, which finds an application of setting up multicast con-
nections in optical networks. We first prove Ω(g1−ε)-inapproximability of
the problem even when G is a mesh, and then we propose some approx-
imation algorithms with provable performance guarantees for general
graphs and some special graphs as well.

1 Introduction

Let G be a finite and undirected graph with vertex-set V (G) with |V (G)| = n
and edge-set E(G) with |E(G)| = m, and Γ = {Γ1, . . . , Γg} be a set of g subsets
of V (G), where each Γi is called a group. A tree over Γi is a tree in G with
Γi ⊆ V (Ti) for each 1 ≤ i ≤ g. A family T = {T1, . . . , Tg} of trees is said to be a
tree family over Γ = {Γ1, . . . , Γg} if there is a permutation ρ on {1, 2, . . . , g} such
that Tρ(i) is a tree over Γi for each 1 ≤ i ≤ g. A coloring {(Ti, ci) | i = 1, 2, . . . , g}
of a tree family {T1, . . . , Tg} colors Ti with color ci such that ci �= cj whenever
E(Ti) ∩ E(Tj) �= ∅.

In this paper we consider Minimal Tree Routing and Coloring (Min-TRC)
problem: given an instance (G,Γ ), construct a tree family {T1, . . . , Tg} over Γ
such that there exist a coloring {(Ti, ci) | i = 1, 2, . . . , g} with minimal number
of distinct colors in {c1, . . . , cg}. This problem models establishing multicast
connection in optical networks [17].

This paper aims at giving the explicit inapproximability/approximability
analysis for Min-TRC problem. We prove that Min-TRC problem is not ap-
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and 60373012.
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proximable within g1−ε and the Min-TRC problem in meshes or tori is not ap-
proximable within 1

2g
1−ε for any ε > 0, unless NP = ZPP . The lower bounds

are best possible with the exceptional case of meshes. We also propose a greedy
algorithms with O(log g) approximation performance ratio for large g. Our proof
of inapproximability uses reductions from the vertex coloring problem, and the
derivation of approximability relies on some nice graph properties.

The remainder of this paper is organized as follows. In section 2, we introduce
notations, definitions, and give some preliminary results on Min-TRC problem.
In section 3, we prove the inapproximability results for the Min-TRC problem
in trees, meshes and tori. In section 4, we first propose a greedy algorithm for
Min-TRC problem for general graphs, and then make special considerations
for some widely used graphs. In section 5, we conclude the paper with some
remarks.

2 Preliminaries

In this section, we first introduce some terminologies and then describe some re-
lated works. Let Γ be a set of groups in graphG and let T be a tree family over Γ ,
the maximum load of G with respect to T , denoted by LT , refers to the maximum
number of trees in T that use any single edge in G. The minimum maximum load
ofG is defined as L(G,Γ ) ≡ min{LT | T is a tree family over Γ }. It is evident that
the minimum number of colors necessary for Min-TRC is at least L(G,Γ ).

Given a graph G and v ∈ V (G), let δ(v) denote the set of edges in E(G)
incident with v. A k-coloring of G is a function φ : V (G) → {1, 2, . . . , k} such
that each color class {v |φ(v) = i and v ∈ V (G)} contains no two adjacent
vertices of G for each 1 ≤ i ≤ k. We say that G is k-colorable if it admits a
k-coloring. The chromatic number χ(G) is the minimum value of k for which G
is k-colorable. The vertex coloring problem is to find a χ(G)-coloring of G.

Clearly, when a tree family T = {T1, . . . , Tg} in graph G is associated with
its intersection graph GT with vertex-set V (GT ) = {v1, . . . , vg} and edge-set
E(GT ) = {(vi, vj) |Ti and Tj share at least one edge in G}, a k-coloring of GT
gives rise to a coloring of T with no more than k colors, and vice versa.

Most of previous works on Min-TRC problem mainly focused on the special
case in which every group has only two members. In this case, a tree over a
group is simply a path connecting the two members and the problem is known
as Minimal Path Routing and Coloring (Min-PRC) problem. This version has
been extensively studied for several topologies including trees, rings, and meshes.
In particular, Min-PRC problem is NP-hard for all the three topologies [18, 5, 2],
and is approximable within 4/3 for trees [13], within 2 for rings [16], and within
poly(log logm) for 2-dimensional meshes [15]; but it is polynomial-time solvable
when the underlying graph is a chain [8] or a bounded-degree tree [14].

Some other related works on Min-TRC problem associated with vertex col-
oring problem. It was shown in [1] that the vertex coloring problem on graph G
cannot be approximate within n

1
7−ε for any ε > 0 assuming NP �= P . Since the

faith in the hypothesis NP �= ZPP is almost as strong as NP �= P , the following
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negative and positive results [3, 9] prove the intractability of approximation for
vertex coloring problem, which will be used in our discussion.

Theorem 1. The vertex coloring problem on graph of n vertices is not approx-
imable within n1−ε for any ε > 0, unless NP = ZPP , and it is approximable
within O(n(log log n)2/(log n)3).

3 Inapproximability

In this section, we shall show that Min-TRC problem is as hard as vertex color-
ing problem, and then deduce the inapproximability results directly from The-
orem 1. We shall particularly consider the Min-TRC problem for three special
graph topologies including trees, meshes and tori, which are widely used in the
applications.

Our first inapproximability result is about the Min-TRC problem in star
graphs. A star graph is a tree with at most one node of degree greater than one,
which is called the center of the star graph.

Theorem 2. The Min-TRC problem in tree graphs is not approximable within
max{g1−ε, m

1
2−ε} for any ε > 0, unless NP = ZPP .

Proof. Given a graph H with V (H) = {v1, . . . , vn} and E(H) = {e1, . . . , em},
the star graph G with m + 1 vertices and m edges is defined by V (G) :=
{c, d1, . . . , dm} and E(G) := {(c, di) | i = 1, 2, . . . ,m}, and Γ := {Γ1, . . . , Γg}
is defined by Γi := {c} ∪

(
∪ej∈δ(vi)dj

)
for each 1 ≤ i ≤ g, where g = n. Let

T = {T1, . . . , Tg} be the tree family over Γ such that Ti is the unique tree in
G over Γi for each 1 ≤ i ≤ g. Then GT = H. Thus under approximation-ratio-
preserving reduction, the Min-TRC problem in star graphs is equivalent to the
vertex coloring problem, and then the conclusion follows from Theorem 1. �

We now consider the Min-TRC problem in meshes and tori. We will only
present the analysis for meshes since the same argument is applicable to tori. For
graph H with V (H) = {v1, . . . , vn} and E(H) = {e1, . . . , em}, we define groups
Γ = {Γ1, . . . , Γg} with g = n on a 5m × 5m mesh G as follows: Label vertices
in G as in the Cartesian plane with their corners located at (0, 0), (0, 5m − 1),
(5m− 1, 0), and (5m− 1, 5m− 1), respectively. And then associate each edge ej

(1 ≤ j ≤ m) in H with two vertex sets in G: Rj = {(	, 5j−k) | 	 = 0, 1, . . . , 5m−
1; k = 1, 2, . . . , 5} and Sj = {(5j − k, 	) | 	 = 0, 1, . . . , 5m − 1; k = 1, 2, . . . , 5}.
Notice that Rj (resp. Sj) consists of vertices located on five consecutive rows
(resp. columns) of G, and

each of {R1, . . . , Rm} and {S1, . . . , Sm} is a (disjoint) partition of V (G), (1)

Rj ∩ Sk induces a 5× 5 submesh Gjk of G, for 1 ≤ j, k ≤ m. (2)



Complexity of Minimal Tree Routing and Coloring 9

Now corresponding to each vertex vi in G, set the i-th group as

Γi :=
⋃

ej∈δ(vi)

(Rj ∪ Sj) (3)

which is the union of Rj ∪ Sj for all ej incident with vi.

Lemma 1. Given a graph H, there exist a mesh G, a set Γ = {Γ1, . . . , Γg} of
g groups in G, and a tree family T over Γ such that

(i) GT = H and LT = 2; and
(ii) there does not exist three distinct integers i, j, k ∈ {1, 2, . . . , g} such that

(vi, vj) ∈ E(H) and T ′
i , T

′
j , T

′
k are pairwise edge-disjoint, for any tree family

T ′ = {T ′
1, . . . , T

′
g} in G in which T ′

i is a tree over Γi for each 1 ≤ i ≤ g.

Proof. To justify (i), let us construct a tree family T = {T1, . . . , Tg} as follows:
Each Ti is a tree obtained from its vertex-set V (Ti) := Γi in two steps. In the first
step, for every ej incident with vi, we add five rows each connecting all vertices
in {(	, 5j − k) | 	 = 0, 1, . . . , 5m − 1} for each 1 ≤ k ≤ 5. Then the horizontal
edges on the five rows span Rj . Summing over all ej ∈ δ(vi), in total 5|δ(vi)|
rows are added. In the second step, we use vertical edges with both ends in Sj

for some ej ∈ δ(vi) to connect the 5|δ(vi)| rows and the rest vertices in Γi under
the condition that the resulting graph is a tree. Though there are many possible
Ti’s, we can just pick any one of them.

By the construction, LT = 2 is obvious; it suffices to show that the intersec-
tion graph GT of T is identical with H. Indeed, for every edge (vh, vi) = ej ∈
E(H), trees Th and Ti in G share common edges on the rows that span Rj .
On the other hand, for every pair of nonadjacent vertices vh and vi in V (H),
since δ(vh) ∩ δ(vi) = ∅, we deduce from (1) that Rj ∩ Rk �= ∅ �= Sj ∩ Sk for
all ej ∈ δ(vh), ek ∈ δ(vi). Therefore, combining the definitions of Γh and Γi and
the constructions of Th and Ti, we can deduce from (3) that Th and Ti shares
neither a common horizontal edge nor a common vertical edge. In other words,
Th and Ti are edge-disjoint. Thus GT = H as desired.

We now prove (ii) by contradiction argument. Suppose that (vi, vj) = ep ∈
E(H) and T ′

i , T
′
j , T

′
k are pairwise edge-disjoint. Since ep ∈ δ(vi) ∩ δ(vj), by (3),

both T ′
i and T ′

j contain (Rp ∪Sp) ⊆ Γi ∩Γj . Take eq ∈ δ(vk). Obviously ep �= eq.
Recalling (2), we have a 5× 5 submesh Gpq in G induced by Rp ∩ Sq. Note that
the 25 vertices of Gpq are all contained in Γi ∩Γj ∩Γk ⊆ V (T ′

i )∩V (T ′
j)∩V (T ′

k),
and hence every vertex in Gpq is incident with three distinct edges one from
each of T ′

i , T
′
j , T

′
k. Consequently none of T ′

h, T
′
i , T

′
j can have a branching vertex

in Gpq, and each of the 9 internal vertices of Gpq is a leaf of at least two of
T ′

i , T
′
j , T

′
k. Therefore there are in total at least 18 different paths in T ′

i ∪ T ′
j ∪ T ′

k

connecting these leaves to the boundary of Gpq because every of T ′
i , T

′
j , T

′
k has

vertices outside Gpq. Two of those paths must have a common edge in Gpq since
it has only 16 boundary vertices. The two different paths are contained in exactly
one tree in {T ′

h, T
′
i , T

′
j}. It follows that this tree has a branching vertex in Gpq.

The contradiction establishes (ii). �
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Theorem 3. The Min-TRC problem in 2-dimensional meshes (tori) is not ap-
proximable within 1

2g
1−ε for any ε > 0, unless NP = ZPP .

Proof. The theorem will follow directly from Theorem 1 if we can prove that,
given a r(g)-approximation algorithm A for the Min-TRC problem on g groups
in a mesh, there is an algorithm B that can properly color any connected graph
H on g vertices with at most 2r(g)χ(H) colors in polynomial time. We now
design such an algorithm B in following.

Given graph H, applying the method described in Lemma 1 yields the
mesh G, the set Γ = {Γ1, . . . , Γg} of g groups in G, and the tree family
T = {T1, . . . , Tn} over Γ . Then GT = H, and copt(G,Γ ) is no more than
χ(GT ) = χ(H). Observe that 2cA(G,Γ ) ≤ 2r(g)copt(G,Γ ) ≤ 2r(g)χ(H). Our
task now is to design a polynomial-time algorithm B which colors H with at
most 2cA(G,Γ ) colors. This can be accomplished as follows: First run algorithm
A on given instance of Min-TRC problem (Γ , G). Then in polynomial time A
outputs a solution {(T ′

1, c1), . . . , (T ′
g, cg)} in which T ′

i is the tree in G over Γi

with color ci for each 1 ≤ i ≤ n. Considering the intersection graph GT ′ of
T ′ = {T ′

1, . . . , T
′
g}, we deduce from Lemma 1(ii) that

(vi, vk) ∈ E(GT ′) or (vj , vk) ∈ E(GT ′) for any distinct vi, vj , vk

such that (vi, vj)∈E(H) and (vi, vj) �∈E(GT ′). (4)

Note that GT ′ has a cA(G,Γ )-coloring φ′ : V → {1, 2, . . . , cA(G,Γ )} with
φ′(vi) = ci for each 1 ≤ i ≤ g. We now prove that graph H ′ with vertex-
set V (H ′) := V (H) = V (GT ′) and edge-set E(H ′) = E(H) ∪ E(GT ′) has a
2cA(G,Γ )-coloring φ. If φ′ is a proper coloring of H ′, then we are done since
we can simply set φ := φ′; else we can assume, without loss of generality, that
edge ei = (ai, bi) ∈ E(H) \ E(GT ′) such that φ′(ai) = φ′(bi) for i = 1, 2, . . . , 	
(	 ≤ m). By (4), every vertex in V (GT ′) \ {ai, bi} is adjacent to ai or bi in GT ′

and hence assigned by φ′ a color different from φ′(ai) = φ′(bi). It follows that
all vertices ai and bi are distinct for i = 1, 2, . . . , 	, where 	 ≤ cA(G,Γ ), and

φ(v) :=
{
cA(G,Γ ) + i, v = ai, for some 1 ≤ i ≤ 	;
φ(v), v ∈ V (H) \ {a1, . . . , a�}.

defines a 2cA(G,Γ )-coloring of H ′ as claimed. Since H is a subgraph of H ′, φ is
also a 2cA(Γ , G)-coloring of H. �

The comparison between the results on trees (Theorem 2) and meshes (The-
orem 3) shows that the a few more choices for routing method might make it
little bit easier to approximate Min-TRC. Naturally, we seek for strategies that
enable us to exploit this freedom in order to obtain a little better approximation
in meshes than that in trees. Unfortunately, two popular strategies for the Min-
TRC problem in meshes, the Shortest Path Tree (SPT) strategy and the Single
Path (SP) strategy fail to achieve this goal. Under SPT strategy, every group is
connected by a tree, called shortest path tree, such that a distinguished group
member, called source, is connected to every member in the group through a
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shortest path. Under SP strategy, every tree over a group is a (single) path that
spans all group members.

Theorem 4. Algorithm using either SPT strategy or SP strategy can not guar-
antee to produce a g1−ε-approximation for Min-TRC in meshes for any ε > 0,
unless NP = ZPP .

Proof. Note that Min-TRC problem under either of the strategies is equivalent
to vertex coloring problem via approximation-ratio-preserving reductions. To see
the equivalence, it suffices to define a set Γ = {Γ1, . . . , Γg} of g groups in a mesh
G for any given graph H with V (H) = {v1, . . . , vg} and E(H) = {e1, . . . , em}
such that (a) H is the intersection graph of some tree family over Γ , and (b)
the intersection graph of any tree family over Γ contains H as a subgraph.

In the case of SPT routing, we consider the p×p mesh G with p = max{m, g}
and its four corners labelled as (0, 0), (0, p−1), (p−1, 0), (p−1, p−1). We define
groups by Γi = {(i − 1, k) | k = 0, 1, . . . , p − 1} ∪ {(h, j − 1) | ej ∈ δ(vi);h =
0, 1, . . . , p− 1} for each 1 ≤ i ≤ n. In addition, we set si = (i− 1, p − 1) as the
source of Γi. We then have the tree family F = {F1, . . . , Fg} in which each Fi

is the shortest path tree over Γi that has exactly p − 1 vertical edges. Clearly,
GF = H and condition (a) is satisfied. Notice that any shortest path tree over
Γi contains the column spanning {(i− 1, k) | k = 0, 1, . . . , p− 1}. Hence for any
(vh, vi) = ej ∈ E(H) with h < i, since {(h−1, j−1), (h, j−1), . . . , (i−1, j−1)} ⊆
Γh∩Γi, it remains to verify that any shortest path tree over Γh and any shortest
path tree over Γi share at least one common edge. Thus condition (b) holds.

In the case of SP routing, we consider 5m × 5m mesh G with its corners
labelled as (0, 0), (0, 5m − 1), (5m − 1, 0), (5m − 1, 5m − 1) and define Γi :=
{(0, 5j−k) | ej ∈ δ(vi); k = 1, 2, . . . , 5} for each 1 ≤ i ≤ n. Then we have the tree
family P = {P1, . . . , Pg} in which Pi is the path in G with vertex-set V (Pi) :=
Γi∪{(h, 5j−5), (h, 5j−1) | ej ∈ δ(vi);h = 1, 2, . . . , i}∪{(i, 5j−k) | ej �∈ δ(vi); k =
1, 2, . . . , 5}. Observe that GP = H. Moreover, for any (vh, vi) = ej ∈ E(H), any
path over Γh and any path over Γi must share an edge incident with one of
the five vertices (0, 5j − 5), (0, 5j − 4), (0, 5j − 3), (0, 5j − 2), (0, 5j − 1) on the
boundary of G since Γh ∩ Γi contains the five vertices and at least three of the
five vertices are each incident with two edges from Th and from Ti. It follows
that both conditions (a) and (b) are satisfied. �

4 Approximability

In this section, we first describe and analyze a greedy algorithm for Min-TRC
problem in general graphs, and then we investigate approximations for the Min-
TRC problem in some special graph topologies including trees, tori, and rings.

4.1 Greedy Algorithm

The main philosophy of our greedy strategy is to rout trees using as minimal
number of edges as possible. This idea comes from an intuition: a tree of less
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edges potentially has more chances to share the same color with others, and
therefore potentially reduces the number of colors needed. In order to carry out
the greedy strategy, it is worth noting that finding a tree over a given group Γ
of minimum number of edges is a special case of Minimum Steiner Tree (MST)
problem, which is NP -hard [4] and admits a 2-approximation algorithm [11].

Using the greedy strategy to save colors, Greedy Color below always tries
to assign one color to as many groups as possible by constructing trees of less
edges; It does not introduce a new color unless it has to. To phrase it differently,
using Dis Trees as a subroutine, Greedy Color iteratively finds a large max-
imal set of edge-disjoint trees over some currently unrooted groups, and assigns
them with a unique color.

Algorithm Greedy Color
Input: A set Γ of groups in graph G.
Output: Tree routing and coloring C = {(Ti, ci) | i = 1, 2, . . . , g}.
1. i← 0, B0 ← ∅, Γ 0 ← Γ
2. While Γ i �= ∅ do begin
3. Run Dis Trees on (G,Γ i) // to find a maximal family Ti of edge-disjoint trees.

4. Γ i+1←Γ i \ {Γ |Γ over T, T ∈ Ti},
5. Bi+1←Bi ∪ {(T, i+ 1) |T ∈ Ti} //assign i + 1 to all trees in Ti

6. i← i+ 1
7. End-while
8. Output C ← i and C ← BC

Procedure Dis Trees
Input: A set Γ of groups in graph G.
Output: A tree family T of edge-disjoint trees over a subset of Γ .
1. T ← ∅
2. Repeat
3. S ← {MST in G \ ∪T∈T E(T ) over Γ |Γ ∈ Γ \ {Γ over T |T ∈ T }}
4. Take T ∈ S such that |E(T )| = minS∈S |E(S)|
5. T ← T ∪ {T}
6. Until S = ∅
7. Output T

Theorem 5. Greedy Color for the Min-TRC problem in case of g ≥
√

2m+
1 achieves the performance ratio (log�(1− e−

1√
2m+1 )g�+ 1)/(1− e−

1√
2m+1 ).

Proof. Let c∗ = copt(G,Γ ) denote the minimum number of colors needed
for the instance of Min-TRC problem (G,Γ ). As a special case Dis Trees
might deal with, the maximum edge-disjoint path problem is shown [10] to
be approximable within

√
m + 1 via greedy selection of shortest paths. In

view of the 2-approximation taken in Step 3 of Dis Trees, a slight modifi-
cation of the proof in [10] can prove that Dis Trees computes a (

√
2m + 1)-

approximation of a tree family of edge-disjoint trees over a maximum subset
of Γ . Hence the standard theorem in [21] guarantees that Greedy Color
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uses c∗ colors to color at least (1 − e−1/(
√

2m+1))g trees. In other words,
β1 := |Bc∗ | ≥ (1 − e−1/(

√
2m+1))g. Subsequently, Greedy Color uses the

next c∗ colors to color at least (1 − e−1/(
√

2m+1))|Γ c∗ | remaining trees, i.e.,
β2 = |B2c∗ − Bc∗ | ≥ �(1− e−1/(

√
2m+1))|Γ c∗ |� = �(1− e−1/(

√
2m+1))(g − |Bc∗ |)�.

Continuing in this way, we get for i=0, 1, . . . , �C/c∗�,

βi+1 = |B(i+1)c∗ −Bic∗ |≥�(1− e
−1√
2m+1 )|Γic∗ |�=�(1−e

−1√
2m+1 )(g−|Bic∗ |)�, (5)

where B0 = ∅. Notice that |Bjc∗ | =
∑j

i=1 βj , j = 1, 2, . . . , �C/c∗�,
∑� C

c∗ �
i=1 βi ≤ g,

and

C

c∗
<

1
β1

+ · · ·+ 1
β1︸ ︷︷ ︸

β1

+
1
β2

+ · · ·+ 1
β2︸ ︷︷ ︸

β2

+ · · ·+ 1
β� C

c∗ �
+ · · ·+ 1

β� C
c∗ �︸ ︷︷ ︸

β� C
c∗ �

+1. (6)

It can be seen from (5) that the right hand side of (6) attains its maximum
when β1 = �(1 − e−1/(

√
2m+1))g�, βi = �(1 − e−1/(

√
2m+1))(g −

∑i−1
j=1 βj)�, i =

2, 3, . . . , �C/c∗�. Also note from (5) that the right hand side of (6) can have
at most 1/(1 − e−1/(

√
2m+1)) terms 1. Now it follows from β1 ≥ β2 ≥ · · · ≥

β�C/c∗� that C
c∗ < g

β1

(
1
β1

+ 1
β1−1 + · · ·+ 1

2

)
+ 1

1−e−1/(
√

2m+1) ≤ g
β1

log β1 +
1

1−e−1/(
√

2m+1) = (1− e−1/(
√

2m+1))−1(log�(1− e−1/(
√

2m+1))g�+ 1). �

4.2 Special Graphs

To gain some insights into the impact of graph topology on the approximability
of Min-TRC problem, we present in this subsection approximation algorithms
with guaranteed performance ratios for three special graphs: trees, tori, and
rings. (Detailed analysis is omitted due to the space limitation.)

Recall that in trees, Min-TRC problem is equivalent to tree coloring problem:
color all trees in T with a minimum number of colors since the tree family T over
a given set Γ of groups is unique. We refer to groups in Γ simply as trees in T .
Straightforwardly, the approximation algorithm for the vertex coloring problem
[9] on GT carries over to the Min-TRC problem on T , and gives the following
immediate result matching the lower bounds given in Theorem 2.

Theorem 6. The Min-TRC problem in tree graphs is approximable within
O(g(log log g)2/(log g)3).

When the sizes of groups are smaller than a constant k [6], i.e., max
Γ∈Γ

|Γ | ≤ k,

we have a tree family T = {T1, . . . , Tg}, called a k-tree family such that

the maximum degree of every Ti is no more than k. (7)

Notice that the Min-TRC problem on a k-tree family in a tree graph is NP -hard
even when k = 2 [18]. Fortunately, by the nice property of k-tree family and the
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acyclic structure of the underlying graph, the constant approximation ratio for
Min-TRC problem is now achievable by applying First Fit algorithm which
consists of g steps. At the i-th step, First Fit assigns Ti the first available color,
which is the smallest positive integer that has not been assigned to any trees in
{T1, . . . , Ti−1} sharing an edge with Ti.

Theorem 7. The Min-TRC problem is approximable within k for any given
k-tree family in a tree graph.

We now make a brief discussion on tori. Consider an instance of Min-TRC
problem (G,Γ ) where G is a 2-dimensional torus. Since G is 4-edge connected,
there are two edge-disjoint spanning trees S and T in G [12, 20]. It is easy to see
that either {(T, i), (S, i) | 1 ≤ i ≤ g/2} (when g is even) or {(S, i), (T, i) | 1 ≤ i ≤
(g−1)/2}∪{(S, (g+1)/2)} (when g is odd) is a solution to (G,Γ ). The following
theorem shows that the lower bound given in Theorem 3 for tori is tight.

Theorem 8. The Min-TRC problem in tori is approximable within �g/2�.

Finally, we consider the Min-TRC problem in rings, where a tree is simply
a path traversing all vertices in a group. In this case, tree routing can be done
by algorithm in [7] so that the maximum load of the graph is within a ratio 1.8
to the optimal one; Tree coloring can be done by 2-approximation algorithm of
circular arc coloring [19]. In such way we can obtain a 3.6-approximation for
Min-TRC.

Theorem 9. The Min-TRC problem in rings is approximable within 3.6.

5 Conclusions

In this paper we have studied the hardness of approximating the tree routing
and coloring for minimizing number of colors used. As our main contribution, we
proved strong negative result on the possibility of finding efficiently good approx-
imate solutions to the Min-TRC problem even when the underlying topology
is a mesh or a torus. The positive results presented include several approxima-
tion algorithms designed for general graphs and for some special graphs. The
Ω(g1−ε)-inapproximability proved seems a good reason to stop the efforts for
seeking approximation on the general problem. As the future work, it would
be interesting to see if the lower bound given in Theorem 3 for the Min-TRC
problem in meshes is tight.
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Abstract. In this paper, we present three energy efficient broadcast
and multicast routing algorithms for wireless ad hoc networks. The first
algorithm computes a broadcast tree whose energy consumption is within
a factor 2 + 2 ln(n − 1) of the optimal. The second algorithm computes
a multicast tree whose energy consumption is within a constant factor
of the optimal. Our third algorithm, for a multicast request with a given
duration, computes an optimal multicast tree such that the minimal
remaining energy of nodes is maximized after the multicast session. This
algorithm helps to maximize the lifetime of the network.

1 Introduction

In wireless networks, mobile hosts are powered by batteries and it may be im-
possible to recharge or replace batteries during a mission. Therefore, the limited
battery lifetime imposes a constraint on the network performance. Energy ef-
ficiency becomes an important issue in the design of applications in wireless
ad hoc networks. Extensive research has been done on the energy conservation
for such kind of networks. Some works addressed the issue of using minimum
energy to achieve a required network connectivity (also referred as topology con-
trol) [4, 6, 11]. Some other works focused on the energy efficient routing [7, 8, 13].
In this paper, we focus on the issue of energy efficient broadcast/multicast in
wireless ad hoc networks. Note that broadcast is a special case of multicast.

Wieselthier et al. [12] proposed several energy-efficient broadcast/multicast
algorithms, namely the Broadcast Incremental Power (BIP), Multicast Incre-
mental Power (MIP), MST (minimum spanning tree), and SPT (shortest-path
tree) algorithms. Wan et al. [10] exploited the geometrical properties of the Eu-
clidean plane to analyze the BIP, MST, and SPT algorithms. Specifically, Wan
et al. proved that the approximation ratio of MST is between 6 and 12, the ap-
proximation ratio of BIP is between 13/3 and 12, and the approximation ratio
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of SPT is at least m/2, where m is the number of receiving nodes. Calinescu et
al. [1] studied the problems of symmetric connectivity, strong connectivity, and
broadcasting with approximately minimum power. They obtained algorithms
with approximation ratio O(1 + lnn) for all three problems. Cheng et al. [2]
studied the problem of broadcasting in large ad hoc networks and proposed a
method MLE (Minimum Longest Edge) based on MST. This algorithm provides
a scheme to balance the energy consumption among all nodes.

We introduce three algorithms in this paper: one for broadcasting and the
other two for multicasting. We assume that there are n stationary nodes.

– Our broadcasting algorithm computes an undirected spanning tree in O(n3)
time. For any node v, by rooting this spanning tree at v, we obtain a broad-
cast tree with v as the source. We prove that the power consumption of our
broadcast tree is within a factor 2 + 2 ln(n− 1) of the optimal.

– Our first multicasting algorithm aims at finding a multicast tree that has
the minimum energy consumption for the model in which any two nodes in
the network can reach each other using dα Watt of power, where d is the
Euclidean distance between the two nodes. Our multicasting algorithm runs
in O(n2) time. By making use of a result by Wan et al. [10], we show that
the power consumption of our multicast tree is within a constant factor of
the optimal.

– Our second multicasting algorithm aims to balance the energy consumption
among the nodes. Assuming that the initial energy levels at the nodes and
the duration of the multicast session are known, our algorithm returns an
optimal multicast tree in O(n2) time. Our multicast tree is optimal in the
sense that the minimum node energy at the end of the multicast session is
maximized.

2 Approximate Minimum Power Broadcasting

Our algorithm works with a weighted undirected complete graph G on the n
nodes. The weight of each edge vivj of G is the power needed to transmit data
directly between vi and vj . Let dij denote the Euclidean distance between vi and
vj . Let L and U be the common lower bound and upper bound on the power
levels of the nodes. For any edge vivj , we set its weight w(vi, vj) as follows. If
dα

ij < L, then w(vi, vj) = L. If L ≤ dα
ij ≤ U , then w(vi, vj) = dα

ij . Otherwise,
w(vi, vj) = ∞. If vi and vj are obstructed from each other by some physical
obstacles, we can model this by setting w(vi, vj) = ∞.

2.1 Approximation lgorithm

Our approximation algorithm consists of two steps. The first step is the con-
struction of stars to cover all the nodes of G. The second step is to construct an
approximate broadcast tree from the stars. Recall that if two nodes vi and vj in
G are blocked by some obstacle, the weight w(vi, vj) is set to ∞ to model this.

A
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Then our algorithm will never select the edge vivj as the broadcast cost would
be infinity otherwise. (Our algorithm can in fact handle more general weight
models, but the presence of obstacles seem to be the most natural application.)

A subgraph of G is a star if there is one center and the other nodes are leaves
directly connected to the center. We give an overview of the construction of stars
before giving the details. The construction proceeds in rounds. Before the first
round, each node of G exists as a trivial connected component. In general, in
the kth round, we select a star to connect some of the connected components
together. This continues until we obtain a single connected component at the
end of the mth round.

We introduce a few definitions and then give the details of the construction.

– Sk is the set of connected components before the kth round.
– For each node vr, Ck(vr) denotes the connected component in Sk that con-

tains vr.
– For any node vr and any component C ∈ Sk, the distance d(vr, C) between
vr and C is equal to minvs∈C w(vr, vs).

– For any two distinct nodes vr, vs, Nk(vr, vs) denotes the collection of con-
nected components {C ∈ Sk : d(vr, C) ≤ w(vr, vs)}. The weight ofNk(vr, vs)
is w(vr, vs).

– The (vr, vs)-star is centered at vr and its set of leaves is {vi ∈ G : w(vr, vi) ≤
w(vr, vs)}. The weight of the (vr, vs)-star is w(vr, vs).

Algorithm. Construct stars
1. initialize m = 1 and S1 to be the set of nodes in G;
2. initialize E to be an empty set;
3. repeat
4. pick the Nm(vr, vs) that minimizes the ratio w(vr, vs)/(|Nm(vr, vs)| −

1);
5. E := (vr, vs)-star ∪ E;
6. construct the set Sm+1 of connected components induced by E;
7. m := m+ 1;
8. until Sm contains exactly one connected component;

When we add a (vr, vs)-star in step 5 of the algorithm, if a (vr, vi)-star already
exists for some node vi, then vs must be further away from vr than vi as vs is
considered later. In order words, we grow the (vr, vi)-star to the (vr, vs)-star and
the (vr, vi)-star no longer exists by itself.

We analyze the total weight of the stars picked by Construct stars. Our anal-
ysis is based on the charging argument used for deriving the approximation ratio
of the greedy set cover algorithm [9]. We introduce some notations to ease the
analysis. Let Nk(vr, vs) be the collection picked in the kth round of the algo-
rithm. When we pick Nk(vr, vs), we distribute the weight w(vr, vs) as charges
equally among the components in Nk(vr, vs) that does not contain vr. That
is, for each component C ∈ Nk(vr, vs) that does not contain vr, C receives a
charge of w(vr, vs)/(|Nk(vr, vs)| − 1) which we denote by price(C). The compo-
nent containing vr receives a zero charge. Next, we put the positively charged
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components in all collections Nk(·)’s picked, 1 ≤ k ≤ m, into an ordered list
L = (C1, C2, · · ·). L is ordered as follows: if Ci ∈ Nk(·) and Cj ∈ Nk′(·) where
k < k′, then i < j; otherwise, Ci and Cj belong to the same Nk(·) and they are
ordered arbitrarily.

The charge distribution scheme implies that the total weight of stars picked
by Construct stars is equal to the total charge

∑
Ci∈L price(Ci). Let Na denote

the collection of components picked in the ath round of the algorithm. Then
exactly |Na| − 1 of these components carry positive charges and are put into L.
The ordering scheme of components in L implies that if Ci′ is the component in
Nk−1 with the largest index in L, then

i′ =
k−1∑
a=1

(|Na| − 1). (1)

Let OPT denote the power consumption of an optimal broadcast tree. The
following lemma relates price(Ci) to OPT.

Lemma 1. For each Ci ∈ L, i < n and price(Ci) ≤ OPT/(n− i).

Proof. Let T ∗ be an optimal broadcast tree (T ∗ is a directed tree). We use Nk

to denote the collection picked in the kth round of the algorithm. Assume that
Ci belongs to Nk. Recall that Sk is the set of all components at the beginning
of the kth round. We select a subset E of edges in T ∗ that forms a directed
spanning tree of the components in Sk (i.e., if we collapse each component in Sk

into a vertex, E is a directed spanning tree of the vertices obtained.). For each
node v, we use Ev to denote the outgoing edges of v in E . We use comp(v) to
denote the components that contain the destinations of edges in Ev. Let V be
the subset of nodes such that Ev is non-empty. For each v ∈ V , the heaviest edge
in Ev defines the power for v (the sum of which is at most OPT). We distribute
the power of each node v ∈ V equally among the components in comp(v) as
charges at them. Consequently, the minimum positive charge at a component is
at most OPT/(|Sk|−1). Assume that the component with the minimum positive
charge belongs to comp(v). Let (v, vc) be the heaviest edge in Ev. So comp(v) is
a subset of Nk(v, vc). It follows that w(v, vc)/(|Nk(v, vc)|−1) ≤ OPT/(|Sk|−1).
The greedy nature of Construct stars guarantees that

price(Ci) ≤
w(v, vc)

|Nk(v, vc)| − 1
≤ OPT
|Sk| − 1

. (2)

In the ath round, we merge |Na| components into one. That is, the number of
components drops by |Na| − 1. Thus

n−
k−1∑
a=1

(|Na| − 1) = |Sk|. (3)

By (1), if Ci′ is the component in Nk−1 with the largest index in L, then i′ =∑k−1
a=1(|Na| − 1). Substituting this into (3) yields n − i′ = |Sk|. As i ≥ i′ + 1,
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we have n − i ≤ |Sk| − 1. Substituting this into (2), we obtain price(Ci) ≤
OPT/(n− i). Recall that Ci ∈ Nk. The number of connected components in Nk

is at least i− i′ + 1. The term 1 comes from the fact that one component in Nk

is not charged and it does not appear in L. So the total number of connected
components reduces by at least i − i′ in the kth round. Thus, |Sk| − (i − i′) =
(n− i′)− (i− i′) ≥ 1 which implies that i < n.

Lemma 2. The stars can be constructed in O(n3) time and the total weight of
the stars is within a factor 1+ln(n−1) of the power consumption of any optimal
broadcast tree.

Proof. We first analyze the approximation ratio. The total weight of the stars
is equal to

∑
Ci∈L price(Ci). By Lemma 1,

∑
Ci∈L price(Ci) ≤ OPT · (1 + 1/2 +

· · · + 1/(n − 1)) ≤ OPT · (1 + ln(n − 1)). Next, we derive the running time.
Before the first round, for any node vr, we sort the other nodes vs in increasing
distances from vr. Denote this sorted list by L(vr). The sorting takes O(n2 log n)
total time. At the beginning of the kth round, we assume that each node has
been labeled the connected component that it belongs to. For each node vr, we
construct the Nm(vr, vs)’s by scanning L(vr) in O(n) time. Summing over all
choices of vr, the total time is O(n2). After picking the greedy choice, we merge
a few connected components together. So we need to relabel the nodes in the
connected components merged. This takes O(n) time. In all, one iteration of the
repeat loop takes O(n2) time. As there are no more than n − 1 iterations, the
total time needed is O(n3).

The union of stars is a subgraph of G that contain all nodes in G. We com-
pute the minimum spanning tree TG of the union of stars which serves as the
undirected version of the broadcast tree. Whenever we want to broadcast from
a node vr, we root TG at vr to obtain a directed spanning tree and broadcast
from vr using this directed spanning tree.

Theorem 1. For any source node vr, rooting TG at vr yields a broadcast tree
whose power consumption is within a factor 2 + 2 ln(n− 1) of the optimal.

Proof. Since TG is the minimum spanning tree of the union of stars, TG is the
union of some trimmed stars. In the rooted TG, each trimmed star is either
rooted at the center of the star or rooted at a leaf of the star. In the first case,
the power consumption of sending data through the trimmed star is at most the
weight of the star. In the second case, the power consumption is also twice the
weight of the star. Hence, by Lemma 2, the power consumption of the rooted
TG is within a factor 2 + 2 ln(n− 1) of the optimal.

3 Approximate Minimum Power Multicasting

In this section, we present an algorithm to find a multicast tree that spans a set
of nodes and the total power consumption in the tree is minimized. We consider
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the obstacle-free energy model where each node vi can reach any other node vj

using power dα
ij . We show that one can construct a multicast tree whose power

consumption is within a constant factor of the optimal. We will make use of the
following result due to Wan et al. [10] for this model.

Theorem 2. Assume that any two nodes vi and vj can reach each other using
power dα

ij. The weight of the minimum spanning tree is within a factor c of the
power consumption of the optimal broadcast tree, where c is a constant between
6 and 12.

We remark that the lower bound of 6 in Theorem 2 is achieved by an example
with seven points. It is not known what the lower bound is as n grows.

Let K be the set of nodes of G that belong to the multicast group. Given
any multicast tree T for K, we use cost(T ) to denote its power consumption
and weight(T ) to denote the total edge weight of T . The following lemma shows
that the minimum Steiner tree in G interconnecting K is a constant factor
approximation of the optimal multicast tree for K no matter which node in K
is the source.

Lemma 3. Let c be the constant in Theorem 2. Let TK be the minimum Steiner
tree in G interconnecting K. The total edge weight of TK is within a factor c of
the power consumption of the optimal multicast tree for K.

Proof. Let T ∗ be the optimal multicast tree for K. Let M be the set of vertices
in T ∗. We use GM to denote the subgraph of G on M . Since G is a complete
graph, GM is also a complete graph. We use mstM to denote the minimum
spanning tree of GM . Since the edge weight is equal to the Euclidean distance
raised to a power α ≥ 2, mstM is the same as the Euclidean minimum spanning
tree of M . Clearly, T ∗ is a broadcast tree for GM . So by Theorem 2, we have
weight(mstM ) ≤ c · cost(T ∗). Finally, since M contains K, mstM is a Steiner
tree in G interconnecting K. So weight(TK) ≤ weight(mstM ) ≤ c · cost(T ∗).

Since cost(TK) ≤ weight(TK), TK could be used as an approximate multicast
tree. Unfortunately, it is NP-hard to compute the minimum Steiner tree [3].
Nevertheless, by Lemma 3, a constant factor approximation of TK suffices and
several algorithms are known for doing this. For example, a 2-approximation T
of TK can be computed in O(|K|n2) time. It follows that cost(T ) ≤ weight(T ) ≤
2weight(TK), which is within a factor 2c of the power consumption of the optimal
multicast tree for K. We briefly sketch the ideas of the algorithm.

First, compute the shortest path distances in G among the vertices inK. This
takes O(|K|n2) time. Second, construct a complete graph H on K such that the
edge weight between two vertices vi and vj in H is equal to the shortest path
distance between them. This takes O(|K|2) time. Third, compute the minimum
spanning tree of H in O(|K|2) time. Each edge of this minimum spanning tree
corresponds to some shortest path in G. The union of all such shortest paths is a
spanning subgraph G′ of G. We compute a minimum spanning tree of G′ which
is the desired 2-approximation of TK .
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Using better algorithmic techniques, Mehlhorn [5] improved the running time
to O(n2). The factor 2c is very pessimistic. In practice, the minimum spanning
tree is a much better approximation of the optimal broadcast tree than predicted
by Theorem 2. Thus, we also expect that an approximate Steiner tree performs
much better in practice. We summarize this section with the following theorem.

Theorem 3. Assume that there are n nodes such that any two nodes vi and
vj can reach each other using power dα

ij. Let K be a subset of the n nodes. It
takes O(n2) time to compute a multicast tree for K whose power consumption
is within a factor 2c of the optimal, where c is a constant between 6 and 12.

4 Maxmin Node Energy Multicasting

In this section, we present another multicast routing algorithm that aims to
maximize the minimum remaining node energy at the end of a multicast session.
The goal is to make the network survive longer since the network may become
disconnected if some node is out of power. This objective was first introduced
by Cheng et al. [2] and it is vastly different from minimizing the total power
consumption.

We assume that the duration of the session is known and we denote it by
t. We use E(vi) to denote the initial amount of energy at the node vi. Our
algorithm works with a weighted directed complete graph G on the n nodes.
The weight of each arc (vi, vj) of G is the remaining energy at vi if data is sent
from vi to vj for t seconds. Let dij denote the Euclidean distance between vi

and vj . We can accommodate individual lower and upper bounds Li and Ui on
the power level of each node vi. For any arc (vi, vj), we set its weight w(vi, vj)
as follows. If dα

ij < Li, then w(vi, vj) = E(vi) − Li · t. If Li ≤ dα
ij ≤ Ui, then

w(vi, vj) = E(vi)− dα
ij . Otherwise, w(vi, vj) = −∞.

We first describe a solution which is easier to explain. Let v0 be the source.
First, we sort the edges in non-increasing order of their weights. Second, we delete
all the edges from G and reintroduce them one by one in the sorted order. We
stop as soon as the edges added so far contain a directed Steiner tree of the multi-
cast group rooted at v0. If (vi, vj) is the last directed edge added, w(vi, vj) is the
maxmin remaining node energy. Why is this strategy correct? Since the nodes in
the multicast group cannot be connected by a directed Steiner tree rooted at v0
before the introduction of (vi, vj), it is impossible that the optimal solution uses
edges with weight larger than w(vi, vj). Furthermore, if the optimal solution uses
edges with weight less than w(vi, vj), the minimum remaining node energy would
be less than w(vi, vj). There are Θ(n2) edges, so the sorting takes O(n2 log n)
time. Verifying the existence of a directed Steiner tree can be done in O(n2)
time: a directed Steiner tree exists if and only if a breadth-first-search (using the
edges added so far) starting from v0 can reach all nodes in the multicast group.
Instead of examining the edges one at a time in order of non-increasing weights,
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we can speed it up by binary searching for the edge at which a directed Steiner
tree of the multicast group starts to exist. The binary search takes O(log n)
rounds and so the whole procedure takes O(n2 log n) time.

In the following, we show that we can find the optimal solution by a single
invocation of the Prim’s algorithm which takes O(n2) time. This is faster than
the previous procedure in theory. We also expect that the single invocation of
the Prim’s algorithm to be faster in practice because during the binary search,
the repeated graph search incurs a significant overhead.

Let K be the set of nodes consisting of the source v0 and the nodes that
v0 will multicast to. Our algorithm works by constructing a directed maximum
spanning tree mst of G and pruning mst to a multicast tree MK for K.

We initialize the tree mst to contain v0 alone. Before mst includes all vertices
in G, we select the arc (va, vb) such that w(va, vb) = maxvj∈mst,vk 	∈mst w(vj , vk).
Then we add (va, vb) to mst and repeat. In the end, mst is a directed maximum
spanning tree of G. Next, we prune mst as follows. If there is a leaf in mst that
is not a node in K, we remove that leaf and repeat as long as such a leaf can be
found. The final pruned tree obtained is MK . The following result shows that
MK is the optimal multicast tree.

Theorem 4. The multicast tree MK can be constructed in O(n2) time. More-
over, for any multicast tree T for K with v0 as the source, after the multicasting,
the minimum node energy left in MK is at least the minimum node energy left
in T .

Proof. The time needed to construct MK follows from the previous dis-
cussion. Let T ∗ be an optimal multicast tree. We use w(T ∗) to denote
min(vi,vj)∈T∗ w(vi, vj) and w(MK) to denote min(vi,vj)∈MK

w(vi, vj). Assume to
the contrary that w(T ∗) > w(MK). Let (vr, vs) be the arc in MK such that
w(vr, vs) = w(MK). Consider the construction of mst . At the time when (vr, vs)
is included by our algorithm, the nodes in G are partitioned into two subsets S1

and S2, where S1 contains the growing mst and S2 contains the nodes remaining
to be connected. Note that v0, vr ∈ S1, and vs ∈ S2. Moreover, since (vr, vs) be-
longs to MK , some descendant of vs in MK must be a node in K. It follows that
S2 contains some node in K. Since T ∗ includes this node too, T ∗ contains some
arc (vi, vj) from S1 to S2. We have w(vi, vj) ≥ w(T ∗) > w(MK) = w(vr, vs). This
is a contradiction since our algorithm should have preferred (vi, vj) to (vr, vs).

In fact, MK also maximizes the minimum remaining node energy in the
entire network, instead of just the energy of the nodes of the multicast tree. The
following corollary gives a precise statement.

Corollary 1. Let T be any multicast tree for K with v0 as the source. Let E1

be the minimum node energy left in the network after multicasting using MK .
Let E2 be the minimum node energy left in the network after multicasting using
T . Then E1 ≥ E2.
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Proof. Observe that E1 is equal to the minimum of minvi∈GE(vi) and the
minimum of w(vi, vj) over all (vi, vj) in MK . Similarly, E2 is the minimum
of minvi∈GE(vi) and min(vi,vj)∈T w(vi, vj). Clearly, E1 ≥ E2 by Theorem 4.

5 Conclusion

We have discussed energy efficient broadcasting and multicasting in in a more
general nodal energy model, as well as in the obstacle-free environments. Three
energy efficient broadcast and multicast algorithms have been proposed. The
main results of this paper are summarized as:

1. The proposal of a minimum energy broadcast routing algorithm for wireless
networks in which each node has a lower and an upper bound of energy
levels and the communication among certain nodes may be obstructed. The
algorithm has a guaranteed performance bound 2 + 2 ln(n− 1).

2. The proposal of a minimum energy multicast routing algorithm in obstacle-
free environments. The algorithm has a constant performance bound.

3. The proposal of an optimal maxmin nodal energy multicast routing algo-
rithm. The algorithm is optimal in the sense that the minimal remaining
energy of nodes is maximized after a multicast session. Different from the
previous work, this algorithm does not assume that all nodes have the same
initial energy level.
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Abstract. In this paper we study an algorithm to find critical points of a
lower semicontinuous nonconvex function. We use the Moreau regulariza-
tion for a special type of functions belonging to the class of prox-regular
functions which have very interesting algorithmic properties. We show
that it is possible to generate an algorithm in order to obtain a critical
point using the theory developed for the composite functions and also the
results for the solutions of nonsmooth vectorial equations. We prove the
convergence of the algorithm and some estimations of the convergence
speed.1
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1 Introduction

Martinet, Refs. [9, 10] proposed an iterative procedure based on the proximal
point algorithm for solving the following problem

(P ) min{f(x) : x ∈ IRn}

where f is a closed proper convex function. This iterative method generates a
sequence {uk} defined as

uk − uk−1

λ
∈ −∂f(uk).

For this sequence both convergence and rate of convergence results were estab-
lished by Rockafellar in Ref. [17]. In the non-convex case, some of these ideas
have recently begun to be studied for some class of functions. For example, there
is a very nice set of results developed by Poliquin and Rockafellar, Ref. [13] on
the class of prox-regular functions. This type of functions has very interesting
properties which are essential for our goals. We consider the Moreau envelopes
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eλf which provide a sort of regularization of f and use the fact that eλf(·)+r ‖·‖2
is a convex function for some r and eλf is a lower-C2 function under appropri-
ate mild conditions. We will start the paper introducing a modification in the
original defi-nition of prox-regularity asking for a uniformity with respect to the
”curvature” of the function. This class of functions will be called r-prox-regulars
and we will show that when a function f in this class is also locally Lipschitz, f is
lower-C2 and hence a strongly amenable function, which will allow us to write f
as a composite function. With this idea in mind we will use the results proved by
Pang, Hang and Rangaraj Ref. [12] to obtain a critical point of f = G◦F where
G is a convex continuous function and F is a C2 mapping. On the other hand,
without the locally lispchitzianity over f , we will use the Moreau regularization
again, and we will show that eλf is strongly amenable. Then, we will find critical
points of eλf , that is, the necessary optimality condition involves ∇eλf(x) = 0.
In order to solve this equation, we will use some recent developments in the area
of nonsmooth equations and generalized Newton methods. Hence, we will use
some results proved by L. Qi Ref. [18] to obtain superlinear convergence for the
subproblem: find x̂ such that ∇eλf(x̂) = 0. Finally, by using the extension of
Attouch Theorem proved by Poliquin, Ref. [14] about epi-convergence and con-
vergence of subgradients we will conclude going with λ to zero, that x̂ is a critical
point of f .

2 Preliminaries

We start this section with a notion close to the definition of prox-regular func-
tion at a point x̄ introduced by Poliquin and Rockafellar, Ref. [13] for a locally
lower semicontinuous function at x̄, that is, a function whose epigraph is locally
closed around (x̄, f(x̄)). Indeed, we will work with a modification of the origi-
nal definition making the behaviour of the ”curvature coefficient r” explicit and
uniform.

Definition 1. Let f : IRn → IR be a finite function and locally l.s.c. at x̄. We
say that f is r-prox-regular with r > 0 at x̄ if for each v̄ ∈ ∂f(x̄) there exists
ε > 0 such that

f(x′) ≥ f(x) + 〈v, x′ − x〉 − r

2
‖x′ − x‖2 ; ∀ x′ ∈ B(x̄, ε) (1)

when v ∈ ∂f(x), ‖x− x̄‖ < ε, ‖v − v̄‖ < ε, f(x) < f(x̄) + ε

Remark 1. Note that (1) requires v to be a proximal subgradient at x: denoted
v ∈ ∂pf(x)

This class of functions is large enough for our purpose. From the ”geometrical”
point of view, this class contains any convex proper and l.s.c. function, a lower-
C2 function and a strongly amenable function such that it is possible to draw a
parabola under their epigraphs ( touching the graph) with a curvature bounded
from below by r.
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Remark 2. There are two main differences -both strongly required in this paper-
with respect to the prox-regularity definition given by Poliquin and Rockafellar.
First, they don’t ask uniformity on the curvature r and second the notion of
prox-regularity is defined for a point x̄ and a subgradient v̄ of the function f.
Thus, the class of prox-regular functions is much larger than the r-prox-regular
one. However, most questions about the r-prox-regularity of f at x̄ can be stated
for a particular vector v̄ ∈ ∂f(x̄) ( fixe v̄ in the definition 2.1). In this case we
would say that f is r-prox-regular at (x̄, v̄). For example, for each v̄ (fixed) this
notion would be conveniently normalized to the case where x̄ = 0 and v̄ = 0,
moreover with f(0) = 0.

By using this terminology we could establish the following lemma, however in
the following sections we will always work with the notion of r-prox-regular.

Lemma 1. We say that f is r prox-regular at (x̄, v̄) if and only if g(x) = f(x+
x̄)− 〈v̄, x〉 is r prox-regular at x̄ = 0, for v̄ = 0.

3 Main Results

Let f : IRn → IR be a (nonconvex) lower semicontinuous function, (for short
l.s.c.). In what follows we will study the following problem, namely, finding crit-
ical points x∗ of the problem,

min
x∈IRn

f(x), (2)

that is, such that 0 ∈ ∂f(x∗), where ∂f(x) is the Mordukhovich subgradient set
already called subgradient set in this paper .
We consider the Moreau envelope functions eλf for λ > 0 where

eλf(x) = min
x′
{f(x′) +

1
2λ
‖x′ − x‖2}

We start giving the following result which corresponds to a ready modification
of Poliquin and Rockafellar’s result (Theorem [5.2], see Ref. [13]) and which is
useful for our purpose.

Lemma 2. Suppose that f is r-prox-regular at x̄, and let λ ∈ (0, 1/r) and g(x) =
f(x + x̄) − 〈v̄, x〉, where v̄ ∈ ∂f(x̄). Then on some neighborhood of the origin,
the function

eλg(x) +
r

2(1− λ r) |x |
2

is convex, where r is the constant that appears in the r-prox-regular definition [1].
Furthermore, if λ is sufficiently small, then on a neighborhood of the origin, eλg
is lower-C2.

We know, Ref. [16], that if f is lower-C1 on an open set O ⊂ IRn, then there
is a local representation of f as a subsmooth ( max of a C1 family of functions



An Algorithm for Nonconvex Lower Semicontinuous Optimization Problems 29

parameterized on a compact set) function over a functions around each point
x ∈ O and a similar property is true for lower-C2 functions. Moreover, for any
compact set B ⊂ O, a common representation is valid for all points x in some
open set O′ satisfying B ⊂ O′ ⊂ O. In what follows we give a new proof for
the lower-C2 case by using only a local representation of these functions as a
difference between a convex and a quadratic function. A rather complex proof
of this property was given by Rockafellar and Wets in their book.

Proposition 1. Let K be a compact convex subset of IRn, and let f : IRn → IR
be a lower-C2 function on a set K, then there exist r̄ > 0 such that the function
h(x) = f(x) + (r̄/2) ‖x‖2 is convex on K, where r̄ can be computed using a
particular finite covering of K.

Proof. As f is a lower-C2 function then, for all x ∈ K, there exists an open
set Ox such that f(x) + (rx/2)‖x‖2 is a convex function on Ox. The collection
of open set {Ox}x∈K cover K, so by compactness there exist points xi ∈ K for
i = 1, 2, . . . ,m, such that K ⊂ ∪m

i=1Oxi
and r̄ > 0 are large enough such that

h(x) = f(x) + (r̄/2) ‖x‖2 is a convex function on K.

We now introduce the notion of r-prox regularity on a set still fixing the ”curva-
ture coefficient r” on the set. This class will be interesting from the algorithmic
point of view.

Definition 2. A function f is said to be r-prox-regular on set C if it is r-prox-
regular for each x ∈ C.

So, we can now give the following theorem showing the relation between r-prox-
regularity, the notion of lower-C2 and the convexity.

Theorem 1. If f is r-prox-regular on an compact convex set C, then f(x)+r|x|2
is a convex function on C.

4 Algorithm I. Lipschitz Case

In this section we will introduce a new algorithm to find critical points of the
problem (P ). We use the ideas developed by Pan, Hang and Rangaraj, (see
Ref. [12]) so as to obtain a globally convergent method and some estimations
of convergence speed. We start with the following result about r-prox-regularity
and composite functions.

Proposition 2. If f is r-prox-regular and locally Lipschitz on a convex compact
set K then f is lower-C2 on K with a common representation for all x ∈ K.
Thus, f = G ◦ F where G is a convex function defined by G(y, x) = y + f(x) +
r
2 ‖x‖

2 and F is the C2 function such that F (x) = (− r
2 ‖x‖

2
, x).

This last Proposition is essential for us because it is known that any d verifying
G(F (x) +F ′(x)d) < G(F (x)) is a descent direction of the original function f at
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x. Thus, we have an easy way to check descent directions. The other consequence
is the fact that function f is locally Lipschitzian and directionally differentiable;
moreover, f is a Bouligand differentiable function. Thus, the directional deriva-
tive of f at x ∈ IRn in the direction d ∈ IRn is f ′(x, d) = G′(F (x),∇F (x)d).
All these properties will allow us to use over eλf some known results about global
convergence as we show later. Following the determination of an algorithm we
first introduce the merit function (iteration function or casting function) ψ de-
fined by

ψ(x, d) = G(F (x) +∇F (x)d)−G(F (x)). (3)

This function is important for finding descent directions. Now, we recall the fol-
lowing abstract convergence result proved by Pan, Hang and Rangaraj, (Ref. [12]),
of the model algorithm specialized to minimize a composite convex function
which will be adapted to our goals.

Lemma 3. Let f = G◦F where G : IR× IRn → IR is a convex function bounded
from below and F : IRn → IR× IRn is a continuously differentiable function. Let
us consider the merit function ψ defined by (3) and a sequence {Bk} of matrices
satisfying ∃ α ≥ β > 0 such that ∀ x ∈ IRn: β xtx ≤ xtBkx ≤ αxtx, ∀ k.
Suppose that {xk} is a sequence generated as xk+1 = xk + tk dk; ∀ k ≥ 0, where
the direction dk is computed solving the problem,

(Pk) min{ψ(xk, d) +
1
2
dtBk d : d ∈ IRn},

and the step size tk is calculated by Armijo’s rule. Then, every accumulation
point of {xk} is a critical point of the composite function f.

Remark 3. In the original version of the above lemma the accumulation point
was actually a Dini stationary point but a Dini stationary point set is always a
critical point. Therefore, the above lemma is a direct consequence.

Now, we can state the first algorithm of this paper which seeks critical points of
a lipschitzian function.

Algorithm I

(1). Let ρ, σ ∈ (0, 1) be given. Let x0 ∈ IRn be arbitrary. Set k = 0
(2). Given xk, compute a global optimal solution dk of the problem

(Pk) min{ψ(xk, d) +
1

2
dt Bk d : d ∈ IRn}

• Stop if the optimum objective value of problem (Pk) is zero; in this case, xk

is a desired critical point of f
• Otherwise, let mk be the smallest nonnegative integer m such that

f(xk + ρm dk) − f(xk) ≤ −σ

2
dt

k Bk dk

Set xk+1 = xk + ρmk dk

(3). Repeat the general step with k + 1 replacing k while xk+1 fails the stop criteria.
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Remark 4. Problem Pk can be written as

min{f(xk + d) +
r

2
|d|2 − f(xk) +

1
2
dtBk d : d ∈ IRn} (4)

Remark 5. The line search step in the algorithm follows the usual Armijo rule;
the integer mk can be determined after a finite number of trials starting with
m = 0, 1, 2, · · · ,

Remark 6. The sequence {xk} satisfies

f(xk+1) ≤ f(xk)− σ

2
ρmkdt

kBkdk < f(xk),

thus, {f(xk)} is strictly decreasing. Moreover, if function f is bounded from
below, then the sequence {f(xk)} converges and hence {f(xk+1)− f(xk)} → 0.

In step 2) of Algorithm I, we require to solve problem 4 which can be written
as (Pz) min{z(d) : d ∈ IRn} where z(d) = f(xk + d) + r

2 |d|2 + 1
2 d

tBk d. This
problem has obviously a nonempty optimal solution set denoted S(P ). One way
to solve this problem is by using the proximal point algorithm. Martinet (Refs.
[9, 10]) proposed an iterative procedure to solve (P ): starting from d0 ∈ IRn he
defines the sequence dk recursively such that

(Prox) (dk − dk−1)/λ ∈ −∂z(dk),

which is equivalent to

(P z
k ) dk = argmin{z(d) + (1/2λ)|d− dk−1|2 : d ∈ IRn}

Inexact versions of (Prox) are essential in order to produce implementable meth-
ods. Indeed, exact minimization in (P z

k ) can be replaced by

dk ∈ εk − argmin {z(d) + (1/2λ)|d− dk−1|2 : d ∈ IRn},

or equivalently,
(dk − dk−1)/λ ∈ −∂εk

z(dk).

This last problem can be solved via the ”explicit” bundle algorithm described,
and introduced by Ref. [3], which in our setting takes the following form:

Algorithm: Direction Search

(0). Select γ ∈ ∂z(u), and let y0 = u − λγ; φ0(y) = z(u) + 〈γ, y − u〉

(1). If z(yj) − φj(yj) ≤ ε stop; otherwise, determine yj+1 as follows.

(2). Let wj = (u − yj)/λ ∈ ∂φj(yj), and select γj ∈ ∂z(yj)
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(3). Take any function φj+1 ≤ z such that

φj+1(y) ≥ max{φj(yj) + 〈wj , y − yj〉; g(yj) + 〈γj , y − yj〉}
(4). Take for yj+1 the solution of the minimization problem

min{φj+1(y) + (1/2λ)|y − u|2 : y ∈ IRn}
(5). Update j ← j + 1, and go to Step 1.

One of the main points of this algorithm is the fact that the computation of yj

in Step 4 is explicit. It can be proved that this algorithm stops after a finite
number of steps, see Refs. [3, 2, 7]. Cominetti [4] estimates the number of steps
to provide an answer. When the algorithm ”stops” we have the solution point
y = yj since

(u− yj)/λ ∈ ∂φj(yj) ⊂ ∂εz(yj).

Now we can summarize all these ideas in a simple result of convergence for the
proposed Algorithm I. For this purpose, we assume that the sequence generated
by the Algorithm I is contained in a known box C ( convex and compact).

Theorem 2. Let f be r-prox-regular and locally lipschitzian function on the box
C. Let {xk} be the sequence generated by Algorithm I, then every accumulation
point of {xk} is a critical point of f .

5 Algorithm II. Nonlipschitz Case

We know now the fact that when f is convex then eλf is a C1+ convex function
for every λ > 0. This fact has important consequence in variational analysis and
optimization. The study of eλf when f is not convex has received attention only
recently. In Ref. [13], it was shown that eλf is differentiable with ∇eλf(x̄) = 0,
in fact of class C 1 + with ∇eλf(x) = λ−1[I − Pλf ](x) where

Pλg(x) = argminw{g(w) +
1

2 λ
|w − x|2}

is the proximal mapping. We show in the next proposition that eλf is a composite
function. This simple result will be crucial for our goals. In what follows we
assume that the solutions of (P ) are contained in a known box ( convex and
compact) K.

Proposition 3. Let f be an r-prox-regular function on K. Then there exist func-
tions G and F such that eλf = G ◦ F over K, where G is a convex continuous
function and F is a C2 mapping.

Now, we come back to problem (P ), that is, how to find critical points of a
nonlipschitzian function f. This problem obviously involves the necessary op-
timality condition ∇eλf(x) = ∇G(F (x))∇F (x) = 0. At this point, we use
the developments in the area for solving nonsmooth equations by generalized
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Newton methods in order to obtain a critical point of ∇eλf . This area has
been focused on numerical solutions of a nonsmooth equation T (x) = 0, where
the mapping T : IRn → IRn is assumed to be locally Lipschitzian. For such
a function Rademacher’s theorem implies that T is differentiable almost ev-
erywhere . We denote the set of points where T is differentiable by DT . Let
∇T (x) be the n × m Jacobian matrix of partial derivatives whenever x is a
point where the partial derivatives exist. This property was used by F. Clarke
Ref. [8] to introduce for each x ∈ IRn the generalized subdfferential of T de-
fined by ∂cT (x) = co{limxi→x∇T (xi) : xi ∈ DT }, which is a nonempty convex
compact set. With this definition we recall the important notion for algorithmic
purposes called the semismooth functions which were originally introduced by
Mifflin, Ref. [11] for functions on IRn. Convex functions, smooth functions and
subsmooth functions are examples of semismooth functions. Moreover, the sums,
differences, products, and composites of semismooth functions are semismooth.
We now recall the notion of semismooth for such functions.

Definition 3. We say that T is semismooth at x if T is lipschitzian near x and
lim

V ∈∂cT (x+th′)
h′→h, t↓0

{V h′} exists for any h ∈ IRn.

For a given x ∈ IRn, the Clarke’s generalized subdifferential ∂cT (x) is the convex
hull of the following set called B-subdifferential:

∂BT (x) = { lim
xi→x

∇T (xi) : xi ∈ DT }

Now, we recall the notion of BD-regularity introduced by Qi, Ref.[18], which will
be useful later.

Definition 4. We say that T is BD-regular at x if all the elements in ∂BT (x)
which themselves are n× n matrices, are nonsingular.

As we mentioned before we seek as a first step zeroes of ∇eλf , i.e. we want to
solve the system of nonsmooth equations: H(x) = ∇eλf(x) = 0. This equation
will be solved by using an algorithm which generates a sequence {xk} such that
xk+1 = xk − V −1

k H(xk), where Vk ∈ ∂BH(xk). Thus, we propose the following
algorithm to obtain a critical point of ∇eλf

Generic Algorithm II

(0). Let x0 be arbitrary.
(1). For k = 0, 1, 2, · · · , let dk be a solution of the linear equation: ∇eλf(xk)+ Vk d =

0, where Vk ∈ ∂BH(xk)
(2). For k = 0, 1, 2, · · · ,, define xk+1 = xk + dk

(3). Test xk+1 for convergence. Repeat the general step with k + 1 replacing k if xk+1

fails the convergence test.

At this point we observe that as eλf is C 1+ thus, we can assume that ∇eλf
is semismooth. In what follows we use the notation H(·) := ∇eλf(·) which is
a locally lipschitzian function. Thus, the Clarkes generalized of H(x) or the
generalized Hessian of eλf is given by ∂H(x) = co{lim∇H(xj) : xj → x, xj ∈
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DH}. Hence, by using the following result, developed by Qi, see Ref.[18], we
will obtain superlinear convergence for our subproblem: find x̂λ such that 0 =
∇eλf(x̂λ).

Proposition 4. Let x∗λ be a solution of H(x) = 0 and assume that H is semis-
mooth and BD-regular at x∗λ. Then Algorithm II is well defined and convergent to
x∗λ superlinearly when the starting point of the algorithm is close enough to x∗λ.
Moreover, if H(xk) �= 0 for all k, then the norm of H decreases superlinearly.

Remark 7. In Algorithm II it is possible to choose a step length, tk > 0 such
that xk+1 = xk + tk dk where the stepsize tk can be determined by some line
search procedures such as the Armijo rule.

In summary, we have a critical point x∗λ of ∇eλf . Moreover, the sequence gen-
erated converges Q-superlineary to x∗λ. But, we want to find a critical point of
our original problem, that is, 0 ∈ ∂f(x).
For this purpose, we will use an extension of Attouch’s theorem. We recall that
Attouch [1] showed that for convex functions the epi-convergence is the ap-
propriate concept of convergence when we are interested in convergence of their
subdifferentials. He showed that a sequence {fn} of lower semicontinuous proper
convex functions epi-converge to f if and only if the sets {gph ∂fn} converge
to gph ∂f and there exists {(xn, un)} ∈ gph fn converging to {(x, u)} with
u ∈ ∂f(x) and fn(xn) converging to f(x). The extension of Attouch’s Theo-
rem involves primal lower nice functions. These functions were first introduced
by Poliquin in Ref. [15].

Definition 5. A lower function f : IRn → IR ∪ {∞} is said to be primal lower
nice (p.l.n.) at x̄ if there exist c > 0, ε > 0, and ρ > 0 such that if r ≥ ρ, ‖u‖ ≤
cr, ‖x− x̄‖ < ε and u ∈ ∂pf(x) then

f(x′) ≥ f(x) + 〈u, x′ − x〉 − (r/2) ‖x− x′‖2 if ‖x− x′‖ < ε (5)

In Ref. [15], Proposition [3.5] proved that for these functions the subgradients
are actually proximal subgradients. Poliquin, Ref. [14] showed an equivalent char-
acterization of primal lower nice functions: the subgradients of p.l.n. functions
are ”t-monotone” i.e. ∂f + tI is a monotone set valued mapping. We know that
eλf is lower-C2, therefore it is p.l.n. Now, in the following lemma, the extension
of Attouch Theorem proved by Poliquin, ( see Ref. [14]) is given.

Lemma 4. Assume that eλf is l.s.c. uniformly minorized by a quadratic and
p.l.n. at x̄ with constants c, ε, and ρ > 0 (see Definition 5). If eλf epiconverge
to f , denoted eλf

e−→ f on ‖x− x̄‖ < ε then gph ∂eλf → gph ∂f (Painleve-
Kuratowski sense) on ‖x− x̄‖ < ε and there exist gph ∂eλn

f � (xn, un) →
(x̃, ũ) ∈ gph ∂f with eλn

f(xn) → f(x̃) and ‖x̃− x̄‖ < ε

Now, we give the following result, which shows that we can compute by using
Algorithm II a critical point of f
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Theorem 3. Let λk a sequence converging to zero. For each λk > 0, we denote
x∗λk

an accumulation point of the sequence generated by algorithm II. Assume that
x∗λk

or a subsequence converges to x∗ when k goes to infinity, then 0 ∈ ∂f(x∗),
that is, x∗ is a critical point of f.

Proof. As eλk
f

e−→ f when λk goes to zero, then by means of Lemma 4 we
conclude that gph∇eλk

f
k−→ gph ∂f. Moreover, we get gph∇eλk

f � (x∗λk
, 0) →

(x∗, 0) ∈ gph ∂f , that is, x∗ is a critical point of f as required.

6 Conclusions

We have proposed two algorithms to solve an unconstrained nonsmooth opti-
mization problem. In the first case, we have generated an algorithm converging to
a critical point of f when this function is locally lipschitzian and r-prox-regular.
This last class of functions has shown suitable properties from the algorithmic
point of view. In the second case, we attack the problem when function f is only
r-prox-regular (nonlipschitzian). Thus, by using the Moreau approximation and
some Mifflin and Qi’s ideas we have proved of the convergence of the generic Al-
gorithm II proposed in this paper. With respect to speed of convergence, we can
guarantee the superlinear convergence of the critical point given in Algorithm
II. A remaining question is to study the speed of both algorithms I and II, which
certainly will depend on the line search algorithms involved.
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Abstract. Competitive analysis for all investors in the Bahncard prob-
lem (a railway pass of the Deutsche Bundesbahn company) has received
much attention in recent years. In contrast to this common approach,
which selects the riskless outcome and achieves the optimal competi-
tive ratio, this paper introduces a risk-reward competitive strategy to
achieve flexibility. Namely, we extend the traditional competitive anal-
ysis to provide a framework in which the travellers can develop opti-
mal trading strategies based on their risk tolerance and investing ca-
pability. We further present a surprisingly flexible competitive ratio of
r∗A = 1 + 1−β

(2−β)t−(1−β)
for the Bahncard problem, where t is the risk

tolerance and β is the percentage of discount with respect to this strat-
egy. Then substituting t = 1 into the above equation, we obtain the
(2 − β)−competitive ratio which is the best attainable result presented
by Fleischer.

1 Introduction

An extensive study of the online problems began in the 1980s in the seminal
work of Sleator and Tarjan [9] on list accessing and paging algorithms. Within
the theoretical computer science community, the competitive ratio has become a
standard approach for the analysis of the online problems. Nevertheless, one ar-
gument against the use of this approach is that the online players are inherently
risk-averse as they are optimized with respect to the worst-case event sequences.
A number of approaches have been developed in an attempt to remedy this situa-
tion. Raghavan [3] attempted to remedy this by proposing a competitive strategy
against the statistical adversary whose request sequence was required to satisfy
certain distributional requirements. Al-Binali [1] analyzed a financial game us-
ing the competitive analysis framework to include a flexible risk management
mechanism. Our risk-reward competitive analysis blends the two approaches to
allow the online players to benefit from their own capability in correctly fore-
casting the coming request sequences, but also allow them to control their risk
of performing and then selects a set of near optimal algorithms. The property
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can be favorable for the online players who may prefer somewhat inferior but
guaranteed performance to better average performance.

In this paper we study the Bahncard problem originally proposed by Fleischer
[2]. We use the notation of BP (C, β, T ) to denote this problem where a Bahncard
costs C, reduces any regular ticket price p to βp, and is valid for time T . For
example, BP (240DM, 1

2 , 1 year) means that if the traveller spends 240DM for
a Bahncard, he is entitled to a percentage discount of 50% price reduction on
nearly all train tickets. Fleischer presented a (2− β)-competitive solution using
the traditional deterministic online algorithm for BP (C, β, T ). However, another
key factor of BP (C, β, T ) (which is not considered in [2]) is the risk. Because in
most cases the investors do not seek to minimize risk, but to manage it.

Recognizing theneed for riskmanagement inBP (C, β, T ) ,weoffer sucha frame-
work that generalizes competitive analysis and allows for flexible riskmanagement.
The framework extends traditional competitive analysis by introducing two ingre-
dients: risk and capability. This is because the online investor often owns such ca-
pability that can make a correct forecast about the future requirements. Therefore,
for BP (C, β, T ) the investor can estimate his own investing capability to choose a
maximum acceptable risk level t and a set of forecasts F , and then develop an al-
gorithm that can maximize the reward should his forecast be correct. It is hoped
that by posing reasonable forecast the online investor can boost performance sig-
nificantly as long as the input sequences conform to the forecasts.

This paper is organized as follows. Section 2 outlines the traditional competitive
analysis of BP (C, β, T ) by Fleischer. A detailed risk algorithm Â and a proposed
competitive solution are given in section 3 while a flexible competitive ratio of r∗

Â
=

1+ 1−β
(2−β)t−(1−β) is achieved. Section 4 presents some empirical results with respect

to the“Youth Discount Card of France Railway NO.CARTE 12-25”. Finally, we
conclude with section 5, pointing out directions for future research.

2 The Bahncard Problem

For the problem of BP (C, β, T ), an investor has to decide whether to buy a Bah-
ncard without any knowledge of the coming travel sequences δ1, δ2, . . . , δn. Here
each δi can be denoted by δi(ti, pi), which means the investor has to face the reg-
ular ticket price pi at the travel time ti. On the other hand, when purchasing a
Bahncard at the travel time ti, the investor can obtain a reduced price βpi during
the time interval [ti, ti + T ) . Then the competitive analysis of online algorithms
often can help the online investor make decisions.

2.1 Competitive Analysis

Assume that an optimal offline investor knows exactly the future travel sequences,
and whether to buy Bahncards depends on the less cost incurred according to the
following rules:

1. the offline investor chooses a competitive algorithmwith respect to the critical
cost C

1−β , which is the break-even point for any algorithms (see, for example, [2]).
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2. during the time interval I, let pI
i (δ) = Σti∈Ipi denote the all money, and

CI
A(δ) = Σti∈ICA(δi) be the total cost incurred by an algorithm A. If pI

i (δ) ≤
C

1−β , the time interval I is called the cheap interval (OPT never buys a Bahncard),
otherwise it is called the expensive interval.

3. for the online investor the chance of buying Bahncards byA is represented by
kA(δ) = (k1, k2, . . . , km). That is, for the finite δ, an algorithm A buys Bahncards
at times 0 ≤ k1 < · · · < km. Here epoch [ki, ki+1)(except for, possibly, the first
and last one) startswith an expensive phase [ki, ki+T ) and followsby a cheapphase
[ki + T, ki+1). Then the total cost of A on δ is CA(δ) = KA(δ) · C +Σi≥ 1CA(δi),
whereKA(δ) is the lengthm of the buying-chance.

For each request sequence, there is an optimal buying-chance KOPT (δ) such
that COPT (δ) = KOPT (δ) + minΣi≥ 1C(δi). Fleischer [2] showed that given n
travel requests, an optimal buying-chance of Bahncards and its minimal cost can
be computed inO(n) time.Therefore in this paperwe also donot distinguish clearly
between an algorithmA and the buying-chanceKA(δ). For simplicity, assume that
KA(δ) = 1. Fleischer presented us a traditional competitive ratio ofBP (C, β, T )
as follows:

Theorem 1. No deterministic online algorithm forBP (C, β, T ) has the compet-
itive ratio better than (2− β)-competitive.

Corollary 1. If pi = p for ∀i = 1, 2, . . . , n, T −→ ∞, the Bahncard problem is
degenerated as the ski-rental problem.

Proof. According to thepreceding rules, the offline investor knows exactly the trav-
elling itinerary and so will choose an online algorithmA ofmin(np,C + βnp ). At
the same time the offline investor can force any online investor to spend regular
ticket price for (n− 1) days by waiting until the online investor buys a Bahncard,
and then decide not to travel again. Hence the online investor hopes to minimize
the competitive ratio

rA =
CA(P )
COPT (p)

=
C + (n− 1)p+ βp

min(np, C + βnp)

subject to the constraints:

1. pi = p for ∀i = 1, 2, . . . , n, T −→∞
2. np ∈ [p, C

1−β − ε] ∪ [ C
1−β − ε,∞) and ε is a small constant.

An algorithmA that is to buy tickets at the regular price until the total cost up
to C

1−β − ε, and then decide to purchase a Bahncard can achieve the lower bound
of

r∗ = inf(rA) = 2− β − (1− β)2p
C

= 2− β − (1− β)2

n∗

where n∗ = C
p . If there is β = 0 such that

r∗ = inf(rA) = 2− 1
n∗

. ��
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3 Competitive Analysis of the Bahncard Problem with a
Risk-Reward Strategy

From the above analysis, the competitive algorithmA can overcome the weakness
of the worst-case analysis. But the competitive ratio obtained by the traditional
competitive analysis always enlarges the range for us to choose. In this section, we
state a risk-reward strategy that extends the traditional competitive analysis by
introducing two ingredients: risk and capability. We define the risk of an online
algorithm to the ratio of the competitive ratio of the algorithm to the optimal com-
petitive ratio,which is a smooth extension to coincidewith the classical competitive
analysis(see [1]). In fact the online investor pursues the richer reward with respect
to his risk preference. Then we relate the reward to the investing capability which
is defined as a subset of the correct forecasts.Therefore our reward is the ratio of the
optimal competitive ratio to the restricted ratio should the forecasts come true.

3.1 Definition of a Risk-Reward Strategy

The basic definition of the risk-reward strategy is described as follows: when an
online investor is risk-averse, he will use the traditional online algorithm A and
achieve the optimal competitive ratio. If the online investor is a risk-seeker, our risk-
reward strategyallowshimtoprovideandbenefit fromhis capabilitybutalsoallows
him to control his risk of performing with respect to the optimal offline algorithm
using a risk algorithm Â. Because such online investor could always forecast exactly
the coming requests, and then beat the optimal competitive ratio obtained by the
classical competitive analysis.

First, the definition of the competitive ratio is presented as follows. For a request
sequence δ〈δ1, δ2, . . . , δn〉 ∈ Rn, the total cost of the online algorithmA is denoted
byCA(δ), and the optimal offline cost on δ is defined asCOPT (δ) = min(costA(δ)).
An algorithm A is r− competitive if there exists a constant α such that

CA(δ) ≤ rA Copt(δ) + α .

The optimal competitive ratio for the same problem is

r∗ = infδ(rA) = infδ
CA(δ)
COPT (δ)

∀ δ ∈ Rn .

Second, we link the risk tolerance t (where t = 1, the investor is risk-averse; t >
1, as the risk-seeker ) with the competitive ratio r to denote the risk functionf(t, r).
That is, the online investor could prefer to such risk tolerance t , with respect to the
fluctuation of the competitive ratio of the algorithm to the optimal competitive
ratio, such as

rA − r∗
r∗

= t .

Therefore, define the risk function of a risk algorithm Â to be

f(t, r) = { t, r | rÂ ≤ tr∗ t ≥ 1 } .
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This risk function presents that the online investor will choose a risk algorithm Â
compared to the optimal online algorithm according to his own risk tolerance t.

Then we describe the reward functionR(t, r) on the basis of the risk preference
over the optimal online algorithm. Facing with the coming request δ, the online
investor with investing capability could always make a correct forecast δ̄, denoted
by F (δ̄) ∈ δ (F (δ̄) �∈ δ implies the false forecast). Hence, if there is F (δ̄) ∈ δ, the
online investor could achieve the better competitive ratio by a risk algorithm Â:

r∗
Â

= infF (δ̄)∈δ(rÂ) =
CÂ(δ̄)
COPT (δ̄)

.

Comparing r∗
Â

with r∗, we use the improvement of this risk algorithm Â over the
optimal online algorithm to measure the reward function R(t, r):

R(t, r) = supÂ∈f(t,r){ t, r |
r∗ − r∗

Â

r∗ − 1
F (δ̄) ∈ δ } .

Generally speaking, the bound of R can be presented as R(t, r) ∈ [ 0, 1 ]. This
lower bound could be attained, when the online algorithm with the correct forecast
exactly equals to the optimal offline algorithm, and then ∃ Â, such that r∗

Â
−→

1 =⇒ ∃ Â, such that R = 0. For the upper bound, when the online investor with
such risk tolerance t = 1, note that the online risker algorithm Âwill always be the
optimal online algorithm: r∗

Â
= r∗ =⇒ R = 1 .

3.2 The Bahncard Problem with a Risk-Reward Strategy

WenowanalyzeBP (C, β, T ) using this risk-reward strategy.Fleischer presentedus
an online algorithmA, in which the investor purchased the Bahncard at the time ti
for the total cost of the regular ticket price up to the critical cost C

1−β−ε, where ε is a
constant, to achieve the optimal competitive ratio r∗. In contrast, we are concerned
with the investing capability and risk preference of BP (C, β, T ). As an investing
talent, the online investor has confidence in making a correct forecast on δ. Due to
the preceding definition, denote the forecasts by F (δ̄) = { δ̄1, δ̄2 . . . δ̄n | ∃ i such
that

∑
δ̄i ≤ C

1−β or
∑

δ̄i ≤ C
1−β }, where C

1−β is the break-even point. Suppose
that the forecasts for the coming requests are correct, the online investor will buy
a Bahncard at the early stage, guaranteeing the competitive ratio rÂ less than t r∗.
Within the limitation of t r∗, a risk algorithm Â will compute a restricted optimal
competitive ratio r∗

Â
= inf rÂ . The analysis of the risk algorithm Â is as follows:

Theorem 2. With a correct forecast of F1(δ̄) = { δ̄ |
∑

δ̄i ≤ C
1−β } , the restricted

optimal competitive ratio for BP (C, β, T ) is r∗
Â

= 1.

Proof. In this case, the best choice for the online investor is just what the offline
investor does. They never purchase a Bahncard. Therefore, if CÂ(δ̄) = COPT (δ̄),
then the restricted competitive ratio satisfies r∗

Â
= 1 subject to { r∗

Â
| r∗

Â
≤ t (2−

β) t ≥ 1 }. ��
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Corollary 2. With a correct forecast F1(δ̄), the online investor could compute the
maximal achievable reward of 1.

Proof. From the above result of r∗
Â

= 1, the reward is R(t, r) =
r∗−r∗

Â

r∗−1 = 1. ��

For the online investor, the forecast of Theorem 2 means the higher risk the
richest. However, there is a more complex situation with the second kind of forecast
F2(δ̄) = { δ̄ |

∑
δ̄i ≥ C

1−β }. Note that the online investor with a correct forecast
2 has to choose time ti to purchase a Bahncard so as to keep the competitive ratio
under the upper bound of t r∗.

Lemma 1. With a correct forecast of F2(δ̄) = { δ̄ |
∑

δ̄i ≥ C
1−β }, the optimal

chance to buy a Bahncard is at the time of ti, when the total regular ticket price
amounts to

∑
pi = C

t(2−β) − ε.

Proof. There are two cases:
Case 1:

∑
pi ≤ C

1−β − ε where ε is a small constant, then

r∗
Â

=
C +

∑
pi + βε∑

pi + ε
.

For r∗
Â
≤ t r∗ and ε −→ 0, note that

r∗
Â

=
C +

∑
pi + βε∑

pi + ε
≤ (2− β) t =⇒

∑
pi ≥

C

(2− β) t− 1
.

Case 2:
∑
pi ≥ C

1−β − ε where ε is a small constant, then

r∗
Â

=
C +

∑
pi + βε

C + β(
∑
pi + ε)

.

subject to the same conditions: r∗
Â
≤ t r∗ and ε −→ 0, the restricted optimal com-

petitive ratio is

r∗
Â

=
C +

∑
pi + βε

C + β(
∑
pi + ε)

≤ (2− β) t .

From the above inequality, the bound of the total cost is

∑
pi ≤

C(2− β)t− C
1− (2− β)tβ

iff 1−
√
t2 − t
t

≤ β ≤ 1 .

According to the Theorem 3, set
∑
pi = C

(2−β) t−1 , the restricted optimal compet-
itive ratio with the risk-reward strategy can be obtained. ��

Through the risk-reward strategy, it can be shown that the restricted optimal
competitive ratio is less than the optimal competitive ratio.

Theorem 3. The restricted optimal competitive ratio with the risk-reward strategy
for BP (C, β, T ) is denoted by rÂ∗ = 1 + 1−β

(2−β)t−(1−β) .



A Risk-Reward Competitive Analysis of the Bahncard Problem 43

Proof. Should the F2(δ̄) = { δ̄ |
∑

δ̄i ≥ C
1−β } be correct, the online investor

could have such competitive ratio function that r∗
Â

= f(
∑
pi) =

C+
∑

pi+βε

C+β(
∑

pi+ε)
.

The monotonous increasing character of this function ensures that there exists a
lower bound of

∑
pi = C

(2−β) t−1 such that rÂ∗ = 1 + 1−β
(2−β)t−(1−β) . ��

Corollary 3. The relation of the optimal competitive ratio between the strategy in
[2] and this risk-reward strategy for theBahncard problem is that { r∗

Â
| r∗

Â
∈ [ 1, r∗] }.

Proof. Assume that β is a constant, then the restricted optimal competitive ratio
fluctuates with the risk tolerance t. Hence, the online investors can estimate their
own abilities to choose the different risk preference, such as t = 1 =⇒ rÂ∗ =
1+ 1−β

(2−β)t−(1−β) = 2−β = r∗. Nevertheless some investors would like benefit from
accepting increased risk. Note that as t −→∞, the restricted optimal competitive
ratio approaches to the minimum ratio of r∗

Â
= 1. It is shown that the optimal

competitive ratio in [2] is a special case of our results obtained by the risk-reward
strategy. ��

Corollary 4. The reward of the risk algorithm Â for the Bahncard problem with
the correct forecast of F2(δ̄) can achieve the maximum value: R( t, r) −→ 1.

Proof. R( t, r) = 1− 1
(2−β)t−(1−β) ≈ 1 as t −→∞. ��

4 Some Empirical Results

In this section, we provide a example of“Youth Discount Card of France Railway
NO.CARTE 12-25” to explore the relationship between the risk tolerance t and
the rewardR about the competitive ratio. Based on the actual data resource of the
”Youth Discount Card of France Railway NO.CARTE 12-25”, we present the table
1 to respect the various figures. In the table 1, we setC, β, andT , and compute the
r∗
Â
and r∗ according to the different tolerance t and the critical cost C

(2−β) t−1 .

Table 1. Setting C = 43.00EU , β = 25%, and T = 1 year, the restricted competitive

ratio r∗
Â

can be achieved according to the various risk tolerance t

t C
(2−β) t−1

r∗
Â

r∗

1.00 57.33 1.7500 1.7500
1.10 47.51 1.6382 1.7500
1.20 39.10 1.5560 1.7500
1.25 36.21 1.5218 1.7500

With respect to the risk-reward strategy, the most important for an online in-
vestor is tohold thegreat capabilityof investing.Becausehe cancarryon the correct
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forecast to pursue relatively less competitive ratio with such capability. From the
above table 1, as the risk-averse, the online investor will wait until the total cost
of regular ticket price amounts to 57.33. However, a risk-seeker would like to bear
the risk loss(when the forecast is incorrect.)to purchase a Bahncard at the earlier
time such as the critical cost satisfies C

(2−β) t−1 = 39.10. Obviously, in this case the
online investor has to face the opportunity loss of 18.23EU. Nevertheless, in return,
when the forecast is correct, the less competitive ratio of 1.5560 can be obtained.
Next, we present the risk-reward strategy to help the online investor judge his style
according to his own investing capability. If t = 1.20, then the reward ratio R =
r∗−r∗

Â

r∗−1 = 25.80%. This means that the online investor bears the possible cost loss
of 31.70%, but he could obtain the improvement of 25.80% about the reward.

Table 2. Setting C = 43.00EU , β = 50%, and T = 1 year, the restricted competitive

ratio r∗
Â

can be achieved according to the various risk tolerance t

t C
(2−β) t−1

r∗
Â

r∗

1.00 86.00 1.5000 1.5000
1.10 74.79 1.4651 1.5000
1.20 71.67 1.4546 1.5000
1.25 49.14 1.3637 1.5000

From the above analysis, we know that the risk tolerance t influences the re-
stricted optimal competitive ratio r∗

Â
. After we increase the percentage discount

β up to 50%, a new status presents to us. In table 2, we find that at the same risk
tolerance all restricted optimal competitive ratios are less than the ones in table 1.
Therefore, the higher the discount ratio is, the more the online investor concerns
with the risk-reward strategy.

5 Conclusion

In this paper, the investing capability and the risk tolerance are introduced into
the online Bahncard problem so that the competitive analysis is more realistic.
Compared with the results of Fleischer [2], a more flexible competitive ratio can
be achieved. However, there are some interesting problems as follows.

� In this paper, we assume that β is a constant. But the percentage discount β often
takes on the different values at some stage which make the competitive analysis
more complex.
� For the risk-reward strategy, the risk tolerance t can be in the form of interval
number, better simulating the behavior preference, such as t ∈ [a, b ].
� The currency value over time and the transaction cost are of importance to the
restricted optimal competitive ratio. In some cases, the competitive ratio may be
seriously influenced by these factors.
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Abstract. In this paper we study the on-line production order dis-
posal problem considering preemption and abortion penalty. We discuss
the cases when orders have uniform and nonuniform lengths. For the
case of uniform order length, the GR strategy is proved to be 2ρ +
2
√

(1 + ρ)2 + ρ + 3 -competitive, where ρ ≥ 0 is the coefficient of the
punishment. For the case of nonuniform order lengths, GR is 2(λ+λρ)+
2
√

(λ + λρ)2 + λρ+1 -competitive where λ is the ratio of length between
the longest and shortest orders. When abortion penalty is not counted,
the ER strategy is proposed and proved to be eλ + e + 1 -competitive,
where e ≈ 2.718. The result is much better than that of GR. We show
that ER is not competitive when abortion penalty is counted.

1 Introduction

The production order disposal problem is one of the typical management prob-
lems in manufacturing industry. A manufacturer representing an organization or
a company may receive and dispose many production orders during a time period
and he can dispose at most one order at any time due to resource constraints.
Under the on-line model, the manufacturer can not obtain the order informa-
tion, such as processing time and profit, until the order arrives. So, he needs to
dynamically adjust the production schedule for arrival orders to maximize his
profit.

If we view the manufacturer as a single machine and orders as jobs, the
on-line production order disposal problem can be transformed into the classical
on-line single machine scheduling problem, which has been extensively studied.
Liu and Cheng [1] considered a preemption-restart model with the objective
being minimizing the maximum delay. They proved that if each job’s release
time is arbitrary then the problem is strongly NP-hard. Dauzere and Sevaux [2]
studied the problem of minimizing the number of tardy jobs. They discussed the
case of different release time and due dates and proposed a branch and bound
scheme that produce good empirical results. Daniel Ng et al. [3] presented an
O(n2 log n) time algorithm for scheduling costs involving earliness/tardiness and
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the number of tardy jobs, where variable common due date and resource alloca-
tion were considered. In the above research it is assumed that all information is
known at the beginning, i.e., it is in an off-line manner. Anderson and Potts [4]
considered the on-line scheduling problem where preemption is forbidden and
the goal is to minimize the total weighted completion time. They presented a
2-competitive algorithm and proved that the ratio is tight. Chou [5] analyzed
the on-line problem of minimizing weighted completion time and presented an
on-line algorithm that has the asymptotic performance ratio equaling 1 as the
job number increases. Marek etc. [6] discussed the preemption-restart model to
maximize the number of satisfied job where jobs all have the same weight and
proposed a deterministic 3/2-competitive algorithm.

In this paper we discuss the preemption-restart model for the on-line pro-
duction order disposal problem where each order has variable profit or weight
which can not be obtained until the order is finished. As the manufacturer can
not finish all the arrival orders due to the resource limitation, he must decide
whether to abort the current order and start another one for more profit. How-
ever, if he makes an abortion then there is an abortion penalty. His objective
is to maximize the net profit, which is the total profit of the completed orders
minus the total penalty of abortions. We consider both the cases when orders are
of uniform and non-uniform lengths. Section 3 discusses the former case and the
GR strategy is shown to be competitive. The latter case is discussed in section 4
where GR is proved to be competitive, and an improved strategy ER is proposed
when there is no abortion penalty. However, ER does not work when there is an
abortion penalty. Section 5 concludes this paper.

2 Model and Notations

Now we define the problem formally. Assume that a sequence of production or-
ders, S = (J1, J2, . . . ), arrive one by one in the production order disposal system.
When order Ji arrives, its four parameters, ai, li, di, wi, become known on its ar-
rival, where ai denotes the arrival time, li the length of processing time, di the
deadline and wi the profit of Ji respectively, but we do not know what is the
next order and when it arrives. For any strategy A, generally it can not start all
orders in S, so that some jobs of S are rearranged by their service start times
in σ = (J ′

1, J
′
2, . . . ), where σ ⊂ S is produced by A and order J ′

i is started by A
at time s′i. The orders in σ are indexed such that s′i < s′i+1. If s′i+1 < s′i + l′i, we
say order J ′

i is aborted by J ′
i+1; otherwise J ′

i is said to be completed. If an order
arrives in the system but is not served at once, it is called a waiting order. A
waiting order Ji will exit the system at time t if t + li > di. An aborted order
may be restarted from the beginning some time later provided it can still meet
its deadline. Thus, orders J ′

i and J ′
i+k in σ may be the same order in S if J ′

i is
aborted and restarted by A at time t′i and t′i+k respectively; however, they are
regarded as different orders in σ. The objective of A is to maximize the net profit
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within a time period. The penalty of an abortion is defined as follows. If order
J ′

j is aborted, the penalty equals ρw′
j , where ρ ≥ 0 is called the punishment

coefficient.
Given an input I (a set of orders) and an on-line strategy A, denote by SA(I)

and S∗(I) the schedules produced by A and by an optimal off-line strategy on
I respectively. Denote by |S(I)| and |P (I)| the total profit of completed orders
and total penalty in the schedule S(I), respectively. We use the competitive
ratio analysis [7] to measure the quality of the schedules produced by A, then
the competitive ratio of A is defined as rA = supI

|S∗(I)|−|P∗(I)|
|SA(I)|−|PA(I)| , where I can

be any order input sequence. rA ≥ 1 always holds.

3 Uniform Order Length: The GR Strategy

In this section we consider the case that each order has the same disposal time.
Assume without loss of generality that li = 1 holds for any order Ji. In the
following we give a proposition and then present the Greedy Strategy (abbr.
GR).

Proposition 1. For the case of uniform order length, any deterministic on-line
strategy must use the abortion function to be competitive.

Proof. Assume that a competitive strategy A does not abort any order it starts.
We construct such an input sequence that at time t = 0, order J1 with tight
deadline and profit w1 arrives. A has two choices. If it starts to serve J1 at once,
another order J2 with tight deadline and profit w2 = αw1 will arrive at time
t = 1/2 and no more orders come later. The optimal off-line strategy, OPT,
will select to serve J2 and then have profit α times that of A. Since α can be
arbitrarily large, A is not competitive in this case. If A does not start J1 at time
t = 0, OPT will serve it, and no more order comes later. Then A gains zero and
can not be competitive either. Both of the two cases contradict the assumption.
Hence, A must utilize the abortion function to be competitive. ��

Now we present GR as follows. Assume that when a new order Jj′ arrives
at time t, GR is serving order Jj . GR will abort Jj to serve Jj′ if wj′ ≥ cwj ,
otherwise it continues serving Jj , where c > 1 + ρ is some constant determined
later. When GR finishes an order, it starts a waiting or new arriving order with
the most amount of profit. If there is a tie, GR selects the one with the earliest
deadline or arbitrary one if they are of the same deadlines. We can see that the
abortion is triggered according to the relative profit of currently served order
and new arriving order. The rest of this section is devoted to the proof of the
following theorem.

Theorem 1. GR is 2ρ + 2
√

(1 + ρ)2 + ρ + 3 -competitive, where ρ ≥ 0 is the
punishment coefficient.

Proof. Given any order disposal sequence produced by GR, σ, it can always be
divided into such m sub-sequences, σ = (σ1, σ2, . . . , σm), that in each
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sub-sequence σi = (Ji,0, Ji,1, . . . , Ji,ki
) (1 ≤ i ≤ m), only the last order Ji,ki

is completed and all other orders are aborted by GR. If ki = 0, the sub-sequence
consists of only one order completed by GR. Since every order in σ is indexed
by its service start time, if an order is aborted and restarted later, GR regards it
as another order when it is restarted. So, we can regard that any aborted order
will not be served again by GR in the whole σ. When σi is understood from the
context, we will simply denote it by σi = (J0, J1, . . . , Jk) for convenience.

We will first analyze an arbitrary sub-sequence σi and then extend the result
to the whole sequence σ. Because OPT is the optimal off-line strategy, we suppose
that it does not abort any order it starts for it will stay idle rather than start
an order to be aborted later, i.e., OPT will not waste any order. So, OPT has
no penalty and its net profit equal its profit, and if OPT starts an order, it
means that OPT will complete that order. Denote by |O(σ)|, |O(σi)| the profit
OPT gains in σ and σi respectively. Especially, let O(σi) = {Ob(σi), Or(σi)},
where Ob(σi) includes orders started by OPT during GR is serving σi, and
Or(σi) includes those of σi started by OPT after GR has finished σi. Or(σi) at
most includes Jk, otherwise if OPT starts an order of σi other than Jk when
GR has completed σi, GR can also serve that order for it has not been satisfied,
contradicting that any aborted order will not be served again by GR in σ. Hence,
we have |Or(σi)| ≤ wk. In σi, denote by |O(Jj)| (0 ≤ j ≤ k) the profit of orders
started by OPT during GR is serving Jj . Since lj = 1, O(Jj) includes at most
one order and |O(Jj)| < cwj holds for the order does not abort Jj . Denote by
|G(σ)|, |G(σi)| the total profit GR gains and |PG(σ)|, |PG(σi)| the total penalty
GR receives in σ and σi respectively.

By the construction of σi, we have wj ≤ 1
cwj+1 and then wj ≤ ( 1

c )k−jwk for
0 ≤ j < k, and |G(σi)| = wk. On the other hand, there are totally k abortions
in σi, so

|PG(σi)| =
k−1∑
j=0

ρwj ≤
k−1∑
j=0

ρ(
1
c
)k−jwk =

ρ

c− 1
[1− (

1
c
)k]wk <

ρ

c− 1
wk.

Thus, the net profit of GR in σi satisfies

|G(σi)| − |PG(σi)| > (1− ρ

c− 1
)wk. (1)

For Ob(σi), since |O(Jj)| < cwj ≤ ( 1
c )k−j−1wk holds for 0 ≤ j ≤ k,

|Ob(σi)| =
k∑

j=0

|O(Jj)| <
k∑

j=0

(
1
c
)k−j−1wk <

c2

c− 1
wk. (2)

We already know |Or(σi)| ≤ wk. Combining inequalities (1,2), for σi

|O(σi)|
|G(σi)| − |PG(σi)|

=
|Ob(σi)|+ |Or(σi)|
|G(σi)| − |PG(σi)|

<
( c2

c−1 + 1)wk

(1− ρ
c−1 )wk

=
c2 + c− 1
c− 1− ρ .
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Hence, we have for σ that

|O(σ)|
|G(σ)| − |PGR(σ)| =

m∑
i=1

(|Ob(σi)|+ |Or(σi)|)
m∑

i=1

(|G(σi)| − |PG(σi)|)
<
c2 + c− 1
c− 1− ρ .

Taking the derivative of c2+c−1
c−1−ρ with respect to c and equating it with zero, we

obtain that c2−2c−2ρc−ρ = 0. Solving the equation, c = 1+ρ+
√

(1 + ρ)2 + ρ,
and then the minimum value of c2+c−1

c−1−ρ is 2ρ + 2
√

(1 + ρ)2 + ρ + 3, i.e., GR is
2ρ+ 2

√
(1 + ρ)2 + ρ+ 3 -competitive. ��

By Theorem 1, the competitive ratio of GR is a function of ρ. Taking ρ = 0,
0.1, 0.25, 0.5, 1.0, 2.0, 3.0, the competitive ratio equals 5.0, 5.5, 6.2, 7.3, 9.5,
13.6, 17.7, respectively. We can see that the competitive ratio increases about 4
times faster than ρ does, i.e., the competitive ratio varies in an approximately
linear speed with respect to ρ.

4 Nonuniform Order Lengths: The ER Strategy

In this section we consider the case that orders have nonuniform disposal time.
Let λ = � the longest order length

the shortest order length�. Without loss of generality, we assume that
the size of the shortest order equals 1 and the longest order is λ long. Note that
Proposition 1 still holds in this case.

For the performance of GR in this case, we have the following theorem.

Theorem 2. GR is 2(λ+ λρ) + 2
√

(λ+ λρ)2 + λρ+ 1 -competitive in the case
of nonuniform order lengths.

The proof is omitted here. Note that Since lj ≤ λ, O(Jj) includes at most λ
orders and then |O(Jj)| < λcwj holds. The other proof is similar to that in the
case of uniform order length. Especially, GR is 4λ+ 1 -competitive when ρ = 0.

In the following we propose the ER strategy and discuss its competitive
performance without considering the abortion penalty. The main idea of ER is
to increase its abortion ratio exponentially with respect to the processed percent
of currently served order.

ER is described as follows. When ER is serving order Jj , the abortion ratio
equals c(t−sj)/lj at time t ∈ (sj , sj +lj), where c > 2 is some constant determined
later, that is, if a new arriving order Jj′ has profit at least c(t−sj)/lj times that
of currently served order Jj , ER will abort Jj to serve Jj′ . When ER finishes an
order, it begins a waiting or new arriving order with the most amount of profit.
If there is a tie, ER selects the one with the earliest deadline or the shortest
length, and arbitrary one if they are of the same deadline or the same length.
For ER, we have the following theorem.
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Theorem 3. In the case of non-uniform order lengths and no abortion penalty,
ER is eλ+ e+ 1 -competitive, where e ≈ 2.718.

Proof. Similar to that in the case of uniform order length, given any sequence
σ produced by ER, it can always be divided into such m sub-sequences, σ =
(σ1, σ2, . . . , σm), that in each σi = (Ji,0, Ji,1, . . . , Ji,ki

) (1 ≤ i ≤ m), only order
Ji,ki

is completed by ER and all other orders are aborted. As in the case of
uniform order length, we denote σi by σi = (J0, J1, . . . , Jk) in the following
discussion. |E(σ)|, |E(σi)|, |PE(σ)| and |PE(σi)| are similarly defined as those of
GR, and |O(σ)|, |O(σi)|, Ob(σi), Or(σi) and O(Jj) (0 ≤ j ≤ k) are the same as
those in the case of uniform order length. Since lj ≥ 1 in the case of nonuniform
order lengths, O(Jj) may include several orders.

We will first analyze the special case that all orders started by ER have size
λ, i.e., lj = λ (0 ≤ j ≤ k), and prove that Theorem 3 holds in the special case.
Then we show that compared with OPT, ER performs worst in the special case.
Thus, Theorem 3 holds in all cases.

In the special case, we will bound |O(Jj)|, |O(σi)| and |O(σ)| step by step.
First, we discuss O(Jk), which includes at most λ orders for lk = λ. If OPT
starts an order at time t ∈ (sk, sk + λ), the order must have profit strictly less
than c(t−sk)/λwk, otherwise it will abort Jk, contradicting that Jk is completed
by ER. Assume that the first and last orders in O(Jk) start at time t1k and
tλk respectively, then the last order has profit less than c(t−sk)/λwk. Since tλk is
earlier than the end ofJk, we have tλk − sk<λ and then c(t−sk)/λwk< cwk. Thus,

|O(Jk)| < wk

∫ tλ
k

t1k

c
t−sk

λ dt+ c
tλ
k−sk

λ wk < wk

∫ tλ
k

t1k

c
t−sk

λ dt+ cwk. (3)

For O(Jk−1), its last order must start not later than t1k − 1, otherwise OPT can
not finish the order. Define t1k−1 and tλk−1 similarly, then t1k − tλk−1 ≥ 1 holds.
And the last order in O(Jk−1) has profit less than c(t

λ
k−1−sk−1)/λwk−1. So,

|O(Jk−1)| < wk−1

∫ tλ
k−1

t1k−1

c
t−sk−1

λ dt+ c
tλ
k−1−sk−1

λ wk−1. (4)

Since Jk aborts Jk−1 at time sk, which is later than tλk−1, we have wk ≥

c
sk−sk−1

λ wk−1 > c
tλ
k−1−sk−1

λ wk−1. Together with t1k − tλk−1 ≥ 1,

c
tλ
k−1−sk−1

λ wk−1 < wk−1

∫ sk

tλ
k−1

c
t−sk−1

λ dt+ wk

∫ t1k

sk

c
t−sk

λ dt. (5)

Combining inequalities (4) and (5), |O(Jk−1)| is bounded as so.

|O(Jk−1)| < wk−1

∫ tλ
k−1

t1k−1

c
t−sk−1

λ dt+ wk−1

∫ sk

tλ
k−1

c
t−sk−1

λ dt+ wk

∫ t1k

sk

c
t−sk

λ dt

= wk−1

∫ sk

t1k−1

c
t−sk−1

λ dt+ wk

∫ t1k

sk

c
t−sk

λ dt. (6)



52 F. Zheng et al.

According to inequalities (3) and (6),
|O(Jk−1)|+ |O(Jk)|

< wk−1

∫ sk

t1k−1

c
t−sk−1

λ dt+ wk

∫ t1k

sk

c
t−sk

λ dt+ wk

∫ tλ
k

t1k

c
t−sk

λ dt+ cwk

= wk−1

∫ sk

t1k−1

c
t−sk−1

λ dt+ wk

∫ tλ
k

sk

c
t−sk

λ dt+ cwk. (7)

For O(Jj) (0 ≤ j ≤ k − 2), t1j and tλj are similarly defined and the discussion is

similar to that of O(Jk−1). So,

|O(Jj)| < wj

∫ sj+1

t1j

c
t−sj

λ dt+ wj+1

∫ t1j+1

sj+1

c
t−sj+1

λ dt. (8)

By inequalities (7) and (8), we can bound |O(σi)| as follows.

|Ob(σi)| =
k∑

j=0

|O(Jj)|

< w0

∫ s1

t10

c
t−s0

λ dt+
k−1∑
j=1

wj

∫ sj+1

sj

c
t−sj

λ dt+ wk

∫ tλ
k

sk

c
t−sk

λ dt+ cwk. (9)

To solve the above integral, we need a detailed analysis. Since Jj+1 aborts Jj ,
we have wj+1 ≥ c(sj+1−sj)/λwj for 1 ≤ j ≤ k − 1. Thus,

wj

∫ sj+1

sj

c
t−sj

λ dt ≤ wj+1

c
sj+1−sj

λ

∫ sj+1

sj

c
t−sj

λ dt = wj+1

∫ sj+1

sj

c
t−sj+1

λ dt. (10)

Using inequality (10), together with wk ≥ c(sk−sk−1)/λwk−1 ≥ c(sk−sj)/λwj and∫ s1

t10
c

t−s0
λ dt ≤

∫ s1

s0
c

t−s0
λ dt for s0 ≤ t10, we can solve inequality (9) as follows.

|Ob(σi)| < w0

∫ s1

t10

c
t−s0

λ dt+ wk

∫ sk

s1

c
t−sk

λ dt+ wk

∫ tλ
k

sk

c
t−sk

λ dt+ cwk

≤ wk

∫ tλ
k

s0

c
t−sk

λ dt+ cwk

< (
cλ

ln c
+ c)wk. (11)

Note that the last inequality holds for tλk − sk < λ. For Or(σi), |Or(σi)| ≤ wk

holds, the analysis is similar to that in the case of uniform order length. Thus,

|O(σi)| = |Ob(σi)|+ |Or(σi)| < (
cλ

ln c
+ c+ 1)wk.
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For ER, we have |E(σi)| = wk due to the construction of σi. Hence, we have
for the whole sequence σ that

|O(σ)|
|E(σ)| =

m∑
i=1

|O(σi)|
m∑

i=1

|E(σi)|
<

m∑
i=1

( cλ
ln c + c+ 1)wk

m∑
i=1

wk

=
cλ

ln c
+ c+ 1. (12)

Taking c = e, ER is eλ+ e+ 1 -competitive in the special case.
To complete the theorem, it suffices to prove that compared with OPT, ER

performs worst in the special case. First, we give a lemma.

Lemma 1. Given any two exponential functions f1(x) = a
x
c1 and f2(x) = a

x
c2 ,

where c2 > c1 > 0 and a > 1,
∫ x3

x1
f1(x)dx ≤

∫ x4

x2
f2(x)dx holds for any

x3, x4 > x1, x2 satisfying f1(x1) = f2(x2) and f1(x3) = f2(x4).

Proof. Since a
x1
c1 = a

x2
c2 , a

x3
c1 = a

x4
c2 and x3, x4 > x1, x2, we have∫ x4

x2

f2(x)dx−
∫ x3

x1

f1(x)dx =
c2
lna

(
a

x4
c2 − a

x2
c2

)
− c1
lna

(
a

x3
c1 − a

x1
c1

)
=
c2 − c1
lna

(
a

x4
c2 − a

x2
c2

)
> 0. ��

For σi with lj = λ(0 ≤ j ≤ k), we construct another sub-sequence σ′
i =

(J ′
0, J

′
1, . . . , J

′
k), where w′

j = wj and l′j = lj except that l′p < λ (0 ≤ p ≤ k).
According to Lemma 1, |O(J ′

p)| < |O(Jp)| holds where |O(J ′
p)|, |O(Jp)| are

the profit of the orders started by OPT during ER is serving J ′
p, Jp respec-

tively. Thus, |O(σ′
i)| < |O(σi)|. Combining |E(σi)| = |E(σ′

i)| = wk, we have
|O(σ′

i)| /|E(σ′
i)| < |O(σi)| /|E(σi)|. If there are several orders shorter than λ in

σ′
i, the analysis is similar and the result keeps the same. Combining inequality

(12), |O(σ)|/|E(σ)| < eλ + e + 1 holds for all cases, that is, ER is eλ + e + 1
-competitive. ��

Combining Theorems 2 and 3, when there is no abortion penalty and λ ≥ 3,
ER is much better than GR. However, the following theorem shows that ER is
very bad if there is an abortion penalty, no matter how small ρ is.

Theorem 4. ER is not competitive if there is an abortion penalty.

Proof. We construct such an input sequence that σ = (J0, J1, . . . , Jq) where
aq − a0 = λ, ai+1 > ai, li = λ and wi+1 = e(ai+1−ai)/liwi (i = 0, 1, . . . , q − 1).
Then Ji+1 aborts Ji at time ai+1 due to the construction of ER, and |E(σ)| =

wq = e(aq−ao)/λw0 = ew0. However, |PE(σ)| =
q−1∑
j=0

ρwj > qρw0 for wj > w0.

Thus, |E(σ)| − |PE(σ)| < (e − qρ)w0. For any ρ > 0, q can be large enough so
that e− qρ ≤ 0 holds, which means ER obtains no positive net profit. However,
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OPT can at least finish order Jq and obtain profit e(aq−ao)/λw0. According to
the definition of competitive ratio, ER is not competitive. ��

Theorems 2 and 4 imply that GR is much better than ER when there is an
abortion penalty.

5 Conclusion

In this paper, we study the on-line production order disposal problem with
preemption-restart model. Both the cases that orders have uniform and nonuni-
form lengths are studied. For the former case, the GR strategy is shown to be
competitive no matter whether there is an abortion penalty. For the latter case,
we propose the ER strategy and prove that it performs much better than GR
when there is no abortion penalty. But ER does not work at all when there is
an abortion penalty.
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Abstract. University timetabling problem is a very common and seem-
ingly simple, but yet very difficult problem to solve in practice. While
solution definitely exists (evidenced by the fact that we do hold classes),
an automated optimal schedule is very difficult to derive at present.
There were successful attempts to address this problem using heuris-
tics search methods. However, until now, university timetabling is still
largely done by hand, because a typical university setting requires nu-
merous customized complicated constraints that are difficult to model
or automate. In addition, there is a problem of certain constraints be-
ing inviolable, while others are merely desirable. This paper intends to
address the university timetabling problem that is highly constrained
using Artificial Immune System. Empirical study on course timetabling
for the School of Computer Engineering (SCE), Nanyang Technological
University (NTU), Singapore as well as the benchmark dataset provided
by the Metaheuristic Network shows that our proposed approach gives
better results than those obtained using the Genetic Algorithm (GA).

1 Introduction

Over four decades, timetabling problem has been a major attraction of scientists
from various disciplines. A practical timetabling problem usually involves com-
plex constraints and a large number of events and is considered as NP-hard [1].
Traditional methods used to solve the timetabling problem include graph col-
oring with constraint manipulation [2] and clustering algorithm [3]. The graph
coloring algorithm represents the timetabling problem as graphs where events
(courses/exams) are represented as vertices and conflicts between the events are
represented by edges. The constraint manipulation is done by scheduling the
nodes with maximal degree (large number of conflicts) early. The clustering al-
gorithm splits a set of events into groups which satisfy hard constraints and
then the groups are assigned to time periods to fulfil the soft constraints. Both
methods can only produce sub-optimal solutions.

Over the last two decades a variety of meta-heuristic approaches such as
simulated annealing [4], tabu search [5], genetic algorithms (GA) [1,?] and hy-
brid approaches [6] have been investigated for timetabling. In meta-heuristic the
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emphasis is on performing a deep exploration of the most promising regions of
the solution space. Meta-heuristic methods begin with one or more initial solu-
tions and employ search strategies to avoid local optima. These meta-heuristic
algorithms can produce high quality solutions but often incur high computa-
tional cost. Moreover, the procedures are usually context dependent and require
finely tuned parameters which may make their extension to other situations
difficult [7].

In this paper, the Artificial Immune System (AIS), and in particular the
Clonal Selection Algorithm (CLONALG), is investigated to solve the univer-
sity timetabling problem. It has certain similarities to Genetic Algorithms (GA)
since both of them could be characterized as evolutionary-like algorithms and
are inspired by biological metaphors, though CLONALG is based on the bi-
ological metaphor of the immune system whilst GA is inspired by the Dar-
winian evolutionary theory. The preliminary experimental results indicate that
CLONALG performs better than GA when tested on the university timetabling
benchmark data.

The rest of the paper is organized as follows. Section 2 describes the univer-
sity timetabling problem. Section 3 presents the background of artificial immune
system and specifically the clonal selection algorithm. Applying the CLONALG
algorithm on the university timetabling problem is discussed in section 4. Per-
formance comparison of CLONALG and GA by applying these two algorithms
on the benchmark data provided by the Metaheuristic Network [8] is discussed
in section 5. Finally, section 6 concludes the paper.

2 University Timetabling Problem

A timetabling problem, which is a subset of scheduling problem, can be defined
as a combinatorial optimization problem of assigning resources to events being
placed in period of time, satisfying a set of predefined constraints. The combina-
torial problems are typically classified as NP-bard as they take practically infinite
time to find any optimal solution and are indeed computationally intractable.

This paper focuses on the university course timetabling problem. In any op-
timization problem, there are objectives, decisions to make, resources available
and related constraints. In a course timetabling problem, resources available are
faculty, students, subjects being offered, time periods and rooms. A solution
must group these resources together to produce a timetable to adhere to certain
conditions set by the timetabler managing the timetable.

A typical university timetable is characterized by the following elements:

– Timeslot, T = {t0, t1, · · · , tm}. It is defined as the time interval during which
a lecture, a tutorial, or a laboratory takes place. Every day has 9 timeslots.
Each timeslot has a default value of 1-hour duration and the default starting
time is on half an hour boundary. Thus, the total number of timeslots in a
5-day week is 45.
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– Room, R = {r0, r1, · · · , rn}. Each event must take place in a particular room.
A room can be classified by their functions or properties. In general, there
are three types of room: lecture theater, tutorial room, or laboratory.

– Subject, S = {s0, s1, · · · , sp}. A subject is described by a name, title, number
of students enrolled.

– Subject Grouping, G = {g0, g1, · · · , gu}. For any set of subjects having stu-
dents in common, they can be grouped together as one subject group. For
example, every course year could have 3 different subject groups, the main
group, in which students follow a normal path and take four years to get a
Bachelor degree, the accelerated group, in which students take three and a
half years to get the Bachelor degree, and the take ahead group, in which
students are allowed to take subjects from higher course years.

– Class groups, C = {c1, c2, · · · , cv}. Students are divided into a set of class
groups in order to be accommodated with a particular room’s size. Hence, for
a particular subject with n students, there will be (usually) 1 lecture group,
n/TutorialRoomCapacity tutorial groups, and n/LaboratoryRoomCapacity
laboratory groups.

– Event, E = {e1, e2, · · · , ew}. As mentioned above, a subject group contains
a list of subjects, and each subject has i lectures, j class groups of tutorial
and/or k laboratory groups. Each event must consist of the following five
elements: the subject group, the subject, the class group, the allocated room,
and the allocated timeslot.

Two types of constraints are defined for the timetabling problem, hard con-
straints and soft constraints. All feasible and meaningful solutions must satisfy
hard constraints. However, some or all of the soft constraints may be violated
provided that the penalty costs associated with them are kept to minimum.

Typical hard constraints are:

– Room occupancy. The first condition for an event to be liable for an allocation
in room ri and at time tj is that no other events can happen in room ri at
time tj .

– Room type. The type of the room must conform to the type of the event.
– Room capacity. The capacity of the room must be large enough to accom-

modate the event.
– Conflict. The conflict constraint only deals with events of the same subject

group. Hence, to check the validity of an event ek (to be allocated) in room
ri, and timeslot tj , the system must check against any other events of the
same subject group in the same timeslot tj .

– Lecture spread constraint. It is only applicable to the lecture event. There
can only be one lecture for one subject in a particular day and there must
be no more than 3 lectures in total in the same day.

Typical soft constraints are:

– Event spread constraint. For each class group ci, the system will check the
number of lecture, tutorial, and also laboratory events from day 0 (Monday)
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to day 4 (Friday). The penalty will be given if the total number of events
per day of each class group ci is less than 2 or greater than 5.

– Noon punishment. Events should be avoided to be scheduled during the lunch
time between 12:30pm to 1:30pm.

– Consecutive event consideration. It is preferable that the same type of events
takes place in the same venue and are scheduled consecutively.

– Last timeslot punishment. Events, if possible, should not happen in the last
timeslot of the day.

3 Artificial Immune System

Artificial Immune Systems (AIS) are inspired from nature immune systems.
The powerful information processing capabilities of the immune system, such
as feature extraction, pattern recognition, learning, memory, and its distribu-
tive nature provide rich metaphors for its artificial counterpart [9]. Specifically,
three immunological principles are primarily used in a piecemeal in AIS methods.
These include the immune network theory, the mechanisms of negative selection,
and the clonal selection principles. In this paper, only clonal selection principles
adapted from [10] will be discussed.

3.1 Clonal Selection Algorithm (CLONALG)

The clonal selection principle is used as the fundamental basis for the devel-
opment of the clonal selection algorithm (CLONALG) [10]. The algorithm is
presented in Figure 1, and works as follows. First, a initial set of population
Pr and an empty memory set M are generated (step 1). Then The selection
process selects the n best cells or antibodies to generate a new population Pn

based on the affinity measure (step 2). These n best individuals of the popula-
tion are cloned (reproduced) by the clonal process, giving rise to a temporary
population of clones, C (step 3). The higher the affinity, the larger the number
of clones generated for each of the n selected antibodies. The affinity maturation
process then mutates the antibodies to create the population C∗ (step 4). Dur-
ing mutation, it assigns a lower mutation rate for higher affinity antibodies than
low affinity antibodies. The idea is that the antibodies close to a local optimum
need only be fine-tuned, whereas antibodies far from an optimum should move
larger steps towards an optimum or other regions of the affinity landscape [11].
The reselection process reselects the improved antibodies from C∗ to update the
memory set M (step 5). Finally, The diversity introduction process replaces d
low affinity antibodies with new ones Nd (step 6).

The selection and maturation processes lead the population towards more
stimulated to antigens, while the clonal and diversity introduction processes help
to maintain the diversity of the population.

Although CLONALG with population-based search is characterized as an
evolutionary-like algorithm, there are some important differences between CLON-
ALG and genetic algorithm (GA) [4]. Firstly, CONALG was developed with
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Fig. 1. Clonal Selection Algorithm (CLONALG)

inspiration from the immunological theory whereas GA was based on the Dar-
winian evolution. Secondly, in CLONALG, the solution is usually extracted from
the memory pool constituted during the whole evolutionary process. In GA, the
final solution is usually gathered from the population of the last generation of
evolution.

4 Applying CLONALG to Timetabling

In order to apply CLONALG to the university timetabling problem, an anti-
body is represented as an event matrix Erooms×timeslots. There are n number of
rooms {r0, r1, · · · , rn}, m timeslots {t0, t1, · · · , tm}, and w events to be scheduled
{e0, e1, · · · , ew}. E[ri][tj ] = ek, means that an event ek takes place in room ri at
time tj .

4.1 Initialization

The CLONALG starts with a creation of an initial population which contains
a set of feasible solutions, or antibodies, and is created randomly regardless
to their affinity measurement value. Each antibody must follow the scheduling
stages defined below. In the first stage, the most constraining events - events
involved in largest number of constraints - are to be scheduled. The set of events
requiring a special laboratory, or having to appear in the timetable in consecutive
periods, or an event whose room allocated, time allocated attributes are set, have
the higher weight and need to be scheduled first. Some events that have more
relax constraints are to be scheduled next. For instance, the lecture events that
require large-sized classrooms are randomly assigned to the corresponding rooms
prior to those requiring small-sized ones. Apart from this, the rest of the events
are randomly scheduled accordingly without violating any hard constraint.
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4.2 Selection

The selection process begins with the measurement of the affinity of each an-
tibody. These antibodies are then ordered according to the affinity calculated.
The first antibody in the ordered list has the lowest affinity and the last one has
the highest affinity.

Since the checking of hard constraints has been done beforehand, the affin-
ity measurement function only deals with the soft constraints, and penalties
will be given to each of the soft constraints violated respectively. The affinity
measurement function is defined as

f =
1

1 +
∑k

i=1 wi · ni

(1)

where k is the total number of the soft constraints defined, ni is the number of
a certain kind of soft constraints within a particular antibody, wi is its attached
penalty or weight.

After the ordering of antibodies, n highest affinity antibodies are selected to
produce a new population Pn. If we choose n = N , i.e., the number of highest
affinity individuals equals to the number of candidates, each member of the
population will constitute a potential candidate solution locally, characterizing
a greedy search. In addition, if all the individuals are accounted locally, their
clones will have the same size 1. The value of the parameter n was determined
empirically and will be elaborated in section 5.

4.3 Cloning

Antibodies in the population will be duplicated proportional to their affinity and
enters the clone population C of size Nc, which is computed by equation 2

Nc =
n∑

i=1

round(
β ·N
i

) (2)

where Nc is the total amount of clones generated, β is a multiplying factor, N
is the total amount of antibodies and round(·) is the operator that rounds its
argument towards the closest integer. Each term of this sum corresponds to the
clone size of each selected antibody, e.g., for N = 100 and β = 1, the highest
affinity antibody (i = 1) will produce 100 clones, while the second highest affinity
antibody produces 50 clones, and so on.

