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Preface

This volume contains the proceedings of FMOODS2005, the 7th IFIP WG 6.1
International Conference on Formal Methods for Open Object-Based Distributed
Systems. The conference was held in Athens, Greece on June 15–17, 2005. The
event was the seventh meeting of this conference series, which is held roughly ev-
ery year and a half, with the earlier events held respectively in Paris, Canterbury,
Florence, Stanford, Twente, and Paris.

The goal of the FMOODS series of conferences is to bring together researchers
whose work encompasses three important and related fields:

– formal methods;
– distributed systems;
– object-based technology.

Such a convergence is representative of recent advances in the field of distributed
systems, and provides links between several scientific and technological commu-
nities, as represented by the conferences FORTE, CONCUR, and ECOOP.

The objective of FMOODS is to provide an integrated forum for the presen-
tation of research in the above-mentioned fields, and the exchange of ideas and
experiences in the topics concerned with the formal methods support for open
object-based distributed systems. For the call for papers, aspects of interest in-
cluded, but were not limited to: formal models; formal techniques for specifica-
tion, design, or analysis; verification, testing, and validation; component-based
design; formal aspects of service-oriented computing; semantics and type sys-
tems for programming, coordination, or modelling languages; behavioral typing;
multiple viewpoint modelling and consistency between different models; trans-
formations of models; integration of quality-of-service requirements into formal
models; formal models for security; formal approaches to distributed component
frameworks; and applications and experience, carefully described. Work on these
aspects of (official and de facto) standard notation and languages for service ori-
ented design, e.g. web services orchestration languages, was explicitly welcome.

In total 49 abstracts and 42 papers were submitted to this year’s conference,
covering the full range of topics listed above. Out of the submissions, 19 research
papers were selected by the Program Committee for presentation. We would like
to express our deepest appreciation to the authors of all submitted papers and to
the Program Committee members and external reviewers who did an outstanding
job in selecting the best papers for presentation.

For the second time, the FMOODS conference was held as a joint event, this
time in federation with the 5th IFIP WG 6.1 International Conference on Dis-
tributed Applications and Interoperable Systems (DAIS 2005). The co-location of
the FMOODS and DAIS conferences provided an excellent opportunity to the
participants for a wide and comprehensive exchange of ideas within the domain
of distributed systems and applications. Both FMOODS and DAIS address this



VI Preface

domain, the former with its emphasis on formal approaches the latter on practi-
cal solutions. Their combination in a single event ensured that both theoretical
foundations and practical issues were presented and discussed.

Special thanks to Lazaros Merakos, for acting as the General Chair of the
joint conferences DAIS and FMOODS 2005; his support made this event happen.
We would also like to thank Gordon Blair, Rocco de Nicola, and Andreas Reuter
for agreeing to present invited talks at the conference.

We thank Costas Polychronopoulos, for acting as Local Arrangements Chair,
and John Derrick for his work as Publicity Chair. We would also like to thank
the FMOODS Steering Committee (John Derrick, Roberto Gorrieri, Guy Leduc,
and Elie Najm) for their advice. Thanks also to Roberto Lucchi for his valuable
help in managing the submission server.

June 2005 Martin Steffen
Gianluigi Zavattaro
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Pattern Matching over a Dynamic Network
of Tuple Spaces

Rocco De Nicola1, Daniele Gorla2,�, and Rosario Pugliese1

1 Dipartimento di Sistemi e Informatica, Università di Firenze
{denicola,pugliese}@dsi.unifi.it

2 Dipartimento di Informatica, Università di Roma “La Sapienza”
gorla@di.uniroma1.it

Abstract. In this paper, we present recent work carried on μKlaim, a core cal-
culus that retains most of the features of Klaim: explicit process distribution,
remote operations, process mobility and asynchronous communication via dis-
tributed tuple spaces. Communication in μKlaim is based on a simple form of
pattern matching that enables withdrawal from shared data spaces of matching
tuples and binds the matched variables within the continuation process. Pattern
matching is orthogonal to the underlying computational paradigm of μKlaim, but
affects its expressive power. After presenting the basic pattern matching mech-
anism, inherited from Klaim, we discuss a number of variants that are easy to
implement and test, by means of simple examples, the expressive power of the
resulting variants of the language.

1 Introduction

In the last decade, programming computational infrastructures available globally for
offering uniform services has become one of the main issues in Computer Science. The
challenges come from the necessity of dealing at once with issues like communication,
co-operation, mobility, resource usage, security, privacy, failures, etc. in a setting where
demands and guarantees can be very different for the many different components. Klaim
(Kernel Language for Agents Interaction and Mobility, [5]) is a tentative response to
the call for innovative theories, computational paradigms, linguistic mechanisms and
implementation techniques for the design, realization, deployment and management of
global computational environments and their application.

Klaim is an experimental language specifically designed to program distributed sys-
tems made up of several mobile components interacting through multiple distributed tu-
ple spaces. Its communication model builds over, and extends, Linda’s notion of gener-
ative communication through a shared tuple space [11]. The Lindamodel was originally
proposed for parallel programming on isolated machines; multiple, possibly distributed,
tuple spaces have been advocated later [12] to improve modularity, scalability and per-
formance, and fit well in a global computing scenario.

� Most of the work presented in this paper was carried on while the second author was a PhD
student at the University of Florence.

M. Steffen and G. Zavattaro (Eds.): FMOODS 2005, LNCS 3535, pp. 1–14, 2005.
c© IFIP International Federation for Information Processing 2005



2 Rocco De Nicola, Daniele Gorla, and Rosario Pugliese

Table 1. μKlaim Syntax

Nets Components
N ::= 0

∣∣∣ l :: C
∣∣∣ N1 ‖ N2

∣∣∣ (νl)N C ::= 〈t〉 ∣∣∣ P
∣∣∣ C1 | C2

Tuples Templates
t ::= u

∣∣∣ t1, t2 T ::= u
∣∣∣ ! x

∣∣∣ T1,T2

Actions
a ::= in(T )@u

∣∣∣ read(T )@u
∣∣∣ out(t)@u

∣∣∣ eval(P)@u
∣∣∣ new(l)

Processes
P ::= nil

∣∣∣ a.P
∣∣∣ P1 | P2

∣∣∣ ∗ P

Klaim has proved to be suitable for programming a wide range of distributed appli-
cations with agents and code mobility [5, 6] and it has originated an actual programming
language, X-Klaim [1], that has been implemented by exploiting Java [2].

The main drawback of Klaim is that it is not an actual programming language, nor
a process calculus. The main aim of some our recent works (grouped together in [13])
has been the definition of a process calculus derived from Klaim that retains all its
distinctive features and expressive power, and develop over it the type theoretic and
semantical foundations of the language. The resulting calculus has been called μKlaim
and, in [8], we have proved that it can reasonably encode Klaim.

In this paper, we first describe μKlaim (Section 2). Then, in Section 3, we present
some recent enhancements of the basic formalism to deal with some low-level features,
namely inter-node connections and failures. In Section 4, we argue on alternative forms
of pattern matching for retrieving tuples. So far, Klaim and its variants have used Linda’s
original pattern matching, because of its simplicity. Nevertheless, other variants could
be adopted without compromising language implementability, actually enhancing the
overall expressive power. A novel contribution of this paper is the informal examination
of this topic. Section 5 concludes the paper.

2 The Calculus μKlaim

2.1 Syntax

The syntax of μKlaim is reported in Table 1. A countable set L of names l, l′, . . . , u, . . . ,
x, y, . . . is assumed. Names provide the abstract counterpart of the set of communicable
objects and can be used as localities and variables: we do not distinguish between these
kinds of objects. Notationally, we prefer letters l, l′, . . .when we want to stress the use of
a name as a locality and x, y, . . . when we want to stress the use of a name as a variable.
We will use u for basic variables and localities.

Nets are finite collections of nodes where processes and tuple spaces can be allo-
cated. A node is a pair l :: C, where locality l is the address of the node and C is the
parallel component located at l. Components can be processes or (located) tuples. Lo-
cated tuples, 〈t〉, are inactive components representing tuples in a tuple space (TS, for
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Table 2. The Pattern Matching Function

match(l; l) = ε

match(!x; l) = [l/x]

match(T1; t1) = σ1 match(T2; t2) = σ2

match(T1,T2; t1, t2) = σ1 ◦ σ2

short) that have been inserted either in the initial configuration or along a computation
by executing an action out. The TS located at l results from the parallel composition
of all located tuples residing at l. In (νl)N, name l is private to N; the intended effect is
that, if one considers the term N1 ‖ (νl)N2, then locality l of N2 cannot be referred from
within N1.

Tuples are sequences of names. Templates are patterns used to select tuples in a TS.
They are sequences of names and formal fields; the latter ones are written ! x and are
used to bind variables to names.

Processes are the μKlaim active computational units. They are built up from the in-
ert process nil and from five basic operations, called actions, by using action prefixing,
parallel composition and replication. The informal semantics of process actions is as
follows. Action in(T )@u looks for a matching tuple 〈t〉 in the TS located at u; intu-
itively, a template matches against a tuple if both have the same number of fields and
corresponding fields match, i.e. they are the same name, or one is a formal while the
other one is a name. If 〈t〉 is found, it is removed from the TS, the formal fields of T are
replaced in the continuation process with the corresponding names of t and the opera-
tion terminates. If no matching tuple is found, the operation is suspended until one is
available. Action read(T )@u is similar but it leaves the selected tuple in u’s TS. Action
out(t)@u adds the tuple t to the TS located at u. Action eval(P)@u sends process P for
execution at u. Action new(l) creates a new node in the net at the reserved address l.
Notice that new is the only action not indexed with an address because it always acts
locally; all the other actions explicitly indicate the (possibly remote) locality where they
will take place.

Names occurring in terms can be bound by action prefixes or by restriction. More
precisely, in processes in(T )@u.P and read(T )@u.P the prefixes bind the names in
the formal fields of T within P; in process new(l).P, the prefix binds l in P; in (νl)N,
the restriction binds l in N. A name that is not bound is called free. The sets bn(·)
and fn(·) (of bound and free names, resp., of term · ) are defined accordingly, and so
is alpha-conversion. In the sequel, we shall assume that bound names in terms are all
distinct and different from the free ones (by possibly applying alpha-conversion, this
requirement can always be satisfied).

2.2 Operational Semantics

μKlaim operational semantics is given in terms of a structural congruence and a reduc-
tion relation. The structural congruence, ≡, identifies nets which intuitively represent
the same net. It is inspired to π-calculus’ structural congruence (see, e.g., [16]) and
states that ‘‖’ is a monoidal operator with 0 as identity, that nil is the identity for |’, that
alpha-equivalent nets do coincide, and that the order of restrictions in a net is irrelevant.
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Table 3. μKlaim Reduction Relation

(R-Out)

l :: out(t)@l′.P ‖ l′ :: nil 
−→ l :: P ‖ l′ :: 〈t〉

(R-New)

l :: new(l′).P 
−→ (νl′)(l :: P ‖ l′ :: nil)

(R-Eval)

l :: eval(P2)@l′.P1 ‖ l′ :: nil 
−→ l :: P1 ‖ l′ :: P2

(R-Res)
N 
−→ N′

(νl)N 
−→ (νl)N′

(R-In)
match(T ; t) = σ

l :: in(T )@l′.P ‖ l′ :: 〈t〉 
−→ l :: Pσ ‖ l′ :: nil

(R-Par)
N1 
−→ N′1

N1 ‖ N2 
−→ N′1 ‖ N2

(R-Read)
match(T ; t) = σ

l :: read(T )@l′.P ‖ l′ :: 〈t〉 
−→ l :: Pσ ‖ l′ :: 〈t〉

(R-Struct)
N ≡ N1 N1 
−→ N2 N2 ≡ N′

N 
−→ N′

Moreover, the following laws are crucial to our setting:

(Clone) l :: C1|C2 ≡ l :: C1 ‖ l :: C2

(Repl) l :: ∗P ≡ l :: P | ∗ P

(RepNil) l :: ∗nil ≡ l :: nil

(Ext) N1 ‖ (νl)N2 ≡ (νl)(N1 ‖ N2) if l � fn(N1)

Law (Clone) turns a parallel between co-located components into a parallel between
nodes (by relying on this law, commutativity and associativity of ‘|’ follows). Law
(Repl) unfolds a replicated process; however, when the replicated process is nil, the
unfolding is useless (see rule (RepNil)). Finally, law (Ext) is the standard π-calculus’
rule for scope extension; it states that the scope of a restricted name can be extended,
provided that no free name is captured.

The reduction relation is given in Table 3. It relies on the pattern matching function
match( ; ) that verifies the compliance of a tuple w.r.t. a template and associates values
to variables bound in the template. Intuitively, a tuple matches a template if they have
the same number of fields, and corresponding fields match. Formally, function match is
defined in Table 2 where we let ‘ε’ be the empty substitution and ‘◦’ denote substitutions
composition. Here, a substitution σ is a mapping of names for names; Pσ denotes the
(capture avoiding) application of σ to P.

The operational rules of μKlaim can be briefly motivated as follows. Rule (R-Out)
states that execution of an output sends the tuple argument of the action to the tar-
get node. However, this is possible only if the target node does exist in the net. Rule
(R-Eval) is similar, but deals with process spawning. Rules (R-In) and (R-Read) re-
quire existence of a matching datum in the target node. The tuple is then used to replace
the free occurrences of the variables bound by the template in the continuation of the
process performing the actions. With action in the matched datum is consumed while
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with action read it is not. Rule (R-New) states that action new(l′) creates a new node at
a reserved address l′. Rules (R-Par), (R-Res) and (R-Struct) are standard.
μKlaim adopts a Linda-like [11] communication mechanism: data are anonymous

and associatively accessed via pattern matching, and communication is asynchronous.
Indeed, even if there exist action prefixes for placing data to (possibly remote) nodes, no
synchronization takes place between (sending and receiving) processes, because their
interactions are mediated by nodes, that act as data repositories.

2.3 Observational Semantics

We now present a preorder on μKlaim nets yielding sensible semantic theories. We
follow the approach put forward in [10] and use may testing equivalence. Intuitively, two
nets are may testing equivalent if they cannot be distinguished by any external observer
taking note of the data offered by the observed net. More precisely, an observer O is a
net containing a node whose address is a reserved locality name test. A computation
reports success if, along its execution, a datum at node test appears; this is written
OK
===⇒ .

Definition 1 (May Testing Equivalence). May testing, , is the least equivalence on

μKlaim nets such that, for every N  M, it holds that N ‖ O
OK
===⇒ if and only if

M ‖ O
OK
===⇒ , for any observer O.

The problem underneath the definition of may testing we have just presented is the
universal quantification over observers. This makes it hard to prove equivalences in
practice. In [13], we have developed an alternative characterisations of � as a trace-
based equivalence and a co-inductive proof technique as a bisimulation-based equiva-
lence. However, these definitions have been omitted from this paper: here, it sufficies to
have a sensible notion of equivalence to equate nets.

3 Node Connections and Failures

In this section we present two enhancements of the basic framework presented so far.
Such enhancements allow us to better model some global computing phenomena.

3.1 Modelling Connections

In [7], we developed the behavioural theory of a language derived from μKlaim by
introducing explicit inter-node connections and process actions to dynamically change
them. The syntax of the resulting calculus, that is called tKlaim (topological Klaim),
can be obtained by adding the following productions to those in Table 1:

N ::= · · · ∣∣∣ {l1 → l2} a ::= · · · ∣∣∣ conn(u)
∣∣∣ disc(u)

A connection (or link) is a pair of node addresses {l1 → l2} stating that the nodes at
addresses l1 and l2 are directly linked. Actions conn(l2) and disc(l2) aim at changing
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the network topology: once executed at l1 they create/remove a link {l1 → l2} from the
net.

The operational semantics of tKlaim is obtained by modifying that of μKlaim to
take into account information on existing connections. First, the following structural
rules are added

l :: nil ≡ {l→ l} {l1 → l2} ≡ {l1 → l2} ‖ l1 :: nil ‖ l2 :: nil

They state that nodes are self-connected and that connections are established only be-
tween actual nodes. Second, the reduction relation of Table 3 is modified so that ax-
ioms check existence of proper connections enabling process actions. For example, rule
(R-Out) now becomes

l :: out(t)@l′.P ‖ {l→ l′} 
−→ l :: P ‖ {l→ l′} ‖ l′ :: 〈t〉
Thus, the sending operation is enabled only if the source and the target nodes are di-
rectly connected. Analogous modifications are needed for rules (R-Eval), (R-In) and
(R-Read). Of course, we also need two new axioms for the two new primitives

(R-Conn) l :: conn(l′).P ‖ l′ :: nil 
−→ l :: P ‖ {l→ l′}

(R-Disc) l :: disc(l′).P ‖ {l→ l′} 
−→ l :: P ‖ l′ :: nil

The behavioural theory of tKlaim presented in Section 2.3, and modified to take
connections into account, has been used in [9] to state and prove the properties of a
well-known routing protocol for mobile systems, namely the handover protocol [15]
proposed by the European Telecommunication Standards Institute (ETSI) for the GSM
Public Land Mobile Network.
tKlaim can be easily accommodated to model a finer scenario where connections

must be activated by a handshaking between the nodes involved (this feature is similar
to the so-called co-capabilities of Safe Ambients [14]). This mechanism can be imple-
mented by introducing a new action acpt that, by synchronizing with an action conn,
authorises the creation of a new connection either from a specific node or from any
node. An enabling action corresponding to disc seems to be less reasonable, but could
be handled similarly.

Action acpt(l) by a process located at l′ means that l′ is ready to activate a connec-
tion with l; thus, the operational rule for activating a connection now becomes

(R-Conn1) l :: conn(l′).P ‖ l′ :: acpt(l).Q 
−→ l :: P ‖ {l→ l′} ‖ l′ :: Q

Similarly, action acpt(!x) by a process located at l′ means that l′ is ready to activate a
connection with any node, whose address will be bound to x in the continuation. In this
case, the operational rule for activating a connection is

(R-Conn2) l :: conn(l′).P ‖ l′ :: acpt(!x).Q 
−→ l :: P ‖ {l→ l′} ‖ l′ :: Q[l/x]

3.2 Modelling Failures

In [9], we enriched tKlaim with some simple but realistic ways to model failures in
global computing systems. We model failures of nodes and of node components by
adding the annihilating rule
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(R-FailN) l :: C 
−→ 0

to tKlaim’s operational rules that serves different purposes. Indeed, axiom (R-FailN)
models one of the following:

– message omission, if C represents a part of the tuple space at l (i.e. C is of the form
〈t1〉| . . . |〈tn〉);

– node fail-silent failure, if, in the overall net, l occurs as address only in l :: C;
– abnormal termination of some processes running at l, if in the overall net there are

other nodes with address l.

Modelling failures as disappearance of a resource (a datum, a process or a whole node)
is a simple, but realistic, way of representing failures in a global computing scenario
[3]. Indeed, while the presence of data/nodes can be ascertained, their absence cannot
because there is no practical upper bound to communication delays. Thus, failures can-
not be distinguished from long delays and should be modelled as totally asynchronous
and undetectable events.

Clearly, our failure model can be easily adapted to deal with link failures too. To
this aim, we only need to add the operational rule

(R-FailC) {l1 → l2} 
−→ 0

that models the (asynchronous and undetectable) failure of the link between nodes l1
and l2.

The behavioural theory of tKlaim presented in Section 2.3 can be adapted to cope
with failures. In [9], we used some resulting equational laws to prove the properties of
a well-known distributed fault-tolerant protocol, namely the k–set agreement [4], and
of a simplified routing task, namely discovering the neighbours of a given node.

4 Experimenting with Pattern Matching

The pattern matching function adopted by Klaim and its variants is essentially that of
Linda, that was introduced by Gelernter in its seminal paper [11]. It enables withdrawal
from the shared data space of matching tuples and binds the matched variables within
the continuation process. This choice was driven both by historical and simplicity rea-
sons. To be precise, Klaim’s pattern matching differs from Linda’s original one in that
it does not allows tuples to contain formal fields. This feature, called inverse structured
naming, was introduced for widening matching possibilities (tuples’ formal fields can
be matched by any value of the same type), rather than for communication purposes
(indeed, tuples’ formal fields are never replaced by corresponding values).

Several other alternatives could be considered that simplify the task of program-
ming. In the rest of this section, we will present a number of variants and briefly dis-
cuss, by means of simple examples, the expressive power of the resulting variants of
the language. We shall limit our interest to variants of the matching function of Table 2
that can be ‘easily’ implemented also in a distributed setting.

For each variant, we shall present a simple motivating example and show that the
suggested modification simplifies programming when compared with the same task
written in μKlaim. In the examples, wherever we find it convenient, we shall use basic
data values (e.g. strings) to improve readability.
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4.1 Enforcing Name Difference

Klaim’s pattern matching permits selecting a tuple that contains a specific value (name),
say l, in a specific field, say the i-th one: it sufficies to use a template containing l in
its i-th field. But one could be, instead, interested in selecting those tuples that have a
precise structure but do not contain a l in their i-th field. To this aim, we extend the
syntax of templates as

T ::= · · ·
∣∣∣ ¬ u !x

and, correspondingly, we extend the pattern matching function of Table 2 by adding the
axiom

match(¬ l !x; l′) = [l′/x] if l′ � l (1)

Clearly, this extension of the pattern matching function does not compromise imple-
mentability.

Let μKlaim� be μKlaim with the two modifications just presented. Then, we can
easily implement in μKlaim� a standard if-then-else construct, as follows

if l1 = l2 then P1 else P2 � new(l′).out(l1)@l′.(in(l2)@l′.P1 | in(¬ l2 !x)@l′.P2)

with l′ � fn(l1, l2, P1, P2) and x � fn(P2). By relying on may-testing, we can easily state
and prove the soundness of this implementation as follows:

l1 = l2 implies that l :: if l1 = l2 then P1 else P2 � l :: P1

l1 � l2 implies that l :: if l1 = l2 then P1 else P2 � l :: P2

In μKlaim such a construct is not finitary implementable, assuming (as usual) that the
set of names is infinite. At most, we can use process

new(l′).out(l1)@l′.(in(l2)@l′.P1 | in(!x)@l′.P2)

where, however, P2 could also be executed whenever l1 = l2.
Notice that the implementation in μKlaim� of the if-then-else we have just presented

can be achieved with a simpler formulation of templates and pattern matching. Indeed,
it sufficies to add fields of the form ¬u, with rule (1) replaced by

match(¬l; l′) = ε if l′ � l

However, the general formulation exploiting fields of the form ¬ u !x enables us to pro-
gram more sophisticated applications. As an example, we consider a ‘fair server’, that
never serves the same client two consecutive times. The code required for this task is
the following:

P � in(!x)@l.new(l′).out(x)@l′.(< Serve client x > | ∗ Q)

Q � in(!y)@l′.in(¬ y !z)@l.out(z)@l′. < Serve client z >

The fair server is located at l and it runs process P. Client processes invoke the service
by sending to l the address of the node where they run. Then, process P retrieves the
first service request (coming from x), creates a new node l′ to store the currently served
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client, serves x and then activates the replicated process Q. The latter one retrieves from
l′ the last served client y and waits for a new request coming from a client z different
from y; it then stores z in l′ and serves z.

The application we have just presented can be useful in a distributed system to avoid
starvation of client processes. If we want to extend it to the case where n client processes
must be regularly alternated, we need a more general form of pattern matching. This can
be obtained by defining a small language for name expressions like

ξ ::= u
∣∣∣ ¬u

∣∣∣ ξ1 ∨ ξ2 ∣∣∣ ξ1 ∧ ξ2
where the only operations on names are tests for equality and difference combined by
logical connectors and/or. Now, templates are defined as

T ::= ξ !x
∣∣∣ T1, T2

Notice that the old field !x would be an abbreviation for (l ∨ ¬l)!x (for a generic l) and
the old field u would be an abbreviation for u!x (for an unused variable x). The pattern
matching rule (1) is now replaced by rule

match(ξ !x; l) = [l/x] if l |= ξ
where the compatibility check l |= ξ is defined as expected

l |= l l |= ξ1 ∨ ξ2 if l |= ξ1 or l |= ξ2
l |= ¬l′ if l � l′ l |= ξ1 ∧ ξ2 if l |= ξ1 and l |= ξ2

4.2 Scope of Name Binders

In the previous sections, we have assumed that the scope of name binders contained
within templates is the process following the action that has the template as argument.
However, it is possible to consider as part of the scope of a name also those template
fields that syntactically follow the binder of the name. This feature could be exploited
for retrieving tuples that contain multiple occurrences of the same name (value), what-
ever it is.

For example, consider the data base of a travel agency storing information about
clients. This can be modelled by associating to the agency a locality l whose TS hosts
the data base as tuples of the form

〈 Name , TripID , Departure Date , Return Date , Destination 〉
Consider now a query for the record of a client that has planned with the agency a one-
day trip to Rome (e.g., this could be needed to perform a market research). In the new
formulation of the calculus, this can be very easily implemented by action

read(!xn, !xi, !x, x, “Rome”)@l

To extend the scope of a name binder to the remaining part of the template where it
occurs, the pattern matching function in Table 2 has to be modified. We must reformu-
late function match in order to apply the partial substitution calculated after the analysis
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of the first i fields to the analysis of the (i+1)-th field. To formalise this idea, let p range
over template fields, i.e.

p ::= u
∣∣∣ !x

Then, the pattern matching rules of Table 2 now become

matchσ(T ; t) = σ1 matchσ1 (p; l) = σ2

matchσ(T, p; t, l) = σ2

matchσ(u; l) = ε if u = l or σ(u) = l

matchσ(!x; l) = σ ◦ [l/x]

Function match is invoked in rules (R-In) and (R-Read) as matchε(T ; t).
It should be apparent that the effect of the matching mechanism above, that permits

enforcing selection of tuples where the very same field occurs repeatedly, cannot be
achieved in its full generality in μKlaim. At the best, it could be somehow simulated
under the (restrictive) assumption that the duplicated values are known in advance or
can be guessed. Coming back to the travel agency example, we could write, e.g.,

read(!xn, !xi, 1/1/05, 1/1/05, “Rome”)@l

but in this way we would only select those clients that went to Rome on January the 1st,
2005.

Also in a language with the full power of the if-then-else, like μKlaim�, achieving
the effect of the pattern matching above poses some problems. Indeed, consider the
process

A � in(!x, !y)@l.if x = y then P else out(x, y)@l.A

where, for simplicity, we have used recursive process definitions (that can be simulated
by relying on replication, see e.g. [16]). This encoding of action in(!x, x)@l.P is not
fully satisfactory because it introduces divergence: process A can repeatedly access at l
a tuple of the form 〈l1, l2〉, with l1 � l2.

4.3 Exact Matching

Linda’s pattern matching enables the consumer of a datum to specify some constraints
over the accessed tuple (i.e., the values occurring at some precise positions of the tuple).
A symmetric capability is not available for the producer of a tuple, i.e. it cannot spec-
ify any constraint over the template used for retrieving the tuple. This fact forbids the
storing of reserved data at public tuple spaces. For example, let d be a reserved datum
stored at l, e.g.

l :: 〈d〉
Then, any process knowing l can easily retrieve d with action in(!x)@l.

To provide data producers with the capability of controlling data retrievals, we
slightly extend the syntax of tuples from Table 1 to become

t ::= · · · ∣∣∣ u!

Intuitively, a name marked with a ‘ !’ occurring within a tuple can only be matched by
the very same name occurring at the corresponding position within a template and not
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by a formal field. Hence, the pattern matching function of Table 2 must also include the
axiom

match(l; l!) = ε

In particular, both match(!x; l!) and match(l′; l!), with l′ � l, will fail. Let μKlaim ! be
the variant of μKlaim with exact name matching.

In μKlaim !, tuple fields marked with a ‘ !’ act as passwords (of a symmetric cryp-
tographic system) that retrievers must exhibit in order to access the tuple. In this way,
secret data can be freely stored at public TSs; for example, the node

(νn)(l :: 〈n!, d〉 | P)

is safe in that no other process than P can (immediately) access d, whatever be the rest
of the net.

4.4 Nested Tuples

In Klaim and all its variants tuples and templates are plain sequences of fields; roughly
speaking, they are lists of fields. A straightforward generalisation of this definition is
allowing nested tuples/templates, i.e. lists of fields that can contain other lists.

To model nested tuples/templates, we overload notation 〈·〉 and modify the syntax
of tuples and templates from Table 1 to become

t ::= · · · ∣∣∣ 〈t〉 T ::= · · · ∣∣∣ 〈T 〉
The pattern matching function is smoothly adapted to deal with nested arguments. We
just need to add such rules as the following ones

match(T ; t) = σ

match(〈T 〉 ; 〈t〉) = σ match(!x; t) = [t/x]

to the definition of function match given in Table 2. The first rule extends pattern match-
ing by still requiring that matching templates and tuples have the same structure. The
second rule allows to match entire tuples with a single variable; in such a setting, it
should also be possible to assign entire tuples to variables and to use projection opera-
tors for retrieving each tuple field.

Notice that the two rules must not be necessarily used both at the same time. For
instance, let μKlaimnt be the variant of μKlaim with nested tuples and pattern matching
extended using the first rule above. A simple application is the modelling of tree-like
structures, similar to XML documents. For example, binary trees can be easily obtained
by restricting the syntax of nested tuples as follows

t ::= u
∣∣∣ 〈t1〉, u, 〈t2〉

Clearly, trees can be somehow modelled in μKlaim by using tuples corresponding to a
preorder visit of the tree. To univocally identify the tree

〈a〉, b, 〈c〉
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in μKlaim we could use the tuple

b, left, a, right, c

where left and right are a reserved names used to delimit the two subtrees. However,
the exact name matching of μKlaim ! is needed in order to faithfully simulate the pattern
matching function of μKlaimnt . Thus, μKlaimnt can be encoded in μKlaim !, but the ease
of programming makes μKlaimnt a valid proposal as well.

4.5 Collecting Multisets of Tuples

We conclude this section with another variant of the matching function, called matchAll,
that permits matching a template T and a multiset of tuplesM, and returning the multi-
set of substitutions induced by all matchings. Notationally, given a component C of the
form 〈t1〉 | · · · | 〈tn〉, we shall useM(C) to denote the multiset of tuples {|〈t1〉, · · · , 〈tn〉|};
we will use � to denote multiset union.

Function matchAll(T ;M) returns a pair consisting of:

1. the multiset Σ of substitutions, containing the elements σ1, . . . σn (corresponding
to the single tuples ti inM that match template T ), and

2. the multisetM′ of the tuples t j inM that do not match T .

Function matchAll(T ;M) can be defined in terms of function match given in Table 2 as
follows:

matchAll(T ; {||}) = 〈{||}, {||}〉
matchAll(T ;M) = 〈Σ,M′〉

matchAll(T ;M� {|t|}) =
{ 〈Σ � {|σ|},M′〉 if match(T ; t) = σ
〈Σ,M′ � {|t|}〉 otherwise

To show its usefulness, we use function matchAll to model the semantics of the
construct forall used in the programming language X-Klaim [1]. Intuitively, process

forall in(T )@l do P

retrieves all the tuples t1, . . . tn located at l that match T , then uses the substitutions
σi = match(T, ti) to execute n instances of P with the different substitutions (i.e.,
Pσ1, . . .Pσn). To formalize the semantics of forall, we find it convenient to make use of
a construct for sequential composition of processes, that we shall write P1; P2. The op-
erational semantics of sequential composition is modelled by the following rules where,
to avoid name capture, we assume that bn(P1) ∩ fn(P2) = ∅:

l :: P1 ≡ l :: nil

l :: P1; P2 ≡ l :: P2

l :: P1 ‖ N 
−→ l :: P′1 ‖ N′

l :: P1; P2 ‖ N 
−→ l :: P′1; P2 ‖ N

Now, the semantics of forall can be modelled as follows:

matchAll(T ;M(〈t1〉 | · · · | 〈tn〉)) = 〈{|σi1 , · · · , σik |},M(C′)〉
l :: forall in(T )@l do P ‖ l′ :: 〈t1〉 | · · · | 〈tn〉 
−→l′ l :: Pσi1 ; · · · ; Pσik ‖ l′ :: C′

N1 
−→l N′1
N1 ‖ N2 
−→l N′1 ‖ N2

N2 does not contain tuples located at l
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The two rules above define a new transition relation 
−→l that is parameterized with
respect to the address l of the node where the tuple space is located. This parametriza-
tion is necessary for ensuring that the entire tuple space at l is used as a parameter of
matchAll. The operational semantics of the resulting language is given by the union of
relations 
−→ (defined in Table 3) and 
−→l, for any l.

5 Conclusions

We have briefly presented μKlaim, a simple calculus that retains the main features of
Klaim, and have summarised some recent linguistic extensions that permit the explicit
modelling of inter-node connections and of nodes and links failures. We have then
sketched a research that we are currently pursuing that aims at assessing the impact of
plugging into the calculus more powerful pattern matching mechanisms. By means of
simple examples, we have shown how flexible (but still implementable) pattern match-
ing policies can ease the task of programming global computing application. Clearly, the
study of relative expressiveness, possible encodings and minimality deserves a deeper
attention and will be the subject of future investigations.
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Abstract. Modern applications distributed across networks such as the Internet
may need to evolve without compromising application availability. Object sys-
tems are well suited for runtime upgrade, as encapsulation clearly separates in-
ternal structure and external services. This paper considers a mechanism for dy-
namic class upgrade, allowing class hierarchies to be upgraded in such a way that
the existing objects of the upgraded class and of its subclasses gradually evolve
at runtime. The mechanism is integrated in Creol, a high-level language which
targets distributed applications by means of concurrent objects communicating
by asynchronous method calls. The dynamic class construct is given a formal
semantics in rewriting logic, extending the semantics of the Creol language.

1 Introduction

For critical distributed applications, which are long lived and have high availability
requirements, it is important that system components can be upgraded in response to
new requirements that arise over time without compromising application availability.
Requirements that necessitate component upgrade may be additional features and im-
proved performance, as well as bugfixes. Examples of such applications are found in
banks, air traffic control systems, aeronautics, financial transaction processes, and mo-
bile and Internet applications. For these systems, manual reconfiguration and recom-
pilation of components are both impractical, due to component distribution, and un-
satisfactory, due to the high availability requirements. Instead, upgrades and patches
should be applicable at runtime. Early approaches to software distribution and upgrad-
ing [2, 4, 6, 14, 16, 21, 26] do not address the need for continuous availability during
upgrades. More recently, the issue of runtime reconfiguration and upgrade has attracted
attention [1, 3, 5, 7, 11, 13, 15, 22, 25, 27]. For large distributed systems, it seems de-
sirable to perform upgrades in an asynchronous and modular way, such that upgrades
propagate automatically through the distributed system. An automatic upgrade system
should [1, 27]: propagate upgrades automatically, provide a means to control when com-
ponents may be upgraded, and ensure the availability of system services even in the
course of an upgrade process, when components of different versions coexist.

In this paper, we propose and formalize a solution to these issues, taking an object-
oriented approach. Our solution is based on a dynamic class construct, allowing class
definitions to be upgraded at runtime. Upgrading a class affects all future instances of
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the redefined class and of its subclasses. Further, all existing object instances of the class
and its subclasses are upgraded. In contrast to e.g. [1], our approach is completely dis-
tributed, and no centralized versioning repository is required. No specific measures are
needed by the programmer to anticipate and prepare for future upgrades, as the upgrade
process itself is handled transparently by the runtime system. Whereas [5, 9, 10, 29]
present formal systems for upgrades of sequential languages or modifications to sin-
gle objects, we are not aware of any formalization of modular upgrades for concurrent
object systems. In contrast to all the cited works, our approach addresses and exploits
inheritance, supports synchronous as well as asynchronous communication, and allows
both nonterminating, active, and reactive processes in objects to be upgraded.

This paper considers dynamic class upgrades in the Creol language [17–19], which
specifically targets open distributed systems with concurrent objects, has multiple inher-
itance, and supports both asynchronous and synchronous invocation of object methods.
Creol has an operational semantics defined in rewriting logic [23] and an interpreter run-
ning on the Maude platform [8, 23]. In this paper, a dynamic class construct is proposed
and formalized in rewriting logic through integration in Creol’s operational semantics.

Paper overview. Sect. 2 summarizes the Creol language and presents the dynamic
class construct, Sect. 3 provides two examples, Sect. 4 presents the operational seman-
tics, Sect. 5 discusses related work, and Sect. 6 concludes the paper.

2 A Language for Asynchronously Communicating Objects

This section briefly reviews the basic features of Creol [17–19], a high-level language
for distributed concurrent objects. We distinguish data, typed by data types, and objects,
typed by interfaces. The language allows both synchronous and asynchronous invoca-
tion of methods, based on a uniform semantics. Attributes (object variables) and method
declarations are organized in classes, which may have data and object parameters. Con-
current objects have their own processor which evaluates local processes, i.e. program
code with processor release points. Processes may be active, reflecting autonomous
behavior initiated at creation time by the run method, or reactive, i.e. in response to
method invocations. Due to processor release points, the evaluation of processes may
be interleaved. The values of an object’s program variables may depend on the non-
deterministic interleaving of processes. Therefore a method instance may have local
variables supplementing the object variables, in particular the values of formal param-
eters are stored locally. An object may contain several (pending) instances of the same
method, possibly with different values for local variables.

2.1 Asynchronous and Synchronous Method Invocations

All object interaction happens through method calls. A method may be invoked ei-
ther synchronously or asynchronously [17]. When a process invokes a method asyn-
chronously, the process may continue its activity until it requests a reply to the call or
it is suspended by arriving at a processor release point in its code. In the asynchronous
setting method calls can always be emitted, as a receiving object cannot block commu-
nication. Method overtaking is allowed: if methods offered by an object are invoked in
one order, the object may start evaluation of the method instances in another order.
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An asynchronous method call is made with the statement t!x.m(E), where t ∈ Label
provides a locally unique reference to the call, x is an object expression, m a method
name, and E an expression list with the actual parameters supplied to the method. Labels
identify invocations and may be omitted if a reply is not explicitly requested. Return val-
ues from the call are explicitly fetched, say in a variable list V, by the statement t?(V).
This statement treats V as a list of future variables [30]: If a reply has arrived, return val-
ues are assigned to V and evaluation continues. In the case of a local call, i.e. when the
value of x is the same as this object, the processor is released to start evaluation of the
call. Otherwise, process evaluation is blocked. In order to avoid blocking in the asyn-
chronous case, processor release points are introduced for reply requests (Sect. 2.2): If
no reply has arrived, evaluation is suspended rather than blocked.

Synchronous (RPC) method calls, immediately blocking the processor while wait-
ing for a reply, are written p(E; V); this is shorthand for t!p(E); t?(V), where t is a
fresh label variable. The language does not support monitor reentrance (except for local
calls), mutual synchronous calls may therefore lead to deadlock. In order to evaluate
local calls, the invoking process must eventually suspend its own evaluation. In partic-
ular, the evaluation of synchronous local calls will precede the active process. Local
calls need not be prefixed by an object identifier, in which case they may be identified
syntactically as internal. The keyword this is used for self reference in the language.

2.2 Processor Release Points

Guards g in statements await g explicitly declare potential processor release points.
When a guard which evaluates to false is encountered during process evaluation, the
process is suspended and the processor released. After processor release, any pending
process may be selected for evaluation. The type Guard is defined inductively:

– wait ∈ Guard (explicit release),
– t? ∈ Guard, where t ∈ Label,
– b ∈ Guard, where b is a boolean expression over local and object state,
– g1∧g2 and g1∨g2, where g1,g2 ∈ Guard.

Use of wait will always release the processor. The reply guard t? is enabled if a reply
to the call with label t has arrived. Evaluation of guard statements is atomic. We let
await g∧ t?(V) abbreviate await g∧ t?; t?(V) and we let await p(E; V), where p is a
method call (external or internal), abbreviate t!p(E); await t?(V) for some fresh label t.

Statements can be composed to reflect requirements to the internal object control
flow. Let S1 and S2 denote statement lists. An unguarded statement list is always en-
abled. Sequential composition may introduce guards: await g is a potential release point
in S1;await g; S2. Nondeterministic choice S1�S2 may select S1 once S1 is enabled or S2

once S2 is enabled, and suspends if neither branch is enabled. Nondeterministic merge
S1|||S2 evaluates the statements S1 and S2 in some interleaved and enabled order. In addi-
tion there are standard constructs for if-statements and internal method calls, including
recursive calls. Note that for the purposes of dynamic upgrades, recursive calls replace
while-loops in the language. Assignment to local and object variables is expressed as
V := E for a disjoint list of program variables V and an expression list E, of matching
types. In-parameters as well as this, label, and caller are read-only variables.
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Syntactic categories. Definitions.
g in Guard
p in MtdCall
s in Stm
t in Label
v in Var
e in Expr
x in ObjExpr
b in Bool
m in Mtd

g ::= wait |b | t? |g1 ∧g2 |g1∨g2

p ::= x.m |m@classname |m
S ::= s | s; S

s ::= skip | (S) | S1�S2 | S1|||S2

|V := E | v := new classname(E)
| if b then S1 else S2 fi
| t!p(E) | !p(E) | p(E; V) | t?(V)
|await g |await g∧ t?(V) |await p(E; V)

Fig. 1. An outline of the language syntax for method definitions, with typical terms for each
category. Capitalized terms such as S, V, and E denote lists, sets, or multisets of the given syntactic
categories, depending on the context.

With release points, the object need not block while waiting for replies. This ap-
proach is more flexible than future variables: suspended processes or new method calls
may be evaluated while waiting. If the called object never replies, deadlock is avoided
as other activity in the object is possible. However, when the reply arrives, the continu-
ation of the process must compete with other pending and enabled processes.

2.3 Multiple Inheritance and Virtual Binding

The Creol language provides a mechanism for multiple inheritance [18] where all at-
tributes and methods of a superclass are inherited by the subclass, and where superclass
methods may be redefined. Class inheritance is declared by a keyword inherits which
takes as argument an inheritance list; i.e., a list of class names C(E) where E provides
the actual class parameters. We say that a method or attribute is defined above a class
C if it is declared in C or in at least one of the classes inherited by C. Internal calls are
executed on the caller and may therefore take advantage of the statically known class
structure to invoke specific method declarations. We introduce the syntax t!m@C(E) for
asynchronous and m@C(E; V) for synchronous internal invocation of a method above
C in the inheritance graph from C or a subclass of C. These calls may be bound without
knowing the exact class of this object , so they are called static. In contrast calls without
@, called virtual, need to identify the actual class of the callee at runtime in order to
bind the call. We assume that attributes have unique names in the inheritance graph; this
may easily be enforced at compile time and implies that attributes are bound statically.
Consequently, a method declared in a class C may only access attributes declared above
C. In a subclass, an attribute x of a superclass C is accessed by the qualified reference
x@C. The language syntax is given in Fig. 1.

Virtual binding. When a method is virtually invoked in an object o of class C, a
method declaration is identified in the inheritance graph of C and bound to the call.
For simplicity, the call is bound to the first matching method definition above C in
the inheritance graph, in a left-first depth-first order. Assume given a nominal subtype
relation as a reflexive partial ordering≺ on types, including interfaces. A data type may
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only be a subtype of a data type and an interface may only be a subtype of an interface.
If T ≺ T ′ then any value of T may masquerade as a value of T ′. Subtyping for type
tuples is the pointwise extension of the subtype relation: T ≺ T ′ if the tuples T and T ′

have the same length l and Ti ≺ T ′i for every i (0≤ i≤ l) and types Ti and T ′i in position
i in T and T ′. To explain the typing and binding of methods, subtyping is extended to
function spaces A→ B, where A and B are (possibly zero-length) type tuples:

A→ B≺ A′ → B′ = A≺ A′ ∧B′ ≺ B.

The static analysis of an internal call m(E; V) will assign unique types to the in-
and out-parameter depending on the textual context. Say that the actual parameters are
textually declared as E : TE and V : TV. The call is type correct if there is a method
declaration m : A→ B above the class C such that TE → TV ≺ A→ B. The binding
of an asynchronous call t!m(E) with a reply t?(V) or await t?(V), is handled as the
corresponding synchronous call m(E; V).

At runtime the object making the internal call m : TE→ TV will be of a subclass C′

of C and the virtual binding mechanism will bind to a declaration of m : A′ → B′ such
that TE→ TV ≺ A′ → B′, taking the first such m above C′. Because C is inherited by C′,
the virtual binding is guaranteed to succeed. External calls t!o.m(E) are virtually bound
in the graph above the dynamically identified class of o. Provided that the declared
interface of o supports the method signature, successful binding is guaranteed for any
instance of a type-correct class implementing the interface.

2.4 System Evolution Through Class Upgrade

System change is addressed through a mechanism for class upgrade, which allows ex-
isting and future objects of the upgraded class and of its subclasses to evolve. A class
may be subjected to a number of upgrades. In an upgrade, new attributes, methods, and
superclasses may be added to a class definition, and old methods may be modified. In
order to allow old method instances to evaluate safely and avoid runtime type errors,
no attributes, methods, or inherited classes may be removed as part of a class upgrade.
Although more restrictive, empirical studies suggest that addition and redefinition of
services are far more common forms of software evolution than removal [29].

Attributes may be added. New attributes may be added to a class. The addition of a
new attribute with the same name as another attribute already defined in the class is not
allowed. The addition of an attribute having the same name as an inherited attribute is
allowed. The instance of the class will then have both attributes, which are accessed by
qualified names (see Sect. 2.3). As attribute names are statically expanded into qualified
names, old code will continue to use the same attributes as before the upgrade.

Methods may be added or redefined. We consider the effect of adding or redefining
a method in a class C with respect to the sub- and superclasses of C. If a method is
redefined in C, the method’s code is replaced in all instances of C and the old method
definition is no longer available. This leads to a subtyping discipline for method re-
definitions in order to ensure that virtual binding succeeds. Consequently, we allow
a method’s internal data structures to be replaced, but for redefinition covariance and
contravariance is required for the method’s in- and out-parameters, respectively.
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If a method is added to a class, virtual binding guarantees that old calls are type
correct without placing any restrictions on the new method. All kinds of overloading
of inherited methods are allowed, including overloading with respect to the number
of in- or out-parameters. For method declarations with the same number of in- and
out-parameters overloading may be with respect to parameter types, possibly only for
out-parameters. If a method m is added to C and m is previously defined in a superclass
C′ of C, the new definition in C will override (and hide) the inherited method m of C′

in the sense that a call which matches both definitions will be bound differently after
the upgrade. The superclass method is still available by the static call m@C′. Virtual
binding ensures that calls that were type correct before the class upgrade remain type
correct. If a method m is added to C and m is previously defined in a subclass C′′ of C,
a new override relationship will be introduced. However, virtual binding preserves the
type correctness of old calls as well as the virtually bound calls of the upgraded class.
The addition of a method to a class C does not need to be restricted by definitions in the
sub- or superclasses of C.

Superclasses may be added. If a class C is added as a superclass during a class
upgrade, the attributes and methods defined in C and its superclasses become available.
The binding mechanism works in a left-first depth-first order, so the order of the list
of inherited classes is crucial: to minimize the effect of new superclasses on the virtual
binding mechanism, the new superclasses are added at the end of the inheritance list.

In order to avoid runtime errors in the case when old code contains calls to the new
method with the old parameter list, we do not allow the formal parameter list of a class
to be extended. (It is straightforward to avoid this restriction using default values.) In
addition we do not allow the types of formal parameters to change; wider types could
create errors for old code operating on new objects whereas narrower types could create
errors for new code operating on old objects. Consequently, the actual parameters to the
new superclasses must be expressed by means of the old class parameters and attributes.

3 Examples

Two examples of dynamic upgrade are considered. Upgrade is used to add a new service
to an existing class, with visible effects to users of this class, and to change a communi-
cation protocol at runtime, to increase the system performance in a transparent manner.

3.1 Example: A Bank Account

Consider a bank account of interface Account, with methods for deposit and transfer of
funds, such that a transfer must wait until the account has sufficient funds.

class BankAccount implements Account --- Version 1
begin var bal : Int = 0
with Any

op deposit (in sum : Nat) == bal := bal+sum
op transfer (in sum : Nat, acc : Account) ==

await bal ≥ sum ; bal := bal−sum; acc.deposit(sum)
end
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Dynamic class upgrade allows the addition of new services to such an application
without stopping the system. Let us consider the addition of overdraft facilities. The
upgrade of the BankAccount class will add a method overdraft_open such that an object
supporting the Banker interface may set a maximal overdraft amount for the account.
The transfer method will be upgraded to take this new facility into account.

upgrade class BankAccount --- Version 2
begin var overdraft : Nat = 0
with Any

op transfer (in sum : Nat, acc : Account) ==
await bal ≥ sum−overdraft; bal := bal−sum; acc.deposit(sum)

with Banker
op overdraft_open (in max : Nat) == overdraft := max

end

An overdraft variable is added during upgrade. Pending transfer processes in an object
await the old guard, whereas new transfer calls to the object get the new guard.

3.2 Example: Broadcast in Ad Hoc Networks

Consider a wireless broadcast mechanism for ad hoc networks, using the blind-flooding
protocol: When a node receives a message with a previously unseen sequence number,
the message is sent to all neighbors and the sequence number is recorded.

class Node (neighbors : List[Oid]) --- Version 1
begin var set : NatSet = emptySet
with Any

op broadcast (in msg : Data, seqNbr : Nat) ==
if seqNbr 
∈ set then !neighbors.broadcast(msg, seqNbr); set := set ∪ {seqNbr} fi

end

The statement !neighbors.m(. . .) expands to a list of asynchronous calls to all elements
in the neighbors list.

This protocol is “localized”: a node communicates with its direct neighbors and may
ignore the overall network topology. However, there is a significant number of message
collisions. Recently the Neighbor Elimination Scheme protocol has been introduced,
which improves performance by reducing the total number of transmissions [28]. In the
new protocol, a node knows both its neighbors and their neighbors. Intuitively, when
a node receives a message it observes the communications for a certain time (using a
timeout) and then decides not to resend the message if all of its neighbors have already
received it. The system will now be upgraded to the new protocol at runtime.

We introduce a data type Assoc for sets of pairs to record the sequence numbers
and sets of neighbors for the active broadcasts, with constructors empty :→ Assoc and
add : Assoc×Nat×NatSet→ Assoc. Define functions isEmpty : Assoc×Nat→ Bool,
rem : Assoc×Nat×Oid→ Assoc, and remAll : Assoc×Nat→ Assoc by the equations
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isEmpty(empty,n) = true
isEmpty(add(a,n,s),n′) = if n = n′ then s = /0 else isEmpty(a,n′) fi
rem(empty,n,o) = empty
rem(add(a,n,s),n′,o) = if n = n′ then add(a,n,s\ {o}) else add(rem(a,n′,o),n,s)fi
remAll(empty,n) = empty
remAll(add(a,n,s),n′) = if n = n′ then remAll(a,n′) else add(remAll(a,n′),n,s) fi

The Node class may now be upgraded:

upgrade Node --- Version 2
begin var a : Assoc = empty;
with Any

op broadcast (in m : Data, n : Nat) == if n ∈ set then rem(a,n,caller)
else set := set ∪ {n}; add(a,n,neighbors); rem(a,n,caller);

await wait ∨ isEmpty(a,n);
if ¬ isEmpty(a,n) then !neighbors.broadcast(m,n) else remAll(a,n) fi fi

end

Here the set and neighbors attributes are reused from the previous class version. The
wait guard is used for delay, suspending the process for some amount of time. After the
class upgrade, active Node objects are upgraded independently and at different times.
There is a transitory period during which system performance gradually improves.

4 An Operational Semantics for Dynamic Class Upgrade

The operational semantics of Creol is defined in rewriting logic (RL) [23]. A rewrite
theory is a 4-tuple R = (Σ,E,L,R) where the signature Σ defines the function symbols,
E defines equations between terms, L is a set of labels, and R is a set of labeled rewrite
rules. Rewrite rules apply to terms of given sorts. Sorts are specified in (membership)
equational logic (Σ,E), the functional sublanguage of RL which supports algebraic
specification in the OBJ [12] style. When modeling computational systems, different
system components are typically modeled by terms of the different sorts defined in the
equational logic. The global state configuration is defined as a multiset of these terms.

RL extends algebraic specification techniques with transition rules: The dynamic
behavior of a system is captured by rewrite rules supplementing the equations which
define the term language. From a computational viewpoint, a rewrite rule t −→ t ′ may
be interpreted as a local transition rule allowing an instance of the pattern t to evolve
into the corresponding instance of the pattern t ′. When auxiliary functions are needed
in the semantics, these are defined in equational logic, and are evaluated in between the
state transitions [23]. Rewrite rules apply to local fragments of a state configuration.
If rewrite rules may be applied to nonoverlapping subconfigurations, the transitions
may be performed in parallel. Consequently, concurrency is implicit in RL. Conditional
rewrite rules are allowed, where the condition can be formulated as a conjunction of
rewrites and equations which must hold for the main rule to apply:

subconfiguration−→ subconfiguration if condition
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A number of concurrency models have been successfully represented in RL [8, 23],
including Petri nets, CCS, Actors, and Unity, as well as the ODP computational model
[24]. RL also offers its own model of object orientation [8], but inheritance in this
model does not easily allow method overloading and redefinition. Rules in RL may be
formulated at a high level of abstraction, closely resembling a compositional operational
semantics.

System configurations. A Creol method call will be reflected by a pair of messages,
and object activity will be organized around a message queue which contains incoming
messages and a process queue which contains pending processes, i.e. remaining parts of
method instances. In order to increase parallelism in the RL model, message queues will
be external to object bodies. A state configuration is a multiset combining Creol objects,
classes, messages, and queues. The associative constructor for lists is represented by ‘;’,
and the associative and commutative constructor for multisets by whitespace.