4.4 Maturation

In the CLONALG algorithm, the mutation rate of a cell is inversely proportional
to the affinity of the cell. It gives the chance for low affinity cells to “mutate”

1 In order to maintain the best antibodies for each clone during evolution, it is pos-
sible to keep one original (parent) antibody for each clone unmutated during the
maturation process.
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more in order to improve its affinity. Since the mutations always result in better
affinity antibodies, the immune system always climbs up the hill towards higher
affinity antibody, leading to local optima.

A timetable E picked from the selection process will be mutated with mu-
tation rate inversely proportional to its affinity measurement function. The mu-
tation rate affects the maximum iteration of the hill climbing procedure. Hill
climbing has two criteria to stop: maximum iteration or minimum soft con-
straints violated (which is set to 0).

At each iteration, the algorithm selects randomly a scheduled event to be
moved. The selection of the move can be made either by randomly sampling a
set of moves, or by exhaustively exploring the neighborhood looking for the best
move (also known as Steepest Descent). In any way, the move should not lead to
an infeasible timetable. The cost of applying the move to the chosen event will be
calculated, which accounts for the number of violated soft constraints. If it gives
a better value, or the same as before, the move will be accepted and applied to the
timetable, moving an event from one room-timeslot to another room-timeslot.

4.5 Reselection and Diversity Introduction

There is a slight modification in the reselection step of the CLONALG algorithm
(Figure 1), instead of choosing n highest affinity clones, the clones will be first
compared with their parents. If one of the clones gives a better affinity than its
parent, then the clone will be selected to enter the new population of Pn. If the
parent is better, then the parent will be selected. Therefore, the n highest affinity
antibodies, either the parents or the clones, will be selected to compose the new
population of Pn, and d low affinity antibodies are to be replaced after every 5
generations by the diversity introduction process. This scheduling is supposed to
leave a breathing time in order to allow achievement of the local optima, followed
by replacement of the poorer individuals.

5 Experiments

The proposed approach has been developed tosolve twoproblems, the timetabling
problem for the School of Computer Engineering (SCE), Nanyang Technologi-
cal University, and the university course timetabling benchmark problem. To
cater for two different inputs and constraints defined by the two problems, two
separate systems have been developed based on the CLONALG algorithm.

For the SCE timetabling problem, the system has been tested using a sam-
ple dataset of SCE year 1 main group, academic year 2002/2003, semester 1 and
incorporating the constraints that have been discussed in section 2. Another sys-
tem, which was built to solve the benchmark problem, has been tested using the
small instances of the datasets whichcan bedownloaded from http://iridia.ulb.ac.
be/˜msampels/ttmn.data/. The characteristics of both problems are given in
Table 1. Entries represented as “-” means the corresponding characteristic is
undefined for that particular problem.
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Table 1. Characteristics of the timetabling problems

SCE Problem Benchmark Problem

Num events 116 100
Num rooms 8 5
Num features - 5
Approx features per room - 3
Percent feature use - 70
Num students 450 80
Max events per student 30 20
Max students per event 200 20
Num subject groupings 5 -

CLONALG has several user-defined parameters and different settings of these
parameters would affect the performance of the algorithm. Two parameters are
discussed here, namely n, the number of antibodies to be selected for cloning,
and β, parameter affecting the number of clones generated from the antibody
population.

5.1 Sensitivity with Relation to n

CLONALG sensitivity with relation to n has been evaluated with β (of equa-
tion 2) being fixed to 1. Figure 2 presents the results on the maximum, minimum
and mean obtained after running CLONALG 10 times with 50 and 100 gener-
ations for SCE timetabling and benchmark problem respectively. n takes the
value ranging from 2 to 10. The figure shows that the average cost of calculating
the antibody affinity in the population decreases as n increases. This behavior
was expected, because the higher the value of n, the larger the number of anti-
bodies to be mutated and eventually leads to the better solutions. On the other
hand, n has a strong influence on the size of the antibody clone population as

(a) SCE timetabling problem. (b) Benchmark problem.

Fig. 2. CLONALG sensitivity with relation to n
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Table 2. Computational time versus different settings of n

Computational Time (sec)
n SCE Problem Benchmark Problem

2 11.9 16.6
4 15.4 31.8
6 17.6 48.3
8 19.6 64.8
10 20.7 86.9

described in equation 2, and larger values of n imply a higher computational
cost. The computational time for different settings of n is given in Table 2.

5.2 Sensitivity with Relation to β

To study the CLONALG sensitivity with relation to β, n was set to N (popu-
lation size), and β took the following values, β = {0.1, 0.2, 0.4, 0.8, 1.5}. It can
be observed from Figure 3 that the cost of calculating the antibody affinity in
the population converges when β is set to 0.8 or higher. This is because the
probability of getting better antibodies in a larger clonal population is higher.
Nevertheless, the computational time increases linearly with β as can be seen
from Table 3.

Fig. 3. CLONALG sensitivity parameter β

Table 3. Computational time versus different settings of β

β 0.1 0.2 0.4 0.8 1.5
Computational Time (sec) 13.6 18.7 29.9 50.3 88.1



64 Y. He, S.C. Hui, and E.M.-K. Lai

5.3 Comparison of CLONALG and GA

The results presented in Table 4 are the best affinity antibodies out of 20 runs
of CLONALG, with the number of generations set to 100, population size set to
10, best antibody set to 8, and the number of antibodies to be replaced at each
generation set to 2.

The solution score is calculated based on the rules defined in [12] which
essentially counts the number of soft constraint violations. The smaller the so-
lution score, the better the algorithm is. It can be observed from Table 4 that
CLONALG gives a better result than GA but with longer computational time.

Table 4. Results comparison of different dataset of Benchmark Problem

CLONALG GA
Solution Best Computation Solution Best Computation

Data Set Score Time (sec) Score Time (sec)

small1.tim 19 62.9 36 12.2
small2.tim 24 62.6 37 12.8
small3.tim 20 63.1 38 11.1
small4.tim 14 81.3 51 18.8
small5.tim 12 61.2 31 12.7

By analyzing the two algorithms, CLONALG and GA, and the results ob-
tained, it is noticed that CLONALG maintains a diverse set of local optimal
solutions, while GA tends to polarize the whole population of individuals to-
wards the best one. This is mainly due to the selection and reproduction schemes
adopted by CLONALG. The coding schemes and evaluation functions of these
two algorithms are essentially quite similar, but their evolutionary search is dif-
ferent. Another important aspect of CLONALG compared to GA is the fact
that CLONALG takes into the account of the cell affinity, corresponding to an
individual’s fitness, in order to define the mutation rate applied to each member
of the population. GA adopts the genetic operators that disregard the individual
fitness.

6 Conclusion

This paper applies the Clonal Selection Algorithm (CLONALG) to solve the
course timetabling problem for the School of Computer Engineering (SCE),
Nanyang Technological University (NTU), Singapore as well as the university
course timetabling problem provided by the Metaheuristics Network.

CLONALG, which is the algorithm based on the biological metaphor of the
immune system, is proved to be effective to diverge the population. By comparing
CLONALG with GA, it is observed that the main steps composing the GAs are
embodied in CLONALG, allowing us to characterize it as an evolutionary-like
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algorithm. However, while GA uses a vocabulary borrowed from the natural
genetics and are inspired in the Darwinian evolution, the CLONALG makes use
immunological terminology to describe the Antigen-Antibody interactions and
cellular evolution. CLONALG performs its search through the mechanisms of
somatic mutation and receptor editing, balancing the exploitation of the best
solutions with the exploration of the neighborhood.

For future work, we will test the system with SCE full data (four years
courses) and add the lecturer constraints, etc. Some improvements on the heuris-
tics used in producing the initial candidates could also be made in order to get
better final solutions. In addition, implementation of other algorithms is essen-
tial for further studies, to compare the results of the two problems investigated
here.
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Abstract. In this paper we investigate two single machine scheduling
problems. The first problem addresses a class of the two-stage scheduling
problem in which the first stage is job production and the second stage
is job delivery. For the case that jobs are processed on a single machine
and delivered by a single vehicle to one customer area, with the objective
of minimizing the time when all jobs are completed and delivered to the
customer area and the vehicle returns to the machine, an approximation
algorithm with a worst-case ratio of 5/3 is known and no approximation
can have a worst-case of 3/2 unless P = NP . We present an improved
approximation algorithm with a worst-case ratio of 53/35, which only
leaves a gap of 1/70. The second problem is a single machine scheduling
problem subject to a period of maintenance. The objective is to minimize
the total completion time. The best known approximation algorithm has
a worst-case ratio of 20/17. We present a polynomial time approximation
scheme.

1 Introduction

In this paper, we consider two single machine scheduling problems, which have
strong background in supply chain management and manufacture management.

The first problem is a scheduling problem with job delivery coordination,
which is first proposed by Chang and Lee [2], and can be described as follows:
We are given n jobs N = {J1, J2, · · · , Jn} which must be first non-preemptively
processed in a manufacturing system and then delivered to respective customers.
Job Jj , j = 1, 2, · · · , n, needs a processing time of pj in the manufacturing
system, and has a size sj which represents the physical space Ji occupies when
this job is loaded in the vehicle. One vehicle is available to deliver finished jobs
in batches, and has a capacity z which means that finished jobs can be arranged
to fit in the physical space provided by the vehicle as long as their total size
does not exceed z. The vehicle is initially located at the manufacturing facility.
All jobs delivered together in one shipment are defined as a delivery batch. A
transportation time depending on customer area is associated with each delivery
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batch. Furthermore, we define a one customer area as a location where a group
of customers are located in close proximity to each other. The goal is to find
a schedule for processing jobs in manufacturing system and delivering finished
jobs to the corresponding customers such that the time required for all jobs in
N to be processed and delivered to the respective customer(s) is minimized.
To evaluate this goal, we define the makespan of a schedule, denoted by Cmax,
as the time when the vehicle finishes delivering the last batch to the customer
site(s) and returns to the machine(s). Then the problem is to find a schedule to
minimize makespan.

As we know, coordination of activities among different stages in the supply
chain has become one of the most important topic in production and operations
management research in last decade. For the research on the coordination of pro-
duction and delivery schedule, one may refer to [2]. Different from traditional
scheduling problems which implicitly assume that there are infinitely many vehi-
cles for delivering finished products to their destinations so that finished products
can be transported to customers without delay, the above problem incorporates
the delivery plan of a vehicle into a manufacturing system. It models a class of
the two-stage scheduling problem in which the first stage is job production and
the second stage is job delivery. The focus is on the study of the integration
of production scheduling with delivery of finished products to customers, which
measures the customer service level.

Three strongly NP -hard cases of the above problem are considered in [2]: For
the case that the manufacturing system consists of a single machine and there
is one customer area, Chang and Lee presented a polynomial time algorithm
H1 with a worst-case ratio of 5/3, while no polynomial time algorithm can
have a worst-case ratio of smaller than 3/2 unless P = NP . For the case that
the manufacturing system consists of two identical machines and there is one
customer area, they presented a polynomial time algorithm H2 with a worst-
case ratio of 2. For the case that the manufacturing system consists of a single
machine and there are two customer areas, they presented a polynomial time
algorithm H3 with a worst-case ratio of 2, too.

In this paper, we revisit the first case of the above problem, which is denoted
by 1 → D, k = 1|v = 1, c = z|Cmax. Here ”1 → D, k = 1” means that jobs are
first processed on a single machine and then delivered to customer(s) who are
located in one area. ”v = 1, c = z” means that there is only one vehicle with
capacity z. We will present a modified algorithm MH1 with a worst-case ratio
of 3/2 + 1/70 = 53/35, which greatly improves the known upper bound of 5/3
and is quite close to the lower bound of 3/2.

The second considered problem in this paper is a single machine schedul-
ing problem with a machine availability constraint, which can be described as
follows: We are given n jobs N = {J1, J2, · · · , Jn} which must be processed on
a single machine. Job Jj has a processing time pj , j = 1, 2, · · · , n. All jobs are
available at time zero, whereas the machine has a maintenance period during the
processing of jobs, i.e., the machine cannot process any job during the given time
window [R,R+L]. Preemptions are not allowed. Hence a job that is preempted
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due to the maintenance must be restarted after the machine is repaired. The
objective is to find a schedule such that the total completion time is minimized.
This problem is denoted by 1, h1||

∑
Ci [6].

Adiri et al. [1] and Lee and Liman [5] showed that the problem 1, h1||
∑
Ci

is NP -hard. They also studied algorithm SPT (Shortest Processing Time) as an
approximation algorithm solving this problem. Lee and Liman [5] proved that
the worst-case ratio of SPT is 9/7. Recently, Sadfi et al. [6] proposed a modified
algorithm MSPT with a worst-case ratio of 20/17. This algorithm is based on
a post-optimization of the SPT algorithm by applying a 2-OPT procedure. In
this paper, we will extend this idea to a general k, k-exchange procedure. Then
we will propose a polynomial time approximation scheme (PTAS) based on this
new procedure. Hence our result greatly improves the known result.

2 Problem 1 → D, k = 1|v = 1, c = z|Cmax

This section is devoted to the problem 1 → D, k = 1|v = 1, c = z|Cmax. Let P be
the total processing time of all the jobs. Let t the one-way transformation time
between the machine and the customer, therefore each delivery has the same
transportation time T = 2t.

2.1 Preliminaries and Algorithm Description

Property 1. [2] There exists an optimal schedule for the problem 1 → D, k =
1|v = 1, c = z|Cmax that satisfies the following conditions:

(1) Jobs are processed on the machine without idle time.
(2) Jobs assigned to one batch are processed consecutively on the machine.
(3) Jobs assigned to one batch can be processed on the machine in any order.
(4) Batches are delivered in non-decreasing order of the total processing time of

jobs in each batch.

Therefore, only schedules satisfying the above properties are considered further.
Also, batches will be indexed and delivered in non-decreasing order of the total
processing time of the jobs in each batch.

Lemma 1. ([2]) For any schedule satisfying Property 1, if Cmax > P + T , then
P1 < T and Cmax = P1 +KT , in which P1 denotes the total processing time of
the jobs in the first batch and K denotes the number of batches in the schedule.

Algorithms FF (First Fit) and FFD (First Fit Decreasing) are two classical
algorithms for the bin-packing problem. We will apply them as sub-procedures
for solving our problem. Note that algorithms FF and FFD are based on the
job sizes and the vehicle capacity z in this paper. For an instance I of the bin-
packing problem, let OPT (I), FF (I), FFD(I) be the numbers of used bins in
an optimal solution, the solutions yielded by FF and FFD, respectively.
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Lemma 2. (1)([7]) FF (I) ≤ 7
4OPT (I); (2)([8]) FFD(I) ≤ 11

9 OPT (I) + 1.

The following algorithm H1 was proposed in [2] for solving our problem.

Algorithm H1:

1. Assign jobs to batches by algorithm FFD. Let the total number of resulting
batches be b1.

2. Define Pk as the total processing time of the jobs in the k-th batch, k =
1, 2, · · · , b1. Reindex these batches such that P1 ≤ P2 ≤ · · · ≤ Pb1 , and
denote the k-th batch as Bk.

3. Starting with B1, assign jobs in Bk to the machine, for k = 1, 2, · · · , b1. Jobs
within each batch can be sequenced in an arbitrary order.

4. Dispatch each finished but undelivered batch whenever the vehicle becomes
available. If multiple batches have been completed when the vehicle becomes
available, dispatch the batch with the smallest index.

It is clear that the time complexity of H1 is O(n log n). It is shown in [2] that
the worst-case ratio of H1 is 5/3. Furthermore, since the bin-packing problem
is a special case of our problem, it is impossible to have a polynomial time
approximation algorithm with a worst-case ratio of 3/2 unless P = NP .

Our improved algorithmapplies a fully polynomial time approximation scheme
(FPTAS) of the knapsack problem. Recall that for any instance of the knapsack
problem, we are given n items, each with a profit and a size, and a knapsack
with limited capacity. We wish to put items into the knapsack such that the total
size of the selected items is not greater than the knapsack capacity and the total
profit of the selected items is maximized. For this NP -hard problem, among oth-
ers, Lawler [4] proposed an FPTAS with a time complexity of O(n log(1

ε )+ 1
ε4 ),

where 1−ε is the worst-case ratio; and Kellerer and Pferschy [3] also proposed an
FPTAS with a time complexity of O(nmin{log n, log 1

ε }+ 1
ε2 min{n, 1

ε log 1
ε )}.

Now we are ready to present our improved algorithm.

Algorithm MH1:

1. Run algorithm H1. Let the obtained schedule be σ1 with makespan C1. If
b1 �= 3, stop; Else, go to Step 2.

2. Construct an instance of the knapsack problem as follows: for each job Jj ,
j = 1, 2, · · · , n, construct an item with profit pj and size sj , and let the
knapsack capacity be z. Run any FPTAS for the knapsack problem with
ε = 2

35 , and denote by N1 the set of items put into the knapsack. Reindex
all jobs such that N1 is at the head.

3. Assign jobs to batches by algorithm FF . Let the total number of resulting
batches be b2.

4. Run Steps 2-4 of algorithm H1 except that denote by B′
k the k-th batch,

and by P
′
k the total processing times of B′

k, k = 1, 2, · · · , b2. Let the obtained
schedule be σ2 with makespan C2.

5. Compare C1 and C2. Select the smaller one as output.
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Remark 1. The jobs corresponding to the items in N1 are assigned to the same
batch by algorithm FF in Step 3 of algorithm MH1.

When analyzing our algorithm, we use the following:
b∗L = the number of batches if the jobs are assigned to batches by an optimal

algorithm of the bin-packing problem.
b∗ = the number of batches in the optimal schedule for our problem.
P ∗ = the optimal value of the instance of the knapsack problem constructed

in Step 2.
C∗ = the optimal makespan for our problem.
CMH1 = the makespan produced by MH1.
y = the total processing time of jobs in the first batch in the optimal solution.

Lemma 3. If there are only two batches in the optimal schedule, P − y ≤ P ∗.

Proof. Since jobs in each batch constitutes a feasible solution for the instance
of the knapsack problem, and P − y is the total processing time of the second
batch in the optimal schedule, we have P − y ≤ P ∗. ��

Lemma 4. P
′
b2
≥ 33

35P
∗, in which P

′
b2

denotes the total processing time of jobs
in the last batch of σ2 (if exists).

Proof. From Remark 1, we know that there exists k, 1 ≤ k ≤ b2, such that
P

′
k ≥ 33

35P
∗. Since P

′
1 ≤ P

′
2 ≤ · · · ≤ P

′
b2

, P
′
b2
≥ P

′
k ≥ 33

35P
∗. ��

2.2 Worst-case Analysis of Algorithm MH1

Lemma 5. If b1 �= 3, CMH1
C∗ < 53

35 .

Proof. In this case, algorithm MH1 is just H1, hence CMH1 = C1. Chang and
Lee [2] proved C1

C∗ ≤ 5
3 . To obtain C1

C∗ <
53
35 , more careful analysis are necessary.

From Lemma 1, we have

C∗ = max{y + b∗T, P + T}. (1)

If C1 = P + T , we have C1 = C∗ clearly, and we are done. Hence, we suppose
that C1 > P + T in the following. Then by Lemma 1,

C1 = P1 + b1T, and P1 < T. (2)

It is obvious that b∗ ≥ 2. Otherwise, b1 = b∗ = 1 and MH1 yields an optimal
solution. If b1 ≤ b∗, by (1) and (2), we have

C1

C∗ ≤
P1 + b1T

y + b∗T
<
P1 + b∗T

b∗T
= 1 +

P1

T
· 1
b∗
< 1 +

1
b∗
≤ 3

2
<

53
35
. (3)

Hence, we only need to consider the case that b1 > b∗.
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Noting that the jobs are assigned to batches according to algorithm FFD in
H1, by Lemma 2(2), we have

b1 ≤
11
9
b∗L + 1 ≤ 11

9
b∗ + 1. (4)

If b∗ = 2, then b1 ≤ 31
9 < 4. From b1 > b∗ we know b1 = 3, contradicting the

Lemma’s assumption b1 �= 3. Therefore, we suppose b∗ ≥ 3 in the following. To
obtain the desired worst-case ratio, we distinguish two cases according to (1).

Case 1 C∗ = y+b∗T . Then (1) implies y+b∗T ≥ P+T , i.e., P ≤ y+(b∗−1)T .
Recall that P1 ≤ P2 ≤ · · · ≤ Pb1 . We establish P1 ≤ P

b1
≤ y+(b∗−1)T

b1
, and thus

C1

C∗ =
P1 + b1T

y + b∗T
≤

y+(b∗−1)T
b1

+ b1T

y + b∗T
=

1
b1
· y + b∗T + (b21 − 1)T

y + b∗T

=
1
b1

+
1
b1
· (b21 − 1)T
y + b∗T

<
1
b1

+
1
b1
· b

2
1 − 1
b∗

. (5)

If b∗ = 3, (4) states that b1 ≤ 42
9 < 5. Combing it with b1 > b∗, we have

b1 = 4. Then from (5), it follows that C1
C∗ <

3
2 .

Similarly, if b∗ = 4, then b1 = 5 and thus C1
C∗ <

7
5 ; if b∗ = 5, then b1 = 6, 7

and thus C1
C∗ <

4
3 (for b1 = 6) or C1

C∗ <
53
35 (for b1 = 7); if b∗ = 6, then b1 = 7, 8,

and thus C1
C∗ <

9
7 (for b1 = 7) or C1

C∗ <
23
16 (for b1 = 8).

If b∗ ≥ 7, (4) implies that b∗ ≥ 9(b1−1)
11 . Substituting it into (5), we obtain

C1

C∗ <
1
b1

+
1
b1
· (b21 − 1)

9(b1−1)
11

=
11
9

+
20
9b1

<
11
9

+
20
9
· 1
8

=
3
2
, (6)

where the last inequality is from b1 > b∗ ≥ 7.

Case 2 C∗ = P + T . Then (1) implies C∗ = P + T ≥ y + b∗T > b∗T .
Combining it with (4), we have P > (b∗ − 1)T ≥ ( 9

11b1 −
20
11 )T . As P1 ≤ P

b1
, we

conclude that

C1

C∗ =
P1 + b1T

P + T
≤

P
b1

+ b1T

P + T
=

1
b1
· P + T + (b21 − 1)T

P + T

=
1
b1

+
b21 − 1
b1

· T

P + T
<

1
b1

+
b21 − 1
b1

· T

b∗T
=

1
b1

+
b21 − 1
b1

· 1
b∗
. (7)

Note that (7) is the same as (5). Therefore, the same arguments as those in
Case 1 can complete the proof. ��

Lemma 6. If b1 = 3, CMH1
C∗ < 53

35 .

Proof. Similarly, we can suppose that b∗ ≥ 2. If C1 = P +T or C2 = P +T , then
min{C1, C2} = C∗ by (1). Hence we suppose that C1 > P + T and C2 > P + T .
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Then by Lemma 1, P1 < T and P
′
1 < T , where P1 and P

′
1 are the total processing

times of jobs in the first batches in σ1 and σ2, respectively.
If b1 ≤ b∗, we have shown in Lemma 5 that C1

C∗ < 3
2 (see the proof of (3)).

Hence, we suppose b1 > b∗. Then b∗ = 2. Hence, by Lemma 2(1), we have
b2 ≤ 7

4 ∗ 2 = 7
2 , that is, b2 ≤ 3. If further b2 ≤ b∗, by similar arguments to show

(3) in the proof of Lemma 5, we can obtain C2
C∗ ≤ 3

2 . Hence, we suppose b2 > b∗.
Combining it with b2 ≤ 3 and b∗ = 2, we know that b2 = 3.

b∗ = 2 and (1) states that C∗ = max{y+2T, P+T}. Two cases are considered
as follows.

Case 1 C∗ = y + 2T . Then y + 2T >≥ P + T , and thus P ≤ y + T . From
Lemmas 3 and 4, we get P

′
3 ≥ 33

35P
∗ ≥ 33

35 (P − y). Noting that P
′
1 ≤ P

′
2 ≤ P

′
3,

we obtain

P
′
1 ≤

P − P ′
3

2
≤
P − 33

35 (P − y)
2

=
2P + 33y

70
≤ 2(y + T ) + 33y

70
=
y

2
+
T

35
. (8)

Therefore,

C2

C∗ =
P

′
1 + 3T
y + 2T

≤
y
2 + T

35 + 3T
y + 2T

=
1
2 (y + 2T ) + (2 + 1

35 )T
y + 2T

<
1
2

+
(2 + 1

35 )T
2T

=
53
35
. (9)

Case 2 C∗ = P + T . Then P + T ≥ y + 2T , and thus P ≥ y + T . From
Lemmas 3 and 4, we know P

′
3 ≥ 33

35P
∗ ≥ 33

35 (P − y) > 33
35T . By P

′
1 ≤ P

′
2 ≤ P

′
3

and P =
∑3

i=1 P
′
i , we have P

′
1 ≤ 1

2 (P − P ′
3) <

1
2 (P − 33

35T ). Therefore,

C2

C∗ =
P

′
1 + 3T
P + T

<
1
2 (P − 33

35T ) + 3T
P + T

=
1
2 (P + T ) + (5

2 −
33
70 )T

P + T
<

1
2

+
( 5
2 −

33
70 )T

2T
=

53
35
. ��

Theorem 1. CMH1
C∗ < 53

35 .

Proof. This is a direct conclusion of Lemmas 5 and 6. ��
Since both FFD, FF and H1 run in time O(n log n), and the FPTAS of

Lawler or Kellerer and Pferschy for the knapsack problem runs in time O(n)
when we take ε = 2/35. Hence the time complexity of MH1 is O(n log n), the
same as that of H1.

3 Problem 1, h1||∑Ci

This section addresses the problem 1, h1||
∑
Ci. To present our improved algo-

rithm, we will propose a local search procedure, called k, k-exchange procedure,
which is an extension of 2-OPT procedure proposed in [6].



Improved Algorithms for Two Single Machine Scheduling Problems 73

Using the same notations as those in [5] and [6], denote by S∗ and S an opti-
mal schedule and the schedule yielded by algorithm SPT , respectively. Denote
by B the set of the jobs scheduled before the maintenance period in S, and by A
the set of the remaining jobs scheduled after it. Denote by X the set consisting
of the |B| jobs scheduled first in S∗, and by Y the set of the remaining |A| jobs
scheduled last. Denote by δ∗ and δ the idle times on the machine before the
maintenance period, respectively in the schedules S∗ and S.

Definition 1. Let ā ≤ |A|, b̄ ≤ |B| and k are positive integers satisfying k ≥
b̄ ≥ ā. An k, k-exchange procedure is an exchange of ā jobs in A with b̄ jobs of B
in the schedule S, under the constraint that the total processing times of b̄ jobs in
B plus δ is no less than the total processing times of ā jobs in A. After exchange,
the jobs are reordered before and after the maintenance in non-decreasing order
of their processing times.

Obviously an k, k-exchange procedure is essentially a post-optimization of
the SPT schedule using local search method. With this procedure, our improved
algorithm, denoted by SPTE can be formulated as follows.

Algorithm SPTE:

1. Process all the jobs according to the SPT rule.
2. For a given positive integer k, try all k, k-exchange procedures to generate

new schedules.
3. Choose the best one from the schedules generated in Steps 1 and 2 as output.

Clearly, by setting k = 1, the above algorithm becomes MSPT , which was
proposed in [6]. Hence SPTE is a generalization of MSPT . Sadfi et al. showed
that MSPT has a worst-case ratio of 20/17. Hence we assume that k ≥ 2 in
the following. We will show that SPTE is a PTAS. It shows that local search
method is powerful for the considered problem.

Denote by S′ the schedule yielded by algorithm SPTE. With straightforward
notation, B′ and A′ represent the job partition is S′. Finally we denote by Ci, C

′
i

and C∗
i the completion times of job Ji in schedules S, S′ and S∗, respectively.

The following Lemmas 7 and 8 are cited from in [6], and Lemma 9 is parallel
to Lemma 4 of that paper which can be shown similarly.

Lemma 7. ([6]) δ ≥ δ∗.

Lemma 8. ([6]) If (at least) one of set X is scheduled after the maintenance
period in the optimal solution, then

n∑
i=1

C ′
i ≤

n∑
i=1

C∗
i + (|Y | − 2)(δ − δ∗). (10)

Lemma 9. If (at least) k + 1 jobs of the set B are scheduled after the mainte-
nance period in the optimal solution, then

n∑
i=1

C∗
i ≥

(
|Y |(|Y |+ 1)

2
+ k + 1

)
(δ − δ∗). (11)
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Theorem 2. For any given integer k ≥ 2, algorithm SPTE has a worst-case
ratio of at most 1 + 2

5+2
√

2k+8
, and runs in O(n2k+1). Therefore, SPTE is a

PTAS for the problem 1, h1||
∑
Ci.

Proof. We first prove (10) and (11). Two cases are considered as follows.

Case 1 No k, k-exchange procedure exists. Then the number of jobs from A
should be no less than the number of B, and S′ = S. If B = X, SPT schedule
is optimal. If B �= X, in order to process some job(s) from set A before the
maintenance period, we have to remove at least k+ 1 jobs from set B. Hence, if
S is not optimal, at least one job from set X is processed after the maintenance
period in S∗. Hence the condition of Lemma 8 is satisfied, and thus (10) is true.
Furthermore, at least k+ 1 jobs from set B are processed after the maintenance
period in S∗, implying that the condition of Lemma 9 is satisfied and thus (11)
is true.

Case 2 k, k-exchange procedures generate new schedules. Without loss of gen-
erality, we suppose that S∗ cannot be generated by these procedures.

Suppose that the optimal schedule S∗ can be generated by exchanging b′ jobs
from set B with a′ jobs from set A, where |A| ≥ a′ ≥ 1 and |B| ≥ b′. Since S∗

cannot be generated by any k, k-exchange procedure, we have b′ > k. It states
that the condition of Lemma 9 is satisfied. Hence, (11) is true.

Since the processing time of any job from set A is no less than that of any
job from set B, b′ ≥ a′. We distinguish two subcases according to this inequality.

Subcase 1 b′ > a′. Since S∗ can be generated by exchanging b′ jobs from B with
a′ jobs from A, the number of jobs processed before the maintenance period in
S∗ must be |B| − b′ + a′ < |B|. Since |X| = |B|, we know that at least one job
from X is scheduled after the maintenance period in S∗. (10) follows.

Subcase 2 b′ = a′. Then a′ > k ≥ 2. For this subcase, the condition of Lemma
8 may not be satisfied, but we show that (10) is still true assuming all jobs in
X are processed before the maintenance period.

Fig. 1. Schedule S∗

Fig. 2. Schedule S
′′



Improved Algorithms for Two Single Machine Scheduling Problems 75

Let qA and qB be the processing times of the biggest k jobs from A in X
and the processing time of the biggest k jobs from B in Y , respectively. Let WA

and WB be the sets of the other a′ − k jobs of X
⋂
A and Y

⋂
B, respectively.

Moreover, let pA and pB be the sums of their processing times. Note that pA ≥ pB

by the construction of the schedule S. Now we construct a schedule S′′ from S∗

by exchanging the jobs of WA and WB and processing jobs in SPT order before
and after the maintenance period. Let δ′′ be the idle time on the machine before
the maintenance period, X ′′ be the set consisting of the |B| jobs scheduled
first in S′′, and Y ′′ be the set of the remaining |A| jobs scheduled last. Let
Δ = pA − pB ≥ 0 for short. Denote by C ′′

i the completion times of job Ji in S′′.
By comparing schedules S′′ and S∗ (see Fig. 1 and 2), we have C∗

[i] ≥ C
′′
[i], 1 ≤

i ≤ |B|−k, and C∗
[i] ≥ C

′′
[i] +Δ, |B|−k+1 ≤ i ≤ |B|, where C∗

[i] and C ′′
[i] are the

completion times of jobs at position i in S∗ and S′′, respectively. It follows that∑
J[i]∈X′′ C

′′
[i] ≤

∑
J[i]∈X C∗

[i]−kΔ. On the other hand, C
′′
[|B|+a′]−C∗

[|B|+a′] = (R+

L+qB +pA)−(R+L+pB +qB) = Δ. It implies that C
′′
[i] ≤ C∗

[i]+Δ, |B|+1 ≤ i ≤
|B|+a′−1, and C

′′
[i] = C∗

[i] +Δ, |B|+a′+1 ≤ i ≤ n. Summing these inequalities,
and by |Y | = n−|B|, we obtain

∑n
i=1 C

′′
i ≤

∑n
i=1 C

∗
i +(|Y |−k)Δ ≤

∑n
i=1 C

∗
i +

(|Y |−2)Δ. Since pA +qA +δ∗ = pB +qA +δ′′, we have Δ = δ′′−δ∗ ≤ δ−δ∗ (due
to δ′′ ≤ δ). Hence

∑n
i=1 C

′′
i ≤

∑n
i=1 C

∗
i +(|Y |−2)(δ− δ∗). Since SPTE outputs

the best schedule among all k, k-exchange procedures and S′′ can be generated
by an k, k-exchange procedure, we have

∑n
i=1 C

′
i ≤
∑n

i=1 C
∗
i + (|Y | − 2)(δ− δ∗),

which is just (10).

Now we are ready to get the worst-case ratio. By (10) and (11), we obtain∑n
i=1 C

′
i −
∑n

i=1 C
∗
i∑n

i=1 C
∗
i

≤ 2(|Y | − 2)
|Y |(|Y |+ 1) + 2k + 2

.

Define f(|Y |) = 2(|Y |−2)
|Y |(|Y |+1)+2k+2 , |Y | > 0. By taking a derivation of f(|Y |), we

can see that it is increasing for |Y | ≤ 2 +
√

2k + 8 and is decreasing for |Y | ≥
2 +

√
2k + 8 and hence reaches a maximum at |Y | = 2 +

√
2k + 8 with f(2 +√

2k + 8) = 2
5+2

√
2k+8

. Therefore, the desired worst-case ratio of SPTE follows.
It is obvious that there are at most O(n2k) k, k-exchange procedures, and

computing the objective function value of a schedule takes O(n) time. Hence
SPTE runs in time O(n2k+1), and is a PTAS for 1, h1||

∑
Ci. ��
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Abstract. It is wel-known that Nash considered the n-person noncoop-
erative game with each player having finite strategic set and proved the
celebrated existence result of Nash equilibrium point (in mixed strate-
gies). This paper investigates the n-person noncooperative game with
each player having infinite strategic set. By considering these infinite
strategic as complete metric spaces and based on a new finite equilib-
rium system, we obtain new existence result of Nash equilibrium. Then
an algorithm is given to compute Nash equilibrium points and its con-
vergence is proved.

1 Introduction

Nash equilibrium constitutes a central solution concept in game theory, which
is a mathematical theory of socio-economic phenomena exhibiting interaction
among decision-makers, called players, whose actions affect each other. In years
past, economics has benefited greatly from the introduction of game-theoretic
tools.

Classic n-person noncooperative game Γ (IN, S, h)(see [6]) in normal (strate-
gic) form consists of the following:

(i) A set IN = {1, 2, . . . , n} of players.
(ii) For each player i ∈ IN, a finite set Si of pure strategies. Let S := S1×S2×

· · · × Sn denote the set of n-tuples of pure strategies.
(iii) For each player i ∈ IN, a function hi : S → IR, called the payoff function.

Let h = (h1, h2, . . . , hn) denote the vector of payoff function.

A game is finite if the player set as well as the set of strategies available to each
player is finite. So above game Γ (IN, S, h) is a finite game. For this finite game,
there maybe not solution for the game Γ (IN, S, h)(see [16]). So Nash(see, [11, 12])
considered its mixed extension of this finite game as following.

N. Megiddo, Y. Xu, and B. Zhu (Eds.): AAIM 2005, LNCS 3521, pp. 77–84, 2005.
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For the finite pure strategic set Si, for the player i ∈ IN, his mixed strategic
set is

Δ(Si) = {x = (x(s))s∈Si : x(s) ≥ 0 for all s ∈ Si and
∑
s∈Si

x(s) = 1}, (1)

his expected payoff is
Hi(x) =

∑
s∈S

x(s)hi(s), (2)

where x(s) :=
∏

j∈IN x
j(sj) is the probability, under x, that the pure strategy

n-tuple s = (s1, s2, . . . , sn) is played. Define payoff function Hi : Δ(S) → IR for
player i. Let Δ(S) = Δ(S1)×Δ(S2)×· · ·×Δ(Sn) and H = H1×H2×· · ·×Hn.
Since the mixed strategic set Δ(S) include not finite but infinite strategies, the
finite strategic game is transformed to a n-person game with infinite strategic
set. And since Δ(S) is compact and convex and payoff function H has especial
convexity and continuity structure, Nash (see, [11, 12]) obtained his celebrated
existence result of non-cooperative equilibrium using Kakutani’s fixed pointed
theorem (see [3])as follows.

Theorem 1 (Nash(see[11, 12])). The mixed extension(Γ (IN,ΔS,H)) of the
finite game has at least on strategic equilibrium.

Nash’s theorem has been generalized in many directions. One of most important
generalization is following game Γ (IN, X, φ).

Theorem 2 (Debreu(see [2])). Let, for each i ∈ IN, the strategic set Xi be
nonempty, compact and convex subset of the Eulidean space Ei and φ : X → R
be a payoff function, which satisfies:

(i) For each i ∈ IN and xi ∈
∏

j∈IN\{i}Xj, the payoff function yi → φ(xi, yi)
is convex;

(ii) For each i ∈ IN, the payoff function φi is continuous.

Then there exists an x̄ ∈ X such that, for each i ∈ IN

φi(x̄i, yi) ≥ φi(x̄), ∀yi ∈ Xi

where X =
∏

i∈INXi and E =
∏

i∈INEi.

Theorem 2 may be thought of as identifying conditions under which the strategy
space X are like mixed strategy spaces Δ(S) for the finite games and the payoff
function φ are like expected payoff H(see [9]). This result showed that when the
player’s (infinite) strategic set has compact and convex structure, under some
conditions (continuity and convexity) of payoff function, the infinite (strategic)
game has at least one Nash equilibrium.

The above is the classic transformation from finite (strategic) game to infi-
nite (strategic) game. But we also know for infinite (strategic) sets, they also
can be other topological structure such as completeness besides compactness and
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convexity. So it is a very natural question: is there a Nash equilibrium under com-
plete strategic set for infinite strategic non-cooperative game? This paper gives
a positive answer. Under some conditions, we build a new existence result of
Nash equilibrium points by using finite equilibrium system theory(see [1]).

The task of detecting the Nash equilibria of n-person noncooperative game
remains a challenging problem up-to-date. The most popular algorithms for cal-
culating Nash equilibira are homotopy methods (see [4, 5, 7, 8, 10]). Other meth-
ods include neural network method (see [15]) and computational intelligence
methods (see [13]). In this paper, we also give an algorithm method to compute
the noncooperative equilibria in infinite (strategic) game and prove its conver-
gence.

The paper is organized as follows. In Section 2, We give some notation and
discuss the relationship between finite equilibrium system and n-person nonco-
operative game. Then the existence result of solution for the finite equilibrium
system is obtained. In Section 3, equilibrium of n-person noncooperative game
is given, an algorithm is proposed to compute this Nash equilibrium and its
convergence is pointed out. In Section 4, some conclusions are given.

2 Finite Equilibrium System

This section gives an existence result of finite equilibrium system. We also let
IN = {1, 2, . . . , n} be an index set, for each i ∈ IN, Xi be a subset of the Eulidean
space Ei. Let X =

∏
i∈IN and E =

∏
i∈INEi.

Definition 1. The finite equilibrium system problem is finding of x̄ ∈ X such
that, for each i ∈ IN,

fi(x̄, yi) ≥ 0, yi ∈ Xi. (3)

where fi : X ×Xi → IR be system payoff function.

Theorem 3. For each i ∈ IN, let (Ei, di) be Eulidean space, where di : Xi ×
Xi → IR+ is Eulidean distance function and for xi, yi ∈ Ei, di(xi, yi) = ||xi−yi||,
the norm of xi − yi. Assume

(i) for each i ∈ IN, (Xi, di) be a complete metric subspace of Ei;

(ii) for each i ∈ IN, fi : X × Xi → IR is lower semicontinuous in the second
argument and satisfies:

fi(x, xi) = 0, for all x ∈ X,
fi(x, yi) ≤ fi(x, zi) + fi(z, yi), ∀x, z ∈ X and ∀yi ∈ Xi;

(iii) there is an x(0) ∈ X such that, for every i ∈ IN, infyi∈Xi
fi(x(0), yi) > −∞;

(iv) for every x ∈ X, if for some i ∈ IN with infyi∈Xi
fi(x, yi) < 0, then there

exists zi ∈ Xi with zi �= xi such that

fi(x, zi) + di(xi, zi) ≤ 0.
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Then there exists x̄ ∈ X such that, for each i ∈ IN,

fi(x̄, yi) ≥ 0, ∀yi ∈ Xi.

Proof. We prove this theorem by the following three steps.

(1) Construct inductively a sequence of point x(j) ∈ X, j = 0, 1, 2. . . . ,starting
with x(0) from (iii). Given x(j), j = 0, 1, 2. . . . , we obtain x(j + 1) by the
following way.
For each i ∈ IN, let the set

Si
j = {yi ∈ Xi : fi(x(j), yi) + di(x(j)i, yi) ≤ 0}

ri
j = inf

yi∈Si
j

f(x(j), yi)

Let Sj =
∏

i∈IN S
i
j . It follows from (ii) that, for each i ∈ IN, x(j)i ∈ Si

j and
ri
j ≤ 0. Select x(j + 1) ∈ Sj such that, ∀i ∈ IN,

fi(x(j), x(j + 1)i) ≤ kri
j , where k ∈ (0, 1)fixed.

(2) In this step, we prove the sequence x(j), j = 0, 1, 2, . . . is convergence.
From (ii) and x(j+1)i ∈ Si

j , we say that Si
j+1 ⊂ Si

j , for every j and i ∈ IN.
In fact, ∀xi ∈ Si

j+1, we have

fi(x(j + 1), xi) + di(x(j + 1)i, xi) ≤ 0. (4)

Since x(j + 1)i ∈ Si
j , we also have

fi(x(j), x(j + 1)i) + di(x(j)i, x(j + 1)i) ≤ 0. (5)

From (6) and (5), and (ii), we have

fi(x(j), xi) + di(x(j)i, xi) ≤ 0.

So for each i ∈ IN, Si
j+1 ⊂ Si

j , further, Sj+1 ⊂ Sj . From this we obtain, by
virtue of (ii), for each i ∈ IN,

ri
j+1 = inf

yi∈Si
j+1

fi(x(j + 1), yi)

≥ inf
yi∈Si

j

(fi(x(j), yi)− fi(x(j), x(j + 1)i))

= ri
j − fi(x(j), x(j + 1)i)

≥ (1− k)ri
j .

Therefore, ∀i ∈ IN, 0 ≥ ri
j+1 ≥ (1− k)j+1ri

0 → 0. If yi ∈ Si
j+1 then

di(x(j + 1)i, yi) ≤ −fi(x(j + 1), yi) ≤ −ri
j+1 → 0.
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This implies that the diameter of the sets Si
j tends to zero, for each i ∈ IN.

Moreover for all k ≥ j one has x(k)i ∈ Si
k ⊂ Si

j , hence di(x(j)i, x(k)i) ≤
−ri

j+1. It follows that for each i ∈ IN, {x(j)i} is Cauchy and converges to
some x̄i ∈ ∩∞

j=0S
i
j . Since for each i ∈ IN, fi is lower semicontinuous in the

second argument, Si
j is closed, for all j. Since the diameter of the set Si

j

tends to zero, it follows that ∩∞
j=0S

i
j = {x̄i}. So x̄ =

∏
i∈IN x̄i =

∏
i∈IN x̄i ∈

∩∞
j=0Sj . So limj→∞ x(j) = x̄.

(3) We obtain that x̄ is finite equilibrium solution in this step.
Assume that x̄ does not meet the conclusion of the theorem, i.e. there is i ∈
IN such that fi(x̄, yi) < 0, for some yi ∈ Xi. Hence, infyi∈Xi

fi(x̄, yi) < 0.
Then by hypothesis, there exists zi ∈ Xi with zi �= x̄i such that fi(x̄, zi) +
di(x̄i, zi) ≤ 0. since for this i, x̄i ∈ ∩∞

j=0S
i
j , i.e. for every j, x̄i ∈ Si

j ,

fi(x(j), x̄i) + di(x(j)i, x̄i) ≤ 0.

Hence,
fi(x(j), zi) + di(x(j)i, zi) ≤ 0

i.e.
zi ∈ Si

j for all j

This implies
zi ∈ ∩∞

j=0S
i
j ,∀j

Therefore, xi = x̄i, this contradicts xi �= x̄i. ��

3 N-Person Noncooperative Game

In this section, we built an existence result of n-person noncooperative game
with each player having infinite strategic set, which has complete structure, and
give an algorithm to compute the corresponding Nash equilibrium points.

For n-person noncooperative game with infinite strategic set Γ (IN, X, φ),
where IN = {1, 2, · · · , n} is player’s set, for each i ∈ IN, Xi and φi : X → R are
strategic set and payoff function, respectively, its Nash equilibrium solution is
finding of x̄ ∈ X such that, for each i ∈ IN,

φi(x̄i, yi) ≥ φi(x̄), ∀yi ∈ Xi,

where X =
∏

i∈INXi and xi ∈
∏

j∈IN\{i}Xj .

Theorem 4. For each player i ∈ IN, let (Xi, di) be his strategic space, which is
a complete metric subspace of Eulidean space (Ei, di) with di : Xi ×Xi → IR+

being Eulidean distance function and for xi, yi ∈ Ei, di(xi, yi) = ||xi − yi||. His
payoff function φi : X → R satisfies following conditions:

(i) for every xi ∈ Xi, φi(xi, yi) is lower semicontinuous on yi and satisfies:

φi(xi, yi) ≤ φi(xi, zi) + φi(zi, yi)− φi(z), ∀x, z ∈ X and ∀yi ∈ Xi. (6)
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(ii) there is an x(0) ∈ X such that ∀i ∈ IN, infyi∈Xi
φi(xi(0), yi) > −∞.

(iii) for every x ∈ X, if for i ∈ IN with infyi∈Xi
(φi(xi, yi) − φi(x)) < 0, then

there exists zi ∈ Xi with zi �= xi such that φi(xi, zi)−φi(x)+di(xi, zi) ≤ 0.

Then there exists x̄ ∈ X such that, for each i ∈ IN,

φi(x̄i, yi) ≥ φi(x̄), ∀yi ∈ Xi.

Proof. Just setting fi(x, yi) = φi(xi, yi)− φi(x) and by using the theorem 3, we
obtain that n-person noncooperative game has at least Nash equilibrium. ��
Remark 1. Theorem 4 is different from Theroem 2 in the following two aspects.

(i) On the players’ strategic sets, Theorem 4 need neither compactness nor
convexity but completeness. Most general example of strategic set having
complete space structure in economic literature is the set [0,+∞).

(ii) On the players’ payoff function, Theorem 4 need neither continuity nor con-
vexity but some special quantitative structure and lower semi-continuity.
We should note that the condition (6) is satisfied by a type of payoff func-
tion

φ(xi, yi) = li(xi) + gi(yi), for any (xi, yi) ∈ X
where li : X \Xi → R and gi : Xi → R.

Example 1. Denote the set of players IN = {1, 2, · · · , n}. For each player i ∈ IN,
his strategic set is Xi = [0,+∞) and payoff is φi(xi, yi) = ||xi||+eyi . It is easy to
see that the strategic set is compact. So any existing Nash’s equilibrium existence
result (e.g. Theorem 2) cannot affirm the existence of equilibrium solution of this
problem. But just using Theorem 4, there is at least one equilibrium solution.
In fact, there is an only equilibrium solution, i.e., (0, 0, · · · , 0).
Next, we give an algorithm to compute the Nash equilibrium in this n-person
noncooperative game with infinite strategic set.

Algorithm 1. Let n-person noncooperative game Γ (IN, X, φ) be given.

(0) Give x(0), any small positive real number ε > 0 and k ∈ (0, 1).
(1) Solve the subproblem ri

j = minyi
(φ(xi(j), yi)− φi(x(j))) subject to

φi(x(j)i, yi)− φi(x(j)) + di(x(j)i, yi) ≤ 0.

(2) Select x(j+1). For any i ∈ IN, if ri
j = 0, then x(j+1)i = x(j)i, else if ri

j < 0
select x(j + 1)i such that

φi(x(j)i, x(j + 1)i)− φi(x(j)) ≤ k · ri
j .

(3) If for some j and for all i = 1, 2, · · · , n, ri
j > −ε, then stop, else if, turn to

Step (1).

Theorem 5. Under the hypotheses of the Theorem 4, the sequence of x(j), j =
0, 1, 2, · · · from Algorithm 1 is convergence.

Proof. The convergence is guaranteed under the conditions of Theorem 4 by the
step 2 in the proof of Theorem 3.
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4 Conclusions

The method to prove the existence of at least a Nash equilibrium in n-person
noncooperative game is using fixed point theorem. Nash gave his celebrated ex-
istence result of Nash equilibrium using famous Kakutani’s fixed point theorem.
In this paper, we obtain our result on the existence of Nash equilibrium by using
contract fixed point theorem. This method is new and simultaneously gives an
algorithm to compute this Nash equilibrium point.
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Abstract. In this paper the first results on the Online Dial-A-Ride
Problem with Time-Windows (ODARPTW for short) are presented. Re-
quests for rides appearing over time consist of two points in a metric
space, a source and a destination. Servers transport objects of requests
from sources to destinations. Each request specifies a deadline. If a re-
quest is not be served by its deadline, it will be called off. The goal is to
plan the motion of servers in an online way so that the maximum number
of requests is met by their deadlines. We perform competitive analysis
of two deterministic strategies for the problem with a single server in
two cases separately, where the server has unit capacity and where the
server has infinite capacity. The competitive ratios of the strategies are
obtained. We also prove a lower bound on the competitive ratio of any
deterministic algorithm of 2−T

2T
for a server with unit capacity and of

2−T
2T

� 1
T
� for a server with infinite capacity, where T denotes the diame-

ter of the metric space.

1 Introduction

In dial-a-ride problems (DARP for short) servers are traveling in some metric
space to serve requests for rides. Each ride is characterized by two points in
the metric space, a source, the starting point of the ride, and a destination,
the ending point of the ride. The problem is to design routes for the servers
through the metric space, such that all requested rides are made and some
optimality criterion is met. A common characteristic of almost all the approaches
to the study of the problem is the off-line point of view. The input is known
completely beforehand. However, in many routing and scheduling applications
the instance only becomes known in an online fashion. In other words, the input
of the problem is communicated in successive steps.

In a natural setting of dial-a-ride problems requests for rides are presented
over time while the servers are enroute serving other rides, making the problem
an online optimization problem. Examples of such problems in practice are taxi
and minibus services, courier services, and elevators.

In this paper we consider a class of variations of online DARP in which there
is a time-window on each of the requests: a server moves from point to point in
a metric space. Time is continuous and at any moment a request can arrive at a
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point in the space, requiring the server to carry the objects to the destination.
Each request also specifies a deadline. If a request is to be served, the server
must reach the point where the request originated during its time-window (the
time between the request’s arrival and its deadline). The goal of the algorithm
is to serve as many incoming requests as possible by their deadlines. The online
algorithm for online DARP neither has information about the release time of
the last request nor has the total number of requests. It must determine the
behavior of the server at a certain moment t of time as a function of all the
requests released up to time t (and the current time t ). In contrast, an off-line
algorithm has information about all requests in the whole sequence already at
time 0.

The ODARPTW and in general vehicle routing and scheduling problems
have been widely studied for more than three decades (see[13] for a survey on
the subject). We are inspired by recent exciting results in online routing and
scheduling problems[4-6,10]. Most previous researches on online routing prob-
lems focused on the objectives of minimizing the makespan [4,5,7], the weighted
sum of completion times [4,12], and the maximum/average flow time [11,13]. In
the paper [6, 15, 16], results on the online k-taxi scheduling problem have been
presented, in which a request consists of two points (a source and a destination)
on a graph or in a metric space. Subsequently, a similar problem, online k-truck
scheduling problem has been studied in [10]. Both of them (online k-taxi/truck
scheduling) assumed that k servers (taxies or trucks) are all free when a new
service request occurs, and the goal is to minimize the total distance traveled by
servers. [4] studied the online DARP in which calls for rides come in while the
server is traveling. The authors also considered two different cases, where the
server has infinite capacity and where the server has finite capacity. Lipmann et
al. [14] studied the online DARP under a restricted information model in which
the information about the destination will be released (becomes known) while
visiting the source. All of these previous work assumed that the requests could
wait for any length of time until the server completed them. Results on online
routing and scheduling problems, in which a certain job will be called off after
waiting for a certain period of time, were presented in [8] firstly, studying the
dynamic traveling repair problem, a degenerate form of ODRPTW presented
in this paper. Subsequently, Krumke et al. [9] studied the similar problem in
special case (such as in uniform metric space). We will pay our attention to the
more general case that the requests for rides which have time-windows consist
of two points (a source and a destination) in a general metric space. The goal
is to serve as many requests as possible within their time-windows. We will give
upper bounds for the competitive ratio of two algorithms. And several lower
bounds for any deterministic algorithm will be shown in this paper.

2 The Model

Let M = (X, d) be a metric space with n points which is induced by an undi-
rected unweighted graph G = (V,E) with V = X , i.e., for each pair of points
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from the metric space M we have d(x, y) that equals the shortest path length
in G between vertices x and y. We also assume that d(x, y) ≤ d(x, z) + d(z, y)
for all x, y, z ∈ X. An instance of the basic online DARP in the metric space M
consists of a sequence R = (r1, r2, · · · , rm) of requests. Each request is a triple
ri = (ti, ai, bi) ∈ R × X × X with the following meaning: ti, a real number, is
the time that request ri is released; ai ∈ X and bi ∈ X are the source and desti-
nation, respectively, between which the object corresponding to request ri is to
be transported. It is assumed that the sequence R = (r1, r2, · · · , rm) of requests
is given in order of non-decreasing release times, that is, 0 ≤ t1 ≤ t2 ≤ · · · ≤ tm.
A request is said to be accepted request if the corresponding object is picked
up by the server at source, and a request is said to be completed request if the
corresponding object is transported to the destination. We do not allow preemp-
tion: it is not allowed to drop an accepted request at any other place than its
destination. This means, once a request is accepted, it will not be called off.

In this paper, we consider the following restrictions to ODARPTW: a) The
speed of the server is constant 1. This means that, the time it takes to travel
from one point to another is exactly the distance between the two points; b) The
window sizes for all requests are uniform. We will normalize all values so that
the window length is 1 for the remainder of this paper; c) The diameter of the
metric space is bounded by a constant T , which is the maximum time required
to travel between the two farthest points in the metric space.

We evaluate the quality of online algorithms by competitive analysis [1-3],
which has become a standard yardstick to measure the performance. In compet-
itive analysis, the performance of an online algorithm is compared to the perfor-
mance of the optimal off-line algorithm, which knows about all future jobs. An
algorithm A for online DARP with time-windows is called α-competitive if for
any instance R the number of request completed by A is at least 1/α times the
number of request completed by an optimal off-line algorithm OPT.

3 Online Algorithms and Competitive Analysis

In this section we propose two algorithms, REPLAN and SMARTCHOICE, for
ODARPTW, which are similar to BATCH algorithm and Double-Gain algorithm
in [8]. And the performance guarantees of the two algorithms for the problem in
a general metric space are shown in this section.

3.1 The REPLAN Algorithm (RE for short)

We will divide each step into basic plan. We shall think of basic plan as taking
a certain interval of time to serve a certain subset of requests planed at the
beginning of the interval. The length of time intervals is 1/2. At the beginning
of each interval, the server stops and replans: it computes an optimal schedule
with 1/2 length starting at the current position of the server, which can complete
the maximum number of requests which arrived in the previous interval. Then
it continues to use the new basic plan.
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Theorem 1. Provided that the server is unit-capacity (z = 1), for any metric
space with T < 1/2, RE is 4( 1+2T

1−2T )-competitive.

Proof. The server has capacity 1, i.e., it can carry at most 1 object at a time.
Once the server has accepted a request, it is not allowed to accept another request
until the accepted request is completed. Let Ri be the set of all requests arriving
during interval i, and let Ri,j be the subset of Ri that OPT completed during
interval j. Obviously, Ri,j = Ø for all j /∈ {i, i+ 1, i+ 2, i+ 3}. Let BOPT (R)
denote the number of requests completed by OPT on a request sequence R.
Suppose the last request arrives in mth interval, then

BOPT (R) =
m∑

i=1

(|Ri,i|+ |Ri,i+1|+ |Ri,i+2|+ |Ri,i+3|)

where Ri,i ∪Ri,i+1 ∪Ri,i+2 ∪Ri,i+3 ⊆ Ri

When RE makes the basic plan at the beginning of interval i, it takes care
of the set Ri−1, finds a new schedule and follows it. One of the options for RE
is to pick the largest of Ri−1,i−1, Ri−1,i, Ri−1,i+1 and Ri−1,i+2. We distinguish
between two cases depending on the state of OPT’s server at the beginning of
an interval.

The first case is that the sever of OPT is empty at the beginning of any
interval. This means, each of Ri−1,i−1, Ri−1,i, Ri−1,i+1 and Ri−1,i+2 can be
served (accepted and completed) by OPT during a single interval. That is to
say, there is a tour of length at most 1/2 that covers all of Ri−1,i−1. The
same is true for Ri−1,i ,Ri−1,i+1 and Ri−1,i+2. Let Rmax = {R′ : |R′| =
max(|Ri−1,i−1| , |Ri−1,i| , |Ri−1,i+1| , |Ri−1,i+2|)} be the set of requests which is
the largest of Ri−1,i−1, Ri−1,i,Ri−1,i+1 and Ri−1,i+2. We denote by lmax the tour,
which covers Rmax. Now RE’s server can take some time at most T to reach an
optimal starting location on the route lmax, then it can take a remaining time
of 1/2 − T to serve the most requests in Rmax starting from the optimal loca-
tion. Since it needs time 1/2 to serve Rmax, the server of RE will serve at least
(1 − 2T ) |Rmax| requests during the time of 1/2 − T . Thus, the number of re-
quests which RE’s server can serve during interval i is at least (1/2−T ) |Rmax|.
Denoting the total number that RE can serve on the request sequence R by
BRE(R), we have

BRE(R) ≥ (1− 2T )
m+1∑
i=2

max
(
|Ri−1,i−1| , |Ri−1,i| , |Ri−1,i+1| , |Ri−1,i+2|

)
≥
(1− 2T

4

) m∑
i=1

(
|Ri,i|+ |Ri,i+1|+ |Ri−1,i+2|+ |Ri−1,i+2|

)
=

1− 2T
4

BOPT (R)

The second case is that the OPT’s server is currently carrying an object for
a request re. Since T is the longest time for the server to travel between any two
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points, re can be completed within time T . This means that there is a tour of
length 1/2 + T , denoted by lmax, that can serve all the requests in Rmax. So,
RE’s server can take time no more than T to pick its optimal starting location
on the route lmax, and has a remaining time of 1/2 − T to serve requests from
Rmax. There will be at least 1−2T

1+2T |Rmax| requests completed by RE’s server
during interval i. So we have

BRE(R) ≥
(1− 2T

1 + 2T

)m+1∑
i=2

max
(
|Ri−1,i−1| , |Ri−1,i| , |Ri−1,i+1| , |Ri−1,i+2|

)
≥ 1

4

(1− 2T
1 + 2T

) m∑
i=1

(
|Ri,i|+ |Ri,i+1|+ |Ri−1,i+2|+ |Ri−1,i+2|

)
=

1
4

(1− 2T
1 + 2T

)
BOPT (R)

This completes the proof the fact that RE is 4( 1+2T
1−2T ) -competitive for unit-

capacity in any T < 1/2 metric space. ��

3.2 The SMARTCHOICE Algorithm (SM for short)

The time is divided into intervals of length Δ. At the beginning of every interval
(at time iΔ, i = 1, 2, · · · ), SM will consider all yet unserved requests (including
those that are currently carried by the server). We denote by RA(iΔ) the set of
all unserved requests at time iΔ. SM then finds a new optimal route from its
current position that can cover the maximum number of requests from RA(iΔ)
by their deadlines. Let RC(iΔ) represents the set of outstanding requests that
have yet to be served on SM’s current route at time iΔ, and RN (iΔ) will denote
the set of requests which are served on the new route for time iΔ. At any
beginning of intervals, SM’s server will switch to the new route if the number
of requests gained is at least λ times the number of requests lost by the switch.
That is,

∣∣RN (iΔ)−RC(iΔ)
∣∣ ≥ λ

∣∣RC(iΔ)−RN (iΔ)
∣∣ for some λ > 1. All new

requests that arrive during the interval are temporarily ignored until the next
beginning of interval.

Lemma 1. Let Δ = 1/2−T and Ri−1 denotes the set of requests arriving during
interval [(i− 1)Δ, iΔ). Provided that the server is unit-capacity (z = 1), during
any interval of length Δ, the maximum number of requests that OPT’s server
can serve is at most λ

∣∣RC(iΔ)
∣∣.

In the proof of lemma 1, we can also distinguish between two cases depending
on the state of OPT’s server at the beginning of an interval. The details of the
proof are omitted for the page limitation.

Since the time-window of request is 1 and every request is completed within
time T of its accepted, any request in Ri−1 will be completed in the interval
[(i − 1)Δ, iΔ + 1 + T ). According to lemma 1, during any interval of length
Δ, the maximum number of requests that OPT’s server can serve is at most



90 F. Yi and L. Tian

λ
∣∣RC(iΔ)

∣∣, the OPT’s server can serve at most λ
⌈

Δ+1+T
Δ

⌉ ∣∣RC(iΔ)
∣∣ requests of

Ri−1 at any time. This means the total number of requests completed by OPT
is at most

BOPT (R) ≤ λ
⌈Δ+ 1 + T

Δ

⌉∑
i

∣∣RC(iΔ)
∣∣ (1)

Now we will evaluate the number of requests that SM’s server can complete.
For each request that ever appears in SM’s current route, consider a continuous
interval of time in which it is in the current route. Each of intervals can be
depicted as a line on a horizontal time axis with two endpoints.

∣∣RC(iΔ)
∣∣ is

the number of lines that contain point iΔ. Since every request expires or is
completed within time 1 + T of its arrival, each line can cover at most

⌈
1+T
Δ

⌉
interval endings. This means that∑

i

∣∣RC(iΔ)
∣∣ ≤ ⌈1 + T

Δ

⌉
I (2)

where I is the total number of lines.
The number of the requests served by SM can be expressed by the inequation

BSM (R) ≥ I(λ− 1)/λ (3)

The proof of inequation (3) is similar to paper [8].

Theorem 2. Provided that the server is unit-capacity (z = 1), for any metric
space with T < 1/2, SM is 8

⌈
3

1−2T

⌉⌈
1+T
1−2T

⌉
-competitive.

Proof. According to inequation (2) and (3), we have∑
i

∣∣RC(iΔ)
∣∣ ≤ ⌈1 + T

Δ

⌉
I ≤ λ

λ− 1

⌈1 + T

Δ

⌉
BSM (R)

Thus, from (1) we get

BOPT (R) ≤ λ2

λ− 1

⌈1 +Δ+ T

Δ

⌉⌈1 + T

Δ

⌉
BSM (R)

Note that Δ = 1/2− T , we obtain

2λ2

λ− 1

⌈ 3
1− 2T

⌉⌈ 1 + T

1− 2T

⌉
BSM (R) ≥ BOPT (R)

The optimal choice for λ > 1 is 2, then 2λ2

λ−1 = 8. This completes the proof. ��

When we consider the case that the server has infinite capacity (z = ∞), we
will obtain the following corollaries.

Corollary 1. Provided that the server has infinite capacity (z = ∞), for any
metric space with T < 1/2, RE is 3

1−2T -competitive.
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Corollary 2. Provided that the server has infinite capacity (z = ∞), for any
metric space with T < 1, SM is 4

⌈
2

1−T

⌉(⌈
2

1−T

⌉
+ 1
)
-competitive.

Since the server has infinite capacity, it can accept several service requests in
succession, then complete them in the copestone. So no matter OPT or online
algorithms, RE and SM, will firstly pick up objects from the requests’ sources
as many as possible until the last request disappears (expires or be served),
then the server carries accepted objects to their destinations. The proofs of
the two corollaries above are similar to the proof of theorem 1 and theorem 2,
respectively.

4 Lower Bounds

In this section we derive lower bounds on the competitive ratio of any deter-
ministic online algorithm for serving the requests in the versions of the problem.
The results are obtained by considering the optimal algorithm as an adversary
that specifies the request sequence in a way that the online algorithm performs
badly.

Theorem 3. Provided that the server has unit capacity (z = 1), for any T <
1/2, there is a metric space with diameter T in which no deterministic online
algorithm can obtain a competitive ratio less than 2−T

2T .

Proof. Let Q be a large enough integer, and k is an even number. Consider a
metric space with Qk points that consists of Q groups which are denoted by
gq for q = 1, 2, · · · , Q. Each group consists of two point sets, each with k/2
points. Let one set P+

q represent the set of pickup points and the other P−
q

be the set of delivery points in group gq. Therefore, | P+
q |=| P−

q |= k/2,
| P+

q ∪ P−
q |= k for any q ∈ {1, 2, · · · , Q}. The distance between any two points

is 1−T units of length from the same group and T
2 units of length from different

groups. Let τ = T . At every time ti = iτ(i = 0, 1, . . .), the adversary will release
the requests on the different points in the metric space depending on the state
of the online algorithm’s server at time ti as follows:

1) If the online algorithm’s server is working on one point in a certain
group gc or moving between two points which belong to the same group gc

at time ti, then a request will be released on each point in set P+
q′ for every q′ ∈

{1, 2, · · · , Q}/{c}, requiring the server to carry the objects to the corresponding
destinations in set P−

q′ .
2) If the online algorithm’s server is moving between two points which belong

to two different groups, gc and gc′ , then a request will be released on each point
in set P+

q′ for every q′ ∈ {1, 2, · · · , Q}/{c, c′}, requiring the server to carry the
objects to the corresponding destinations in set P−

q′ . We notice that the points
of the source and the destination of a certain request are in a same group.
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The number of requests which the online algorithm’s server can server that
arrive at time ti(i = 0, 1, . . .) is at most 1. The online server has to go to another
group at some time after serving a request from the current group (where it is
currently located) since no request will be released on any point in it. And the
optimal time for the online server to leave for another group, denoted gf , is at
time ti + ε, just after the adversary releases a request on each pickup point in
every group (except for the current group), where ε > 0, an arbitrarily small
number. When the online server arrives at one pickup point in group gf at time
ti +1−T + ε, all the requests released before time ti will be called off. There are
only k/2 outstanding requests released at time ti in group gf . The online server
will take T

2 units of time to server one request, ending at time ti + 1 − T
2 + ε.

After that, if the online server tries to serve one more request at another point,
all the outstanding requests will be called off when it arrives at the point since
it has to spend at least T/2 units of time moving to the nearest pickup point
from its current position. Thus, it will only be able to serve one of the requests
that are released at time ti. The total time that the online server needs to serve
one request is 1− T + T

2 = 1− T
2 .

On the other hand, the adversary will arrange to make its server stay at
a group and serve the outstanding requests if the online server does not ar-
rive at that group or is on the way to that group. Otherwise, the adversary’s
server will leave for a new group to continue to work. Note that it is always
in the adversary’s best interest to select the group that will be the last one
which will be visited by the online server after the adversary’s server leaves.
So we can consider the adversary’s server staying at one group all the while
as long as the number of groups gets large enough. The adversary’s server will
arrange to arrive at a pickup point in the group at time ti when the new re-
quests are released. And it will continue to go to another pickup point in the
same group for the next request just after the server completes one request. As
a result, the adversary can serve one request within T units of time. Note that
the online server needs at least 1 − T

2 units of time to serve a request. So the
competitive ratio is 2−T

2T . Thus, we can say that no deterministic online algo-
rithm can achieve a competitive ratio less than 2−T

2T . The proof of theorem 3 is
completed.

��
Theorem 4. Provided that the server has infinite capacity (z = ∞), for any
T < 1/2, there is a metric space with diameter T in which no deterministic
online algorithm can obtain a competitive ratio less than 2−T

2T �
1
T �.

Proof. The proof is similar to the proof of theorem 3. The server has infinite
capacity, so when it arrives at a pickup point every time, it can pick up all the
outstanding requests on that point. As long as the number of pickup points in
a group is at least � 2

T �, the adversary can serve � 1
T � requests within T units of

time. Still, the online server will only be able to serve one request within 1− T
2

units of time with the same reasoning. So the competitive ratio is 2−T
2T �

1
T �.

Therefore, the theorem holds. ��
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5 Conclusions

Online dial-a-ride problems are occurring in a wide variety of practical settings
and cover not only physical rides but also transportation means[1]. We consider
a class of variations of this kind of problems, in which there is a uniform time-
window on each of the requests. Two cases are considered separately, where
z = 1 and where z = ∞. It will be interesting to extend the results to the case
of non-uniform windows. Another interesting direction is to consider the case
when the server has limited capacity 1 < z ≤ C, where C is a constant.
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1 Home-Away Assignment Problem

Recently, sports scheduling becomes one of the main topics in the area of schedul-
ing (e.g., see “Handbook of Scheduling” Chapter 52 (Sports Scheduling) [2]). This
paper deals with a home-away assignment problem that assigns home or away
to each match of a (double) round-robin tournament so as to minimize the total
traveling distance. We propose a technique to transform the problem to MIN
RES CUT. We apply Goemans and Williamson’s approximation algorithm for
MAX RES CUT [5] and report the results of computational experiments.
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T\S 1 2 3 4 5 6 7 8 9 10

1 3 3 4 4 6 2 5 2 6 5
2 5 5 6 3 3 1 4 1 4 6
3 1 1 5 2 2 4 6 6 5 4
4 6 6 1 1 5 3 2 5 2 3
5 2 2 3 6 4 6 1 4 3 1
6 4 4 2 5 1 5 3 3 1 2

T\S 1 2 3 4 5 6 7 8 9 10

1 A H A H A A A H H H
2 H A A A H H A A H H
3 H A A H A H H A H A
4 H A H A A A H H A H
5 A H H H H A H A A A
6 A H H A H H A H A A

Fig. 1. A timetable and HA-assignment of six teams

In the following, we introduce a mathematical definition of the problem.
Throughout this paper, we deal with a (double) round-robin tournament with
the following properties:

– the number of teams (or players etc.) is 2n, where n ∈ N;
– the number of slots, i.e., the days when matches are held, is 2(2n− 1);
– each team plays one match in each slot;
– each team has its home and each match is held at the home of one of the

playing two teams;
– each team plays every other team twice;
– each team plays at the home of every other team exactly once.

Figure 1 is a schedule of a round-robin tournament, which is described as a pair
of a timetable and a home-away assignment defined below.

A timetable is a matrix whose rows are indexed by a set of teams T =
{1, 2, . . . , 2n} and columns are indexed by a set of slots S = {1, 2, . . . , 4n − 2}.
Each entry of a timetable, say τ(t, s) ((t, s) ∈ T × S), shows the opponent of
team t in slot s. A timetable T should satisfy the following conditions:

– for each team t ∈ T , the t-th row of T contains each element of T \ {t}
exactly twice;

– for any (t, s) ∈ T × S, τ(τ(t, s), s) = t.

For example, team 2 of Fig. 1 plays team 4 in slots 7 and 9, and the match in slot 7
is held at the home of team 4, while the other is held at the home of team 2.

A team is at home in slot s if the team plays a match at its home in s,
otherwise said to be at away in s. A home-away assignment (HA-assignment for
short) is a matrix whose rows are indexed by T and columns by S. Each entry
of an HA-assignment, say at,s ((t, s) ∈ T × S), is either ‘H’ or ‘A,’ where ‘H’
means that in slot s team t is at home and ‘A’ is at away.

Given a timetable T , an HA-assignment A = (at,s) ((t, s) ∈ T × S) is
said to be consistent with T if the followings are satisfied: (C1) ∀(t, s) ∈ T ×
S, {at,s, aτ(t,s),s} = {A,H}, and (C2) ∀t ∈ T , [τ(t, s) = τ(t, s′) and s �= s′] im-
plies {at,s, at,s′} = {A,H} (Condition (C2) is assumed in an ordinary “double”
round-robin tournament). A schedule of a round-robin tournament is described
as a pair of a timetable and an HA-assignment consistent with the timetable.

A distance matrix D is a matrix with zero diagonals whose rows and columns
are indexed by T such that the element d(t, t′) denotes the distance from the
home of t to that of t′. We do not assume the symmetricity of D nor that
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the distance matrix satisfies triangle inequalities. Given a consistent pair of a
timetable and an HA-assignment, the traveling distance of team t is the length
of the route that starts from t’s home, visits venues where matches are held in
the order defined by the timetable and the HA-assignment, and returns to the
home. The total traveling distance is the sum total of traveling distances of all
the teams.

Given only a timetable of a round-robin tournament, one should decide a con-
sistent HA-assignment to complete a schedule. In practical sports timetabling,
the total traveling distance is required to be reduced [1, 11]. In this context, the
home-away assignment problem is introduced as follows.

HA assignment Problem
Instance: a timetable T and a distance matrix D.
Task: find an HA-assignment that is consistent with T and minimizes the total

traveling distance.

We formulate the HA assignment problem as MIN RES CUT, and apply Goe-
mans and Williamson’s approximation algorithm [5], which is based on the
semidefinite programming relaxation. Computational experiments show that our
method quickly generates feasible solutions close to optimal.

The rest of this paper is organized as follows: Section 2 proposes formulations
of the HA assignment problem as MIN RES CUT; Section 3 reports the results
of computational experiments; Section 4 states conclusions.

The problemto findanHA-assignment that is consistent with a giventimetable
and minimizes the number of breaks (consecutive pairs of home-games) is called
the break minimization problem. There are several previous results on this prob-
lem (see [10, 12, 3, 7] for example). In [7], Miyashiro and Matsui formulated the
break minimization problem as MAX RES CUT and applied Goemans and
Williamson’s algorithm for MAX RES CUT. Our algorithm proposed in this
paper is an extension of their procedure to HA assignment problems. However,
we need a non-trivial technique, described in the next section, to extend their
procedure to HA assignment problems.

2 Formulation as MIN RES CUT

We propose a formulation of the HA assignment problem as MIN RES CUT.
First, we define the problem MIN RES CUT. Let G = (V,E) be an undirected
graph with a vertex set V and an edge set E. For any vertex subset V ′ ⊆ V ,
we define δ(V ′) = {{vi, vj} : vi, vj ∈ V, vi �∈ V ′ � vj}. The problem MIN RES
CUT is defined as follows: given a graph G = (V,E), a specified vertex r ∈ V , a
weight function w : E −→ R, and a set Ecut ⊆ {X ⊆ V : |X| = 2}, find a vertex
subset V ′ that minimizes

∑
e∈δ(V ′)∩E w(e) under the conditions that r �∈ V ′ and

Ecut ⊆ δ(V ′) hold. Here we note that the condition r �∈ V ′ is redundunt for the
definition of MIN RES CUT, because for any V ′′ ⊆ V , δ(V ′′) = δ(V \ V ′′). The
condition helps to formulate the HA assignment problem as MIN RES CUT. It
is easy to show that MIN RES CUT is NP-hard even if ∀e ∈ E, w(e) = 1 holds.
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The problem MAX RES CUT is the maximization version of MIN RES CUT,
and Goemans and Williamson [5] proposed a 0.878-approximation algorithm for
MAX RES CUT. Now we formulate the HA assignment problem as MIN RES
CUT. Given a timetable T = (τ(t, s)) ((t, s) ∈ T × S), let G = (V,E) be an
undirected graph with a vertex set V and an edge set E defined below. We
introduce an artificial vertex r and define V = {vt,s : (t, s) ∈ T × S} ∪ {r},
E = {{vt,s−1, vt,s} : t ∈ T, s ∈ S \ {1}} ∪ {{r, vt,s} : (t, s) ∈ T × S}, and

Ecut = {{vt,s, vτ(t,s),s} : (t, s) ∈ T × S}
∪{{vt,s, vt,s′} : t ∈ T, s, s′ ∈ S, τ(t, s) = τ(t, s′), s �= s′}.

For a feasible solution V ′ of this MIN RES CUT instance, i.e., a vertex
subset V ′ ⊆ V satisfying r /∈ V ′ and Ecut ⊆ δ(V ′), construct an HA-assignment
A = (at,s) ((t, s) ∈ T × S) as follows: if vt,s ∈ V ′ then at,s = A, else at,s = H.
This HA-assignment is consistent with T because (C1) each pair of vertices
corresponding to a match is in Ecut, and (C2) for each team, every pair of vertices
corresponding to matches with a common opponent is in Ecut. Obviously, for any
consistent HA-assignment, there exists a unique corresponding feasible solution
of the MIN RES CUT instance. Thus, there exists a bijection between the feasible
set of MIN RES CUT and the set of consistent HA-assignments.

Next, we discuss the total traveling distance. In the following, we denote
any singleton {v} by v for simplicity. Given a pair of timetable T and an HA-
assignment A consistent with T , the traveling distance of team t between slots
s and s+ 1, denoted by 	(t, s), is defined as follows:

	(t, s) =

⎧⎪⎪⎨⎪⎪⎩
0 (if (at,s, at,s+1) = (H,H)),
d(τ(t, s), τ(t, s+ 1)) (if (at,s, at,s+1) = (A,A)),
d(t, τ(t, s+ 1)) (if (at,s, at,s+1) = (H,A)),
d(τ(t, s), t) (if (at,s, at,s+1) = (A,H)).

In the following, we use the notations t′ = τ(t, s) and t′′ = τ(t, s+1) for simplic-
ity. We show that the traveling distance 	(t, s) satisfy the following equations;

�(t, s) = d(t′, t′′) |vt,s ∩ V ′| |vt,s+1 ∩ V ′|
+d(t, t′′) (1 − |vt,s ∩ V ′|) |vt,s+1 ∩ V ′|
+ d(t′, t) |vt,s ∩ V ′| (1 − |vt,s+1 ∩ V ′|)

= d(t′, t′′)
|{vt,s, r} ∩ δ(V ′)| + |{vt,s+1, r} ∩ δ(V ′)| − |{vt,s, vt,s+1} ∩ δ(V ′)|

2

+d(t, t′′)
−|{vt,s, r} ∩ δ(V ′)| + |{vt,s+1, r} ∩ δ(V ′)| + |{vt,s, vt,s+1} ∩ δ(V ′)|

2

+ d(t′, t)
|{vt,s, r} ∩ δ(V ′)| − |{vt,s+1, r} ∩ δ(V ′)| + |{vt,s, vt,s+1} ∩ δ(V ′)|

2

=
d(t′, t′′) − d(t, t′′) + d(t′, t)

2
|{vt,s, r} ∩ δ(V ′)|

+
d(t′, t′′) + d(t, t′′) − d(t′, t)

2
|{vt,s+1, r} ∩ δ(V ′)|

+
−d(t′, t′′) + d(t, t′′) + d(t′, t)

2
|{vt,s, vt,s+1} ∩ δ(V ′)|.
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The first equality is obvious, because [at,s = A ⇐⇒ |vt,s ∩ V ′| = 1] and
[at,s+1 = A ⇐⇒ |vt,s+1 ∩V ′| = 1]. The second equality is obtained by applying
the equations

|vt,s ∩ V ′| = |{vt,s, r} ∩ δ(V ′)|, |vt,s+1 ∩ V ′| = |{vt,s+1, r} ∩ δ(V ′)|, (1)

and

|vt,s ∩ V ′| |vt,s+1 ∩ V ′|

=
|{vt,s, r} ∩ δ(V ′)|+ |{vt,s+1, r} ∩ δ(V ′)| − |{vt,s, vt,s+1} ∩ δ(V ′)|

2
. (2)

Equations (1) and (2) are obtained from the properties that r �∈ V ′ and ∀V ′ ⊆
V, |δ(V ′) ∩ {{r, vt,s}, {r, vt,s+1}, {vt,s, vt,s+1}}| ∈ {0, 2}. The third equality is
trivial. Here we note that, if we employ only Equations (1), 	(t, s) becomes
a quadratic function of |{vt,s, r} ∩ δ(V ′)| and |{vt,s+1, r} ∩ δ(V ′)|. Using Equa-
tion (2), we can transform the quadratic function to a linear function of |{vt,s, r}∩
δ(V ′)|, |{vt,s+1, r} ∩ δ(V ′)| and |{vt,s, vt,s+1} ∩ δ(V ′)|.

In a similar way, we can show that the traveling distance of team t before the
first slot and after the last slot, denoted by 	(t, 0) and 	(t, 4n − 2) respectively,
satisfy that

	(t, 0) = d(t, τ(t, 1))|{vt,1, r} ∩ δ(V ′)|,
	(t, 4n− 2) = d(τ(t, 4n− 2), t)|{vt,4n−2, r} ∩ δ(V ′)|.

From the above, the total traveling distance is represented by a linear function
of variables |e ∩ δ(V ′)| (e ∈ E) as follows:

∑
t∈T

4n−2∑
s=0

�(t, s) =
∑
t∈T

4n−3∑
s=1

⎛⎜⎜⎜⎜⎝
d(t′, t′′) − d(t, t′′) + d(t′, t)

2
|{vt,s, r} ∩ δ(V ′)|

+
d(t′, t′′) + d(t, t′′) − d(t′, t)

2
|{vt,s+1, r} ∩ δ(V ′)|

+
−d(t′, t′′) + d(t, t′′) + d(t′, t)

2
|{vt,s, vt,s+1} ∩ δ(V ′)|

⎞⎟⎟⎟⎟⎠
+
∑
t∈T

d(t, τ(t, 1))|{vt,1, r} ∩ δ(V ′)|

+
∑
t∈T

d(τ(t, 4n − 2), t)|{vt,4n−2, r} ∩ δ(V ′)|.

Thus, by introducing an appropriate weight function w : E → R+ (a precise
description appears in Appendix), the total traveling distance satisfies that

∑
t∈T

4n−2∑
s=0

	(t, s) =
∑
e∈E

w(e)|e ∩ δ(V ′)| =
∑

e∈E∩δ(V ′)

w(e)

and the objective function value of MIN RES CUT, with respect to w(e), is
equivalent to the total traveling distance. From the above, the HA assignment
problem is formulated as MIN RES CUT.
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Here we note that the break maximization problem, which maximizes the
number of consecutive pairs of home-games, is a special case of our problem
such that the distance between any pair of homes is equal to 1. It is shown
in [8] that the break maximization problem is essentially equivalent to the break
minimization problem, which is discussed in many papers [10, 12, 3, 7]. Thus, the
break minimization problem is also a special case of the HA assignment problem
discussed in this paper.

3 Computational Experiments

For MAX RES CUT, Goemans and Williamson [5] proposed a 0.878-randomized
approximation algorithm using semidefinite programming. Here we apply Goe-
mans and Williamson’s algorithm to the proposed MIN RES CUT formulation of
the HA assignment problem. In the following, we briefly explain the procedure.
The algorithm consists of the following three steps.

1. Semidefinite Programming
For a given instance of MIN RES CUT (V,E, r, w,Ecut), let W be a matrix
whose rows and columns are indexed by V such that Wij = Wji = w({i, j})
if {i, j} ∈ E, otherwise Wij = Wji = 0. Then solve the following semidefinite
programming problem:

minimize C •X

subject to Eii,ii •X = 1 (∀i ∈ V ),
Eij,ji •X = −2 (∀{i, j} ∈ Ecut),
X " O, X is symmetric, X ∈ R

V ×V ,

where C = (diag(W1)−W )/4, X •Y =
∑

i

∑
j XijYij , Eij,ji is the matrix

in which entries Eij and Eji are ones and every other entry is zero, and
X " O means that X is positive semidefinite.

2. Cholesky Decomposition
Decompose an (almost) optimal solution X0 of the semidefinite program-

ming problem in Step 1 into a matrix X̂ such that X0 = X̂
�

X̂ (Cholesky
decomposition).

3. Hyperplane Separation
Generate a vector u at uniformly random on the surface of d-dimensional
unit ball and put V1 = {i ∈ V : u�x̂i ≥ 0} where d is the number of rows of
X̂ and x̂i is the column vector of X̂ index by i ∈ V . Output a vertex subset

V ′ =
{
V1 (if r �∈ V1),
V \ V1 (if r ∈ V1).

The above three steps terminate in polynomial time. Note that a practical proce-
dure to obtain a good solution is to repeat Step 3 a number of times and output
a solution with the best objective value.
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Table 1. Results of computational experiments

(a)

#teams ratio SDP (s) IP (s)
avg. avg. (s. d.) avg. (s. d.)

16 1.00119 81.8 (2.82) 13.2 (2.09)
18 1.11825 129.1 (23.99) 27.4 (8.87)
20 1.00119 233.1 (13.82) 61.1 (25.68)
22 1.00122 388.4 (15.10) 1550.3 (1124.54)
24 1.00478 617.7 (22.18) 68341.7 (124286.75)
26 — 989.4 (22.68) — —
30 — 2142.9 (104.27) — —

(b)

#teams ratio SDP (s) IP (s)
avg. avg. (s. d.) avg. (s. d.)

16 1.00057 86.2 (2.82) 22.3 (7.71)
18 1.17323 123.9 (28.84) 61.1 (26.40)
20 1.00071 273.8 (19.26) 328.2 (419.23)
22 1.00099 393.0 (9.49) 1244.5 (748.60)
24 1.00121 664.1 (23.83) 13078.3 (19549.06)
26 — 1057.3 (30.40) — —
30 — 2226.3 (78.00) — —

#teams: the number of teams;
ratio: average of ratios of the optimal value and the objective function value of the
best solutions obtained by our procedure;
SDP : computational time for our procedure;
IP : computational time for integer programming;
avg.: average; s. d.: standard deviation.

Goemans and Williamson [5] showed that the maximization version of the
above algorithm finds a feasible solution of MAX RES CUT, and its expected
objective value is at least 0.87856 times the optimal value. In case of MIN RES
CUT, any non-trivial bound of approximation ratio of the above algorithm is
not known.

Finally, we report our computational results. Computational experiments
were performed as follows. Tables 1 (a) and (b) show the results when we gener-
ated 10 timetables for each size of 2n = 16, 18, 20, 22, 24, 26, 30. We constructed
a timetable of “double” round robin tournament by concatenating two copies of
a timetable of “single” round robin tournament that is randomly created as the
method described in [3]. The results are shown in Table 1 (a). Table 1 (b) re-
ports the results when each timetable is obtained by concatenating two mutually
different timetables of “single” round robin tournament. We used the distance
matrix obtained from TSP instance att48 from TSPLIB. We chose cities of
att48 with indices from 1 to 2n.
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For each instance, we applied Goemans and Williamson’s algorithm and gen-
erated 10000 HA-assignments by executing Step 3 of the algorithm 10000 times.
Finally, we output a solution with the best of generated 10000 solutions. In order
to evaluate the quality of the best solutions, we solved the same instances with
integer programming in a similar manner as Trick [12]. All computations were
performed on Dell Dimension 8100 (CPU: Pentium4, 1.4GHz, RAM: 768MB,
OS: Vine Linux 2.6) with SDPA 6.0 [13] for semidefinite programming problems
and CPLEX 8.0 [6] for integer programming problems.

Table 1 shows the results of the experiments. In almost of all cases the aver-
age of approximation ratios is less than 1.18. We did not solved 26 and 30 teams
instances with integer programming because it would not terminate within rea-
sonable computational time. The computational time for our procedure is less
than 670 seconds when 2n ≤ 24.

4 Conclusions

We proposed a formulation of HA assignment problems as MIN RES CUT prob-
lems, and performed computational experiments with Goemans and Williamson’s
algorithm for MAX RES CUT, based on semidefinite programming relaxation.
Computational experiments showed that our approach is highly effective in terms
of quality of solutions and computational speed, in particular, for a large in-
stance.
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Then, the total traveling distance satisfies that

∑
t∈T

4n−2∑
s=0

�(t, s) =
∑
t∈T

4n−3∑
s=1

⎛⎜⎜⎜⎜⎝
d(t′, t′′) − d(t, t′′) + d(t′, t)
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+
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Appendix

We define a weight function w : E → R+, which is discussed in Section 2, as
follows:

w({vt,s, r}) =
d(τ(t, s), τ(t, s + 1)) − d(t, τ(t, s + 1)) + d(τ(t, s), t)

2

+
d(τ(t, s − 1), τ(t, s)) + d(t, τ(t, s)) − d(τ(t, s − 1), t)

2
(∀t ∈ T, ∀s ∈ S \ {1, 4n − 2}),

w({vt,1, r}) = d(t, τ(t, 1)) +
d(τ(t, 1), τ(t, 2)) − d(t, τ(t, 2)) + d(τ(t, 1), t)

2
,

w({vt,4n−2, r}) = d(τ(t, 4n − 2), t)

+
d(τ(t, 4n − 3), τ(t, 4n − 2)) + d(t, τ(t, 4n − 2)) − d(τ(t, 4n − 3), t)

2
,

w({vt,s, vt,s+1}) =
−d(τ(t, s), τ(t, s + 1)) + d(t, τ(t, s + 1)) + d(τ(t, s), t)

2
(∀t ∈ T, ∀s ∈ S \ {4n − 2}).
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Abstract. Coopetition has become the current trend of economic ac-
tivities. Coopetitive game is introduced through the comparison of the
characteristics of noncooperative game and cooperative game. Further-
more, the coopetitive game is solved adopting one kind of Minimax theo-
rem. Finally, the Cournot coopetition model is presented as an example,
and the equilibrium is compared with Nash equilibrium.

1 Introduction

The current business environment, advances in information and communica-
tion technologies, and the resultant development of network and virtual orga-
nizations have led firms to cooperate and compete simultaneously. The term
”co-opetition”, coined by management professors Barry Nalebuff (Yale Univer-
sity) and Adam Brandenburger (Harvard University), refers to that phenomenon
[1]. In the same year, Maria Bengtsson and Sören Kock entitled coopetition
the phenomena including both cooperation and competition, and studied the
cooperation and competition in business networks [2, 3]. In fact, cooperation
and competition have been studied widely. According to the relationship of
the aims in cooperation and competition theory, Deutsch divided the benefit
body into three parts: cooperation, competition and independence. [4, 5] Clau-
dia Loebbecke, Paul C.Van Fenema and Philip Powell paid much attention to
the knowledge transfer under coopetition and presented the theory of interor-
ganizational knowledge sharing during coopetition. [6, 7] Kjell Hausken studied
cooperation and between-group competition and found that competition between
groups in defection games might give rise to cooperation though the considerable
cost of cooperation might be needed. [8] To Marc’s theory, benefit body takes
other’s actions as positive exterior conditions in cooperation and in competition
the other’s actions are taken as negative exterior conditions [9].
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In this paper, ”coopetition” is defined as the phenomenon that differs from
competition or cooperation, and stresses two faces of one relationship, coopera-
tion and competition, in the same situation, in which competitors can strengthen
their competitive advantages by cooperation. The ”Coopetitive” is the adjective
form of the coopetition. In the second section, coopetitive game is introduced
and the comparison between noncooperative and cooperative game is studied.
The coopetitive equilibrium is given by one kind of Minimax theorem in the
third section. Economic examples and the comparisons between noncooperative
and competitive game are made in the forth section. Conclusions can be made
that the coopetitive game has a prodigious advantages both in modeling and
algorithm.

2 Coopetitive Game and Coopetitive Equilibrium

2.1 Noncooperative Game and Cooperative Game and Their
Comparison

Game theory can be classified into three types according to the interaction of
the players: noncooperative game, cooperative game and coopetitive game. In
noncooperative situation, players are self-concerned and each player makes de-
cision by himself based on the strategy preferences. Each player maximizes his
payoff against the others’. The equilibria can be obtained at the intersections of
players’ reaction functions and nearly all of them cannot obtain the satisfactory
profits.

In cooperative situation, coalition without any conflict is supposed to con-
struct through contract or nuisance suits commitment, etc. The coalition will
maximizes its revenue and allocate it based on certain rules. Unfortunately, the
coalitions is usually destroyed because of players’ self-concerned actions or some
details that are ignored in the cooperative process.

Coopetitive game is presented in this paper to avoid these conflicts. The
self-concerned players can form coalition in competitive situation. At the same
time, the coopetitive equilibria have advantages over those of noncooperative,
and they are stable.

2.2 Coopetitive Game

Definition 1. A Coopetition game < N, (Ai), (uci) > includes:

• The set of players 1, 2, · · · , I.
• The pure strategy space Ai for each player i.
• The payoff coefficient functions uci(a) for each player i.

The payoff coefficient function is the standardization of the payoff function ui,
which gives player i′s Von Neumann-Morgenstern utility ui(a) for each profiles
a = (a1, · · · , aI). The standardization of payoff function ui is the ratio between
the payoff that a player can get at a certain strategy profile and the highest
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payoff that he can gain. Therefore, the payoff coefficient function ui(a) denotes
the satisfaction degree that player i can obtain under profile a.

Definition 2. A subset B of the polytope A is called an action strategic extreme
set, if a, b ∈ A and λa+ (1− λ)b ∈ B for some λ ∈ (0, 1) imply a, b ∈ B.

For any a ∈ A, M(a) = {i′ ∈ I|uc′i(a) = min
i∈I

uci(a)} is defined as the index

set of a,which means the member of the players who obtain the lowest payoff
coefficient function under profile a.

Definition 3. A point a in A is called a critical strategy if there exists an ex-
treme set Bsuch that for a ∈ A, b ∈ Band M(a) ⊆ M(b) imply M(a) = M(b). In
the other words, a critical point is a point with maximum index set in certain
extreme set.

Definition 4. Coopetitive equilibrium of game < N, (Ai), (uci) > is some crit-
ical strategy a∗ ∈ A, and a∗ = arg max

a∈A
uci∈M(a)(a).

The corresponding strategy profiles and the utility profiles under the equi-
libria are called equilibrium strategy profiles and equilibrium utility profiles re-
spectively.

According to the definition, the coopetitive equilibrium can be obtained in
this way: given the strategy profiles, each player finds the conservative (or min-
imum) payoff coefficients and selects a higher one among them. The coopetitive
equilibrium is the one of the strategy profiles that much more players choose with
higher satisfaction degrees, and is the counterbalance among players as well.

3 Minimax Theorem and Coopetitive Equilibrium

3.1 Minimax Theorem [10]

Let {Gi(x)}i∈I be a family of finitely many continuous concave functions on a
polytope X and I = {1, · · · , n}. Note that in general, F (x) = maxi∈I Gi(x)
on X is not a concave function. However, its behavior is similar to a concave
function.

A subset Y of the polytope X is called an extreme set of X if x, y ∈ X and
λx+ (1−λ)y ∈ X for some λ in the interval (0, 1) imply x, y ∈ X. For example,
every vertex is an extreme set and the setX, itself, is also an extreme set. For any
x ∈ X, the index set of x is defined as M(x) = {i′ ∈ I|G′

i(x) = maxi∈I Gi(x)}.
A point x in X is called a critical point if there exists an extreme set Y such
that x ∈ Y and that y ∈ Y and M(x) ⊆M(y) imply M(x) = M(y). In the other
words, a critical point is a point with maximum M(x) in some extreme set Y .

There is an intuitive interpretation for the critical points. Partition the poly-
tope X into finitely many small regions X ′

i = {x ∈ X|G′
i(x) = maxi∈I Gi(x)},

every critical point is a ”vertex” of some X ′
i. Note that X ′

i is not necessarily
a polytope. If only one small region X ′

i is considered, then we cannot say that
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the minimum value of F(x) on X ′
i takes place at ”vertices” of X ′

i. Thus, the
following result is nontrivial.

Theorem 1. Suppose that F (x) = maxi∈I Gi(x) where I is finite and Gi(x) is
a continuous, concave function. Then the minimum value of F (x) for x over a
polytope X is achieved at some critical points.

The following corollaries can be obtained and the proofs are the same as that
of theorem 1.

Corollary 1. Suppose that f(x) = mini∈I gi(x) where I is finite and gi(x) is
a continuous, convex function. Then the maximum value of f(x) for x over a
polytope X is achieved at some critical points.

Corollary 2. The critical strategy of the coopetition game < N, (Ai), (uci) >
is the critical point of the payoff coefficient function uci.

3.2 Coopetitive Equilibrium

Based on the corollary 1 and corollary 2, the coopetitive equilibrium is one of
the critical strategy profiles and the solution is to optimize:

max
a∈A

uci∈M(a)(a)

In this paper, we apply the following algorithm:

Step 1. Put into the set of players, the pure strategy space Ai and the payoff
coefficient functions uci(a) for each player i;

Step 2. Calculate the payoff coefficients of each player on every vertex;
Step 3. Let i = 0, k = n−i. When k �= 1,let payoff coefficient functions be equal

of any k players’; If there is no intersection of any k players’ payoff coefficient
functions, let i = i + 1 and repeat step 3; Otherwise, register the strategy
profiles x, the utility profiles u, the sets M of players with higher payoff
coefficients and their coefficients gmax , and the other’s payoff coefficients
gelse at any intersection, and go to step 4.
While k = 1 , the coopetitive equilibria are the same as Nash equilibria.

Step 4. Maximize the payoff coefficients at the intersections of all the k payoff
coefficient functions, and register the corresponding strategy profiles, which
are the coopetitive equilibria.

4 Cournot Coopetition Model and Cournot Coopetitive
Equilibrium

4.1 Cournot Coopetition Model

In Cournot Model, I oligarchs (firms) produce a homogeneous good. The strate-
gies are quantities. All firms simultaneously choose their respective output lever
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xi from feasible sets [0,∞), They sell their outputs at the market-cleaning price
p(x), where x = x1 + x2 + ...+ xI . Firm i’s cost of production is Ci(xi) = cixi,
and firm i’s total profit is ui(x1, x2, ..., xI) = xip(x)− ci(xi). For linear demand
p(x) = max(0, a−x), the maximal profit that firm i can obtain in the monopoly
market is umax

i = (a− ci)2/4. Firm i’s payoff coefficient function under strategy
profile x is uci(x) = ui(x)/umax

i .
We call the constant a in the linear demand p potential demand. The coop-

titive equilibria depend on the potential demands and the costs of firms.

Definition 5. The demand-cost difference is defined as the difference between
potential demand and the cost, say (a− ci); the cost-cost difference is defined as
the cost difference of any two firms , say (ci − cj).
Lemma 1. The demand-cost difference and the cost-cost difference determine
the satisfaction degrees of the firms at critical points in coopetitive games.

Proof. Suppose the costs of any two firms are ci and cj , ci > cj , a − ci =
m(ci − cj), and then

g(x) =
xi(a− ci −

∑n
k=1 xk)

(a− ci)2
/
4

=
xj(m(ci − cj)−

∑n
k=1 xk)

m2(ci − cj)2
/
4

��
The satisfaction degrees of the firm can be obtained given the demand-cost

difference and the cost-cost difference.

Lemma 2. Firms’ satisfaction degrees at coopetitive equilibrium may differ from
each other. The greater the demand-cost difference is or the smaller the cost-cost
difference is, the closer the utilities of the firms are.

Proof. Suppose the costs of any three firms are ci > cj > ck, a−ci = m1(cj−ck),
a− cj = m2(cj − ck) and m1 < m2.

Let gj = gk at equilibria, and then

xj(a− cj −
∑n

l=1 xl)
m2

2(cj − ck)2
/
4

=
xk(a− ck −

∑n
l=1 xl)

(m2 + 1)2(cj − ck)2
/
4

uj(x)
uk(x)

=
xj(a− cj −

∑n
l=1 xl)

xk(a− ck −
∑n

l=1 xl)
=

m2
2

(m2 + 1)2

Let gi < gj , and then

ui(x)
uj(x)

=
xi(a− ci −

∑n
k=1 xk)

xj(a− cj −
∑n

k=1 xk)
<

(a− ci)2
(a− cj)2

=
m2

1

m2
2

��

According to the above lemmas, theorem 2 can be obtained.

Theorem 2. More players gain higher satisfaction degrees at coopetitive equi-
librium. Moreover, the firms with lower cost can obtain a higher satisfaction
degree, vice versa.
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4.2 Cournot Coopetitive quilibrium

4.2.1 Extreme Sets
According to the definition of extreme set and the feasible sets 0 ≤ xi ≤ (a−ci),
all the n-dimension vectors (x1, x2, · · · , xn), xi ∈ [ai, bi], 0 ≤ ai ≤ xi ≤ bi ≤
(a− ci) are extreme sets.

4.2.2 Critical Point
According to corollary 1, the critical points can be obtained at the vertices or
at the interior critical points. From the feasible set 0 ≤ xi ≤ (a − ci) of firm i,
the production of each firm is either zero or a− ci, and there will be no profits
for any firm and even internecine (uci(x) ≤ 0).

The interior critical points are the points whose index sets are not embraced by
the other critical points and they can be obtained at the intersections of the payoff
coefficient functions. The algorithm presented in section 3.2 is adopted to obtain
all of the intersections approximately by simulation because of the difficulties in
expressing the formula. For instance, for a = 1.0, c1 = 0.4, c2 = 0.5, c3 = 0.5, c4 =
0.6, we can divide the simulation span into 100 equal intervals, and set the iteration
accuracy at 0.001. The iteration accuracy and the division step of the feasible sets
can be changed for the different problems. There are many interior critical points
whose index sets are {1, 2, 3}, {1, 2, 4}, {1, 3, 4} and {2, 3, 4}.

4.2.3 The Coopetition Equilibrium
Comparing the utility coefficients at vertices and the interior critical points, the
coopetitive equilibrium can be obtained. For the case of a = 1.0, c1 = 0.4, c2 =
0.5, c3 = 0.5, c4 = 0.6, the firms must choose the strategy profiles to maximize
their satisfaction degrees. The maximum satisfaction degrees obtained at interior
critical points, and the corresponding strategy profiles x, the utility profiles u,
the sets M of players with higher satisfaction and their coefficients gmax, and the
other’s payoff coefficients gelse at any intersection are listed in Table 1. Which
coalition can come into being among these coalitions? All of the firms will choose
to participate the coalition in which they can obtain the highest satisfaction de-
grees. Coalition {1, 2, 3} can give three members satisfaction degree 0.328 which
is much higher than those of the other coalitions, therefore this coalition will
come into being.

Table 1. Case 1: a = 1.0, c1 = 0.4, c2 = 0.5, c3 = 0.5, c4 = 0.6

M x1 x2 x3 x4 gmax gelse u1 u2 u3 u4

{1,2,3}∗ 0.09 0.09 0.09 0.002 0.328 0.064 0.030 0.021 0.021 0.0003

{1,2,4} 0.057 0.053 0.035 0.050 0.257 0.171 0.023 0.016 0.011 0.010

{1,3,4} 0.057 0.035 0.053 0.050 0.257 0.171 0.023 0.011 0.016 0.010

{2,3,4} 0.003 0.075 0.075 0.076 0.325 0.012 0.001 0.016 0.020 0.013

Several other examples are given in Table 2, 3 and 4 respectively. The strate-
gies marked with asterisk denote the equilibrium strategy in the tables.

Remark 1. The above simulation results verify the theorem 2.

E
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Table 2. Case 2: a = 1.0, c1 = 0.4, c2 = 0.5, c3 = 0.6, c4 = 0.6

M x1 x2 x3 x4 gmax u1 u2 u3 u4

{1,2,3,4}∗ 0.054 0.05 0.048 0.048 0.24 0.022 0.015 0.010 0.010

Table 3. Case 3: a = 1.0, c1 = 0.4, c2 = 0.4, c3 = 0.6, c4 = 0.6

M x1 x2 x3 x4 gmax gelse u1 u2 u3 u4

{1,2,3}∗ 0.09 0.09 0.09 0.002 0.328 0.064 0.030 0.030 0.021 0.0003

{1,2,4} 0.087 0.087 0.005 0.106 0.305 0.017 0.027 0.027 0.001 0.012

{1,3,4} 0.078 0.009 0.075 0.078 0.312 0.036 0.028 0.003 0.020 0.013

{2,3,4} 0.009 0.078 0.075 0.078 0.312 0.036 0.0032 0.028 0.020 0.013

Table 4. Case 4: a = 1.0, c1 = 0.5, c2 = 0.5, c3 = 0.6, c4 = 0.6

M x1 x2 x3 x4 gmax u1 u2 u3 u4

{1,2,3,4}∗ 0.233 0.233 0.086 0.086 0.510 0.032 0.032 0.020 0.020

{1,2,3,4} 0.24 0.24 0.098 0.098 0.676 0.042 0.042 0.027 0.027

{1,2,3,4} 0.25 0.25 0.11 0.11 0.880 0.055 0.055 0.035 0.035

4.3 Comparison Between Coopetitive Equilibrium and Nash
Equilibrium

The equilibrium strategies and equilibrium profits under Nash equilibrium in
noncooperative game are as follows.

xi
Nash = (a+

∑n

j=1
cj)/(n+ 1)− ci i = 1, 2, · · · , n (1)

ui
Nash = 1

n+1 (a− ci −
∑n

j=1 xj)(a+
∑n

j=1 cj − (n+ 1)ci)
i = 1, 2, · · · , n (2)

Let a=1.0, c1=0.4, c2=0.5, c3=0.5, c4=0.6, the equilibrium strategy and equi-
librium profit profiles are xNash = (0.2, 0.1, 0.1, 0), uNash = (0.04, 0.01, 0.01,
0) in noncooperative game. From Table 1, the coopetition equilibrium strat-
egy is xCooptition = (0.09,0.09,0.09,0.002) and equilibrium profit profile is
uCoopetition = (0.0295,0.0205,0.0205,0.0131). By comparison, we can obtain that
n∑

i=1

ui
Coopetition >

n∑
i=1

ui
Nash, and

n∑
i=1

xi
Nash >

∑n
i=1 x

i
Coopetition.

It is concluded that the coopetitive game has a prodigious advantage both
in the modeling and algorithm. The coopetitive equilibrium can be obtained
conveniently and convex or concave payoff coefficient functions are the only
requirements.
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5 Conclusions

In this paper, the advantages and disadvantages of noncooperative and coopera-
tive game are compared and the coopetitive game is presented. The coopetitive
equilibrium is defined and the algorithm is given by using one kind of Mini-
max theorem. This algorithm has great advantages and can solve games with
irregular, non-differential concave or convex payoff functions.

The Cournot coopetitive model with linear demand function and asymmet-
ric costs are studied as examples. Conclusions can be made that much more
players can obtain higher satisfaction degrees at coopetitive equilibria, which
are dependent on the costs and the potential demands. The comparison is made
between noncooperative Nash equilibrium and coopetitive equilibrium. The al-
gorithms for solving the coopetitive equilibria with non-linear demand function
by minimax theorem need further study.
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Abstract. This paper deals with the riding behavior of commuters who
take trains from a living place to a work place during morning rush
hours. The total travel cost include early and late arrival penalties as
well as carriage body capacity. An equivalent mathematical program-
ming model which generates equilibrium riding behavior is presented.
The number of actually chosen transit runs, passenger flow distribu-
tions, and fares resulted from three system configurations namely social
optimum, monopoly by one company and duopoly competition, are in-
vestigated by numerical examples.

1 Introduction

One of the most insightful and tractable approaches used to study the trip-timing
behavior is the bottleneck model proposed by Vickrey [14]. This model considers
the commuting congestion on a highway with a single bottleneck between a
residential area and a workplace. Each commuter is confronted with a trade-off
between travel time, cost of queuing and schedule delay cost of early or late
arrival at work. The travel cost experienced by a commuter is then determined
by his or her departure time from home.

Using the deterministic queuing theory, Vickrey [14] first developed a de-
parture time choice model which leads to a cost-equilibrium on all commuters.
Later, this model has been extended by many others (see a reviewing paper,
Arnott et al. [4]). Particularly, some researchers have successfully applied the
bottleneck model to investigate the changes of individual’s commuting behavior
and the system’s performances under various road-use pricing policies.

Glazer [7] and Cohen [6] investigated the welfare effects of road pricing on
different commuting population. Braid [5] conducted the equilibrium analysis
in the case of elastic demand. Arnott et al. [1, 2, 3, 4] made contributions in
many aspects associated with bottleneck modeling, including the first-best and
second-best tolling in networks with parallel routes. Verhoef [13] explored the
economics of various road transportation regulations like road pricing. However,
these studies are restricted to those transportation systems involving private
cars (auto mode) only.

N. Megiddo, Y. Xu, and B. Zhu (Eds.): AAIM 2005, LNCS 3521, pp. 112–121, 2005.
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Tabuchi [12] studied a competitive transportation system which contains
transit and highway modes. He concluded that road pricing can be regarded
as a measure for restraining auto use and providing revenue for mass transport
improvement. Unlike the auto mode, the transit mode mainly depends on its
fare level and service quality for attracting commuters. But Tabuchi [12] did
not consider the body congestion in carriages and the time headways between
trains or buses. It is obvious that these two factors affect people’s travel be-
havior greatly. The body congestion also leads to the loss of independence and
privacy (Horowitz and Sheth [8]). Recently, Huang [9, 10] extended Tabuchi’s
work through introducing the concept of body congestion and stressing the het-
erogeneity of commuters and the overall demand elasticity.

Progress has been made along the above studies in transit system modeling;
nevertheless, a flaw still exists, i.e., the transit system’s capacity is not consid-
ered, this means all transit commuters can arrive on time no matter how crowded
the carriages may be and how long the time headway is. In a real transit system,
the capacity of transporting passengers is reflected by the discrete time head-
ways. It may be difficult for explicitly formulating a bottleneck model for transit
systems, but there obviously exist a trade-off between the in-carriage congestion
and the schedule delay caused by the time headways of dispatching transit runs.
The purpose of this paper is to model this trade-off and investigate the system
and user performances caused by different system configurations.

This paper is organized as follows. Section 2 formulates the equilibrium riding
model through developing an equivalent mathematical program. The solution
method of the problem is given in Section 3. Section 4 investigates three system
operation configurations by comparing the system and user performances from
numerical calculations. Section 5 concludes the paper.

2 Model Formulation

Consider a simplified corridor network in which a mass transit (e.g., subway)
provides transportation service between H (a residential area) and W (a work-
place). There are N identical commuters who must travel by transit mode from
H to W, on every morning. To facilitate the presentation of the essential ideas
of this paper, all commuters are assumed to be identical in perceiving the time
value and schedule delay penalty. Let the moving time from H to W be a con-
stant τ which covers the in-carriage time and access (egress) time from H to
subway station (from subway station to W).

The total cost experienced by a commuter who travels from H to W can be
formulated as C = p + ατ + cb + δ, where p is the transit fare, α is the unit
cost of travel time, cb is the body congestion cost occurring in carriages, and
δ is the cost associated with schedule delay of early or late arrival at W. The
body congestion cost is formulated by cb = τg(n), where g(n) is a monotonically
increasing function of the passenger flow n in the train unit, and g(0) = 0. When
a commuter arrives at W early, let δ = βT1, where β is the unit cost of early
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arrival, T1 equals the official work start time minus the arrival time; when he/she
arrives late, let δ = γ T2, where γ is the unit cost of arrival late, T2 equals the
arrival time minus the official work start time.

Kraus and Yoshida [11] recently presented a railway commuting model in
which the waiting time cost spent at stations is covered. Considering such a
fact that in Beijing’s subway system, commuters at each station always pack
themselves into one coming train rather than wait for the next run, we hence
set τ a constant.

Suppose that in the morning rush hours, all transit runs are equally dis-
patched from origin H to destination W with the headway t and move along
the line by a constant speed. This means these trains can arrive at W by the
fixed interval of t. We assume that every commuter always minimizes his/her
own total cost when selecting a transit run. Because of the body congestion
cost, some people prefer to take runs which can arrive at W earlier or later for
preventing from high body congestion. In the equilibrium state, the N identical
commuters are divided into l batches, each corresponding one transit run. Let
Z = {a, · · · , 2, 1, 0,−1,−2, · · · ,−b} denote the set of dispatched runs, i(∈ Z)
represent a specific run. That i > 0 means this train arrives at W early, i < 0 for
a train arrival late, and i = 0 for a train arrival on time. In this study, overtaking
between runs is not allowed, so there is only one train arrival on time. Let ni

be the number of passengers who ride on the ith run (note that the integer ni is
regarded as the traffic volume on train i and is hence treated as a real number
in the following analyses). Their schedule delay cost is

δ(i) =

⎧⎨⎩ i β t i > 0
0 i = 0
−i γ t i < 0

(1)

The total travel cost paid by one commuter who rides on the ith run is

δ(i) =

⎧⎨⎩p+ α τ + τ g(ni) + i β t i > 0
p+ α τ + τ g(ni) i = 0
p+ α τ + τ g(ni)− i γ t i < 0

(2)

An equilibrium state is reached when no commuter can reduce his/her total
travel cost by unilaterally changing his/her transit run choice. This is called
the user-equilibrium (UE) condition of transit riding behavior, mathematically
stated below {

C(i) = C0 if ni > 0
C(i) ≥ C0 if ni = 0 i ∈ Z (3)

where C0 is a constant representing the identical equilibrium cost.
We here show that with a given p and fixed τ , finding a passenger flow

distribution {ni | i ∈ Z} satisfying the UE condition (24) is equivalent to solve
the following mathematical program problem

min L(n) =
∑
i∈Z

(
τ

∫ ni

0

g(ω)dω + niδ(i)
)

(4)
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subject to the conservation condition of passenger flows and non-negative re-
quirement ∑

i∈Z

ni = N (5)

ni ≥ 0 i ∈ Z (6)

As in the classical user-equilibrium traffic assignment, the objective function (4)
doesn’t have any intuitive economic or behavioral interpretation. It is easy to
show that the first-order conditions of the minimization problem (4)-(6) are

ni (τg(ni) + δ(i)− λ) = 0 i ∈ Z (7)

τg(ni) + δ(i)− λ ≥ 0 i ∈ Z (8)∑
i∈Z

ni = N (9)

ni ≥ 0 i ∈ Z (10)

where λ is the Lagrange multiplier associated with (5). Equation (7) shows that
the travel cost of any run (excluding the pre-determined constant p+ ατ which
doesn’t affect the equilibrium riding behavior) with positive passenger flow, i.e.,
ni > 0, must equal a constant, λ, the Lagrange multiplier. This constant can be
regarded as the minimum travel cost among all possible transit runs, as stated
by (8) where the constant p+ ατ is not included. With this interpretation, it is
clear that the first-order conditions are equivalent to the UE condition (24): any
actually chosen transit run has the same and minimum travel cost.

The region of feasible solutions to mathematical program (4)-(6) is made by
a linear equality and inequalities. This region is then a convex set. The objective
function is strictly convex since all body congestion functions are monotonically
increasing and the terms associated with schedule delay are linear, continuous.
Hence, the problem (4)-(6) is a strictly convex mathematical program which has
only one solution satisfying the UE condition.

3 Solution Method

We now further analyze the properties of the problem (4)-(6) and find a method
to determine the number of transit runs that are actually chosen by passengers
in equilibrium riding state. The number of actually chosen runs is the sum of
all runs having positive passenger flows. This number can be obtained through
solving the mathematical program (4)-(6) with a pre-determined, large enough
set Z. Let (ni, i ∈ Z) be the solution and define θi = 1 if ni > 0 and θi = 0
otherwise. Then, the number of actually chosen transit runs, denoted by l, is

l =
∑
i∈Z

θi (11)
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In addition, that l can be derived from the minimum travel cost λ defined in
(7)-(8). It is known that in equilibrium, τg(ni) + δ(i)− λ = 0 for all ni > 0. As
g(ni) > 0 for ni > 0, then δ(i) < λ. This states that the ith transit run doesn’t
need to be put into operation when δ(i) ≥ λ holds. Referring to Equation (1),
we first consider the case of arrival at W early. Let k and k+1 be two successive
positive integers such that the inequality k < λ/βt ≤ k + 1 holds. We then
have i β t ≥ λ for i ≥ k + 1 and i β t < λ for i ≤ k, which implies that the
runs numbered by (k, k − 1, · · · , 1, 0, · · ·) are chosen by passengers and the runs
numbered by (· · · , k+ 1) are unnecessary. Hence, the number of actually chosen
runs which arrive at W early is [λ/βt]− 1 = k, where [x] is the smallest integer
not less than x. Denote the numbers of transit runs which are actually chosen by
passengers, and arrive at W early and late, by ā(≤ a) and b̄(≤ b), respectively.
We then have

ā(≤ a) = [λ/β t]− 1 (12)

b̄(≤ b) = [λ/γ t]− 1 (13)

The total number of actually chosen transit runs in equilibrium is

l = ā+ b̄+ 1 (14)

From the condition, τg(ni) + δ(i) − λ = 0 for all ni > 0, the passenger flow
distribution is given by

ni =

⎧⎨⎩g
−1 ((λ− δ(i))/τ −b̄ ≤ i ≤ ā

0 −b ≤ i < −b̄
0 ā < i ≤ a

(15)

Substituting (15) into (9), we have

∑
−b̄≤i≤ā

g−1

(
λ− δ(i)

τ

)
= N (16)

Solving the above equation, we get the value of the Lagrange multiplier λ. In
equilibrium, therefore, λ and l can be written as the functions of N and t, i.e.,

λ = U(N, t) (17)

l = V (N, t) (18)

These two functions cannot be expressed explicitly in most cases, except both
the body congestion functions and the demand functions are linear. The final
minimum travel cost for each commuter, including the constant p+ α τ , is

C0 = p+ α τ + λ (19)
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4 Three System Configurations and Pricing Polices

Up to now, we have known that given a fare p and the time headway t, the
number of actually used transit runs and passenger flow distribution can be
endogenously determined by the equilibrium riding principle. Under different
system configurations, the transit manager will set different service parameters
(such as the fare and the headway) in order to achieve some targets. In this
section, three types of system configurations, namely social optimum, monopoly
and duopoly competition are investigated.

Let D−1(N) denote the marginal benefit from trip making or the inverse
of demand function, dD−1(N/dN < 0). Let G be the fixed cost of initiating
the transit system, F be the train-associated variable cost (e.g., the expenses
for acquiring trains/carriages and employing drivers) and f be the passenger-
associated variable cost (e.g., the electric power assumption of a transit run is
dependent upon the loading passengers).

The system optimum configuration designed by government is in general to
maximize the social welfare, i.e.,

max
N,t

SW =
∫ N

0

D−1(ω)dω − [(α τ + λ+ f)N + F l +G] (20)

where λ and l are determined by (16) and (17), respectively, representing the
outputs of equilibrium riding behavior with given N and t. When N and t are
solved from (20), one obtain the transit fare

p = D−1(N)− (α τ + λ) (21)

The monopoly configuration assumes that the transit system is operated by
one company which aims at maximizing the company’s net profit, i.e.

max
N,p,t

NF = pN − (f N + F l +G) (22)

subject to
D−1(N) = α τ + λ+ p (23)

where λ and l are given by (16) and (17), respectively. Equation (26) states the
equilibrium relationship between marginal trip benefit and individual’s travel
cost.

In a two-duopoly market, the transit line is operated by two independence
companies which maximize their net profit simultaneously. The problem becomes{

maxN1,p1,t1 NF1 = p1N1 − (f N1 + F l1 +G)
maxN2,p2,t2 NF2 = p2N2 − (f N2 + F l2 +G) (24)

subject to
D−1(N) = α τ + λi + pi i = 1, 2 (25)
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where λi and li, i = 1, 2, are given by (16) and (17), respectively.
For nonlinear body congestion function and demand function, it is hard to

analytically investigate the solutions of the above three system configurations.
In this paper, we conduct numerical experiments with following input data:
(β,γ)=(10,50) (HK$/hr), τ=1 hr, α=20 (HK$/hr), F=1000 (HK$/train), f=1
(HK$/person), G=0 (HK$). Clearly, all data are projected into one morning
rush hour. The inverse of a linear demand function is D−1(N) = − ln(N/N0)/K,
where the potential demand is N0=20,000 passengers. This function implies that
for a larger K-value the demand is more sensitive to the marginal trip benefit
and the final realized demand will be lower. The body congestion function is
g(n) = −1.0 × ln(1 − n/nc)), where the capacity of a transit run is nc = 500
passengers per run.

Fig. 1. Transit fares in three configs Fig. 2. Individual costs in three configs

Fig. 3. Required transit runs Fig. 4. Demands in three configs

Figs. 1-4 shows the fares, the individual travel costs, the number of actually
used runs, and the realized travel demands by the three system configurations,

N = N1 +N2 (26)
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respectively. It can be seen that the fare in system optimum is the lowest, then
that in duopoly competition and that in monopoly is the highest; the same order
is found for the individual travel costs; the number of actually chosen transit runs
in system optimum is the most, then that in duopoly competition and that in
monopoly is the fewest; the demand realized by system optimum is the most
and that by monopoly is the fewest. When the value of K becomes larger, each
of these four indexes comes down.

Fig. 5. Net profit in three configs Fig. 6. Social welfare in three configs

Fig. 5 shows the net profit gained in the three system configurations. The
system optimum configuration gives the lowest net profit, nearly K-value inde-
pendent. The monopoly configuration results in more net profit for the company
than the duopoly competition configuration though the differences are not signif-
icantly large. Fig. 6 shows the social welfare generated in the three configurations.

Fig. 7. Time headways in three configurations
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It can be seen that, as expected, the system optimum configuration contributes
the highest social welfare, then the duopoly competition, and the monopoly the
lowest. The social welfare by the three configurations converge to the same value
when the K-value approaches infinite.

The above numerical results show that the duopoly competition configuration
can lead to lower bus fare, higher realized demand, less individual travel cost and
more used runs than the monopoly configuration, although the two companies
have the same variable costs. This should be contributed to the competition as
stated in Microeconomics.

Finally, we check the time headways generated by the three system configu-
rations, see Fig. 7. It can be seen that the system optimum dispatch the transit
runs most frequently, then the duopoly competition and the monopoly in order.
Oscillations can be observed in Fig. 7. This is because the number of transit runs
is required to be integer and the headway is continuously adjusted to optimize
the objective function designed for some system configuration. Note that some
headways shown in Fig. 7 are less than 0.6 minutes, which may not match with
reality since the input parameters of the example are selected without necessarily
representing reasonable values.

5 Conclusions

In this paper we studied the equilibrium riding behavior for commuters who
take trains from a living place to a work place during morning rush hours.
With the aid of equilibrium riding model, in the elastic demand case we first
formulated three system configurations and then compared their transit fares,
numbers of actually used runs, demands, net profit and social welfare, by nu-
merical experiments. We found that the monopoly configuration generates the
highest transit fare and individual travel cost, then the duopoly competition and
the system optimum configurations in order; the system optimum configuration
needs the most transit runs and realizes the highest demands, then the duopoly
competition and the monopoly configurations in order; the monopoly configu-
ration produces more net profit for company but less social welfare than the
duopoly competition configuration. The value of our study lies in the method-
ology adopted in this paper for analyzing different pricing mechanisms on the
basis of equilibrium riding behavior. The approach presented in this paper can
be extended to consider the continuously distributed value of time for dealing
with riding behavior with heterogeneous commuters (Yang et al. [15]).
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Abstract. In a real options and game-theoretic framework, this paper
investigates the optimal timing of two asymmetric firms’ R&D invest-
ment under uncertainty. There exist three types of equilibria that can
occur in the choice of the R&D investment strategies, i.e. the preemp-
tive, sequential and simultaneous equilibrium. The occurrence of a par-
ticular type of equilibrium is determined by the firms’ relative payoff,
which mainly depends on the level of operating cost asymmetry and
first-mover advantage and the operating cost itself. We show that when
the cost asymmetry and the first-mover advantage among firms are rel-
atively small, two firms invest simultaneously. When the first-mover ad-
vantage is significant, the low-cost firm preempts the high-cost firm. In
the situation where the asymmetry between firms becomes large enough,
two firms invest sequentially. We also show that the lower the operat-
ing cost is, the more the incentive to become the leader has. So, with
the operating cost decreasing, the possibility of simultaneous equilibrium
and sequential equilibrium decreases, but that of preemptive equilibrium
increases.

Keywords: Optimal timing, R&D Investment, Real Options, Game
Theory, Asymmetric Duopoly.

1 Introduction

In the uncertain and competitive high-tech industry, one of the most important
decisions of firms is when to invest in R&D, i.e. the R&D investment timing
decision. A standard framework for the investment timing decision is the real
options approach, which assumes that the opportunity to invest in R&D is anal-
ogous to an American call option on the investment project, and the timing of
investment is economically equivalent to the optimal exercise decision for an op-
tion. In traditional real option modelling, the optimal exercise problem is always
modelled as isolated optimal stopping problem without strategic interactions.
According to real option theory, it is optimal to delay exercising the option to
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invest, even when it would be profitable to do so at once, in the hope of gaining
a higher payoff in the future [1].

However, real options, unlike their financial counterparts, are rarely backed by
legal contracts guaranteeing the holder’s rights in precise terms. There are always
other firms that also have access to the non-proprietary investment opportunity.
When real options are held by a small number of competitive firms with an
advantage to the first mover, each firm has incentive to invest early and its
ability to delay is undermined by the fear of preemption. In order to deal with
the tension between real options and strategic competition, this paper adapts
the option game-theoretic approach that merges real options with game theory.

The study of option game theory started from the seminal paper of Smets [2],
in which he studies the foreign direct investment decision in the duopoly mar-
ket, considering both the exchange rate uncertainty and strategic interaction
between two competitive firms. Dixit and Pindyck [3] summarize this model
in their outstanding real option textbook. They assume that firms are not ac-
tive in the market at original time and the firms as leader or follower is given
exogenously. So there is only a preemptive equilibrium. Huisman and Kort [4]
extend this model through introducing mix strategy equilibrium and assuming
that firms are active in the market at original time, i.e. the profit cash flows
are positive even they don’t invest yet. Weeds [5] considers irreversible in com-
peting R&D projects with uncertain returns under a winner-takes-all patent
system. Huisman and Kort [6] study the optimal timing of technological in-
novation of a single firm in a duopoly framework. They examine the optimal
technology investment decision of an individual firm, while taking into account
the possible occurrence of better technologies in the future and competition of
other firms.

While most of the above literature concentrate on symmetric oligopoly, Huis-
man [7] and Pawlina and Kort [8] analyze the situation where two firms’ in-
vestment costs are asymmetric and one has cost advantage over another. In
the real world of strategic investment, more or less the firms are not identi-
cal due various reasons. Thus the asymmetric duopoly model is more realistic
compared with the symmetric cases and has more explanatory power of the
real world.

The closest works to ours are the insightful paper by Pawlina and Kort [8]
and book by Huisman [7] that address a similar question, but in their model,
they assume the investment cost is asymmetric, while our paper focuses on oper-
ating cost asymmetry. In the all above literature, they assume that the operating
cost of project are zero, i.e. once a firm successes in R&D, it markets the in-
novation at once and does not occur any further costs. This may be true for
investment in natural resource and infrastructures, but for R&D investment,
this is not true. In the previous, the lump-sum investment cost is usually much
larger than its operating cost, so assumption of the operating cost is zero in
the models doesn’t put their conclusion into doubt. However, for the R&D in-
vestment, as the manufacturing-process innovation is more and more critical to
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product innovation [9], operating cost that mainly comes from production cost
is not ignorant, even more important than investment cost.

The remainder of the paper is organized as follows. In Section 2, we present
the basic model of two asymmetric competitive firms that face an exogenous
stochastic market demand, and derive the optimal timing and strategies of firms
as follower, leader and simultaneous investment respectively. In Section 3, we
analyze different equilibria. Section 4 investigates the condition for equilibria.
Concluding remarks are given in Section 5.

2 Model

Two risk-neutral firms, i and j, have the opportunity to invest in competing
R&D projects. Project is directly competitive: the firms strive for the same
patent and successful firm will get more market share and competitive advantage.
The variable production cost, i.e. operating cost, of firm i is Ci. Two firms are
asymmetric and one firm’s operating cost is lower than the other’s. Without loss
of generality, we normalize C1, which is the operating cost of the low-cost firm,
to C, and C2, which is the operating cost of the high-cost firm, is set equal to
κC, where κ ∈ [1,∞) that denote the level of the operating cost asymmetry.
Assuming there is not technological uncertainty, i.e. the R&D can success once
investment is made, and the firms face only market demand uncertainty. The
risk-free interest rate is r.

The firms face an inverse demand curve expressed by the market price of
innovation P (t) for firm i given by

P (t) = Y (t)D (Ni, Nj) (1)

where Y (t) is the stochastic demand shock following a geometric Brownian mo-
tion (GBM) with drift given by the following expression

dY (t) = αY (t) dt+ σY (t) dz (2)

where α is the drift parameter measuring the expected growth rate of Y (t), σ
is the instantaneous standard deviation or volatility parameter, and dz is the
increment of a standard Wiener process. In the following pages, we use Y to
denote Y (t) without arising confuse.

D (Ni, Nj) is a deterministic demand parameter for firm i, which depends on
the status of firms i and j, Nk, for k ∈ {i, j}

Nk =
{

0 if firm k has not invested,
1 if firm k has invested. (3)

The profit flow of firm i is

π (Ni, Nj) = Y D (Ni, Nj)−NiCi (4)
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Because the irreversible investment in R&D increases the profit flow and
the firm obtains higher profits if the competitor does not invest, the following
restrictions on π (Ni, Nj) are implied

π (1, 0) > π (1, 1) > π (0, 0) > π (0, 1) (5)

Further we assume that there is the first-mover advantage to investment

π (1, 0)− π (0, 0) > π (1, 1)− π (0, 1) (6)

Then we defined the level of the first-mover advantage is

γ ≡ π (1, 0) /π (1, 1) = [D (1, 0)− C] / [D (1, 1)− C] (7)

Considering the decision of the competitor, there are three possibilities con-
cerning the timing of firm i’s investment. First, firm i may invest before its
competitor (firm j) does and become the leader. Second, firm j may invest first
and firm i becomes the follower. Finally, firm i and firm j may invest simulta-
neously, i.e. two firms invest at the same point in time.

In the next subsections, we establish the payoffs and optimal investment tim-
ing associated with the three situations described above. As in the standard
approach used to solve dynamic games, we solve the problem backwards. First,
we derive the optimal strategy of the follower under the strategies of the leader
given. Then, we analyze the decision of the leader. Finally, the case of simulta-
neous investment is discussed.

2.1 Follower

Consider the optimal timing of firm i’s investment when its competitor (firm
j ) has invested as the leader. According to the real option approach, this is
an optimal stopping problem, i.e. there is optimal investment timing TiF , when
t < TiF , waiting is optimal, and when t ≥ TiF , investment is optimal [3]. In
other words, firm i will undertake the investment when profits are sufficiently
large, i.e. when Y (t) exceeds a certain threshold level denoted by YiF .

The payoff and the optimal investment timing of the firm can be calculated
explicitly by applying the well-known standard dynamic programming method-
ology (see [3]). To save space, we provide the solution and refer the interested
reader to [8] for further details. By solving the Bellman equation with corre-
sponding value-matching and smooth-pasting, we arrive at the following expres-
sion for the payoff of firm i as the follower

Fi (Y ) =

⎧⎨⎩ Y D(0,1)
r−α +

(
Y

YiF

)β1
(

YiF [D(1,1)−D(0,1)]
r−α − Ci

r − I
)
, Y ≤ YiF

Y D(1,1)
r−α −

(
Ci

r + I
)
, Y ≥ YiF

(8)

The interpretation of (8) is as follows. The first row is the present value of
profits when the follower does not invest immediately. The first term is the payoff
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in case the follower does not invest forever, whereas the second term is the value
of the option to invest. The second row is that the present value of cash flows
resulting from immediate investment minus its costs. Where, YiF is the optimal
investment threshold, and equals

YiF =
β1

β1 − 1
r − α

D (1, 1)−D (0, 1)

(
Ci

r
+ I

)
(9)

The corresponding optimal investment timing is

TiF = inf (t|Y ≥ YiF ) (10)

2.2 Leader

Following a similar reasoning as in the previous subsection, we determine the
payoff of firm i as the leader. After the firm j as a follower investment, i.e.
t ≥ TjF , two firm’s payoffs are equal as (8). When firm j is not investment, i.e.
t ≤ TjF , the value function of firm i equals

Li (Y ) = E
{∫ TjF

t
e−r(τ−t) [Y (τ)D (1, 0)− Ci] dτ

}
− I

+ E
{∫ +∞

TjF
e−r(τ−TjF ) [Y (τ)D (1, 1)− Ci] dτ

} (11)

whereTjF = inf (t|Y ≥ YjF ) is the optimal investment timing of the firm j as a
follower, and YjF is corresponding investment threshold. The first two compo-
nents of (11) correspond to the present value of the leader’s profits realized until
the moment of the follower’s investment minus the leader’s sunk cost. The second
integral corresponds to the discounted perpetual stream of profits obtained after
the investment of the follower. Considering the results of the follower problem,
we can express the payoff of firm i as the leader in the following way

Li (Y ) =

⎧⎨⎩ Y D(1,0)
r−α +

(
Y

YjF

)β1 YjF [D(1,1)−D(1,0)]
r−α −

(
Ci

r + I
)
,Y ≤ YjF

Y D(1,1)
r−α −

(
Ci

r + I
)
, Y ≥ YjF

(12)

The first row of (12) is the net present value of profits before the follower
made the investment, i.e. the expected payoff in monopoly phase. The second row
corresponds to the net present value of profits in a situation where it is optimal
for the follower to invest immediately, i.e. the expected payoff in duopoly phase.

The optimal investment threshold of firm i as the leader equals

YiL =
β1

β1 − 1
r − α

D (1, 0)−D (0, 0)

(
Ci

r
+ I

)
(13)

And the corresponding optimal investment timing is

TiL = inf (t|Y ≥ YiL) (14)
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2.3 Simultaneous Investment

It is possible that the firms, despite the asymmetry in the operating cost, decide
to invest simultaneously. The payoff of firm i investing at its optimal threshold
simultaneously with firm j is

Si (Y ) =

⎧⎨⎩ Y D(0,0)
r−α +

(
Y

YiS

)β1
(

YiS [D(1,1)−D(0,0)]
r−α − Ci

r − I
)
,Y ≤ YiS

Y D(1,1)
r−α −

(
Ci

r + I
)
, Y ≥ YiS

(15)

Expression (15) is interpreted analogously to (8). And the corresponding op-
timal investment threshold and timing of two firms which invest simultaneously
respectively is

YiS =
β1

β1 − 1
r − α

D (1, 1)−D (0, 0)

(
Ci

r
+ I

)
(16)

TiS = inf (t|Y ≥ YiS) (17)

3 Equilibria

There are three types of equilibria that can occur in the choice of strategies,
i.e. the preemptive, sequential and simultaneous equilibrium. In this section we
discuss the characteristics of each type of equilibrium and present the conditions
under which each of them occurs.

3.1 Preemptive Equilibrium

The preemptive equilibrium occurs in the situation where both firms have an
incentive to become the leader. When the cost advantage of the low-cost firm
(firm 1) is relatively small, we has to take into account the fact that the high-
cost firm (firm 2) will aim at preempting firm 1 as soon as a certain threshold is
reached. This threshold, denoted by Y2P , is the first hitting value of the process
Y (t) for which firm 2 is indifferent between being the leader and the follower.
Formally, Y2P is the smallest solution to L2 (Y )− F2 (Y ) = 0.

When Y2P ≥ Y1L, where Y1L is the optimal investment threshold of firm 1
as the leader, the firm 2 has not opportunity to preempt because firm 1 will
invest at Y1L where firm 2’s optimal strategy is waiting and becomes follower
at Y2F . When Y2P < Y1L, firm 1 uses the fact that firm 2 has no incentive to
invest before Y2P and preempts it by just an instant, i.e. firm 1 ε-preempts firm
2 at Y2P − ε, where ε is an infinitesimal. Therefore, firm 1 invests as soon as the
process reaches the smaller of two values: Y2P and Y1L, that is, firm 1 invests at
min {Y2P , Y1L} as leader and firm2 invests at Y2F as follower.
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3.2 Sequential Equilibrium

The sequential equilibrium occurs when firm 2 has no incentive to become the
leader, i.e. when F2 (Y ) > L2 (Y ) always holds. In this case, firm 1 simply
maximizes the payoff of the monopoly investment opportunity and invests at
the optimal timing, T1L. As a result, firm 1 is able to invest at its unconditional
threshold, Y1L, and firm 2 invests at its follower threshold, Y2F , sequentially.

3.3 Simultaneous Equilibrium

The simultaneous investment equilibrium occurs when there are no firms have
incentive firstly to become a leader. In this case, the payoff of firm 1 associated
with being the leader has to be lower than the payoff resulting from simultaneous
investment at Y1S , i.e. L1 (min{Y1L, Y2P }) < S1 (Y1S). Otherwise, firm 1 will
invest either at Y1L or at Y2P (depending on the level of cost asymmetry).
Moreover, firm 2’s follower threshold must be lower than Y1S . In other words,
firm 2 has to find it more profitable to respond to firm 1’s investment at Y1S

immediately than to wait. Otherwise, firm 2 would wait and invest as the follower
at Y2F .

4 Equilibria Analysis

In this section, we mainly consider the impact of the level of operating cost
asymmetry, κ, the level of first-mover advantage, γ, and the operating cost itself,
C, on the equilibrium types following the method of Pawlina and Kort in [8].
However, it is noticeable that the first-mover advantage, as defined in (7), is
related to the operating cost in our paper, which is different from [8] in which
the first-mover advantage is independent of the investment cost.

First, we discuss the condition of the sequential equilibrium occurs. The se-
quential equilibrium occurs when firm 2 has no incentive to become the leader,
i.e. its payoff as follower is always greater than its payoff as leader. Formally, we
defined

ξ2 (Y ) = L2 (Y )− F2 (Y ) (18)

Then, the condition of the sequential equilibrium occurs is that ξ2 (Y ) < 0,
for Y ∈ [Y (0) , Y2F ]. Therefore, we are interested in finding a pair (Y ∗, κ∗) that
satisfies the following system of equations{

ξ2 (Y ∗, κ∗) = 0
∂ξ2 (Y, κ∗) /∂Y |Y =Y ∗ = 0 (19)

In other words, we are interested in a point (Y ∗, κ∗) in which firm 2’s leader
function is tangent to the follower function. After substituting (8) and (12) into
(18), and eliminating Y ∗, we can obtain κ∗. As in other things equal, κ∗ is the
function of γ, i.e. κ∗ = f (γ), which separates the plate κ − γ into two regions:
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preemptive equilibrium and sequential equilibrium region (see Fig.1). For κ < κ∗,
firm 1 needs to take into account possible preemption by firm2, whereas κ ≥ κ∗

implies that two firms always invest sequentially at their optimal thresholds.
Next, we concentrate on determining the region in which the simultaneous

equilibrium occurs. In order to do so, let us define

ξ1 (Y ) = L1 (Y )− S1 (Y ) (20)

Firm 1 prefers simultaneous investment unless for some Y (t) its leader pay-
off, L1 (Y ), exceeds the optimal simultaneous investment payoff, S1 (Y ). That
is, simultaneous equilibrium occurs only if ξ1 (Y ) > 0, for all Y ∈ [Y1P , Y2F ].
Therefore, we are interested in finding a pair (Y ∗∗, κ∗∗) that satisfies the follow-
ing system of equations {

ξ1 (Y ∗∗, κ∗∗) = 0
∂ξ1 (Y, κ∗∗) /∂Y |Y =Y ∗∗ = 0 (21)

In other words, we are interested in a point (Y ∗∗, κ∗∗) in which firm 1’s simul-
taneous investment function is tangent to its leader function. After substituting
(12) and (15) into (20), and eliminating Y ∗∗, we can obtain κ∗∗. In the same way
as before, we know κ∗∗ is the function of γ, i.e. κ∗∗ = f (γ), which separates the
plate κ−γ into two regions: simultaneous equilibrium and preemptive/sequential
equilibrium region (see Fig.1). For κ < κ∗∗, the resulting equilibrium is of the
simultaneous investment type, whereas for κ ≥ κ∗∗ the sequential/preemptive
investment equilibrium occurs. This implies that for a relatively high degree of
asymmetry between firms, as in other things being equal, simultaneous invest-
ment is not optimal and either sequential or preemption equilibrium occurs.

1 1.2 1.4 1.6 1.8 2
1

1.1

1.2

1.3

1.4

1.5

γ, First mover advantage

κ,
 L

ev
el

 o
f 

co
st

 a
sy

m
m

et
ry Sequential equilibrium

Preemptive equilibrium

Simultaneous equilibrium

κ**

κ*

Fig. 1. The regions of three types of equilibria for α = 0.02, σ = 0.2, r = 0.05,
D(0, 1) = 0.25, D(0, 0) = 0.5, D(1, 1) = 1, and c = 0.25
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We present an illustration of when the resulting equilibria occur in a two-
dimensional graph. In Fig.1 we depict the investment strategies as a function
of the first-mover advantage, γ, and the investment cost asymmetry, κ. As it
show, when the operating cost asymmetry is relatively small and there is no
significant first-mover advantage, the firms invest simultaneously (a triangular
area in the south-west). When the first-mover advantage becomes significant,
firm 1 prefers being the leader to investing simultaneously. This results in the
preemptive equilibrium (area in the south-east). Finally, if the asymmetry be-
tween firms is significant, the firms invest sequentially and firm 1 can act as a
monopolist.

Finally, we consider the impact of the operating cost itself on the three types
of equilibria. From (7), we know that the level of the first-mover advantage, γ,
decreases with the operating cost, C. So the lower the operating cost is, the
more the incentive to become the leader has. As Fig. 2 show, as in other things
equal, with the operating cost decreasing, the possibility of simultaneous equi-
librium and sequential equilibrium decreases, but that of preemptive equilibrium
increases.
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Fig. 2. The regions of three types of equilibria for c = 0, 0.2, and 0.5 respectively, and
other parameters have the same values as in Fig.1

5 Conclusion

In an asymmetric duopoly option game-theoretic framework, this paper inves-
tigates the optimal timing of two firms’ R&D investment under uncertainty.
Contrary to the most literatures that assume the operating cost is zero and/or
symmetric, this paper extends them by introducing operating cost asymmetry
into a duopoly option game-theoretic model. There exist three types of equilibria
that can occur in the R&D investment decision, i.e. the preemptive, sequential
and simultaneous equilibrium. The occurrence of a particular type of equilib-
rium is determined by the firms’ relative payoff, which mainly depends on the
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level of operating cost asymmetry and first-mover advantage and the operating
cost itself. We show that when the cost asymmetry and the first-mover advan-
tage among firms are relatively small, two firms invest simultaneously. When
the first-mover advantage is significant, the low-cost firm preempts the high-cost
firm. In the situation where the asymmetry between firms becomes large enough,
two firms invest sequentially.

We also show that the lower the operating cost is, the more the incentive
to become the leader has. This result has positive implication for Chinese firm
who competes with its foreign rival in the same market. The Chinese firm has
lower operating cost due to the relative cheap human resource, or at least its
operating cost disadvantage is lower than its investment cost disadvantage in
comparison with its foreign rival, who usual invests much more in R&D than
Chinese firm does. So, it is possible for Chinese firms to compete with strong
foreign multinational firms and get a leading position.

For sake of space we don’t give our all numerical analysis results. The model
could be extended in a number of ways. First, we can consider the situation
where both the investment cost and operating cost are asymmetric. Second, we
can study the impact of the volatility on equilibrium. Finally, we can analyze
the situation where the information about cost is asymmetric, et al.
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Abstract. For the complex and time-varying traffic flow, single-strategy
based fuzzy traffic control algorithms are not very ideal. In order to fur-
ther improve the capacity of isolated intersection, we propose a multi-
strategy fuzzy control algorithm to adapt to the variation of urban traf-
fic flow, and then optimize its control rules and membership functions
by using improved genetic algorithm. The simulation result shows that
compared with traditional genetic algorithm, the efficiency of improved
genetic algorithm is higher, and its performance is more stable. The
multi-strategy fuzzy control model possesses the stronger self-adaptive
competence and performance.

1 Introduction

For the stronger self-adaptability, fuzzy technology has been successfully ap-
plied in researching traffic control problem in recent years [1][2][3]. Nevertheless,
aiming at the complex and time-varying traffic flow, if only one suit of control
rules and membership functions is used in fuzzy control system, then satisfac-
tory control effect can be acquired only under some special traffic conditions. In
order to further improve fuzzy control system’s self-adaptability and stability, a
multi-strategy fuzzy control algorithm is proposed based on single-strategy fuzzy
control algorithm which has been published in literature [4].

In fuzzy control system, control rules and membership functions are usually
determined according to expert’s experience. However, it will be very difficult to
determine control rules and membership functions of multi-strategy fuzzy control
algorithm in this way. Therefore, to design an optimization method that used
to determine control rules and membership functions is very necessary. Genetic
algorithm (GA) has been testified repeatedly being an efficient and stable global
combined optimization technology. In this paper, a series of improvements on
GA are carried out, and then the improved GA is used to optimize control rules
and membership functions of multi-strategy fuzzy control algorithm. Simulation
result shows that both in performance and efficiency, the improved GA is superior
to the traditional GA, and the control effect of multi-strategy fuzzy control
algorithm is better than that of single-strategy one.
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2 Multi-strategy Fuzzy Control Algorithm

2.1 Basic Structure of Fuzzy Control Model

Suppose loop detectors are embedded in stop-line and upstream-line of each en-
try lane of intersection respectively to detect arrival and go-away information
of vehicles. The sequence number set of lane is L = {1, 2, ...,m}, the sequence
number set of phase is P = {1, 2, ..., n}. Several concepts appeared in the fol-
lowing text has been defined in literature [4]. Subscript i ∈ P denotes sequence
number of phase, and subscript j ∈ L denotes sequence number of lane in all
variables. Let t denote time, its unit is second.

We have ever pointed out in literature [4], queue and average waiting time
(AWT) are all the reflection of traffic demands of entry lanes, but anyone of
them can not fully delegate the lane’s traffic demands. Correlation and difference
exist simultaneously between them, and anyone can not replace another one.
They together reflect the actual traffic demand. For this reason, we propose a
new concept—pass through need degree (PTND), and design two measurement
indexes—actual pass through need degree (APTND) nij(t) and righted pass
through need degree (RPTND) nr

ij(t) to measure the actual traffic demand. The
former is determined by actual queue qij(t) and AWT w̄ij(t), it is taken as the
criterion of allocating the green time; and the later is determined by righted
queue qr

ij(t) and w̄ij(t), it is taken as the criterion of allocating the right-of-
way. The reason of allocating right-of-way and green time respectively according
to nr

ij(t) and nij(t) is to ensure the rational allocation of them. nr
ij(t) is the

embodiment of equity, and nij(t) is the embodiment of efficiency.
Persons interested in detail of the control process see literature [4]. There are

two suits of input/output variable combinations in the model. The first one’s
input variable combination is (qij(t), w̄ij(t)), its output variable is nij(t); the
second one’s input variable combination is (qr

ij(t), w̄ij(t)), its output variable is
nr

ij(t). nij(t) and nr
ij(t) is computed simultaneously, and the right-of-way and the

green time are determined according to them respectively, so the model can be
regarded as two parallel control systems. They share one suit of control rules and
membership functions. In literature [4], there are 5×5 = 25 control rules in fuzzy
control system. The number of control rules is one of key factors to influence
the performance of control system. In order to further improve the system’s
real-time control competence, the model is modified as followings: the same
three fuzzy subsets are defined for four input variables, and the same five fuzzy
subsets are defined for two output variables. They are {S(Short), M(Medium),
L(Long)} and {VL(Very Low), L(Low), M(Medium), H(High), VH(Very High)}
respectively. Therefore, the number of operable control rules are 3 × 3 = 9.
Mamdani’s inference algorithm is used in fuzzy inference, and the center of
gravity method is used to do defuzzification [5].

2.2 Multi-strategy Fuzzy Control

Although single-strategy fuzzy control technology possesses the competence of
adapting to variation of the environment to a certain extent, when its control
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rules and membership functions are fixed, its self-adaptive competence is also
limited in a special range, in other words, aiming at random, time-varying and
non-linear traffic flow, if only one suit of control strategy (that means only one
suit of control rules and membership functions) is used, no matter how to tune
it, can we only acquire the most satisfactory control effect in a special traffic flow
status, control effects of other cases may be not satisfactory comparatively. For
this reason, it can be forecasted only if different control strategies is adopted in
different traffic flow statuses, can we acquire the most satisfactory control effect
in a larger range.

Although the amount of traffic flow statues are theoretically infinite, there
does exist regular pattern, for example, in a working day, the density of traffic
flow in the time of on and off duty is clearly large than that of other time; in
daytime is clearly large than in nighttime, etc., therefore, although it is impossi-
ble to adopt different strategies in all different traffic flow statuses, can we select
control strategies of key time points by using which the most satisfactory control
effect can be acquired. The so-called key time point implies such a time point
t, the density of traffic flow of partial or all directions exist extrema or larger
changes in time range [t − Δt, t + Δt]. The more the key time points are set,
the better the control effect can be acquired. That means we can select several
key time points beforehand according to historical statistical traffic flow data of
the intersection and take the combination of average arrival rate (AAR) of these
points as key combinations, then optimize corresponding control rules and mem-
bership functions for acquiring the most satisfactory control effect. The optimal
control effect can be approached ceaselessly by increasing the number of key
combinations of average arrival rates (KCAARs) ceaselessly until the simulation
result is satisfactory.

3 Improved Genetic Algorithm

Here, traditional GA is improved for optimizing fuzzy control rules and mem-
bership functions. Because the same fuzzy subsets of input/output variables,
control rules and membership functions are shared by two groups of controls, so
the following optimization method aims at them simultaneously.

3.1 Encoding of Control Rules

Let {qi|qi = i; i = 1, 2, 3}, {wj |wj = j; j = 1, 2, 3} and {nk|nk = k; k = 1, 2, ..., 5}
denote queue, AWT and PTND respectively. Control rules are encoded with inte-
ger encoding method. A candidate solution is expressed in form of a chromosome,
so a suit of control rules can be delegated by a chromosome, each gene on it del-
egates a control rule, and its value range is {nk|nk = k; k = 1, 2, ..., 5}. Suppose
one gene of the chromosome is gl, then its value range can also be denoted by
set {gl|gl = nk, l = (i− 1)× 3 + j;nk = k; i, j = 1, 2, 3; k = 1, 2, ..., 5}, the letter
l denotes the location of gene on the chromosome, in other words, it is the se-
quence number of delegated control rule, the letter i and j denote the subscript
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of element queue and element AWT respectively, by which the control rule is
constructed. For example, a control rule is “IF q is M AND w is L, THEN n is
H ”, therefore, i = 2, j = 3, l = (2− 1)× 3 + 3 = 6, nk = k = 4, that means this
control rule is constructed by second element of queue set, third element of AWT
set, and fourth element of PTND set, the location of gene on the chromosome is
6, so the sequence number of this gene is 6. Because the amount of control rules
is 9, therefore the length of a chromosome is 9.

3.2 Encoding of Membership Functions

We take trapezoid as the basic geometric form of membership functions, there-
fore, its shape control parameters can be denoted by a quad 〈a, b, c, d〉 as showed
in Fig 1. When b = c, the shape of membership function will transform into tri-
angle, that means two geometric forms of membership functions are included in
search space of candidate solutions, it is favorable for searching better candidate
solution.

Fig. 1. Parameterized representation of membership function

The shape control parameters of membership functions of queue q, AWT w
and PTND n can be denoted as followings respectively: 〈aq
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The performance of traditional binary encoding method of GA is poor when
applied to multidimensional and high-precision problems [6]. For this reason, we
adopt the real value encoding method, in which a chromosome is constructed
by a one-dimensional float-point array, and each gene is stored as an element
of the array respectively. In this way, not only the search space is smaller and
calculation precision is high enough, but also the size of search space is inde-
pendent of calculation precision, the performance of algorithm can be improved
effectively. Herrera et al. had ever given the following tuning domains of shape
control parameters of membership functions [7]:

a ∈ [al, ar] = [a− (b− a)/2, a+ (b− a)/2], (2)
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b ∈ [bl, br] = [b− (b− a)/2, b+ (c− b)/2], (3)

c ∈ [cl, cr] = [c− (c− b)/2, c+ (d− c)/2], (4)

d ∈ [dl, dr] = [d− (d− c)/2, d+ (d− c)/2]. (5)

Formula (3) and (4) indicate that the triangular membership functions can be
formed only when b = br and c = cl (br = cl), so the search space is largely
shrunk. In order to search better result, the tuning domains of b and c are
extended in this paper as followings:

b ∈ [bl, b′r] = [b− (b− a)/2, c+ (d− c)/2], (6)

c ∈ [c′l, cr] = [b− (b− a)/2, c+ (d− c)/2]. (7)

3.3 Generation of Initial Population

Generally, the initial population of GA is generated randomly, so the individual’s
quality is difficultly ensured. If some excellent individuals can be selected into
initial population, it equals that several evolutions have been finished before
formal optimization. The more such excellent individuals are selected into, the
more finished evolutions it equals. In this way, the ideal optimization result can
also be acquired even in a smaller population size and smaller generations.

Because the solution space of control rules is comparatively smaller, so the
first chromosome of initial population is set to be “123234345” according to
expert’s experience, while other individuals are generated randomly. The idea to
generate initial population of membership functions is that suppose population
size is s, n uniformly distributed points are selected respectively in domains
(include two end points) that given by formula (2) to (5), so the number of
these points is n × 44. Partial selected combination results of these points and
s randomly generated individuals are taken as candidates of initial population,
and then s excellent individuals are selected as initial population according to
everyone’s fitness degree that is figured out by using simulation method. The
size of candidates is too large if all combinations of n × 44 points are taken as
candidates, so n2 representatives from them are selected as partial candidates,
they can be expressed as followings:

aq
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cq1n−j

dq
1n−i

...aq
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bq3j
cq3n−j

dq
3n−i

aw
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dw
1n−i

...
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cw3n−j

dw
3n−i

an
1i
bn1j
cn1n−j
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1n−i

...an
5i
bn5j
cn5n−j

dn
5n−i

, i, j = 0, 1, ..., n− 1. (8)

The mean of each symbol in formula (8) is same with that of formula (1). The size
of candidates is n2+s. The bigger the value of n is or the more the candidates are
selected from all combinations of n×44 points, the better the individual’s quality
is and the more the excellent individual’s quantities are in initial population,
while at the same time, the longer the filtering process time of initial population
is, so n should be appropriate.

For only a small number of chromosomes of initial population are generated
according to expert’s experience, most of them are randomly generated, hence,
not only the GA’s original property and practicality may be ensured, but also
its performance is improved.
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3.4 Crossover and Mutation Operation

Crossover and mutation operation of control rules chromosomes are similar to
that of simple GA that binary encoding method is used. In theory, the cases that
the values of the first, forth, and seventh genes of a chromosome are 4 or 5, 5 and
5 respectively are irrational, because when a lane’s queue and/or AWT are very
short, its PTND is impossibly very large. Plenty of simulation experiments also
support this conclusion. Once this case occurred in the processes of crossover
and mutation operation, we will replace such chromosomes with the best one.

In order to saving the computation cost and enhancing the performance, max-
min-arithmetical crossover algorithm proposed by Herrera et al. [7] is improved
and then used for crossover operation of membership functions chromosomes.
Suppose Ct

v = (ctv1, ..., c
t
vk, ..., c

t
vK) and Ct

w = (ctw1, ..., c
t
wk, ..., c

t
wK) are two se-

lected chromosomes in tth generation of chromosomes, they will generate two
offspring after crossover operation between them, the general items of them are:

ct+1
vk =

⎧⎪⎪⎨⎪⎪⎩
actwk + (1− a)ctvk, 0.00 ≤ pv ≤ 0.25,
actvk + (1− a)ctwk, 0.25 < pv ≤ 0.50,
min{ctwk, c

t
vk}, 0.50 < pv ≤ 0.75,

max{ctwk, c
t
vk}, 0.75 < pv ≤ 1.00.

(9)

ct+1
wk =

⎧⎪⎪⎨⎪⎪⎩
actwk + (1− a)ctvk, 0.00 ≤ pw ≤ 0.25,
actvk + (1− a)ctwk, 0.25 < pw ≤ 0.50,
min{ctwk, c

t
vk}, 0.50 < pw ≤ 0.75,

max{ctwk, c
t
vk}, 0.75 < pw ≤ 1.00.

(10)

Where, pv and pw are random numbers in the range of [0, 1].
Non-uniform mutation algorithm proposed by Michalewicz [6] is used for

mutation operation. Suppose Ct
v = (cv1, ..., cvk, ..., cvK) is a chromosome of tth

generation of chromosomes, and the element cvk ∈ [clk, c
r
k] is selected to carry

out mutation operation, the result is Ct+1
v = (cv1, ..., c

′
vk, ..., cvK), where,

c′vk =
{
cvk +Δ(t, crvk − cvk), b = 0,
cvk +Δ(t, cvk − clvk), b = 1. (11)

b is a random number of 0 or 1. The function Δ(t, y) is calculated as followings:

Δ(t, y) = y(1− r(1−t/T )h

). (12)

Where r is a random number in the range of [0, 1], T is the maximum number of
generations and h is a given constant, Δ(t, y) will return a value in the range of
[0, y], so the probability of Δ(t, y) approaches to 0 when t increases. This kind
of property causes the operator to make a uniform search in initial space when
t is smaller but very locally at later stages.
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3.5 Amendment of Shape Parameters of Membership Function

Because the domain of b is same with that of c, so the irrational result b > c may
occur in the process of randomly generating chromosome and successive genetic
operations. In this case, the result is amended as followings:

b′ =
{

min{b, c}, p = 0,
(b+ c)/2, p = 1. (13)

c′ =
{

max{b, c}, p = 0,
(b+ c)/2, p = 1. (14)

Where, p is a random number of 0 or 1. The reason of designing such an amend-
ment method is to increase the probability of forming the triangular membership
functions.

3.6 Evolution Strategy and Improvement of Computation
Efficiency

We will adopt simulation method to compute average delay, and then take its
reciprocal as the fitness degree of chromosomes. The optimization process of
chromosomes includes two stages. In first stage, control rules chromosomes are
optimized based on membership functions chromosomes that have been gener-
ated according to expert’s experience, and then membership functions chromo-
somes are optimized in second stage according to control rules chromosomes that
have been optimized in first stage.

For the characteristic of probability , there always be some chromosomes
don’t participate in crossover and mutation operation in the process of genetic
operation. In order to reduce the computation costs, in the process of selecting
operation, only the fitness degrees of new generated chromosomes will be com-
puted, such computations will not be repeated for those old ones. In this way,
computation time can be effectively saved. The less the crossover and mutation
probabilities are, the more computation time is saved.

Because most of the improvements are not problem-oriented, so the improved
GA is all-purpose to a great extent.

4 Simulation Result

All our simulation experiments are carried out by using a personal computer,
its main hardware configurations are Intel Pentium III processor and 512MB
memory, and operation system is Windows Server 2003. The parameters of sim-
ulation environment are as followings. The maximal queue length of each lane is
20. The green interval has three timing parameters, namely, lost time, minimum
duration and maximum duration. Minimum duration is 12s, maximum duration
is 60s, and lost time is 3s. Amber period is 3s, and green time is extended by 3s
each time when needed. The arrival rate of upstream vehicles submits to Pois-
son distribution, left-turn rate and right-turn rate of each approach is 20%. The
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saturation flow rates of through, left-turn and right-turn of each approach are
1v/s, 0.8v/s and 1v/s respectively. Phase arrangement is showed in Fig. 2.

Fig. 2. Phase arrangement

The fixed-cycle control strategy is that the green time of through and right-
turn are all 60s, and that of left-turn is 20s. The vehicle-actuated control strategy
is that minimum green time is 12s. When there are vehicles arrive at within the
last one second, green time of current green phase is extended by 3s, otherwise,
switch right-of-way to the next phase. Maximum green time is 60s. KCAARs
of all directions listed in table 1 are adopted in all simulation experiments. The
simulation is carried out for 10 times in each KCAAR, each time length is 7200s,
and the average result of them is taken as final result.

Table 1. KCAARs of all directions

No. of KCAAR 1 2 3 4 5 6 7 8 9 10

AAR East/West 400 400 400 400 800 800 800 1200 1200 1600
(veh./h) North/South 400 800 1200 1600 800 1200 1600 1200 1600 1600

For the comparison, traditional GA and improved GA are respectively used to
optimize the single-strategy (SS) and multi-strategy (MS) fuzzy control model in
this paper. Here, the traditional GA’s crossover operation is replaced with that of
improved GA’s, otherwise, the computation time is too long to endure. Their pa-
rameters are set as followings: population size=30, generation size=30, crossover
probability=0.85, mutation probability=0.005, crossover parameter a = 0.35,
mutation parameter h = 0.5.

The optimization time of SS model that optimized by traditional and im-
proved GA are 2.50h and 1.99h respectively, the latter improves by 20.4%. In
the optimization of MS model, the costs of time are 2.36h and 2.15h respec-
tively, the latter improves by 8.9%. Fig. 3 shows the optimization processes of
SS Model, from which we can find that the performance of improved GA is ob-
viously more excellent than that of traditional GA, especially in initial stages.
The optimization processes of MS model are also similar with that of SS model.

The simulation results of average delay of three fuzzy control models that
optimized by improved GA compared with two traditional methods are showed in
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Fig. 3. Optimization processes of SS Model. (a) and (b) are optimization processes of
rules and membership functions respectively that optimized by traditional GA. (c) and
(d) are that optimized by improved GA. Solid line denotes the average value of average
delays of population. Dotted line denotes the average delay of the best chromosome
individual

Fig. 4. The average delay of fixed-cycle control is the longest, and when volumes
of traffic flows of partial or all directions are larger, its average delay increases
rapidly, this indicates that its performance worsens remarkably. The curve of
vehicle-actuated control is comparatively lower and smoother. The curves of
fuzzy control models are not only very smooth but also always in lowest location.
It indicates their performances are not only best but also very stable.
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Fig. 4. Average delay of different fuzzy control models and traditional control methods

The average delay improvements of three fuzzy control models compared with
two traditional methods are listed in table 2. The average results show that SS
model is superior to traditional methods. The performance of optimized single-
strategy (OSS) model is superior to SS model, and optimized multi-strategy
(OMS) model is superior to OSS model. Comparing the simulation results of 10
groups of KCAARs one by one, we can find that the performances of OSS model
are almost all superior to SS model, and the most of OMS model is superior
to OSS model. The cause of this result is that the optimization of OSS model
seeks for optimal average result, so it is difficult to avoid some non-ideal results.
Whereas the optimization of OMS model seeks for optimal individual results
by applying different control strategies to different individuals, and therefore its
average result and individual result are all more satisfactory. That means OMS
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model is superior to OSS model on the whole. Summarizing the aforementioned,
after optimized by our improved GA, the OMS model has stronger self adaptive
competence and stability, the average delay can be decreased and the capacity
of intersection be improved effectively by using this model.

Table 2. Improvement(%) of average delay

No. of KCAAR 1 2 3 4 5 6 7 8 9 10 Ave.

SS with Fix. 34.92 28.96 35.56 66.64 29.02 27.63 58.77 24.19 45.33 46.80 39.78
model with Act. 1.89 9.33 22.40 19.16 19.37 27.12 22.68 22.86 14.14 7.82 16.68
OSS with Fix. 35.27 31.97 33.25 67.74 32.10 34.69 58.89 25.67 45.85 46.79 41.22

model with Act. 2.70 16.21 22.58 20.67 23.39 28.23 24.64 24.16 16.32 6.76 18.57
OMS with Fix. 37.83 36.10 34.53 65.85 33.27 30.83 62.02 26.63 51.89 46.23 42.51
model with Act. 6.85 21.47 22.68 22.41 23.43 27.32 26.76 23.96 18.26 5.42 19.85

5 Conclusion

Aiming at complex and time-varying urban traffic flow, only when control strat-
egy can changes with it, can the most satisfactory control effect be acquired. For
this reason, we propose a multi-strategy fuzzy traffic control model, and optimize
control rules and membership functions by using our improved GA. The simula-
tion result shows that improved GA is more efficient and stable than traditional
GA, and compared with traditional control methods, OMS model possesses the
stronger self-adaptive competence and stability. How to apply them in coordi-
nation control of multi-intersection will be researched in the future.
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Abstract. Facility Location Problems have always been studied with
the assumption that the environment in the network is static and does
not change over time. In practice, however, the environment is usually
dynamic and we must consider the facility location in a global view.
In this paper, we impose the following additional constraints on input
facilities: the total number of facilities to be placed is not known in
advance and a facility cannot be removed once it is placed. We solve this
problem by presenting an algorithm to find a facility permutation such
that any prefix of the permutation of facilities is near-optimal over any
other facility subset.

1 Introduction

Variants of the facility location problem (FLP) have been studied extensively
in operation research and management science literatures [14, 3, 1]. The model
in typical theoretical work has addressed situations in which we want to locate
facility in a network and optimize an objective function in the static environment.
In practice, however, the environment is dynamic in many cases. For example, in
a commercial network, we do not know the exact number of facility in advance,
our business plan is to start with one facility, and then to gradually add a new
facility but never to remove a previously established facility. The same is true
for locating the public facility in community network, such as schools, hospitals,
etc.

Under the above considerations, the facilities must be constructed in the
global view. That is, we locate facilities in a way that their cost is optimal or
near-optimal over any other non-empty facility subset and, when the number of
needed facilities increases, no former facility can be removed. It is worth noting
that a typical facility location problem with these two constraints can be viewed
as the facility permutation problem whose goal is to specify the facility order that
minimizes the maximum ratio between the cost of any prefix of the permutation
and that of an any non-empty subset of all facilities.

Of the facility location models, our problem most closely resembles Undesirable
FacilityLocationProblem[13], theOnlineMedianProblem[11]andtheIncremental
Facility Location Problem [12]. All of these problems, as well as our problem, used
exactly the same assumption that the number of facilities is not known in advance
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and once the facility is placed, it can’t be removed, but their objective formulations
are different with ours. See the section 2 for some more discussions.

In this paper, we solve the facility location problem with above considerations
by defining a model of locating facilities to optimize the location cost over any
other cost of non-empty subset of all facilities, which we call strength facility
location problem (SFLP). Although NP-hardness of SFLP has not been proven
yet, finding an optimal solution for the problem seems to be difficult, in view of
the NP-completeness of the relaxation version: classical Uncapacitated Facility
Location Problem. This paper is concerned with approximation algorithm for
this problem. Given a minimization problem, an algorithm is said to be a (poly-
nomial) r − approximation algorithm, if for any instance of the problem, the
algorithm runs in polynomial time and produces a solution that has a cost at
most r ≥ 1 times the minimal cost, where r is called the approximation ratio of
the algorithm.

Though not stated specifically, Mettu and Plaxton [11] first presented a 3-
approximation algorithm for SFLP. But their solution does not generate the
permutation of facilities. Based on their algorithm, this paper presents a group
of simple and deterministic approximation algorithms for constructing some so-
lutions of SFLP which is similar to, in simplicity and efficiency, the standard
heuristics for facility location. Each approximation algorithm and the result are
only linked to a single parameter, and for the different parameter, the solutions
obtained by each algorithm are nested, namely, one of solution is the subset
of another one, thus we obtain a permutation of all facilities by varying the
parameter.

The rest of this paper is organized as follows. Section 2 specifies the problem
and describes related works. Section 3 presents the approximation algorithm and
proves the approximation ratio. The final section, section 4, concludes the paper
and describes future research.

2 Problem Description and Related Work

This section describes the formulation of SFLP and gives an overview of related
work. We first discuss the basic facility location model, the metric uncapacitated
facility location problem (UFLP), in which we are given a graph with nonnega-
tive edge costs. As motivation [7], the nodes can be thought of as customers, the
facilities as service centers, and the distance between a customer and a service
center as the cost of serving the customer by that center. Furthermore, each
customer (node) has a weight, corresponding to the amount of requests. So, the
cost of serving a customer becomes the weight of the customer node times its
distances from the closest service center. In addition, each node is assigned a
constructive cost to represent the cost of building a service center at that node.
The total cost we wish to minimize is total constructive cost of chosen facilities
plus the cost of serving all of the customer requests by the chosen facilities. The
objective of the UFLP is to choose k nodes (as the facilities) so as to minimize
the cost, where k is a given facility number. Compared with this, the goal of
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SFLP is to minimize the cost over the cost of any number of facilities. More
precisely, the problem formulation of SFLP is as follows:

Problem Formulation: Fixed a set of points U , a distance function d : U ×
U −→ R+, a nonnegative weight function w : U −→ R and nonnegative con-
strutive function f : U −→ R. We assume that the distance that d is a met-
ric, that is, d is nonnegative, symmetric, satisfies the triangle inequality, and
d(x, y) = 0 iff x = y. We define the distance of a point x to a point set S is
d(x, S) = min

y∈S
d(x, y) and |S| is the number of points in S. Let n = |U | de-

note the number of total customers, and for any subset S ⊆ U , let its cost be
cost(S) =

∑
x∈S f(x)+

∑
y∈U d(y, S)w(y). In contrast to UFLP whose objective

is to find a subset S ⊆ U such that it meet min
|S|=k

cost(S), where k is the given

positive integer, 1 ≤ k ≤ n, the objective of SFLP is to give a subset S ⊆ U
such that it meet that min

1≤k≤n
min
|S|=k

cost(S).

Related Work: Facility location has been the subject of a great deal of pre-
vious work[5, 15, 9, 8, 2, 6], and here we just describe some typical theoretical
analysis. This problem is MAX-SNP Hard and the first constant approxima-
tion algorithm was given by Shmoys et.al [15]; the approximation ratio was later
improved to 1.728 by Charikar and Gula[5] and to 1.528 by Sviridenko [16]. Now
the best approximation ratio is 1.52 given by Mahdian, Ye and Zhang [10], and
the negative result is that no polynomial-time algorithm can achieve an approx-
imation ratio less than 1.463 unless NP⊆DTIME[nO(log log n)] [8]. The methods
they have used are based on, such as linear Programming rounding (e.g. [15]),
local search (e.g. [5]), and the primal-dual method (e.g. [9]) etc. The reader is
referred to Mahdian et.al [10] for a detail discussion.

Current et.al [4] firstly considered the facility location problem when the
number of facilities is uncertain. Unlike ours, they used the criteria of the mini-
mization of expected opportunity loss and the minimization of maximum regret
to make decision about what’s the number of facilities and where we locate those.
Their solution, unfortunately, does not also generate a permutation of facilities
and thus does not meet the demand that no point can be removed when the
number of facilities increases.

Recently, the Undesirable Facility Location Problem [13], the Online Median
Problem [11] and the Incremental Facility Location Problem [12] most resemble
our problem, but their objective formulations are different with ours. The Undesir-
able Facility Location Problem seeks a solution to maximize the minimum distance
between facilities and the minimum distance between facilities and existing non-
obnoxious facilities [13]. In the Online Median Problem, the goal is to determinate
a permutation of facilities that minimizes the maximum ratio between the service
cost of anyprefixof thepermutation and that of anoptimaloffline same-size config-
urations [11], and this problem uses the formulation cost(S) =

∑
y∈U d(y, S)w(y)

to compute the cost. And for the Incremental Facility Location Problem [12], the
cost formulation is cost(S) = |S|

∑
x∈S f(x) +

∑
y∈U d(y, S)w(y) and the goal is

also minimal over the same-size configurations.
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3 Algorithm and Approximation Ratio

3.1 Greedy Selection of Mettu and Plaxton [11]

For the new requirement of our problem, we first present the algorithm of Mettu
and Plaxton [11], and will need to build upon it. Roundly speaking, their al-
gorithm is to compute the ”value” of each ball about every node in the metric
space to start with, then sort them by increasing order, then greedily pick up the
point if they separate sufficient large, and so on until all n points are examined.
These points are taken as service facilities. If the distance function is a metric
and the separation distance is more twice longer than the maximal radius of
ball, the cost of resulting location is within a factor three of optimal. Implicitly,
their idea came from the work of Jain and Vazirani [9].

The following definition were used in [11], but we rewrite them by our nota-
tion for easy use later.

Definition 1. A ball A is a pair (x, rx), where x ∈ U is the center and rx is
the radius of the ball, which is a nonnegative real.

Definition 2. Given a ball A = (x, rx), we let Points(Ax) denote the set
{y ∈ U |d(x, y) ≤ rx} and always directly use Ax instead of Point(Ax). For
example, we write ”a ∈ Ax” and ”Ax ∪ Ay” instead of ”a ∈ Points(Ax)” and
”Points(Ax) ∪ Points(Ay)”, respectively.

Definition 3. The value of a ball A = (x, rx), denoted value(Ax), is defined
by

value(Ax) =
∑

y∈Ax

(rx − d(x, y)) · w(y)

Definition 4. For any ball A = (x, rx) and any nonnegative real c, we define
cA as the ball (x, crx).

3.2 Constructing a Permutation

We will stick with the same computing of ”value” of each point in the metric
space, but we will no longer greedily select the facility by the former separate dis-
tance. Note that the longer the separate distance between two facilities is, the less
the number of obtained facilities is. Intuitively, we may only need the distance
to separate longer than twice and thus it will enable us to generate less facili-
ties. Thus if the obtained facilities are nested each other and the near-optimal
property is still held for fixed constant distance, the permutation of facilities,
which will meet the constraints of our problem, will be obtained. Following we
will give a positive answer for these considerations.

For easy reference, and to illustrate our notation, we write integrally the
algorithm. In the following algorithm and the later analysis, we always assume
that the weight of each point is larger than zero for the sake of convenience.
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Input: (U, d), f and w;

Output: A non-empty subset Zn ⊆ U .

Algorithm:
Step 1. For each point x, determine an associated ball A = (x, rx) such that

value(Ax) = f(x).
Step 2. Sorting rx for all x ∈ U increasingly, denoting the index of x after

sorting is φ(x).
Step 3. Let Bi = (xi, rxi

) denote the ball A = (x, rx) such that φ(x) = i,
0 ≤ i < n. Let Z0 = ∅.

Step 4. For i = 0 to n − 1: If Zi ∩ (1 + α)Bi = ∅ then let Zi+1 = Zi ∪ {xi};
otherwise, let Zi+1 = Zi.

Where α ≥ 1 is a parameter which need to be inputed.

Throughout the rest of the paper, we always let Z denote the result of our
algorithm.

Remark 1. We have x0 ∈ Z, so Z �= ∅.

Remark 2. Note that if φ(x) = i, we have value(Bi) = value(Axi
) = f(xi).

Remark 3. Following the same manner as analysis given in [11], it can be easily
obtained that the total time complexity of above algorithm is O(n2) time for
any fix constant α ≥ 1.

3.3 Performance Guarantee

We now show a strong guarantee for the facility location induced by our algo-
rithm with any fixed input α ≥ 1.

Lemma 1. For any point x ∈ U , there exists a point y ∈ Z such that φ(y) ≤
φ(x) and d(x, y) ≤ (1 + α)rx.

Proof. If x ∈ Z, we can choose y = x and this lemma is proven. Following we
assume x /∈ Z.

The proof is by contradiction. Assume that ∀y ∈ Z with φ(y) ≤ φ(x), we
have d(x, y) > (1 + α)rx, that is, Zφ(x) ∩ (1 + α)Bφ(x) = ∅. Thus we have x
belongs to Z according to step 4 and this is contradicted with x /∈ Z. ��

Lemma 2. Let x, y ∈ Z and x �= y, then d(x, y) > (1 + α)max{rx, ry}.

Proof. Without loss of generality we assume φ(y) < φ(x), thus we have ry ≤ rx
and Zφ(y)+1 ⊆ Zφ(x) and so y ∈ Zφ(x). On the other hand, due to x ∈ Z we
must get Zφ(x) ∩ (1 + α)Bφ(x) = ∅. Thus we obtain d(x, y) > (1 + α)rx =
(1 + α)max{rx, ry}. ��
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For any point x and any non-empty subset Y ⊆ U , let

charge(x, Y ) = d(x, Y ) +
∑

y∈Y
max{0, ry − d(x, y)}

Lemma 3 ([11]). For any non-empty subset Y ⊆ U , we have

cost(Y ) =
∑

x∈U
charge(x, Y ) · w(x)

Lemma 4. Let x ∈ U be a point, let Y be a non-empty subset of U , and let y
belong to Y . If d(x, y) = d(x, Y ) then charge(x, Y ) ≥ max{ry, d(x, y)}

Proof. If x /∈ Ay, then d(x, y) > ry, we have charge(x, Y ) ≥ d(x, y) > ry.
Otherwise, we have d(x, y) ≤ ry, then we have charge(x, Y ) ≥ d(x, y) + (ry −
d(x, y)) = ry ≥ d(x, y). The lemma is proven. ��

Lemma 5. Let x ∈ U and z ∈ Z. If x ∈ Az, then charge(x,Z) ≤ rz.

Proof. Firstly assuming x ∈ Z, by z ∈ Z and Lemma 2, we have d(x, z) ≥
(1 + α)rz, which is contradicted with x ∈ Az, so x /∈ Z.

Now we prove ∀y ∈ Z, y �= z, d(y, x) > ry. Assuming this is not true, that is,
∃y∗ such that y∗ �= z and d(y∗, x) ≤ ry∗ , so

(1 + α)max{ry∗ , rz} ≤ d(y∗, z) ≤ d(y∗, x) + d(x, z) ≤ ry∗ + rz

this is contradicted by α ≥ 1.
According to discussion above, we have that

charge(x,Z) = d(x,Z) + (rz − d(z, x)) +
∑

y∈Z,y 	=z

max{0, ry − d(y, x)}

= d(x,Z) + (rz − d(x, z)) ≤ d(x, z) + (rz − d(x, z)) ≤ rz

where d(x, z) ≤ rz by x belongs to Az and the third inequality by z ∈ Z. ��

Lemma 6. Let x ∈ U and z ∈ Z. If x /∈ Az, then charge(x,Z) ≤ d(x, z).

Proof. If ∃y ∈ Z such that x ∈ Ay, that is, d(x, y) ≤ ry. By Lemma 2 and
Lemma 5, we have d(y, z) ≥ (1 + α)max{ry, rz} and charge(x,Z) ≤ ry, re-
spectively. Then we have d(x, z) ≥ d(y, z) − d(x, y) > (1 + α)ry − ry = αry ≥
α · charge(x,Z) ≥ charge(x,Z), that is, charge(x,Z) ≤ d(x, z).

Otherwise, if ∀y ∈ Z, we have x /∈ Ay, by the definition of charge(x,Z) and
z ∈ Z we have charge(x,Z) = d(x,Z) ≤ d(x, z). ��

Lemma 7. For any point x ∈ U and non-empty subset Y , charge(x,Z) ≤
(2 + α)charge(x, Y ).
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Proof. Let y be some point in Y such that d(x, y) = d(x, Y ). By Lemma 1, there
exists a point z ∈ Z such that φ(z) ≤ φ(y) and d(y, z) ≤ (1 + α)ry.

Now if x ∈ Az, then charge(x,Z) ≤ rz by Lemma 5. Thus by φ(z) ≤ φ(y),
we have rz ≤ ry, and since Lemma 4 implies charge(x, Y ) ≥ ry, we obtain
charge(x,Z) ≤ charge(x, Y ).

However if x /∈ Az, then charge(x,Z) ≤ d(x, z) by Lemma 6. By triangular
inequality we have charge(x,Z) ≤ d(x, y) + d(y, z) ≤ [d(x, y) + (1 + α)ry].
Moreover, by Lemma 4, we have charge(x, Y ) ≥ max{ry, d(x, y)}. Then we
have

charge(x,Z)
charge(x, Y )

≤ d(x, y) + (1 + α)ry
max{ry, d(x, y)}

≤ 2 + α

and the lemma is proven. ��

With above lemma 3 and lemma 7, we can then clinch the following main
result.

Theorem 1. For any non-empty subset Y of U , we have

cost(Z) ≤ (2 + α)cost(Y )

that is, the approximation ratio of our algorithm is (2 + α).

The best approximation ratio of our algorithm, which is 3 for α = 1, is equal
to the approximation ratio of Mettu and Plaxton. Though our best ratio is not
less than theirs, our algorithm can present a permutation of facilities with the
property that no facility can be removed as the number of facilities increases by
varying the parameter α, and it can be easily used in practice since practical
manager can choose the proper number of facilities by the proper α. Moreover,
the result of our algorithm presents an online fashion for the different α and the
different number of facilities. This property can give the practical manager much
room to freely add a new facility or to delete a facility from the exist facilities.

4 Summary and Future Work

For more practical considerations, this paper presents two primary constraints
on input facilities: the total number of facilities to be placed is not known in
advance and a facility cannot be removed once it is placed. We gave a new vari-
ant of classic facility location problem, the strength facility location problem,
and presented a group of constant-factor approximation algorithms. These algo-
rithms, which all take quadratic time in the worst case, produce the solutions
such that each result is the subset of another one. Thus the permutation of facil-
ities obtained by all of the results present the property that no point is removed
when the number of facility increases.

There are still various open problems for the future research. For example, it is
interesting to design and analyze some algorithms to improve the approximation
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ratio. Actually, according to the proof of Theorem 1, the condition α ≥ 1 is the
main bottleneck for improving the approximation ratio. So how to relax this
condition may be one of the possible directions.
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Abstract. In this paper, we introduce a class of stochastic age-dependent
population dynamic system. Applying the theory of stochastic func-
tional differential equation, using Gronwall’s lemma and Barkholder-
Davis-Gundy’s lemma, Existence and uniqueness of strong solution are
proved for a class of stochastic age-dependent population dynamic sys-
tem on Hilbert space. In particular, as a direct consequence our main
results extend some of those from ordinary age-dependent population
dynamic system.

1 Introduction

Consider the following Age-dependent Population dynamic system:⎧⎨⎩
∂P
∂t + ∂P

∂a = −μ(t, a)P + f(t, p), in Q = (0, A)× (0, T ),
P (0, a) = P0(a), in [0, A],
P (t, 0) =

∫ A

0
β(t, a)P (t, a)da, in [0, T ],

(1)

where P (t, a) is the density of individuals of age a at the time t. β(t, a) is
the fertility rate of females of age a at time t. μ(t, a) is the mortality rate of
age a at time t. f(t, P ) denotes affects external environment for population
system. using the Banach fixed point theorem and operator semi-group theory,
respectively; the existence, uniqueness and stability of solutions equation (1)
were discussed in [1-2]. Existence and Uniqueness of solutions for non-Stochastic
Population system has been studied by many mathematicians[3-4]. However,
given that Population system are often subject to environmental noise[5-6], it
is important to discover whether the presence of such noise affects this result.
Recently, stochastic population system has been studied by several authors . For
instance, Mao studied environmental Brownian noise suppresses explosions in
population dynamics[7]. In [8], under condition f(t, P ) with random migration
perturbations, the existence and uniqueness of solution are proved. Suppose that
the f(t, P ) is stochastically perturbed, with

f(t, P ) → f(t, P ) + g(t, P )ω̇(t)

N. Megiddo, Y. Xu, and B. Zhu (Eds.): AAIM 2005, LNCS 3521, pp. 151–161, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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where ω̇(t) is white noise represents the intensity of noise. Then this environ-
mentally perturbed system may be described by the Itô equation⎧⎨⎩
dtP = −∂P

∂a dt− μ(t, a)Pdt+ f(t, P )dt+ g(t, P )dωt, in Q = (0, A)× (0, T ),
P (0, a) = P0(a), in [0, A],
P (t, 0) =

∫ A

0
β(t, a)P (t, a)da, in [0, T ]

(2)

where dtp is the differential of P relative to t, i.e., dtP = ∂P
∂t dt.

In this paper, by virtue of a direct approach quite different from those mentioned
above, we shall discussion the existence and uniqueness of strong solution for
stochastic age-dependent population equation (2).

2 Preliminaries

Let V = H1([0, A]) ≡ {ϕ|ϕ ∈ L2([0, A]), ∂ϕ
∂xi

∈ L2([0, A]), where ∂ϕ
∂xi

is gener-
alized partial derivatives}, V is a Sobolev space. The norm in V is defined as
follows

‖ϕ‖V = (‖ϕ‖2L2([0,A]) +
N∑

i=1

‖ ∂ϕ
∂xi

‖2L2([0,A]))
1
2 .

H = L2([0, A]). V ′ is the dual space of V. We denote by ‖ · ‖, | · | and ‖ · ‖∗ the
norms in V , H and V ′ respectively; by 〈·, ·〉 the duality product between V ,V ′,
and by (·, ·) the scalar product in H.

Let ω be a Wiener Process defined on a certain complete probability space
(Ω,F ,P) and take in the separable Hilbert spaceK, with incremental covariance
operator W . Let (F t)t≥0 be the σ-algebras generated by {ωs, 0 ≤ s ≤ t}, then
ωt is a martingale relative to (F t)t≥0 and we have the following representation
of ωt:

ωt =
∞∑

i=1

βi(t)ei,

where {ei}i≥1 is an orthonormal set of eigenvectors of W , βi(t) are mutually
independent real Wiener processes with incremental covariance λi > 0, Wei =
λiei and trW =

∑∞
i=1 λi (tr denotes the trace of an operator). Let an operator

B ∈ L(K,H) be the space of all bounded linear operators from K into H ,we
denote by ‖B‖2 its denotes the Hilbert-Schmidt norm, i.e.

‖B‖22 = tr(BWBT ).

In this paper, ωt taking its values in real space R, so that W = 1.
Let μ(t, a), β(t, a) are nonnegative measurable, and{

0 ≤ μ0 ≤ μ(t, a) <∞, (t, a) ∈ Q,
0 ≤ β(t, a) ≤ β̄ <∞, (t, a) ∈ Q.
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Let operator A : P → −∂P (t,a)
∂a , and p ≥ 2. Assume the following hypotheses:

(a.1) ∃α > 0, ν ∈ R such that;

−2〈A(t, P ), P 〉+Aβ̄2|P |2 + ν ≥ α‖P‖p, ∀P ∈ V, a.e.t.;

Let f(t, ·) : L2
H → H be a family of nonlinear operators defined a.e.t., and satisfy

(b.1) f(t, 0) = 0;
(b.2) ∃k1 > 0 such that

|f(t, y)− f(t, x)| ≤ k1‖y − x‖C , ∀x, y ∈ C, a.e.t;

(b.3) t ∈ (0, T ) → f(t, x) ∈ H is Lebesgue-measurable ∀x ∈ L2
H .

And let g(t, ·) : L2
H → L(K,H), the family of nonlinear operator defined a.e.t.

and satisfy
(c.1) g(t, 0) = 0
(c.2) there exists k2 > 0 such that

‖g(t, y)− g(t, x)‖2 ≤ k2‖y − x‖C , ∀x, y ∈ C, a.e.t,

(c.3)g(t, x) ∈ £(K,H) is Lebesgue-measurable ∀x ∈ L2
H .

The objective in this paper is that under the conditions described above, we
hopefully find a unique process Pt ∈ Ip(0, T ;V )

⋂
L2(Ω;C(0, T ;H)) such that⎧⎪⎨⎪⎩

Pt = P0 −
∫ t

0
∂Ps

∂a ds−
∫ t

0
μ(s, a)Psds

+
∫ t

0
f(s, Ps)ds+

∫ t

0
g(s, Ps)dωs, ∀t ∈ [0, T ],

P (t, 0) =
∫ A

0
β(t, a)Psda, ∀t ∈ [0, T ],

(3)

where Pt = P (t, a), P0 = P (0, a).

Definition 1. let (Ω,F , {F t}, P ) be the stochastic basis and ωt a Wiener pro-
cess with covariance operator W. Suppose that P0 is a random variable such that
E|P0|2 <∞. A stochastic process Pt is said to be a strong solution on Ω to the
SDE (3) for t ∈ [0, T ] if the following conditions are satisfied:

(a) Pt is a F t -measurable random variable;
(b) Pt ∈ Ip(0, T ;V )

⋂
L2(Ω;C(0, T ;H)), p > 1,T > 0, where Ip(0, T ;V ) de-

notes the space of all V-valued processes (Pt)t∈[0,T ] (we will write Pt for short)
measurable (from [0, T ]×Ω into V), and satisfying

E

∫ T

0

‖Pt‖pdt <∞.

Here C(0, T ;H) denotes the space of all continuous functions from [0, T ] to H;
(c) Eq.(3) is satisfied for every t ∈ [0, T ] with probability one.

If T is replaced by ∞, Pt is called a global strong solution of (3).
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3 Existence and Uniqueness of Solutions

3.1 Uniqueness of Solutions

Now we shall prove that there exists at most one solution of (3). This result will
be deduced mainly from Itô′s formula.

Theorem 1. Assume the preceding hypotheses hold. Then, there exists at most
one solution of (3) in Ip(0, T ;V )

⋂
L2(Ω;C(0, T ;H)).

Proof. Suppose that P1t, P2t ∈ Ip(0, T ;V )
⋂
L2(Ω;C(0, T ;H)) are two solutions

of (3).Then, applying Itô′s formula to |P1t − P2t|2, we obtain

|P1t − P2t|2

= 2
∫ t

0

〈−∂P1s

∂a
+
∂P2s

∂a
− μ(s, a)(P1s − P2s), P1s − P2s〉ds

+2
∫ t

0

(f(s, P1s)− f(s, P2s), P1s − P2s)ds

+2
∫ t

0

(P1s − P2s, (g(s, P1s)− g(s, P2s))dωs)

+
∫ t

0

tr(g(s, P1s)− g(s, P2s)W (g(s, x1s)− g(s, P2s))∗ds

≤ −2
∫ t

0

〈∂(P1s − P2s)
∂a

, P1s − P2s〉ds− 2μ0

∫ t

0

(P1s − P2s, P1s − P2s)ds

+2
∫ t

0

(f(s, P1s)− f(s, P2s), P1s − P2s)ds+
∫ t

0

‖g(s, P1s)− g(s, P2s)‖22ds

+2
∫ t

0

(P1s − P2s, (g(s, P1s)− g(s, P2s))dωs).

Since

−〈∂(P1s − P2s)
∂a

, P1s − P2s〉 ≤
1
2
Aβ̄2|P1s − P2s|2.

Therefore, we get that

|P1t − P2t|2

≤ Aβ̄2

∫ t

0

|P1s − P2s|2ds+ 2
∫ t

0

|P1s − P2s||f(s, P1s)− f(s, P2s)|ds

−2μ0

∫ t

0

|xs − ys|2ds+
∫ t

0

‖g(s, P1s)− g(s, P2s)‖22ds

+2
∫ t

0

(P1s − P2s, (g(s, P1s)− g(s, P2s)dωs).



Existence and Uniqueness of Strong Solutions 155

Now, it follows from (b.2) and (c.2)that for any t ∈ [0, T ]

E sup
0≤s≤t

|P1s − P2s|2

≤ (|Aβ̄2 − 2μ0|+ 1)
∫ t

0

E|P1s − P2s|2ds (4)

+(k2
1 + k2

2)
∫ t

0

E‖P1s − P2s‖2Cds

+2E sup
0≤s≤t

∫ s

0

(P1r − P2r, (g(r, P1r)− g(r, P2r))dωr).

However, by Burkholder-Davis-Gundy’s inequality, we have

E[ sup
0≤s≤t

∫ s

0
(P1r − P2r, (g(r, P1r)− g(r, P2r))dωr)

≤ 3E[ sup
0≤s≤t

|P1s − P2s|[
∫ t

0
‖g(s, P1s)− g(s, P2s)‖22ds)1/2]

≤ 1
4E[ sup

0≤s≤t
|P1s − P2s|2 +K

∫ t

0
‖g(s, P1s)− g(s, P2s)‖22ds

≤ 1
4E[ sup

0≤s≤t
|P1s − P2s|2 +K · k2

2

∫ t

0
E‖P1s − P2s‖2Cds,

(5)

for some positive constant K > 0. On the other hand, we get∫ t

0

E‖P1s − P2s‖2Cds ≤
∫ t

0

E sup
0≤r≤s

|P1r − P2r|2ds.

Thus, it follows from (4) and (5)

E sup
0≤s≤t

|P1s − P2s|2

≤ 2(|Aβ̄2 − 2μ0|+ 1 + k2
1 + k2

2 + 2Kk2
2)
∫ t

0

E sup
0≤r≤s

|P1r − P2r|2ds, ∀t ∈ [0, T ].

Now, Gronwall’s lemma obviously implies uniqueness. ��

3.2 Existence of Strong Solutions

First of all,we state a theorem on existence and uniqueness of solutions of stochas-
tic population system. Next, by means of this result we will prove the desired
existence of solution of (3).

Theorem 2. Assume the preceding hypotheses and Aβ̄2 = 0 holds. Then , there
exist a unique process Pt ∈ Ip(0, T ;V )

⋂
L2(Ω;C(0, T ;H)) such that

Pt = P0 +
∫ t

0

[A(s, Ps) + f1(s)]ds+M(t), P − a.s., ∀t ∈ [0, T ],
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where f1 ∈ I2(0, T ;H), P0 ∈ L2(Ω,F0, P ;H) and Mt is an H-valued continuous,
square integrable F t−martingale. In addition, the following energy equality also
holds:

|Pt|2 = |P0|2 + 2
∫ t

0
〈A(s, Ps), Ps〉ds+ 2

∫ t

0
(f1(s), Ps)ds

+2
∫ t

0
(Pt, dMs) + tr〈〈M〉〉t, P − a.s., ∀t ∈ [0, T ],

where 〈〈M〉〉t denotes the quadratic variation of Mt.

Proof. see Métivier and Pellaumail[9]. ��

For the existence, we consider the equations

P 1
t = P0 +

∫ t

0

[−∂P
1

∂a
− Aβ̄2

2
P 1

s ]ds, t ∈ [0, T ], (6)

P 1(t, 0) =
∫ A

0

β(t, a)P 1
t da, t ∈ [0.T ], (7)

Pn+1
t = P0 +

∫ t

0

[−∂P
n+1
s

∂a
− Aβ̄2

2
Pn+1

s ]ds+
∫ t

0

Aβ̄2

2
Pn

s ds−
∫ t

0

μ(s, a)Pn
s ds

+
∫ t

0

f(s, Pn
s )ds+

∫ t

0

g(s, Pn
s )dωs, t ∈ [0, T ], ∀n ≥ 1 (8)

Pn+1(t, 0) =
∫ A

0

β(t, a)Pn+1
t da , t ∈ [0.T ], ∀n ≥ 1. (9)

Now, we want to prove that the sequence {Pn
t } is convergent to a process

Pt in Ip(0, T ;V )∩L2(Ω;C(0, T ;H)), which will be the solution of (3). We shall
first prove the following lemmas.

Lemma 1. {Pn
t } is a Cauchy sequence in L2(Ω;C(0, T ;H)).

Proof. For n > 1 and the process Pn+1
t − Pn

t , it following from Itô′s formula

|Pn+1
t − Pn

t |2

= 2
∫ t

0

〈−∂P
n+1
s

∂a
+
∂Pn

s

∂a
, Pn+1

s − Pn
s 〉ds

−2
∫ t

0

(μ(s, a)(Pn
s − Pn−1

s ), Pn+1
s − Pn

s )ds−Aβ̄2

∫ t

0

|Pn+1
s − Pn

s |2ds

+Aβ̄2

∫ t

0

(Pn+1
s − Pn

s , P
n
s − Pn−1

s )ds (10)

+2
∫ t

0

(f(Pn
s )− f(Pn−1

s ), Pn+1
s − Pn

s )ds

+2
∫ t

0

(Pn+1
s − Pn

s , (g(P
n
s )− g(Pn−1

s ))dωs) +
∫ t

0

‖g(Pn
s )− g(Pn−1

s )‖22ds
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where, by definition, Pn
t := Pn(t, a),f(Pn

t ) := f(t, Pn
t ) and g(Pn

t ) := g(t, Pn
t ).

It is easy to deduce

|Pn+1
t − Pn

t |2

≤ |Aβ̄2 − 2μ0|
∫ t

0

|Pn+1
s − Pn

s ||Pn
s − Pn−1

s |ds

+2|
∫ t

0

(Pn+1
s − Pn, (g(Pn

s )− g(Pn−1
s ))dωs)| (11)

+2
∫ t

0

|f(Pn
s )− f(Pn−1

s )||Pn+1
s − Pn

s |ds

+
∫ t

0

‖g(Pn
s )− g(Pn−1

s )‖22ds.

Consequently, (11) yields

E[ sup
0≤θ≤t

|Pn+1
θ − Pn

θ |2]

≤ |Aβ̄2 − 2μ0|E
∫ t

0

|Pn+1
s − Pn

s ||Pn
s − Pn−1

s |ds

+2E[ sup
0≤θ≤t

|
∫ θ

0

(Pn+1
s − Pn

s , (g(P
n
s )− g(Pn−1

s ))dωs)|] (12)

+2E
∫ t

0

|f(Pn
s )− f(Pn−1

s )||Pn+1
s − Pn

s |ds

+E
∫ t

0

‖g(Pn
s )− g(Pn−1

s )‖22ds.

Now, we estimate the terms on the right-hand side of (12)

|Aβ̄2 − 2μ0|E
∫ t

0

|Pn+1
s − Pn

s ||Pn
s − Pn−1

s |ds

≤ 1
4
E[ sup

0≤θ≤t
|Pn+1

θ − Pn
θ |2] (13)

+(Aβ̄2 − 2μ0)2T
∫ t

0

E[ sup
0≤θ≤s

|Pn
θ − Pn−1

θ |2]ds.

On the other hand, we can get from (c.2)

E

∫ t

0

‖g(Pn
s )− g(Pn−1

s )‖22ds ≤ k2
2E

∫ t

0

sup
0≤r≤s

|Pn
r − Pn−1

r |2ds. (14)

In a similar manner, from (b.2) we can obtain

2E
∫ t

0
|f(Pn

s )− f(Pn−1
s )||Pn+1

s − Pn
s |ds

≤ 1
4E[ sup

0≤r≤t
|Pn+1

r − Pn
r |] + 4k2

1T
∫ t

0
E[ sup

0≤r≤s
|Pn

r − Pn−1
r |2]ds. (15)
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Now, Burkholder-Davis-Gundy’s inequality implies

2E[ sup
0≤r≤t

|
∫ r

0
(Pn+1

s − Pn
s , (g(P

n
s )− g(Pn−1

s ))dωs|]

≤ 6E[( sup
0≤r≤t

|Pn+1
r − Pn

r |2)
∫ t

0
‖g(Pn

s )− g(Pn−1
s )‖22ds]

1
2

≤ 1
4E{ sup

0≤s≤t
|Pn+1

r − Pn
r |2 + 72k2

2

∫ t

0
E[ sup

0≤r≤s
|Pn

r − Pn−1
r |2]ds.

(16)

If we set
ϕn(t) = E[ sup

0≤θ≤t
|Pn+1

θ − Pn
θ |2|]. (17)

then from (13)-(16), it could be deduced that there exists a positive constant
c > 0 such that

ϕn(t) ≤ 3
4
ϕn(t) + c

∫ t

0

ϕn−1(s)ds, (18)

and consequently there exists k > 0 such that

ϕn(t) ≤ k

∫ t

0

ϕn−1(s)ds. (19)

By iteration from (19), we get

ϕn(t) ≤ kn−1Tn−1

(n− 1)!
ϕ1(T ), ∀n > 1, ∀t ∈ [0, T ]. (20)

Therefore,

E[ sup
0≤θ≤T

|Pn+1
θ − Pn

θ |2] ≤
kn−1Tn−1

(n− 1)!
ϕ1(T ), ∀n > 1. (21)

Obviously, (21) implies that {Pn
t } is a Cauchy sequence L2(Ω;C(0, T ;H)). ��

Lemma 2. The sequence {Pn
t } is bounded in Ip(0, T ;V ).

Proof. Indeed, applying Itô′s formula to |Pn
t |2 with n ≥ 2 immediately yields

E|Pn(T )|2

= 2E
∫ T

0

〈−∂P
n
s

∂a
, Pn

s 〉ds− 2
∫ T

0

(μ(s, a)Pn
s , P

n
s )ds

−Aβ̄2E

∫ T

0

|Pn
s |2ds+ E|P0|2 + 2E

∫ T

0

(f(Pn−1
s ), Pn

s )ds (22)

+Aβ̄2E

∫ T

0

(Pn
s , P

n−1
s )ds+ E

∫ T

0

‖g(Pn−1
s )‖22ds.
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Therefore,

2E
∫ T

0

〈∂P
n
s

∂a
, Pn

s 〉ds+Aβ̄2E

∫ T

0

|Pn
s |2ds

≤ E|P0|2 + 2E
∫ T

0

|f(Pn−1
s )||Pn

s |ds (23)

+Aβ̄2E

∫ T

0

|Pn
s ||Pn−1

s |ds+ E

∫ T

0

‖g(Pn−1
s )‖22ds.

Since {Pn} is convergent in L2(Ω;C(0, T ;H)), it will be bounded in this space.
Now, it is not difficult to check that there exists a positive constant k′ > 0 such
that the right-hand side of (23) is bounded by this constant. We will estimate
one of those terms. Firstly, we observe that

2E
∫ T

0

|f(Pn−1
s ||Pn

s )|ds

≤ k1E

∫ T

0

[‖Pn−1
s ‖2C + |Pn

s |2]ds

≤ Tk1E( sup
0≤θ≤T

|Pn−1
θ |2) + k1TE( sup

0≤θ≤T
|Pn

θ |2)

= Tk1‖Pn−1
t ‖L2(Ω;C(0,T ;H)) + k1T‖Pn

t ‖L2(Ω;C(0,T ;H)),

which, in addition to (23) and (a.1), leads to the following inequalities:

α

∫ T

0

E‖Pn
s ‖pds ≤ 2E

∫ T

0

〈∂P
n
s

∂a
, Pn

s 〉ds+Aβ̄2E

∫ T

0

|Pn
s |2ds+ νT ≤ k′,

and Lemma 2 is proved. ��

Lemma 3. The limit of the sequence {Pn
t } is a solution to (3).

Proof. Firstly, we observe that Lemma 1 implies that there exists Pt ∈ L2(Ω;
C(0, T ;H)) such that Pn

t → Pt in L2(Ω;C(0, T ;H)). Since (b.2) and (c.2) hold,
we have f(Pn

t ) → f(Pt)(in L2(Ω;L∞(0, T ;H))), and g(Pn
t ) → g(Pt)(in L2(Ω;

L∞;L(K,H))).
Let DPt = ∂Pt

∂t + ∂Pt

∂a . So

DPn(t, a) = −Aβ̄
2

2
Pn

t dt− μ(t, a)Pn−1
t dt

+
Aβ̄2

2
Pn−1

t dt+ f(t, Pn−1
t )dt+ g(t, Pn−1

t )dωt.

By preceding analysis, we easily obtain that

‖DPn‖V ′ ≤M ≤ ∞.
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On the other hand, by virtue of lemma 2 {Pn
t } has a subsequence which is

weakly convergent in Ip(0, T ;V ). But, since Pn
t → Pt in L2(Ω;C(0, T ;H)), we

can assure that Pn
t → Pt weakly in Ip(0, T ;V ) (in the sequel, we will denote

this by Pn
t ⇀ Pt in Ip(0, T ;V )). In conclusion, we have proved:

Pn → P in L2(Ω;C(0, T ;H)), (24)

f(Pn
t ) → f(Pt) in L2(Ω;L∞(0, T ;H)), (25)

g(Pn
t ) → g(Pt) in L2(Ω;L∞(0, T ;L(K,H))), (26)

Pn
t ⇀ Pt in Ip(0, T ;V ), (27)

DPn ⇀ h in Lp′
(Ω × (0, T );V ′).

Since the differential operator is continuous, so DP = h. The proof of Lemma 3
is now complete. ��

By Theorem 1 and Lemma 3, we can obtain the following Theorem

Theorem 3. Assume (a.1),(b.1)-(b.3),(c.1)-(c.3) hold. Then, for each P0 ∈
H
⋂
V , there exists a unique solution of the problem (3) in Ip(0, T ;V ) ∩ L2(Ω;

C(0, T ;H)).
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Abstract. We consider the scheduling problem Rm|rj , B|Cmax under
the assumption of agreement, i.e., pij1 ≥ pij2 for some i implies pij1 ≥
pij2 for all 1 ≤ i ≤ m, where pij1 and pij2 denote the processing times
on machine Mi of jobs Jj1 and Jj2 , respectively. For the special case
when the number of distinct release times t is constant and all process-
ing times and release times integral, we propose a pseudo-polynomial
time algorithm by approach of dynamic programming. Without the in-
tegral restriction, an FPTAS is provided. And for the general case with
arbitrary t, we establish a PTAS.

1 Introduction

The batch scheduling problem has its deep root in the real world and has at-
tracted a lot of attention recently. In the industry of semiconductor manufac-
turing , the last stage is the final testing (called the burn-in operation). In this
stage, chips are loaded onto boards which are then placed in an oven and ex-
posed to high temperature. Each chip has a pre-specified minimum burn-in time,
and the burn-in oven has a limited capacity B. Up to B chips (which is called
a batch) can be baked in an oven simultaneously, and the baking process is
not allowed to be preempted, that is, once the processing of a batch is started,
the oven is occupied until the process is completed. To ensure that no defective
chips will pass to the customer, the processing time of a batch is that of the
longest one among these chips. As the baking process in burn-in operations can
be long compared to other testing operations(e.g.,120 hours as opposed to 4-5
hours for other operations ), an effective algorithm for batching and scheduling
is highly non-trivial. There has been a lot of work on different variants of batch
scheduling. To have a better view, see Brucker’s paper [2].

According to Graham et. al. [7], a scheduling problem can be denoted by a
3-tuple α| β| γ, where α denotes the machine (i.e. oven here)environment, β the
additional constraints on the jobs (i.e. chips here), and γ the objective function.

� Supported by NSF China 10171054.

N. Megiddo, Y. Xu, and B. Zhu (Eds.): AAIM 2005, LNCS 3521, pp. 162–171, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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The model we consider in this paper is Rm|rj , B|Cmax, where Rm denotes unre-
lated parallel machines, implying that there are a constant number m of parallel
machines, and for each job, the processing times on different machines may be
different and unrelated. In this paper, we assume that pij1 ≥ pij2 for some i
implies pij1 ≥ pij2 for all 1 ≤ i ≤ m, where pij1 and pij2 denote the processing
times on machine Mi of jobs Jj1 and Jj2 , respectively. Thus we can re-index all
the jobs such that pi1 ≥ pi2 ≥ . . . ≥ pin holds for all 1 ≤ i ≤ m, where m is the
number of machines and n that of jobs. This assumption will be later referred
to as agreement. In addition, for each job Jj , it is associated with a release
time rj , before which it can’t be processed. And our objective is to minimize the
makespan Cmax, i.e., the time when all jobs are finished.

2 Previous Related Work and Our Contributions

As to the single machine variant,Ikura and Gimple [9] considered the 1|rj ,B|Cmax

problem when the jobs have equal processing times. They showed that this spe-
cial case can be solved in O(n) time using a simple strategy which they call
First-Only-Empty algorithm. Lee and Uzsoy [12] gave an O(n2) time algorithm
for the unbounded special case (i.e. B ≥ n), and extended it to polynomial
time algorithms for other special cases. When there are only two distinct release
times, they proposed an algorithm running in O(nB2PsumPmax) time , where
Pmax and Psum are the maximum and total processing time, respectively. For the
general 1|rj , B|Cmax problem, however, they only proposed a number of heuris-
tics. Brucker et. al.[2] showed that the general problem is strongly NP-hard even
if B = 2.

Finally, the problem was solved by Xiaotie Deng, C.K. Poon and Yuzhong
Zhang[6]. They obtained a PTAS when there are arbitrary release times. Given
the strongly NP-hardness, it is the best possible.

In their paper, they also considered the on-line version. They proved that
there can’t exist an on-line algorithm with competitive ratio less than 1 + δ,
where δ = (

√
5 − 1)/2 is the golden ratio. And for the unbounded special case,

they provided an algorithm with competitive ratio 1+ δ, and thus it is the most
competitive. For the bounded variant(i.e. B < n),Guochuan Zhang, Xiaoqiang
Cai and C.K. Wong [16]solved the special case with two release times, they also
generalized their algorithm to the general case and showed a worst-case ratio of 2.
Later, with the restriction of identical processing times, Guochuan Zhang et. al.
studied the parallel machine variant and gave beautiful results[17]. Still for the
on-line version, C.K. Poon and Wenci Yu get some new results recently.[14][15]

To the best of our knowledge, the only paper that considered the off-line
parallel variant is by Shuguang Li, Guojun Li and Shaoqiang Zhang[11]. They
deal with the case of identical parallel machines.

In this paper, we present a PTAS for the more general model Rm|rj , B|Cmax

under the assumption of agreement, where the batch size B is fixed, and which
will be later referred to as Rm|rj , B|Cmax. Given the strongly NP-hardness, it
is the best possible in the sense of worst-case performance. Our result is the
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generalization of that of Xiaotie Deng et. al., and the approaches relied on are
the same: dynamic programming and scaling-and-rounding.

The rest of the paper is organized as follows. In Subsection 3.1, necessary
preliminary knowledge is given. In Subsection 3.2, we discuss the special case
when there are constant release times and all the release times and processing
times are integral. We propose an optimal algorithm with pseudo-polynomial
running time. Without the restriction of integral inputs, we provide an FPTAS
in Subsection 3.3. And in Subsection 3.4, for the more general case when there
are arbitrary distinct release times, we establish a PTAS. Finally, in Section 4,
we draw a conclusion of this paper and direct the further research in this area.

3 A PTAS for Rm|rj, B|Cmax

3.1 Preliminaries

An algorithmA is a (1+ε)−approximation algorithm for a minimization problem
if it produces a solution which is at most (1+ε) times the optimal one. A family of
algorithms {Aε}ε is called a PTAS (Polynomial Time Approximation Scheme)if,
for every ε > 0, the algorithm Aε is a (1+ ε)−approximation algorithm running
in time polynomial in the input size when ε is treated as constant. It is also an
FPTAS (Fully Polynomial Time Approximation Scheme) if the running time is
also polynomial in 1

ε . For an NP-hard problem in the strong sense, it is impossible
to obtain an FPTAS or a pseudo-polynomial time algorithm.

Throughout this paper, we will denote by �x� the largest integer less than or
equal to x.

Before describing our algorithms, we first explain the FBLPT (Full Batch
Largest Processing Time) algorithm of Bartholdi, which computes the optimal
solution for 1|B|Cmax.

Algorithm FBLPT
step 1. Index all the jobs such that p1 ≥ p2 ≥ . . . ≥ pn.
step 2. From the first job onwards, group the adjacent jobs together into a

batch such that all the batches are full except possibly the last one.
step 3. Schedule the batches in any arbitrary order.

From now on, a schedule is said to follow the FBLPT rule if it groups the
jobs according to the FBLPT algorithm and schedules them in non-increasing
order of the processing time.

3.2 A Special Case with Constant Distinct Release Times and
Integral Inputs

We are given a set of jobs J = {J1, . . . , Jn} and a set of machines M =
{M1, . . . ,Mm} and t distinct release times r1 < r2 < . . . < rt, where each
job Jj is associated with a release time r

′
j ∈ {r1, r2, . . . , rt} and processing times

p1j , . . . , pmj .
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Under the assumption of agreement, we can assume that all the jobs have
been re -indexed such that pi1 ≥ pi2 ≥ . . . ≥ pin holds for all 1 ≤ i ≤ m. It’s
valuable to remark that this re-indexing is quite critical, which will be noticed
later, thus the agreement assumption is indispensable and we can not extend
our result to the general unrelated parallel machines.

Suppose π is a schedule for the problem, i.e., π assigns each job to some
machine, batches the jobs on the same machine and determines the start time
for each batch. Since a batch is always started at the time when all jobs in it
have arrived or when its previous batch is completed, whichever comes later, a
schedule is determined by the batching and processing order of all batches.

For any feasible schedule π, we can partition J into mt disjoint subsets
J11, . . . .Jmt, where Jik(π) is defined as the set of jobs that are scheduled on
machine Mi and start at or after time rk but strictly before rk+1, where 1 ≤
i ≤ m, 1 ≤ k ≤ t and rt+1 = ∞. A key observation is that we can locally
rearrange the schedule of batch Jik(π), without increasing its makespan, so that
each schedule follows the FBLPT rule.

Lemma 1. For any feasible schedule π with makespan Cmax, there exists a
schedule π

′
with makespan C

′
max ≤ Cmax such that Jik(π) = Jik(π

′
) and the

schedule for Jik(π
′
) follows the FBLPT rule for any 1 ≤ i ≤ m, 1 ≤ k ≤ t. ��

Lemma 1 is the immediate result of the optimality of algorithm FBLPT for
1|B|Cmax.

By this lemma, the original scheduling problem boils down to that of parti-
tioning J into a sequence ofmt disjoint subsets J11, . . . ,Jmt. Once this partition
is fixed, we can assume that each subset Jik will be processed by machine Mi

and scheduled in the time interval [rk, rk+1) according to the FBLPT rule. More-
over, the first batch in Jik will start at time rk or when all jobs in Ji(k−1) have
been completed, whichever comes later. In a word, the partitioning determines
the batch scheduling completely. Therefore, an immediate idea is to check all
the (mt)n possibilities. However, it is not practical at all, as the running time is
exponential in n. To further reduce the running time, a dynamic programming
will be relied on.

First of all, let’s introduce the state matrix. Suppose that π is a feasible
schedule and J11(π), . . . ,Jmt(π) the corresponding partition. The state matrix
of π is defined as S(π) = (B,C,N), where B = (bik)m×t,C = (cik)m×t,N =
(nik)m×t are all mt-dimensional matrices. bik, cik and nik are defined as fol-
lows.

If Jik(π) is not empty, we define bik as its delay time, i.e., the start time of its
first batch minus rk. rk > 0 happens when the last batch of Ji(k−1)(π) is finished
after rk. Since there may be at most one batch in Ji(k−1)(π) that is finished after
rk, the maximum delay is at most Pmax, where Pmax = max{pij : 1 ≤ i ≤ m, 1 ≤
j ≤ n}. Thus 0 ≤ bik ≤ Pmax. Obviously, for any sensible schedule π, bi1 is zero
for all 1 ≤ i ≤ m. we also define the processing time of Jik(π), denoted by cik
as the time needed to complete all the jobs in Jik(π). Thus 0 ≤ cik ≤ Psum,
where Psum = max{pi1 + pi2 + . . . pin : 1 ≤ i ≤ m}. nik is defined as the size of
Jik(π), i.e., the number of jobs in the last batch of Jik(π). If the last batch is
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full, we define nik as zero. Thus nik ranges from 0 to B-1. And for empty Jik(π)
we define all the three variables as zero. It is easy to see that the state matrix
is completely determined by a feasible schedule, and furthermore, it determines
the objective value. As a matter of fact, Cmax = max{rt + bit + cit : 1 ≤ i ≤ m}.
It is not that easy, however, to derive the schedule from a feasible state.

It is valuable to notice that, under the integral assumption, given an instance
with arbitrarily large number of jobs, the number of possible states are much
smaller than that of partitioning. In fact, there are no more than (BPmaxPsum)n

possible feasible states. Our basic idea is to check all the (BPmaxPsum)n possibil-
ities, find an optimal feasible state and derive the corresponding schedule. Now,
we define L as the set of all possible states. L = {S = (B,C,N)| for all 1 ≤
i ≤ m, 1 ≤ k ≤ t : 0 ≤ bik ≤ Pmax, 0 ≤ cik ≤ Psum, 0 ≤ nik ≤ B − 1; for all 1 ≤
i ≤ m, 1 ≤ k ≤ t − 1 : rk + bik + cik ≤ rk+1 + bi(k+1)}, where rk + bik + cik ≤
rk+1 +bi(k+1) means that the last batch of Jik(π) should be finished before or at
the time when the first batch of Ji(k+1)(π) is started. We index all the members
of L arbitrarily, say, L = {L1, . . . ,Lq}. Here, q is at most (BPmaxPsum)n.

Next, we will establish the recursive relation between adjacent states for the
dynamic programming.

Suppose S = (B,C,N) is a feasible state determined by a schedule for jobs
J1, . . . , Jh. And suppose that Jh ∈ Jik. We define :

u(h, i, k,B,C,N) =
{

(B,Cik,Nik) if nik = 1
(B, C, Nik) if nik = 0 or nik > 1

where

Cik =

⎛⎜⎜⎜⎜⎝
c11, · · · · · · , c1t

· · · · · ·
ci1, · · · , cik − pih, · · · , cit

· · · · · ·
cm1, · · · · · · , cmt

⎞⎟⎟⎟⎟⎠Nik =

⎛⎜⎜⎜⎜⎝
n11, · · · · · · , n1t

· · · · · ·
ni1, · · · , (nik − 1)mod B, · · · , nit

· · · · · ·
nm1, · · · · · · , nmt

⎞⎟⎟⎟⎟⎠
as one of the possible and feasible preceding states which are determined by

schedules for jobs J1, . . . .Jh−1.
We give some necessary remarks for this equation. In the case nik = 1,

remember Jh ∈ Jik , it means that Jh itself forms the last batch of Jik. Compared
with its preceding state, cik is increased by pih and nik by 1; In the case nik = 0
or nik > 1, Jh is inserted into the last batch of the preceding schedule. From
the agreement assumption and the index of the jobs, the completion time cik
is the same as the preceding one. And in both subcases, the size of Jik equals
(nik − 1)mod B.

It is essential to observe that, in any recursive equation, B remains the same.
Therefore, in the first step of our algorithm, we should set the original values to
range all the possibilities.

Now, we are about to describe the dynamic programming. In the algorithm,
h records different stages(In stage h, the first h jobs J1, . . . , Jh are scheduled.).
g(h,S) records one of the possible positions of Jh in state S, i.e., g(h,S)= (i, k)
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means Jh ∈ Jik. Sh and F (h) record the optimal state and optimal objective
value in stage h, respectively.

Algorithm OMM (Optimal Minimum Makespan)

step 1. Let S(1) = {S = (B,C,N) ∈ L| for some (i, k), 1 ≤ i ≤ m, i1 ≤ k ≤
t : cik = pi1, nik = 1, and other values in C,N are all zero.} For each S ∈ S(1),
say nik = 1, set g(1,S) := (i, k) and let f(S) = max{rt + bit + cit : 1 ≤ i ≤ m};
Set S1 := argmin{f(S) : S ∈ S(1)}, F (1) := f(S1), h := 2;

step 2. If h = n+ 1:
Case 1. n = 1: output F (1) and g(1,S1); Stop
Case 2. n > 1: set

Sn−1 := u(n,Sn, g(n,Sn));

Sn−2 := u(n− 1,Sn−1, g(n− 1,Sn−1));

· · ·
S1 := u(2,S2, g(2,S2)).

Output F (n), g(n,Sn), g(n− 1,Sn−1), · · · , g(1,S1); Stop
step 3. Set S(h) := ∅, x := 1. step 4. If there exists (i, k), 1 ≤ i ≤ m, ih ≤

k ≤ t such that u(h, i, k,Lx) ∈ S(h−1), (where u(h, i, k,Lx) is defined the same
as before), set S(h) := S(h)

⋃
{Lx}, g(h,S) := (i, k)

step 5. If x < q, set x := x+ 1 and goto step 4.
step 6. For each S = (B,C,N) ∈ S(h), let f(S) = max{rt + bit + cit : 1 ≤

i ≤ m} and set Sh := argmin{f(S) : S ∈ S(h)}, F (h) := f(Sh), h := h + 1,
goto step 2.

It is easy to show that the running time of algorithm OMM is O(nmt ·
(BPsumPmax)mt). For constant m and t, it is a pseudo-polynomial in n. Hence
the special case of Rm|rj , B|Cmax is not strongly NP-hard.

3.3 A special Case with Constant Distinct Release Times but
Arbitrary Inputs

Algorithm OMM solves the Rm|rj , B|Cmax problem optimally when the input
values are integral. We now extend this algorithm to an FPTAS for the same
problem without the integral restriction.

Algorithm AMM(ε) (Approximate Minimum Makespan)
step 1. Let M0 = max{rmax, Pmax} and M = εM0/(2n)
step 2. Construct a rounded down instance (J̃ , B,m) such that each job Jj

in J̃ has release time r̃j = M�rj/M� and processing times p̃1j = M�p1j/M�, . . . ,
p̃mj = M�pmj/M�

step 3. Take M as a unit in the rounded down instance, i.e., scale it, we
still denote the newly scaled instance by (J̃ , B,m). Hence (J̃ , B,m) satisfies the
integral restrictions in Subsection 3.2. Call algorithm OMM to find an optimal
schedule π̃ for (J̃ , B,m).
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step 4. Derive the corresponding original schedule π and output it as the
solution to the original instance.

It is crucial to remark that the rounded-down instance still meets the demand
of agreement, and thus we can call algorithm OMM to solve it. The same remark
is also necessary for the rounding in the next subsection and we omit it.

Due to rounding, the start time of each batch in π may be later than that of
the corresponding batch in π̃, and its processing time may also be longer, but
at most longer by M (in the original scale). And furthermore, the start time of
each batch in π is at most later than that of the corresponding batch in π̃ by
(n

′
+ r

′
)M , where n

′
is the number of batches processed on the same machine

and before this batch, and r
′

the number of distinct release times earlier than
its start time. Therefore:

Cmax ≤ C̃max + (n
′
+ r

′
)M ≤ C̃max + 2nM

where Cmax is the makespan of π and C̃max that of π̃. Note that the release time
and processing times of each job in (J , B,m) may be larger than that of the
corresponding job in (J̃ , B,m), and π̃ is the optimal schedule of (J̃ , B,m), we
have C̃max ≤ C∗

max, where C∗
max is the optimal makespan of (J , B,m). Thus:

Cmax

C∗
max

≤ C̃max + 2nM
C∗

max

≤ 1 +
2nM
C∗

max

= 1 +
2n · εM0/(2n)

C∗
max

≤ 1 + ε

Now, let’s calculate the running time. As the main time of algorithm AMM(ε)
is in step 3, i.e., calling OMM to solve (J̃ , B,m), its running time is:

O (nmt (B�Pmax/M��Psum/M�))

≤ O

(
nmt

(
BPmaxPsum

M2

)mt
)

≤ O

(
nmt+1mtBmt

(
BnP 2

max

M2

)mt
)

= O

(
nmt+1mtBmt

(
Pmax

M

)2mt
)

≤ O

(
nmt+1mtBmt

(
2n
ε

)2mt
)

= O

(
n3mt+1mt (4B)mt

(
1
ε

)2mt
)

It is polynomial both in n and 1
ε for constant m and t. According to the

above analysis, we have :

Theorem 1. The family of algorithms {AMM(ε)}ε is an FPTAS for
Rm|rj , B|Cmax with the restriction of constant distinct release times.
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Next, we will extend algorithm AMM(ε) to a PTAS for problemRm|rj , B|Cmax

in which the number of distinct release times, t, is non-constant. Our basic idea is
to round all the release times such that the number of distinct release times can be
reduced to a constant (unrelatedwithnbut relatedwith given ε), and the according
error is in our control.

3.4 A PTAS for Rm|rj, B|Cmax

Algorithm AMM2(ε)

step 1. Let K = (ε/2)rmax

step 2. Construct a rounded down instance (J̃ , B,m). Each job Jj in J̃ is
associated with a release time r̃j = K�rj/K� and the same processing times as
the corresponding job in J .

step 3. Call AMM(ε/2) to find an (1+ε/2)−approximate schedule π̃ for the
rounded down instance.

step 4. Output π as the approximate solution for the original instance, where
the batching and sequencing in π are the same as that in π̃.

Theorem 2. The family of algorithms {AMM2(ε)}ε is a PTAS for agreeable
Rm|rj , B|Cmax

Proof. First of all, it is easy to see that there are at most �2/ε�+1 distinct release
times in the rounded down instance, and thus the running time of AMM2(ε) is:

O

(
n3m((� 2

ε �+1)+1)m
(
�2
ε
�+ 1

)
(4B)m( 2

ε +1)
(

1
ε

)2m( 2
ε +1))

≤ O

(
n

6m
ε +3m+1m

(
2
ε

+ 1
)

(4B)(
2
ε +1)m

(
1
ε

)2m( 2
ε +1))

which is a polynomial in n (but exponential in 1
ε ).

As for the accuracy, denote by C̃max, C̃
∗
max, Cmax, C

∗
max the makespan ob-

tained in π̃, the optimal makespan of (J̃ , B,m), makespan determined by
π and the optimal makespan of (J , B,m), respectively.According to Theo-
rem 3.3, C̃max ≤ (1 + ε

2 )Cmax. And due to the rounding, C̃∗
max ≤ C∗

max,
Cmax ≤ C̃max +K. Therefore,

Cmax ≤
(
1 +

ε

2

)
C̃∗

max +K

≤
(
1 +

ε

2

)
C̃∗

max +
(ε

2

)
rmax

≤
(
1 +

ε

2

)
C̃∗

max +
ε

2
C∗

max

= (1 + ε)C∗
max

Hence the theorem. ��
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4 Conclusion and Remarks

In this paper, we extend the result of Xiaotie Deng et. al. to a constant number
of agreeable unrelated parallel machines. We give a PTAS for the Rm|rj , B|Cmax

problem under the assumption of agreement. Given the strongly NP-hardness, it
is the best possible. For the more general problem with non-constant machines
and/or without the agreement assumption, further discussion is still needed.
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Abstract. This paper addresses linear time algorithms for parallel ma-
chine scheduling problems. We introduce a kind of threshold algorithms
and discuss their main features. Three linear time threshold algorithm
classes DT , PT and DTm are studied thoroughly. For all classes, we
study their best possible algorithms among each class. We also present
their application to several scheduling problems. The new algorithms are
better than classical algorithms in time complexity and/or worst-case ra-
tio. Computer-aided proof method is used in the proof of main results,
which greatly simplifies the proof and decreases case by case analysis.

1 Introduction

In the scheduling theory, the classical parallel machine scheduling problem Pm
||Cmax is of great importance, which can be described as follows. We are given
n independent jobs J = {p1, p2, . . . , pn} which must be non-preemptively pro-
cessed on m identical machines M = {M1,M2, . . . ,Mm}. We identify the jobs
with their processing times. Jobs and machines are available at time zero. The
objective is to minimize the maximum machine load (makespan), where the load
of a machine is the total processing time of the jobs assigned to it. In his pio-
neering work, Graham [3], [4] proposed algorithms LS and LPT based on primal
greedy idea and proved that their worst-case ratios are 2−1/m and 4/3−1/(3m),
respectively. Here the worst-case ratio of an algorithm A is defined as the small-
est number c such that CA ≤ cCOPT for all instances, where CA and COPT

denote the makespan produced by A and the optimal makespan, respectively.
Coffman et al. [2] devised an algorithm MULTIFIT based on dual greedy idea,
which has a worst-case ratio 13/11. Hochbaum and Shmoys [8] generalized the
idea to obtain a polynomial time approximation scheme (PTAS). Since then,
dual and primal greedy ideas are two main tools in algorithm design.

Besides worst-case ratio, time complexity is also an important criterion of an
approximation algorithm. Note that both LPT and MULTIFIT run in time
O(n log n), while that of PTAS increases exponentially when the worst-case
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ratio tends to 1, which makes it only theoretical significance. Although LS runs
in linear time, its worst-case ratio is not appealing. Hence it is an open question
how to design an approximation algorithm with a smaller worst-case ratio and
lower time complexity [9]. As an attempt, He et al. [5] proposed a linear time
algorithm for P2||Cmax with a worst-case ratio 12/11, which is based on dual
greedy idea. Noting that the worst-case ratios of LPT and MULTIFIT are 7/6
and 9/8 for P2||Cmax, the new algorithm beats them with respect to both two
criteria: worst-case ratio and time complexity.

In this paper, we will further consider the design and analysis of linear time
algorithms. We will generalize the method in [5] to obtain a Dual Threshold
Algorithm Class (DT for short), and propose a new Primal Threshold Algorithm
Class (PT for short) based on primal greedy idea. Moreover, in order to get
the worst-case ratios, we will use computer-aided proof method which sounds a
new technique to analyze deterministic algorithms for solving parallel machine
scheduling. Dozens of linear programs are solved by computer as a substitution
for complicated case by case analysis of approximation algorithms. Hence this
method greatly simplifies the proof and decreases case by case analysis.

2 Main Idea and Results

In [5], He et al. designed a procedure with parameters for solving P2||Cmax,
which is based on dual greedy idea. By a combination of three such procedures
with different parameter values, a linear time algorithm with a worst-case ratio
12/11 was obtained. Let T =

∑n
j=1 pj and ε > 0, then the main idea of this

procedure is as follows. According to the value of T and expected worst-case
ratio 1 + ε, appropriately set an upper threshold and a lower threshold, and
then by properly assigning jobs the algorithm tries to make one machine load
between the upper and lower thresholds, resulting in the worst-case ratio of
1 + ε. Even there is no way to realize it, the algorithm can also guarantee the
expected worst-case ratio by dual greedy assignment rule. We call this procedure
Dual Threshold Algorithm. Formally, the algorithm can be formulated as follows,
where thresholds are (1 + ε)T/2 and (1− ε)T/2, respectively.

Dual Threshold Algorithm DT (ε)
While there exists at least one unassigned job, and p is the first such job,

we do:

1. (Normal Stopping Rule, NSR) If there exists i, i = 1, 2, such that the
new load of Mi will be in [(1− ε)T/2, (1 + ε)T/2] by assigning job p to Mi,
then assign p to Mi, and all remaining jobs to another machine. Stop.

2. (Abnormal Stopping Rule, ASR) If no machine will have a new load at
most (1 + ε)T/2 by assigning job p to it, then assign p to the machine with
smaller current load and all remaining jobs to another machine. Stop.

3. (Dual Assignment Rule, DAR) If the new load of the machine with
larger load will not greater than (1 + ε)T/2 by assigning p to it, then assign
p to this machine. Otherwise, assign p to the machine with smaller load.
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It is clear that DT (ε) defines an approximation algorithm class DT when ε
varies from 0 to 1, called Dual Threshold Algorithm Class. We say that ε0 is the
tight bound of the algorithm class DT if the worst-case ratio of DT (ε0) is 1+ ε0,
and there does not exist ε < ε0 such that the worst-case ratio of DT (ε) is 1 + ε.
Tight bound exposes the best possible worst-case performance that a threshold
algorithm class can be achieved (i.e., the best possible algorithm among the
class), which is the most important measure for the class.

Generally, a scheduling problem is called offline, if full information on jobs
is available before scheduling. By contrast, if jobs arrive one by one, and we
are required to schedule jobs irrevocably on the machines as soon as they are
given, without any knowledge about jobs that follow later on, this problem is
called online. Moreover, a scheduling problem is called semi-online if some par-
tial additional information about jobs is available in advance, and we cannot
rearrange any job which has been assigned to machines [10], [7]. Semi-online
is neither offline nor online, but somehow in between. With these definitions,
we know that algorithms LPT and MULTIFIT are designed only for offline
problems, while LS is for online problem. Although LS can be applied to solve
offline and semi-online problems, its performance is not satisfactory. However,
noting that DT (ε) only uses the information of T and runs in time O(n), it
can be applied to solve not only offline problems in linear time, but semi-online
problems with better performance than that of LS as well. This may be the first
feature of class DT . For example, it is shown in [10] that DT (1/3) is the best
possible algorithm for the semi-online problem P2|sum|Cmax, where sum means
that the value of T is known in advance. Here best possible means that no other
semi-online algorithm can be better with respect to worst-case ratio. Moreover,
the algorithm DT (1/9) with a preprocess is the best possible algorithm for the
semi-online problem P2|sum, decr|Cmax [11], where decr means that jobs arrive
in decreasing order of their processing times; and a variant ofDT (1/5) is the best
possible algorithm for the semi-online problem P2|sum,max|Cmax [11], where
max means that the largest job processing time is known in advance.

The second feature of Dual Threshold Algorithm is that it can be modified to
solve other problems without difficulty. For example, it was extended to solve the
offline scheduling problem with machine available times P2, ri||Cmax [5] and the
classical offline uniform machine scheduling problem Q2||Cmax [1]. Linear time
algorithms with small worst-case ratios were obtained. Moreover, in Section 4, we
will deploy the basic idea of DT to obtain DTm for solving semi-online problem
of Pm||Cmax. The worst-case ratio ofDTm(m−1

m+1 ) for the problem Pm|sum|Cmax

is 2− 2/(m+ 1), which is smaller than that of an algorithm in [6]. We will also
show that the worst-case ratio of DT3(2/13) for the offline problem P3||Cmax

is 15/13, and the time complexity is O(n). Hence DT3(2/13) beats LPT with
respect to both two criteria, and has the same worst-case ratio and lower time
complexity compared to MULTIFIT .

Last, the performance of Dual Threshold Algorithm becomes better if one
more information is used, besides the total processing times. To explain it, we
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introduce a new concept. For given ε > 0, if all instances of a scheduling problem
on m machines satisfy

p1 ≥ p2 ≥ · · · ≥ p�(m−1)/ε� and pj ≤ p�(m−1)/ε�, �(m− 1)/ε� < j ≤ n. (1)
we say that the problem satisfies Limited Decreasing Condition (LDC for short).
Obviously, for any instance of an offline problem, we can renumber all jobs
in time O(n/ε) such that it satisfies (1). Moreover, semi-online problems with
decreasing job processing times, such as P |decr|Cmax, also satisfy LDC. In this
paper, we will show the tight bound of a threshold algorithm class with LDC
is significantly smaller than that of a threshold algorithm class without LDC.
Here an algorithm class (or an algorithm) is called with (without) LDC if jobs
are (not) sorted to satisfy LDC before applying any one of the algorithm class
(or the algorithm). Note that the time complexities of the algorithms with and
without LDC are O(n/ε) and O(n), respectively.

In Section 3, we will develop a new Primal Threshold Algorithm Class PT
for P2||Cmax, which has similar properties as DT . It differs from DT only in
the assignment rule, i.e. it assigns jobs by primal greedy method instead of
dual greedy method. We will prove that the tight bounds are 4/3 and 8/7 for
DT without and with LDC, and 3/2 and 9/8 for PT without and with LDC,
respectively. Here the definition of tight bound of PT is the same as that of DT .
From results we conclude that both DT and PT have advantage.

3 DT and PT

We begin with the description of the new class PT for solving P2||Cmax.

Primal Threshold Algorithm PT (ε)
While there exists at least one unassigned job, and p is the first such job,

we do:
1. (NSR) The same as DT (ε)
2. (ASR) The same as DT (ε)
3. (Primal Assignment Rule, PAR) Assign p to the machine with smaller

current load.
As ε can vary from 0 to 1, PT (ε) also defines an algorithm class PT with

time complexity O(n).
Let AT ∈ {DT,PT} be an algorithm class. If AT (ε) terminates by NSR,

we have CAT (ε)/COPT ≤ 1 + ε. Hence we suppose in the following that AT (ε)
terminates by ASR when analyzing its worst-case ratio. Then there exists a
job pt such that the loads of both machines are less than (1 − ε)T/2 before
AT (ε) assigning pt, whereas assigning pt to any machine would make its new
load greater than (1 + ε)T/2. We call such a job pt as critical job. Obviously,
pt > εT and pt determines the algorithm makespan, that is, its completion
time is CAT (ε). Moreover, if the problem satisfies LDC, then t < �1/ε� since
T ≥

∑t
i=1 pi ≥ tpt > tεT . This conclusion will make us only consider all possible

assignments of small number of jobs when proving the worst-case ratio.

Theorem 1 gives a property of the threshold algorithm classes.
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Theorem 1. If the worst-case ratio of AT (ε0) is 1 + ε0, then for any ε, ε0 <
ε < 1, the worst-case ratio of AT (ε) is 1 + ε.

Proof. We prove CAT (ε)/COPT ≤ 1 + ε by contradiction. Assume that there
exists an ε, ε0 < ε < 1 such that CAT (ε)/COPT > 1 + ε. Then algorithm AT (ε)
terminates by ASR and the critical job pt must exist. Since [(1 − ε0)T/2, (1 +
ε0)T/2] ⊂ [(1 − ε)T/2, (1 + ε)T/2], and the fact that assigning p1, p2, · · · , pt−1

by AT (ε) does not enter Steps 1 and 2 of AT (ε), we know that assigning
p1, p2, · · · , pt−1 by AT (ε0) does not enter Steps 1 and 2 of AT (ε0). That is to say,
the assignments of p1, p2, · · · , pt−1 in AT (ε) and AT (ε0) are identical. Moreover,
the assignment of the critical job pt is identical, too. Hence CAT (ε0) = CAT (ε) >
(1 + ε)COPT > (1 + ε0)COPT , a contradiction.

The following instance shows the worst-case ratio of AT (ε) cannot be smaller:
p1 = 1− ε, p2 = ε, p3 = · · · = pM+2 = 1/M , where M > 1/ε is an integer. ��

Theorem 2. The tight bounds of the algorithm class DT without and with LDC
for P2||Cmax are 4/3 and 8/7, respectively.

Proof. We first consider DT without LDC. Note that DT (1/3) is just the al-
gorithm for solving the semi-online problem P2|sum|Cmax [10]. It has already
been proved that CDT (1/3)/COPT ≤ 4/3. We next prove that there does not
exist ε < 1/3 such that the worst-case ratio of DT (ε) is 1 + ε. To see it, for any
0 < ε < 1/3, consider the instance p1 = p2 = 1/6, p3 = p4 = 1/3. We have
CDT (ε) = 2/3 = 4COPT /3 > (1 + ε)COPT .

Next we consider DT with LDC. We first prove that the worst-case ratio of
DT (1/7) with LDC is 8/7. Note that at this time LDC turns into p1 ≥ p2 ≥
· · · ≥ p6 and pi ≤ p6 for i > 6. By normalizing all job processing times we
assume T = 14. Since we only consider the case that DT (1/7) terminates by
ASR, pt > 2 and t < 7. We distinguish several cases according to the value of t.

Case 1 t = 6. W.l.o.g., we assume p1 is assigned to M1. Then p2 is also assigned
to M1. Otherwise, we have p1+p2 > 8 and T > p1+p2+

∑6
j=3 pj > 8+4·2 > 14,

which contradicts T = 14. Further, p3 must be assigned to M2. Otherwise,
p1 + p2 + p3 ≤ 6. It implies that p4 + p5 + p6 ≤ p1 + p2 + p3 ≤ 6, contradicting
the fact that p6 is a critical job. By similar arguments, we can claim that p4 and
p5 are both assigned to M2. Since p6 is the critical job, we know CDT (1/7) ≤
min{p1 + p2 + p6,

∑6
j=3 pj}.

Consider the assignment of the first 6 jobs in an optimal schedule. If there
exists a machine processing at least 4 jobs of them, we have COPT ≥

∑6
j=3 pj ≥

CDT (1/7). If each machine processes exactly 3 jobs of them, we have COPT ≥
p1 + p5 + p6. Suppose CDT (1/7)/COPT > 8/7, then p1 + p2 + p6 ≥ CDT (1/7) >
8
7C

OPT ≥ 8
7 (p1+p5+p6). Simplifying this inequality, we obtain 6p2 > 8p5+p6 >

8·2+2, i.e., p2 > 3. Hence T ≥ p1+p2+
∑6

j=3 pj > 2·3+4·2 = 14, a contradiction.

Case 2 t ≤ 5. First let t = 5. Assume p1 is assigned toM1. If p2 is assigned toM2,
by algorithm rule, we have p1 + p2 > 8, and thus T > p1 + p2 +

∑5
j=3 pj > 14.
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Therefore, p2 is assigned to M1. Then p3 and p4 are assigned to M2 (since
p1 + p2 + p3 ≥ p1 + p2 + p4 > 6, they are greater than 8 to avoid NSR). Hence
CDT (1/7) ≤ p3 + p4 + p5 ≤ COPT . For t ≤ 4, the result can be proved similarly,
and omitted here due to length limitation.

The following instance shows that there does not exist ε < 1/7 such that the
worst-case ratio of DT (ε) with LDC is 1 + ε, i.e., the tight bound of the class
DT with LDC cannot be smaller than 8/7: p1 = p2 = 3, p3 = · · · = p6 = 2. ��

The following Theorem 3 can be shown similarly.

Theorem 3. The tight bound of PT without LDC for P2||Cmax is 3/2.

Theorem 4. The tight bound of PT with LDC for P2||Cmax is 9/8.

From the above proofs, we know the larger the value of t is, the more com-
plicated the proof is, since the possible situations of job assignments in an algo-
rithm and the optimal schedule become more and more. Hence if an algorithm
has a smaller worst-case ratio, it is a complex work to complete its proof. In the
following, we propose to prove Theorem 4 by a computer-aided proof method,
which lets us leave elaborate, but complicated and troublesome computation and
analysis to computer.

Roughly speaking, in order to prove the worst-case ratio of an algorithm A
is not greater than c, we show the optimal objective value of a series of lin-
ear programs with the objective of maximizing CA − cCOPT is at most 0. The
constraints of a linear program include the estimate of CA, COPT , inequalities
describing possible assignments of algorithm and the optimal solution, and or-
dering of the processing times of jobs, etc. The variables include CA, COPT and
the job processing times appearing in the constraints. Since linear programs can
be easily solved by mathematical softwares such as Mathematica, LINDO, etc,
we do not care about the numbers of the constraints and variables in our proof.

Proof of Theorem 4. We first prove CPT (1/8)/COPT ≤ 9/8. By normalization,
we assume T = 16. Remember that the upper and lower thresholds are 9 and 7
respectively. Similarly, since we suppose the algorithm PT (1/8) terminates by
ASR, pt > 2 and t < 8.

Case 1 t = 7. Consider the assignment of the first 6 jobs in PT (1/8) schedule.
Then each machine must process exactly 3 jobs of them. Otherwise, the load
of the machine processing more than 3 jobs is at least 8, which is greater than
the upper threshold 7, contradicting the fact that p7 instead of p6 is the critical
job. Assume that p1 is assigned to M1. Then p2 and p3 are assigned to M2 by
PAR. Moreover, p4 is assigned to M1. Otherwise, p1 > p2 + p3 > 4, and thus
T > p1 +

∑7
i=2 pj > 16, a contradiction. Hence

p1 < p2 + p3. (2)
There are only two situations for the assignment of p5 and p6 as follows:

M1 {p1, p4, p6} M1 {p1, p4, p5}
M2 {p2, p3, p5} M2 {p2, p3, p6}

A1 A2
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We consider A1 first. Thus we have
CPT (1/8) ≤ p1 + p4 + p6 + p7, CPT (1/8) ≤ p2 + p3 + p5 + p7. (3)

As p7 is the critical job, we have

p1 +p4 +p6 < 7, p2 +p3 +p5 < 7, p1 +p4 +p6 +p7 > 9, p2 +p3 +p5 +p7 > 9, (4)

By similar reasoning to obtain (2), we have
p1 + p4 > p2 + p3, p1 + p4 < p2 + p3 + p5. (5)

As PT (1/8) terminates by ASR, either p1 + p2 < 7 or p1 + p2 > 9 holds. If
p1 + p2 > 9, T > p1 + p2 +

∑7
j=3 pj > 19, a contradiction. Therefore,

p1 + p2 < 7. (6)

Similarly, we have
p2 + p3 + p4 < 7, p1 + p4 + p5 < 7, p2 + p3 + p5 + p6 > 9. (7)

The inequalities corresponding to A2 can be established similarly. Next, con-
sider the lower bounds of COPT for A1. If in an optimal schedule there exists
one machine processing at least 6 jobs of the first 7 jobs, COPT ≥

∑7
j=2 pj ≥

CPT (1/8) (due to (3)). If the first 7 jobs are distributed on two machines in the
optimal schedule as 5:2, two possible assignments are as follows, and it is easily
verified that for the remaining assignments we have CPT (1/8) ≤ COPT .

M1 {p1, p2} M1 {p1, p3}
M2 {p3, p4, p5, p6, p7} M2 {p2, p4, p5, p6, p7}

C1 C2
If the first 7 jobs are distributed on two machines in the optimal schedule as

4:3, we can easily verify that except the following 11 assignments, denoted by
C3-C13, all remaining result in CPT (1/8) ≤ COPT .

M1 {p1, p2, p3} M1 {p1, p2, p4} M1 {p1, p2, p5} M1 {p1, p2, p6}
M2 {p4, p5, p6, p7} M2 {p3, p5, p6, p7} M2 {p3, p4, p6, p7} M2 {p3, p4, p5, p7}

C3 C4 C5 C6

M1 {p1, p2, p7} M1 {p1, p3, p4} M1 {p1, p3, p5} M1 {p1, p3, p6}
M2 {p3, p4, p5, p6} M2 {p2, p5, p6, p7} M2 {p2, p4, p6, p7} M2 {p2, p4, p5, p7}

C7 C8 C9 C10

M1 {p1, p3, p7} M1 {p1, p4, p5} M1 {p2, p3, p4} M1 {p2, p3, p5}
M2 {p2, p4, p5, p6} M2 {p2, p3, p6, p7} M2 {p1, p5, p6, p7} M2 {p1, p4, p6, p7}

C11 C12 C13 C12’

For C1, we have

COPT ≥ p1 + p2, COPT ≥ p3 + p4 + p5 + p6 + p7. (8)

For any one of C2-C13, corresponding inequalities can be established similarly.
Next for A2, by similar arguments, the possible assignments of the optimal

schedule may be C1-C11, C12’ and C13 to avoid CPT (1/8) ≤ COPT .
To obtain the worst-case ratio of the situation where the schedule yielded

by PT (1/8) is in the form of A1 and the optimal schedule is in the form of
C1, we construct a linear program as follows: the objective is to maximize
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CPT (1/8)− 9
8C

OPT , the constraints are (2)-(8) and variables are CPT (1/8), COPT ,
p1, p2, · · · , p7. By any software to solve linear programming, we know that its op-
timal value is −9/4 < 0. For any combination of A1 with every one of C2-C13,
and A2 with every one of C1-C11 and C12’, C13, we can also construct the cor-
responding linear programs in the same way, and it can be shown their optimal
values are at most 0. Hence we conclude that CPT (1/8) ≤ 9COPT /8 for t = 7.

Case 2 t = 6, 5. The proof is similar to Case 1. For detail see the full paper.
Case 3 t ≤ 4. It is trivial to get the worst-case ratio by direct deduction.

Finally, the instance p1 = p2 = 3, p3 = · · · = p7 = 2 shows that the tight
bound of the algorithm class PT with LDC cannot be smaller than 9/8. ��

During above process, we have solved totally 36 linear programs which cover
all possible situations. In fact, as we only need to consider the assignment of
p1, · · · , pt, the numbers of linear programs, the variables and constraints in a
given programs must be finite. Note that each linear program corresponds to
one possible situation which may occur when analyzing algorithm. Recall that
in our proof, we exclude several possible assignments, for example, the ones yield
CPT (1/8) ≤ COPT . In fact, we can also construct their corresponding linear pro-
grams, and their objective function values are less than 0, too. We prefer to this
analysis instead of solving linear programs for the purpose of theoretical concise-
ness, since an easily manual analysis excluded several situations. Furthermore,
when constructing linear programs, we do not need to find out all possible con-
straints of a linear program. In fact, those which can make the optimal objective
values at most 0 are sufficient. In other words, each linear program solved here
is only a relaxation of the considered situation.

4 Dual Threshold Algorithm Class DTm

Inthis section,we presenta newdual thresholdalgorithmclassDTm forPm||Cmax.

Dual Threshold Algorithm DTm(ε)
While there exists at least one unassigned job, and p is the first such job,

we do:

1. (NSR) If there exists i, i = 1, 2, · · · ,m, such that by assigning job p to Mi

the number of machines with new loads in [(1 − ε
m−1 ) T

m ,
(1+ε)T

m ] becomes
m − 1, then assign p to Mi, and all remaining jobs to the unique machine
with current load smaller than (1− ε

m−1 ) T
m . Stop.