Objects in RL are commonly written as terms 〈O : C |a1 : v1, . . . ,an : vn〉 where O
is the object’s identifier, C is its class, the ai’s are the names of the object’s attributes,
and the vi’s the corresponding values [8]. Adopting this form of presentation, we define
Creol objects, classes, and external message queues as RL objects [17]. Omitting RL
sorts, a Creol object is represented by an RL object 〈Ob |Cl,Pr,PrQ,Lvar,Att,Lab〉,
where Ob is the object identifier, Cl the class name and version number, Pr the active
process code, PrQ a multiset of pending processes with unspecified queue ordering, and
Lvar and Att the local and object state, respectively. Let a sort τ be partially ordered by
<, with least element 1, and let Next : τ→ τ be such that ∀x .x < Next(x). Lab is used
to generate label values, which are terms of sort τ. Thus, the object identifier Ob and
the generated local label value provide a globally unique identifier for each method call.
A Creol object’s message queue is represented as an RL object 〈Qu |Ev〉, where Qu is
the queue identifier and Ev a multiset of unprocessed messages. Each message queue is
associated with one specific Creol object. The statement new C(E) creates a new object
(and associated queue) with a unique object identifier, object variables as listed in the
class parameter list E and in Att, and places an instance of the run method in Pr.

Creol classes are represented by RL objects 〈Cl | Inh,Att,Mtds, Tok〉, where Cl is
the class name and version number, Inh the inheritance list, Att a list of attributes, Mtds
a multiset of methods, and Tok an arbitrary term of sort τ. Version n of a class named C
will conventionally be denoted C # n. The rules for the static language constructs may
be found in [17, 18]. We shall here focus on the rules for dynamic class constructs.

4.1 Implicit Inheritance Graphs and Virtual Binding

In order to define dynamic reconfiguration mechanisms, the inheritance graph will not
be statically given. Rather, the binding mechanism dynamically inspects the class hi-
erarchy as present in the global state configuration. A bind message is sent from a
class to its superclasses, resulting in a bound message returned to the object gener-
ating the bind message. This way, the inheritance graph is unfolded dynamically and
as far as necessary when needed. This approach is used for virtual binding, and for
collecting and instantiating the class variables of an object instance. We here present
the virtual binding mechanism (see [18] for attribute collection). When the invocation
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invoc(o,m,Sig, In) of a method m is found in the message queue of an object o of class
C, a message bind(o,m,Sig, In,C) is generated where Sig is the method signature as
provided by the caller and In is the list of actual in-parameters. Virtual calls are handled
by the following rule:

〈o :Ob |Cl : C # n〉 〈o :Qu |Ev : Q invoc(o,m,Sig, In)〉
−→ 〈o :Ob |Cl : C # n〉 〈o :Qu |Ev : Q〉 bind(o,m,Sig, In,C # n)

Static method calls are generated by means of the same mechanism but without inspect-
ing the actual class of the callee, thus surpassing local definitions:

〈o :Qu |Ev : Q invoc(o,m@C,Sig, In)〉 −→ 〈o :Qu |Ev : Q〉 bind(o,m,Sig, In,C # 0)

If m is defined locally in a class C with a matching signature, a process with the
declared method code and local state is returned in a bound message. The object state is
not upgraded at this point, so a match between the version numbers of C is not required
for method binding. Otherwise, the bind message is retransmitted to the superclasses
of C in a left-first depth-first order:

bind(o,m,Sig, In,ε)−→ bound(o,none)
bind(o,m,Sig, In,(C # n); I′) 〈C # n′ :Cl | Inh : I,Mtds : M〉
−→ if match(m,Sig,M) then bound(o,get(m,M, In)) else bind(o,m,Sig, In, I; I′) fi
〈C # n :Cl | Inh : I,Mtds : M〉

The auxiliary predicate match(m,Sig,M) is true if m is declared in M with a signature
Sig′ such that Sig≺ Sig′, and the function get fetches method m in the method multiset
M of the class, and returns a process with the method’s code and local state. Values of
the actual in-parameters In, the caller o′ and the label value n are stored in the local
state. The resulting process w is loaded into the internal process queue of the callee, as
defined by the rule:

bound(o,w) 〈o :Ob |PrQ : W〉 −→ 〈o :Ob |PrQ : w; W〉

4.2 Upgrading Class Definitions

In order to control the upgrade propagation, class representations include a version
number; i.e., a counter which records the number of times the class has been upgraded.
Class upgrade may be direct or indirect through the upgrade of one of the superclasses.
When a class is upgraded, its version number is incremented. Each time a (direct) super-
class of a class C is upgraded, the version number of the class is incremented: although
the definition of C itself has not changed, the class may have more attributes or methods
by the way of inheritance. To propagate the upgrades properly, each class will record
the version number of each of its inherited classes. Therefore the inherited classes are
represented as a list of class names and version numbers:

〈C # n :Cl | Inh : (C1 # n1);(C2 # n2); . . . ,Att : _,Mtds : _,Tok : _〉

Semantically a class upgrade is realized through the insertion of a new RL object
upgrade(C, I,A,M) in the global state configuration at runtime, where C is the identifier
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of the class to be upgraded, I is an inheritance list, A is a state, and M is a multiset of
method definitions. The effect of the upgrade is that new inherited classes and attributes
are added. Likewise new methods are added, but redefined methods must be treated
differently: when a redefined method is added, the old version of the method must
be removed. After the upgrade, the version number of the class is incremented. Let
〈m,Sig,Body〉 ∈M denote that a method m with signature Sig and body Body is defined
in a method multiset M. Define M⊕M′ as M′ ∪ {〈m,Sig,Body〉 | 〈m,Sig,Body〉 ∈ M∧
¬∃Body′.〈m,Sig,Body′〉 ∈ M′}. The mechanism for direct class upgrade is captured in
Creol’s operational semantics by the following rule, which performs the upgrade using
⊕ to overwrite methods:

upgrade(C, I′,A′,M′)〈C # n :Cl | Inh : I,Att : A,Mtds : M,Tok : T 〉
−→ 〈C # (n + 1) :Cl | Inh : I; I′,Att : A; A′,Mtds : M⊕M′,Tok : T 〉

When a class is upgraded by addition of some elements, its subclasses are also up-
graded: although the definitions of the subclasses do not change, these classes indirectly
acquire new attributes or methods by the way of inheritance. It is therefore necessary to
propagate upgrade information to subclasses. The mechanism for indirect class upgrade
is captured by the following equation:

〈C # n :Cl | Inh : I;(C′ # n′); I′〉 〈C′ # n′′ :Cl | 〉
= 〈C # (n + 1) :Cl | Inh : I;(C′ # n′′); I′〉 〈C′ # n′′ :Cl | 〉 if n′′ > n′

Note that the use of equations enables the version number update to execute in zero
rewrite steps, which corresponds to locking the upgraded class object.

An example illustrates the effect of class upgrades at the semantic level. Let 〈C # 1:
Cl | Inh : (C1 # 1), Att : x;y; A, . . .〉 be the RL representation of a class C with param-
eters x and y, and attributes A. Let ε denote the empty list. The class will be up-
graded with an additional ancestor class C2 with an actual parameter x, by inserting
the term upgrade(C,(C2(x) # 1),ε,ε) into the global state of the running system. Later,
the upgrade rule applies, resulting in the modified class representation 〈C # 2 :Cl | Inh :
(C1 # 1);(C2(x) # 1),Att : x;y; A, . . .〉. If the class C2 has been upgraded from its ini-
tial version, the equation reapplies, upgrading the version number of C2 to the current
version and incrementing the version number of the class C.

The example shows that we do not need knowledge of the actual version number of
a class in the running system to add it as a superclass to the class we are upgrading, it
suffices to use the initial version number. Consequently multiple upgrades do not cause
upgrades to be forgotten, although the results of multiple (simultaneous) upgrades may
vary due to the distributed topology reflected by the asynchronous upgrade rule.

The proposed class upgrade mechanism has some advantages. First, upgrade propa-
gations are locally managed and classes need not know about their instances. Moreover,
the version number recalls the number of changes applied to a class but old versions of
a class are removed. Finally, there are no upgrade conflicts: one upgrade is performed
at a time. If several upgrades redefine the same method the result may depend on the
order in which the upgrades are performed, but the final result is stable. In order to en-
force this discipline in a distributed setting where multiple copies of the class exist on
different physical sites, there would typically be one master copy from which upgrades
propagate to the other copies (the issue of duplicate classes is not treated here).
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4.3 Upgrading Object Instances

In order to control the upgrades of object instances of an upgraded class, an object will
include information about its current class version in its class attribute Cl. At initial-
ization, the class attribute will store the name and current version of its class. When a
class has been upgraded new object instances automatically get the new class attributes,
due to the dynamic mechanism for collecting class variables (Sect. 4.1). However the
upgrade of existing object instances of the class must be closely controlled.

Recall that the binding mechanism is dynamic: each time an object needs to evalu-
ate a method, it requests the code associated with this method name. The code of sus-
pended methods has already been loaded, and will be able to complete their evaluation.
Problems may arise when calling new methods or new versions of methods using new
attributes that are not presently available in the object. The upgrade of an object has to
be performed after the upgrade of its class and before new code which may rely on new
class attributes is evaluated. As processes may be recursive and even nonterminating,
objects cannot generally be expected to reach a state without pending processes, even
if the loading of processes corresponding to new method calls from the environment is
postponed as in [1, 9]. Consequently, it is too restrictive to wait for the completion of all
pending methods before applying an upgrade. However, Creol objects may reach quies-
cent states when the processor has been released and before a pending process has been
activated. In the case of process termination or an inner suspension point, Pr is empty.
Any object which does not deadlock is guaranteed to eventually reach a quiescent state.
In particular nonterminating activity is implemented by means of recursion, which en-
sures at least one quiescent state in each cycle. The mechanism for object upgrade,
applied to quiescent states, is captured by the following equation:

〈o :Ob |Cl : C # n,Pr : ε〉〈C # n′ :Cl |Att : A〉
= 〈o :Ob |Cl : C # n′,Pr : ε〉 〈C # n′ :Cl |Att : A〉 getAttr(o,C,A) if n′ > n

A similar equation handles local synchronous calls.
Due to the implicit inheritance graph, upgrade of attributes is handled as standard

object instantiation; this is given by the equations for getAttr, which recursively com-
pute an object state from provided values for class parameters. For object upgrade the
present object state A replaces the initial values, thus only new attributes get values
computed while inspecting the inheritance graph starting at class C. The use of equa-
tions corresponds to locking the object. Evaluation results in a term gotAttr(o,A′) where
A′ is the resolved attribute list with values. The mechanism for state upgrade, replacing
the old object state by the the new one, is captured by the following equation:

gotAttr(o,A′) 〈o :Ob |Att : A〉= 〈o :Ob |Att : A′〉

The described runtime mechanism allows the upgrade of active objects. Attributes are
collected at upgrade time while code is loaded “on demand”. A class may be upgraded
several times before the object reaches a quiescent state, so the object may have missed
some upgrades. However a single state upgrade suffices to ensure that the object, once
upgraded, is a complete instance of the present version of its class. The upgrade mech-
anism ensures that an object upgrade has occurred before new code is evaluated.



A Dynamic Class Construct for Asynchronous Concurrent Objects 27

After an upgrade the object is in a transitional mode, where its attributes are new but
old code may still occur in the process queue. This explains why attributes may neither
be removed nor change types during class upgrade. With this restriction, the evaluation
of old code can be completed without errors. Notice that if a call to a redefined method
m appears in remaining old code, the call will nevertheless be bound to the new version
of m. This does not cause difficulties provided that the restrictions to covariance for
in-parameters and contravariance for out-parameters are respected. This way, the use of
recursion rather than while-loops allows a smooth upgrade of nonterminating activity.

4.4 Example: Analysis of a Bank Account Upgrade

The bank account example of Sect. 3.1 is now reconsidered to illustrate the operational
semantics and its executable aspect, in order to provide some insight into the behavior
of the asynchronous update mechanism. We define an initial configuration consisting
of the original bank class and two new bank accounts b and c together with a deposit
invocation, say !b.deposit(100), followed by a transfer !b.transfer(200,c). The transfer
will be suspended since the balance is not large enough. We then augment the initial
configuration with the class upgrade

upgrade(BankAccount, ε, overdraft : Nat =100,
op transfer (in sum : Nat, acc : Account) ==

await bal ≥ sum−overdraft; bal := bal−sum; acc.deposit(sum) )

In order to see the effect of executing the operational semantics, we use Maude’s search
facilities to search for all possible final states. The search results in two solutions: Both
have succeeded in upgrading the bank account objects. In one solution the b account
has a final balance of 100 and a pending transfer invocation which cannot be completed,
whereas the other solution has a final balance of -100 and no pending code. In the
the first solution the transfer invocation is bound before bank account b is upgraded,
with the result that the transfer is suspended and cannot be completed (since it awaits
bal ≥ sum). In the second solution, the bank account is upgraded before the transfer
invocation is bound, with the result that the transfer is completed (since the upgraded
transfer awaits bal ≥ sum−overdraft).

Can we guarantee that an upgrade will succeed? In order to illustrate this problem,
we introduce a nonterminating activity: Let an object recursively make asynchronous
calls !b.deposit(0) (which have no effect on the state of b). In this case a search for final
states does not succeed, but we can search for all solutions for N deposit calls. Ignoring
pending calls, there are two solutions for every fixed N: one solution has an upgraded
class and the other does not. The analysis suggests that there is a race condition between
the evaluation of bind and update messages with regard to the class representation in
the global configuration. As the update rule is continuously enabled, weak fairness is
needed to guarantee that the update will succeed. For simulation Maude’s predefined
fair rewrite strategy ensures that class updates will eventually be applied. In contrast
the update rule for the object state is only enabled in quiescent states. Unless the object
deadlocks quiescent states occur regularly, which suggests that strong fairness is needed
to ensure that the update is applied. This problem is circumvented by using equations
in RL; state updates have priority and will always be selected if enabled.
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5 Related Work

Although many approaches to reconfigurable distributed systems [2, 4, 6, 14, 16, 21, 26]
do not address availability requirements during reconfiguration, availability is an essen-
tial feature of many modern distributed applications. Dynamic or online system up-
grade considers how running systems may evolve. Recently, several authors have inves-
tigated type-safe mechanisms for runtime upgrade of imperative [29], functional [5],
and object-oriented [10] languages. The latter paper considers object instance evolution
(reclassification) in Fickle, based on a type system which guarantees type safety when
an object changes its class. These approaches consider the upgrade of single type dec-
larations, procedures, objects, or components in the sequential setting. Fickle has been
extended to multithreading [9], but restrictions to runtime reclassification are needed;
e.g., an object with a nonterminating (recursive) method will not be reclassified.

Work on version control for modular systems aims at more generic upgrade sup-
port. Some approaches allow multiple versions of a module to coexist after an upgrade
[3, 5, 11, 13, 15], while others keep only the latest version by performing a global up-
date or “hot-swapping” [1, 7, 22, 25]. Another important distinction between different
approaches is their treatment of active behavior. Upgrade of active behavior may be dis-
allowed [7, 13, 22, 25], delayed [1, 9], or supported [15, 29]. Most approaches favoring
global updates do not support the upgrade of an active module running the old version.
A system which addresses the upgrade of active code is proposed in [29] for the set-
ting of type declarations and procedures in (sequential) C. However, the approach is
synchronous in the sense that upgrades which cannot be applied immediately will fail.

Dynamic class constructs may be considered as a form of version upgrade. Hjálmtýs-
son and Gray [15] propose an approach for C++ based on proxy classes through which
the actual class is linked (reference indirection). Their approach supports multiple ver-
sions of each class. Because existing objects of the class are not upgraded, activity in
existing objects is uninterrupted. Dynamic class upgrade in Java has been proposed us-
ing proxy classes [25] and by modifying the Java virtual machine [22]. Both approaches
are based on global upgrade, but the approaches are not applicable to active objects.

Automatic upgrade based on lazy global update is addressed in [1] for distributed
objects and in [7] for persistent object stores. Although the object instances of upgraded
classes are upgraded in these works, inheritance is not addressed which limits the ef-
fect of class upgrade. Further, these approaches cannot handle (nonterminating) active
code. Our approach supports multiple inheritance, but restricts upgrades to addition and
redefinition and may therefore avoid these limitations. Only one version of an upgraded
class is kept in the system but active objects may still be upgraded. Upgrade is asyn-
chronous and distributed, and may therefore be temporarily delayed.

6 Conclusion

Many critical distributed systems need to be modified without compromising availabil-
ity requirements. This paper exploits the class structure of object-oriented programs
to introduce evolution of the inheritance graph at runtime. We have presented a novel
construct for dynamic class upgrade in distributed object-oriented systems and formal-
ized its operational semantics in rewriting logic. Upgrading a class has an effect on all
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its subclasses and all object instances of these classes. The construct allows classes to
be extended with new attributes, new methods, and new ancestor classes, while exist-
ing methods may be redefined. A subtype relationship is needed for the redefinition of
methods, while extension is not restricted. Active and nonterminating code may be up-
graded. The mechanism ensures that virtual binding will still succeed after an upgrade.

Our formalization uses equations to update class version numbers for indirect class
upgrade and to upgrade individual objects. This seems natural at a high level of ab-
straction. At a lower level of abstraction this semantics may lead to temporary locks on
objects, since equations apply between rewrite steps. It is therefore of interest to investi-
gate how these equations may be replaced by rules. In particular the equations for object
upgrade could be reformulated as rules. However this would require the messages con-
trolling method binding and attribute updating to include version number information,
using conditional rules to ensure consistent version numbering.

In future work, we plan to study how dynamic class constructs as proposed in
this paper may be improved through type analysis and provide formal proof that such
upgrade mechanisms preserve strong typing. Furthermore it is interesting to consider
upgrade mechanisms addressing several (hierarchies of) classes simultaneously. Such
mechanisms could probably allow a more flexible notion of upgrade. In particular mu-
tual and cyclic dependencies between objects could be addressed directly in the same
upgrade. It seems probable that such package upgrades may require a more synchro-
nized upgrade mechanism than the mechanism proposed here, resulting in considerably
more overhead in the distributed concurrent setting.
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Abstract. The Kell Calculus is a family of process calculi intended as a basis
for studying distributed component-based programming. This paper presents an
abstract machine for an instance of this calculus, a proof of its correctness, and a
prototype OCaml implementation. The main originality of our abstract machine
is that it does not mandate a particular physical configuration (e.g. mapping of
localities to physical sites), and it is independent of any supporting network ser-
vices. This allows to separate the proof of correctness of the abstract machine per
se, from the proof of correctness of higher-level communication and migration
protocols which can be implemented on the machine.

1 Introduction

The Kell calculus [17, 18] is a family of higher-order process calculi with hierarchical
localities and locality passivation, which is indexed by the pattern language used in
input constructs. It has been introduced to study programming models for wide-area
distributed systems and component-based systems. A major assumption in a wide-area
environment is the need for modular dynamicity, i.e. the ability to modify a running
system by replacing some of its components, or by introducing new components (e.g.
plug-ins). The Kell calculus can be seen as an attempt to understand the operational
basis of modular dynamicity: localities in the Kell calculus model named components,
and locality passivation provides the basis for dynamic reconfiguration operations.

Two of the main design principles for the calculus are to keep all the actions “lo-
cal” in order to facilitate its distributed implementation, and to allow different forms
of localities to coexist. A consequence of the locality principle is that the calculus al-
lows different forms of networks to be modeled (by different processes). Thus, on the
one hand, an implementation of the calculus should not need to consider atomic actions
occurring across wide-area networks. On the other hand, an implementation of the cal-
culus should not imply the use of purely asynchronous communications between local-
ities: one can have legitimate implementations of the calculus that exploit and rely on
the synchronous or quasi-synchronous properties of specific environments (e.g. a local
machine with different processes, a high-performance, low-latency local area network
for homogeneous PC clusters).
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We present in this paper a distributed abstract machine for an instance of the Kell
calculus, and its implementation in OCaml. The original feature of our abstract machine
is that, in contrast to other works on abstract machines for distributed process calculi, it
does not depend on a given network model, and can be used to implement the calculus
in different physical configurations. Let us explain in more detail what this means. An
implementation of our abstract machine typically comprises two distinct parts:

– An implementation of the abstract machine specification per se, that conforms to
the reduction rules given in section 3 below.

– Libraries, in the chosen implementation language, that provides access to network
services, and that conform to a Kell calculus model of these services (i.e. a Kell
calculus process).

For instance, assume that one wants to realize a physical configuration consisting of a
network N , that interconnects two computers m1 and m2, that each run an implemen-
tation of the Kell calculus abstract machine, and a Kell calculus program (P1 and P2,
respectively). This configuration would be modelled in the Kell calculus by the process

C
Δ
= N [Net | m1[NetLib | P1] | m2[NetLib | P2]]

where the process Net models the behavior of network N , and where the process
NetLib models the presence, at each site, of a library providing access to the network
services modeled by Net. From the point of view of the Kell calculus abstract machine,
the library NetLib is just a standard Kell calculus process, but whose communications
will have side-effects (i.e. accessing the actual network services modelled by Net) out-
side the abstract machine implementation.

The interesting aspect of our approach is the fact that we can thus provide im-
plementations for different environments which all rely on the same abstract machine
description and implementation. Consider for instance the physical configuration con-
sisting of a network N , that interconnects two computers m1 and m2, that each run two
separate processes, p1

i and p2
i (i = 1, 2). Each process pj

i runs an implementation of the
abstract machine, with a program Qj

i . This configuration can be modelled by

C′ Δ
= N [Net | M1 | M2]

M1
Δ
= m1[NetOS | Ipc | p1

1[NetLib | IpcLib | Q1
1] | p2

1[NetLib | IpcLib | Q2
1]]

M2
Δ
= m2[NetOS | Ipc | p1

2[NetLib | IpcLib | Q1
2] | p2

2[NetLib | IpcLib | Q2
2]]

where the process NetOS models the presence, at each site mi, of some means (e.g.
an operating system library) to access the network services modeled by Net, where the
process Ipc models the presence, at each site, of a local communication library (e.g.
an interprocess communication library provided by the local operating system), and
where the processes NetLib and IpcLib model the presence, at each process pj

i , of
interfaces for accessing the different communication services provided, respectively, by
the combination Net and NetOS, and by Ipc. Again, NetLib and IpcLib both appear
as standard Kell calculus processes from the point of view of the abstract machine (i.e.
they communicate with other processes by message exchange and can become passi-
vated with their enclosing locality). However, the communication services they give
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access to can have very different semantics, if only in terms of reliability, latency, or se-
curity. The important point to note is that different communication services can coexist
in the same implementation, and can be used selectively by application processes.

An important benefit of the independence of our abstract machine specification from
any supporting network services, made possible by the local character of primitives in
the Kell calculus, is the simplification of its proof of correctness. Indeed, the proof
of correctness of our abstract machine does not involve the proof of a non-trivial dis-
tributed migration protocol, as is the case, for instance, with the JoCaml implementation
of the distributed Join calculus [5], or with various abstract machines for ambient cal-
culi [5, 7, 10, 14] 1. Furthermore, the correctness of the machine is ensured, regardless
of the network services used for the actual implementation.

The abstract machine described in this paper constitutes a first step in a potential se-
ries of more and more refined abstract machines, getting us closer to a provably correct
implementation of the calculus. Such a progressive approach aims at breaking up the
proof of correctness of an abstract machine close to implementation into more tractable
steps. For this reason, our abstract machine remains non-deterministic, and still has a
number of high-level constructs such as variable substitution. Compared to the calcu-
lus, the abstract machine realizes three important functions: (1) it handles names and
name restriction; (2) it “flattens” a Kell calculus process with nested localities into a
configuration of non-nested localities with dependency pointers; (3) it makes explicit
high-level process marshalling and unmarshalling functions which are involved in the
implementation of the locality passivation construct of the Kell calculus.

The correctness of the abstract machine is stated, following [14], as barbed bisim-
ilarity between a process of the calculus and its abstract machine interpretation. How-
ever, the results we obtain are in fact stronger than pure barbed bisimilarity as they
involve some form of contextual equivalence. The results are stated using a strong form
of bisimilarity, for we use a notion of sub-reduction to abstract away purely administra-
tive reductions. Proofs can be found in the long version of this paper, available at [11].

The paper is organized as follows. Section 2 presents the instance of the Kell cal-
culus we use in this paper. Section 3 specifies our abstract machine for the calculus. In
Section 4 we give a correctness result for the abstract machine. In Section 5, we discuss
an Ocaml prototype implementation of our abstract machine. In Section 6, we discuss
related works. Section 7 concludes the paper with a discussion of future work.

2 The Kell Calculus: Syntax and Operational Semantics

2.1 Syntax

We now define the instance of the kell calculus we use in this paper. We allow five kinds
of input patterns: kell patterns, that match a subkell, local patterns, that match a local
message, up patterns, that match a message in the parent kell, and two kinds of down
patterns, that match a message from a subkell. The syntax of the Kell calculus, together
with the syntax of evaluation contexts, is given below:

1 Note that the Channel Ambient abstract machine presented in [13] assumes that ambients
may synchronize, for instance to run an in primitive. This assumption might be difficult to
implement in an asynchronous distributed setting.
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P ::= 0 | x | ξ � P | νa.P | P | P | a[P ] | a〈P̃ 〉
P∗ ::= 0 | x | ξ � P | P∗ | P∗ | a[P∗] | a〈P̃ 〉

ξ ::= a〈ũ〉 | a〈ũ〉↓ | a〈ũ〉↓
a

| a〈ũ〉↑ | a[x]

u ::= x | (x)

E ::= · | νa.E | a[E] | P | E

Filling the hole · in an evaluation context E with a Kell calculus term Q results in
a Kell calculus term noted E{Q}.

We assume an infinite set N of names. We let a, b, x, y and their decorated variants
range over N. Note that names in the kell calculus act both as name constants and as
(name or process) variables. We use Ṽ to denote finite vectors (V1, . . . , Vq). Abusing
notation, we equate Ṽ with the word V1 . . . Vn and the set {V1, . . . , Vn}.

Terms in the Kell calculus grammar are called processes. We note K the set of Kell
calculus processes. We let P , Q, R and their decorated variants range over processes.
We say that a process is in normal form when it does not contain any name restriction
operator. We use P∗, Q∗, R∗ and their decorated variants to denote these processes. We
call message a process of the form a〈P̃ 〉. We call kell 2 a process of the form a[P ], with
a called the name of the kell. In a kell of the form a[. . . | aj [Pj ] | . . . | Qk | . . .] we
call subkells the processes aj [Pj ]. We call trigger a process of the form ξ �P , where
ξ is a receipt pattern (or pattern, for short). A pattern can be an up pattern a〈ũ〉↑, a
down pattern a〈ũ〉↓b

or a〈ũ〉↓, a local pattern a〈ũ〉, or a control pattern a[x]. A down
pattern a〈ũ〉↓b

matches a message on channel a coming from a subkell named b. A
down pattern a〈ũ〉↓ matches a message on channel a coming from any subkell.

In a term νa.P , the scope extends as far to the right as possible. In a term ξ �P ,
the scope of � extends as far to the right as possible. Thus, a〈c〉 � P | Q stands for
a〈c〉 �(P | Q). We use standard abbreviations from the the π-calculus: νa1 . . . aq.P
for νa1. . . . νaq.P , or νã.P if ã = (a1 . . . aq). By convention, if the name vector ã is

empty, then νã.P
Δ= P . We also note

∏
i∈I Pi, I = {1, . . . , n} the parallel composition

(P1 | (. . . (Pn−1 | Pn) . . .)). By convention, if I = ∅, then
∏

i∈I Pi
Δ= 0.

A pattern ξ acts as a binder in the calculus. All names x that do not occur within
parenthesis () in a pattern ξ are bound by the pattern. We call pattern variables (or
variables, for short) such bound names in a pattern. Variables occurring in a pattern
are supposed to be linear, i.e. there is only one occurrence of each variable in a given
pattern. Names occurring in a pattern ξ under parenthesis (i.e. occurrences of the form
(x) in ξ) are not bound in the pattern. We call them free pattern names (or free names,
for short). We assumes that bound names of a pattern are disjoint from free names.
The other binder in the calculus is the ν operator, which corresponds to the restriction
operator of the π-calculus. Free names (fn), bound names (bn), free pattern variables
(fpn), and bound pattern names (bpn) are defined as usual. We just point out the
handling of free pattern names:

fpn(a〈ũ〉) = {a} ∪ {x ∈ N | (x) ∈ ũ} bpn(a〈ũ〉) = {x ∈ N | x ∈ ũ}
2 The work “kell” is intended to remind the word “cell”, in a loose analogy with biological cells.
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νa.0 ≡ 0 [S.NU.NIL] νa.νb.P ≡ νb.νa.P [S.NU.COMM]

a �∈ fn(Q)

(νa.P ) | Q ≡ νa.P | Q [S.NU.PAR]
P =α Q

P ≡ Q
[S.α]

P ≡ Q

E{P} ≡ E{Q} [S.CONTEXT]

Fig. 1. Structural equivalence

a �= b

a[νb.P ]
≡→ νb.a[P ]

[SR.NEW]
P

≡→ P ′

E[P ]
≡→ E[P ′]

[SR.CONTEXT]

P ′ ≡ P P
≡→ Q Q ≡ Q′

P ′ ≡→ Q′ [SR.STRUCT]

ṽ = ũϕ

c〈ṽ〉 | b[R | (c〈ũ〉↑ � Q)]→ b[R | Qϕ]
[R.IN]

ṽ = ũϕ

c〈ṽ〉 | (c〈ũ〉 � Q)→ Qϕ
[R.LOCAL]

ṽ = ũϕ ↓•=↓b ∧ ↓•=↓
b[c〈ṽ〉 | R] | (c〈ũ〉↓

•
� Q)→ b[R] | Qϕ

[R.OUT]

a[P∗] | (a[x] � Q)→ Q{P∗/x} [R.PASS]
P → Q

E{P} → E{Q} [R.CONTEXT]

P ′ ≡ P P → Q Q ≡ Q′

P ′ → Q′ [R.STRUCT]
P ′ ≡→

∗
P P → Q

P ′ → Q
[R.STRUCT.EXTR]

Fig. 2. Reduction Relation

We call substitution a function φ : N → N � K from names to names and Kell
calculus processes that is the identity except on a finite set of names. We note supp
the support of a substitution (i.e. supp(φ) = {i ∈ N | φ(i) 
= i}). We assume when
writing ξφ that fpn(ξ) ∩ supp(φ) = ∅ and that supp(φ) ⊆ bpn(ξ).

We note P =α Q when two terms P and Q are α-convertible.
Formally, the reduction rules in section 2.2 could yield terms of the form P [Q],

which are not legal Kell calculus terms (i.e. the syntax does not distinguish between
names playing the role of name variables, and names playing the role of process vari-
ables). However, a simple type system can be used to rule out such illegal terms.

2.2 Reduction Semantics

The operational semantics of the Kell calculus is defined in the CHAM style [1], via a
structural equivalence relation and a reduction relation. The structural equivalence≡ is
the smallest equivalence relation that verifies the rules in Figure 1 and that makes the
parallel operator | associative and commutative, with 0 as a neutral element.

The reduction relation→ is the smallest binary relation on K that satisfies the rules
given in Figure 2.
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Notice that we do not have structural equivalence rules that deal with scope extru-
sion beyond a kell boundary (i.e we do not have the Mobile Ambient rule a[νb.P ] ≡
νb.a[P ], provided b 
= a). This is to avoid phenomena as illustrated below:

(a[x] � x | x) | a[νb.P ] → (νb.P ) | (νb.P ) (a[x] � x | x) | νb.a[P ] → νb.P | P

However, such name extrusion is still needed to allow communication across kell bound-
aries. The solution adopted here is to allow only scope extrusion across kell boundaries
and to restrict passivation to processes without name restriction in evaluation context.
Formally, this is achieved by requiring a process to be in normal form (P∗) in rule
R.PASS and by adding a scope extrusion sub-reduction relation

≡→.
Rules R.IN and R.OUT govern the crossing of kell boundaries. Only messages may

cross a kell boundary. In rule R.IN, a trigger receives a message from the outside of the
enclosing kell. In rule R.OUT, a trigger receives a message from a subkell.

3 Abstract Machine

3.1 Syntax

Following [14], our abstract machine is specified in the form of a process calculus
whose terms, called machine terms, correspond to abstract machine states. Intuitively,
a machine term consists in a set of localities, each executing a different program, orga-
nized in a tree by means of pointers between localities.

The syntax of the abstract machine calculus is given below:

M ::= 0 | L | M |M M∗ ::= 0 | L∗ | M∗ |M∗

L ::= h : m[P ]k,S L∗ ::= h : m[P∗]k,S

S ::= ∅ | h | S, S

P ::= 0 | x | ξ � P | νa.P | P | P | a[P ] | a〈P̃ 〉 | reify(k, M∗)

P∗ ::= 0 | x | ξ � P | P∗ | P∗ | a〈P̃ 〉

ξ ::= a〈ũ〉 | a〈ũ〉↓ | a〈ũ〉↓
a

| a〈ũ〉↑ | a[x]

u ::= x | (x) x ∈ N h, k, l ∈ MN a, m ∈ N ∪MN

Terms generated by the productions M , M∗ in the abstract machine grammar are
called machine terms (or machines for short, when no ambiguity arises), and are ranged
over by M , N and their decorated variants. We designate their set by M. Machine terms
make use of two sorts of names: the set N and a disjoint infinite set MN whose elements
are called machine names. We call locality a machine term of the form h : m[P ]k,S . In a
locality h : m[P ]k,S , m is the name of the kell the locality represents, h is the machine
name of the locality, k is the machine name of its parent locality, S is the set of the
machine names of its sublocalities, and P is the machine process being run at locality
h. We use three particular machine names: r, rn and rp, which denote, respectively, the
machine name of the root locality, the name of the root kell (associated with the root
locality), and the machine name of the (virtual) root parent locality. Machine names
appearing in a machine term are all unique (in contrast to kell names).
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M =α N

M ≡ N
[M.SE.α]

P ≡ P ′ S ≡ S′

l : h[P ]k,S ≡ l : h[P ′]k,S′
[M.SE.CTX]

Fig. 3. Structural equivalence for machines

We call MK the set of machine processes (i.e. terms generated via the productions
P, P∗ in the abstract machine grammar), and we have K ⊆ MK. The machine processes
are slightly different from Kell calculus processes. First a new term reify(k, M∗) is in-
troduced to represent a passivated machine. The term M∗ is a tree of machines encoded
as a parallel composition of localities and k is the machine name of the root of this tree.
Secondly, the names that can be used by a machine process belong to N ∪ MN. This
point will be made clear in the next subsection. A machine process is in normal form,
written P∗, when it has no name restriction operator nor kells in evaluation context. A
machine is in normal form when all machine processes in its localities are in normal
form. We use the .∗ suffix to denote machines and processes in normal form. The def-
initions and conventions given in section 2 extend to machine processes. Note that we
use the same meta-variables to denote processes and machine processes. When it is not
clear from the context, we will precise whether a variable denote a process or a machine
process.

3.2 Reduction Semantics

The reduction relation is defined as for the calculus via a structural congruence relation
and a reduction relation.

First, we define two equivalence relations (both denoted by ≡), on machine pro-
cesses and sets of localities, respectively, as the smallest relations that make the parallel
operator | (resp. the , operator) associative and commutative with 0 (resp. ∅) as a neu-
tral element. Then, we define the structural congruence ≡ on machines as the smallest
equivalence relation that verifies the rules in figure 3 and that makes the parallel opera-
tor | associative and commutative with 0 as a neutral element.

This structural equivalence, together with the rules M.S.CTX and M.S.STR, allows
us to view machines as sets of localities and terms S as sets of machine names. Note that
the equivalence relation on machine processes is different from the one on kell calculus
processes as it does not contain rules dealing with restriction. This is because restriction
is handled by the abstract machine as a name creation operator (rule M.S.NEW).

The reduction relation is defined as the smallest relation that satisfies the rules
in Figures 4 and 5. It uses a subreduction relation

≡→. The first subreduction rule,
M.S.NEW, deals with restriction, which is interpreted as name creation. The reason
the rule imposes the newly created name to be a machine name is related to the correct-
ness proof, where we need to distinguish between restricted and free Kell names. Rule
M.S.CELL creates a new locality when a kell is in the locality process. Rule M.S.ACT

activates a passivated machine. Activation involves releasing the process held in the root
locality of the passivated machine in the current locality, and releasing the sublocalities
of the passivated machine as new sublocalities of the current locality.
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l fresh ∈ MN

h : n[(νa.P ) | Q]k,S
≡→ h : n[P{l/a} | Q]k,S

[M.S.NEW]

h′ fresh ∈ MN

h : n[m[P ] | Q]k,S
≡→ h : n[Q]k,(S,h′) | h′ : m[P ]h,∅

[M.S.CELL]

M∗ = l : n[R∗]l′,S′ |M ′
∗

locnames(M ′
∗) = {li/i ∈ I} ki fresh ∈ MN, i ∈ I

h : m[reify(l, M∗) | P ]k,S
≡→ h : m[R∗ | P ]k,(S,S′{ki/li}i∈I

|M ′
∗{h/l}{ki/li}i∈I

[M.S.ACT]

M
≡→ M ′

M | N ≡→ M ′ | N
[M.S.CTX]

M ≡ M ′ M ′ ≡→ M ′′ M ′′ ≡ M ′′′

M
≡→ M ′′′ [M.S.STR]

Fig. 4. Sub-reduction for machines

The reduction rules M.IN, M.OUT, M.LOCAL, and M.PASS are the direct equiv-
alent of the Kell calculus rules R.IN, R.OUT, R.LOCAL, and R.PASS, respectively. In
rule M.PASS, the localities passivated are in normal form.

The reduction rules use the auxiliary function locnames, the predicate tree, and
the notion of well-formed machine, which we now define.

The predicate tree(M, l, a, p) is defined as follows (where S may be empty):

tree(M, l, a, p) = (M ≡ l : a[P ]p,S |
∏
j∈S

Mj) ∧j∈S tree(Mi, lj , aj , pj))

with the additional condition that l, p, lj, pj are all distinct.
The function locnames(M) designates the set of locality names of all localities

present in a machine M .
We say that a machine M is well-formed if we have tree(M, r, rn, rp). The set of

well-formed machines is noted WFM. Finally, we will need the relation ∼= defined as
follows: M ∼= N if and only if tree(M, l, m, p) and Mσ ≡ Nσ′ where σ and σ′ are
injective renaming of machine names such that σ(l) = σ′(l) = l and σ(p) = σ′(p) = p
and if m ∈ MN, σ(m) = σ′(m) = m.

4 Correctness

We establish the correctness of our abstract machine by establishing a strong bisim-
ilarity result between Kell calculus processes and their interpretation by the abstract
machine. The notion of equivalence we adopt is strong barbed bisimulation [15], which
we denote by∼. This notion of bisimulation can be used to compare different transition
systems, provided that they are equipped with observability predicates and a reduction
relation. An originality of our correctness result is that it relies on a strong form of
barbed bisimilarity, instead of a weak one. This is possible because we abstract away
administrative reduction rules through the subreduction relations in both the calculus
and the abstract machine semantics. Our main result is the following:

Theorem 1 (Correctness). For any Kell calculus process P , we have [[P ]] ∼ P .
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P → P ′

P | Q → P ′ | Q [M.PAR]
ξ = c〈ũ〉

ξϕ | (ξ � Q)→ Qϕ
[M.LOCAL]

ξ = c〈ũ〉↑

h : a[ξϕ | P ]k,S | h′ : b[(ξ � Q) | R]h,S′ �→ h : a[P ]k,S | h′ : b[Qϕ | R]h,S′
[M.IN]

ξ = c〈ũ〉↓ ∨ ξ = c〈ũ〉↓
a

h : a[ξϕ | P ]h′,S | h′ : b[(ξ � Q) | R]k′,S′ �→ h : a[P ]h′,S | h′ : b[Qϕ | R]k′,S′
[M.OUT]

M∗ = l : a[R∗]h,S′ |M ′
∗ tree(M∗, l, a, h)

h : m[(a[x] � P ) | Q]k,S | M∗ �→ h : m[P{reify(l, M∗)/x} | Q]k,S\l
[M.PASS]

M �→ M ′

M | N �→ M ′ | N [M.CTX]
M ≡ M ′ M ′ �→ M ′′ M ′′ ≡ M ′′′

M �→ M ′′′ [M.STR]

P → P ′

h : m[P ]k,S �→ h : m[P ′]k,S
[M.RED]

M
≡→

∗
M ′ M ′ �→ M ′′

M → M ′′ [M.NORM]

Fig. 5. Reduction for machines

This theorem asserts the equivalence of any Kell calculus process P with its translation
in the abstract machine calculus. In the rest of this section we give the main definitions
and intermediate results that intervene in the proof of Theorem 1.

We first define the translation of a Kell calculus process in the abstract machine
calculus.

Definition 1. [[P ]] = r : rn[P ]rp,∅

A first important property of our model is to ensure that the tree structure of the
machine is preserved through reduction.

Proposition 1 (Well-Formedness). If tree(M, l, a, p) and M ∼= M ′, M
≡→ M ′,

M �→ M ′, or M → M ′, then tree(M ′, l, a, p). In particular, well-formedness is pre-
served by reduction. Moreover, for any process P , [[P ]] is well-formed.

From now on, unless otherwise stated, we only consider machine terms M such that
tree(M, l, a, p) for some names l, a, p. The definitions of strong barbed bisimulation
and strong barbed bisimilarity are classical [15]. We reproduce them below.

Definition 2 (Strong barbed bisimulation). Let TS 1 and TS 2 be two sets of tran-
sition systems equipped with the same observability predicates ↓a, a ∈ N. A relation
R ⊆ TS 1 × TS 2 is a strong barbed simulation if whenever (A, B) ∈ R, we have

– If A ↓a then B ↓a
– If A→ A′ then there exists B′ such that B → B′ and (A′, B′) ∈ R′

A relation R is a strong barbed bisimulation if R and R−1 are both strong barbed
simulations.
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Definition 3 (Strong barbed bisimilarity). Two transition systems A and B are said
to be strongly barbed bisimilar, noted A ∼ B, if there exists a strong barbed bisimula-
tion R such that (A, B) ∈ R.

To define strong bisimilarity for Kell calculus processes and machines we rely on
the following observability predicates.

Definition 4 (Observability predicate for processes). If P is a Kell calculus process,
P ↓a holds if one of the following cases holds:

1. P ≡≡→
∗

νc̃.a〈P̃ 〉 | R | P ′, with a /∈ c̃

2. P ≡≡→
∗

νc̃.m[a〈P̃ 〉 | R] | P ′, with a /∈ c̃

3. P ≡≡→
∗

νc̃.a[P ] | P ′, with a /∈ c̃

Definition 5 (Observability predicate for machines). If M is a well-formed machine
and a ∈ N, M ↓a holds if one of the following cases holds:

1. M ≡≡→
∗
r : rn[a〈P̃ 〉 | R]rp,S |M ′

2. M ≡≡→
∗

h : m[a〈P̃ 〉 | R]r,S |M ′

3. M ≡≡→
∗

h : a[P ]r,S |M ′

Intuitively , a barb on a means that after an arbitrary number of administrative reduc-
tions, a process P (or machine M ) can exhibit a local message (clause 1), a up message
(clause 2), or a kell message (clause 3). These observations are similar to those find e.g.
in Ambient calculi.

We now define two equivalence relations over machines that we use to state cor-
rectness properties. The first one identifies two machines that have the same normal
form. The second one corresponds to a form of strong barbed congruence. Note that the
second one is defined on well-formed machine only.

Lemma 1 (Normal form). If M is a machine term, then there exists M ′
∗ such that

M
≡→

∗
M ′

∗. Moreover, if M ≡≡→
∗

M ′′
∗ then M ′

∗
∼= M ′′

∗ . Besides, M 
≡→ if and only if
M = M ′

∗ for some M ′
∗.

Definition 6 (Equivalence). Two machines M and N are said to be equivalent, noted
M

.= N , if they have the same normal form (up to ∼=).

From now on, we will use the same notation M∗ for a normal form of M (i.e.
M

≡→
∗

M∗ 
≡→), and for an arbitrary term in normal form.

Definition 7. Let M = l : n[P ]p,S | M ′ be a machine such that tree(M, l, n, p) and
h a fresh machine name. We define:

M | Q = l : n[P | Q]p,S |M ′

a[M ] = l : n[0]p,h | h : a[P ]l,S |M ′{h/l}
νa.M = M{h/a}

We extend these definitions to any contexts of the following form:

E ::= . | (R | E) | a[E] | νa.E
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Definition 8 (Contextual equivalence for machines). Two well-formed machines M
and N are contextually equivalent (M ∼c N ) if and only if ∀E,E[M ] ∼ E[N ].

We check easily that ∼c is the largest relation over machines included in strong
barbed bisimilarity that is a preserved by a[.], νa.. and . | R.

Lemma 2. ∼c,
.=, ∼= and ≡ are equivalence relations.

Lemma 3. We have ≡⊆∼=⊆ .= and if we consider the restrictions of these relations to
well-formed machines, they are all strong barbed bisimulation and

.=⊆∼c.

We now state two properties that relate machine reductions to process reductions
(soundness), and process reductions to machine reductions (completeness).

Proposition 2 (Soundness). [[P ]]→M =⇒ P → P ′ with [[P ′]] ∼c M .

Proof. For lack of space, we only give here a sketch of the proof. We first define by
induction an inverse translation function [[.]]mac from machines to processes. This func-
tion has three roles: to expand the “reified” processes, to rebuild the tree structure of the
term, and to recreate restricted names from machine names.

The soundness proposition results from the following lemmas:

Lemma 4. If M is well-formed and M
≡→ N then [[M ]]mac ≡≡→

∗
[[N ]]mac.

Lemma 5. If M is well-formed and M �→ N then [[M ]]mac �→ [[N ]]mac.

Lemma 6. If M is a well-formed machine, then [[[[M ]]mac]] ∼c M . If P is a process,
then [[[[P ]]]]mac ≡ P .

Proposition 3 (Completeness). P → P ′ =⇒ [[P ]]→∼c [[P ′]]

Proof (Sketch).
The proof of this proposition is on induction on the derivation of P → P ′ and need

the two following lemmas:

Lemma 7. If P ≡ P ′ then [[P ]]
.= [[P ′]]. If P

≡→ P ′ then [[P ]]
.= [[P ′]].

Lemma 8. Let P∗ be a process and M∗ a machine such that tree(M∗, p, a, r). If we

have p : a[P∗]p′,∅
≡→

∗∼= M∗ then for any machine N we have N{reify(p, M∗)/x} ∼c

N{P∗/x}.

The proof of Theorem 1 then results immediately from Propositions 2 and 3 by
showing that the relation {〈[[P ]], P 〉 | P ∈ K} is a strong barbed bisimulation up to∼c.

5 Implementation

We have implemented a prototype of our abstract machine in OCaml, which realizes
a Kell calculus interpreter, and is available at [11]. The source language for the in-
terpreter (called kcl) is essentially a typed extension of the calculus presented in this
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paper, with values. Values are either basic (integers, lists, strings), higher-order (process
abstractions, passivated processes) or expressions built upon classical operators such as
arithmetic operators or marshalling/unmarshalling primitives.

User programs are first parsed and typed-checked using a simple type inference al-
gorithm. Then, they are executed by a runtime that follows closely the reductions of the
abstract machine. Unlike the abstract machine, the runtime is deterministic (we do not
detail here the particular reduction strategy we use). Moreover, we use environments in
order to avoid the use of substitutions. The freshness conditions in the rules M.S.CELL,
M.S.ACT and M.S.NEW are implemented either through the use of runtime pointers
for locality names, or by a global fresh identifier generator for names created by a new
instruction.

An independent part of the interpreter allows user programs to access various ser-
vices as library functions, which may also be modeled as Kell Calculus processes. More
precisely, we can see an interpreter as a context vmid[Lib | u[ · ]] executing a user pro-
gram P (filling the hole) according to the rules of the abstract machine. The program P
can use services specified in Lib that correspond to OCaml functions, but are accessed
transparently from P like any other receiver. Similarly, these functions can generate
messages in the vmid locality that can be received by P . In the implementation, mes-
sages sent from the top level of P are treated differently whether they are addressed to a
receiver in Lib or not. A very simple library could be Lib = (echo↓〈x〉 �Q), where
Q specifies the output of the string x on the standard output, and where � denotes to a
replicated input construct (which can be encoded in the Kell calculus as shown in [17]).

A distributed configuration of interpreters can be specified as follows. If we run the
programs P0, . . . , Pn on different interpreters, the resulting behavior is specified by the
following term

Net | vmid0[Lib(vmid0) | u[P0]] | . . . | vmidn[Lib(vmidn) | u[Pn]]

where we assume vmid names to be distinct. The processes Lib model the local li-
braries and Net the network. In our implementation they are mainly defined as follows
(omitting the type annotations):

Lib(vmid) = (send↓〈x, y〉 � send〈x, y〉 | (recv↑〈(vmid), y〉 � msg〈x〉 |(echo↓〈x〉 �Q)

Net = send↓〈x, y〉 � rcv〈x, y〉
These processes specify an environment allowing the exchange of asynchronous

messages between interpreters, and providing some output capability. The vmid name
allows to send messages to uniquely deignated kells. In addition, marshalling and un-
marshalling functions allow to send arbitrary values over the network.

We give in Figure 6 the code of a distributed application consisting of a client and
a server that simply executes the code that it receives. vm is a constructor that builds an
identifier for a virtual machine (typically to locate a name server) from an address and
a port. thisloc is bound to the identifier of the machine in which it is evaluated. The
construct def in corresponds to an input (ξ �P ) and rdef to a replicated input. We
use marshalling and unmarshalling functions that convert arbitrary values to string and
conversely.

The execution of the server and the client on two different machines gives the fol-
lowing result.
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client.kcl
new a in new b in new c in
let serverid = vm ("plutonium.inrialpes.fr", 6000) in
let myid = thisloc in

( def a [ X ] in send < serverid, marshall(X) > )
| ( def b [ X ] in X )
| ( def c [ X ] in X | X)
| a [ send < myid, marshall ( echo <"good">

| b[c[echo <"bye">]] ) >
| echo < "hello" > ]

| rdef msg up < X > in unmarshall(X) as proc

server.kcl
rdef msg up < X > in X

Fig. 6. kcl example

plutonium:˜/kcl-0.1/bidinger$ kcl server.kcl -p 6000
hello

californium:˜/kcl-0.1/bidinger$ kcl client.kcl -p 7000
good
bye
bye

6 Related Work

There has been a number of recent papers devoted to the description and implementation
of abstract machines for distributed process calculi. One can cite notably the Jocaml
distributed implementation of the Join calculus [5, 6], the Join calculus implementation
of Mobile Ambients [7], Nomadic Pict [19, 21], the abstract machine for the M-calculus
[9], the Fusion Machine [8], the PAN and GCPAN abstract machines for Safe Ambients
[10, 14], the CAM abstract machine for Channel Ambients [13]. In addition, there have
been also implementations of distributed calculi such as the Seal calculus [20], Klaim
[2], or DiTyCO [12].

Our abstract machine specification has been designed to be independent from the
actual implementation environment and the network services it provides. It thus can be
used in widely different configurations. For instance, one is not limited to mapping top-
level localities to physical sites as in [5, 7, 9], or does not need to introduce physical sites
as a different locality abstractions than that of the supported calculus as in [10, 14]. This
separation between abstract machine behavior and network semantics is not present in
other abstract machines for distributed process calculi.

The Seal calculus [4] and the M-calculus [16] are the only calculi that share with
the Kell calculus a combination of local actions and hierarchical localities, and could
thus achieve a similar independence between abstract machine and network services.
No abstract machine is described for the Seal calculus, however (only an implementa-
tion is mentioned in [20]), and the M-calculus abstract machine described in [9] relies
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on a fixed network model and a mapping of top-level localities to physical sites. Calculi
which rely on an explicit flat network model such as Nomadic Pict, DiTyCO, Klaim
have abstract machines and implementations which presuppose a given physical con-
figuration and its supporting network model.

The Fusion Machine implements the general fusion calculus, where no localities are
present, but the abstract machine itself is based on a fixed asynchronous network model.
Furthermore, because of the nature of communications in Fusion, the Fusion machine
relies on a non-trivial migration protocol for achieving synchronization in presence of
multiple sites. In contrast to our calculus and abstract machine, this prevents distributed
Fusion programs to directly, and at no cost, exploit low-level network services such as
a basic datagram service.

Abstract machines and implementations for distributed process calculi with hier-
archical localities other than the Seal calculus and the M-calculus, namely the Join
calculus and Ambient calculi, must implement migration primitives, which forces a de-
pendence on a given network model. For instance, the JoCaml abstract machine for
the distributed join calculus [5] depends on an asynchronous message passing network
model and on a specific interpretation of the locality hierarchy (top level localities are
interpreted as physical sites). The PAN [14] and GCPAN [10] abstract machines for
Safe Mobile Ambients depend as well on an asynchronous message passing network
model for specifying the migration of ambients between sites (corresponding to the
interpretation of the Ambient primitive open), and on the introduction of a notion of
execution site, not related to ambients. The Channel Ambient abstract machine [13]
leaves in fact the realization of its in and out migration primitives unspecified.

7 Conclusion

We have presented an abstract machine for an instance of the Kell calculus, and dis-
cussed briefly its OCaml implementation. The originality of our abstract machine lies
in the fact that it is independent from any network services that could be used for a dis-
tributed implementation. Indeed, as our simple OCaml implementation illustrates, we
can isolate network services provided by a given environment in language libraries that
can be reified as standard Kell calculus processes for use by Kell calculus programs.
While this means that our abstract machine, just as the Kell calculus, does not embody
any sophisticated abstraction for distributed programming, it demonstrates that the cal-
culus and its associated machine provide a very flexible basis for developing these ab-
stractions. Furthermore, this independence has the advantage of simplifying the proof
of correctness of our abstract machine, as it does not depend on the correctness proof
of a sophisticated distributed protocol.

Much work remains of course towards a provably correct implementation of the
calculus. Our non-deterministic abstract machine remains too abstract in a number of
dimensions to be the basis for an efficient implementation of the calculus. First, truly
local actions can only be realized, and efficiency obtained, if there is some determinacy
in routing messages to triggers (as it is enforced in our OCaml implementation). One
can think of applying a type system similar to that reported in [3], which guarantees the
unicity of kell names, to obtain linearity conditions ensuring the unicity of message des-



An Abstract Machine for the Kell Calculus 45

tinations. Secondly, an efficient machine would require a more deterministic behavior.
Here we face the prospect of a more difficult proof of correctness, and more difficulty
in stating the correctness conditions, which must probably relate the non-determinism
at the calculus level with the determinism of the abstract machine through some sort of
fairness condition.
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Abstract. We present XPi, a core calculus for XML messaging. XPi fea-
tures asynchronous communications, pattern matching, name and code
mobility, integration of static and dynamic typing. Flexibility and ex-
pressiveness of this calculus are illustrated by a few examples, some con-
cerning description and discovery of web services. In XPi, a type system
disciplines XML message handling at the level of channels, patterns, and
processes. A run-time safety theorem ensures that in well-typed systems
no service will ever receive documents it cannot understand, and that the
offered services, even if re-defined, will be consistent with the declared
channel capacities.