2. (ASR) If any machine will have a new load greater than (1+ε)T
m by assigning

job p to it, then assign p and all remaining jobs according to LS rule. Stop.
3. (DAR) Denote by M0 the subset of machines Mi whose new load of Mi

will not greater than (1+ε)T
m if assigning p to it. Assign p to the machine with

the largest current load among M0.
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Note that in the Step 3 of the algorithm, M0 must be not empty. Otherwise,
the algorithm would stop at Step 2 (by ASR). Moreover, before the algorithm
enters Step 2, no machine has a current load greater than the upper threshold.

The following result can also be proved by computer-aided proof method, we
choose to use traditional analysis for conciseness and exploring the idea.

Theorem 5.For anym ≥ 3, the tight bound of DTm without LDC for Pm||Cmax

is 2− 2
m+1 .

Proof. Denote C = CDTm( m−1
m+1 ) for short. We first show that C/COPT ≤ 2 −

2
m+1 . By normalization we assume T = m(m + 1). Then the upper and lower
thresholds are 2m and m, respectively. Similarly to Section 3, suppose that
DTm(m−1

m+1 ) stops by ASR and thus pt > m.

Case 1 On the arrival of pt, a machine not processing any job exists.
Note that assigning the critical job pt to any machine, its new load would

be greater than the upper threshold 2m. Hence, from the fact that there exists
an empty machine, we have pt > 2m. It implies COPT ≥ pt > 2m. Suppose
that C/COPT > 2− 2

m+1 . Then there exists a machine with a load greater than

C > (2 − 2
m+1 )COPT > 4m2

m+1 . Let p be the last job assigned to this machine.
Then p is assigned by LS rule. Hence the remaining m− 1 machines except one
processing p have loads at least C − p. Summing all machine loads, we have

(m− 2)(C − p) + C + pt ≤ T, (9)

i.e., p ≥ (m−1)C+pt−T
m−2 . Substituting C > 4m2

m+1 , pt > 2m and T = 2m into this
inequality, we obtain

p >
m(3m2 − 4m+ 1)
(m− 2)(m+ 1)

. (10)

At the same time, (9) implies

C − p ≤ T − C − pt

m− 2
<
m(m+ 1)− 4m2

m+1 − 2m
m− 1

=
m(m2 − 4m− 1)
(m− 2)(m+ 1)

. (11)

Combining (10) and (11), we obtain a contradiction as follows.

C

COPT
≤ C

p
= 1 +

C − p
p

≤ 1 +
m2 − 4m− 1
3m2 − 4m+ 1

< 2− 2
m+ 1

.

Case 2 On the arrival of pt, all machines have processed at least one job.
Denote pji

be the first job assigned to Mi, 1 ≤ i ≤ m. W.l.o.g., we assume
1 = j1 < j2 < · · · < jm. We prove by induction that after assigning pjl

by
DTm(m−1

m+1 ), there are at least l − 1 machines among {M1,M2, . . . ,Ml} with
loads in [m, 2m]. The claim is obviously true for l = 1. Now assume that it is
true for l = k. If on the arrival of pjk+1 , the loads of M1,M2, . . . ,Mk are all
greater than m, we have done. Otherwise, there exists a machine, denoted by
M0, with a current load L(M0) < m. As pjk+1 is not assigned to M0 by DAR,
we have L(M0) + pjk+1 > 2m, i.e. pjk+1 > m. Hence Mk+1 processing pjk+1 has
a load greater than m, and there are at least k − 1 + 1 = k machines among
{M1, . . . ,Mk,Mk+1} with loads in [m, 2m], which implies that the claim is true.
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By the above claim, we know that after the assignment of pjm
, there are at

least m−1 machines with loads in [m, 2m]. Since T = m(m+1), we deduce that
the algorithm terminates by NSR, contradicting the fact that pt is a critical job.

The following instance shows that the tight bound of DTm cannot be smaller
than 2− 2

m+1 : p1 = · · · = pm = 1, pm+1 = · · · = p2m = m. ��

By Theorem 5, the worst-case ratio of DTm(m−1
m+1 ) for semi-online problem

Pm|sum|Cmax is also 2 − 2
m+1 , which is smaller than 2 − 1

m−1 , the worst-case
ratio of an algorithm in [6].

The following theorem can be shown by a similar analysis as above, but more
complicated and lengthy, and omitted here. However if we incorporate with the
computer-aided proof method introduced in Section 3, the proof can be easy.

Theorem 6. The tight bound of DT3 with LDC for P3||Cmax is 15/13.

By Theorem 6, we know that the worst-case ratio of DT3(2/13) with LDC is
smaller than and equal to those of LPT and MULTIFIT , respectively, whereas
the complexity is smaller than those of latter two algorithms.

We conjecture that the tight bound of DTm with LDC must be strictly
smaller than that of DTm without LDC for any m > 4, too.

5 Concluding Remarks

In this paper, we gave a comprehensive discussion of a kind of threshold al-
gorithms. Three threshold algorithm classes with linear time complexity were
studied carefully. Future research may include the following issues. First, by ex-
tending the basic idea of PT , we can obtain PTm for m machine problems.
Then the tight bounds of the new class with or without LDC is open. Since PT
with LDC has a smaller tight bound than that of DT with LDC, we conjec-
ture that this property may remain for PTm and DTm. Second, as mentioned
above, in [5] and [1], the authors obtained linear time approximation algorithms
with very small worst-case ratios through combinations of Dual Threshold Algo-
rithm, we conjecture that through combinations of PTm, DTm (PT,DT ) and
their variants, we can obtain improved approximation algorithms with lower time
complexities and smaller worst-case ratios for offline parallel machine scheduling
problems. It is also interesting to modify the threshold algorithms to obtain the
best possible algorithm for other semi-online problems, just like in [11]. We high-
light that the computer-aided proof method may be powerful for these issues.
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Abstract. A new method for information retrieval based on relative
entropy with different smoothing methods has been presented in this pa-
per. The method builds a query language model and document language
models respectively for the query and the documents. We rank the doc-
uments according to the relative entropies of the estimated document
language models with respect to the estimated query language model.
While estimating a document language, the efficiency of the smooth-
ing method is considered, we select three popular and relatively efficient
methods to smooth the document language model. The feedback docu-
ments are used to estimate a query model by the approach that we as-
sume that the feedback documents are generated by a combined model
in which one component is the feedback document language model and
the other is the collection language model. Experimental results show
that the method is effective and performs better than the basic language
modeling approach.

1 Introduction

In recent years, an approach based language modeling has been successfully ap-
plied to the problem of retrieval [1, 3, 4, 6]. The basic idea behind the approach
is extremely simple - estimate a language model for each document, and rank
documents by the likelihood of the query according to the language. The rela-
tive simplicity and effectiveness of the language modeling approach make it an
attractive framework of text retrieval methodology. Although it has performed
well empirically, a significant amount of performance increase is often due to
smoothing method and feedback [6]. In the most of existing work, both query
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and document are assumed being generated from the same document language
model, the difference between query and document is not considered in them.

And only some simple smoothing methods such as linear interpolation method
etc. have been used to solve ”zero probability” problem. Feedback has so far only
been deal with heuristically within the language modeling approach, and it has
been incorporated in an unnatural way: by expanding a query with a set of terms
[10]. All these have become obstacles to further improve retrieval performance.

We propose a new retrieval method based on relative entropy with different
smoothing methods. We build the query language model and document language
models for the query and the documents respectively, then rank the documents
according to the relative entropies of the estimated document language models
with respect to the estimated query language model. While estimating a docu-
ment language, the efficiency of the smoothing method is considered, so we select
three popular and relatively efficient methods to smooth the document language
model. When estimating a query model, we develop a natural approach to per-
form feedback, in which we assume the feedback documents are generated by
a combined model in which one component is the feedback document language
model and the other is the collection language model.

The rest of the paper is organized as follows. We discuss the retrieval based
on language model and the problem of zero probability in section 2. A narrate
of the concept of relative entropy and the rank criteria with relative entropy are
given in section 3.1 and 3.2. Then we give the computing method of p(t|θd) and
p(t|θq) in section 3.3 and 3.4. Experiments and results are given in section 4,
and conclusions of the study are presented in Section 5.

2 Retrieval Based on Language Model and the ”Zero
Probability” Problem

Applied to information retrieval, language modeling refers to the problem of
estimating the likelihood that the different query and document can be generated
by the same language model, given the language model of the document [1]. The
general idea is to build a language model θd for each document d , and rank
the documents according to how likely the query q can be generated from each
of these document models, i.e. p(q|θd) . In different models, the probability is
calculated in different ways. There are two typical methods for doing it. For
example, Ponte and Croft [6] treat the query q as a set of unique terms, and use
the product of two probabilities - the probability of producing the query terms
and the probability of not producing other terms - to approximate p(q|θd). The
formula is

p(q|θd) =
∏
t∈q

p(t|θd)
∏

tnot∈q

(1.0− p(t|θd)) (1)

Song and Croft [7] treat the query as a sequence of independent terms, taking
into account possibly multiple occurrences of the same term. Thus the query
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probability can be obtained by multiplying the individual term probabilities,
and the formula can be written as

p(q|θd) =
n∏

i=1

p(ti|θd) (2)

where ti is the ith term in the query. The simplest method to estimate p(t|θd)
is the maximum likelihood estimator, simply given by relative counts

p(t|θd) = Pml(t|θd) (3)

=
tf(t, d)∑

t′
tf(t′, d)

(4)

where tf(t, d) is the number of times the term t occurs in the document d,∑
t′
tf(t′, d) is the total number of times all terms occur in the document d , it is

essentially the length of the document d .
We can find that one obstacle in applying language modeling to information

retrieval is the problem of zero probability. Documents are not very large. As a
result, many terms are missing in a document. If such a term is used in a query, we
would always get a zero probability for the entire query. To address the problem
of zero probability, we must use a smoothing method in the retrieval based on
language model. The term smoothing refers to the adjustment of the maximum
likelihood estimator of a language model so that it will be more accurate [10].

We also use language modeling for retrieval, but it is different from the above
approaches in which both the query and the document are assumed to be gener-
ated from the document language model. We assume that the query is generated
from the query language model while the document is generated from the docu-
ment language model. We rank the documents according to the relative entropies
of the estimated document language models with respect to the estimated query
language model. But there is still the problem of zero probability while we com-
puting the term probability by using document language in our approach, so we
will use different smoothing method to solve the problem.

3 Retrieval Based on Relative Entropy

3.1 Relative Entropy

The relative entropy is a measure of the distance between two distributions.
In statistics, it arises as an expected logarithm of the likelihood ratio[2]. The
relative entropy D(p||q) is a measure of the inefficiency of assuming that the
distribution is q when the true distribution is p .

Definition 1. The relative entropy between two probability mass functions p(x)
and q(x) is defined as D(p||q) =

∑
x
p(x) log p(x)

q(x)
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In the above definition, we use the convention (based on continuity arguments)
that 0 log 0

0 = 0 and p log p
0 =∞.

3.2 Ranking Criteria with Relative Entropy

The basic idea of the ranking model with relative entropy is to score a document
with respect to a query based on the relative entropy between an estimated
document language model and an estimated query language model, and, then
rank the documents according to their scores. Let’s suppose that a query q is
generated by a generative model p(q|θq) with θq denoting the parameters of the
query unigram language model. Similarly, assume that a document d is generated
by a generative model p(d|θd) with θd denoting the parameters of the document
unigram language model. Let θ̂q and θ̂d be the estimated query language model
and document language model respectively, the relevance value of d with respect
to q can be measured by the following function:

R(θ̂q||θ̂d) = −D(θq||θd) (5)

= −
∑

t

p(t|θq) log
p(t|θq)
p(t|θd)

(6)

=
∑

t

p(t|θq) log p(t|θd)−
∑

t

p(t|θq) log p(t|θq) (7)

The second term of the formula (7) is a query-dependent constant, or more
specifically, the entropy of the query model θq. It can be ignored for the purpose
of ranking documents, so we have a ranking formula such as

R(θ̂q||θ̂d) ∝
∑

t

p(t|θq) log p(t|θd) (8)

From the formula (8), we can observe that how to estimate the values of
p(t|θd) and p(t|θq) will influences the retrieval accuracy of the ranking model.

3.3 Computing p(t|θd) By Different Smoothing Methods

As the description in section 2, the problem of zero probability will occur if we
use the maximum likelihood estimator to estimate p(t|θd) simply. We must use
a smoothing method to solve it. Some smoothing methods, such as Good-Turing
method, Jelinek-Mercer method, absolute discounting method, and Bayesian
method using Dirichlet priors etc., have been proposed, mostly in the context
of speech recognition tasks. In general, all smoothing methods are trying to dis-
count the probabilities of the terms seen in the document, and then to assign
the extra probability mass to the unseen terms according to some ”fallback”
model [8]. It makes much sense, and is very common, to exploit the collection
language model as the fallback model. Because a retrieval task typically requires
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efficient computations over a large collection of documents, our study is con-
strained by the efficiency of the smoothing method. In this paper, we select
the Jelinek-Mercer method, absolute discounting method, and Bayesian method
using Dirichlet priors which are popular and relatively efficient to implement [9].

1) The Jelinek−Mercer method involves a linear interpolation of maximum
likelihood model with the collection model, using a coefficient λ to control the
influence of each model [8].The method is given by

p(t|θd) = (1− λ)pml(t|θd) + λp(t|C) (9)

p(t|C) =
tf(t, C)∑

t′
tf(t′, C)

(10)

where Pml(t|θd) is given in the formula (4),tf(t, C) is the number of times the
term t occurs in the document collection C,

∑
t′
tf(t′, C) is the total number of

times all terms occur in the document collection C.
2) The idea of the absolute discounting method is to lower the probability

of seen words by subtracting a constant from their counts. It is similar to the
Jelinek-Mercer method, but differs in that it discounts the seen word probability
by subtracting a constant instead of multiplying it by 1−λ . The model is given
by

p(t|θd) =
max(tf(t, d)− δ, 0)∑

t′
tf(t′, d)

+ σp(t|C) (11)

where δ ∈ [0, 1] is a discount constant and σ = δ|d|u
|d| , so that all probabilities

sum to one. Here, |d|u is the number of unique terms in the document d , and
|d| =

∑
t′
tf(t′, d) is the total count of terms in the document.

3) In the Bayesian method using Dirichlet priors, a language model is a
multinomial distribution, for which the conjugate prior for Bayesian analysis
is the Dirichlet distribution with parameters (μp(t1|C), μp(t2|C), ..., μp(tn|C)).
Thus, the model is given by

p(t|θd) =
tf(t, d) + μp(t|C)∑

t′
tf(t′, d) + μ

(12)

where μ is the smoothing parameter.

3.4 Computing p(t|θq)

We assume the feedback documents are generated by a combined model in which
one component is the feedback document language model and the other is the
collection language model. Let q0 be the original query, and p(t|θq0) be the
original query language model,q be the updated query, and p(t|θq) be the updated
query language model. We assume that F = (f1, f2, ..., fn) is the set of feedback
documents which are judged to be relevant by a user, or which are the top
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documents from an initial retrieval, and p(t|θF ) is the language model of the set
F . Then, the updated query model p(t|θq) is

p(t|θq) = (1− α)pml(t|θq0) + αp(t|θF ) (13)

where α controls the influence of the feedback documents set model to p(t|θq).
For estimating p(t|θF ) , we assume that the feedback documents are generated
by a probabilistic modelp(F |θF ). Specifically, assume that each term in F is gen-
erated independently according to θF by a generative model which is a unigram
language model. That is,

p(F |θF ) =
∏

i

∏
t

p(t|θF )tf(t,fi) (14)

where tf(t, fi) is the number of times term t occurs in the document fi.
Some information may be ”background noise”. The ”background noise” is

not considered in the above model, so, it is not very reasonable. A more rea-
sonable model would be a combined model that generates a feedback document
by combining the feedback document model p(t|θF ) with a collection language
model p(t|θC) . We have

p(F |θF ) =
∏

i

∏
t

((1− β)p(t|θF ) + βp(t|C))tf(t,fi) (15)

where β is a parameter that indicates the amount of ”background noise” in the
feedback documents, and that needs to be set empirically.

We can use EM (Expectation Maximum) algorithm to compute the maximum
likelihood estimate of θF . The estimated θF is as

θ̂F = argmaxθF
log p(F |θF ) (16)

We use the result pβ(t|θF ) of using EM algorithm as a substitute forp(t|θF )
of the formula (13). Then we can obtain the value of p(t|θq) by using the
formula (13).

4 Experiments and Results

4.1 Data Sets

We experiment over three data sets taken from TREC (Text Retrieval Confer-
ence). They are the Wall Street Journal (WSJ) 1987-1989 with queries 51-100,
San Jose Mercury News (SJMN) 1991 with queries 51-150, and the Los Angeles
Times (LA) (1989, 1990) with queries 301-400. Queries are taken from the title
field of TREC topics. Relevance judgments are taken from the judged pool of top
retrieved documents by various participating retrieval system from previous[3].
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4.2 Experimental Setup

For the convenience of describing the experiments, we call our retrieval ap-
proaches with the Jelinek-Mercer method, absolute discounting method, and
Bayesian method using Dirichlet priors JMM, ADM, and BDM respectively.
And we call the retrieval method in [5] based on traditional language modeling
(with feedback) TLM.

Two sets of experiments are performed in this paper. The first set of ex-
periments is to compare the performances of JMM, ADM, and BDM with the
performance of TLM. We get different results by using different smoothing pa-
rameter settings in JMM, ADM, and BDM, but we use the best results of them
while comparing their performances. The second set of experiments investigates
whether the performances of JMM, ADM, and BDM are sensitive to the smooth-
ing parameters λ, δ, and μ.

4.3 Experimental Results

Results of the first set of experiments are shown in Table 1. From the average preci-
sion in Table 1, we can observe that the performances of JMM, ADM, and BDM are
all better than that of TLM on the three data sets. We think that the improvements
in average precision of JMM, ADM, and BDM over TLM are mainly attributed
to that the relatively efficient smoothing methods and the methods of performing
feedback in JMM, ADM, and BDM are more compatible with the essence of the
language modeling approach than that in TLM. We also note that ADM performs
better in performance than JMM, and BDM performs better than ADM again. We
think they are the results of that the Absolute discounting smoothing method per-
forms better than the Jelinek-Mercer smoothingmethod and theBayesian smooth-
ing method performs better than the Absolute discounting smoothing method.

Table 1. Average precision of TLM, JMM, ADM, and BDM on WSJ, SJMN, and LA

Data set TLM JMN ADM BDM Chg1 Chg2 Chg3

WSJ 0.245 0.271 0.275 0.285 +10.6% +12.2% +16.4%
SJMN 0.273 0.296 0.301 0.311 +8.4% +10.3% +14%

LA 0.251 0.282 0.287 0.294 +12.4% +14.4% +17.1%

Results of the second set of experiments are presented in Fig.1. The plots of
part (a) show the average precision of JMM for different settings λ on the three
data sets, the plots of part (b) show the average precision of ADM for different
settings of δ, and the plots of part (c) show the average precision for different
settings of μ. We can observe that the average precision of JMM, ADM, and
BDM is quite sensitive to the settings of λ,δ,and μ. JMM performs well when
the value of λ approximates to 0.65, ADM gives better performance while the
value of δ approximates to 0.8. The performance of BDM is much more sensitive
to μ especially when the values of μ are small. However, the optimal values of μ
seem to vary from data set to data set, though in most they are around 2000.
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Fig. 1. Sensitivity of average precision to λ, δ, and μ

5 Conclusions

Our approach builds the query model and the document model respectively for
the query and the document. We rank the documents according to the relative
entropies of the estimated document language models with respect to the esti-
mated query language model. Three popular and relatively efficient methods to
smooth the document language model are used while estimating a document,
and the feedback documents are used to estimate a query model. Experimental
results show that the method is effective and performs better than the basic lan-
guage modeling approach. Analysis of the results indicates that the performance
is sensitive to the smoothing parameters, so we must pay attention to setting
appropriate smoothing parameters when using the method.
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Abstract. We show how the process of passengers boarding an air-
plane and the process of optimal I/O scheduling to a disk drive with
a linear seek function can be asymptotically modeled by 2-dimensional
space-time geometry. We relate the space-time geometry of the models
to important quantities such as total boarding time and total service
time. We show that the efficiency of a boarding policy depends crucially
on a parameter k which depends on the interior design of the airplane.
Policies which are good for small values of k are bad for large values of
k and vice versa.

1 Introduction

The process of airplane boarding is experienced daily by millions of passengers
worldwide. Airlines have adopted a variety of boarding strategies in the hope of
reducing the gate turnaround time for airplanes. Significant reductions in gate
delays would improve on the quality of life for long-suffering air travelers, and
yield significant economic benefits from more efficient use of aircraft and airport
infrastructure [11], [9], [13].

The most pervasive strategy employed today links boarding time to seat as-
signment, implemented by announcements of the form “Passengers from rows
30 and above are now welcome to board the plane”. It is not clear a priori
how to analyze such strategies or to determine which policies are most ef-
fective at minimizing the expected boarding time under realistic probability
distributions.

Previously, airplane boarding has been studied mainly through discrete event
simulations, [11], [9], [13], [6]. In addition, the problem of minimizing airplane
boarding has been considered via a related non-linear integer programming prob-
lem to which various heuristics have been applied [13].

A seemingly unrelated problem is disk scheduling. In disk scheduling one
is presented with n I/O requests to a disk drive. The goal is to service the
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requests in an order which will minimize total service time. Following some
experimental and heuristic studies, [8], [12], [7], Andrews et al [1] provided the
first comprehensive analysis of this problem. In particular, they presented an
optimal scheduling algorithm (process) in the special case in which the seek
function of the disk head is assumed to be linear. we will call their algorithm,
the ABZ process. Average case analysis of the number of disk rotations required
by the ABZ process for servicing all requests was provided in [3], by relating
disk scheduling to increasing subsequences in permutations.

The longest increasing subsequence in a permutation can be found by a sim-
ple procedure known as patience sorting. Patience sorting was apparently first
invented as a card game procedure for manually sorting cards, [2]. It was rein-
vented several times and was shown to provide an optimal algorithm for concur-
rently finding the longest increasing subsequence in a permutation and a mini-
mal partition of the permutation into decreasing subsequences. A comprehensive
treatment of patience sort is provided in [2].

Finally, space-time geometry, a.k.a Lorentzian geometry, was introduced by
H. Minkowski to mathematically model special relativity theory. It was sub-
sequently used by A. Einstein to formulate general relativity theory. While
Lorentzian geometry has been used to model various physical systems [14], it
is still mainly associated with relativity theory. In fact, the motivation for con-
sidering these other models was to gain a better understanding of cosmology
using lab experiments.

The purpose of this paper is to reveal the connections between airplane board-
ing, disk scheduling, patience sorting and 2-dimensional space-time geometry. In
particular, we will use 2-dimensional space-time models to compute and analyze
the effects on boarding time of various boarding strategies and airplane designs.
To the best of our knowledge, this provides the first application of Lorentzian
geometry outside of physics.

This research started from an attempt to understand disk scheduling. Then
it was noticed that the same techniques can be applied to airplane boarding. A
closer study of airplane boarding provided better insights into the disk scheduling
problem. Thus, this study exemplifies the mutual benefits which can be gained by
considering related problems from industrial engineering and computer science.

We now state the main results of the paper:

– We introduce a new discrete random process which we call airplane board-
ing. As the name suggests, the process is designed to model the process of
passengers boarding an airplane.

– We explain the relations between airplane boarding, the ABZ process, pa-
tience sorting and space-time geometry. We show that passengers, disk I/O
requests and elements in a permutation can be naturally considered as points
in various 2-dimensional Lorentzian spaces. The ABZ process and patience
sorting can then be viewed as natural “peeling” processes on the points with
respect to the induced causality partial order, while airplane boarding which
generalizes patience sorting provides an approximation to the peeling pro-
cess. The volume form on the Lorentzian space is related to the probability
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distribution on row number/queueing time of passengers and location of I/O
requests, respectively.

– We show that the associated Lorentzian spaces can be used to study the
asymptotics of the various processes. For instance, the length of the longest
geodesic (as measured using Lorentzian length) in the Lorentzian space can
be interpreted as total boarding time, number of rotations needed to ser-
vice all I/O requests and size of the longest increasing subsequence in a
permutation respectively.

– We demonstrate that the effectiveness of a boarding strategy depends cru-
cially on a local congestion parameter k which is related to interior design
parameters of the airplane, namely, the distance between rows and the num-
ber of passengers per row. A phase transition in the effectiveness of conven-
tional airplane boarding strategies occurs when k = 1. In particular, given
realistic values of this parameter (about 3.5) back-to-front boarding policies
as currently practiced by airlines are unfortunately ineffective, being on the
wrong side of the phase transition.

Related work: As previously mentioned, the airline boarding problem has been
the subject of few prior studies [9, 11, 6, 13], the first three being purely simu-
lation based. In particular, van den Briel et al [13] considered the problem of
optimization of airplane boarding time via a related non-linear integer program-
ming problem. The conclusions of these previous studies are compatible with our
analytical results. However, previous studies yield no conceptual understanding
of the problem, in particular how the effects of different parameters interact with
each other.

When we assume the width of passengers to be 0, the boarding process re-
duces to patience sorting. In this case our modeling result is a combination and
reinterpretation of results of D. Aldous and P. Diaconis [2] and of J.D. Deuschel
and O. Zeitouni [4].

Organization: We define the basic parameters of our airplane boarding process
and introduce the process itself in Section 2. We apply this geometric model
to airplane boarding and disk scheduling in Section 3. Some consequences for
airplane boarding are presented in Section 4. The appendix briefly covers some
basic material on Lorentzian geometry.

2 Modeling the Airplane Boarding Process

In this section we define a discrete process which models the airplane boarding
process. We assume that passengers are assigned seats in the airplane in advance
of the boarding process. We assume boarding from the front of the plane, and
the front row is row 1.
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The general parameters of our model include:

– n denotes the number of passengers. For simplicity, we assume the airplane
is full throughout this paper.

– d denotes the number of passengers per row. Thus there are R = n/d rows
in the airplane.

– w denotes the distance between consecutive rows in the airplane.
– u is the average width of the passengers.
– D denotes the probability distribution for sit-down time; how long does a

passenger block the aisle while they are settling into a seat. This distribution
is affected by seat type (e.g. window, aisle), amount of carry on-baggage, pas-
senger arrival time (e.g. increased probability of requiring another passenger
to move), etc. For simplicity of exposition, unless otherwise stated, we will
assume that X is a constant distribution.

– We represent passengers as points (q, r) in the plane, where r is the row
assigned to the passenger and q represents the time at which the passenger
joins the boarding queue. For convenience, we shall normalize both variables;
r is replaced by r/R, and the total amount of time allotted to joining the
queue is taken as the unit of time. Via these normalizations, the point (q, r)
will lie in the unit square.

– P denotes the airline’s boarding policy, which is given by a function FP (r)
representing the time at which passengers from row r can begin joining the
queue.

– p(q, r) denotes the passenger density distribution. It is the result of interac-
tion between the airline boarding policy P and the passenger reaction model
which governs how passengers react to the opportunity to join the queue. In
the leisurely passenger reaction model, passengers board uniformly within
the range of allowed times. In the attentive reaction model with attentive-
ness parameter t, passengers board uniformly within a time window of size
t within the initial allowable boarding time, FP (r). Thus, 1/t is a measure
of the passengers attentiveness. Although our methods apply equally to the
leisurely reaction model, we will assume the attentive reaction model.

Our assumption of a constant distribution for X leads us to a synchronous
boarding process, which we describe in terms of rounds. At first all passengers
line up in a queue in front of the airplane gate. In the first round, all passengers
who can walk unobstructed all the way to their assigned row do so. Those who
cannot reach their seat, due to another passenger with a smaller row number
obstructing their way, proceed as far as possible and wait. At the end of the
round, all passengers who have reached their assigned row sit down simultane-
ously. Once the first round of passengers is seated, the remaining passengers
can advance forward again, beginning a second round of movement. The process
repeats until everyone is seated. The number of rounds needed times D will be
taken as our measure of total boarding time.

We define a natural partial order on passengers. A passenger A blocks another
passenger B, and we denote A < B, if the latter may sit only after the former
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has done so. Formally, let A = (qA, rA), B = (qB , rB). Let Z be the set of
passengers with coordinates (q, r) satisfying qA < q < qB and r > rA. Then
A < B if qB > qA and S(rA − rB) ≤ k|Z|. The relation is then extended by
transitivity.

In terms of the partial order, the boarding process is a well known “peeling”
process, which can be traced to the work of Cantor on ordinal arithmetic. The
process peels the partially ordered set by successively eliminating (in rounds) the
minimal elements in the partial order. This process provides simultaneously a
minimal decomposition of the poset into independent sets and the longest chain
in the poset. In the boarding process each passenger (not in the first round) can
be assigned a pointer which points to the last passenger who blocked his/her way
to the assigned row. Following the trail of pointers starting from a passenger who
sat in the last round identifies a longest chain in the partial order. In particular,
the number of rounds needed is the size of the longest chain in the partial order.

Example 1. When k = 0 the partial order condition becomes A < B if and
only if rB > rA and qB > qA, and thus chains are increasing subsequences. The
boarding process is then identified with patience sorting.

3 Modeling with Lorentzian Geometry

In this section we show how we can use Lorentzian geometry to model airplane
boarding and the ABZ process from disk scheduling.
For an introduction and general mathematical facts on Lorentzian geometry we
refer the reader to [10]. Chapter 42 of [5] can be used as a starting point for
exploring the relations of Lorentzian geometry to relativity theory.

We begin with airplane boarding. The key parameter k is defined as k =
ud/w. As will be seen later, k plays an important role in the analysis of boarding
policies. Given a density p(q, r) and k, let α(q, r) =

∫ 1

r
p(q, u)du, and let g(q, r) be

the metric associated to the quadratic form ds2 = 4D2p(q, r)(dqdr+kα(q, r)dq2).
Explicitly, the metric is given by gq,q = 4D2p(q, r)kα, gr,q = gq,r = 2X2p(q, r),
gr,r = 0. Let M be the support of the density p, that is, the closure of the set
of points for which p(q, r) > 0. By abuse of notation we also let M = Mk,p

denote the Lorentzian space (space-time) consisting of the set M , equipped with
the Lorentzian metric gk,p. It is easy to verify that the vector (1, 1) is time-
like throughout M . We choose the time-like cone containing the vector (1, 1)
as the cone of future pointing time-like vectors throughout M . As we shall see
below, the metric is constructed so that the partial orders, which are induced
by the boarding process on the one hand and causality in M on the other, are
locally asymptotically the same. The metric is then scaled conformally so that
it asymptotically computes for two nearby points A and B the number of points
in a maximal chain between A and B divided by

√
n.

Given a point x ∈ M , let the height h(x) of x be the supremum of the
lengths of curves in M ending at x. It can be shown that the supremum is in
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fact attained. The diameter d(M) of M is the maximum of all h(x), x ∈M . We
define the level curve Lh to consist of all points of height h.

Example: Let k = 0 and p be the uniform distribution. The corresponding
metric gives rise to ds2 = 4drdq . This is the metric of Minkowski space in a
coordinate system rotated by π/4. the form of the metric is not standard since the
coordinates dq and dr are light-like. We can define a time coordinate t = (q+ r)
and space coordinate x1 = q − r which lead to the usual representation of the
metric ds2 = dt2 − dx2.

It is well known that geodesics with respect to this metric are straight lines.
The longest geodesic ending at a point starts at (0, 0). Thus, the height of a point
(q, r) is 2

√
qr. The level curves Lh of the height function lie on the hyperbola

rq = h2/4. The hyperbola is a space-like curve (negative derivative), and hence
we can measure its length with respect to the metric −g. The length of the level
curve of points of height h is 2h log( 2

h ). The points with r = 0 or q = 0 form
the points of height 0. Given a passenger A, let t(A) denote the time at which
passenger A sits. By our conventions, t(A) = R(A)X, where R(A) is the round in
which the passenger sits. We can now state the main modeling result for airplane
boarding, where we use the notation w.h.p for an event whose probability tends
to 1 as the number of passengers tends to infinity.

Theorem 3.1

A) Let ε > 0. Then, w.h.p, for any passenger A = (q, r) we have

(h(A)− ε)
√
n ≤ t(A) ≤ (h(A) + ε)

√
n

In addition, the chain of blocking passengers, obtained by tracing back point-
ers in the boarding process starting from passenger A is contained in an
ε-neighborhood of a geodesic curve of length h(A) ending at A. In particular,
the total boarding time is asymptotically equal to d(M)

√
n.

B) Let ε > 0. For θ > 0, let N(θ) be the number of passengers boarding the
plane within the first θ

√
n rounds. Then, w.h.p | N(θ)

(1/2)
∫ θ

0
l(Lh)dh

− 1| < ε,

where Lh is the level curve of points of height h and l(Lh) denotes its length
computed with respect to −g.

Remark: When k = 0, part A is a restatement in terms of Lorentzian ge-
ometry and airplane boarding of [4–Th. 2]. When we assume in addition that p
is the uniform distribution, part B is a restatement of [2–Th. 12].

Sketch of proof: We prove part A by reduction to theorem 2 of [4]. Given
a curve C, we wish to estimate w.h.p the size of the longest chain, with respect
to the partial order < on the boarding process, in a small neighborhood of C.
We notice that a sequence of blocking passengers is sorted in the q-coordinate,
and thus we may assume that C is parameterized by q and given by (q, φ(q)). To
obtain a lower bound, we subdivide the curve at points Vi = (idq, r(idq) ∈ C,
where dq is small. Let A = (q, r) be a point. Consider a nearby point B of the
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form (q + δq, r + δr). We would like to have a high probability criterion for the
relation A < B. We consider the passengers queuing behind A. The number of
such passengers is by construction, asymptotically, (

∫ 1

u
p(q, u)duδq)n = αδqn.

The difference in row numbers between passengers A and B is by construction
δrn. By definition of the relation A < B, it will hold if δr ≥ 0 or when, asymp-
totically, kαδqn > −δrn, which is equivalent to kα > −δr/δq. This is precisely
the condition for (dq, dr) to be a time-like vector. We conclude that w.h.p the
boarding process relation > can be replaced by the causality relation >g. It
can be shown that the approximation of > is by >g is good enough to preserve
asymptotically the length of the longest chain. Next we note that the density
distribution p(q, r)dqdr is proportional to volume form of the Lorentzian metric.
The computation is thus reduced to computing the expected length of the longest
chain w.r.t the causal relation >g for n points, in a bounded Lorentzian domain,
which are chosen with respect to the normalized volume form of the Lorentzian
metric. It is well known that two dimensional Lorentzian metrics are conformally
flat, hence, there is a coordinate transformation x = f(q, r), y = g(q, r) after
which the metric takes the form ds2 = u(x, y)dxdy for some scaling function u.
Finally we observe that for such metrics the relation >g coincides with the in-
creasing subsequences relation of example 2.1 and part A, becomes a translation
to the language of Lorentzian geometry of theorem 2 of [4].

To prove the second part of the theorem, note that, at any point (q, r),
the tangent to the fixed height curve Lh (which exists generically) must be
orthogonal to the (generically unique) geodesic of length h ending at (q, r). This
means that, given dh, the Lorentzian area bounded by the curves Lh and Lh+dh

is equal to l(Lh) (measured with respect to −g which is the length of the base
times the Lorentzian height dh). Let μ denote the standard Lebesgue measure.
It is known that the Lorentzian area element is given by |detg|1/2dμ. In all our
models |gq,r|1/2 equals 2p(q, r). The number of passengers in a given area is given
locally by p(q, r)μ, thus the number of passengers in the region bounded by Lh

and Lh+dh is approximately (1/2)l(Lh)dh, which yields the second part of the
theorem. q.e.d

We can also model using a Lorentzian manifold the problem of disk drive
scheduling with linear seek functions. We refer to [1] and [3] for terminology and
a description of the ABZ process. We assume that the disk drive is presented
with n I/O requests chosen with respect to a location density distribution p(r, θ),
and that the seek function of the disk is given by f(θ) = cθ. Here r represents
the radial location of a piece of data and θ is the angular location. Note that
(r, 0) and (r, 1) are identified. The associated model M is that of a cylinder with
coordinates (r, θ) and metric such that ds2 = p(r, θ)(dr2−c2dθ2). We choose the
left time-like cone containing the vector (1, 0) as future pointing throughout the
manifold. We note that the cylinder equipped with the metric −g is an example
of a Lorentzian space with no causal structure. If A denotes an I/O request, let
R(A) denote the rotation in which request A will be serviced according to the
ABZ scheduling process.
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The relation between the ABZ scheduling process and the peeling process
applied to the I/O requests with respect to the causal structure are related by
the following result.

Theorem 3.2 Let A = (r, θ) be an I/O request which is part of a batch of n I/O
requests presented to the disk. Let RcauA denote the round of A in the peeling
process with respect to the causal structure. Let R(A) be the rotation in which
the ABZ scheduling process services request A. Then

Rcau(A)− 1
c
≤ R(A) ≤ Rcau +

1
c
.

Using this result we can state the analogue of Theorem 3.1 for disk scheduling.

Theorem 3.3

A) For all ε > 0, w.h.p, for any request A we have

(h(A)− ε)
√
n < R(A) < (h(A) + ε)

√
n.

B) Let ε > 0. For θ > 0 let N(θ) denote the number of I/O requests which are
serviced in the first θ

√
n disk rotations, then w.h.p

| N(θ)

(1/2)
∫ θ

0
l(Ch)dh

− 1| < ε

where l(Ch) denotes the length of Ch with respect to the metric −g.

Part A of Theorem 3.3 is essentially a restatement of a theorem in [3], while part
B is new. The proof follows the lines of the proof of theorem 3.1 but is simpler
since the partial order to which the ABZ peeling process is applied coincides
with the causal structure rather than being asymptotically the same as in the
airplane boarding case.

Data layouts on disk usually dictate that p(r, θ) is usually independent of θ.
Nonetheless space-time arising from metrics of the form ds2 = p(r)(dr2− c2dθ2)
are still very interesting and include the analogues for space-time of hyperbolic
and spherical geometry.

4 Analysis and Optimization of the Boarding Process

The space-time models which were introduced in section 3 allow us to compute
analytically the asymptotic boarding time (for a large number of passengers)
of essentially all the airline policies presented examined via simulations in [6,
9, 11, 13]. After some practice the boarding time for a specific policy, given a
congestion parameter k can be calculated by hand with the aid of a calculator in
about 1 minute. With a modern day processor the same calculation is expected
to take a few nano seconds, far faster then any simulation. In general there is very
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good agreement between all simulation studies and our analytical computations
regarding the ranking of various policies. In this section we will emphasize a
crucial behavioral feature which helps to explain the results. More precisely we
aim to clarify the relation between the efficiency of standard boarding policies
and the value of the parameter k which is given in terms of interior design
parameters of the airplane.

We consider back-to-front policies. Such policies enforce row i passengers to
board no earlier than row i + 1 passengers. In terms of the policy function,
this means that F = FP (r) is decreasing. We will also assume that F (r) is
continuously differentiable. Policies of this type may be implemented by placing
a wall display at the terminal which shows which row (and rows above it) is
allowed to board at any given moment. the numbers on the display will gradually
decrease according to the function F , showing row r at time F (r). This scenario
is a bit different from the more common situation in which rows which are
permitted to board are announced by a gate agent, but the qualitative behavior
of both types of policies turns out to be similar, so either one can be considered.
Back to front policies attempt to minimize boarding time by reducing the time
lost by aisle blocking.

In our analysis we shall keep k fixed. We consider the attentive passenger
reaction model, in which passengers board uniformly within t time units from
the time of being allowed, i.e., of time F (r). As a result of this assumption, the
corresponding density p will take the value 1/t in the range F (r) ≤ q ≤ F (r)+ t
and 0 otherwise.

we claim that a phase transition occurs in the boarding problem when the
value of k passes through 1 (or other integer values).

Theorem 4.1 Let P be any back-to-front boarding policy, and let MP,k,t denote
the Lorentzian space corresponding to P , with congestion parameter k and an
attentive passenger reaction model with attentiveness parameter t. If k < 1, then

limt→0 diam(MP,k,t) = 0, whereas if k > 1 then
limt→0 diam(MP,k,t) = ∞.
Thus, when k < 1 back to front boarding policies can be very effective, while

for k > 1 they can be very detrimental.

Sketch of proof: When k > 1 we consider the curve which forms the lower
boundary of the domain of the Lorentzian model, namely, (F (r), r). We claim
that as t approaches 0, this curve becomes time-like. Looking at the definition of
the metric we note that α(q, r) =

∫ 1

r
p(q, u)du. We have p(q, u) = 1/t as long as

F (u)+t ≥ F (r) and zero otherwise. After some simple manipulations this is seen
to be equivalent as t becomes small to the range r ≤ u ≤ −(t/F ′(r)) + r, which
yields that α(q, r) is asymptotically equal to −1/F ′(r). Since we are considering
the curve (F (r), r) we have dq = d(F (r)) = F ′(r)dr. Plugging into the metric
we have ds2 = 4

t (dq
2((k − 1)/F ′(r))). Recaling that F ′(r) < 0 and integrating

over dq (using the inverse function F−1) we obtain that the length of the curve
tends to infinity at a rate of O(

√
1/t) as t goes to zero. When k < 1, we observe

that the argument above actually shows that α(q, r) ≤ −1/F ′(r). Using this
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fact it is easy to see that any time-like curve will have Euclidean length of
order of magnitude O(t). Since the contribution of the density to ds has order
of magnitude O(1/

√
t) we see that the length of any time like will be O(

√
t) as

required. Q.E.D
This result explains why current airline policies which are typically very sim-

ilar to the back to front policies which we consider are ineffective or even detri-
mental. This has also been observed in the simulation studies [9, 6, 11, 13]. The
same studies suggest the use of multiple class policies in which passengers are
divided into classes according to seat type (window, aisle or middle) or row type
(even, odd) and only allowing passengers from a single class to board at any
given time. Such policies effectively reduce k to k/m, where m is the number
of classes, thus allowing them in some cases to be more effective than random
passenger queueing. In particular the computations suggest that a policy which
orders passengers according to the following 6 groups will be rather effective. The
order is: Window passengers from the back of the plane board first, followed by
window passengers from the front, then middle seat passengers from the back,
middle seat passengers from the front, aisle seats in the back and finally aisle
seats in the front. This policy has also been suggested in [13].
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Abstract. There are many non-probabilistic factors that affect the fi-
nancial markets. In this paper, the possibilistic mean-variance model of
portfolio selection is presented under the assumption that the returns of
assets are fuzzy numbers, which can better integrate the experts’ knowl-
edge and the managers’ subjective opinions to compare with conventional
probabilistic mean-variance methodology. The possibilistic efficient fron-
tier is derived explicitly when short sales are not allowed on all risky
assets and a risk-free asset.

1 Introduction

The mean-variance methodology for the portfolio selection problem, posed orig-
inally by Markowitz[1], has played an important role in the development of
modern portfolio selection theory. It combines probability and optimization tech-
niques to model the behavior investment under uncertainty. The return is mea-
sured by mean, and the risky is measured by variance, of a portfolio of assets.
In Markowitz’s mean-variance model for portfolio selection, it is necessary to
estimate the probability distribution, strictly speaking, a mean vector and a co-
variance matrix. It means that all mean returns, variances, covariances of risky
assets can be accurately estimated by an investor. The basic assumption for us-
ing Markowitz’s mean-variance model is that the situation of asset markets in
future can be correctly reflected by asset data in the past, that is, the mean and
covariance of assets in future is similar to the past one. It is hard to ensure this
kind of assumption for real ever-changing asset markets.

Indeed, it is well-known that the returns of risky assets are in a fuzzy uncer-
tain economic environment and vary from time to time, so the future states of
returns and risks of risky assets cannot be predicted accurately. Recently, a few
of authors such as Watada [6], Tanaka and Guo [7,8], Wang and Zhu [14] etc.,
studied the fuzzy portfolio selection problem. Watada [6] presented portfolio se-
lection models using fuzzy decision theory. Tanaka and Guo [7,8] proposed the
portfolio selection models based on fuzzy probabilities and possibilistic distribu-
tions. Zhang [11] introduced the admissible efficient portfolio model under the

N. Megiddo, Y. Xu, and B. Zhu (Eds.): AAIM 2005, LNCS 3521, pp. 203–213, 2005.
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assumption that the expected return and risk of asset have admissible errors.
This paper discusses portfolio selection problem based on possibilistic mean
and possibilistic variance of fuzzy numbers. We present the possibilistic mean-
variance model and introduce the notion of the possibilistic efficient portfolio and
efficient frontier similar to probabilistic efficient portfolio and efficient frontier.
The probabilistic mean and variance in Markowitz’s mean-variance model are
replaced by the possibilistic mean and variance, respectively. The possibilistic
efficient frontier is derived explicitly when short sales are not allowed on all risky
assets and there exists a risk-free investment.

2 Possibilistic Mean and Possibilistic Variance

A fuzzy number A is a fuzzy set of the real line R with a normal, fuzzy convex
and continuous membership function of bounded support. The family of fuzzy
numbers will be denoted by F .

Let A be a fuzzy number with γ− level set [A]γ = [a(γ), b(γ)](γ > 0).
Moreover, a function f : [0, 1] → R is said to be a weighting function if f
is non-negative, monotone increasing and satisfies the normalization condition∫ 1

0
f(γ)dγ = 1.
Fullér and Majlender [10] defined the weighted possibilistic mean value of A

as

Mf (A) =
∫ 1

0

f(γ)
a(γ) + b(γ)

2
dγ =

ML
f (A) +MU

f (A)
2

,

where

ML
f (A) =

∫ 1

0

f(γ)a(γ)dγ =

∫ 1

0
a(γ)f(Pos[A ≤ a(γ)])dγ∫ 1

0
f(Pos[A ≤ a(γ)])dγ

,

MU
f (A) =

∫ 1

0

f(γ)b(γ)dγ =

∫ 1

0
b(γ)f(Pos[A ≥ b(γ)])dγ∫ 1

0
f(Pos[A ≥ b(γ)])dγ

,

Pos[A ≤ a(γ)] = Π((−∞, a(γ)]) = sup
u≤a(γ)

A(u) = γ,

Pos[A ≥ b(γ)] = Π([b(γ),+∞]) = sup
u≥b(γ)

A(u) = γ.

We easily get the following conclusion.

Theorem 2.1. Let A1, . . . , An be n fuzzy numbers, and let λ1, . . . , λn be n
nonnegative real numbers. Then

Mf (
n∑

i=1

λiAi) =
n∑

i=1

λiMf (Ai),

where the addition of fuzzy numbers and the multiplication by a scalar of fuzzy
number are defined by the sup-min extension principle [9].
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Proof. Suppose [Ai]γ = [ai(γ), bi(γ)](0 < γ < 1).
According to λi ≥ 0, i = 1, . . . , n, it holds that

[λiAi]γ = λi[Ai]γ = λi[ai(γ), bi(γ)] = [λiai(γ), λibi(γ)],

[
n∑

i=1

λiAi]γ =
n∑

i=1

[λiAi]γ = [
n∑

i=1

λiai(γ),
n∑

i=1

λibi(γ)].

From the definition of the weighted possibilistic mean value and the equations
above, we have

Mf (
n∑

i=1

λiAi) =
∫ 1

0

f(γ)(
n∑

i=1

λi
ai(γ) + bi(γ)

2
)dγ =

n∑
i=1

λiMf (Ai).

We introduce the notations of the weighted possibilistic variance and covariance
of fuzzy numbers.

Definition 2.1. The weighted possibilistic variance ofA with [A]γ = [a(γ), b(γ)]
is defined as

V arf (A) =
∫ 1

0

f(γ)([ML
f (A)− a(γ)]2 + [MU

f (A)− b(γ)]2)dγ.

Definition 2.2. The weighted possibilistic covariance of A,B ∈ F is defined
as

Covf (A,B) =
∫ 1

0
f(γ)[(ML

f (A)− a1(γ))(ML
f (B)− a2(γ))+

(MU
f (A)− b1(γ))(MU

f (B)− b2(γ))]dγ,
where [A]γ = [a1(γ), b1(γ)] and [A]γ = [a2(γ), b2(γ)].

The following theorems show properties of the weighted possibilistic variance.

Theorem 2.2. Let A ∈ F and let θ be a real number. Then

Mf (A+ θ) = Mf (A) + θ, V arf (A+ θ) = V arf (A).

Proof. Let [A]γ = [a(γ), b(γ)], γ ∈ [0, 1].
From the relationship

[A+ θ]γ = [a(γ) + θ, b(γ) + θ],

we get

ML
f (A+ θ) =

∫ 1

0

f(γ)(a(γ) + θ)dγ = ML
f (A) + θ,

MU
f (A+ θ) =

∫ 1

0

f(γ)(b(γ) + θ)dγ = MU
f (A) + θ.

Form the definitions, it follows that

Mf (A+ θ) = Mf (A) + θ, V arf (A+ θ) = V arf (A).

The proof of the theorem is ended.
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Theorem 2.3. Let A1, . . . , An be n fuzzy numbers, and let λ1, . . . , λn be n
nonnegative real numbers. Then

V arf (
n∑

i=1

λiAi) =
n∑

i=1

λ2
iV arf (Ai) + 2

n∑
i>j=1

λiλjCovf (Ai, Aj),

where the addition and multiplication by a scalar of fuzzy numbers are defined
by the sup-min extension principle [9].

Proof. Suppose [Ai]γ = [ai(γ), bi(γ)](0 < γ < 1).
Then

[
n∑

i=1

λiAi]γ = [
n∑

i=1

λiai(γ),
n∑

i=1

λibi(γ)].

By Theorem 2.1, we have

V arf (
n∑

i=1

λiAi) =
∫ 1

0
f(γ)[ML

f (
n∑

i=1

λiAi)−
n∑

i=1

λiai(γ)]2dγ+

∫ 1

0
f(γ)[MU

f (
n∑

i=1

λiAi)−
n∑

i=1

λibi(γ)]2dγ

=
∫ 1

0
f(γ)[

n∑
i=1

λi(ML
f (Ai)− ai(γ))]2dγ+

∫ 1

0
f(γ)[

n∑
i=1

λi(MU
f (Ai)− bi(γ))]2dγ

=
n∑

i=1

λ2
iV arf (Ai) + 2

n∑
i>j=1

λiλjCovf (Ai, Aj).

Let A1, . . . , An be n fuzzy numbers and let cij = Covf (Ai, Aj), i, j = 1, . . . , n.
Then the matrix

Covf = (cij)n×n

is called as the possibilistic covariance matrix of fuzzy vector (A1, A2, . . . , An).
We can prove that the possibilistic covariance matrix have the same properties
as the covariance matrix in probability theory.

Theorem 2.4. Covf is a nonnegative definite matrix.
Proof. From the definitions of possibilistic covariance, it follows that

Covf (Ai, Aj) = Covf (Aj , Ai), i, j = 1, . . . , n.

Therefore, Covf is a real symmetric matrix.
Especially,

cii = Covf (Ai, Ai) = V arf (Ai), i = 1, 2, . . . , n.

Let [Ai]γ = [ai(γ), bi(γ)], i = 1, . . . , n.

For any ti ∈ R(i = 1, . . . , n),
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n∑
i=1

n∑
j=1

cijtitj

=
n∑

i=1

n∑
j=1

∫ 1

0

f(γ)([ML
f (Ai)−ai][ML

f (Aj)−aj ]+[MU
f (Ai)−bi][MU

f (Aj)−bj ])titjdγ

=
∫ 1

0

f(γ)[
n∑

i=1

ti(ML
f (Ai)−ai(γ))]2dγ+

∫ 1

0

f(γ)[
n∑

i=1

ti(MU
f (Ai)−bi(γ))]2dγ ≥ 0.

Hence, Covf is the nonnegative definite matrix.
This concludes the proof of the theorem.

3 Possibilistic Mean-Variance Model of Portfolio
Selection

We consider a portfolio selection problem with n risky assets and a risk-free
asset in this paper. Here, the return rate rj for risky asset j is considered a fuzzy
number, j = 1, 2, . . . , n. Let r0 be the return rate of risk-free asset and xj be
the interest rate of the risky asset j. Then the return associated with a portfolio
(x1, x2, . . . , xn) is

r =
n∑

i=1

xiri + r0(1−
n∑

i=1

xi).

From Theorems 2.1 and 2.2, the possibilistic mean value of r is given by

Mf (r) =
n∑

i=1

Mf (xiri) + r0(1−
n∑

i=1

xi) =
n∑

i=1

xiMf (ri) + r0(1−
n∑

i=1

xi).

From Theorems 2.2 and 2.3, the possibilistic variance of r is given by

V arf (r) =
n∑

i=1

x2
iV arf (ri) + 2

n∑
i>j=1

xixjCovf (ri, rj).

In order to describe conveniently, we introduce the following notations:

x = (x1, x2, . . . , xn)′,
r = (r1, r2, . . . , rn)′,
F = (1, 1, . . . , 1)′,
M = (Mf (r1),Mf (r2), . . . ,Mf (rn))′,
C = (Covf (ri, rj))n×n.

M is the possibilistic mean vector, C is the possibilistic covariance matrix.
Thus, the possibilistic mean value of r is rewritten as

Mf (r) = M′x + r0(1− F′x). (1)
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The possibilistic variance of r is rewritten as

V arf (r) = x′Cx. (2)

Analogous to Markowitz’ mean-variance methodology for the portfolio selection
problem, the possibilistic mean value correspond to the return, while the possi-
bilistic variance correspond to the risk. From this point of view, the possibilistic
mean-variance model of portfolio selection can be formulated as

minx′Cx
s.t. M′x + r0(1− F′x) ≥ μ,

F′x ≤ 1, x ≥ 0.
(3)

From the definition of efficient portfolio, we introduce the concepts of the possi-
bilistic efficient portfolio similar to probabilistic efficient portfolio as follows.

Definition 3.1 The optimal solution of (3), x∗, is called as the possibilistic
efficient portfolio.

The possibilistic efficient portfolios for all possible μ construct the possibilistic
efficient frontier. Solving (3) for all possible μ, the possibilistic efficient frontier
is derived explicitly.

4 Analytic Derivation of the Possibilistic Efficient
Frontier

In (3),it shouldbe notedthatthemeanvector and covariancematrix inMarkowitz’s
mean-variance model are replaced by the possibilistic mean vector and covari-
ance matrix, respectively. There exist a number of studies for finding efficient
portfolio from solving mean-variance model (see, e.g. [2-5]), which would be use-
ful to compute the possibilistic efficient frontier. On the other hand, it would
be very difficult to obtain the efficient frontier in closed form when short sales
aren’t allowed. In this section we give an analytic derivation of possibilistic effi-
cient frontier based on some assumptions.

Assumption 4.1 (i) M = (m1, . . . ,mn) �= kF, for any k ∈ $, (ii) C =
(cij)n×n is a positive definite matrix.

Set

e = M′C−1M, f = F′C−1F, d = M′C−1F,
δ = ef − d2, α0 = (e− dr0)/(d− fr0), β0 = 1/(fr20 − 2dr0 + e). (4)

Using Lagrangian multiplier method, we obtain the following conclusion:
If Assumption 4.1(ii) be satisfied, then x = C−1F/f is the unique optimal
solution of the portfolio problem min{x′Cx|F′x = 1} and satisfies M′x+ r0(1−
F′x) = d/f .

The following assumption is natural.
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Assumption 4.2 r0 < d/f .
Some properties of e, f, d, β0, α

0, and δ are given in the following proposition.

Proposition 4.1 Let Assumptions 4.1 and 4.2 be satisfied. Then the following
results hold:

(i) e > 0, f > 0, (ii) δ > 0, β0 > 0, (iii) d/f < α0.

The following Lemma 4.1 is obvious.

Lemma 4.1 max{M′x + r0(1−F′x)|F′x ≤ 1,x ≥ 0} = max{mi, 1 ≤ i ≤ n}.
Lemma 4.1 means that the maximum possibilistic return of the portfolio that

an investor can get is max{mi, 1 ≤ i ≤ n} under constraints F′x ≤ 1 and x ≥ 0.
This result can be obtained when the investment rate to the asset with the
maximum possibilistic mean is 1 and others are 0.

Before proceeding with the solving (3), it is helpful to introduce the following
problem

minx′Cx
s.t. M′x + r0(1− F′x) ≥ μ,

F′x ≤ 1.
(5)

The optimal solution for (5) is formulated in the following theorem.

Theorem 4.1 Let Assumptions 4.1 and 4.2 be satisfied. Then the optimal
solution to (5) is :

(i) x = β0(μ− r0)C−1(M− r0F) if r0 < μ ≤ α0,
(ii) x = C−1[eF− dM + (fM− dF)μ]/δ if μ > α0.

Proof. Since C is a positive definite matrix, the K-T conditions are both
necessary and sufficient for optimality(see Yuan Y.X. et al ([12])). Solving the
problem (5) is equal to doing x ∈ $n, λi ∈ $(i = 1, 2) such that⎧⎨⎩Cx = λ1(M− r0F)− λ2F,

λ1[(M− r0F)′x + r0 − μ] = 0,
λ2(−F′x + 1) = 0, λ1 ≥ 0, λ2 ≥ 0.

(6)

If r0 ≤ μ ≤ α0, then there exist multipliers λ1 = β0(μ− r0) ≥ 0, λ2 = 0 and

x = β0(μ− r0)C−1(M− r0F)

such that (6) holds.
If μ > α0, then fμ − d > fα0 − d = δ/(d − fr0) > 0 and μ(d − fr0) − (e −

dr0) ≥ 0. Correspondingly, there exist multipliers λ1 = (fμ − d)/δ > 0, λ2 =
[μ(d − fr0) − (e − dr0)]/δ > 0 and x = C−1[eF − dM + (fM − dF)μ]/δ such
that (6) holds. Thus, parts (i) and (ii) hold.

The proof of the theorem is completed.
The relation to the optimal solutions between (3) and (5) is described by the

following Theorem 4.2
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Theorem 4.2 Let Assumption 4.1(ii) be satisfied and let μ be constant. If
x∗ = (x∗1, . . . , x

∗
n)′ is the optimal solution of (5) with x∗i1 < 0, . . . , x∗ik

< 0 and
others x∗j ≥ 0, and if x1∗ = (x1∗

1 , . . . , x
1∗
n )′ is the optimal solution of (3), then

x1∗ ∈
k⋃

s=1
{x = (x1, . . . , xn)′|xis

= 0, xi ≥ 0, i �= is}.

Proof. With the help of reduction to absurdity. Let x1∗
is
�= 0 for all s = 1, . . . , k.

Then x1∗
is
> 0 for all s = 1, . . . , k and others x1∗

j ≥ 0.
Assumption 4.1(ii) is satisfied, so V (x) = x′Cx is a strictly convex function.

We set F (t) = V (tx1∗ + (1− t)x∗) and x∗∗(t) = tx1∗ + (1− t)x∗ for t ∈ [0, 1].
According to Theorem 3.2.4 of [13], F (t) is a strictly convex function of t for

t ∈ [0, 1].
It can be shown that x∗∗(t) = (x∗∗1 (t), . . . , x∗∗n (t))′ for all t ∈ [0, 1] is a feasible

solution of (5), so F (0) = V (x∗) < V (tx1∗ + (1− t)x∗) = F (t) for all t ∈ (0, 1].
Thus, F (t) is a strictly increasing function of t for t ∈ (0, 1]. Setting tis

=
−x∗is

/(x1∗
is
− x∗is

) for s = 1, . . . , k and using x∗is
< 0, we obtain tis

∈ (0, 1)
and x∗∗is

(tis
) = 0 for s = 1, . . . , k. Define t0 = max{tis

|s = 1, . . . , k} and
take t0 < t1 < 1. Since x∗∗i1

(t), . . . , x∗∗ik
(t) are strictly increasing functions, we

have x∗∗(t1) ≥ 0. This implies that x∗∗(t1) is also a feasible solution of (3).
V (x∗∗(t1)) = F (t1) < F (1) = V (x1∗), which is in contradiction with the as-
sumption of x1∗. Thus, the proof of the theorem is concluded.

In next section we give the procedure for solving the optimal solution x of
the model (3). In order to describe conveniently, we introduce the following
notations:

C−1F = (g1, g2, . . . , gn)′,C−1M = (a1, a2, . . . , an)′, I = {1, 2, . . . , n},

where I denotes the set of n risky assets.
We discuss the optimal solution of (3) from two cases: C−1M ≥ r0C−1F;

C−1M �≥ r0C−1F.

Case 1: C−1M ≥ r0C−1F
If μ ≥ r0, then β0(μ− r0)C−1(M− r0F) ≥ 0.

For r0 < μ ≤ α0, the optimal solution of (5) is also a feasible one of (3).
Hence, the optimal solutions of (3) for r0 < μ ≤ α0 is given by Theorem

4.1(i).
For μ ≥ α0, Theorem 4.1(ii) can be described by

xk =
1
δ
[egk − dak + (fak − dgk)μ], k = 1, . . . , n. (7)

Since δ > 0 and (7) satisfies F′x =
n∑

k=1

xk = 1, there exists h ∈ I such that

fah − dgh < 0.

Define
α = min{ dak − egk

fak − dgk
|fak − dgk < 0, k = 1, . . . , n.}
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Without loss of generality we assume that there exists the unique h ∈ I such
that

α =
dah − egh

fah − dgh
.

Especially, at μ = α0,

C−1[eF− dM + (fM− dF)μ]/δ =
1

d− fr0
C−1(M− r0F) ≥ 0.

For α0 ≤ μ ≤ α, according to the definition of α and considering the continuity
of variables it is sufficient to see that (7) satisfies xk ≥ 0, k = 1, . . . , n, i.e., the
unique optimal solution of (3) is given by (7).

For α < μ ≤ max
1≤i≤n

{mi}, the optimal solution of (5) satisfies

xh =
1
δ
[egh − dah + (fah − dgh)μ] < 0.

Using to Theorem 4.2, the optimal solution of (3) satisfies xh = 0 for α < μ ≤
max

1≤i≤n
{mi}.

We erase xh in (3) and consider the new model with n− 1 assets:

minx′
1C1x1

s.t. M′
1x1 + r0(1− F′

1x1) ≥ μ,
F′

1x1 ≤ 1, x1 ≥ 0,
(8)

where
x1 = (x1, . . . , xh−1, xh+1, . . . , xn)′,
M1 = (m1, . . . ,mh−1,mh+1, . . . ,mn)′,
F1 = (1, 1, . . . , 1)′,
C1 = (cij)(n−1)×(n−1), i �= h, j �= h.

We continue to solve (8) by the same way as shown above.
Similarly, there exists

α1 = min
{d1a1,k − e1g1,k

f1a1,k − d1g1,k
| f1a1,k − d1g1,k < 0, k ∈ I1

}
such that the unique optimal solution of (3) for α < μ ≤ α1 is

xk = [e1g1,k − d1a1,k + (f1a1,k − d1g1,k)μ]/δ1 for all k ∈ I1, xh = 0,

where
(g1,1, . . . , g1,h−1, g1,h+1, . . . , g1,n)′ = C−1

1 F1,
(a1,1, . . . , a1,h−1, a1,h+1, . . . , a1,n)′ = C−1

1 M1,
e1 = M′

1C
−1
1 M1, f1 = F′

1C
−1
1 F1,

d1 = M′
1C

−1
1 F1, δ1 = e1f1 − d2

1, I1 = I\{h}.
If α1 < μ ≤ max

1≤i≤n
{mi}, then we still erase the variable being zero at α1 and

determine the point α2 for the new subset I2 such that xk > 0 for k ∈ I2, xk = 0
for k ∈ I\I2, α1 < μ ≤ α2.
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We continue the same process as shown above, until αt = max
1≤i≤n

{mi}.
The unique optimal solution of (3) at μ = αt is xq = 1, xk = 0 for all k �= q,
where q satisfies mq = max

1≤i≤n
{mi}.

Thus, we obtain all optimal solutions of (3) for μ ≤ max
1≤i≤n

{mi}.
Case 2: C−1M �≥ r0C−1F
There exists at least k ∈ I such that ak < r0gk.

According to Assumption 4.2, ak < r0gk < dgk/f . Then fak − dgk < 0.
For r0 < μ ≤ α0, the optimal solution of (5) satisfies

xk = β0(μ− r0)(ak − r0gk) < 0.

For α0 < μ ≤ max
1≤i≤n

{mi}, the optimal solution of (5) satisfies

xk = [egk − dak + (fak − dgk)μ]/δ
≤ [egk − dak + (fak − dgk)α0]/δ
= (ak − r0gk)/(d− r0f) < 0.

Theorem 4.2 implies that the optimal solution of (3), x, is not a positive vector.
In other words, the optimal solution of (3) cannot contain all risky assets if
C−1M �≥ r0C−1F. Hence, we need to erase a risky asset each time, and so on,
until the condition that C−1M ≥ r0C−1F. Thus, we can obtain all optimal
solutions of (3) by the same procedure as Case 1.
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Abstract. Differentiated service (DiffServ) is a mechanism to provide the Qual-
ity of Service (QoS) with a certain performance guarantee. In this paper, we study
how to design DiffServ multicast when the participants (i.e., relay links) are self-
ish. We assume that each link ei is associated with a cost coefficient ai such that
the cost of ei to provide a multicast service with bandwidth demand x is ai · x.
We first show that a previous approximation algorithm does not directly induce
a truthful mechanism. We then give a new polynomial time 8-approximation al-
gorithm to construct a DiffServ multicast tree. Based on this tree, we design a
truthful mechanism for DiffServ multicast, i.e., we give a polynomial-time com-
putable payment scheme to compensate all chosen relay links such that each link
ei maximizes its profit when it reports its privately cost coefficient ai truthfully.

Keywords: DiffServ, multicast, selfish agents, algorithm mechanism design, ap-
proximation algorithms.

1 Introduction

The Differentiated Services framework (DiffServ) [1, 2] has been proposed to provide
multiple Quality of Service (QoS) classes over IP networks. DiffServ is built upon a
simple model of traffic conditioning and policing at the links of the network in addi-
tion to classifying flows into different service classes. The traffic is forwarded using
simple differentiated treatments, called per-hop behaviors (PHBs), in the core of the
network. This differential treatment results in differential pricing [3], which is one of
the motivating factors for adopting DiffServ by major network providers and ISPs.

Multicast has been a popular mechanism for supporting group-based applications.
In a multicast, different receivers could have different bandwidth demands. Each link
of the network may have different cost of providing multicast with different bandwidth
dedication [4]. Due to the heterogeneity in receivers’ demand requirements, different
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links in a multicast tree will carry different traffic loads such that the demand require-
ments of the downstream receivers are satisfied. The cost of a link in a multicast tree
is then the cost needed to dedicate a certain bandwidth for downstream receivers; it is
typically determined by the maximum bandwidth required by downstream receivers, as
well as the cost coefficient of the link (which we will define later). Thus, the DiffServ
multicast problem is to find a tree and the bandwidth reservation at each link such that
the receivers’ bandwidth demands are met. Note that the traditional Steiner tree prob-
lem for link weighted graph [5, 6], an NP-hard problem, is a special case of the problem
of computing a DiffServ multicast tree with the minimum cost.

What introduces an additional degree of complexity to DiffServ multicast is that
the relay links may be non-cooperative, instead of cooperative as assumed by previous
protocols. This means that every relay link will aim to maximize its own benefit instead
of the whole network’s performance. Usually, each link is first asked to report its relay
cost, then a payment to this link is computed (typically by the source) based on a cer-
tain payment scheme. It is not often in the best interests of these relay links to report
their costs truthfully when they are paid whatever they ask for. Thus, instead of paying
the links their reported costs, we should design a payment scheme that can ensure that
all links reveal their true costs out of their own interests, which is known as truthful-
ness. The truthful mechanism for traditional multicast has been previously addressed in
[7, 8]. However, unlike the traditional multicast in which every link has a fixed cost in
the multicast transmission, each link may incur different costs for different bandwidth
demands in DiffServ multicast. In summary, in this paper, we study two different as-
pects of the DiffServ multicast: the construction of the multicast tree that has low cost,
and a truthful payment scheme.

Our main contributions are as follows. First, we show that a previous approximation
algorithm does not directly induce a truthful mechanism, and we give an alternative 8-
approximation algorithm to construct a DiffServ multicast tree. We then characterize the
necessary and sufficient condition for the existence of a truthful payment scheme based
on a given multicast tree construction method. Finally, we design a truthful mechanism
for DiffServ multicast based on our 8-approximation construction method.

2 Preliminaries and Previous Works

2.1 Algorithmic Mechanism Design

In a standard model of algorithm mechanism design, there are n agents {1, 2, · · · , n}.
Each agent i ∈ {1, · · · , n} has some private information ti, called its type, (e.g., the
cost to forward a packet for a node/link in a network environment). The types of all
agents define a profile t = (t1, t2, · · · , tn). Each agent i reports a valid type τ ′i , which
may be different from its actual type ti, and the strategies of all agents define a reported
type vector τ = (τ1, · · · , τn). A mechanism M = (O,P) is composed of two parts: an
allocation method O that maps a reported type vector τ to an output o and a payment
methodP that decides the monetary payment pi = Pi(τ) for every agent i. Each agent i
has a valuation function wi(ti, o) that expressed its preference over different outcomes.
Agent i’s utility or called profit is ui(ti, o) = wi(ti, o)+pi, given output o and payment
pi. An agent i is said to be rational if it always chooses its strategy τi that maximizes its
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utility ui. Let τ−i = (τ1, · · · , τi−1, τi+1, · · · , τn), i.e., the strategies of all other agents
except i, and let τ |iti = (τ1, τ2, · · · , τi−1, ti, τi+1, · · · , τn), i.e., agent i reports ti.
Here, we are only interested in mechanismsM = (O,P) that satisfy the following three
conditions: (1) Incentive Compatibility (IC): ∀i,∀τ , wi(ti,O(τ |iti)) + pi(τ |iti) ≥
wi(ti,O(τ))+pi(τ), i.e., revealing its true type ti will maximize its utility regardless of
what other agents do; (2) Individual Rationality (IR) (a.k.a., Voluntary Participation):
Each agent must have a non-negative utility, i.e., wi(ti,O(τ |iti)) + pi(τ |iti) ≥ 0; and
(3) Polynomial Time Computability (PC):O andP are computed in polynomial time.
A mechanism is truthful (or called strategyproof ) it satisfies both IC and IR properties.

2.2 Problem Statement

DiffServ multicast Tree Construction: We assume that there is a connected network
G = (V,E) with vertex set V , link set E, where |V | = n and |E| = m. Every link ei

incurs a cost ci = aix if x is the bandwidth ei dedicated to a multicast transmission.
Hereafter ai is called the cost coefficient of the link ei. All links’ coefficients define a
vector a = (a1, a2, · · · , am). There is a source node s and a set of receivers R ⊂ V
that request the multicast service. Every receiver ri ∈ R has a bandwidth demand di

that specifies the minimum bandwidth it needs.
The DiffServ multicast problem consists of two parts: 1) a network topology rooted

at the sender s that spans all receivers in the receiver set; 2) a bandwidth allocation
for each link of the tree. The tree topology and bandwidth reservation should satisfy
that for any receiver ri, each link on the tree path between ri and s has a bandwidth
reservation not smaller than di. Thus, for a link ei, the reserved bandwidth should not be
smaller than the maximum bandwidth demand of its downstream receivers. The weight
of a multicast topology T with link bandwidth reservation vector b = {b1, b2, · · · , bm}
is ω(T, b) =

∑
ei∈T ci =

∑
ei∈T ai · bi. Given the cost coefficients vector a of all

links and the bandwidth demand d of all receivers, the DiffServ multicast problem is to
construct a tree T and a bandwidth reservation b with the minimum cost ω(T, b). It is
called Quality of Service Steiner Tree (QoSST) problem in [9].

Payment Computation: Throughout this paper, we assume all the links are selfish and
rational. After designing a method O to construct a multicast tree, we need to design a
payment scheme P for the links such that the mechanism M = (O,P) is truthful.

2.3 Literature Review of Steiner Tree Construction

Given a homogeneous bandwidth demand d = {d1, d1, · · · , d1}, the weight of a tree T
is ω(T, d) =

∑
ei∈T ai · d1 = d1 ·

∑
ei∈T ai = d1 · ω(T, 〈1〉). Then we can normalize

the demand of every receiver to 1, i.e., the problem becomes the standard link weighted
Steiner tree problem, which enjoys several constant approximation methods [5, 6]. We
briefly review a 2-approximation method given in [5]. It works as follows. It iteratively
selects the shortest path to the nearest receiver, sets the costs of the links on the selected
path to 0, and removes the nearest receiver from the receiver set until no receiver left. We
call the constructed tree the Link Weighted Steiner Tree (LST), denoted as LST (R, c).

For multicast with a homogeneous bandwidth demand, Li and Wang [8] proved that
the VCG mechanism [16, 17, 18] is not truthful if LST is used. In light of the failure
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of the VCG mechanism, they proposed a truthful payment scheme for all round-based
methods for constructing a multicast tree, including LST structure.

The DiffServ multicast problem was studied before in several contexts. Maxem-
chuk [4] proposed a heuristic algorithm for its solution. Some results for the case of
few rates were obtained in [10, 11]. For example, for the case of two non-zero rates,
a 4

3α-approximation algorithm was proposed [11], where α % 1.549 is the currently
best approximation ratio [6] of an algorithm for the Steiner tree problem. Recently,
Charikar et al. [12] gave the first constant-factor approximation algorithm for an un-
bounded number of rates. They achieved an approximation ratio of 4α using rounding
and eα % 4.211 using randomized rounding. Recently, Karpinski et al. [9] gave al-
gorithms with improved approximation factors. They achieved an approximation ratio
of 1.960 when there are two non-zero rates and an approximation ratio of 3.802 when
there is an unbounded number of rates. Calinescu et al. [13] gave a Primal-Dual algo-
rithm with approximation ratio 4.311. Xue et al. [14] and Kim et al. [15] studied the
Grade of Service Steiner Tree Problem (GOSST) in Euclidean planes.

For DiffServ multicast, the method by Charikar et al. [12] works as follows. Given
an instance of the DiffServ multicast, it first constructs the rounded-up instance by
rounding up all receivers’ demands to the nearest power of 2. It then solves the standard
Steiner tree problem for the receivers of each different demand separately by applying
any of the well-known heuristics. Finally, it does a “clean-up” process to transform the
union of these Steiner trees into a tree. They proved that this simple approach yields a
4αST approximation of the optimal cost, where αST is the approximation factor of the
Steiner tree heuristic used. Our algorithm presented later is similar to this approach at
the first glance, but it has some key differences, which will be described later.

3 A New Approximation Algorithm

We first provide motivations for this section by showing that, for DiffServ multicast, the
following straightforward approach of combining the algorithm of [12] with a truthful
payment scheme for homogeneous multicast does not give a truthful mechanism. Let
T1, T2, · · · , Tk be the k different homogeneous multicast trees constructed for each
distinct bandwidth demand rate in the rounded-up instance. Let pe,i be the payment to
link e based on tree Ti, and let be,i be the bandwidth reservation (the maximum demand
of its downstream receivers) on link e based on Ti. The final multicast structure is
defined to be the union

⋃k
i=1 Ti of all these trees, while the payment pe and bandwidth

reservation be of each link e are defined to be maxk
i=1 pe,i and maxk

i=1 de,i, respectively.
Although this approach (i.e., taking the union of partial outcomes and using the

maximum payment of each agent over all partial outcomes as its final payment) works
for binary selection problems (see [19, 8] for more details), we can show by example
that for DiffServ multicast the resulting payment scheme is no longer truthful. The
reason why this approach does not work for DiffServ multicast (and why mechanism
design for DiffServ multicast is more difficult than many of problems previously studied
in the literature) is that, even if a link is selected, its cost is no longer a fixed number:
it depends on the outcome of the game. Thus, a link could influence the outcome of the
game by carefully choosing its reported cost to reduce its final cost. As a consequence,
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it still increases its utility by falsely reporting its cost. Furthermore, the union
⋃k

i=1 Ti

is not necessarily a tree, but instead a mesh, which is not desirable for practical reasons.
Thus, even if we can define a truthful mechanism for

⋃k
i=1 Ti, it is still not clear how to

extend it to a truthful mechanism for the output computed by “clean-up”. Actually, we
will show that no truthful mechanism exists for

⋃k
i=1 Ti for the bandwidth allocation

determined according to be.
In this section, we present an alternative DiffServ multicast tree construction algo-

rithm. In the next section, we show how to design a truthful payment scheme based on
this algorithm. Given a network G, a receiver set R, a cost coefficient vector a and a
bandwidth demand vector d, the following algorithm shows how to find a DiffServ mul-
ticast tree DMT (a, d) and its corresponding bandwidth allocation B with low weight.
We also call this algorithm DMT if no confusion is caused.

Algorithm 1. Construct DiffServ Multicast Tree
1: Sort all receivers according to their bandwidth demands in an descending order, say R =

{r1, r2, · · · , rk}.
2: Initialize the tree T to empty and index t = 1.
3: For each link ei, label it as WHITE and set Bi = 0.
4: repeat
5: Let rj be the first receiver in the receiver set R.
6: Find the maximal index k such that dk ≥ dj

2
.

7: Set the cost of each WHITE link ei as ci = ai · dj and each BLACK link as 0.
8: Let Rt = {rj , · · · , rk} and find the spanning tree Tt = LST (Rt, c).
9: Remove Rt from R and mark all links in tree Tt as BLACK.

10: Set T = T
⋃

Tt.
11: For each link ei ∈ Tt, if Bi = 0 then set Bi = dj .
12: Set t = t + 1.
13: until the receiver set R is empty.
14: Output T as DMT and bandwidth vector B.

The major difference between this algorithm and the algorithm in [12] is that, in-
stead of computing several trees independently and then combining them to make the
final DiffServ multicast tree, we construct a single tree directly. The receiver set is di-
vided into subsets, each containing receivers with demands in a particular range. These
subsets are handled in multiple rounds, in a descending order according to their band-
width demand ranges. In each round, all receivers in a subset are connected to the Diff-
Serv multicast tree being built. The links picked in earlier rounds will be used in later
rounds, without additional costs involved, to connect receivers with lower demands.

Notice that, as indicated by Line 11 of Algorithm 1., for each link ei added into T
in round t the bandwidth allocation of ei is set to be the maximum bandwidth demand
among all receivers in Rt. This may be more than necessary; after all, ei will not re-
lay packets for all of them. Indeed, one can design the following Algorithm 2., which
constructs the same tree as Algorithm 1. does, and yet allocates less bandwidth on each
link ei by setting the bandwidth allocation to be maximum bandwidth demand of ei’s
downstream receivers. In order to distinguish these two algorithms, we use DMT to
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denote the tree constructed by Algorithm 2.. As minor (and harmless) as this modifica-
tion seems to be, Algorithm 2. does not induce a truthful payment scheme. In the next
section, we will use this algorithm as an example to show how to use a general criterion
to determine the truthfulness of a payment scheme induced by a given algorithm.

Algorithm 2. Construct DiffServ Tree DMT (a, d) with Less Bandwidth Allocation
1: Compute a multicast tree T using Algorithm 1..
2: for each link ei in tree T do
3: Find the maximal bandwidth demand of ei’s downstream receivers, say rj .
4: Allocate link ei a bandwidth Bi = dj .
5: Output T as DMT and bandwidth vector B.

Theorem 1. Either of Algorithm 1. and Algorithm 2. constructs a tree whose weight is
at most 8 times the weight of the minimal cost DiffServ multicast tree.

Although there are only subtle differences between these two algorithms presented
here and the one in [12], the proof of Theorem 1 is not as obvious as that one. We omit
the proof due to space limit.

4 Payment for Selfish Links

Instead of simply presenting a truthful payment scheme for a specific DiffServ multicast
tree construction algorithm (such as Algorithm 1.), we study a general framework to
design a truthful payment scheme for any given tree construction algorithm. We fist give
a necessary and sufficient condition for the existence of a truthful payment scheme for
a given tree construction method. In the meanwhile, we also present a truthful payment
scheme if it exists. We then apply this general framework to the DiffServ multicast tree
constructed by Algorithm 1. and design a truthful payment scheme.

4.1 General Framework

From the definition of the truthfulness, we can fix the graph G, the receiver set R
and bandwidth demand d. Thus, for our notational convenience, we use b(A, a) =
{b1(A, a), · · · , bm(A, a)} to denote the bandwidth reservation vector computed by an
algorithm A, where bi(A, a) is the bandwidth reserved at link ei. We assume that
bi(A, a) is piecewise continuous with respect to any variable aj , i.e., a finite number
of piece-wise linear functions. The only possible types of discontinuities for a piece-
wise continuous function are removable and step discontinuities. In the following we
give a definition that is critical to the presentation of our general framework.

Definition 1 (Monotone Non-increase Property (MNP)). An algorithm A is said to
satisfy the monotone non-increasing property if for every link ei and any two of its
possible coefficients ai1 < ai2 , bi(A, a|iai1) ≥ bi(A, a|iai2).
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Theorem 2. For a given algorithm A, there exists a payment scheme P such that the
mechanism M = (A,P) is truthful if and only if A satisfies MNP.

This theorem is similar to the forklore for the binary demand games and its proof
is omitted here due to space limit. Here we construct a truthful payment scheme P for
an allocation method A. For a link ei, fix a−i and use x to denote cost vector a|ix
if no confusion is caused. Since A satisfies MNP, function bi(A, x) is non-increasing.
Recall that bi(A, x) is a piecewise continuous function. We let x1 < x2 · · · < xm be
the points at which bi(A, x) is not continuous, and introduce a dummy point xm+1 =
∞. We define a function κi(x) as: for xp < x ≤ xp+1, κi(x) = x · bi(A, x) +∫ xp+1

x
bi(A, y)dy+

∑m
j=p+1

∫ xj+1

xj
bi(A, y)dy. Given an algorithmA and a coefficient

vector a, we compute the payment based on algorithmA as follows: for each link i, the
payment to a selected link ei is

Pi(A, a) = κi(ai). (1)

We then summarize the general framework to design a truthful payment scheme P ,
such that M = (A,P) is truthful, for a given output algorithm A that constructs a
DiffServ multicast tree and outputs the bandwidth allocation for DiffServ multicast.
1. Check whether the bandwidth allocation of algorithm A satisfies MNP. If not then

there is no payment scheme P such that M = (A,P) is truthful, else continue.
2. Find the bandwidth reservation b(A, a).
3. Design the payment scheme according to Equation (1).

4.2 Design Truthful Mechanism

Lemma 1. Algorithm 2. does not satisfy MNP.

Proof. We prove it by presenting an example here. A network G has three receivers
r1, r2, r3 with bandwidth demand d1 = d2 = 1 and d3 = 2. The coefficient of the link
is described in Figure 1 (a). When we apply Algorithm 2. to network G, we obtain a
tree shown in Figure 1 (b). Let agent 2 be link v2v3. The bandwidth allocation of link
e2 = v2v3 is 2. Consider the scenario when the coefficient of link e2 changes from
1.1 to 0.9 while other coefficients remain the same. The new spanning tree is shown
in Figure 1 (c). The bandwidth allocation of e2 becomes 1, which decreases by half
compared with the bandwidth reservation with coefficient 1.1.
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Theorem 3. There is no truthful mechanism M based on Algorithm 2..

The above example also shows that there is no truthful mechanism for the DiffServ
multicast tree construction method presented in [12]. Meanwhile, we can show that
there exists a truthful payment scheme for Algorithm 1. with the following theorem.

Theorem 4. Algorithm 1. satisfies MNP.

The proof of this theorem is straightforward and thus is omitted here due to space
limit. To find the truthful payment for Algorithm 1., we should find the bandwidth
allocation bk(DMT, a|kx) for every link ek first. Recall that for every link ei, the al-
located bandwidth could only be a real value that Rmax

j for some index j. Here Rmax
j

is the maximum demand of the jth group of receivers. Let xk
1 < xk

2 < · · · < xk
q

be the points at which bk(DMT, a|kx) is not continuous, then the bandwidth allo-
cation function bk(DMT, a|kx) should be a constant, say yk

j in (xk
j , x

k
j+1). In order

to find the values of these discontinuous points, we first need to compute the truthful
payment for standard Steiner tree problem. We use τ(c−i, R) to denote the payment
computed for a link ei based on a LST tree heuristic [8]. Algorithm 3. shows how to
find the bandwidth-allocation function bk(DMT, a|kx). Algorithm 4. illustrates our
truthful payment scheme by following the general framework. The proof of the cor-
rectness of these algorithms are either straightforward or omitted here due to space
limit.

Algorithm 3. Bandwidth Allocation Function for Algorithm 1.
1: Apply Algorithm 1.. Let � be the number of iterations in Algorithm 1..
2: for every link ek in DMT (a, d) do
3: Set ck = ∞ and apply Algorithm 1. again.
4: At the beginning of each iteration i, compute the value τ i

k(a−k, Ri).
5: Initialize the list Xk = ∅, Y k = ∅, up = 0, and q = 0.
6: for i = 1 to � do
7: if τ i

k(a−k, Ri) > up then
8: q = q + 1; Set xk

q = τ i
k(a−k, Ri) and yk

q = Rmax
i ; Add xk

q to set Xk and yk
q to Y k.

9: Set xk
0=0 and xq+1 = ∞.

10: for i = 1 to q + 1 do
11: Set bk(A, a|kx) = yk

i for xk
i−1 ≤ x < xk

i .

Algorithm 4. Payment Scheme for Algorithm 1.

1: Compute the multicast tree DMT by applying Algorithm 1..
2: Compute the bandwidth allocation function for tree DMT by applying Algorithm 3..
3: for each link ek do
4: if ek is in tree DMT then
5: Find i such that xk

i < ak ≤ xk
i+1. Then the payment is Pk(a) =

∑|Xk|−1
j=i+1 yk

j ·(xk
j+1−

xk
j ) + (xk

i+1 − ak) · yk
i .

6: else
7: Pk(a) = 0.
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4.3 Performance Improvement and Special Case

In essence, Algorithm 1. converts the original instance of the DiffServ multicast prob-
lem to a “rounded-up” one, with bandwidth demand vector forming a geometric se-
quence of ratio 2. According to the result of Charikar et al. [12], the approximation
ratio of 8 of Algorithm 1. can be improved (while still using LST structure for com-
puting approximately optimal Steiner trees) if the “randomized bucketing” technique
is used. Specifically, a number y is picked randomly with a uniform distribution in the
range [0, 1], and the (non-zero) bandwidth demands of all receivers are rounded up to
the nearest ey+i. (Note that the ratio of the geometric sequence is e instead of 2.) The
expected approximation ratio is e · 2 % 5.437.

Here we argue that we can also convert the mechanism described above for DiffServ
multicast to a randomized one with an expected approximation ratio of 5.437, while
maintaining the truthfulness of the mechanism. First of all, it is easy to see that using a
“start point” of ey for some fixed y and replacing the ratio of 2 by e for the geometric
sequence (of rounded up bandwidth demands) should not affect truthfulness. Further-
more, the randomized process also does not encourage untruthfulness of the links: if for
any fixed start point ey , the links find no incentive to report false cost, nor will they find
incentives to report false cost when such start point is randomly selected.

Charikar et al. [12] also proposed a de-randomized process to replace the above
random selection of start point ey . For each distinct bandwidth demand di, the same
algorithm is invoked with yi = ln di − �ln di�. It is claimed that there is at least one
yi such that the solution for y = yi has a cost no more than the expected cost of
the solution for a randomly picked y. Therefore, we can simply pick the best solution
(with the minimum cost) among all solutions computed using different y. A similar
technique is used for the case with only two non-zero rates for bandwidth demands [11],
improving the approximation bound to 4

3 ·2 % 2.667. The common characteristic of the
two algorithms is to compute multiple DiffServ multicast trees using different methods
(or same method but with different parameters), and pick the one with the smallest cost.
Although this approach (i.e., taking the best output of several outcomes and using a
certain combination of the payments for these separated games as its final payment)
works for binary selection problems under certain conditions [20, 19], a problem arises
when it comes to determining the payments to the links for DiffServ multicast. We can
show by example that the tree construction algorithm in [11] violates the MNP property,
which implies that no truthful payment exists.

5 Conclusion

We studied the DiffServ multicast problem in a game theoretic context, where the
network links are selfish agents who would demand payments to at least cover their
costs when relaying data packets, and may falsely report their actual costs in order
to maximize their gains. We show that a naive conversion of the previously known
8-approximation algorithm does not work. We then propose an alternative approxima-
tion algorithm for DiffServ multicast with the same approximation bound. We also in-
troduced a general method to convert any DiffServ multicast algorithm satisfying the
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Monotone Non-increasing Property to a truthful mechanism, and applied it to the al-
gorithm we proposed. The truthful payment scheme is not the end story for designing
protocols for DiffServ multicast. A natural question to ask is how these payments can
be split among the receivers, which is known as the multicast payment sharing problem.
Several criteria for the fairness of sharing have been proposed in previous work, and we
would like to design payment sharing schemes that are considered to be fair with these
criteria.
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Abstract. Based on the unidirectional conversion model, we investi-
gate a practical buy-and-hold trading problem. This problem is useful
for long-term investors, we use competitive analysis and game theory to
design some trading rules in the securities markets. We present an online
algorithm, Mixed Strategy, for the problem and prove its competitive
ratio 1+ (n−1)t

2
, where n is the trading horizon and t is the daily fluctua-

tions of securities prices. The Dynamic-Mixed Strategy is also presented
to further reduce the competitive ratio. An investing example is simu-
lated with the Mixed Strategy and Dollar Average Strategy based on the
actual market data.

1 Introduction

In many situations, we are forced to choose between different alternatives without
knowledge of each alternative’s future worth. The finance management problem
has attracted substantial attention lately due to the coexistence of high returns
and high risks. Like many other ongoing financial activities, securities investing
must be carried out in an on-line fashion, with no secure knowledge of future
events. Faced with this lack of knowledge, the on-line investors of this financial
activity often use models based on assumptions about the future distribution of
relevant quantities such as securities prices, and aim for acceptable results on the
average. The on-line algorithm and competitive analysis[1] are important tools
for making decision. The approach we follow here is to use competitive analysis,
which was first applied to on-line algorithms by Sleator and Tarjan in[2].

Competitive analysis has been extensively discussed in the domain of financial
management since Cover[3] first investigated the portfolio problem with it in
1991. Cover presented a simple on-line strategy that dynamically changed the
distribution of its current wealth among the stocks based on the market history.
El-Yaniv[4][5][6] explored the on-line algorithm for the unidirectional conversion
problem under the assumption that the whole exchange rates, instead of the daily
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ones, are between a pair of upper and lower bounds, no matter how erratically or
unfortunately the rates vary from day to day. Xu et al.[7] further studied the same
setting in a framework with commission and interest rate. Chou[8] investigated
the bidirectional currency trading problem against a weak statistical adversary
to make a money-making strategy.

In most studies, it is inevitable for the researchers to make some assumptions
about future events to design a competitive strategy to maximize the future
gain. Although much research has been devoted to the investing problem, little
research has been done based on the real trading rules. Instead of knowing about
the distribution of future market prices, an online strategy might be based only
on the knowledge of the daily bounds on possible market prices. In this paper we
use the framework of the daily price constraints model, in which the next day’s
price e′ depends on the current day’s price e with e · (1− t) ≤ e′ ≤ e · (1 + t) for
some fixed t < 1, to investigate the buy-and-hold trading problem using game
theory and competitive analysis based on the unidirectional conversion model in
[4]. We obtain an online algorithm Mixed Strategy for the problem and prove its
exact competitive ratio 1+ (n−1)t

2 . We then present the Dynamic-Mixed Strategy
to further reduce the competitive ratio. The Mixed Strategy and Dollar Average
Strategy are also compared and an investing example is simulated based on
the actual market data of CBM in 2003. Our results could be beneficial to the
long-term trading players in the securities market to make a decision.

This paper is organized as follows. In Section 2, we present the on-line securi-
ties investment problem, and derive the Mixed Strategy and the Dynamic-Mixed
Strategy using the Game Theory and Competitive Analysis. Section 3 refers to
compare the Mixed Strategy and the popular Dollar Average Strategy, and an
investing example is stimulated using the two strategies based on the actual
market data of CBM in 2003. Conclusions and work-in-progress are reported in
section 4.

2 On-line Securities Investment, OSI

2.1 Problem Statement

Suppose that an investor has initial capital of w0 = 1, and invests it for a certain
security in n days, which is referred to as the trading horizon (assume n ≥ 2 to
avoid triviality). We also assume that, on each trading day, the security has only
one price, which refers to the number of shares of the securities one unit capital
could buy. After each price is realized, the investor executes one transaction for
that day and invests all or part of his capital. All the capital must be invested
on the n-th trading day, and the holding securities are not permitted converting
back to the capital. The performance of the investing is the accumulation of
shares of the securities that the investor holds at the end of the investment.

In many securities markets, it is regulated that the next day’s closing price
ei+1 depends on the current day’s closing price ei with ei+1 ∈ [ei(1−t), ei(1+t)],
for some fixed t < 1, and it means the daily price fluctuation. Let E denote
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the set of all the feasible price sequences, O denote the optimal off-line trading
algorithm, and A be the investor’s on-line trading algorithm. On the i-th trading
day, the investor must decide the investing amount with only the information
of ei. In this model, the optimal off-line return is O(ē) = max

1≤i≤n
1/ei, and the

on-line investor’s return is A(ē) =
∑n

i=1 ai/ei, where ai is the amount of capital
that the investor invests on the i-th trading day.

Let Si be the trade-once algorithm for i ∈ Zn, i.e., the investor trades all his
initial capital on the i-th trading day, and his return is Si(ē) = 1/ei. Note that
Si is static because converting the holding securities back to cash is prohibited
once the trade realized. Let S be a randomized static algorithm, and si be the
expected amount of capital invested by S on the i-th day. For all i, si ≥ 0
and

∑n
i=1 si = 1. Let S

′
denote the deterministic static algorithm that invests

si on the i-th day. Since the value of si defines a probability density function
in Φ(Zn), let S

′′
denote the randomized static algorithm that applies Si with

probability si.

Lemma 1. [9] S, S′, and S′′ are equivalent in the sense that for all ē ∈ E,
S(ē) = S′(ē) = S′′(ē).

Let r∗s be the smallest possible competitive ratio of the on-line static algo-
rithm, then according to Lemma 1,

r∗s = inf
f∈Φ(Zn)

sup
ē∈E

O(ē)∑n
i=1 f(i)Si(ē)

. (1)

2.2 Mixed Strategy and Competitive Analysis, MIX

The OSI problem could be considered as a two-person game G(m,n) [4]. For any
integer k > 0, we set Zk = {1, 2, · · · , k}. The maximizing player is the on-line
investor, whose pure strategies are the deterministic on-line algorithm Ai of G
indexed with i ∈ Zm. The minimizing player is the adversary in G, whose pure
strategies are the input price sequences σ̄j of G with i ∈ Zn. If the vectors of
the payoff matrix are denoted by the reciprocal of the competitive ratio, then
the payoff matrix is

H(i, j) =
Ai(σ̄j)
Oi(σ̄j)

> 0, i ∈ Zm, j ∈ Zn. (2)

Let Φ(Zk) be the set of all probability density functions defined on Zk. For
k = m, or k = n, each h ∈ Φ(Zk) could be considered as a point in the k-
dimensional Euclidean space and represents a Mixed Strategy that applies the
l-th pure strategy indexed by Zk with probability h(l). Let r∗ denote the smallest
possible competitive ratio of any randomized on-line algorithm for G(m,n), by
equation (1)

r∗ = min
f∈Φ(Zm)

max
j∈Zn

O(σ̄j)
f(i)Ai(σ̄j)

. (3)

A randomized on-line algorithm is optimal if its competitive ratio is r∗.



Competitive Analysis of On-line Securities Investment 227

1e

2e

3e

4e

5e

6e
day

t

t1

1

Fig. 1. The adversary’s dominating sequences

The buy-and-hold trading of OSI is an infinite game because the adversary’s
pure strategies are infinite. However, the on-line investor has n pure strategies
Si. Using the strictly inferior method of the game theory and the worst-case
analysis, we can delete the non-worst-case price sequences of the adversary and
make the game be finite. In other words, we neglect all the sequences that dose
not rise to or lower to the limit. For j = 1, · · · , n, let ēj be the adversary’s
dominating sequences, then

ēj = [(1− t), (1− t)2, · · · , (1− t)j︸ ︷︷ ︸
j

,

(1− t)j(1 + t), (1− t)j(1 + t)2 · · · , (1− t)j(1 + t)n−j︸ ︷︷ ︸
n−j

]. (4)

See figure 1 for its illustration.

Lemma 2. [9] Given a static algorithm S, each ē ∈ E is dominated by
ēj , i.e., O(ē)

S(ē) ≤
O(ēj)
S(ēj)

, where ej = min
1≤i≤n

ei.

Theorem 1. If the investor know the trading horizon n and the daily price
fluctuation t at the beginning, there is Nash Balance of the Mixed Strategy

x∗i =

⎧⎪⎨⎪⎩
1+t

(n−1)t+2 i = 1
t

(n−1)t+2 i ∈ [2, n− 1]
1

(n−1)t+2 i = n

and
∑n

i=1 x
∗
i = 1, which is the optimal on-line investing strategy. Its competitive

ratio is 1 + t
2 (n− 1).

Proof. Let Si be the investor’s i-th pure strategy and ēj be the j-the pure
strategy of the adversary. According to equations (2) and (4), the payoff matrix
of the on-line game is defined by H(i, j) = Si(ēj)

O(ēj)
, where O(ēj) = (1− t)−j and
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Si(ēj) = (1− t)−i if i ≤ j or Si(ēj) = (1− t)−j(1 + t)j−i otherwise, i.e.,

H =

⎛⎜⎜⎜⎜⎜⎝
1 (1− t) (1− t)2 · · · (1− t)n−1

(1 + t)−1 1 (1− t) · · · (1− t)n−2

(1 + t)−2 (1 + t)−1 1 · · · (1− t)n−3

...
...

...
. . .

...
(1 + t)1−n (1 + t)2−n (1 + t)3−n · · · 1

⎞⎟⎟⎟⎟⎟⎠ (5)

for n ≥ 2,

det(H) = (
2t

1 + t
)n−1 > 0. (6)

Let X = (x1, x2, . . . , xn)T denote the Mixed Strategy for the on-line investor,
and π be the payoff of the algorithm. The investor could get the same payoff,
i.e., the same competitive ratio, with the Mixed Strategy whatever strategies the
adversary choose

π1 = π2 = · · · = πn. (7)

The payoff of the algorithm is

Π = HX = (π1, π2, · · · , πn)T

=

⎛⎜⎜⎜⎜⎝
1 · x1 + (1− t) · x2 + · · · + (1− t)n−1 · xn

(1 + t)−1 · x1 + 1 · x2 + · · · + (1− t)n−2 · xn

(1 + t)−2 · x1 + (1 + t)−1 · x2 + · · · + (1− t)n−3 · xn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(1 + t)1−n · x1 + (1 + t)2−n · x2 + · · · + 1 · xn

⎞⎟⎟⎟⎟⎠ (8)

The undermentioned solution follows from equation (7).

xi =

⎧⎪⎨⎪⎩
1+t

(n−1)t+2 i = 1
t

(n−1)t+2 i ∈ [2, n− 1]
1

(n−1)t+2 i = n

(9)

and
∑n

i=1 xi = 1. Equation (9) means that the on-line investor should invest
1+t

(n−1)t+2 unit on the first trading day, 1
(n−1)t+2 unit on the last trading day and

t
(n−1)t+2 on each of the other trading days starting with one unit capital initially.
The payoff of the algorithm is

π1 = π2 = · · · = πn =
2

(n− 1)t+ 2
. (10)

Combining r = 1
π , it suffices to show that

rmix =
(n− 1)t+ 2

2
= 1 +

t

2
(n− 1). (11)

The unique optimality of the Mixed Strategy among the static algorithms for
the price constraints model follows from Lemma 2. ��
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According to Theory 1, the on-line investor’s investing decision depends on
the trading horizon n. Though the competitive ratio and the daily investing
amount take O(1) time to evaluate, lim

n→∞
rmix = lim

n→∞
[1 + t

2 (n − 1)] = ∞.
The algorithm is not competitive when the trading horizon goes to infinite.
However, the algorithm is a practical buy-and-hold strategy for a fund manager
who decides to change the position of some portfolio, and those who invest in
the stock-index fund.

2.3 Dynamic-Mixed Strategy, D-MIX

The Dynamic-Mixed Strategy is an improved strategy against a clumsy adver-
sary. The simple investment strategy above is overly pessimistic since it fixes
the competitive ratio based on the assumption of worst-case input sequences of
prices, and does not change it thereafter. However, the on-line investor could
delete the not-occurred worst-case sequences mentioned in the equation 6 ac-
cording to the history data whenever some sequences are realized. Thus, we
could strictly improve the off-line to on-line ratio by recalculating the achievable
competitive ratio, and this is a dynamic process. At the start of each trading
day, the on-line player has some number w′ of capital. The investor knows the
number n′ of days remaining, and is given a price e′. The investor acts as if the
current day were the first trading day of an n′-day trading horizon in which the
adversary starts with one unit capital and the player with w′ unit capital. By
arguments similar to those used in section 2.2, an expression for the competitive
ratio is determined and maximized over the remaining market prices. For the
k-th realizing sequence the amount x′j to invest is given by

x′j =

⎧⎪⎨⎪⎩
1+t

(n′−1)t+2 · w′
k j = 1

t
(n′−1)t+2 · w′

k j ∈ [2, n′ − 1]
1

(n′−1)t+2 · w′
k j = n′

(12)

The corresponding competitive ratio is

rdm = 1 +
(n′ − 1)t

2
. (13)

2.4 Dollar Average Strategy, DA

The Dollar Average Strategy is a static algorithm which invests an equal amount
of capital, i.e., 1

n unit capital on each trading day. The following theory gives
the competitive ratio of the static algorithm.

Theorem 2. rda = nt
1−(1−t)n .

Proof. By Theorem 1, DA is the uniform Mixed Strategy for the on-line investor
in the game G(m,n). That is to say, the on-line investor’s investing strategy
is X̃ = (x̃1, x̃2, · · · , x̃n) = ( 1

n ,
1
n , · · · ,

1
n )T with one unit capital initially. The
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associated payoff is Π̃ = (π̃1, π̃2, · · · , π̃n)T . The payoff matrix of DA is

Π̃ = HX̃ =
1
n

⎛⎜⎜⎜⎜⎜⎝
1 (1− t) (1− t)2 · · · (1− t)n−1

(1 + t)−1 1 (1− t) · · · (1− t)n−2

(1 + t)−2 (1 + t)−1 1 · · · (1− t)n−3

...
...

...
. . .

...
(1 + t)1−n (1 + t)2−n (1 + t)3−n · · · 1

⎞⎟⎟⎟⎟⎟⎠ (14)

The competitive ratio of the Dollar Average Strategy is

rda = max(
1
π̃1
,

1
π̃2
, · · · , 1

π̃n
) =

nt

1− (1− t)n
. (15)

��

3 Simulation

The competitive ratios of DA and MIX were plotted against trading horizon in
Figure 2 for t = 0.1. It is obvious that the Mixed Strategy is better than the
Dollar Average Strategy with increase of the trading horizon.
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Fig. 2. Competitive ratios of MIX and DA (t=0.1)

This seems inconsistent with El-Yani’s[4] result, who demonstrated that the
Dollar Average Strategy is the best plan of the threat-based algorithm. One
reason for this could be that the two models were based on different constraints of
the input price sequences. El-Yani’s model fixes a static upper bound and a static
lower bound on the daily exchange rates for the entire investing horizon, while
our model sets new dynamic price constraints for every trading day. According
to the constraints of daily price fluctuation in many securities markets, the latter
one should be more practical.

Based on the market data of China Merchants Bank Co., Limited (CMB) in
2003, we simulated an investing example using MIX and DA. Figure 3 shows the
daily closing prices of CMB in 2003. All stock prices are quoted in RMB. One
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investment plan is executed to buy the shares of CBM in one year with an initial
capital of one RMB. For easy comparison, the daily accumulation is expressed
by the summation of the remaining cash and the currency values of the holding
share. The currency values of the holding share are evaluated by the price of the
current trading day. Figure 4 shows the daily accumulations of MIX, DA and the
optimal off-line strategy based on the data of CBM in 2003. At the end of the
plan, the return of the off-line strategy, MIX, and DA are 1.34, 1.054 and 1.044,
respectively. The corresponding realized competitive ratio of MIX and DA are
1.27 and 1.28, respectively. The Mixed Strategy outperforms the Dollar Average
Strategy as a whole but the difference between the two strategies is not distinct.
The main reason is that the real price sequence of CMB in 2003 is not given in
the worst-case, but one of the infinite non-worst-cases.
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Fig. 3. CMB’s daily closing stock
prices in 2003
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Fig. 4. The accumulations of OPT, MIX
and DA (t=0.1)

4 Conclusions

Considering the trading rules of daily price constraints in securities markets,
we obtained an on-line algorithm, the Mixed Strategy, and proved its optimality
among the static algorithms in the daily price constraints model for the buy-and-
hold trading problem in a discrete case. This method can provide a valuable and
quantitative analysis tool for securities investment. However, the Mixed Strategy
is pessimistic because of the assumption of the worst-case input sequences and
the invariability of the competitive ratio. Taking the not-occurred worst-cases
into account, the Mixed Strategy is improved further to the Dynamic-Mixed
Strategy. Based on the market data of China Merchants Bank Co., Limited
(CMB) in 2003, we compared the Mixed Strategy and the Dollar Average Strat-
egy. The results show that the former strategy outperforms the latter one as a
whole. But the difference is not so obvious as in the worst-case.

However, it must be pointed out that the Mixed Strategy is not competitive
when the trading horizon goes to infinity. Therefore, how to design a competitive
algorithm not related to n is still an open problem for this model. In addition,
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it would be interesting to investigate the bidirectional trading problem and the
trading problem with transaction cost using this model.
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Abstract. Given a pair of non-negative integers m and n, S(m, n) de-
notes a square lattice graph with a vertex set {0, 1, 2, . . . , m − 1} ×
{0, 1, 2, . . . , n− 1}, where a pair of two vertices is adjacent if and only if
the distance is equal to 1. A triangular lattice graph T (m, n) has a vertex
set {(xe1 + ye2) | x ∈ {0, 1, 2, . . . , m− 1}, y ∈ {0, 1, 2, . . . , n− 1}} where

e1
def.
= (1, 0), e2

def.
= (1/2,

√
3/2), and an edge set consists of a pair of ver-

tices with unit distance. Let Sk(m, n) and T k(m, n) be the kth power of
the graph S(m, n) and T (m, n), respectively. Given an undirected graph
G = (V, E) and a non-negative vertex weight function w : V → Z+, a
multicoloring of G is an assignment of colors to V such that each vertex
v ∈ V admits w(v) colors and every adjacent pair of two vertices does
not share a common color.

In this paper, we show necessary and sufficient conditions that [∀m,
theSk(m, n) is perfect] and/or [∀m, T k(m, n) is perfect], respectively.
These conditions imply polynomial time approximation algorithms for
multicoloring (Sk(m, n), w) and (T k(m, n), w).

1 Introduction

Given a pair of non-negative integers m and n, S(m,n) denotes a square lattice
graph with a vertex set {0, 1, 2, . . . ,m − 1} × {0, 1, 2, . . . , n − 1}, where a pair
of two vertices is adjacent if and only if the distance is equal to 1. A triangular
lattice graph T (m,n) has a vertex set {(xe1 +ye2) | x ∈ {0, 1, 2, . . . ,m−1}, y ∈
{0, 1, 2, . . . , n − 1}} where e1

def.= (1, 0), e2
def.= (1/2,

√
3/2), and an edge set

consists of pairs of vertices with unit distance. The kth power of a graph G is
a graph whose vertex set is equivalent to that of G and a pair of two vertices
is adjacent if and only if there is a path of length at most k between the pair.
Clearly, G1 = G holds. We denote the kth power of S(m,n) and T (m,n) by
Sk(m,n) and T k(m,n), respectively.

Given an undirected graph H = (V,E) and a non-negative integer vertex
weight function w : V → Z+, a multicoloring of (H,w) is an assignment of colors

N. Megiddo, Y. Xu, and B. Zhu (Eds.): AAIM 2005, LNCS 3521, pp. 233–242, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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to vertices of H such that each vertex v admits w(v) colors and every adjacent
pair of two vertices does not share a common color. A multicoloring problem on
(H,w) finds a multicoloring of (H,w) which minimizes the required number of
colors.

In this paper, we study weighted kth power of the square lattice graphs and
weighted kth power of the triangular lattice graphs. First, we show a necessary
and sufficient condition that [∀m, Sk(m,n) is perfect], and a necessary and suf-
ficient condition that [∀m, T k(m,n) is perfect]. If a graph is perfect, we can
solve the multicoloring problem easily. Next, we propose polynomial time ap-
proximation algorithms for multicoloring Sk(m,n) and T k(m,n). Our algorithm
is based on the well-solvable cases that the given graph is perfect. For any k ≥ 3,
our algorithm finds a multicoloring of Sk(m,n) which uses at most(

1 +
k⌊

k+3
2

⌋)ω + O(k3)

colors, where ω denotes the weighted clique number of Sk(m,n). Table 1 shows
the value of the above approximation ratio in case that k is small. For any k ≥ 2,

Table 1. Approximation ratios in case of the square lattice

k 3 4 5 6 7 8 9 10 11 12 · · · ∞
ratio 2 7/3 9/4 5/2 12/5 13/5 15/6 8/3 18/7 19/7 · · · 3

our algorithm finds a multicoloring of T k(m,n) which uses at most(
2k + 1
k + 1

)
ω + O(k3)

colors, where ω denotes the weighted clique number of T k(m,n). Table 2 shows
the value of the above approximation ratio in case that k is small.

Table 2. Approximation ratios in case of the triangular lattice

k 2 3 4 5 6 7 8 9 10 11 · · · ∞
ratio 5/3 7/4 9/5 11/6 13/7 15/8 17/9 19/10 21/11 23/12 · · · 2

The multicoloring problem has been studied in several context. When a given
graph is the kth power of the triangular lattice graph, the problem is related
to the radio channel (frequency) assignment problem. McDiarmid and Reed [6]
showed that the multicoloring problem on triangular lattice graph T 1(m,n) is
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NP-hard. Some authors [6, 10] independently gave (4/3)-approximation algo-
rithms for this problem. We discussed perfectness and imperfectness of unit disk
graphs on triangular lattice points [9]. In case that a given graph H is the square
lattice graph S1(m,n), the graph H becomes bipartite and so we can obtain an
optimal multicoloring of (H,w) in polynomial time (see [6] for example). In
our previous paper [8], we showed that the multicoloring problem on S2(m,n)
is NP-hard, and we proposed (4/3)-approximation algorithm for the problem.
Halldórsson and Kortsarz [4] studied planar graphs and partial k-trees. For both
classes, they gave a polynomial time approximation scheme (PTAS) for varia-
tions of multicoloring problem with min-sum objectives. These objectives appear
in the context of multiprocessor task scheduling.

2 Perfectness and Imperfectness

In this section, we discuss some well-solvable cases such that the multicoloring
number is equivalent to the weighted clique number. An undirected graph G is
perfect if for each induced subgraph H of G, the coloring number of H, denoted
by χ(H), is equal to its clique number ω(H). The following theorems are main
results of this paper.

Theorem 1. When k ≥ 3, we have the following; [∀m ∈ Z+, Sk(m,n) is perfect]
if and only if k ≥ 2n− 3.

The perfectness of S2(m,n) is discussed in our previous paper [8]. Table 3 shows
the perfectness and imperfectness of Sk(m,n) for small k and n.

Table 3. Perfectness and imperfectness of the kth power of the square lattice graph

�
��n
k

3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
2
3
4 Perfect
5
6
7
8 Imperfect
9
...

Theorem 2. The graph T 1(m, 3) is perfect. When k ≥ 2, we have the following;
[∀m ∈ Z+, T k(m,n) is perfect] if and only if k ≥ n− 1.
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Table 4. Perfectness and imperfectness of the kth power of the triangular lattice graph

�
��n
k

1 2 3 4 5 6 7 8

1
2
3
4 Perfect
5
6
7
8 Imperfect
9
...

Table 4 shows the perfectness and imperfectness of Sk(m,n) for small k and n.
To show the above theorems, we introduce some definitions. We say that an

undirected graph has a transitive orientation property, if each edge can be as-
signed a one-way direction in such a way that the resulting directed graph (V, F )
satisfies that [(a, b) ∈ F and (b, c) ∈ F imply (a, c) ∈ F ]. An undirected graph
which is transitively orientable is called comparability graph. The complement
of a comparability graph is called co-comparability graph. It is well-known that
every co-comparability graph is perfect.

Lemma 1. For any integer n ≥ 2, if k ≥ 2n − 3, then Sk(m,n) is a co-
comparability graph.

Proof. It suffices to show that the complement of Sk(m,n) is a comparability
graph. Let Sk(m,n) be the complement of Sk(m,n). Given a pair of vertices
u = (x1, y1) and v = (x2, y2), the pair is adjacent on Sk(m,n) if and only if
|x1 − x2| + |y1 − y2| ≤ k. We direct each edge in Sk(m,n) as follows. For any
edge e = {v1, v2} in Sk(m,n), we direct the edge e from v1 to v2 when the
x-coordinate of v1 is strictly less than that of v2. We show that the obtained
directed graph, denoted by G′, satisfies the transitivity.

Clearly, G′ is acyclic. Assume that G′ contains a pair of directed edges (v1, v2)
and (v2, v3). We denote the position of vi by (xi, yi) where xi and yi are the x-
coordinate and the y- coordinate, respectively. The definition of G′ implies that
x1 < x2 < x3. Then, it is clear that x2−x1 ≥ k+1−|y2−y1| ≥ k+1−(n−1) =
k + 2− n ≥ k + 2 + (1/2)(−k − 3) = k/2 + 1/2.

Similarly, we can show that x3 − x2 > k/2. Thus we have x3 − x1 > k and
the distance between v1 and v2 on the graph S(m,n) is greater than k. From
the definition of G′, the digraph G′ contains the edge (v1, v3).
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In the similar way, we can show the following.

Lemma 2. For any integer n ≥ 2, if k ≥ n − 1, then T k(m,n) is a co-
comparability graph.

The following lemma deals with the remained special case that n = 3, k = 1.

Lemma 3. For any m ∈ Z+, the graph T 1(m, 3) = T (m, 3) is perfect.

Proof. Let H be an induced subgraph of T 1(m, 3). Clearly, ω(H) ≤ ω(T 1(m, 3))
= 3. When ω(H) ≤ 2, H has no 3-cycle. Then it is easy to show that H has no
odd cycle and thus χ(H) = ω(H), since H is bipartite. If ω(H) = 3, then it is
clear that 3 = ω(H) ≤ χ(H) ≤ χ(T 1(m,n)) = 3, since T 1(m,n) has a trivial
3-coloring.

Note that though the graph T 1(m, 3) is perfect, the graph T 1(m, 3) is not co-
comparability graph.

From the above, the perfectness of a graph satisfying the conditions of The-
orems 1 and 2 is clear. In the following, we discuss the inverse implication. We
say that an undirected graph G has an odd-hole, if G contains an induced sub-
graph isomorphic to an odd cycle whose length is greater than or equal to 5. It
is obvious that if a graph has an odd-hole, the graph is not perfect.

Lemma 4. For any integer n ≥ 4, if k ≤ 2n − 4, then ∃ ∈ Z+, S
k(m,n) is

imperfect.

Proof. In the following, we show that ∀n ≥ 4, if 3 ≤ k ≤ 2n− 4, then ∃m ∈ Z+,
Sk(m,n) has at least one odd-hole, by induction on n. When n = 4 and k = 3,
a subgraph induced by

{ (0, 0), (0, 3), (2, 3), (3, 3), (3, 0) }

is a 5-hole. When n = 4 and k = 4, a subgraph induced by

{ (0, 0), (0, 3), (2, 3), (4, 3), (4, 0) }

is a 5-hole.
Now we consider the case that n = n′ ≥ 5 under the assumption that if

3 ≤ k ≤ 2n′ − 6, then ∃m′ ∈ Z+, S
k(m′, n′ − 1) has at least one odd-hole. If

3 ≤ k ≤ 2n′ − 6, then Sk(m′, n′) has at least one odd-hole, since Sk(m′, n′ − 1)
is an induced subgraph of Sk(m′, n′). In the remained case that k = 2n′− 5 and
k = 2n′ − 4, subgraphs induced by

{ (0, 0), (0, n′ − 1), (n′ − 2, n′ − 1), (2n′ − 5, n′ − 1), (2n′ − 5, 0) }

and

{ (0, 0), (0, n′ − 1), (n′ − 2, n′ − 1), (2n′ − 4, n′ − 1), (2n′ − 4, 0) }

are 5-holes, respectively.
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Lemma 5. The graph T 1(4, 4) is imperfect. For any integer n ≥ 4, if k ≤ n−2,
then ∃ ∈ Z+, T

k(m,n) is imperfect.

Proof. In the following, we show that ∀n ≥ 4, 1 ≤ k ≤ n−2, ∃m ∈ Z+, T k(m,n)
has at least one odd-hole, by induction on n. In this proof, we denote a point
(xe1 + ye2) by 〈x, y〉. When n = 4 and k = 1, a subgraph induced by

{ 〈2, 0〉, 〈1, 1〉, 〈0, 2〉, 〈0, 3〉, 〈1, 3〉, 〈2, 3〉, 〈3, 2〉, 〈3, 1〉, 〈3, 0〉 }

is a 9-hole. When n = 4 and k = 2, a subgraph induced by

{ 〈0, 2〉, 〈1, 3〉, 〈3, 2〉, 〈3, 0〉, 〈2, 0〉 }

is a 5-hole.
Lastly we consider the case that n = n′ ≥ 5 under the assumption that if

1 ≤ k ≤ n′ − 3, then ∃m′ ∈ Z+, T
k(m′, n′ − 1) has at least one odd-hole. If

1 ≤ k ≤ n′ − 3, then T k(m′, n′) has at least one odd-hole, since T k(m′, n′ − 1)
is an induced subgraph of T k(m′, n′). In the remained case that k = n′ − 2, a
subgraph induced by

{ 〈0, n′ − 2〉, 〈n′ − 3, n′ − 1〉, 〈2n′ − 5, n′ − 2〉, 〈2n′ − 5, 0〉, 〈n′ − 2, 0〉 }

is a 5-hole.

Lemma 4 shows the imperfectness of every graph which violates the condition
of Theorem 1. Lemma 5 shows the imperfectness of every graph which violates
the condition of Theorem 2. Thus, we completed proofs of Theorems 1 and 2.
From the above lemmas, the followings are immediate.

Corollary 1. Let k ≥ 3 be an integer. Then, Sk(m,n) is a co-comparability
graph, if and only if n ≤ (k + 3)/2.

Corollary 2. Let k ≥ 2 be an integer. Then, T k(m,n) is a co-comparability
graph, if and only if n ≤ k + 1.

In the rest of this section, we discuss some algorithmic aspects. Assume that
we have a co-comparability graph G and related digraph H which gives a tran-
sitive orientation of the complement of G. Then each independent set of G cor-
responds to a chain (directed path) of H. The multicoloring problem on G is
essentially equivalent to the minimum size chain cover problem on H. Every
clique of G corresponds to an anti-chain of H. Thus the equality ω(G) = χ(G)
is obtained from Dilworth’s decomposition theorem [1]. It is well-known that
the minimum size chain cover problem on an acyclic graph is solvable in poly-
nomial time by using an algorithm for minimum-cost circulation flow problem
(see [11] for example). Though the graph T 1(m, 3) is not a co-comparability
graph, we proposed a simple strongly polynomial time algorithm for multicolor-
ing (T 1(m,n), w) (see Appendix: Algorithm for Multicoloring (T 1(m, 3), w)).
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3 Multicoloring

In this section, we propose approximation algorithms for multicoloring the graph
(Sk(m,n), w) and (T k(m,n), w). The basic idea of our algorithm is similar to
the shifting strategy [5].

McDiarmid and Reed [6] proposed an approximation algorithm for (T 1(m,n),
w), which finds a multicoloring with at most (4/3)ω(T 1(m,n), w) + 1/3 col-
ors. In our previous paper [8], we proposed an approximation algorithm for
(S2(m,n), w), which finds a multicoloring with at most (4/3)ω(S2(m,n), w) + 4
colors.

We describe our algorithm in a proof of the following theorem.

Theorem 3. When k > 1, there exists a polynomial time algorithm for multi-
coloring (Sk(m,n), w) such that the number of required colors is bounded by(

1 +
k⌊

k+3
2

⌋)ω(Sk(m,n), w) +
⌊
k + 3

2

⌋
χ(Sk(m,n)).

Proof. We describe an outline of the algorithm. For simplicity, we define K1 =⌊
k+3
2

⌋
and K2 =

⌊
k+3
2

⌋
+ k.

First, we construct K2 vertex weight functions w′
i for i ∈ {0, 1, . . . ,K2 − 1}

by setting

w′
i(x, y) =

{
0, y ∈ {i, i+ 1, . . . , i+ k − 1} (modK2),⌊

w(x,y)
K1

⌋
, otherwise.

Next, we exactly solve K2 multicoloring problems defined byK2 weighted graphs
(Sk(m,n), w′

i), i ∈ {0, 1, . . . ,K2−1} and obtain K2 multicolorings. We can solve
each problem exactly in polynomial time, since every connected component of the
graph induced by the set of vertices with positive weight is a perfect graph dis-
cussed in the previous section. Thus χ(Sk(m,n), w′

i) = ω(Sk(m,n), w′
i) for any

i ∈ {0, 1, . . . ,K2− 1}. Put w′′ = w−
∑K2−1

i=0 w′
i. Then each element of w′′ is less

than or equal to K1−1. Thus we can construct a multicoloring of (Sk(m,n), w′′)
from the direct sum of K1− 1 trivial colorings of Sk(m,n). The obtained multi-
coloring uses at most (K1−1)χ(Sk(m,n))colors. Lastly, we output the direct sum
of K2 + 1 multicolorings obtained above. The definition of the weight function
w′

i implies that ∀i ∈ {0, 1, . . . ,K2 − 1}, K1 ω(Sk(m,n), w′
i) ≤ ω(Sk(m,n), w).

Thus, the obtained multicoloring uses at most (K2/K1)ω(Sk(m,n), w) + (K1 −
1)χ(Sk(m,n)) colors.

In a similar way, the following theorem is obtained.

Theorem 4. When k > 1, there exists a polynomial time algorithm for multi-
coloring (T k(m,n), w) such that the number of required colors is bounded by(

2k + 1
k + 1

)
ω(T k(m,n), w) + kχ(T k(m,n)).

It is easy to see that when m, n are sufficiently large, both χ(Sk(m,n)) and
χ(T k(m,n)) are bounded by O(k2).
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4 Discussion

Our main theorem implies approximation algorithms for fractional multicoloring
problems and maximum weight stable set problems.

4.1 Fractional Multicoloring and Imperfection Ratio

Given an undirected graph G = (V,E) and a non-negative integer vertex weight
function w : V → Z+, a fractional multicoloring problem is the linear program-
ming problem:

minimize
∑
S∈S

yS

subject to
∑
S�v

yS ≥ w(v), ∀v ∈ V,

yS ≥ 0, ∀S ∈ S,

where S is the family of all the stable sets in G. The optimal value of the above
problem is called the fractional multicoloring number of (G,w) and denoted by
χf(G,w). From our main theorems, the followings are immediate.

Theorem 5. When k > 3, there exists a polynomial time(
1 + k

� k+3
2 �

)
-approximation algorithm for the fractional multicoloring problem

on (Sk(m,n), w).

We can prove this theorem by modifying our proof of Theorem 3. We only need
to put

w′
i(x, y) =

{
0, y ∈ {i, i+ 1, . . . , i+ k − 1} (modK2),
w(x,y)

K1
, otherwise.

and w′′ = 0. Then we can obtain a feasible solution of the above linear program-
ming by combining fractional multicolorings of K2 weighted graphs
(Sk(m,n), w′

i), i ∈ {0, 1, . . . ,K2 − 1}.

Theorem 6. When k > 1, there exists a polynomial time(
2k+1
k+1

)
-approximation algorithm for the fractional multicoloring problem on

(T k(m,n), w).

The imperfection ratio Imp(G) of an undirected graph G is defined by

Imp(G) def.= max
w

{
χf(G,w)
ω(G,w)

}
where the maximum is over all nonzero integral weight function w [2, 3, 7]. From
Theorems 5 and 6, the followings are immediate.
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Corollary 3.

1 ≤ Imp(Sk(m,n)) ≤ 1 +
k⌊

k+3
2

⌋
Corollary 4.

1 ≤ Imp(T k(m,n)) ≤ 2k + 1
k + 1

4.2 Maximum Weight Stable Set Problem

Given an undirected graph G = (V,E) and a non-negative integer vertex weight
function w : V → Z+, a maximum weight stable set problem on (G,w) finds a
stable set S ⊆ V whose weight

∑
v∈S w(v) is maximized. The maximum weight

stable set problem is clearly NP-hard on kth power of square lattice graphs and
on kth power of triangular lattice graphs.

From our main theorems, the followings are immediate.

Theorem 7. When k > 3, there exists a polynomial time(
� k+3

2 �
k+� k+3

2 �

)
-approximation algorithm for the maximum weight stable set prob-

lem on (Sk(m,n), w).

Theorem 8. When k > 1, there exists a polynomial time(
k+1
2k+1

)
-approximation algorithm for the maximum weight stable set problem on

(T k(m,n), w).
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Appendix: Algorithm for Multicoloring (T 1(m, 3), w)

In the following, we describe a strongly polynomial time algorithm for multi-
coloring an weighted graph (T 1(m, 3), w). We denote the set of colors by C∗ =
{1, 2, . . . , ω∗} where ω∗ = ω(T 1(m, 3), w). Let V (G) be a set of vertices of a graph
G. The following algorithm finds an assignment of colors c : V (T 1(m, 3)) → 2C∗

such that ∀v ∈ V (T 1(m, 3)), |c(v)| = w(v) and for every edge {u, v} ∈ Tm,3(1),
c(u) ∩ c(v) = ∅.

For any x ∈ {0, 1, . . . ,m−1}, we denote the points xe1+2e2, xe1+1e1, xe1+
0e2 by tx+1, ux+1, vx, respectively. Thus {t1, t2, . . . , tm}, {u1, u2, . . . , um} and
{v0, v1, . . . , vm−1} form a partition of V (T 1(m, 3)). Without loss of generality, we
can assume that w(v0) = w(tm) = w(um) = 0. Our algorithm assigns colors to
vertices in the following manner. Assume that we have a multicoloring c : P ′ →
2C where P ′ = {t1, t2, . . . , tj} ∪ {u1, u2, . . . , uj} ∪ {v0, v1, . . . , vj} satisfying that
∀i ∈ {1, 2, . . . , j}, c(ti) ⊆ c(vi) or c(ti) ⊇ c(vi). Next, we assign colors to uj+1.
Since w(v0) = w(tm) = w(um) = 0, we can assume that w(tj) ≥ w(vj) without
loss of generality. Since {uj , tj , uj+1} is a 3-clique, |c(uj)|+|c(tj)|+w(uj+1) ≤ w∗.
Thus there exists a subset of colors C1 with |C1| = w(uj+1) and C1 is disjoint
with c(uj) ∪ c(tj). Then we set c(uj+1) to C1. Next, we assign colors to tj+1.
There exists a set of colors C2 ⊆ C∗ \ (c(tj)∪c(uj+1)) with |C2| = w(tj+1), since
{tj , uj+1, tj+1} is a 3-clique. Then set c(tj+1) to C2. Lastly we assign colors to
vj+1.
(Case 1) If w(tj+1) ≥ w(vj+1), then put c(vj+1) be a subset of c(tj+1) whose
cardinality is w(vj+1).
(Case 2) Consider the case that w(tj+1) < w(vj+1) and w(tj) + w(tj+1) ≥
w(vj) + w(vj+1). Then there exists a subset of colors C3 ⊆ c(tj) \ c(vj) whose
cardinality is w(vj+1)− w(tj+1). We set c(vj+1) = c(tj+1) ∪ C3.
(Case 3) Consider the case that w(tj+1) < w(vj+1) and w(tj) + w(tj+1) <
w(vj)+w(vj+1). Then we set c(vj+1) = c(tj+1)∪(c(tj)\c(vj))∪C4 where C4 and
v(tj)∪c(uj+1)∪c(tj+1) are disjoint and w(vj+1) = w(tj+1)+(w(tj)−w(vj))+|C4|.
Since {vj , uj+1, vj+1} is a 3-clique, it is easy to see that there exists such a subset
of colors.

A naive implementation of the above procedure gives a pseudo polynomial
time algorithm, since the algorithm maintains the set of colors C∗ explicitly. If we
represent the assigned set of colors by the union of some intervals and implement
the above procedure carefully, we can obtain a polynomial time algorithm with
respect to m.
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Abstract. Link-bandwidth utilization and flow information are obvi-
ously critical for numerous network management tasks. The problem
of efficiently monitoring the network flowing based on flow-conservation
could be reduced to Weak Vertex Cover problem, which is NP-hard.
In this paper, using the primal-dual method, we give an approximation
algorithm with approximation ratio 2 to solve the problem. It is a near-
optimal algorithm as it is very difficult to get an approximation algorithm
with approximation ratio lower than 2 for Weak Vertex Cover problem.
The effectiveness of our monitoring algorithm is validated by simulations
evaluation over a wide range of network topologies. The practices indi-
cate that our work is valuable to solve Weak Vertex Cover problem and
its application in network management.

1 Introduction

Knowledge of the up-to-date bandwidth utilizations is critical for numerous im-
portant network management tasks, including identifying and relieving conges-
tion points, proactive and reactive resource management and traffic engineering,
as well as providing and verifying QoS guarantees for end-user applications.
Some novel tools and infrastructures for measuring network bandwidth have
been developed and proposed by researchers and industries, like as SNMP and
RMON measurement probes [1], Cisco’s NetFlow tools [2], the IDMaps [3], [4]
and packet-pair algorithms for measuring link bandwidth [5], [6].

These measurement tools periodically query and collect detailed traffic data
on packet flows for monitoring and measuring network flows and bandwidth us-
age. Unfortunately, processing queries can adversely impact routers performance
and monitoring data transfers can result in significant volumes of additional net-
work traffic [7]. In particular, as the network monitoring process requires more
data to be collected and at much higher frequencies, the overhead that a polled
monitoring agent imposes on the underlying router can be significant and can
adversely impact the router’s throughput.

The number of placed monitors of a monitoring system should be kept as
small as possible in order to reduce the deployment cost and the actual monitor-
ing operating cost [8]. Several measurements over backbone routers show each
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IP router satisfies a flow-conservation law that, the sum of the traffic flowing
into router is approximately the same as those of the traffic flowing out [7].
The flow-conservation law could be applied to reduce the number of activated
monitor agents used to monitor link bandwidth usage. Thereby the application
results in a substantial reduction in the monitoring method impacting on the
underlying router’s throughput and performance.

The problem of efficiently monitoring the network flowing based on flow-
conservation could be reduced to the Weak Vertex Cover (WVC) problem, which
is NP-hard. In this paper, using the primal-dual method, we give an approxi-
mation algorithm with approximation ratio 2 to solve the problem. It is a near-
optimal algorithm as getting an approximation algorithm with approximation
ratio being lower than 2 for the weak vertex cover problem is very difficult [12].

The paper is structured as follows. The weak vertex cover problem is brought
forward, and some approximation results for the weak vertex cover problem are
listed in the section 2. In next section, we give an approximation algorithm to
solve the weak vertex cover problem with approximation ratio 2. The effective-
ness of our monitoring algorithm is validated by simulations evaluation over a
wide range of network topologies in section 4. And we depict our further research
in the last section.

2 Weak Vertex Cover Problem

2.1 Problem Formulation and Related Work

The problem of efficiently monitoring the network flow based on the flow con-
servation law is to find the minimum Flow Monitoring Setof a graph [7], [9].

Definition 1 (Flow Monitoring Set). Given an undirected graph G = (V,E),
where V denotes the set of nodes, E represents the edges between two nodes, we
say S ⊆ V is a flow monitoring set of G, if monitoring the flow of those edges
that are incident on nodes in S is sufficient to infer the flow of every edge in E.
And the following two constraints must be satisfied:

(1)∀v ∈ V ,d(v) ≥ 2, where d(v)denotes the degree of node v;
(2)∀v ∈ V ,

∑
u∈V f(u, v) = 0, wheref(u, v)denotes the flow from node u to

node v.
The minimum flow monitoring set is a flow monitoring set that contains min-

imum number of nodes of the graph. The problem of finding the minimum flow
monitoring set from an underlying network could be abstracted to the problem of
finding the minimum Weak Vertex Cover set (WVC) of a graph [7], [9]. Hence we
could solve the problem of finding the minimum flow monitoring set by solving the
problem of finding the minimum weak vertex cover set for a given graph.

Definition 2 ( Weak Vertex Cover). Given an undirected graph G = (V,E),
where ∀v ∈ V , d(v) ≥ 2 holds, we say S ⊆ V is a Weak Vertex Cover Set of G,
if and only if every edge in G can be marked by performing the following three
steps:
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(1) Mark all edges that are incident on vertices in S;
(2) Mark the edge if it is the only unmarked edge among all of the edges that are

incident on the same vertex;
(3) Repeat step (1) until no new edge can be marked.

For solving the problem of finding the minimum weak vertex cover set, Xi-
anghui Liu et al. [9] brought forward a greedy approximation algorithm which
gives an approximation ratio 2(1+ln d), where d = maxv∈V {d(v)}. And Xianghui
Liu et al. [10] proved that the weak vertex cover problem is NP-complete. Yong
Zhang et al. [11] gave an approximation algorithm with approximation ratio
1 + ln d. Zhiping Cai et al. [12] gave an approximation preserving reduction
from the vertex cover problem to the weak vertex cover problem. Due to this
reduction, it implied that it is difficult to get an approximation algorithm with
approximation ratio smaller than 2.

2.2 Property of the Weak Vertex Cover

The Weak Vertex Cover problem is a generalization of the well-known Vertex
Cover problem, which is also NP-hard [13]. It is not hard to notice that every
Vertex Cover of a graph G is also a Weak Vertex Cover of G, but not necessarily
a minimal one.

We have some properties of the Weak Vertex Cover as follows.

Proposition 1. [9]Given an undirected graph G = (V,E), where ∀v ∈ V , d(v) ≥
2, the set S ⊆ V , is a weak vertex cover, if and only if G′ = (V ′, E′) is a forest,
where V ′ = V − S and E′ = {(u, v)|(u, v) ∈ E ∧ u ∈ V ′ ∧ v ∈ V ′}.

Corollary 1. [12]Given an undirected graph G = (V,E), where ∀v ∈ V , d(v) ≥
2, the set S,S ⊆ V , is a weak vertex cover, if and only if G′ = (V ′, E′) is acyclic,
where V ′ = V − S and E′ = {(u, v)|(u, v) ∈ E ∧ u ∈ V ′ ∧ v ∈ V ′}.

3 Approximation Algorithm for Weak Vertex Cover

We give a 2-approximation algorithm for the weak vertex cover by using the
primal-dual method for approximation algorithms, which has been used to derive
approximation algorithms for network design problems [13-15].

3.1 Integer Programming Formulation

For a given graph G = (V,E), we let τ(V ) denote the cardinality of the smallest
WVC for G. Let d(v) denote the degree of vertex v in G. Given a subset S
of vertices, let E[S] denote the subset of edges that have both endpoints in S.
Let G[S] denote the subgraph (S,E[S]) induced by G, and let ds(v) denote the
degree of v in G[S]. We let b(S) = |E[S]| − |S|+ 1 and b(V ) = |E| − |V |+ 1. We
say that a WVC F is minimal if for any v ∈ F ,F − v is not a WVC.
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Then we we give some inequalities that will be needed in giving the integer
programming formulation.

Theorem 1. Let F denote any WVC of a graph G = (V,E), where ∀v ∈
V, d(v) ≥ 2 holds. Then ∑

v∈F

[d(v)− 1] ≥ b(V ) (1)

∑
v∈F

d(v) ≥ b(V ) + τ(V ). (2)

Proof. We prove the inequality (1) at first. And we consider two cases. If F =
V , we have that

∑
v∈V [d(v)− 1] = 2|E| − |V |. Then |E| �= 0 ensures that

inequality holds. And due to Corollary 2, if F �= V , it follows that the removal
of F from G gives an acyclic subgraph. The number of edges in this subgraph
is thus less than its number of vertices, i.e. this subgraph contains at most
|V | − |F | − 1 edges. Moreover, by removing the vertices in F , we have removed
at most

∑
v∈F d(v) edges. The total number of edges being |E|, therefore we

derive that |V | − |F | + 1 +
∑

v∈F d(v) ≥ |E|. Rearranging the terms gives the
desired inequality (1).

As τ(V ) denote the cardinality of the smallest WVC of the graph G, we could
get (2) by rearranging the terms of (1). ��

Observe that if F is a weak vertex cover for G, then F ∩ S is clearly a weak
vertex cover for G[S]. Hence we have the following corollary of inequality (2).

Corollary 2. Let F be any weak vertex set. Then for any S ⊆ V , E[S] �= 0,∑
v∈F∩S

ds(v) ≥ b(S) + τ(S). (3)

By Corollary 2, the integer programming formulation of the Weak Vertex
Cover problem is the following:

Min
∑

v∈V

wvxv

Subject to:

(IP )
∑
v∈S

ds(v)xv ≥ b(S) + τ(S) S ⊆ V,E[S] �= 0

xv ∈ {0, 1} v ∈ V.

3.2 A Primal-Dual Algorithm

We construct a feasible solution to the dual of the linear programming relaxation
of (IP). The linear programming relaxation is

Min
∑
wvxv
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Subject to:

(LP )
∑
v∈S

ds(v)xv ≥ b(S) + τ(S) S ⊆ V,E[S] �= 0

xv ≥ 0 v ∈ V.

And its dual is

Max
∑
S

(b(S) + τ(S))ys

Subject to:

(D)
∑

S:v∈S

ds(v)ys ≤ wv v ∈ V

ys ≥ 0 S ⊆ V,E[S] �= 0.
Then we give a primal-dual 2-approximation algorithm as follows. The primal-

dual structure of this algorithm is the same as that used for solving rather dif-
ferent problems, such as the feedback vertex set problem [13-15].

Algorithm (G = (V,E)):

1. y = 0,F = 0,l = 0
2. V ′ = V ;E′ = E
3. While F is not a WVC for G

(a) l = l + 1
(b) Recursively remove degree one vertices and incident edges from V ′ and

E′

(c) Increase yV ′ until ∃vl ∈ V ′, s.t.
∑

T :vl∈T dT (vl)yT = wvl

(d) F = F ∪ {vl}
(e) Remove vl from V ′ and attached edges from E′.

4. For (j = l;j > 0;j −−)
(a) if F − {vj} is a WVC then F = F − {vj}

5. F ′ = F

It is not hard to see that this algorithm is effectively equivalent to the fol-
lowing: start with F = 0 and the graph G. Recursively remove any degree one
vertices and associated edges from the graph. Pick the vertex v that achieves
the minimum ε = minv∈V ′ wv/d(v). Add v to F , and set wu = wu − εd(u) for
all u ∈ V . Remove v from the graph, and repeat until F is a WVC. When F is a
WVC, the algorithm goes through the vertices of F in the reverse of the order in
which they were added, and removes any extraneous vertices. A straightforward
implementation of this algorithm takes O(mn) time, where m is the number of
edges in the graph and n is the number of vertices.

For proving the algorithm is a 2-approximation algorithm, we give a theorem
as follows at first:

Theorem 2. Let Fm is any minimal WVC, then∑
v∈Fm

d(v) ≤ 2(b(V ) + τ(V ))− 2. (4)
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Proof. Let k be the number of connected components of G[V − Fm]. Due to
Proposition1, every connected components of G[V − Fm] must be a tree, so
that the edges in G[V −Fm] contribute exactly 2(|V | − |F | − k) to

∑
v/∈Fm

d(v).
Let δ(S) is the set of edges with exactly one endpoint in S. As

∑
v/∈Fm

d(v) =
|δ(Fm)|+ 2(|V | − |F | − k) and

∑
v/∈Fm

d(v) +
∑

v∈Fm
d(v) = 2|E|, inequality (4)

can be rewritten by rearranged terms as

|δ(Fm)| ≥ 2|Fm|+ 2k − 2τ(V ). (5)

To prove the inequality (5), we construct a weighted bipartite graphH: shrink
every connected component of G[V − Fm] to a vertex of H, and remove all the
edges of G[Fm] in G. The weight of an edge in His the number of edges from
the respective node in Fm to the nodes in the respective connected component
of G[V − Fm]. For the inequality, we need to show that the total weight of this
bipartite graph H is at least 2|Fm|+ 2k − 2τ(V ).

We first observe that for each vertex v ∈ Fm, there must be some witness
cycles Cv of G such that Cv ∩ Fm

= {v}; otherwise Fm would not be minimal.
Thus in H there must be at least one edge of weight at least 2 incident to every
vertex of Fm; we designate one such edge for each vertex in Fm and call it a
primary edge.

Let T be a maximum collection of vertex-disjoint witness cycles in G, and let
F̃ denote the vertices of Fm whose witness cycles are not in T . By the properties
of T , it must be the case that for every connected component of G[V − Fm]
adjacent to a vertex v ∈ F̃ via a primary edge, it must also be adjacent to a
vertex of Fm − F̃ via a primary edge, since otherwise we would be able to add
the witness cycle of v to T . Thus if we remove the primary edges adjacent to
the vertices of F̃ from H, there still must be adjacent to each component of
G[V − Fm]. Hence the weight of edges in H is at least 2|F̃ |+ 2k.

As |Fm| = |F̃ + |T | and |T | ≤ τ(V )|, the total weight of edges in H is at least
2|Fm|+ 2k − 2τ(V ). ��

Then we prove the algorithm is a 2-approximation algorithm. Notice that for
any feasible solution y for the dual program (D),

∑
S (b(S) + τ(S))yS is a lower

bound on the value of the optimal integer solution.

Theorem 3. The primal-dual algorithm constructs a WVC F ′ and a solution y
feasible for (D) such that∑

v∈F ′
wv ≤ 2

∑
S

(b(S) + τ(S))yS − 2
∑
S

yS . (6)

Hence the algorithm is a 2-approximation algorithm.

Proof. We reduce the proof of the theorem to inequality (4). By construction of
the algorithm, ∑

v∈F ′
wv =

∑
v∈F ′

∑
S:v∈S

ds(v)ys =
∑
S

∑
v∈S∩F ′

ds(v)ys. (7)
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Thus if we can show that for any ys > 0 then

∑
v∈(S∩F ′)

ds(v) ≤ 2(b(S) + τ(S))− 2, (8)

then the theorem statement will follow. In order to apply (4), it is sufficient to
argue that S ∩F ′ is a minimal WVC for the graph G[S]. By construction of the
algorithm F ′ is a minimal WVC. And at the point in time when the algorithm
chooses the vertex vl, none of the vertices in F ′ ∩ S is currently in F ; they are
added at some later point in the algorithm. Therefore, because the final step
of the algorithm deletes redundant vertices in the reverse of the order in which
they were added, F ′ − F , for the current value of F , must be a minimal WVC
for the current graph (V ′, E′). Thus, we have that F ′ ∩ S is a minimal WVC
for G[S]. ��

4 Simulations

In this section, we present simulation results of comparing the performance of
the various algorithms that solve the weak vertex cover problem. The main
objective of the simulations is to demonstrate that our proposed algorithmic
solutions are not only theoretically sound but also they could give significant
benefits over naive solutions in practice for a wide variety of realistic network
topologies. The simulations are based on network topologies generated using the
Waxman Model [16], which is a popular topology model for networking research.
Different network topologies are generated by varying three parameters: (1)n,
the number of nodes in the network graph; (2)α, a parameter that controls the
density of short edges in the networks; and (3)β, a parameter that controls the
average node degree.

We compare the performance of three algorithms: the 2-approximation al-
gorithms for Vertex Cover [13], the greedy algorithm with approximation ratio
2(1 + ln d) for Weak Vertex Cover [9], and our primal-dual algorithm. The com-
parison is in terms of the number of nodes that need to run SNMP [1] in order
to measure the bandwidth of each link in the generated network graphs. We
denote the number of SNMP activations for these algorithms by NV C

2 , NWV C
greedy,

and NWV C
2 respectively.

Table 1 presents one set of simulation results; we have obtained similar results
for other parameter settings. The third and fourth columns in the table represent
the maximum and average degree of the nodes in the generated network graph
respectively. Our results indicate that using our approximation algorithm can
reduce the number of SNMP activations as much as 71% over the naive approach
which activate an SNMP agent on every network node [7]. And the result of our
algorithm is better than the other two algorithms.
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Table 1. Comparisons of Monitoring Algorithms

n α β Maximum
Degree

Average
Degree

NV C
2 NWV C

greedy NWV C
2

NW V C
2

n

400 0.1 0.08 9 2.800 254 174 113 0.283

400 0.4 0.02 12 3.115 297 211 132 0.330

400 0.4 0.08 25 5.685 336 247 157 0.393

5 Conclusion

In this paper, we have addressed the problem of efficiently monitoring band-
width and flow in network management. This problem could be abstracted to
Weak Vertex Cover problem, which is NP-hard. We have proposed a primal-dual
algorithm with approximation ratio 2 to solve Weak Vertex Cover problem. As
it is very difficult to get an approximation algorithm with approximation ratio
lower than 2 for Weak Vertex Cover problem, the proposed algorithm is near op-
timal. Finally, we have verified the effectiveness of our approximation algorithms
through simulations evaluation. This work is helpful to solve Weak Vertex Cover
problem and the application in network management.

Further research would be conducted to develop novel algorithms and apply
it to network management.
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Abstract. Usually network attackers conceal their real attacking paths
by establishing interactive connections along a series of intermediate
hosts (stepping stones) before they attack the final target. We propose
two methods for detecting stepping stones by actively perturbing inter-
packet delay of connections. Within the attacker’s perturbation range,
the average value of the packets in the detecting window is set to in-
crease periodically. The methods can construct correlations in attacking
connection chains by analyzing the change of the average value of the
inter-packet delay between the two connection chains. The methods can
reduce the complexity of correlation computations and improve the effi-
ciency of detecting stepping stones.

Keywords: Traceback; Connection Chain; Active Delay.

1 Introduction

Usually network attackers conceal their real attacking paths by establishing in-
teractive connections along a series of intermediate hosts (stepping stones) before
they attack the final target[1]. To identify the real source of attack, tracer can
execute a complex tracebacking process from the last host of connection chain
using each host’s logs. But this approach is not available because attackers usu-
ally destroy the tail. Tracer can also install a passive connection traffic monitor
in the networks and construct correlations through analyzing input or output
traffic of each host. The key problem of connection chain tracebacking is con-
nection correlation in the intermediate hosts (stepping stones)[1, 2]. However,
the correlation process is more difficult because traffic’s encrypt or compression
changes the connection content and delay changes the connection time. And the
correlation process on the stepping stones must be quick because the network
intrusion often happens in high speed networks. Timing-based is one of the ef-
ficient correlation approach of encrypting connection, but existing timing-based
correlation approaches are excessively depend on the packets’ timing charac-
teristics. In particular, the attacker can perturb the timing characteristics of a

� Supported by NSFC(90204014).
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connection through the stepping stones. These passively timing-based correla-
tion approaches need collect all the network traffic to construct correlation, so
the computation work is too big.

In this paper, we propose two methods for detecting stepping stones by ac-
tively perturbing inter-packet delay of connections. Within the attacker’s per-
turbation range, the methods analyzes the activity degree of the correlation win-
dows and monitors periodical characteristic of inter-packets delay. The stepping
stone connection in each time window can have a unique periodical characteristic
through changing a part of the packets’ arrival delay at the network’s ingress.
The methods can construct correlations in attacking connection chains through
detecting these characteristics at the network exgress.

The remainder of the paper is organized as follows. In section 2, we propose an
attack connection correlation approach based on increasing inter-packet delay.
In section 3, we propose an attack connection correlation approach based on
active delay. In section 4, we give a summary of related works. In section 5, we
conclude with summary of our findings.

2 Satisfying the Increasing Characteristic

2.1 Method Description

We assume an ingress/egress node of each network exists while all input or
output traffic must transmit through this node. In order to construct correlation,
we can monitor and perturb the traffic in this node and detect input and output
connection, which belongs to the same connection. We assume that the packets in
the attacking connection keep their original sequence after through the stepping
stones and there are no dropped and reordered packets. We only consider the
situation that the attackers do not change the number of packets.

We use ti and t′i to represent the arrival and departure times , respectively,
of the i th packet. We define the arrival inter-packet delay of the i th packet
as di = ti+1 − ti and the departure inter-packet delay as d′i = t′i+1 − t′i. We
further define the perturbation by the attacker as ci. Then we have t′i+1 =
t′i + ci + u. In this paper, u represents the delay of system(such as process-
ing time, waiting time, etc). Assume the delay range that the attacker can add
is [-D, D].

Let di,k and dj,k be the random variables that denote the random delays
added by the attacker to packets Pi,k and Pj,k respectively for k=1,...,m. Let
x = dj,k − di,k be the random variable that denotes the impact of these random
delays on k th inter-packet delay and X be the random variable that denotes
the overall impact of random delay on the average of inter-packet delay. Then

we have X = 1
m

m∑
k=1

(dj,k − di,k) = 1
m

m∑
k=1

Xk. Similarly we define the probability

that the impact of the timing perturbation by the attacker is out of the tolerable
perturbation range (−s/2, s/2][3] as Pr(|X| < s/2). They show the probability
can be reduced to be arbitrarily close to 0 by increasing m and s.



254 Q. Li et al.

The method for satisfying the increasing characteristic by adjusting the inter-
packet delay is responsible for both incremental rule injection and detection. To
achieve this, actively perturbation is exerted on the average inter-packet delay se-
quence of the being-guarded connection chain at ingress, by which certain of incre-
mental characteristic is injected, while still maintain a certain robustness when the
attacker perturbs the timing characteristics of the attacking connection traffic.

Supposed that, in the incoming connection chain, the packet’s arrival time
sequence is denoted as {t1, t2, t3, ...}and the outgoing {t′1, t′2, t′3, ...}. When mon-
itor the ingress, for each m+1 received packets, average IPD is computed, and
an average IPD array is obtained, denoted as
{d1, d2, ..., dn−1, dn}. In this array active perturbation is performed, to each di,
we make it satisfy the inequation of di+1 − di ≥ s, (i > 1), by which an incre-
mental rule is injected actively. Also it is needed to limit the increase, at where
factor P is defined, according to which the active perturbation is reset by every
P times to sustain the synchronization between the characteristic-injected traffic
and the original non-injected traffic.

2.2 Adjusting the Inter-packet Delay

While timing adjustment is performed, all the packets are pushed into a waiting
stack, by which a small delay is exerted to the sequence. Where P is defined as a
cycle factor, referring to which a reset for adjustment of m+1 packets is pursued
at the beginning of each cycle. If there is any packet in the waiting stack, send
it out as soon as possible, otherwise, keep the transmit characteristic as what it
is before. Also where H is defined as a referential delay factor (with an init of
the average IPD of the preceding m+ 1 packets), and g the comparative factor
(init as s), f amendment factor(init as 0). In order that every sequence’s average
IPDs is s bigger than the preceding one, each of the IPD in this sequence must
be s bigger than the corresponding one in the preceding sequence. So at here,
every departure time is adjusted to make that the delay is bigger by a quantity
of g. But in other occasions, the IPD turns to be large enough, and no delay is
needed. To decrease the influence on the connection exerted by us, the excess
delay is cumulated to the next periods, where f is used to control the amend-
ment factor. The algorithm is described as the following:

1. Set increase count factor p.
2. Let g=s, f=0, i=1. For the first m+1 packets, if there are packets remained in the
delay queue, forwarding them as soon as possible; if there is none packet remained
in the queue, forwarding the packets according to its original rule. At the same time
record the IPDs of the fistm+ 1 packets, denote as d1,1, d1,2, d1,3, ..., d1,m.
3. i++; Adjust the IPD of the m packets in the next cycle.

3.1 For the first packet, none adjustment is pursued. When it is not in the
delay queue, then simply forwarding the packet according to its original charac-
teristic; if it is in the delay queue, then forward the packet directly.

3.2 initialize factor j with 1, which is utilized to denote the index of the IPDs.
3.2.1 When a packet is received, compute the IPD between this packet and

the preceding one, which is denoted as di,j .
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3.2.2 compare di,j with di−1,j + g. a) if di,j ≥ di−1,j + g, then none per-
turbation is committed, and let f = (d2,1 − (d1,1 + g))/q, where q denote the
count of packets that need to be adjusted but not yet(eg. If m = 20,and the
preceding 5 packets have been dealt, then q = 20− 5 = 15),g = g − f ; b) else if
di,j �= di−1,j +g, then di,j shall be delayed, and the delay time is di−1,j +g−di,j

3.2.3 j++; if j �= m+ 1, then go to 3.2.1
3.3 if i = p,then go to 2; else go to 3.

2.3 Detecting the Incremental Delay

1. When receiving the packets, compute the preceding packet’s IPD, denoting
as d1, d2, ....
2. Compute the IPD in turn.

2.1 From every m+1 packets, m IPDs can be computed. Let T1,1 denotes
the average IPD of the packets selection of {P1, P2, ..., Pm, Pm+1}, and T1,2 of
{P2, P3, ..., Pm+1, Pm+2}, ..., and so on. So Ti,j denotes

{Pm(i−1)+j , Pm(i−1)+j+1, ..., Pmi+j−1, Pmi+j}
2.2 From the above definition, we get the arithmetic as

Ti,j =
(m+1)i−2+j∑

j=(m+1)(i−1)+j

dj .

3. Detect incremental characteristic in Ti,j array.
3.1 If incremental characteristic is detected, then the tentative synchroniza-

tion point is the real synchronization point.
3.2 Perform the correlation detection, if the following IPDs still satisfy the

incremental rule, then the connection chain is correlated chain that is being
sought for; else go to 3.3

3.3 Forward the sensitive synchronization point to the next position, go to
3.If the tentative synchronization point has been moved for m times, then it
turns to be decided that this connection chain is not a correlation connection
chain.

2.4 Evaluation

We derive test data from over 49 million packet headers of the Bell Labs-1 Traces
of NLANR[4]. It contains 121 SSH flows that have at least 600 packets and are
120 seconds long at least. We use these 121 SSH flows for 30 times to evaluate
active delay approach.

In Figure 1, the results are computed when s is 200ms and m is 20, 15, 10,
5 respectively. It is shown that there are high true positives when m is 20, 15,
10 and it can detect almost all of the correlation connections. But the effect is a
little poor when m=5. The experiments made when s=100ms and m is 20, 15,
10 respectively are shown in Figure 2. ¿From this Figure 2, we can find out the
effect is best when m=20 where the true positive reaches 100%,while there are
two occasions in which the deviation turns to be a bit larger.

¿From the two experiments above, it is shown that the effect is distinctive
as the value of m and s is different. It obvious that the effect of big s is better
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than that of smaller s and the effect becomes good when m is increased. But if
s is increased, we will change the delay too much. While the value of m is large,
the real time performance is bad and also the change made on delay increases.
We can observe the effect is good when m=200ms, s=10.

In Figure 3, the experiments are made as the value of p is 4 and 8 respectively.
Although the effect of p=8 is better than that of p=4, the change made on the
delay is too small. So we can achieve the intention of detection well when choosing
p=4. In Figure 4, the perturbation is different. It obvious that the true positive
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decrease while the perturbation is bigger. In fact, the perturbation introduced by
the attacker isn’t too big; otherwise it will influence the normal transmission. So
the method can detect all of the correlation when the perturbation introduced
by the attacker isn’t too big.
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3 Satisfying the Periodical Characteristic

3.1 Method Description

For a connection A, the timing sequence of packet arriving at the network egress
is defined as T = {t1, t2, ..., tn−1, tn}, the delay of inter-packet arriving is de-
fined as D = {d1, d2, ..., dn−1, dn}, where di = ti+1 − ti. We define w pack-
ets around one connection as a window with length w. The sub sequence read
according the sequence of arriving is taken as a window sequence. Notes as
Wk = {dk+1, dk+2, ..., dk+w−1, dk+w}. We define M as the appearance location
with maximum inter-packet delay. If di = MAX{dk+1, dk+2, ..., dk+w−1, dk+w},
then M = i, where M ∈ (1..w]. If the probability P (M) is average distribution,
we say that this timing connection has not periodical characteristic. If we insert
a delay into the window W = {W1,W2, ..,Wk, ..} at the location j actively and
periodically and let dk+j = MAX{dk+1, dk+2, ..., dk+w−1, dk+w} when any win-
dow sequence Wk is given, it shows that the probability P (M) is approximately
normal distribution, and its expectation θ(M) = j. We say the connection has
periodical characteristic, and the periodical signal is M .

3.2 Active Delay Insertion

For a connection, we read its window sequence in turn W . To any window se-
quence Wk, we define max d = MAX{dk+1, dk+2, .., dk+w−1, dk+w}, if max d+
τ < Tout, where τ is a constant, Tout is maximum delay time, then a delay is
inserted at place w in order to let dk+w = max d; if max d + τ ≥ Tout, then
dk+w = max d.

We can make the insertion of delay more reasonable. For a connection, we
read its window sequence in turn W . To any window sequence Wk, we insert a

delay actively to let dk+w = Γ
w−1

w−1∑
i=1

dk+i(where Γ ∈ [1..3] is a constant factor).

3.3 Active Delay Detection

After insertion of active delay at the ingress, the periodical characteristic can
be detected at the egress and the correlation can be constructed either. For a
connection, we read its window sequence in turn W . To any window sequence
Wk and the statistic array of the maximum delay inserted by detector S =
{s1, s2, ..., sw−1, sw} and the initial value si = 0, i ∈ (1, .., w), we detect the
place where the periodical signal M appears.

Iff dk+i ≥ MAX{dk+i−(w−1), dk+i−(w−2), .., dk+i−2, dk+i−1}, we let si =
αSi + λ; otherwise si = αSi, where α is a constant factor of reduction, λ is
a constant factor of increase, and α ∈ (0..1).

In the given Tperiod, we calculate the statistic array S = {s1, s2, ..., sw−1, sw}
in turn. If K = MAX{s1,s2,...,sw−1,sw}

w∑
i=1

si

≥ κ, κ ∈ (0..1) is a constant factor of peri-

odical detection, we say that this connection in Tperiod is a periodical connection
or there is a periodical signal in Tperiod.
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For another inserted delay, iff | dk+i − Γ
w−1

w−1∑
j=1

dk+i+j |≤ σ′, we let si =

αSi + λ, σ′ is a constant as small as possible; otherwise si = αSi.

3.4 Analysis

From those methods mentioned above, it is the key work for us to choose a
suitable different activity degree constant factor γ to construct correlation and
exclude the different perturbed connection. Choose a right constant factor of
reduction α and a constant factor of increase λ and a constant factor of periodical
detection κ from experiment to detect periodical signal. Choose a right constant
factor Γ and τ and to ensure the performance of process.

Assume the input window sequence Wk already has periodical signals. After
attacker changes inter-packet delay randomly, the output window sequenceW ′

k =
{d′k+1, d

′
k+2, .., d

′
k+w−1, d

′
k+w}. The change process is described as d′i = μdi. As-

suming μ is average distribution in area (0.5,1.5), and α = n
n+1 , λ = 1

n+1 , n
is total number of the connection packets received presently, initial value is 0.
When dk+i fits for the condition of periodical signal, s′i = n

n+1si+ 1
n+1 ; otherwise

s′i = n
n+1si and

w∑
i=1

si = 1.

3.5 Evaluation

We observe the effect of different K on true positive rate and false positive rate,
and find out the optimal K value. In Figure 5, we calculate the correlation of
the 121 SSH flows with different K, they are 0.3, 0.4, 0.5 respectively. We find
out the true positive is the biggest and the false positive is the smallest when
κ1 = 0.3, and true positive is the smallest and the false positive is the biggest
when κ3 = 0.5. But when the number of received packets in window is more
than 50, the true positive and false positive are both approaching to 0.

4 Related orks

Existing tracing approaches for a connection chain can be divided into two
categories[5] based on tracing object. 1. Host-based: The host-based approaches[1,
6] are restricted the ability of hosts processing because they utilize hosts as in-
formation collect point. Too many authentications and communications between
the hosts result in more processing time. 2. Network-based: One fundamental
problem with passive network-based approaches[2, 5, 7, 8, 9] is its computational
complexity. Because it passively monitors and compares network traffic, it needs
to record all the concurrent incoming and outgoing connections even when there
is no intrusion to trace. The irrelevant traffic wastes much computation time
and needs long time to collect. Active approaches[10, 11] differ from passive ap-
proaches that they can perturb connection actively and analyze correlations to
reduce tracing time and overhead.

W 
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Fig. 5. True positive rate and false positive rate

Our active approach need not modify packet overlay and cooperates between
stepping stones, it can be applied on encrypting connection. Compared with
FootFall project[11],in our method, the process of active perturbation in the part
of input connections is simple; the size of the monitor window can be changed
according to the real-time request. The little modification of inter-packet delay
results the computing complexity of this method is small. The processing of
packets is less because it only needs to modify the packets’ delay with plus and
subtract operation.

5 Conclusions

In this paper, we propose a method for detecting stepping stones by actively
perturbing inter-packet delay of connections. The method can construct corre-
lations in attacking connection chains through detecting these increases at the
network egress. The method uses actively perturbed correlation algorithm based
on passively monitoring the network egress, it can reduce the complexity of cor-
relation computations and improve the efficiency of detecting stepping stones
when the attackers use the encrypting connection and timing perturbation.
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Abstract. This paper considers due date assignment and sequencing for
multiple jobs in a single machine shop. The processing time of each job is
assumed to be uncertain and is characterized by a mean and a variance
with no knowledge of the entire distribution. The objective is to mini-
mize the combination of three penalties: penalty on job earliness, penalty
on job tardiness, and penalty associated with long due date assignment.
The earliness and tardiness penalties and the penalty associated with
long due date assignment are all expressed quadratic functions. Heuris-
tic procedures are developed for the objective function. The due dates
and sequences obtained by these procedures depend not only on means
but also variances of the job processing times. Our numerical examples
indicate that the variance information of job processing times can be
useful for sequencing and due date assignment decisions. In addition,
the performance of the procedures proposed in this paper are robust and
stable with respect to job processing time distributions.

Keywords: scheduling, sequencing, due date assignment, heuristics.

1 Introduction

Job sequencing in a single machine shop has been a popular topic in the op-
erations research literature. Early research focuses on job sequencing with pre-
determined due dates. However, due date assignment is also an important deci-
sion in practice. In fact, it is more cost effective to consider due date assignment
and job sequencing together. This idea has been actively pursued by Kanet
(1981), Hall (1986), Bagchi et al. (1986, 1987), Cheng (1987), Ow et al. (1989),
Szwarc (1989), and Baker et al. (1989). See also Raghavachari (1988), Cheng et
al. (1989), and Baker and Scudder (1990) for excellent surveys on the related
literature published before 1990. The majority of the papers mentioned above
consider a common due date assignment, where all jobs in a single machine shop
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share the same due date. The key result for the common due date sequencing
is the V -shaped optimal schedule, i.e., jobs finished before the due date are se-
quenced in descending order of their processing times, and those finished after
the due date are sequenced in ascending order of their processing times.

Due to the growing adoption of the just-in-time concept for various operation
systems, jobs often have different due dates in practice. Seidmann et al. (1981)
consider a distinct due date assignment problem where all jobs have deterministic
processing times and an extra penalty on setting a late due date. They prove that
it is optimal to sequence jobs in nondecreasing order of their processing times
and then determine the due date accordingly. Hall (1986) defines the class of
scheduling problems, for which due dates are specified in term of the positions
in which jobs appear in an ordered sequence rather than by the identities of
jobs. Gordon and Strusevich (1998) consider adding a common positive slack
to maintain individual due dates. Their objective is to explore the trade-off
between the size of the slack and the arising holding costs for the early orders.
Qi et al. (2002) introduce a flexible method in assign a set of given due dates
while sequencing the jobs.

Although the majority of due date assignment papers assume determinis-
tic job processing times, Some recent papers consider stochastic job processing
times. Cheng (1986) initiates the study. In Cheng (1991), he considers a distinct
due date assignment and job sequencing problem where the processing time of
each job is a random variable with known mean and variance. The objective is
to minimize the penalty associated with the deviation of the completion time
of each job from its due date and the penalty of assigning late due dates. The
model implicitly assumes an equal penalty for earliness and tardiness. More re-
cent papers, such as Al-Turki et al. (1996), Cai et al. (1996), and Qi et al. (2000a,
2000b), take into consideration the possibility of machine breakdowns. For the
common due date assignment problem, they either prove that the V -shaped se-
quence is optimal or provide conditions for the conclusion to be true, for various
of objective functions. The paper by Al-Turki et al. (1996) also considers distinct
due date assignments. The results of the above four papers, however, depend on,
explicitly or implicitly, the job processing time distributions.

This paper extends the work of Seidmann et al. (1981), Cheng (1991), and
Al-Turki et al. (1996). It considers the job sequencing and due date assignment
problem for a single machine shop with the following features:

– The processing time of each job is a random variable with known mean and
variance but not the entire distribution.

– Different due dates are assigned to different jobs.
– The objective function consists of quadratic penalties associated with early

jobs, late jobs, and quadratic/linear long due date assignments.

The rest of the paper is organized as follows. Section 2 describes the job
sequencing and due date assignment model as well as the notation to be used.
The objective functions are introduced. Section 3 proposes heuristic approach
on the objective function. The numerical tests on the proposed procedures are
reported in Section 4 and conclusions are drawn in Section 5.
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2 Model Description

Consider a single machine shop with n jobs, indexed by i = 1, . . . , n, waiting
to be processed. The processing time of job i, denoted by pi, is assumed to be
a mutually independent random variable that follows certain probability distri-
bution, with finite mean μi and variance σ2

i . The complete information about
the probability distribution, however, is unknown. Let S be the set of all pos-
sible sequences for the n jobs. Denote [j] as the job in position j of a sequence
s ∈ S. Then the completion time for job [j], denoted by c[j], can be expressed as
c[j] =

∑j
i=1 p[i]. Since the processing time of each job is independent from those

of the other jobs, the mean and variance of job [j]’s ( j = 1, 2, ..., n) complete
time are

C[j] = Exp(c[j]) = Exp(
j∑

i=1

p[i]) =
j∑

i=1

μ[i] and V[j] =
j∑

i=1

σ2
[i],

respectively. Denote D[j] as the unique due date assigned to job [j] and Ds as
the vector of the due date assignments for all jobs for a given sequence s ∈ S.
The expected earliness of job [j] is then given by

E[j] = Exp(D[j] − c[j])+,

where x+ represents the positive part of x. Similarly, the expected tardiness of
job [j] is

T[j] = Exp(c[j] −D[j])+.

For the objective function, we assume that the job earliness and tardiness are
penalized at different levels, although the same level of penalty applies to all
jobs to be sequenced. Let α and β be the unit penalties associated with job
earliness and tardiness for all jobs, respectively. In addition, we also consider a
penalty associated with a long due date assignment, since most customers prefer
an earlier due date quote. Let γ be the unit cost for the length of the quoted
due date. Our paper considers the following three objective functions, which
represent various combinations of linear and quadratic functions for the above
mentioned penalties:

For the objective function, we assume that the job earliness and lateness are
penalized at different parameters, although the same parameters apply to all jobs
to be sequenced. Let α and β be the unit penalties associated with job earliness
and tardiness, respectively. In addition, we also consider a penalty associated
with a long due date assignment, since most customers prefer to be quoted an
earlier due date. Let γ be the unit cost for the length of the quoted due date.
Our paper considers the following objective function:

F (s,Ds) =
n∑

j=1

(αE2
[j] + βT 2

[j] + γD2
[j]), (1)
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The sequencing and due date assignment problems with the above objective
function do not have simple analytical optimal solutions in general when the job
processing time is uncertain. In fact, we are not aware of any optimal algorithms
even when the probability distributions for all job processing times are available.
Therefore, we are interested in developing heuristic procedures for this problem
and hopefully obtaining good robust solutions. The next section explains the
heuristic procedure we propose.

To obtain the upper and lower bounds for the objective functions, we need
the following results from distribution-free optimization:

Theorem 1. Let x be a random variable satisfying a certain probability distri-
bution with mean μ and variance σ2. Denote

F (q) = t1Exp(q − x)2+ + t2Exp(x− q)2+,

where t1, t2 > 0 are fixed constants. The following inequality holds for all q:

min{t1, t2}σ2+t1(q−μ)2++t2(μ−q)2+ ≤ F (q) ≤ max{t1, t2}σ2+t1(q−μ)2++t2(μ−q)2+.

In addition, any of the above upper and lower bounds is tight (becoming equality)
for a two-point probability distribution, see Gallegoet al (1993), Yue (2000) for
detail.

In the about theorem, the upper bound for k = 1 was obtained by Scarf (1958)
and a simplified proof was found in Gallego et al. (1993). The remaining bounds
were discovered by Yue (2000). It has been shown in Yue (2000) theoretically and
numerically that the averages of the respective upper and lower bounds serve
as good approximations of functions Fk(q), k = 1, 2, for various probability
distributions and values of q.

3 Heuristic Procedures for Objective Functions F (s, Ds)

We approximate F (s,Ds) by the average of its upper and lower bounds. Let
s ∈ S be a given sequence and Ds be a set of due date assignments for all jobs.
Applying Theorem 1, we approximate F (s,Ds) by F̃ (s,Ds) as follows:

F̃ (s,Ds) =
n∑

j=1

[
1
2
(α+ β)V[j] + β(D[j] − C[j])2 + γD2

[j]

]
. (2)

Let Ds be the optimal due date assignments of all jobs for the given sequence s
based on the approximation. It can be obtained by setting the partial derivative
of (2) equal to zero:

∂F̃ (s,Ds)
∂D[j]

= 2(β + γ)D[j] − 2βC[j] = 0, j = 1, . . . , n.
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It follows that

D[j] =
β

β + γ
C[j] =

β

β + γ

j∑
i=1

μ[i], j = 1, . . . , n. (3)

Substituting Ds back into F̃ (s,Ds), we have

F̃ (s) =
n∑

j=1

[
1
2
(α+ β)V[j] +

βγ

β + γ
C2

[j]

]

=
n∑

j=1

[
λ

j∑
i=1

σ2
[i] + η(

j∑
i=1

μ[i])2
]
, (4)

where
λ =

α+ β

2
and η =

βγ

β + γ
.

To sequence the jobs, we have the following result.

Theorem 2. Let m and l be any two jobs among the n jobs to be sequenced. In
any optimal sequence that minimizes F̃ (s), job m should be placed in front of job
l if the following conditions is satisfied:

1. μm < μl, and ημ2
m + λσ2

m < ημ2
l + λσ2

l ;
2. σ2

m < σ2
l , and η(μm +

∑n
i=1 μi − min{μi})2 + λσ2

m < η(μl +
∑n

i=1 μi −
min{μi})2 + λσ2

l .

To derive the heuristic procedure, we use the following lemma.

Lemma 1. Let x > y ≥ 0 and K1 > K2 ≥ 0. Then

(K1 + x)2 − (K1 + y)2 > (K2 + x)2 − (K2 + y)2

We now describe a heuristic procedure that sequences all jobs according to
our objective function. The sequence generated is not always optimal, but it
does satisfy the properties of the optimal sequence stated in Theorem 2.
Heuristic Sequencing Procedure

Step 0. Let T be the set of jobs remaining to be sequenced and j be the job
position currently under consideration. Set T = {1, . . . , n} and j = 1.

Step 1. Find a job k ∈ T that minimizes η(
∑

i	∈T μi + μk)2 + λσ2
k. Place job k

in position j in the sequence. Delete job k from set T .
Step 2. If T = ∅, stop; otherwise, set j = j + 1 and repeat Step 1.

Proof. We prove that condition 1 stated in Theorem 2. The proofs for the second
one is similar. Since we set due dates D[j] = β

β+γC[j] < C[j], by Lemma 1, we
have

λ(σ2
m − σ2

l ) + η[(K + μm)r − (K + μl)r] ≤ λ(σ2
m − σ2

l ) + η(μr
m − μr

l ) < 0
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for all K ≥ 0. It follows that

η(
∑
i	∈T

μi + μm)r + λσ2
m < η(

∑
i	∈T

μi + μl)r + λσ2
l for any set T.

In view of Step 1 of the heuristic procedure, job l will not be placed ahead of
job m.

4 Numerical Tests

Our numerical tests aim at answering the following questions:

– How robust is the heuristic procedure with respect to the processing time
probability distributions?

– How much does the information of processing time variances contribute to
the sequencing and due date assignment decisions?

4.1 Design of Numerical Test

The data of our test examples are generated as follows:

– The job shop has 50 jobs to be processed.
– The mean and the variance of each job processing time are generated ran-

domly. The mean follows a uniform distribution between 100 and 150. The
variance follows another uniform distribution between 400 and 1600.

– The actual processing time of each job is generated based on four probability
distributions: Uniform, Normal, Gamma, and Two-Parameter Exponential,
respectively, where all distributions share the same mean and variance gen-
erated in the previous step.

– The following penalty parameter combinations are considered: both α and
β range from 0.1 to 1 with a step size of 0.1 and γ ranges from 0.01 to
0.09 with a step size of 0.01. All together, there are 900 penalty parameter
combinations for the objective function and processing time distribution.

– For each objective function, penalty parameter combination, and job pro-
cessing time distribution, we repeat the simulation 500 times.

– The numerical experiment is implemented by using SPLUS programs.

To show the effectiveness of our heuristic procedures, ideally, we should compare
them with the optimal sequencing and due date assignment decisions derived
from the probability distributions of job processing times. However, we are not
aware of any procedure in the scheduling literature that is capable of obtaining
these optimal decisions efficiently. As a compromise, we compare our heuristic
procedures with the corresponding sequencing and due date assignment decisions
derived from the mean job processing times only, i.e., those procedures suggested
by Seidmann et al. (1981). We measure the performance of our heuristics by cal-
culating the percentage of improvement of the corresponding objective functions.



Sequence Jobs and Assign Due Dates with Uncertain Processing Times 267

4.2 Numerical Results and Explanations

Since the output of our numerical tests is quite extensive, we summarize most of
our findings and display only a sample of representative results for illustration
purpose.

Robustness to Processing Time Distributions. For the same job process-
ing time means and variances and for each objective function, we compare the
objective functions under Uniform, Gamma, and Exponential job processing
time distributions, respectively, to that under Normal job processing time. We
calculate the ratios and average them over 900 penalty parameter combinations.
The results are summarized in Table 1.

Table 1. Average Ratios of Objective Function Values Under Various Distributions

Normal Uniform Gamma Exponential

F 1 1.0922 1.0023 1.0738

Our heuristic procedures are fairly robust to job processing time probabil-
ity distributions. The differences are less than 10% with Normal distribution
performing the best and the other three distribution performs close. It is be-
cause Normal distribution is centralized and symmetric, first moments (mean
and variance) can fully represent the distribution.

Contribution of Variance Information. Our heuristic procedures, which
utilize both mean and variance information of job processing times, outperform
the sequencing and due date assignment decisions that based on mean processing
times only in all cases. The average percentage improvements (over 900 penalty
parameter combinations) as well as the ranges of percentage improvements are
summarized in Table 2.

Table 2. Percentage Improvements and Their Ranges of Heuristic Procedures

Normal Uniform Gamma Exponential
Average Range Average Range Average Range Average Range

F 0.15 (0.00,0.90) 0.14 (0.00,0.90) 0.15 (0.00,0.91) 0.15 (0.00,0.92)

Based on Table 2, by utilizing the information of processing time variances,
our heuristic procedures outperform their deterministic counterparts in all cases.
The improvements can be as significant as more than 90% in some cases and the
average improvement is about 15%.

5 Conclusion

In this paper, we study a sequencing and due date assignment problem for a
single machine shop with uncertain processing times. The heuristic procedure



268 Y. Xia, B. Chen, and J. Yue

that utilizes both means and variances of the process times is proposed for the
quadratic objective functions.

Our numerical experiments indicate that the heuristic procedures are quite
robust to job processing time probability distributions. Furthermore, the addi-
tional information on processing time variances does improve the performance
of the sequencing and due date assignment decisions.

In conclusion, our procedure successfully transfers the additional variance
information into the stable penalty function decrease which is robust to specific
distributions of the processing times. Our procedure is hence valuable and prac-
tical since the first two moments ( mean and variance ) are much more easy
to estimate in reality than the exactly distribution of processing times, not to
mention that a specific distribution is very difficult and sometimes impossible to
find in real life cases.

References

1. U.M. Al-Turki, J. Mittenthal, M. Raghavachari, 1996. The single-machine
absolute-deviation early-tardy problem with random completion times. Naval Re-
search logistics 43, 573-587.

2. U. Bagchi, Y. Chang, R. Sullivan, 1986. Minimizing mean absolute deviation of
completion times about a common due date. Naval Research Logistics 33, 227-240.

3. U. Bagchi, Y. Chang, R. Sullivan, 1987. Minimize absolute and squared deviation
of completion times with different earliness and tardiness penalties and a common
due date. Naval Research Logistics 34, 739-751.

4. K.R. Baker, G.D. Scudder, 1989. On the assignment of optimal due dates. Journal
of Operational Research Society 40, 93-95.

5. K.R. Baker, G.D. Scudder, 1990. Sequencing with earliness and tardiness penal-
ties: a review. Operations Research 38, 22-36.

6. X. Cai, F.S. Tu, 1996. Scheduling jobs with random processing times on a sin-
gle machine subject to stochastic breakdowns to minimize early-tardy penalties.
Naval Research Logistics 43, 1127-1146.

7. T.C.E. Cheng, 1986. Optimal due-date assignment for a single machine sequencing
problem with random processing times. International Journal of System Science
17, 1139-1144.

8. T.C.E. Cheng, 1991. Optimal Assignment of slack due-dates and sequencing of
jobs with random processing times on a single machine. European Journal of
Operational Research 51, 348-353.

9. T.C.E. Cheng, 1987. An algorithm for the con due date determination and se-
quencing problem. Computers and Operations Research 14, 537-542.

10. T.C.E. Cheng, M.C. Gupta, 1989. Survey of scheduling research involving due
date determination decisions. European Journal of Operational Research 38, 156-
166.

11. G. Gallego, I. Moon, 1993. The distribution free newsboy problem: review and
extensions. Journal of Operational Research Society 44, 825-834.

12. V. Gordon, V.A. Strusevich, 1999. Earliness penalties on a single maching sub-
ject to precedence constraints:SLK due daassignment, Computers & Operations
Research, V.26, 157-177.



Sequence Jobs and Assign Due Dates with Uncertain Processing Times 269

13. N. Hall, 1986. Single and multi-processor models for minimizing completion time
variance. Naval Research Logistics 33, 49-54.

14. N. Hall, 1986. Scheduling problems with generalized due dates, IIE TRansactions,
V.18,220-222

15. J. Kanet, 1981. Minimizing variation of flow time in single machine systems.
Management Science 27, 1453-1459.

16. P. Ow, T. Morton, 1989. The single machine early-tardy problem. Management
Science 35, 177-191.

17. X.D. Qi, G. Yin, J.R. Birge, 2000a. Scheduling problems with random processing
times under expected earliness/tardiness costs. Stochastic Analysis and Applica-
tions 18, 453-473.

18. X.D. Qi, G. Yin, J.R. Birge, 2000b. Single-machine scheduling with random ma-
chine breakdowns and randomly compressible processing times. Stochastic Anal-
ysis and Applications 18, 635-653.

19. X.D. Qi, G. Yu, J.F. Bard, 2002. Single machine schdeulign with assignable due
dates, Discrete Applied Mathematics, V.122,211-233.

20. M. Raghavachari, 1988. Scheduling problems with non-regular penalty functions-
a review. Operations Research 25, 144-164.

21. H. Scarf, 1958. A min-max solution of an inventory problem. In: Arrow K, Karlin
S, Scarf H (eds). Studies in the Mathematical Theory of Inventory and Production.
Stanford University Press, California, 201-209.

22. A. Seidmann, S.S. Panwalker, M.L. Smith, 1981. Optimal assignment of due-dates
for a single processor scheduling problem. International Journal of Production
Research 19, 393-399.

23. W. Szwarc, 1989. Single machine scheduling to minimize absolute deviation of
completion times from a common due date. Naval Research logistics 36, 663-673.

24. J. Yue, 2000. Distribution free optimization procedures with business application.
PhD Dissertation, Washington State University.



Computation of Arbitrage in a Financial Market
with Various Types of Frictions

Mao-cheng Cai1, Xiaotie Deng2, and Zhongfei Li3,�

1 Institute of Systems Science,
Chinese Academy of Sciences, Beijing 100080, China

caimc@iss.ac.cn
2 Department of Computer Science,

City University of Hong Kong, Hong Kong
csdeng@cityu.edu.hk

3 Lingnan (University) College, Sun Yat-Sen University,
Guangzhou 510275, China

lnslzf@zsu.edu.cn

Abstract. In this paper we study the computational problem of arbi-
trage in a frictional market with a finite number of bonds and finite
and discrete times to maturity. Types of frictions under consideration
include fixed and proportional transaction costs, bid-ask spreads, taxes,
and upper bounds on the number of units for transaction. We obtain
some negative result on computational difficulty in general for arbitrage
under those frictions: It is NP-complete to identify whether there ex-
ists a cash-and-carry arbitrage transaction and it is NP-hard to find an
optimal cash-and-carry arbitrage transaction.

1 Introduction

No-arbitrage is a generally accepted condition in finance. In general, if there is any
arbitrage opportunity, the market force would act as an invisible hand to drive the
prices change and bring the market back to equilibria. An underlying assumption
behind the general principle is the existence of active profit seeking agents in the
financial market. Their restless effort in locating arbitrage possibilities is essential
for the no-arbitrage condition to hold. For the above argument to work, it is essen-
tial that locating arbitrage possibilities is not a formidable task, computationally.

For frictionless financial markets, the no-arbitrage condition is very well un-
derstood. See, for example, Ross (1978), Harrison and Kreps (1979), Green and
Srivastava (1985), and Spremann (1986).

In reality, however, financial markets are never short of friction. Investors are
required to pay transaction costs, commissions and taxes. Selling and buying
prices are differentiated with ask-bid spread. A security is available at a price
only for up to a maximum amount. One may buy or sell a stock at an integer
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number of shares (or an integer number of hundreds of shares). Friction is a de
facto matter in financial markets.

Study of arbitrage in frictional markets has attracted more and more at-
tention in recent years. Garman and Ohlson (1981) extended the work of Ross
(1978) to markets with proportional transaction costs. Later, Prisman (1986)
studied the valuation of risky assets in arbitrage-free economies with taxation.
Dermody and Prisman (1993) extended the results of Garman and Ohlson (1981)
to markets with increasing marginal transaction costs. Jouini and Kallal (1995)
investigated, by means of martingale method, the no-arbitrage problem under
transaction costs. Ardalan (1999) showed that, in financial markets with transac-
tion costs and heterogeneous information, the no-arbitrage imposes a constraint
on the bid-ask spread. Deng, Li and Wang (2000, 2002) presented necessary
and sufficient conditions for no-arbitrage in a finite-asset and finite-state finan-
cial market with proportional transaction costs. These results allows ones to
use polynomial time algorithms to look for arbitrage opportunities by apply-
ing linear programming techniques. These works weer generalized to the case of
multiperiod by Zhang, Xu and Deng (2002).

Kabanov, Rásonyi and Stricker (2001) pointed out that, although the liter-
ature on models with friction is rapidly growing, arbitrage theory for markets
with frictions still contains a number of questions with much less satisfactory
answers than in the theory of frictionless markets and there are only a few pa-
pers dealing with necessary and sufficient conditions for the absence of arbitrage
for markets with frictions. In addition, to the best of our knowledge, works on
algorithmic study of arbitrage under friction are rare, although it is a central
problem for discrete finite time models in finance. To capture the current price
structure, to find out whether there is an arbitrage opportunity, and to price
arbitrary cash stream, the study of algorithmic issues of arbitrage with realistic
frictions is important, interesting and challenging.

In the present paper we study computational issues of arbitrage with fixed and
proportional transaction costs, bid-ask spreads, taxes, and upper bounds on trans-
action. The fixed transaction costs capture the situation in which an individual in-
vestor requests a broker to invest money on the securities exchange, paying a fixed
sum for the service. The payment includes for example brokerage fees, fixed invest-
ment taxes to access to a market, operational and trade processing costs, infor-
mation obtaining costs, or opportunity costs of looking at a market or of doing a
specific trade, which are independent of the amount invested in each security. The
proportional transaction costs are, as most usual, the fees that are proportional
to the transaction size of each security. The bid-ask spreads are the difference be-
tween bid and ask prices of an individual security. The (income) taxes at every time
to maturities are also set to be proportional to the transaction size of each security.

2 Notation and Definitions

Consider a market of n fixed income securities (or bonds) i = 1, 2, . . . , n. Let
0 = t0 < t1 < t2 < . . . < tm be all the payment dates (or the times to maturities)
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that can occur, which need not be equidistant. A cash stream is a vector w =
(w1, w2, . . . , wm)T , where T denotes the transposition of vector or matrix, and wj

is the income received at time tj and may be positive, zero or negative. Assume
that bond i pays the before-tax cash stream Ai = (a1i, a2i, . . . , ami)T . So we
have the m× n payoff matrix A = (A1, A2, . . . , An).

Bond i can be purchased at a current price pa
i , the so-called ask price. There is

also a bid price pb
i at which bond i can be sold. The difference between these two

prices, the so-called bid-ask spread, reflects a type of friction. This friction exists
in most economic markets. We form the ask price vector pa = (pa

1 , p
a
2 , . . . , p

a
n)T

and the bid price vector pb = (pb
1, p

b
2, . . . , p

b
n)T .

The second type of friction considered in this paper is transaction costs in-
cluding fixed and proportional. We assume that the fixed transaction cost is ci
if bond i is traded and that no fixed transaction cost occurs if no trading of
bond i. The ci is a positive constant regardless of the amount of bond i traded.
Denote c = (c1, c2, . . . , cn)T the fixed transaction cost vector. Besides the fixed
transaction cost, there is additional transaction cost that is proportional to the
amount of the bond traded. Let λa

i and λb
i be such fees if one dollar of bond

i is bought and sold respectively. Here 0 ≤ λa
i , λ

b
i < 1, i = 1, 2, . . . , n. Denote

λa = (λa
1 , λ

a
2 , . . . , λ

a
n)T and λb = (λb

1, λ
b
2, . . . , λ

b
n)T .

The third type of friction incorporated into our model is taxes. Here we
concentrate only on a single investor as a member of just one tax class among
many. For all investors in this class, the tax amount at time tj for holding one
unit of bond i in long position is assumed to be taji, and the after-tax income at
that time is then aji− taji; whereas the tax amount for holding one unit of bond
i in short position is tbji as a credit against the obligation to pay aji at time tj ,
and the net after-tax payment to be made is then aji− tbji. Let T a be the m×n
matrix whose entries are taji, and T b the m× n matrix whose entries are tbji.

Every investor in the fixed tax class under consideration will modify his or
her position. Let the modification be x = (x1, x2, . . . , xn)T ∈ R

n, called also a
portfolio, where xi is the number of units of bond i modified by the investor. If
xi > 0, additional bond i is bought for the amount of xi; and if xi < 0, additional
bond i is sold for the amount of −xi.

Finally, the fourth type of friction considered in our model is bounds. An up-
per bound b+i > 0 (maximum amount of units that can be bought in bond i) and
an upper bound b−i > 0 (maximum amount of units that can be sold in bond i)
are set on the modified amount xi for each bond i. Denote b+ = (b+1 , b

+
2 , . . . , b

+
n )T

and b− = (b−1 , b
−
2 , . . . , b

−
n )T . If −b−i ≤ xi ≤ b+i for i = 1, 2, . . . , n, we call x a

admissible portfolio.
Now, the bond market considered in this paper can be described by the 10-

tuple M = {pa, pb, λa, λb, b+, b−, c, A, T a, T b}.
For convenience, we use the vector notation x � y to indicate that xi ≥ yi

for all i. Denote, for i = 1, 2, . . . , n and j = 1, 2, . . . ,m,

τi(x) =

{
(1 + λa

i )pa
i x if x > 0,

(1− λb
i )p

b
ix if x ≤ 0,

gji(x) =

{
(aji − taji)x if x > 0,
(aji − tbji)x if x ≤ 0,
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and δ(x) = 1 if x �= 0 or 0 if x = 0. If trading a portfolio x = (x1, x2, . . . , xn)T ,
the investor pays the cost f(x) :=

∑n
i=1 τi(xi) +

∑n
i=1 ciδ(xi) in the present

and receive the after-tax gain gj(x) :=
∑n

i=1 gji(xi) at future time tj for j =
1, 2, . . . ,m. The after-tax cash stream of gains generated by the portfolio x is
then the vector G(x) := (g1(x), g2(x), . . . , gm(x))T .

Definition 1. An after-tax cash stream w = (w1, w2, . . . , wm)T is called no
future obligations if

∑k
j=1 wj ≥ 0, k = 1, 2, . . . ,m, or, in matrix notation, if

Bw � 0, where B is the lower-triangular m × m-matrix whose diagonal and
lower-triangular elements all are ones.

Definition 2. A portfolio x is said to be a cash-and-carry arbitrage transac-
tion if it is admissible (i.e., −b− � x � b+) and if it has a negative payment
(i.e., f(x) < 0) and generates an after-tax cash stream that implies no future
obligations (i.e., BG(x) � 0).

Definition 3. The market M is said to exhibit weak no-arbitrage if there exists
no cash-and-carry arbitrage transaction.

3 Characterizations of No-Arbitrage

Theorem 1. The marketM exhibits weak no-arbitrage if and only if the optimal
value of the following nonlinear programming problem is zero:

(P1)

{
minimize f(x)

subject to BG(x) � 0, −b− � x � b+.

Proof. Sufficiency. Assume that the optimal value of (P1) is zero. Then, for any
admissible portfolio x with BG(x) � 0, x is feasible to (P1) and hence f(x) ≥ 0.
Thus, there exists no admissible portfolio x such that f(x) < 0 and BG(x) � 0.
Therefore, the market M exhibits weak no-arbitrage.

Necessity. Assume that the market M exhibits weak no-arbitrage. Then, for
any x with BG(x) � 0 and −b− � x � b+, it must holds that f(x) ≥ 0
otherwise a cash-and-carry arbitrage transaction occurs. This means that the
objective function of (P1) is nonnegative at any feasible solution. On the other
hand, it is clear that x = 0 is feasible to (P1) and the objective function vanishes
at x = 0. Hence, the optimal value of (P1) is zero. ��

Problem (P1) states the lowest total cost or gain induced by trading a port-
folio that generates a cash stream with no future obligation. Theorem 1 means
that this lowest amount is zero if there exists a consistent term structure.

Now we reformulate the model set up in the previous section. For any portfolio
x = (x0, x1, . . . , xn)T , let x+

i = max{xi, 0} be the number of units of bond i
bought and x−i = −min{xi, 0} the number of units of bond i sold. Denote x+ =
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(x+
1 , x

+
2 , . . . , x

+
n )T , x− = (x−1 , x

−
2 , . . . , x

−
n )T , p+ = ((1 + λa

1)pa
1 , . . . , (1 + λa

n)pa
n),

and p− = ((1− λb
1)p

b
1, . . . , (1− λb

n)pb
n). Then,

xi = x+
i − x−i , x+

i x
−
i = 0, 0 ≤ x±i ≤ b±i , i = 1, 2, . . . , n,

f(x) =
n∑

i=1

(1 + λa
i )pa

i x
+
i −

n∑
i=1

(1− λb
i )p

b
ix

−
i +

n∑
i=1

ciδ(x+
i − x−i ),

gj(x) =
n∑

i=1

(aji − taji)x
+
i −

n∑
i=1

(aji − tbji)x
−
i , j = 1, 2, . . . ,m.

Further we have

f(x) = p+x+−p−x−+
n∑

i=1

ciδ(x+
i −x−i ) and G(x) = (A−T a)x+−(A−T b)x−.

Hence, problem (P1) can be equivalently formulated as the problem

(P2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
minimize p+x+ − p−x− +

n∑
i=1

ciδ(x+
i − x−i )

subject to B[(A− T a)x+ − (A− T b)x−] � 0

x+
i x

−
i = 0, 0 ≤ x±i ≤ b±i , i = 1, 2, . . . , n.

Theorem 2. The marketM exhibits weak no-arbitrage if and only if the optimal
value of problem (P2) is zero.

Thus, to identify whether the market exhibits weak no-arbitrage we need only
to solve problem (P2).

Clearly, a cash-and-carry arbitrage transaction is a solution (x+, x−) of the
system

(S)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

p+x+ − p−x− +
n∑

i=1

ciδ(x+
i − x−i ) < 0

B[(A− T a)x+ − (A− T b)x−] � 0

x+
i x

−
i = 0, i = 0, 1, . . . , n

0 � x± � b±.

The negative of optimal value of (P2) can be interpreted as the maximal
arbitrage profit. The optimal solutions of (P2) with nonzero objective value are
called optimal cash-and-carry arbitrage transactions.

4 Computational Complexity of Arbitrage

In this section, we will discuss the computational complexity of finding an opti-
mal cash-and-carry arbitrage transaction and of identifying whether there exists
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a cash-and-carry arbitrage transaction. The technique which we use to reach
this purpose is a polynomial time transformation of the EXACT COVER BY
3-SETS into an instance of the problem (P2). The EXACT COVER BY 3-SETS
(Garey and Johnson (1979)) is as follows:

Given an arbitrary instance I of EXACT COVER BY 3-SETS with a ground
set S = {s1, · · · , s3h} and a collection C = {C1, · · · , Ck} of 3-element subsets
of S, does C contain an exact cover for S, that is, a subcollection C ′ ⊆ C such
that every element of S occurs in exactly one member of C ′?

First we construct a digraph G = (V,E) from the instance I as follows:

V = {w} ∪ {u1, . . . , u3h} ∪ {v1, . . . , vk},

E = {(w, ui), . . . , (w, u3h)}
k⋃

j=1

3h⋃
i=1

({(ui, vj)|si ∈ Cj} ∪ {(v1, w), . . . , (vk, w)}.

In this digraph, element si corresponds to vertex ui, and subset Cj corre-
sponds to vertex vj . Further, there is an arc (ui, vj) if and only if si ∈ Cj .
Clearly, the indegrees d−(ui) = 1, d−(vj) = 3 and d−(w) = k; the outdegrees
d+(ui) = |{si ∈ Cj ∈ C}|, d+(vj) = 1 and d+(w) = 3h. The numbers of vertices
and arcs of G are |V | = 3h+ k + 1 and |E| = 3h+ 4k.

Let D denote the incidence matrix of G, that is, the matrix with rows and
columns indexed by V and E, respectively, where the entry in position (v, e) is
−1, +1, or 0, if v is the head of e, the tail of e, or neither, respectively. Further,
we assume that the first 3h columns of D is indexed by arcs (w, u1), . . . , (w, u3h).

To simplify expressions, we write

B(A− T a) = R+ = (r+ji), B(A− T b) = R− = (r−ji).

Theorem 3. It is NP-hard to find an optimal cash-and-carry arbitrage trans-
action even if R± are (0,±1)-matrices, c1 = · · · = cn = 1, and there is no
constraint x+

i x
−
i = 0, i = 1, 2, . . . , n.

Proof. Let us construct a reduction from instance I of EXACT COVER BY
3-SETS to the problem (P2). For this purpose, set m = 18h + 10k + 4 and
n = 3h+ 4k + 1. We compose m× n-matrices R+ and R− as follows:

R+ =

⎛⎜⎜⎜⎜⎝
04

I2
−I2

⎞⎟⎟⎟⎟⎠ , R− =

⎛⎜⎜⎜⎜⎜⎜⎝
I1 01 −1
−I1 01 1

D 02

−D 02

03

03

⎞⎟⎟⎟⎟⎟⎟⎠
whereD is the incidence matrix of G; I1 and I2 are the identity matrices of orders
3h and n; 01, 03 and 04 are all-zero 3h × 4k-, n × n- and (12h + 2k + 2) × n-
matrices, respectively; 1 and 02 are the all-one and all-zero column vectors of
dimensions 3h and 3h+ k + 1, respectively.



276 M.-c. Cai, X. Deng, and Z. Li

Further put c = p+ = (1, · · · , 1), p− = (0, · · · , 0, 7h+ 2), and

b±e =
{

3 if e = (vj , w), j = 1, . . . , k,
1 otherwise.

It is easy to see that the construction above can be accomplished in polyno-
mial time. Then for the specified R±, p± and c, it is straightforward to check
that problem (P2) becomes (P̂2):

minimize
n∑

i=1

δ(x−i )− (7h+ 2)x−n

subject to x+ = 0 (1)
x−e − x−n = 0 ∀ e ∈ δ+(w) (2)∑

e∈δ+(v)

x−e −
∑

e∈δ−(v)

x−e = 0 ∀ v ∈ V (3)

b− � x− � 0 (4)

where δ+(v) = {(v, u) ∈ E} and δ−(v) = {(u, v) ∈ E}.
Clearly, (1) yields (x+)Tx− = 0 and {x−e : e ∈ E} is a circulation in G by (3)

and (4). Further we have

Claim. If x− �= 0 satisfies (2)–(4), then

x−n > 0, (5)
n∑

i=1

δ(x−i ) ≥ 7h+ 1. (6)

Indeed, assume (5) to be false, then x−e = 0 for all e ∈ δ+(w) by (2). It follows
from (3) that x−e = 0 for all e ∈ δ+(ui), i = 1, . . . , 3h, implying x−e = 0 for all
e ∈ δ+(vj), j = 1, . . . , k. Hence x− = 0, a contradiction.

To show (6), x−e > 0 for all e ∈ δ+(w) by (2) and (5), that is, x−(w, ui)
> 0

for i = 1, . . . , 3h. It follows from (3) that for each ui there is at least one arc
e ∈ δ+(ui) with x−e > 0. As d−(vj) = 3, j = 1, . . . , k, it derives from (3) that
there are at least h vertices vj with x−(vj , w) > 0. Therefore (6) holds.

Claim. There is x− �= 0 satisfying (2)–(4) and

n∑
i=1

δ(x−i ) = 7h+ 1 (7)

if and only if the instance I of EXACT COVER BY 3-SETS has an exact cover
C ′ of S.

First suppose x− �= 0 satisfies (2)–(4) and (7). Then it follows easily from
the proof of (6) that
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– there is exactly one arc e ∈ δ+(ui) with x−e > 0 for each i = 1, . . . , 3h and
– there are exactly h vertices vj�

, 	 = 1, . . . , h, with x−(vj�
, w) > 0.

For otherwise (7) cannot hold. Set C ′ = {Cj�
∈ C : x−(vj�

, w) > 0}. Then C ′ is
an exact cover of S. Indeed, each si is in some Cj�

∈ C ′ as x−e > 0 for some
e ∈ δ+(ui) and Cjp

∩ Cjq
= ∅ for all 1 ≤ p < q ≤ h since |S| = 3h, |C ′| = h and

∪{Cj�
∈ C ′} = S.

Conversely, suppose that there exists an exact cover C ′ = {Cj1 , . . . , Cjh
} ⊆ C

of S. We need to find an n-vector x− satisfying (2)–(4) and (7). Now set

x−n = 1,

x−e =

⎧⎪⎪⎨⎪⎪⎩
1 if e = (w, ui), i = 1, . . . , 3h,
1 if e = (ui, vj�

) and ui ∈ Cj�
∈ C ′,

3 if e = (vj�
, w) and Cj�

∈ C ′,
0 otherwise.

It is straightforward to verify that the defined x− satisfies (2)–(4) and (7).

Claim. The optimal value of Problem (P̂2) is either −1 or 0. Moreover, the
optimal value is −1 if and only if the instance I of EXACT COVER BY 3-
SETS has an exact cover of S.

Indeed, as x = 0 is a feasible solution to (P̂2), the optimal value

minimize

{
n∑

i=1

δ(x−i )− (7h+ 2)x−n

}
≤ 0. (8)

If (P̂2) has a optimal solution x̂ = (0, x̂−) with x̂− �= 0, then by Claims 1
and 2,

∑n
i=1 δ(x̂

−
i ) = 7h + 1 if and only if the instance I has an exact cover of

S, and
∑n

i=1 δ(x̂
−
i ) ≥ 7h + 2 otherwise as

∑n
i=1 δ(x̂

−
i ) is integer. Furthermore,

x̂−n = 1 follows easily from the proof of Claim 2 and the optimality of x̂. Therefore∑n
i=1 δ(x̂

−
i )− (7h+ 2)x̂−n = −1 if and only if the instance I has an exact cover

of S, and
∑n

i=1 δ(x̂
−
i )− (7h+2)x̂−n ≥ 0 otherwise, implying

∑n
i=1 δ(x̂

−
i )− (7h+

2)x̂−n = 0 by (8). So the claim is true.
Now we come to the conclusion that the optimal value of Problem (P̂2) is

either −1 or 0 according to whether the instance I of EXACT COVER BY
3-SETS has an exact cover of S or not. To complete the proof, we have to show

Claim. For the composed matrices R+ and R−, there exist matrices A, T a and
T b satisfying B(A− T a) = R+ and B(A− T b) = R−.

Clearly, the following m× n linear systems{
aji − taji = m+

ji

aji − tbji = m−
ji

, i = 1, 2, . . . , , n, j = 1, 2, . . . ,m

have feasible solutions, where aji, taji and tbji are variables, and
(
m±

ji

)
= B−1R±.

The proof is completed. ��
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Theorem 4. It is NP -complete to identify whether there exists a cash-and-carry
arbitrage transaction in the market M.

Proof. Equivalently we need only to show that it is NP -complete to determine
feasibility of system (S). Clearly, the problem is in NP . We transform EXACT
COVER BY 3-SETS to the identification problem by the same reduction used
in the proof Theorem 3. To prove the theorem, it suffices to show

Claim. There exists a cash-and-carry arbitrage transaction, that is, there is x−

satisfying (2)–(4) with
∑n

i=1 δ(x
−
i )− (7h+ 2)x−n < 0, if and only if the instance

I of EXACT COVER BY 3-SETS has an exact cover C ′ of S.

Clearly, the claim is a corollary of Claim 3. The theorem is proved. ��

Note that m > n in the proofs of Theorems 3 and 4. Let us show the theorems
to be still true for the case m ≤ n′.

Indeed, let R′ and R′′ bem×(n′−n)-matrices whose entries are non-negative,
p̌+ and p̌− be the all-zero column vectors of dimension n′, č be the all-one column

vector of dimension n′, and b̌± = (b±,

n′−n︷ ︸︸ ︷
0, . . . , 0). Set

B̌(Ǎ− Ť a) = (R+,−R′), B̌(Ǎ− Ť b) = (R−, R′′),

where R+ and R− are the matrices defined in the proof of Theorem 3. Consider
the following programming:

(P̌2)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
minimize p̌+x̌+ − p̌−x̌− +

n′∑
i=1

čiδ(x̌+
i − x̌−i )

subject to B̌(Ǎ− Ť a)x̌+ − B̌(Ǎ− Ť b)x̌− � 0

x̌+
i x̌

−
i = 0, b̌±i ≥ x̌±i ≥ 0, i = 1, 2, . . . , n′.

It is easy to see that the optimal values of (P̌2) and (P2) are equal. Furthermore,
for any optimal solution (x̌+, x̌−) of (P̌2), clearly x̌+

j = x̌−j = 0 for j = n +
1, . . . , n′, and (x+, x−) = (x̌+

1 , x̌
+
2 , . . . , x̌

+
n , x̌

−
1 , x̌

−
2 , . . . , x̌

−
n ) is an optimal solution

of (P2). Conversely, for any optimal solution (x+, x−) of (P2), then

(x+,

n′−n︷ ︸︸ ︷
0, . . . , 0, x−,

n′−n︷ ︸︸ ︷
0, . . . , 0)

is an optimal solution of (P̌2). As (P2) is NP-hard for m > n, so is (P̌2).
Theorems 3 and 4 tell us that it is unlikely to find efficient optimal solution

procedures and that one has to look for heuristic algorithms for problem (P2).
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5 Conclusion

In this paper, we have derived two necessary and sufficient conditions for the
weak no-arbitrage in markets with fixed and proportional transaction costs, bid-
ask spreads, taxes, and bounds for transaction. These characterizations extend
some known results in discrete time frictionless security markets. With the help
of the EXACT COVER BY 3-SETS, the computational complexity of the arbi-
trage problem is showed to be in NP. These motivate us to consider computa-
tional complexity in a more general setting of friction or/and time (period). Such
extensions require more sophisticated tools and are worthy of being investigated
further in future.
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1 IMTA, Paseo Cuauhnáhuac 8532, Col. Progreso,
C.P. 62550, Jiutepec Morelos, México
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Abstract. Since the apparition of Simulated Annealing algorithm (SA)
it has shown to be an efficient method to solve combinatorial optimiza-
tion problems. Due to this, new algorithms based on two looped cycles
(temperatures and Markov chain) have emerged, one of them have been
called Threshold Accepting (TA). Classical algorithms based on TA usu-
ally use the same Markov chain length for each temperature cycle, these
methods spend a lot of time at high temperatures where the Markov
chain length is supposed to be small. In this paper we propose a method
based on the neighborhood structure to get the Markov chain length
in a dynamic way for each temperature cycle. We implemented two TA
algorithms (classical or TACM and proposed or TADM) for SAT. Exper-
imentation shows that the proposed method is more efficient than the
classical one since it obtain the same quality of the final solution with
less processing time.

Keywords: Simulated Annealing, Threshold Accepting, Cooling Scheme,
Dynamic Markov Chains, Combinatorial Optimization, Heuristic Opti-
mization, SAT problem.

1 Introduction

Nowadays we found a big interest for developing new and efficient algorithms
to solve difficult problems, mainly those considered in the complexity theory
(NP–complete or NP–hard) [1].

In practice there are two main ways to solve NP–hard problems: the first one
is when we try to find the optimal solution using different techniques that require
a lot of computational resources (memory, cpu–time, etc.) which sometimes is
undesirably in practice. The last one is using approximation methods (heuristic
methods) to get a sub–optimal solution [2].

N. Megiddo, Y. Xu, and B. Zhu (Eds.): AAIM 2005, LNCS 3521, pp. 281–290, 2005.
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Since the apparition of Simulated Annealing algorithm (SA) by Kirkpatrick et
al. in 1983 [3] and Cerny independently in 1985 [4] it has shown to be an efficient
method to solve combinatorial optimization problems despite to its two main
characteristics: easy to implement and fast convergence rate to good solutions.

Due to this, new algorithms based on two looped cycles (temperatures and
Markov chain) have emerge, one of them have been called Threshold Accepting
algorithm (TA) [5] which is considered as a modification of SA.

The objective of these variations is to find better methods to reduce the com-
putational resources and to increment the quality of the final solution. This is
done applying different accelerating techniques such as: variations of the cooling
scheme [6, 7, 8], variations of the neighborhood scheme [9] and with paralleliza-
tion techniques [10, 11].

In this paper we propose an analytic adaptive method to establish the length
of each Markov chain in a dynamic way for TA, named TADM. We applied it
to solve some SAT instances and we compared its results versus those obtained
with a classical TA algorithm that uses the same length for all Markov chains.
Experimentation shows that our method is more efficient than the classical one
(named TACM), and we noted a similar quality.

2 The Satisfiability Problem (SAT)

SAT was the first problem referred to be as NP–complete [12]. SAT is founda-
mental to the analysis of the computational complexity of many problems and
it is used in different reasoning methods [13].

An instance of SAT is a boolean formula which consists on the next compo-
nents:

– A set of n variables x1, x2, . . . , xn.
– A set of literals; a literal is a variable xi or its negation ¬xi.
– A set of m clauses: C1, C2, . . . , Cm linked by the logical connective AND (∧)

where each clause consists of literals linked by the logical connective OR (∨).

This is:

Φ = C1 ∧ C2 ∧ . . . ∧ Cm =
m∧

k=1

Ck (1)

where Φ is the SAT instance and C1, C2, . . . , Cm are the set of clauses.
Thus, SAT problem can be stated as follows:

Definition 1. Given a finite set {C1, C2, . . . , Cm} of clauses, determine whether
there is an assignment of truth-values to the literals appearing in the clauses
which makes all the clauses true.

2.1 Application Areas

Satisfiability is widely studied in different areas such as: operations research,
planning, circuit test, temporal reasoning, complexity theory, scheduling, cryp-

- - -
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tology, constraint satisfaction problems, machine vision, computer network de-
sign, computer architecture design, and many others (i.e. see [14] for a detailed
list).

Cook [12] and Creignou [15] proved that any other NP–complete problem
can be transformed to a SAT instance, which implies that:

1. Any NP–complete problem can be solved as a SAT problem.
2. If SAT can be solved efficiently then any other NP–complete problem can

be solved efficiently.

This is why SAT has received a lot of interest in computing and engineering.

2.2 Algorithms of Solution

SAT is considered a hard problem due there is no method to solve it in an
‘efficient’ way. In this problem, a solution method or a solution algorithm1 should
be able to determine if the instance is satisfiable or not. Here we can distinguish
two classes of methods: complete2 and incomplete3.

Complete methods usually are based on splitting and resolution techniques
while incomplete methods are based on integer programming and/or local search.
Next we show some algorithms of these two classes:

– Complete:
• Davis and Putnam algorithm [16] (here resolution techniques were intro-

duced).
• The brute–force method. (i.e. truth tables).
• DPLL (Davis, Putnam, Loveland, Logemann) [17]. A depth–first search

algorithm that enumerate all solutions.
– Incomplete:

• GSAT, Simulated Annealing [18].
• WalkSAT [19] and
• UnitWalk [20].

Complete methods require a lot of computational resources and have expo-
nencial executing time that depends on the instance size [21, 22]. Incomplete
methods have reasonable executing time but they may get stuck on a local
optima.

3 TA Algorithm

Threshold Accepting algorithm (TA) was first introduced by Dueck and Scheuer
in 1990 [5]. TA simplifies the Simulated Annealing algorithm since the accepting

1 An algorithm is a well defined procedure to do someting.
2 Complete methods usually give a definite yes or no answer to the problem.
3 Incomplete methods sometimes give a yes answer, but in most cases they do not give

a definite answer.
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probability calculus is not needed. To accept a solution a deterministic parame-
ter named threshold is introduced. TA works with the ideas of SA since it begins
with a current solution Si from which a new solution Sj is generated through a
perturbation mechanism. A worse solution is always accepted if the cost differ-
ence of Si and Sj (ΔZ = Z(Sj)− Z(Si)) is smaller than the threshold (which is
reduced through the process). In Fig. 1 the pseudo–code of TA is shown. Here
we can see that TA consists on two cycles: the outer cycle (lines 4–12) that
controls the threshold value (named temperature too) and the inner cycle (lines
5–9) which makes a stochastic walk for each temperature cycle.

1. Begin

2. Initialization (Si = initial state, c = initial temperature)

3. k = 1

4. Repeat

5. Repeat

6. Sj = Generate (Si)

7. If Z(Si) - Z(Sj) < c

8. Si = Sj

9. Until the equilibrium distribution

10. k = k+1

11. c = alpha*c

12. Until the stop criteria (the system is frozen)

13. End

Fig. 1. Pseudo–code of TA algorithm

To determine the outer cycle (temperatures cycle) we need to establish the
next parameters: initial temperature, final temperature, and the cooling func-
tion. To determine the inner cycle (Markov chain builder cycle) we need to set
the length of each Markov chain.

4 Cooling Scheme

The balance between efficiency and efficacy in any TA algorithm is established
by the cooling scheme. Next we show a full analysis of the parameters of the
cooling scheme and the way that we set them for the purposes of this paper.

4.1 Initial and Final Temperature

Initial (c1) and final (cf) temperatures are the explicit bounds of any TA algo-
rithm since they determine the beginning and the end of the process. At the
beginning c1 must be determined in a way that almost all transitions may be
accepted. If c1 is too high TA will expend a lot of time, and if it is too low the
probability to get stuck on a local optima is high. On the other hand, if cf is set
too high TA probably does not explore the desired area of the solution space.
If cf is set to a very low value a lot of time will be expend at the final of the
process.
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We set c1 and cf with the method suggested in [6]; this is, we require a well
defined neighborhood structure, and the values of the maximum and minimum
cost increment of the objective function that can be get from the neighborhood
structure. In this sense, the neighborhood structure can be defined as follow:
Definition 2. Let {∀ Si ∈ S, ∃ a set VSi ⊂ S|VSi = V :S → S} be the neigh-
borhood of a solution Si, where VSi is the neighborhood set of Si, V :S → S is a
mapping and S is the solution space of the problem being solved.

From the above definition we can see that the neighbors of Si only depend on
the neighborhood structure V from every particular problem. Thus, the maxi-
mum and minimum cost increments produced from this neighborhood structure
are:

ΔZVmax = Max
{
Z(Sj)− Z(Si)

}
∀ Sj ∈ VSi ,∀ Si ∈ S, (2)

ΔZVmin = Min
{
Z(Sj)− Z(Si)

}
∀ Sj ∈ VSi ,∀ Si ∈ S . (3)

Finally c1 and cf are calculated as follow:

c1 = ΔZVmax (4)

and for cf :
cf ≤ ΔZVmin (5)

From (4) we can see that this way of determining the initial temperature enable
TAtoacceptanypossible transitionat thebeginning, since c1 is set to themaximum
deterioration in cost that may be produced through the neighborhood structure.

The final temperature in any TA algorithm should be determined in a way
that only good solutions may be accepted at the final of the process [3]. From
(5) it can be noted that cf enable TA to have the control of climbing probability
of local optimums and allows TA to do a greedy local search at cf [6].

4.2 Markov Chains and Cooling Function

As can be see in Fig. 1, by the time ck → cf (k represents the sequence index)
when the next cooling function is applied:

ck+1 = f(ck) (6)

TA makes a stochastic walk on the solution space. In any TA algorithm this
stochastic walk can be modeled as a sequence of homogeneous Markov chains
which are constructed for descending values of the control parameter ck > 0.

Definition 3. Let Lk be the length of each Markov chain that must satisfy
Lk > 0 for any temperature cycle ck

where ck must satisfy:

lim
k→∞

ck = 0 (7)

ck ≥ ck+1 ∀k ≥ 1 .



286

From (6) and (7) we can establish a strong relation between ck and Lk in a
way that when ck → ∞, Lk → 0 and when ck → 0, Lk → ∞.

In a similar way that the section 4.1 we can determine the Markov chain
length through neighborhood structure V . In this sense, the maximum number
of different solutions that can be rejected from Si is the neighborhood size |VSi |.
Then the length Lk of any Markov chain in a TA algorithm is a function of the
neighborhood size:

Lk = g
(
|VSi |

)
(8)

here the function g
(
|VSi |

)
gives the maximum number of samples that must be

taken from the neighborhood VSi in order to evaluate an expected fraction of
different solutions in a Markov chain.

In (8) it is shown that the value of Lk only depends on the number of elements
of VSi that will be explored at ck.

When a new solution Sj is generated from Si through VSi , usually TA em-
ployees a replacement random sampling function G(ck) to explore VSi at a given
temperature ck, G(ck) is defined as:

G(ck) = G =
{

1/|VSi |, ∀Sj ∈ VSi ;
0, ∀Sj /∈ VSi .

(9)

Thus, the probability to choose Sj taking N samples when a replacement
random sampling method is being used is:

P (Sj) = 1− exp
(
−
(
N/|VSi |

))
(10)

where N can be obtained as:

N = −|VSi | ln
(
1− P (Sj)

)
(11)

= C|VSi |

here C establishes the exploration level to be done, if N = |VSi | (i.e. C = 1) then
TA will explore 63% of the neighborhood. In a similar way, the levels of explo-
ration 86%, 95% and 99% are obtained when C = 2, 3 and 4.6 respectively [6].

In general, for a classical TA algorithm the length of the Markov chain is
set constant for all temperatures (Lk = L). The most commonly Markov chain
length used is one or two times the neighborhood size [5]. Thus, with the analysis
made above, this way of determining the Markov chain length produces 63% and
86% exploration level of VSi for each Markov chain.

5 Dynamic Markov Chains

From the strong relation between ck and Lk given in section 4.2, at the begin-
ning of the process (ck = c1) in a TA algorithm all solutions have the same
probability to be accepted as the current solution; in this sense, the Markov
chain length could be small (Lk = L1 ≈ 1) and it guarantees that the system
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reaches the stationary distribution (equilibrium) at c1. By the time k increases,
the value of ck is incremented until it reaches cf . Thus, for consecutive values of
ck (k>1), TA should be forced to increment the Markov chain length in order
to reach the stationary distribution for each temperature cycle. This is, Lk must
be incremented for each ck (k>1) until it reaches the maximum Markov chain
length Lmax at cf .

From (11) we can establish Lmax to be used in any TA algorithm as the
number of samples that must be taken in order to evaluate an expected fraction
of different solutions from VSi at cf , this is:

Lmax = C|VSi | (12)

where C varies from 1 ≤ C ≤ 4.6 for a good neighborhood exploration level [6].
From the strong relation between ck and Lk, the length of the Markov chain

must be incremented at any temperature cycle in a similar but inverse way that
ck is decremented, this may be done as follows:
Let

ck+1 = αck (13)

be the geometric reduction cooling function proposed by Kirkpatrick [3] and
Cerny [4] also used by Dueck and Scheuer [5]. This cooling function is applied
to reduce the temperature from c1 to cf , this is done after n steps:

cf = αnc1 (14)

In a similar way that (13), an incremental Markov chain function can be
proposed:

Lk+1 = βLk (15)

where Lk is the length of the Markov chain at ck, Lk+1 represents the length of
the Markov chain at ck+1 and β is the increment coefficient (β > 1).

As we said earlier, the length of each Markov chain must be incremented
from L1 to Lmax by the time c1 reaches cf . In this sense, we get:

Lmax = βnL1 (16)

Now, from (14) the number of steps (n) that TA performs from c1 to cf is:

n =
ln cf − ln c1

lnα
(17)

Finally, with (16) and (17) we can obtain the parameter β as follows:

β = exp
(

lnLmax − lnL1

n

)
(18)

here we can see that if we know the parameter β, the length of each Markov
chain may be calculated with (15). This way of determining the length of each
Markov chain differs from other methods since no experimentation is required,
which is a big advantage.
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6 Results and Discussion

To test our method we developed two TA algorithms to solve some SAT in-
stances. Table 1 shows the instances obtained from [23, 24] that were tested
during the execution of both TA algorithms: TACM where the length of every
Markov chain was maintained constant for each temperature cycle (L = Lk =
N = 2|VSi |, see section 4.2), and TADM with the method developed in section 5.
In TADM the value of Lmax was set to Lmax = 2|VSi |.

Table 1. SAT instances tested

Category Name Id

Random unif-r4.25-v600-c2550-03-S1158627995.cnf r3
Handmade bqwh.60.1080.cnf h1
Handmade genurq30Sat.cnf h3
Planning huge.cnf pp1
Planning bw-large.a.cnf pp3

Circuit fault analysis ssa7552-038.cnf c1

Table 2 shows the values of c1 and cf and the number of variables and clauses
for each instance. The value of c1 and cf were obtained with the method described
in section 4.1.

Table 2. Characteristics of the instances and values of c1 and cf

Id Variables Clauses c1 cf

r3 600 2550 26 4
h1 6283 53810 31 8
h3 3622 17076 32 8
pp1 459 7054 65 7
pp3 459 4675 57 7
c1 1501 3575 272 1

For the cooling coefficient of the cooling function, two values were used:
α = 0.85 and 0.95.

Table 3 shows that both algorithms obtain the same solution quality. The
main improvement produced for our method to TA is the executing time, i.e.
for h1 the processing time was reduced from 584.2 sec to 63.8 sec (89.079%)
when α = 0.85 and from 1723 sec to 186.9 sec (89.152%) when α = 0.95.
In general, for all the instances tested, the mean reduction of the processing
time that our method produced was 89.702% for α = 0.85 and 89.041% for
α = 0.95.
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Table 3. Performance of TACM and TADM with α = 0.85, α = 0.95 and C = 2

Id Quality (%) Time (secs)
TACM TADM TACM TADM

α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95

r3 99.247 99.501 97.643 98.905 2 6.2 0.3 0.9
h1 99.224 99.228 98.112 99.128 584.2 1723 63.8 186.9
h3 99.830 99.944 98.743 99.594 127.4 397.9 9.5 46.4
pp1 99.776 99.791 99.244 99.683 6 21.5 0.8 2.7
pp3 99.726 99.775 98.620 99.574 3.6 13.3 0.3 1.5
c1 98.769 98.791 98.366 98.537 33.3 106.7 3.2 10.2

7 Conclusions

In this paper we developed a new analytic method to determine in a dynamic
way the length of each Markov chain for TA. Experimentation with some SAT
instances shows that a TA algorithm using the proposed method is more efficient
than the classical constant Markov chain TA algorithm since the first one obtain
the same solution quality with less processing time. For the SAT instances tested
the mean processing time was reduced in 89.702% for α = 0.85 and 89.041% for
α = 0.95.
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Abstract. We propose an efficient and accurate randomized approxi-
mation algorithm for pricing a European-Asian option on the binomial
tree model. For an option with the strike price X on an n-step binomial
tree and any positive integer k, our algorithm runs in O(kn2) time with
the error bound O(X/k) which is independent of n. Our algorithm is a
modification of the approximation algorithm developed by Aingworth,
Motwani, and Oldham (2000) into a randomized algorithm, which im-
proves the accuracy theoretically as well as practically.

1 Introduction

1.1 Background

Options are popular financial instruments in world financial markets. One of the
simplest options is European call option, which is a contract giving its holder
the right, but not the obligation, to buy a stock or other financial asset at some
point in the future (called the expiration date) for a specified price X (called the
strike price). The payoff of an option is the amount of money its holder makes
on the contract. Suppose that we have a European option on a stock, and the
stock price S is more than the strike price X on the expiration date. Then, we
can make some money by exercising the option to buy the stock and selling the
stock immediately at the market price. Hence, the payoff of a European option
is given by (S −X)+ = max{S −X, 0}. The price of the option is usually much
less than the actual price of the underlying stock. Therefore, options hedge risk
more cheaply than stocks only, and provide a chance to get large profit with a
small amount of money if one’s speculation is good.

The price of an option is given by the discounted expected value of the pay-
off. Because of the popularity of options, techniques for computing the option
price have extensively been discussed in the literature [1, 2, 5, 6, 7, 8, 9, 10, 11, 13].
A standard method of pricing an option is to model the movement of the un-
derlying financial asset as geometric Brownian motion with drift and then to
construct an arbitrage portfolio [4, 11]. This yields a stochastic differential equa-
tion, and its solution gives the option price. However, it is often difficult to solve
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this differential equation for many complex options such as European-Asian
option dealt with in this paper, and indeed no simple closed-form solution is
known. Therefore, it is widely practiced to simulate geometric Brownian mo-
tion by using a discrete model, and use this model to approximate the option
price. One such discrete model is the binomial tree model [8, 11], where the time
period is decomposed into n time steps, and geometric Brownian motion is mod-
eled by using a biased random walk on a graph called a binomial tree of depth
n. The option price obtained from the binomial tree model converges to the
price given by the differential equation if n goes to infinity. In the binomial tree
model, the process of the movement of a stock price is represented by a path.
An option is said to be path-dependent [6, 11] if the option’s payoff depends on
the path representing the process as well as the current stock price. Although
path-dependency is often useful in designing a secure option against risk caused
by sudden change of the market, it makes the analysis of option prices quite
difficult.

1.2 Our Problem and Result

In this paper, we consider the pricing of European-Asian option. European-Asian
option is a kind of path-dependent options and its payoff is given as (A−X)+,
where A is the average stock price during the time from the purchase date to
the expiration date of the option and X is the strike price. It is known to be
#P-hard in general to compute the exact price of path-dependent options on
the binomial tree model [6]. Therefore, it is desired to design an efficient approx-
imation algorithm with provable high accuracy, and various pricing techniques
have been developed so far [1, 2, 6, 7, 9, 13].

A naive method for computing the exact price of European-Asian options,
called the full-path method, enumerates all paths in the binomial tree. Unfor-
tunately, the full-path method requires exponential time since there are expo-
nential number of paths in the binomial tree. Hence, the Monte Carlo method
that samples paths in the binomial tree is popularly used to compute an ap-
proximate value of the exact price. The error bound of the Monte Carlo method,
however, depends on the volatility of the stock price when a polynomial number
of samples are taken by naive sampling [10].

Aingworth–Motwani–Oldham (AMO) [1] proposed the first polynomial-time
approximation algorithm with guaranteed worst-case error bound, which enables
us to avoid the influence of volatility to the theoretical error bound. The idea is to
prune exponential number of high-payoff paths by using mathematical formulae
during the run of an aggregation algorithm based on dynamic programming
and bucketing. In each of n aggregation steps the algorithm produces the error
bounded by X/k, where k denotes the number of buckets used at each node of
the binomial tree. Hence, the error bound of the AMO algorithm is nX/k, and
the algorithm runs in O(kn2) time. While algorithms on the “uniform” model
has been mainly considered in the literature [1, 2, 6, 7, 9], the AMO algorithm and
its analysis work on the “non-uniform” model where the transition probabilities
of the stock price may differ at each node [13].
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Then, variants of the AMO algorithm were proposed to achieve a better error
bound than nX/k. Akcoglu–Kao–Raghavan [2] presented a recursive version of
the AMO algorithm and reduce the error bound to O(n

1+ε
2 X/k) by spending

almost the same time complexity when the volatility of the stock is small.
The error bound is further improved by Dai–Huang–Lyuu (DHL) [9] and

by Ohta–Sadakane–Shioura–Tokuyama (OSST) [13]. While the AMO algorithm
uses the same number of buckets at each node of the binomial tree, the DHL
algorithm [9] uses different number of buckets at each node. By adjusting the
number of buckets at each node appropriately while keeping the time complex-
ity O(kn2), they achieved the error bound O(

√
nX/k), where k is the average

number of buckets used at each node. Their analysis, however, applies only to
the uniform model and does not extend to the non-uniform model. On the other
hand, the OSST algorithm [13] uses the idea of randomized rounding in the ag-
gregation steps of the algorithm, and achieves the error bound O(

√
nX/k) for

the non-uniform model. Moreover, it is shown in [13] that for the uniform model
the error bound of the OSST algorithm can be reduced to O(n1/4X/k).

In this paper, we further reduce the error bound by giving a randomized
approximation algorithm with an O(kn2) time complexity and an O(X/k) error
bound. The error bound of our algorithm is independent of the depth n of the
binomial tree, although those of the AMO algorithm and its previous variants
[2, 9, 13] are dependent on n. Our algorithm uses the ideas in Dai et al. [9] and
Ohta et al. [13]. As in [13], we regard the aggregation steps of the algorithm as a
Martingale process with O(n2) random steps by using novel random variables. It
can be shown that the expected value of the output by our algorithm equals the
exact price, and that the error in each single step is bounded by a function of the
number of buckets at a node of the binomial tree. Thus, we can apply Azuma’s
inequality [3] to the Martingale process to obtain the error bound. If we choose
k as the number of buckets at each node, the algorithm coincides with the one
in [13]. To reduce the error bound as much as possible, we adjust the number of
buckets at each node and obtain the error bound O(X/k), where k is the average
number of buckets used at each node. Since the value X/k can be seen as the
“average” of the absolute error produced at each node of the binomial tree, the
error bound of our algorithm is the best possible within the framework of the
AMO algorithm. We also show the practical quality of the approximate value
computed by our algorithm by some numerical experiments.

Although we only consider the pricing of call options on the binomial tree
model in this paper, our algorithm can be easily modified to put options and to
the trinomial tree model as in [1, 2, 9, 13].

2 Preliminaries

2.1 The Binomial Tree Model

A binomial tree of depth n is a leveled directed acyclic graph defined as follows
(see Fig. 1). A binomial tree of depth n has n+1 levels. There are i+1 nodes in
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Fig. 1. A binomial tree of depth 3 Fig. 2. The uniform binomial tree model.
The probability ω(i, j) (resp., the stock
price Si(j)) at each node is shown above
the node (resp., below the node)

the i-th level (0 ≤ i ≤ n) and each node is labeled as (i, j), where j (0 ≤ j ≤ i)
denotes the numbering of the nodes. The node (0, 0) in the 0-th level is called
the root, and each node (n, j) in the n-th level is called a leaf. Each non-leaf
node (i, j) has two children (i+ 1, j) and (i+ 1, j + 1). Therefore, each non-root
node (i, j) has two parents (i− 1, j − 1) and (i− 1, j) if 1 ≤ j ≤ i− 1, and each
of (i, 0) and (i, i) has only one parent.

Let us consider a discrete random process simulating the movement of a stock
price. We divide the time from the purchase date to the expiration date of an
option into n time periods, and the i-th time step means the end of the i-th
time period. In particular, 0-th (resp., n-th) time step is the purchase (resp., ex-
piration) date of the option. For i = 0, 1, . . . , n, let Si be a random variable
representing the stock price at the i-th time step, where S0 is the initial stock
price known in advance. The fundamental assumption in the binomial tree model
is that in each time step the stock price S either rises to uS or falls to dS, where
u and d are predetermined constants satisfying u > d and u = 1/d. Thus, we
can model the stock price movement by using a binomial tree (see Fig. 2).

Suppose that we are at a non-leaf node (i, j) in the binomial tree model and
the current stock price is S. With probability pij , we move to the node (i+ 1, j)
and the stock price rises to uS; with probability 1 − pij , we move to the node
(i+1, j+1) and the stock price falls to dS. Thus, the stock price at the node (i, j)
is Si(j) = ui−jdjS0. The binomial tree model is said to be uniform if pij = p for
each node (i, j); otherwise it is non-uniform. The uniform model has been widely
considered [1, 2, 6, 7, 9] since p is uniquely determined under the non-arbitrage
condition of the underlying stock. The non-uniform model, however, is often
useful to deal with various stochastic models. For each node (i, j), we denote
by ω(i, j) the probability that the random walk reaches to (i, j). In the uniform
model, we have ω(i, j) =

(
i
j

)
pi−j(1− p)j .
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(1, 1)
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2.2 Options

Let X be the strike price of an option. The payoff of an option is the amount of
money its holder makes on the contract. We adopt a convention to write F+ for
the value max{F, 0}. European option is one of basic options, and its payoff is
given by (Sn−X)+ which is determined by the stock price Sn on the expiration
date. It is quite easy to compute the expected value of the payoff of European
options under the binomial tree model. A drawback of European options is that
the payoff may be affected drastically by the movement of the stock price just
before the expiration date; even if the stock price goes very high during most of
time periods, it may happen that the option does not make money at the end.
European-Asian option is more reliable for the holder than European option, and
its payoff is given by (An−X)+, where An = (

∑n
i=0 Si)/(n+1) is the average of

the stock prices during n time periods. Let Tj =
∑j

i=0 Si be the running total of
the stock price up to the j-th time step. Once Tj exceeds the threshold (n+1)X,
the option holder will surely exercise it on the expiration date and obtain the
payoff of at least Tj/(n+ 1)−X.

Our aim is to compute the price of European-Asian options. Since the price
of an option is given by the discounted expected value of the payoff, it suffices to
compute the expected payoff. A simple method is to compute the running total
Tn(P) of the stock price for each path P in the binomial tree together with the
probability Pr(P) that the path occurs, and exactly compute the value

E((An−X)+) =
∑
{Pr(P) · (Tn(P)

n+1 −X)+ | P : a path from the root to a leaf}.

We call the expected value of the payoff computed as above the exact value of the
expected payoff, and denote U = E((An −X)+). This simple method, however,
needs exponential time since there are 2n paths in a binomial tree.

3 A New Algorithm for Pricing European-Asian Options

3.1 A Basic Algorithm

We describe a basic approximation algorithm for the option’s expected payoff.
This algorithm is a slight generalization of the AMO algorithm, and the previous
approximation algorithms in [1, 9, 13] can be seen as specialized versions of this
basic algorithm.

As in [1], the basic algorithm uses dynamic programming to compute an
approximate value of the option’s expected payoff. For a path P from the root
to a node (i, j) in the i-th level, we define the state of P as a pair (Si(j), Ti)
of the stock price Si(j) = ui−jdjS0 and the running total Ti. Note that the
states of two different paths reaching a node (i, j) can be the same. We define
the weight of the state (Si(j), Ti) as the probability that a path P with the state
(Si(j), Ti) occurs. The basic algorithm is based on a simple observation that if
the running total of a current state is above the threshold (n + 1)X, then the
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conditional expectation of the payoff at this state can be analytically computed
as shown in Lemma 1 below, and such a state can be pruned away.

Lemma 1 ([1, 13]). Suppose that we are at a node (i, j) in the i-th level and
the current state is (S, T ), where T ≥ (n+ 1)X. Then, the payoff’s conditional
expectation is given as {T + h(i, j)}/(n+ 1)−X, where h(i, j) is defined by the
following recursive formula: if i = n then h(i, j) = 0, and if i < n then

h(i, j) = pij{h(i+ 1, j) + Si+1(j)}+ (1− pij){h(i+ 1, j + 1) + Si+1(j + 1)}.
Hence, we need to consider only the states with running total less than

(n + 1)X, which may be exponential many. Rather than dealing with each un-
pruned state individually, we instead aggregate the states by using buckets that
divide the interval [0, (n + 1)X). At each node (i, j) in the i-th level, the al-
gorithm creates kij buckets Bi(j, h) (h = 0, 1, . . . , kij − 1), each of which cor-
responds to the interval [bh, bh+1) = [ (n+1)X

kij
h, (n+1)X

kij
(h + 1)). Each unpruned

state of a path terminating at the node (i, j) is stored in one of kij buckets
according to its running total. The algorithm chooses a value Ri(j, h) in the in-
terval [bh, bh+1) appropriately, and approximates all states in the bucket Bi(j, h)
by a single state (Si(j), Ri(j, h)), where its weight wi(j, h) is given by the sum
of the weights of all states in Bi(j, h). Then, the algorithm produces two new
states (Si+1(j), Ri(j, h) + Si+1(j)) and (Si+1(j + 1), Ri(j, h) + Si+1(j + 1)) in
the (i+ 1)-st level, and inserts these states in appropriate buckets at the nodes
(i+1, j) and (i+1, j+1), respectively, or computes the conditional expectation
of the payoff at these states by using Lemma 1.

The error bound and the time and space complexity of the basic algorithm
can be analyzed as follows.

Theorem 2. The basic algorithm computes a value Ψ satisfying |Ψ − U | ≤
X
∑n

i=0

∑i
j=0 ω(i, j)/kij . The time and space complexity of the basic algorithm

are O(
∑n

i=0

∑i
j=0 kij).

Proof. The error obtained by rounding a running total at a node (i, j) is bounded
by (n+1)X/kij . Therefore, the contribution in processing one node to the error
of the average stock value An is at most Xω(i, j)/kij , and the error in the
estimation of An is bounded by X

∑n
i=0

∑i
j=0 ω(i, j)/kij .

Let bi(j, h) be the number of states inserted in the bucket Bi(j, h). Then, the
time and space complexity are written as O(

∑n
i=0

∑i
j=0 kij+

∑n
i=1

∑i
j=0 bi(j, h)).

Since we obtain from each bucket in the i-th level at most two new states in the
(i+1)-st level, it holds that

∑i+1
j=0 bi+1(j, h) ≤ 2

∑i
j=0 kij for i = 0, . . . , n−1. ��

3.2 Previous Algorithms

We can obtain the algorithms [1, 9, 13] by customizing the number of buckets kij

and the value Ri(j, h).
The AMO algorithm [1] can be obtained by setting kij = k with a positive

integer k for all nodes (i, j) and Ri(j, h) = (n+1)X
k h. Note that the AMO algo-

rithm computes a lower bound of the exact value U of the expected payoff; we

ly
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can also compute an upper bound by setting Ri(j, h) = (n+1)X
k (h + 1) instead.

We denote by AMO-LB (resp., AMO-UB) the AMO algorithm for a lower (resp.,
upper) bound of U .

Dai et al. [9] proposed four approximation algorithms nUnifDown, nUnifCvg,
nUnifUp, and nUnifSpl, where the first two (resp., the last two) compute lower
(resp., upper) bounds of U . All algorithms use kij values defined as follows:

kij =

⌈
k(n+ 1)(n+ 2)

2
×

√
ω(i, j)∑n

i′=0

∑i′
j′=0

√
ω(i′, j′)

⌉
for all nodes (i, j),

where k is a positive integer corresponding to the average number of buckets
at each node. In nUnifDown (resp., nUnifUp) we set Ri(j, h) = (n+1)X

kij
h (resp.,

Ri(j, h) = (n+1)X
kij

(h + 1)). The algorithms nUnifCvg and nUnifSpl are modified
versions of nUnifDown and nUnifUp by using heuristics; see [9] for details. While
the error bounds of nUnifCvg and nUnifSpl are the same as those of nUnifDown
and nUnifUp theoretically, they are much better practically.

The OSST algorithm [13] is a randomized algorithm. We set kij = k with a
positive integer k for all nodes (i, j), as in the AMO algorithm. To set the value
Ri(j, h), we choose a “representative” state (Si(j), T ) in the bucket Bi(j, h)
randomly, where a state with weight w is chosen with probability w/wi(j, h),
and set Ri(j, h) = T .

3.3 Our Algorithm and Analysis

Our algorithm is based on the ideas used in Dai et al. [9] and Ohta et al. [13],
and can be obtained from the basic algorithm. We set Ri(j, h) in the same way
as in the OSST algorithm, i.e., we choose a representative state (Si(j), T ) in the
bucket Bi(j, h) randomly, where a state with weight w is chosen with probability
w/wi(j, h), and set Ri(j, h) = T . We explain later how to choose kij .

Let Ψ be the payoff value computed by our algorithm. Since our algorithm is
randomized, Ψ is a random variable depending on the random choice of repre-
sentative states in the buckets. Let Yi,j be a random variable giving the future
value of the payoff just after the algorithm processes the node (i, j) in the i-th
level, i.e., after the choice of representatives in all buckets has been determined
up to the j-th node in the i-th level. By definition, Y0,0 = U and Yn,n = Ψ .
Thus, we have a random process with

∑n
i=0(i + 1) = (n + 1)(n + 2)/2 steps.

The following lemma shows that random variables Y0,0, Y1,0, . . . , Yn,n constitute
a Martingale sequence.

Lemma 3. E(Yi,j | Y0,0, Y1,0, Y1,1, . . . , Yi,j−1) = Yi,j−1 for i = 0, 1, . . . , n, j =
0, 1, . . . , i.

Proof. Consider the set {a1, a2, . . . , aq} of states in a bucket at the node (i, j)
of the i-th level before selecting a representative. For l = 1, 2, . . . , q, let Y (al)
be the expected payoff (exactly computed from the model) for a path with the
state al, and w(al) be the weight of al. If the state al is selected, it contributes
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Y (al)W to the payoff, where W =
∑q

l=1 w(al). Thus, the expected contribution
of the states after the selection is

∑q
l=1(w(al)/W )Y (al)W =

∑q
l=1 w(al)Y (al),

where the right-hand side is the expected contribution before the selection. ��

Lemma 3 also shows that the expected value of the payoff Ψ equals the exact
value U of the expected payoff, i.e., E(Yn,n) = E(Ψ) = U .

When the algorithm processes a node (i, j), running totals of paths termi-
nating at (i, j) are approximated with the error less than (n+ 1)X/kij , and the
running totals of other paths remain the same. Hence, we have

|Yi,j+1 − Yi,j | < Xω(i,j+1)
ki,j+1

(0 ≤ j < i ≤ n),

|Yi+1,0 − Yi,i| < Xω(i+1,0)
ki+1,0

(0 ≤ i < n).

⎫⎬⎭ (1)

Thus, Azuma’s inequality [3] applies (see also [12–Theorem 4.16]).

Theorem 4 (Azuma’s inequality). Let Z0, Z1, . . . be a Martingale sequence
such that |Zk − Zk−1| < ck for each k, where ck is a constant. Then,

Pr[|Zt − Z0| ≥ λ] ≤ 2 exp
(

−λ2

2
∑t

k=1 c
2
k

)
(∀t = 1, 2, . . . , ∀λ > 0).

Theorem 4 and (1) yield the inequality

Pr[|Yn,n − U | ≥ λ] ≤ 2 exp
(
−λ2

2X2Γ

)
, where Γ =

n∑
i=1

i∑
j=0

(
ω(i, j)
kij

)2

.

Hence, for any positive real number c, our algorithm computes in O(
∑n

i=0

∑i
j=0

ki,j) time a value Ψ satisfying |Ψ − U | ≤ cX
√
Γ with probability at least 1 −

2e−c2/2. To minimize the error bound cX
√
Γ while keeping the time complexity

O(kn2), we define the number of buckets at node (i, j) by

kij =

⌈
k(n+ 1)(n+ 2)

2
× ω(i, j)∑n

i′=0

∑i′
j′=0 ω(i′, j′)

⌉
=
⌈
k(n+ 2)

2
ω(i, j)

⌉
.

Since Γ ≤ 2/k2 and
∑n

i=0

∑i
j=0 kij ≤ (k + 1)(n + 1)(n + 2)/2, we have the

following theorem, showing that the probabilistic error bound is O(X/k).

Theorem 5. Let k be any positive integer and c be any positive real number.
Then, our algorithm computes in O(kn2) time a value Ψ satisfying |Ψ − U | ≤√

2cX/k with probability at least 1− 2e−c2/2.

3.4 Derandomization

Although the error bound O(X/k) of our algorithm shown in the last section is
better than the previous approximation algorithms, our algorithm is randomized
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Fig. 3. Relative errors of approximate option prices computed by several algorithms

and therefore the error bound only holds with “high” probability. Hence, it is
desired to derandomize our algorithm without losing its accuracy. One idea for
derandomization is to take the weighted mean of running totals of the states in
each bucket Bi(j, h) as the value Ri(j, h), as in the algorithm nUnifCvg by Dai
et al. [9]. Although we have not yet proved the theoretical error bound O(X/k)
for this derandomized version, it is experimentally shown that its error bound is
better than the original one (see Sect. 3.5).

3.5 Experimental Results

We show some experimental results to illustrate the performance of our random-
ized approximation algorithm and its derandomized version. In particular, we
compare the quality of the option price computed by our algorithms with those
by other approximation algorithms. We implemented the full-path method to
compute the exact price, and approximation algorithms such as the naive Monte
Carlo method (MC), the AMO algorithms (AMO-LB, AMO-UB), the DHL al-
gorithms [9] (nUnifDown, nUnifCvg, nUnifUp, nUnifSpl), and the OSST algo-
rithm [13] (OSST). We denote our randomized and derandomized algorithms
by ST-rand and ST-derand, respectively. The experiment is done by a Pentium
IV 2.60CGHz PC and all programs are implemented in C++.

In the experiment, we consider a uniform model with S0 = X = 100, u = 1.1,
d = 1/u, pu+(1−p)d = (1.06)1/n. The parameter k is set to 100 in the approxi-
mation algorithms except for MC. Recall that the positive integer k denotes the
number of buckets used at each node for AMO-LB/UB and OSST while k is the
average number of buckets used at each node for the DHL algorithms and ours.
The Monte Carlo method MC takes 400n sample paths so that it runs in almost
the same time as other approximation algorithms. In the experiment, only one
trial is made for each algorithm.

Fig. 3 gives the result of the experiment in the range n ∈ [10, 35], showing
the ratio of the approximate prices computed by approximation algorithms to
the exact price. The running time of the approximation algorithms are almost



300 A. Shioura and T. Tokuyama

the same and less than 0.05 seconds, and the full-path method takes more than
9 hours when n = 35. The results of AMO-LB/UB and nUnifDown/Up are not
shown in the graphs since the relative errors of these are always more than 0.2
and much worse than the relative errors of the other algorithms.

The graph (a) shows that the relative errors of nUnifCvg, nUnifSpl, and ST-
derand are better than those of the other algorithms. In particular, our deran-
domized algorithm ST-derand performs much better than ST-rand. In the graph
(b) we compare the three algorithms nUnifCvg, nUnifSpl, and ST-derand. We see
that the relative error of ST-derand is quite accurate and as good as nUnifCvg.
This result shows that the error bound of our derandomized algorithm ST-derand
is much better than the error bound O(X/k) of the randomized algorithm ST-
rand. It is an interesting open question whether ST-derand also has the theoretical
error bound O(X/k), which is left for further research.
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Abstract. The key issue concerning with Topic-driven Web resource
discovery is how to increase the harvest rate, and the crawler should
learn from the crawled online information such as the Web pages and the
hyperlink structure. We address this problem by endowing a crawler with
an incremental learning ability, and propose an online incremental lean-
ing algorithm (IncL). IncL can effectively utilize the multi-feature char-
acteristics of Web pages to enhance their link evaluation accuracy and
reliability. We take into account not only a hyperlink’s positive source
pages but also its negative source pages in its score that is used to rank
the Web pages. Many current crawling approaches ignore the negative
pages’ effect on the page ranking. Experiments show IncL gets high har-
vest rate.

1 Introduction

As the information is explosive, searching the Web becomes a very difficult task.
In order to improve the resource retrieval performance, ranking the indexed
pages by their estimated relevance with respect to user queries is crucial because
it heavily influences the perceived effectiveness of a search engine. Early search
engines rank pages principally based on their lexical similarity to the query, and
evaluating the semantic closeness between the Web pages and a topic becomes
a key issue.

It is recognized recently that the structure of hypertext links are powerful
new sources of evidence for Web semantics, and machine learning methods have
been used for link analysis. So a page’s linkage to other pages, together with
its content, is com-bined to estimate its relevance to a topic [1]. The PageRank
employed by Google and Hits algorithm used in IBM’s Clever are two well-
known examples of such link analy-sis [2,3], and Google’s success has also lead
to PageRank’s adoption for bibliometrics [4]. Kleinberg’s HITS algorithm uses
a combination of page content and link struc-tures to identify the most useful
pages for the topic matching a search engine user’s query. This is based upon the
assumption that the overall link structure of the Web is not as important as that
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in the locality of the topic of concern. Even though the sophisticated ranking
algorithms have been built in universal search engines, it’s difficult for search
engines to keep up with the growth of the Web, and representing the search with
keywords and retrieval information with exact matching lack semantics.

Topical crawlers (also known as focused crawlers) [5,21] respond to the par-
ticular information needs expressed by topical queries or interest profiles, and
are employed to address the scalability limitations of universal search engines.
Topical crawlers support decentralizing the crawling process, which is a more
scalable approach [7], and they can also be driven by a rich context such as Web
page’s content, URL exten-sions and hyperlink structure to classify a page as a
more likely candidate for belong-ing to a particular topic and evaluate the links
to be visited.

A focused crawler consists of a supervised topic classifier controlling the pri-
ority of the unvisited frontier of a crawler. The classifier is pre-trained by topics,
seed URLs or other labeled positive samples. The crawler exploits the Web’s
hyperlink structure to retrieve new pages by traversing links from previously re-
trieved ones. As Web pages are fetched, their outward links may be added to the
unvisited frontier. The goal of the focused crawler is to start from a seed URL
in the Web graph and explore links to selectively collect pages similar to the
topic, while avoiding fetching irrelevant pages [5]. The algorithms employed to
select the next link for traversal are necessarily tied to the goals of the crawler,
and the key challenge during the crawling progress is to identify the next most
appropriate link to follow from the frontier.

Most proposed algorithms employ pre-trained crawlers with no learning abil-
ities to crawl the Web pages. As the number of samples used for training a topic
crawler is quite limited and the crawler may not be well trained, effective crawl-
ing strategies should be learned and evolved as the crawling process goes on. A
learning task is incremental as the training samples become available over time
[9]. If we add the crawled positive Web pages to a crawler’s training data set
and train the topic classifier again, then the topic crawling can be considered as
an incremental task. The crawler learns and crawls concurrently as more Web
pages are fetched.