1 Introduction

The design of globally distributed systems, like Web Services (WS, [23]) or
business-to-business applications [5], is more and more centered around passing
of messages in the form of XML documents. Major reasons for the emergence of
message-passing are its conceptual simplicity, its minimal infrastructural require-
ments, and its neutrality with respect to back-ends and platforms of services [6].
These features greatly ease interoperability and integration.

It is generally recognized that some of the proposed languages and standards
for WS draw their inspiration from the π-calculus [19]. The latter conveys the
message-passing paradigm in a distilled form. In practice, at one extreme we find
languages like WSDL [12], useful to describe service interfaces, but saying very
little about behaviour. At the other extreme, we find proposed standards like
BPEL4WS [2], oriented to detailed descriptions of services, but hardly amenable
to formal analysis. In other words, we are experiencing a significant gap between
theory (formal models and analysis techniques) and practice (programming) in
the field of distributed applications.

As a first step toward filling this gap, we aim at giving a concise semantic
account of XML messaging and of the related typing issues. To this purpose, we
present XPi, a process language based on the asynchronous π-calculus. Promi-
nent features of XPi are: patterns generalizing ordinary inputs, ML-like pattern
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matching, and integration of static and dynamic typing. Our objective is to
study issues raised by these features in connection with name and code mobility.
A more precise account of our work and contributions follows.

For the sake of simplicity, syntax and reduction semantics of untyped XPi
are first introduced (Section 2). In XPi, resource addresses on the net are rep-
resented as names, which can be generally understood as channels at which
services are listening. Messages passed around are XML documents, represented
as tagged/nested lists, in the vein of XDuce [15, 16]. Services and their clients
are processes, that may send messages to channels, or query channels to retrieve
messages obeying given patterns. Messages may contain names, which are passed
around with only the output capability [20]. Practically, this means that a client
receiving a service address cannot use this address to re-define the service. This
assumption is perfectly sensible, simplifies typing issues, and does not affect ex-
pressive power (see e.g. [7, 17]). Messages may also contain mobile code in the
form of abstractions, roughly, functions that take some argument and yield a
process as a result. More precisely, abstractions can consume messages through
pattern matching, thus supplying actual parameters to the contained code and
starting its execution. This mechanism allows for considerable expressiveness.
For example, we show that it permits a clean encoding of encryption primitives,
hence of the spi-calculus [1], into XPi.

Types (Section 3) discipline processing of messages at the level of channels,
patterns, and processes. At the time of its creation, each channel is given a
capacity, i.e. a type specifying the format of messages that can travel on that
channel. Subtyping arises from the presence of star types (arbitrary length lists)
and union types, and by lifting at the level of messages a subtyping relation
existing on basic values. The presence of a top type T enhances flexibility, al-
lowing for such types as “all documents with an external tag f , containing a
tag g and something else”, written T = f [g[T],T]. Subtyping is contravariant on
channels: this is natural if one thinks of services, roughly, as functions receiving
their arguments through channels. Contravariance calls for a bottom type

T

,
which allows one to express such sets of values as “all channels that can trans-
port documents of some type S < T”, written ch( f [g[

T

],

T

]). Abstractions that
can safely consume messages of type T are given type (T)Abs. Interplay between
pattern matching, types, and capacities raises a few interesting issues concerning
type safety (Section 4). Stated in terms of services accessible at given channels,
our run-time safety theorem ensures that in well-typed systems, first, no service
will ever receive documents it cannot understand, and second, that the offered
service, even when re-defined, will comply with the statically declared capacities.
The first property simply means that no process will ever output messages vio-
lating channel capacities. The second property means that no service will hang
due to a input pattern that is not consistent with the channel’s capacity (a form
of “pattern consistency”). Type checking is entirely static, in the sense that no
run-time type check is required.

Our type system is partially inspired by XSD [13], but is less rich than, say,
the language of [9]. In particular, we have preferred to omit recursive types. While
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certainly useful in a full blown language, recursion would raise technicalities that
hinder issues concerning name and code mobility. Also, our pattern language is
quite basic, partly for the similar reasons of simplicity, partly because more
sophisticated patterns can be easily simulated.

The calculus described so far enforces a strictly static typing discipline. We
also consider an extension of this calculus with dynamic abstractions (Section
5), which are useful when little or nothing is known about the actual types of
incoming messages. Run-time type checks ensure that substitutions arising from
pattern matching respect the types statically assigned to variables. Run time
safety carries over. We shall argue that dynamic abstractions, combined with
code mobility and subtyping, can provide linguistic support to such tasks as
publishing and querying services.

There have been a number of proposals for integrating XML manipulation
primitives into statically typed languages. We conclude (Section 6) with some
discussion on recent related work in this field, and with a few directions for future
extensions.

2 Untyped XPi

Syntax. We assume a countable set of variables V , ranged over by x, y, z, . . . ,
a set of tags F , ranged over f,g,. . . , and a set of basic values BV v, w, . . . .
We leave BV unspecified (it might contain such values as integers, strings, or
Java objects), but assume that BV contains a countable set of names N , ranged
over by a, b, c, . . . . N is partitioned into a family of countable sets called sorts
S ,S ′, . . .. We let u range over N ∪V and x̃, . . . denote a tuples of variables.

Definition 1 (messages, patterns and processes). The set M of XPi mes-
sages M, N, . . ., the set Q of XPi patterns Q, Q′, . . . and the set P of XPi pro-
cesses P, R, ... are defined by the syntax in Table 1. In Qx̃, we impose the following
linearity condition: x̃ is a tuple of distinct names and each xi ∈ x̃ occurs at most
once in Q.

In the style of XDuce [15, 16] and CDuce [3] XML documents are represented in
XPi as tagged ordered list that can be arbitrarily nested; these are the messages
being exchanged among processes. A message can be either a basic value, a
variable, a tagged message, a list of messages, or an abstraction. The latter take
the form (Qx̃)P, where variables x̃ represent formal parameters, to be replaced by
actual parameters at run-time. A pattern is simply an abstraction-free message.
For the sake of simplicity, we have ignored tag-variables that could be easily
accommodated. Also, note that patterns do not allow for direct decomposition
of documents into sublists (akin to the pattern p, p’ in XDuce). The latter can
be easily encoded though, as we show later in this section.

Process syntax is a variation on the π-calculus. In particular, asynchronous
(non blocking) output on a channel u is written u〈M〉, and u is said to occur in
output subject position. Nondeterministic guarded summation ∑i∈I ai.Ai waits for
any message matching Ai’s pattern at channel ai, for some i ∈ I, consumes this
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Table 1. Syntax of XPi messages, patterns and processes.

Message M ::= v Value

| x Var

| f (M) Tag

| LM List

| A Abstraction

List of messages LM ::= [] Empty list

| x Var

|M ·LM Concatenation

Abstraction A ::= (Qx̃)P Pattern and Continuation

| x Var

Pattern Q ::= v Value

| x Var

| f (Q) Tag

| LQ List

List of patterns LQ ::= [] Empty list

| x Var

| Q ·LQ Concatenation

Process P ::= u〈M〉 Output

| ∑i∈I ai.Ai Guarded Summation

| P else R Else

| P1|P2 Parallel

| !P Replication

| (νa)P Restriction

message and continues as prescribed by Ai; names ai are said to occur in input
subject position. Note that the syntax forbids variables in input subject position,
hence a received name cannot be used as an input channel; in other words,
names are passed around with the output capability only. Parallel composition
P1|P2 represents concurrent execution of P1 and P2. Process P else R behaves like
P, if P can do some internal reduction, otherwise reduces to R. This operator
will be useful for coding up, e.g., if-then-else, without the burden of dealing with
explicit negation on pattern. Replication !P represents the parallel composition
of arbitrarily many copies of P. Restriction (νa)P creates a fresh name a, whose
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initial scope is P. Usual binding conventions and notations (alpha equivalence
=α, free and bound names fn(·) and bn(·), free and bound variables fv(·) and
bv(·)) apply. We let M cl be the set of closed messages and P cl be the set of
closed processes.

Notations. The following abbreviations for messages and patterns are used:
[M1,M2, . . . ,Mk−1,Mk] stands for M1 · (M2 · (. . . (Mk−1 · (Mk · [ ])) . . .)), while
f [M1,M2, . . . ,Mk−1,Mk] stands for f ([M1,M2, . . . ,Mk−1,Mk]). The following abbre-
viations for processes are used: 0, a1.A1 and a1.A1 + a2.A2 + · · ·+ an.An stand for
∑{i∈I} ai.Ai when |I| = 0, |I| = 1, and |I| = n, respectively; (νa1, . . . ,an)P = (νã)P
stands for (νa1) . . . (νan)P. We sometimes save on subscripts by marking binding
occurrences of variables in abstractions by a ‘?’ symbol, or by replacing a binding
occurrence of a variable by a don’t care symbol, ‘ ’, if that variable does not
occur in the continuation process. E.g. ([ f [?x],g[ ]])P stands for ([ f [x],g[y]]{x,y})P
where y /∈ fv(P).

Our list representation of XML ignores algebraic properties of concatenation
(such as associativity, see [16]). We simply take for granted some translation
from actual XML documents to our syntax. The following example illustrates
informally what this translation might look like.

Example 1. An XML document encoding an address book (on the left) and its
representation in XPi (on the right)1:
<addrbook> addrbook[ person[ name("John Smith"),

<person> tel(12345),

<name>John Smith</name> emailaddrs[email("john@smith"),

<tel>12345</tel> email("smith@john")]

<emailaddrs> ],

<email>john@smith</email> person[ name("Eric Brown"),

<email>smith@john</email> tel(678910),

</emailaddrs> emailaddrs[]

</person> ]

<person> ]

<name>Eric Brown</name>

<tel>678910</tel>

<emailaddrs></emailaddrs>

</person>

</addrbook>.

Note that a sequence of tagged documents such as <tag1>M</tag1>
<tag2>N</tag2>· · · is rendered as an ordered list [tag1(M), tag2(N),· · ·]. A
pattern that extracts name and telephone number of the first person of the
address book above is: Qxy = addrbook[ person[name(?x),tel(?y),_],_].

Reduction semantics. A reduction relation describes system evolution via inter-
nal communications. Following [18], XPi reduction semantics is based on struc-
tural congruence ≡, defined as the least congruence on processes satisfying the
laws in Table 2. The latter permit certain rearrangements of parallel composi-
tion, replication, and restriction. The relation ≡ extends to abstractions, hence
1 We shall prefer the typewriter font whenever useful to improve on readability.
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Table 2. Structural congruence.

P =α R⇒ P ≡ R

P|R ≡ R|P
(P|R1)|R2 ≡ P|(R1|R2)

P|0 ≡ P

!P ≡ P|!P
(νa)(P|R) ≡ P|(νa)R if a /∈ fn(P)

(νa)0 ≡ 0

(νa)(νb)P ≡ (νb)(νa)P

Table 3. Reduction semantics.

(com)
j ∈ I a j = a, A j = (Qx̃)P, match(M,Q,σ)

a〈M〉 |∑
i∈I

ai.Ai→ Pσ

(struct)
P≡ P′, P′ → Q′, Q′ ≡Q

P→ Q (ctx) P→ P′

(νã)(P|R)→ (νã)(P′|R)

(else1)
P→ P′

P else Q → P′
(else2)

P �
P else Q → Q

to messages, in the expected manner. The reduction semantics also relies on a
standard matching predicate, that matches a (linear) pattern against a closed
message and yields a substitution.

Definition 2 (substitutions and matching). Substitutions σ,σ′, ... are finite
partial maps from the set V of variables to the set M cl of closed messages. We
denote by ε the empty substitution. For any term t, tσ denotes the result of
applying σ onto t (with alpha-renaming of bound names and variables if needed).
Let M be a closed message and Q be a linear pattern: match(M,Q,σ) holds true
if and only if dom(σ) = fv(Q) and Qσ = M; in this case, we also say that M
matches Q.

Definition 3 (reduction). The reduction relation, →⊆ Pcl ×Pcl, is the least
binary relation on closed processes satisfying the rules in Table 3.

Derived constructs and examples. XPi allows for straightforward definition of a
few powerful constructs, that will be used in later examples. In the following,
we shall freely use recursive definitions of processes, that can be coded up using
replication [18].

– Application. A functional-like application for abstractions, A•M, can be de-
fined as (νc)(c〈M〉|c.A), for any c /∈ fn(M,A).
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– Case. A pattern matching construct relying on a first match policy, written

Case M of (Q1)x̃1 ⇒ P1, (Q2)x̃2 ⇒ P2, · · · ,(Qk)x̃k ⇒ Pk

evolves into P1 if M matches Q1 (with substitutions involved), otherwise
evolves into P2 if M matches Q2, and so on; if there is no match, the process is
stuck. This construct can be defined in XPi as follows (assuming precedence
of • on else and right-associativity for else):

(Q1)x̃1 P1 •M else (Q2)x̃2 P2 •M else · · · else (Qk)x̃k Pk •M .

– Decomposition. A process that attempts to decompose a message M into
two sublists that satisfy the patterns Qx̃ and Q′ỹ and proceeds like P (with
substitutions for x̃ and ỹ involved), if possible, otherwise is stuck, written: M
as Qx̃, Q′ỹ ⇒ P, can be defined as the recursive process R([ [ ], M]), where:

R([l,x]) = Case x of ?y ·?w ⇒ (Case l@y of Qx̃ ⇒ (Case w of Q′ỹ ⇒ P,

⇒ R([l@y, w]) ),

⇒ R([l@y,w]) ).
Here we have used a list-append function @, which can be easily defined
via a call to a suitable recursive process. Most common list manipulation
constructs can be easily coded up in this style. We shall not pursue this
direction any further.

Example 2 (a web service). Consider a web service WS that offers two different
services: an audio streaming service, offered at channel stream, and a download
service, offered at channel download. Clients that request the first kind of service
must specify a streaming channel and its bandwidth ("high" or "low"), so that
WS can stream one of two mp3 files (vlow or vhigh), as appropriate. Clients that
request download must specify a channel at which the player will be received. A
client can run the downloaded player locally, supplying it appropriate parameters
(a local streaming channel and its bandwidth). We represent streaming on a
channel simply as an output action along that channel:

W S
�
=!( stream.(req_stream[bandwidth("low"),channel(?x)])x〈vlow〉

+ stream.(req_stream[bandwidth("high"),channel(?y)])y〈vhigh〉

+ download.(req_down(?z))z〈Player〉 ).

Player is an abstraction:

Player
�
= (req_stream[bandwidth(?y),channel(?z)])( Case y of "low" ⇒ z〈vlow〉

"high" ⇒ z〈vhigh〉 ).

Note that the first two summands of WS are equivalent to stream.Player. How-
ever, the extended form written above makes it possible a static optmization of
channels (see Example 5).
A client that asks for low bandwidth streaming, listens at s and then proceeds
like C is:
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C1
�
= (νs)(stream〈req_stream[bandwidth("low"),channel(s)]〉 |s.(?v)C).

Another client that asks for download, then runs the player locally, listening at
a local high bandwidth channel s is C2 defined as:

(νd, s)( download〈req_down(d)〉 | d.(?xp)(xp •
req_stream[bandwidth("high"),channel(s)] |s.(?v)C) ).

Encryption and decryption. Cryptographic primitives are sometimes used in
distributed applications to guarantee secrecy and authentication of transmitted
data. As a testbed for expressiveness, we show how to encode shared-key en-
cryption and decryption primitives à la spi-calculus [1] into XPi. We shall see
an example of application of these encodings in Section 5. We first introduce
XPicr, a cryptographic extension of XPi that subsumes shared-key spi-calculus,
and then show how to encode XPicr into XPi. Message syntax is extended with
the following clause, that represents encryption of M using N as a key:

M ::= · · · |{M}N (encryption)

where N does contain neither abstractions nor encryptions. Process syntax is
extended with a case operator, that attempts decryption of M using N as a key
and if successful binds the result to a variable x :

P ::= · · · |case M of {x}N in P (decryption)

where N does contain neither abstractions nor encryptions, M is a variable or
a message of the form {M′}N′ and x binds in P. Patterns remain unchanged,
in particular they may not contain encryptions or abstractions. The additional
reduction rule is:

(Dec) case {M}N of {x}N in P→ P[M/x].

Next, two translation functions, one for messages ([[·]]) and one for processes
(〈| · |〉), are defined from XPicr to XPi. The translations of messages follow a
familiar continuation-passing style. The relevant clauses of the definition, by
structural induction, are as follows (on the others the functions just go through
the structure of terms):

[[u]] = u

[[{M}N ]] = ([N,?x])x〈[[M]]〉

〈|u〈M〉|〉 = u〈[[M]]〉

〈|case M of {x}N in P|〉 = (νr)([[M]]• [N,r] |r.(?x)〈|P|〉).

Following [22], let us define the barb predicate P ⇓ a as follows: there is P′ s.t.
P→∗ P′ and P′ has either an input summand a.A or an output a〈M〉 which are
not in the scope of a (νa), an else or guarded summation. The encoding defined
above is correct, in the sense that it preserves reductions and barbs in both
directions, as stated by the proposition below. Note that, by compositionality,
this implies the encoding is fully abstract w.r.t. barbed equivalence (see e.g. [7]).
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Table 4. Syntax of types.

Types T ::= bt Basic type (bt ∈ BT )

|T Top

| T

Bottom

| f (T) Tag ( f ∈ F )

| LT List

| T+T Union

| (T)Abs Abstraction

List types LT ::= [] Empty

| ∗T Star

| T ·LT Concatenation

Proposition 1. Let P be a closed process in XPicr.

1. if P→ P′ then 〈|P|〉 →∗ 〈|P′|〉;
2. if 〈|P|〉 → P′ then ∃P′′ ∈ XPicr s.t. P′ →∗ 〈|P′′|〉;
3. P ⇓ a if and only if 〈|P|〉 ⇓ a.

3 A Type System

In this section, we define a type system for XPi that disciplines messaging at
the level of channels, patterns and processes. The system guarantees that well-
typed processes respect channels capacities at runtime. In other words, services
are guaranteed to receive only requests they can understand, and conversely,
services offered at a given channel will be consistent with the type declared
for that channel. XPi’s type system draws its inspiration from, but is less rich
than, XML-Schema [13]. Our system permits to specify types for basic values
(such as string or int) and provides tuple types (fixed-length lists) and star types
(arbitrary-length lists); moreover, it provides abstraction types for code mobility.
For the sake of simplicity, we have omitted attributes and recursive types.

Message types and subtyping. We assume an unspecified set of basic types BT
bt, bt’,... that might include int, string, boolean, or even Java classes. We assume
that BT contains a countable set of sort names in one-to-one correspondence
with the sorts S ,S ′, ... of N ; by slight abuse of notation, we denote sort names
by the corresponding sorts.

Definition 4 (types). The set T of types, ranged over by T, S, . . . , is defined
by the syntax in Table 4.

Note the presence of the union type T+T’, that is the type of all messages of
type T or T’, and of the star type ∗T, that is the type of all lists of elements
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of type T. (T)Abs is the type of all abtractions that can consume messages of
type T. Finally, note the presence of T and

T

types. T is simply the type of all
messages. On the contrary, no message has type

T

, but this type is extremely
useful for the purpose of defining channel types, as we shall see below.

Notation. The following abbreviations for types are used: [T1,T2, . . . ,Tk−1,Tk]
stands for T1 · (T2 · (. . . (Tk−1 · (Tk · [ ])) . . .)), while f [T1,T2, . . . ,Tk−1,Tk] stands for
f ([T1,T2, . . . ,Tk−1,Tk]).

Example 3. A type for address books, on the left (see message M in Example 1),
and a type for all SOAP messages, consisting of an optional header and a body,
enclosed in an envelope, on the right:

addrbook[ *person[ name(string), envelope[ [] + header(T),

tel(int), body(T)

emailaddrs(*email(string))]] ].

Next, we associate types with channels, or more precisely with sorts. This is done
by introducing a “capacity” function.

Definition 5. A capacity function is a surjective map from the set of sorts to
the set of types.

In the sequel, we fix a generic capacity function. We shall denote by ch(T) a
generic sort that is mapped to T. Note that, by surjectivity of the capacity
function, for each type T there is a sort ch(T). In particular, ch(T) is the sort of
channels that can transport anything. In practice, determining capacity T of a
given channel a, i.e. that a belongs to ch(T), might be implemented with a variety
of mechanisms, such as attaching to a an explicit reference to T’s definition. We
abstract away from these details.

List and star types and the presence of T and

T

naturally induce a subtyping
relation. For example, a service capable of processing messages of type T = f (∗
int) must be capable of processing messages of type T’ = f [int, int], i.e. T’ is a
subtype of T. Subtyping also serves to lift a generic subtyping preorder on basic
types, ≺, to all types.

Definition 6 (subtyping). The subtyping relation <⊆ T ×T is the least re-
flexive and transitive relation closed under the rules of Table 5.

Note that we disallow subtyping on abstractions. The reason for this limitation
will be discussed shortly after presenting the type checking system (see Remark
1). Also note that subtyping is contravariant on sorts capacities (rule (Sub-
Sort)): this is natural if one thinks of a name of capacity T as, roughly, a
function that can take arguments of type T. As a consequence of contravariance,
for any T, we have ch(T) < ch(

T

), that is, ch(

T

) is the type of all channels.

Type checking. A basic typing relation v : bt on basic values and basic types is
presupposed, which is required to respect subtyping, i.e. whenever bt≺ bt’ and
v : bt then v : bt’. We further require that for each bt there is at least one v : bt,
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Table 5. Rules for subtyping.

(Sub-Sort)
T < T’

ch(T’) < ch(T)

(Sub-Top)
T < T

(Sub-Bottom) T

< T

(Sub-Basic)
bt1≺ bt2

bt1 < bt2
(Sub-Tag)

T’ < T

f (T’) < f (T)

(Sub-Star1) [ ] < ∗T (Sub-Star2)
T’ < T, LT < ∗T

T’ ·LT < ∗T

(Sub-Star3)
T’ < T

∗T’ < ∗T (Sub-List)
T1 < T’1, LT < LT’

T1 ·LT < T’1 ·LT’

(Sub-Union1)
T < T’ or T < T”

T < T’+T”
(Sub-Union2)

T’ < T, T”< T

T’+T”< T

and that for each v the set of bt’s s.t. v : bt has a minimal element. On names
and sort names the basic typing relation is the following: a : S iff a ∈ S ′ for some
S ′ < S .

Contexts Γ,Γ′, ... are finite partial maps from variables V to types T , some-
times denoted as sets of variable bindings {xi : Ti}i∈I (xi’s distinct). We denote the
empty context by /0. Assume x̃ a set of variables; we denote by Γ−x̃ the context ob-
tained from Γ by removing the bindings for the variables in x̃, and by Γ|x̃ the con-
text obtained by restricting Γ to the bindings for the variables in x̃. The subtyping
relation is extended to contexts by letting Γ1 < Γ2 iff dom(Γ1) = dom(Γ2) and
∀x∈ dom(Γ1) it holds that Γ1(x) < Γ2(x). Union of contexts Γ1 and Γ2 having dis-
joint domains is written as Γ1∪Γ2 or as Γ1, Γ2 if no ambiguity arises. Sum of con-
texts Γ1 and Γ2 is written as Γ1 +Γ2 and is defined as (Γ1 +Γ2)(x) = Γ1(x)+Γ2(x)
if x∈ dom(Γ1)∩dom(Γ2), otherwise (Γ1 +Γ2)(x) = Γi(x) if x ∈ dom(Γi) for i = 1,2.

Type checking relies on a type-pattern matching predicate, tpm(T,Q,Γ),
whose role is twofold: (1) it extracts from T the types expected for variables
in Q after matching against messages of type T, yielding the context Γ, (2) it
checks that Q is consistent with type T, i.e. that the type of Q is of a subtype
of T under Γ.

Definition 7 (type-pattern match). The predicate tpm(T,Q,Γ) is defined by
the rules in Table 6.

As expected, type checking works on an annotated syntax, where each Qx̃ is
decorated by a context Γ for its binding variables x̃, written Qx̃ : Γ, with x̃ =
dom(Γ), or simply Q : Γ, where it is understood that the binding variables of Q
are dom(Γ). For notational simplicity, we shall use such abbreviations as a.( f [?x :
T,?y : T’])P instead of a.( f [x,y] : {x : T,y : T’})P, and assume don’t care variables
‘ ’ are always annotated with T. Reduction semantics carries over to annotated
closed processes formally unchanged.



58 Lucia Acciai and Michele Boreale

Table 6. Matching types and patterns.

(tpm-Top)
Q 
= x

tpm(T,Q,Γ) , ∀x ∈ fv(Q) : Γ(x) = T

(tpm-Empty) tpm([ ], [ ], /0) (tpm-Var) tpm(T,x,{x : T})

(tpm-Value) v : bt
tpm(bt,v, /0) (tpm-Tag)

tpm(T,Q,Γ)
tpm( f (T), f (Q),Γ)

(tpm-Star1) tpm(∗T, [ ], /0) (tpm-Star2)
tpm(T,Q,Γ1), tpm(∗T,LQ,Γ2)

tpm(∗T,Q ·LQ,Γ1∪Γ2)

(tpm-List)
tpm(T,Q,Γ1), tpm(LT,LQ,Γ2)

tpm(T ·LT,Q ·LQ,Γ1∪Γ2)

(tpm-Union)
tpm(T0,Q,Γ0) or tpm(T1,Q,Γ1)

tpm(T0 +T1,Q,Γ) , where:

Γ =
{

Γ0 +Γ1 if tpm(T0,Q,Γ0) and tpm(T1,Q,Γ1)
Γi if tpm(Ti,Q,Γi) and for no Γ′ tpm(Ti+1mod2,Q,Γ′), i = 0,1

In what follows, we shall use the following additional notation and termi-
nology. We say that a type T is abstraction-free if T contains no subterms of
the form (T’)Abs. A context Γ is abstraction-free if for each x ∈ dom(Γ), Γ(x) is
abstraction-free. We use Γ� u∈ ch(T) as an abbreviation for: either u = a∈ ch(T)
or u = x ∈ V and Γ(x) = ch(T).

The type checking system, defined on open terms, consists of two sets of
inference rules, one for messages and one for processes, displayed in Table 7 and 8,
respectively. These two systems are mutually dependent, since abstractions may
contain processes, and processes may contain abstractions. Note that the system
is entirely syntax driven, i.e. the process P (resp. the pair (M,T)) determines the
rule that should be applied to check Γ � P (resp. Γ �M : T).

The most interesting of these rules is (tm-Abs). Informally, Γ � A : (T)Abs
ensures that under Γ the following is true: (1) abstraction A = (Qx̃ : ΓQ)P behaves
safely upon consuming messages of type T (because the type at which the actual
parameters will be received is a subtype of the type declared for formal param-
eters, (Γ1)|x̃ < ΓQ, and because of Γ,ΓQ � P : ok); (2) the pattern Q is consistent
with type T, i.e. essentially the run-time type of Q is a subtype of T (because of
type-pattern match and of Γ|ỹ < (Γ1)|ỹ). This guarantees existence of a message
of type T that matches the pattern. Moreover, no ill-formed pattern will arise
from Q (abstraction-freeness).

Rule (t-In) checks that an abstraction A residing at channel a ∈ ch(T) can
safely consume messages of type T, and that there do exist messages of type T
that match the pattern of A. Conversely (t-Out) checks that messages sent at
u be of type T. Input and summation (rule (t-Sum)) are dealt with separately
only for notational convenience. Finally, it is worth to notice that, by definition
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Table 7. Type system for messages.

(tm-Empty) Γ � [ ] : [ ] (tm-Top) Γ � M : T

(tm-Value) v : bt
Γ � v : bt

(tm-Var)
Γ(x) < T
Γ � x : T

(tm-Tag) Γ � M : T
Γ � f (M) : f (T) (tm-List)

Γ �M : T, Γ � LM : LT
Γ � (M ·LM) : (T ·LT)

(tm-Star1) Γ � [ ] : ∗T (tm-Star2)
Γ �M : T, Γ � LM : ∗T

Γ � (M ·LM) : ∗T

(tm-Union) Γ �M : T or Γ �M : T’
Γ �M : T+T’

(tm-Abs)
tpm(T,Q,Γ1), (Γ1)|x̃ < ΓQ, (Γ1)|ỹ > Γ|ỹ, Γ,ΓQ � P : ok

Γ � (Q : ΓQ)P : (T)Abs

where x̃ = dom(ΓQ), ỹ = fv(Q)\ x̃ and (Γ1)|ỹ is abstraction-free

Table 8. Type system for processes.

(t-In) a ∈ ch(T), Γ � A : (T)Abs
Γ � a.A : ok

(t-Out) Γ � u ∈ ch(T), Γ �M : T
Γ � u〈M〉 : ok

(t-Sum)
∀i∈I, Γ � ai.Ai : ok |I| 
= 1

Γ �∑
i∈I

ai.Ai : ok

(t-Rep) Γ � P : ok
Γ � !P : ok (t-Par) Γ � P : ok, Γ � R : ok

Γ � (P|R) : ok

(t-Res) Γ � P : ok
Γ � (νa)P : ok (t-Else)

Γ � P : ok, Γ � R : ok
Γ � P else R : ok

of a : S , rule (tm-Value) entails subsumption on channels (i.e. Γ � a : S and
S < S ′ implies Γ � a : S ′). The remaining rules should be self-explanatory.

In the sequel, for closed annotated processes P, we shall write P : ok for
/0�P : ok, and say that P is well-typed. Similarly for M : T, for closed annotated M.

Example 4. Assume a ∈ ch(∗int) and b ∈ ch( f [int,∗int]). Then P : ok, where:

P = a.(?y : ∗int)b.( f [?x : int,y])a〈x · y〉 | a〈[4,5]〉 | a〈[4,5,6]〉.

Note that, if we change the sort of b into ch( f [int, [int,int]]), then P is not well-
typed, as rule (tm-Abs) fails on A = ( f [?x : int,y])a〈x · y〉. This is intuitively
correct, because a possible run-time type of A is ( f [int, [int,int,int]])Abs, which is
not consistent with the capacity associated to b, that is f [int, [int,int]].

To illustrate the use of ch(T) and ch(

T

), and contravariance on sort names,
consider a “link process” ([7]) that constantly receives any name on a and sends
it along b. This can be written as !a.(?x : ch(

T

))b〈x〉. This process is well-typed
provided a ∈ ch(ch(T)), for some T, and that b ∈ ch(ch(

T

)).
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Remark 1 (on abstractions and subtyping). To see why we disallow subtyping
on abstractions, consider the types T = [ f (int), f (int)] and ∗ f (int) = T’. Clearly
T < T’. Assume we had defined subtyping covariant on abstractions, so that
(T)Abs < (T’)Abs. Now, clearly A = (?x : T)0 :(T)Abs, but not A : (T’)Abs (the
condition (Γ1)|x̃ < ΓQ of (tm-Abs) fails). In other words, a crucial subtyping
property would be violated.

On the other hand, assume we had defined subtyping contravariant on ab-
stractions, so that (T’)Abs < (T)Abs. Consider A′ = (Q : ΓQ)0, where Q : ΓQ =
[ f (?x : int), f (?y : int), f (?z : int)]; clearly A′ : (T’)Abs, but not A′ : (T)Abs (simply
because there is no type-pattern match between T and Q). This would violate
again the subtyping property.

Typing rules for application and case. The rules below can be easily derived from
the translation of derived constructs application and case to the base syntax. In
the following, we let TM,Γ denote the exact type of M under Γ, obtained from M
by replacing each x by Γ(x), each name a ∈ ch(T) by ch(T), each other v by the
least type bt s.t. v : bt, and, recursively, each abstraction subterm (Q : ΓQ)P by
(TQ, Γ∪ΓQ)Abs. The rule for application is:

(t-Appl)
Γ � A : (TM,Γ)Abs

Γ � A•M : ok .

that is easily proven sound recalling that A •M = (νc)(c.A|c〈M〉) (c fresh), and
assuming that c is chosen s.t. c ∈ ch(TM,Γ).

Concerning Case, first note that the typed version of this construct contem-
plates annotated patterns, thus: Case M of Q1 : ΓQ1 ⇒ P1, . . . , Qk : ΓQk ⇒ Pk : ok.
Then, relying on the rule for application, the typing rule for case can be written
as:

(t-Case)
∀i = 1, . . . ,k : Γ � (Qi : ΓQi)Pi •M : ok

Γ �Case Mof Q1 : ΓQ1 ⇒ P1, . . . ,Qk : ΓQk ⇒ Pk : ok .

Example 5 (a web service, continued). Consider the service defined in Exam-
ple 2. Assume a basic type mp3 of all mp3 files, such that vlow, vhigh : mp3,
and a basic type l-mp3 of low quality mp3 files, s.t. vlow : l-mp3, but not
vhigh : l-mp3. Assume l-mp3 < mp3; note that this implies that ch(mp3) <
ch(l-mp3), i.e. if a channel can be used for streaming generic files, it can
also be used for streaming low-quality files, which fits intuition. Let T be
req_stream[bandwidth(string),channel(ch(mp3))] and fix the following ca-
pacities for channels stream and download: stream ∈ ch(T) and download ∈
ch(req_down(ch((T)Abs))). An annotated version of WS, which permits in prin-
ciple a static optimization of channels (assuming allocation of low-quality chan-
nels is less expensive than generic channels’):

WS =!( stream.(req_stream[bandwidth("low"),channel(?x : ch(l-mp3))])x〈vlow〉

+ stream.(req_stream[bandwidth("high"),channel(?y : ch(mp3))])y〈vhigh〉

+ download.(req_down[?z : ch((T)Abs)])z〈Player〉 )

where Player is the obvious annotated version of the player of Example 2. It is
easy to check that Player : (T)Abs and that WS : ok.
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4 Run-Time Safety

The safety property of our interest can be defined in terms of channel capacities,
message types, and consistency. First, a formal definition of pattern consistency.

Definition 8 (T-consistency). A type T is consistent if

T

does not occur in
T. A pattern Q is T-consistent if there is a message M : T that matches Q.

Note that all sort names, including ch(

T

), are consistent types by definition. A
safe process is one whose output and input actions are in agreement with channel
capacities, as stated by the definition below. Of course, for input actions it makes
sense to require consistency (condition 2) only if the input channel has in turn
a consistent capacity.

Definition 9 (safety). Let P be an annotated closed process. P is safe if and
only if for each name a ∈ ch(T):

1. whenever P≡ (ν h̃)(a〈M〉 |R) then M : T;
2. suppose T is consistent. Whenever P≡ (ν h̃)(S |R), where S is a guarded sum-

mation, a.A a summand of S and Q is A’s pattern, then Q is T-consistent.

Theorem 1 (run-time safety). Let P be a closed annotated process. If P : ok
and P→∗ P′ then P′ is safe.

5 Dynamic Abstractions

Although satisfactory in most situations, a static typing scenario does not seem
appropriate in those cases where little is known in advance on actual types of
data that will be received from the network.

Example 6 (a directory of services). Suppose one has to program an online di-
rectory of (references to) services. Upon request of a service of type T, for any T,
the directory should lookup its catalog and respond by sending a channel of type
ch(T) along a reply channel. If the reply channel is fixed statically, it must be
given capacity ch(

T

), that is, any channel. Then, a client that receives a name at
this channel must have some mechanism to cast at runtime this generic type to
the subtype ch(T), which means going beyond static typing. If the reply channel
is provided by clients the situation does not get any better. E.g. consider the
following service (here we use some syntactic sugar for the sake of readability):

!request.(req[?t : Td,?xrep : ch(Tr)]) let y = lookup(t) in xrep〈y〉

where lookup is a function from some type Td of type-descriptors to the type of all
channels, ch(

T

). It is not clear what capacity Tr the return channel variable xrep

should be assigned. The only choice that makes the above process well typed is to
set Tr = ch(

T

), that is, xrep can transport any channel. But then, a client’s call to
this service like request〈req[vtd,r]〉, where r has capacity ch(T), is not well typed
(because r ∈ ch(ch(T)) and ch(ch(T)) is not a subtype of ch(Tr) = ch(ch(

T

))).
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Even ignoring the static vs. dynamic issue, the schemas sketched above would
imply some form encoding of type and subtyping into XML, which is undesirable
if one wishes to reason at an abstract level. As we shall see below, dynamic
abstractions can solve these difficulties.

The scenario illustrated in the above example motivates the extension of the
calculus presented in the preceding sections with a form of dynamic abstrac-
tion. The main difference from ordinary abstractions is that type checking for
pattern variables is moved to run-time. This is reflected into an additional com-
munication rule, that explicitly invokes type checking. We describe below the
necessary extensions to syntax and semantics. We extend the syntactic category
of Abstractions thus:

A ::= · · · |(|Qx̃ : Γ|)P Dynamic abstraction

with x̃ = dom(Γ). We let D range over dynamic abstractions and A over all ab-
stractions. We add a new reduction rule:

(com-d)
j ∈ I, a j = a, A j = (|Qx̃ : Γ|)P, match(M,Q,σ), ∀y ∈ dom(σ) : σ(y) : Γ(y)

a〈M〉 |∑
i∈I

ai.Ai→ Pσ
.

We finally add a new type checking rule. For this, we need the following addi-
tional notation. Given Γ1 and Γ2, we write Γ1 ≶ Γ2 if dom(Γ1) = dom(Γ2) and
∀x ∈ dom(Γ1) there is a consistent type T s.t. T < Γ1(x) and T < Γ2(x).

(tm-abs-d)
tpm(T,Q,Γ1), (Γ1)|x̃ ≶ ΓQ, (Γ1)|ỹ > Γ|ỹ, Γ,ΓQ � P : ok

Γ � (|Qx̃ : ΓQ|)P : (T)Abs

where ỹ = fv(Q) \ x̃ and (Γ1)|ỹ is abstraction free. The existence of a common
consistent subtype for ΓQ and (Γ1)|x̃ ensures a form of dynamic consistency for
Q, detailed below.

We discuss now the extension of run-time safety. The safety property needs
to be extended to inputs formed with dynamic abstractions. A stronger form of
pattern consistency is needed.

Definition 10 (dynamic T-consistency). An annotated pattern Q : Γ
(fv(Q) = dom(Γ)) is dynamically T-consistent if there is a message M : T s.t.
match(Q,M,σ) and ∀x ∈ dom(σ) we have σ(x) : Γ(x).

Definition 11 (dynamic safety). Let P an annotated closed process. P is dy-
namically safe if for each name a∈ ch(T) conditions 1 and 2 of Definition 9 hold,
and moreover the following condition is true: Suppose T is consistent. Whenever
P ≡ (ν h̃)(S |R), where S is a guarded summation, a.D is a summand of S and
Q : Γ is D’s annotated pattern, then Q : Γ is dynamically T-consistent.

Theorem 2 (run-time dynamic safety). Let P be an annotated closed pro-
cess in the extended language. If P : ok and P→∗ P′ then P′ is dynamically safe.
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Example 7 (a directory of services, continued). Consider again the directory of
services. Clients can either request a (reference to a) service of a given type, by
sending a message to channel discovery, or request the directory to update its
catalog with a new service, using the channel publish. Each request to discovery
should contain some type information, which would allow the directory to select a
(reference to a) service of that type, taking subtyping into account. Types cannot
be passed around explicitly. However one can pass a dynamic abstraction that
will do the selection on behalf of the client and return the result back to the
client at a private channel. The catalog is maintained on a channel cat local
to the directory. Thus the directory process can be defined as follows, where
∏i∈I!cat〈ci〉 stands for !cat〈c1〉 | · · · | !cat〈cn〉 (for I = 1, . . . ,n) and the following
capacities are assumed: discovery ∈ ch((ch(

T

))Abs, publish,cat ∈ ch(ch(

T

)).

Directory
�
= (νcat)(∏i∈I!cat〈ci〉 | ! publish.(?y : ch(

T

))!cat〈y〉

| !discovery.(?x : (ch(

T

))Abs)cat.x )

Note that (ch(

T

))Abs is the type of all abstractions that can consume some
channel. A client that wants to publish a new service S that accepts messages of
some type T at a new channel a ∈ ch(T) is:

C1
�
= (νa)( publish〈a〉 |S ).

A client that wants to retrieve a reference to a service of type T, or any subtype
of it, is:

C2
�
= (νr)(discovery〈(|?z : ch(T)|)r〈z〉〉 |r.(?y : ch(T))C′ ).

Suppose r ∈ ch(ch(T)). Assuming S and C′ are well typed (the latter under {y :
ch(T)}), it is easily checked that the global system

P
�
= Directory |C1 |C2

is well typed too.
In reality, the above solution would run into security problems, as the di-

rectory executes blindly any abstraction received from clients (cat.x). More-
over, services originating from unauthorized clients should not be published.
We can avoid these problems using encryption so to authenticate both ab-
stractions and published services. We rely on the encoding of encryption prim-
itives2 described in Section 2. Assume that every client Cj shares a secret key
k j with the directory. A table associating clients identifiers and keys is main-
tained on a channel table local to the directory (hence secure). Assume that
identifiers id j, ... are of a basic type identifier, that keys k j, ... are names of
a sort Key and let enc(T) be the type of messages {M}k where M : T. Fix
the following capacities: cat ∈ ch(ch(

T

)), table ∈ ch([id(identifier),key(Key)]),
publish ∈ ch(service_p[id(identifier),channel(enc(ch(

T

)))]), and discovery ∈
ch(service_d[id(identifier),abstr(enc((ch(

T

))Abs))]). The process Directorys

is:
2 For the purpose of the present example, we extend the encoding to the typed cal-

culus by [[{M}k]]
�
= ([k,?x : ch(T)])x〈[[M]]〉, and 〈|case M of {x : T}k in P|〉 �= (νr)([[M]]•

[k,r] |r.(|?x : T|)〈|P|〉), with r ∈ ch(T).
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Directorys
�
= (νcat, table)

(
∏i∈I!cat〈ci〉 |∏ j∈J!table〈[id(id j),key(k j)]〉

| ! publish.(service_p[id(?x : identifier),channel(?zc : enc(ch(

T

)))])

table.([id(x),key(?xk : Key)])case zc of {y : ch(

T

)}xk in !cat〈y〉

| !discovery.(service_d[id(?x : identifier),abstr(?za : enc((ch(

T

))Abs))])

table.([id(x),key(?xk : Key)])case za of {y : (ch(

T

))Abs}xk in cat.y
)

The client C1 may be rewritten as:

C′1
�
= (νa)( publish〈service_p[id(id1),channel({a}k1)]〉 |S )

and C2 as:

C′2
�
= (νr)(discovery〈service_d[id(id2),abstr({(|?z : ch(T)|)r〈z〉}k2)]〉 |r.(?y : ch(T))C′ ).

Suppose a ∈ ch(T′), r ∈ ch(ch(T)) and assume S and C′ are well typed under the
appropriate contexts. The global system

Ps
�
= (νk1, k2)(Directorys |C′1 |C′2)

is well typed too. An attacker may intercept messages on publish or discovery
and may learn the identifiers of the clients, but not the secret shared keys. As
a consequence, it cannot have Directorys publish unauthorized services or run
unauthorized abstractions.

6 Conclusions and Related Work

XPi’s type system can be extended into several directions. We are presently
considering types that would guarantee“responsiveness”of services. A responsive
service would be one that, when invoked at a given a, eventually responds at
a given return address r, possibly after collaborating with other services that
are equally responsive. This extension would be along the lines of Sangiorgi’s
uniform receptiveness [21]. Such a system might be augmented with primitives
for managing quality of service in terms of response time.

A number of proposals aim at integrating XML processing primitives in the
context of traditional, statically typed languages and logics. The most related to
our work are XDuce [16] and CDuce, [3], two typed (functional) languages for
XML document processing. XPi’s list-like representation of documents draws its
inspiration from them. TQL [9] is both a logic and a query language for XML,
based on a spatial logic for the Ambient calculus [10]. All these languages support
query primitives more sophisticated than XPi’s patterns, but issues raised by
communication and code/name mobility, which are our main focus, are of course
absent.

Early works aiming at integration of XML into process calculi, or vice-versa,
are [14] and [4]. Xdπ [14] is a calculus for describing interaction between data and
processes across distributed locations; it is focused on process migration rather
than communication. A type system is not provided. Iota [4] is a concurrent XML
scripting language for home-area networking. It relies on syntactic subtyping, like
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XPi, but is characterized by a different approach to XML typing. In particular,
Iota’s type system just ensures well-formedness of XML documents, rather than
the stronger validity, which we consider here.

Roughly contemporary to ours, and with similar goals, are [8] and [11]. The
language πDuce of [8] features asynchronous communication and code/name mo-
bility. Similarly to XDuce’s, πDuce’s pattern matching embodies built-in type
checks, which may be expensive at run-time. The language in [11] is basically a
π-calculus enriched with a rich form of “semantic” subtyping and pattern match-
ing. Code mobility is not addressed. Pattern matching, similarly to πDuce’s,
performs type checks on messages. By contrast, in XPi static type checks and
plain pattern matching suffice, as types of pattern variables are checked stati-
cally against channel capacities. We confine dynamic type checking to dynamic
abstractions, which can be used whenever no refined typing information on in-
coming messages is available (e.g. at channels of capacity T). Both [11] and [8]
type systems also guarantee a form of absence of deadlock, which however pre-
supposes that basic values do not appear in patterns. In XPi, we thought it was
important to allow basic values in patterns for expressiveness reasons (e.g., they
are crucial in the encoding of the spi-calculus presented in Section 2).
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Abstract. In the UML, sequence diagrams are used to state scenarios,
i.e., examples of interactions between objects. As such, sequence dia-
grams are being developed in the early design phases where requirements
on the system are being captured. Their intuitively appealing character
and conceptual simplicity makes them an ideal tool for formulating sim-
ple properties on a system, even for non-experts. Besides guiding the
development of a UML model, sequence diagrams can thus furthermore
be used as a starting point for the verification of the UML model.
In this paper, we show how the requirements on the system as stated
in sequence diagrams can be (semi-automatically) validated for UML
models consisting of class diagrams, state machines and structure dia-
grams. The sequence diagrams that we consider can be universally or
existentially quantified or negated, i.e., state scenarios that should al-
ways, sometimes or never occur. For validating them in a UML model,
we translate both model and sequence diagrams into a formal specifi-
cation language (the process algebra CSP), and develop procedures for
employing the standard CSP model checker (FDR) for checking their
validity.

1 Introduction

The complexity of software is steadily increasing. Models of software systems
have to reflect this complexity in that they precisely describe all different as-
pects making up the functionality of a complex system. The UML is a modelling
language which supports modelling with different views. Its various diagram
types allow for the description of different though not necessarily disjoint as-
pects of a system: Class diagrams model the static behaviour (data and oper-
ations), state machines the dynamic behaviour (protocols), structure diagrams
the architectural composition and sequence diagrams typical application sce-
narios (plus possibly further diagrams for other aspects). Together they model
the system to be built. Such a complex model composition immediately poses
the question of consistency: is the architectural composition consistent with the
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interface description of the components, are static and dynamic behaviour non-
contradictory, is the scenario as stated in the sequence diagrams actually allowed
in the model, etc. In this paper, we develop techniques which can be used for
answering the latter question.

The starting point for our study are UML 1.5 sequence diagrams [25] which
we extend with features for stating negation and universal and existential quan-
tification (partially coming from UML 2.0 sequence diagrams1). These facilities
allow to distinguish between different types of scenarios: those never occurring,
sometimes occurring (i.e., in at least one run) or always occurring (in all runs).
The remaining part of the UML models will consist of class diagrams, state
machines and structure diagrams. To achieve the necessary precision in the
model (which is mandatory for a verification) we additionally use the Z notation
[14, 22] for writing attributes and methods in class diagrams. The question is
then whether the sequence diagrams are consistent with the UML model in that
the restrictions on the overall behaviour (as laid down in the diagrams) do not
prevent desired or allow forbidden scenarios. We develop a technique which al-
lows to automatically check for this kind of consistency. To this end, we translate
both sequence diagrams and the rest of the UML model into a formal specifica-
tion language. The translation of class diagrams, state machines and structure
diagrams follows a technique proposed in [17], the translation of the sequence
diagrams is inspired by [11] and given in this paper. Since the properties stated
in the sequence diagrams all refer to orderings in the communication between ob-
jects we have chosen the process algebra CSP for this purpose. CSP [13, 19] has
been developed to model and analyse systems exhibiting a large degree of par-
allelism and communication. Moreover, there is a model checker for CSP (FDR
[10]) which can be used for automatically analysing CSP processes. The trans-
lation provides us with a semantics of UML model and sequence diagrams in
terms of the semantic model of CSP. On this semantic model we formally define
validity of a sequence diagram (in the UML model) with respect to existential
and universal quantification; negation is obtained by negating the definition of
existential quantification. For these validity definitions we develop procedures
for automatic checks using the FDR model checker: the validity checks have to
be formulated as refinement checks between CSP processes which is the type of
analysis supported by FDR. To this end we develop testers out of the CSP se-
mantics of sequence diagrams which are then checked against the CSP semantics
of the UML model.

The paper is structured as follows: The next section will present an example of
a UML model together with a number of allowed or forbidden scenarios stated
by sequence diagrams. Section 3 describes the translation of model and sequence
diagram to CSP. Section 4 formally defines validity and develops procedures for
checking validity via the FDR model checker. The last section concludes.

1 We do not treat other new features of UML 2.0 sequence diagrams here (like com-
bined fragments) since our main interest is in checking validity not in developing a
semantics for UML 2.0.
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2 Example

In this section we start with introducing the example which will be used for
illustrating our technique for checking the validity of scenarios. The example
concerns the modelling of cash machines and banks. For the modelling we use
a UML profile for reactive systems proposed in [17] and inspired by the ROOM
method [20]. This profile allows to describe reactive systems as being built out
of processes (active objects) working concurrently and communicating with each
other. Each process has an associated interface which describes its communica-
tion capabilities. An interface description contains both the methods callable on
the active object/process as well as those called by the object.

+ bal
+ pin

«data»
Account

−accounts

1..n

«capsule»

Bank

− curATM
− debres

«conjugated»

Withdraw_P

«protocol»

+use

«base»

+wd

«base»

«capsule»

ATM

− bank
− id
− pin
− amount
− retcard

«protocol»

Use_P

+ auth()
+ debit()
+ start()
+ result()

+ answer()

+ insert()
+ pin()
+ amount()
+ idle()
+ money()
+ eject()

+ id

+wd

Fig. 1. Class Diagram for capsules Bank and ATM

In the UML profile these active objects or processes are modelled by special
capsule classes and their interfaces by protocol classes. Capsules which share a
common protocol can be connected to each other. The dynamic behaviour of the
processes, viz. capsules, are given by UML state machines. Figure 1 gives the
class diagram for capsules ATM (the cash machine) and Bank. Capsule Bank has
one protocol which describes its interface, namely the methods auth, debit , start
and result that it offers to other processes. Class Account is a passive compo-
nent which is associated to Bank (every bank has a number of accounts). Capsule
ATM has two protocols, one for com-
munication with the Bank and the
second one for communication with
users. The stereotypes «base» and
«conjugated» describe the direction
of communication for the protocols.

auth

debit

result

start
s1 s2s0

Fig.2. State Machine for Capsule Bank

Figures 2 and 3 depict the protocol state machines for ATM and Bank. They
model the allowed ordering of method invocation for objects of class Bank and
ATM, respectively.

The reactive system itself is modelled by a structure diagram. Structure di-
agrams describe the architecture of systems, i.e., their components and their



70 Holger Rasch and Heike Wehrheim

resulteject
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s11
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start
s0

pin

s6

auth
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s13

insert
s5

idle eject
main

Fig. 3. State Machine for Capsule ATM

interconnection. A capsule in a structure diagram is drawn as a rectangle with
ports (white or black boxes) indicating their protocols. Two ports (and thus two

capsules) can be connected if they refer
to the same protocol. A port residing
on the border of the outermost cap-
sule (capsule System) describes the in-
terface of the system towards its envi-
ronment. Depicted in Fig. 4, our bank-
ing system consists of one bank b con-
nected with two cash machines a1 and

a2 communicating over the joint protocol Withdraw P. The interface to users of
the banking system is given by the protocol Use P.

b:Bank

:System

:ATM

+use

a1, a2

+use+wd

2

+wd

Fig.4. Structure Diagram

In order to get the necessary precision in the model the UML profile further-
more allows to formally specify the signatures of methods in interfaces, and the
attributes and methods in classes (both for capsules and passive classes). For
this purpose the specification formalism Z [14, 22] is employed. If such a spec-
ification is supplied for all methods and attributes a precise and unambiguous
meaning can be given to the UML model. This is the prerequisite for formally
checking the validity of scenarios. For our example, we only show the signatures
of methods in interface since we will refer to them when translating sequence
diagrams. For the Bank the interface specification in Z is (assuming given types
ID and PIN ):

method auth : [ from : ATM ; to : {self}; id? : ID ; pin? : PIN ; ok ! : B ]
method debit : [ from : ATM ; to : {self}; id? : ID ; amt? : N ]
chan start : [ from : {self}; to : ATM ]
chan result : [ from : {self}; to : ATM ; ok ! : B ]

There are two types of operations in the interface: those being declared as method
are methods of the Bank itself and can be called by other objects; those declared
by chan are methods that Bank calls on other objects. The parameters of these
operations can be divided into input (marked with ?), output (!) or simple param-
eters. The latter one are used for addressing particular objects. Every method
must have two simple parameters specifying the caller (parameter from) and
callee (parameter to) of the method. The value self refers to the object itself.
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If a parameter has type {self} then the only possible value that the parameter
can take is self.