In this paper, we propose an incremental learning Web crawling algorithm,
and take the page context together with the hyperlink structure into consid-
eration to in-crease the harvest rate. We set up a virtual positive context and
a virtual negative context, and analyze the hyperlink structure of the crawled
pages. As more pages are fetched, the virtual positive context and negative con-
text change gradually, the super-vised topic classifier learns from more labeled
positive and negative samples. The hyperlink structure can also be analyzed as
more pages are visited, and we can get the in-degree of a candidate Web page
from the virtual positive and negative context. Taking the above information
together with the anchor text into consideration, the topic crawler evaluates the
URLs on the crawl frontier and selects the best one to visit.

Our goal in this paper is to improve the harvest rate of the crawling algorithm.
We summarize the proposed crawling algorithms in the literature and compare
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their effectiveness and efficiency in section 2. Virtual context and linkage analysis
are introduced in section 3, and the issue of the learning algorithm is discussed
in section 4. In section 5, we show the experimental results and present the
conclusions in section 6.

2 Related Work

Topic crawlers exploit the Web’s hyperlink structure to retrieve new pages by
traversing links from previously retrieved ones. As pages are fetched, their out-
ward links may be added to a list of unvisited pages(the crawl frontier). A key
challenge during the progress of a topical crawl is to optimize the priority of the
crawl frontier and select the next most appropriate link to follow from it. The
algorithm to select the next link for traversal is necessarily tied to the goals of
the crawler and the crawling efficiency relies on the crawl strategies

Optimizing the priority of unvisited URLs on the crawl frontier for specific
crawling goals is not new. The early breadth-first crawler [10] starts the research
on crawlers, and a variety of algorithms has emerged after that. Shark Search [11]
is a more aggressive variant of Fish Search [12]. In another early paper, Cho et al.
[13] relies heavily on link-based criteria and uses the anchor text as a bag of words
to guide link expansion to crawl for pages matching a specific keyword query. [14]
uses backlink-based context graphs to estimate the likelihood of a page leading
to a relevant page, and [5] exploits lexical and conceptual knowledge and uses
a hierarchical topic classifier to select links for crawling. [16,17] emphasizes the
contextual knowledge for the topic including that received via relevance feedback,
and [18,19] point out that the endpoints of a hyperlink are much more similar to
each other than two random pages. The IBM’s Clever topic distillation systems
[20] uses such locality patterns for better semi-supervised learning of topics.

Two important advances have been made beyond the baseline best-first fo-
cused crawler: [14] uses the context graphs, and [22] proposes a reinforcement
learning approach. Both techniques trained a learner with features collected from
paths leading up to relevant nodes. Aggarwal et al. have proposed an ”intelligent
crawling” frame-work [23] and the classifier is trained as the crawl progresses.
InfoSpiders [17] shows that in well-organized portions of the Web, effective crawl-
ing strategies can be learned and evolved by agents using neural networks and
evolutionary algorithms.

A recent extensive study [21] develops a framework to evaluate different crawl-
ing algorithms proposed in the literature, and finds the best performance is
achieved by a novel combination of explorative and exploitative bias, and in-
troduces an evolutionary crawler that surpasses the performance of the best
non-adaptive crawler after sufficiently long crawls. Experimental results show
evolutionary crawlers achieve high efficiency and scalability. [15] takes several
evolving prominent features of the Web into consideration, and improve the
quality of URL ranking by modeling the growing presence of ”link rot” on the
Web as more sites and pages fall out of maintenance. It is proved the new ranking
methods are more efficient than PageRank.
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As more information such as the page context, the anchor text, the linkage
structure and etc. is taken into account, the Web classifier can be well trained
and the precision can be improved. Much progress has been made in the area. In
all the systems mentioned above, the classifier mainly relies on the initial labeled
training samples and the hyperlink model learned. It lacks learning ability as the
crawl progresses.

We distinguish our work from prior art in the following important ways: The
classifier is online in that it continuously refines its estimate of page importance
while the Web/graph is visited. Thus it can be used to focus crawling to the
most relevant pages. No manual path collection: we employ an agent to analyze
the hyperlink structure. Incremental learning: the labeled training samples in-
crease continually and the hyper-link structure changes as the crawl progresses.
The crawler evaluates the Web pages more correctly as more pages are labeled
positive or negative.

3 Virtual Context and Linkage Analysis

Co-reference and co-citation are two important concepts used to calculate the
similarity between papers. Co-reference means if two papers share the same
bibliography, we call them bibliographic coupling and they may be relevant.
Similarly, if two papers are cited concurrently by a third one, they may be
similar. It’s pointed out [8] that hyperlink analysis also make assumptions to
simplify the problem. If there is a hyperlink from one page to another page,
is means the author of the first one recommends the second one. If two pages
are connected by a hyperlink, then they might be on the same topic. The above
knowledge and assumptions are quite useful in the hyperlink analysis, and should
be taken into account in the hyperlink analysis model.

The mainly proposed models for hyperlink analysis are direct graph and
matrix model, and they are resource cost. As the topical crawler is trained online,
we analyze the hyperlink among the crawled pages, a simplified model is more
challengeable. More pages are crawled and labeled positive or negative. Positive
pages are topic relevant and negative pages are topic irrelevant. We consider
all the positive pages as a positive training sample pool, and call it the virtual
positive context. All the negative pages are considered as a negative training
sample pool and called as the virtual negative context, and we use the two
virtual contexts to re-train the classifier.

As more pages are fetched, the hyperlink information among pages becomes
much clear, and we can calculate the outlink number of the virtual positive
context and the outlink number of the virtual negative context for each candidate
URL in the unvisited frontier. If the outlink number of virtual positive context
for a candidate URL is large, it means the Web page pointed by the URL is
much relevant to the topic. If the outlink number of virtual negative context for
a candidate URL is large, it means the Web page pointed by the URL is much
irrelevant to the topic. We adopt the above idea into our crawling algorithm
(IncL).
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We denote the virtual positive context as p+ and the virtual negative context
as p−. If the number of inlink of a candidate page from members of p+ is n+ ,
the inlink weight from p+ to it is n+; if the number of inlink of a candidate page
from members p− of is n− , the inlink weight from p− to it is n−.

4 Incremental Learning Algorithm

We employ the commonly used vector space model [6] to represent the crawling
topics, the page contexts and the anchor texts. In order to evaluate a candidate
URL, we propose the following score formula (1)

R(ui) = Sa(ui) + γ1(S+(ui))n+ − γ2(S−(ui))n−
(1)

Where, R(ui) is the score of hyperlink ui . We name the source pages of ui

the parent pages and the page linked by ui the son page. Sa(ui) is the cosine
similarity between p+ and anchor text, S+(ui) is the cosine similarity between
p+ and the combined context of the crawled positive source pages of ui , S−(ui)
is the cosine similarity between p− and the combined context of the crawled
negative source pages of ui. The cosine similarity between two vectors is given
by sim(a, b) = (a · b)/ 2

√
|a|2 × |b|2.

Three terms in formula (1) take into account the anchor text, the positive
source pages and the negative source pages. As the cosine similarity lies in in-
terval [0,1], S+(ui)n+

is no less than S+(ui). Two parameters γ+ and γ− are
used to adjust the effect of the source pages. Taking the crawled outlinks of the
parent pages into consideration, we calculate γ1 and γ2 as follows

γ+ =
l+ + 1
l + 1

(2)

γ− =
m+ + 1
m+ 1

(3)

Where, l is the number of crawled outlinks of the positive parent pages and
l+ the number of son pages relevant to the topic. m is the number of crawled
outlinks of the negative parent pages and m− the number of son pages irrelevant
to the topic.

γ+ and γ− are updated as the crawl progresses and the effects of the positive
and negative parent pages to the son page changes accordingly. If more relevant
son pages are crawled, the positive parent pages harness their effect. Otherwise,
they lower the effect. Similarly, the negative parent pages enhance or lower their
effect as more or less irrelevant son pages are crawled. At the starting crawling
stage, l and m may be 0, so we add 1 to them.

As the crawl progresses, we can easily get p+, p− , the link structure, l , l+

, m ,m−. They all change incrementally online as the crawl progresses, and the
Web page classifier is trained continually.
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4.1 Generation of Virtual Positive and Negative Context

Virtual positive and negative samples are generated online. At first, we employ
a universal Web search engine such as Google to establish the virtual positive
samples manually, and the seed URLs are pushed into the unvisited frontier.
As crawl progresses, more Web pages are crawled, and whether a Web page is
positive or negative is determined online. We use the following formula (4) and
(5) to calculate the similarities.

r+(di) = (1− γ)s+(di) + γ

n∑
j=1,di→dj

s+(dj)/n (4)

r−(di) = (1− γ)s−(di) + γ

n∑
j=1,di→dj

s−(dj)/n (5)

Where, s+(di) and s−(di) are the similarities between di and p+ ,di and
p−, n is the number of di’s son pages crawled, r+(di) and r−(di) and are the
probabilities that di belongs to p+ and p−. We use γ(0 ≤ γ ≤ 1) to adjust the
weights of the two right terms in (4) and (5), and dj is the son page of di.

The second term in (4) or (5) takes a page’s son pages into consideration,
and it changes as the son pages are crawled. So re-calculation of r+(di) or r−(di)
is executed as a new dj is crawled. We set two thresholds ε+ and ε− for and
r−(di) separately. If r+(di) is no less than ε+ ,then p+ = p+ ∪ di, and if r−(di)
is no less than ε− , then p− = p− ∪ di . In all other cases, we ignore di .

4.2 Learning Algorithm and Analysis

Based on the incremental learning, a topic crawler crawl the Web pages, the URL
ranking, and the virtual positive and negative samples are generated continu-
ously. In the crawl process, we take both the context of pages and the hyperlinks
into consideration, and incrementally train the classifier and disclose the hyper-
link structure. Learning can be characterized as searching a space of hypotheses
for one that fits the training samples. The crawler is initially trained on limited
labeled positive samples only, and the function learned may not be a proper
one. As more Web pages are crawled and the Web structure becomes clearer,
adaptive learning to fit the unlabeled samples is necessary, and contributions
of different factors change dynamically. Learning and training are concurrent in
the crawling, and the pseudo code is given in table 1

The function revaluate() calculates r+(di) and r−(di) again when a page’s son
pageiscrawled,anddetermineswhethertoeliminatethepagefrompositive/negative
training sample pool. Page elimination changes the training samples, so re-training
of the classifier is necessary. Crawling a new page also has effect on parameters γ+

and γ− . If the newly crawled page is topic relevant, γ+ increases, and the scores of
the frontier’s URLs whose source pages are the newly crawled page’s parent pages
may increase. Similar explanation can be given to γ− .
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Table 1. Incremental learning algorithm (IncL)

Initializing the topics, positive samples, seed URLs, MAX PAGES;
ranking (topic, seed URLs); //ranking URLs in unvisited frontier
While (visited ¡ MAX PAGES){
fetch (); // fetch the URL with the highest score
doc = fetch (link); // return the crawled page
enqueue (frontier, extract (doc)); // extract the outlinks of the returned page
pinlink (frontier); //fetch the inlink num. of a URL from positive Web page
ninlink (frontier); //fetch the inlink num. of a URL from negative Web page
determine (doc); // doc joining in positive/negative pool or being ignored
revaluate (); // calculate doc’s parents’ similarities by (4) and (5), eliminate the

//parent pages from virtual positive or negative samples if they
// are less than the corresponding thresholds

training (); //training the classifier again
ranking (topic, unvisited frontier);}//calculating the score of each URL again and

// ranking them again

As the crawl progresses, some pages may be eliminated from the training
sample pool, others may be added.

5 Experimental Results

The evaluation methodology commonly used in information retrieval is to cal-
culate the recall and precision. But in topic-driven Web resource discovery, it’s
impossible to get the number of topic relevant pages online, so recall becomes
unavailable. Precision represents how much percent of all fetched pages is topic
relevant, and it is also called the harvest rate in Web mining.

We apply the incremental learning algorithm to several topics, and compare
its harvest rate with the breadth-first and best-first algorithms. The topics are
Economy, Chinese economy, and Chinese regional economy, and each topic is
more ”narrow” than the previous one. We use Google to get the seed URLs and
collect the positive training pages. The number of Web pages crawled is set to
1200, and the data is given in table 2 and the relationships between the harvest
rate and the number of pages crawled are shown in figure 1.

Table 2. The harvest rates of different topics

Topic/Algorithm Breadth-first Best-first IncL

Economy 0.191 0.530 0.762

Chinese economy 0.182 0.452 0.706

Chinese regional economy 0.152 0.348 0.516
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Fig. 1. Trend of the harvest rate on three topics

6 Conclusions and Future Work

Based on the incremental learning, the crawling algorithm can effectively utilize
the multi-feature characteristics of Web pages to enhance their link evaluation
accuracy and reliability. We take into account not only a hyperlink’s positive
source pages but also its negative source pages in its score calculation, and the
crawled son pages of a hyperlink’s source page also contribute to the hyperlink’s
score. Many current crawling approaches ignore the negative pages’ effect on the
score.

As more Web pages are labeled positive or negative, re-evaluation of the
pages in the training sample pool is executed. Some pages are deleted from the
pool, and others are added. Hyperlink structure is disclosed, and the page clas-
sifier is re-trained on new samples. The link evaluator also learns incrementally
online and adjusts its prediction model. Based on the proposed model, the re-
sulted topical crawler is adaptive to optimize its crawling policies as the crawl
progresses.

Comprehensive experiments have been done and the results show that the
algorithm proposed in this paper gets better performances than the baseline
best-first algorithm.
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Exploration and exploitation is a dilemma in crawling policy selection. Some
topic relevant Web pages may be linked by an irrelevant hyperlink. In order to
crawl this kind of pages, some URL ranking and selection strategies should be
used. We will take time in this direction as the future work.
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Abstract. This paper mainly focuses on a new continuous method for
solving multiuser detection in CDMA using the NCP function. This ap-
proach is completely different from the relaxation method in the sense
that it is an equivalent conversion. The resulting nonlinear program-
ming problem of multiuser detection is then solved using the augmented
Lagrange penalty function method. The convergence property of the pro-
posed algorithm is studied, and numerical experiments show this method
is very effective.

Keywords:Max cut problem; Penalty function method; Convex function.

1 Introduction

Multiuser detection plays an important role in suppressing the performance de-
grading effect of multiuser interference [1]. The constrained maximum likelihood
(ML) problem may be described as [2]

d = argmind∈{−1,1}KdTRd− 2yT d (1.1)

where y is the matched filter output vector, d is the spreading code, R is the
correlation matrix, and z is the zero mean Gaussian noise vector with autocorre-
lation matrix δ2R. The problem can be solved by an exhaustive search, however,
the exhaustive search is prohibitive for large numbers of users because of its expo-
nentially increasing computational complexity. It is known that the polynomial
time algorithms for equation (1.1) exist if the autocorrelation matrix exhibits
some special structure. However, in general, it is NP-hard problem [1]. In Tan
et al [2] and Ma et al [3], a detection strategy based on a semidefinite relaxation of
the CDMA maximum likelihood (ML) problem is investigated. The semidefinite
relaxation may solved using interior point methods in polynomial time [4,5]. In
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this paper we propose the continuous method for multiuser detection in CDMA.
This approach is completely different from the relaxation method in the sense
that it is an equivalent conversion. As long as the global optimum solution of the
resulting nonlinear programming can be found the multiuser detection problem
could be resolved.

2 A Continuous Method for Multiuser Detection

Tan et al [2] has proposed a semidefinite programming relaxation for ML detec-
tion, we introduce the relaxation as follows.

Let n = K + 1, x = [d
T
, dn]T , (dn = 1) and

C1 =
(

R −y
−yT 0

)
,

since the cost function is symmetric, dn = 1 need not be maintained explicitly.
Problem (1.1) may be formulated as

x∗ = argminxTC1x s.t. x ∈ {−1, 1}n, (2.1)

that is

(MD) :
{
μ∗ = Min xTC1x
s.t. x2

i = 1, i = 1, · · · , n;

This optimization problem is well known to be NP -hard and which can be solved
by semidefinite programming relaxation. Now we discuss how to get an equivalent
problem for the multiuser detection problem by using an NCP function.

2.1 The Continuous NCP Function

The complementary condition is constituted by imposing the constraints −1 ≤
xi ≤ 1, i = 1, · · · , n and observing that x2

i = 1 ⇔ (xi + 1)(xi − 1) = 0 in the
(MD) problem. Therefore⎧⎨⎩ (1 + xi)(1− xi) = 0,

(1 + xi) ≥ 0, 1 ≤ i ≤ n,
(1− xi) ≥ 0,

(2.2)

We think that the complementary condition (2.2) can be replaced by an equation
which uses NCP function. There are two main reasons for this transformation.
First, the (MD) problem had absorbed these constraint conditions by not adding
the number of the equations, on the other hand, the iterate point is possibly
restricted in [−1, 1].

The common NCP functions[6] are:

ΦF (a, b) =
√
a2 + b2 − a− b = 0 ⇔ ab = 0, a ≥ 0, b ≥ 0,

ΦM (a, b) = Min{a, b} = 0 ⇔ ab = 0, a ≥ 0, b ≥ 0.
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Let a = 1− xi, b = 1 + xi, the multiuser detection problem can be described
by the following two nonlinear programming based on these two smoothing func-
tions:

(CMD1) :
{

Min xTC1x
s.t. ΦF (1− xi, 1 + xi) = 0, i = 1, · · · , n,

or

(CMD2) :
{

Min xTC1x
s.t. ΦM (1− xi, 1 + xi) = 0, i = 1, · · · , n.

Based on the above transformation, we need only solve these two nonlinear
programming problems to find a solution for the multiuser detection problem.
Next, we make (CMD1) as a example to show how to solve the multiuser de-
tection problem using the multiplier penalty function method.

2.2 The Multiplier Penalty Function Method for Solving the
(CMD1) Problem

In this section we present a method for solving the (CMD1) problem using the
multiplier penalty function method [7].

The augmented Lagrangian function of the (CMD1) problem has the form

P (x, λ, σ) = f(x)−
n∑

i=1

λiψi(xi) +
σ

2

n∑
i=1

ψ2
i (xi).

where
f(x) = xTC1x,

ψi(xi) = ΦF (1− xi, 1 + xi) =
√

2 + 2x2
i − 2, i = 1, · · · , n,

λi, i = 1, 2, · · · , n are Lagrange multipliers, and σ is a penalty factor. If function
ψi(xi) i = 1, · · · , n is differentiable at the point xi, the gradient of the function
P (x, λ, σ) with respect to x is given by

∇xP (x, λ, σ) = ∇f(x)−
n∑

i=1

(λi − σψi(xi))∇ψi(xi). (2.3)

Suppose x∗ is the optimal solution of the (CMD1) problem and λ∗ is the cor-
responding Lagrange multiplier. According to the KKT condition of problem
(CMD1),

∇f(x∗)−
n∑

i=1

λ∗i∇ψi(x∗i ) = 0 (2.4)

holds at x∗, λ∗. Observing (2.3) and (2.4) provides the suggestion that the se-
quence λk in the augmented Lagrange penalty method can be generated using
the iteration

λk
i = λk−1

i − σψi(xk
i ), i = 1, 2, · · · , n.
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To ensure the value of penalty factor σ is large enough, the augmented La-
grange penalty function method must be implemented in the following format
where Ψ(x) = (ψ1(x1), · · · , ψn(xn))T .

The above algorithm forces the iterates xk to generate a sequence of {‖Ψ(xk)‖}
converging to zero at a rate less than 1/4. When the condition is not satisfied,
the penalty factor σ will be increased.

Algorithm 1. Multiplier Penalty Function Method

Step 1. Given σ1 > 0, ε0, ε1 > 0, Choose the initial points x0, λ0, Set k = 0,
t0 = ‖Ψ(x0)‖2;

Step 2. Starting xk, solve the problem

Minx∈RnP (x, λk, σk+1)

to get a solution of xk+1. If termination condition is satisfied, set x∗ = xk+1

and stop.
Step 3. If ‖Ψ(xk+1)‖2 ≤ 1

4
tk, then go to Step4; Else let

σk+1 = 10σk+1, xk = xk+1

then go to Step2.
Step 4. Choose tk+1 = ‖Ψ(xk+1)‖2,

λk+1
i = λk

i − σk+1ψi(x
k+1
i ),

k = k + 1, σk+1 = σk, then go to Step2.

Lemma 1. Let λ be given, and x(σ1) and x(σ2) be the global solutions of the
functions P (x, λ, σ1) and P (x, λ, σ2) with σ2 > σ1 > 0. Then f(x(σ2)) ≥
f(x(σ1)) holds for sufficient large σ1.

Proof It follows from the definition of x(σ) that

f(x(σ1))−
n∑

i=1

λiψi(xi(σ1)) + σ1
2 ‖Ψ(x(σ1))‖22

≤ f(x(σ2))−
n∑

i=1

λiψi(xi(σ2)) + σ1
2 ‖Ψ(x(σ2))‖22;

(2.5)

f(x(σ2))−
n∑

i=1

λiψi(xi(σ2)) + σ2
2 ‖Ψ(x(σ2))‖22

≤ f(x(σ1))−
n∑

i=1

λiψi(xi(σ1)) + σ2
2 ‖Ψ(x(σ1))‖22;

(2.6)

Adding equations (2.5) and (2.6) generates

(σ1 − σ2)
2

(‖Ψ(x(σ1))‖22 − ‖Ψ(x(σ2))‖22) ≤ 0.
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Since σ2 > σ1, we obtain

‖Ψ(x(σ2))‖22 ≤ ‖Ψ(x(σ1))‖22. (2.7)

From equation (2.7), we have

f(x(σ1)) ≤ f(x(σ2)) +
n∑

i=1

λiψi(xi(σ1))−
n∑

i=1

λiψi(xi(σ2))

+σ1
2 (‖Ψ(x(σ2))‖22 − ‖Ψ(x(σ1))‖22)

For sufficient Larger σ1, the following inequality is true,

n∑
i=1

λiψi(xi(σ1))−
n∑

i=1

λiψi(xi(σ2))

+
σ1

2
(‖Ψ(x(σ2))‖22 − ‖Ψ(x(σ1))‖22) ≤ 0.

Thus, we have the result f(x(σ2)) ≥ f(x(σ1)).

It follows from Lemma 2 that the multiplier penalty function method is well-
defined, that is, we have the following Theorem 3.

Theorem 2. For any given λk, the condition ‖Ψ(xk+1)‖2 ≤ 1
4 tk in Step 3 of

Algorithm 2.1 must be satisfied in a finite number of times increasing the value
of σk.

Proof Suppose that conclusion is not true. Then there exists an index k̄ such
that

‖Ψ(x(σ̂j)‖ >
1
4
tk̄ =

1
4
‖Ψ(xk̄)‖ > 0

holds for all j = 1, 2, · · ·, where σ̂j+1 = 10σ̂j , and σ̂1 = 10σk̄. Since x(σ̂j) is the
global minimizer of P (x, λk̄, σ̂j), we have

P (x(σ̂j), λk̄, σ̂j) = f(x(σ̂j)−
n∑

i=1

λk̄
i ψi(xi(σ̂j)) +

1
2
σ̂j‖Ψ(x(σ̂j)‖2

< f(x̄)−
n∑

i=1

λk̄
i ψi(x̄i) +

1
2
σ̂j‖Ψ(x̄)‖2 = f(x̄),

here x̄ is a feasible point of the problem, and we use the fact ψi(x̄i) = 0, for i =
1, 2, · · · , n. Let σ̂j →∞, then it follows from the Lemma 2 and the boundedness
of the function ψi(xi) and the fixed λk̄, we get

‖Ψ(x(σ̂j)‖ → 0.

This generates a contradiction and yields the conclusion.
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The next theorem indicates that when the criterion

‖Ψ(xk)‖ = 0

is used to terminate the algorithm, and if an infinite sequence of iterates is
generated, then any accumulation point of the sequence is an optimal solution
of problem (CMD1).

Theorem 3. If λk is bounded for all k and xk is the global minimizer of
P (x, λk−1, σk), then any accumulation point x∗ of the infinite sequence xk gen-
erated by the algorithm with termination criterion ‖Ψ(xk)‖ = 0 is the global
optimal solution of problem (CMD1).

Proof It follows from Theorem 3 that the sequence {xk} generated by the
algorithm satisfies ‖Ψ(xk+1)‖ ≤ 1

4‖Ψ(xk)‖. Since ‖Ψ(xk)‖ ≥ 0, the conclusion
‖Ψ(xk)‖ → 0 holds. Suppose {xkj} is a convergent subsequence of {xk}, and its
limit point is x∗. Then from ‖Ψ(xk)‖ → 0 and the continuous of the function
Ψ(x) we get ‖Ψ(xkj )‖ → ‖Ψ(x∗)‖ = 0, which implies x∗ is a feasible point. The
definition of xkj , the feasibility of the point x∗ gives the inequality

f(xkj )− (λkj−1)TΨ(xkj ) +
σkj

2
‖Ψ(xkj )‖2 ≤ f∗, (2.8)

holds for sufficiently large kj , where f∗ is the global optimal value of problem
(CMD1).

On the other hand, using the continuity of the functions f(x) and Ψ(x), and
having kj →∞ in equation (2.8) generate

f(x∗) ≤ f∗.

However, the feasibility of the point x∗ gives f(x∗) ≥ f∗. Thus, we have f(x∗) =

f∗, that is, x∗ is an optimal solution of problem (CMD1).

3 Simulation Results

In this section we run the multiplier penalty function method (MPF) and
interior-point method based on the SDP relaxation (SDP) by using SDPpack
software from Nayakakuppam et al[8] in the MATLAB 6.1 environment on a
1.6GHz Pentium IV personal computer with 256Mb of Ram.

In our continuous method, R is generated by the random Gold mode and y is
produced by randomly b. The simulation results are seen in Figure 1 and Figure
2. BER means the bit error rate. We have implemented our algorithm in a Mat-
lab code. For the minimization of the function P (x, λk−1, σk) with given values
of σk and λk−1, we use the function fminunc in Matlab that employs the BFGS
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method with a backtracking Armijo line search. All parameters in fminunc keep
default values except for the parameter used in termination criterion. Numerical
experiments indicate that the accuracy of minimizing P (x, λk−1, σk) is not cru-
cial, we change the parameter value in termination criterion from the default value
10−6 to 10−4. The termination conditions in the Algorithm 1 that we choose are
‖Ψ(xk+1)‖ ≤ ε0 or ‖xk+1 − xk‖ ≤ ε1. In implementing the algorithm , we choose
ε0 = 0.05 and ε1 = 0.01, and the initial value for σ is σ0 = 1.

From Figure 1, the bit error rate (BER) performance of the detector based on
the multiplier penalty function method is lower than the interior-point method
based on the SDP relaxation. From Figure 2 we can see that the multiplier
penalty function method needs less time. So we can use this algorithm to solve
the large scale (MD) problem.

From our investigation we can see that our multiplier penalty function
method is an interesting and new technique. We expect that there are other
efficient continuous methods similar to the continuous method in this paper.
Now we apply ourselves to search for a more convenient and efficient continuous
method.
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4 Conclusion

This paper presented an equivalent continuation model of the multiuser detec-
tion problem by employing two continuous NCP functions. The characteristics
of the resulting continuation model of multiuser detection problems are then
analyzed, and the famous augmented Lagrange penalty function is used to solve
the converted continuation nonlinear optimization problem. Furthermore, the
convergence property and termination property of the proposed continuation
algorithm are analyzed. Numerical experiments on some randomly generated
multiuser detection problems are made to test the efficiency. The numerical re-
sults show that the continuation algorithm generates satisfactory solutions for
the randomly generated multiuser detection problems.
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Abstract. In this paper, we study how to, given a set of pre-routed
requests in an all-optical network and a set of wavelengths available on
each link, assign a subset of requests with maximal size such that no
wavelength constraint on links is violated. While all previous studies on
the wavelength assignment problem with the same objective assume the
same set of wavelengths available on all links, our work does not make
such an assumption. We first prove that this problem is NP -hard even
in bus networks, and then propose some approximation algorithms for
the problem with guaranteed performance ratios in networks with some
special and general topologies.

1 Introduction

All-optical networks employ the technology of Wavelength Division Multiplexing
(WDM) that divides the tremendous bandwidth of an optical fiber into many
nonoverlapping wavelengths channels. These networks consist of a set of nodes
interconnected by bundles of optical fibers, each of them accommodate a few
tens of wavelength channels. WDM networks can satisfy the demand of the
high-bandwidth applications in the next generation networks and considered as
the transport networks of the future.

The nodes of WDM networks have dynamically configurable wavelength
switches. They switch the data on a specified input port and wavelength to
a specified output port on the same wavelength. In this paper we assume that
the switches are incapable of converting the data on one wavelength to another
wavelength since eliminating wavelength conversion capability can significantly
reduce the cost of the switch. However, empowering the switch to make wave-
length conversion can improve the network efficiency because a request can use
two more wavelengths when there does not exist one wavelength which is avail-
able on each link of its route.

The traffic models usually include static traffic model [2], where a set of call
requests is given and routes and wavelengths have to be assigned to requests
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at one time, and dynamic traffic model [18], where requests arrive and depart
from the network over time and decision should be made whether the request
is rejected or accepted (in the latter case a route and wavelength have to be
assigned to the request one by one without knowledge of future requests). In
this paper we assume the static traffic. This model is particularly important in
the network design phase, when a candidate network with link capacities is con-
sidered and one wants to know how many of the forecasted traffic requirements
can be satisfied by the network. Moreover, it is useful in a scenario that sup-
ports advance reservation of connections, because then it is possible to collect a
number of reservation requests before the admission control is carried out for a
whole batch of requests.

The transmission models usually include unicast [2], where the data is trans-
mitted from a source to a destination, and multicast [15], where the data is
transmitted from a source to multiple destinations; In this paper we consider
unicast in WDM networks, which is supported by lightpaths. A lightpath [2] is
an all-optical channel which can be used to carry circuit-switched traffic between
two communication nodes and it may span multiple fiber links. There are two
major issues in the setup of lightpaths: routing the lightpaths in the physical
network and assigning a wavelength to each of them.

The objectives for the routing and wavelength assignment problems usually
include maximizing network throughput [14], minimizing wavelength costs [11],
or call blocking probability [12]. These problems for static traffic are known NP-
hard in general, and they have been well studied in the literature over the last
ten years. For example, Adamy et al [1] and Erlebach and Jansen [5] studied how
to route, for a set of given requests in a ring and tree networks with link capac-
ity constraints on the number of paths that can go through a link, a maximum
cardinality subset such that no link constraint is violated; Nomikos et al [10]
studied how to, given a set of requests in a ring, assign k wavelengths (available
on all links) to a maximum set of requests without causing wavelength conflict;
Wilfong and Winkler [16] studied how to route and assign, in a ring network
without link capacity constraints, each of given set of requests a wavelength
such that the number of wavelengths used is minimal.

In this paper, we assume that the routes for the given requests are prescribed
and we focus on the wavelength assignment problem. We study how to, given a set
of pre-routed requests in an all-optical network and a set of wavelengths available
on a link, assign wavelengths to a subset of requests such that no wavelength con-
straint on links is violated; the objective is to maximize the size of the subset. In
Section 2, we formulate the problem and prove that it isNP -hard even for bus net-
works. In Section 3, we propose some approximation algorithms for the problem
for bus, tree, ring, and general networks. In Section 4, we conclude the paper.

2 Problem Formulation and Its Complexity

We will use a undirected connected graph G(V,E,w) to model a underlying
wavelength routed WDM all-optical network, where V denotes the set of routing

Wavelength Assignment for Satisfying Maximal Number of Requests
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nodes in the network, E the set of links between node-pairs in V , and w(e) the
set of wavelengths available on link e ∈ E for any e ∈ E. Assume that a set
W = {w1, w2, · · · , wk} of k wavelengths are available for use in the network, but
some of them may be occupied in some links of the network, thus w(e) �= W for
some e ∈ E. In particular we call the case of w(e) = W for all e ∈ E uniform
wavelength distribution, and other cases nonuniform wavelength distribution. A
communication request between two nodes s and t is denoted by r(s, t). We
assume that the route for request r(s, t) is also given or pre-routed (e.g. the
shortest path may be used), which is denoted by p(s, t). We assume further any
request must use the same wavelength over all links in its route, that is, no
wavelength conversion is allowed.

Given a set of requests R = {r(si, ti) | i = 1, 2, · · · ,m}, a subset S ⊆ R is
called a satisfiable request subset if there exists a wavelength assignment for S
such that two requests in S are assigned two distinct wavelengths if their routes
share a common link in the network. In this paper, we shall study how to, given
a set R in a network G(V,E,w) , find a satisfiable request subset of maximal
size. We call it Maximum Satisfiable Request Subset (MSRS) problem.

Let us first consider the MSRS problem in bus networks. In this case, G(V,E)
is a path, so we can label all vertices in V in a linear order. For the case of
uniform wavelength distribution, this problem is reduced to the maximal k-
colorable subset problem in interval graphs [17,3], that is, given a set of intervals
and k colors, how to find a subset of intervals of maximal size such that they
can be colored in such a way that two distinct colors must be assigned to two
intervals if they overlap. This problem was proved to be polynomial-time [17],
that can be rewritten as the following theorem.

Theorem 1. For the case of uniform wavelength distribution, the MSRS prob-
lem in bus networks is polynomial-time solvable.

We next consider the MSRS problem for nonuniform wavelength distribution,
a much more difficulty case. The following theorem shows that in this case the
MSRS problem is NP -hard even for bus networks.

Theorem 2. For the case of nonuniform wavelength distribution, the MSRS
problem in bus networks is NP -hard.

Proof. Consider the wavelength assignment problem in ring networks, that is
how to, given a set of paths in a ring network, assign each of them a wave-
length without causing wavelength conflict and the number of wavelengths used
is minimal. It is known [17] that this problem is NP -hard. To prove the theorem
it suffices to show that any instance of the wavelength assignment problem in
ring networks can be transformed to an instance of the MSRS problem in bus
networks in polynomial time.

We consider the decision versions of both problems. Let k be the upper bound
on the number of wavelengths. Denote a ring network of n nodes by G(V,E) with
V = {0, 1, 2, · · · , n−1} and E = {(i, i+1) | i = 0, 1, 2, · · · , n−1}, where the labels
take the module of n. The reduction can be constructed as follows: Delete link
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Fig. 1. Reducing the wavelength assignment problem in rings to the MSRS problem
in buses

(n−1, 0) from ring network G and obtain a bus network G′(V,E′) with E′ = E \
{(n−1, 0)}. Let Ll(n−1, 0) = {r(si, ti) | i = 1, 2, · · · , g} be the set of requests pass
through (n− 1, 0), p(si, ti) = (si, si + 1, · · · , ti) and p(si, ti) = (ti, ti + 1, · · · , si).
Assume, without loss of generality, that g ≤ k, and let W = {w1, w2, · · · , wg}
and W ′ = {wg+1, wg+2, · · · , wk}. And then for each link e ∈ E′ define the set of
wavelengths available w(e) = {wj | e ∈ p(sj , tj) for 1 ≤ j ≤ g} ∪W ′. In the end,
define the set of requests R′ = R \ Ll(n− 1, 0) and let k′ = |R′|.

Fig. 1 illustrates the above process. There are five requests in a ring network
G(V,E) of 14 nodes as shown in Fig. 1(a) with k = 3, where r1 = p(9, 0), r2 =
p(11, 5), r3 = p(1, 7), r4 = p(3, 8), and r5 = p(6, 10). Observe that Ll(13, 0) =
{r1, r2}, W = {w1, w2, w3} and W ′ = {w3}. There are three requests in a bus
network G′(V,E′) as shown in Fig. 1(b), where R′ = {r3, r4, r5} with k′ = 3, and
p1 = p(0, 9) and p2 = p(5, 11) (in dashed lines). Notice that w(i, i+1) = {w1, w3}
for i = 0, 1, · · · , 4, w(i, i+1) = {w1, w2, w3} for i = 5, 6, 7, 8, w(i, i+1) = {w2, w3}
for i = 9, 10, and w(i, i+1) = {w3} for i = 11, 12. Observe that three wavelengths
are sufficient (but two wavelengths are not enough) for these five requests in ring
network (wavelength w1 for requests r1 and r3, w2 for r2 and r5, and w3 for r4).
Meanwhile three wavelengths are sufficient (but two wavelengths are not enough)
for these three requests in bus network (wavelength w1 for request r3, w2 for r5,
and w3 for r4).

We shall prove that a set R of requests on ring network G(V,E) can be
assigned properly using at most k wavelengths if and only if there exists a sat-
isfiable requests subset S ⊆ R′ with cardinality at least k′.
“Only-if” part. Suppose that R can be partitioned into k subsets R1, R2, · · · , Rk

such that all requests in Ri are assigned wavelength wi for i = 1, 2, · · · , k. We can
assume, without loss of generality, that Ll(n − 1, 0) = {ri | i = 1, 2, · · · , g} and
request ri is assigned wavelength wi for 1 ≤ i ≤ g. Now let R′

i = Ri \Ll(n−1, 0)
for i = 1, 2, · · · , k. It is easy to see that each R′

i is a satisfiable request subset
of R′ by using one single wavelength. In addition, R′ = R′

1 ∪ R′
2 ∪ · · · ∪ R′

k is a
satisfiable and |R′| = k′.

“If” part. Suppose that R′ is a satisfiable request set with |R′| = k′. Notice
that there are k wavelengths available on links in bus network G′(V,E′). Assume
now that subset R′

i ⊂ R′ is satisfiable by using wavelength wi for i = 1, 2, · · · , k.
It is easy to see that there exists g wavelengths which can be assigned to g
requests in Ll(n−1, 0) without causing wavelength conflicts. Thus k wavelengths
are enough to satisfy all requests in R.

Wavelength Assignment for Satisfying Maximal Number of Requests
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3 Approximation Algorithms and Performance Analysis

In the previous section, we have proved that MSRS problem is NP -hard in
general case. So in this section we shall propose some approximation algorithms
for the MSRS problem in networks with some typical topologies (as well as
general topology).

3.1 Bus and Tree Networks

Let Ei = {e |wi ∈ w(e), e ∈ E} for each wi. Then Ei can be considered as a
subgraph of G(V,E) with wavelength wi available on all edges in Ei. The basic
idea of our algorithm is to solve the MSRS problem in Ei with single wavelength
k times for i = 1, 2, · · · , k, that is, to find the maximum set of requests in R that
can be satisfied by wavelength wi, after that remove all satisfied requests from
R (and remove wi from W at the same time); and then repeat this process until
R is empty or all Ei are considered. In the algorithm we can adopt a greedy rule
that each time we choose wavelength wi which can satisfy the most number of
unsatisfied requests. The proposed algorithm is more formally described below.

Algorithm A

Step 1 Initialization
Sort the requests of R = {r(si, ti) | i = 1, 2, · · · ,m} with t1 ≤ t2 ≤ · · · ≤ tm.
Set W := {wj | j = 1, 2, · · · , k} and Sj := ∅ for j = 1, 2, · · · , k.

Step 2 Finding how many requests that a wavelength can satisfy.
Set W ′ := W .
while W ′ �= ∅ do begin

Remove wj from W ′.
Set R′ := R.
while R′ �= ∅ do begin

Remove the first request r(si, ti) in R′.
if wj is available for r(si, ti) and
r(si, ti) does not share a link with any request in Sj

then Set S′
j := S′

j ∪ {r(si, ti)}.
end-while

end-while
output S′ := {S′

j |wj ∈W ′}.
Step 3 Choosing the wavelength that can satisfy the most number of requests.

Find wj such that |S′
j | is maximal, Let Sj = S′

j

Set R := R \ Sj , W := W \ {wj} and S := S ∪ Sj .
return Step 2.

Fig. 2 illustrates the above algorithm applied to a simple instance. There
are eight requests on a bus network of 16 nodes with three wavelengths, where
wavelength w1 is available on every link in the network while w2 on every link
between node 2 and node 7 and w3 on every link between node 10 and node 15.
Eight requests are labelled in the nondecreasing order of their right endpoints
R = {ri | i = 1, 2, · · · , 8}. The algorithm will first choose w1 which can satisfy
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four requests r1, r3, r5 and r7, and then neither w2 nor w3 can satisfy any request
left. It then outputs the solution S1 of size four. However, all eight requests can
be satisfied if we assign w1 to requests {r2, r4, r6, r8}, w2 to requests r1 and r3,
and w3 to requests r5 and r7. Observe that the ratio of these two solutions is
1/2. The following theorem shows that this is true for any instance.
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Fig. 2. Illustration of Algorithm A for the MSRS problem in buses

Theorem 3. Given any instance of the MSRS problem in a bus network, Al-
gorithm A can produce in polynomial time a solution whose size is at least half
that of the optimal solution.

Proof. Assume, without loss of generality, that the selected order of S \ {i} is
S1, S2, · · ·Sk. Let the maximum satisfiable request subset be S∗ = S∗

1 ∪ S∗
2 ∪

· · · ∪ S∗
k , where all requests in Si and S∗

i are assigned wavelength wi. By using
the same argument see e.g. in [3] we can show that the proposed algorithm finds
the maximum satisfiable request subset S1 in E1. Thus we have |S1| ≥ |S∗

1 |.
Similarly, we can obtain |S2| ≥ |S∗

2 \ S1| = |S∗
2 | − |S∗

2 ∩ S1|. In general, we have

|Si| ≥ |S∗
i \ (∪i−1

j=1Sj)| = |S∗
i | −

i−1∑
j=1

|S∗
i ∩ Sj |.

Taking the sum of the above inequality over i = 1, 2, · · · , k yields

|S| =
k∑

i=1

|Si| ≥
k∑

i=1

|S∗
i | −

k−1∑
i=1

( k∑
j=i+1

|S∗
j ∩ Si|

)

≥ |S∗| −
k−1∑
i=1

|S∗ ∩ Si| ≥ |S∗| −
k∑

i=1

|Si|.

Thus we have |S| ≥ |S∗|/2. The proof is finished.

Observe that the argument in the above proof indeed is not dependent on the
order how we choose the wavelengths (as we have specified algorithm A). For
example, in Step 3 we can adopt a different greedy rule that each time we choose
wavelength wi such that the load of requests contained in Ei is minimized.

For the MSRS problem in tree networks under the case of uniform wavelength
distribution, Wan et al [13] proposed a greedy algorithm that has a guaranteed
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approximation performance ratio of 1 − 1/e. For the case of nonuniform wave-
length distribution, we can use the same approach as for the case of bus networks.
Again, let Ei = {e |wi ∈ w(e), e ∈ E} for each wi. Then Ei can be considered
as a forest consisting of some trees of G(V,E) with wavelength wi available on
all edges in Ei. It is known that the MSRS problem in each Ei can be solved in
polynomial time by using a primal-dual approach [7]. Thus we use this method
k times for each Ei, that is, to find the maximum set of requests in R that can
be satisfied by wavelength wi, and then remove all satisfied requests from R and
repeat this process until R is empty or all Ei are considered. Therefore, we can
prove the following theorem in the same way.

Theorem 4. There is a polynomial-time algorithm that, given any instance of
the MSRS problem in a tree network, can produce a solution whose size is at
least half that of the optimal solution.

3.2 Ring and Tree of Rings Networks

For the MSRS problem in ring networks under the case of uniform wavelength
distribution, Nomikos et al [9] proposed a recoloring algorithm that has a guaran-
teed approximation performance ratio of 2/3. In this section we will show how to
use this algorithm to deal with the case of nonuniform wavelength distribution.

Let us partition the set W of wavelengths into two subsetsW = W1∪W2 such
that every wavelength in W2 is available on all links in the network. A simple
idea is to first use wavelengths in W1 to satisfy the most number of requests by
using Algorithm A, and then use wavelengths in W2 to satisfy the most number
of requests left by using the recoloring algorithm and algorithm provided by Wan
et al [13] for uniform wavelength distribution of ring networks respectively, and
then take the best one. The algorithm is more formally stated below.

Algorithm B

Step 1 Apply Algorithm A to the MSRS problem with Ei for wi ∈W1,
Obtain the satisfiable request set S1 ⊆ R.

Step 2 Apply the recoloring algorithm to the MSRS problem with W = W2

and R := R \ S1, Obtain the satisfiable request set S2 ⊆ R \ S1.
Apply Wan’s Algorithm to the MSRS problem with W = W2

and R := R \ S1, Obtain the satisfiable request set S′
2 ⊆ R \ S1.

Step 3 Output the better solution of S := S1 ∪ S2 and S′ := S1 ∪ S′
2.

Theorem 5. Given any instance of the MSRS problem in a ring network, Al-
gorithm B can produce in polynomial time a solution whose size is at least 1/2
times that of the optimal solution.

A tree of rings is a network that is obtained by interconnecting rings in tree
structure such that any two rings share at most one node. Or more formally, it
can be defined inductively as follows. (1) A single ring is a trees of rings; (2) If
T is a trees of rings, then the graph obtained by adding a node-disjoint ring to
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T and then identifying one node of the ring with one node of T is also a trees of
rings; (3) No other graphs are trees of rings.

For the MSRS problem in trees of rings with uniform wavelength distribution,
applying the technique proposed by Hochbaum and Pathria in [9] and the greedy
approach of Erlebach [4] we can design an approximation algorithm with per-
formance ratio of 1− 1/e

1
4 . For the case of nonuniform wavelength distribution,

we can just apply the same approach, as have used for bus and tree networks,
to design an approximation algorithm with a guaranteed performance ratio.

Theorem 6. There is a polynomial-time algorithm that, given any instance of
the MSRS problem in a trees of rings, can produce a solution whose size is at
least one fifth that of the optimal solution.

3.3 General Networks

In this subsection we will focus on the MSRS problem in general networks. The
approach to be used is the same as for special networks.

Let us first consider how to, given a set of paths in a network, find a maximum
subset of edge-disjoint paths. A simple method due to Wan and Liu [14], called
Shortest-Path-First (SPF), is as follows: Each time choose the path p of the
shortest length (in terms of the number of links in the path), put into the current
solution S and then remove all links in p from the network. Repeat this process
until either all paths are considered or no request left whose links are all in
the current network. This sequential method is greedy in the sense that if the
shortest paths are chosen to be removed from the network, then more links will
be left, and as a result more paths could survive. However, this method is not an
exact algorithm, by which we mean that for some instances the algorithm can
not find the optimal solutions.

Next just as before we use the above method k times for each Ei, that is,
to find a set of requests in R that can be satisfied by wavelength wi using SPF
algorithm, and then remove all satisfied requests from R and repeat this process
until R is empty or all Ei are considered. The algorithm is given below.

Algorithm C

Set W := {wj | j = 1, 2, · · · , k} and Sj := ∅ for j = 1, 2, · · · , k.
while W �= ∅ do begin

Remove the first wavelength wj from W .
while R �= ∅ do begin

Choose the shortest path p(si, ti) in R such that p(si, ti) ∈ Ej .
Set Sj := Sj ∪ {r(si, ti)},
Set Ej := Ej \ {p(si, ti)} and R := R \ {p(si, ti)}

end-while
end-while
output S := S1 ∪ S2 ∪ · · · ∪ Sk.

Wavelength Assignment for Satisfying Maximal Number of Requests
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Theorem 7. Given an instance of MSRS problem, let d(Ej) be the average
length of the paths of requests satisfied by wavelength wj with respect to the
optimal assignment, and d = max{d(Ej) | j = 1, 2, · · · , k}. Then the solution
produced by Algorithm C has size at least 1/(1 + d) times that of the optimal
solution.

Proof. Let the maximum satisfiable request subset be S∗ = S∗
1 ∪ S∗

2 ∪ · · · ∪ S∗
k ,

where all requests in S∗
j are assigned wavelength wj . By using the same argument

as in [14] we can show that the proposed algorithm finds the satisfiable request
subset S1 in E1 satisfying |S1| ≥ |S∗

1 |/d(E1). Similarly we can obtain |S2| ≥
|S∗

2 \ S1|/d(E2) = (|S∗
2 | − |S∗

2 ∩ S1|)/d(E2). In general, we have

|Sj | ≥ |S∗
j \ (∪j−1

i=1Si)| =
(
|S∗

j | −
j−1∑
i=1

|S∗
j ∩ Si|

)
/d(Ej).

Summing up the above inequalities over j = 1, 2, · · · , k yields

|S| =
k∑

j=1

|Sj | ≥
1
d

( k∑
j=1

|S∗
i | −

k−1∑
j=1

( k∑
i=j+1

|S∗
i ∩ Sj |

))

≥ 1
d

(
|S∗| −

k−1∑
j=1

|Sj |
)
≥ 1
d

(
|S∗| − |S|

)
.

Thus we have |S| ≥ |S∗|/(d+ 1). The proof is finished.

4 Conclusion

In this paper we have considered a general version of wavelength assignment
problem under the wavelength constraint, and proposed some simple approxi-
mation algorithms with guaranteed performance ratios (see the following table).
Our work is just the first step to study this problem, future work under this
topic includes studying the problem for the case when routes of requests are not
pre-scribed or wavelength conversion is allowed.

Table 1. Results on the maximum satisfiable request subset problem

Uniform Distribution Non-uniform Distribution

Buses Polynomial-time solvable [17] 1
2
-approximation

Rings 2
3
-approximation [10] 1

2
-approximation

Trees (1 − 1
e
)-approximation [14] 1

2
-approximation

Trees of Rings 1 − 1/e
1
4 -approximation [4] 1

5
-approximation

General 1 − 1/e
1
d -approximation [14] 1

1+d
-approximation
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Abstract. In this article we propose, for any ε > 0, a 2(1+ε)-approxima-
tion algorithm for a facility location problem with stochastic demands. At
open facilities, inventory is kept such that arriving requests find a zero
inventory with (at most) some pre-specified probability. The incurred
costs are the expected transportation costs from the demand points to
the facilities, the operating costs of the facilities and the investment in
inventory.
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1 Introduction

Facility location problems have been extensively studied in the OR literature. In
a facility location problem, we are given a set of demand points and a set of lo-
cation where facilities may be opened. The goal is to decide at which location to
open facilities and how to assign demand points to facilities such that the total
cost of opening facilities and of connecting demand points to facilities is mini-
mized. Variants of this problem can be formulated if one imposes requirements
on the set of open facilities or on the assignment of demand points to facilities
[1]. Examples of such requirements are a maximum number of facilities that may
be opened, a maximum demand that may be served by a facility, or a maximum
travel distance from a demand point to an open facility. The facility location
problem with its variants has proved to be a very useful tool in modeling many
network design or location problems, such as location of plants or warehouses
[1, 2] and placement of caches [3].

In this paper we study a variant of the facility location problem where at
demand points a stochastic number of requests for items is generated. At open
facilities, inventory is kept and, if possible, requests for items are fulfilled imme-
diately. However, since the number of requests is random, it may occur that there
is no inventory at the arrival of a request and the request has to be cancelled.

N. Megiddo, Y. Xu, and B. Zhu (Eds.): AAIM 2005, LNCS 3521, pp. 330–339, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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An arbitrary request arriving at a facility, should only have a (pre-specified)
small probability of being lost. We are interested in the relationship between
the problem with stochastic demands and inventory and known facility location
problems, in particular from the perspective of approximation algorithms.

We will call a ρ-approximation algorithm a polynomial time algorithm that
always finds a feasible solution with objective function value within ρ times
the optimum. The value ρ is called the performance (approximation) guarantee
of the algorithm.

The majority of facility location problems for which approximation algo-
rithms are known, are deterministic. The simplest version of a facility location
problem, the metric uncapacitated facility location problem (UFLP), that is the
facility location problem with no restrictions on the facilities or the assignment of
demand points and with the transportation costs being a metric, is known to be
NP-hard. If the transportation costs are unrestricted, approximating the UFLP
is as hard as approximating set cover, and therefore cannot be done better than
O(log n) factor, unless NP ⊆ P̃. In this article, we assume, for all the facility
locations mentioned, that the transportation costs form a metric. The currently
known best performance guarantee for the UFLP is 1.52, due to Mahdian, Ye
and Zhang [4]. Guha and Khuller [5] and Sviridenko [6] have proved that a better
factor than 1.463 for the UFLP is not possible unless NP ⊆ P̃.

The problem in which each facility has a certain capacity, but more facilities
may be opened at a location if the demand exceeds the capacity of one facility, is
known as the soft capacitated facility location problem. The best approximation
algorithm for this problem has an approximation ratio of 2 and was proposed by
Mahdian, Ye and Zhang in [7]. In [8] the authors propose a 1.861-approximation
algorithm for the variant in which the cost of facilities are concave functions of
the number of demand points served. For the hard capacitated facility location
problem with splittable demands, where each facility has a certain capacity, only
one facility may be open at a location and a demand point may be served by
several locations, the best approximation algorithm is due to Zhang, Chen and
Ye [9], and achieves an approximation ratio between 3+2

√
2−ε and 3+2

√
2+ε,

for any given constant ε > 0.
Stochastic facility location problems (problems where the demand is stochas-

tic or/and the service offered by facilities is of stochastic nature) were mainly
treated in the OR literature [10, 11, 12, 13, 14]. Several heuristics have been pro-
posed to obtain solutions for these problems. To the best of our knowledge,
the first approximation algorithm for a stochastic facility location problem was
proposed by Ravi and Sinha in [15] and improved by Mahdian in [16]. The lat-
est algorithm is based on the primal-dual technique and has a 3-approximation
guarantee. Their approach is scenario-based, i.e. in each scenario all the data are
known, including the probability with which each scenario takes place.

The paper is organized as follows. In section 2 we describe the stochastic facil-
ity location problem in more detail and formulate it such that it can be reduced to
a soft capacitated facility location problem. Based on this reduction, we then pro-
pose in Section 3, a 2(1+ε)-approximation algorithm for our problem. We conclude

An Approximation Algorithm for a Facility Location Problem
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the section by showing that the same ideas can be applied for designing approxima-
tion algorithms for a larger class of problems. Finally, we present some conclusions
and remarks on the stochastic facility location problem we have analyzed.

2 The Facility Location Problem with Stochastic
Demands

In this section we describe in more detail the stochastic facility location problem
in which we are interested. There is a set of demand points D, |D| = N at which
requests are generated, and a set of locations, F, |F | = K, where facilities may
be opened. We assume that the requests at a demand point j ∈ D are generated
according to a Poisson process, independent of the processes at other demand
points in D. At each open facility an inventory is kept such that an arriving
request finds a zero inventory (and is lost), with probability at most α. We then
say that (1 − α) is the fill rate of the system . The inventories at the open
facilities are restored only at fixed points in time and the period between two
such points is called a reorder period. The holding cost per unit of inventory at an
open facility i ∈ F is ci and the cost of keeping a facility open at location i ∈ F
during a reorder period is fi. The transportation cost per unit of demand from
facility i ∈ F to demand point j ∈ D is cij . We assume that the transportation
costs are proportional to the distances and form a metric.

The goal is to decide at which locations to open facilities, the level of inventory
to be installed at each open facility and how to assign demand points to facilities
such that the fill rate is at least 1 − α and the average total cost per reorder
period is minimized.

Let Xj denote the number of generated requests at demand point j during a
reorder period and let λj = E(Xj). Denote by Vi the inventory order up to level
at facility i ∈ F , i.e. the inventory level at the beginning of a reorder period. Let
yi, respectively xij , be 0 − 1 variables indicating if a facility at location i ∈ F
is open, respectively if demand point j ∈ D is assigned to a facility i ∈ F . The
facility location problem with stochastic demands given above, is fully described
by the following integer program:

min
∑
i∈F

(fi + ciVi)yi +
∑
j∈D

∑
i∈F

λjcijxij (1)

s.t. xij ≤ yi, i ∈ F, j ∈ D, (2)∑
i∈F

xij = 1, j ∈ D, (3)

P
(

an arbitrary arriving requests at
facility i is lost

)
≤ α, i ∈ F , (4)

xij , yi ∈ {0, 1}, i ∈ F, j ∈ D. (5)
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The first term in the objective function includes the costs for keeping facilities
open and for the maximum inventory at the facilities during a reorder period,
while the second term is the expected transportation cost during such a period.
Constraints (2), (3) and (5) guarantee that each demand point is assigned to
exactly one open facility and constraints (4) guarantee that the fill rate attained
at each open location will be at least 1− α.

Next we will give an equivalent formulation of constraints (4). Let X̃i be
the total demand assigned to location i. Clearly, X̃i =

∑
j∈D xijXj . Since the

requests generated at demand points during reorder periods are independent
Poisson distributed random variables, X̃i has a Poisson distribution with mean
E(X̃i) =

∑
j∈D xijλj . From the theory of regenerative processes (see e.g. [17]),

it follows that for location i, the following holds:

P
(

an arbitrary arriving requests at
facility i is lost

)
=

E((X̃i − Vi)+)
E(X̃i)

, (6)

where (a)+ = max(0, a). Condition (4) can be rewritten as

E((X̃i − Vi)+) ≤ αE(X̃i). (7)

For a Poisson distributed random variable Y with E(Y ) = λ, define the inventory
Vα(λ) by

Vα(λ) = min{n|E((Y − n)+) ≤ αλ}. (8)

Using (7) and (8), our problem can be reformulated as

(P)

min
∑
i∈F

(fi + ciVα(
∑
i∈F

xijλj))yi +
∑
j∈D

∑
i∈F

λjcijxij

s.t. xij ≤ yi, i ∈ F, j ∈ D,∑
i∈F

xij = 1, j ∈ D,

xij , yi ∈ {0, 1}, i ∈ F, j ∈ D.

Note that constraints (4) have moved into the objective function. This will
enable us to further reduce the problem to a soft capacitated facility location
problem, for which approximation algorithms are known (see e.g. [7]). In the
remainder of the paper we will present this reduction in detail.

3 A 2(1+ ε)-Approximation Algorithm for the Stochastic
Facility Location Problem

For a facility location problem (P ), an instance I and a feasible solution S we
denote by costF,I(P )(S) the cost of opening facilities and by costT,I(P )(S) the
transportation cost incurred by S. For the sake of simplicity, we will omit to
mention the instance.

An Approximation Algorithm for a Facility Location Problem
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Definition 1. We call a polynomial time reduction R from facility location
problem P1 to P2 a (σF , σT )-reduction if R maps an instance I of P1 to an
instance R(I) of P2 and it has the following properties:

a) For any feasible solution S1 for the instance I of P1 there is a correspond-
ing solution S2 for the instance I of P2 with

costF,P2(S2) ≤ σfcostF,P1(S1),

and
costT,P2(S2) ≤ σccostT,P1(S1).

b) For any feasible solution S2 for the instance R(I) of P2, there is a feasible
solution S1 for the instance I of P1 with

costF,P1(S1) + costT,P1(S1) ≤ costF,P2(S2) + costT,P2(S2).

Definition 2. An algorithm is called an (α, β)-approximation algorithm for a
facility location problem (P ), if for any instance I of (P ), and for any solution
S for I the cost of the solution found by the algorithm is at most αcostF,P (S) +
βcostT,P (S).

Remark 1. Note that combining a (σF , σT )-reduction from P1 to P2 and an
(α, β)-approximation algorithm for P2 gives an (ασF , βσT )-approximation algo-
rithm for P1. Moreover, the approximation guarantee of the algorithm for P1 is
max{ασF , βσT }.

The construction of a 2(1 + ε)-approximation algorithm for (P), consists of
several steps. First we will study the inventory function Vα(λ) given by (8).
Based on it’s properties, we propose a (2, 1)-reduction of (P) to a soft capaci-
tated facility location problem, named (SP2). Finally, we describe a refined soft
capacitated problem, (SP1+ε) to which (P) can be (1 + ε, 1)-reduced and show
that this gives 2(1 + ε)-approximation algorithm for (P).

Lemma 1. The function Vα(λ) satisfies

Vα(λ1 + λ2) ≤ Vα(λ1) + Vα(λ2).

Proof. Suppose that two independent Poisson streams with rate λ1, respectively
λ2, arrive at a location i and that the inventory level at location i is Vα(λ1) +
Vα(λ2). Let Y1 and Y2 be the number of arrivals in the first, respectively in the
second stream. Since

(Y1 + Y2 − (Vα(λ1) + Vα(λ2)))+ ≤ (Y1 − Vα(λ1))+ + (Y2 − Vα(λ2))+,
it is readily seen that

E(Y1 + Y2 − (Vα(λ1) + Vα(λ2)))+

≤ E(Y1 − Vα(λ1))+ + E(Y2 − Vα(λ2))+ ≤ α(λ1 + λ2).
Hence, Vα(λ1 + λ2) ≤ Vα(λ1) + Vα(λ2). ��
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Remark 2. Note that Vα(λ) is a step function, thus not concave. Therefore we
cannot directly use the procedure proposed in Mahdian and Pal [18], for solving
the facility location problem with concave facility cost functions. Moreover, not
even the length of the steps is increasing as function of the height, where the
length of a step at level n is defined as sup{λ|Vα(λ) = n} − inf{λ|Vα(λ) = n}.
For example, numerical experiments show that, when α = 0.1, the length of the
steps is increasing up to level 40 and decreasing above this level.

Next we present a reduction of (P) to a soft capacitated facility location
problem, which we denote by (SP2). The demand points, their requests and
facility locations are the same as in problem (P). Let M = �log2(Vα(

∑
j∈D λj)�

and let L = {1, · · · ,M}. We define M types of facilities with capacities u� =
max{λ|Vα(λ) ≤ 2�}, respectively. A facility of type l at location i is denoted
by (i, l) and has corresponding cost fil = fi + ci2�. At each location i ∈ F , M
facilities may be opened.

Let the 0-1 variables yil, xilj , indicate whether a facility of type l is opened
at location i, respectively whether demand point j is assigned to facility (i, l).
Then, (SP2) can be formulated as the integer program:

(SP2)

min
∑
j∈D

∑
i∈F

∑
�∈L

λjcijxi�j +
∑
i∈F

∑
�∈L

fi�yi�

s.t.
∑
j∈D

λjxi�j ≤ u�yi�, i ∈ F, 	 ∈ L, (9)

∑
i∈F

∑
�∈L

xi�j = 1, j ∈ D, (10)

xi�j , yi� ∈ {0, 1} , i ∈ F, j ∈ D, 	 ∈ L. (11)

Constraints (9), (10) and (11) insure that each demand point is assigned to one
open facility and that no more than demand u� is assigned to a facility of type 	.

Remark 3. Note that although formulated as a hard capacitated facility location
problem (yil ∈ {0, 1}), problem (SP2) is a soft capacitated problem. Suppose
that we relax the y variables to be integer. Consider first a k < M . The optimal
solution of the relaxed version will not choose to open two facilities of type k
at a location, since opening a facility of type k + 1 is cheaper and has, at least,
the same capacity as two facilities of type k. Since one facility of type M can
handle all the demand, there will be always at most one facility of type M open
in the optimal solution of the relaxed version of (SP2). Thus, (SP2) is a soft
capacitated facility location problem.

In the following lemma we describe a (2, 1)-reduction of (P) to (SP2).

Lemma 2.
(i) For each feasible solution (x̃, ỹ) of (P) with facility cost costF,P(x̃, ỹ) and
transportation cost costT,P(x̃, ỹ) there exists a feasible solution (x, y) of (SP2)
with costF,SP2

(x, y) ≤ 2costF,P(x̃, ỹ) and costT,SP2
(x, y) = costT,P(x̃, ỹ).

An Approximation Algorithm for a Facility Location Problem
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(ii) For each feasible solution (x, y) of (SP2), there exists a feasible solution
(x̃, ỹ) of (P) of lower cost.
(iii) There exists a (2, 1)-reduction of (P) to (SP2) .

Proof. (i) Consider a solution (x̃, ỹ) of (P). For i ∈ F with ỹi = 1 and 	 ∈ L
define 	i = min{n|

∑
j∈D x̃ijλj ≤ un}, set yi� = 1 for 	 = 	i, set yi� = 0 otherwise

and set xi�j = x̃ijyi� for j ∈ D. For each i ∈ F with ỹi = 0, set xi�j = yi� = 0 for
j ∈ D and 	 ∈ {1, · · · ,M} and define 	i = 1. It can readily be seen that (x, y) is
a feasible solution of (SP2) with associated costs

costT,SP2
(x, y) =

∑
i∈F

∑
j∈D

∑
�∈L

λjcijxi�j =
∑
i∈F

∑
j∈D

λjcij x̃ij

= costT,P(x̃, ỹ)

and

costF,SP2
(x, y) =

∑
i∈F

∑
�∈L

fi�yi� =
∑
i∈F

(fi + 2�i)yi�i

≤ 2costF,P(x̃, ỹ),

where the inequality follows from the definitions of 	i and un.
(ii) For each feasible solution (x, y) of (SP2), define the vector (x̃, ỹ) by x̃i,j =

max�∈{1,···,M}{xi�j} and ỹi = max�∈{1,···,M}{yi�}. Clearly, (x̃, ỹ) is a feasible so-
lution for (P). Moreover, from Lemma 1 follows that Vα(

∑
j∈D x̃ijλj) ≤

∑
� v�yi�

and so (x̃, ỹ) has a lower cost than the one incurred by (x, y) for (SP2).
(iii) Follows from (i) and (ii) of this lemma. ��

In the following, we prove that one can obtain a (1 + ε, 1)-reduction between
(P) and a slightly modified version of (SP2) by the same reasoning as in Lemma
2. We define this modified version (SP1+ε) as follows.

Define for ε > 0 the integer sequence ṽ0,0 = 0; vm0 = �(1+ε)(1+vm−1,0)� and
vmk = 2kvm0 for m = 1, 2, · · · and k = 0, 1, · · ·. Next, define the integer sequence
v0 = 0 and v� = min{ṽmk > v�−1|m = 1, 2, · · · and k = 0, 1, · · ·} for 	 = 1, 2, · · ·
and define M = min{	|v� ≥ Vα(

∑
j∈D λj)}. Since ṽm0 ≥ (1+ ε)vm−1,0, it is easy

to find that, for ε ∈ (0, 1),

M ≤ �log(1+ε)(Vα(
∑
j∈D

λj)��log2(Vα(
∑
j∈D

λj)� ≤
4
ε
�log2(Vα(

∑
j∈D

λj)�2.

Furthermore, from the construction of the sequence v�, we see that (1 + v�) ≤
v�+1 ≤ (1+ε)(1+v�). Consider a facility location problem with the same demand
points, requests and facility locations as in problem (P). At each location i ∈ F ,
M facilities may be opened, (i, 1), ...(i,M), of costs fi + civ� and capacities
u� = max{λ|Vα(λ) ≤ v�}.

Let the 0-1 variables yil, xilj , indicate whether a facility of type l is opened
at location i, respectively whether demand point j is assigned to facility (i, l).
Then, (SP1+ε) can be formulated as an integer program similar to (SP2).
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As in Remark 3, we note that although formulated as a hard capacitated
facility location problem, (SP1+ε) is in fact a soft capacitated facility location
problem. In order to show this, we prove that, even if we allow more facilities
of the same type to be opened at a location, at most one will be opened in the
optimal solution. Assume that in the optimal solution, at least one facility of
type k at location i is opened. If the cost of facility (i, k) exceeds fi + ciVα(λ)/2,
then opening facility (i,M) (which can handle all demands) is cheaper than
opening two facilities (i, k). If the costs of facility (i, k) equals fi + civk with
vk ≤ Vα(λ)/2, we see, by the definition of the sequence v�, that there is also a
facility (i, k′) with cost fi +2civk. By Lemma 1, the capacity of a type k′ facility
is at least twice the capacity of a type k facility. Hence, in the optimal solution
of the relaxed problem of (SP1+ε), at every location at most one facility of type
k is opened. Thus, (SP1+ε) is a soft capacitated facility location problem.

Lemma 3. For any ε > 0, the problem (P) can be (1+ε, 1)-reduced to (SP1+ε).

Proof. We follow the proof of Lemma 2. Consider a feasible solution (x̃, ỹ) of (P)
and construct a feasible solution (x, y) of (SP1+ε) as follows. Open facility (i, 	)
at location i only if

∑
j∈D x̃ij = 1 and 	 = min{n|

∑
j∈D x̃ijλj ≤ un}. Since the

inventory levels are discrete and
∑

j∈D x̃ijλj > u�−1, the inventory at location i
satisfies Vα(

∑
j∈D xijλj) ≥ 1 + v�−1 and therefore the cost of opening facilities

in (SP1+ε) is at most (1 + ε) times the facility costs in (P).
Now consider a solution (x, y) of (SP1+ε) and construct a corresponding

solution (x̃, ỹ) of (P) by x̃i,j = max�∈{1,···,M}{xi�j} and ỹi = max�∈{1,···,M}{yi�}.
As in Lemma 2, one can show that (x̃, ỹ) is a feasible solution with the same
transportation cost as the one incurred by (x, y) and with less opening facility
cost than the one incurred by (x, y). ��

Theorem 1. There is a 2(1+ε)-approximation algorithm for the facility location
problem with stochastic demands (P).

Proof. Problem (SP1+ε) is a soft capacitated facility location problem with
general demands. For the soft capacitated facility location problem with unit
demands, a (2,2)-approximation algorithm was proposed in [7]. It can easily be
shown that their analysis also applies for general demands, thus implying a (2,2)-
approximation algorithm for (SP1+ε). The existence of a (2,2)-approximation
algorithm for (SP1+ε), implies, by Lemma 3 and Remark 1, the existence of a
2(1+ε)-approximation algorithm for the stochastic facility location problem (P).

��
Generalization. At the basis of our algorithm lies the property that, for two
demand points j and j′, with demand λj , respectively λj′ , the inventory which
has to be installed at a facility satisfies Vα(λj + λj′) ≤ Vα(λj) + Vα(λj′), i.e.,
it is more profitable to look at the joint demand than to treat the demands
separately. It is easy to see that the same analysis holds for the metric UFLP
with the cost of opening facilities depending on the amount served by a facility
and satisfying fi(λj + λj′) ≤ fi(λj) + fi(λj′), for each i ∈ F and j, j′ ∈ D.
Clearly, concave facility costs have this property.

An Approximation Algorithm for a Facility Location Problem
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Remark 4. The same technique can also be used for the following version of
the facility location problem with stochastic demands: at facilities an arbitrary
number of servers can be placed, which all work at equal speed. At each facility,
there is an upperbound on the expected waiting time of a customer. The incurred
costs are the transportation costs and the facility costs; the cost of a facility is
the sum of the opening cost and the cost for installing servers, which is linear in
the number of installed servers.

We model a facility as an M/M/k queue, that is a queue with k servers and
exponential interarrival and service times. Without loss of generality, we assume
that the expected service time is 1. Let WT (Mλ/M/k) denote the expected wait-
ing time at such a queue with arrival rate λ. At an open facility i with arrival rate
Λi and ki servers, the constraint on the waiting time then isWT (MΛi

/M/ki) ≤ τ
for some pre-specified τ . An explicit expression for this expectation can be found
in e.g. [19], page 71 Define Nτ (λ) = min{k|WT (Mλ/M/k) ≤ τ). It can be shown
that Nτ (λ1 + λ2) ≤ Nτ (λ1) +Nτ (λ2). Thus, applying a similar reduction as the
one described in this section, one obtains a 2(1+ ε)-approximation algorithm for
this problem as well.

4 Conclusions

In this paper we have introduced a facility location problem with inventory
and stochastic demands. We proposed a 2(1 + ε)-approximation algorithm for
this model by giving both a (1 + ε, 1)-reduction to a soft capacitated facility
location problem with general demands and a (2, 2)-approximating algorithm
for this soft capacitated facility location problem. The same analysis is applied
for approximating more general problems.
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Abstract. The utilization of pseudo-random proportional rule to bal-
ance between the exploitation and exploration of the search process was
shown in Ant Colony System (ACS) algorithm. In ACS, this rule is gov-
erned by a parameter so-called exploiting parameter which is always set
to a constant value. Besides, all ACO-based algorithm either omit this
rule or applying it with a fixed value of the exploiting parameter during
the runtime of algorithms. In this paper, this rule is adopted with a simple
dynamical updating technique for the value of that parameter. Moreover,
experimental analysis of incorporating a technique of dynamical updat-
ing for the value of this parameter into some state-of-the-art Ant-based
algorithms is carried out. Also computational results on Traveling Sales-
man Problem benchmark instances are represented which probably show
that Ant-based implementations with local search procedures gain a bet-
ter performance if the dynamical updating technique is used.

Keywords:Ant Colony Optimization, Ant System, Combinatorial Op-
timization Problem, Traveling Salesman Problem.

1 Introduction

Ant Colony Optimization (ACO) is a metaheuristic inspired by the foraging be-
havior of real ants. It has applied to combinatorial optimization problems and
been able to find fruitfully approximate solutions to them. Examples of com-
binatorial optimization problems have successfully been tackled by ACO-based
algorithms are Traveling Salesman Problem (TSP), Vehicle Routing Problem
(VRP), Quadratic Assignment Problem (QAP).

ACO was started out at the time the algorithm Ant Systems (AS) was first
proposed to solve TSP by Colorni, Dorigo and Maniezzo [3]. Several variants
of AS such as Ant Colony System (ACS) [8], Max-Min Ant System (MMAS)
[11], Rank-based Ant System (RAS) [2], and Best-Worst Ant System (BWAS)
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[4], were then suggested. Claimed by empirical supports, performance of most of
those variants is over that of AS. In addition, ACS and MMAS are now counted
as two of the most successful candidates among them. Recently, ACO has been
extended to a full discrete optimization metaheuristic by Dorigo and Di Caro [6].

In ACS, a state transition rule, which is different from that in AS, namely
pseudo-random proportional rule playing an important role in the improvement
of the solution quality for ACS, is used. This rule can be regarded as an effective
technique of the trade-off between the exploitation and exploration of the search
process in ACS. In this rule, a parameter of notion q0 which is henceforth called
exploiting parameter defines the trade-off exploitation-based exploration. How-
ever, in all Ant-based implementations for TSP, this rule has been either omitted
or applied with a constant value of q0. Instances of such implementations are
ACS, MMAS, RAS, and BWAS.

More recently, a generalized version for the model GBAS of Gutjahr [10] into
which this technique incorporates, proposed by Dinh et al. [5]. In [5], the general-
ized model called GGBAS is theoretically proven that all convergence properties of
GBAS are also held by GGBAS. Based on that convergent results, we carried out
a numerical investigation by incorporating this dynamical updating trade-off rule
into MMAS, ACS and BWAS algorithms on symmetric TSP benchmark instances.

The paper is organized as follows. To let our paper self-contained, the TSP
statement and basic operation mode of ACO algorithms will be recalled in section
2. Details of how to dynamically adapt the value of q0 in ACO algorithms in
question will be introduced in section 2 as well. The next section will be devoted
to analyze and compare the performance of these modified algorithms with their
original version (non-updating dynamically value of q0). Finally, some concluding
remarks and future works will be mentioned in the last section.

2 Ant Colony Optimization

2.1 Traveling Salesman Problem

The TSP is formally defined as: “Let V = {a1, .., an} be a set of cities where n
is the number of cities, A = {(r, s) : r, s ∈ V } be the set of edges, and δ(r, s) be
the cost measure associated with the edge (r, s) ∈ A. The objective is to find a
minimum cost closed tour that goes through each city only once.” In the case
that all of cities in V are given by their coordinates and δ(r, s) is the Euclidean
distance between any r and s (r, s ∈ V ) then this is so-called an Euclidean
TSP problem. If δ(r, s) �= δ(s, r) for at least one edge (r, s) then TSP becomes
asymmetric TSP (ATSP).

2.2 ACO Algorithms

A simplified framework of ACO [7] is recalled in Alg. 1:
Following ACO-based algorithms share the same general state transition rule

when they are applied to TSP. That is, at a current node r, a certain ant k will
make a move to a next node s in terms of the following probability distribution:
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Algorithm 1. Ant Colony Optimization (ACO)
1: Initialize
2: while termination conditions not met do
3: // at this level, each loop is called an iteration
4: Each ant is positioned on a starting node
5: while all ants haven’t built a complete tour yet do
6: Each ant applies a state transition rule to increasingly build a solution.
7: Each ant applies a local pheromone updating rule.{optional}
8: end while
9: Apply the so-called online delayed pheromone trail updating rule.{optional}

10: Evaporate pheromone.
11: Perform the deamon actions. {optional: local search, global updating}
12: end while

pk(r, s) =

⎧⎨⎩
[τα

rs]·[ηβ
rs]∑

u∈Jk(r)
[τα

ru]·[ηβ
ru]
, if s ∈ Jk(r)

0, otherwise
, (1)

where Jk(r) is the set of nodes which ant k has not visited yet; τrs and ηrs

are respectively the pheromone value (or called trail value sometimes) and the
heuristic information of the edge (r, s). Brief descriptions of operation of ACS,
BWAS, MMAS are shown next.

ACS:

Transition rule: The next node s is chosen as follows:

s =

{
arg max

u∈Jk(r)
{[τru]α · [ηru]β}, if q ≤ q0

S, otherwise
, (2)

where S is selected according to Eq. (1), q0 ∈ [0, 1] is the exploiting parameter
mentioned in the previous section, 0 ≤ q ≤ 1 is a random variable.

Local updating rule: When an ant visits an edge, it modifies the pheromone of
that edge in the following way 1: τrs ← (1− ρ) · τrs + ρ ·Δτrs., where Δτrs

is a fixed systematic parameter.
Global updating rule: This rule is done by the deamon procedure which only

the best-so-far ant is used to update pheromone values2.

BWAS:

Transition rule: of BWAS is based on only Eq. (1). But it does not use on-
line pheromone updating rule. The local updating as being used in ACS is
discarded in BWAS. Adopting the idea from Population-Based Incremental
Learning (PBIL) [1] of considering both current best and worst ants, BWAS

1 Another name is online step-by-step updating rule.
2 It is sometimes called off-line pheromone updating rule in other studies.

Hoang T Dinh. Hieu T. Dinh
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allows these two ants to perform positive and negative pheromone updating
rules respectively according to Eq. (3) and Eq. (5).

τrs ← (1− ρ) · τrs +Δτrs (3)

where

Δτrs =
{
f(C(Sglobal−best)), if (r, s) ∈ Sglobal−best

0, otherwise (4)

f(C(Sglobal−best)) is the amount of trail to be deposited by the best-so-far
ant.

∀(r, s) ∈ Scurrent−worst and (r, s) /∈ Sglobal−best, τrs ← (1− ρ) · τrs (5)

Restart: A restart of the search progress is done when it gets stuck.
Introducing diversity: BWAS also performs the “mutation” for the pheromone

matrix to introduce diversity in the search process. Each component of
pheromone matrix is mutated with a probability Pm as follows:

τ
′
rs =

{
τrs +mut(it, τthreshold), if a = 0
τrs −mut(it, τthreshold), if a = 1 (6)

τthreshold =

∑
(r,s)∈Sglobal−best

·τrs

|Sglobal−best|
(7)

with a being a binary random variable3, it being the current iteration, and
mut(·) being:

mut(it, τthreshold) =
it− itr
Nit− itr

· σ · τthreshold (8)

where Nit is the maximum number of iterations and itr is the last iteration
where a restart was done.

MMAS:

Transition rule: of MMAS is the same as BWAS, e.g. it uses only Eq. (1) to
choose the next node.

Restart: A restart of the search progress is done when it get stuck.
Introducing bounds of pheromone values: Maximum and minimum values of

trail are explicitly introduced. It does not allow trail strengths to get zero
value, nor too high value.

3 its value in {0, 1}.
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2.3 Soundness of Incorporation of Trade-Off Technique

Graph-Based Ant System (GBAS) is a proposed Ant-based framework for static
combinatorial optimization problems by Gutjahr [10]. In that study, Gutjahr
proved that by setting a reasonable value of either the evaporation factor or the
number of agents, the probability of which the global-best solution converges to
the only optimal solution can be made arbitrarily close to one. However, GBAS
framework does not use pseudo-random proportional rule for the state transition
to balance between the exploitation and exploration of GBAS’s search process. In
[5], Dinh et al. proved that adding this rule into the GBAS’s state transition rule
to form so-called GGBAS framework does not change the convergence properties
of GBAS.

The dynamical updating rule to q0 is governed by the following equation:

q0(t+ 1) = q0(t = 0) +
(ξ − q0(t)) · number of current tours

θ ·maximum number of generated tours
(9)

where t is the current iteration, q0(t) is the value of q0 at the t-th iteration,
parameters ξ and θ are used to control the value range of q0 to make sure its
value always in a given interval. ξ is set to a smaller value than q0(0) such that

ξ · number of current tours
θ ·maximum number of generated tours

* q0(0). (10)

With (ξ, θ) chosen as in Eq. (10), it is approximately to have q0(t) < q0(0) or
hence, from Eq. (9)

q0(0) > q0(t) > q0(0) · (1− 1
θ
).

So, by selecting suitable values for (ξ, θ), we can assure that q0 receives only
values in a certain interval.

The next section will represent an numerical analysis of adding the pseudo-
random proportional rule (with q0 being dynamically adapted according to Eq.
(9)) into Ant-based algorithms including MMAS, ACS, and BWAS.

3 Experiments and Analysis of Results

Dynamically updating value of q0 according to Eq. (9) is carried out either right
after all ants finish building their complete tours or at a certain step which they
have not finished building those tours yet. To do the later, Eq. (9) must have a
little bit modification. For the sake of simplicity, the former is selected.

Because Ant-based algorithms work better when local search are utilized, we
will consider the influence of this rule in two cases: using local search or not. For
TSP, a well-known local search named 2-opt is then selected. The other well-
known one is the 3-opt but this local requests a more complex implementation
and costs much more runtime than 2-opt does. Because of these reasons, we
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select 2-opt for our purpose of testing. All tests were carried out on a Pentium
IV 1.6Ghz with 512MB RAM on Linux Redhat 8.0 platform.4

3.1 Without Local Search

MMAS and ACS are the two candidates chosen for this test. The MMAS and
ACS algorithms with the new state transition rule (dynamical updating one)
are called MMAS-BNL (MMAS-Balance with No Local search) and ACS-BNL
correspondingly.

MMAS: In all tests performed by MMAS-BNL, parameters are set as follows:
the number of ants m = n with n being the size of instances, the number of iter-
ations = 10,000. The average solutions are computed after 25 independent runs.
Computational results of MMAS-BNL and MMAS are shown in Table 1. Here,
results of MMAS (without using the trade-off technique) are quoted from [11]. In
order to gain a comparison which is as fair as possible, the parameters setting of
MMAS-BNL is the same as that of MMAS in [11]. Values in parentheses in this
Table are the relative errors between current values (best and average ones) and
the optimal solutions. This error is computed as 100%*(current value - optimal
value)/optimal value. From Table 1, it shows that performance of MMAS-BNL
is worse than that of MMAS. There is no solution quality improvement for any
testing instances obtained when the trade-off technique is introduced.

ACS: We carry out experiments for ACS-BNL with parameter settings which
are the same as in [9]. The settings are as follows: the number of ants m = 10,
β = 2.0, ρ = α = 0.1. The number of iterations is computed as it = 100 ∗
problem size, hence the number of generated tours will be 100∗m∗problem size,
where problem size is the number of cities. Except the result of ACS for pcb442
instance obtained from our implementation, results in Table 2 of ACS on se-
lected testing instances of TSP is recalled from [9]. Values in parentheses in this
Table are the relative errors between current values (best and average ones) and
the optimal solutions. This error is computed as 100%*(current value - optimal
value)/optimal value. Numerical results for ACS and ACS-BNL are shown in
Table 2. In comparison with results of ACS which are cited from [9], we see that

4 The software we used is ACOTSP v.1.0 by Thomas Stützle.

Table 1. Computational results of MMAS and MMAS-BNL. There are 25 runs done,
and no local search is used in both algorithms. For MMAS-BNL, ξ = 0.1, θ = 3, and
q0(0) = 0.9. The number attached with a problem name implies the number of cities
of that problem. The best results are bolded

MMAS MMAS-BNL
Problem Best Avg-best σ Best Avg-best σ

Eil51 426 (0.00%) 426.7 (0.16 %) 0.73 426 (0.00%) 427.87 (0.44%) 2.0
KroA100 21282(0.00%) 21302.80(0.1%) 13.69 21282(0.00%) 21321.72(0.19%) 45.87

D198 15963(1.14%) 16048.60(1.70%) 79.72 15994(1.36%) 16085.56(1.93%) 50.37
Att532 28000(1.13%) 28194.80(1.83%) 144.11 28027 (1.23%) 28234.80 (1.98) 186.30

ACS-BNL found the best solutions for small scale instances like eil51, KroA100,
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Table 2. Computational results of ACS and ACS-BNL. There are 15 runs done, and
no local search is used in both algorithms. For MMAS-BNL, ξ = 0.1, θ = 3, and
q0(0) = 0.9. The number attached with a problem name implies the number of cities
of that problem. The best results are bolded

ACS ACS-BNL
Problem Best Avg-best σ Best Avg-best σ

Eil51 426 (0.00%) 428.06 (0.48 %) 2.48 426 (0.00%) 428.60 (0.61 %) 3.45
KroA100 21282(0.00%) 21420(0.65%) 141.72 21282(0.00%) 21437(0.73%) 234.19
Pcb442* 50778(0.00%) 50778(0.00%) 0.0 50778(0.00%) 50804.80(0.05%) 55.48
Rat783 9015(2.37%) 9066.80(2.97%) 28.25 9178(4.22%) 9289.20(5.49%) 70.16

Pcb442 and so did ACS. But the average solutions and values of the standard
deviation found by ACS for those instances are better than that by ACS-BNL.
Moreover, ACS is over ACS-BNL for rat783 a large instance in terms of mea-
sures of best solution, average solution, and standard deviation. Without using
local search, ACS outperforms ACS-BNL in all test instances.

3.2 With Local Search

MMAS and BWAS are the two Ant-based algorithms chosen for this investiga-
tion purpose. The MMAS and BWAS algorithms with the new state transition
rule are called MMAS-BL (MMAS-Balance with Local search) and BWAS-BL
respectively. Results of the original MMAS were taken from [11] while that of
the original BWAS were from [4]. Values in parentheses in this Table 3 are the
relative errors between current values (best and average ones) and the optimal so-
lutions. This error is computed as 100%*(current value - optimal value)/optimal
value.

Table 3. MMAS variants with 2-opt for symmetric TSP. The runs of MMAS-BL were
stopped after n · 100 iterations. The average solutions were computed for 10 trials. In
MMAS-BL, m = 10, q0(0) = 0.9, ρ = 0.99, ξ = 0.1, and θ = 3. The best results are
bolded. The number attached with a problem name implies the number of cities of that
problem. The best results are bolded

MMAS: n · 100 iterations MMAS: n · 2500 iterations
Problem MMAS-BL 10+all-ls MMAS-ls 10+all-ls MMAS-ls
KroA100 21282.00(0.00%) 21502(1.03%) 21481(0.94%) 21282(0.00%) 21282(0.00%)

D198 15796.20(0.10%) 16197(2.64%) 16056(1.75%) 15821(0.26%) 15786(0.04%)
Lin318 42067.30(0.09%) 43677(3.92%) 42934(2.15%) 42070(0.09%) 42195(0.39%)
Pcb442 50928.90(0.29%) 53993(6.33%) 52357(3.11%) 51131(0.69%) 51212(0.85%)
Att532 27730.50(0.16%) 29235(5.59%) 28571(3.20%) 27871(0.67%) 27911(0.81%)
Rat783 8886.80 (0.92%) 9576 (8.74%) 9171 (4.14%) 9047 (2.74%) 8976 (1.93%)

MMAS: In [11], Stützle studied the importance of adding local search into
MMAS with the consideration that either all ants perform a local search or
only the best one does so. In addition, in his study, the number of ants is also
considered. Thus, there are three versions of MMAS with local search added
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including: 10 ants used and all ants do local search (named 10+all-ls), 10 ants
used and only the best ant does local search (10+best-ls, and the last version
which the number of ants used is equal to the number of cities of TSP instance
and only the best ant performs local search (named MMAS+ls). We mentioned
here 10+all-ls and MMAS+ls versions since it was claimed that in long run
these two are better than the rest (10+best-ls). To make the comparison fairly,
all systematic parameters of MMAS-BL were set equally to that of 10+all-ls.
Settings are: number of ants m = 10, number of nearest neighbor = 35, evap-
oration factor ρ = 0.99, α = 1.0, β = 2.0, all ants are allowed to perform local
search. It is noteworthy that the maximum number of iterations of MMAS-BL
for an instance of size n is n · 100 which implies that the number of generated
tours of MMAS-BL is m · n · 100. Comparing performance of MMAS-BL with
performance of both MMAS− ls and 10+all− ls can be shown in Table 3. For
the problem rat783, even though only 5000 iterations performed by MMAS-BL,
it still outperformed the other two algorithms (much more number of iterations
given to those two algorithms). In all tests, both small and large scale instances,
performance of MMAS-BL is always over MMAS-ls and 10+all-ls even though
the number of generated tours of MMAS-BL is much less than or equal that of
the other two.

BWAS: Parameters setting for experiments for BWAS with the trade-off
technique (BWAS-BL) is the same that for BWAS in [4]. Let us recall the table
of parameters values of BWAS in [4] described in Table 4. Results of BWAS and
BWAS-BL are represented in Table 5. Except for Berlin51, which performance
of BWAS and that of BWAS-BL are the same, from Table 5, it has been seen
that despite obtaining the optimal solution, the average solution of BWAS-BL is
lightly worse than that of BWAS on small scale instances like Eil51, KroA100.
Otherwise, on large scale instances, like att532, rat783, fl1577, BWAS-BL is over
significantly BWAS in terms of measures of best-found solution, average solution,
and standard deviation. Except the instance fl1577 where standard deviation of
BWAS-BL is worse than that of BWAS, for other instances the inversion is held.

Table 4. Parameter values and configuration of the local search procedure in BWAS

Parameter Value

No. of ants m = 25
Maximum no. of iterations Nit = 300

No. of runs 15
Pheromone updating rules parameter ρ = 0.2

Transition rule parameters α = 1, β = 2
Candidate list size cl = 20

Pheromone matrix mutation prob. Pm = 0.3
Mutation operator parameter σ = 4

% of different edges in the restart condition 5%

No. of neighbors generated per iteration 40
Neighbor choice rule 1st improvement

Don’t look bit structure used
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Table 5. Compare performance between the BWAS algorithm with its variant utilizing
the trade-off technique. In BWAS-BL, ξ = 0.1, θ = 3, and q0(0) = 0.9. The optimal
value of the corresponding instance is given in the parenthesis. The best results are
bolded

Eil51 (426) Att532 (27686)
Model Best Average Dev. Error Model Best Average Dev. Error
BWAS 426 426 0 0 BWAS 27842 27988.87 100.82 1.09

BWAS-BL 426 426.47 0.52 0.11 BWAS-BL 27731 27863.20 84.30 0.64
Berlin52 (7542) Rat783 (8806)

Model Best Average Dev. Error Model Best Average Dev. Error
BWAS 7542 7542 0 0 BWAS 8972 9026.27 35.26 2.50

BWAS-BL 7542 7542 0 0 BWAS-BL 8887 8922.33 16.83 1.32
KroA100 (21282) Fl1577 (22249)

Model Best Average Dev. Error Model Best Average Dev. Error
BWAS 21282 21285.07 8.09 0.01 BWAS 22957 23334.53 187.33 4.88

BWAS-BL 21282 21286.60 9.52 0.02 BWAS-BL 22680 23051 351.87 3.60

3.3 Discussion

As shown in the above computational results, the trade-off technique or pseudo-
random proportional rule with a dynamical updating technique embedded is an
efficient and effective tool in improving solution quality of MMAS and BWAS
when there is the presence of local search in these algorithms. Indeed, results
from Table 3 showed that MMAS-BL presents a better performance than MMAS.
It outperformed the other for all six test instances within smaller number of
iterations. Also, from Table 5, BWAS-BL proved the effectiveness and usefulness
of this modified trade-off technique by outperforming BWAS in large instances.

However, without using local search, Ant-based algorithms incorporating this
technique, seem to perform worse than that which are not using this technique.
This claim is supported by obtained numerical results. But, it is worth mention-
ing here that it is said Ant-based algorithms perform very well if local search
procedures are utilized. Thus, the solution quality improvement of this trade-off
technique with presence of local search is more impressive and worth attentive;
and also its failure to improving solution quality when local search procedure is
absent can be tolerable.

4 Conclusions

In this paper, we investigated the influence of pseudo-random proportional rule
with value of the exploiting parameter being dynamically updating on state-
of-the-art Ant-based algorithms like ACS, MMAS, BWAS. Without using local
search, performance of these modified algorithms becomes slightly worse than
the original ones. However, their solution quality improved significantly when a
local search added. In addition, in some test cases, the best solutions were found
within a shorter runtime.

Study the dynamic behavior of the exploiting parameter in combination with
that of other systematic parameters such as the evaporation parameter is prob-
ably an interesting problem.

, A. Al Mamun, andHoang T Dinh. Hieu T. Dinh
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Abstract. In this paper, we investigate a manpower planning problem
with single job type over a long planning horizon. Dynamic demands of
jobs must be fulfilled by allocating enough number of regular and tempo-
ral workers and each regular worker has a minimal employment contract
period. A cost objective is concerned where costs for workforce include
salaries of regular and temporal workers, and recruitment and dismissal
costs of regular workers. We first formulate the problem as a multi-period
decision model. Then we derive several properties of the optimal solution
and develop an improved dynamic programming algorithm with polyno-
mial computational complexity. Finally, numerical results are presented
to illustrate several managerial insights.

Keywords: Manpower planning, dynamic program, minimal contract
period, temporal labor.

1 Introduction

With the rapid development of economy, manpower planning has become an im-
portant problem in today’s business world, especially in labor-intensive corpora-
tions, where the workforce plays a prominent role in determining the effectiveness
and cost of the organization. As such, studies of optimal manpower planning have
received extensive attention in the last two decades; see, e.g., [1], [2], and [3].
Considering the dynamic fluctuations of manpower demands, it is natural for an
organization to determine the optimal size of its workforce by making proper and
dynamic decisions on recruitment and dismissal over different periods of time.
Such models, however, have not received much attention in the literature, due
to properly the inherent complexity in deriving the optimal dynamic solutions.
It is often that such a problem becomes a dynamic optimization model, which
requires very sophisticated computational algorithms to search for the optimal
or near-optimal solutions. Cai, et al. [4] have studied a manpower planning prob-
lem with multiple types of jobs, which involves employee recruitment, dismissal

N. Megiddo, Y. Xu, and B. Zhu (Eds.): AAIM 2005, LNCS 3521, pp. 350–359, 2005.
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and substitution. However, only variable costs of recruitment and dismissal were
considered. Li, et al. [5], [6] have studied a manpower planning problem with
single employee type when considering setup costs for recruiting and dismissal
activities. But, they didn’t consider temporal employees.

The manpower planning optimization models can be applied in many areas.
Verbeek [7] has suggested a framework for a pilot planning decision support
system and described some of the complexities of such a system. Yu et al. [8]
have provided an advanced optimization model and solution techniques to solve
complex, large-scale pilot staffing and training problems. Other applications in-
clude military manpower planning (e.g., Grinold et al.[9]), and manufacturing
manpower planning (e.g., Faalan et al.[10]), etc.

Our problem addresses the need of decision making in labor-intensive organi-
zations facing dynamic fluctuations in their manpower demands. We investigated
a local electronic manufacturer in Hong Kong of China that is competitive for its
speed and flexibility. It receives orders from overseas clients. Typically the order
comes with materials that the client prepares for his orders, the delivery time is
tight - most of time, only 1-2 months. Since the workforce in Hong Kong is not
very flexible and many of the workers are women, the company can not use too
much overtime. Currently, the company uses only one shift. So some temporal
workers need to be employed with a higher salary when peak demand reaches.
The decision is to be made regarding whether recruitment/dismissal activity for
regular workers occurs, and if an activity takes place, how many regular work-
ers will be recruited/dismissed in each period. The objective is to minimize the
overall manpower-related cost for the company.

In this article we will first model the manpower planning problem with dy-
namic demands as a multi-period decision process with constraints, including
1) demands of jobs in each period must be fulfilled, 2) every regular worker is
constrained by a minimal contract period, i.e., a regular worker can be dismissed
only after his/her employment time is not less than a given limit value, and 3)
temporal workers will be employed to meet the peak demands of jobs if possible.
We will then propose an improved dynamic programming algorithm to derive
the optimal solution. Our approach will be devised based on analysis on the
properties of the optimal decisions.

2 Problem Description

We consider the following manpower planning problem for an organization. Sup-
pose that based on forecast of its business, the number of workers required in
each time period has been specified in advance. The organization can decide on
the number of the regular workers to be recruited or dismissed at the end of ev-
ery period, subject to the constraint that the workforce available in the coming
periods would meet the demand for manpower. The objective is to find a series
of optimal decisions on recruitment/dismissal of regular workers in every time
period over the entire planning horizon, so that the total manpower-related cost
is minimized.
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Notations:

T The number of time periods being considered
L The length of the minimal contact period per regular worker

α/γ The salary per regular/temporal worker in each time period (α < γ)
β+/β− The recruitment/dismissal costs when a regular worker is recruited /

dismissed
Dt The manpower demand in period t (Assume D0 = 0).

X[t]/Z[t] The number of regular/temporal workers available in period t, which
are called the states in period t.

u[t] The number of regular workers being recruited (u[t] > 0)/dismissed
(u[t] < 0) at the end of period t.

The problem under consideration can be formulated as follows.

MP: J = min
u[t]

{
αX[T ]+γZ[T ]+

T−1∑
t=0

[
αX[t]+γZ[t]+β+u+[t]+β−u−[t]

]}
(1)

s.t. X[t + 1] = X[t] + u[t], t = 0, 1, · · · , T − 1 (2)
X[t] + Z[t] ≥ Dt, t = 1, 2, · · · , T (3)

X[t] ≥
t−1∑

s=t−L

u+[s], t = 2, 3, · · · , T (4)

X[0] = 0 (5)

where u+[t] = max{u[t], 0}, u−[t] = max{−u[t], 0}.
Constraint (2) shows the dynamics of the workforce available in the organiza-

tion. Constraint (3) indicates that the demands must be fulfilled by the available
workers in every period. Constraint (4) shows that every regular worker must be
employed for at least L periods. Note that constraint (4) is a necessary condition,
not a sufficient condition for the minimal contact period constraint.

In the following, we call the sequence of X[t1], X[t1+1], . . . , X[t2] a state tra-
jectory X from the period t1 to t2; Similarly, we call the sequence of Dt1 , Dt1+1, . . .,
Dt2 a demand trajectory D from the period t1 to t2.

3 A Standard Dynamic Programming Approach

First, we can easily show that the optimal states satisfy X∗[t] ≤ Dmax and
Z∗[t] = (Dt −X∗[t])+, where Dmax = max{D0, D1, · · · , DT }. Let f(t, xt, zt) be
the minimum cost from period 0 to t subject to the condition that there are xt

regular workers and zt temporal workers in period t. Let Φt and U [t] be the set
of feasible states and feasible decisions in period t respectively, we get

Φt =
{

(xt, zt)|xt ≥
∑t−1

s=t−L u+[s], zt = (Dt − xt)+, Dt ≤ xt + zt ≤ Dmax

}
,

U [t] =
{

u[t]|xt −max
{

Dt+1,
∑t

s=t−L+1 u+[s]
}
≤ u[t] ≤ Dmax −Dt

}
.
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Then for the problem MP, we can present a forward dynamic programming
recursion as follows,

DP: f0(0) = 0
For ∀(xt+1, zt+1) ∈ Φt+1, 0 ≤ t < T

ft+1(xt+1, zt+1) = αxt+1 + γzt+1 + min
u[t]

{
β+u+[t] + β−u−[t]

+ ft(xt+1 − u[t], (Dt − xt+1 + u[t])+)|u[t] ∈ U [t]
}

.

The optimal solution is obtained when getting f∗
T = min

{
fT (xT , zT )|xT + zT ≥

DT , zT = (DT − xT )+,
∑T−1

s=T−L u+[s]} ≤ xT

}
. We can easily show that the

computational complexity of the approach DP is O(D2
maxT ) in the worst case.

This time complexity is too high, in particular when we have a large Dmax. In
the following we present our improved algorithm, which requires substantially
less computational time (Proofs for the results will be omitted due to the limit
of space, which are available upon request).

4 Improved Dynamic Programming Approach

In the algorithm DP, for any given state (x, z) ∈ Φt we need to compute the
value f(t, x, z) over all possible decisions in U [t]. This is actually not necessary
if we can utilize some properties of the problem MP. Some analysis is given below
based on the relationship between the demands in neighboring periods.

The difficulties are how to reduce the number of elements in the set Φt with-
out affecting the optimal solution, and how to simplify the computation of the
optimal decision u[t](∈ U [t]) for each possible state in the set Φt. We define xt

as the minimum feasible state in period t that is obtained when the problem is
considered through period 0 to t, then xt ≥

∑t−1
s=t−L u+[s].

Theorem 1. When Dt > Dt+1 during a period t(t = 0, 1, . . . , T − 1), we get
xt+1 = max{xt −u+[t − L], Dt+1}. We let t1 and t2 be the last periods before
period t that satisfies Dt1 < xt+1 ≤ Dt1+1 and Dt2+1 < xt+1 ≤ Dt2 respectively,
and we compute Lp = �β++β−

γ−α �, where �x� is the smallest integer that is not less
than value x. Then we have

1) if 2t2 − t1 − t > Lp, then Φt+1 = {(xt+1, 0)} and

ft+1(xt+1, 0) = αxt+1 + β−(xt − xt+1) + ft(xt); (6)

2) if 2t2 − t1 − t ≤ Lp, then Φt+1 = {(xt+1, 0)|xt+1 = xs, xt+1 ≤ xs < xt, t1 ≤
s ≤ t + 1}, xs = max{xt1 , xt+1} and u[s] = 0 for t1 + 1 ≤ s ≤ t, and
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ft+1(xt+1, 0) = αxt+1 + α(t− t1) max{xt1 , xt+1}
+ β+(max{xt1 , xt+1} − xt1) + β−(max{xt1 , xt+1} − xt+1)

+ γ
t∑

s=t1+1

(Ds −max{xt1 , xt+1}) + ft1(xt1 , 0). (7)

The theorem shows that when Dt > Dt+1, some regular workers may be
dismissed with the quantity of xt − xt+1 at the end of period t, or temporal
workers may be employed through a period t1 + 1(≤ t) to t. Which decision to
be chosen depends on the value of Lp and the demand information in the past
several periods. The value of Lp indicates a trade-off between the salary cost of
a temporal worker and the sum of salary, recruitment and dismissal costs of a
regular worker.

When Dt ≤ Dt+1, there is an increasing demand. The increased demand
in period t + 1 can be fulfilled either by recruiting regular workers at the end
of period t, or by reserving some unassigned regular workers that should be
dismissed at the end of a period before t. In the second case, although more
salary cost needs to be paid, recruiting and dismissal costs will be reduced,
so there is a trade-off between the salary cost and the sum of recruiting and
dismissal costs of a regular worker and we define Lv = �β++β−

α � to indicate
the trade-off. Moreover, we let dt = max{xt−l, 1 ≤ l ≤ min{Lv, t − 1}} and
sv(t) = argmax{xt−l, 1 ≤ l ≤ min{Lv, t− 1}}.

Theorem 2. When Dt ≤ Dt+1 during a period t(t = 0, 1, . . . , T − 1), we have
1) if xt ≥ Dt+1, then xt+1 = xt, Φt+1 = {(xt+1, 0)} and

ft+1(xt+1, 0) = αxt+1 + ft(xt, 0); (8)

2) if xt ≤ Dt+1 < dt+1, then xt+1 = Dt+1, Φt+1 =
{

(xt+1, 0)
}

and

ft+1(xt+1, 0) = αxt+1(t + 1− t1) + β−(xt1 − xt+1) + ft1(xt1 , 0), (9)

where t1 is the last period before t that satisfies xt1 > Dt+1 ≥ xt1+1;

3) if xt ≤ Dt+1 and Dt+1 ≥ dt+1, then xt+1 = Dt+1, Φt+1 =
{

(Dt+1, 0)
}
.

For (Dt+1, 0) ∈ Φt+1, ft+1(Dt+1, 0) =

αDt+1 + β+(Dt+1 − dt+1) + αdt+1(t− t2) + β−(xt2 − dt+1) + ft2(xt2 , 0), (10)

where t2 is the last period before t that satisfies xt2 > dt+1 ≥ xt2+1.

Since no regular workers are dismissed at the end of period T , we need to
compute whether some unassigned regular workers who should be dismissed
before period T are reserved till period T . So there is a trade-off between the
salary and dismissal cost of a regular worker and then we define Lend = �β−

α �
to indicate the trade-off. On the other hand, if recruiting regular workers is
necessary during the last several periods before period T , it may decrease the
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total cost when temporal workers are employed instead of recruiting regular ones.
So there is also a trade-off between the sum of the salary and recruitment cost of
a regular worker and the salary of a temporal one, then we define Rend = � β+

γ−α�.

Theorem 3. When t = T , we have ΦT =
{

(xs, (DT−xs)
+)|min{Rend, Lend} ≤

s ≤ T
}
, and for ∀s : min{Rend, Lend} ≤ s ≤ T ,

fT (xs, (DT − xs)
+) = α(T − s)xs + γ

∑T

t=t′′
(Dt − xs)

+ + fs(xs, 0). (11)

When we get the value f∗ = min{fT (xT , zT )|(xT , zT ) ∈ ΦT }, we get the
optimal solution to the problem MP .

From Theorem 1 to 3, we can easily derive the corresponding optimal states
through period 0 to t + 1. Since the computations in a period t need the values
u[s](t − L ≤ s ≤ t − 1) during the past L periods, we define a set Ut(x) =
{uit, i = 1, 2, . . . , L} as a collection of decisions u[t] during the past L periods,
where u[t] are optimal decisions in the optimal state trajectory through period
0 to t, subject to the terminal state X[t] = x. Let states X(t,x)[s] be the optimal
states obtained by our approach through period 0 to t with the terminal state
X(t,x)[t] = x, then we can derive the following algorithm to compute the optimal
value and optimal states over the entire planning horizon.

Algorithm IDP:
Step 1. Let f0(0) = 0, U0(0) = {ui0(= 0), i = 1, 2, . . . , L}.
Step 2. Do loop from Step 3 to Step 8 for t = 0, 1, . . . , T − 1.
Step 3. When xt > Dt+1, we have Ut+1(xt+1) = {ui(t+1), i = 1, 2, . . . , L}

and xt+1 = max{xt−u1t, Dt+1}. Next, we let t1 and t2 be the last periods before
period t that satisfies Dt1 < xt+1 ≤ Dt1+1 and Dt2+1 < xt+1 ≤ Dt2 respectively,
and compute Lp. If Dt ≤ Dt+1 or (Dt > Dt+1 and 2t2 − t1 − t > Lp), then go
to Step 4; otherwise, if Dt > Dt+1 and 2t2 − t1 − t ≤ Lp, go to Step 5.

Step 4. uL(t+1) = 0, ui(t+1) = u(i+1)t, u(i+1)t ∈ Ut(xt), i = 1, 2, . . . , L −
1. Φt+1 = {(xt+1, 0)}, ft+1(xt+1, 0) and X(t+1,xt+1)[s], 0 ≤ s ≤ t + 1 can be
computed through equations (6) and

X(t+1,xt+1)[s] =
{

xt+1 , if s = t + 1
X(t,xt)[s] , if 0 ≤ s ≤ t

.

Step 5. ui(t+1) = 0 for i = L − (t − t1), . . . , L, ui(t+1) = u(i+1)t, u(L−i)t1 ∈
Ut1(xt1) for i = 1, 2, . . . , L − (t − t1) − 1. Φt+1 = {(xt+1, 0)|xt+1 = xs, xt+1 ≤
xs < xt, t1 ≤ s ≤ t + 1}; ft+1(xt+1, 0) and X(t+1,xt+1)[s], 0 ≤ s ≤ t + 1 can be
computed through equations (7) and

X(t+1,xt+1)[s] =

⎧⎨⎩
xt+1 , if s = t + 1
max{xt1

, Dt+1} , if t1 < s ≤ t

X(t1,xt1
)[s] , if 0 ≤ s ≤ t1
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Step 6. If xt < Dt+1, then Φt+1 = {(xt+1, 0)}, xt+1 = Dt+1, and Ut+1(xt+1) =
{ui(t+1), i = 1, 2, . . . , L}. We compute Lv and dt+1. If xt+1 < dt+1, then go to
Step 7; otherwise, go to Step 8.

Step 7. Let ui(t+1) = 0, i = L,L− 1, . . . , L− (t− t3); ui(t+1) = u(L−i)t3 , i =
1, 2, . . . , L− (t− t3)−1, uit3 ∈ Ut3(xt3), where t3 is the last period before period
t in which xt3+1 ≤ xt+1 ≤ xt3 . ft+1(xt+1, 0) and X(t+1,xt+1)[s], 0 ≤ s ≤ t + 1
can be computed through equations (9) and

X(t+1,xt+1)[s] =
{

xt+1 , if t3 < s ≤ t + 1
X(t3,xt3

)[s] , if 0 ≤ s ≤ t3
.

Step 8. Let uL(t+1) = xt+1 − dt+1; ui(t+1) = 0, i = L − 1, L − 2, . . . , L −
(t − t4) + 1; ui(t+1) = u(L−i)t4 , i = 1, 2, . . . , L − (t − t4), uit ∈ Ut(xt), where t4
is the last period before t that satisfies xt4 > dt+1 ≥ xt4+1. ft+1(xt+1, 0) and
X(t+1,xt+1)[s], 0 ≤ s ≤ t + 1 can be computed through equations (10) and

X(t+1,xt+1)[s] =

⎧⎨⎩
xt+1 , if s = t + 1
dt+1 , if t4 + 1 ≤ s ≤ t

X(t4,xt4
)[s] , if 0 ≤ s ≤ t4

.

Step 9. When t = T , we compute Rend and Lend. Then we get ΦT ={
(xt5 , (DT − xt5)

+)|min{Rend, Lend} ≤ t5 ≤ T
}

and ∀(xT , (DT − xT )+) ∈ ΦT ,
UT (xT ) = {uiT , i = 1, 2, . . . , L}, where uiT = 0 for i = L − (T − t5), . . . , L
and uiT = u(L−i)t5(∈ Ut5(xt5)) for i = 1, 2, . . . , L − (T − t5 − 1). fT (xT , 0) and
X(T,xT )[t], 1 ≤ t ≤ T can be computed through equations (11) and

X(T,xT )[t] =
{

xT , if t5 ≤ t ≤ T
X(t5,xT )[t] , if 1 ≤ t < t5

where t5 is the last period in which xt5 = xT .
Step 10. Compute f∗ = min{fT (xT , zT ), (xT , zT ) ∈ ΦT } and x∗

T = argmin
{xT |fT (xT , zT ), (xT , zT ) ∈ ΦT }, we get the optimal value f∗ and the optimal
state X∗[t] = x(T,x∗

T )[t], Z∗[t] = (Dt −X∗[t])+ for 0 ≤ t ≤ T .

In the algorithm IDP, the computation is only based on part of the future de-
mand information (i.e., the demands of future max{Lp, Lv} periods), not based
on the demand information in all future periods. Moreover, we don’t need to
know the exact future demand, we only need to know the maximum demand
during the future Lv periods and the minimal demand during the future Lp

periods.
From Theorem 1, there are at most Lp elements in the set Φt that occurs

when Dt > Dt+1. For a given element (xt, zt) ∈ Φt, only one computation is
necessary to compute the corresponding decision u[t]. Let qt be the quantity
of possible states in period t. Obviously, qt ≤ Lp,∀t. From Theorems 1 to 3,
the computation quantity is at most qtqt+1 in each period t. Since qt < Lp + 1
and Lp = �β++β−

γ−α � is a given constant, the computational complexity of the
algorithm IDP is O(T ) in the worst case.
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5 Managerial Analysis

An example is used to demonstrate characteristics of the optimal solution to the
problem MP. In our computations, we set α = 800, β+ = 1700, β− = 1200, γ =
1800 and L = 4. Then Lv = �β++β−

α � = � 298 � = 4, Lp = �β++β−

γ−α � = � 29001000� = 3,

Lend = �β−

α � = � 128 � = 2 and Lp = � β+

γ−α� = � 17001000� = 2. The demand trajectory
is shown in Fig. 1. We computed the optimal state trajectories for the following
four cases: 1) neither temporal workers nor the contract period constraint is
considered (labeled as ’state1’ in Fig. 1); 2) temporal workers are not considered
(labeled as ’state2’); 3) the contract period constraint is not considered (labeled
as ’state3’) and 4) both temporal workers and the contract period constraint
are considered simultaneously (labeled as ’state4’). The comparisons among the
four results show us the influence of the two factors (i.e., temporal workers
and the contract period constraint) on the optimal states. With considering
temporal workers, the quantity of regular workers is reduced during the periods
over which there are peak demands; With considering the minimal contract
period constraint, some regular workers that should be dismissed in periods 5
and 6 are dismissed later in period 7, which makes some unassigned regular
workers be reserved from periods 8 to 12.

Fig. 1. Comparing solutions Fig. 2. Results when salary of temporal
employee changes

Next we discussed the influence of changing parameters Lv, Lp and L on the
optimal states. We computed the optimal state trajectories for the following 3
cases: 1) γ = 1800 + 400 ∗n, then Lp changes among values 1, 2, 3; 2) L = n + 3,
and 3) β+ = 500 + 400 ∗ n and β− = 400 ∗ n, then Lv changes among values
2, 3, 4, 5, 6, for n = 1, 2, 3, 4, 5. Other parameters are same as the first example.
The demands and the optimal states are illustrated in Fig. 2, Fig. 3 and Fig.
4 respectively, where the optimal states labeled as ’statei’ are computed when
i = n.

Finally we showed numerically the influence of the demand change in a period
on the optimal states before this period in all cases. The computational results
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show that the change of demand in a period does not affect the optimal states of
regular workers before this period, only changes the state values in and/or after
this period.

Fig. 3. Results when value L changes Fig. 4. Results when recruitment and dis-
missal costs change

The above numerical results show the following insights.
1) The optimal state trajectory of regular workers is smoother than the de-

mand trajectory. The reasons are as follows,
- Some regular workers are reserved even they are unassigned (e.g., going
on holiday, training, etc) when there are valley demands, so as to decrease
the recruitment and dismissal costs of regular workers.
- Temporal workers are employed during periods when there are peak de-
mands, so as to decrease the quantity of regular workers during these peri-
ods.
2) The optimal states of regular workers are pretty robust.
3) When the demand is increasing (i.e., Dt < Dt+1), and the state X[t]

of regular workers is not more than min{Ds, t + 1 ≤ s ≤ t + Lp + 1}, regular
workers should be recruited with the quantity of Dt+1−X[t] at the end of period
t; Otherwise, temporal workers should be employed so that the states of regular
workers hold a same value of about min{Ds, t + 1 ≤ s ≤ t + Lp} during several
future periods, as shown in Fig. 2.

4) When the demand is decreasing (i.e., Dt > Dt+1), and the quantity X[t]
of regular workers is not more than max{Ds, t + 1 ≤ s ≤ t + Lv + 1}, no regular
workers will be dismissed or recruited at the end of period t; Otherwise, some
regular workers will be dismissed with the quantity of about X[t]−max{Ds, t+
1 ≤ s ≤ t + Lv + 1} at the end of period t, as shown in Fig. 4.

6 Concluding Remarks

We have modeled a dynamic manpower planning problem as a multi-period
decision process, and developed an improved dynamic programming algorithm to
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compute its optimal solution. Our approach is not only computationally efficient,
requiring only a time complexity O(T ) and independent of the magnitude of
the manpower demands, but also capable to reveal some useful insights on the
desirable solutions with respect to the data, and therefore allowing management
to have better understanding of the impacts and benefits of the solutions.

The model considered in this paper has not been proposed and solved before.
However, the model has been simplified to a certain degree to ensure the solution
efficiency and it has a gap with the practice. More practical factor (e.g., training
requirements, promotion, leave, etc.) and/or multiple employee types will be
considered in the future study.
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Abstract. In this paper we study the set cover games when the elements
are selfish agents. In this case, each element has a privately known val-
uation of receiving the service from the sets, i.e., being covered by some
set. Each set is assumed to have a fixed cost. We develop several ap-
proximately efficient truthful mechanisms, each of which decides, after
soliciting the declared bids by all elements, which elements will be cov-
ered, which sets will provide the coverage to these selected elements, and
how much each element will be charged. For set cover games when both
sets and elements are selfish agents, we show that a cross-monotonic pay-
ment-sharing scheme does not necessarily induce a truthful mechanism.

1 Introduction

In the past, an indispensable and implicit assumption on algorithm design for in-
terconnected computers has been that all participating computers (called agents)
are cooperative; they will behave exactly as instructed. This assumption is being
shattered by the emergence of the Internet, as it provides a platform for dis-
tributed computing with agents belonging to self-interested organizations. This
gives rise to a new challenge that demands the study of algorithmic mechanism
design, the sub-field of algorithm design under the assumption that all agents
are selfish (i.e., they only care about their own benefits) and yet rational (i.e.,
they will always choose their actions to maximize their benefits).

Assume that there are n agents {1, 2, · · · , i, · · · , n}, and each agent i has
some private information ti, called its type. For direct-revelation mechanisms,
the strategy of each agent i is to declare its type, although it may choose to
report a carefully designed lie to influence the outcome of the game to its liking.
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For any vector t = (t1, t2, · · · , tn) of reported types, the mechanism computes
an output o as well as a payment pi for each agent i. For each possible output o,
agent i’s preference is defined by a valuation function vi(ti, o). The utility of agent
i for the outcome of the game is defined to be ui = vi(ti, o) + pi. An action ai is
called a dominant strategy for player i if it maximizes its utility regardless of the
actions chosen by other players; a selfish agent will always choose its dominant
strategy. A mechanism is incentive compatible (IC) if for every agent reporting
its type truthfully is a dominant strategy. Another very common requirement in
the literature for mechanism design is individual rationality : the agent’s utility
of participating in the outcome of the mechanism is not less than the utility
of the agent if it does not participate at all. A mechanism is called truthful or
strategyproof if it satisfies both IC and IR properties.

A classical result in mechanism design is the Vickrey-Clarke-Groves (VCG)
mechanism by Vickrey [1], Clarke [2], and Groves [3]. The VCG mechanism
applies to maximization problems where the objective function g(o, t) is simply
the sum of all agents’ valuations. A VCG mechanism is always truthful [3], and
is the only truthful implementation, under mild assumptions, to maximize the
total valuation [4]. Although the family of VCG mechanisms is powerful, it has its
limitations. To use a VCG mechanism, we have to compute the exact solution
that maximizes the total valuation of all agents. This makes the mechanism
computationally intractable for many optimization problems.

This work focuses on strategic games that can be formulated as the set
cover problem. A set cover game can be generally defined as the following. Let
S = {S1, S2, · · · , Sm} be a collection of multisets (or sets for short) of a universal
set U = {e1, e2, · · · , en}. Element ei is specified with an element coverage require-
ment ri (i.e., it desires to be covered ri times). The multiplicity of an element ei

in a set Sj is denoted by kj,i. Let dmax be the maximum size of the sets in S, i.e.,
dmax = maxj

∑
i kj,i. Each Sj is associated with a cost cj . For any X ⊆ S, let

c(X ) denote the total cost
∑

Sj∈X cj of the sets in X . The outcome of the game
is a cover C, which is a subset of S. Many practical problems can be formulated
as a set cover game defined above. For example, consider the following scenario:
a business can choose from a set of service providers S = {S1, S2, · · · , Sm} to
provide services to a set of service receivers U = {e1, e2, · · · , en}.

� With a fixed cost cj , each service provider Sj can provide services to a fixed
subset of service receivers.

� There may be a limit kj,i on the number of units of service that a service
provider Sj can provide to a service receiver ei.

� Each service receiver ei may have a limit ri on the number of units of service
that it desires to receive (and is willing to pay for).

A mechanism of the game is to determine an optimal (or approximately
optimal) outcome of the game, according to a pre-defined objective function. We
design various mechanisms that are aware of the fact that the service receivers
and/or the service providers are selfish and rational. In addition to truthfulness,
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we aim to achieve the following objectives, which are sometimes at odds with
each other and thus require proper tradeoffs.

� Economic Efficiency. A mechanism is α-efficient if its output is no worse is
than α times the optimal solution with respect to the objective function.

� Budget Balance. Let C(S) be the total cost incurred by providing services to
all agents in S. If ξi(S) is the cost charged to each agent i ∈ S, the cost-sharing
method is β-budget-balanced if

∑
i∈S ξi(S) ≥ β · C(S), for some 0 < β < 1.

� Fair Cost-Sharing. We also need to make the cost-sharing method fair so
that it encourages agents to participate. Besides the well accepted measures
such as cross-monotonicity (i.e., the cost share of an agent should not go up
if more players require the service), we also consider a less-studied measure,
called fairness under core (i.e., the cost shares paid by any subset of agents
should not exceed the minimum cost of providing the service to them alone),
which is derived from game theory concepts [5].

� No Positive Transfers (NPT). The cost shares are non-negative.
� Voluntary Participation (VP). The utility of each agent is guaranteed to

be non-negative if an element reports its bid truthfully.
� Consumer Sovereignty (CS). When an agent’s bid is large enough, and

others’ bids are fixed, the agent will get the service.

We first consider the case where the elements to be covered are selfish agents;
each ei has a privately known valuation bi,r of the r-th unit of service to be re-
ceived. We show that the truthful cost-sharing mechanism designed by a straight-
forward application of a cross-monotonic cost-sharing scheme is not α-efficient
for any α > 0. We present another truthful mechanism such that the total valu-
ation of the elements covered is at least 1

dmax
times that of an optimal solution.

This mechanism, however, may have free-riders: some elements do not have to
pay at all and are still covered. We then present an alternative truthful mecha-
nism without free-riders and it is at least 1

dmax ln dmax
-efficient. When the sets are

also selfish agents with privately known costs, we show that the cross-monotonic
payment-sharing scheme does not induce a truthful mechanism; a set could lie
about its cost to improve its utility. The positive side is that the mechanism is
still truthful for elements.

Previously, Devanur et al. [7] studied the truthful cost-sharing mechanisms
for set cover games, with elements considered to be selfish agents. In a game
of this type, each element will declare its bid indicating its valuation of being
covered, and the mechanism uses the greedy algorithm [8] to compute a cover
with an approximately minimum total cost. Li et al. [6] extended this work
by providing a truthful cost-sharing mechanism for multi-cover games. They
also designed several cost-sharing schemes to fairly distribute the costs of the
selected sets to the elements covered, for the case that both sets and elements are
unselfish (i.e., the will declare their costs/bids truthfully). The case of set cover
games where sets are considered as selfish agents was also considered. Immorlica
et al. [9] provided bounds on approximate budget balance for cross-monotone
cost-sharing scheme for the set cover games.
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2 Preliminaries

Typically, the objective function of a game is defined to be the total valuation
of the agents selected by the outcome of the game. In set cover games, when
sets are considered to be agents (e.g., [6]), maximizing the total valuation of
all selected agents is equivalent to minimizing the total cost of all selected sets.
However, if the elements are considered to be agents, the objective becomes to
maximize the total valuation of all elements (i.e., the sum of all bids covered).
Correspondingly, we need to solve the following optimization problem:

Problem 1. Each element ei is associated with a coverage requirement ri and
a set of bids Bi = {bi,1, bi,2, · · · , bi,ri

} such that bi,1 ≥ bi,2 ≥ · · · ≥ bi,ri
. An

assignment C is defined as the following: i) C ⊆ S; ii) a bid bi,r can be assigned
to at most one set Sπ(i,r) ∈ C; iii) for any Sj ∈ C, the assigned value νj(C) =∑

π(i,r)=j bi,r is no less than cj (Sj is “affordable”); iv) κj,i ≤ kj,i, where κj,i is
the number of bids of ei assigned to Sj ; v) if the number γi of assigned bids of ei

is less than ri, then the assigned bids must be the first γi bids (with the greatest
bid values) of ei. The total value V (C) =

∑
Sj∈C νj(C) is the sum of all assigned

bids in C. The problem is to find an assignment with the maximum total value.