The interface of ATM towards Bank is specified in a complementary way
(channels and methods, and input and output reversed). Additionally the inter-
face contains operations for interaction with a user. We always assume to have
one class (here called User) which models the environment of our system. The
interface of this class can be determined from the structure diagram: all protocols
of ports residing on the borders of the outermost capsule System are also pro-
tocols of the environment class (complementing methods and channels, inputs
and outputs). The behaviour of the environment remains unspecified, thus we
assume it to behave chaotically (all behaviour allowed). Thus for our interface
of ATM towards a user we assume a class User to be given. The interface is

method insert : [ from : User ; to : {self}; id? : ID ]
method pin : [ from : User ; to : {self}; pin? : PIN ]
method amount : [ from : User ; to : {self}; amt? : N ]

(plus channels answer , idle, money, eject).
This completes the UML model. The development of the model might have been
preceeded by the modelling of typical (allowed or forbidden) scenarios of the
system to be modelled. Such scenarios can be described by sequence diagrams.
Here, we use a very simple form of sequence diagrams since our main focus is
not on giving a semantics but on checking
their validity (for semantics for message se-
quence charts, the precursors of sequence
diagrams, see for instance [11, 15, 16]; for
a semantics for UML 2.0 interactions di-
agrams see [23]). For the banking system
we might for instance like to specify that
a user never gets money when the ATMs
question for enough credit is answered with
‘no’. Thus the scenario in Figure 5 is for-
bidden for our system2.

amount

debit

money

result
{ok = false}

u:Usera1:ATMb:Bank

negative

Fig.5. Forbidden Behaviour

In general, sequence diagrams consist of a number of lifelines for objects.
These lines are connected by arrows labelled with methods. The sequence dia-
gram thus models orderings for interactions between objects. We use particular
objects here (although the scenario should be forbidden for all banks, ATMs and
users) since we need to refer to specific objects in our addressing parameters. In
principle object names could be left out first and later be instantiated when the
validity of scenarios is checked.

Figure 6 shows a possible scenario between bank, ATM and user: when the
answer of the bank following the request for an authentication of a pin is not ok
then the card should be ejected.

2 Only visible behaviour is of interest here; invisible (τ ) steps are ignored.
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pin

auth

answer
{ok = false}

eject

b:Bank a2:ATM u:User

{ok = false}

existential

Fig.6. Possible Behaviour

eject

idle

insert

a1:ATM u:User

universal

Fig.7. Required Behaviour

Figure 7 depicts a scenario which is required to occur in every behaviour at
least once3: after ejecting and idling for a while an insert of another card should
be possible.

3 Translating the UML Model to CSP

Given a UML model of a system and a number of sequence diagrams specifying
allowed or forbidden scenarios we are interested in knowing whether these sce-
narios are actually possible (or not possible) in the model. We refer to this as the
validity of the scenario in the model. Checking the validity of scenarios should
at the best be fully automatic; here we propose a technique which is partially
automatic. For checking the validity we first of all have to compute the semantics
of model and sequence diagrams. This so far has to be done by hand, but can
be automated. Given this semantics the check can be carried out with the CSP
model checker FDR.

3.1 Translating Class Diagrams, State Machines
and Structure Diagrams

As a semantic domain for model and sequence diagrams we have chosen the
process algebra CSP. A translation of models, written in our specific UML profile,
to CSP can be found in [17]. Roughly, the translation proceeds as follows: The
class diagram together with the Z formalisation of interfaces, attributes and
methods is translated to Object-Z [21]. The Object-Z classes of capsules are
then augmented with CSP process descriptions which are derived from the state
machines. A specific CSP process is computed for the outermost capsule System.
This process describes the architecture of the system and consists of the parallel
composition of the capsules in the system. Together, these classes form a CSP-
OZ [9] specification. CSP-OZ is a combination of Object-Z and CSP and has a
semantics in terms of the semantic model of CSP. Thus we hereby end with a
CSP semantics for our UML model. To show at least a small part of the resulting
CSP process:

main = Bank [b] ||{| auth,debit,result,start |} Clients

Clients = ATM [a1] ||| ATM [a2]

3 We currently do not handle conditional cases, i.e., ‘whenever some prefix has oc-
curred, then the rest of the sequence must follow.’
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is the CSP process of class System (derived from the structure diagram). It
describes the behaviour of the overall system. The operator ||| is the interleaving
operator of CSP (parallel composition with no synchronisation) whereas ||A (A
being a set of methods) is a parallel composition which requires joint execution
of methods in A. This synchronisation set is derived from the joint protocol
(Withdraw P) of Bank and ATM.

3.2 Translating Sequence Diagrams

In the next step we equip the sequence diagrams with a CSP semantics as well.
To this end, we first formalise sequence diagrams, i.e., give description of their
syntax. This will be the basis for the translation to CSP. As a language for
formalising the diagrams we again employ Z. We start with the definition of
some basic data types (in particular for the names appearing in the diagrams).

[Name, Param,Object [channel names, parameters, object names]

D ,UID ] [data values for parameters, unique identifier for arrows]

The sets which can actually be used here depend on the UML model and
can be derived from it. In the banking example, we for instance would have
auth ∈ Name, amt ∈ Param, a1 ∈ Objects etc. The set D is the basic type
of values for parameters. As we have already explained, all channels must have
two special parameters which are used for addressing
the partners in a communication. These are declared
in the axiomatic definition on the right:

to, from : Param

Communication channels between components are described by protocols in
the UML model. A protocol describes the interface of a class, i.e. the methods
it provides (with their signature) and the methods it requires. Components that
are to be connected with each other in the structure diagram share one (or more)
protocols. From this interface information in the
protocols we just need the names of channels and
their parameters here. They are described in a
Z schema consisting of a declaration of variables
plus predicates giving constraints on the vari-
ables (see [22] for an introduction to Z).

Channel

name : Name

params : P Param

{to, from} ⊆ params

CSP processes are built over events. An event consists of a channel name
together with values for parameters, e.g. answer .b.a1.true is an event consisting
of the name answer plus values b (for parameter from), a1 (for to) and true (for
ok). The notation ? denotes that any value can be accepted for a parameter. A
partial event is one in which some of the values for parameters are missing, e.g.
answer .b.a1 is only a partial event. Given a set
of partial events Ev we use the CSP notation
{| Ev |} to denote the set of completions of Ev .
Formalised in Z events are as follows.

Event

ch : Channel

val : Param �→ D ∪ {? }
dom val = ch.paramsIn sequence diagrams events will appear as

labels of arrows between objects. Whenever val-
ues for parameters are left out (which is most often the case) we assume the value
to be ? .
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Arrows in sequence diagrams are connecting the lifelines of two objects and
are labelled with events. To distinguish two arrows with the same label connect-
ing the same lines we attach a unique identifier to each arrow. The values for
parameters to and from of an event attached to an arrow have to agree with the
objects connected by the arrow.

Arrow

from, to : Object ; event : Event ; uid : UID

to �= from ∧ event .to = to ∧ event .from = from

These definitions form the basis for formalising sequence diagrams. A sequence
diagram simply consists of a set of arrows and lifelines. Each line belongs to an
object and has a number of arrows going out of it or coming in. On one line
arrows are always ordered (hence we describe them as a sequence). A number
of additional conditions ensure well-formedness of sequence diagrams. Addition-
ally, every sequence diagram is equipped with an occurrence condition stating
whether the specified scenario should never/sometimes or always happen.

Condition ::= negative | existential | universal

SQ

c : Condition

arrows : F Arrow

lines : Object �→ iseq Arrow

arrows = ran∪ ran lines

[the set arrows contains exactly those appearing on lifelines]

∀ a : arrows •
#({a.from, a.to} ∩ dom lines) = 2 ∧

[an arrow belongs to exactly 2 different lifelines]

a ∈ ran(lines a.from) ∩ ran(lines a.to) ∧
[to and from are set to the correct lifelines]

a �∈ ran∪ ran({a.from, a.to} −� lines)

[an arrow cannot belong to a wrong lifeline]

∃R : Arrow ↔ Arrow •
∀ a1, a2 : arrows | a1 �= a2 • ¬(a1 R+ a1) ∧

(a1 R a2 ⇔ ∃ s : ran lines • s � {a1, a2} = 〈a1, a2〉)
[arrows cannot go back in time]

This formalisation of sequence diagrams is the basis for our translation to CSP.
Next we define a function from sequence diagrams to CSP processes which defines
the translation. The range of the function is the set of CSP processes defined by
the following given type:

[CSP ] The precise syntax of processes will not be defined here, for
an introduction to CSP see [19]. In the translation we use two

operators of CSP:→ is the prefix operator for modelling sequencing and || is the
parallel composition. Here we employ alphabetised parallel composition: for every
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process in a parallel composition its alphabet of events is given, and synchroni-
sation has to take place on events in the intersection of alphabets. Syntactically
this takes the form || (Pi , αi) where i ranges over some index set and the Pi are
CSP processes with alphabets αi . When there are just two processes we write
PA||B Q . In contrast to ordinary parallel composition alphabetised parallel com-
position is associative which is convenient here.

The translation proceeds in two steps. The CSP process of the sequence
diagram is the parallel composition of the CSP processes belonging to every
lifeline of an object. These processes synchronise on shared events. Due to the
parameters to and from in events, an event belongs to the alphabet of exactly
two objects (and thus to exactly two CSP processes).

trans : SQ → CSP

∀ sq : SQ • trans sq =|| {o : dom lines • (transLine o, alpha (o, sq))}
The alphabet of an object in a sequence diagram consists of the events over
channels appearing on arrows of the object’s lifeline with values for parameters
to and from properly filled in.

alpha : Object × SQ → PEvent

∀ o : Object , sq : SQ •
alpha(o, sq) = {| a : ran(sq .lines o) •

(a.event .ch)•(a.event .val)(from)•(a.event .val)(to) |}

Note that the bold dots are those used for separating values of parameters in
CSP events. We cannot just plainly use a.event here since FDR is not accepting
the notation ? in sets of events, only in process expressions.

The CSP processes of the lifelines are simply the sequential composition of
the events on their arrows.

transLine : iseq Arrow → CSP

transLine〈 〉 = SKIP

∀ sa : iseq Arrow , a : Arrow • transLine〈a〉 � sa = a.event → transLine sa

The occurrence condition plays no role in the translation to CSP. It will be used
for defining validity. As an example for the translation consider the sequence
diagram in Figure 5 (here u is the identity of the user):

|| {
(debit .a1.b? ? → result .b.a1.false → SKIP ,

{| debit .a1.b, result .b.a1}),
(amount.u.a1? → debit .a1.b? ? → result .b.a1.false → money .a1.u? → SKIP ,

{| amount.u.a1, debit .a1.b, results.b.a1, money .a1.u |}),
(amount.u.a1? → money .a1.u? → SKIP ,

{| amount.u.a1, money .a1.u |})}

4 Checking Validity

Having defined the CSP semantics of simple sequence diagrams and UML mod-
els, it is now possible to check the validity of the scenario in the UML model. For
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the check we employ the CSP model checker FDR [10]. FDR performs checks
for deadlock- and divergence-freedom as well as refinement checks between pro-
cesses. It is based on the semantic models of CSP. To see how we can use FDR for
checking validity of sequence diagrams we first give a short summary of CSP’s
semantic models.

We assume Σ to be a global set of events (of type Event). The traces model
T identifies a process P with the (prefix closed) set traces(P) ⊆ Σ∗ of sequences
of events it can perform. Refinement in T is defined as P �T Q ⇔ traces(P) ⊇
traces(Q). A more powerful model is the stable failures model F , which, in
addition to traces(P), records for any trace t of P the set of events R that P can
stably refuse after performing t . The set of all these pairs (t ,R) ∈ Σ∗ × P Σ is
called failures(P). A pair (t , Σ) identifies deadlock in F , i.e., a trace after which
P refuses all events4. The standard model for CSP is the failures-divergences
model N . Besides deadlock this model can deal with divergence. The (extension
closed) set divergences(P) ⊆ Σ∗ contains all traces after which P can diverge.
The failures in N differ slightly from those in F ; failures⊥(P) includes all (t ,X ),
X ⊆ Σ, for any t ∈ divergences(P) in addition to the stable failures. All three
models are supported by the FDR model checker, and refinement checks in these
models all amount to checking inclusion between the semantics of processes5.
Finally, we need the set infinites(P), which belongs to the infinite traces models
of CSP. It contains all infinite traces of P including the infinite extensions of
divergent traces. It is not supported by FDR, but this does not concern our use
of the set.

As a first step in the validation, we are interested in the language of a sequence
diagram sq : SQ : L(sq) = runs(trans sq), where for a CSP process P runs(P)
is used for ‘all runs of P ’. With ‘run’ we denote only those finite traces which
cannot be extended (apart from termination) and the infinite traces, i.e,

runs(P) = {t : seq Σ | (t , Σ) ∈ failures⊥(P)} ∪ infinites(P)

Note that this differs from traces(P) since the latter set also contains all prefixes.
For the simple sequence diagrams defined in this paper, there are of course only
finite runs; in fact, all of the examples here define exactly one sequence of events,
i.e., a singleton set as their respective language. The focus in this section is
therefore on validating an occurrence condition for a single word; generalisation
to a set of words is discussed at the end.

4.1 Occurrence of a Single Word

In the following let P denote the CSP process of the UML model (specified
in the class diagram, state machine and structure diagrams) obtained by the
translation sketched in Section 3.1. We assume E to be the alphabet of P and
let SeqE denote the set of finite and infinite sequences of elements in E .

4 We do not explicitly treat successful termination here.
5 The more powerful models are needed only for technical reasons; the semantics for

sequence diagrams used here does not require them.



Checking the Validity of Scenarios in UML Models 77

Definition 1. Let sq : SQ be a sequence diagram with L(sq) = {s} and P be
the CSP process belonging to the UML model. The sequence diagram sq is valid
in P iff the following hold:

– sq .condition = negative ⇒ ¬∃ t : runs(P); u : seqE ; v : SeqE • t = u�s�v ,

– sq .condition = existential ⇒ ∃ t : runs(P); u : seq E ; v : SeqE • t = u�s�v ,

– sq .condition = universal ⇒ ∀ t : runs(P) • ∃ u : seq E ; v : Seq E • t = u�s�v .

To establish these occurrence conditions, it is sufficient to verify the following
assertions:

A∃ : ∃ t : traces(P); u : seqE • t = u�s

for negative and existential conditions and

A∀ : ∀ t : runs(P) • ∃ u : seqE ; v : SeqE • t = u�s�v

for universal conditions6.
Since this is neither a refinement check in one of CSP’s semantic models nor

a check for deadlock- or divergence-freedom, we cannot directly use FDR but
first have to reformulate the problem in a way tractable by FDR. The general
idea is to use an auxiliary process (‘tester’), which performs pattern matching
for the sequence s on the stream of events it is offered. This process is then put
in parallel to the process P for the system to be analysed, synchronising on the
whole alphabet of the system.

The pattern matching consists of keeping track of the longest prefix of s
already matched, and calculating the resulting longest prefix after performing the
next event. For this, a function δ is defined, which, for some alphabet E : PEvent
and a word s : seqE , maps an already matched prefix s1 of s together with
an event e to the maximal prefix of s resulting from appending e to s1, e.g.,
δ({a, b, c}, 〈a, b, a, c〉, 〈a, b, a〉, b) = 〈a, b〉.

δ : (P Event × seq Event × seq Event × Event) �→ seq Event

∀E : PEvent ; s, s1, s2 : seq E ; e : E | s1 prefix s • δ(E , s, s1, e) = s2 ⇔
s2 prefix s ∧ s2 suffix s1�〈e〉 ∧ ¬∃ x : E • 〈x〉�s2 suffix s1�〈e〉

This is basically the transition function of a deterministic finite automaton,
where states are represented as sequences of events; s1 is the current state, s the
final state, e the current input and E the alphabet of the automaton.

Checking Assertion A∃. In order to perform this check for some specific sequence
of events s , a process Smatch is constructed from s , which always accepts all

6 Although runs(P) contains all possible (infinite) extensions of divergent traces, this is
not relevant for A∀, since for any infinite trace included in runs(P) due to divergence,
the finite prefix leading to divergence is already included. If s is contained in such a
prefix, then all extensions contain it, too, and if it is not contained, then this prefix
alone suffices as a counterexample, regardless of the extensions.
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events in E until it has performed s ; in that case it performs an event match 
∈ E
and stops (deadlocks). Define Smatch = S〈 〉 with

Ss = match → STOP

Ss1 = �
e:E

e → Sδ(E ,s,s1,e)

for all true prefixes s1 ⊂ s . The traces model (T ) is sufficient for this test, where
Smatch looks like this:

traces(Smatch) = {t , t1 : seq E | ¬(s infix t) ∧ (t1 ⊆ t�s�〈match〉) • t1}

Example. As an example, Smatch is now constructed for the sequence diagram
of Fig. 5. Using the abbreviations A ≡ amount .u.a1? , D ≡ debit .a1.b? ? ,
M ≡ money.a1.u? and R ≡ result .b.a1.false, as well as E = {| amount , debit ,
result ,money |}, the language defined by that diagram is the set {〈A,D ,R,M 〉}
and we therefore only need to check for the single word in that set, i.e., we can
use the construction described above, yielding:

Smatch = S〈 〉, S〈 〉 = A → S〈A〉 � �
e:E\{A}

e → S〈 〉

S〈A〉 = D → S〈A,D〉 � �
e:E\{D}

e → S〈 〉

S〈A,D〉 = R → S〈A,D,R〉 � �
e:E\{R}

e → S〈 〉

S〈A,D,R〉 = M → S〈A,D,R,M〉 � �
e:E\{M}

e → S〈 〉

S〈A,D,R,M〉 = match → STOP

Next we put P and Smatch in parallel, synchronising on the whole alphabet E
of P and hide all of E , since we are only interested in the occurrence of match.
Then we use FDR for a refinement check in the traces model in order to check
for said occurrence:

(P ||E Smatch) \ E �T match → STOP (∗)

This is correct since the following correspondence holds

(P ||E Smatch) \ E �T match → STOP ⇔ A∃

because (P ||E Smatch)\E cannot, due to hiding E , perform any event but match
and match can be performed at most once due to the construction of Smatch;
furthermore, the refinement relation holds, if and only if (P ||E Smatch) \ E can
perform match at least once, which again means that P must have a trace which
contains s .

Thus, for checking validity of sequence diagrams with negative conditions we
use FDR to check (∗), if this fails the sequence diagram is valid in the UML
model; for sequence diagrams with existential conditions we use (∗) as well and
validity holds if the test is successful.

Checking Assertion A∀. This task is a little more complicated, because of the
universal quantification. We cannot use the simple traces model here, but need
to take deadlock and divergence into account: if s is to occur on all runs of P ,
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then P must neither be able to deadlock nor to diverge until it has performed s .
Furthermore, each (non diverging) infinite run of P has to contain s . Therefore
we split this task into two checks. For the first one a process Sdiv is constructed
from s , which differs from Smatch only in the definition

Ss = div

that is, it diverges immediately after performing s instead of performing an
additional event and stopping. The test using this process is carried out in the
stable failures model (F), where Sdiv is described as

traces(Sdiv) = {t , t1 : seq E | ¬(s infix t) ∧ (t1 ⊆ t�s • t1}
failures(Sdiv) = {t : traces(Sdiv) • (t , ∅)}

Proposition 1. P ||E Sdiv deadlock free (F)⇔ P cannot deadlock (in a stable
state) until it has performed s .

Proof. Suppose P ||E Sdiv is deadlock free in F . Sdiv is constructed as not to
constrain the behaviour of P unless it has performed s , in which case it diverges
and thus prevents P from performing any further events without introducing
deadlock. Since Sdiv cannot cause deadlock, it follows that P cannot deadlock
in a stable state on all behaviours allowed by Sdiv, i.e, until it has performed s .
If on the other hand, P cannot deadlock in a stable state until it has performed
s , it follows that P ||E Sdiv is deadlock free in F , since Sdiv does not refuse any
event until it has performed s , and then stops P by diverging, which (in F) does
not introduce deadlock. �

The second test requires an auxiliary process Snot, which always accepts any
event in E , except when it has already performed all but the last event of s , in
which case Snot refuses exactly that event, but no other. Let s0�〈f 〉 = s , then

Ss0 = �
e:E\{f}

e → Sδ(E ,s,s0,e)

Ss1 = �
e:E

e → Sδ(E ,s,s1,e)

for any prefix s1 ⊂ s with #s1 � #s − 2. Finally, Snot = S〈 〉. This test is carried
out using the failures-divergences model (N ). In this model Snot looks like this:

failures⊥(Snot) = {t , s1, s2 : seq E ; e : E ; R : P{e} |
¬(s infix t) ∧ s = s1�s2�〈e〉 •

(t�s1, if s2 = 〈 〉 thenR else ∅)}
divergences(Snot) = ∅.

Proposition 2. (P ||E Snot) \ E divergence free ⇔ P cannot diverge until it
has performed s and P has no infinite trace (non-diverging), which does not
contain s .

Proof. Suppose (P ||E Snot)\E is divergence free. Since Snot does not constrain
the behaviour of P unless P wants to perform the last event of s , it follows that
P cannot diverge unless it has performed s . Furthermore, since the hiding of E
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turns any infinite behaviour of (P ||E Snot) \ E into divergence, it follows that
(P ||E Snot) does not have infinite traces, i.e., any infinite trace of P contains s .
On the other hand, if P cannot diverge until it has performed s and does not
have an infinite trace which does not contain s , then (P ||E Snot) is divergence
free and has not infinite traces. Thus (P ||E Snot) \ E divergence free. �

Summarising, we have

P ||E Sdiv deadlock free (F) ∧ (P ||E Snot) \ E divergence free

if and only if

– P cannot deadlock until it has performed s and
– P cannot diverge until it has performed s and
– P has no infinite trace (non-diverging) which does not contain s ,

i.e., any finite or (non-diverging) infinite run of P contains s . For the assertion
A∀ we thus get the following result

P ||E Sdiv deadlock free (F) ∧ (P ||E Snot) \ E divergence free ⇔ A∀

Validity of sequence diagrams with universal condition can hence be checked
using the above two tests.

4.2 Occurrence of a Set of Words

Besides single words the language of a sequence diagram can also contain more
than one word. This is the case if the sequence diagram specifies certain inter-
actions to be concurrent. The corresponding CSP process will then contain all
possible interleavings in its set of runs. Given not just a single word but a (finite)
set L = L(sq) of words from a sequence diagram sq, there are several possible
definitions for ‘occurrence’ both in the existential as well as in the universal case:
does ‘possible’ mean in some run r some s ∈ L occurs (∃ r ∃ s), each s ∈ L occurs
in some run r (∀ s ∃ r) or in some run r all s ∈ L occur (∃ r ∀ s)? Does ‘required’
mean on all runs r some s ∈ L occurs (∀ r ∃ s), some s ∈ L occurs on all runs r
(∃ s ∀ r) or on all runs r all s ∈ S occur (∀ r ∀ s)?

The third version for each case (∃ r ∀ s , ∀ r ∀ s) is clearly too strong as a
general interpretation, but all other versions can be justified. In our case, though,
since L is derived from a sequence diagram, the actual interleaving of events for
which no ordering is implied by the lifelines is irrelevant. Therefore, the weakest
versions (∃ r ∃ s , ∀ r ∃ s) are sufficient here.

The simplest, yet slightly inefficient way to perform the necessary tests for a
set L, is to construct the respective processes for all the s ∈ L and to use them
all at once, i.e., to put them in parallel, synchronising on E .

5 Conclusion

In this paper we proposed a method for checking the validity of (simple) sequence
diagrams in UML models written in a specific UML profile for reactive systems.
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To this end, we supplied both UML model and sequence diagrams with a CSP
semantics and developed procedures for employing the CSP model checker FDR
for validity checking. The technique can easily be extended to UML 2.0 sequence
diagrams by developing a CSP semantics for them or using the semantics of [23]
which defines it as a set of (timed) traces over actions. Our approach of devel-
oping testers for validity checking can then stay as it is.

Related work. The question of consistency in models with multiple views (of
which our issue is one special aspect) is widely studied. A general approach for
defining consistency is studied in [3]. In the context of UML an annual workshop
with the topic of consistency is carried out [6]. The use of CSP as a common
semantic domain for multiple views in the study of consistency is chosen in
[2, 8, 18]. While the first two do not consider sequence diagrams the work of
Bolton and Davies addresses sequences diagrams and develops tests for checking
whether a scenario is possible in a UML model. They do, however, only treat
the case that the scenario starts in the initial state; their tests do not cover sce-
narios happening sometime later after initialisation. As a consequence, checking
validity simply amounts to checking for trace refinement and thus FDR thus be
directly employed. Syntactic checks of consistency between class and sequence
diagrams are proposed in [24]. Using labelled transition systems, [5] defines be-
havioural consistency for combinations of UML behavioural diagrams (including
statecharts and sequence diagrams) as deadlock freedom. They use the SPIN
model checker for analysis, but do not give a formal translation from UML to
SPIN’s input language. An automatic translation for systems described by a set
of UML statecharts and enhanced by sequence diagrams to state behaviour of
interest to generalised stochastic petri nets is proposed in [1].

The work closest to ours is that carried out in the context of life sequence
charts (LSCs) [7]. LSCs are an extension of sequence diagrams with special fea-
tures for modelling liveness requirements. The work [4] proposes validity check-
ing for LSCs by translating them to the temporal logic LTL and checking them
against Statemate models. Based on LSCs, the play in play out approach [12]
uses a collection of ‘played in’ examples to specify a whole system, instead of
using them only as requirements for an explicit model.
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8. G. Engels, R. Heckel, and J. Küster. Rule-based Specification of Behavioral Con-
sistency based on the UML Meta-Model. In Martin Gogolla, editor, UML 2001.
Springer, 2001.

9. C. Fischer. CSP-OZ: A combination of Object-Z and CSP. In H. Bowman and
J. Derrick, editors, FMOODS’97, volume 2, pages 423–438. Chapman & Hall, 1997.

10. Formal Systems (Europe) Ltd. Failures-Divergence Refinement – FDR2 User Man-
ual, 4th edition, August 1998.

11. T. Gehrke, M. Huhn, A. Rensink, and H. Wehrheim. An algebraic semantics for
message sequence chart documents. In S. Budkowski, A. Cavalle, and E. Najm,
editors, FORTE/PSTV’98, pages 3–18. Kluwer, 1998.

12. D. Harel and R. Marelly. Specifying and Executing Behavioral Requirements: The
Play In/Play-Out Approach. Software and System Modeling, 2:82–107, 2003.

13. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International
Series in Computer Science. Prentice-Hall International, 1985.

14. International Organisation for Standardization. Information technology – Z formal
specification notation – Syntax, type system and semantics, 1st edition, July 2002.
ISO/IEC 13568:2002 (E) International Standard.

15. P.B. Ladkin and S. Leue. Interpreting message flow graphs. Formal Aspects of
Computing, 7(5):473–509, 1995.

16. S. Mauw and M.A. Reniers. An Algebraic Semantics of Basic Message Sequence
Charts. The Computer Journal, 37(4):269–277, 1994.
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Abstract. Based on our experience in implementing a type-checker for
the Object Constraint Language (OCL), we observed that OCL is not
suitable for constraining a system under development, because changes
in the underlying class diagram unnecessarily invalidate the type cor-
rectness of constraints, while their semantic value does not change. Fur-
thermore, the type system of OCL does not support templates.
To alleviate these problems, we extended the type system of OCL with in-
tersection and union types and bounded operator abstraction. The main
advantage of our type system is that it allows more changes in the con-
textual class diagrams without adapting the OCL constraints.

1 Introduction

The Object Constraint Language (OCL) is a formal specification language that
enables a developer to specify class invariants and pre- and postconditions for
operations in UML models. It is designed to be a query language, like SQL, and
specification language, like Z. Its latest version, OCL 2.0, is described in [1],
to which we refer as OCL 2.0 proposal. It aims at a tight integration with the
diagrammatic notations of UML 2.0, which are documented in [2] and [3].

In order to be used widely, OCL has to support the following:

1. A precise syntax which allows writing specifications in a concise and read-
able way, but which is also machine readable, and therefore also machine
checkable.

2. A precise semantics which allows evaluation or verification of the model.
3. A type system which is compatible with the well-formedness constraints of

UML 2.0 class diagrams.
4. A type system which is robust with respect to model transformations like

refactoring or other changes in class diagrams.

Influenced by our experience in implementing a standard-conforming type-
checker for OCL, we have come to the conclusion that OCL does not adequately
implement these requirements so far:

The first item is not satisfied, because in the UML 2.0 and OCL 2.0 standards
OCL constraints in different syntactical styles are used (compare the constraints
in [2] to the ones in [1]).
� Part of this work has been financially supported by IST project Omega (IST-2001-
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The second item is not satisfied, because even though the semantics of OCL is
precise enough for evaluating constraints [4, 5], it is not convenient for verification
purposes, because the semantics of OCL is operational, and not declarative, as
argued in [6], which leads, a.o., to the three-valuedness of the logic.

Items three and four represent the main problem of using OCL for writing
constraints on models during different stages of design: the type system of OCL
appears to be designed for languages which only use single inheritance and no
templates (parameterized classes)1. UML 2.0 introduces a new model for tem-
plates, which allows classifiers to be parameterized with classifier specifications,
value specifications, and operation specifications. The OCL 2.0 proposal does
not specify how those parameters can be used in constraints, how they can be
constrained, or how these parameters are to be used in constraints and what
their meaning is supposed to be. Furthermore, OCL constraints are fragile un-
der the operations of refactoring of class diagrams, package inclusion and package
merging. These operations, which often do not affect the semantic value of a con-
straint, can render constraints ill-typed. This essentially limits the use of OCL
to a-posteriori specification of class diagrams.

To solve these problems, we have implemented a more expressive type system
based on intersection types, union types, and bounded operator abstraction.
Such type systems are already well-understood [7] and solve the problems we
encountered elegantly. Our type system supports templates and is more robust
under refactoring and package merging than the current type system.

The adaption of the type system to OCL was straight forward. The specifi-
cation of the OCL standard library had to be changed to make use of the new
type system. We have implemented this type system in a prototype tool and all
constraints of the OCL 2.0 standard library have been shown to be well-typed
with respect to our type system.

This paper is organized as follows: In Sect. 2, we survey the current type
system for OCL. In Sect. 3, we describe our different extensions to the type
system. In Sect. 4, we summarize the most important results. In Sect. 5 we
compare our results with other results and draw some conclusions.

2 State of the Art

In this section, we recall the current type system used for OCL, which has been
derived from the OCL 2.0 standard. It is similar to the one presented in [8].

We start with a description of abstract OCL, a simple core language, into
which almost all OCL expression can be translated. The grammar is defined by

t ::= true | false | · · · | −1 | 0 | 1 | · · · | self | v | t.a | t.m(t1, . . . , tn)
| t→ m(t1, . . . , tn) | t→ iterate(v0 : T0, . . . , vn : Tn; a = t | t0)
| t→ flatten(t) | if t then t′ else t′′ endif

| let v0(v0,0, . . . , v0,m0) : T = t0, . . . , vn(vn,0, . . . , vn,mn) : T = tn in t

1 For example Java before version 5.0.
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We do not use @pre and qualifiers in our language, because these constructs
do not add anything to the type system. We define the operation flatten, which
flattens collections, as a primitive to OCL, like iterate. The reasons for this are
discussed in Sect. 3.5.

We now define the abstract syntax of OCL types. We have essentially two
kinds of types: elementary types and collection types. The elementary types are
classifiers from the model and the elementary data types like Boolean, Integer,
and so on. The collection types are types which are generic, i.e., they construct
a type by applying the collection type to any other type2. This distinction is
formalized with a kinding system (a type system for types). Kinds are defined
by the language K ::= 	 | K → K ′. The kind 	 denotes any type which does not
take an argument. Type constructors have a kind K → K ′, which means that
such a constructor maps each type of kind K to a type of kind K ′. For example,
the elementary data type Integer is of the kind 	. The collection type Set is of
the kind 	→ 	 and the type Set(Integer) is of the kind 	. The language of types
is defined as follows:

T ::= type | T (T1) | T0 × · · · × Tn → T

Here, a type is any classifier or template appearing in the contextual class di-
agram or the OCL standard library. The expression T (T1) expresses the type
which results from instantiating a template parameter of the type T with T1.
The type T0 × · · · × Tn → T is used to express the type of properties. The type
T0 is the type of the classifier which defines the property, the types T1, . . . , Tn

are the types of the parameters of the property. We identify attributes with
operations that do not define arguments.

Observe that our language of types does not contain constructs for operator
abstraction or universal types. The reason for this is, that you cannot define new
types in OCL. Instead all types are defined in class diagrams and are used like
constants in the type system.

The kinding of a type states whether a type is an elementary type or a
template and is formally defined by the system shown in Fig. 1. We write the
rules in the usual style: a rule consists of an antecedent and a consequence, which
are separated by a line. The antecedent contains the properties that need to be
proved in order to apply the rule and conclude its consequence. Each rule has a
name, which is stated right of the line in small capitals.

It is an important property of the type system for OCL that new types
cannot be defined through OCL expressions (except for tuples, which are out

T : � For any type or property type T K-Elem

T : �→ � For any parameterized class T K-Cons
T : K S : K → K′

S(T ) : K′ K-Inst

Fig. 1. Kinding System

2 In Sect. 4 we discuss the presence of dependent types in class diagrams.
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of the scope of this paper). This simplifies the type checking rules a lot. OCL
expressions are checked in a context, which contains the information on variable
bindings, operation declarations, and the subtype relation encoded in a class
diagram. A context Γ maps variable names v to their type, or to undefined
if that variable is not declared in this context. We write Γ, v : T to denote
the context extended by binding the variable v to T , provided that v does not
occur in Γ . We write Γ (v) = T to state that v has type T in context Γ . The
context also contains the information on type conformance, i.e. clauses of the
form T ≤ S derived from the generalization hierarchy, where T and S are types
and ≤ denotes that T is a subtype of S. We write Γ, T ≤ S to extend a context
with a statement that T is a subtype of S. Any context contains T ≤ T for every
type T occurring in the model, since the conformance relation is reflexive. If the
context Γ contains the declaration T ≤ S we denote this with Γ � T ≤ S. We
write Γ � t : T to denote that t is a term of type T in the context Γ . Contexts
which only differ in a different order of their declarations are considered equal.
If the context is clear, we omit it in the example derivations. Finally, we assume
that the context contains all declarations mandated by the OCL standard library.
The subtype relation is transitive and function application is covariant in its
arguments and contravariant in its result type. These rules are shown in Fig. 2.
In rule S-Coll the notation Γ � C ≤ Collection means that C ranges over
every type which is a subtype of Collection. OCL defines Bag, Set, and Sequence
as subtypes of Collection. Note that Collection is a parameterized type, but the
rule S-Coll-2 is not sound for classes which define operations which change the
contents of the collection [9]. In OCL operations defined on collections do not
alter the content, but we cannot assume this in general, therefore we defined
these particular assumptions. The typing rules for terms are presented in Fig. 3,
except for the typing rule for flatten. The type of flatten is actually a dependent
type, because it depends on the type of its argument. We present the rule in
Sect. 3.5.

Rules T-True, T-False, and T-Lit assign to each literal their type. Espe-
cially, T-Lit is an axiom scheme assigning, e.g. the literal 1 the type Integer and
the literal 1.5 the type Real. Rule T-Coll defines the type of a collection literal.
The type of a collection is determined by the declared name C and the common
supertype of all its members. Rule T-Call states that if the arguments match
the types of a method or a function, then the expression is well-typed and the
result has the declared type. The antecedent Γ � C � Collection denotes that

Γ � C ≤ Collection

Γ � C(T ) ≤ Collection(T )
S-Coll

Γ � C ≤ Collection Γ � T ≤ T ′

Γ � C(T ) ≤ C(T ′)
S-Coll-2

Γ � e : S Γ � S ≤ T

Γ � e : T
S-Sub

Γ � S ≤ T Γ � T ≤ U

Γ � S ≤ U
S-Trans

Γ � T0 ≤ S0, Γ � S1 ≤ T1, · · · , Γ � Sn ≤ Tn Γ � T ≤ S

Γ � T0 × T1 × · · · × Tn → T ≤ S0 × S1 × · · · × Sn → S
S-Arrow

Fig. 2. Definition of Type Conformance
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Γ � true : Boolean T-True Γ � false : Boolean T-False

Γ � l : Tl T-Lit
Γ (v) = T

Γ � v : T
T-Var

Γ � e1 : T · · · Γ � en : T

C{e1, . . . , en} : C(T )
if C ∈ {Bag ,Set ,OrderedSet ,Sequence} T-Coll

Γ � t0 : S Γ � t1 : S1, · · · , Γ � tn : Sn

Γ � n : S × S1 × · · · × Sn → T Γ � S � Collection

Γ � t0.n(t1, . . . , tn) : T
T-Call

Γ � t0 : C(S) Γ � t1 : S1, · · · , Γ � tn : Sn

Γ � n : C(S)× S1 × · · · × Sn → T Γ � C ≤ Collection

Γ � t0 → n(t1, . . . , tn) : T
T-CCall

Γ � e0 : Boolean Γ � e1 : T Γ � e2 : T

if e0 then e1 else e2 endif : T
T-Cond

Γ � t0 : C(T ) Γ � t : S Γ, v : T, a : S � e : S Γ � C ≤ Collection

Γ � t0 → iterate(v; a = t | e) : S
T-Iterate

Γ � t0 : T0 Γ, v0 : T0 � t : T

Γ � let v0 : T0 = t0 in t : T
T-Let

Γ ′ = Γ, v0 : T0,1 × · · · × T0,m0 → T1, . . . , vn : Tn,1 × · · · × Tn,mn → Tn

Γ ′, v0,0 : T0,0, . . . , v0,m0 : T0,m0 � t0 : T0

...
Γ ′, vn,0 : Tn,0, . . . , vn,mn : Tn,mn � tn : Tn

Γ ′ � t : T

Γ � let v0(v0,0, . . . , v0,m0 ) : T0 = t0, . . . , vn(vn,0, . . . , vn,mn ) : T = tn in t : T

T-Let′

Fig. 3. Typing rules for OCL

in context Γ type C is not a subtype of Collection. A similar rule for collection
calls is given by T-CCall. Recall that the antecedent Γ � C ≤ Collection states
that the type of t0 has to be a collection type. Rule T-Cond defines the typing
of a condition. If the condition e0 has the type Boolean and the argument ex-
pressions e1 and e2 have a common supertype T , then the conditional expression
has that type T . Rule T-Iterate gives the typing rule for an iterate expres-
sion. First, the expression we are iterating over has to be a collection. Then the
accumulator has to be initialized with an expression of the same type. Finally,
the expression we are iterating over has to be an expression of the accumulator
variables type in the context which is extended by the iterator variable and the
accumulator variable. Rule T-Let defines the rule for a let expression of the
OCL 2.0 standard. Rule T-Let’ allows a let-expression where the user can de-
fine functions and use mutual recursion. There we add all variables declared by
the let expression to context Γ in order to obtain context Γ ′. Each expression
defined has to be well typed in the context extended by the formal parameters
of the definition. Finally, the expression in which we use the definitions has to
be well-typed in the context Γ ′.
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This type system is a faithful representation of the type system given in [1],
but we have omitted the typing rules for the boolean connectives, as they are
given by Cengarle and Knapp in [5], because each expression using a boolean
connective can be rewritten to an operation call expression, e.g., a and b is equiv-
alent to a.and(b). We do not have a rule for the undefined value, as presented
in [5], because the OCL 2.0 proposal does not define a literal for undefined [1,
pp. 48–50]3.

Within the UML 2.0 standard [3] and the OCL 2.0 standard [1] methods are
redefined covariantly. We assume that some kind of multi-method semantics for
calls of these methods is intended. These redefinitions are not explicitly treated
in the OCL 2.0 type system, they can, however, be treated as overloading a
method, and hence, be modeled with union-types in our system (see Sec. 3.2),
as suggested in, e.g., [7, p. 340].

Also note that our type system makes use of the largest common supertype
only implicitly, whereas it is explicitly used in other papers. It is hidden in the
type conformance rules of Fig. 2. An example of where we use the largest common
supertype can be found in Sect. 3.1. The rules presented here are not designed
for a type-checking algorithms, but for deriving well-typedness. Therefore, the
type system presented here lacks the unique typing property, but it is adequate
with respect to the operational semantics defined in [1] and decidable.

Proposition 1. The type system is adequate, i.e.for any OCL expression e if
e : T can be derived in the type system, then e is evaluated to a result of a type
conforming to T .

The type system is decidable, i.e. there exists an algorithm which either de-
rives a type T for any OCL expression e or reports that no type can be derived
for e.

We use the definitions of this section for the discussion of its limitations in
the following sections.

3 Extensions

In this section, we propose various extensions to the type system of OCL which
help to use OCL earlier in the development of a system and to write more
expressive constraints. We introduce intersection types, union types, operator
abstraction, and bounded operator abstraction to the type system of OCL. In-
tersection types, which express that an object is an instance of all components
of the intersection type, are more robust w.r.t. transformations of the contex-
tual class diagram. Union types, which express that an object is an instance of
at least one component of the union type, admit more constraints that have a

3 Note that OclUndefined is the semantic value of any undefined expression and the
“only instance of OclVoid”, and there not part of the concrete syntax [1, p. 133].
Calling the property oclIsUndefined(), defined for any object, is preferred, because
any other property call results in OclUndefined.
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meaning in OCL to be well-typed. Parametric polymorphism extends OCL to
admit constraints on template without requiring that the template parameter
is bound. Bounded parametric polymorphism allows one to specify assumptions
on a template parameter. Together, our extensions result in a more flexible type
system which admits more OCL constraints to be well typed without sacrificing
adequacy or decidability.

3.1 Intersection Types

Consider the following constraint of class Obs in Fig. 4:

context Obs inv : a→ union(b).m1()→ forAll(x | x > 1)

This is a simple constraint which asserts that the value returned by m1 for each
element in the collection of a and b is always greater than 1. We show that it is
well-typed in OCL using the type system of Sect. 2.

a : Bag(D) b : Bag(C)
a→ union(b) : Bag(A)

a→ union(b).m1() : Bag(Integer)
a→ union(b).m1()→ forAll(x | x > 1) : Boolean

B D C Obs

A

+m(): Integer const

OclAny

b

a
1..*

1..*

Fig. 4. A simple initial class diagram

B D Obs

A

+m(): Integer const

OclAny

C

E

b

a
1..*

1..*

Fig. 5. The same diagram after a change

Now consider the following question: What happens to the constraint if we
change the class diagram to the one in Fig. 5, which introduces a new class E
that implements the common functions of classes C and D? The meaning of the
constraint is not affected by this change. However, the OCL constraint is not
well-typed anymore, as this derivation shows, where the type annotation error is
used to state that the type system is not able to derive a type for the expression4.

a : Bag(D) b : Bag(C)
a→ union(b) : Bag(OclAny)

a→ union(b).m1() : error

4 Recall, that we do not explicitly write the context in examples if it is clear.
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The problem is, that the OCL type system chooses the unique and most
precise supertype of a and b to type the elements of a → union(b), which now
is OclAny, because we now have to choose one of A, E, and OclAny, which are
the supertypes of C and D. Neither A nor E are feasible, because the type of
the expression has to be chosen now. Hence, we are forced to choose OclAny.
To avoid this problem constraints should be written once the contextual class
diagram does not change anymore. Otherwise all constraints have to be updated,
which if it is done by hand is a time consuming and error prone task.

The mentioned insufficiency of the type system can be solved in two ways:
We can implement a transformation which updates all constraints automatically
after such a change, or we introduce a more permissive type system for OCL. Be-
cause an automatic update of all constraints entails an analysis of all constraints
in the same way as performed by the more permissive type system, therefore we
extended the type system and leave the constraints unchanged.

The proposed extension is the introduction of intersection types. An inter-
section type, written T ∧ T ′ for types T and T ′ states that an object is of type
T and T ′. Because ∧ is both an associative and commutative operator, we in-
troduce the generalized intersection

∧
T∈T T . In this paper T is always a finite

set of types. The empty intersection type
∧
∅ is the top type, which does not

have any instances (and therefore is equivalent to OclVoid). Intersection types
are useful to explain multiple inheritance [10–12].

We add the rules of Fig. 6 to the type system, which introduces intersection
types into the type hierarchy. The rule S-InterLB and S-Inter formalize the
notion that a type T belongs to both types, and that ∧ corresponds to the
order-theoretic meet. The rule S-InterA allows for a convenient interaction
with operation calls and functions. This extension of the type system already

Γ �
∧

T ′∈T T ′ ≤ T for any T ∈ T S-InterLB

Γ � T ≤ T ′ for all T ′ ∈ T
Γ � T ≤

∧
T ′∈T T ′ S-Inter Γ �

∧
T ′∈T (T → T ′) ≤ T →

∧
T ′∈T T ′ S-InterA

Fig. 6. Intersection Types

solves the problem raised for the OCL constraint in the context of Fig. 5, as the
derivation in Fig. 7 demonstrates.

The extension of the OCL type system with intersection types is sufficient to
deal with transformations which change the class hierarchy by moving common
code of a class into a new super-class. This extension is also safe, and does not
change the decidability of the type system.

3.2 Union Types

Union types are dual to intersection types. They are not as useful as intersection
types, because they do not address a fundamental language concept like multiple
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a : Bag(D) D ≤ A D ≤ E

a : Bag(A ∧ E)

b : Bag(C) C ≤ A C ≤ E

b : Bag(A ∧ E)

a → union(b) : Bag(A ∧E)

a → union(b) : Bag(A)

a → union(b).m1() : Bag(Integer)

a → union(b).m1() → forAll(x | x > 1) : Boolean

Fig. 7. Type checking with intersection types

C
+m(x: Integer): Integer const

B

+m(x: Integer): Integer const

A
1

b

1

a

Fig. 8. A simple example class diagram

inheritance. They can be used to address overloading of operators, and they do
solve type checking problems for collection literals and the union operation of
collections in OCL. We explain this by the class diagram in Fig. 8. Consider
the expression context C inv : Set{self .a, self .b}.m(1) on this class diagram5.
Assuming that the multiplicities of the associations are 1, we have the derivation

a : A b : B

Set{a, b} : Set(OclAny)
Set{a, b}.m(1) : error

even though both types A and B define the property m(x : Integer) : Integer .
Here, it is desirable to admit the constraint as well-typed, because it also has a
meaning in OCL. Using intersection types does not help here, because stating
that a and b have the type A ∧B is not adequate.

Instead, we want to judge that a and b have the type A or B. For this purpose
we propose to introduce the union type A∨B. A union type states, that an object
is of type A or it is of type B. Again, ∨ is associative and commutative, so we
introduce the generalized union

∨
T∈T T . The type

∨
∅ is the universal type,

a supertype of OclAny, of which any object is an instance. Union types are
characterized by the rules in Fig. 9. Rules S-UnionUB and S-Union formalize
the fact that a union type is the least upper bound of two types. Note that it

T ≤
∨

T ′∈T T ′ for any T ∈ T . S-UnionUB

T ′ ≤ T for any T ′ ∈ T∨
T ′∈T T ′ ≤ T

S-Union
∧

T ′∈T (T ′ → T ) ≤ (
∨

T ′∈T T ′)→ T S-UnionA

Fig. 9. Rules for union types

5 Note that a : A and b : B, and both classes define a method m() returning an Integer.
However, in this case the intended meaning of the constraint is Set{self .a.m(1),
self .b.m(1)}, which is well-defined.
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only makes sense to use a property on objects of A ∨ B that are defined for A
and B. This is stated by the rule S-UnionA.

Using our extended type system, we can indeed derive that our example has
the expected type.

a : A b : B m : A→ Integer m : B → Integer
Set{a, b} : Set(A ∨B) m : A ∨B → Integer

Set{a, b} → collect(m()) : Bag(Integer)

3.3 Parametric Polymorphism

UML 2.0 provides the user with templates6 (see [3, Sect. 17.5, pp. 541ff.]), which
are functions from types or values to types, i.e., they take a type as an argument
and return a new type. We first consider the case where the parameter of a class
ranges over types. This form of parametric polymorphism is highly useful, as
shown, e.g., in [13] and [14]. Adequate support for parametric polymorphism in
the specification language is again highly useful, as the proof of a property of
a template carries over to all its instantiations [15]. The OCL standard library
contains the collection types, which are indeed examples of generic classes.

We have not found yet how the parameter of a template, which is defined in
the class diagram, is integrated into OCL’s type system. In fact, it is not defined
in the proposal how the environment has to be initialized in order to parse
expressions according to the rules of Chapter 4 of [1]. For example, consider the
following constraint:

(1)
context Sequence :: excluding(object : T ) : Sequence(T )
post : result = self → iterate(elem ; acc : Sequence(T ) = Sequence{} |

if elem = object then acc else acc → append(object) endif)

To what does T refer to? Currently, T is not part of the type environment,
because it is neither a classifier nor a state but an instance of TemplateParameter
in the UML metamodel. This constraint is, therefore, not well-typed. But it is
worthwhile to admit constraints like (1), because this constraint is valid for any
instantiation of the parameter T .

UML 2.0 allows different kinds of template parameters: parameters ranging
over classifiers, parameters ranging over value specifications, and parameters
ranging over features (properties and operations). In this paper, we only consider
parameters ranging over classifiers.

We propose to extend the environment such that Γ contains the kinding judg-
ment T ∈ 	 if T is the parameter of a template. This states that the parameter
of a template is a type. Also note that the name of the template classifier alone
is not of the kind 	 but of some kind 	 → · · · → 	, depending on the number
of type parameters. Additionally, we give the following type checking rules for
templates in Fig. 10. These rules generalizes the conforms-to relation previously
defined for collection types only. The rule S-InstSub states that if a template
6 Also called generics or parameterized classes.
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Γ � T : K → K′ Γ � T ′ : K → K′ Γ � T ′′ : K Γ � T ≤ T ′

Γ � T (T ′′) ≤ T ′(T ′′)
S-InstSub

Γ � T : K → K′ Γ � T ′ : K Γ � T ′′ : K Γ � T ′ ≤ T ′′

Γ � T (T ′) ≤ T (T ′′)
S-InstSub-2

Fig. 10. Subtyping rules for parametric polymorphism

class T is a subtype of another template class T ′, then T remains a subtype of
T ′ for any class T ′′ bound to the parameter. This rule is always adequate. The
rule T-InstSub-2 states that for any template class T and any types T ′ and T ′′

such that T ′ is a subtype of T ′′, then binding T ′ and T ′′ to the type parameter
in T preserves this relation. Note that rule S-InstSub-2 is not always safe. The
absence of side-effects in OCL expressions are a fundamental property for the
validity of the rule S-Arrow and therefore also for S-InstSub-2. The following
counter-example illustrates the importance of the absence of side-effects for the
type system. Consider the following fragment of C++ code:

class C { public: void m(double *&a) { a[0] = 1.5; } }
void main(void) { int *v = new int[1]; C *c = new C(); c->m(v); }

If we allow the S-InstSub-2, then the call c->m(v) is valid, because int is a
subtype of double. But within the body of m the assignment a[0] = 1.5 would
store a double value into an array of integers, which is not allowed. However,
since we assume that each expression is free of side-effects, rule S-InstSub-2 is
adequate.

3.4 Bounded Operator Abstraction

While parametric polymorphism in the form of templates is useful in itself,
certain properties still cannot be expressed directly as types but have to be
expressed in natural language. For example, in the OCL standard the collection
property sum() of set has the following specification:

The addition of all elements in self. Elements must be of a type support-
ing the + operation. The + operation must take one parameter of type
T and be both associative: (a + b) + c = a + (b + c), and commutative:
a + b = b + a. Integer and Real fulfill this condition.

Formally, the post condition of sum does not type check, because a type checker
has no means to deduce that T indeed implements the property + as specified.
The information can be provided in terms of bounded polymorphism, where the
type variable is bounded by a super type. The properties of + can be specified
in an abstract class (or interface), say Sum, and the following constraints:

(2)

context Sum
inv : self .typeOf ().allInstances()→forAll(a, b, c |

a + (b + c) = (a + b) + c)
inv : self .typeOf ().allInstances()→forAll(a, b | a + b = b + a)
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In Eq. (2) the property typeOf () is supposed to return the run-time type of
the self object. It is important to note that we cannot write Sum.allInstances,
because the type implementing Sum need not provide an implementation of +
which work uniformly on all types implementing Sum. For example, we can define
+ on Real and on Vectors of Reals, but it may not make sense to implement an
addition operation of vectors to real which returns a real. So we do not want to
force the modeler to do this. The purpose of Sum is to specify that a classifier
provides an addition which is both associative and commutative.

When Sum is a base class of a classifier T , and we have a collection of
instances of T , then we also know that the property sum is defined for this
classifier. So Sum is a lower bound of the types of T . Indeed, the signature of
Collection :: sum can be specified by Collection(T ≤ Sum) :: sum() : T , which
expresses the requirements on T .

Syntactically, we express the type of a bounded template using the notation
Λτ.C(τ ≤ S). For this new type constructor we have to define a new kind
Πτ ≤ S → 	, where S is of kind 	. This new kind Πτ ≤ S states that τ has to
be a subtype of S to construct a new type, otherwise the type is not well-kinded.

Observe that type operators are not comparable using the subtype relation.
Therefore, bounded operator abstraction does not introduce new rules into the
typing system.

3.5 Flattening and Accessing the Run-Time Type of Objects

Quite often it is necessary to obtain the type of an object and compare it. OCL
provides some functions which allow the inspection and manipulation of the
run-time type of objects. To test the type of an object it provides the operations
oclIsTypeOf() and oclIsKindOf(), and to cast or coerce an object to another type
it provides oclAsType(). In OCL, we also have the type OclType, of which the
values are the names of all classifiers appearing in the contextual class diagrams7.
The provided mechanisms are not sufficient, as the specification of the flatten()
operation shows (see [1]):

(3)

context Set :: flatten() : Set(T 2)
post : result = if self .type.elementType.oclIsKindOf (CollectionType)

then self → iterate(c; acc : Set() = Set{} | acc → union(c→ asSet()))
else self
endif

This constraint contains many errors. First, the type variable T2 is not bound
in the model (see Sect. 3.3 for the meaning of binding), so it is ambiguous
whether T2 is a classifier appearing in the model or a type variable. Next, self
is an instance of a collection kind, so the meaning of self.type is actually a
shorthand for self→collect(type), and there is no guarantee that each instance
of the collection defines the property type. Of course, the intended meaning of
this sub-expression is to obtain the element-type of the members of self, but
7 The type OclType will be removed but still occurs in the proposal.
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one cannot access the environment of a variable from OCL. Next, the type of
the accumulator in the iterate expression is not valid, Set requires an argument,
denoting the type of the elements of the accumulator set (one could use T2 as
the argument).