This problem is NP-hard. In fact, the weighted set packing problem, which
is NP-complete, can be viewed as a special case of this problem. Therefore,
the VCG mechanism cannot be used here if polynomial-time computability is
required. In the rest of the paper, we concentrate on designing approximately
efficient and polynomial-time computable mechanisms.

All our methods follow a round-based greedy approach: in each round t, we
select some set Sjt

to cover some elements. After the s-th round, we define the
remaining required coverage r′i of an element ei to be ri −

∑s
t′=1 κjt′ ,i. For any

Sj 
∈ Cgrd, the effective coverage k′
j,i of ei by Sj is defined to be min{kj,i, r

′
i}.

The effective value (or value for short) vj of Sj is therefore
∑n

i=1

∑k′
j,i

r=1 bi,ri−r′
i+r

and it is affordable after s-th round if vj ≥ cj .
One scheme is to select a set Sj as long as it is still affordable, and assign all

appropriate bids to Sj . However, in this case an element may find it profitable
to lie about its bid, as we will show in Section 3. An alternative scheme is to
pick a set only if it is individually affordable, as defined as the following:

Definition 1. A set Sj is individually affordable by d bids if it contains at least
d bids each with a value no less than cj

d , for some d > 0.

Consequently, only the d largest bids are assigned to Sj , for the maximum
d such that Sj is individually affordable by d bids. Notice that here an implicit
assumption is that each set Sj can selectively provide coverage to a subset of ele-
ments contained by Sj . This is to prevent anybody from taking “free rides.” The
modified value ṽj of Sj is defined to be the total value of these bids. The follow-
ing lemma gives upper bounds on the total value lost by enforcing individually
affordable sets:
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Lemma 1. For any set Sj ∈ S, i) if Sj is individually affordable, the modified
value ṽj is no less than 1

ln dmax
fraction of its value vj; ii) if Sj is not individually

affordable, its value is no more than ln dmax times the cost cj of Sj.

3 Set Cover Games with Selfish Receivers

In this section we first study the case where only elements are selfish.
An obvious solution to designing a truthful mechanism for single-cover set

cover games is to use a cross-monotone cost-sharing scheme based on a the-
orem proved in [10]: a cross-monotone cost-sharing scheme implies a group-
strategyproof mechanism when the cost function is submodular, non-negative,
and non-decreasing. A cost function C is submodular if C(T1)+C(T2) ≥ C(T1∪
T2) + C(T1 ∩ T2). A cost function C is non-decreasing if C(T1) ≤ C(T2) for any
T1 ⊆ T2. A cost-sharing scheme is group-strategyproof if, for any group of agents
who collude in revealing their valuations, if no member is made worse off, then
no member is made better off. For set cover games, it is not difficult to show by
example that the following cost functions are not submodular: the cost c(Copt)
defined by the optimal cover Copt of a set of elements, and the cost defined by
the traditional greedy method (i.e., in every round we select the set Sj with the
minimum ratio of cost cj over the number of elements covered by Sj and not
covered by sets selected before)1. Even if a cost function is submodular, some-
times it may be NP-hard to compute this cost, and thus we cannot use this cost
function to design a truthful mechanism. It was shown in [6] that there is a cost
function that is indeed submodular: for each element ei ∈ T , we select the set Sj

with the minimum cost that covers ei. Notice that, if it is a multi-cover set cover
game, each set Sj is only eligible to cover an element ei kj,i times. Let Clcs(T )
be all sets selected to cover a set of elements T . Then c(Clcs) is submodular,
non-decreasing, and non-negative.

Given the cost function c(Clcs), it was shown in [6] that the cost-sharing
method ξi(T ), defined as ξi(T ) =

∑
Sj∈Clcs(T )

κj,i·cj∑
a κj,a

, is budget-balanced, cross-
monotone and a 1

2n -core. Here κj,i is the number of bids of ei assigned to Sj . For
a single-cover set cover game, based on the method described in [10], given the
single bid bi,1 by each element ei, we can define a mechanism M(ξ) as follows.

The following theorem is directly implied by the result in [10].

Theorem 1. The cost-sharing mechanism M(ξ) is group-strategyproof, budget-
balanced, and meets NPT, CS, and VP.

However, this mechanism is not efficient at all. We can construct an example
to show that it cannot be α-efficient for any α > 0. Next, in Algorithm 2,
we describe a new greedy algorithm that computes for a single cover game an
approximately optimal assignment Cgrd. Starting with Cgrd = ∅, in each round
t′ the algorithm adds to Cgrd a set Sjt′ with the maximum effective value.

1 Notice that the greedy method we will present later is different from this traditional
greedy set cover method.
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Algorithm 1. Mechanism for single cover games via cost-sharing
1: S0 = U ; t = 0;
2: repeat
3: St+1 = {ei | bi,1 ≥ ξi(S

t)}; t = t + 1;
4: until St−1 = St

5: The output of mechanism M(ξ) is Ũ(ξ, b) = St,
6: The charge by M(ξ) to an element ei is ξi(Ũ(ξ, b)).

Algorithm 2. Greedy algorithm for single cover games
1: Cgrd←∅.
2: For all Sj ∈ S, x compute effective value vj .
3: while S �= ∅ do
4: pick set St in S with the maximum effective value vt.
5: Cgrd←Cgrd ∪ {St}, S←S \ {St}.
6: for all ei ∈ St do
7: π(i, 1)←t; remove ei from all Sj ∈ S.
8: for all Sj ∈ S do
9: update effective value vj .

10: If vj < cj , then S←S \ {Sj}.

The following theorem establishes an approximation bound for the algorithm.

Theorem 2. Algorithm 2 computes an assignment Cgrd with a total value
V (Cgrd) ≥ 1

dmax
· V (Copt).

Obviously, Algorithm 2 satisfies the monotone property defined in [11]: when
an element ei was selected with a bid bi,1, then it will always be selected with
a bid bi,1 > bi,1. This monotone property implies that there is always a truthful
cost-sharing mechanism using Algorithm 2 to compute its output. Further, Al-
gorithm 2 is a round-based greedy method that satisfies the cross-independence
property defined in [11]. Thus, the payment to each element can always be com-
puted in polynomial time. We include the description of this mechanism in the
full version of this paper [13].

However, Algorithm 2 and and its induced cost-sharing mechanism together
may produce an output such that the payment by a certain element is 0. To avoid
this zero payment problem, we use a slightly different algorithm to determine the
outcome of the game. Our modified greedy method (described in Algorithm 3)
instead only selects individually affordable sets. When a set Sj is added into Cgrd,
the algorithm only assigns to Sj the largest d bids, such that Sj is individually
affordable with d bids, for the maximum such d. Using the same argument, we
can show that there is a polynomial-time computable and truthful cost-sharing
mechanism using Algorithm 3.

On the approximate efficiency of the modified greedy algorithm, we have

Theorem 3. When only individually affordable sets are allowed to be picked,
the assignment Cgrd computed by Algorithm 3 has a total value that is: 1) no less
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Algorithm 3. Improved greedy algorithm for single cover games
1: Cgrd←∅.
2: For all Sj ∈ S, compute the modified value ṽj .
3: while S �= ∅ do
4: pick set St in S with the maximum modified value ṽt.
5: Cgrd←Cgrd ∪ {St}, S←S \ {St}.
6: dt← the largest d such that the set St is individually affordable by d largest

unsatisfied bids.
7: for all ei ∈ St do
8: if bi,1 is one of the largest dt unsatisfied bids in St then
9: π(i, 1)←t; remove ei from all Sj ∈ S.

10: for all Sj ∈ S do
11: update the modified value ṽj .
12: If ṽj < cj , then S←S \ {Sj}.

than 1
dmax

· V (Copt), if the optimal assignment Copt also allows only individually
affordable sets; 2) no less than 1

2dmax
· V (Copt), if the optimal assignment Copt

allows sets that are not individually affordable, but all sets in S are individually
affordable initially.

Theorem 2 and Theorem 3 can easily be extended to the case of multi-cover.
However, when it comes to computing payments, there is a problem: in the multi-
cover case, an element can lie in different ways, and it may not be of its best
interest if it achieves the maximum utility in the first bid (or the last bid). In
that case, how can we compute payments efficiently?

To overcome the computational complexity of computing payments, we de-
sign another mechanism using a different greedy algorithm to compute the out-
come of the game. This algorithm is the same as Algorithm 3 of [6]. In [6] it
is shown that this mechanism produces an outcome with a total cost no more
than ln dmax times the total cost of an optimal outcome. We claim that the out-
come is also approximately efficient with respect to the total valuation of the
assigned (covered) bids. Further, due to the monotone property, this mechanism
is truthful.

Theorem 4. Algorithm 3 of [6] defines a budget-balanced and truthful mech-
anism. Further, it is 1

dmaxHdmax
-efficient, if all sets are individually affordable

initially.

4 Set Cover Games with Selfish Providers and Receivers

So far, we assume that the cost of each set is publicly known or each set will
truthfully declare its cost. In practice, it is possible that each set could also be
a selfish agent that will maximize its own benefit, i.e., it will provide the service
only if it receives a payment by some elements (not necessarily the elements
covered by itself) large enough to cover its cost. In [6], Li et al. designed several
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truthful payment schemes to selfish sets such that each set maximizes its utility
when it truthfully declares its cost and the covered elements will pay whatever
a charge computed by the mechanism. They also designed a payment sharing
scheme that is budget-balanced and in the core.

To complete the study, in this section, we study the scenario when both the
sets and the elements are individual selfish agents: each set Sj has a privately
known cost cj , while each element ei has a privately known bid bi,r for the r-th
unit of service it shall receive and is willing to pay for it only if the assigned cost is
at most bi,r. It is well-known that a cross-monotone cost sharing scheme implies
a truthful mechanism [10]. Unfortunately, since the sets are selfish agents, it is
impossible to design any cost-sharing scheme here, and the best we can do is to
design some payment sharing scheme. It was shown in [12] that a cross-monotone
payment sharing scheme does not necessarily induce a truthful mechanism by
using multicast as a running example: a relay node could lie its cost upward or
downward to improve its utility.

Given a subset of elements T ⊆ U and their coverage requirement ri for
ei ∈ T , a collection of multisets S, and each set Sj ∈ S with cost cj , let MS

be a truthful mechanism that will determine which sets from S will be selected
to provide the coverage to all elements T , and the payment pj to each set Sj .
We assume that the mechanism is normalized: the payment to an unselected set
Sj is always 0. Based on two monotonic output methods, the traditional greedy
set cover method (denoted as GRD) and the least cost set method (denoted
as LCS) for each element, Li et al. [6] designed two truthful mechanisms for
set cover games. Let E(Sj , c, T,MS) be the set of elements covered by Sj in the
output of MS . In the remaining of the paper, we assume that the mechanism MS

satisfies the property that if a set Sj increases its cost then the set of elements
covered by Sj in the output of MS will not increase, i.e., E(Sj , c|jd, T,MS) ⊆
E(Sj , c, T,MS) for d > cj . This property is satisfied by all methods currently
known for set cover games.

Let ξi,j(T ) be the shared payment by element ei for its jth copy when the
set of elements to be covered is T , given a truthful payment scheme MS to
all sets. Following the method described in [10], given the set U of n elements
and their bids B1, · · · , Bn we can compute the outcome Ũ(ξ,B) as the limit
of the following inclusion monotonic sequence: S0 = U ; St+1 = {ei | bi,j ≥
ξi,j(St)}. Notice that here we have to recompute the payments to all sets, and
thus the shared payments by all elements, when the set of elements to be covered
is changed from St to St+1. In other words, we define a mechanism ME(ξ)
associated with the payment sharing method ξ as follows: the set of elements to
be covered is Ũ(ξ,B), the charge to element ei is ξi,j(Ũ(ξ,B)) if ei ∈ Ũ(ξ,B);
otherwise its charge is 0. Based on the truthful mechanism using LCS as output
for set cover games, Li et al. [6] designed a payment sharing mechanism that is
budget-balanced, cross-monotone, and in the core.

Hereafter, we assume that for the payment-sharing scheme ξ, the payment
pj to the set Sj is only shared among the elements, i.e., E(Sj , c, T,MS), covered
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by Sj . This property is satisfied by the payment-sharing methods studied in [6]
for set cover games.

Theorem 5. For set cover games with selfish sets and elements, a truthful mech-
anism MS to sets and a cross-monotone payment sharing scheme ξ imply that
in mechanism ME each set Sj cannot improve its utility by lying upward its cost.

Unfortunately, for set cover games, we show that a truthful mechanism MS

to sets and a cross-monotone payment sharing scheme ξ do not induce a truthful
mechanism ME for each element. Figure 1 illustrates such an example when LCS
is used as the output, a set sj can lie its cost downward to improve its utility
from 0 to pj − cj . A similar example can be constructed when the traditional
greedy method is used as the output. When set S2 is truthful, although LCS
will select it to cover element e1 with payment p2 = 5, but the corresponding
sharing by e1 is ξ1 = 5, which is larger then its bid b1,1 = 4. Consequently, set
S2 will not be selected and element e1 will not be covered (see Figure 1 (c)). On
the other hand, if S2 lies its cost downward to c2 = 2, its payment is still p2 = 5,
but now, since it covers elements e1 and e2, the shared payments by e1 and e2

become ξ1 = 3.5 and ξ2 = 1.5. Thus, the set S2 becomes affordable by elements
e1 and e2.

3

b  =4b  =4 21

c  =51 c  =42 c  =3

2b  =4b  =4 21

c  =51 c  =42 c  =33

2 p  =43p  =5

ξ  =5 ξ  =41

(a) sets-elements (b) LCS output

2b  =4b  =4 21

c  =51 c  =42 c  =33
p  =43

ξ  =4 2b  =4b  =4 21

c  =51 c  =22 c  =33

2p  =5

ξ  =3.5 ξ  =1.51

(c) selected elements (d) output if S2 lies

Fig. 1. An example that a set can lie its cost to improve its utility when LCS is used

We leave it as future work to study whether there exists a truthful mechanism
to select selfish sets to cover selfish elements using the combination of a truthful
mechanism for sets, and a good payment-sharing method for elements.

5 Conclusion

Strategyproof mechanism design has attracted a significant amount of attentions
recently in several research communities. In this paper, we focused the set cover
games when the elements are selfish agents with privately known valuations of
being covered. We presented several (approximately budget-balanced) truthful
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mechanisms that are approximately efficient. See [13] for more details about the
algorithms and the analysis. Mechanism 1 is based on a cross-monotone cost-
sharing scheme and thus is budget-balanced and group-strategyproof. However,
in the worse case it cannot be α-efficient for any α > 0. The second mechanism is
based on Algorithm 2 and its induced cost-sharing mechanism and it produces
an output that has a total valuation at least 1

dmax
of the optimal. However,

this mechanism may charge an element 0 payment. The third mechanism, based
on Algorithm 3, avoids this zero payment problem, but it is only 1

2dmax
-efficient

under some assumptions. We conducted extensive simulations to study the actual
total valuations of three mechanisms. In all our simulations, we found that the
first mechanism (based on cost-sharing) and the second mechanism have similar
efficiencies in practice. As expected, the third mechanism always produces an
output that has less total valuations than the other two methods since it only
picks sets that are individually affordable.

When the service providers (i.e. sets) are also selfish, we show that a cross-
monotonic payment-sharing scheme does not necessarily induce a truthful mech-
anism. This is a sharp contrast to the well-known fact [10] that a cross-monotonic
cost-sharing scheme always implies a truthful mechanism.
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Abstract. Graph bandwidth minimization (GBM) is a classical and
challenging problem in graph algorithms and combinatorial optimization.
Most of existing researches on this problem have focused on unweighted
graphs. In this paper, we study the bandwidth minimization problem of
weighted caterpillars, and propose several algorithms for solving various
types of caterpillars. More specifically, we show that the GBM prob-
lem of caterpillars with hair-length at most 2 and the GBM problem of
star-shape caterpillars are NP-complete, and give a lower bound of the
graph bandwidth for general weighted graphs. For caterpillars with hair-
length at most 1, we present an O(n log n log(nwmax))-time algorithm to
compute an optimal bandwidth layout, where n is the total number of
vertices in the graph and wmax is the maximum edge weight. For cater-
pillars with hair-length at most k, we give a k-approximation algorithm.
For arbitrary caterpillars and general graphs, we give a heuristic algo-
rithm. Experiments show that the solutions obtained by our heuristic
algorithm are roughly within a factor of log(2n) of the lower bound.

1 Introduction

The graph bandwidth minimization (or GBM) problem for a given graph G =
(V,E) is to find a linear ordering (layout) of the vertices V such that the maxi-
mum difference between the labels (or rankings) of the two endpoints of any edge
in E is minimized. The GBM problem is a fundamental problem in the fields
of graph algorithms and combinatorial optimization, and finds applications in
many other areas. Excellent surveys on existing results can be found in [1, 2].

The GBM problem in general is extremely difficult. It has been shown that
the decision version of this problem is NP-complete for general graphs [3]. The
problem remains to be NP-complete even for simple graphs such as trees with
maximum degree 3 [4] and caterpillars with hair-length no more than 3 [5]. Poly-
nomial time solutions were found only for very special graphs such as caterpillars
with hair-length no more than 2 [6] and interval graphs [7]. In 1998, Blache et
al. showed that there is no PTAS for general graphs and trees [8] unless P=NP.
Later, Unger showed that it is NP-hard to approximate this problem within any
constant factor [9].

Several approximation algorithms have been obtained for general and special
graphs. In [10], Feige presented an O(log3 n

√
log n log log n)-approximation algo-

N. Megiddo, Y. Xu, and B. Zhu (Eds.): AAIM 2005, LNCS 3521, pp. 370–380, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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rithm using the powerful volume respecting embedding technique. Later, Gupta
showed that the approximation ratio for trees can be improved to O(log2 n

√
log n)

using similar techniques [11]. For caterpillars, Haralambides et al. presented a
simple but elegant O(log n)-approximation algorithm [12].

So far most of the researches on the GBM problem have focused on un-
weighted graphs. Very few results were known for weighted graphs. Part of the
reason is that the edge weights could dramatically complicate the optimization
task. The objective of the GBM problem on weighted graphs is to minimize
the maximum weighted label difference of an edge (i.e., the edge weight times
the label difference). In this paper, we study the GBM problem of weighted
caterpillars, motivated by interesting applications in VLSI layout.

Comparing to the unweighted counterpart, the GBM problem of weighted
caterpillars seems to be much harder to solve. For example, Monien showed that
the GBM problem for unweighted caterpillars with hair-length at most 3 is NP-
complete [5], and Assmann et al. gave an algorithm to find an optimal layout
for unweighted caterpillars with hair-length 1 and 2 [6]. For weighted caterpil-
lars, we show that the GBM problem is NP-complete even for caterpillars with
hair-length at most 2 and for star-shape caterpillars. To overcome the additional
difficulty caused by edge weights, we give a lower bound for general weighted
graphs. For caterpillars with hair-length at most 1, we present an O(n log n
log(nwmax))-time algorithm to compute an optimal layout, where n is the num-
ber of vertices and wmax is the maximum edge weight. The algorithm in [6] for
unweighted caterpillars cannot guarantee an optimal solution for this case. For
caterpillars with hair-length at most k, we present a k-approximation algorithm.
For arbitrary caterpillars and general graphs, we give a heuristic algorithm. Ex-
periments show that the solutions obtained by our algorithm are roughly within
a factor of log(2n) of the lower bound.

2 Preliminaries

Let G = (V,E) be a weighted graph with weights w : E → Q+ and |V | = n.
A linear layout, or simply a layout L of G is an ordering of V with a bijective
labeling function L : V → [n] = {1, 2, . . . , n}. We say that G has bandwidth B
under the layout L, denoted by bL(G) ≤ B, if |L(u)−L(v)|×w(u, v) ≤ B for every
edge (u, v) ∈ E. The bandwidth b(G) of G is the minimum bandwidth under
all possible layouts, i.e., b(G) = minL{bL(G)|L is a layout of G}. We assume
that G is connected, since otherwise the bandwidth of G is simply that of the
connected component with the largest bandwidth.

Let e ∈ E be an edge and w(e) be the weight of e. We define distance of e as
d(e) = 1

w(e) . The distance d(P ) of a path P is the sum of all distances of edges
on this path. The diameter d(G) of G is defined as the distance of the longest
shortest path between any pair of vertices in G.

A caterpillar C is a tree which has a simple path, called backbone, and various
other appendage line graphs attached to the vertices of the backbone. Each line
graph is called a hair. A hair of the caterpillar is called an hv subtree if it is
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attached to a backbone vertex v. The hair-length of hv is the number of edges
of hv and the hair-length of C is the maximum hair-length of all its hairs. Let u
be a vertex in an hv subtree and x be the length (i.e., the number of edges) of
path v � u. Let u′ be another vertex in the same subtree hv. We say u′ is the
parent of u if the length of the path v � u′ is x− 1.

3 Lower Bound of General Graphs

In the section, we give a lower bound for the GBM problem of general graphs.

Lemma 1. For anyconnected subgraph G′ of G, there exists a path P = v1v2 . . . vt

in G′ such that
t−1∑
i=1

⌊
b(G′)

w(vivi+1)

⌋
≥ |G′| − 1,

where P is a shortest path between v1 and vt, and |G′| is the number of vertices
in G′.

Proof. Omitted in this extended abstract.

Lemma 2. Let G′ be any connected subgraph of G. The bandwidth b(G) ≥
maxG′

|G′|−1
d(G′)

Proof. Omitted in this extended abstract.

4 Algorithm for Caterpillars with Hair-Length At
Most 1

Let C1 be a caterpillar with hair-length no more than 1. We consider the decision
version of this problem. That is, given a positive integer b, decide whether there
exists a layout L such that bL(C1) ≤ b. Note that although the bandwidth is
a rational number, we can always scale up the weights and make it an integer.
Below we first present an algorithm for this decision problem. Our algorithm
takes a caterpillar C1 with hair-length no more than 1 and an integer b as inputs
and tries to find a layout with bandwidth no more than b. We then show that if
the algorithm fails to find such a layout, then there is a subgraph C ′

1 of C1 that
violates Lemma 1. Thus, b(C1) ≥ b(C ′

1) > b.
We say a number in [1, |C1|] is free if no vertex is permanently labeled with

it. Let L(v) be the label of a vertex v. Let u be a hair vertex attached to a
backbone vertex v. A possible label for u should be a free number in [L(v) −
�b × d(u, v)�, L(v) + �b × d(u, v)�], where d(u, v) is the distance between u and
v. Let D = v1v2 . . . vr be the backbone of C1. Our algorithm has the following
main steps.
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Algorithm 1

1. Label permanently the vertices along the backbone D with numbers 0, �b×
d(v1, v2)�, �b× d(v1, v2)�+ �b× d(v2, v3)�, . . . ,

∑r−1
i=1 �b× d(vi, vi+1)�.

2. For each hair vertex u attached to some backbone vertex v, label it tem-
porarily with the number L(v) + �b × d(u, v)�. Note that multiple vertices
may be labeled (permanently or temporarily) with a same number.

3. Sort vertices in the non-decreasing order of their labels, and break ties arbi-
trarily.

4. Scan all hair vertices in the above order and label permanently each hair
vertex u with the smallest free number in the range [L(v)−�b×d(u, v)�, L(v)+
�b × d(u, v)�], where v is the parent of u. If there is no free number for u,
then stop and return false.

Below we show that the above algorithm solves the decision problem of the
GBM problem on caterpillars with hair-length at most 1.

Theorem 1. If the above algorithm fails to find a layout L of C1 with bL(C1) =
b, then b(C1) > b.

Proof. Suppose the algorithm returns false. We will show that there exists a
subgraph C ′

1 of C1 that violates Lemma 1.
In the above algorithm, a failure can occur only in Step 4 when it tries to label

some hair vertex, say u, with a temporary label l′. Obviously, there must exist
at least another vertex with label l′, otherwise u can be labeled permanently
with l′.

When the failure occurs, let L′ = [l1, lt = l′] be the longest consecutive
sequence of numbers that are occupied (i.e., each li ∈ L′ has been assigned as a
permanent label to some vertex ui and l1−1 is free). Let V ′ = {u1, u2, . . . , ut, u}.
We show that the induced subgraph C ′

1 = (V ′, E′) violates Lemma 1.
We note that the following properties are true for vertices in V ′.

1. Each ui, i ∈ [1, t] is either a backbone vertex or a hair vertex attached to
some backbone vertex.

2. If ui, i ∈ [1, t] is a hair vertex and vi is its parent, then vi ∈ V ′.

To show that the second property is true, we need to prove that l1 ≤ L(vi) ≤
l′. To see L(vi) ≤ l′, we note that we always assign to hair vertices temporary
labels no less than the permanent labels of their parents and scan hair vertices
based on the non-decreasing order of their temporary labels. The temporary
label of ui must be no larger than that of u (i.e., l′), and hence L(vi) ≤ l′. To
show l1 ≤ L(vi), we assume that l1 > L(vi). Then in the range [L(vi) − �b ×
d(ui, vi)�, L(vi)+�b×d(ui, vi)�], we have a free number l1−1 < L(ui) which can
be used to label ui. This contradicts the fact that we always find the smallest
free label for each hair vertex in its range.

The above two properties implies that C ′
1 is a connected graph since by step

1, backbone vertices in C ′
1 are always connected .
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Let vh, vh+1, . . . , vk, . . . , vg be backbone vertices in V ′. Suppose u1 is con-
nected to vx and u is attached to vy. Let P = u1vxvx+1 . . . vzut be a path (see
Figure 1). Let d′(vi, vj) =

∑j−1
l=i �b× d(vl, vl+1)�. We have the following claim.

Claim. �b × d(u1, vx)� + d′(vx, vz) + �b × d(vz, ut)� is the maximum over the
distances of all paths in C ′.

vxu1 vh

vi
p1

p2

vg

l1 l′

utvz

p3

vy

p4

vj

p5 p6

vk

u

Fig. 1. An ordering of vertices of a subgraph C′
1 (vertices are ordered from left to right)

To prove the above claim, we first consider an arbitrary hair h whose both
endpoints are in V ′. h can be attached to either a backbone vertex vi between
vh and vx, a backbone vertex vj between vx and vz, or a backbone vertex vk

between vz and vg (see Figure 1). For each of the three cases, we have two sub-
cases depending on whether the hair vertex of h has a smaller or greater label
than its parent (i.e., the backbone vertex). Thus we have in total 6 types of
hairs, p1vi, p2vi, p3vj , p4vj , p5vk and p6vk .

For hair p1vi, we have �b×d(p1, vi)�+d′(vi, vx) ≤ �b×d(vx, u1)�, otherwise p1

would be laid out to the left of u1 by Step 4 of the algorithm. Also �b×d(p1, vi)� ≤
d′(vi, vz)+ �b×d(vz, ut)�, otherwise p1 will not be relabeled before ut. Similarly,
we have the following inequality for hairs p3vj and p5vk.

�bd(p3vj)� ≤ �bd(u1vx)�+ d′(vxvj)
�bd(p3vj)� ≤ d′(vjvz) + �bd(vzut)�
�bd(p5vk)� ≤ �bd(u1vx)�+ d′(vxvk)

�bd(p5vk)�+ d′(vzvk) ≤ �bd(vzut)�

Similar results hold for hairs p2vi, p4vj and p6vk.
Putting all the inequalities together, we can show that �b × d(u1, vx)� +

d′(vx, vk)+�b×d(vz, ut)� is the maximum over all paths in C ′
1 by considering all

types (in total 15) of paths which start and end with one of the 6 types of hairs.
Below we only consider one type of paths P ′ = p2vivi+1 . . . vjp3. The other types
of paths can be proved similarly (details are left for the full paper).

�b× d(p2, vi)� + d′(vi, vj) + �b× d(vj , p3)�
≤ �b× d(u1, vx)�+ d′(vx, vj) + �b× d(vj , p3)�
≤ �b× d(u1, vx)�+ d′(vx, vj) + d′(vj , vz) + �b× d(vz, ut)�
= �b× d(u1, vx)�+ d′(vx, vz) + �b× d(vz, ut)�
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Since all numbers in [l1, lt] are occupied, we have |C ′
1| = l′ − l1 + 2.

�b× d(u1, vx)�+ d′(vx, vk) + �b× d(vz, ut)� = l′ − l1 = |C ′
1| − 2

Thus there is no path satisfies Lemma 1, which implies that the bandwidth of
C ′

1 is larger than b. This concludes the proof of the theorem. ��

Corollary 1. There is an O(n log n log(nwmax))-time algorithm for finding the
bandwidth of C1, where wmax is the maximum edge weight of C1.

Proof. Clearly the bandwidth of C1 is between wmax and n × wmax. We can
use the above algorithm for the decision problem to do a binary search on the
interval [wmax, n× wmax] to find b(C1).

The whole algorithm for the decision problem takes O(n log n) time since we
can maintain the free numbers using a balanced binary tree. Thus the total time
to find b(C1) is O(n log n log(nwmax)). Once we have a labeling of C1, it can
be easily changed to a layout by ordering the vertices according to the order of
their labels. ��

5 Caterpillars with Hair-Length At Most 2

In this section, we show that the GBM problem of caterpillars with hair-length
at most 2 is NP-complete.

Theorem 2. The graph bandwidth minimization problem of caterpillars with
hairs-length at most 2 is NP-complete.

Clearly the problem is in NP since given a layout and a number b we can ver-
ify in polynomial time whether the bandwidth of this layout is no more than b.
To prove the NP-hardness of the problem, we follow the approach used in [5] for
proving the NP-hardness for unweighted caterpillars and reduce the Multiproces-
sor Scheduling problem to our GBM problem. Let C2 be a weighted caterpillar
with hair-length at most 2. Given a set T = {t1, t2, . . . , tn} of tasks (ti is the
execution time of the ith task), a deadline D, and m processors, we construct a
caterpillar C2 (see Figure 3) and an integer b such that C2 has bandwidth b if
and only if the tasks in T can be scheduled on the m processors no later than
the deadline D. The Multiprocessor Scheduling problem is strongly NP-complete
and therefore we can assume that all the ti are polynomially bounded in n.

The main idea of the reduction is to simulate the scheduling. We use some
portions of C2 to simulate tasks and some portions to simulate processors, called
task portions and processor portions respectively. More specifically, each task ti
is represented by a caterpillar Ci

1 with ti backbone vertices and p − 1 hairs (of
length 1) on each backbone vertex for some parameter p, and each processor
is represented by a caterpillar with D − 1 backbone vertices and no hair (see
Figure 3). We also use two special caterpillars, called barrier and turning point
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1 1

111

1 1

1 1

1

11

11

1 1

1

0.5
1 1 0.5

0.5 0.5

(b)(a)

Fig. 2. (a) A barrier of height p. (b) A turning point of height p, p ≡ 0 mod 2

(see Figure 2), to separate the task portions and processor portions. A barrier
is used to separate two processor portions such that a task portion can not be
assigned to multiple processor portions. The task portions and processor portions
are separated by a turning point. The turning point ensures that in every optimal
layout, the task portions and processor portions are always on the same side of
the turning point so that vertices representing tasks can be laid out between the
backbone vertices representing processors.

turning point
barrierbarrier

barrier

Fig. 3. The caterpillar C2, Δ = 2{m(D +2)− 2}, p has to be chosen in an appropriate
way

As shown in [5], in order to make the reduction work, a key difficulty is
to ensure that the barrier and turning point have the following properties. (1)
Each barrier of height p and each turning point of height p (see Figure 2) have
bandwidth p; (2) In every optimal layout of the turning point, the first and last
backbone vertices (i.e., a and g in Figure 2) are assigned to the same half of the
layout.

To ensure the above properties, we modify the structure of the turning point
in [5] by assigning different weights to its edges and shortening its hair-length
from 3 to 2 (Note that the other part of the constructed caterpillar has hair-
length 1). Let Tp = (V,E) denote the turning point of height p. The following
lemmas show that the turning point has the expected properties.

Lemma 3. The bandwidth of the turning point Tp in Figure 2(b) is p.

Proof. Tp has exactly 6p+1 vertices. The diameter of Tp is clearly 6. By Lemma
2, we know that the bandwidth of Tp is no less than 6p+1−1

6 = p. Figure 4 gives
a layout of Tp with bandwidth exactly p. Thus the lemma follows. ��
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Lemma 4. Let L be an optimal layout of the turning point Tp = (V,E) with
bijective function L : V → {1, . . . , 6p + 1} (i.e., |L(i) − L(j)|w(i, j) ≤ p for all
(i, j) ∈ E) and p ≥ 6. Then either L(a), L(g) < 3p + 1 or L(a), L(g) > 3p + 1.

0.5 1

Fig. 4. An optimal layout of the turning point

1

Fig. 5. A layout of a turning point

Proof. Consider the path P = p1 . . . pk that connects the leftmost vertex p1 and
the rightmost vertex pk in L. The length (in terms of number of edges) of P can
be 5 or 6 only.

The only path with length 6 in Tp is a− b− c− d− e− f − pk, pk ∈ {g} ∪ V4

and the weight of each edge on this path is 1. Since |L(pk) − L(p1)| = 6p and
|L(u)−L(v)| ≤ p,∀(u, v) ∈ P , we have L(d) = 3p+1. If the length of P is 5, one
of p1 and pk must be in V1. Suppose p1 ∈ V1. Since all the edges on P except
p1p2 have weight 1 and w(p1p2) = 0.5, we also have L(d) = 3p + 1.

Suppose L(a) < 3p+1 and L(g) > 3p+1, we show below that there will be a
contradiction. Since L(d) = 3p+1, the vertices that can have labels 1, . . . , p must
be a or in V1. We will show that L(a) ∈ [1, p]. If not, then [1, p] are all occupied
by V1 and [2p + 1, 3p] are all occupied by V2. Then L(a), L(b) ∈ [p + 1, 2p], but
c can not be labeled. So [1, p] must be occupied by a and p− 1 vertices from V1

(Figure 5). Then we have L(b) ∈ [p + 1, 2p] and L(c) ∈ [2p + 1, 3p]. The other
p − 1 labels in [2p + 1, 3p] must be occupied by p − 1 vertices from V2. Then
the vertices in V3 can have labels within [L(c)− p, L(c) + p]. The number of free
numbers in [L(c) − p, L(c) + p] is 2p + 1 − 3 − (p − 1) = p − 1. But we have
3
2 (p− 2) vertices in V3 which implies 3

2 (p− 2) ≤ p− 1. We get p ≤ 4 contradicts
to the assumption that p ≥ 6. ��

With the above lemmas, we can construct the caterpillar C2 from any instance
Y = ({t1, . . . , tn}, D,m) of the Multiprocessor Scheduling problem as in Figure
3 and apply the following two lemmas (proved in [5]) to complete the reduction.
This concludes the proof of Theorem 2.

Lemma 5. If Y has a solution then C2 has bandwidth p + 1 + 2n.
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Lemma 6. If p > 2n(D + 4) and if C2 has bandwidth p + 1 + 2n, then Y has a
solution.

6 Star-Shape Caterpillars

In this section, we show that the GBM problem of star-shape caterpillars is NP-
complete. It is easy to see that for unweighted star-shape caterpillars, the GBM
problem can be solved optimally in polynomial time.

Theorem 3. The graph bandwidth minimization problem of star-shape caterpil-
lars is NP- complete.

Proof. Clearly this problem is in NP. Similar to the NP-completeness proof of
Theorem 2, we reduce from the Multiprocessor Scheduling problem. Given a set
S = {t1, t2, . . . , tn} of tasks (ti is the execution time of ith task), a deadline D
and m processors, we shall construct a star-shape caterpillar Cs and an integer
b such that Cs has bandwidth b if and only if the tasks in T can be scheduled
on the m processors satisfying the deadline D. We can assume that all the tis
are polynomially bounded in n.

We construct Cs as follows. We first build the backbone. Let T =
∑n

i=1 ti.
We put a set B1 of T +1 nodes to the left. Then we connect a set M of m nodes
and a set B2 of T + m + 1 nodes to the right. Corresponding to each task i, we
construct a hair with ti nodes. We associate edges with weights as in Figure 6.
Each edge with its left endpoint in M represents a processor.

T + 1 m T + m + 1

β

β β

β

β

β

t1 tn

αα
α

tk

ββ

ββ
D+1

β
D+1

β
D+1 β β

B1 B2M

Fig. 6. The caterpillar Cs

Let b = β, α = β
T+m+1 . We can prove that there is a feasible scheduling for

the Multiprocessor Scheduling problem if and only if we have a layout of Cs with
bandwidth b (details are left for the full paper). ��

7 Approximation Algorithm for Caterpillars with
Hair-Length At Most k

Let Ck be a weighted caterpillar with hair-length at most k. The following simple
algorithm yields a layout for Ck.
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Algorithm 2

1. Let C ′
k be the maximal subgraph of Ck such that C ′

k is a caterpillar with
hair-length at most 1.

2. Apply Algorithm 1 to C ′
K and find an optimal layout L′.

3. Put all the descendants of each hair vertex u of C ′
k to its left neighboring

positions in L′ while keeping their orders. Return the resulting layout L.

Theorem 4. Algorithm 2 is a k-approximation algorithm for the GBM problem
of weighted caterpillars with hair-length at most k.

Proof. Omitted in this extended abstract.

8 Algorithm for Arbitrary Caterpillars and General
Graphs

In this section, we present a heuristic algorithm for arbitrary caterpillars and
general graphs and show some experimental result. Our algorithm is a gener-
alization of the CutHill-McKee algorithm [13]. Let e = (u, v) be an edge with
weight w(e), lvl(u) be the level of u, dmax (dmin) be the maximum (minimum)
degree of the graph and d = dmax+dmin

2 . Our algorithm is as follows.

Algorithm 3

1. For each vertex v, set lvl(v) =∞.
2. For each vertex u with degree ≤ d do

(a) Select u as the starting vertex. Set lvl(v) = 1.
(b) For each neighbor v of u, set lvl(v) = min(lvl(v), lvl(u) + wmax

w(u,v) ).
(c) The procedure is repeated for each node at levels in the increasing order.
(d) Label vertices level by level. Store the bandwidth of the layout.

3. Output the minimum bandwidth of all computed layouts.

To examine the performance of our algorithm, we implement it in C++ and
test it with a large set of randomly generated graphs. We compare our results
with the lower bound given in Lemma 2. (Detailed experimental results are
omitted in this extended abstract due to limited space.) Our results suggest
that the ratio of our computed bandwidth over the lower bound is roughly a
log(2n) function of the number of vertices.
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Abstract. In this paper, we propose principle factor analysis method to
reduce the dimensions of a high dimensional random vector in calculat-
ing portfolio’s Value at Risk. The theoretical foundation, algorithm and
numerical example of the method are given. This method outperforms
the principle component analysis method. Especially, the advantages of
the method are marked, while the factors F ’s multicollinearity is serious.
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1 Introduction

”Market risk” has become one of the most popular buzzwords of the financial
markets. Market risk is the uncertainty of future returns due to fluctuation of
financial asset quantities such as stock prices, interest rates, exchange rates, and
commodity prices. Regulators, commercial and investment banks, and corporate
and institution investors are increasingly focusing on more precise measurement
of the level of market risks incurred by their institutions.

One of the most widely accepted concepts in market risk management is the
value-at-risk (VaR). VaR is defined as the maximum loss with a given confi-
dence level over a given time horizon in a portfolio of financial instruments[1].
Risk management systems based on VaR have been implemented in many finan-
cial institutions, asset management institutions, and non-financial corporations.
VaR has also been officially accepted and promoted by regulators as sound risk
management practice[1].
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To calculate portfolio’s VaR there is a need to construct an approximation of
the probabilistic distribution of profit and loss(P&L). One of the most popular
techniques is based on the assumption that the portfolio value can be expressed
as a deterministic function of some basic market factors, for example, interest
rate, exchange rate, stock market index, and the process is named risk mapping.
Having distributions of these market factors one can construct the distribution
of the portfolio’s value function. The most popular method is delta approach
[1-5]. The first order expansion of the value function is used to approximate
the distribution at the end of the period. Typically, for short time horizon, the
changes in market factors are distributed almost normally and the approximated
value of the portfolio is also normally distributed. Suppose all assets contained in
a portfolio are linear on the market factors, then the portfolio’s VaR calculated
by delta-only method is accurate. In general, stock, bond, swap are typical linear
instrument.

Suppose the joint distribution of market factors is multivariate normal, and
all assets contained in a portfolio are linear, then the portfolio’s VaR can be
easily calculated.

Consider a portfolio consisting of quantities X = (x1, x2, ..., xn)T of assets
1, 2, ..., n with values V = (v1, v2, ..., vn)T at time t. The VaR of the portfolio
X for some given probability level α, is defined as the level of loss, ΔV ∗(α),
such that the probability that the loss ΔV ≤ ΔV ∗ is equal to α. Since the
joint distribution of the change in the value of market factors is multivariate
normal, the calculation of ΔV ∗ is straightforward. Assume that the value of
each asset depends on the time t and the market factors f1, f2, ..., fK , or F =
(f1, f2, ..., fK)T . Then the portfolio’s VaR is given by[5,6]

V aRp = Zα

√
δT ΣF δ

√
Δt (1)

where Zα is the quantile of the standard normal distribution corresponding to
confidence level α, and if α = 0.95, Zα = 1.65; Δt is a time horizon, usually we
set Δt = 1, 5 or 10 days; δ is the vector of aggregate delta, δ = (δ1, δ2, ..., δK)T ,
ΣF = (σij)K×K is the variance-covariance matrix of market factors, and σij =
cov(Δfi,Δfj), σii = var(Δfi),

It follows from (1) that the important thing in calculating portfolio’s VaR is
to estimate the covariance matrix ΣF or the coefficient matrix R, of the market
factors. For large scale portfolio, with varied asset’s classes, the dimension of
ΣF is large, and the calculation of the portfolio’s VaR is complicated. When
some market factors are strongly linearly related, the multicollinearity of the
market factors will be serious, and the matrix ΣF may not be positive. Principal
component analysis(PCA) had been used to overcome these drawback[1,5,7-12].
Because PCA method would twist original message when the multicollinearity
of market factors is serious, and the meaning of principal component is not
easily explained for financial market risk manages and regulators. The method
is difficult to use in practical risk management process. In this paper, the method
named principal factor analysis(PFA) is proposed to overcome the drawbacks
of the PCA.
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In section 2, we introduce portfolio’s VaR based on PCA, in section 3, we give
PFA’s theory and algorithm, in section 4, we use PFA to calculate portfolio’s
VaR, and in section 5, we compare VaR value based on PCA and PFA methods,
at the same time, their advantage and drawback will be given. Conclusion will
be given in section 6.

2 VaR Based on PCA

From the previous section we assume that the joint distribution of market factors
f1, f2, ..., fK is a multi-normal distribution. Suppose g1 is the first principal
component, g2 is the second principal component, ..., gs is the sth principal
component(s ≤ K). From the principal component analysis(PCA), g1, g2, ..., gs

could be expressed as the equations g = AF , where the market factors vectors
F = (f1, f2, ..., fK)T , and the coefficients matrix A = (aij)s×K . In PCA, the
number s, of the principal components, and the coefficients aj1, aj2, ..., ajK , j =
1, 2, ..., s can be determined as following.

Let λ1 ≥ λ2 ≥ ... ≥ λK > 0 be the eigenvalues of the covariance ma-
trix ΣF , and p1, p2, . . . , pK be the corresponding orthonormal eigenvec-
tors. Then the first s eigenvectors consist of the coefficient matrix A, that is
aj = (aj1, aj2, ..., ajK) = pT

j .
Assume ᾱ is a threshold value(predetermined maximum contribution rate of

the principal components), then the number s, of the principal components is
determined by

cont(s− 1) < ᾱ and cont(s) ≥ ᾱ

where

cont(s) =
∑s

i=1 λi∑K
i=1 λi

.

The portfolio’s value function can be rewritten as V = V (G, t), where G =
(g1, g2, ..., gs)T is the principal component vectors. The change of portfolio value
is given by

ΔV =
n∑

i=1

xi
∂vi(G, t)

∂t
Δt +

n∑
i=1

xi

s∑
j=1

∂vi(G, t)
∂gj

Δgj ≡ μp +
s∑

j=1

δjΔgj

where μp is given by (2) and δj , the aggregate delta for principal components,
is given by

δj =
n∑

i=1

xi
∂vi(G, t)

∂gj
, j = 1, 2, ..., s.

The portfolio’s VaR is now calculated as

V aRp = Zα

√
δT Σgδ

√
Δt (2)

where δ = (δ1, δ2, ..., δs)T , and Σg is the covariance matrix of principal com-
ponents, which is diagonal matrix with diagonal elements σ2

1 , σ
2
2 , ..., σ2

s ,where
σ2

j = var(Δgj), j = 1, 2, .., s.
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From the structure of the covariance matrix Σg we see that the principal
components are not correlative. This structure could reduce the difficulty of
calculating portfolio’s VaR. However, the meaning of the principal components is
not easily explained since the principal component is the combination of original
factors. When the multicollinearity of the market factors is serious, the principal
component analysis may distort original messages.

In financial markets, the multicollinearity of market risk factors exists, and
in some case, it may be more serious. The U.S treasury market gives such an
example. Table 1 presents the monthly VaR of zero-coupon bonds as well as
correlations. The maturities of the bonds are from 1 year to 30 years, and the
correlation coefficients are from 0.644 to 0.999. The condition number of the

Table 1. Risk and correlations for U.S Bonds (monthly VaR at 95%

Term VaR 1y 2y 3y 4y 5y 7y 9y 10y 15y 20y 30y
(year) %

1 0.470 1
2 0.987 .897 1
3 1.484 .886 .991 1
4 1.971 .886 .976 .994 1
5 2.426 .855 .966 .988 .998 1
7 3.192 .825 .936 .965 .982 .990 1
9 3.913 .796 .909 .942 .964 .975 .996 1
10 4.250 .788 .903 .937 .959 .971 .994 .999 1
15 6.234 .740 .853 .891 .915 .930 .961 .976 .981 1
20 8.146 .679 .791 .832 .860 .878 .919 .942 .951 .991 1
30 11.119 .644 .761 .801 .831 .853 .902 .931 .943 .975 .986 1

correlation matrix R is cond(R) = 7.9944× 104. In general, when the condition
number of the correlation matrix is great than 2× 103, it is said that the multi-
collinearity of the random variables is serious[8]. From this example we conclude
that the serious multicollinearity exists in financial markets. If the principal com-
ponent analysis is employed to treat this problem, some important components
may be lost. At the same time, since the principal components are combinations
of the some market factors, it does not tell which market factor dominates oth-
ers, and we could not get one hedge strategy which could easily be operated to
reduce market risks.

3 Principal Factor Select Algorithm

In this section, we will present the principal factor analysis. Before we give the
presentation, the matrix sweep operation, some useful lemmas, and propositions
are introduced.
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3.1 Matrix Sweep Operation

Suppose the matrix V = (vij)p×p with vii 
= 0, i = 1, 2, ..., p. We define a new
matrix B = (bkl)p×p, with

bii =
1
vii

, bil =
vil

vii
, bli = −vli

vii
, l 
= i, bkl = vkl −

vkivil

vii
, k 
= i, l 
= i, (3)

where i is given. This operation is defined as a matrix sweep operation pivoted
on vii from V to B, and is denoted SiV = B.

Lemma 1. SiSi = V , and SiSjV = SjSiV .

Let the matrix V be decomposed into four submatrices

V =
[

V11 V12

V21 V22

]
where the dimensions of V11 and V22 are r and (p− r).

Lemma 2. If Sir...Si2Si1V = B, and let

B =
[

B11 B12

B21 B22

]
with B11 ∈ Rr×r, B22 ∈ R(p−r)×(p−r), then

B11 = V −1
11 , B12 = V −1

11 V12, V21 = −V21V
−1
11 , B22 = V22 − V21V

−1
11 V12.

(4)

Suppose E(X) = U = (μ1, μ2, ..., μp)T is the mean vector of the random
vector X = (x1, x2, .., xp)T , the covariance matrix of X is D(X) = V = (vij)p×p.
Let the matrix V and the vectors x and U be similarly decomposed as

V =
[

V11 V12

V21 V22

]
, X =

(
X1

X2

)
, U =

(
U1

U2

)
where
X1 = (xi1, xi2, .., xir)T ,
X2 = (xj1, xj2, ..., xj(p−r))T ,
U1 = E(X1) = (μi1, μi2, ..., μir)T ,
U2 = E(X2) = (μj1, μj2, ..., μj(p−r))T .

Lemma 3. If the inverse of the matrix V11 exists, and we set

Z =
[

Z1

Z2

]
=

[
X1

X2 − V21V
−1
11 X1

]
,

then the covariance matrix of Z is given by

D

[
Z1

Z2

]
=

[
V11 0
0 V22 − V21V

−1
11 V12

]
.

From Lemma 3, we can get the following propositions.
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Proposition 1. V22−V21V
−1
11 V12 ≥ 0, i.e, the matrix is positive semidefinite.

Proposition 2. If the diagonal elements of the matrix V22 − V21V
−1
11 V12 are

zero, then

V22 − V21V
−1
11 V12 = 0

X2 = V21V
−1
11 (X1 − U1) + U2, a.s

The conclusions are obvious, and we omit the proof.

3.2 Principal Factor Select Strategy

Let V be the covariance matrix of the random vector X. In the principal com-
ponent analysis, the principal components are the linear combinations of the
random variables x1, x2, ..., xp, and the variance of the ith principal component
is the ith eigenvalue of V , and the sum of all principal component’s variance is
the trace of the matrix V . The sum of all the principal component’s variances
is the trace of the matrix V , denoted by tr(V ), and is also the total variance
of the random vector X. As we mentioned above, when the multicollinearity of
X is serious, tr(V ) will contain much more similar messages, that will magnify
some principal component’s effect.

In this subsection, we consider total variance, tr(V ), of the random vector
X, according to the sizes of variances. In other words, the variable with large
variance would have strong ability to interpret X. We make sweep operations on
the matrix V pivoted on the maximum diagonal elements step by step. We will
get r variables xi1, xi2, ..., xir as the principal factors of the vectors X, with the
kth variable corresponding to the kth pivot element. Now, the question is how
to determine the value of r?

The random vector X2 − V21V
−1
11 X1 is the remainder of X2 deporting the

linear section of X1. Since X2−V21V
−1
11 X1 is not correlative with X1(see Lemma

3.3), and D(X2 − V21V
−1
11 X1) = V22 − V21V

−1
11 V12, the total variance, tr(V22 −

V21V
−1
11 V12) represents the ability of X2 − V21V

−1
11 X1 to interpret X. With the

principal factor selection proceeding, the variance of the matrix V22−V21V
−1
11 V12,

i.e, tr(V22 − V21V
−1
11 V12) will become small and small. Let di be the pivot ele-

ments, i = 1, 2, ..., r, from lemma 2 and 3,
∑r

i=1 di is similar the total variance
tr(V ), which represent the ability of the principal factors vector X1 to interpret
original random vector X, and it deduct the repeated messages existing in the
principal factor vector X1. Thus, to determine the principal factors, we set

δ̃ = tr(V22 − V21V
−1
11 V12) (5)

and

δ =
∑r

i=1 di∑r
i=1 di + δ̃

(6)
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A threshold value(maximum contribution rate) α1 is predetermined, and a
value of r is determined such that δ ≥ α1. The principal factor selection process
is complicated and r principal factors X1 = (xi1, xi2, ..., xir)T are obtained. For
the vectors X2, we have the following formula

X2 ≈ U2 + V21V
−1
11 (X1 − U1). (7)

(Note that if δ ≥ α1, we regard δ̃ ≈ 0, and it follows from proposition 2, that the
above formula hold). The following is the algorithm for principal factor selection.

Algorithm 1. Principal Factor Selection

Step 1. Give the threshold value α1, and set V 0 = V , I(0) = ∅, J (0) =
{1, 2, ..., p}, and find l1 ∈ J (0), such that v0

l1,l1 = maxmax{v0
l,l : l ∈ J (0)}

hold. v0
l1,l1 ⇒ δ1, v

0
l1,l1 ⇒ d1, go to step 2;

Step 2. In the rth (r = 1, 2, ..., p − 1) step, we make the sweep operation
Sir to V (r−1) to obtain V (r) = SirV

(r−1), and reset I(r) = I(r−1)
⋃
{lr},

J (r) = J (r−1)\{lr},
∑

j∈J(r) vr
j,j ⇒ δ̃, δ1

δ1+δ̃
⇒ δ. If δ ≥ α1, then terminate

the algorithm, and I(r) is the principal factor index set. If δ < α1, we find
lr+1 ∈ J (r), such that vr

lr+1,lr+1
= max{vr

l,l : l ∈ J (r)}. δ1 + vr
lr+1,lr+1

⇒ δ1,
vr

lr+1,lr+1
⇒ dr+1, and go to the (r + 1)th step.

Remark: I(i) is the principal factors index set. When the algorithm terminates,
the index set I(r) = {l1, l2, ..., lr}, J (r) = {j1, j2, ..., jp−1}. and I(r)

⋃
J (r) =

{1, 2, ..., p} are available. The principal factor vector is X1 corresponding to the
set I(r). d1 is the variance of the first principal factor xl1 , d2 is the variance of
xl2 deporting the linear section of xl1 , ..., and dr is the variance of xlr deporting
the linear section of xl1 , xl2 , ..., xlr−1 with d1 ≥ d2 ≥ ... ≥ dr > 0.

4 Portfolio’s VaR Based on PFA

Suppose a portfolio’s value function is V = V (f1, f2, .., fK , t). It follows from
section 1 that the change of the portfolio’s value is given by

ΔV = μp +
K∑

j=1

δjΔfj = μp + δT ΔF

where ΔF = (Δf1,Δf2, ...,ΔfK)T is the vector of the market factor value’s
change, δ = (δ1, δ2, ..., δK)T is the aggregate delta vector.

Assume that we have get the principal factor vector F 1 = (f1, f2, ..., fr)T ,
and the remained factor vector F 2 = (fr+1, fr+2, ..., fK)T . If the predetermined
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threshold value α1 approaches 1(usually α1 ≥ 85%), then the following formula
holds

F 2 = U2 + V21V
−1
11 (F 1 − U1), a.s. (8)

Thus we can get
ΔF 2 = V21V

−1
11 ΔF 1, a.s. (9)

We rewrite ΔV as
ΔV = μp + δ1T

ΔF 1 + δ2T
ΔF 2 (10)

where δ1 = (δ1, δ2, ..., δr)T , δ2 = (δr+1, δr+2, ..., δK)T . Substituting (12) into (13)
generates

ΔV = μp + (δ1T
+ δ2T

V21V
−1
11 )ΔF 1. (11)

So the variance of ΔV is

var(ΔV ) = βT ΣPF β (12)

where β = δ1 + V −1
11 V12δ

2, and ΣPF is the covariance matrix of the principal
factors. The portfolio’s VaR is then calculated as the following

V aRp = Zα

√
βT ΣPF β

√
Δt (13)

where βj is the jth element of β.

5 The Comparison of the PFA VaR with the PCA VaR

In this section, we will compare the portfolio’s VaR based on PFA and PCA
by examples, and the advantages and the disadvantages are discussed.

5.1 The Numerical Example

We consider the example of Table 1. Four threshold values of α1(from 85% to
99%) are used and the principal factors are found. In table 2, fi is the principal
factor, di is the pivoted element.

From Table 2 we see that when the predetermined threshold value α1 = 90%,
there are four principal factors, two short time zero-coupon bonds of 2-years and
1-year, two long time zero-coupon bonds of 30-years and 7-years, their ability to
interpret origin message reach 96.56%. When the portfolio’s VaR is calculated,
we only evaluate one four dimension covariance matrix consisted with these four
principal factors.

Next we consider the portfolio in which the return is expressed by

y = 0.0416 + 0.2968f1 − 0.9734f2 + 2.5014f3 − 1.1958f4 + 0.0485f5 (14)
−2.2396f6 + 2.0527f8 + 1.3745f9 − 0.8752f10 − 0.1902f11 (15)

where f1 is the 1 year zero-coupon bond’s return, ..., f11 is the 30 years zero-
coupon bond’s return. It’s VaR is calculated when time horizon choose one day,
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Table 2. The order of the principal factors and pivoted elements

threshold principal factor 1 2 3 4 5 6 7
value(α1 %) order

85 fi 2y 30y 1y
di 1 0.4209 0.1918

90 fi 2y 30y 1y 7y
di 1 0.4209 0.1918 0.0386

95 fi 2y 30y 1y 7y
di 1 0.4209 0.1918 0.0386

99 fi 2y 30y 1y 7y 20y 4y
di 1 0.4209 0.1918 0.0386 0.0230 0.0070

Table 3. The portfolio’s VaR with 11 factors

time horizon (day) 1 5 10

portfolio’s VaR 0.9467 2.1169 2.9938

Table 4. The portfolio’s VaR based on PFA

threshold 85 90 95 99
value(α1 %)

1 day 0.8946 0.9012 0.9012 0.9063
5 days 2.0004 2.0151 2.0151 2.0266
10 days 2.8290 2.8497 2.8497 2.8661

five days and ten days, respectively, with some threshold values. The confidence
level is α = 95%, and the initial value of the portfolio is 100 unit.

When the portfolio’s VaR is calculated using the origin 11 market factors,
the results are given in table 3.

When the portfolio’s VaR is calculated based on the principal factor analysis,
the results are given in table 4.

For the portfolio’s VaR based on the principal component analysis, the results
are given in table 5. When the parameters are the same as the calculations
portfolio’s VaR based on PFA.

Comparing these tables, we can find that the portfolio’s VaR based on PFA
is better than the portfolio’s VaR based on PCA, because the VaR based on
PFA is closer to the portfolio’s VaR calculated by origin 11 market factor than
the VaR based on PCA is.

5.2 The Advantages and Disadvantages of the PFA VaR and
PCA VaR

The principal factor analysis has more advantages than the principal component
analysis has. Firstly, PFA needs few computer time than PCA, because in
every sweep operation, at most p2 multiplications and divisions are operated.
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Table 5. The portfolio’s VaR based on PCA

threshold 85 90 95 99
value(α1 %)

1 day 0.8862 0.8862 0.9004 0.9037
5 days 1.9817 1.9817 2.0133 2.0208
10 days 2.8025 2.8025 2.8473 2.8579

If r principal factors are carried out, there are at most r × p2 multiplications
and divisions operations. At the same time, because in every sweep operation,
we select the maximum element in V22 − V21V

−1
11 V12, it is a stable algorithm.

Secondly, we use the principal factor vector F 1(with dimension r) to replace the
origin vector F (with dimension p). If the multicollinearity is serious, then r � p,
so we only calculate covariance matrix ΣF (with dimension r × r), the aim to
reduce the dimensions is realized. Thirdly, the meaning of the principal factors
is clear, this is a very important point for financial risk managers. Lastly, the
PFA overcomes the serious multicollinearity (existing in origin random vector
F ) better than PCA dose. From the previous example we could understand
this point. From these advantages we see that the VaR based on PFA is more
accurate than VaR based on PCA. However, the disadvantages of the PFA
exist. If the multicollinearity is not serious, in other words, the correlation of
the random factors is not high, then we will have many principal factors, i.e, r
will be close to the origin factor number p, and we could not reduce the high
dimension of the random vector obviously. But this disadvantage also exists for
the principal component analysis.

6 Conclusion

In this paper, we discussed the principal component analysis for calculating the
portfolio’ value at risk, it is a good method to reduce the dimensions of a high
dimension matrix, but it’s performance will reduce when the multicollinearity
of market risk factors is serious, so we propose principle factor analysis method
to reduce the dimensions of a high dimensional random vector in calculates
portfolio’s Value at Risk. The theoretical foundation, algorithm and numerical
example of the method are given. This method outperforms the principle com-
ponent analysis method. Especially, the advantages of the method are marked,
while the factors F ’s multicollinearity is serious.
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Abstract. We study the problem of embedding a directed hypergraph
on a ring that has applications in optical network communications. The
undirected version (MCHEC) has been extensively studied. It was shown
that the undirected version was NP-complete. A polynomial time approx-
imation scheme (PTAS) for the undirected version has been developed.
In this paper, we design a polynomial time approximation scheme for
the directed version.

1 Introduction

Embedding hyperedges of a hypergraph as paths on a ring is an important prob-
lem with applications in various areas such as optical network communications,
parallel computation and electronic design automation.

Optical fiber networks are increasingly substituting traditional communica-
tion networks in modern communications. The technique for design multiple
channels simultaneously across an optical link using a different wavelength for
each channel is called wavelength-division multiplexing (WDM)[3]. In a WDM
network, to set up a connection for a request, a path between the two nodes of
the request is selected and a wavelength is assigned to every edge in the path.
In some cases, different wavelengths must be used if two paths share a common
edge. This requirement is known as the wavelength-continuity constraint. Current
optical technologies impose limitations on the number of available wavelengths
per fiber [6, 7, 8]. Typically, the number is between 20-100 per fiber.

Routing on WDM networks is an important problem in optical fiber com-
munication. A typical topology in network design is a ring. A lot of work has
been done for routing on rings. Raghavan and Upfal studied routing techniques
for different kinds of optical fiber networks including rings, trees and meshes
[3]. The objective is to route the network to serve all the requests such that the
ring congestion, i.e., the maximum number of times that an edge can be used,
is minimized.

N. Megiddo, Y. Xu, and B. Zhu (Eds.): AAIM 2005, LNCS 3521, pp. 392–399, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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The problem of embedding hyperedges on a ring was originally proposed for
electronic design automation, where the objective is to route within a minimum-
area rectangle [1, 2]. The problem of embedding undirected hyperedges on a
ring with minimum congestion (MCHEC) has applications in parallel comput-
ing as well as multicast routing. Here we study the problem of embedding di-
rected hyperedges on a ring. It models the case where the links in the network is
directed.

For the undirected case (MCHEC), Ganley and Cohoon in [5] proved that the
problem was NP-hard and gave a ratio-3 approximation algorithm. They also
gave an algorithm that can solve the case where the congestion is a constant.
Several ratio-2 approximation algorithms were given in [9, 10]. Gu and Wang
presented a ratio-1.8 approximation algorithm [12]. Recently, Deng and Li pro-
posed a polynomial time approximation scheme (PTAS) for the problem. Their
approach comes from the techniques for string problems [11].

In this paper, we study the problem of embedding directed hyperedges on
a ring. We extend the method in [13] to get a polynomial time approximation
scheme for the directed version. We have developed a new technique for the
proofs of some key lemmas. This technique can also be applied to the undirected
case. The new proofs allow us to reduce the time complexity of the algorithms
in [13] by a factor of O(m), where m is the total number of hyperedges.

The paper is organized as follows: We first give some definitions in Section
2. Section 3 deals with a special case, where the number of hyperedges m is
O(log n). Section 4 gives an algorithm that solves the case where the number
of hyperedges m is of O(Copt), and copt is the minimum congestion cost of an
optimal embedding. The general case is solved in Section 5.

2 Preliminaries

A ring of n nodes is a directed graph R = (V,ER), where V = {1, 2, . . . , n} is
the set of n vertices on the ring and ER = {e+

i = (i, i + 1), e−i = (i + 1, i)|i =
1, 2, . . . , n} is the set of 2n directed edges on the ring, where n + 1 is treated
as 1. Consider the same set of vertices V = {1, 2, . . . , n}. A directed hyperedge
h = (u, S) is a pair, where u ∈ V is the source of the hyperedge and S ⊆ V −{s}
is the set of sinks. In communication applications, each hyperedge h represents a
request that asks to send a message from u to every vertex in S. Let H = (V,EH)
be a directed hypergraph with the same set of vertices V and a set of m directed
hyperedges EH = {h1, h2, . . . , hm}.

Let hj = (uj , Sj) be a hyperedge in EH , where Sj = {ij1, i
j
2, . . . , i

j
kj
}. kj = |Sj |

denotes the total number of sink vertices in the hyperedge. For convenience, we
use ij0 to denote uj . Assume that the kj + 1 vertices i0,

j , ij1, . . . , i
j
kj

follow the

clockwise order on the ring. P j
k denotes the segment of vertices on the ring

from vertex ijk to vertex ijk+1 for k = 0, 1, . . . , kj − 1 and P j
kj

denotes the seg-

ment of vertices on the ring from vertex ijkj
to vertex ij0. In order to realize

the request hj on the ring, one can cut one of the paths Pk for k = 0, 1, . . . kj
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and obtain two directed paths on the ring both starting from ij0. This forms an
embedding of hj on the ring. For a hyperedge hj , there are kj + 1 different em-
beddings, one for each P j

k (by cutting P j
k ). An embedding of hj is a P j

k embedding
if P j

k is cut.
Given an embedding x of all the hyperedges EH , the congestion e+

i (x) or
e−i (x) of a directed edge e+

i or e−i is the number of times that the edge e+
i or e−i

is used in the embedding. When x is clear, we also use c(e+
i ) and c(e−i ) to denote

the congestion. The problem here is to find an embedding for each hj ∈ EH such
that every edge e+

i and e−i on the ring is used at most c times and c is minimized.
We refer the problem as the embedding directed hyperedges on the ring problem
(EDHR for short).

3 Enumerating Method for m = O(log n)

In this section, we give an algorithm with ratio 1+ 1
r for the case where there are

O(log n) hyperedges in EH . The basic idea of our algorithm is to choose 2r edges
on the ring, where r is a constant related to the ratio, and for each hyperedge hj

we only have to cut a P j
k that contains one of the 2r selected edges on the ring.

By doing this, for each hj we only have to consider 2r choices (instead of kj + 1
choices for an optimal solution). Since there are at most O(log n) hyperedges,
the time complexity is O((2r)O(log n)), that is polynomial.

Let i1, i2, . . . , i2r be 2r indices representing the 2r edges (i1, i1 + 1), (i2, i2 +
1), . . . , (i2r, i2r + 1) on the ring R. Let x = (x1, x2, . . . , xm) be an embedding of
H, where xj indicates the choice P j

k that is cut for the embedding of hj . We use
Ej(x) to denote the segment P j

k that is cut for the embedding x of hj .

Lemma 1. Let x be any embedding of H. For any fixed index 1 ≤ i1 ≤ n,
there exist 2r− 1 indices i2, i3, . . . , i2r such that for any embedding x′ satisfying
x′

j = xj for every j ∈ Qi1.i2,...i2r
(x), we have

e+
i (x′)− e+

i (x) ≤ 1
r
e+

i (x) and e−i (x′)− e−i (x) ≤ 1
r
e−i (x)

for any directed edge e+
i and e−i in ER on the ring.

Proof. We prove the lemma by giving a way to find the 2r − 1 indices. Let
c be the congestion for the embedding x that we want to approximate. First,
we select an arbitrary edge, say, e+

1 = (1, 2) = (i1, i1 + 1) on the ring. In the
embedding of x, there are at least m−2c hj ’s with e+

1 ∈ Ej(x). That is, there are
at most 2c hj ’s with e+

1 
∈ Ej(x). Let Hr be the set of the (at most 2c) hj ’s with
e+
1 ∈ Ej(x). We use the following method to select the remaining (at most) 2r−1

indices.

Let Qi1,i2,...,i2r
(x) be a set of indices of hyperedges such that j is in

Qi1,i2,...,i2r
(x) if and only if Ej(x) contains at least one of the 2r edges

(i1, i1 + 1), (i2, i2 + 1), . . . , (i2r, i2r + 1).
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1. for a remaining edge e+
g on the ring R do

2. if there are more than c
r hyperedges hj ∈ Hr with e+

g ∈ Ej(x), then we
select the index q and set Hr = Hr − {j|e+

g ∈ Ej(x)}.
3. if the size of Hr is more than c

r then goto Step 1 else stop.

The above procedure will stop after at most 2r− 1 iterations since each time
the size of Hr is reduced by at least c

r and the original size of Hr is at most 2c.
Now, consider any edge e+

i or e−i with index i (1 ≤ i ≤ n) not selected in the
above procedure. For the embedding x, the number of hj ’s that are not cut at
edge e+

i or e−i in x is at most the size of Hr, that is upper bounded by c
r . Thus,

the lemma holds. ��

Note that, in the proof of Lemma 1, we assume that x is known when selecting
the 2r− 1 indices. In fact, x will be the optimal solution that we do not known.
However, we can go through all possible sets of 2r−1 indices in polynomial time.
Based on Lemma 1, we can solve the problem as follows:

1. try all possible choices of i2, i3, . . . , i2r.
2. for each hj ∈ H, try the 2r − 1 choices for cutting the path P j

k containing
e+

i1
, e+

i2
, . . ., or e+

i2r
.

Step 1 takes O(n2r−1) time and Step 2 needs O((2r)m) = O((2r)O(log n)) =
nO(log 2r) time.

Theorem 1. There is a PTAS with ratio 1+ 1
r that runs in O(n2r−1×nO(log 2r))

time when m = O(log n).

4 The Algorithm for c ≥ O(log n) and c = O(m)

In this section, we consider the case where c = O(m). We use linear programming
and randomized rounding approach. Let hj = (uj , Sj) be a hyperedge. We define
kj + 1 variables, xj,1, xj,2, . . . , xj,kj+1. xj,l = 1 indicates that P j

l is cut for the
embedding of hj . For each segment P j

q of hj and an edge e+
i on the ring, we have

a constant μi,q,j . μi,q,j = 1 if edge e+
i is in the segment P j

q of hj . Otherwise,
μi,q,j = 0. We have the following LP formulation.

min c;
kj+1∑
l=1

xj,l = 1;

c(e+
i ) =

m∑
j=1

kj+1∑
q=1

μi,q,j(xj,q+1 + xj,q+2 + · · ·+ xj,kj
) ≤ c; (1)

c(e−i ) =
m∑

j=1

kj+1∑
q=1

μi,q,j(xj,0 + xj,1 + · · ·+ xj,q−1) ≤ c; (2)
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For a fixed hyperedge hj and a directed edge e+
i (e−i ) on the ring, there is only

one μi,q,j for q = 0, 1, . . . kj with value 1. Consider such a segment P j
q , where

e+
i and e−i are in the segment. e+

i is used in the embedding of hj if one of the
segments P j

q+1, P
j
q+2, . . . , P

j
kj

is cut for the embedding of hj . Likewise, e−i is

used in the embedding of hj if one of the segments P j
0 , P j

1 , . . . , P j
q−1 is cut for

the embedding of hj . Therefore, we have (1) and (2).
The fractional version of the linear programming problem can be solved in

polynomial time. After we get a fractional solution xj,l, independent, with prob-
ability x′

j,l, we set x̂j,l = 1 and x̂j,h = 0 for the rest of h. Thus, we obtain an
integer solution for the LP problem. Let copt be the optimal congestion of the
LP formulation. Similar to Lemma 3 in [13], we can prove that

Theorem 2. Assume that m ≥ c1 log n, and copt = c2×m. Let x̂ be the 0-1 so-
lution obtained by randomized rounding. With probability at least 1−n1− 1

3 ε2c2
2c1 ,

for any e+
i and e−i in ER,

e+
i (x̂) ≤ (1 + ε)copt,

and
e−i (x̂) ≤ (1 + ε)copt.

Proof. To prove the theorem, we need the following Lemma originally from [4].

Lemma 2. Let X1, X2, . . . , Xn be n independent random 0− 1 variables, where
xi takes 1 with probability pi, 0 < pi < 1. Let X =

∑n
i=1 Xi, and μ = E[X].

Then for δ > 0, Pr(X > μ + δn) < exp(− 1
3nδ2).

For a fixed i and a fixed j, only one μi,q,j is 1 and the rest are 0. For l =
0, 1, . . . , kj , consider such an l with μi,q,l = 1. For a fixed j, only one xj,l is
rounded to 1. Thus, μi,q,j(xj,q+1 + xj,q+2 + · · · + xj,kj

) and μi,q,j(xj,0 + xj,1 +
· · · + xj,q−1) are also randomly rounded to either 1 or 0 and are independently
for different j’s. Therefore, both c(e+

i ) =
∑m

j=1

∑kj+1
q=1 μi,q,j(xj,q+1 + xj,q+2 +

· · · + xj,kj
) and c(e−i ) =

∑m
j=1

∑kj+1
q=1 μi,q,j(xj,0 + xj,1 + · · · + xj,q−1) are sums

of m independent 0− 1 random variables. Set

E[c(e+
i )] =

m∑
j=1

kj+1∑
q=1

μi,q,jE[xj,q+1 + xj,q+2 + · · ·+ xj,kj
] = μ+

i ≤ copt,

and

E[c(e−i )] =
m∑

j=1

kj+1∑
q=1

μi,q,jE[xj,0 + xj,1 + · · ·+ xj,q−1] = μ−
i ≤ copt.

From Lemma 2, for any fixed δ,

Pr(c(e+
i ) > μ+

i + δm) ≤ exp(−1
3
δ2m).
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Consider the set of all clockwise edges {e+
1 , e+

2 , . . . , e+
n },

Pr(c(e+
i ) > μ+

i + δm for at least one e+
i ∈ ER) ≤ n× exp(−1

3
δ2m).

Similarly, we can show that

Pr(c(e−i ) > μ−
i + δm for at least one e−i ∈ ER) ≤ n× exp(−1

3
δ2m).

By assumption, m ≥ C log n. Thus, we have

n× exp(−1
3
δ2m) ≤ n1−δ2C/3.

Therefore, we get a randomized algorithm to find a solution x for the problem
with probability at lease 1−2n1−δ2C/3 such that for any e+

i ∈ ER and e−i ∈ ER,
c(e+

i ) ≤ μi + δm ≤ copt + εcopt, and c(e−i ) ≤ copt + εcopt, where ε = δ
c . ��

Using the standard de-randomization method for packing integer programs
[4], we can have a polynomial deterministic algorithm.

Theorem 3. There is a PTAS for EDHR when m ≥ O(log n) and copt ≥ O(m).

5 The General Algorithm

The linear programming and randomized rounding approach in Section 4 does
not work for the case where copt is small comparing with m. Here we propose
a method that decomposes the set of all hyperedges into two groups so that we
can give approximate embeddings using different methods for the two groups.

Consider 2r indices i1, i2, . . ., i2r of edges in ER. Let e+
i1

, e+
i2

, . . ., e+
i2r

be 2r
edges on the ring. We define

Ri1,i2,...,i2r = {1 ≤ j ≤ m| there exist an l such that e+
ik

∈ P j
l for any k ∈ {1, 2, . . . , 2r}}.

Let Ui1,i2,...,i2r
= {1, 2, . . . , m}−Ri1,i2,...,i2r

. Let xopt be an optimal embedding.
xopt|Ri1,i2,...,ir

and xopt|Ui1,i2,...,ir
denote the reduced embeddings of xopt on the

sets of hyperedges Ri1,i2,...,ir
and Ui1,i2,...,ir

, respectively.

Lemma 3. |Ui1,i2,...,i2r
| ≤ 4rcopt and |Ri1,i2,...,i2r

| ≥ m− 4rcopt.

Proof. Consider an Ej(xopt) containing all the 2r edges e+
i1

, e+
i2

, . . ., e+
i2r

. For
each edge e+

ik
, there are at most 2copt Hj ’s such that e+

ik

∈ Ej(xopt). Thus,

there are at most 4rcopt hj ’s in total with e+
ik

∈ Ej(xopt) for some ik. Therefore,

|Ri1,i2,...,ir
| ≥ m− 4rcopt.

By definition, |Ui1,i2,...,ir
| ≤ 4rcopt. ��

Let xi1 be an embedding of hj ’s in Ri1,i2,...,i2r
such that every hj is cut at

edge e+
i1

. Now, we want to show that
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Lemma 4. For any fixed index 1 ≤ i1 ≤ n, there exist 2r − 1 indices 1 ≤
i2, i3, . . . , i2r ≤ n such that for every edge e+

i and e−i in ER,

e+
i (xi1)−e+

i (xopt|Ri1,i2,...,ir
) ≤ 1

r
copt, and e−i (xi1)−e−i (xopt|Ri1,i2,...,ir

) ≤ 1
r
copt.

Proof. To show the existence of the 2r − 1 indices, we give a way to find the
2r − 1 indices assuming that xopt is known. First, we select an arbitrary edge,
say, e+

1 = (1, 2) = (i1, i1 + 1) on the ring. In the embedding of xopt, there are
at least m− 2copt hj ’s with e+

1 ∈ Ej(xopt). That is, there are at most 2copt hj ’s
with e+

1 
∈ Ej(xopt). (If we cut all the m hj ’s in H at edge e+
1 , there are at most

2copt hj ’s that are embedded in a way different from that of xopt.) Let Hr be
the set of the (at most 2copt) hj ’s with e+

1 ∈ Ej(xopt).
For every edge e+

g on the ring, if there are more than copt

r hyperedges in Hr

with e+
g ∈ Ej(xopt), then we select the index q. Consider the set Ri1,g of indices.

j ∈ Ri1,g if e+
g ∈ Ej(xopt) and e+

1 ∈ Ej(xopt). If we cut all the (at most m− 2copt)
hj ’s with j in Ri1,g on edge e+

1 , there are at most 2copt− copt

r hj ’s that are embedded
in a way different from that of xopt. Set Hr = Hr − {j|e+

g ∈ Ej(xopt)} (the set of
at most 2copt − copt

r hj ’s that are embedded in a way different from that of xopt).
If the size of Hr is more than copt

r then we can repeat the process and find another
edge eg (index). The process continues until the size of Hr is less than copt

r . The
above procedure will stop after at most 2r− 1 iterations since each time the size of
Hr is reduced by at least copt

r and the original size of Hr is at most 2copt.
Now, consider any edge e+

i with index i (1 ≤ i ≤ n) not selected in the above
procedure. The number of hj ’s in Ri1,i2,...,i2r

that are not cut correctly at edge
e+

i in xi1 is at most the size of Hr, that is upper bounded by copt

r . Thus, the
lemma holds. ��

Theorem 4. There is a PTAS for the EDHR problem.

Proof. We first compute Ui1,i2,...,ir
and Ri1,i2,...,i2r

.
Case 1: |Ui1,i2,...,i2r

| ≤ C log n: We use the enumerating approach in Section 3 to
compute an embedding for the set of hyperedges in Ui1,i2,...,ir

. For the hyperedges
in Ri1,i2,...,ir

, we simply cut the ring at edge e+
1 . From Lemma 4 and Theorem

1, the ratio is 1
r + 1

r .
Case 2: |Ui1,i2,...,ir

| > C log n: We use the LP and randomized rounding approach
in Section 4 to compute an embedding for the set of hyperedges in Ui1,i2,...,i2r

.
For the hyperedges in Ri1,i2,...,ir

, we simply cut the ring at edge e+
1 . The LP

formulation is as follows:

min c;
kj+1∑
l=1

xj,l = 1 for j = 1, 2, . . . , |U11,i2,...,i2r
|;

|Ui1,i2,...,i2r
|∑

j=1

kj+1∑
q=1

μi,q,j(xj,q+1 + xj,q+2 + . . . + xj,kj
) ≤ c− c(e+

i |R);
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|Ui1,i2,...,i2r
|∑

j=1

kj+1∑
q=1

μi,q,j(xj,0 + xj,1 + . . . + xj,q−1) ≤ c− c(e−i |R),

where c(e+
i |R) and c(e−i |R) are the number of times that e+

i and e−i are used for
the embedding of hj ’s in Ri1,i2,...,i2r

.
Theorem 3 and Lemma 6 ensure that the ratio is 1+ε for any ε. The standard

de-randomization approach gives a deterministic algorithm. ��

Remarks. The NP-hardness of the directed version is still open.
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Abstract. The field of supply chain management has been growing at
a rapid pace in recent years, both as a research area and as a practi-
cal discipline. In this paper, we study the computational complexity of
product covering problems in 3-tier supply chain models, and present
natural complete problems for the classes W [3] and W [4] in parameter-
ized complexity theory. This seems the first group of natural complete
problems for higher levels in the parameterized intractability hierarchy
(i.e., the W -hierarchy), and the first precise complexity characterizations
of certain optimization problems in the research of supply chain man-
agement. Our results also derive strong computational lower bounds and
inapproximability for these optimization problems.

1 Introduction

Parameterized complexity theory [9] is a recently proposed and promising ap-
proach to the central issue of how to cope with intractable problems – as is so
frequently the case in the natural world of computing. An example is the NP-
complete problem vertex cover (determining whether a given graph has a
vertex cover of size k), which now is solvable in time O(1.285k + kn) [5] and be-
comes quite practical for various applications. The other direction of the research
is the study of parameterized intractability, based on a parameterized intractabil-
ity hierarchy, the W -hierarchy

⋃
t≥1 W [t]. Under a parameterized reduction, the

fpt-reduction, a large number of well-known computational problems have been
proved to be complete for certain levels of the W -hierarchy [9]. For example,
clique, independent set, set packing, v-c dimension, and weighted 3-
sat are complete for the class W [1], and dominating set, hitting set, set
cover, and weighted sat are complete for the class W [2]. The completeness of
a problem in a level of the W -hierarchy characterizes precisely the parameterized
complexity of the problem.
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However, no complete problem is known for any level W [t] for t > 2, except
the generic problems based on weighted satisfiability on bounded depth circuits
and their variations [2, 9]1. Therefore, it is interesting to know whether high
levels of the W -hierarchy, which are defined in terms of formal mathematics,
catch the complexity of certain natural computational problems.

In this paper, we present natural complete problems for the classes W [3] and
W [4], based on computational problems studied in the areas of supply chain
management. The study of supply chain management has been growing at a
rapid pace in recent years, as a research area and as a practical discipline [10, 14].
It has provided extremely rich contexts for the definition of new large-scale
optimization problems. Efforts to improve supply chain management have gained
the attention of academic researchers, along with the enthusiastic support of
government and industry. Therefore, our completeness results in the W -hierarchy
for computational problems in the study of supply chains will also contribute
to the understanding of this new computation model. Moreover, based on the
recent research on parameterized intractability and inapproximability [4], our
results also imply directly inapproximability for these problems.

We give a quick review on the related background (see [9] for more details).
A parameterized problem consists of instances of the form (x, k), where x is the

problem description and k is an integer called the parameter. A parameterized
problem Q is fixed parameter tractable if it can be solved by an algorithm of
running time O(f(k)nO(1)), where f is a function independent of n = |x|. Denote
by FPT the class of all fixed parameter tractable problems.

A Πt-circuit of n input variables x1, . . ., xn is a (t+1)-levelled circuit in which
(1) the 0-th level is a single output gate that is an and-gate; (2) each level-t
gate is an input gate labelled by either xi (a positive literal) or xi (a negative
literal), 1 ≤ i ≤ n; (3) the outputs of a level-j gate can only be connected to the
inputs of level-(j − 1) gates; and (4) and-gates and or-gates are organized into
t alternating levels. A circuit is monotone (resp. antimonotone) if all its input
gates are labelled by positive literals (resp. negative literals). A circuit represents
naturally a boolean function. A truth assignment α to the variables of a circuit
C satisfies C if α makes the output gate of C have value 1. The weight of an
assignment α is the number of variables assigned value 1 by α.

The problem weighted satisfiability on Πt-circuits, briefly wcs[t], consists of
instances of the form (C, k), where C is a Πt-circuit that is satisfied by an as-
signment of weight k. The W -hierarchy,

⋃
t≥1 W [t], in parameterized complexity

theory is defined based on wcs[t] via a new reduction, the fpt-reduction. We say
that a parameterized problem Q is fpt-reducible to another parameterized prob-
lem Q′ if there are two recursive functions f and g, and an algorithm A of running
time bounded by f(k)|x|O(1), such that on an input (x, k), the algorithm A pro-

1 We note that a similar situation has occurred in the study of the popular polynomial
time hierarchy, for which complete problems for the first level Σp

1 =NP have been
extensively studied while the research on natural complete problems for higher level
Σp

t for t > 1 has just started recently [15, 16].
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duces a pair (x′, k′), where k′ ≤ g(k), and (x, k) is a yes-instance of Q if and
only if (x′, k′) is a yes-instance of Q′. It is easy to verify that the fpt-reducibility
is transitive [9]. For an integer t ≥ 2, a parameterized problem Q1 is in the
class W [t] if Q1 is fpt-reducible to the problem wcs[t], a parameterized problem
Q2 is W [t]-hard if the problem wcs[t] is fpt-reducible to Q2 (or equivalently, if
all problems in W [t] are fpt-reducible to Q2), and a parameterized problem Q3

is W [t]-complete if Q3 is in W [t] and is W [t]-hard. In particular, the problem
wcs[t] is a generic W [t]-complete problem for t ≥ 2.2

We briefly review the related concepts in supply chain management (see
[7, 8, 18] for detailed and systematic discussions, and see [10, 11, 14] for more re-
cent progresses). The underlying structure of a supply chain model is a network
consisting of various functional units (such as material suppliers, manufactures,
storages, marketing/sales and retailers, and customers) and connections between
different units (in the means of both material and information). A supply chain
may have numerous tiers in the case of that substructure of manufactures forms
a lengthy network itself [14]. Supply chain management involves the manage-
ment of flows between and among the units in a supply chain to maximize total
profitability [10]. The research in supply chain management includes the studies
in strategic-, tactical-, and operational-level decisions [10]. In particular, tactical-
level decisions, which is the subarea directly related to our current paper, are
concerned with medium-range planning efforts, such as production and distribu-
tion quantity planning among multiple existing facilities, system-wide inventory
policies, and distribution frequency decisions between facilities.

2 Single Product Cover and W [3]-Completeness

We follow the supply chain model studied in [17], which is a slight generalization
of the model studied in [12]. The model is a 3-tier supply chain that consists of
three kinds of units: (material) suppliers, (product) manufacturers, and retailers,
such that:

(1) A supplier can be linked to a manufacturer, and a manufacturer can
be linked to a retailer, standing for transportations/transactions between the
units (link capacity is assumed unlimited); (2) A supplier can provide certain
materials; (3). A manufacturer can produce a product if all needed materials for
the product are provided by suppliers linked to the manufacturer; (4) A retailer
has supply of a product if a manufacturer linked to the retailer produces the
product.

Such a supply chain can be modelled by a directed graph G = (S ∪M ∪
R,E), where each unit is represented as a vertex in G and each directed edge
in E represents a link between the corresponding units, here S is the set of all
suppliers, M is the set of all manufacturers, and R is the set of all retailers.
The objective of optimization studied in the current paper on this model is to

2 The corresponding definitions for the class W [1] are somehow special and not directly
related to our discussion, thus are omitted. The readers are referred to [9] for details.
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maximize the channel profit [7, 18], that is, to study the strategies that ensure
that all retailers have supply of certain products they want to carry. In particular,
we say a product covers all retailers if all retailers have supply of the product.

Now suppose that we want to test a new product in market at the widest range
of customers, using as little experimental resource (i.e., suppliers) as possible and
without overloading any supplier. For this, we assign at most one kind of material
needed for the new product to each supplier and would like that the new product
covers all retailers. Obviously, the problem is directly related to the complexity
of the product, i.e., the number k of different kinds of materials needed for the
product. Formally, the problem can be formulated as the following parameterized
problem:

3-scm single-product cover: Let G = (S ∪M ∪ R,E) be a supply
chain model, k an integer, and suppose that we are going to produce a
new product that requires k different kinds of materials. Is it possible to
pick k suppliers, each provides a different kind of material for the new
product, such that the product covers all retailers?

Before proving our main result in this section, we first define the problem
wcs−[3]. The problem wcs−[3] is a subproblem of the problem wcs[3] that re-
quires that in the input pair (C, k) the Π3-circuit C be antimonotone (i.e., all
input gates of C be labelled by negative input literals). It is known that the prob-
lem wcs−[3] is also W [3]-complete [9]. Thus, to prove the W [3]-completeness for
the problem 3-scm single-product cover, it suffices to derive fpt-reductions
between wcs−[3] and 3-scm single-product cover.

Theorem 1. 3-scm single-product cover is W [3]-complete.

Proof. We first present an fpt-reduction fromwcs−[3]to 3-scm single-product
cover. Let (C, k) be an instance of wcs−[3], where C is an antimonotone Π3-
circuit. Let g0 be the output and-gate of C (which is at level 0), L1 be the set
of or-gates at level 1 in C (whose outputs are inputs to g0), L2 be the set of
and-gates at level 2 in C (whose outputs are inputs to gates in L1), and L3 be
the set of input gates in C (which are inputs to gates in L2 and are labelled by
negative input literals).

Construct a 3-tier supply chain model G = (S∪M∪R,E) as follows: (1) each
retailer ρi in R corresponds to an or-gate ui in L1; (2) each manufacturer μi in
M corresponds to an and-gate vi in L2; (3) each supplier σi in S corresponds
to an input gate xi in L3. The vertices in G are connected in the following
way: (1) there is a link from a manufacturer μi to a retailer ρj if and only
if the corresponding and-gate vi is an input to the corresponding or-gate uj ;
and (2) there is a link from a supplier σi to a manufacturer μj if and only if
the corresponding input gate xi is not an input to the corresponding and-gate
vj (note that C is an antimonotone circuit). This completes the description of
the 3-tier supply chain model G. We prove that the circuit C has a satisfying
assignment α of weight k if and only if we can pick k suppliers in the supply
chain G, each for a different kind of material for a new product that needs k
kinds of materials, so that the new product covers all retailers.
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Suppose that the circuit C has a satisfying assignment α of weight k. Let
Xk be the set of k variables in C that are assigned value 1 by α. Let Sk be
the k suppliers corresponding to the k input variables in Xk. We show that we
can pick the k suppliers in Sk, each for a different kind of material for the new
product that needs k kinds of materials, such that the product covers all retailers
in G. Consider any manufacturer μi in M . If μi has the supply for all k kinds
of materials for the new product, i.e., if μi has links from all the k suppliers in
Sk, then by the construction of the supply chain model G, the corresponding
and-gate vi in C has no input from any input gate xj where xj is an input
variable in Xk. Therefore, under the assignment α, all inputs to the gate vi have
value 1 and the output of vi has value 1. On the other hand, if the manufacturer
μi does not receive supply from a supplier σj in Sk, then the input gate xj is
an input to the and-gate vi, and under the assignment α, the output of gate
vi has value 0. In summary, the and-gate vi outputs value 1 if and only if the
corresponding manufacturer μi has supply from all k suppliers in Sk and is able
to produce the new product. Now, a retailer ρi has supply of the new product
if and only if it has a link from a manufacturer μj that can produce the new
product, which by the above analysis if and only if the corresponding and-gate
vj in L2 outputs value 1 under the assignment α. Since the retailer ρi has a
link from a manufacturer μj if and only if the corresponding or-gate ui in C
has input from the corresponding and-gate vj , we conclude that the retailer ρi

has supply of the new product if and only if the corresponding or-gate ui in C
outputs value 1 under the assignment α. Finally, since the output and-gate g0

of C is connected to all or-gates in L1, we conclude that the circuit C has value
1 if and only if all retailers have supply of the new product. In consequence, if
α is a satisfying assignment for the circuit C, then picking the k suppliers in Sk

results in the new product that covers all retailers in G.
Conversely, suppose there is a set Sk of k suppliers, each for a different kind of

material for the new product such that the new product covers all retailers. We
let Xk be the k input variables in the circuit C corresponding to the k suppliers
in Sk. Let α be a weight-k assignment to C that assigns value 1 to the k variables
in Xk and value 0 to all other input variables. Then following exactly the same
reasoning as above, we can verify that the assignment α satisfies the circuit C.

This completes the analysis of the reduction from wcs−[3] to 3-scm single-
product cover. The reduction is obviously an fpt-reduction. In conclusion, we
have proved that the problem 3-scm single-product cover is W [3]-hard.

To show that the problem 3-scm single-product cover is in W [3], it
suffices to show that 3-scm single-product cover is fpt-reducible to wcs−[3].
The construction is very similar to the one described above: for an instance (G, k)
of 3-scm single-product cover, where G = (S ∪M ∪R,E) is a supply chain
model and k is an integer, we construct an instance (C, k) of wcs−[3], where
each level-1 or-gate in C corresponds to a retailer in R, each level-2 and-gate
in C corresponds to a manufacturer in M , and each input gate in C (labelled
by a negative literal) corresponds to a supplier in S. A level-1 or-gate has an
input from a level-2 and-gate if and only if the corresponding retailer has a link



On Product Covering in Supply Chain Models 405

from the corresponding manufacturer in G, and a level-2 and-gate has an input
from an input gate if and only if the corresponding manufacturer has no link
from the corresponding supplier. Now by exactly the same method, we can verify
that the circuit C has a satisfying assignment of weight k if and only if there
are k suppliers, each for a different kind of material for the new product, such
that the new product covers all retailers. In consequence, the problem 3-scm
single-product cover is in the class W [3].

This proves that 3-scm single-product cover is W [3]-complete. ��

3 Multiple Product Cover and W [4]-Completeness

To describe W [4]-complete problems, we consider a general model of 3-tier supply
chains by allowing a supplier to provide multiple kinds of materials, a manufac-
turer to produce multiple kinds of products and a retailer to carry multiple kinds
of products. The proofs of the theorems in this section can be found in [6].

We first consider a covering problem by a line of homogeneous (i.e., similar)
products. Formally, let P be a given line of homogeneous products and let T
be a set of materials, where each product π in P is associated with a set of
materials in T that are needed for producing this product. In a 3-tier supply
chain G = (S ∪ M ∪ R,E), each supplier σ in S is associated with a list of
materials in T that the supplier σ can provide, each manufacturer μ in M is
associated with a list of products in P that the manufacturer μ can produce when
necessary materials are provided by suppliers linked to μ, and each retailer ρ in R
is associated with a suggested list of products in P that the retailer ρ is interested
in carrying when the products are produced by the manufacturers linked to ρ.
We are interested in the following problem in supply chain management: for a
new line P of homogeneous products, we want to use limited amount of resource
(i.e., a small number of suppliers) to test the product market in the widest range
of customers (i.e., make all retailers have supply of some of the new products).
This is formulated as the following parameterized problem.

general 3-scm H-product-line cover: Given a line P of homoge-
neous products, a general supply chain model G = (S ∪M ∪R,E), and
an integer k, is it possible to pick k suppliers providing materials for the
products in P so that each retailer has supply of some products in its
associated product list?

Theorem 2. general 3-scm H-product-line cover is W [4]-complete.
The W [4]-completeness also provides precise complexity characterization for

other computational problems in supply chain management. For example, sup-
pose now that a firm is interested in investigating the market for a set P of
non-homogeneous products. The 3-tier supply chain is again given as a network
of suppliers, manufacturers, and retailers, where each supplier is given as before
and associated with a set of materials that can be provided by the supplier.
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Each manufacturer μ is associated with a set Tμ of materials and a set Pμ of
products such that when all materials in Tμ are provided by suppliers linked to
μ, the manufacturer μ can produce all products in Pμ. Finally, each retailer ρ is
associated with a requested list of products that must be carried by the retailer
ρ. This supply chain model gives a parameterized problem as follows:

general 3-scm product-set cover: Given a product set P , a general
supply chain model G = (S ∪ M ∪ R,E) as described above, and an
integer k, is it possible to pick k suppliers in S providing materials for
the products in P so that every retailer in R has supply of all products
in its associated product list?

The main difference between general 3-scm H-product-line cover and
general 3-scm product-set cover is that in the former model each retailer
only needs to carry some of the products in its associated list while in the latter
model each retailer must carry all products in its associated list.

Theorem 3. general 3-scm product-set cover is W [4]-complete.

4 Computational Lower Bounds and Inapproximability

Theorem 1, Theorem 2 and Theorem 3 provide strong lower bounds for the
complexity of the problems 3-scm single-product cover, general 3-scm
H-product-line cover, and general 3-scm product-set cover.

Theorem 4. For any recursive function f , 3-scm single-product cover
cannot be solved in time f(k)mO(1)no(k) unless W [2] = FPT, and general
3-scm H-product-line cover and general 3-scm product-set cover
cannot be solved in time f(k)mO(1)no(k) unless W [3] = FPT, where n is the
number of suppliers and m is the size of the instance of the problems.

Proof. Suppose that the problem 3-scm single-product cover could be solved
in time f(k)mO(1)no(k), then by the fpt-reduction from wcs−[3] to 3-scm single-
product cover given in Theorem 1, it is easy to see that the problem wcs−[3]
can also be solved in time f(k)mO(1)no(k), where m is the instance size and n
is the number of input variables in the circuit. By Theorem 4.2 in [4], it would
imply W [2] = FPT. The lower bounds for general 3-scm H-product-line
cover and general 3-scm product-set cover can be proved in the same
way using the same theorem in [4]. ��

Since it is generally believed that W [t] 
= FPT for all t > 0, Theorem 4
provides a computational lower bound f(k)mO(1)nΩ(k) for the problems 3-scm
single-product cover, general 3-scm H-product-line cover, and gen-
eral 3-scm product-set cover. Note that this is an asymptotically tight
lower bound for the problems as the algorithm that exhaustively enumerates
and examines all subsets of k suppliers in a problem instance solves the prob-
lems in time O(m2nk) trivially.
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Theorem 4 further implies inapproximability results for certain optimization
problems in 3-tier supply chain management. For this, we need to first review
some related terminologies in approximation algorithms. The readers are referred
to [1] for more detailed definitions and more comprehensive discussions.

An optimization problem Q consists of a set of instances, where each instance
x is associated with a set of solutions. Each solution y of an instance x of Q
is assigned an integral value fQ(x, y). The problem Q is a maximization (resp.
minimization) problem if for each instance x of Q, we are looking for a solution
of maximum (resp. minimum) value. Such a solution is called an optimal solution
for the instance, whose value is denoted by optQ(x).

An algorithm A is an approximation algorithm for an optimization problem
Q if, for each instance x of Q, A returns a solution yA(x) for x. The solution
yA(x) has an approximation ratio r if it satisfies the following condition:

max{optQ(x)/fQ(x, yA(x)), fQ(x, yA(x))/optQ(x)} ≤ r

The approximation algorithm A has an approximation ratio r if for any instance
x of Q, the solution yA(x) constructed by the algorithm A has an approximation
ratio bounded by r. A polynomial time approximation scheme (PTAS) for Q is
an algorithm A′ that on an instance x of Q and a real number ε > 0, constructs
a solution for x whose approximation ratio is bounded by 1+ ε, and the running
time of A′ is bounded by a polynomial of |x| for each fixed ε [1].

Consider the following optimization problems in supply chain management:

3-scm most-complicated product cover: given a 3-tier supply
chain G, select the largest number k of suppliers in G, each for a different
kind of material, such that a new product that needs the k materials can
be produced and all retailers in G have supply of the new product.

general 3-scm min-resource H-product-line cover: given a line
P of homogeneous products and a general 3-tier supply chain G (as de-
fined in general 3-scm H-product-line cover), select the minimum
number of suppliers in G for the product line P , such that each retailer
in G has supply of some products in its associated product list.

general 3-scm min-resource product-set cover: given a set P
of non-homogeneous products and a general 3-tier supply chain G (as
defined in general 3-scm product-set cover), select the minimum
number of suppliers in G for the product set P , such that each retailer
in G has supply of all products in its product list.

Theorem 5. For any recursive function f , 3-scm most-complicated prod-
uct cover has no PTAS of running time f(1/ε)mO(1)no(1/ε) unless W [2] =
FPT, and general 3-scm min-resource H-product-line cover and gen-
eral 3-scm min-resource product-set cover have no PTAS of running
time f(1/ε)mO(1)no(1/ε) unless W [3] = FPT, where n is the number of suppliers
and m is the instance size of the problems.
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Proof. According to the definition given in [3], the parameterized problem 3-scm
single-product cover is the parameterized version of the optimization prob-
lem 3-scm most-complicated product cover. Suppose that 3-scm most-
complicated product cover has a PTAS of running time f(1/ε)mO(1)no(1/ε),
then by Theorem 5.1 in [3], its parameterized version, i.e., the problem 3-scm
single-product cover can be solved in time f(2k)mO(1)no(k), which, by The-
orem 4, would imply W [2] = FPT. The inapproximability for general 3-scm
min-resource H-product-line cover and general 3-scm min-resource
product-set cover can be proved using the same logic. ��

Since it is commonly believed in parameterized complexity theory that W [t] 
=
FPT for all t ≥ 1, Theorem 5 implies that even for a moderate error bound ε > 0,
any PTAS for the problems, if exists, will become impractical.

5 Final Remarks

This paper studies the complexity issues for certain computational problems aris-
ing from the research in supply chain management, and characterizes these prob-
lems in terms of parameterized completeness in higher levels in the W -hierarchy.
The research contributes to both parameterized complexity theory and to the
study of supply chain management. For parameterized complexity theory, we
presented the first group of natural complete problems for the classes W [3] and
W [4], which had no known natural complete problems except the generic com-
plete problems wcs[3] and wcs[4] and their variations. For the study of supply
chain management, to the authors’ knowledge, our results provide first group of
precise complexity characterizations for certain computational problems in the
area, which derive directly strong computational lower bounds and inapprox-
imability results for the problems. The hardness results of these problems will
provide useful information in the study of supply chain management.

A supply chain model has its units classified into different types, which makes
it natural to map the computation in the supply chain model to that of bounded
depth circuits. However, the mapping is not always straightforward and in many
cases must be designed carefully. As we have seen in the current paper, problems
on 3-tier supply chains can either correspond to the class W [3], which is associ-
ated with the satisfiability problem on Π3-circuits of 3 levels, or correspond to
the class W [4], which is associated with the satisfiability problem on Π4-circuits
of 4 levels. Our more recent research studied a computational problem, harm-
ful waste sources, on the recycling model proposed in [13]. The problem
is concerned with whether there are k waste sources who can pollute all mar-
kets. This recycling system is a 4-tier supply chain model, consisting of waster
sources, recycling centers, processors, and markets. However, our study shows
that the problem harmful waste sources is actually W [2]-complete (i.e., cor-
responding to the satisfiability problem on Π2-circuits of 2 levels). Therefore, the
computational complexity of the problems in supply chain management does not
directly depend on the number of tiers in the model but is more closely related
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to the actual applications. In particular, the research in supply chain manage-
ment has opened an area in computational complexity and optimization, and
provided very rich contexts for new large-scale optimization problems that are
both theoretically interesting and practically important.
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1 Introduction

Nowadays wireless communication network plays an important role in the daily
life due to the significant drop in the prices of equipments and the progress in
new technology. In wireless communication networks there is no infrastructure
backbone and for each device the radio signal transmission is conducted in a
finite range around it. The locations of devices and the ranges can be adjusted
dynamically in order to fulfil certain communication quality requirement and to
extend the lifetime of the networks. In general the wireless devices are portable
with only limited power resources (e.g., batteries). High quality of communica-
tion usually consumes more energy and reduce the network lifetime, and vice
verse [3]. Hence, a crucial issue of wireless communication networks is to mini-
mize the energy consumption as well as to keep required communication quality.
Among the models of new generation wireless communication networks, the ad-
hoc wireless network based on multi-hop plays a very promising role [15].

The (static) Range Assignment problem on d-dimensional Euclidean space
(d ≥ 1) is defined as follows. We are given a set S of stations (radio trans-
mitter/receivers) on d-dimensional Euclidean space and the distances between
all pairs are known according to their coordinates. The stations can communi-
cate with each other by sending/receiving radio signals. The message commu-
nication happens via multi-hop transmission, i.e., a message is delivered from
the source to the destination through some intermediate stations and each sta-
tion in this transmission chain other than the source station is in the coverage
range of its predecessor. A range assignment for a set of station S is a function
r : S → R

+, which indicates the radii that stations can cover. For a station
v ∈ S associated with a range r(v) in a network-wise range assignment, its en-
ergy consumption (power consumption) is cost(r(v)) = c(v)(r(v))α, where c(v)
is a parameter depending on the individual device. The distance-power gradi-
ent α is a positive real number, usually in the interval [1, 6] in practice. When
c(v) is a constant for all v ∈ S, we call the model homogeneous, otherwise it
is non-homogeneous [1]. It is worth noting that the non-homogeneous model
can be asymmetric, as the energy consumption for a device on u to cover v may
differ from the energy consumption of another device to conduct the same trans-
mission. The overall energy consumption of a range assignment r is defined as
cost(r) =

∑
v∈S cost(r(v)) =

∑
v∈S c(v)(r(v))α.

A range assignment r yields a directed communication graph Gr = (S,Er),
such that for each pair of stations u and v there exists a directed edge (u, v) ∈ Er

if and only if v is at an (Euclidean) distance at most r(u) from u. For the purpose
of a variety of communication requirements, the communication graph Gr must
fulfil one of following two properties Πh for any fixed h, h ∈ {1, . . . , n−1}, where
n is the number of stations:

– h-strong connectivity: from every station to any other station, Gr must con-
tain a directed path of at most h hops (edges),

– h-broadcast: Gr must contain a directed source spanning tree rooted at a
source station with depth at most h.
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The goal of the Minimum Range Assignment problem (shortly, Min-Range)
is to find a range assignment r for a given S such that Gr fulfils a given prop-
erty Πh and the overall energy consumption cost(r) is minimized. We use nota-
tions Min-Range(h-SC) (respectively, Min-Range(h-B)) for the correspond-
ing Minimum Range Assignment problems, when Πh is the property of h-
strong connectivity (respectively, h-broadcast). The detailed description of the
problem can be also found in [20].

Known Results: Previously attention was mainly paid to the Minimum Range
Assignment problems defined on one dimensional (Euclidean) space, which is
equivalent to the case that a set S of stations are placed along a line (or a
path). Polynomial time algorithms by dynamic programming were addressed
for both homogeneous and non-homogeneous cases for Min-Range(h-B) on
one dimensional (Euclidean) space in [14, 9, 1]. In the homogeneous case the
Min-Range(h-SC) problem is polynomial time solvable for h = 2 (respec-
tively, h = n − 1) within a running time O(n3) (respectively, O(n4)) as pre-
sented in [7] (respectively [14]). However, for any other h it is still open whether
the Min-Range(h-SC) problem on one dimensional space can be solved in
polynomial time. Clementi et al. [7] proposed a 2-approximation algorithm for
any h ∈ {2, . . . , n − 1} for the homogeneous case with a complexity O(hn3).
Furthermore, the algorithm can be extended to the non-homogeneous case.
There are only few results on d-dimensional Euclidean space for d ≥ 2 (see
[8, 20]). In case of h = n − 1, algorithms based on the minimum spanning
tree technique can deliver a solution with a constant approximation ratio for
the Min-Range(h-B) problem [6], where the constant ratio depends on the
dimension d and the distance-power gradient α. For the Min-Range(h-SC)
problem and h = n − 1, a 2-approximation algorithm was addressed in [14].
Recently, Calinescu et al. [4] developed an O(logα n)-approximation algorithm
for the Min-Range(h-B) problem on d dimensional Euclidean space. They also
presented (O(log n), O(log n)) bicriteria approximation algorithms for both Min-
Range(h-B) and Min-Range(h-SC) problems. In [10] the Min-Range(h-
SC) problem was proved in Av-APX for any fixed h ≥ 1 and the problem
is APX -hard on d-dimensional Euclidean space for d ≥ 3. O(min{log n log log n,
(log n)α})- and O(n2 min{log n log log n, (log n)α})-approximation algorithms for
Min-Range(h-B) and Min-Range(h-SC)on metric space were proposed in
[21], respectively. This was the first work to explore Minimum Range Assign-
ment problem on general spaces. In their model, the triangle inequality is still
required for the transmission distance.

Our Contributions: In this paper, we first propose a new model of the Mini-
mum Range Assignment problem. We show that our model is a generalization
of the previous models and is realistic. We notice that the transmission cost for
the same device is not homogeneous on space, i.e., the costs from different loca-
tions to cover the same Euclidean distance can be different due to environmental
factors. In this case it is invalid to measure the cost by Euclidean distance. Thus
we consider the problem with a station set S on a space with transmission dis-
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tance (see Subsection 2.1) instead of the original Euclidean distance. In such an
instance, the transmission distance can even violate the triangle inequality, and
no previous study remains valid in this case. Our main ideas are as follows. We
first present a probabilistic algorithm to approximate any edge-weighted graph
by a collection of paths, such that for any pair of nodes the expected distortion
of shortest path distance is at most O(log n), where n is the number of nodes in
the graph. The paths in the collection and the corresponding probability distri-
bution are given by solving a packing problem [13], and an approximate solver
of the Minimum Linear Arrangement problem [19] is employed as an ora-
cle. With this algorithm we are able to approximate the general static ad-hoc
networks to paths and run known algorithms in [1, 7, 9, 14] for the Minimum
Range Assignment problem on one dimensional Euclidean space (lines or
paths). Therefore this strategy leads to probabilistic O(log n)-approximation al-
gorithms for the Minimum Range Assignment problem (both Min-Range(h-
B) and Min-Range(h-SC)) for general static ad-hoc networks. The ratio for
the Min-Range(h-B) problem reaches the lower bound for networks that tri-
angle inequality is valid for transmission distance [20]. It is worth noting that
the case in [20] is only a special case of our model as here we allow violation
of the triangle inequality. Furthermore, if the input graph of station set fulfils
certain property, we show that the approximation ratio can be further reduced
to O((log log n)α).

2 Preliminaries

2.1 Our Model

In most of previous works for the Minimum Range Assignment problem either
h is set as n − 1 [14, 6], or the station set is on one dimensional (Euclidean)
space [14, 7, 9, 1]. For studies of Minimum Range Assignment problem on
multidimensional space, the transmission cost is measured by the (Euclidean)
geometric distance [14, 6, 4]. Even in [21], the triangle inequality must hold for
the transmission cost.

The one dimensional model has already been extensively studied as a good
approximation of the real instances. However, demands on models on multidi-
mensional space are increasing, as they are more precise to characterize the real
ad-hoc networks. Furthermore, from the engineering point of view, the model
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with fixed h = n−1 is not practical and hard to control by current protocols [5].
Finally, an important issue is the measurement of the transmission cost in the
ad-hoc networks. In almost all of previous works the transmission cost is assumed
to be characterized by the (Euclidean) geometric distance. We notice that due
to environmental condition, that assumption is not always true. For instance
(Figure 1), three stations are along a line, and dE(a, b) = dE(b, c), where dE

is the Euclidean geometric distance. However, there are some barriers (forests,
buildings, etc.) between a and b, while there is no barrier between b and c. In
such an instance, it costs more energy to send signals from b to a than from b
to c. Thus the geometric distance is not sufficient to measure the real energy
cost in transmission though it is a good approximation. We further notice that
on metric spaces the triangle inequality is assumed valid, and this assumption
could be violated in real wireless communication networks. For instance (See
Figure 2), three stations are on a plane. There is a solid barrier (e.g. mountains,
large buildings, etc.) between stations a and b, while there is no such solid bar-
rier between station pairs a, c and b, c. In this example dE(a, b) ≤ dE(a, c) and
dE(a, b) ≤ dE(b, c). However, it costs much more to launch a signal transmission
between a and b due to the solid barrier. Therefore the energy cost for direct
transmission between a and b can be greater than the sum of costs of transmis-
sions between a, c and b, c. Thus the triangle inequality does not hold. When
the transmission cost between a and b is unbounded (which does happen in real
world), it is impossible to build an ad-hoc network for this instance with only
h = 1 hop and a bounded overall energy cost.

In this paper, we propose a new model of the Minimum Range Assignment
problem in ad-hoc communication networks. In this model, h can be any integer
number in {1, . . . , n−1}. Furthermore, the stations are on arbitrary spaces, and
the transmission cost between each pair can be arbitrary. We propose a concept
transmission distance, which is a scalable quantity. Given a station set S and a
distance power gradient α, we can measure the minimum energy cost cost(u, v)
of directly sending signals from any station u ∈ S to any other v ∈ S \ {u}
with a standard wireless device c(u) = 1. The transmission distance between
the station pair (u, v) is defined as d(u, v) = (cost(u, v))−α. In an instance of
Minimum Range Assignment problem (G(S,E, lG), α,Πh) of our model, we
are given a complete edge weighted graph G, a distance power gradient α ≥ 1 and
a required property Πh of the communication graph (either h-strong connectivity
or h-broadcast), for h ∈ {1, . . . , n− 1}. In the weighted graph G, the vertex set
S is the station set and the weight l(u, v) of any edge (u, v) is the transmission
distance (which can violate the triangle inequality) between the two endpoints
u and v. The edge weight can be infinity if the transmission cost between the
corresponding two endpoints is unbounded. Same as the previous models, the
goal is to find a network-wise arrangement r such that the property Πh holds
in the resulting communication graph and the overall energy cost cost(r) is
minimized. We also notice that this model of the Minimum Range Assignment
problem generalizes the previous models.
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2.2 Notations and Definitions

Given a graph, we can embed it in a simpler graph such that the distance be-
tween each pair of vertices are approximately preserved. This technique can be
employed to solve some hard problems on arbitrary graphs, as an arbitrary graph
may have a very complicated structure. We will propose the idea of probabilis-
tic approximation of weighted graphs by a collection of simpler graphs (e.g.,
paths). This is a generalization of the concept of probabilistic approximation of
metric spaces addressed in [2], because here edge weights can violate triangle
inequality.

Given two graphs G1 = (V,E1, l1) and G2 = (V,E2, l2) with the same node
set V , G1 dominates G2 if and only if dG1(u, v) ≥ dG2(u, v) for all pair u,
v ∈ V , where dGi

(u, v) is the shortest path distance between node pair u and
v in Gi. G1 is also called a non-contracting embedding of G2. The distortion is
defined as maxu,v∈V dG1(u,v)/dG2(u,v). Suppose that H is a collection of graphs
that have the same node set V as another graph G. Assuming that each graph
in H dominates G, H is defined to ρ-probabilistically approximate G if there is
a probability distribution μ over H such that for each pair of nodes in V the
expected distance between them in a graph H ∈ H chosen according to μ is at
most ρ times the distance between the pair in G, i.e., E[dH(u, v)] ≤ ρdG(u, v).

In this paper, we will develop an algorithm to O(log n)-probabilistically ap-
proximate any graph by a collection of paths (see Section 3). Based on this
algorithm, we are able to generalize the existing algorithms for the Minimum
Range Assignment problems in ad-hoc networks on lines (paths) to arbitrary
networks. For the deterministic version of the problem, Matoušek [16] shows
that any metric can be embedded into the real line with a distortion O(n). This
result is existentially tight as the n-cycle can not be embedded into a line with
distortion o(n) [12, 18].

3 Approximate a Graph by a Collection of Paths

We are given an edge-weighted graph G(V,E, lG), where |V | = n, |E| = m,
and a weight function lG : E → R

+
0 . The weight function lG can violate the

triangle inequality. Without loss of generality, we assume that the diameter of G
is bounded by one. Otherwise a simple scaling method can be employed with a
running time bounded by O(n2). Let P = {P1, . . . , PN} be a collection of paths,
each connecting all nodes in V . Each path in P dominates the graph G, i.e.,
dPi

(u, v) ≥ dG(u, v) for any pair u, v ∈ V and i ∈ {1, . . . , N}. Here the distance
functions dPi

and dG are shortest path distance in the path Pi and the graph
G, respectively. In addition, we assign a real number xi ∈ [0, 1] to every path
Pi ∈ P, which represents the probability distribution μ over the path collection
P, and the sum of xi is 1. Denote by λ the distortion of each edge and lG(e)
the edge length of e ∈ E. The following linear program is to find the probability
distribution μ that minimizes the expected edge distortion in P ∈ P:
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min λ

s.t.
∑N

i=1 dPi
(e)xi ≤ λlG(e), for all edge e ∈ E;∑N

i=1 xi = 1;
xi ≥ 0.

(1)

Here the first set of constraints indicates that the expected distortion of every
edge e ∈ E in all paths in P is bounded by λ. The other constraints are directly
from the definition of probability distribution. Notice that in (1) the number of
variables (i.e., the number of paths in P) can be exponentially large. We notice
that (1) can be formulated as a packing problem described in [13] and the packing
constraints fe(x) =

∑N
i=1 dPi

(e)xi/lG(e) are nonnegative linear functions, and
the set B = {x = (x1, . . . , xN )T |

∑N
i=1 xi = 1, xi ≥ 0} is indeed a simplex. We

will apply the approximation algorithms in [13] to solve this packing problem. In
order to develop an algorithm for (1), we need to consider the block problem in
advance, which is related to the dual problem and the structure of the set B. As
showed in [13], given a price vector y ∈ Y = {(y1, . . . , ym)|

∑
e∈E ye = 1, ye ≥ 0},

the block problem is to find an x̂ ∈ B such that yT f(x̂) = minx∈B yT f(x). With
the formulation of the packing constraints in (1), the block problem can be
simplified as follows:

min
x∈B

∑
e∈E

(
ye

N∑
i=1

dPi
(e)

lG(e)
xi

)
= min

x∈B

N∑
i=1

(
xi

∑
e∈E

ye
dPi

(e)
lG(e)

)
= min

Pi∈P

∑
e∈E

ye

lG(e)
dPi

(e).

The last equality holds because we can choose one path Pi minimizing the sum∑
e∈E yedPi

(e)/lG(e), and set its corresponding probability xi = 1 (and the
probabilities of other paths are set as 0) to achieve the optimum. Denote by
w(e) = ye/lG(e) the weight on edge e. Therefore the goal of the block problem is
to find a path P connecting all nodes in G such that the value

∑
e∈E w(e)dP (e)

is minimized with the given weight function w, for all edge e ∈ E.
The block problem actually is equivalent to the Minimum Linear Arrange-

ment problem (MLA). The problem is defined as follows: Given a graph G(V,E)
and nonnegative edge weights w(e) for all e ∈ E, where |V | = n and |E| = m.
The goal is to find a linear arrangement of the nodes σ : V → {1, . . . , n} that
minimizes the sum of the weighted edge lengths |σ(u)−σ(v)|, over all (u, v) ∈ E.
If we define the overall cost as c =

∑
(u,v)∈E w(u, v)|σ(u)− σ(v)|, then the goal

of the Minimum Linear Arrangement problem is to minimize the total cost
c. Then we can place all vertices u ∈ V on a path P (i.e., a one dimensional
Euclidean space) and the coordinates are their arrangements σ(u). It is obvious
that the weight in the Minimum Linear Arrangement problem corresponds
to the weight function in our block problem and the length |σ(u)− σ(v)| corre-
sponds to the distance in the path dP (u, v). Therefore we can directly apply the
algorithms for the Minimum Linear Arrangement problem to solve our block
problem to generate a path. However, the Minimum Linear Arrangement
problem is NP-hard [11]. The best known algorithm for the Minimum Linear
Arrangement problem is proposed by Rao et al. [19] and the approximation
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Table 1. Approximation Algorithm RA for Minimum Range Assignment

Algorithm RA(G(S, E, lG), α, Πh):

1. Construct a complete graph MG for the given network G, such that for any pair
u, v ∈ S, the weight of the edge (u, v) in MG is lMG(u, v) = (lG(u, v))α.

2. Run Algorithm AG(MG(S, EMG , lMG),P, x) in Section 3 to generate a collection
P of paths with a probability distribution μ over it; the generated paths can
be represented in one-dimensional (Euclidean) lines such that neighbours are in
(Euclidean) distance one.

3. Run algorithms for the Minimum Range Assignment problems (Min-Range(h-
SC) and Min-Range(h-B)) for static ad-hoc networks on one dimensional (Eu-
clidean) space for the reduced instances (P (SP , EP , 1), 1, Πh), for any P ∈ P
chosen according to the probability distribution μ.

ratio is O(log n). Thus we are able to construct an O(log n)-approximation al-
gorithm for the linear program (1).

We denote by AG(G(V,E, lG),P, x) the O(log n)-approximation algorithm
based on [13]. Due to the space limit, we do not give the details here. According
to [13], we have the following result:

Theorem 1. Given a graph G = (V,E, lG), |V | = n, |E| = m, and an edge
weight function lG : E → R

+
0 , there exists an algorithm that generates a collec-

tion P of O(m log m) paths and a probability distribution μ(x) over the collection
P, such that for any edge e ∈ E, the expected distortion of e in P is bounded
by O(log n). The running time of the algorithm is O(m log m(β + m log log m))
time, where β is the running time of the approximate Minimum Linear Ar-
rangement solver.

4 Approximation Algorithms for the Minimum Range
Assignment Problem in Static Ad-Hoc Networks

For any fixed h, let (G(S,E, lG), α,Πh) be an instance for the Minimum Range
Assignment problem (Min-Range(h-SC) or Min-Range(h-B)) in static ad-
hoc networks with arbitrary structure, where S is the station set, lG is the
transmission distance in the complete graph G, α is the distance-power gradient,
and Πh is the property of the communication graph (h-strong connectivity or
h-broadcast). Our approximation algorithm is in Table 1. Hence, we obtain the
following theorem for the approximation algorithm RA:

Theorem 2. There exists a probabilistic O(log n)-approximation algorithm for
Min-Range(h-SC) and Min-Range(h-B) in general static ad-hoc networks
running in at most O(n2 log n(β+n2 log log n)+hn4) time, where β is the running
time of the approximate Minimum Linear Arrangement solver.
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Table 2. Approximation Algorithm RA′ for Minimum Range Assignment in a spe-
cial case

Algorithm RA′(G(S, E, lG), α, Πh, Ω):

1. Run Algorithm AG(G(S, E, lG),P, x) in Section 3 to generate a collection P of
paths with a probability distribution μ over it;

2. Run algorithms for the Minimum Range Assignment problems (Min-Range(h-
SC) and Min-Range(h-B)) for static ad-hoc networks on one dimensional (Eu-
clidean) space for the reduced instances (P (SP , EP , 1), 1, Πh), for any P ∈ P
chosen according to the probability distribution.

Due to the limit of space we do not give the proof in this version. It is worth
noting that the approximation ratio of Algorithm RA for the Min-Range(h-B)
problem is O(log n), while the lower bound for the Min-Range(h-B) problem
on metric spaces, where triangle inequality holds, is also O(log n) [20].

5 Improved Approximation Ratio for a Special Case

A graph H is a minor of another graph G if H can be obtained from G by deleting
and contracting some edges of G. Denote by Kr,r the r × r complete bipartite
graph. We define a property Ω as follows: An instance (G(S,E, l), α,Πh, Ω) of
the Minimum Range Assignment problem in general ad-hoc networks has the
property Ω if and only if (1) the graph G does not contain Kr,r-minors for any
r ≥ 3; (2) α ≤ O(log log n/ log log log n). For any instance (G(S,E, lG), α,Πh, Ω)
of the Minimum Range Assignment problem we have the two-step algorithm
in Table 2. Then we have the following theorem:

Theorem 3. There exists a probabilistic O((log log n)α)-approximation algorithm
for Min-Range(h-SC) and Min-Range(h-B) in general static ad-hoc net-
works when property Ω holds.

We claim that indeed the instances with property Ω are not rare. It is obvious
that for a fixed value of α (which is usually in the interval [1, 6] in practice), a
large station set S can result in the second assumption of the property Ω. In
fact, an instance on a planar graph with α = 2, a set of n = 16 stations is
sufficient for the property Ω. We believe that many real applications belong to
this category.

Remark: In general, a mobile ad-hoc network consists of mobile nodes that
are connected via wireless links. By the DSDV (Destination-Sequence Distance-
Vector) protocol [17], it needs to compute a temporary ad-hoc networks based
on the routing table. Thus, DSDV is the base to study a static ad-hoc networks
and apply the results in static networks to the mobile one. Here we can also
generalize our algorithms to the model of mobile ad-hoc networks (dynamical
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model) according to the DSDV protocol. Assuming that the time for radio signals
to reach any node in the network is no more than the time step for updating the
routing table, our algorithm RA or RA′ lead to an O(min{log n, (log log n)α})-
approximation algorithm for any instance of the Minimum Range Assignment
problemin general mobile ad-hoc networks.
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Abstract. The Knapsack problem and integer programming are NP-
complete problems. In this paper we show that the inverse problem of
Knapsack problem can be solved with a pseudo-polynomial algorithm.
We also show that the inverse problem of integer programming with fixed
number of constraints is pseudo-polynomial.

Keywords: Inverse problem, Knapsack problem, integer programming,
pseudo-polynomial algorithm.

1 Introduction

Given an optimization problem:

min{f(c, x)|x ∈ D}, (1)

where c ∈ Rn is a parameter vector, D is the feasible region of x, f(c, x) is the
objective function. Given a feasible solution x0 of (1), is there c̄ ∈ Rn such that
x0 is the optimal solution of (1) with c̄ as parameter vector? Formally, let

F (x0) = {c̄ ∈ Rn|min{f(c̄, x)|x ∈ D} = f(c̄, x0)},

if F (x0) 
= ∅, define
min{‖c− c̄‖|c̄ ∈ F (x0)}, (2)

where ‖.‖ denotes the norm of the vector, the popular choices for the norms are
l1, l2 and l∞. we call (2) the inverse problem of (1).

The research on inverse optimization problems have attracted some attention
over the last decade. For example, Burton and Toint [3],[4] and Burton, Pulley-
blank and Toint [5], Ahuja and Orlin [1], Dial [6] have studied inverse shortest
path problem, Huang and Liu [7],[8] have considered inverse linear programming
and applied it to inverse matching problem and inverse minimum cost flow prob-
lem respectively; Zhang, Liu and Ma [12], Sokkalingam, Ahuja and Orlin [1], and
Ahuja and Orlin [2] studied inverse minimum spanning tree problem. For a sur-
vey on inverse combinatorial optimization problems we refer the reader to Ahuja
and Orlin [1], and Hueberger [9]. Most of the inverse problems studied so far are
polynomial problems, and it has been shown that most of their inverse problems
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are polynomial problems too [9]. The results on the inverse problems of NP-
complete problems are rare due to their difficulties. In this paper, we first show
that the inverse problem of Knapsack is pseudo-polynomial; we also show that
the inverse problem of integer programming with fixed number of constraints is
pseudo-polynomial.

The paper is organized as follows: in section 2 we introduce the Knapsack
problem and show that its inverse problem is pseudo-polynomial. In section 3,
we show that the inverse problem of integer programming with fixed number of
constraints is also pseudo-polynomial. We will give some concluding remarks in
section 4.

2 The Inverse Knapsack Problem

The Knapsack problem can be stated as the following:

Min{cT x|aT x ≥ B;x ∈ {0, 1} − vector} (3)

where c = (c1, . . . , cn) ∈ Rn is an rational vector, a = (a1, . . . , an) ∈ Zn and B
are integer vector and integer number respectively.

Using the definition of inverse problem given in section 1, the inverse Knap-
sack problem can be stated as follows: given a vector x0 ∈ {0, 1} such that
aT x0 ≥ B, we want to perturb the vector c to c + θ such that x0 is an optimal
solution of above Knapsack problem with cost vector c + θ under the condition
that ‖θ‖ is minimal.

To show that the inverse Knapsack problem is pseudo-polynomial, we con-
struct a directed graph first as in [10]. Let S = Max{|a1|, . . . , |an|}, construct
the directed graph G = (V,A) with vertex set

V := {0, 1, . . . , n} × {−nS, . . . ,+nS}
and arc set

A := {((j, k), (i, k′))|j = i− 1, and k′ − k = 0, or ai}.
Define the length of arc ((i− 1, k), (i, k′)) ∈ A as follows:

l((i− 1, k), (i, k′)) =
{

ci, if k′ = k + ai

0, if k′ = k.

It is easy to check that the directed graph has no directed cycle.
To show the relationship between the feasible solutions of the Knapsack prob-

lem (3) and the directed paths of graph G, we have the following lemma.

Lemma 2.1. x is a feasible solution of (3) if and only if there exists a directed
path P of G from (0, 0) to (n,B′) for some B′ ≥ B such that the length of P is
cT x.

Proof. Let P be any directed path in G from (0, 0) to (n,B′) for some B′ ≥ B,
define

xi =
{

1, if ((i− 1, k), (i, k + ai) ∈ P for some k;
0, if ((i− 1, k), (i, k)) ∈ P for some k.
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It is easy to see that x = (x1, . . . , xn) is a feasible solution of the Knapsack prob-
lem, and the length of P is equal to cT x. Therefore the Knapsack problem of (3)
can be solved by finding a shortest path from (0, 0) to (n,B′) for some B′ ≥ B.

Conversely, let x0 be any feasible solution of the above Knapsack problem,
then by mathematical induction one can easily construct a path P of G from
(0, 0) to (n,B′) by same method, where B′ = aT x0 =

∑
x0

i
=1 ai, such that the

length of the path P is cT x0. For example, if x0
n = 1, put arc ((n − 1, B′ −

an), (n,B′)) ∈ P , otherwise put arc ((n− 1, B′), (n,B′)) ∈ P , and so on. Even-
tually we can construct a directed path P of G from (0, 0) to (n,B′) such that
the length of the path P is cT x0. Hence the inverse Knapsack problem can be
solved by inverse shortest path problem of G.

Since the directed graph G has no cycle, therefore the inverse shortest path
problem of such graph can be solved in O(m) time according to Dial [6], where
m = |A| = O(n3S2). Hence we can obtain the following result immediately.

Theorem 2.2. The inverse problem of Knapsack problem (3) can be solved
by a pseudo-polynomial algorithm with complexity O(n3S2).

3 Inverse Problem of Integer Programming

In this section we consider the inverse problem of integer programming with
fixed number of constraints. Consider the integer linear programming problem:

Max{cT x|Ax = b, x ≥ 0;x ∈ Zn}, (4)

where Zn denotes the n-dimensional integral vectors, A = (aij) ∈ Zm×n is an
integral m× n matrix, and b = (b1, . . . , bm) ∈ Zm and c = (c1, . . . , cn) ∈ Zn are
integral vectors. We assume m is fixed, and n can vary.

The inverse integer programming problem can be stated as follows: given a
feasible solution x0 of (4), we want to perturb the vector c to c + θ such that x0

is an optimal solution of the integer programming with cost vector c + θ under
the condition that ‖θ‖ is minimal.

To show that the inverse integer programming is pseudo-polynomial, we con-
struct a directed graph similar to the last section, and show that an feasible
solution of (4) corresponding to a directed path in the graph D.

Let S = Max{|aij |, |bi||i = 1, . . . , m; j = 1, . . . , n}. It is well known (Theorem
17.1 of [10]) that if (4) is finite, than it has an optimal solution with components
at most (n + 1)(mS)m. Let U := (n + 1)S(mS)m. Construct a directed graph
D = (V,E) with vertex set, whose elements are (m + 1)-dimensional vectors, as
follows:

V := {0, . . . , n} × {−U, . . . ,+U}m

and arc set E given by

((j, u′′), (i, u′)) ∈ E ⇔ j = i− 1, u′′ − u′ = kAi, k ∈ Z+

where Ai denotes the ith column of A.
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Define the length of arc ((i− 1, u′′), (i, u′)) ∈ E as follows:

l((i− 1, u′′), (i, u′)) = −kci.

Similar to the lemma 2.1 of last section, we have the following lemma.

Lemma 3.1 x is a feasible solution of (4) if and only if there exists a path P
of D from (0, 0) to (n, b) such that the length of P is −cT x.

Proof. Let P be any directed path from (0, 0) to (n, b), define

xi = k, if ((i− 1, u′), (i, u′ + kAi)) ∈ P for some k.

It is easy to see that x = (x1, . . . , xn) is a feasible solution of the integer pro-
gramming (4), and the length of P is −cT x.

On the other hand, let x = (x1, . . . , xn) be any feasible solution of the integer
programming (4), we can construct a path P of D from (0, 0) to (n, b) as follows:
put arc ((n− 1, b− xnAn), (n, b)) ∈ P and so on, then P is a path from (0, 0) to
(n, b) in D. Furthermore, the length of the P is −cT x.

Lemma 3.1 states that a feasible solution x of the integer programming (4)
corresponding to a directed path P from (0, 0) to (n, b) in D. If there is no
directed path from (0, 0) to (n, b) exists, than (4) is infeasible, since if (4) is
feasible, it has a feasible solution x with all components at most (n + 1)(mS)m.
If such a path does exist, and if the ‘LP-relaxation’ Max{cT x|Ax = b, x ≥
0} is unbounded, (4) is also unbounded by Theorem 16.1 of [10]. If the ‘LP-
relaxation’ Max{cT x|Ax = b, x ≥ 0} is finite, than the shortest path from (0, 0)
to (n, b) gives the optimal solution for (4). Therefore the inverse problem of
integer programming (4) can be solved by solving the inverse shortest path
problem of D.

It is easy to check that the directed graph D also has no cycle, therefore
the inverse shortest path problem of such graph can also be solved in O(m) =
O(|E|) = O(nU2) = O(n3S2(mS)2m time by Dial [6]. So we have the following
theorem.

Theorem 3.2. The inverse problem of integer programming (4) can be solved
by a pseudo-polynomial algorithm with complexity O(n3S2(mS)2m).

4 Conclusions

In this paper we have shown that the inverse problem of Knapsack problem
is pseudo-polynomial. We have also shown that the inverse problem of integer
programming with fixed number of constraints is pseudo-polynomial. The idea
of the proof is simple. We first construct a directed graph, then we show that a
feasible solution of the Knapsack problem of (3) and integer programming of (4)
corresponding to a path of the graph from one vertex to another one. Therefore
the inverse problems can be solved by solving the shortest path problems of the
directed graphs G and D respectively. To the best of our knowledge this is the
first result for the inverse problem of NP-complete problems.

An interesting and open question is: are there NP-complete problems whose
inverse problems are polynomial? This will be the future research topic.
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This paper is dedicated to the memory of Lillian Barros

Abstract. Level of Repair Analysis (LORA) is a prescribed procedure
for defence logistics support planning. For a complex engineering system
containing perhaps thousands of assemblies, sub-assemblies, components,
etc. organized into several levels of indenture and with a number of pos-
sible repair decisions, LORA seeks to determine an optimal provision
of repair and maintenance facilities to minimize overall life-cycle costs.
For a LORA problem with two levels of indenture with three possible
repair decisions, which is of interest in UK and US military and which
we call LORA-BR, Barros (1998) and Barros and Riley (2001) developed
certain branch-and-bound heuristics. The surprising result of this paper
is that LORA-BR is, in fact, polynomial-time solvable. To obtain this
result, we formulate the general LORA problem as an optimization ho-
momorphism problem on bipartite graphs, and reduce a generalization of
LORA-BR, LORA-M, to the maximum weight independent set problem
on a bipartite graph. We prove that the general LORA problem is NP-
hard by using an important result on list homomorphisms of graphs. We
introduce the minimum cost graph homomorphism problem and provide
partial results. Finally, we show that our result for LORA-BR can be
applied to prove that an extension of the maximum weight independent
set problem on bipartite graphs is polynomial time solvable.

1 Introduction

Level of Repair Analysis (LORA) is a prescribed procedure for defence logis-
tics support planning (see, e.g., Crabtree and Sandel [9] and the website of the
UK MoD Acquisition Management System at www.ams.mod.uk/ams). For a
complex engineering system containing perhaps thousands of assemblies, sub-
assemblies, components etc. organized into � ≥ 2 levels of indenture and with
r ≥ 2 possible repair decisions, LORA seeks to determine an optimal provision
of repair and maintenance facilities to minimize overall life-cycle costs.
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Barros [4] and Barros and Riley [6] provide a generic integer programming
formulation of the LORA optimization problem for systems with � levels of inden-
ture and r possible repair decisions (including the non-repair option). A special
case with � = 2 and r = 3, which we call LORA-BR, is of particular importance
because it corresponds to recommendations in certain UK and US military stan-
dard handbooks, see Barros and Riley [6]. In French military standards, � = 2
and r = 5. Notice that the actual research of Barros and Riley was only for
LORA-BR [5] for which the corresponding software have been developed.

While Barros [4] solves LORA-BR using a general purpose IP solver, Barros
and Riley [6] outline a specialized branch-and-bound heuristic, which appears
to be more efficient in computational experiments. Their heuristic is based on
a relaxation of LORA-BR into a pair of uncapacitated facility location (UFLP)
problems. A branch-and-bound procedure then employs local search heuristics to
satisfy additional side constraints ensuring consistency between repair decisions
for pairs of items nested on adjacent indenture levels. Since UFLP is NP–hard,
it could be expected that LORA-BR would also be intractable. However, the
surprising result of this paper is that LORA-BR is polynomially solvable and
this is achieved by reducing its generalization, LORA-M (defined in Section 3),
to the maximum weight independent set problem on a bipartite graph.

As it was pointed out above, the case of two levels of indenture is of particular
interest (e.g., in UK, USA and French military). For clarity of exposition, in the
rest of this paper apart from Section 4, we restrict ourselves to two levels of in-
denture, � = 2, but our approach can be extended to arbitrary � as demonstrated
in Section 4.

For a pair of graphs H = (V (H), E(H)) and B = (V (B), E(B)), a mapping
k : V (B)→V (H) such that if xy ∈ E(B) then k(x)k(y) ∈ E(H) is called
a homomorphism of B to H. To study the LORA problem, we show how to
formulate it as a problem of finding a homomorphism of minimum cost belonging
to a certain class of homomorphisms of a bipartite graph to a fixed bipartite
graph. This allows us to use a nontrivial result on the list H-homomorphism
problem from [10] to easily show that the general LORA problem with � = 2 is
NP–hard. We also prove that LORA-M is polynomial time solvable.

The formulation of the LORA problem in terms of special homomorphisms
leads us to the introduction of the minimum cost H-homomorphism problem
(MCHP): For a fixed graph H and an input graph G given together with costs
cz(u), the cost of mapping a vertex u ∈ V (G) to z ∈ V (H), verify whether
there is a homomorphism of G to H, and if one exists, find such a homomor-
phism k that minimizes

∑
u∈V (G) ck(u)(u). MCHP extends the well-studied list

H-homomorphism problem [13]. We use our results for the LORA problem to
obtain the corresponding results for MCHP. In particular, we show that if H is
a bipartite graph with the complement being an interval graph, then MCHP is
polynomial time solvable. In contrast, if H is not bipartite with the complement
being a circular arc graph, then MCHP is NP–hard.
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We also use our results to show that the bipartite case of the critical indepen-
dent set problem (defined in Section 6), which generalizes the maximum weight
independent set problem, is polynomial time solvable.

In this paper, all graphs are finite, undirected, and simple (i.e., without loops
or multiple edges). For standard graph-theoretical terminology and notation,
see, e.g., Asratian, Denley and Haggkvist [3] or West [15]. For terminology and
results on homomorphisms, see Hell and Nesetril [13].

The rest of the paper is organized as follows. In Section 2, we provide for-
mulations of LORA-BR and the general LORA problem with � = 2 in terms of
graph homomorphisms. We prove that the general LORA problem with � = 2
is NP–hard. In Section 3, we show how to solve a generalization of LORA-BR,
LORA-M with � = 2, in polynomial time. In Section 4, we extend the general
LORA problem with � = 2 to the general LORA problem with arbitrary � ≥ 2.
In Section 5, we introduce the minimum cost H-homomorphism problem and
show that the results of Sections 2 and 3 can be easily extended to it. Finally,
in Section 6 we apply a result from Section 3 to solve the bipartite case of the
critical independent set problem in polynomial time.

2 LORA-BR and General LORA with � = 2

Consider first a special case of LORA with � = 2 and r = 3 following Barros
[4] and Barros and Riley [6] (we will call this special case LORA-BR). We refer
to the first level of indenture in LORA-BR as subsystems s ∈ S and the second
level of indenture as modules m ∈M. The distribution of modules in subsystems
can be given by a bipartite graph G = (V1, V2;E) with partite sets V1 = S and
V2 = M . For arbitrary s ∈ V1 and m ∈ V2, sm ∈ E if and only if module m is
in subsystem s. We consider G to be an arbitrary bipartite graph and denote its
vertex set V (V = V1 ∪ V2).

There are r = 3 available repair decisions for each level of indenture: ”dis-
card”, ”local repair” and ”central repair”, labelled respectively D,L,C (subsys-
tems) and d, l, c (modules). To be able to use a decision z ∈ {D,L,C, d, l, c}, we
have to pay a fixed cost cz. Assume also known additive costs (over a system
life-cycle) cz(u) of prescribing repair decision z for subsystem or module u.

We wish to minimize the total cost of choosing a subset of the six repair
decisions and assigning available repair options to the subsystems and modules
subject to the following constraints:

If a module m occurs in subsystem s (i.e., sm ∈ E) we impose the following
logical restrictions on the repair decisions for the pair (s,m) motivated through
practical considerations:

R1 : Ds ⇒ dm, R2 : lm ⇒ Ls,

where Ds, dm denote the decisions to discard subsystem s, module m, respec-
tively, etc. Notice that even though module m may be common to several sub-
systems we are required to prescribe a unique repair decision for that module.
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R1 has the interpretation that a decision to discard subsystem s necessarily
entails discarding all enclosed modules. R2 is a consequence of R1 and a policy
of “no backshipment” which rules out the local repair option for any module
enclosed in a subsystem which is sent for central repair [6].

To get a complete graph-theoretical formulation of LORA-BR, we will use
the notion of a homomorphism of graphs that generalizes the notion of coloring
(see, e.g., Hell and Nesetril [13]). For a pair of graphs H = (V (H), E(H)) and
B = (V (B), E(B), a mapping k : V (B)→V (H) such that if xy ∈ E(B) then
k(x)k(y) ∈ E(H) is called a homomorphism of B to H.

Let FBR = (Z1, Z2;T ) be a bipartite graph with partite sets Z1 = {D,C,L}
(subsystem repair options) and Z2 = {d, c, l} (module repair options) and with
edges T = {Dd,Cd,Cc, Ld, Lc, Ll}. Let Z = Z1 ∪ Z2. Observe that any homo-
morphism k of G to FBR such that k(V1) ⊆ Z1 and k(V2) ⊆ Z2 satisfies the rules
R1 and R2. Indeed, let u ∈ V1, v ∈ V2, uv ∈ E. If k(u) = D then k(v) = d, and
if k(v) = l then k(u) = L.

Let Li ⊆ Zi, i = 1, 2. We call a homomorphism k of G to FBR an (L1, L2)-
homomorphism of G to FBR if k(u) ∈ Li for each u ∈ Vi, i = 1, 2. Now LORA-BR
can be formulated as the following graph-theoretical problem: We are given a
bipartite graph G = (V1, V2;E), V = V1 ∪ V2, and we consider homomorphisms
k of G to FBR. Mapping of u ∈ V to z ∈ Z (i.e., k(u) = z) incurs a real
cost cz(u). The use of a vertex z ∈ Z in a homomorphism k (i.e., k−1(z) 
= ∅)
incurs a real cost cz. We wish to choose subsets Li ⊆ Zi, i = 1, 2, and find an
(L1, L2)-homomorphism k of G to FBR that minimize∑

u∈V

ck(u)(u) +
∑

z∈L1∪L2

cz. (1)

We call the expression in (1) the cost of k.
The graph-theoretical formulation of LORA-BR can be naturally extended

as follows: The above problem with FBR replaced by an arbitrary fixed bipartite
graph F = (Z1, Z2;T ) is called the general LORA problem with � = 2. Let Z =
Z1 ∪Z2. Notice that the general LORA problem with � = 2 extends the generic
formulation of the LORA problem with � = 2 given in [6]. The formulation of
the general LORA problem (with arbitrary �) provided in Section 4 extends the
generic formulation of the LORA problem (with arbitrary �) given in [6].

To prove that the general LORA problem with � = 2 is NP–hard, we will
use an important result on the list H-homomorphism problem defined below.
Suppose that we are given a pair of graphs H and B and a list Λ(v) ⊆ V (H)
for each v ∈ V (B). A homomorphism f : V (B)→V (H) such that f(v) ∈ Λ(v)
for each v ∈ V (B) is called a Λ-homomorphism. For a fixed H, the list H-
homomorphism problem asks whether there exists a Λ-homomorphism f of B to
H for an input graph B with lists Λ.

A graph P = (V (P ), E(P )) is a circular arc graph if there is a family of arcs
Av, v ∈ V (P ), on a fixed circle, such that xy ∈ E(P ) if and only if Ax and Ay

intersect. Feder, Hell and Huang [10] obtained the following important result.
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Theorem 1. If H is a bipartite graph with the complement being a circular
arc graph, then the list H-homomorphism problem is polynomial time solvable.
Otherwise, the problem is NP–complete.

Observe that, if H is bipartite, we may restrict inputs B of the list H-
homomorphism problem to bipartite graphs since there is no homomorphism
of a non-bipartite graph to H. Brightwell [7] found the first proof that the gen-
eral LORA problem with � = 2 is NP–hard. Since his proof does not use Theorem
1, our proof turns out to be shorter and it gives a stronger result.

Theorem 2. The general LORA problem with � = 2 is NP–hard provided the
complement of F is not a circular arc graph.

Proof: Let F be a bipartite graph and assume that the complement of F is not
a circular arc graph (see Theorem 1). Let a bipartite graph G and lists Λ be an
input of the list F -homomorphism problem. Define costs cz(u) for each z ∈ V (F )
and u ∈ V (G) as follows: cz(u) = 0 if z ∈ Λ(u) and cz(u) = 1, otherwise. We
put cz = 0 for each z ∈ V (F ). In other words, the use of each vertex z ∈ V (F )
in homomorphisms of G to H is free. In this case, in the general LORA problem
with � = 2, we can always put L1 ∪ L2 = V (F ).

Let G1, G2, . . . , Gg be components of G and let F1, F2, . . . , Ff be components
of F . Let Zj

1 , Zj
2 be partite sets of Fj for every j = 1, 2, . . . , f. Observe that there

exists a Λ-homomorphism of G to F if and only if for each i = 1, 2, . . . , g there
is a j(i) ∈ {1, 2, . . . , f} such that there exists a Λ-homomorphism of Gi to Fj(i).
However, there is a Λ-homomorphism of Gi to Fj(i) if and only if the minimum
cost of either a (Zj(i)

1 , Z
j(i)
2 )-homomorphism of Gi to Fj(i) or a (Zj(i)

2 , Z
j(i)
1 )-

homomorphism of Gi to Fj(i) is equal to 0 (with the costs defined above). Thus,
we have a polynomial time Turing-reduction [12] from the NP–complete list H-
homomorphism problem to the general LORA problem with � = 2. Hence, by
the definition of the NP–hardness (see Section 5.1 in [12]), the general LORA
problem with � = 2 is NP–hard. ��

3 LORA-M with � = 2

Let B = (W1,W2;E) be a bipartite graph. For a vertex z ∈W1∪W2, let N(z) be
the set of vertices adjacent to z. Orderings x1, x2, . . . , x|W1| and y1, y2, . . . , y|W2|
of vertices of W1 and W2, respectively, are called monotone if N(xi) ⊆ N(xi+1)
and N(yj) ⊆ N(yj+1) for each i = 1, 2, . . . , |W1| − 1 and j = 1, 2, . . . , |W2| −
1. A bipartite graph B is called monotone if it has monotone orderings of its
partite sets. Observe that if x1, x2, . . . , x|W1| and y1, y2, . . . , y|W2| are monotone
orderings, then xpyq ∈ E implies that xsyt ∈ E for each s ≥ p and t ≥ q.

Notice that the bipartite graph FBR corresponding to the rules R1 and R2 of
LORA-BR is monotone (consider orderings D,C,L and l, c, d), so are the bipar-
tite graphs corresponding to R1 and R2 separately (there might be a situation
when one of the rules is not used). Interestingly, monotone bipartite graphs form
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a family of so-called convex bipartite graphs; several families of convex bipartite
graphs have been found useful in various applications, see [3].

Let B = (W1,W2;E) be a bipartite graph, let n = |W1|+ |W2| and let m =
|E|. One can test whether B is monotone in time O(m+n) as follows. Order ver-
tices of W1 and W2 separately according to their degrees deg(z), x1, x2, . . . , x|W1|
and y1, y2, . . . , y|W2|, such that deg(xi) ≤ deg(xi+1) and deg(yj) ≤ deg(yj+1) for
each i = 1, 2, . . . , |W1|−1 and j = 1, 2, . . . , |W2|−1. Observe that these orderings
are monotone if and only if N(xi) ⊆ N(xi+1) and N(yj) ⊆ N(yj+1) for each
i = 1, 2, . . . , |W1| − 1 and j = 1, 2, . . . , |W2| − 1. We can use counting sort (see
Chapter 9 of [8]) to get the orderings according to degrees in time O(n). The
remaining computations can be carried out in time O(m).

The general LORA problem restricted to fixed monotone bipartite graphs
F = (Z1, Z2;T ) is called LORA-M. We assume that we have monotone order-
ings x1, x2, . . . , x|Z1| and y1, y2, . . . , y|Z2| of Z1 and Z2, respectively. We reduce
LORA-M to the maximal weight independent set problem on bipartite graphs.
Recall that a vertex set I of a graph is independent if there is no edge between
vertices of I.

In the next theorem, we will consider a bipartite graph B with partite sets
W1,W2 and nonnegative vertex weights p(u), u ∈ V (B), and the following (s, t)-
network N (B): add new vertices s and t to B, append all arcs su of capacity
p(u), vt of capacity p(v) for all u ∈ W1 and v ∈ W2, and orient every edge xy
of B, where x ∈ W1, from x to y (these arcs are of capacity ∞). For results on
flows and cuts in networks see [8].

Theorem 3. If (S, T ) is a minimum cut in N (B), s ∈ S, then (S ∩ W1) ∪
(T ∩W2) is a maximum weight independent set in B. One can find a maximum
weight independent set in B in time O(n2

1

√
m + n1m), where n1 = |U1| and

m = |E(B)|.
The structural part of Theorem 3 is well-known, cf. Frahling and Faigle [11]

(a similar result is described in [14]). The complexity claim follows from the fact
that one can find a minimum cut in N (B) in time O(n2

1

√
m + n1m) by first

finding a maximum flow by the bipartite preflow-push algorithm of Ahuja et al.
[2] and then finding a minimum cut (e.g., by finding vertices reachable from s
in the residual network using depth-first search).

Let us return to LORA-M and formulate it as a maximization problem.
Choose sets Li ⊆ Zi, i = 1, 2. Let u ∈ Vi and set lists Λ(u) = Li, i = 1, 2. Recall
that x1, x2, . . . , x|Z1| and y1, y2, . . . , y|Z2| are monotone orderings of Z1 and Z2.
Assume that u ∈ V1, xp, xq ∈ Λ(u), p < q and cxp

(u) > cxq
(u). Observe that

since cxp
(u) > cxq

(u) and F is monotone, an optimal (L1, L2)-homomorphism
k will not map u to xp. Thus, we may reduce the list Λ(u) of possible images
of u by deleting xp. Certainly, we may reduce all Λ(v), v ∈ V1, such that if
xr, xs ∈ Λ(v) and r < s, then cxr

(v) ≤ cxs
(v). We call such a list Λ(v) reduced.

Similarly, one defines the reduced list of a vertex in V2.
For a vertex u ∈ V , we can get the reduced list Λ(u) in time O(1) by the

following simple procedure (the running time is constant since F is fixed). To
simplicity the description, assume that u ∈ V1. The input is Λ(u) := L1 =
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{xp(1), xp(2), . . . , xp(t)}, p(1) < p(2) < · · · < p(t). We start from xp(t). We com-
pare cxp(t)(u) with cxp(t−1)(u), cxp(t−2)(u),. . . and find the maximal i such that
cxp(i)(u) ≤ cxp(t)(u). We delete from Λ(u) all xp(i+1), xp(i+2), . . . , xp(t−1). We
compare cxp(i)(u) with cxp(i−1)(u), cxp(i−2)(u),. . . and continue as above. Thus,
we can obtain the reduced lists Λ(v), v ∈ V , in time O(|V |).

In the reminder of this section, we will use the following notation for the
reduced lists: Λ(u) = {zp(1), zp(2), . . . , zp(|Λ(u)|)}, where p(1) < p(2) < · · · <
p(|Λ(u)|) and z = x if u ∈ V1 and z = y, otherwise.

Recall that a homomorphism k of G to F is a Λ-homomorphism if k(u) ∈ Λ(u)
for each u ∈ V. Observe that LORA-M is equivalent to the problem of choosing
sets Li ⊆ Zi, i = 1, 2 and finding a Λ-homomorphism k of G to F that minimize
the cost of k, where Λ(u) is the reduced list for u ∈ V.

Now we replace the costs by weights. Let M be the maximum of all costs in
LORA-M (i.e., cz(u)’s and cz’s). For each pair of vertices z ∈ Zi and u ∈ Vi,
i = 1, 2, let wz(u) = M − cz(u) and for each vertex z ∈ Z let wz = M − cz.
Notice that, by the definition, all the weights are nonnegative. Let k be a Λ-
homomorphism of G to F. The weight of k is defined as∑

u∈V

wk(u)(u) +
∑

z∈L1∪L2

wz. (2)

Observe that LORA-M is equivalent to the problem of choosing sets Li ⊆ Zi,
i = 1, 2 and finding a Λ-homomorphism k of G to F that maximize the weight
of k, where Λ(u) is the reduced list for u ∈ V.

We now prove the following main result of the paper.

Theorem 4. For fixed subsets Li, i = 1, 2, LORA-M with � = 2 can be solved
in time O(n2

1

√
m + n1m + n), where n1 = |V1|, n = |V | and m = |E|.

Proof: Recall that all our graphs have no loops. If F is edgeless, then there is
no homomorphism of G to F. Thus, we may assume that x|U1|y|U2| ∈ T. Since
Li, i = 1, 2, are fixed, for simplicity, we will assume that all weights wij = 0 in
(2). Let Λ(u) be the reduced list for each u ∈ V (we have shown how to find
these lists in time O(n)).

Let W be a constant larger than max{wj(u) : u ∈ V, j ∈ Λ(u)}. Construct a
new graph H with

∑
u∈V |Λ(u)| vertices:

V (H) = {uz : u ∈ V, z ∈ Λ(u)}.

Let an edge uxvy be in H if uv ∈ E and xy 
∈ T . Let u ∈ V . For every j ∈
{1, 2, . . . , |Λ(u)|}, let the weight w(uzp(j)) be equal to wzp(j)(u)+W , if j = |Λ(u)|,
and equal to wzp(j)(u) − wzp(j+1)(u), otherwise. Since each list Λ(u) is reduced,
the weights of the vertices of H are nonnegative.

Clearly, if we replace, in G, a vertex u ∈ V by |Λ(u)| independent copies such
that there is an edge between a copy of u and a copy of v if and only if uv ∈ E,
then we obtain a supergraph G∗ of H. Since G is bipartite, so is G∗ and, thus, H.

Observe that, by monotonicity of F , if uxp(i) , uxp(j) , vyp(f) , vyp(g) are vertices
of H, j ≥ i, g ≥ f and uxp(i)vyp(f) 
∈ E(H), then uxp(j)vyp(g) 
∈ E(H) as well. We
call this property of H index-antimonotonicity.
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Assume that there exists a Λ-homomorphism k of G to F . Let k(u) = zp(iu).
Then the set {uzp(iu) : u ∈ V } is independent in H. Moreover, by index-
antimonotonicity of H,

S = ∪u∈V {uzp(j) : iu ≤ j ≤ |Λ(u)|} (3)

is an independent set in H. Observe that S contains S′ = {uzp(Λ(u)) : u ∈ V }
and the weight of S is equal to that of the homomorphism plus W × |V | (we use
telescopic sums).

Assume that a maximum weight independent set S in H contains S′. Then
map each u ∈ V to k(u) = zp(iu) such that iu = min{j : uzp(j) ∈ S}. By
maximality, S is of the form (3) or, due to index-antimonotonicity of H, S may
be extended to (3) by adding some vertices of zero weight. Observe that the
weight of S is equal to that of the homomorphism plus W × |V |. If a maximum
weight independent set S in H does not contain S′, then S′ is not an independent
set in H (since the weight of S′ is larger than the weight of S) and, thus, there
is no Λ-homomorphism of G to F .

Thus, there is an Λ-homomorphism of G to F if and only if a maximum
weight independent set in H contains S′. If there is an Λ-homomorphism of G to
F , then this homomorphism corresponds to a maximum weight independent set
S in H. It remains to observe that we may apply Theorem 3 to find a maximum
weight independent set of H. ��

There are less than a = 2|Z1|+|Z2| choices of nonempty L1 and L2. Since F is
fixed, a is a constant. Thus, we obtain the following:

Theorem 5. LORA-M with � = 2 can be solved in time O(n2
1

√
m + n1m + n),

where n1, n and m are defined in Theorem 4.

4 General LORA Problem and LORA-M

Let � ≥ 2 be a constant. An �-partition X1, X2, . . . , X� of a set X is a collection
of subsets of X such that Xi∩Xj = ∅ for each i 
= j and X1∪X2∪· · ·∪X� = X.
An �-partition X1, X2, . . . , X� of the vertex set X of a graph H is called layered
if, for each edge xy of H, there exists an index i such that one vertex of xy
is in Xi and the other is in Xi+1. Observe that a graph H with a layered �-
partition is bipartite with partite sets ∪{Xi : 1 ≤ i ≤ �, i ≡ 1 (mod 2)} and
∪{Xi : 1 ≤ i ≤ �, i ≡ 0 (mod 2)}.

Let G = (V,E) be a graph with a layered �-partition V1, V2, . . . , V� of V . Let
F = (U, T ) be a fixed graph with a layered �-partition U1, U2, . . . , U� of U . Let
Li ⊆ Ui, i = 1, 2, . . . , �. We call a homomorphism k of G to F an (L1, L2, . . . , L�)-
homomorphism of G to H if k(u) ∈ Li for each u ∈ Vi, i = 1, 2, . . . , �.

We formulate the general LORA problem as follows: We are given a graph
G as above and we consider homomorphisms k of G to F . Mapping u ∈ V to
z ∈ U (i.e., k(u) = z) incurs a real cost cz(u). The use of a vertex z ∈ U in
a homomorphism k (i.e., k−1(z) 
= ∅) incurs a real cost cz. We wish to choose
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subsets Li ⊆ Ui, i = 1, 2, . . . , �, and find an (L1, L2, . . . , L�)-homomorphism k of
G to F that minimizes ∑

u∈V

ck(u)(u) +
∑
z∈L

cz, (4)

where L = ∪�
i=1Li. Notice that the graph F is fixed and is not part of the input.

By Theorem 2, the general LORA problem is NP–hard (even the general
LORA problem in which all costs cz(u) = 0 for u ∈ Vi, i ≥ 3, is NP–hard).
To define (the general) LORA-M for � ≥ 2, let us define �-monotone graphs.
Let F = (U, T ) be a fixed graph with a layered �-partition U1, U2, . . . , U�; F is
called �-monotone if there is an ordering zi

1, z
i
2, . . . , z

i
|Ui| of vertices of Ui for each

i = 1, 2, . . . , � such that the subgraph F [Uj ∪ Uj+1] of F induced by Uj ∪ Uj+1

is monotone with zj
1, z

j
2, . . . , z

j
|Uj | and zj+1

1 , zj+1
2 , . . . , zj+1

|Uj+1| being monotone or-
derings for each j = 1, 2, . . . , �− 1. LORA-M is the general LORA problem with
F being �-monotone. Similarly to Theorem 5, one can prove the following:

Theorem 6. LORA-M with fixed � ≥ 2 can be solved in time O(n2
1

√
m+n1m+

n), where n1 is the number of vertices in the smaller partite set of input graph
G, n = |V (G)| and m = |E(G)|.

5 Minimum Cost H-Homomorphism Problem

This paper provides a motivation to study the following minimum cost H-
homomorphism problem (MCHP): For a fixed graph H and an input graph G
given together with costs cz(u), the cost of mapping a vertex u ∈ V (G) to
z ∈ V (H), verify whether there is a homomorphism of G to H, and if one exists,
find such a homomorphism k that minimizes

∑
u∈V (G) ck(u)(u).

An argument similar to that in the proof of Theorem 2 shows that MCHP
problem generalizes the list H-homomorphism problem and that if H is not
bipartite with the compliment being circular arc graph, then MCHP is NP–
hard.

Theorem 7. If H = (U1, U2, ;T ) is a monotone bipartite graph, then MCHP
can be solved in time O(n2

√
m + nm + n), where n is the number of vertices in

the input graph G and m is the number of edges in G.

Proof: Let t(n,m) = O(n2
√

m+nm+n). Since H is bipartite (and loopless), if
there is a homomorphism of G to H, then G is bipartite. We can check whether
G is bipartite in time O(m+n) using the breadth-first search. So we may assume
that G = (V1, V2;E) is bipartite.

Assume that G and H are connected. Then for each homomorphism k of
G to H, we have either k(Vi) ⊆ Ui or k(Vi) ⊆ U3−i for every i = 1, 2. Thus,
to find an optimal homomorphism of G to H, it suffices to compute an opti-
mal (U1, U2)-homomorphism and optimal (U2, U1)-homomorphism and compare
their costs. By Theorem 4, the total running time for finding the two optimal
homomorphisms is t(n,m).
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If H is disconnected, then by the definition of monotonicity, H consists of
isolated vertices and at most one component H ′, which is not an isolated vertex.
The case when all components of H are isolated vertices is trivial, so we may
assume that H ′ does exist.

Assume that G consists of components G1, G2, . . . , Gb. Observe that every
homomorphism k of G to H consists of b ’independent’ homomorphisms ki :
Gi→H. In fact, if Gi has more than one vertex that ki maps Gi into H ′ and, by
the above, we can find an optimal homomorphism of Gi to H ′ in time t(ni,mi),
where ni = |V (Gi)| and mi = |E(Gi)|. If Gi is a vertex v, ki may map it to
any vertex of H and, in an optimal ki it maps Gi into z with minimum cz(u),
z ∈ U1 ∪ U2. The running time to find such a vertex z is t(1, 0) = O(1). To
complete our proof, it suffices to observe that

∑b
i=1 t(ni,mi) = t(n,m). ��

The following theorem allows us to relate the NP-hardness and polynomial
solvable cases above. Recall that a graph P = (V (P ), E(P )) is an interval graph
if there is a family of intervals Iv, v ∈ V (P ), of the real line, such that xy ∈ E(P )
if and only if Ix and Iy intersect. The clique covering number of a graph B is
the minimum number of complete subgraphs of B covering V (B).

Theorem 8. A bipartite graph H is monotone if and only if its complement H̄
is an interval graph with clique covering number two.

Proof: First assume that H is a monotone bipartite graph with partite sets
{v1, v2, . . . , vk} and {w1, w2, . . . , wl}. By the definition of a bipartite monotone
graph we may assume that viwj ∈ E(H) implies that vi′wj′ ∈ E(H) for all i′ ≥ i
and j′ ≥ j. Let m(j) be defined as the least index such that vm(j)wj ∈ E(H).
Now consider the following intervals:

si = [i, k + 1] for all i = 1, 2, . . . , k
tj = [0,m(j)− 1

2 ] for all j = 1, 2, . . . , l

Let B be the interval graph obtained from the above intervals, such that
V (B) = S ∪ T , where S = {s1, s2, . . . , sk} and T = {t1, t2, . . . , tl} and there is
an edge between two vertices if and only if the corresponding intervals intersect.
Note that both S and T form a clique in B. Furthermore sitj ∈ E(B) if and
only if i < m(j), which happens if and only if viwj 
∈ E(H). Therefore B = H̄,
and we have completed one direction.

So assume that H̄ is an interval graph with clique covering number two. Let
[si, ti], i = 1, 2, . . . , k, denote the intervals corresponding to one of the cliques
in the clique cover of size two and let [s′i, t

′
i], i = 1, 2, . . . , l, denote the intervals

corresponding to the other clique in the clique cover. Let T denote the minimum
value of all ti and let T ′ denote the minimum value of all t′i. Without loss of
generality we may assume that T ≤ T ′. Again without loss of generality we may
assume that t1 ≥ t2 ≥ . . . ≥ tk and s′1 ≤ s′2 ≤ . . . ≤ s′l.

Assume that [si, ti] and [s′j , t
′
j ] do not intersect. Suppose that t′j < si, which

implies that tk < si contradicting the fact that [sk, tk] and [si, ti] intersect.
Therefore we must have ti < s′j , which implies that [sa, ta] and [s′b, t

′
b] do not
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intersect for any a ≥ i and b ≥ j. Therefore H̄ is the compliment of a monotone
bipartite graph. ��

The last two theorems imply the following:

Theorem 9. If H is a bipartite graph and its compliment is an interval graph,
then MCHP can be solved in time O(n2

√
m + nm + n), where n is the number

of vertices in an input graph G and m is the number of edges in G.

Let P5 be the path with 5 vertices. The graph P5 is not a monotone bipartite
graph, but its complement is a circular arc graph. Thus, there remains a gap
between the set of graphs H for which we showed that the problem is NP-hard
and for which we proved that it is tractable. It would be interesting to close the
gap. We considered some directed extension of the 2-SAT approach of [10], but
they did not appear to be useful.

6 LORA-BR and Critical Independent Set Problem

Let Q be an arbitrary graph. For a set X ⊆ V (Q), let N(X) = ∪x∈X{y ∈ V (Q) :
xy ∈ E(Q)}. Let p, q be a pair of functions from V (Q) to the set of nonnegative
reals. In the critical independent set problem (CISP) we seek

argmax{
∑
a∈A

p(a)−
∑

c∈N(A)

q(c) : A is an independent vertex set in Q}.

Clearly, CISP is NP–hard as the maximum weight independent set problem on
arbitrary graphs is CISP with q(u) = 0 for each u ∈ V (Q). Ageev [1] proved
that CISP is polynomial time solvable if p(u) = q(u) for each u ∈ V (Q). This
generalized the corresponding result of Zhang [16] for p(u) = q(u) = 1 for each
u ∈ V (Q). We will show that CISP can be solved in polynomial time on bipartite
graphs for arbitrary functions p and q.

Theorem 10. CISP on a bipartite graph G = (V1, V2;E), V = V1 ∪ V2, can be
solved in time O(n2

1

√
m + n1m + n), where n1 = |V1|, n = |V | and m = |E|.

Proof: Observe that LORA-BR with fixed lists L1 = V1, L2 = V2 may be refor-
mulated as follows: Given a bipartite graph G = (V1, V2, E) and three weights
wi(v), i = 1, 2, 3, for each vertex v ∈ V , we color every vertex of G in one of
the colors 1,2,3 such that if a vertex is colored 1, then all its neighbors must be
colored 3. Assigning a color i to a vertex v contributes weight wi(v) to the total
weight of the coloring. We seek a coloring of maximum total weight.

Observe that if w1(u) < w2(u) for some u ∈ V, then there is an optimal
coloring for which u is not colored 1. Thus, we may set w1(u) := w2(u) and
keep a record, say (u, 1, 2), that indicates that if, in an optimal coloring that we
found u is colored 1, we recolor it 2. Similar arguments allow us to assume that
w1(u) ≥ w2(u) ≥ w3(u) for each u ∈ V.
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Consider an optimal coloring, in which A is the set of vertices assigned color
1. Then A is independent, all vertices of N(A) must have color 3 and all vertices
of B = V (G)−A−N(A) may have color 2. The total weight of the coloring is∑
a∈A

w1(a)+
∑

c∈N(A)

w3(c)+
∑
b∈B

w2(b) =
∑
d∈V

w2(d)−
∑

c∈N(A)

w2,3(c)+
∑
a∈A

w1,2(a),

where w2,3(c) = w2(c)− w3(c), w1,2(a) = w1(a)− w2(a).
Choose weight functions w1, w2, w3 as follows: w1(u) = p(u) + q(u), w2(u) =

q(u), w3(u) = 0 for each u ∈ V (G). Since
∑

d∈V w2(d) is a constant, we observe
that CISP on G (and functions p and q) can be reduced to LORA-BR with fixed
L1 = V1, L2 = V2. It remains to apply Theorem 4. ��
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Problem with a Single Constraint

Subhash C. Sarin�, Yuqiang Wang, and Dae B. Chang

Virginia Polytechnic Institute and State University, Blacksburg VA 24061, USA
sarins@vt.edu

Abstract. In this paper, we develop a new and effective schedule algebra
based algorithm to determine the K-best solutions of a knapsack problem
with a single constraint. Computational experience with this algorithm is
also reported and it is shown to dominate both the dynamic programming
and branch and bound based procedures when applied to this problem.

1 Introduction

While solving a problem, it is sometimes desirable to have knowledge about the
K-best solutions instead of knowing just the optimal solution. As also mentioned
by Eppstein [3], one need for this arises when one is unable to capture all the
constraints to start with. Thus, as the new constraints intervene or conditions
change, the calculated optimal solution may become infeasible or unacceptable.
Having knowledge about the K-best solutions in that case may be better than
trying to solve the problem from scratch. This is particularly relevant if the
optimization procedure is implemented on-line in an interactive mode.

The types of problems which encounter instances in which one may not be
able to capture all the constraints to start with are transportation problems,
communication network and allocation problems. We consider here a special type
of allocation problem, namely, the knapsack problem with single constraint. This
problem is well known in the literature and has been the subject of extensive
research. Numerous papers have been published on the investigation of its gen-
eralizations, applications and optimization. Surveys and reviews on this topic
can be found in [2],[5] and [6]. This problem also arises as a subproblem in the
solution of single or higher-dimensional packing problems as discussed in Sarin
[7] and Sarin and Ahn [8]. In the solution of two or higher dimensional packing
problems, not all feasibility constraints can be represented mathematically, and
hence, the solution obtained by the knapsack problem may become unaccept-
able when tested for feasibility, thereby, requiring the need to generate K-best
solutions.
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The problem to find the K-best solutions can also be viewed as a generaliza-
tion of finding the shortest path in a network graph. The latter has received ex-
tensive treatment in the literature during the last three decades. A complete bib-
liographical list in this respect is maintained at http://www.ira.uka.de/bibliogra-
phy/Theory/k-path.html, which includes about 500 papers.

In this paper, we present an approach that relies on schedule algebra to find
the K-best solutions for the standard knapsack problem. The computational
experience with this algorithm indicates that it is quite efficient. Its effectiveness
is further illustrated by comparing its performance with those of the dynamic
programming and branch and bound approaches.

2 The Knapsack Problem

The knapsack problem that we consider has the following mathematical expres-
sion:

Max c1x1 + c2x2 + · · ·+ cnxn (1)
subject to : a1x1 + a2x2 + · · ·+ anxn � b

xi ≥ 0 and Integer, ∀i = 1, · · · , n.

Without loss of generality, we assume all the coefficients in (1) to be non-
negative integers.

A network approach, which converts this problem to a network graph, was
first used by Shapiro [9]. The network corresponding to (1) consists of (b + 1)
nodes, which represents all possible values of the left side of the constraint, i.e.,
0,1,. . . and b. An arc exists between two nodes s and t if s + ai = t, for some
i. The value of that arc is the coefficient of the corresponding variable in the
objective function i.e., ci. This network can be further represented as a matrix.
The number of rows and columns of this matrix are equal to (b + 1) and the
entries represent the values of the arcs between nodes. Let us designate this
network matrix by A. To demonstrate the construction of the network and the
corresponding matrix, consider the following example.

Example 1:

Max 3x1 + x2 + 2x3

subject to : 2x1 + 3x2 + 4x3 � 5
xi ≥ 0 and Integer, ∀i = 1, 2, 3.

The network for this knapsack problem is shown in Fig.1(a) and the matrix to
represent this network is shown in Fig.1(b). Now, the problem of finding the
K-best solutions of the knapsack problem is equivalent to finding the K-best
paths of this network, and matrix A plays a central role in this determination.
To manipulate matrix A, we use a schedule algebra, which was first presented
by Giffler [4].
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Fig. 1. The network of Example 1 and its corresponding matrix A

3 Schedule Algebra

Our schedule algebra treats a matrix as a rectangular array of sets. A set which
is not empty will contain a finite number of entries. An entry in a non-empty set
may consist of positive or negative integers. A “0” entry represents numerical
zero or zero magnitude. However, when being added or multiplied, it is regarded
as one unit. If a set is empty, it contains the simple entry “φ”, which is referred to
as “zero” or “logical zero”. (The “φ” in Fig.1(b) can be interpreted accordingly).
Therefore, the unit matrix I under schedule algebra, contains “0” along the
diagonal and “φ” elsewhere. Likewise, the unit vector em only has “0” in its
mthposition and “φ” elsewhere. In general, we represent a vector by a with its
ith element by ai.

The addition and multiplication operators in our schedule algebra also differ
from the ones in the traditional algebra. They are defined as follows:

Addition operator “⊕”:

ai ⊕ bi =

⎧⎪⎪⎪⎪⎪⎩{ai}, if ai = bi;
{φ}, else if ai = −bi;
{ai, bi}, else.

For the purpose of illustration, consider the following example. If a = {3, 4, 7}
and b = { − 3, 0, 5}, then a⊕ b = {0, 4, 5, 7}. The “⊕” operator is commutative,
associative and distributive as in the traditional algebra.

Multiplication operator “�”:

ai � bi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
{φ}, if ai = {φ} and/or bi = {φ}.
|ai| ⊕ |bi|, if ai and bi 
= 0, and have the same sign.
−(|ai| ⊕ |bi|), if ai and bi 
= 0, and have the opposite sign.
±bi, if ai = ±{0} and bi 
= {φ}.



For example, if a={-2,4 } and b={ 0,-3 }, then a � b={ -2, 2, 3, -3, 4, -4 }. Like
the “⊕” operator, the “�” operator also has the properties of communitation,
association and distribution.

Let E, F and G be matrices, and eij , fij and gij be their elements in the ith

row and jthcolumn, respectively. Then, we have the following properties.

(i) If G = E ⊕ F , then gij = eij ⊕ fij , ∀i, j.
(ii) If G = E � F , then gij =

∑
k (eik � fkj),∀i, j.

(iii) E0 = I and Ej = Ej−1 � E, for integer j ≥ 1.

In complying with the definitions of schedule algebra, the matrix A in Fig.1(b)
has the following properties:

(i) It only contains non-negative elements since there are no loops or backward
arcs in the network.

(ii) The diagonal entries and those below the diagonal are “φ“.
(iii) Its Sth power follows the properties of Markov chains.
(iv) Every entry aS

ij of matrix AS is the length of path from node i to node j
after exactly S arc steps.

From property (iv), it can be seen that if S > b + 1, then all entries of AS

are empty because there is no way to go from node i to node j after S steps.
Furthermore, if we define the summation of the powers of A by A∗, that is,

A∗ = A1⊕A2⊕A3⊕· · ·⊕AS⊕· · ·,

then it can be inferred that A∗ must converge within a finite number of steps
S ≥ b + 1. A∗ represents a matrix of all possible path lengths between any two
nodes. Since we are interested in determining K-best path values starting from
node “0”, we need to find only the first row of A∗.

4 Algorithm KBS

Let Z denote A∗. Shier [10] presented an iterative scheme called the generalized
Jacobi method to determine the K-best paths by computing Z explicitly. But,
this scheme requires high storage space and computation time, and thus, is very
inefficient. An implicit way to calculate Z was presented by Wongseelashote[11],
which is to solve the following equation:

Z � (I �A) = I, where I �A can be viewed as I ⊕ (−A).

The matrix Z captures all the path values between any two nodes i and j.
In our case, since we are interested in determining the paths from node 0, we
need to determine only the first row of Z. In other words, we need to solve the
following equation:

[z00z01 . . . z0b]� (I �A) = [0φ . . . φ]
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or more explicitly,

[z00z01 . . . z0b]�

⎡⎢⎢⎢⎣
0 −a01 −a02 . . . −a0b

φ 0 −a01 . . . −a0b−1

...
...

...
. . .

...
φ φ φ . . . 0

⎤⎥⎥⎥⎦ = [0φ . . . φ]

Multiplying [z00z01 . . . z0b]by the first column of (I�A), z00�{0} = 0⇒ z00 = 0.
Multiplying [z00z01 . . . z0b] by the second column of (I �A),
z00 � {−a01} ⊕ z01 � {0} = φ⇒ z01 = z00 � {a01} = a01,
and so on. For the last multiplication,
z00 � {−a0b} ⊕ z01 � {−a0b−1} ⊕ . . .⊕ z0b � {0} = φ.
from which z0b can be computed. From these computations one can see that to
compute a z value, one needs knowledge about all previous z values. This method
still requires excessive storage and computation time. The following observation
helps us in making improvement in this regard.
Observation: To determine the K-best solutions, one needs to determine only the
K-best paths to all nodes.

By this observation, we can truncate a z entry, say z0i, to contain up to K-best
values while previously z0i contains all the possible path values between node
0 and node i. This would help in reducing both the storage and computation
time while guaranteeing the determination of the K-best solutions. For further
improvement, consider the following modification of the above observation: de-
termine K-best paths for only a subset of nodes while for the remaining nodes,
determine the best paths. In particular, divide the set of nodes into two groups,
namely, G1 and G2. G1 contains nodes from 0 to n̄ for some 0 � n̄ � b − 1,
and G2 contains the remaining nodes. The best paths are computed for nodes
in G1 and using these best path values, K-best path values are computed for
the nodes in G2. This logic leads to the following network algorithm to find the
K-best solutions for the knapsack problem introduced in Sect.2.

Algorithm KBS:

Initialization:
(i) Set matrix A in accordance with the arc values of the network.
(ii) Construct matrix (I �A) and fix n̄.
(iii) Set j = 0.

Part One: (Determination of K-best path values)

S1: Set j = j + 1. Compute zoj . If j � n̄, go to S2(a); otherwise, go to S2(b).
S2: a) Find the maximum value among the elements of zoj ; go to S1.

b) Find the K-best path values among the elements of zoj . If j=b, go to S3;
otherwise, go to S1.

S3: Find the K-best path values among the elements of z0j ,∀j = 1, · · · , b, and
sort them in descending order. Denote these by ζ1, · · · , ζk.



Part Two: (Retrieval of the paths corresponding to ζj ,∀j = 1, · · · , k.)

S4: Set j = 1 and i = 0.
S5: Set i = i + 1, let ζt = ζj − aib. If ζt ∈ z0i, go to S6; otherwise, go to S7.
S6: If ζt-a0i=0, go to S8; else, let b = i,ζj=ζt, i = 0, go to S5.
S7: If i = b− 1, make b = b− 1, i=0, go to S5; else, go to S5.
S8: Count the number of times a coefficient of the objective function is used in

the path. That gives the value of the corresponding variable. If j = j + 1,
stop; otherwise, set k = k + 1, i = 0 and go to S5.

Next, we illustrate this algorithm by using an example problem.

Example 2:
Consider the following knapsack problem:

Max 3x1 + 5x2 + 4x3 + 6x4

subject to : x1 + 2x2 + 3x3 + 4x4 � 5
xi ≥ 0 and Integer, ∀i = 1, 2, 3, 4.

Let K = 3. The matrices A and (I �A) are depicted as follows:

A =

⎡⎢⎢⎢⎢⎢⎢⎣
φ 3 5 4 6 φ
φ φ 3 5 4 6
φ φ φ 3 5 4
φ φ φ φ 3 5
φ φ φ φ φ 3
φ φ φ φ φ φ

⎤⎥⎥⎥⎥⎥⎥⎦ ; I �A =

⎡⎢⎢⎢⎢⎢⎢⎣
0 −3 −5 −4 −6 φ
φ 0 −3 −5 −4 −6
φ φ 0 −3 −5 −4
φ φ φ 0 −3 −5
φ φ φ φ 0 −3
φ φ φ φ φ 0

⎤⎥⎥⎥⎥⎥⎥⎦
Let n̄=5-1=4. By solving Z�(I�A) = I, z00�{0}={0} implies z00={0}; go to

S2(a). Since z00={0}; go to S1. z00�{−3}⊕z01�{0} = {φ} ⇒ z01 = z00�{3} =
{3}; go to S2(a). Since z01={3}; go to S1. z02�{0} = 5� z00⊕ 3� z01 = {5, 6};
go to S2(a). z02={6}; go to S1. z03�{0} = 4� z00⊕5� z01⊕3� z02 = {4, 8, 9};
go to S2(a). z03={9}; go to S1. z04�{0} = 6� z00⊕4� z01⊕5� z02⊕3� z03 =
{6, 7, 11, 12}; go to S2(a). z04={12}; go to S1. z05 � {0} = 6 � z01 ⊕ 4 � z02 ⊕
5 � z03 ⊕ 3 � z04={15,14,13,10,9}; go to S2(b). z05={15,14,13}; go to S3. The
three largest path values are ζ1=15, ζ2=14,ζ3=13. Next, trace an elementary
path corresponding to the Kth largest path value. For ζk=15, test a15=6, ζt=ζk-
a15=15-6=9; since 9 /∈ z01, discard. Test a25=4, ζt=15-4=11; since 11 /∈ z02,
discard. Test a35=5, ζt=15-5=10; since 10 /∈ z03, discard. Test a45=3, ζt=15-
3=12; since 12 ∈ z04, accept a45=3; ζk=ζt=12 and go to S5. Following the same
procedure, the elementary path corresponding to ζ1 is X1=5 and X2 = X3 =
X4 = 0. Other paths can be found similarly. Note that for the selected value
of n̄ = 4, the procedure does not generate three best solutions. This fact is
discussed further in the next section.

5 Computational Experience and Results

The computational experience is reported from two viewpoints, (i) determination
of the value of n̄ for the use in Algorithm KBS; (ii) comparison of CPU times
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of Algorithm KBS with two other approaches viz dynamic programming and
branch and bound based algorithms for obtaining the K-best solutions.

The dynamic programming (DP) algorithm determines the K-best solutions
for problem (1) introduced in Sect.2 by utilizing the following recursive equation:

FK
i (ξ) = KMax{cixi + FK

i−1(ξ − aixi)};∀i = 1, 2, · · · , n. (2)

xi = 0, 1, · · · ,
⌊

ξ

ai

⌋
.

The notation �y� designates the greatest integer less than y. FK
i (ξ) represents

the K-best values for a particular ξ,where ξ = 0, 1, · · ·, b, and hence, is a vector
of size K. KMax represents the K-best values obtained from among all values of
xi for a particular ξ. Initializing FK

0 = 0, the K-best solution can be found by
solving (2) recursively.

The branch and bound (BB) method first converts problem (1) to a (0-1)
integer problem by replacing xi in (1) by

∑m
j=0 2jyj ,where yj=0,1, and m is an

integer and is determined by 2m � Ui � 2m+1 − 1, where Ui =
⌊

b
ai

⌋
, is the

integer upper bound of xi. By this substitution, problem (1) takes the following
form:

Max q1y1 + q2y2 + · · ·+ qpyp (3)
subject to: d1y1 + d2y2 + · · ·+ dpyp � b

yi = 0, 1,∀i = 1, · · · , p.

Also, let the y’s in (3) be arranged in the non-increasing order of (qi/di), for
i = 1, . . ., p. The enumeration is carried out by systematically constructing a
tree while fixing values of variables to 0 to 1 in a sequential fashion. Each node
of the enumeration tree represents a solution to (3). During the implementation
of the enumeration scheme, K-best solutions are stored and constantly updated.
The smallest of these K-best solutions is the lower bound. A node is fathomed
if any of the following conditions hold.

(i) The solution satisfies the constraint of (3) as an equality and is integer.
(ii) The solution is infeasible.
(iii) The value of the solution or its integer part is less than that of the current

lower bound.

Following Balas and Zemel [1], the variables are divided into two groups to
cut down on the size of the enumeration tree. The variables in one group can
take values 0 to 1 and it is called the free variable group while the variables in
the other group are set to zeros and it is called the zero variable group. The
following criterion was found to be very effective in dividing the variables into
these two groups. Let the variable corresponding to the smallest coefficient in the
constraint be ȳ. If ȳ ≥ 2K, then the free variable group contains variables from
y1 to ȳ and the remaining variables belong to the zero variable group. However,
if ȳ < 2K, then ȳ is the 2Kth variable from the start, that is, ȳ = y2k, and the
two groups are defined as before.



In our experimentation, all the algorithms were programmed in C language
and were run on an IBM Thinkpad T23 computer. The problem data were gen-
erated to obtain various (ci/ai) ratios, the coefficients of the variables in the
objective function and constraints. The values of ai, i = 1, . . ., b−1, were chosen
as follows: a1 = 1, a2 = 2, · · · , ab−1 = b − 1; while those of ci were generated
uniformly between 1 and 10N , where N is the total number of variables. An ex-
perimentation was conducted to determine an effective value of n̄ for use in the
network algorithm. The values of K that we considered for the experimentation
were 10,15, 30 and 40. For K=10 and 15, the problem sizes considered consisted
of 50,60,70,80,90 and 100 number of variables, while for K=30 and 40, the prob-
lem sizes consisted of 200, 300, 400 and 500 number of variables. Three values of
n̄ were considered, namely, n− 2,n−K,n− 2K. Ten observations regarding the
number of K-best solutions missed by the algorithm were taken for each problem
size, K and n̄ combination. Thus, in all, 600 problems were run. We recorded
the number of K-best solutions missed for each value of n̄ used. These were de-
termined by comparing the K-best solutions obtained using the specified value
of n̄ and the n̄ value close to zero. Clearly, if n̄ = b−1, Algorithm KBS generates
the best path value while for n̄=0, it can generate all possible path values. For
0 < n̄ < b− 1, the algorithm will generate K-best solutions only for certain val-
ues of K. However, the smaller the value of n̄, the greater is the computational
time. Ideally, from the viewpoint of saving computation time and storage, one
needs to determine the largest number n̄ which can generate the desired K-best
solutions. Our results indicated that when n̄ = n − 2, KBS misses a significant
number of best solutions. And, as the problem size and the value of K increase,
so does the number of solutions it misses. However, when n̄ = n−K, KBS was
found to perform almost as well as the case when n̄ = n−2K, with regard to the
number of solutions it misses. The average number of K-best solutions missed for
n̄ = n−K were found to be in the range from 1.1 to 2.9, and this value was not
related to the problem size or the value of K. In other words, when n̄ = n−K,
the performance of KBS does not deteriorate as the problem size and the value
of K increase. In fact, even for the case when forty best solutions are required
and the problem contains 400 variables, it was found to miss only one solution
on average. Hence, n̄ = n −K was found to be a reasonable compromise value
of n̄ to use.

Next, we performed experimentation on large size problems to compare the
performance of KBS with those of dynamic programming and branch and bound
based procedures. The results are shown in Table 1. The problem size was varied
from 50 to 20,000 variables, while three values of K were chosen, namely, 1, 10
and 20. Note that the branch and bound based approach requires more CPU
time than that required by either Algorithm KBS or the procedure based on DP.
Moreover, as the problem size increases, its CPU time increases exponentially.
In fact, it cannot solve a problem having more than 100 variables in realistic
CPU time. Hence, it is the least attractive among the three procedures. For the
DP based procedure, it doesn’t perform significantly worse than Algorithm KBS
from CPU point of view, when the problem contains less than 100 variables.
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However, as the problem size exceeds 100, its CPU time rises more quickly than
that of Algorithm KBS. Besides, the DP based procedure suffers from excessive
storage requirements. In fact, it cannot be run on the Thinkpad T23 computer
when the problem size exceeds 6000 variables for K=1, 3000 variables for K=10,
and 2000 variables for K=20.

Table 1. CPU time(in secs.)to obtain K-best solutions by Algorithm KBS, Dynamic
Programming and Branch and Bound based approaches

Problem Size (n)

CPU Time (in secs.) to obtain the K-best solutions when
K=1(Optimal) K=10 K=20
KBS DP BB KBS DP BB KBS DP BB

50 0 0 0.791 0.01 0.07 0.761 0.15 0.08 0.771

60 0 0.01 3.995 0.03 0.03 3.865 0.15 0.11 4.296

70 0 0 19.778 0.02 0.08 20.19 0.14 0.11 19.288

80 0.02 0 85.322 0.06 0.04 85.61 0.13 0.08 85.913

90 0 0.01 322.824 0.05 0.06 325.3 0.15 0.09 324.216

100 0 0 1172.02 0.05 0.09 1175 0.13 0.1 1178.262

200 0 0.02 * 1 0.11 0.2 * 0.21 0.29 *

300 0 0.04 * 0.24 0.28 * 0.23 0.661 *

400 0.01 0.05 * 0.21 0.541 * 0.39 1.152 *

500 0 0.09 * 0.18 0.771 * 0.56 1.863 *

600 0.04 0.16 * 0.31 1.122 * 0.831 2.694 *

800 0.06 0.25 * 0.68 2.053 * 1.462 4.917 *

900 0.05 0.29 * 0.761 2.623 * 1.942 6.199 *

1000 0.03 0.38 * 0.66 3.265 * 1.972 7.701 *

2000 0.29 1.482 * 3.184 45.385 * 8.462 95.97 *

3000 0.3 3.485 * 5.467 123.438 * 14.41 - 2 *

4000 0.09 6.489 * 10.945 - * 37.523 - *

5000 0.57 10.354 * 14.28 - * 38.465 - *

6000 1.522 23.073 * 28.561 - * 70.921 - *

9000 1.442 - * 54.969 - * 155.032 - *

15000 5.177 - * 73.575 - * 206.687 - *

20000 7.04 - * 201.99 - * 784.127 - *

On the other hand, when K = 1, Algorithm KBS only takes less than 10
seconds to solve a problem with up to 20000 variables. When K = 10 and
K = 20, it still takes less than 10 seconds to solve a problem with up to 2000
variables and a few minutes to solve a problem with tens of thousands of vari-
ables. Consequently, it is clear that Algorithm KBS is far superior to the DP and
BB-based procedures with respect to both the computational time and storage
requirement, while generating close to true K-best solutions.
1 ‘*’ indicates that CPU time required is greater than 105 seconds.
2 ‘-’ indicates that the algorithm requires an image size beyond the limit of the C

programming language.



6 Conclusions

In this paper, we have presented a new and effective schedule algebra based
algorithm to generate the K-best solutions of the knapsack problem with a single
constraint. An empirical formula is used to reduce the CPU time required by the
algorithm to solve large size problems. Our computational results show that the
proposed algorithm dominates the procedures based on dynamic programming
and branch and bound approaches with respect to the computational time and
storage requirement,while generating close to true K-best solutions.
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Point Sets and Frame Algorithms
in Management
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Abstract. Consider a finite point set A in m-dimensional space and
the polyhedral hulls it generates from constrained linear combinations
of its elements. There are several interesting management problems that
are modelled using these point sets and the resulting polyhedral objects.
Examples include efficiency/performance evaluation, ranking and order-
ing schemes, stochastic scenario generation, mining for the detection of
fraud, etc. These applications require the identification of frames; that is,
the extreme elements of the polyhedral sets, a computationally intensive
task. Traditional approaches require the solution of an LP for each point
in the point set. We discuss this approach as well as a new generation of
faster, output-sensitive, algorithms.

1 Notation and Definitions

The finite point set A =
{
a1, . . . , an

}
, composed of n points in �m can be

linearly combined to produce a polyhedral hull, pol(A). The polyhedral hull is
a generalization of the familiar convex and conical hulls of the data. A more
formal representation of these sets in terms of the point set A is:

– The convex hull: con(A) = {y ∈ �m|y =
∑

j ajλj ,
∑

j λj = 1, λj ≥ 0, ∀j}.
– The conical hull: pos(A) = {y ∈ �m|y =

∑
j ajλj , λj ≥ 0, ∀j}.

– The polyhedral hull: pol(A) = {y ∈ �m|y =
∑

j ajλj +
∑

k vkμk,
∑

j λj =
1, λj ≥ 0, μk ≥ 0 ∀j, k}.

These polyhedral sets are externally defined. Figure 1 depicts examples of
these sets in two dimensions. We use the same point set with eight points to
generate a convex hull, a conical hull, and a polyhedral hull obtained combining
a convex hull and two rays, v1 = (1, 0) and v2 = (0,−1) which define a recession
cone along which the set is unbounded. This example illustrates properties that
are true in general:

– The hulls are defined by subsets of the data set: these points are extreme
elements (extreme points or extreme rays) of the final hull.

– The set of extreme points of the convex hull is a superset for extreme elements
of all other hulls.

– The extreme points (rays) of the polyhedral hull are a minimal subset of the
generators required to describe the same set.

N. Megiddo, Y. Xu, and B. Zhu (Eds.): AAIM 2005, LNCS 3521, pp. 450–459, 2005.
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Fig. 1. A point set combined into three different hulls

The extreme elements of the hull of a point set, i.e., extreme rays for a
pointed cone, extreme points for a convex hull and an unbounded polyhedral
hull (provided the recession cone is already minimally defined and its extreme
rays known), are called the frame. The following definition formalizes this.

Definition 1. The frame, F , of a polyhedral hull is a minimal subset of the
point set, A, such that pol(A) = pol(F).

The following observations apply:

– Frame elements correspond to extreme points (rays) of the polyhedral set
(assumptions needed; e.g., cones must be pointed, no duplication, no two
points are multiples for cones, recession cone is minimally defined and known
for general polyhedral hulls).

– Non-frame generators are nonessential or “redundant”.
– All inferences about the geometry of the polyhedral hull can be made using

the frame.
– In large data sets where n � m, the cardinality of the frame is typically a

small fraction of n.

The original problem of identifying the extreme points of a convex hull of a
finite set of points in multidimensional space is known by various names. In [1]
Fukuda refers to it as the “redundancy-removal” problem for a point set, in [2]
Edelsbrunner describes it without naming it, and in [3] it is a “convex-hull” prob-
lem. We have opted for Gerstenhaber’s term in [4] and refer to it as the “frame”
problem. It is important to stress from the outset that the frame problem is not
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the polyhedral facial decomposition problem from computational geometry, also
called the “convex hull” problem by many, e.g., [2]. This terminology creates
confusion about two very different problems. In both cases, the input is a finite
point set. The goal of the facial decomposition-convex hull problem, however, is
to express the resultant multidimensional polyhedron as an intersection of half-
spaces. It is an interesting problem in its own right but it is combinatorial in
nature and, in the general case, has no polynomial algorithms. That convex-hull
problem is our topic. Our interest is on the deterministic frame problem which
is not as difficult as facial decomposition. In fact, it is solved in polynomial time.
The frame problem has many applications and presents its own theoretical and
computational challenges, especially in large-scale applications.

2 Applications of the Frame Problem in Management

There are several important management problems that use models based on
finding the frame of a polyhedral hull of an m-dimensional point set.

Data Envelopment Analysis (DEA). DEA evaluates the relative efficiency of a
collection of functionally similar firms or entities (called ‘Decision Making Units’
or DMUs) in transforming multiple inputs into multiple outputs. The study
proceeds to identify the points from the data set on a subset of the boundary of
a polyhedral hull known as the efficient frontier. The final result of a DEA study
is a classification of DMUs as either efficient or inefficient. The data points in the
efficient frontier correspond to the efficient DMUs; the rest are inefficient. DEA
provides information about inefficient DMUs that can be used to assess how
inputs can be decreased or outputs increased to attain efficiency. The frame of
the hull is sufficient for the efficiency classification and scoring. The fourth panel
in Figure 1 depicts the efficient frontier of a DEA problem in �2 where the first
component corresponds to an input and the second to an output. This frontier is
defined by the points a5, a7 and a8. DEA problems with several thousand DMUs
in eight to ten dimensions occur in the banking industry.

Ranking and Ordering. Barnett states that “There is no natural basis for or-
dering multivariate data” [13]. Nevertheless there is a demand from the part of
decision makers for meaningful ranking schemes applied to complex entities de-
scribed by multiple attributes. One approach is “hull peeling”. This is a purely
geometric approach based on defining a layer of the data as the points on the
boundary of the polyhedral hull. If these points are removed, the remaining data
define a new hull within the previous one and hence a second layer or depth. The
process can be repeated to produce a sequence of nested layers that may be used
as a partial ordering of the data. The process requires the repeated solutions to
frame problems.

Outlier Detection; e.g. Security, Fraud, etc. Without actually attaining extreme
values in any single dimension, interesting entities may be identified by having
extreme values when dimensions are combined. For examples, the tax return
with the largest sum of the charitable contributions and employee deductions
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may reveal an interesting tax return; or the individual whose money transfer
events and total monetary value of the transfers is the largest when added up
may merit further review. The record that emerges as a geometric outlier is just
one of, possibly, many using this simple criterion if the combination of the two
values are weighted differently. All such points are, in the same sense, geometric
outliers and all would be interesting for different reasons.

In general, a data point, aj∗
, is a geometric outlier if it is a support for a

polyhedral set generated by the data. The shape of this polyhedral set is based
on assessments as to whether only larger or smaller magnitudes (or both) for the
attribute’s value are the priority. Each of the m relations in the system

∑
j ajλj

can have three possibilities: ≤,≥, and = leading to 3m different polyhedral sets.
The frame problem described here has clear data mining applications. The

scale of these problems is potential massive. Research needs to be performed
on the performance of the frame algorithms at these scales. Also, the multitude
of shapes and properties that emerge need to be studied for their properties
and impact on algorithmic performance. Modeling the type of situations and
applications that lead to some of these new shapes is interesting as well.

Stochastic Programming. It is not necessary to expound here on the importance
of mathematical programming under uncertainty in management and decision
making. The frame problem has been identified as critical in the stochastic pro-
gramming area by Wallace and Wets [14], where it appears in the process of
determining if the second stage of a two-stage stochastic program has relatively
complete recourse. Wallace and Wets state that “there is a lot to be gained by a
more efficient implementation (of an algorithm to find the frame of the convex
hull, than one based on solving linear programs)”.

3 Deterministic Procedures to Find Frames of
Polyhedral Hulls

In [1], Fukuda notes that solving the frame problem “might end up in a very time
consuming job for large n (say > 1000)”. However, applications with many more
than 1000 points are not uncommon. Therefore, there is an interest in studying
the algorithmic and computational aspects of the frame problem.

The first procedure for identifying the frame is a result of a direct application
of the external definition of pol(A). A data point, aj∗

, is an extreme element of
a polyhedral hull if and only if it does not belong to the hull of the rest of the
data set, A\ aj∗

. Therefore, to test whether aj∗ ∈ F , check the feasibility of the
system

S(A, j∗) =

⎧⎪⎪⎨⎪⎪⎩
∑

j 	=j∗
ajλj +

∑
k

vkμk = aj∗
,∑

j 	=j∗
λj = 1,

λj ≥ 0, μk ≥ 0∀j, k.
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Each point can be tested individually using the system, hence the following,
“naive”, deterministic procedure.

“Naive” Procedure to Identify Frame Elements.

For j = 1 to n do:
Step 1. j∗ ← j.
Step 2. Verify feasibility of System S(A, j∗).
Step 3. Classify DMU j∗:

If S(A, j∗) is infeasible
Then: aj∗ ∈ F,
Else: aj∗ ∈ F.

Testing the feasibility of a linear system such as S(A, j∗) can be done a
number of ways in polynomial time. The most practical is linear programming.
Therefore, the naive procedure requires the solution to n LPs each roughly di-
mension m × n. We obtained predictable results given what is known about
solving LPs in an implementation using IMSL’s subroutine ‘ddlprs’ [5]. Figure
2.a shows how the time required to solve individual LPs for a typical implemen-
tation using a point set in �5 behaves almost linearly with respect to cardinality.
Since a complete implementation requires n LPs, the total time behaves closely
as a factor of the square of the number of LPs solved; this is clearly evident in
Figure 2b.

The reports in Figure 2 represent a direct basic implementation. Preprocess-
ing; e.g., sorting by component for convex hulls, etc. can can reveal the status
of some points without paying a full LP price. The impact of such opportunistic
schemes especially on large data sets is limited.
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Fig. 2. Naive Procedure Performance as a Function of Data Set Cardinality: (a) Single
LP. (b) Full Implementation (n Iterations)

Substantial performance enhancements occur with what is known about the
mechanics of solving LPs and the geometry of finitely generated hulls. The LPs



Point Sets and Frame Algorithms in Management 455

solved from one iteration to the next in the naive procedure differ only in their
right-hand side. Indeed, implementing advanced basis reoptimization, i.e., “hot
starts”, yields substantial reductions in time. It turns out that only frame ele-
ments can be part of an LP basis. Therefore, if aj∗

is identified as nonessential,
it can be removed from the coefficient matrix in the LP in subsequent iterations.
This is known as “restricted basis entry” (RBE) and it can provide further im-
portant gains.

Output-sensitive algorithms for the frame problem of a convex hull that do
not rely on naive feasibility verification were independently proposed in [6], [7],
[8], and [9]. The rough sketch of an idea for an algorithm that is essentially the
same as in [6] is provided in [7] . Separate and independently developed output-
sensitive frame algorithms appear in [8] and [9] . This algorithm differs from [6]
and [7] in an important way. What is done in [6] and [7] using inner products,
[8] and [9] do with full-data LPs. It is not immediately clear how this approach
compares to the inner product way since the full-data LPs actually have the
potential of uncovering more than one new frame element every time they are
invoked. The algorithm in [8] was cleaned up, formalized, and corrected in [10].
There are no computational results in [7], [8], [9], and [10] so it is difficult to
predict or compare performances.

The complexity and performance of output-sensitive algorithms depend on
the cardinality of the frame. They are based on the general principles that if
Â ⊆ A then pol(Â) ⊆ pol(A); and if ã is interior to pol(Â) then ã is interior to
pol(A). Finally if ã 
∈ pol(Â), then there exists at least one new frame element.
This information can be used to update Â.

A formal output-sensitive algorithm for finding general frames is presented
next:

Algorithm BuildHull.

Initialization: Select any subset of the frame: F̂.
For j = 1 to n do:

Step 1. j∗ ← j.

Step 2. aj∗ ∈ pol(F̂)? (Solve special LP)
Yes: Classify aj∗

as ‘interior’. Next j.
No:

1. Find separation and support of pol(F̂).
(From LP solution.)

2. Find new extreme point (Sort inner products).
3. Update F̂ by including new extreme point.
4. New extreme point is aj∗

?
Yes. Next j.
No. Go To Step 2.
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The initialization can be any nonempty subset of the frame, including a single
point. Step 2 of BuildHull requires the solution of a special LP. This LP needs
to satisfy several properties:

– It must be feasible and bounded for any point in �m. This way, a meaningful
solution is always available for use in the following two tasks.

– Its solution must conclusively resolve whether aj∗ ∈ pol(F̂) and, if the test
point is external then ...

– Its solution must provide a separating and supporting hyperplane between
aj∗

and pol(F̂).

Specialized LP formulations are available for different polyhedral hulls in [6],
[11], and [12].

The algorithm is best understood with an illustration. The six panels in
Figure 3 depict two full iterations using a two-dimensional point set. The first
iteration tests an interior point and therefore does not execute the substeps in
Step 2. The second iteration tests an exterior point and therefore a separating
and supporting hyperplane is generated and a new frame element is identified.
Consider the point set from Figure 1 and suppose we apply BuildHull to find
its convex hull. Here is a panel by panel explanation:

– Panel a. The initializing frame elements are a4, a5 and a8. This becomes
the “current partial hull”, F̂ , until a new frame element is identified and F̂
is updated.

– Panel b. Iteration 1: j∗ = 1, Steps 1 and 2. Point a1 is interior to F̂ . (In
general, an LP solution is used to make this determination). It gets classified
as interior. The first iteration concludes by incrementing j.

– Panel c. Second iteration begins: j∗ = 2. An LP solution reveals that the
second test point, a2, is exterior to the current partial hull. Therefore, there
exist a separating and supporting hyperplane between a2 and F̂ . We proceed
to execute instructions in the substeps of Step 2.

– Panel d. The separating and supporting hyperplane is the line through a5

and a8. This hyperplane is obtained from the LP solution.
– Panel e. The separating and supporting hyperplane is used to find a new

frame element by translating it away from the current partial hull. On the
way, we meet the points a2 and a7. Since a7 is farthest, and there are no
ties, it must necessarily be an extreme point and gets classified as a frame
element. Note that this translation is equivalent to evaluating the hyperplane
at each point on the same side of the separation. These operations require
simple inner products. The list of known frame elements is updated with the
point a7.

– Panel f. The new partial hull, F̂ , is now composed of a4, a5, a7 and a8. The
next iteration does not increment the index j. This way, the point a2 will be
tested again.

– Remaining Iterations. The point a2 will be identified as interior in Iter-
ation 3. Iteration 4 identifies the point a3 as interior. Iteration 5, the last
iteration, will uncover a6 as a frame element.



Point Sets and Frame Algorithms in Management 457

Fig. 3. Two iterations of BuildHull

Remark 1. Note that any implementation of procedure BuildHull should check
whether a point has already been classified before proceeding to Step 2.

A comparison between a naive implementation enhanced with RBE and
BuildHull appears in Figure 4. (Hot starts benefit both procedures). The re-
sults reported are typical. The “frame density” is the percentage of points that
are elements of the frame. We say a point set has low density when its extreme
elements are up to 15% of the cardinality of the set and we classify point sets
with more than 35% as high density. The two panels in the figure show that the
performance of BuildHull is clearly output-sensitive with respect to the frame
density. In either case, BuildHull dominates and this domination becomes in-
creasingly dramatic as the the cardinality of the point set increases and the
frame density decreases.
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The reason why BuildHull is better than a naive algorithm even when en-
hanced with RBE is that the former solves small linear programs that grow as
new frame elements are identified but these LPs are never larger than the car-
dinality of the frame. On the other hand, the enhanced naive algorithm begins
solving large LPs that become progressively smaller. This difference becomes
accentuated in problems with low frame density since, in this case, the linear
programs solved by BuildHull remain small.
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Fig. 4. Comparison between (enhanced) naive algorithm and BuildHull

4 Conclusions

The frame problem plays a role in several management applications. Solving it
presents serious computational challenges especially when scales are large. The
traditional “naive” algorithm to find a frame is severely limiting making a new
generation of output-sensitive algorithms especially interesting. The fact that in
practice n � m and frame densities are typically less than 1% makes output-
sensitive algorithms such as BuildHull especially valuable. The new output-
sensitive algorithms will allow the solution of much larger frame management
problems.
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Abstract. This work extends the existing parallel- and serial-episode
data mining algorithms to that for parallel connection of serial (PoS)
episodes. The PoS-episodes can model more general situations and pre-
serve the sequence information as well. The PoS-episode mining algo-
rithm can provide episode-mining users a powerful mining tool and make
the episode mining more flexible. To use the PoS-episode mining algo-
rithm, users need to decide reasonable parameters like window width
and minimum frequency ratio. Concepts and methods are provided by
using Web log mining as example to illustrate the applicability of the
PoS-episode mining and show how to decide reasonable parameters as
well as evaluate the mining process.

1 Preliminaries

Data mining is a task that extracts or “mines” knowledge from large amounts of
data. Sequence data mining is one of the branches of data mining where the data
can be viewed as a sequence of events and each event has an associated time
of occurrence. Examples of such data are telecommunication network alarms,
occurrences of recurrent illnesses, Web site traversal actions, etc [1].

Sequence data can be modeled using episodes [5]. An episode is an acyclic
directed graph representing partial ordering of a group of events. Episodes can be
classified into serial episodes, parallel episodes, and complex episodes, according
to the nature of partial ordering among the events. An episode is serial (parallel)
if the underlying partial ordering is total (trivial, respectively). An episode is
complex if it is not serial or parallel.

The Apriori algorithm [2] [3] [6] can be used in mining frequent episodes.
It employs a bottom-up strategy and utilizes the known/prior information to
reduce the search space. There are two main steps in each iteration of the al-
gorithm, candidate generation and frequent-episode recognition. The Apriori
algorithm terminates when there is no more candidate generated.

When working on sequence data mining, it is always desirable to maintain the
relative sequence information in the output of date mining in terms of input data
sequence. Serial episode is capable of keeping sequence information. However,
the episode configuration is rigidly restricted and has to be totally ordered.

N. Megiddo, Y. Xu, and B. Zhu (Eds.): AAIM 2005, LNCS 3521, pp. 460–471, 2005.
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The capability of expression of the serial episode therefore is limited to certain
real-world scenarios. Parallel-episode mining does not take the events sequence
information into account and is less useful in sequence data mining area.

Complex episode is ideal for modeling the real world. However, mining com-
plex episodes is not a trivial task, due to the topological complexity of episode
generation and the computational complexity of episode recognition. This work
takes a step out toward a compromise direction by providing algorithms for min-
ing parallel connection of serial (PoS) episodes, which is an interesting subclass
of complex episodes. An experiment that illustrates the applicability of the PoS-
episode mining is performed by studying Web page traversal pattern mining
using Web server log data set.

Given a set E of event types, an event is an ordered pair (A, t) where A ∈ E
is an event type and t is a nonnegative integer, the occurrence time of the event.
We assume that all events last one time unit. An event sequence on E is a triple
(s, Ts, Te), where s = {(Ai, ti)}ni=1 for some positive integer n, is an ordered
sequence of events such that Ai ∈ E for all i ∈ {1, 2, . . . , n}, and ti < ti+1 for
all i ∈ {1, 2, . . . , n− 1}. Furthermore, Ts and Te are positive integers: Ts and Te

are the starting time and ending time of the event sequence, respectively, and
Ts ≤ ti < Te for all i ∈ {1, 2, . . . , n}.

A window on an event sequence (s, Ts, Te) is an event sequence (w, ts, te),
where ts < Te and te > Ts, and w consists of those events/pairs (A, t) ∈ s where
ts ≤ t < te. We abbreviate an event sequence (s, Ts, Te) and a window (w, ts, te)
by s and w, respectively. The time span te− ts is called the width of the window
w, and it is denoted by width(w). Given an event sequence s and an integer
w width, we denote by W (s,w width) the set of all windows w on s such that
width(w) = w width.

An episode is an acyclic directed graph with node set V and edge set !. An
episode α is a triple (V,!, g), where V is a set of nodes, ! is a partial order on
V , and g : V → E is a function associating each node with an event type in E
of an event sequence such that the temporal order of the event types of g(V ) is
given by the partial order ! on V . We define the size of episode α, |α| as |V |.
Depending on the underlying graph structure, we can divide episodes into three
categories: serial episodes, parallel episodes, and complex episodes. An episode
α = (V,!, g) is serial if its partial order ! on V is a total order; and α is
parallel if its partial order ! on V is trivial/empty. An episode is complex if it is
neither serial nor parallel. A complex episode can be reduced to the recognition
of a hierarchical combination of serial and parallel episodes. PoS-episodes form a
subclass of complex episodes. A PoS-episode consists of two serial episodes that
share the common start and the end event types.

For two episodes α = (V,!, g) and α′ = (V ′,!′, g′), α′ is a subepisode of α
if the underlying graph structure of α′ is a subgraph of that of α; that is, there
exists an injection f : V ′ → V such that g′(v) = (g ◦ f)(v) for all v ∈ V ′, and
for all v, w ∈ V ′ with v !′ w, we have f(v) ! f(w).

An episode α = (V,!, g) occurs in an event sequence s = ((Ai, ti)
n
i=1, Ts, Te)

if there exists an injection h : V → {1, 2, . . . , n} from the node set of α to the set
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of all event-indices of s such that g(v) = Ah(v) for all v ∈ V , and for all v, w ∈ V
with v ! w and v 
= w, we have th(v) < th(w).

The frequency of an episode is the fraction of windows in which the episode oc-
curs out of all possible windows. Given an event sequence s = ((Ai, ti)

n
i=1, Ts, Te)

and a window width w width, the frequency of an episode α in s is:

fr(α, s,w width) =
|{w ∈ W (s,w width) | α occurs in w}|

|W (s,w width)| .

We say that α is frequent in s if fr(α, s,w width) ≥ min fr, where min fr is a
prescribed threshold of minimum frequency ratio given by the user. The collec-
tion of all frequent episodes is denoted by F (s,w width,min fr) with respect to
the given s, w width, and min fr.

Once we find all frequent episodes, we can use them to generate rules that
describe the relationship between episodes. An episode rule is an expression
β ⇒ γ where β is a subepisode of γ. The confidence of the episode rule is:

confidence(β ⇒ γ) =
fr(γ, s,w width)

fr(β, s,w width)
.

The candidate-generation algorithms for serial episodes and parallel episodes
are slightly different, but both of them follow an Apriori-like algorithm that
performs a level-wise search. From the episode set with only one event, that
is, set of all size-1 episodes, the search algorithm first computes a collection of
candidate episodes, then checks the frequencies by scanning the event sequence.
The episodes with frequency of at least a prescribed threshold form the frequent-
episode set of current episode size. The algorithm then computes the collection
of candidate episodes for next episode size (from the frequent-episode set of
current episode size) and generates the frequent-episode set of next episode size
accordingly, until no frequent episodes are generated at certain episode size.
In the candidate-generation algorithm, a parallel episode is represented as a
lexicographically sorted array of event types. Parallel and serial episodes in their
episode collections are also sorted by lexicographical order. Candidates can be
generated by arranging appropriate combinations of two episodes of size l that
share the first l − 1 common event types.

Comparing with the candidate-generation algorithms, the episode-recognizing
algorithms for parallel episodes and serial episodes are in different approaches.
For parallel-episode recognition, each candidate parallel episode α is associated
with two identifiers: an event counter α.event count indicating the number of
events of α in the current window, and a frequency counter α.freq count cumu-
lating the total number of windows in which α occurs.

Serial episodes can be recognized by using automata [5]. The algorithm con-
structs an automaton for each serial episode α every time the first event Afirst

of α comes into the window. The active state of an automaton reflects a prefix
of α in the window. When the same state Afirst of α leaves the window, the
corresponding automaton is removed. When an automaton reaches its accept-
ing state at time t, it means that the corresponding episode is entirely in the
window. Since there could be multiple instances of the same automaton existing
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in a window, the starting time t is saved in α.inwindow if no other automata
for α are in the accepting state. When an automaton for α in the accepting
state is removed and no other automata for α in the accepting state, the counter
α.freq count is increased by the number of windows that α has been remained
in the window.

2 Supporting Algorithms

The PoS-episode mining algorithms consist of two parts, generation of candidate
PoS-episodes and recognition of frequent PoS-episodes.

2.1 Generation of Candidate PoS-Episodes

The output of the serial-episode mining algorithm is the frequent-serial episode
array, FSE, which is used as the input of the PoS-episode candidate-generation
algorithm.

The frequent serial-episode array FSE is the array of all frequent serial-
episode sets; FSE[i] is the set of all frequent serial episodes that have the same
size i, that is , have the same number of events. The number of frequent serial-
episode sets in FSE and the number of episodes in FSE[i] are denoted by |FSE|
and |FSE[i]|, respectively. The serial episodes of size i in FSE[i] are sorted in
the lexicographical order, and FSE[i][j] gives the jth serial episode of size i in
FSE[i].

A PoS-episode α is a parallel connection of two serial episodes that connects
two events together. We label these two serial subepisodes as α1 and α2. Since we
employ state-transition automata to recognize serial episodes, we use the term
“state” interchangeable with the term “event” when the context is clear. The
sizes of α1 and α2 can be different but each is at least 3. Since α1 and α2 share the
same starting state and ending state, the size of α is α.size = α1.size+α2.size−2,
and the size of a PoS-episode is at least 4. A PoS-episode α remains the same
if we interchange its serial subepisodes α1 and α2. If we have α1 = α2, then α
becomes a serial episode.

Algorithm 1 generates all possible candidate PoS-episodes α consisting of two
serial episodes α1 and α2 with α1 < α2 (with respect to the lexicographic order).
We assume that all the event types have been mapped into contiguous integer
numbers beginning from 1. Thus, we use the event type as the index of arrays
in our algorithm.

According to the Apriori property that all non-empty subsets of a frequent
set must also be frequent, the two subepisodes α1 and α2 must also be frequent
serial episodes for any given α that is frequent. Since FSE is the complete set
of frequent serial episodes, Algorithm 1 can explore all possible combinations
of the serial-episode pairs and obtain the complete candidate PoS-episode set.
Also, because FSE consists of only frequent serial episodes, the candidate PoS-
episode set generated by Algorithm 1 is a small set since it utilizes the known
frequent serial-episode information. This can greatly reduce the search space
when detecting the frequent PoS-episodes.
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Algorithm 1. Generating all the possible PoS-episode using the frequent serial-episode set.
Input: An array FSE of frequent serial-episode set.
Output: An array C of all candidate PoS-episodes.
begin
C := ∅;
for i := 3 to |FSE| do

for j := 1 to |FSE[i]| do
α := FSE[i][j];
for m := i to |FSE| do // since α < β (in lexicographical order)

for n := 1 to |FSE[m]| do
β := FSE[m][n];
if (α ≥ β) then

continue;
if (α[1] = β[1] and α[α.size] = β[β.size]) then

construct candidate PoS-episode γ based on α and β;
C := C ∪ {γ};

end Algorithm 1;

2.2 Recognition of Frequent PoS-Episodes

Frequent PoS-episodes can be recognized by constructing two deterministic finite
automata M1 and M2 for each candidate PoS-episode α as shown in Figure 2:
M1 and M2 correspond to the two serial subepisodes α1 and α2 of the candidate
PoS-episode α.
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Fig. 1. Two deterministic finite automata M1 and M2 for an example PoS-episode α

When symbols, that is, event types are fed in, both M1 and M2 will do state
transitions according to the input event types. A PoS-episode α is recognized
when both M1 and M2 are in the accepting states. During the recognition, a
sliding window with width w width is advancing along the time axis. For the
event sequence {(Ai, ti)}ni=1, the timestamp of the first sliding window is t1 and
the timestamp of the last sliding window is tn+w width−1. Each move represents
the passing of one time unit and will bring in zero or one event (A, t), where t
is the timestamp of current window.
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Algorithm 2 recognizes all of the frequent PoS-episodes from the given event
sequence, window size, and the minimum frequency threshold. This algorithm
initializes a pair of instances of automata (M1,M2) for each PoS-episode α whose
first event type is the same as the event that comes into the sliding window. The
automata M1 and M2 are equivalent to the subepisodes α1 and α2, respectively,
of PoS-episode α. The instances of automata pair (M1,M2) will be removed when
the same event falls out of the sliding window. A PoS-episode α is completely
enclosed in the window if both M1 and M2 of α have reached their accepting
states. We call the earliest time that α is enclosed in the sliding window the
entrance time of α. The entrance time is saved into the identifier α.inwindow.
When an automata pair in the accepting states is removed, we calculate the
window number that the PoS-episode α stayed in the sliding window and save
it into α.freq count.

There may be multiple instances of automata of PoS-episode α that exist
in the sliding window. Some of them may be in the accepting state. However,
according to the definition of frequency of an episode, only the number of win-
dows that contain the PoS-episode will be counted. In other words, for a certain
window, it is important that PoS-episode α is present or not, while the number
of α is not important. Thus the entrance time of α is defined as the time that the
instance of automata of α reaches the accepting states and no other instances
of α in the window are in the accepting states. The removal time of automata
of α in the accepting states is defined as the time that the automata of α are
removed and no other instance of the automata in the accepting states.

We use a two-dimensional array waits[i][j] to keep track of the automata
pair (M1,M2) that accept event type i in M1 and j in M2. In the algorithm,
symbols α1 and α2 are used interchangeably with M1 and M2. The automata
pair (M1,M2) is preserved in the linked list. The cell waits[i][j] is the head of the
linked list. The automata pair (M1,M2) is represented in the form (α, i, j, T, w)
where α is the PoS-episode and the data structure of α preserves the states and
transition information, i and j are the next states in M1 and M2, T is the time
when the first state of α enters the window, and w is the description of the last
transitions of the automata pair (M1,M2) as shown below:

w description of the last transitions of automata pair (M1, M2)
0 both M1 and M2 moved forward one state

i ∈ {1, 2} Mi moved forward one state and the other automaton remained in the same state
3 both M1 and M2 remained in the same states

All the automata pairs that are initialized at time T are linked at beginset[T ].
If the automata pair is removed, then it is removed from this linked list. Unlike
the automata pair stored in the waits[i][j] that i and j are the next states for
transitions, the automata pair (α, i, j, T, w) stored in beginset[T ] give the states
i and j on which transitions just happened.

For each input symbol, all the transitions are organized in a linked list
transitions. Automata stored in transitions are in the form of (α, i, j, T,A) where
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α, i, j, and T have the same semantics as beginset[T ] and A is the input symbol,
that is, current processing event.

3 PoS-Episode Mining on a Large Web Log Data Set

The PoS-episode mining algorithms are studied by carrying out Web page traver-
sal pattern mining using Web server log data set. When a user is visiting a Web
site, each visit of a Web page can be viewed as an event, in which the Web page
name is the event type and the visiting time is the event time. Thus, a Web
site access event has the form of (Web page name, visiting time). All the events
in a Web server log file constitute of an event sequence. The experiment data
set is the Web site (cybermath.okstate.edu) access log data. This Web site is a
remote education Web site that belongs to College of Arts and Sciences of Ok-
lahoma State University. It provides college-level calculus courses to high-school
students, who use this Web site to view lessons, take quizzes, and communicate
with other users. The basic information of the Web site and log data set is:

Web site name cybermath.okstate.edu
individual Web pages number 304
log starting time – ending time 08/Jan/2003:09:09:03 – 28/Feb/2003:19:18:22
total log entries 44955
effective Web pages entries 19710
average visiting length: Web site / Web page 493 seconds / 44 seconds

In this experiment, the purpose of data mining is to discover the Web page
traversal patterns. In the Web site, each Web page has more than one links that
point to other Web pages and may even have links point back to itself. If we
treat each Web page as a node and each link as an edge, then we can view the
Web pages in a Web site as a complex graph. From one node to another node,
there could be many ways to move along. To improve the Web site design or to
efficiently put advertisements on the right Web pages, the frequent Web page
traversal patterns are needed.

One of the characters of the Web log data is the sparseness of visit events
compared to the total available timestamps. During the night, there are long gaps
of silence without users’ visit. This leads to a very small minimum frequency ratio
to be set. On the other hand, the algorithms iterate on every sliding window.
In the Web server log, there could be an event in any second. So, the step
for the sliding windows is one second. The sparseness of the event can slow
down the computation time dramatically. Thus, condensing of Web log data
is needed. The data condensing process should not introduce new relationship
among any events. This means that any two adjacent events with a gap width
wgap > w width + 1 should be moved together into a gap width of w width + 1
between them. All other relative distances between events are preserved during
the condensing process.

Based on the statistics collected for the average visit lengths for Web site
and Web page (493 seconds and 44 seconds, respectively), the experimental
window sizes are chosen. We tabulate below the frequent PoS-episodes number
in different combination of window width and minimum frequency ratio obtained
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Algorithm 2. Recognize all frequent PoS-episodes from the given event sequence, window size,
and the minimum frequency threshold.

Input: Given the number of event type ET, the candidate PoS-episode array C, an event sequence
s = (s, Ts, Te), a window width w width, and a frequency threshold min fr.

Output: The set FPoS of frequent PoS-episodes, that is, F (s, w width, min fr).
begin
// initialization
for i := 1 to ET do

for j := 1 to ET do
waits[i][j] := ∅;

for each α ∈ C do
waits[α1[1]][α2[1]] := waits[α1[1]][α2[1]] ∪ {α, 1, 1,−1,−1)};
α.freq count := 0; α.inwindow := −∞;

// recognition
for start := Ts − w width + 1 to Te do

t := start + w width − 1;
beginset[t] := ∅; transitions := ∅;
for all events (A, t′) ∈ s such that t′ = t do

for all (α, i, j, T, w) ∈ waits[A][∗] ∪ waits[∗][A] do
if i = |α1| and j = |α2| and α.inwindow = −∞ then

α.inwindow = start;
if i = j = 1 then

transitions := transitions ∪ {(α, 1, 1, t, A)};
else

transitions := transitions ∪ {(α, i, j, T, A)};
if w = 0 then

beginset[T ] := beginset[T ] − {(α, i − 1, j − 1)};
else if w = 1 then

beginset[T ] := beginset[T ] − {(α, i − 1, j)};
else if w = 2 then

beginset[T ] := beginset[T ] − {(α, i, j − 1)};
else if w = 3 then

beginset[T ] := beginset[T ] − {(α, i, j)};
waits[α1[i]][α2[j]] := waits[α1[i]][α2[j]] − {(α, i, j, T, w)};

for all (α, i, j, T, w) ∈ transitions do
if w = α1[i] and w = α2[j] then

if i < α1.size and j < α2.size then
waits[α1[i + 1]][α2[j + 1]] :=waits[α1[i + 1]][α2[j + 1]]∪{(α, i + 1, j + 1, T, 0)}; w′ := 0;

else if i < α1.size then
waits[α1[i + 1]][α2[j]] := waits[α1[i + 1]][α2[j]] ∪ {(α, i + 1, j, T, 1)}; w′ := 1;

else if j < α2.size then
waits[α1[i]][α2[j + 1]] := waits[α1[i]][α2[j + 1]] ∪ {(α, i, j + 1, T, 2)}; w′ := 2;

else if w = α1[i] then
if i < α1.size then

waits[α1[i + 1]][α2[j]] := waits[α1[i + 1]][α2[j]] ∪ {(α, i + 1, j, T, 1)}; w′ := 1;
else

waits[α1[i]][α2[j]] := waits[α1[i]][α2[j]] ∪ {(α, i, j, T, 3)}; w′ := 3;
else if w = α2[j] then

if j < α2.size then
waits[α1[i]][α2[j + 1]] := waits[α1[i]][α2[j + 1]] ∪ {(α, i, j + 1, T, 2)}; w′ := 2;

else
waits[α1[i]][α2[j]] := waits[α1[i]][α2[j]] ∪ {(α, i, j, T, 3)}; w′ := 3;

beginset[T ] := beginset[T ] ∪ {(α, i, j, T, w′)};
for all (α, i, j, T, w) ∈ beginset[start − 1] do

if i = α1.size and j = α2.size then
if no other α in current sliding window in the accepting state then

α.freq count := α.freq count − α.inwindow + start; α.inwindow := −∞;
else

continue;
else if w=0 then waits[α1[i + 1]][α2[j + 1]] :=waits[α1[i + 1]][α2[j + 1]]−{(α, i +1, j +1, T )};
else if w=1 then waits[α1[i + 1]][α2[j]] := waits[α1[i + 1]][α2[j]] − {(α, i + 1, j, T )};
else if w=2 then waits[α1[i]][α2[j + 1]] := waits[α1[i]][α2[j + 1]] − {(α, i, j + 1, T )};
else if w=3 then waits[α1[i]][α2[j]] := waits[α1[i]][α2[j]] − {(α, i, j, T )};

FPoS := ∅;
for all PoS-episodes α ∈ C do

if α.freq count/(Te − Ts + w width) ≥ min fr then FPoS := FPoS ∪ {α};
end Algorithm 2;
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from the experiment. The threshold of minimum frequency ratio for each window
size is decided by making the algorithms generate suitable number of output
frequent PoS-episodes since too many or too few output of frequent PoS-episodes
are not desirable. In this work, we use the output frequent PoS-episodes number
range of 10 – 1000 to decide the minimum frequency ratios. In the experiment,
we first guessed a minimum frequency ratio and used it to get the frequent PoS-
episodes number under this ratio. Then we gradually increased or decreased this
ratio to let the output frequent PoS-episodes number fall into the desired range.
frequent PoS-episodes number in different (window width, minimum frequency ratio)-combination

minimum frequency ratio (%)
window width (seconds) 0.8 1 1.5 2 3 4 5 6 7 8 9 10 12 15 18 20

30 887 639 280 171 45 4
50 812 311 144 38 13 6

100 813 532 214 136 13 12 10
200 870 668 534 259 143 36 8
300 877 552 170 30 3
400 717 544 133 22 8
500 1059 638 179 44 19

By running the PoS algorithms on the parameters (window width and mini-
mum frequency ratio) described above, we collect all the candidate-episode data
and the frequent-episode data for both serial episodes and PoS-episodes, and
tabulate below the detailed result of PoS-episode mining. For each category,
the candidate episodes are generated first and then the frequent episodes are
recognized by the database passes.

PoS-episode mining serial-episode mining
minimum number of minimum number of

window frequency candidate frequent fresh window frequency candidate frequent
size ratio PoS-episodes Ffresh (%) size ratio serial episodes

30 0.008 1004 887 27 3.0 30 0.008 2222 373
30 0.01 723 639 73 11.4 30 0.01 1896 302
30 0.015 301 280 4 1.4 30 0.015 1383 201
30 0.02 186 171 20 11.7 30 0.02 1321 144
30 0.03 49 45 3 6.7 30 0.03 992 91
30 0.05 5 4 1 30 0.05 462 31
50 0.02 847 812 10 1.2 50 0.02 1440 260
50 0.03 354 311 4 1.3 50 0.03 1232 171
50 0.04 165 144 25 17.4 50 0.04 964 110
50 0.05 45 38 3 7.9 50 0.05 759 76
50 0.06 16 13 1 7.7 50 0.06 483 44
50 0.07 10 6 1 16.7 50 0.07 449 35

100 0.04 832 813 5 0.6 100 0.04 1281 218
100 0.05 559 532 61 11.5 100 0.05 1020 172
100 0.06 236 214 21 9.8 100 0.06 890 131
100 0.07 159 136 20 14.7 100 0.07 521 88
100 0.08 48 42 0 0.0 100 0.08 478 66
100 0.09 25 25 0 0.0 100 0.09 442 49
100 0.1 14 10 1 10.0 100 0.1 433 38
200 0.06 952 870 22 2.5 200 0.06 1078 219
200 0.07 726 668 54 8.1 200 0.07 991 183
200 0.08 559 534 63 11.8 200 0.08 658 152
200 0.09 291 259 33 12.7 200 0.09 557 126
200 0.1 168 143 23 16.1 200 0.1 511 95
200 0.12 42 36 3 8.3 200 0.12 456 61
200 0.15 12 8 1 12.5 200 0.15 395 34
300 0.08 967 877 27 3.1 300 0.08 892 204
300 0.1 577 552 68 12.3 300 0.1 608 152
300 0.12 201 170 28 16.5 300 0.12 496 103
300 0.15 33 30 3 10.0 300 0.15 449 55
300 0.2 4 3 0 0.0 300 0.2 370 24
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400 0.1 848 717 71 9.9 400 0.1 705 186
400 0.12 567 544 65 11.9 400 0.12 562 150
400 0.15 166 133 23 17.3 400 0.15 480 86
400 0.18 23 22 2 9.1 400 0.18 405 45
400 0.2 12 8 1 12.5 400 0.2 393 33
500 0.1 1212 1059 53 5.0 500 0.1 797 219
500 0.12 774 638 69 10.8 500 0.12 634 169
500 0.15 213 179 26 14.5 500 0.15 503 108
500 0.18 58 44 6 13.6 500 0.18 443 65
500 0.2 20 19 6 31.6 500 0.2 405 44

The ratio of the frequent-episode number to the candidate-episode number
can provide how efficient the candidate-generation algorithms are. The larger the
ratio is, the more efficient the algorithms are. From the table above, we can see
that the PoS candidate-generation algorithm has a high ratio and the efficiency
is high. Only about 10% of the candidates turn out to be not frequent.

Among the discovered frequent PoS-episodes, there are two categories of PoS-
episodes. We name one the fresh PoS-episode and the other the associating PoS-
episode. A PoS-episode α is an associating PoS-episode if there is at least one
input string on event-type set that makes the automata pair (M1, M2) for α to
reach their accepting states and also makes at least one frequent serial-episode
based automaton reach the accepting state. We say that these frequent serial
episodes are associated with the PoS-episode α. Apparently, there could be one
or more serial episodes associated with a PoS-episode. A PoS-episode is a fresh
PoS-episode if it is not an associating PoS-episode. An associating PoS-episode
α represents a class of serial episodes that accept the same inputs with α. A
fresh PoS-episode is a new discovery of the PoS-episode mining algorithm and
no frequent serial episode is associated with it. All the associated serial episodes
of a fresh PoS-episode are eliminated from the output of serial-episode mining
because their frequencies are lower than the minimum frequency threshold.

We can use the fraction of fresh PoS-episode, Ffresh, to evaluate the perfor-
mance of the parameter settings PoS-episode mining:

Ffresh =
number of fresh PoS-episodes

number of all frequent PoS-episodes
.

A high fraction Ffresh of fresh PoS-episode indicates that the PoS-episode min-
ing algorithm picks up a large number of frequent PoS-episodes that have been
missed by the serial-episode mining algorithm. The table above lists the num-
bers of fresh PoS-episode and the values of Ffresh. We can see from the tabulated
statistics that for a specific window size, the number of frequent PoS-episodes
decreases while the minimum frequency ratio increases. However, the Ffresh in-
creases first, then reaches a maximum value, and then begins to decrease. We
can easily discover that when Ffresh reaches its maximum value, the number of
fresh PoS-episodes and the number of frequent serial episodes reach reasonable
values for data mining users who will eventually examine the result manually.
If we plot out these window sizes and minimum frequency ratios corresponding
to the maximum values of Ffresh, we can find that they are almost in a linear
relation. This can give the PoS-episode mining a guide on how to choose the
mining parameters.



470 H.K. Dai and G. Wang

For an associating PoS-episode α, its sliding window count Cassociating has such
relationship with the count of the associated serial episodes Cassociated(β), where
β is an associated serial episode of α, as the following equation:∑

all β

Cassociated(β) ≥ Cassociating ≥ max
all β

Cassociated(β).

We define the variable Rassociating as the ratio of the maximum value of the
Cassociated to Cassociating:

Rassociating =
maxall β Cassociated(β)

Cassociating
,

which can be used to evaluate the discreteness of the associated serial episodes
of an associating PoS-episode. A value of Rassociating = 1.0 indicates that there is
only one serial episode associated with the PoS-episode. A low value of Rassociating

gives a hint that there could be several associated serial episodes and each of
them has a low frequency.

4 Conclusion

This work extends the existing parallel- and serial-episode mining algorithms
by developing the PoS-episode mining algorithms, which provide episode-mining
users a powerful mining tool and make the episode mining more flexible. As
examples of how to analyze the real PoS-episode mining case and how to decide
reasonable parameters, an experiment is performed in this work by studying the
Web server log data set and mining the Web page traversal patterns. Concepts
and methods are provided for this specific mining case to evaluate the mining
process. Our future work focuses on the topological and algorithmic aspects of
episode mining, possibly without candidate generation [4]: the consideration of
more complex episode topologies of higher-order serial and parallel hierarchical
structures, which also lends itself to parallelization for algorithm development.
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Abstract. The idea of active networks has been emerged in recent years to 
increase the processing power inside the network. The intermediate nodes 
such as routers will be able to host mobile agents and many management 
tasks can be handled using autonomous mobile agents inside the network. 
One of the important limitations, which should be considered in active net-
works, is the restricted processing power of active nodes. In this paper, we 
define an optimal location problem for monitoring mobile agents in a scal-
able active network as a p-median problem, which is indeed a kind of facil-
ity location problem. The agents are responsible to monitor and manage the 
performance of all of the network nodes such that the total monitoring traf-
fic overhead is minimized. Then we proposed two methods of finding an 
appropriate sub set of intermediate nodes for hosting mobile agents. In our 
first method, we have not considered the limited processing power of active 
nodes, which host mobile agents. In our second method, we have solved the 
problem so that the processing loads of host nodes do not exceed a prede-
fined threshold. Since p-median problems are NP-complete and the search 
space of these problems is very large, our methods are based on genetic al-
gorithms. We have tested our two methods for finding mobile agents opti-
mal locations on four network topologies with different number of nodes 
and compared the obtained location. By this comparison, we have shown 
the importance of considering processing load limitation for active nodes as 
a parameter in choosing them as hosts of mobile agents in a scalable active 
network. The proposed locations in our second method eliminates the prob-
ability of CPU overload in the active nodes hosting the mobile agents and 
reduces the processing time required for finding the optimal locations of 
mobile agents. 

Keywords: Active Networks, mobile agents, Performance Monitoring, P-Median 
Problem, Genetic Algorithm. 

1   Introduction 

Due to increasing need for data processing power in computer networks, end nodes’ 
processing power does not seem to be enough. In addition, increasing number of 
nodes in large-scale networks has made it difficult to update the communication pro-
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tocols and handling the complex management processes. For such reasons idea of 
Active networks has been proposed in 1997   [1]. Active network is a network in 
which intermediate nodes such as routers have processing power to run applications 
such as end nodes. 

On the other hand, complexities in management tasks demand autonomy in man-
agement applications. One of the new management technologies to address this prob-
lem is Mobile agents. Mobile Agents are autonomous software applications, which 
are able to migrate to different nodes in a heterogeneous network. Using mobile 
agents in network management has many advantages. Some of these advantages are 
effective resource usage, traffic reduction, and real time interaction ([2]-  [4]). Addi-
tionally a management system, which uses mobile agent for its management tasks, has 
distributed structure. Such a management system would be highly scalable and flexi-
ble (  [3],   [4]). 

Introducing Active Networks was a milestone for effective usage of mobile agents 
in network management. Variety of researches for using mobile agents in different 
management tasks is an evidence for this (  [5]-  [9]). However, there are some limita-
tions for using mobile agents in Active Networks. One of these restrictions is limited 
processing power of active nodes ([10] [12]). As the result, active nodes have limited 
power for hosting mobile agents and performing their management tasks. 

In reference   [4] mobile agents have been used for performance monitoring. Goal 
of this research was to locate monitoring agents’ locations in end nodes of a large-
scale network. Since the network is not active, no processing power capacity restric-
tion has been assumed for end nodes. In this paper, we extend the work that has been 
done in   [4] for Active Networks and we have assumed active nodes processing 
power capacity limitation in addition to other problem limitations.  

In next section, we would present the mobile agents Location problem as a p-
median problem. Then we would explain in detail our solution, which is based on 
genetic algorithms in part 3. In 4th part, simulation results are presented. The final 
part is conclusion, which expresses achieved results and further works. 

2   Mobile Agent Location Problem 

Suppose there is a central management workstation, which is going to send mobile 
agents for performance monitoring on the network nodes. A sub set of active nodes is 
selected for hosting the mobile agents by management workstation. In this selection, 
host nodes are chosen so that: 

• Performance monitoring traffic of the mobile agent is near minimal 
• Their Processing usage after hosting the mobile agents wouldn’t be beyond than a 

predefined threshold 

Solving the problem for active nodes with processing power limitation, make it a kind 
of modified p-median problem. This new kind of p-median problem is capacitated p-
median problem [13]. We present a formulation of p-median problem in an integer 
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programming proposed in [14]. In this presentation, it is possible to have each vertex 
of graph as both demand and facility. In our case, this is useful, because mobile agent 
host nodes (facilities) and the nodes, which are going to be monitored (demands), are 
the same in network topology. In other word, each of the active nodes can be a mobile 
agent host. 

p-median problem: 

∑∑
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Where: 
n = total number of vertices in the graph, 
ai = demand of vertex i , 
dii = distance from vertex i to vertex j, 
p = number of facilities used as medians, 
ai, dii are positive real numbers,.
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          1  (7) 

The objective function (1) minimizes the sum of the (weighted) distances between the 
demand vertices and the median set. The constraint set (2) guarantees that all demand 
vertices are assigned to exactly one median. The constraint set (3) prevents that a 
demand vertex be assigned to a facility that was not selected as a median. The total 
number of median vertices is defined by (4) as equal to p. Constraint (5) ensures that 
the values of the decision variables x and y are binary (0 or 1). 

The main difference between a capacitated p-median problem and p-median prob-
lem is two constraints [13]: 

1. each facility can satisfy only a limited number of demands (capacity restrictions) 
2. all demand points must be satisfied by respecting the capacities of the facilities 

selected as medians 



 Locating Performance Monitoring Mobile Agents in Scalable Active Networks 475 

 

Since in our work active host nodes have capacitated processing power, this version 
of the problem is a good candidate for our case. As it is mentioned, goal of this work 
is to minimize monitoring traffic, which is sent from mobile agents to the manage-
ment workstation. Monitoring traffic is divided into three types: 

• Traffic sent from monitored nodes to the mobile agent, which is responsible to 
monitor them. It is represented by “Traff”. 

• Traffic sent from mobile agents to the root. It is represented by “rtTraff”. 
• Traffic of sending the mobile agents to host nodes. It is represented by “rtTraff”. 

Therefore, the integer programming formulation of our problem would be: 

))((
11 1

∑∑ ∑
== =

++
p

j
jjj

n

i

n

j
ijijij MaTraffrtTraffdxdTraffMin  (8) 

Subject the following constrains: 

niThresholdLoadi <=< ,..2,1     (9) 

jjij MaTraffrtTraffTraff >>  (10) 

Where: 
Traffi j: j is index of monitored node, and i is index of active node which is hosting a 
mobile agent, 
rtTraffi: i is index of active node which is hosting a mobile agent, 
MaTraffi: i is index of active node which is hosting a mobile agent, 
Loadi: processing load of i’th node after starting performance monitoring, 
Threshold: Threshold defined for processing load of active nodes. 

Constraint (9) is equivalent to the constraints (1) and (2) of capacitated p-median 
problem. Constraint (10) is added to make the performance monitoring processes 
beneficial than the case of monitoring the performance of network without using 
mobile agents. In simulation, we use a performance-monitoring task, which satisfies 
constraint (10) regarding monitoring traffic. 

3   Proposed Method for Optimally Locating Mobile Agents Hosts 

In our proposed method, we use a genetic algorithm for finding near optimal 
location of mobile agent hosts. In this algorithm, solution is a bit string chromo-
some, which shows location of the hosts. Length of this bit string is equal to 
number of network nodes. Bits of the chromosome equal to 1 are location of the 
mobile agent hosts. We assume that mobile agents are only able to monitor their 
one-hob distance nodes and their host. Structure of chromosome coding is the 
same as [17]. In figure 1 a sample chromosome and its meaning in the Active 
Network is shown. 
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Proposed solution has been presented for two cases: Case in which goal is to 
minimize monitoring traffic and case in which goal is to minimize and satisfy proc-
essing load constraint.  

Assumed conditions for this problem are as follows: 

• Each mobile agent is only able to monitor one-hob distance nodes in the Active 
Network. 

• Mobile Agents should monitor all the nodes. 

 

Fig. 1. way of locating mobile agents by a chromosome 

The Genetic Algorithm Parameters 

Following adjustment is used for the genetic algorithm parameters: 

Mutation 
Several simulations with different mutation rates have been performed and the best 
results belong to 0.03 mutation rate. Simulations results are generated using this mu-
tation rate. 

Crossover 
Different methods of crossover are used in our simulations. Best results are obtained 
for two-point crossover. 

Using Migration 
Migration is used in solving this problem. Using migration would increase perform-
ance of algorithm for searching problem space in our case, which result in better solu-
tions. 

Fitness Function 
In this paper, there are defined two different fitness functions. The aim of the genetic 
algorithm here is to minimize these functions.  One of them is defined without regard-
ing the (9) constrain (we refer to this fitness function type 1). The other one is defined 
regarding the (9) constrain (we refer to this fitness function type 2). 
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Fitness function type 1 
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Fitness function type 2 
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Where: 

Ma2RootTraff : Traffic sent from mobile agents to the root, 
Nodes2MaTraff : Traffic sent from monitored nodes to the mobile agent which is 
responsible to monitor them,  
OverloadedNodes: Number of overloaded nodes, 
MaxTraff: Traffic sent from nodes to management workstation in case there is no 
mobile agent, 
OverlapRate: Value of this parameter shows the goodness of mobile agents’ locations 
regarding the monitored nodes.  If a part of these nodes have not been monitored or 
have been monitored more than 1 times, the value of this parameter would be in-
creased. Calculation of the value of it is as follows:  

|))/(1|/1exp(
1

∑
=

−−=
N

i
i NesvisitedNodeOverlapRat  (13) 

visitedNodesi: Number of nodes, which are assigned as facility for monitoring the i'th 
node, 
N: Number of active nodes. 
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Fig. 2. Different values of OverlapRate for different mean of assigning mobile agents for moni-
toring network nodes. As it could be seen in the figure when this mean is equal to 1 (each node 
of the network is only is monitored by one mobile agent), the value of Overlap rate is minimum 
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Genetic algorithm has been run for both these fitness functions and the simulation 
results are presented in the next part of the paper. 

4   Simulation Results 

In this part of the paper, genetic algorithm simulation results for four networks have 
been presented. These networks have 15, 25, 35, and 50 nodes. CPU of the computer, 
which the simulation has been run on, is Centrino 1.5 GHz with 512Mbytes ram. We 
define a performance monitoring process in which the mean of 100 parameters of all 
active nodes of the network should be collected. The duration of this process is as-
sumed 1 hour and 40 minutes, and performance information is collect each 1 minute 
from each node. Size of each parameter is supposed 16 bytes. This way each node 
sends 160 Kbytes of traffic data to mobile agent, which is responsible to monitor it (in 
whole of the monitoring task duration). Mobile agents send 1.6 Kbytes to root for 
each node they are monitoring.  The reason for reduction in size of traffic sent by 
mobile agents is that they calculate the mean of 100 parameters and then send the 
result to the root. Size of mobile agents has been chosen two Kbytes, based on Grass-
hopper framework mobile agent’s size[18]  In a more formal way: 

Traffij= 160 Kbytes for all i and j, 
rtTraffi = 1.6 Kbytes for all i, 
maTraffi = 2 Kbytes for all i. 

The processing load of active nodes is supposed to be a percentage between 20 and 
65 percent. The processing load of simple and host nodes are calculated using the 
following simple formula: 

ratio * p  CLoad  sLoad +=  (14) 

maLoad  ratio * p *n   CLoad  hLoad ++=  (15) 

Where: 
sLoad: simple node load after the monitoring task started, 
hLoad:  host node load after the monitoring task started, 
CLoad: Node-processing load before the monitoring task started, 
n: number of nodes monitored by the host, 
p: parameter number, 
ratio: it is a constant value less than 1, which is the ratio of processing load for moni-
toring one parameter of active node, 
maLoad: processing load, this is added to a host node for running a mobile agent 
on it. 

Figure 3 shows the processing load of active nodes after starting the monitoring 
process for 15 and 25 node networks for fitness functions type one and two. It can be 
seen in this figure that not considering the processing load can leads the active nodes 
to overload. 
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Fig. 3. (a) network with 15 nodes. There is one overload in this network using type one fitness 
function. (b) Network with 25 nodes. There are 2 overloads in this network using type one 
fitness function 
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Fig. 4.(a) Simulation results using fitness type 1 (b) Simulation results using fitness type 2. 
Diamonds are fitness mean for the whole population of each generation and solid squares are 
fitness of best chromosome in each population 
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Figure 4 shows the convergence of the proposed method for a network with 10 
nodes.  Convergence duration of the genetic algorithm is decreased, when the fitness 
function type 2 has been used.  

In table 1 the statistical results of 10 times running of genetic algorithm for differ-
ent networks is presented. It can be understand form the table that considering a 
threshold for processing load of active nodes, leads to heavier monitoring traffic in 
the network. However, in the other hand this way we can completely prevent overload 
in active nodes of the network. Additionally the convergence time for type two fitness 
functions is lower than type one fitness function. The reason is that, in the type two 
fitness the search space of network is more restricted. This reduction in time is an 
advantage for type two fitness, because it reduces the total needed to gather informa-
tion from active nodes. As it can be seen in table 1, total time of genetic algorithm 
convergence is proper in comparison with total monitoring task time. 

Table 1. Mean results of 10 time of running the algorithm for two fitness functions type one 
(GA1) and type two (GA2) 

Node 
Number 

Overloaded 
Nodes 

percentage 

Convergence 
time 

Monitoring 
Traffic 
Kbytes 

GA1 15 12 5.79 2962.1 

GA2 15 0 4.71 3284.8 

GA1 25 16 23.64 4959.4 

GA2 25 0 20.48 5445.1 

GA1 35 14 45.02 8140 

GA2 35 0 37.4 9267 

GA1 50 13 72.06 13263 

GA2 50 0 57.23 11342 

5   Conclusion 

In deploying mobile agents systems in the Active Networks, we should consider the 
processing load constrains of active nodes. Because as it is shown in this work, sup-
posing unlimited processing power for active nodes can lead to active several nodes 
overloads in using mobile agents. We could eliminate these overloads by adding over-
load parameter to our fitness function in our genetic algorithm. In the other hand, our 
simulation results show that considering this limitation can result in finding the mo-
bile agents locations faster. The reason is that the search space is more restricted this 
way. The total time of monitoring task in comparison with the time of finding loca-
tions by genetic algorithm was proper in our results. 

In further work, we would solve the problem for mobile agents, which are able to 
monitor the whole network from their location. We have to change the structure of 
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chromosome to solve the problem in this case. In one hand, we can achieve more 
optimal solution for location problem, but in the other hand, this might cause to in-
crease the complexity of finding locations of mobile agents. 
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