The obvious solution, to allow the type of an expression depending on the
type of other expressions, poses a serious danger: If the language or the type
system is too permissive in what is allowed as a type, we cannot algorithmically
decide, whether a constraint is well-typed or not. But decidability is a desirable
property of a type-system. Instead, we propose to treat the flatten() operation
as a kind of literal, like iterate is treated. For flatten, we introduce the following
two rules:

e : C(T ) C ≤ Collection T ≤ Collection(τ ′)
e→ flatten() : C(τ ′)

T-Flat

e : C(T ) C ≤ Collection T � Collection(τ ′)
e→ flatten() : C(T )

T-NFlat

The rule T-Flat covers the case where we may flatten a collection, because its
element type conforms to a collection type with element type T ′. In this case,
T ′ is the new collection type. The rule T-NFlat covers the case where the
collection e does not contain any other collections. In this case, the result type
of flatten is the type of collection e.

These rules encode the following idea: For each collection type we define an
overloaded version of flatten. As written in Sec. 3.2, we are able to define the
type of any overloaded operation using a union type. However, using this scheme
directly yields infinitary union types, because the number of types for which we
have to define a flatten operation is not bounded. The price for this extension is
decidability [16].

The drawback of this extension is that the meaning of the collection cannot be
expressed in OCL, because we have no way to define T ′ in OCL. The advantage
is, that the decidability of the type system extended in this way is not affected.

4 Adequacy and Decidability

In this section, we summarize the most important results concerning the ex-
tended type system. This means that if the type system concludes that an OCL-
expression has type T , then the result of evaluating the expression yields a value
of a type that conforms to T . The type system is adequate and decidable. For
the (operational) semantics of OCL we use the one defined in [1, 4].

Theorem 1. Let Γ be a context, e an OCL expression, and T a type such that
Γ � e : T . Then the value of e conforms to T .

Proof. Similar to the one presented in [5] and in [17]. #$
Theorem 2. Let Γ be a context and e be an OCL expression. Then there exists
an algorithm which computes a type T such that Γ � e : T or returns an error if
no such type can be found by the type system.
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Proof. Follows from [17] and [9], since our type system is a special case of the
type systems used there. #$

Our type-checking algorithm is based on [17] and [9] but handles union types.
It is simpler than the cited ones, because we only have a form of bounded oper-
ator abstraction, where type abstractions are not comparable, except for collec-
tion types, which is crucial in the proof of decidability. Furthermore, the kind of
polymorphism in our type system is ML-like, where type variables (the template
parameters) are universally quantified.

However, the type system is incomplete. By this we mean that if e is an OCL
expression the type system will not compute the most precise type of e, but one of
its supertypes. One reason for incompleteness is the following: If e is a constraint
whose evaluation does not terminate, its most specific type is OclVoid . But we
cannot decide whether the evaluation of a constraint will always terminate.

Indeed, the type system presented in this paper covers a usable set of features
and it is still decidable. If we, e.g., also add checking for value specifications of
method specifications of templates to the type system, it would become undecid-
able [18]. Such type systems indeed form the theoretical foundation of interactive
theorem provers.

5 Related Work and Conclusions

A type system for OCL has been presented by Clark in [8], by Richter and
Gogolla in [19], and by Cengarle and Knapp in [5]. In Sect. 2 we summarized
these results and give a formal basis for our proposal.

A. Schürr has described an extension to the type system of OCL [20], where
the type system is based on set approximations of types. These approximations
are indeed another encoding of intersection and union types. His algorithm does
not work with parameterized types and bounded polymorphism, because the
normal forms of types required for the proof of Theorem 2 cannot be expressed
as finite set approximations. We extended OCL’s type system to also include
polymorphic specifications for OCL constraints, which is not done by Schürr.

Our type system is a special case of the calculus Fω
∧ . This system is analyzed

in [17], where a type checking algorithm is given. This calculus is a conservative
extension of Fω

≤ . M. Steffen has described a type checking algorithm for Fω
≤

with polarity information [9]. Our type system does not allow type abstractions
in expressions and assumes that all type variables are universally quantified in
prenex form.

We have presented extensions to the type system for OCL, which admits a
larger class of OCL constraints to be well-typed. Furthermore, we have intro-
duced extensions to OCL, which allow to write polymorphic constraints.

The use of intersection types simplifies the treatment of multiple inheritance.
This extension makes OCL constraints robust to changes in the underlying class
diagram, e.g., refactoring by moving common code into a superclass. Intersec-
tion types are therefore very useful for type-checking algorithms for OCL. Union
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types simplify the treatment of collection literals, model operator overloading ele-
gantly, and provides unnamed supertypes for collections and objects. Parametric
polymorphism as introduced by UML 2.0’s templates is useful for modeling. We
described how polymorphism may be integrated into OCL’s type system and
provided a formal basis in type checking algorithms. Bounded parametric poly-
morphism is even more useful, because it provides the linguistic means to specify
assumptions on the type of the type parameters.

We have proposed typing rules for certain functions which can not be formally
expressed in OCL. We have shown that this type system is sound, adequate, and
decidable.
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Abstract. The lack of a formal semantics for UML-RT makes it inad-
equate for rigourous system development, especially if the preservation
of behaviour is a major concern when applying well-known model trans-
formations, like refactorings and refinements. In this paper, we propose
a semantics for UML-RT active classes through a mapping into Circus,
a specification language that combines CSP, Z and specification state-
ments. As a consequence of the translation, we are able to prove that
model transformations preserve both static and dynamic behaviour, us-
ing refinement laws and a relational semantics of Circus, based on the
Unifying Theories of Programming.

Keywords: UML-RT, Circus, method integration, model transforma-
tions

1 Introduction

As other object-oriented (OO) methods, UML [1] has tremendously influenced
the software engineering modeling practice with rich structuring mechanisms.
Despite its strengths, the rigorous development of non-trivial applications does
not seem feasible without a formal semantics. The reason is that well-known
model transformations might not preserve behaviour. This problem is even more
serious in a model driven development, where transformations are as important
as models, and involve different model views.

In the literature, several efforts address the problem through the integration
of UML models with formal languages; there are some approaches to specifica-
tion [2, 3], like combinations of UML with Z [4] or with CSP [5]. A formalisation
of class diagrams using the state-based Z notation is presented in [2]; a detailed
comparison of general integration approaches involving Z and Object-oriented
extensions of Z is discussed in [6]. Concerning formal semantics of state diagrams,
a mapping into CSP processes is presented in [3]; typically, each contribution
to formalise UML tends to concentrate on a single view (like state or class di-
agrams). Although some works like, for instance, [7], use a uniform notation to
describe a mapping that considers both structure and behaviour, the presenta-
tion is informal, based on examples.

Similar limitations can be found in works [8, 9] that formalise UML-RT [10]
(a conservative UML profile that includes active objects to describe concurrent
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and distributed applications) using CSP. They focus on the translation of the
UML-RT structural view into CSP [8], and consider the behavioural represen-
tation of active objects [9] only partially. For example, statecharts of capules
and protocols, and their relationship with the structure diagrams are not ad-
dressed. Also, model transformations are usually neglected or, when considered,
the presentation is informal [11] and does not encompass all the model views.

In this paper, we propose a semantics for UML-RT via mapping into Cir-
cus [12], a language that combines CSP, Z and specification statements. We
focus on mapping the new elements (active classes and other related constructs)
that UML-RT adds to UML. We consider the following views of a UML-RT
model in an integrated way: class, state and structure diagrams. We propose
and prove a decomposition law for active classes, as an illustration of a sound
model transformation; the law and its proof consider the views mentioned above.

One reason for using Circus is that its semantics is defined in the setting
of the Unifying Theories of Programming [13]; this relational model has proved
convenient for reasoning. Another advantage is that Circus includes the main
design concepts of UML-RT. Unlike, for instance, CSP-OZ [14], Circus decou-
ples event occurrences from state operations (like in UML-RT), and it has been
designed to support a refinement calculus [15]; the decoupling seems crucial for
addressing refinement. The laws of Circus have been inspiring both to propose
laws for UML-RT ([16]) and to prove such laws as illustrated in this paper.

The next section gives an overview of UML-RT, and Section 3 introduces
Circus. Section 4 presents a mapping from UML-RT into Circus. Soundness of
model transformations is addressed in Section 5, where we propose and prove a
transformation law. Finally, we summarise our results and topics for future work
in Section 6.

2 UML-RT

The specification and design of a distributed system is a complex task involving
data, behaviour, intercommunication and architectural aspects of the model.
In order to fulfill these requirements, UML and ROOM (Real-Time Object-
Oriented Modeling language) have been combined into UML for Real-Time
(UML-RT) [10]. Some of the ROOM techniques also motivated extensions in
the UML 2.0 [17] version. Here we use UML-RT because we consider that the
proposed model for active objects is more consolidated than that proposed for
UML 2.0. Furthermore, UML-RT counts with commercial tool support.

Using stereotype mechanisms, UML-RT introduces four new constructors:
capsule, protocol, port and connector. Capsules (active classes) describe, poten-
tially concurrent, architectural components that may interact with their envi-
ronment only through signal-based objects called ports. Ports realise protocols,
which define a set of signals that a capsule can receive or send. A protocol
also defines the valid flow of information (signals) between connected ports of
capsules. Connectors act as a physical communication channel between ports.

A UML-RT model of the system is formed of a set of diagrams and system
properties. We choose diagrams that mainly represent the following architec-
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Fig. 1. Class, Structure and State Diagrams of a Manufacturing System

tural views: static data, dynamic behaviour, and dynamic object relationships;
these are expressed, respectively, by class, state and structure diagrams. We di-
rectly express the system properties by invariants, pre- and post-conditions in
Circus; they could alternatively be expressed in OCL [18], but an OCL to Circus
mapping is out of the scope of this work.

In order to illustrate the notation, an example of a simplified manufacturing
system is used. In Figure 1 (top left rectangle) a class diagram is presented.
Capsules and protocols are graphically represented in the diagram by a box
with a stereotype Capsule and Protocol, respectively; a symbol at the top right
is also used to characterise their representations. The diagram emphasises the
relationships between the ProdSys and Storage capsules. The capsule Storage is
a bounded, reactive, FIFO buffer that is used to store objects of class Piece, and
ProdSys is used to process these objects. These capsules have an association to
the protocols, which are used to govern the communication among capsules. The
protocol STO declares the input signal req (used to communicate the request of
a work piece) and the output signal output (which communicates the delivery of
a work piece). The protocol STI declares a signal input to store a piece.

By their own nature, capsules provide a high degree of information hiding. As
the communication mechanism is via message passing, all capsule elements are
hidden, including not only attributes, but also methods. The capsule Storage has
a set of Pieces, represented by the association buffer, and methods to threat this
set. The only visible elements in the capsule are ports, which can be connected
to other capsule ports to establish communication; here, we assume that this
communication is synchronous. This decoupling makes capsules highly reusable.
In addition, a capsule can also be defined hierarchically, in terms of subcapsules,
each with a state-machine and possibly a hierarchy of compound capsules.

A structure diagram, a kind of collaboration diagram, describes a capsule
structural decomposition, showing the capsule interaction through connections
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among its ports and permitting hierarchically composed models. The structural
decomposition of ProdSys is shown in Figure 1 (top right rectangle). It is com-
posed by the capsule instances sin and son of Storage, which also communicate
with ports of ProdSys; these capsule instances are created as a consequence of
the association of ProdSys with the capsule Storage in the class diagram. Block
filled squares in the capsule instances represent their ports, where white ones
are conjugated (their signal directions are inverted in relation to the ordinary
ports). Ports are basically divided into two types: relay ports and end ports. End
ports are used by the capsule statechart to receive or transmit signals, while re-
lay ports are used to connect other ports (like protected ports of the capsule
or public ports of subcapsules) in the capsule internal structure diagram to the
external environment. In the structure diagram of ProdSys, the ports pi and po
are protected end ports used only by its statechart, while mi and mo are public
relay ports used only to connect ports of subcapsules to the environment. In
Storage, si and so are public end ports.

The capsule behaviour is described in terms of UML-RT statecharts, which
extend the ROOMCharts concept [19] and differ from the standard UML stat-
echarts [1] including some adaptations to better describe active objects (for in-
stance, UML-RT statechart do not have final states). A statechart is composed
by transitions and states; in general, a transition has the form p.e[g]/a, where
e is an input signal, p is the port through which the signal arrives, g is a guard
and a is an action. Input signals and a true guard trigger the transition. As a
result, the corresponding action is executed.

We assume that events, guards and actions are expressed using the Circus
notation. For example, in the statechart of Storage, there are two transitions
from state Sa. The one on the right triggers if the req signal arrives through port
si and the buffer is non-empty. The corresponding action declares a variable x to
capture return of the method remove. This is the way it is done in Circus, since
remove is actually interpreted as a Z-Schema, as explained in the next section.
The value od x is then through channel si. The syntax for writing these actions
related to communication are also as in Circus. In this work we do not consider
capsule inheritance, mainly because its semantics in UML-RT is not yet well-
defined; according to the ROOMCharts definitions [19], inherited capsule is able
to arbitrarily change the behaviour defined in its super capsule.

In UML-RT, states are classified as initial, choice, composite or simple. Initial
states are transient states that mark the starting point of a state-machine. A
composite state groups other states, whereas a simple one has no other state
inside. Choice states are those that involve a decision of which path to take
according to its guard; there exist only two outgoing transitions: one is triggered
when the guard is true; otherwise the second is triggered. Composite states are
divided into two types: Or-States and And-States. An Or-State defines that
only one of its substates is active, whereas And-States contain regions that are
executed in parallel, and permit each region to have an active state per time.
Further details about composite states are presented in Section 4.2.
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For a capsule state-machine, we assume that there is a composite state that
contains all other states; it is called the top state (S0) and is implicitly reached
when the capsule instance is created. Figure 1 (bottom) presents the statecharts
of ProdSys, Storage, STO and STI. Their respective top states (S0) are Or-States
that sequentially execute the inner states. In Storage, for example, the initial
state moves to the state Sa. Next it waits the arrival of the input or req signals.
The behaviour of Storage is further explained in the next section.

3 Circus

The language Circus [12] includes the notion of a process, whose state is defined
using a Z schema and behaviour by an action expressed in the CSP notation.
Process interaction is defined via channels to communicate values or just syn-
chronise events. Therefore, the specification of a Circus program is defined by
a sequence of paragraphs, which can include: Z paragraphs, process definitions,
and channel declarations. As a simple example, consider the capsule Storate of
Figure 1. It can be specified in Circus as the following process.

| N : N
TSTI ::= input� Piece �
channel si : TSTI

TSTO ::= req | output� Piece �
channel so : TSTO

process Storage =̂ begin
state StorageState =̂ [buff : seqPiece; size : 0..N | size = #buff ≤ N ]
initial StorageInit =̂ [StorageState ′ | buff′ = 〈〉 ∧ size′ = 0]
insert =̂ [ΔStorageState; x? : Piece | size < N ∧

buff′ = buff � 〈x?〉 ∧ size′ = size + 1]
remove =̂ [ΔStorageState; x ! : Piece | size > 0 ∧ x ! = head buff ∧

buff′ = tail buff ∧ size′ = size − 1]
Sa =̂ (size < N & si?input.x → insert; Sa)

� (size > 0 & so.req → (var x : Piece • remove; so!output.x); Sa)
• StorageInit; Sa
end

The maximum size of this buffer is a strictly positive constant N . The buffer
program takes its inputs and supplies its outputs through the channels si and so,
respectively. The free types TSTI and TSTO categorise the values communicated
by these channels. In TSTO, req and output are constructors of the free type,
used to communicate the request and delivery of objects, respectively. Similarly,
in TSTI, input is used to represent the storage of objects of type Piece.

In Circus the body of a declaration of a process is delimited by the begin
and end keywords; it is composed by a sequence of paragraphs and a main
action (after the • symbol), which defines the process behaviour. One of these
paragraphs is used to describe the state of the process (identified by the key-
word state), which encapsulates its data components. Furthermore, the other
paragraphs describe process operations and actions, that are used to structure
the process specification and the main action.
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In our example, the process Storage encapsulates two state components in
the Z schema BufferState: an ordered list buffer of contents and the size of this
list, represented by size. Initially, the buffer is empty and, therefore, its size is
zero; this is specified as a state initialisation action StorageInit .

The main action initialises the buffer and repeatedly offers the choice of
input and req. The signal input is guarded by size < N . The process accepts an
input whenever there is space to store the new value; in this case, the piece is
appended to the bounded sequence and the size incremented. The effect on the
state is described by a schema as usual, using the operator insert. The action
si?input.x → put is a prefixing in the style of CSP. A new input variable x is
introduced, and a value input through the channel si is assigned to it. Afterwards,
the action insert is executed. The req signal is enabled providing that the buffer
contains something (size > 0). Afterwards, the Buffer offers output to deliver a
piece. The associated state modification is defined by the remove schema action,
which removes the head of buffer and updates the size accordingly.

The example has shown how processes are constructed from actions, but
processes may themselves be combined with CSP operators, such as parallel
composition (A1 |[ cs ]| A2). The meaning of a new process constructed in this
way is obtained from the conjunction of the constituent states of the processes
in composition (A1 and A2) and the parallel combination of their main actions,
synchronising on the set of channels (cs).

At the level of actions, the Circus parallel operator is actually slightly differ-
ent from that of CSP. To resolve conflicts in the access to the variables in scope,
it requires a synchronisation set and two sets that partition those variables. In
the parallelism A1 |[ns1 | cs | ns2 ]|A2, the actions A1 and A2 synchronise on the
channels in set cs . Although both A1 and A2 have access to all variables, they
can only modify the values of the variables in ns1 and ns2, respectively.

Further explanation of the Circus notation used in this work is introduced
as the need arises, in the next section. A more detailed presentation of Circus,
including its complete grammar and formal semantics, can be found in [20].

4 Semantic Mapping

This section gives meaning to UML-RT elements through a mapping into Cir-
cus. This translation provides a mapping of structural and behaviour UML-RT
elements into Circus.

In our approach, UML-RT classifiers with an associated behaviour (capsules
and protocols) are mapped into processes, and ports into channels. The mapping
of classes has been addressed by several authors, and is out of the scope of our
work. For example, in [2] classes are mapped directly into Z paragraphs. In this
sense, our work complements those approaches.

In our strategy the target of the translation is a Circus specification that
is itself the meaning of the original model. Concerning the structure diagrams,
we consider that they implicitly define an extensional view of the system; they
contain the set of capsule instances. To deal with hierarchical structures, we
assume that all capsule instances, ports and connections have distinct names.
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When mapping elements declared as a list (such as attributes and methods
of a capsule, or signals of a protocol), by convention we single out one of its
elements, present its mapping , and invoke a meta function (TL()) to translate
the remaining elements. We assume that there are overloaded definitions of TL()
for each kind of list. In practice such lists can obviously be empty, but we avoid
this trivial case assuming that they have at least one element.

4.1 UML-RT Structural Elements

A protocol declaration in UML-RT encapsulates both the communication ele-
ments and the behaviour. In Circus, this gives rise to two major elements: a
stateless process that captures this behaviour and a channel to represent the
communication elements. Regarding the signals, a possible mapping would be to
introduce a channel associated with each signal. Rather, we use a single channel
to communicate all signals of a protocol. This channel communicates values of
a free type, with each constructor representing a signal. Using a single channel
facilitates the mapping of capsules presented next. For instance, it is more conve-
nient to use a single channel in contexts involving synchronisation or renaming.

TP ::= i � T (I) �| o | TL(incomes) | TL(outgoings)
channel chanP : TP

process P =̂ begin • H(SP) end

In names like chanP above, we assume that P is a placeholder for the actual
protocol name. In this way, the mapping of protocol STO in the example (Fig-
ure 1) generates a corresponding channel chanSTO. The channel chanP commu-
nicates values of the free type TP; each value represents a signal. Parameterless
signals, like the outgoing signal o above, are translated into constants; parame-
terised signals are mapped into data type constructors (like i). The type of the
parameter is translated into a corresponding Circus type by function T (). The
remaining signals (incomes and outgoings) are mapped by the function TL().

The behaviour of the protocol P is represented by H(SP), where SP stands for
a state that encloses all other states of its statechart. The function H(), which
translates a statechart into a Circus action, is explained in Section 4.2.

Capsules are also defined as processes, with methods defined as schema op-
erations, and attributes mapped into a Z state schema (the process state). Each
port generates a channel with the same type of the corresponding channel of the
protocol, and has its behaviour described by the process obtained from the map-
ping of its protocol synchronised with that obtained from the capsule statechart.
Observe that in UML-RT the type of a port is the protocol itself. In Circus the
type of the channel originated from the port is the free type that represents the
signals (as explained in the mapping of a protocol).
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channel p : TP; TL(ports); TL(ports′)
process ChartC =̂ begin

state Cstate =̂ [a : T (A); TL(atts) | InvC]
private m =̂ [ΔCstate ; x : T (X);

TL(params) | Prem ∧ Postm]
TL(meths)
• H(Sc)

end

In the above mapping, the process ChartC deals with the views represented by
class and state diagrams. It encapsulates all actions that manipulate the private
attributes of the capsule C. In the capsule C above, the compartments correspond
to attributes, methods and ports. Therefore, a, m and p are those that we single
out. The attribute a is mapped to an attribute in the state of ChartC with its cor-
responding type in Circus, given by T (A); the other attributes atts are mapped
by the function TL(), as previously explained. The invariant InvC cames from
the UML-RT note element on the left, and it is assumed to be already described
in Circus. The method m() is mapped to an operator that could change any
state attribute and whose parameters are mapped into schema attributes, just
like a has been included in the state schema; similarly the function TL() maps
the other methods meths. Like the invariant InvC, the pre- and post-conditions
Prem land Postm are written in Circus. The port p is mapped to a channel with
the same type TP of the channel ChanP used by the protocol P. The main action
of ChartC is expressed by H(SC), which represents the mapping of the statechart
of capsule C, explained in Section 4.2.

We need also consider structure diagrams, dealt with by the mapping below.
The process that deals with this view represents the observational behaviour
of capsule C after considering the restrictions imposed by its ports to the cor-
responding communication channels used by the process, and considering the
parallelism of all its connected subcapsules.

channel k : TP; TL(cons)
chanset cc =̂ {| k |} ∪ {|cons |} ∪ {|p, ports |}
chanset hchan =̂ cc ∪ {|ports′ |} ∪ {|portsB |} ∪ {|portsCap |}
process StructC =̂ ((ChartC |[ cc ]| (P[chanP := k] |[ cc]|

(TL(ports) |[ cc ]| TL(ports′)))) |[ cc]|
((StructB[q, portsB := m, cons]) |[ cc]|
TL(cal)))[m, cons :=p, ports] \ hchan

In the process (StructC), the behaviour of ChartC is synchronised with the
behaviour of all ports in capsule C; we single out here the port p, whose behaviour
is represented by process P. The channel chanP used by P has to be renamed
with the name of the connector (k) that links the port p to another port in the
system. The other ports are similarly mapped by the function TL(). We single
out the subcapsule B from the subcapsule list cal, which has all public ports q
and portsB renamed to their associated connections k and cons; portsB stands for
the public port list of B. After parallelising all capsules in the structure diagram
of C, an injective function is needed to rename ([m, cons :=p, ports]) connections
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to associated public ports, and hide (\ hchan) connections protected port (and
subcapsule port) channels.

Because we represent port connections through renaming and synchronisa-
tion, we need to assume that ports are connected in the lower structure level in
which they are present; actually this is a good design practice.

4.2 UML-RT Behavioural Elements

Our mapping of capsule and protocol statecharts into Circus is based on the
work reported in [3], which presents the formalisation of UML statecharts in
CSP. Nevertheless, we extend [3] in order to consider Circus actions, deal with
parallelism (And-States) and composite states with multiple initial points.

Let M be a state-machine, and SM be the set of states of M . The set of
events of M is denoted by EM , and its actions and boolean guards by AM and
GM , respectively. Furthermore, let SIM be the set of all initial states, SChM the
set of all choice states, SSM the set of all simple states and SCoM the set of all
composite states of SM .

As a statechart can be identified by the topmost state that contains inner
states, mapping a statechart reduces to mapping a state. Thus, let H be a func-
tion that takes a state and yields its Circus representation.

H : SM → CSPAction

We assume that an action in AM is expressed as a method call and, therefore,
does not need be translated. Like other predicates, guards in AM are written
using the Circus syntax. As ports have an associated channel in Circus, with the
same name, and signals are expressed as values of this channel type, a signal e
of a port p can be directly written as an event pattern matching in Circus.

Every pattern to which the mapping function H() is applied gives rise to a
separate mapping rule. On the left of each rule, we illustrate the pattern as a
template statechart.

The first pattern address initial states, which have only one outgoing transi-
tion, and no entry nor exit actions (actions executed before the state becomes
active and inactive, respectively). Let Ai be an initial state, with Ai ∈ SIM , act()
the action of its outgoing transition, and A1 the target of this transition, then:

H(Ai) = act(); H(A1)

For a choice state, its translation is as follows. Let Ac by a choice state in
SChM , which has only two outgoing transitions and one guard g (these transi-
tions have no events and are triggered depending on the evaluation of g), then:

H(Ac) = (g & act1(); H(A1)) � (¬ g & act2(); H(A2))

Now suppose the translation of a simple state. Let As by a simple state in
SSM , AC the composite state in SCOM that encloses it and tls the outgoing
transitions of As (where p.e[g]/act is singled out), then:
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H(As) = entryAs(); ((g & p.e→ exitAs(); act(); H(A1))
� ((noteventAC → exitAs(); exiteventAC → SKIP)
� TL(tls)))

When the state As is active, it executes the entry action entryAs(). Then, it
waits for a new signal to be communicated by the environment (the external
choice captures this decision). Such an event p.e can only be performed if its
guard g is satisfied. Finally the exit action exitAs() and the action act() asso-
ciated to the trigged transition are executed. The remaining transitions in tls
are mapped by the function TL(), as previously explained. Further the simple
state As can exit if an outgoing (group) transition of its enclosing state AC is
triggered; in this case, a notify event noteventAC is sent by AC to ensure that the
exit action of As is executed before its exit action. After the execution of the As
exit action, an event exiteventAC is launched to allow the execution of the exit
action of AC.

To formalise composite states, we present the translation of a composite
And-State with its concurrent regions formed by Or-States. In this scenario,
the translation of a composite Or-State is given by an And-State with a unique
region. Let AC and EAC be composite states in SCOM (where EAC encloses
AC), Ai1 and Ai2 the initial states in SIM of the regions of AC, tls the outgoing
transitions of AC (where p1.e1[g1]/act1 and p2.e2[g2]/act2 are singled out) and
[R] a renaming function that replaces channels associated to connected ports for
the respective channels associated to their connections (see Section 4.1), then:

H(AC) = entryAC(); (H(Ai1)[R] |[Cstate1 | cc | Cstate2]|
H(Ai2)[R] |[Cstate1 ∪ Cstate2 | cc | Cstate3]|

� (g1 & p1.e1 → noteventAC → exiteventAC →
exitAC(); act1(); H(A1))

� (g2 & p2.e2 → exiteventAC → exitAC(); act2();
H(A2))

� (TL(tls))
� (noteventEAC → noteventAC → exiteventAC →

exitAC(); exiteventEAC → SKIP))

When the And-State AC is active, it executes the entry action entryAC().
Then, it executes the initial states of each region. These regions can synchronise
their events through the channel set cc, which are the internal connections of the
capsule that own the statechart. Each region r1 and r2 can only modify the values
of the variables in Cstate1 and Cstate2, respectively; the exit action of AC and the
action of its transitions can only modify the values in Cstate3. The capsule state
contains the union of Cstate1, Cstate2 and Cstate3. The enclosed states in each region
of AC are sequentially reached. At any moment, the state AC can receive an event
p1.e1 that triggers a group transition (a transition that emanates directly from
the border of the composite state and interrupts the state and substates in any
situation, however allowing that they normally finish the execution of their exit-
actions). When a group transition is triggered, the event noteventAC occurs, and
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AC waits for the active inner state to execute its exit action. When a notification
exiteventAC arrives, the state AC is able to execute its exit action exitAC and the
transition action act1; then it moves to the next state. Transitions that emanate
from an enclosed state through a junction point, like the one triggered by p2.e2,
behave similarly, but do not send a noteventAC event. This type of junction is
mapped to a transient inner state of AC; for a junction point F , its translation
corresponds to H(F ) = exiteventAC → SKIP . The other outgoing transitions tls
of AC can be similarly translated by the function TL().

As simple states, a composite state AC can be enclosed by another composite
state EAC. In this situation, AC receives the notification noteventEAC to indicate
the arrival of an event in EAC. When this happens, AC must send noteventAC

to its immediate active inner state to ensure that all active enclosed states ex-
ecute their exit action before the AC exit action. After AC executes exitAC(),
exiteventEAC is sent to allow EAC to execute its exit action.

For simplicity, we do not consider here history states.

5 Model Transformations and Soundness

Translating UML-RT models into Circus can then benefit from the formal se-
mantics as well as the refinement notions and laws of Circus. For example, the
meaning of capsule refinement is interpreted as process refinement in Circus.
Similarly, action refinement can be used to capture statechart transformations.

As illustration, we present one transformation law that involves the three
most important diagrams of UML-RT: state, class and structure diagrams. As
previously mentioned, we consider structure diagrams because they represent
some relations between capsules that are not expressed in class diagrams; so
they must be taken into account to preserve the model behaviour.

Law 1 decomposes a capsule A into parallel component capsules (B and C)
in order to tackle design complexity and to potentially improve reuse. The side
condition requires that A must be partitioned, a concept that is explained next.

On the left-hand side of Law 1 the state machine of A is an And-State com-
posed of two states (Sb and Sc), which may interact (internal communication)
through the conjugated ports b2 and c1 (as captured by the structure diagram
on the left-hand side). The other two ports (b1 and c2) are used for external com-
munication by states Sb and Sc, respectively. Furthermore, in transitions on Sb,
only the attributes batts and the methods bmeths (that may reference only the
attributes batts) are used; analogously, transitions of Sc use only the attributes
catts and the methods cmeths (that may reference only the attributes catts).
Finally, the invariant of A is the conjunction InvB ∧ InvC, where InvB involves
only batts as free variables, and InvC only catts. When a capsule obeys such con-
ditions, we say that it is partitioned. In this case, there are two partitions: one is
〈batts, InvB, bmeths, (b1, b2), Sb〉 and the other is 〈catts, InvC, cmeths, (c1, c2), Sc〉.
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Law 1. Capsule Decomposition

provided 〈batts, InvB, bmeths, (b1, b2), Sb〉 and 〈catts, InvC, cmeths, (c1, c2), Sc〉 parti-
tion A; The statecharts of the protocol X and Z are deterministic.

The effect of the decomposition is to create two new component capsules, B
and C, one for each partition, and redesign the original capsule A to act as a
mediator. In general, the new behaviour of A might depend on the particular
form of decomposition. Law 1 captures a parallel decomposition. On the right-
hand side of the law, A has no state machine. It completely delegates its original
behaviour to B and C through the structure diagram.

Concerning the structure diagram on the right-hand side of the law, it shows
how A encapsulates B and C. When A is created, it automatically creates the
instances of B and C, which execute concurrently. The public ports b1 and c2

are preserved in A. Capsule B has as its public port an image of b1, called b′1.
Although this port is public in B, it is only visible inside the structure diagram
of A. The role of this port is to allow B to receive the external signals received
from A through port b1, as captured by the connection between b′1 and b1 in
the structure diagram of A. Analogously, c2 and b′2 have the same relationship,
concerning capsules A and C. The internal ports b2 and c1 are moved to capsules
B and C, respectively, and play the same role as before.

5.1 Soundness

Based on the semantic mapping presented in Section 4, we can translate the
two sides of Law 1 and check its validity. Instead of appealing directly to the
semantics of Circus we can use its refinement laws [12] to carry out the proof.
Actually, Law 1 has been inspired by the following law presented for Circus.
Obviously, when there are no corresponding laws in Circus, it might be necessary
to carry out the proof directly in the Circus UTP semantics. Even when there is
a corresponding law in Circus, we will see that the proof is more elaborate than
using just this law, since we consider structure diagrams.
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Law 2. Process splitting

Let qd and rd stand for the declarations of the processes Q and R, determined by
Q .st , Q .pps, and Q .act , and R.st , R.pps, and R.act , respectively; let F stand for
a context which must also make sense as a function on processes. Then
process P =̂ begin = (qd rd processP =̂ F (Q ,R))

state State =̂ Q .st ∧ R.st
Q .pps ↑ R.st
R.pps ↑ Q .st
• F (Q .act , R.act) end

provided Q .pps and R.pps are disjoint with respect to R.st and Q .st . �

In Law 2, the state of P is defined as the conjunction of two other state
schemas: Q .st and R.st . The actions of P are Q .pps ↑ R.st and R.pps ↑ Q .st ,
which handle the partitions of the state separately. In Q .pps ↑ R.st , each schema
expression of Q .pps is conjoined with ΞR.st ; this means that the state compo-
nents of R.st do not change (similarly for R.pps ↑ Q .st). Two sets of process
paragraphs pps1 and pps2 are disjoint with respect to states s1 and s2 if, and
only if, no command nor CSP action expression in pps1 refers to components of
s2 or to paragraph names in pps2; similarly, for pps2 and components of s2.
Proof of Law 1. First we deal with the class and the state diagrams. The mapping
of these views of capsule A as a Circus process is obtained by using the second
mapping rule presented in Section 4.1 and the last rule of Section 4.2. We write
two partitions using the operator ↑, as in Law 2. Strictly, the attributes and
methods batts , catts , bmeths and cmeths must be mapped using the function
TL(); here we omit its application for a matter of readability.

process ChartA =̂ begin
state State =̂ [batts ∧ catts | InvB ∧ InvC]
bmeths ↑ catts
cmeths ↑ batts
• H(SB)[b2 :=k] |[ batts | {| k, b1, c2 |} | catts]|)H(SC)[c1 :=k]

end
From Law 2, the following equality holds:
ChartA = ChartB[b2 :=k] |[ {| k,b1, c2 |} ]| ChartC[c1 :=k]

where ChartB and ChartB are declared as:
process ChartB =̂ begin state State =̂ [batts | InvB] bmeths • H(SB)end
process ChartC =̂ begin state State =̂ [catts | InvC] cmeths • H(SC) end

Now we consider the structural part of capsule A. This is mapped into the
Circus process StructA, presented below.

StructsA =̂ (ChartA[b2, c1 :=k, k] |[{|k,b1,c2 |}]| X[chanX :=b1] |[{|k,b1,c2 |}]|
Y[chanY :=k] |[{|k,b1,c2 |}]| Y[chanY :=k] |[{|k,b1,c2 |}]| Z[chanZ :=c2])\{|k |}

The structure diagrams of B and C, as well as that of A on the right-hand side
of Law 1, are mapped similarly. To avoid confusion between the two occurrences
of A in the law, we refer to the occurrence on the left simply as A, and that on the
right as A′. Therefore, we want to prove that StructsA has the same behaviour as
StructsA′, where the latter is composed of the processes StructsB and StructsC:

Structs ′A =̂ ((StructB[b′
1, b2 :=m, k ] |[ {| k |} ]| StructC[c′2, c1 :=n, k ]) |[ {| k |}]|

(X[chanX :=m] |[ {| k |} ]| Z[chanZ :=n]))[m, n :=b1, c2] \ {| k |}
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The proof uses basic laws of CSP [5], which are also valid for Circus. One of
the laws is the distribution of injective renaming through parallel composition;
this is expressed as f (P |[ cs ]| Q) = (f (P) |[ f (cs) ]| f (Q)) and referenced as
f [.]−|[cs ]|−dist . Two other laws express the associativity (P |[ cs ]| (Q |[ cs ]|R) =
(P |[cs]|Q)|[cs]|R) and the symmetry (P |[cs]|Q = Q |[cs]|P) of parallel composition.
These are referenced bellow as |[cs ]|−assoc and |[cs ]|−sym, respectively. Also, we
use the fact that unused channels in the synchronism of a parallel operator are
redundant, which is expressed as P |[αP ∪αQ ∪ cs ]|Q = P |[αP ∪αQ ]|Q , where
αR is the alphabet of R; we refer this law as |[cs ]|−null . Finally, we use the fact
that the parallel operator is idempotent under certain restrictions [21]: if P is a
deterministic process, then P |[ αP ]| P ; we will refer to this law as |[cs ]|−idem.

StructsA

= [1. Expanding ChartA in StructsA ]
(ChartB[b2 :=k] |[{|k,b1,c2 |}]|ChartC[c1 :=k] |[{|k,b1,c2 |}]|X[chanX :=b1] |[{|k,b1,c2 |}]|
Y[chanY :=k] |[{|k,b1,c2 |}]| Y[chanY :=k] |[{|k,b1,c2 |}]| Z[chanZ :=c2]) \ {| k |}

= [2. Applying Law |[ cs ]|−idem for X[chanX :=b1] and Z[chanZ :=c2], and
rearranging the processes using Laws |[ cs ]|−assoc and |[ cs ]|−sym]
(ChartB[b2 :=k] |[{|k,b1,c2 |}]|X[chanX :=b1] |[{|k,b1,c2 |}]|Y[chanY :=k] |[{|k,b1,c2 |}]|
X[chanX :=b1] |[{|k,b1,c2 |}]| ChartC[c1 :=k] |[{|k,b1,c2 |}]| Y[chanY :=k] |[{|k,b1,c2 |}]|
Z[chanZ :=c2] |[{|k,b1,c2 |}]| Z[chanZ :=c2]) \ {| k |}

= [3. Applying renamings [b′
1,b2 :=m,k], [c′2,c1 :=n,k] and [n,m :=c2,b1], and

Law f [.]−|[cs ]|−dist ]]
(((ChartB |[{|b2,b

′
1,n |}]|X[chanX :=b′

1] |[{|b2,b
′
1,n |}]|Y[chanY :=b2])[b

′
1,b2 :=m,k]

|[{|k,m,n |}]| X[chanX :=m]) |[{|k,m,n |}]|
((ChartC |[{|c1,m,c′2 |}]| Y[chanY :=c1] |[{|c1,m,c′2 |}]| Z[chanZ :=c′2])[c

′
2,c1 :=n,k]

|[{|k,m,n |}]| Z[chanZ :=n])[m,n :=b1,c2]) \ {| k |}
= [4. Using the Law |[ cs ]|−null and rearranging the processes using laws
|[cs ]|−assoc and |[ cs ]|−sym

]

(((ChartB |[{|b2,b
′
1 |}]|X[chanX :=b′

1] |[{|b2,b
′
1 |}]|Y[chanY :=b2])[b

′
1,b2 :=m,k]

|[{|k,m,n |}]| ((ChartC |[{|c1,c
′
2 |}]|Y[chanY :=c1] |[{|c1,c

′
2 |}]|Z[chanZ :=c′2])[c

′
2,c1 :=n,k]

|[{|k,m,n |} ]| X[chanX :=m]) |[ {|k,m,n |}]| Z[chanZ :=n])[m,n :=b1,c2]) \ {| k |}
= [5. Using the definition of StructB and StructC]

((StructB[b′
1,b2 :=m,k] |[{|k,m,n |}]| (StructC[c′2,c1 :=n,k] |[{|k,m,n |}]|

X[chanX :=m]) |[{|k,m,n |} ]| Z[chanZ :=n])[m,n :=b1,c2]) \ {| k |}
= StructA′

Three conditional CSP laws are used in the above proof. The condition of Law
|[cs ]|−idem (Step 2) is clearly satisfied because the processes X and Z are obtained
from the protocols X and Z, which, in Law 1, are assumed to be deterministic.
The condition of Law |[cs ]|−null (Step 4) is satisfied since the processesChartB,
X[chanX :=b′1] andY[chanY :=b2] do not use the channel n; similarly, processes
ChartC, Y[chanY := c1] and Z[chanZ := c′2] do not use m. The condition of
Law f [.]−|[cs ]|−dist (Step 3) is satisfied since following renamings used in the
distribution are injective: [b′1,b2 :=m,k], [c′2,c1 :=n,k] and [n,m :=c2,b1]

6 Conclusions

We have proposed a formal semantics for capsules, protocols, ports and con-
nections in UML-RT, using Circus as a semantic domain. We considered an
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integrated view involving UML-RT class, state and structure diagrams. Also,
we presented a transformation law for capsule decomposition that considers the
effect on all these diagrams. Based on the semantic mapping, and on the seman-
tics and laws of Circus, we have shown that it is relatively simple to prove such
laws. As far as we are aware, an entirely formal approach to transformation of
UML-RT models is an original contribution.

Although the target of our translation is a specification language (rather
than a more standard mathematical model), the notation of Circus includes
those of CSP and Z. Both are well-known and mature formalisms. Further, their
combination into Circus is formally characterised with basis on the unifying
theories of programming [20].

The basis for the translation given in this paper is a formalisation of the
syntax of UML-RT in Z and in CSP. The formalisation of UML-RT structure
diagrams is similar to [8], which formalises only this kind of diagram in CSP,
and disregards other views and elements of the architecture, as statecharts and
protocols. The work reported in [9] briefly presents some notions that could
be used as a basis for a mapping from UML-RT into CSP, but based on these
notions it seems rather difficult mapping complex systems in all its aspects with-
out additional assumptions on the dynamic semantics. It briefly covers simple
capsule statecharts, and does not give any additional contribution on the capsule-
connector-capsule translation when compared to [8]. An informal translation of
UML-RT to CSP-OZ is also reported in [7] through a case study. Despite the
benefit of linking UML-RT to CSP-OZ and Java, the work in [7] does note seem
concerned with the soundness of transformations for UML-RT, but rather with
platform transformations between these languages. A more general contextuali-
sation of our work has already been given in Section 1.

Currently, we are working on a comprehensive set of laws for UML-RT, ex-
ploring their use during the development of a more elaborate version of the
example presented in Section 2. Our notion of completeness is based on showing
that an arbitrary UML-RT model can be reduced to a UML model extended
with a single capsule responsible for all the interactions with the environment.
This extended UML model can be regarded as a normal form, and therefore rel-
ative completeness of our set of laws can be captured by normal form reduction,
following an approach similar to [22].

In general, the laws involve classes and relationships between them as well
as with capsules. The semantics of OhCircus [23] is being defined as a conserva-
tive extension of that of Circus, to address object-oriented features. We plan to
extend our mapping to consider the full UML-RT notation, using OhCircus as
semantic domain.
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Abstract. We aim at defining an integrated framework for the specifi-
cation and (automated) analysis for security and trust in complex and
dynamic scenarios. In particular, we show how the same machinery used
for the formal verification of security protocols may be used to analyze
access control policies based on trust management.

1 Introduction

Computer security is a research area that is increasingly receiving the attention
of researchers. In particular, consider some security issues in ubiquitous com-
puting systems: these consist of different entities that have to cooperate and
share resources to achieve a certain goal. Cooperation is often enabled by trust
relationships between entities. There is a tight connection between the security
mechanisms used to guarantee the confidentiality and integrity of information
and mechanisms used to establish, manage and negotiate trust, reputation and
recommendation among the different entities.

In this paper we focus on the integrated formal modeling and analysis of
security and trust. In particular, we uniformly model security protocols and
some form of access control based on trust management.

Formal languages for modeling distributed systems have been applied in the
last decade to the analysis of cryptographic protocols. In this framework, cryp-
tography is usually modeled by representing encryptions as terms of an algebra,
e.g., E(m, k) may represent the encryption of a message m with a key k. Usu-
ally, the so-called perfect encryption abstraction is adopted: encryptions are
considered as injective functions which can be inverted only by knowing the cor-
rect information, i.e. the decryption key. For instance, common inference rules
for modeling the behavior of the encryption and decryption (in a shared-key
schema) are the followings:

m k

E(m, k)
E(m, k) k

m
(1)
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which should be read as: from a message m and a key k we can build the
encryption E(m, k); from an encryption E(m, k) and a decryption key k we can
obtain the encrypted message m.

The long standing tradition of modeling the specific features of cryptographic
functions as term-rewriting rules met the powerful verification techniques devel-
oped for process algebras. As a matter of fact, several formal languages for
describing communication protocols, for instance CSP [17], have been exploited
for representing cryptographic protocols without changes in syntax or semantics:
the inference rules have been given at the meta-level of the verification. Instead
others, like the π–calculus [1] and the CCS [19, 21], have been effectively re-
fined: the π–calculus have been equipped with two pattern matching constructs
for modeling message splitting and shared-key decryption, respectively; the CCS
has been equipped with an inference construct that permits to infer new mes-
sages from others, i.e.:

[m1 mn �r x].P
which denotes a process that tries to deduce a message m from the messages in
m1, . . . , mn and when it succeeds it substitutes this message for x in the process
specification P . The language is called CryptoCCS ([19]).

The inference relation could be defined in many ways. Often, we will consider
the transitive closure of the entailment relations used in each process. This would
give a complex inference system. Such inference systems allow us to cope with
the variety of different crypto-systems that can be found in the literature.

However, when one analyzes a security protocol, usually assumes that public
keys, digital certificates, and generally speaking credentials are already given,
and does not usually check how these are formated, negotiated and managed.
Such a limited view seems not completely appropriate for dynamic, fully inter-
connected systems, where access control policies may change and typically may
also depend on credentials presented by users.

Similarly, when one wishes to formally analyze (e.g., see [2]) access control
systems, the authentication mechanisms (usually a security protocol) are con-
sidered a priori “secure”, without further specification.

While separation of concerns is often desirable, this is not always possible.
The interplay between security protocols and access control mechanisms/policies
is crucial. Moreover, a good specification and analysis framework should take an
holistic point of view.

As a matter of fact, we show that the idea proposed by CryptoCCS of using
inference constructs is also useful to model access control mechanisms based on
credentials in distributed systems.
Example 1. Indeed, consider a set of credentials, i.e. (signed) messages contain-
ing information about access rights. Assume that {A, ob1, +}pr(C) means that
the user C (via the signature with its private key pr(C)) asserts A has the right
to access the object ob1 and may grant this access to other users (this is denoted
through the symbol +). A rule like:

{A, ob1, +}pr(C) pr(C) {grant B, ob1}pr(A)

{B, ob1, +}pr(C)
(accC)
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may be used by the controller C to issue other access right credentials, after
receiving an indication by A, i.e. the signed message {grant B, ob1}pr(A).

Thus, we may consider the inference rules as an abstract mechanism to ex-
press security policies usually defined using other mathematical models and log-
ics (e.g., see [10, 24]).

In this paper, we deal with the RT trust management system [16]. However,
our approach is very general. In particular, we will show also how to encode with
inference systems the mechanisms for reasoning about trust proposed in [12] and
modeled with different approaches.

Having a unique language will allow us to model the interplay between secu-
rity protocols that use the trust relationships among different users, and the ways
in which these relationships are created (that often rely on security/interaction
protocols).

The fact that we can both model cryptography and some form of creden-
tial/trust management with the inference construct of CryptoCCS allows us to
use the software tools and methodologies already developed for security proto-
cols analysis to the more general case where credentials are explicitly managed.
In particular, in [22] a software tool for automated security protocols analysis
has been defined in [20] has been extended to cope with a huge class of inference
systems.

It is worthy noticing that the CryptoCCS has been previously defined to set
up a uniform framework for the analysis of security properties and information
flow (non-interference) with the same machinery (e.g., see [5–7]). This helped
us quite a lot in establishing a precise correspondence of properties of trust
negotiation protocols with non-interference ones (as hinted in [28]).

To sum up, the main contribution of this paper is to present an effective
framework, based on the flexibility of the CryptoCCS inference construct, for
uniformly specifying and analyzing several aspects of network/system security
and trust management.

There are few attempts to analyze security protocols and trust management
altogether. A notable example is the recent work in [9]. There the trust is ex-
pressed at a meta-level by decorating protocol specifications with formulas of
a trust logic and by ensuring that such formulas hold at certain points. Our
approach is thus different and is based on modeling trust (in different flavors)
inside the protocol specifications.

The paper is organized as follows. Section 2 presents the CryptoCCS language
and recalls some of its analysis techniques. Section 3 shows how the CryptoCCS
may be naturally used to model trust management languages. Section 4 investi-
gates the relationships between notions of safety in Automated Trust Negotiation
and non-interference. Section 5 concludes the paper.

2 CryptoCCS

CryptoCCS [19, 21] is a slight modification of CCS process algebra [23], adopted
for the description of cryptographic protocols.
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The CryptoCCS model consists of a set of sequential agents able to commu-
nicate by exchanging messages.

The data handling part of the language consists of a set of inference rules
used to deduce messages from other messages. We consider a set of relations
among messages as: �r⊆ Mir+1, where r is the name of the rule and ir the
number of premises. For the sake of simplicity, we assume that �r (for each
r ∈ R) is decidable.

2.1 The Language Syntax

CryptoCCS syntax is based on the following elements:

– A set Ch of channels, partitioned into a set I of input channels (ranged
over by c) and a set O of output channels (ranged over by c, the output
corresponding to the input c);

– A set V ar of variables, ranged over by x;
– A setM of messages, defined over a certain signature, ranged over by M, N ,

m, n ....

The set L of CryptoCCS terms (or processes) is defined as follows:

P, Q ::= 0| c(x).P | cM.P | τ.P | P |Q | P\L |

A(M1, . . . , Mn) | [〈M1, . . . , Mr〉 �rule x]P ; Q

where M, M ′, M1, . . . , Mr are messages or variables and L is a set of channels.
Both the operators c(x).P and [〈M1 . . . Mr〉 �rule x]P ; Q bind variable x in P .

We assume the usual conditions about closed and guarded processes, as in
[23]. We call P the set of all the CryptoCCS closed and guarded terms. The set
of actions is Act = {c(M) | c ∈ I}∪{cM | c ∈ O}∪{τ} (τ is the internal, invisible
action), ranged over by a. We define sort(P ) to be the set of all the channels
syntactically occurring in the term P . Moreover, for the sake of readability, we
always omit the termination 0 at the end of process specifications, e.g. we write
a in place of a.0. We give an informal overview of CryptoCCS operators:

– 0 is a process that does nothing.
– c(x).P represents the process that can get an input M on channel c behaving

like P [M/x]).
– cM.P is the process that can send m on channel c, and then behaves like P .
– τ.P is the process that executes the invisible τ and then behaves like P .
– P1 |P2 (parallel) is the parallel composition of processes that can proceed in

an asynchronous way but they must synchronize on complementary actions
to make a communication, represented by a τ .

– P\L is the process that cannot send and receive messages on channels in L;
for all the other channels, it behaves exactly like P ;

– A(M1, . . . , Mn) behaves like the respective defining term P where all the
variables x1, . . . , xn are replaced by the messages M1, . . . , Mn;
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m m′

(m, m′)
(�pair)
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(m, m′)
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(�enc)

{m}k k

m
(�dec)

Fig. 1. An example inference system for shared key cryptography.

– [〈M1, . . . , Mr〉 �rule x]P ; Q is the process used to model message manipu-
lation as cryptographic operations. Indeed, the process [〈M1, . . . , Mr〉 �rule

x]P ; Q tries to deduce an information z from the tuple 〈M1, . . . , Mr〉 through
the application of rule �rule; if it succeeds then it behaves like P [z/x], other-
wise it behaves as Q. The set of rules that can be applied is defined through
an inference system (e.g., see Figure 1 for an instance).

2.2 The Operational Semantics of CryptoCCS

In order to model message handling (and so cryptography in an abstract way) we
use a set of inference rules. Note that CryptoCCS syntax, its semantics and the
results obtained are completely parametric with respect to the inference system
used. We present in Figure 1 an instance inference system, with rules: to combine
two messages obtaining a pair (rule �pair); to extract one message from a pair
(rules �fst and �snd); to encrypt a message m with a key k obtaining {m}k and,
finally, to decrypt a message of the form {m}k only if it has the same key k
(rules �enc and �dec, respectively).

In a similar way, inference systems can contain rules for handling the basic
arithmetic operations and boolean relations among numbers, so that the value-
passing CCS if-then-else construct can be obtained via the �rule operator.

Example 2. Natural numbers may be encoded by assuming a single value 0 and
a function S(y), with the following rule: x

S(x) inc. Similarly, we can define sum-

mations and other operations on natural numbers.

Example 3. We do not explicitly define equality check among messages in the
syntax. However, this can be implemented through the usage of the inference
construct. E.g., consider rule x x

Equal(x, x) equal. Then [m = m′]A (with the

expected semantics) may be equivalently expressed as [m m′ �equal y]A where
y does not occur in A. Similarly, we can define inequalities, e.g., ≤, among
natural numbers.

The operational semantics of a CryptoCCS term is described by means of la-
beled transition relations, P

a−→ P ′, with the informal meaning that the pro-
cess P may perform an action a evolving in the process P ′. More formally, we
consider a labelled transition system (lts, for short) 〈P , Act, { a−→}a∈Act〉, where
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(input)
m ∈ M

c(x).P
c(m)−→ P [m/x]

(output)
cm.P

cm−→ P
(internal)

τ.P
τ−→ P

(\L)
P

c(m)−→ P ′ c �∈ L

P\L c(m)−→ P ′\L
(|
1

)
P1

a−→ P ′
1

P1 |P2
a−→ P ′

1 |P2

(|
2

)
P1

c(x)−→ P ′
1 P2

cm−→ P ′
2

P1 |P2
τ−→ P ′

1 |P ′
2

(Def)
P [m1/x1, . . . , mn/xn]

a−→ P ′ A(x1, . . . , xn)
.
= P

A(m1, . . . , mn)
a−→ P ′

(D)
〈m1, . . . , mr〉 �rule m P [m/x]

a−→ P ′

[〈m1, . . . , mr〉 �rule x]P ; Q
a−→ P ′

(D1)
� ∃m s.t. 〈m1, . . . , mr〉 �rule m Q

a−→ Q′

[〈m1, . . . , mr〉 �rule x]P ; Q
a−→ Q′

Fig. 2. Structured Operational Semantics for CryptoCCS (symmetric rules for |1, |2
and \L are omitted).

{ a−→}a∈Act is the least relation between CryptoCCS processes induced by the
axioms and inference rules of Figure 2. The expression P

a⇒ P ′ is a shorthand for
P ( τ−→)∗P1

a−→ P2(
τ−→)∗P ′ where ( τ−→)∗ denotes a (possibly empty) sequence

of transitions labeled τ . The expression P ⇒ P ′ is a shorthand for P ( τ−→)∗P ′.

2.3 Security Protocol Analysis

The security protocol analysis proposed in [19, 21] is based on the checking of
following property:

∀X s.t. S |X satisfies F

where F is a logical formula expressing the desired property. Often, when secrecy
properties are considered, F models the fact that a given message, i.e. the secret
to be verified, is not deducible from a given set of messages, i.e. the knowledge of
the intruder X acquired during the computation with S. The verification of such
property requires the ability of computing the closure of a inference systems, i.e.
the possibility to iteratively apply the inference rules. Given a set R of inference
rules, we consider the deduction relation DR ⊆ Pfin(M)×M. Given a finite set
of closed messages, say φ, then (φ, M) ∈ DR if M can be derived by iteratively
applying the rules in R. Under certain sets of assumptions on the form of the
rules, we may have that DR(φ) is decidable. Below, we present an example useful
in our case (e.g., see also [20]).

2.4 Some Assumptions on the Inference System

Given a well-founded measure on messages, we say that a rule

r
.=

m1 . . . mn

m0
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is a S-rule (shrinking rule), whenever the conclusion is a proper subterm of one
of the premises (call such premise main). The rule r is a G-rule (growing rule)
whenever the conclusion is strictly larger than each of the premises, and all the
variables in the conclusion must be in the premises.

Definition 1. We say that an inference system enjoys a G/S property if it con-
sists only of G-rules and S-rules, moreover whenever a message can be deduced
through a S-rule, where one of the main premises is derived by means of a G-
rule, then the same message may be deduced from the premises of the G-rule, by
using only G-rules.

Several of the inference systems used in the literature for describing crypto-
graphic systems enjoy this restriction1.

Indeed, using G-rules for inferring the main premises of an S-rules, is un-
useful. Thus, shrinking rules may be significantly applied only to messages in φ
and to messages obtained by S-rules. However, since the measure for classifying
the S-rules is well-founded then such a shrinking phase would eventually termi-
nate when applied to a closed set of messages φ. Then, only growing rules are
possible. Thus, if the inference system enjoys the G/S restriction then DR(φ)
is decidable when φ is finite. We may note that the inference system in page 1
enjoys the G/S restriction and so its deduction relation is indeed decidable.

In the case the inference system has no growing rules, we have decidability
even in the presence of a weaker form of shrinking rules. We say that a rule is
eq-shrink whenever the conclusion has an equal or smaller size than one of the
premises; moreover all the variables occurring in the conclusion must occur in at
least one of the premises. In such a case the decision procedure simply consists
of building the transitive closure of the inference rules.

3 Modeling Several Trust Management Languages

Through process algebras, one can formally specify communicating protocols
and complex distributed systems. For instance, one could use CryptoCCS to
describe the components and the communication interface of an access control
mechanism as the Policy Enforcement Point (PEP), the Policy Decision Point
(PDP) and the resource to be protected (see [26]).

In Figure 3 we may see the components of a common access control frame-
work. A request is performed by the user to the PEP. The PEP often applies
a communication with the user, often performing an authentication protocol.
Then, using the information acquired by PEP is sent to the PDP. Eventually
the access is granted to the resource.

In particular, in trust management systems, where policies are given through
credentials, this allow one to use the inference system of CryptoCCS to model
also the trust engine used in these frameworks. Let us see how it works with two
well known models.
1 It is worthy noticing that in [13] a similar terminology has been used, and a restric-

tion, called S/G, has been defined. However, this is rather different from ours and it
is not well suited to model cryptographic systems.
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PDPPEP

Resource

Decision request

Decision

Apply  
decision

Access 
request

Fig. 3. An access control system.

3.1 RT0: Role-Based Trust Management

We show how inference rules can be conveniently used to model RT languages for
trust management [14–16, 28]. In these languages, credentials carry information
on policies to define attributes of principals by starting from assertions of other
principals. The notion of attribute is general enough to permit to use RT lan-
guages to model Role-based Access Control Mechanisms (RBAC), e.g. see [25].
As a matter of fact, an attribute could be considered as a role. Then one could
use RT credential to express how principals are related to roles2. More precisely,
we denote principals with A, B, C...; we denote role names with r, u, z.... A role
takes the form of a principal followed by a role name, separated by a dot, e.g.
A.r.

RT assumes four kind of credentials that express possible policy statements.

– A.r ← D (simple member)
This statement defines that D has role A.r.

– A.r ← A1.r1 (simple containment)
This statement asserts that if D has role A1.r1 then it has role A.r. This
kind of credential can be used to delegate the authentication of attributes
from A to A1.

– A.r ← A1.r1.r2 (linking containment)
This statement asserts that E has role A1.r1 and D has role E.r2 then D
has role A.r. This kind of credential may be used to delegate the assignment
of A.r role not to specific entities but to entities of a given role.

– A.r ← A1.r1 ∩A2.r2 (Intersection containment)
This statement asserts that D has role A1.r1 and A2.r2 then D has role A.r.

Example 4. Consider the following set of credentials.

Univ.stud← FM
Shop.discount← Univ.stud

2 Similarly, credentials and attributes could be used to assign permissions to roles
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It follows that FM has role Shop.discount. So, the shop offers discounts to the
students of the University.

The language for credentials has been equipped with several semantics. In
particular, one semantics based on datalog is very similar to our inference rules
(that in this case can be seen as datalog rules). So, we define one inference rule
for each credential as follows.

A.r ← D {D, r}A
A.r ← A1.r1

{y, r1}A
{y, r}A

A.r ← A1.r1.r2
{z, r1}A1 {y, r2}z

{y, r}A
A.r ← A1.r1 ∩A2.r2

{y, r1}A1 {y, r2}A2

{y, r}A
However, this requires a rule for each credential. We wish to fix from the

very beginning the set of inference rules. Thus, we provide a slightly modified
version of the inference system where we consider only 3 rules, one for each kind
of credential defined in RT0 (with the exception of the first kind of credentials
that are simply messages).

A.r ← D {D, r}A
A.r ← A1.r1

{y, r1}A {r, A1, r1}A
{y, r}A

A.r ← A1.r1.r2
{z, r1}A1 {y, r2}z {r, A1, r1, r2}A

{y, r}A
A.r ← A1.r1 ∩A2.r2

{y, r1}A1 {y, r2}A2 {r, A1, A2, r1, r2}A
{y, r}A

Note that, under the common measure of the size of terms, all the pre-
vious rules are eq-shrink rules and there are no growing rules. Thus, estab-
lishing whether a given principal, say D, has a certain role in a policy φ, i.e.
{D, r}A ∈ D(φ) is decidable. This kind of analysis3 is called Simple Safety in
[14] and can be performed by our analysis tool PaMoChSA [22].

3.2 Josang et al. Topologies

We also show how the trust model of Josang et al. [12] can be managed in
our framework. The authors suggest trust is always linked to a purpose. The
most natural situation is when one trusts another for performing a certain func-
tion/task. This may be expressed as A

f−→ D, i.e. A trusts D for performing
f . Moreover, it is often common that one, say A, asks another, say D, for sug-
gesting/reccomendating a third one for doing a given task, i.e. f . This could be

expressed by the following credential A
r,f−→ D.

3 Actually, that work considers a dynamic set of policies. However, the analysis tech-
nique adopted is actually based on a subset of the set of prolog rules that represent
the initial problem. Thus, we are also able to manage it.
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The main idea is that when one calculates whether a given chain trust exists,
it must always consider that the last step in the chain is a functional trust
one, while all the others are recommendation steps. Thus, we have another kind
of credential like A

r−→ B
f−→ D, , expressing the fact that A trusts D for

performing f via the recommendation of B.

A
f−→ D {f, D}A

A
r,f−→ D {r, D, f}A

A
r,f−→ B B

r,f−→ D

A
r,f−→ D

{r, B, f}A {r, D, f}B
{r, D, f}A

A
r,f−→ B B

f−→ D

A
r−→ B

f−→ D

{r, B, f}A {f, D}B
{r, B, f, D}A

As in the previous case, the deduction relation of this set of rules is decidable.
This gives us an alternative strategy w.r.t. the one presented in [12].

As in [12], one could insert further information into the credentials, as mea-
sure of trust. For instance, credentials could be enhanced with such information
and rules could derived the trust measure of resulting credentials in the ap-
propriate way. For instance, consider the following credential enhanced with a
trust measure, i.e.: A

r,f,m−→ B. Then the transitive composition rule could be the
following:

A
r,f,m1−→ B B

r,f,m2−→ D

A
r,f,m3−→ D

where m3 is a function of m1, m2, for instance m3 = min{m1, m2}.
If the set of possible trust values is finite, then the deduction relation is still

decidable. More complex trust measures can be found in [11]. Clearly, one may
try to define specific strategies for each set of inference rules in order to obtain
decidability. However, we argue that the mechanisms we proposed are general
enough to deal with common trust management systems.

4 An Application
to Automated Trust Negotiation Problems

The usage of credentials for policy decision is useful, but as mentioned before is
not the unique part of access control. When one user (i.e., a requester) tries to ac-
cess to a resource controlled by another entity (i.e., access mediator) there could
be a trust establishment phase where the two entities exchange some credentials
in several steps. As a matter of fact, the requester could not know exactly which
kind of credential to present. Then, the access mediator could try to help him
by prompting the access control policy for its resource. Some user’s attributes
stated in the credentials used for the negotiation phase could be sensible. Thus,
specific procedures for controlling the disclosure of such credentials have been
designed. Credentials are managed like resources to be protected, and have their
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own access (disclosure) control policies. This applies to both the requester and
the access mediator. This aspect of trust management is an active topic of inves-
tigation and is called in the literature Automated trust negotiation (ATN, for
short), e.g. see [3, 27–29].

Since ATN actually deals with protocols for exchanging credentials, it seems
natural that it should be modeled in our framework. This has a very nice conse-
quence to make it formal the intuition expressed in [28] that some properties of
ATN resemble non-interference ones. We exactly identify a notion that is very
good for describing properties of ATN.

We briefly present a slightly simplified version of the theory developed in
[28].

A participant in a trust negotiation protocol is described through a finite
configuration G = 〈KG, E, PolicyG, AckG〉, where:

– KG is the public key of the participant (i.e., the participant knows the cor-
responding private key);

– E is a set of credentials, where we assume that the subject of each credential
is KG;

– PolicyG is a table where to each entry corresponds a positive propositional
logic formula expressing a disclosure policy for attributes (such a logic may
be easily modeled through a suitable inference system);

– AckG is a partial function mapping attributes to an entry in PolicyG. Basi-
cally, a credential proving an attribute may be disclosed only if the attributes
presented by the other participants satisfy the corresponding (ack-)policy.

The goal is to protect attributes rather than credentials where these at-
tributes are stated (see [28] for a deeper discussion).

A negotiation starts when the requester sends a request to the access mediator
and continues by exchanging of messages. Each participant has a local state that
keeps track of the negotiation steps. We have two special states: failure, success.
The negotiation process fails when one of the two participants enters into the
failure state. The negotiation process succeeds when the access mediator enters
into the success state.

A negotiation strategy strat describes the behavior of each negotiator (in
contrast to [28] we do not assume it is deterministic).

– strat.rstart(G, KO) is used by the requester just after the sending of the
access request to the access mediator; it returns the requester’s initial local
state;

– strat.start(G, pid, KO) is used to respond to the first message from the re-
quester; the access mediator checks the policy associated with the resource
(identified by pid) and then determines the next local state and message
to be sent to the requester. (The negotiation proceeds only if the state is
different from success and failure.)

– strat.respond(G, st, msg) is used to respond to a message from the other
negotiator; it returns the new local state and the next message to be sent.
(The negotiation proceeds only if the state is different from success and
failure.)
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Using CryptoCCS, we may model the negotiation steps performed by a ne-
gotiator starting in a configuration G and using a strategy strat through a term
of the process algebra. Note that states simply record the execution history of a
negotiation (and the initial request). Thus, by recording the messages received
and sent, one may avoid the usage of states. Moreover, note that having in the
term algebra a constructor for pairs one may express sequences of messages using
a single one. We assume to have two special messages used to encode the success
and failure states, and an inference system �G,strat that suitably mimics strat
strategy. Eventually, the definition of the term corresponding, for instance, to
the requester is as follows:

AG,rstart = c(resource). outpus the resource requests
AG,respond(resource, nil) proceeds to the respond phase

AG,respond(s, r) = c(y). receives the message
[r y �pair r1] added to received ones
[s z �G,strat x] next message
[x = success]AG,success; ( success
[x = failure]AG,failure; ( failure
c(x). outputs next message
[s x �pair s1] added to sent ones
AG,respond(s1, r1) continues the negotiation
))

In [28] there is an interesting discussion about the privacy issues in ATN. This is
out of the scope of this paper. We are simply interested in presenting the main
notion of privacy preserving negotiation defined in that paper, i.e., credential-
combination-hiding4.

Roughly, no adversary, using observations it can make during the negotiation
phase with the other participant, may infer something about credentials proving
attributes it is not entitled to know (i.e., it does not satisfy the appropriate
disclosure policies).

We give below a variant of the notion of indistinguishability for non-determi-
nistic strategies originally presented in [28].

Definition 2. (Indistinguishability) Given an adversary M and a negotiation
strategy strat, two configurations G = 〈K, E, Policy, Ack〉, G′ = 〈K, E′, Policy,
Ack〉 are indistinguishable under strat by M , if and only if for every attack
sequence seq, any possible response sequence induced by seq from G is among
the ones induced by seq on G′.

Clearly, this definition depends on the notion of attack sequence and response.
A consequence of using our formalism equipped with a precise operational se-
mantics and an abstract model of cryptography is that these notions come for

4 Note also we are not advocating this property; we simply show how it is possible to
relate it to a specific notion of non-interference.
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free. (For instance, in [28] a notion of computationally feasible is referred while
dealing with cryptography forgery, without mentioning the difficulties on man-
aging it in an automated manner.)

Then, one identifies the set of credentials that can be safely disclosed without
revealing information about attributes the adversary M is not entitled to know
(i.e., it cannot present the necessary credentials during the negotiation phase).
Call this set RelG,M . Then, an adversary should not be able to tell apart two
configurations that are equal but for the set of credentials not in the Rel set.
Note that here we do not consider the strategy that will be used by M but
simply the set of credentials it has at the beginning of the computation (called
usually initial knowledge in security protocol analysis, e.g. see [7]).

Definition 3. (Credential-combination hiding safe) A negotiation strategy strat
is credential-combination hiding safe if for every pair of configurations G =
〈K, E, Policy, Ack〉 and G′ = 〈K, E′, Policy, Ack〉, and adversary M with
RelG,M = RelG′,M then G and G′ are indistinguishable.

4.1 ATN Properties as Non-interference Properties

To solve the problem of preventing unauthorized information flows, be they di-
rect or indirect, in the last two decades many proposals have been presented,
starting from the seminal idea of non interference proposed in [8] for determin-
istic functions. In [4–7], many non interference-like notions in the literature have
been uniformly defined in a common process algebraic setting based on Cryp-
toCCS, producing one of the first taxonomies of these properties reported in the
literature.

We recall here a notion of secrecy about security protocols defined by Abadi
and Gordon [1].

Basically, a protocol S(x) keeps secret the variable x iff for any message
M, M ′ there is no attacker able to tell apart S(M) from S(M ′). This secrecy
property has been nicely modeled by exploiting an equivalence notion, called
testing equivalence.

May-Testing Equivalence states that two processes cannot be distinguished
by any process (tester). In our framework, it is possible to formally impose the
fact that the tester is not able to break cryptography and so to forge credentials.

Consider a special action ω available only to testers. We say that two pro-
cesses P and Q are may testing equivalent iff for any tester T , P |T ω=⇒ P ′ iff
Q |T ω=⇒ Q′. Basically, the tester plays the role of the adversary. Thus the no-
tion of indistinguishability is similar to the notion of testing equivalence, when
one considers as testers only the ones with any credentials able to infer a fixed
set of attributes. Eventually, one configuration G and one configuration G′ that
have the same Rel set and differ on the credentials that cannot be released,
may be analyzed by using with a single process AG,Rel(y) that has as parameter
y the set of credentials that cannot be disclosed. Thus, this amounts to check
whether or not AG,Rel keeps secret such credentials (again we assume that a set
of messages may be encoded as a single one).
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Probabilistic notions of this property may be easily given by using suitable
modifications of the process algebra and of the corresponding may testing equiv-
alence.

5 Conclusions and Future Work

We have shown how the same machinery used for the formal specification and
verification of security protocols may be used to analyze a variety of access
control approaches based on trust management. In addition, in [5, 7, 21] Cryp-
toCCS has been proposed as a uniform specification and verification framework
for security protocols properties and non-interference ones, usually managed with
different techniques. This made it very natural for us to model automated trust
negotiation problems as proposed in [28] as non-interference ones.

The approach presented in this paper may be considered as a step towards
the creation of a uniform and automated verification framework for studying
security properties of networked systems. As future work we wish to extend our
analysis tool called PaMoChSA [22] to fully support our approach. Moreover, we
wish to investigate more deeply the relationships of non-interference with ATN
properties.
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Abstract. We report on an experience in analyzing the security of the
Trust and Security Management (TSM) protocol, an authentication pro-
cedure within the OSA/Parlay Application Program Interfaces (APIs)
of the Open Service Access and Parlay Group. The experience has been
conducted jointly by research institutes experienced in security and in-
dustry experts in telecommunication networking. OSA/Parlay APIs are
designed to enable the creation of telecommunication applications out-
side the traditional network space and business model. Network opera-
tors consider the OSA/Parlay a promising architecture to stimulate the
development of web service applications by third party providers, which
may not necessarily be experts in telecommunication and security. The
TSM protocol is executed by the gateways to OSA/Parlay networks; its
role is to authenticate client applications trying to access the interfaces of
some object representing an offered network capability. For this reason,
potential security flaws in the TSM authentication strategy can cause
the unauthorized use of the network, with evident damages to the oper-
ator and the quality of services. We report a rigorous formal analysis of
the TSM specification, which is originally given in UML. Furthermore,
we illustrate our design choices to obtain the formal model, describe the
tool-aided verification and finally expose the security flaws discovered.

Keywords: Formal Verification of Security, OSA/Parlay API, Industrial
Test Case.

1 Introduction

OSA/Parlay1 Application Program Interfaces (APIs) [9] are designed for an easy
interaction between traditional IT applications and telecommunication networks.
1 See http://www.parlay.org

M. Steffen and G. Zavattaro (Eds.): FMOODS 2005, LNCS 3535, pp. 131–146, 2005.
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OSA/Parlay APIs are abstract building blocks of network capabilities that de-
velopers, not necessarily expert in telecommunications but perhaps with more
expertise in the enterprise market, can quickly comprehend and use to generate
new applications. Concisely, OSA/Parlay APIs proposes an attractive framework
where programmers can develop innovative resources or design new services.

An example of such a service is the retrieval and purchase of goods via a
mobile phone. The service could be provided by a third party, different from the
mobile operator. In this case, the provider could develop the service by assem-
bling components that control network capabilities and functions, for example,
sending/receiving a SMS. These components (in particular, their APIs) are pro-
vided by the telecom’s operator. For example, the sending/receiving of a SMS
could be realized in the following SOAP body that, in XML notation where
namespace and encoding descriptors are omitted, appears as follows:

<sendSMS>
<dest_address>
tel:1234567

</dest_address>
<send_address>
tel:0123456

</send_address>
<message>
Could you please reserve
two seats for 9 o’clock?

</message>
</sendSMS>

OSA/Parlay APIs can also be used in the development of new web-based services.
To this end, the Parlay community has designed specific APIs, called Parlay X
APIs, based on web service principles and oriented to the Internet community.

When network resources are broadly accessible, it becomes crucial to define
and enforce appropriate access rules between entities offering network capabil-
ities and service suppliers, so that an operator can maintain full control over
the usage of her resources and on the quality of service. For instance, it is im-
portant that the use of services is guided by a set of rules defining the supply
conditions and the reciprocal obligations between the client and the network
operator. Service Level Agreements (SLAs) are commonly used to formalize a
detailed description of all the aspect of the deal. To avoid that unauthorized en-
tities can sign an agreement and use the network illegally, on-line authentication
checks are of primary importance.

Authentication in a distributed setting is usually achieved by the use of cryp-
tographic protocols. Experience teaches that these protocols need to be carefully
checked, before being fielded (e.g., [2, 5, 8, 11, 12, 15, 16]), and nowadays devel-
opers have access to libraries of reliable protocols for different security goals. For
example the Secure Socket Layer (SSL) by Netscape, is widely used to ensure
authenticity and secrecy in Internet transactions. Unfortunately, the use of re-
liable, plugged-in, protocols is not sufficient to ensure security, just like the use
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of reliable cryptography is not sufficient to ensure secrecy in a communication.
As we shall see formal methods can help to validate the correct use of security
procedures.

In this paper we discuss the validation of the authentication mechanism in the
Trust and Security Management (TSM) protocol in OSA/Parlay APIs [1]. This
protocol is designed to protect telecommunication capabilities from unauthorized
access and it implements an authentication procedure. TSM is specified in the
UML [14], where its composing messages, its interfaces towards the client and the
server, and the methods implementing security-critical procedures, are described
at different levels of abstraction. The formal validation experiment, conducted
within a joint project between research Institutes and Telecom Italia Lab, has
revealed some security flaws of the authentication mechanism. From the analysis
of the traces showing the attacks, we were able to suggest possible solutions
to fix the security weaknesses discovered, and to state a general principle of
prudent engineering (in the style of [4]) for improving the security in web-service
applications.

2 The OSA/Parlay Architecture

The OSA/Parlay architecture enables service application developers to make use
of network functionality through an open standardized interface. OSA/Parlay
APIs [1] provide an abstract and coherent view of heterogeneous network capa-
bilities, and they allow a developer to interface its applications via distributed
processing mechanisms. The OSA/Parlay architecture, shown in Figure 1, con-
sists of:

– a set of Client Applications accessing the network resources;
– a set of Service Interfaces, or Service Capability Features (SCFs), that rep-

resent interfaces for controlling the network capabilities provided by network
resources (e.g., controlling the routing of voice calls, sending/receiving SMSs,
locating a terminal, etc.);

– a Framework, that provides a modular and “controlled” access to the SCFs.
– Network Resources, in the telecommunication network, implementing the

network capabilities.

A Parlay Gateway includes the framework functions and the Service Capa-
bility Services (SCSs), that is the modules implementing the SCFs: it is a logical
entity that can be implemented in a distributed way across several systems.
Since the target applications could be deployed in an administrative domain dif-
ferent from the one of the Parlay Gateway, the secure and controlled access to
the SCFs is a predominant aspect for the Parlay architecture. To get the refer-
ences of the required SCFs, an application must interact several times with the
framework interfaces. For example, the application must carry out an authenti-
cation phase before selecting the SCFs required, as described in Section 2.1. In
this phase the framework verifies whether the application is authorized to use
the SCFs, according to a subscription profile. Finally, an agreement is digitally
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Fig. 1. The OSA/Parlay Architecture. The Trust and Security Management protocol
runs between the Framework Interfaces and the Clients.

signed, and the framework gives to the application the references to the required
SCFs (e.g., as CORBA interface reference). These references are valid only for
a single session of the application. When the framework has to return an SCF
reference to an application, it contacts the SCS which implements it, by passing
all the configuration parameters, for instance the Service Level Agreement con-
ditions, stored in the subscription profile of the application. The SCS creates a
new instance of the SCF, configured with the received parameters, and returns
its reference to the framework. Each time the application invokes a method on
the SCF instance, the SCS executes it by taking into account the configuration
parameters received at instantiation time.

Gateways based on the OSA/Parlay framework here presented have been
implemented by, for instance, Ericsson, Alcatel, Lucent, AePONA, and Incomit
(though they have not been deployed yet).

2.1 Trust and Security Management Protocol

One of the critical steps for guaranteeing controlled access to the SCFs is the
authentication phase between the gateway and the application. It is supported by
the protocol implemented by the Trust and Security Management (TSM) API.
We focuses on the analysis of the properties of this security protocol, whose
behavior is summarized by the message sequence chart in Figure 2. The main
steps of the protocol are:

– Initiate Authentication: the client invokes “initiateAuthenticationWith-
Version” on the framework’s public interface (e.g., an URL) to initiate the
authentication process. Both the client and the framework provide a refer-
ence to their own access interfaces.

– Select Authentication Mechanism: the client invokes “selectAuthentica-
tionMechanism” on the framework authentication interface, to negotiate
which hash function will be used in the authentication steps.
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– The client and the framework authenticate each other. The framework could
authenticate the client before (or after) the client authenticates the frame-
work, or the two authentication processes could be interleaved. However,
the client shall respond immediately to any challenge issued by the frame-
work, as the framework might not respond to any challenge issued by the
client until the framework has successfully authenticated the client. Each
authentication step is performed following a one-way Challenge Handshake
Authentication Protocol (CHAP) [10], that is by issuing a challenge in the
“challenge” method, and checking if the partner returns the correct response.
An invocation of the method “authenticationsucceeded” signals the suc-
cess of the challenge.

– Request an access session: when authenticated by the framework, the client
is permitted to invoke “requestAccess” to start an access session. The client
provides a reference to its own Access interface, and the framework returns
a reference to Access interface, unique for this client.

– The access interface is used to negotiate the signing algorithm to be used in
the session and to obtain the references to other framework interfaces (we
will call them, service framework interfaces), such as service discovery and
service agreement management.

Having obtained the reference to a service framework interface the TSM
finishes. Note that the references to the interfaces must remain secret: if an
intruder got hold of them, it would be able to (abusively) access the services.
For this reason our analysis will mainly concentrate on the secrecy of these
references.

In fact, after the TSM ends, the client selects the required SCFs by invoking
the “selectService” method on the service agreement management interface.
The client obtains a service token, which can be signed as part of the service
agreement by the client and the framework, through the “signServiceAgree-
ment” and the “signAppServiceAgreement” methods. Generally the service to-
ken has a limited lifetime: if the lifetime of the service token expires, a method
receiving the service token will return an error code. If the sign service agreement
phase succeeds, the framework returns to the client a reference to the selected
SCF, personalized with the client configuration parameters.

3 Security Formal Analysis

This section explains in detail the formal analysis of the security of the TSM pro-
tocol that we have done. To carry out the verification phase we used CoProVe [6]
a constraint-based system for the verification of cryptographic protocols2. Co-
ProVe has been developed at the University of Twente (NL); it is an improved
version of the system designed by Millen and Shmatikov [13]. CoProVe is based
on the strand spaces model [17]; it enjoys an efficient implementation, a mono-
tonic behavior which allows to detect flaws associated to partial runs, and an
2 Freely accessible via the web at
http://wwwes.cs.utwente.nl/24cqet/coprove.html
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Client : IpInitial : IpAPILevelAuthentication Framework: IpAccess: IpClientAPILevelAuthentication

1: initiateAuthenticationWithVersion( )

2: selectAuthenticationMechanism( )

3: challenge( )

7: requestAccess( )

5: challenge( )

9: obtainInterface( )

4: authenticationSucceeded( )

6: authenticationSucceeded( )

8: selectSigningAlgorithm( )

Fig. 2. Message sequence chart describing the steps of the TSM protocol [1].

expressive syntax in which a principal may also perform explicit checks for de-
ciding whether to continue or not with the execution. All these features make
CoProVe quite efficient in practice. The intruder model is that of Dolev-Yao [7],
where the malicious entity is identified with the communication infrastructure.
Protocols are written in Prolog-lake style, and properties are expressed as reach-
ability predicates. In case a security flaw is discovered, CoProVe can show one
or all the traces showing the attack.

3.1 Modelling Choices

One of the challenges in applying tools of automatic analysis to industrial archi-
tectures lies in translating the (usually less formal) specification into a rigorous
formal model. In our experience, translating a complex system design into a for-
mal protocol specification involves many non-trivial steps: software technology
concepts such as method invocation and object interfaces have to be “encoded”
into an algebraic protocol specification. This encoding phase also forces the en-
gineer to reason about the security implication of using these constructs.

The OSA/Parlay framework APIs specification consists of many pages of
UML specification; at this level of abstraction it is difficult to have a good
overview of its security mechanisms. In the APIs specification, for instance, there
is no explicit transmission of messages: the exchange of one (sometimes even
more) messages happens exclusively by the mechanism “invocation of a method
over an object interface”. Moreover, different levels of abstraction are mixed: for
example, the same mechanism of “method invocation” is used both to describe,
in one step, the whole set of critical steps of the CHAP handshake and the
single message starting of the protocol. More critically, “method invocation”
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does not specify the confidentiality of the input/output parameters involved.
Innocent acknowledgment messages are treated in the same way as references to
confidential object interfaces.

The application of clear modeling choices encourages the design of a formal
model without the previous ambiguities. In translating the TSM specification in
a model we define and apply the following modeling choices.

Modelling Choice 1 A reference to a (new) private interface, F , is modeled
by a (new) shared encryption key, KF .

Choice 1 reflects the fact that an intruder who does not know the private in-
terface reference cannot infer anything from any method invocation over that
interface. This simple, but essential observation will make our security analysis
straightforward, as we explain in Section 3.

Modelling Choice 2 Calling a method, with parameter M , over a private in-
terface F is modeled as sending the message {M}KF i.e., M encrypted with KF .
Dually, getting the result is translated as receiving a message encrypted with the
same KF ;

In Choice 2 we treat a reference to an object interface as a communication
port; consequently calling a method equates transmitting a message through
that port. Moreover, we model the transmission of a message through F , as
the transit of a message encrypted with the key KF . In other words, calling
a method over an interface is modeled as a communication encrypted with the
interface key. This choice reminds of an observation by Abadi and Gordon [3],
who suggest the use of cryptographic keys to model mobility. Our situation
is indeed much simpler: the only form of “mobility” we have, is the dynamic
creation of a “channel”, that is an interface reference.

3.2 Formal Models

We apply Choices 1 and 2 to design the TSM formal abstract model written in
the usual representation of cryptographic protocols. The obtained model is as
follows:

* initiate *
step 1. C−→F : C, KC
step 2. F−→C : KF

* select authentication methods *
step 3. C−→F : {[h, h′, h′′]}KF

step 4. F−→C : {h}KF

* challenge *
step 5. F−→C : {F, N}KC

step 6. C−→F : {C, h(N, SCF )}KC

step 7. F−→C : {ok/fail}KC

* request access *
step 8. C−→F : {req}KF

step 9. F−→C : {KA/fail}KF

* select signing methods *
step 10. C−→F : {[s, s′, s′′]}KA

step 11. F−→C : {s}KA

* request for service interface *
step 12. C−→F : {req ′}KA

step 13. F−→C : {KS/fail}KA
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In this abstract model, C represents a client and F the framework, while
C −→ F : M denotes C sending message M to F . With {M}K we indicate
the plain-text M encrypted with a key K, while h(M) denotes the result of
applying a hash function h to M . In step 1 the client initiates the protocol over
the public interface of the framework, by providing its name and a reference to
its interface, KC. In step 2 the framework replies by sending a reference, KF ,
to its own interface.

Remark 1. It may seem odd that despite modelling choice we transmit references
to interfaces (represented as keys) in clear. The expectation here is that the
challenge response protocol of steps 5-7 would avoid intrusion anyway.

In steps 3 and 4 the client asks the framework to choose an authentication
method among h, h′ and h′′. In steps 5 and 6 the actual CHAP protocol is
carried out, using the hash function selected in step 4. Here, SCF represents
a shared secret between C and F , required by CHAP [10]. Indeed the UML
specification did not provide the details about the CHAP implementation; here
we use the version of CHAP where the client and the framework already share
the secret SCF . In steps 8 and 9 the client asks for an interface where to invoke
the request access for a service. In steps 10 and 11 the framework chooses the
interface. Finally in steps 12 and 13 the client sends a request for a service and
receives back the reference to the relative framework interface.

The abstract model has been translated into the language required by Co-
ProVe. The result of this translation is a concrete formal model; in addition, we
encode (in the language of CoProVe) the security properties that we want to
check. In Figure 3 we report one of the concrete models we used for checking
whether KA remains secret or not.

The specification in Figure 3 involves three principals: one client (c), one
framework (f) and eavesdropping agent (sec). Each role is specified by a se-
quence of send or receive actions that mimic exactly the steps of the abstract
model. Symbol “+” is used to denote symmetric encryption using shared keys.
Formal parameters (e.g., in the client roleC,F,Kc,Kf,N,Req,Ka,Scf) are used
to denote all the objects used in the role specification. In a scenario these pa-
rameters are instantiated with actual constants representing real objects (i.e.,
c,f, ,kf,n, ,ka,scf). Here “ ” is used when no instantiation is required, that
is when a free variable is involved. The intruder is assumed to know only the
client and framework names plus its own name “e”. Verification of secrecy con-
sists in asking if there is a trace leading the eavesdropper to know a secret.

3.3 Formal Analysis and Detected Weakness

The analysis performed on the model of TSM protocol, pointed out weaknesses
in the security mechanism. In the following we will describe the flaws discovered
as a commented list of items. Where significant, we show the output produced
by CoProVe and we interpret the output.

Flaw 1. An intruder can impersonate a client and start an authentication chal-
lenge with the framework.
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% Initiator role specification

client(C,F,Kc,Kf,N,Req,Ka,Scf,[

send([C,Kc]),

recv(Kf),

recv([F,N]+Kc),

send([C,sha([N,Scf])]+Kc),

send(Req+Kf),

recv(Ka+Kf)]).

% Responder role specification

framewk(C,F,Kc,Kf,N,Req,Ka,Scf,[

recv([C,Kc]),

send(Kf),

send([F,N]+Kc),

recv([C,sha([N,Scf])]+Kc),

recv(Req+Kf),

send(Ka+Kf)]).

% Secrecy check

%(it is a singleton role)

secrecy(N, [ recv(N) ] ).

% scenario specification

% pairs [name, Name]

% [label for the role; actual role]

scenario

([[c,Client1],

[f,Framew1],

[sec,Secr1]]):-

client(c,f,kc,_,_,req,_,scf,Client1),

framewk(c,f,_,kf,n,_,ka,scf,Framew1),

secrecy(ka, Secr1).

% The initial intruder knowledge

initial_intruder_knowledge([c,f,e]).

% specify which roles we want

% to force to finish

%(only sec in this example)

has_to_finish([sec]).

Fig. 3. The “CoProVe” specification (in two columns) used to check the secrecy of
KA. To reduce the search space here we implemented only steps 1-2, 5-6 and 8-9. In
other words we assumed: (a) a constant hashing function h; (b) that the framework
does not reply (instead of replying “false”) if the client answer wrongly to the CHAP
challenge.

An intruder can obtain the reference to the interface used by the client to start
the authentication challenge (key kf). This happens, unsurprisingly, because the
reference kf is transmitted in clear, as the following trace of CoProVe confirms:

1. [c,send([c,kc])]

1’. [f,recv([c,kc])]

2. [c,recv(_h325)]

2’. [f,send(kf)]

Each row represents a communication action. For example, c,send[c,kc] repre-
sents the action “send” that “c” executes with message “[c,kc]”; c,recv( h325)
represents the results of a “receive” where the client “c” receives the name (in
this case generated by the intruder) “ h325”. The sequence of actions reveal
the attack. It can be visualized in the conventional notation of security pro-
tocol (where, we also write h325 as KE, the intruder key, because this is its
understood meaning.):

1. C −→ I(F ) : C, KC
1’. I(C) −→ F : C, KC

2. I(F ) −→ C : KE
2’. F −→ I(C) : KF
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This run comprises two parallel runs of the protocol, in which the intruder plays,
respectively, the role of the client against the framework (I(C) in steps 1′ and
2′) and the framework against the client (I(F ) in steps 1 and 2).

This flaws is not serious in itself (provided the authentication procedure is
able to detect an intruder and close the communication), but it becomes serious
when combined with the next weaknesses in the security; by knowing kf an
intruder is able to grab other confidential information.
Flaw 2. An intruder can impersonate a client, authenticate itself to the frame-

work and obtain the reference to the interface used to request access to a
service (key ka ).

This is a serious flaw that compromises the main goal of the protocol itself.
Informally, a malicious application can pass the authentication phase instead of
an honest client, and it can obtain a reference to the interface used to request
a service (key ka ). The study of the output of CoProVe (here depicted in two
columns) shows the existence of an “oracle” attack, where the intruder uses the
client to get the right answer to the challenge:

1. [c,send([c,kc])]

1’. [f,recv([c,kc])]

2. [c,recv(_h325)]

2’. [f,send(kf)]

5’. [f,send([f,n] + kc)]

5. [c,recv([f,n] + kc)]

6. [c,send([c,sha([n,scf])] + kc)]

6’. [f,recv([c,sha([n,scf])] + kc)]

8. [c,send(req + _h325)]

9. [c,recv(_h391 + _h325)]

8’. [f,recv(req + kf)]

9’. [f,send(ka + kf)]

[sec,recv(ka)]

Using the standard informal notation for describing protocols, the above trace
is read as follows:

1. C −→ I(F ) : C, KC
1’. I(C) −→ F : C, KC

2. I(F ) −→ C : KE
2’. F −→ I(C) : KF
5’. F −→ I(C) : {F, N}KC

5. I(F ) −→ C : {F, N}KC

6. C −→ I(F ) : {C, h(N, SCF )}KC

6’ I(C) −→ F : {C, h(N, SCF )}KC

8. C −→ I(F ) : {req}KE

9. I(F ) −→ C : {fail}KE

8’. I(C) −→ F : {req}KF

9’. F −→ I(C) : {KA}KF

This run comprises two parallel runs of the protocol, in which the intruder plays,
respectively, the role of the framework against the client and the role of the client
against the framework. Searching among the set of attacks returned by CoProVe,
we find also the following, straightforward, man-in-the-middle, attack:

1. [c,send([c,kc])]
1’. [f,recv([c,kc])]
2’. [f,send(kf)]
2. [c,recv(kf)]
5’. [f,send([f,n] + kc)]
5. [c,recv([f,n] + kc)]

6. [c,send([c,sha([n,scf])] + kc)]
6’. [f,recv([c,sha([n,scf])] + kc)]
8. [c,send(req + kf)]
8’. [f,recv(req + kf)]
9’. [f,send(ka + kf)]
9. [c,recv(_h325)]

[sec,recv(ka)]
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This trace shows that the intruder can eavesdrop first the key kf, passed in clear,
and then steal the message ka+kf. At this point key ka can be obtained by a
simple decryption. This attack is obviously straightforward at this point of the
analysis, but it became clear as soon as we applied Choice 1.

Flaw 3. An intruder can impersonate a client, authenticate itself to the frame-
work, send a request for a service and obtain the reference to a service
framework interface (key ks).

This is also a serious flaw that compromises the main goal of the protocol. An
intruder can obtain the reference to a service framework interface (key ks ). It is
easy to understand, that this is possible, for example, as a consequence of flaw
1 and 2: once an intruder has authenticated itself instead of the client, it can
easily obtain the reference.

Further checks with CoProVe, show that the intruder can even retrieve this
reference with a man-in-the-middle attack, for instance, by listening to the com-
munication between the client and the framework and stealing the reference
when it is passed in clear. In our model this attack can be explained as follows:
the intruder intercepts, by eavesdropping, the message {KS}KA and it decrypts
it. This is possible because the encryption key KF is passed in clear and, by
eavesdropping, the intruder can easily obtain {KA}KF , and hence KA (flaw 2).

Flaw 4. An intruder can force the framework to use an authentication mecha-
nism of her choice.

This flaw has been discovered using the specification in Figure 4, with two in-
stances of the framework. When a client offers a list of authentication methods,
the first instance selects the first method at the head of a list (here consisting
of only two items), whereas the second instance chooses the second. In this way
we model different choices made by the framework.

The attack is shown by the following CoProVe trace; an intruder can force
the framework to select a particular authentication mechanism, by the use of a
replay attack.

a.1. [c,send([c,kc])]

a.1’. [f,recv([c,kc])]

a.2. [c,recv(_h320)]

a.2’. [f,send(kf)]

a.3. [c,send([a1,a2] + _h320)]

a.3’. [f,recv([a1,a2] + kf)]

a.4’. [f,send([a1,a1] + kf)]

a.4. [c,recv([a1,a1] + _h320)]

a.5’. [f,send([f,n] + kc)]

a.5. [c,recv([f,n] + kc)

a.6. [c,send([c,sha([n,scf])] + kc)

a.6’. [f,recv([c,sha([n,scf])] + kc)

a.8. [c,send(req + _h320)]

a.9. [c,recv(req + _h320)]

a.8’. [f,recv(_h404 + kf)]

a.9’. [f,send(ka + kf)]

b.1’. [f,recv([c,_h487])]

b.2’. [f,send(kf2)]

b.3’. [f,recv([a1,a1] + kf2)]

b.4’. [f,send([a1,a1] + kf2)]

b.8’. [f,recv(_h488 + kf2)]

b.9’. [f,send(ka2 + kf2)]

[sec,recv(ka2)]
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% Initiator role specification

client(C,F,Kc,Kf,N,Req,Scf,

Ka,A1,A2,A,[

recv([C,F]),

send([C,Kc]),

recv(Kf),

send([A1,A2]+Kf),

recv([A,A]+Kf),

recv([F,N]+Kc),

send([C,sha([N,Scf])]+Kc)

send(Req+Kf),

recv(Ka+Kf)]).

% Responder role specification

framewk(C,F,Kc,Kf,N,Req,Scf,

Ka,A1,A2,[

recv([C,Kc]),

send(Kf),

recv([A1,A2]+Kf),

send([A1,A1]+Kf),

send([F,N]+Kc),

recv([C,sha([N,Scf])]+Kc),

recv(Req+Kf),

send(Ka+Kf)]).

framewk2(C,F,Kc,Kf,N,Req,

Ka,A1,A2,[

recv([C,Kc]),

send(Kf),

recv([A1,A2]+Kf),

send([A2,A2]+Kf),

recv(Req+Kf),

send(Ka+Kf)]).

% secrecy check (singleton role)

secrecy(N, [ recv(N) ] ).

% Scenario

scenario([

[c,Client1],

[f,Framew1],

[f,Framew2],

[sec,Secr1]

]) :-

client(c,f,kc,_,_,req,scf,_,a1,

a2,a1,Client1),

framewk(c,f,_,kf,n,_,scf,ka,_,_,

Framew1),

framewk2(c,f,_,kf2,n2,_,ka2,_,_,

Framew2),

secrecy(ka2, Secr1).

% Set up the intruder knowledge

initial_intruder_knowledge([c,f,e]).

% specify which roles we want

% to force to finish

% (only sec in this example)

has_to_finish([sec]).

Fig. 4. The “CoProVe” code used to discover flaw 4 (in two columns). The model of the
framework includes the “select authentication method” phases of the abstract model
and implements steps 1–9 of the abstract model. Step 7 is omitted, i.e., the framework
does not reply (instead of sending “fail”) in case of failure of the challenge phase. The
second instance of the framework models only steps 1–4 and steps 8–9, that is those
steps strictly necessary to discover the attack.

The attack can represented in the following abstract steps:
a.1 C −→ I(F1) : C, KC

a.1’ I(C) −→ F1 : C, KC
a.2 I(F ) −→ C : KE

a.2’ F1 −→ I(C) : KF
a.3 C −→ I(F1) : {[a1, a2]}KE

a.3’ I(C) −→ F1 : {[a1, a2]}KF

a.4’ F1 −→ I(C) : {[a1]}KF

[. . .]
b.1’ I(C) −→ F2 : C, KE
b.2’ F2 −→ I(C) : KF2
b.3’ I(C) −→ F2 : {[a1, a1]}KF2

b.4’ F2 −→ I(C) : {[a1]}KF2
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In the trace the intruder acts as a men-in-the-middle in a communication between
the client and the first instance of the framework F1 and it learns what method
the framework is able to use (sequences a.i). In the second run, the intruder acts
as a client, and it offers to the second instance of the framework F2 the choice
that the framework is able to accept (sequences b.i). The structure of the attack
is such that it can be applied also for forcing the selection of a signing methods,
that is steps 10 and 11 of the abstract model.

4 Discussion

The analysis performed so far shows some weaknesses of the protocol, and gives
also useful indications on how to improve the robustness of the protocol. This
section discusses the weaknesses here presented, and suggests possible solutions
to increase the overall security. We start with some preliminary considerations.

The security is weak is because some references to interfaces are passed in
the clear. This is because the role of those references has been misunderstood, or
under-evaluated, or more probably not recognized in the UML, high-level, object
specification. A rigorous, synthetic, formal specification and precise modeling
choices helps in giving each object its right role. In our case we were able to
identify in the role of some references to object interface the same role that
session keys have. This observation can be quoted as a principle:

Independently of their high-level representation, data that directly or
indirectly gives access to a secret, must be thought of (hence, modeled)
as encryption keys.

This principle plays a role also in fixing the protocol. In fact, the common
practice in protocol engineering [4] suggests the use of (other) session keys to
protect the confidentiality of sensitive information, which in the case of TSM
are the references to interfaces. According to the TSM model, session keys are
indeed missing completely from the present implementation3 while their use
could prevent the intruder from gaining a reference to an interface (as shown,
by a men-in-the-middle attack).

An additional point of discussion concerns the correct use of a CHAP-based
authentication. From the OSA/Parlay documentation ([1] page 19) we read that
security can be ensured if the “challenge” is frequently invoked by the framework
to authenticate the client that, in turn, must reply “immediately”:

Our analysis proves that not only the intruder can act as a client with respect
to the framework, but also that it can passively observe, as man-in-the-middle,
the framework and a client authenticating each other as many times as they
want, and then steal the reference to the service framework interfaces when they
are transmitted in clear. At this point the intruder can substitute itself for the
client.
3 Do not confuse them with the session keys that appear in the abstract model. Those

are part of the model and represent private references to interfaces.
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Generally speaking TSM confidentiality improves if the framework encrypts
all the messages containing a reference to an interface. Encryption requires that
the framework authenticates the client, and later that it agrees upon a session
key with the authenticated client. This can be done, for example by “running a
Secure Sockets Layer (SSL) protocol at the beginning of the TSM session. The
SSL allows two entities, a client and a server, to authenticate each other and to
establish session keys. Session keys are then used to ensure confidentiality and
integrity in any, next, exchange of messages. As a consequence, the SSL can sub-
stitute the CHAP authentication procedure required by the TSM specification.
The common use of the SSL sees the client to authenticate the server (i.e., the
framework in our case); in the context of the TSM security, is mandatory that
the server authenticates the client as well.

Flaw 4 is different in nature, and it teaches that particular care must be
paid to the choice of the encryption algorithms or digital signature procedures
offered by the framework: for example, the intruder can force the system to use
the encryption algorithm that is easier to crack.

5 Conclusions

This paper discusses an industrial experience of formal analysis applied to the
security aspects of the OSA/Parlay Trust and Security Management protocol.
The protocol is devised to authenticate clients before granting them access to
network services. Our experience confirms that formal methods are an invaluable
tool for discovering serious security flaws which may be overlooked otherwise.
This is true in two respects. First, the use of a formal model, where only the rel-
evant security features are expressed, helps at pointing out what are the critical
security component. In an informal description, on the other hand, this informa-
tion is usually dispersed and difficult to gather. Second, the use of an automatic
tool allows one to identify dangerous man-in-the middle attacks, which are no-
toriously difficult to see on high-level specifications.

From this experience, conducted within a joint project between industry and
research institutes, we state a general principle for security in web-services: it is
essential to identify clearly the security role of each object involved in service
specification. It is vital especially for those objects that abstractly represent
encryption keys. This principle helps at simplifying the security analysis. With
the application of this principle we discover serious weaknesses more easily, and
we are able to discuss how the security of the TSM protocol can be generally
improved.

The results of this work has been presented to the join standardization group
3GPP/ETSI/Parlay. They have decided to open a study on how to strengthen
the security of OSA/Parlay in the next future.
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Abstract. The correctness of a component-based specification is not guaranteed
by the correctness of its components alone; on the contrary, integration analysis
is needed to observe their conjoint behavior. Existing approaches often leave the
results of the analysis at the level of the integrated system, without tracing them
onto the corresponding components. This effectively results in loss of architec-
ture, as it is no longer possible to reason over those components and evolve their
specification while keeping the results of integration analysis.
This paper presents a formal approach to automatically translate changes on the
integrated system into revisions of the components and the architecture initially
defined by the developers. Several architectural alternatives are provided that,
besides allowing developers to reason about the system from different points of
view, promote its correct modularization in two overlapping perspectives: the en-
capsulation of crosscutting concerns and the elaboration of the architecture de-
sired for the final implementation.

1 Introduction

Component-based approaches have been around for a long time as a means to split
complexity in software development, promising better understanding of a system by its
developers, improved quality and easier maintenance. A more recent idea to improve
software engineering practice has been to apply incremental development techniques,
which are based on obtaining successive revisions of a system until achieving the de-
sired functionality. These techniques are especially suitable to deal with changeable
specifications, and also with maintenance and evolution tasks.

Due to the well-known problem of feature interaction, the correctness of a system
is not guaranteed by the correctness of its parts, considering these in isolation. On the
contrary, certain properties can only be verified by observing the conjoint operation of
several components. This points out the need for integration analysis.

Current approaches to component-based development often limit themselves to find-
ing whether integration analysis succeeds. In case of failure, no information is given on
how to modify the components, forcing the developers to attempt manual changes until
getting a positive response, which is clearly unsatisfactory. The ideal would be to deter-
mine the changes needed to satisfy the integration properties over the integrated system
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(i.e., where the properties can be observed), and then trace those changes automatically
to the components. Unfortunately, support for this feature is missing nowadays, result-
ing in an effective loss of architecture, as it is no longer possible to reason over the
individual components while keeping the results of integration analysis. So, the ability
to trace integration results would represent a major aid to incremental development.

In this paper, we present a formal methodology to tackle this concern. Our pro-
posal is to automatically translate the changes resulting from integration analysis into
revisions of the components and the architecture defined by the developers. These are
provided with several architectural views, that promote the correct modularization of a
system and help to elaborate the architecture wanted for its final implementation.

The paper is organized as follows. Section 2 outlines the development model in
which our proposal takes place, with Section 3 describing our methodology to trace
integration analysis. Section 4 presents a simple example on applying this methodology,
which is later discussed in Section 5. Section 6 comments our ongoing work in the line
of this paper, and Section 7 discusses related work. Appendixes A, B and C gather the
technical details not included elsewhere.

2 The (SCTL/MUS)A Context

The context for our work lies in the SCTL-MUS methodology [14], a formal approach
to the specification of reactive systems that models the usual way in which a system
is specified: starting with an initially rough idea of the desired functionality, this is
successively refined until the specification is complete.

SCTL-MUS combines property-oriented and model-oriented formal description
techniques: on the one hand, the many-valued logic SCTL (Simple and Causal Tem-
poral Logic) is used to express the system’s functional requirements; on the other, the
graph formalism MUS (Model of Unspecified States) is employed to model systems for
validation and formal verification purposes.

SCTL statements have the generic form Premise
⊕

Consequence, with
⊕

rang-
ing over the set of temporal operators {⇒,⇒©,⇒

⊙
} and the following semantics:

If Premise is satisfied, then [simultaneously (⇒) | next (⇒ ©) | previously (⇒
⊙

)]
Consequence must be satisfied.

This causal semantics allows expressing under what circumstances during the op-
eration of a system shall a given condition be satisfied, so that the premise and the
temporal operator of a statement delimit the applicability of its consequence.

Given a set of requirements expressed in SCTL, the synthesis algorithm of SCTL-
MUS attempts to generate a MUS graph that adheres to all of them. As a distinctive
feature with respect to traditional Labeled Transition Systems (LTS), the events of a
MUS graph can be not only possible (true, 1) or non-possible (false, 0) in the different
states; on the contrary, if there are no requirements affecting the specification of an event
in a given state, that event is given the value 1

2 (not-yet-specified or unspecified) in that
state. Figure 1 shows two SCTL requirements and the MUS graph that implements
them – note that we do not explicitly represent unspecified actions (like a in state s2),
because 1

2 is the default value; instead, we do represent false actions (like b in s2),
placing a symbol like next to every state where a given event is non-possible.
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r1 ≡ a ⇒
(
¬b ∧©c

)
r2 ≡ c ⇒©a s1

s2
b

a

c

Fig. 1. Two SCTL requirements and the MUS graph that implements them

The commented notion of unspecification was introduced to deal with the incom-
pleteness inherent to the intermediate stages of an incremental process, so as to en-
able reasoning about evolutions and satisfaction tendencies in the formal verification
process. A partial specification represents all the systems into which it can evolve by
adding new requirements, and the MUS formalism was devised to explicitly capture
that potentiality. This is achieved through the inclusion of an unspecified state – not
relevant for the contents of this paper and, therefore, not drawn in the figures – that
represents all the states that have not been specified so far (see [14] for the details).
With this definition, the addition of new requirements to a specification always results
in losses of unspecification in the MUS model that implements it (i.e., some unspecified
events are turned into possible or non-possible ones), which allows making the synthe-
sis an incremental process. These features are not fully catered for by other formalisms
intended to support partial specifications, like KPSs [3] or MTSs [6].

2.1 An Incremental Approach to Component-Based Specification

SCTL-MUS lacks the notion of architecture, which hinders the simultaneous work of
several developers and makes specifications unmanageable for large systems. More-
over, it only defines mechanisms to handle evolutions of a specification to satisfy new
requirements, consistent with the current ones, but provides no support to modify the
current requirements so as to solve inconsistencies or revise previous design decisions.

To solve these flaws, we are now working on (SCTL/MUS)A, a fully incremen-
tal methodology aimed at facilitating task division and collaborative work. The new
methodology, whose motivation was given in [11], inherits most of the philosophy of
SCTL-MUS, keeping its dual approach in the use of formal description techniques, its
iterative life cycle and its notion of unspecification. It also uses the same formalisms
(SCTL and MUS), to reason over individual components and their compositions, but
extends this basis to handle component-based specifications.

(SCTL/MUS)A accommodates the multiple parts of a specification in composition
layers that relate components to the compositions in which they take part, with the
overall system at the top. The composition operators allowed have been borrowed from
the LOTOS process algebra, though adapting them to the three-valued domain of MUS.
This is the key to make compositions reflect the unspecification – and, therefore, the po-
tentiality – of their forming components, which is essential to support the incremental
approach. Appendix A explains this vision on the selective parallel composition opera-
tor (denoted by |[Λ]|M), which is a powerful way to express the concurrent operation of
several components. In brief, a composition C1|[Λ]|MC2 can advance through an event
a 
∈ Λ if a is possible in either C1 or C2, but it can advance through an event b ∈ Λ
only if b is possible in both of them; thus, if Λ is the empty set, the effect is that of pure
interleaving (in this case, the operator is denoted by |||M ).
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2.2 Orientation to Aspects

(SCTL/MUS)A fits within the Early-Aspects initiative [16], which aims at extending the
principles of aspect-oriented programming [9] to the phases of requirements engineer-
ing and architectural design. Aspect-orientation is a way to achieve modularizations that
facilitate the management of crosscutting functionality, i.e., functionality that appears
scattered through the parts of any decomposition in objects. This is done by introducing
aspects that encapsulate the crosscutting functionality, and by defining mechanisms to
weave (combine) the aspects with the components they crosscut.

Due to the slight notion of structure available during requirements elicitation tasks,
our vision is not to make an explicit distinction between components and aspects; in-
stead, any component that is combined with the composition of several others may be
seen as an aspect, because it crosscuts their functionality. Nonetheless, treating a piece
of functionality as an aspect is only justified when it can be traced into modifications of
the crosscut components as a meaningful addition to their functionality.

In line with the ideas discussed in [13] and the works on multi-dimensional sep-
aration of concerns [18], the management of aspects in (SCTL/MUS)A is linked to
allowing developers to handle multiple architectural views, each one defining a differ-
ent decomposition of the system or any of its components. Different decompositions
enable different reasonings, and it is possible to work over any one of them, since we
can propagate what is done on a given view to the others. This way, multiple developers
can contribute to construct the desired system by reasoning from different perspectives.

3 A Methodology for Integration Analysis

This section introduces the methodology we have defined to perform integration anal-
ysis in (SCTL/MUS)A, which is targeted at facilitating incremental development. The
fundamental idea is that the analysis of a system should not be delayed until its parts
have been completely developed, in order to prevent doing much work over incorrect
foundations. Consequently, (SCTL/MUS)A allows integration analysis to be done at in-
termediate stages of the specification process. Furthermore, it supports analysis at any
level of composition, not necessarily on the whole system. Despite, for simplicity, we
will refer to the composition being analyzed as “the system”.

Figure 2 illustrates the steps of the methodology, which we proceed to describe.

S

C1 . . . Op . . . Cn

Integration

analysis
{Rnew}

Snew = S with the changes due to {Rnew}

OK

NOT OK
1

2 3

4
5

Fig. 2. The complete cycle of integration analysis
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3.1 Specification

The starting point (step 1 in Fig. 2) is the specification of the system (S) as the combina-
tion of several components (Ci) by means of composition operators (Op). The analysis
is done on the MUS graph of the composition, that is computed from the MUS graphs of
the components by following the rules of the composition operators. The MUS graphs
of the components may have been derived from other components or, for those at the
lowest composition levels, synthesized from a set of SCTL requirements.

3.2 Integration Analysis

Once available, the MUS graph of the system is subject to verifying the integration
properties (step 2 in Fig. 2), to find whether the system satisfies them (OK) or it does
not satisfy them yet (NOT OK).

If the system satisfies the properties, the analysis is finished, and the developers
can continue working over the unchanged current specification. On the contrary, if the
system does not fulfill the properties, an evolution of its specification is needed to satisfy
the developers’ expectancies. In this case, as commented in Sect. 1, the goal of the
methodology is twofold: to find the modifications needed for the system to satisfy the
properties stated for it, and to trace those changes onto the components whose conjoint
behavior is being analyzed. Our proposal, as explained below, is to aid the developers
in the first task, and to fully automate the second.

3.3 The Creative Part

Determining the changes needed for a system to satisfy certain objectives (step 3 in
Fig. 2) requires participation from the developers, because many viable alternatives may
exist in the general case. To help in this process, we have adapted the analysis-revision
cycle presented in [5], that automatically provides some of those alternatives.

An important thing to note here relates to the concept of unspecification (Section 2),
that allows us to conjugate the two main methods proposed in literature to revise the
specification of a system: refinements [10, 17] and retrenchments [15]. Because of un-
specification, the developers can evolve a system in two different ways:

(i) By retrenchments, for properties that are explicitly violated. In this case, the
system includes unwanted behavior, that must be eliminated. The analysis-revision
cycle points out the circumstances under which the properties are violated, and
suggests possibilities to solve the problem.

(ii) By refinements, for properties that are not explicitly violated yet. These proper-
ties, which are neither fulfilled nor violated yet (they are unspecified), indicate that
behavior must be added to make the specification satisfy them. Here, the analysis-
revision cycle identifies evolutions that would make the specification violate the
properties, and suggests modifications to conduct it the other way.

Assisted by the suggestions of the analysis-revision cycle on how to evolve the
system, the developers are expected to come up with a set of requirements ({Rnew})
that specify the changes to be done on the system.
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3.4 The Automated Part (I): Incorporating the New Requirements

Once the changes have been decided, it is easy to apply them over the MUS graph of
the integrated system (step 4 in Fig. 2), but the result is no longer obtainable from the
MUS graphs of the original components. At most, it can be expressed as a new system
where the architecture has been lost: Snew = S with the changes due to {Rnew}.

3.5 The Automated Part (II): Tracing Changes onto the Original Specification

In order to avoid loss of architecture, and to permit future iterations in the specification
of the individual components, our approach traces the changes done on the system into
revisions of the original architecture and components (step 5 in Fig. 2). We do this by au-
tomatically refactoring Snew into two different architectural views, as shown in Fig. 3:

(i) In the first view, a new component is created that materializes the new requirements
and that, combined with the original components, makes the system behave as in-
tended. As shown in Fig. 3, the new architecture only adds the new component
(Cn+1), preserving the original ones and the ways they were combined (Op).
The new component, that manifests the crosscutting nature of the integration prop-
erties, may have significance in the domain of application of the system, in which
case it can be further developed (in functionality and architecture), and may even
be reused for other systems.

(ii) Just because the new component may be meaningless in the implemented system,
our methodology provides a second architectural view, where its functionality is
discharged over the original components. In other words, since the new component
may be seen as an aspect (A) that modifies the original components, we offer a
view that re-expresses the original architecture in terms of modified components
(C∗i ), possibly changing the original composition operators (note the Op′′ instead
of Op in Fig. 3). We represent the weaving operation by means of a newly-defined
operator, that we call “projection” and denote by←∗.

To complete the process of tracing changes, (SCTL/MUS)A supports the automatic
reformulation of the requirements of the original components. Using mechanisms like
the ones presented in [5], we modify the SCTL requirements provided by the develop-
ers from the transformations done over the MUS models that implement them, which
allows the developers to see the changes made to the system expressed in the same
language used to specify it. This is an essential aid to go on with the incremental speci-
fication process: the requirements are the mechanism by which developers express their
conception of the system, and so their formulation holds the key to understand what is
being constructed.

Reformulating requirements is necessary in the second architectural view, to enable
reasoning about some behavior of a given component that can only be observed in its
combination with the aspect. In this case, the requirements for C∗i are derived from
the requirements of the corresponding Ci. As for the new components Cn+1 and A in
Fig. 3, at most we can annotate the situation and the set of requirements that led to their
appearance – inventing a set of requirements from which their MUS graphs could be
generated is purposeless, because those requirements would not capture any expressive
effort from the developers.
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Snew

S Op′ Cn+1

C1 ... Op ... Cn

Arch. view 1

Snew

C∗1 ... Op′′ ... C∗n

C1 ←∗ A Cn ←∗ A

Arch. view 2

Fig. 3. Two architectural views for the new system

4 An Example on Synchronization Concerns

This section illustrates the methodology presented in Sect. 3, with an example of trac-
ing synchronization requirements over the parallel composition of several components.
We describe an evolution of the system based on suppressing unwanted behavior, and
show how the two architectural views are automatically computed. These include the
restrictions imposed at the composition level while keeping the original architecture.
Details about the algorithms applied are left for Appendixes B and C.

4.1 Specification

Let Sender be a component whose functionality, at the current stage of development,
is “a Sender starts a transmission when it has data to send; it waits for new data after
each transmission”. A system is wanted that defines a communications network with n
senders operating on a shared channel. To model this, the developers initially specify
the system Sn as the interleaved combination of n instances of component Sender:

Sn ≡ Sender1 . . . |||M . . . Sendern = |||M
i=1...n

Senderi (1)

Figure 4(a) shows the MUS graph of the i-th sender in the system, in its current
status of specification. The sender waits for data in state s1 (the initial state), and tran-
sitions into s2 when action rdyi occurs, meaning that new data are available. Once in
s2, the sender can begin transmitting the data by executing inii. It stays at s3 until the
transmission finishes (action endi), and then goes back to s1 to wait for new data. All
the other actions are not-yet-specified.

4.2 Integration Analysis

The specification of the senders is not yet complete, because some unspecification re-
mains in their MUS graphs. However, it may be wise to analyze their conjoint behavior
before completing them, to make sure that what has been specified so far is correct,
avoiding futile efforts in evolving incorrect specifications.

As the senders will operate on a shared channel, it is necessary to ensure that it
is not possible for several of them to be transmitting simultaneously. According to the
MUS graph of Fig. 4(a), a sender is transmitting only when it is in state s3, and this can
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Fig. 4. The MUS graphs of Senderi and S2 ≡ Sender1 |||M Sender2

be referred to as the only state where action endi is possible. Therefore, for the n = 2
case, the developers can specify the desired property as P ≡ true ⇒ ¬(end1 ∧ end2)
– since the premise (true) is satisfied in every state, the property is violated in those
states where both end1 and end2 are possible.

The first step to analyze the satisfaction of P is to obtain the MUS graph of the
system Sn, by combining the graphs of n senders according to the rules of the |||M
operator. Figure 4(b) shows the MUS graph of the network with two senders,MS2 .

4.3 The Creative Part

Analyzing the property P reveals that it is explicitly violated in the state s9 ofMS2 ,
since both end1 and end2 are possible there. Therefore, as explained in Sect. 3.3, a re-
trenchment is needed to ensure proper behavior. From among the possible evolutions
suggested by the analysis-revision cycle, the developers decide to incorporate the re-
quirements of Eq. (2), which prevent one sender from starting a transmission while the
other is transmitting:

{R2
new} = {R1,R2}, where

{
R1 ≡ end1 ⇒ ¬ini2
R2 ≡ end2 ⇒ ¬ini1

(2)

For the general case of n senders, the new requirements would be those of Eq. (3):

{Rn
new} = {Ri}1≤i≤n, where Ri ≡ endi ⇒

∧
j �=i

¬inij (3)

4.4 The Automated Part

To describe how the new requirements are applied onto the MUS graph of the original
system (Sn), we consider again the case n = 2, without loss of generality. Due to R1,
the specification of action ini2 changes to false in the states s7, s8 and s9 of MS2 ;
similarly, R2 changes the specification of ini1 to false in s3, s6 and s9. The resulting
graph (MS2

new
) is shown in Fig. 5, where it can be seen that the problematic state s9 is

now unreachable – this is the desired effect of the new requirements.
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Fig. 5. The MUS graph of the revised overall system,MS2
new

Returning to the general case, the important thing to note is that, despite MSn
new

represents the desired functionality, it is not expressed in terms of the original compo-
nents. In fact, it represents a system without architecture (remember point number 4
in Fig. 2), which prevents from continuing its modular development. (SCTL/MUS)A

addresses this problem by automatically refactoring Sn
new into two architectural views,

which are revisions of the original system.
The first architectural view includes a new component, Synchronizern, that ma-

terializes the new requirements and ensures the correct operation of the senders. This
view is expressed in Eqs. (4) and (5), where Λn

sync = {inii, endi}1≤i≤n.

Sn
new = Sn |[Λn

sync]|M Synchronizern (4)

Sn
new = ( |||M

i=1...n

Senderi) |[Λn
sync]|M Synchronizern (5)

The Synchronizern component, whose MUS graph is shown in Fig. 6(a), and the
Λn

sync set of actions are automatically derived from from Sn and {Rn
new} using the

algorithm described in Appendix B. This algorithm guarantees by construction that the
MUS graph of the composition Sn |[Λn

sync]|M Synchronizern is equal toMSn
new

.
In the second architectural view, Synchronizern is seen as an aspect that crosscuts

the original senders. This allows re-expressing the system Sn
new as the composition of n

modified senders, in a way that resembles the original architecture of Eq. (1). The new
expression is shown in Eq. (6), where the Λn

sync set of actions is the same as above.

Sn
new = |[Λn

sync]|M
i=1...n

Sendern
csmai

(6)

We refer to the modified components as Sendern
csma, because they have the basic

functionality of the original Sender, though enhanced with the capability to prevent
collisions on a communications channel shared with other Sendern

csma components.
Figure 6(b) shows the MUS graph of the i-th instance of Sendern

csma in the system,
where it can be seen that the start of a transmission is forbidden while another sender
is using the channel (inii is false in s4 and s5). Therefore, a retrenchment of the overall
system has led to a loss of unspecification of the MUS graphs of its forming compo-
nents; as noted in Sect. 3.5, this can be translated into a refinement of the requirements
provided for those components by the developers.
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Fig. 6. The MUS graphs of Synchronizern and Sendern
csmai

Sendern
csmai

results from weaving Synchronizern with the Senderi components,
by applying the projection operator as described in Appendix C (again, the composition
of the Sendern

csmai
components is guaranteed to yield a MUS graph equal toMSn

new
).

So, Equation (6) can be rewritten with an additional lower composition layer:

Sn
new = |[Λn

sync]|M
i=1...n

(Senderi ←∗ Synchronizern) (7)

To sum up, Equations (4) and (5) describe two composition layers in the first archi-
tectural view proposed for Sn

new , and Eqs. (6) and (7) do the analogous with the second
one. These two views are illustrated in Fig. 7.

5 Analyzing the Example

About the Architectural Views. Handling different architectural views of a system is
useful to advance towards the architecture desired for its implementation, while keeping
the ability to reason about different features of its functionality. In our example, if the
developers expect Synchronizern to have significance of its own in the implemented
system (as an arbitrage mechanism controlling the concurrent execution of the senders),
they should continue evolving the first architectural view. Conversely, they should work
on the second if synchronization will be up to the senders themselves.

Multiple views also help to gain understanding about the desired functionality, be-
cause some evolutions of the system may be easier to identify from certain perspec-
tives. For example, moving from CSMA to CSMA/CD synchronization is easier (and
less error-prone) to attain by evolving the Synchronizern component and projecting it
again over the senders, than by directly modifying these. This witnesses the advantages
of encapsulating crosscutting concerns.

Furthermore, from the second architectural view, we can recover the notion of a
sender in which the start of a transmission can be delayed due to environmental condi-
tions, a feature that is not present in the other view. Thus, Sendern

csmai
can be taken

as a reusable component, with the basic functionality of a generic sender and the added
value that, in the presence of other components of the same kind, it incorporates ad-
ditional functionality to model synchronization. Even the Synchronizern component
may be reused, since it works as a mutual exclusion semaphore.
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Fig. 7. The two architectural views for the system Sn
new

About Tracing Integration Results. Tracing the results of integration analysis back to
the composed components is essential to continue their incremental development. It is
particularly frequent that a component needs to incorporate considerations from higher
layers before doing new iterations of its specification. This would be the case if we
wanted to enhance Sendern

csmai
with behavior to execute when the state s5 is reached

(after receiving data to send, the attempt to use the channel is blocked by other sender).
Thus, the methodology presented here, together with the management of unspecifica-
tion, endows (SCTL/MUS)A with great levels of incrementality.

About the Algorithms and Formalisms. Even though the methodology of Sect. 3 is
general, we have focused on handling retrenchments over compositions with the |[Λ]|M
operator, for which the algorithms described in Appendixes B and C are always valid.
This specificity does not imply loss of generality or interest, because parallel compo-
sition is, by far, the most important construct in the field of reactive systems (see [1]),
being not only valid to model distribution or the concurrent operation of several com-
ponents, but also for the general management of interacting features.

The algorithm to derive the synchronizer component succeeds at encapsulating the
crosscutting concerns. As a proof for this, note that, during integration analysis, the
developers referred to the fact that Senderi was transmitting by the possibility of exe-
cuting endi, which would be incorrect if the senders had more actions between ini and
end. Nonetheless, Synchronizern remains valid even if new actions are inserted be-
tween ini and end in a posterior evolution. This is because Synchronizern captures the
intention of the new requirements in the context of their formulation, having nothing to
do with the component that would be synthesized from those requirements alone.

On its part, the projection algorithm modifies the original components by adequately
introducing true and false events. It forbids just what the synchronization requirements
forbid, and maintains the unspecification not affected by those requirements so as not
to limit future evolutions unnecessarily. Besides, it does not incorporate irrelevant facts
about the environment into the specification of the individual components (note that
there is no trace of rdyj in Sendern

csmai
, for any j 
= i).

As a final remark, it must be noted that our methodology is not dependent on us-
ing SCTL, since other logics could be employed – our use of SCTL is motivated by
its causal semantics, which we consider adequate for the first stages of the develop-
ment process, in line with the comments given in [12]. In contrast, the management of
MUS models is indispensable for several reasons: i) to allow deciding when to apply
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refinements or retrenchments, ii) for the transformation algorithms to work, and iii) to
effectively support an incremental specification approach.

6 Work in Progress

An immediate continuation of our work is to present the algorithms that apply the
methodology of Sect. 3 to handle refinements of the integrated system, providing again
two architectural views: one in which a new component gathers the added behavior, and
other in which the new behavior is allotted over the original components. Analogous
comments hold for the algorithms that perform the transformations over compositions
involving other operators than |[Λ]|M .

We are also considering the possibility of offering other meaningful architectural al-
ternatives, besides the two commented here. For instance, while the second view brings
into the components what their environment forbids about them, a third one could in-
corporate what each component prohibits in its environment. Another option would be
to discharge the functionality of the aspect onto a subset of the original components,
though we conjecture that this may not be possible in all cases.

Our proposal in this paper represents an aid to go from the customers’ requirements
to a system that satisfies them, allowing to progressively conduct the specification to-
wards the desired architecture while not preventing reasoning over the different con-
cerns in isolation. In this regard, we intend to provide additional assistance by support-
ing the automatic identification of crosscutting functionality and its posterior extraction
into aspects, which may be weaved with the crosscut components through parallel or
sequential composition. To handle the first case, we are experiencing with algorithms
similar to those of bipartition employed in [2], though considering unspecification and
taking the requirements into account; to handle the second, we are currently involved
with the definition of a suitable language for the definition of pointcuts.

The identification of aspects will be helpful to assist the developers when they fail to
identify a modular decomposition of a system’s functionality. As argued in Sect. 5, en-
capsulating crosscutting concerns is desirable even when they will not represent compo-
nents in the final implementation. Besides, we remark the importance of an early identi-
fication, before the aspects get so tangled in the hierarchy of components that their iden-
tification becomes unfeasible – we believe that the incrementality of (SCTL/MUS)A can
be a good basis to advance research in this topic.

7 Related Work

The work presented here is involved with the conjoint treatment of requirements and ar-
chitecture in the specification of software systems, an area that has received little atten-
tion to date. In [20], it is noted that “little work has been devoted to techniques for sys-
tematically deriving architectural descriptions from requirements specifications”, notic-
ing that this is somewhat paradoxical, as long as architecture has a profound impact on
the achievement of a system’s goals. The same author discusses in [19] the desirability
of doing analysis on specification drafts and carrying out development in an incremen-
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tal fashion, whereas “many specification techniques require that the specification be
complete in some sense before the analysis can start”.

To the best of our knowledge, ours is the first formal approach that completes the cy-
cle for integration analysis shown in Fig. 2. Elementary approaches finish at step 2, only
informing about whether the analysis succeeds or not. In other cases, counterexamples
are provided to help finding the source of the errors [7], but this is limited assistance
(insufficient to claim step 3), because no guidance is given on how to modify the sys-
tem. Even when such an aid is provided – as in [4] –, changes are made only at the level
being analyzed, not being traced throughout the architecture of the system.

We only found works on traceability within the paradigm of assume-guarantee
reasoning [8], which attempts to characterize the influence of the environment over
the components to guarantee the satisfaction of the integration properties, resembling
what we do with our second architectural view. However, the techniques based on this
paradigm usually demand manual intervention and great expertise in formal verifica-
tion, deviating intellectual efforts from the specification tasks. Our proposal addresses
these shortcomings by allowing developers to reason continuously over the problem at
hands; the key to achieve it is that we lean intermediately against an operational model
(MUS) instead of reasoning directly over mathematical formulae (requirements).

Some transformations similar to the ones presented in this paper have been ap-
plied in the Lotosphere environment [2], though with remarkable differences. In Loto-
sphere, transformations were applied to refine abstract specifications into component
processes, with those specifications typically describing the service offered by a com-
munications protocol that was completely known in advance. In contrast, the vision in
(SCTL/MUS)A is that no complete idea of the desired functionality is known before-
hand, and that developers gain knowledge about the desired system as the development
progresses. Thereby, we do not take a top-down approach to development, but an incre-
mental one in which requirements and architecture can be elaborated in parallel. This
way, we relate refinements to a progressive removal of incompleteness, which is sup-
ported by the management of unspecification and the reformulation of the requirements.
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A Selective Parallel Composition of MUS Graphs

The selective parallel composition operator (|[Λ]|) has been typically defined over La-
beled Transition Systems. For example, in Fig. 8(a), the overall system L3 = L1 |[c]| L2

can evolve through actions a and b in any order, because they are not in the Λ set. In
contrast, c must be executed by the two individual processes simultaneously, which
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Fig. 8. Parallel composition of LTS and MUS graphs

guarantees that they terminate at the same time. Note that, as LTSs only handle true and
false actions, the actions not explicitly represented are false.

Based on the |[Λ]| operator, we define |[Λ]|M by adapting its semantics to deal with
unspecification. In a compositionM1|[Λ]|MM2, the specification value for an action
a is computed as the minimum between its values inM1 andM2 if a ∈ Λ, and as the
maximum otherwise (note that 0 ≤ 1

2 ≤ 1). Intuitively, if a 
∈ Λ, the two components
need no agreement to go on, so it is possible to evolve through a if any of the two
components can. On the contrary, if a ∈ Λ, the two components have to agree on a. If a
is false inM2 and true inM1, the agreement is not possible, but if a were unspecified
inM2 (as in Fig. 8(b)), the agreement would be possible if a evolved into true in a later
iteration of the specification process. This way, the definition of |[Λ]|M preserves the
incompleteness of the components in the composition.

B Synthesis of the Synchronizer Component

This appendix outlines the algorithm used in Sect. 4 to derive the Synchronizern com-
ponent. This algorithm is applicable whenever the new requirements suppress behavior
in the MUS graph of the composition, by turning true or unspecified actions into false
ones. For simplicity, we illustrate the steps for the n = 2 case.

1. The first step is to turn false actions in the starting MUS graph into unspecified ones,
to distinguish the actions forbidden by the specification of the components from the
actions that will be prohibited by the new requirements. In the example, this returns
the original MUS graphMS2 (Figure 4(b)) because it had no false actions.

2. Next, the new requirements are materialized over the composition, by turning into
false all the actions they forbid. As explained in Sect. 4, the new requirements of
Eq. 2 lead to the MUS graph of Fig. 5.

3. The MUS graph resulting from the previous step is reduced, to remove the actions
whose occurrence is irrelevant for the integration properties. This is done by suc-
cessively merging contiguous compatible states, that is, states in which the specifi-
cation values of the actions are not contradictory (what is true in the one is not false
in the other) – remark that no reduction would be possible without the management
of unspecification.
In the MUS graph of Fig. 5, it is possible, for instance, to merge state s1 with s4,
s2 with s5 and s3 with s6, which yields the reduced graph of Fig. 9(a). The process
eventually produces the graph of Fig. 9(b).
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Fig. 9. Synthesis of the synchronizer component

4. To finish, it only remains to turn into unspecified the actions that are either un-
specified or forming unitary loops in all the states – those actions are not rele-
vant at the composition level. Then, the Λsync set of actions is formed by those
actions which are true or false in any state. In the graph of Fig. 9(b), both rdy1

and rdy2 can be turned into unspecified actions in all the states, leading to the fi-
nal component Synchronizer2, shown in Fig. 9(c). The Λ2

sync set is found to be
{ini1, ini2, end1, end2}.

C Projection of the Synchronizer Aspect (←∗)

We briefly describe here how to derive the modified components in the second archi-
tectural viewpoint of Sect. 4 by projecting the synchronizer aspect onto the original
ones. As shown in Fig. 10, this is achieved by operating the original Senderi with
the Synchronizern component using the |[Λ]|M operator, with Λ computed as the
intersection of Λn

sync with the alphabet of actions of each Senderi. This process is
applicable whenever the original components are combined with |[Λ]|M , for any Λ.
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Abstract. Advanced techniques in separation of concerns such as
Aspect-Oriented Programming, help to develop more maintainable and
more efficient applications by providing means for modularizing cross-
cutting concerns. However, conflicts may appear when several concerns
need to be composed for the same application, especially when dealing
with around advice. We call this problem the Aspect Composition Is-
sue (ACI). Based on our experience in programming aspects, this paper
presents a language called CompAr, which allows the programmer to
abstractly define an execution domain, the advice codes, and their exe-
cution constraints. The CompAr compiler then evaluates the definitions
in order to check if the execution constraints are fulfilled. Using a con-
crete AOP case study, we show how to use the CompAr language in order
to detect and avoid ACIs.

1 Introduction

When dealing with complex software, programmers and designers naturally try
to apply the divide and conquer principle by splitting the application into small
pieces, which are easier to understand than the whole system. This technique is
referred to as Separation of Concerns (SoC) and has been originally described
in [5, 13]. The goal of SoC is to analyze one of the parts without having to take
the other parts into account. However, in the difficult process of making the
application parts independent, many issues can arise.

Within the last few years, Aspect-Oriented Programming (AOP) [9] has
stressed the point that some concerns are significantly difficult to modularize.
AOP identifies these concerns as crosscutting concerns, i.e. the implementation
of these concerns spans over some modules of the other concerns. AOP and re-
lated approached propose some solutions to these issues which would pull out
the crosscutting concerns from the application code, allowing for easier modu-
larization.

Thanks to AOP, some techniques that are used in middleware and other
fields have been highlighted and are becoming more popular. One of the most
important and widely used techniques can be referred to as the around advising of
the code; this is an important mechanism used to compose concerns together. It

M. Steffen and G. Zavattaro (Eds.): FMOODS 2005, LNCS 3535, pp. 163–178, 2005.
c© IFIP International Federation for Information Processing 2005
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has been employed under several contexts and can be implemented by wrappers,
filters, interceptors, proxies, around code injections, and so on. However, all
these implementation techniques face the same issues when composing several
concerns. We call this kind of issue the Aspect Composition Issue (ACI) [14].
Unfortunately, little support is provided to solve this problem and, most of the
time, it has to be handled manually, without any tools or guidelines.

In this paper, we present a language called CompAr that is able to automat-
ically detect conflicting around advice codes out of an abstract specification of
the aspect-oriented program.

In section 2, we define the around advice and give some examples of its use.
Then, in section 3, we present our case study, which deals with real-life aspects
that we use for reasoning on specific ACIs. In section 4, we define CompAr, our
language to specify composition-relevant information. We show how CompAr
checks a specification to detect composition issues. Section 5 goes further in
studying ACI by focussing on composing all the aspects of our case study by
using CompAr. Finally, before concluding, we list some related works in section 6.

2 The Around Advice

Breaking down software into independent modules, objects or components that
can be designed or programmed separately, implies a composition phase. In this
section, we focus on a useful composition mechanism called around advice; we
introduce its mechanisms and common utilizations.

2.1 Introducing Around Advice

When composing several modules together, structural or behavioral composi-
tion mechanisms are needed; our focus is on the behavioral compositions. When
composing behaviors, the behavior of the target module is modified by another
behavior coming from source modules. In order to achieve this, around advice is
a convenient mechanism; we describe the device here in an informal manner.

One can apply an around device code to a given target executable element
such as a method, a constructor, or a field access; as a result, the target element
will be modified transparently for the base program; the target element is said to
be advised. Once this element is executed in the program, the flow of execution
is the following:

1. the advice code is executed (and can access some contextual information
from the base program),

2. when a special instruction called proceed is reached, the advice code executes
the advised executable element (called this),

3. when the advised method ends, the rest of the advice code is executed and
can finally return.

Note that an advice code has a before part (before the call to proceed) and
an after part (after the call to proceed). It is not required to call proceed (it then
completely replaces the implementation of the advised method).
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control flow
before parts after parts

advice 1

advice 2

advice N

advised element (this)

preceding

following

Fig. 1. An around advice chain.

As shown in figure 1, a method can be advised several times; this method
then holds an advice chain. Each advice before part is executed in the order
defined by the chain (the top advice code is executed first). When the execution
of an advice code reaches proceed, the control is passed to the next advice of the
chain.

The advised element is executed at the end of the chain and returns so that
all the advice after parts are executed in the reverse order of the before parts
execution order. An advice code can break the regular advice chain control flow
by not calling proceed or by throwing an exception.

Note that an advice code is said to precede the advice codes that come after
it in the chain and to follow the advice codes that come before it in the chain.

2.2 Around Advice Utilizations

Even though around advice-related techniques are used in many contexts and
languages, the main utilization of around advice is in Aspect-Oriented Program-
ming (AOP) [9]. AOP focuses on solving crosscutting of concerns when program-
ming or designing complex applications. In short, AOP solves crosscutting and
tangling code issues by allowing the programmer to define pointcuts. A pointcut
is a set of points (joinpoints) in the base program that are affected by aspect-level
advice, including around advice.

Aside from the popular AspectJ [8] language, numerous projects have in-
cluded AOP features such as JAC [15], CFOM [2], CaesarJ [11], and PROSE [16].
Besides, several other approaches use techniques that can be closely related to
around advising, for instance: Composition Filters [2] and Multi-Dimensional
Separation of Concerns [12].

When a new language is not available, around advice is usually implemented
by using Interception [10] [15], which is a very popular mechanism to imple-
ment separation of concerns in middleware environments. In these frameworks,
interceptors are regular objects which may intercept the method invocations,
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the object constructions, and/or the field accesses. Chains of interceptors are
functionally equivalent to around advice chains.

The following code1 shows the implementation of an interceptor using the
AOP-Alliance [1] Java interfaces (the common Public Domain interfaces that
have been defined and implemented by some of the the aforementioned projects).

class MyInterceptor implements MethodInterceptor {

Object invoke(MethodInvocation i) throws Throwable {

System.out.println("About to invoke...");

return i.proceed();

} }

3 An AOP Case Study for Composition

This section presents a set of useful generic server-side aspects which are typically
used in distributed middleware layers.

For the sake of this paper, we have focused solely on the around devices of
the aspects, and have simplified them to keep only the relevant details. Note
that we use the AOP Alliance API in order to remain as independent as possible
from any specific language or commercial framework. The aspects depicted here
are used to illustrate typical composition issues, and they will be formalized in
the next sections.

3.1 Logging Aspect

The most well-known and straightforward application of AOP consists of seam-
lessly introducing logging when needed. By using around advice, the logging
aspect can write into files what happens on a server; this can be useful for main-
tenance (security, performance, debugging). As shown below, the implementation
of the logging aspect’s around advice is quite simple.

class LoggingAspect implements MethodInterceptor {

Object invoke(MethodInvocation i) throws Throwable {

Object result=null;

logEntry(i.getMethod(),i.getParameters());

result=i.proceed();

logExit(i.getMethod(),result);

return result;

} [...] }

3.2 Authentication Aspect

Within a client/server interaction, a server-side authentication aspect checks that
the user associated to the current session has the right to access the involved
1 Note that the throws Throwable clause is used since proceed throws a Throwable

and that the interceptors most of the time forward the exceptions rather than han-
dling them.
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resources. If the current session has no associated user, the authentication aspect
may ask the client to authenticate by, for example, asking for a login and a
password. If the client does not have the right to perform the current action,
the authentication aspect performs an alternative action, such as throwing an
exception to notify the client that the rights were not granted.

The implementation of the authentication aspect’s logic is mainly done within
the following around advice:

class AuthenticationAspect implements MethodInterceptor {

Object invoke(MethodInvocation i) throws Throwable {

// gets the session from a thread local (set by a client)

Session s=getThreadLocalAttribute("session");

if(s.getUser()==null) doAuthentication(s);

if(canAccess(s.getUser(),i.getMethod())) {

return i.proceed();

} else {

throw new AuthenticationException(

"user ’"+s.getUser()+"’ cannot access ’"+i.getMethod()+"’");

}

} [...] }

3.3 Persistence Aspect

On the server, objects can be persistent. Typically, this is achieved by advising
all the setters and getters of the objects and by writing or reading the data in
a storage (XML files, JDBC data source). In many systems, the object’s fields
may still be directly accessed on optimization purpose so that the object acts
as a cache for the storage. Additionally, any transient object that is referenced
by a persistent object (through a reference or a collection) should itself become
persistent.

The implementation of the persistence aspect’s logic is mainly done within
the following around advice:

class PersistenceAspect implements MethodInterceptor {

// advice all the setters, getters, adders, and removers

Object invoke(MethodInvocation i) throws Throwable {

Object result=null;

if (isPersistent(i.getThis()) {

[...] // Before: read needed data from storage

result = i.proceed() // read or write the value in memory

// After: write changed data into storage and

if(isSetter(i.getMethod())) {

// make the new referenced object persistent if needed

if(isStorable(i.getParameters()[0]))

makePersistent(i.getParameters()[0]);

[...] } [...]

} else result = i.proceed(); // Transient object case.

return result;

} [...] }
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3.4 Association Aspect

In object or component models, entities may be related to each other through
references or collections. At a higher level, these references or collections can be
part of an association; they are then called roles.

For instance, an association exists between an employee and a company: an
employee belongs to a company and a company employs several employees; each
class (Employee and Company) defines a role field of this association. When a
role that is part of an association is set, as through a role setter, it generally
means that the other role should be updated in order to preserve the association
integrity.

With AOP, it is possible to handle the association integrity concern within
an aspect. This concern, which is usually a crosscutting one, can then be cleanly
modularized and the maintenance of the application is more straightforward. The
main logic of the association integrity concern is programmed in the following
around advice:

class AssociationAspect implements MethodInterceptor {

// advice the setters, adders, remover of roles

Object invoke(MethodInvocation i) throws Throwable {

Field current = getCurrentRole(i.getMethod());

if(current!=null) {

// do not update if we are already within updating

if (getThreadLocalAttribute("update") ==

getCurrentRole(i.getMethod()))

return i.proceed();

Field opposite = getOppositeRole(i.getMethod());

try {

setThreadLocalAttribute("update", opposite);

doUpdate(opposite, // the opposite role

i.getThis(), // the object that holds the current role

current.get(i.getThis()), // the old role value

i.getParameters()[0]); // the new role value

} finally { setThreadLocalAttribute("update", null); }

}

return = i.proceed();

} [...] }

3.5 Composing Logging, Authentication, and Persistence

As a first introduction to ACIs (Aspect Composition Issues), this section infor-
mally shows how to compose the Logging, Authentication, and Persistence
aspects. This simple composition problem illustrates the importance of correctly
ordering the around advice.

When composing these three aspects, a simple reasoning can help the pro-
grammer to find the aspect interactions and thus find out how to solve them.
Let us first look at the code of these aspects (see sections 3.1, 3.2, and 3.3). A
quick glance shows that the only aspect that does not call proceed all the time
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is the authentication aspect. This property is important because when an aspect
is programmed independently from any context, the programmer assumes that
the invocation is actually proceeded to the advised element.

Therefore, if the logging around advice is placed after the authentication
advice, then the logging will only be performed if the invocation is authenticated.
However, it is not always the behavior that a programmer would expect for the
system. Indeed, to detect attack attempts on the server, we may want to log
all the requests, even if the associated action is not successfully executed. In
contrast, a quick study of the persistence aspect shows that we want to apply
the persistence only if the action is successfully executed.

Finally, we are in the presence of three significantly different kinds of around
advice.

– The logging has an execution constraint which states that its before part
must always be executed. By using first order action logic, this constraint can
be expressed as: beforeLogging, where beforeLogging is true if the before-
logging part has been executed at the end of the advice chain execution. We
refer to this kind of advice as obligatory advice.

– The persistence has an execution constraint which can be expressed as:
[persistent]?this<=>writeStorage:true, to be read as “if our execu-
tion context is persistent (boolean), then the execution of this advised
implies the execution of the writeStorage action and vice versa, else the
execution constraint is always fulfilled (true)”. Note that we refer to this
kind of advice as exclusive advice.

– The authentication does not have an execution constraint, but it does not
always call proceed. We refer to this kind of advice as conditional advice.

Taking into account all that has been said, in order to fulfill the obligatory
and exclusive constraints, the best order for the chain should be: (Logging >
Authentication > Persistence). Note that we have already informally pre-
sented this classification in [14]. This is, on the other hand, a very intuitive result
that would need to be validated. Besides, when the number of aspects grows, it
can become tedious to manually fulfill all the execution constraints. In the next
section, we present CompAr, a language which helps the programmer to find
and validate the right composition order in a rigorous way.

4 Supporting Aspects Composition:
The CompAr Language

In the previous section, we presented a set of useful aspects for server-side
middleware layers: Logging, Authentication, Persistence, and Association.
Thanks to AOP and around advising, we have been able to separately define
these different concerns so that the understanding of the sever-side system is
easier. However, as seen in section 3.5 some ACIs are likely to appear when
composing the aspects. This is due to the fact that each aspect is programmed
independently, and holds some implicit constraints.
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In this paper, we go far beyond our first paper on the subject [14], which
informally introduced the advice types and stated the ACI in a general way.
Here, in order to deal with the ACIs, we have defined a language called CompAr
(for Composing Around advice). CompAr allows the programmer to specify the
advice codes and their implicit constraints. In addition, CompAr checks that a
given composition order is valid for a set of execution contexts.

In the rest of this section, we present CompAr (4.1), we define its semantics
(4.2), and we apply it to our composition example (4.3).

4.1 The CompAr Language

In order to introduce CompAr, we first show how to specify the composition
problem which was informally presented in 3.5. In order to do this, we write the
following abstract program:

choices: persistent, authenticated;

advice logging:loggingEnter {loggingEnter+loggingExit}

advice authentication { [authenticated]?-+-:throw NotAuthenticated }

advice persistenceSetter:[persistent]?this<=>writeStorage:true {

[persistent]?-+(caller(persistent=true),writeStorage):-+-}

advised a { logging, authentication, persistenceSetter; }

Where the choices command defines the different boolean variables of the
execution domain, advice defines a new abstract advice code, and advised
defines a composition order to be tested by the compiler. When run, the compiler
executes the defined advised in the domain (all the possible combinations of
choices values) and checks that the advice definitions are valid. Note that choices
can be initialized to true or false in order to restrain the execution domain, but
they are usually left undefined, as in this case, to test all the possible executions.

An advice definition contains two parts: an optional post-execution con-
straint, defined after the advice name and separated from it by a colon; and
a body, within curly brackets, which represents the abstract definition of the
advice code.

As a result, with CompAr, the logging advice programmed in section 3.1 can
be abstractly defined by:

advice logging:loggingEnter{loggingEnter+loggingExit}.
It means that the body is composed of a loggingEnter before-proceed ac-

tion and a loggingExit after-proceed action. Besides, when the advice is in-
cluded in an advised, the post-condition execution constraint ensures that the
loggingEnter action has been executed.

The persistence advice is more complicated but follows the same principle:
advice persistenceSetter:[persistent]?this<=>writeStorage:true

{[persistent]?-+(caller(persistent=true),writeStorage):-+-}
As an execution constraint, we recognize the constraint defined in section 3.5.

The body must be understood as follows: “If the execution context is persistent
we define a body that does nothing as a before part and that executes two ac-
tions as an after part: (1) it sets the calling context to persistent (as an effect,
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the newly referred object is made persistent), (2) it executes the writeStorage
action. If the execution context is not persistent, we just proceed the execu-
tion.”

Note that we use - to indicate that the advised body code performs some
action that is not relevant for composition.

4.2 The CompAr Semantics

We now give a brief overview of the CompAr semantics by using a denotational
semantics. CompAr can be split into two sub-languages: the body language and
the constraint language.

To help the semantics understanding, note that the body language syntax is
given by the B rule (terminals are lower-cased identifiers and symbols other than
‘|’, ‘;’, and ‘::=’):

B ::= E | E+E;
E ::= (E) | - | id | [T]?B:B | id(PARAMS)

| throw id | (E,E) | caller(PARAMS);
PARAMS ::= PARAMS, ASSIGN | ASSIGN;
ASSIGN ::= id=T;
T ::= (T) | id | T&&T | T||T | !T | true | false;

The constraint language syntax is defined by C:

C ::= A | A=>A | A<=>A | [T]?C:C | true | false | C&&C | C||C | !C;

A ::= id | ?id | this | ?this;

The Body Language Semantics: The body language is inductively defined
by three denotation functions: �B�:Environment→Environment (body denota-
tion function), �E�:Environment→ Environment (expression denotation func-
tion), and �T �:Environment→Boolean (boolean expression denotation function).
For the sake of simplification, we use primitive functions that we informally de-
scribe.

The �B� denotation function is defined through the �E� denotation function:

1. �E1+E2 �(e) = �E2 �(proceed( �E1 �(e)))
2. �B�(e) = �E�(e)

where proceed:Environment→Environment is the function that corresponds to
the denotation function of the next advice body in the chain. For a given advised
execution, an environment contains a linked code list, which corresponds to the
advice order that has been defined for the advised. Moreover, when the end of
the chain is reached and the advised element is executed, a this action is set to
‘executed ’ in the environment.

The �E� denotation function (for expressions) is defined as follows and using
�B� and �T �:
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1. �-�(e) = e // skip function
2. �(E)�(e) = �E�(e)
3. �(E1,E2)�(e) = �E2 �( �E1 �(e))
4. �i�(e) = e[ executed/i]
5. �[T]?B1:B2 �(e) = �B1 �(e) if �T �(e)=true, �B2 �(e) otherwise
6. �i(i1=T1,...,in=Tn)�(e)

=advised(i,new[ �T1 �(e)/i1,...,�Tn�(e)/in],e[ invoked/i])
7. �caller(i1=T1,...,in=Tn)�(e) = parent(e)[ �T1 �(e)/i1,...,�Tn�(e)/in]

where advised:Identifier×Environment×Environment→Environment is the
function that initializes a new child environment (new:→Environment) with the
linked code that corresponds to the advised identified by i. It then proceeds the
first linked code of the chain in the new environment. Note that ‘advised ’ sets the
i action state to ‘invoked ’ in the parent environment. This i action state will be
set to ‘executed ’ in the parent environment by the ‘proceed ’ function whenever
the advised element is executed in the child environment.

Note that two types of environment changes can be performed: an action
state change, where an action can be set to ‘executed ’ or ‘invoked ’, and a choice
boolean value assignment. This assignment can be done in a new context, during
an ‘advised ’ invocation, or in a calling context, during a caller instruction.

We do not formally define the throwing of exceptions since it is easy to
understand intuitively. When a exception is thrown, the program terminates its
execution and the environment is returned as is.

Finally, we do not define the denotation function �T � because it is a classical
boolean expression denotation function.

The Constraint Language Semantics: When a CompAr program is ex-
ecuted, it is important to note that some choices may be left undefined. As
a consequence, the compiler creates all the possible environments in order to
cover the domain and check out all the possible executions. For instance, when
an invocation towards an advised is done, a new set of environmental contexts
is created and the invocation is performed for all these contexts. Hence, the
compiler creates an execution tree rather than a simple execution.

When the execution tree is created, the compiler inspects all the final envi-
ronmental contexts (one per tree node) and checks, for each one, that the advice
post-execution constraints are fulfilled. For a given environment, we define the
�C � denotation function, which is used for constraint verification.

1. �[T]?C1:C2 �(e) = �C1 �(e) if �T �(e)=true, �C2 �(e) otherwise
2. �i�(e) = true if get(i)(e)=executed, false otherwise
3. �?i�(e) = true if get(i)(e)=invoked, false otherwise
4. �C1=>C2 �(e) = �C1 �(e) ⇒ �C2 �(e)
5. �C1<=>C2 �(e) = ( �C1 �(e) ⇒ �C2 �(e)) ∧ ( �C2 �(e) ⇒ �C1 �(e))
... the rest is regular boolean expressions
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4.3 Testing Our Case Study with CompAr

Note that the CompAr language and all the examples used in this paper are
available for download at [4].

If we compile the program defined in section 4.1, we can check that our
informal reasoning led in section 3.5 is correct. The compiler then writes out:

[START] checking ’a’ advised execution constraints...

[OK] [0] {persistent=true, authenticated=true}

[OK] [0] {persistent=true, authenticated=false}

[OK] [0] {persistent=false, authenticated=true}

[OK] [0] {persistent=false, authenticated=false}

[END] no composition errors found while checking ’a’

As we can see, the compiler checked the post-execution constraints for the do-
main, which is formed out of the combination of the persistent and authenti-
cated choices possible values. Here, since the values are undefined, there are four
possible executions and they all fulfill the constraints for the advised: ordered
as logging, authentication, persistenceSetter.

Next, if we try an invalid order such as persistenceSetter, authentication,
logging, the compiler reports an error for each execution that does not fulfill all
the constraints:

[START] checking ’a’ advised execution constraints...

[OK] [0] {persistent=true, authenticated=true}

[ERROR] [0] constraint unfulfilled in ’logging’ (loggingEnter)

- final context:

choices: {persistent=true, authenticated=false}

actions: {}

- execution trace:

test([persistent]?(-+caller([persistent=true]),writeStorage)

:(-+-)=>true)

enter(a.persistenceSetter=>before)

test([authenticated]?(-+-):(throw NotAuthenticated)=>false)

* throw(throw NotAuthenticated)

[OK] [0] {persistent=false, authenticated=true}

[ERROR] [0] constraint unfulfilled in ’logging’ (loggingEnter)

[...]

[END] 2 composition error(s) found while checking ’a’

Here, we see that the loggingEnter constraint defined by the logging advice
is not fulfilled when authenticated=true.

5 Using CompAr to Solve Complex ACIs

In this section, we finalize our case study which had started in sections 3.5 and
4.3 by adding the association aspect of section 3.4. As we will see next, adding
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this final aspect induces a difficult ACI that we manage to detect and solve with
CompAr.

5.1 Composing the Association

For the association, the advice code, applied on a role setter, is active only if
the advised method is a role (part of an association), and if we are not already
in an update process. Further, in the case that the role&&!update condition
is fulfilled, the association is exclusive – the opposite role of an association has
to be updated only if the current role itself is updated. As a consequence, a
possibly valid order for the roleSetter advice can be defined in the total
advised: advised total { logging, authentication, persistenceSetter,
roleSetter; }.

More precisely, by using CompAr, the association around advice can be ab-
stractly specified as:

advice roleSetter : [role && !update]?this <=> total:true {
([role && !update]?total(update=true):-) + -

}

where total is the name of the advised that defines the full order of our four
aspects. The association specification should be read as follows: “the before part
does nothing except proceeding; the after part invokes recursively the advised
total if we are in a role and not in an updating process (role && !update
condition)”.

Note that this definition makes the total advised definition recursive. The
infinite recursion is avoided by the update=true assignment which restricts the
domain of the total invocation and prevents having to re-apply the roleSetter
advice.

However, the total ordering leads to a conflict that we explain in the next
section.

5.2 The Persistence and Association Conflict

Let us imagine that we want to apply our aspects to two objects o1 and o2,
where o1 and o2 can be linked through an association. This association has
two roles r1 and r2. A method setR2 can be called on o1 in order to set the
association’s role and a method setR1 can be called on o2 in order to set the
association’s opposite role. Let us also assume our initial conditions imply that
o2 is persistent, that o1 is not persistent, and that o1.r2 and o2.r1 are null.

Figure 2 shows the execution flow when setR2(o2) is invoked on o1 and
when the advice chain is the one suggested by the total advised of the previ-
ous section. Note that x refers to a memory variable, whereas x refers to the
corresponding variable in the persistent storage.

As seen in the figure, the composition of the aspects as they are produces a
side-effect that breaks the implicit persistence constraint; the final storage state



CompAr: Ensuring Safe Around Advice Composition 175

o1
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[role&&!update]

o2.setR1(o1)
-

o1.setR2(o2)

r2=o2

return

o2

-
makePersistent(o1)

writeStorage

(r1=o1)

[update]

-
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[!persistent]
[persistent]

persistence
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Fig. 2. Example of conflict between persistence and association.

(o1.r2=null) differs from the final memory state (o1.r2=o2). This composition
error is mainly a result of the condition [persistent] being global to the before
and after parts of the persistent advice code. As a consequence, the persistence
after code, which is supposed to write the value of the r2 role in the storage, is
never executed.

5.3 Solving the Conflict by Using CompAr

In the previous section, we have seen that the persistence and the association
conflict. Detecting this conflict requires a great deal of analysis and understand-
ing from the aspect designer. However, by using CompAr, this conflict can be
automatically detected. In fact, if we run CompAr on the total advised as
defined in section 5.1, it gives the following output:

[START] checking ’total’ advised execution constraints...
[OK] [0] {persistent=true, update=true, authenticated=true, role=true}
[OK] [0] {persistent=true, update=true, authenticated=true, role=false}
[OK] [0] {persistent=true, update=true, authenticated=false, role=true}
[...] // checks the rest of the domain...

[ERROR] [0] constraint unfulfilled in ’persistenceSetter’
([persistent]?(this<=>writeStorage):(true))

- initial context:
choices: {persistent=false, update=false, authenticated=true, role=true}
actions: {}

- final context:
choices: {persistent=true, update=false, authenticated=true, role=true}
actions: {loggingEnter=EXECUTED, total=EXECUTED, loggingExit=EXECUTED, this=EXECUTED}

- execution trace:
enter(total.logging=>before)

* execute(loggingEnter)
test([authenticated]?(-+-):(throw NotAuthenticated)=>true)
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enter(total.authentication=>before)
test([persistent]?(-+caller([persistent=true]),writeStorage):(-+-)=>false)
enter(total.persistenceSetter=>before)
enter(total.roleSetter=>before)
test([role&&!update]?(total(update=true)):(-)=>true)

* invoke(total(update=true))
* execute(total=>this)

enter(total.roleSetter=>after)
enter(total.persistenceSetter=>after)
enter(total.authentication=>after)
enter(total.logging=>after)

* execute(loggingExit)

[OK] [0] {persistent=false, update=false, authenticated=true, role=false}
[OK] [0] {persistent=false, update=false, authenticated=false, role=true}
[OK] [0] {persistent=false, update=false, authenticated=false, role=false}
[OK] [1] {persistent=true, update=true, authenticated=true, role=true}
[OK] [1] {persistent=true, update=true, authenticated=true, role=false}
[OK] [1] {persistent=true, update=true, authenticated=false, role=true}
[...] // checks the rest of the domain for recursion level 1...

[END] 1 composition error(s) found while checking ’total’

Therefore, by simply analyzing the compiler’s output, the designer can de-
duce that the persistence execution constraint is not fulfilled because the action
writeStorage is not executed at level 0 of the recursive evaluation (the final
context contains a list of the executed actions). A simple solution to solve this
conflict is to decouple the [persistent] condition. In fact, by specifying the per-
sistence body as, ([persistent]?-:-)+([persistent]?(caller(persistent=
true),writeStorage):-), the compiler does not report any more errors. It is
then easy for the designer to report this design change in the persistence imple-
mentation of section 3.3.

6 Related Works

Some important studies on aspect interaction are conducted in [6]. This work,
which is based on a more precise definition of the AOP’s pointcuts semantics,
allows their authors to automatically detect the points where a potential conflict
may occur (the points where several advice codes are applied). However, it does
not give solutions for ordering the advice codes. We believe that this work and
our work are complementary.

As shown in [7], superimpositions define program modules that can augment
distributed programs (defined as processes and modules) with added function-
alities. Some calculi are available to combine superimpositions and to perform
semantic checks so that the expected properties of the final program and the
superimposed modules are verified. Our approach focuses on the around advice
and is more usable by the end programmer since superimpositions require the
programmer to define a great deal of semantics, which can make the approach
difficult to understand and to use in practice.

Also, some core composition mechanisms are defined in the Composition
Filter model [3]. These mechanisms rely on the definitions of workflows which
define how filters interact. However, it is tricky to define a given workflow and
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make sure that it will be valid and usable in any case. Besides, the chosen
approach makes the implementation quite difficult to read an maintain.

Finally, besides validation of aspect compositions, the strength of our ap-
proach comes from its simplicity: it can be straightforwardly mapped to a plain
implementation, without having to use complex paradigms and API within the
program.

7 Conclusion

In this paper, we study the Aspect Composition Issues (ACIs) when using the
around advice construct, which is a significant construct for separating concerns,
especially for AOP and related approaches. Our work defines a language called
CompAr that allows the specification of composition-relevant information that
includes boolean choices (forming the execution domain), action executions or
invocations, and post-execution constraints. Our compiler then evaluates the
specification within the defined domain and checks that all the execution paths
fulfill the constraints.

Our study of the four real-life aspects (logging, authentication, persistence,
and association) shows that our approach helps to detect and solve ACIs (see the
persistence/association ACI of section 5). Besides, the fact that we define a new
language makes the approach independent from existing concrete environments
or languages. CompAr can then be used as a complementary tool or a DSL for
helping the designers.

Finally, even though CompAr is a research prototype, our study is a proof
of concept that validation of AO programs is possible. For instance, it would
be possible, for a tool or language editor, to generate the abstract CompAr
specification out of a real program. One could argue that we could face a state
explosion problem when executing the specification (especially if we wanted to
test all the possible orders). However, since the abstract specification focuses
only on composition-relevant information, and that the number of around ad-
vice codes it somehow restrained in real systems, we think that this method is
applicable in most cases.

We are currently working on several improvements of the language. For in-
stance, we would like to introduce missing constructs such as exception catches,
that have not been implemented yet. Modeling other kind of advice such as be-
fore, after, cflow, and call-located advice would be quite straightforward. Indeed,
before and after advice are subcases of around once; cflow can be modeled by
defining specific choices; call-located advice (in this paper we focus on execution-
located advice) can be modeled using a proxy-like design. More importantly, we
also would like to enhance the post execution constraint sub-language to allow
TLA-like expressions. This would allow the designer to specify advice where the
performed actions must be executed in a certain order. For instance, a security
aspect should always execute the crypt action before the decrypt action.
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Abstract. Component software is software that has been assembled
from various pieces of standardized, reusable computer programs, so-
called components. Executing component software creates instances of
these components. For several reasons, for example, limited resources
and/or application requirements, it can be important to have control
over the number of such instances.
In the previous work [3], we have given an abstract component language
and a type system which ensures that the number of simultaneously ac-
tive instances of any component never exceeds a sharp bound expressed
in the type. The language featured instantiation and reuse of compo-
nents, as well as sequential composition, choice and scope.
This work extends the previous one to include a parallel composition.
Moreover, we improve on the operational semantics by using a small-step
reduction relation. As a result, we can prove the soundness property of
our static type system using the technique of Wright and Felleisen.

1 Introduction

Component software is built from various components, possibly developed by
third-parties [15], [20], [17], [8]. These components may in turn use other com-
ponents. Upon execution instances of these components are created. For example,
when we launch a web browser application it may create an instance of a dial-up
network connection, an instance of a menubar and several instances of a toolbar,
among others. Each toolbar may in turn create its own control instances such
as buttons, addressbars, bookmarks, and so on.

The process of creating an instance of a component x does not only mean
the allocation of memory space for x’s code and data structures, the creation
of instances of x’s subcomponents (and so on), but possibly also the binding
of other system and hardware resources. Usually, these resources are limited
and components are required to have only a certain number of simultaneously
active instances. In the above example, there should be only one instance of a
menubar and one instance of a modem for network connection. Other examples
come from the singleton pattern and its extensions (multitons), which have been
widely discussed in literature [10], [9]. These patterns limit the number of objects
of a certain class dynamically, at runtime.
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When building large component software it can easily happen that different
instances of the same component are created. Creating more active instances
than allowed can lead to errors or even a system crash, when there are not
enough resources for them. An example is resource-exhaustion DoS (Denial of
Service) attacks which cause a temporary loss of services. There are several
ways to meet this challenge, ranging from testing, runtime checking [9], to static
analysis.

Type systems are a branch of static analysis. Type systems have traditionally
been used for compile-time error-checking, cf. [4]. Recently, there are several
works on using type systems for certifying important security properties, such as
performance safety, memory safety, control-flow safety [14], [6], [5]. In component
software, typing has been studied in relation to integrating components such as
type-safe composition [19] or type-safe evolution [13]. In this paper we explore
the possibility of a type system which allows one to detect statically whether or
not the number of simultaneously active instances of specific components exceeds
the allowed number. Note that here we only control resources by the number of
instances. However, we can extend to more specific resources, such as memory,
by adding annotations to components using such resources.

For this purpose we have designed a component language where we have ab-
stracted away many aspects of components and have kept only those that are
relevant to instantiation and composition. In the previous work [3], the main
features are instantiation and reuse, sequential composition, choice and scope.
In this work we add a parallel composition, which allows two expressions run-
ning independently at the same time. At the first look, the parallel composition
seems adding only a small difficulty to the type system. However, we have found
that we have to make substantial changes to the type system to obtain sharp
upper bounds as in [3]. As before, reusing a component means to use an existing
instance of the component if there is already one, and to create a new instance
only if there exists none. Though abstract, the strength of the primitives for
composition is considerable. Choice allows us to model both conditionals and
non-determinism (due to, e.g., user input). It can also be used when a compo-
nent have several compatible versions and the system can choose one of them at
runtime. Scope is a mechanism to deallocate instances but it can also be used
to model method calls. Sequential composition is associative.

The operational semantics in this work has also been improved as compared
to the previous one. Instead of using a big-step operational semantics, here we
use a small-step reduction relation and as a result, we can prove the soundness
of our type system using the technique of Wright and Felleisen [18].

The type inference algorithm for this system is almost the same as in [3]. We
still have a polynomial time type inference algorithm but we leave it out here
for the sake of brevity.

The paper is organized as follows. Section 2 introduces the component lan-
guage and a small-step operational semantics. In Section 3 we define types and
the typing relation. Properties of the type system and the operational semantics
are presented in Section 4. Last, we outline some future directions.
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2 A Component Language

2.1 Terms

Component programs, declarations and expressions are defined in Table 1. In the
definition we use extended Backus-Naur Form with the following meta-symbols:
infix | for choice and overlining for Kleene closure (zero or more iterations).

Table 1. Syntax

Prog ::= Decls ; E Program

Decls ::= x−≺E Declarations
A, .., E ::= Expressions

ε Empty expression
| new x New instantiation
| reu x Reuse instantiation
| E E Sequential composition
| (E + E) Choice composition
| (E ‖ E) Parallel composition
| {E} Scope

We use a, b, .., z for component names and A, .., E for expressions. We collect
all component names in a set C.

We have two primitives ( new and reu ) for creating and (if possible) reusing
an instance of a component, and four primitives for composition (sequential
composition denoted by juxtaposition, + for choice, ‖ for parallel, and {. . .} for
scope). Together with the empty expression ε these generate so-called compo-
nent expressions. A declaration x−≺E states how the component x depends on
subcomponents as expressed in the component expression E. If x has no sub-
components then E is ε and we call x a primitive component. Upon instantiation
or reuse of x the expression E is executed. A component program consist of dec-
larations and ends with a main expression which sparks off the execution, see
Section 2.2.

The following example is a well-formed component program:

d−≺ε e−≺ε a−≺( newd ‖ { reud} reu e)
b−≺( reud{ newa}+ new e newa) reu d; reu b

In this example, d and e are primitive components. Component a is the parallel
composition of new d and { reud} reu e. Component b has a choice expression
before reuse of an instance of d. The first subexpression of the choice expression
is reu d{ newa}.

We can view { newa} in this expression as a function call f() (in traditional
programming languages). Function f then has body new a, which means f()
needs a new instance of a to carry out its task. We abstract from the details
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of this job, the only relevant aspect here is that it involves a new instance of a
which will be deallocated upon exiting f .

The example is simple, but as we will see in the next section, there are many
possible runs of the program, resulting in difference numbers of instances for
each component during and after each run.

2.2 Operational Semantics

The operational semantics is based on a reduction relation and a structural
congruence. The reduction relation is a set of small-step reduction rules between
configurations. The structural congruence, essentially commutativity of + and
‖, allows us to rearrange the structure of a configuration so that reduction rules
may be applied. In the sequel we assume that we are working with a program
Prog = Decls; E and x−≺A ∈ Decls denotes that x−≺A is a declaration in Decls .

Before going into the details of congruence and reduction rules, we define our
notion of configuration and its relevant components. A configuration is a binary
tree T of threads. A thread is a stack ST of pairs of a local store and a expression
(M, E), where M is a multiset over component names C, and E is an expression
as defined in Table 1. A thread is active if it is a leaf thread. Reduction always
occurs at one of the leaf/active threads. A configuration is terminal if it has only
one thread of the form (M, ε). Stacks and configurations are defined as follows:

ST ::= (M1, E1) ◦ ... ◦ (Mn, En) Stack
T, S ::= Configurations

Lf(ST ) Leaf
| Nd(ST, T) Node with one branch
| Nd(ST, T, T) Node with two branches

Multisets are denoted by [. . .], where sets are denoted, as usual, by {. . .}.
M(x) is the multiplicity of element x in multiset M and M(x) = 0 if x /∈ M .
The operation ∪ is union of multisets: (M ∪ N)(x) = max(M(x), N(x)). The
operation � is additive union of multisets: (M �N)(x) = M(x)+N(x). We write
M + x for M � [x] and when x ∈M we write M − x for M − [x].

We assign to each node in our tree a location. Let α, β range over locations.
A location is a sequence over {l, r}. The root is assigned the empty sequence.
The locations of two direct nodes from the root are l and r. The locations of the
two direct child nodes of l are ll and lr, and so on. In general, αl and αr are the
locations of the direct children of α. We write α ∈ T when α is a valid location
in tree T. Whenever a new node is created, a location is assigned to it and this
location will not be changed by rule conBranch.

Since the location of a parent node is a subsequence of the location of its
children (direct and indirect), we define the following binary prefix ordering
relation ≤ over locations. For location α = s0s1..sn where si ∈ {l, r}, α′ ≤ α
if α′ = s0s1..sm, 0 ≤ m ≤ n. The set of all locations in a tree and this binary
relation form a partially ordered set [7]. A maximal element of this partially
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ordered set is the location of a leaf. We denote by leaves(T) the set of locations
of all the leaves of T.

We denote by T(α) the stack at location α in T. We write ST = (M1, E1)◦ ..◦
(Mn, En) for a stack of n elements where (M1, E1) is the bottom and (Mn, En) is
the top of the stack. ‘◦’ is the stack separator. We call α.k the position of the kth
element (from the bottom) of the stack T(α). Again the set of all positions α.k in
tree T is a partially ordered set with the following binary relation. α1.k1 ≤ α2.k2

if either α1 = α2 and k1 ≤ k2, or α1 < α2. We denote by hi(ST ) the height
of the stack and ST |k is the stack of from bottom to the kth element: ST |k =
(M1, E1) ◦ .. ◦ (Mk, Ek). By [ST |k] we denote the multiset of active instances in
ST |k, so [ST |k] = M1 � .. �Mk. We simply write [ST ] when k = hi(ST ). We
denote by [T] the multiset of all active instances in T: [T] =

⊎
α∈T

[T(α)]

Table 2. Reduction rules

(osNew) x−≺A ∈ Decls
T[[Lf(ST ◦ (M, newxE))]]α −→ T[[Lf(ST ◦ (M + x,AE))]]α

(osReu1) x−≺A ∈ Decls x /∈ reuLfT(α.hi(T(α)))
T[[Lf(ST ◦ (M, reuxE))]]α −→ T[[Lf(ST ◦ (M + x,AE))]]α

(osReu2) x−≺A ∈ Decls x ∈ reuLfT(α.hi(T(α)))
T[[Lf(ST ◦ (M, reuxE))]]α −→ T[[Lf(ST ◦ (M, AE))]]α

(osChoice)
T[[Lf(ST ◦ (M, (A + B)E))]]α −→ T[[Lf(ST ◦ (M, AE))]]α

(osPush)
T[[Lf(ST ◦ (M, {A}E))]]α −→ T[[Lf(ST ◦ (M, E) ◦ ([], A))]]α

(osPop)
T[[Lf(ST ◦ (M, E) ◦ (M ′, ε))]]α −→ T[[Lf(ST ◦ (M, E))]]α

(osParIntr)
T[[Lf(ST ◦ (M, (A ‖ B)E))]]α −→ T[[Nd(ST ◦ (M, E), Lf(([], A)), Lf(([], B)))]]α

(osParElim1)
T[[Nd(ST ◦ (M, E),S, Lf((M ′, ε)))]]α −→ T[[Nd(ST ◦ (M #M ′, E), S)]]α

(osParElim2)
T[[Nd(ST ◦ (M, E),Lf((M ′, ε)))]]α −→ T[[Lf(ST ◦ (M #M ′, E))]]α

(osCong) S ≡ S′

T[[S]]α −→ T[[S′]]α

The next notion is that of reusable instances because the primitive reu
depends on the state of the configuration. In our model, the instantiation always
occurs at the top of a leaf stack, for the moment we only need the concept
of reusable instances for an expression at a leaf node. Later, we will extend
the notion of reusable instances to non-leaf nodes. The multiset of reuseable
instances at level k of the leaf stack α is the collection of all existing instances in
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Table 3. Structural congruence: basic axioms

(conChoice)
Lf(ST ◦ (M, (A + B)E)) ≡ Lf(ST ◦ (M, (B + A))E)

(conBranch)
Nd(ST, Lf(ST ), T) ≡ Nd(ST, T, Lf(ST ))

all the predecessor nodes β < α and all the existing instances from the bottom
of stack T(α) up to k (inclusion).

reuLfT(α.k) =
⊎

β < α

[T(β)] � [T(α)|k]

The reduction relation is defined in terms of a rewriting system [16]. By T[[]]α
we denote a tree with a hole at the leaf location α. Filling this hole with a
(sub)tree T′ will be denoted by T[[T′]]α.

Table 2 defines the reduction rules. Each reduction rule has two lines. The
first line contains a rule name followed by a list of conditions. The second line has
the form T −→ T′, which states that if the configuration has the form T and the
condition in the first line holds, then we can move to configuration T′. As usual,
−→∗ is the reflexive and transitive closure of −→ . One step reduction is defined
first by choosing an arbitrary active thread. Then depending on the pattern of the
expression at the top of the chosen thread and the state of the configuration, the
appropriate rewrite rule is selected. If necessary the configuration is rearranged
using the congruence rules. By the rules osNew, osReu1, osReu2, and osChoice
we only rewrite the element at the top of the stack. The rule osPush adds an
element to the top of the leaf stack. The rule osPop only removes the element at
the top of the stack when the stack has at least two elements. That means no
stack in any configuration is empty. By the rule osParIntr, a leaf is replaced by a
branch of a node and two leaves. In contrast, by the rules osParElim1, osParElim2,
a leaf is removed from the tree and its parent node may be promoted to be a
leaf if it is the case (osParElim2). The rule osCong allows the configuration to be
rearranged so that reduction rule can be applied.

The structural congruence relation ≡ is defined in Table 3. By the congruence
rules, we can replace the left hand side of ≡ by the right hand side in the
reduction rule osCong.

The example at the end of Section 2.1 is used to illustrate the operational
semantics. There are many possible runs of the program due to the choice com-
position and when a configuration has more than one leaf thread, the number of
possible runs can be exponential as active threads have the same priority. Here
we only show one of the possible runs. To make it easier to follow, we repre-
sent the trees graphically instead of using the formal syntax; ‘↼’ and ‘〈’ denote
branches with one and two child nodes, respectively. At the starting point, the
configuration has one leaf Lf([], reu b). After the first step, there are two pos-
sibilities because we can apply the congruence rule conChoice before the rule
osChoice.
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(Start) ([], reu b)
(osNew) −→ ([b], ( reud{ new a}+ new e newa) reu d)

(osChoice) −→ ([b], reud{ newa} reud)
(or ([b], new e newa reud))

Now we continue with the first possibility. When there are two or more leaves,
we draw a box around the leaf which is to be executed in the next step.

([b], reu d{ newa} reud)
(osReu1) −→ ([b, d], { newa} reud)
(osPush) −→ ([b, d], reu d) ◦ ([], newa)
(osNew) −→ ([b, d], reu d) ◦ ([a], ( new d ‖ { reud} reu e))

(osParIntr) −→ ([b, d], reu d) ◦ ([a], ε) 〈
([], newd)
([], { reud} reu e)

(osPush) −→ ([b, d], reu d) ◦ ([a], ε) 〈 ([], newd)
([], reu e) ◦ ([], reud)

(osNew) −→ ([b, d], reu d) ◦ ([a], ε) 〈
([d], ε)
([], reu e) ◦ ([], reu d)

(osReu1) −→ ([b, d], reu d) ◦ ([a], ε) 〈 ([d], ε)
([], reu e) ◦ ([], ε)

(osElim1) −→ ([b, d], reu d) ◦ ([a, d], ε)↼([], reu e) ◦ ([], ε)
(osPop) −→ ([b, d], reu d) ◦ ([a, d], ε)↼([], reu e)
(osReu) −→ ([b, d], reu d) ◦ ([a, d], ε)↼([e], ε)

(osParElim2) −→ ([b, d], reu d) ◦ ([a, d, e], ε)
(osPop) −→ ([b, d], reu d)

(osReu2) −→ ([b, d], ε) (terminal)

Last, we should note that we could model our operational semantics slightly
simpler by using only complete binary trees. A complete binary tree is a binary
tree with the additional property that every node must have exactly two children
if an internal node, and zero children if a leaf node. Then we have only one rule
for truncating the tree:

(osParElim)
T[[Nd(ST ◦ (M, E),Lf((M ′, ε)), Lf((M ′′, ε)))]]α −→ T[[Lf(ST ◦ (M #M ′ #M ′′, E))]]α

However, doing in this way reduces the reuse capability because two sibling
threads cannot reuse instances of each other, after one has terminated before
the other. In our model this is possible as a leaf can return its instances to its
parent and the other sibling branch can reuse the instances from its parent.
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3 Type System

We start this section by describing informally types and gives some intuitive
examples. Then we will define and explain the typing rules in more details.

Definition 1 (Types). Types of component expressions are tuples

X = 〈X i, Xo, Xj , Xp, X l〉

where X i, Xo, Xj, Xp and X l are finite multisets over C. We let U, V, . . . , Z
range over types.

Let us first explain informally why multisets, which multisets and why five.
The aim is to have an upper bound of the number of simultaneously active in-
stances of any component during the execution of the expression (X i). Multisets
are the right data structure to collect and count such instances.

In addition, we want compositionality of typing, that is, we want the types
to be computable from types of subexpressions. Since subexpressions may be
scoped, it is necessary to have an upper bound of the number of instances that
are still active after the execution of an expression (Xo). Pairs 〈X i, Xo〉 sufficed
for the purpose of the paper [2]. Here we consider also reusing instances of
components and this depends on whether there is already such an instance or
not. More concretely, in a sequential composition of A and B, the behaviour of
reu ’s in B depends on the instances that are active after the execution of A,
which would violate the compositionality. In order to save the compositionality,
we have to add three more multisets to the types, denoted by Xj , Xp and X l. The
first two multisets Xj, Xp express the same bounds as X i, Xo, but with respect
to executing the expression in a state where every component has already one
active instance.

Without the parallel composition, these four multisets 〈X i, Xo, Xj , Xp〉 suf-
ficed for the purpose of [3] since the difference between X i(x) and Xj(x) as well
as between Xo(x) and Xp(x) is at most one for every x. With the new parallel
composition, these differences may be greater than one, and note that due to
the non-determinism of the choice composition, the surviving instances after ex-
ecuting A is also non-deterministic. In order to obtain a sharp bound for x, we
need to know whether B can always reuse x after executing A or not. Because if
it is the case, the maximum number of additional instances of x generated by B
is only Y j(x), where Y is the type of B. Therefore, we need the last component
X l in the type expression. X l is the set of instances which always active after
executing A. Although X l can be a set, we let X l be a multiset so that the
multiset operations in the later sessions can be applied without any conversion.

Based on the above intuitions, the following typings are easy:
new d :〈[d], [d], [d], [d], [d]〉, { newd} :〈[d], [], [d], [], []〉, reud :〈[d], [d], [], [], [d]〉,
reu d{ newd} :〈[d, d], [d], [d], [], [d]〉, reu d{ newa} :〈[a, d, d], [d], [a, d], [], [d]〉,
( reu d ‖ new e) :〈[d, e], [d, e], [e], [e], [d, e]〉, ( reu d+ new e) :〈[d, e], [d, e], [e], [e], []〉,
where d−≺ε and a−≺ new d like in the example program in Section 2.1.

The intuitions from the above paragraphs will be indispensable for under-
standing the typing rules later in this section, in particular the sequencing rule.
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We will explain more when describing each typing rule, but before that we have
to prepare with some preliminary definitions.

Let R be the requirement that some components in C can have at most a
certain number of simultaneous instances. R can be viewed as a total function
from C to N∪{∞}. Then R(x) ∈ N is the maximum allowed number of simulta-
neously active instances of x; R(x) =∞ expresses that x can have any number
of instances. By convention n <∞ for all n ∈ N. For any multiset M , we denote
M ⊆ R when M(x) ≤ R(x) for all x ∈M .

A basis or an environment is an list of declarations: x1−≺ A1, . . . , xn−≺ An

with distinct variables xi 
= xj for all i 
= j, as in [1]. Let Γ, Δ range over bases.
The domain of basis Γ = x1−≺A1, . . . , xn−≺An, denoted by Dom(Γ ), is the set
{x1, . . . , xn}. A typing judgment is a tuple of the form

Γ �R A :X

and it asserts that expression A has type X in the environment Γ , with respect
to requirement R. We leave out subscript R when R is clear from context.

Definition 2 (Typing rules). Type judgments Γ � A : X are derived by ap-
plying the typing rules in Table 4 in the usual inductive way.

In rule Seq in Table 4, expression M !N , where M, N are multisets, is defined
as follows:

(M !N )(x) =

{
0, if x ∈ N

M(x), otherwise

Besides the intuition given in the beginning of this section, some further
explanation of these typing rules is in order. The rule Axiom requires no premise
and is used to take-off. The rules New and Reu allow us to type expressions newx
and reux, respectively. The rule Weaken is used to expand bases so that we can
combine typings in the other rules. The side condition x /∈ Dom(Γ ) in the rules
Weaken, New and Reu keeps the expanded basis well-formed. The rules Choice
and Scope are easy to understand recalling the semantics of the corresponding
reduction rules osChoice, osPush and osPop. In the rule Parallel, since we have
no specific schedule for two parallel threads, both can generate their maximum
numbers of instances for any component. To be on the safe side, we have to
prepare for the worst case and therefore the type of two parallel expressions is
additive union of their types. The side condition follows naturally.

The most critical rule is Seq because sequencing two expressions can lead
to increase in instances of the composed expression. Let us start with the first
component of type expression for AB. After expression A is executed, there are
at most Xo(x) instances of component x. If x is not in the system state after
the execution of A, then at most Y i(x) instances of x can be created when
executing B. Otherwise, at most Y j(x) additional instances of x can be created.
If we take the maximum of (Xo�Y j)(x) and Y i(x) to be the maximum number
of x which can be created after the execution of A and during the execution of
B, then we do not obtain the sharp upper bound. For example, let A = reux
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Table 4. Typing rules

(Axiom)

� ε :〈[], [], [], [], []〉

(Weaken)
Γ � A :X Γ � B :Y x /∈ Dom(Γ )

Γ, x−≺B � A :X

(New)
Γ � A :X x /∈ Dom(Γ )

Γ, x−≺A � newx :〈Xi + x, Xo + x, Xj + x, Xp + x, Xl + x〉
(Reu)

Γ � A :X x /∈ Dom(Γ )

Γ, x−≺A � reux :〈Xi + x, Xo + x, Xj , Xp, Xl + x〉
(Seq)

Γ � A :X Γ � B :Y Xo # Y j ⊆ R A, B �= ε

Γ � AB :〈Xi ∪ (Xo#Y j) ∪ Y i!Xl , (Xo # Y p) ∪ Y o!Xl , Xj ∪ (Xp#Y j), Xp # Y p, Xl ∪ Y l〉
(Choice)

Γ � A :X Γ � B :Y

Γ � (A + B) :〈Xi ∪ Y i, Xo ∪ Y o, Xj ∪ Y j , Xp ∪ Y p, Xl ∩ Y l〉
(Parallel)

Γ � A :X Γ � B :Y Xi # Y i ⊆ R
Γ � (A ‖ B) :〈Xi # Y i, Xo # Y o, Xj # Y j , Xp # Y p, Xl ∪ Y l〉
(Scope)

Γ � A :X

Γ � {A} :〈Xi, [], Xj , [], []〉

and B = ( reux ‖ reux). Executing B alone can create two instances of x.
However, executing AB creates only one instance of x.

To remedy the situation we need to know whether an instance of x is always
in the system state after the execution of A or not. If it is, then we know that
at most Y j(x) additional instances can be created; otherwise, Y i(x) additional
instances can be created when executing B. Therefore the maximum number of x
after execution of A and during execution of B are (Xo�Y j)(x), or (X l�Y j)(x)
if X l(x) ≥ 1, or Y i(x) if X l(x) = 0. Since Xo ⊇ X l, the number becomes
((Xo � Y j) ∪ Y i!Xl)(x).

In addition, because executing A can create at most X i(x) instances, the first
component of type of AB is the maximum of X i(x) and ((Xo �Y j)∪Y i!Xl)(x).
Last, since X i and Y i satisfy the requirement R, we only require an additional
side condition Xo�Y j ⊆ R which means Xo(x)+Y j(x) ≤ R(x) for each x ∈ C.

Analogously, after executing AB, the maximal number of surviving instances
of x are Xo(x) + Y p(x), or Y o(x) if there is a run of A which ends with no
surviving instance of x. Hence the surviving instances of AB are (Xo � Y p) ∪
Y o!Xl .

By a similar reasoning, when we start with a stack containing at least one
instance of every component, we can calculate the second and the last compo-
nents in the type expression for AB and the whole type expression of AB is
〈X i ∪ (Xo�Y j) ∪ Y i!Xl , (Xo � Y p) ∪ Y o!Xl , Xj ∪ (Xp�Y j), Xp � Y p, X l ∪ Y l〉.

Using the example in Section 2.1 with assumption that R = {b �→ 1, e �→
2, a, d �→ 4}, we derive type for reu b. Note that we omitted some side conditions
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as they can be checked easily and we shortened the rule names to the first two
characters. The rule Axiom is also simplified.

We

Sc

Re
� ε : 〈[], [], [], [], []〉

d−≺ε � reu d : 〈[d], [d], [], [], [d]〉
d−≺ε � { reu d} : 〈[d], [], [], [], []〉

We
� ε : 〈[], [], [], [], []〉

d−≺ε � ε : 〈[], [], [], [], []〉
d−≺ε, e−≺ε � { reu d} : 〈[d], [], [], [], []〉

(1)

Se

(1) Re

We
� ε : 〈[], [], [], [], []〉 � ε : 〈[], [], [], [], []〉

d−≺ε � ε : 〈[], [], [], [], []〉
d−≺ε, e−≺ε � reu e : 〈[e], [e], [], [], [e]〉

d−≺ε, e−≺ε � { reu d} reu e : 〈[d, e], [e], [], [], [e]〉
(2)

Ne

Pa

We

Ne
� ε : 〈[], [], [], [], []〉

d−≺ε � new d : 〈[d], [d], [d, [d], [d]〉
d−≺ε, e−≺ε � new d : 〈[d], [d], [d, [d], [d]〉

(2)

d−≺ε, e−≺ε � ( new d ‖ { reu d} reu e) : 〈[d, d, e], [d, e], [d], [d], [d, e]〉
d−≺ε, e−≺ε, a−≺( new d ‖ { reu d} reu e) � new a : 〈[a, d, d, e], [a, d, e], [a, d], [a, d], [a, d, e]〉

Similarly, we can derive Γ � reu b : 〈[b, a, d, d, e], [b, a, d, e], [a, d, e], [a, d, e],

[a, b, d, e]〉 where Γ = d−≺ ε, e−≺ ε, a−≺ ( new d ‖ { reu d} reu d), b−≺ ( reu d{ new a} +

new e new a) reu d.
In this example expression reu b is typable. IfR(d) = 1, the expression would

not be typable as the side condition when paralleling new d and { reud} reu e
would not be satisfied. Also, note that the above type derivation is not the only
one but, as we will see later, the type for any expression is unique.

As mentioned at the Section 1, we can infer specific resource consumption
from our types by adding annotations to the source programs. For example, if
component a and d each create a database connection, then from the type of b,
we know that the program, in particular the main expression reu b, may need
three database connections (since the first component in the type of b has one a
and two d’s). From another point of view, we view d as a database connection
component, then we know that the program needs two database connections.

We end this section with the definition of well-typed program.

Definition 3 (Well-typed programs). Let R be a requirement. Program
Prog = Decls ; E is well-typed w.r.t. R if there exists a reordering Γ of dec-
larations in Decls such that Γ �R E :X.

4 Formal Properties

4.1 Type Soundness

A fundamental property of static type systems is type soundness or safety [4].
It states that well-typed programs cannot cause type errors. In our case, type
errors occur when a configuration violates requirement R, that is, there exists a
component x whose the number of its active instances is greater than the allowed
number, R(x).
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Our proof of the type soundness is based on the approach of Wright and
Felleisen [18]. We will prove two main lemmas: Preservation and Progress. The
first lemma states that well-typedness is preserved under reduction. The latter
guarantees that well-typed programs cannot get stuck, that is, move to a non-
terminal state, from which it cannot move to another state. In order to use
this technique, we need to define the notion of well-typed configuration. Before
giving the formal definition of well-typed configuration we need some auxiliary
definitions.

The first notion is subtree. Given a tree T and a set of positions L = {αi.ki ∈
T | 1 ≤ i ≤ m} such that αi.ki 
≤ αj .kj for all i 
= j and for all leaf α ∈ leaves(T)
there exists a h such that α ≥ αh ∈ L. That means for every path from the root
of T to one of its leaves we select one and only one position for set L. In the
sequel, we assume that L always satisfies these conditions. The tree S obtained
from T by keeping only elements at positions α.k ≤ αi.ki for 1 ≤ i ≤ m is
a subtree of T, notation S �L T. Consequently, leaves(S) = {α1, .., αm} and
hi(S(αi)) = ki for all 1 ≤ i ≤ m.

The next one is the notion of the reusable instances for the expression E at
an arbitrary position α.k. Recall that we have defined the reusable instances for
an expression in a leaf node in Section 2.2. Now we extend this notion for an
arbitrary position α.k. Due to the nondeterminism of our operational semantics,
the collection of reusable instances for an expression in a non-leaf node is also
non-deterministic, but we can calculate its sharp upper bound and a lower bound.
Note that due to the semantics of reu , it is enough for the latter being a
collection of instances which E can always reuse; it needs not to be a sharp
lower bound. We define the latter first and denote this collection by reulT(α.k).

The element of reulT(α.k) is not only those in reuLfT(α.k) but also ones
returned from its child nodes, retlT(α.k) (see the rules osParElim1, osParElim2 in
Table 2.)

reulT(α.k) = reuLfT(α.k) ∪ retlT(α.k)

The set of instances returned to α.k is empty if α.k is not at the top of α.
Otherwise, it contains instances which will be generated at the bottom of its
child nodes. Since the child nodes may have more children, we need to make
recursive calls to them.

retlT(α.k) =

{
[], if k < hi(T(α)) or α.k /∈ T⋃

β∈{αl,αr}([T(β.1)] ∪X l ∪ retlT(β.1)), otherwise

where X is the type of the expression at position β.1 and T(β.1) is the multiset
at position β.1.

Analogously, for the sharp upper bound, the maximal number of instances
returned to a position α.k (retop

T
(α.k)) is zero if k is not at the top of the stack

at α. Otherwise, it contains the one in the multisets at the bottom of its child
nodes and the maximal number of instances which survive the expressions here.
This number, op

T
(α.k), is calculated as in the sequencing typing rule Seq. Last,

the child nodes of α.k may received instances from its child nodes and so on, so
we need to call the function recursively. To simplify the definition of the function
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retl and retop with recursion, we let the function return an empty multiset for
invalid positions α.k /∈ T.

retop
T
(α.k) =

{
[], if k < hi(T(α)) or α.k /∈ T⊎

β∈{αl,αr}([T(β.1)] � op
T
(β.1) � retop

T
(β.1)), otherwise

where
op

T
(α.k) = Xp ∪Xo!reulT(α.k)

Here X is the type of the expression at position α.k.
We are going to define the central notion of well-typed configuration. Its

main statement is that the total number of active instances in the configura-
tion respects the requirement R. Since the leaves of the configuration tree may
generate more instances, we need to include these instances to the above total
number. Furthermore, because the tree can shrink and when it shrinks, some
nodes eventually become leaves we need to prove for these future states also.
The function ij

T
(α.k) below returns a multiset which is the maximal number of

instances which can be generated by the expression at the position α.k. As in
the sequencing typing rule Seq, this number is bounded by the maximal number
returned from its child nodes (retop

T
(α.k)) and the additional instances (Xj)

for components that indeed are reused, where X is the type of the expression
at position α.k. For runs after which x may not be in the set of reusable in-
stances, an additional bound X i(x) should be taken into account. This explains
the definition of the function ij.

ij
T
(α.k) = (retop

T
(α.k) �Xj) ∪X i!reulT(α.k)

Now we are ready to define the notion of a well-typed configuration. The
first clause requires that all expressions in the configuration are well-typed. The
second one contains the safety behaviour of the configuration. It requires that
the total number of existing instances in the configuration and the ones which
may be generated by expressions in the future still respect the requirement R.

Definition 4 (Well-typed configuration). Let Γ be a legal basis. Configura-
tion T is well-typed with respect to requirement R if

1. for every E occurring in T there exists X such that Γ � E :X, and
2. for all S �L T:

[S] �
⊎

α.k∈L
ij

T
(α.k) ⊆ R

Having the definition of well-typed configuration, the two main lemmas men-
tioned at the beginning of the section are stated as follows.

Lemma 1 (Preservation). If T is a well-typed configuration and T −→ T′,
then T′ is well-typed.
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Lemma 2 (Progress). If T is a well-typed configuration, then either

1. there exists configuration T′ such that T −→ T′ or
2. T is terminal.

Finally, the type soundness property allows us to safely execute well-typed
component programs. That is, during the execution of the programs the number
of active instances of any component never exceeds the allowed number.

Theorem 1 (Soundness). Let R be a requirement, Γ be a basis, E be an
expression and suppose Γ �R E : X for some X. Let T = Lf([], E). Then for
every sequence of reductions T −→∗ T′ we have [T′] ⊆ R.

4.2 Other Properties

The section lists some fundamental properties of our type system. These prop-
erties are needed to prove the lemmas and theorem in the previous section.
Most of these properties are analogous to those in [3]. We start by giving some
definitions. In the sequel we use X∗ for any of X i, Xo, Xj, Xp and X l.

Following [1] we fix some terminology on bases or environments.

Definition 5 (Bases). Let Γ = x1−≺A1, . . . , xn−≺An be a basis.

– Γ is called legal if Γ � A :X for some expression A and type X.
– A declaration x−≺A is in Γ , notation x−≺A ∈ Γ , if x ≡ xi and A ≡ Ai for

some i.
– Δ is part of Γ , notation Δ ⊆ Γ , if Δ = xi1−≺ Ai1 , . . . , xik

−≺ Aik
with

1 ≤ i1 < . . . < ik ≤ n. Note that the order is preserved.
– Δ is an initial segment of Γ , if Δ = x1−≺A1, . . . , xj−≺Aj for some 1 ≤ j ≤ n.

For any expression E, let var(E) denote the set of variables occurring in E:

var( newx) = var( reux) = {x}, var({A}) = var(A),
var(AB) = var((A + B)) = var((A ‖ B)) = var(A) ∪ var(B)

The following lemma collects a number of simple properties of a typing judg-
ment. It also shows some relations among multisets of A and any legal basis
always has distinct declarations.

Lemma 3 (Legal typing). If Γ � A :X, then

1. elements of var(A), X∗ are in Dom(Γ ),
2. Γ � ε :〈[], [], [], [], []〉,
3. every variable in Dom(Γ ) is declared only once in Γ ,
4. Xo ⊆ X i ⊆ R and Xp ⊆ Xj ⊆ R,
5. Xj ⊆ X i, Xp ⊆ Xo, and X l ⊆ Xo.

The following lemma is important in that it allows us to find a syntax-directed
derivation of the type of an expression and hence it allows us to calculate the
types of sub-expressions and is used in type inference. This lemma is sometimes
called the inversion lemma of the typing relation [12].
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Lemma 4 (Generation).

1. If Γ � newx : X, then x ∈ Xp and there exists bases Δ, Δ′ and expression
A such that Γ = Δ, x−≺A, Δ′, and Δ � A : 〈X i − x, Xo − x, Xj − x, Xp −
x, X l − x〉.

2. If Γ � reux : X, then x ∈ Xo and there exists bases Δ, Δ′ and expression
A such that Γ = Δ, x−≺A, Δ′, and Δ � A :〈X i − x, Xo− x, Xj , Xp, X l− x〉.

3. If Γ � AB : Z with A, B 
= ε, then there exists X, Y such that Γ � A : X,
Γ � B :Y and Z = 〈X i ∪ (Xo�Y j) ∪ Y i!Xl , (Xo � Y p) ∪ Y o!Xl , Xj ∪ (Xp�
Y j), Xp � Y p, X l ∪ Y l〉.

4. If Γ � (A + B) : Z, then there exists X, Y such that Γ � A : X, Γ � B : Y
and Z = 〈X i ∪ Y i, Xo ∪ Y o, Xj ∪ Y j , Xp ∪ Y p, X l ∩ Y l〉.

5. If Γ � (A ‖ B) : Z, then there exists X, Y such that Γ � A : X, Γ � B : Y ,
and Z = 〈X i � Y i, Xo � Y o, Xj � Y j , Xp � Y p, X l ∪ Y l〉.

6. If Γ � {A} : 〈X i, [], Xj, [], []〉, then there exists multisets Xo, Xp, and X l

such that Γ � A :X.

The next lemma stresses the significance of the order of declarations in a
legal basis in our type system. Besides, because of the weakening rule, there can
be many legal bases under which a well-typed expression can be derived. Thus,
its ‘inversion’ is stated in the lemma following.

Lemma 5 (Legal monotonicity).

1. If Γ = Δ, x−≺E, Δ′ is legal, then Δ � E :X for some X.
2. If Γ � E :X, Γ ⊆ Γ ′ and Γ ′ is legal, then Γ ′ � E :X.

Lemma 6 (Strengthening). If Γ, x−≺A � B :Y and x /∈ var(B), then Γ � B :
Y and x /∈ Y i.

Last, in our type system, when an expression has a type this type is unique.
This property is stated in the following proposition.

Proposition 1 (Uniqueness of types). If Γ � A : X and Γ � A : Y , then
X i = Y i, Xo = Y o, Xj = Y j, Xp = Y p, and X l = Y l.

5 Research Directions

In a slightly more liberal approach one leaves out the side condition from the
typing rule Seq and takes the types as counting the maximum number of si-
multaneously active instances of each component. These maxima can then be
compared to the available resources.

We are well aware of the level of abstraction of the component language and
plan to incorporate more language features. These include recursion in com-
ponent declarations, explicit deallocation primitive, and communication among
threads. For example, suppose d, e are primitive components, then a−≺({ newd}
reu a + new e) is bounded by {a, e, d}, despite that it has one infinite execution
trace.
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Abstract. Encapsulation is a major concept in object-oriented designs
as design pattern catalogues, approaches for alias control, and the need
for modular correctness of components demonstrate. The way encapsu-
lation can be formally specified in existing approaches has several short-
comings. We show how encapsulation in sequential Java programs is
specified by means of a new concept, called encapsulation predicates, in
a clearly defined and comprehensible way, well fitting into the concept of
design by contract. Encapsulation predicates extend existing functional
specification languages. There are two kinds: basic predicates, which pro-
vide the actual extension, and convenience predicates, which are abbre-
viations for often used specification patterns. With encapsulation pred-
icates, encapsulation properties in design patterns can be modelled and
approaches to control aliasing can be simulated. Specifications contain-
ing encapsulation predicates are deductively checkable, but can also be
tackled by static analysis methods which are similar to alias control ap-
proaches.

1 Introduction

Encapsulation plays a major role in object-oriented software development for at
least one important reason: Without it, the complexity of inter-object relations
would become uncontrollable, and one of the most basic concepts of computer
science, the division of tasks into subtasks, indispensable to master complex
problems, would be impossible.

It is thus quite striking that formal methods for software development have
discovered only relative lately this problem for real-world object-oriented lan-
guages, and have so far provided solutions that are only partially satisfactory
(Sect. 2.2).

A successful concept for formal methods in object-oriented software develop-
ment is the notion of a (formal) contract [14]. It provides formal specifications
in a way that perfectly reflects the way programmers informally reason about
objects: namely by mutual responsibilities and services between objects. Sur-
prisingly the concept of design by contract has so far only been applied to pure
functional properties and not yet to properties of encapsulation. Our work con-
tributes to the formalisation of encapsulation properties in the natural way of
contracts by enriching specification languages with encapsulation predicates.

M. Steffen and G. Zavattaro (Eds.): FMOODS 2005, LNCS 3535, pp. 195–210, 2005.
c© IFIP International Federation for Information Processing 2005
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Programs can be verified with respect to formal contracts in a mathematically
rigorous way. We thus provide means for making our formal specification of
encapsulation properties checkable: We provide a deductive approach to realise
this as well as sketch how existing methods from the static program analysis
area can be integrated.

As basis of our reasoning we have chosen to investigate single-threaded pro-
grams in the language Java [9] for its widespread use in research and practice.
The results should however be transferable to similar object-oriented languages.

2 Encapsulation as Important Object-Oriented Concept

The importance of encapsulation in object-oriented programs is a rather em-
pirical phenomenon. It is manifested in properties of “good” software designs
(documented in design pattern catalogues), other approaches to restrict aliasing
(alias control), and the need for encapsulation in object-oriented components.
The properties occurring in these areas are analysed in this section and serve as
a basis to validate our solution in Sect. 6.

2.1 Design Patterns

We investigate the design pattern catalogues [6, 8, 10] for encapsulation prop-
erties. A selection of patterns that affect encapsulation is listed below; the list
is far from complete, though these patterns are very clear manifestations of en-
capsulation properties in designs:

Whole-Part. This is a structural pattern [6] which provides a very strict en-
capsulation policy. There is an aggregate object (Whole) at work which hides
access to other objects, called Parts: “Clients should see the aggregate object
as an atomic object that does not allow any direct access to its constituent
parts.” [6]

Copy Mutable Parameters and
Return New Objects from Accessor Method. These two patterns [10] en-

sure that, at a method call, the passed mutable objects are copied before
being stored at field locations and the returned objects are copied before
being returned. The purpose of both patterns is to achieve encapsulation:
No client of an object is allowed to directly access its internals.

Iterator. This behavioural pattern [8] ensures that an aggregate object, such
as a linked list, does not expose its internal structure, though it provides
an Iterator object that traverses the aggregate. Other clients of the list
than iterators are not allowed to access its internals. They must however be
enabled to put elements into the list, which makes the objects referenced by
the internals also referenced by the clients.

These – and many other, e.g. the Memento [8] or the Proxy [8] – patterns have
in common that they require some objects to be hidden from others in one or the
other way. If the graphs made up by the references between objects in all states



Specification and Verification of Encapsulation in Java Programs 197

of a system have such a property we speak of encapsulation: An encapsulation
property describes under which circumstances it is forbidden to have
a reference from one object to another. Obviously, the above mentioned
patterns have properties that satisfy this – purposely rather vague – condition.

We believe that there is no sharp distinction between encapsulation proper-
ties and functional properties. To require, e.g., an object stored in the field of
an object o to be different in all visible states from an object p can be consid-
ered both an encapsulation property (since we restrict the accessibility between
objects) and a traditional functional invariant property.

Example 1. To be more concrete, we take up the example of an application
of the Whole-Part pattern given in [6]. We have an object Triangle whose
instances contain each three references (p0, p1, p2) to objects of class Point.
Points themselves consist of a pair of primitive integer fields x and y. Though
immutable Point objects would be preferable, we explicitely allow in our design
that Points are mutable. Applying the Whole-Part pattern, Triangle should
play the role of a Whole object and Point should play the role of a Part.

Following the pattern, the Point objects must not be shared among other
graphical objects, since otherwise, e.g., a rotate operation on another object
could unintendedly change the shape of the Triangle. Fig. 1 (without the grey
parts) shows a UML class diagram of the design and an object diagram for a
snapshot of the system; we disallow the reference labelled with ①.

For a comprehensive specification of the design, we want to specify, in addi-
tion to the mere functional behaviour (such as an invariant that the nodes of a
triangle are not collinear), that instances of Point cannot be accessed by any
other object than the specific triangle which it is a node of. Since the desired
property describes a behaviour that must be observed in any visible state of a
Triangle object, we would like to describe it as a class invariant of Triangle.

Example 2. To increase the level of complexity a bit, we assume now that, in
addition to Example 1, Point contains additional references to other objects,
such as to instances of Colour; the colour of the triangle is determined to be the
“gradient” of the colours of its nodes. The representation of a Colour object is
left open, it may consist of an “RGB” triple of primitive integer fields, or may
have references to further objects.

A possible design decision would be to make Colours in general sharable
among other graphical objects such as Points, but not if they belong to Points
that are constituent parts of different Triangles. This restriction still allows
Points of the same triangle to reference the same Colour. So modifying a colour
not belonging to a triangle t does not affect the state of t: Each node together
with its associated colour is in fact a true part of the triangle, as the Whole-Part
pattern requires. Like in the previous settings, Point objects being part of a
Triangle must not be shared among other graphical objects.

Fig. 1 (including the grey extension) illustrates the design. The references ①

and ② are not allowed in our design.
Again we would like to specify this more challenging encapsulation policy by

means of an invariant of Triangle.
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Fig. 1. UML class diagrams (top) and object diagrams (bottom) for Example 1, ex-
tensions for Example 2 are grey

The brief investigation of patterns should have shown:
(DP1) Encapsulation is the result of purposely made design decisions.
(DP2) There is not the encapsulation property, but there are many varying –

and arbitrarily complex – encapsulation properties.
(DP3) There is no sharp line between functional and encapsulation properties.

2.2 Alias Control: Related Work on Encapsulation

Quite a number of techniques have been published in recent years that aim
at reducing the complexity introduced by aliasing in programs with pointers,
as for example islands [12], balloons [2], uniqueness [5], and different types of
ownership [7, 15]. We refer to them as alias control policies. Overviews are, e.g.,
in [17]. According to our criteria, these policies ensure properties that can be
classified as encapsulation properties.

Most, if not all, of these policies are however technology driven, that is the
properties are mostly statically checkable (e.g. by means of a type checker),
which is the major justification that the approach exists. We claim that we can
formulate each of the properties summarised in [17] with our approach, and we
will demonstrate this in some examples below. Moreover we can observe that the
investigated design patterns require more generality concerning their encapsu-
lation properties than the existing encapsulation policies provide. Finally, users
are facing two ways of writing specifications: the one they are usually used to,
design by contract, writing invariants and pre-/postcondition contracts, and on
the other hand, a completely different way of denoting encapsulation properties,
e.g., by labelling fields with a special modifier. We believe that this distinction
is unnecessary and unnatural, thus confusing for developers, especially for those
who are sceptical towards formal specification anyway.

To sum up, we can state the following weaknesses of the existing alias control
approaches to master encapsulation:
(AC1) There is an irritating difference between how functional properties and

how encapsulation properties are specified in recent approaches.
(AC2) The way encapsulation properties are specified is closely coupled to tech-

nologies that check them, which makes it likely that not all desired prop-
erties can be formulated.
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2.3 Components

Encapsulation is indispensable for the specification and verification of object-
oriented software components. Let A be a component that is used by component
B and let C be a component that uses both A and B. Assumed that B’s methods
preserve an invariant ϕ. Also, ϕ holds in initial states of B’s objects. However, if
ϕ includes statements about the state of objects from A, then these assumptions
will not ensure that B’s invariant holds whenever B is used, since it might be
possible that during the use of B in C ϕ gets violated due to modifications
of objects from A which “bypass” B. This undesired behaviour can only be
prevented modularly if there is more encapsulation: all uses of A in B that affect
B’s invariant must only be accessible by means of B.

This observation means however that guarantees on functional properties of
components (“trusted components”) can only be made if there is a sufficient –
and equally well guaranteed – degree of encapsulation to ensure modular cor-
rectness. More on this issue, in particular on the question of which objects are
to be encapsulated, can be found in [18].

3 Outline

Taking the results of our reviews of design patterns and alias control policies
into account, the central idea of our work is thus: Programmers know how they
encapsulate data (DP1), they should be enabled to easily specify their encapsu-
lation concept formally and to check these properties with machine assistance.
Especially, (AC1) and (DP3) encourage us to make encapsulation specifiable in a
way traditional functional properties are, i.e. by applying design by contract and
extending a specification language. Moreover, this has the flexibility required by
(DP2) and the independence from concrete techniques required by (AC2).

The obvious way to get new features, such as encapsulation properties, into
specification languages is to make them accessible as special predicates of the
specification language. As any other predicate they can then be connected with
other expressions of the language. Language expressions containing the predi-
cates may serve as preconditions, postconditions, or class invariants.

Basically two predicates, acc and reachable which we will introduce in Sect. 5
are needed to express any encapsulation property we can reasonably expect.
They are usually not available in specification languages such as JML1 [13] or
UML/OCL [20]. Since these predicates are most probably hard to handle and
do not intuitively reflect the way one wants to specify encapsulation, there is
a second layer on top of these basic predicates. Predicates defined in this layer
can easily be applied to the reference patterns and alias control properties from
above, as demonstrated in Sect. 6.

Finally, in Sect. 7, we investigate how feasible it is to check encapsulation
predicates. Since it was left open which technology to use (AC2), we will consider
both a deductive approach and approaches from the static analysis area.

First we have a look at the formal basis of our reasoning.
1 In fact, there is an equivalent for the predicate reachable available in JML.
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4 Formal Background

This work has been done in the context of KeY [1], a project to establish formal
specification and deductive verification within commercial software development.
The KeY prover, integrated in a CASE tool or an IDE, enables developers to
prove properties of Java2 programs using a program logic called JavaDL [4].
JavaDL expressions may, in KeY, either be the result of a translation from
specification languages such as UML/OCL or JML or of direct specification.
Functional properties expressible in the aforementioned specification languages
are as well expressible in JavaDL, and the other way round, extensions made to
(the first order fragment of) JavaDL concerning additional predicates, can also
be made to those languages. In this paper we rely on the JavaDL logic and trust
in the ability of the reader to translate the definitions to his favourite language.

As follows, some formal properties of a first-order fragment3 JavaFOL∗ of
JavaDL [4] are defined, which will be extended by encapsulation predicates in
the following sections. Note, that these properties are necessary to consolidate
encapsulation predicates (Sect. 5) and their axiomatisation (Sect. 7.1).

We assume to have fixed a Java program (i.e. set of classes) P . By available
types we characterise the Java types declared by P and the built-in Java types.
The set Term of terms is built inductively from program variables, logical vari-
ables, the literal null, the boolean, int, and String literals, and in addition:
aC ∈ Term for static fields C.a of P , t.aC ∈ Term for terms t and (instance)
fields a declared in class C of P 4, and t0[t1] ∈ Term for terms t0 and terms t1.

The formulae Fma of JavaFOL∗ are constructed as usual from terms with
user-defined predicate symbols, the predicate .=, junctors ¬,∧,∨,→,↔, and
quantifiers ∀ and ∃ which bind logical variables. More precisely, each quantifier is
indexed with one of the available types, i.e. for every available type tp there are
quantifiers ∀·: tp and ∃·: tp . ∀x is an abbreviation for ∀x:java.lang.Object for
every logical variable x. Additionally there is the unary predicate instanceoftp(·)
for every available type tp.

The semantics is defined by mapping terms to the domain D of Java objects
or values and by the validity relation |= for formulae. Both depend on a state s
and a variable assignment β. For undefinedness a choice function ch is employed
which delivers, for a term t, an arbitrary unknown but fixed domain element
ch(t) as advocated in [11]. The valuation vals,β : Term → D is defined as follows:

– for local variables and static fields v : vals,β(v) is the object or value assigned
to the variable (or static field) v in state s.

– for a logical variable x: vals,β(x) = β(x)

– for a term t.a: vals,β(t.a) =
{

vals,β(t).a if a is defined for vals,β(t)
ch(t.a) otherwise

2 More precisely, only the sequential subset JavaCard is considered.
3 Though JavaDL is a typed logic, our presentation provides a version that has no

types on the syntax level.
4 The subscript C is skipped if it is clear from the context where a field is declared.
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– for a term t0[t1]:

vals,β(t0[t1]) =

⎧⎪⎪⎨⎪⎪⎩
vals,β(t0)[vals,β(t1)] if vals,β(t0) is of an array type

and vals,β(t1) is an int value i
with 0 ≤ i < vals,β(t0).length

ch(t0[t1]) otherwise

The validity |= of formulae is (for formulae ϕ, terms t1, t2, logical variables x):

– s, β |= t1
.= t2 iff vals,β(t1) = vals,β(t2)

– s, β |= ¬ϕ iff not s, β |= ϕ, etc.
– s, β |= ∃x: tp ϕ iff there is an initialised object d ∈ D which is assignment

compatible [9] to type tp such that s, βd
x |= ϕ, analogously for ∀x: tp ϕ

– s, β |= instanceoftp(t) iff s, β |= ∃x: tp x
.= t ∧ ¬(t .= null)

If s, β |= ϕ holds for all β, we just write s |= ϕ. In the sequel sets of fields A are
considered. A is partitioned in sets Ainst and Astat such that Astat contains all
the static fields of A and Ainst = A\Astat. We further denote the set of all fields
of a program P as Fields(P ).

5 Basic Encapsulation Predicates

In this section, the two basic encapsulation predicates, the acc and the reachable
predicate, are defined for JavaFOL∗. As already mentioned, they can likewise
be defined for any specification language that is capable of making statements
about program states, such as JML or UML/OCL. In Sect. 6 they are comple-
mented with a mere convenience layer, i.e. we provide handy abbreviations. This
however means that this section presents all the needed extensions to express
encapsulation properties. All applications to design patterns and alias control
properties shown in Sect. 6 could be done with the basic predicates of this section
only. The formulae would just be more intricate.

5.1 The acc Predicate

In object-oriented specification languages as well as in JavaDL there are only
means to reason about concrete field accesses but there is no way to talk about
an arbitrary field access, such as “there is a field such that. . . ”. Without getting
too much into the spheres of higher order logic, this restriction needs to be
relaxed by defining an acc predicate. It defines the relation of objects which can
be accessed with exactly one field or array access from a list of allowed fields.

Definition 1 (Syntax of acc). Let A be a set of fields defined in a Java pro-
gram P , and t1 and t2 JavaFOL∗ terms for P . Then acc[A](t1, t2) is a for-
mula of JavaFOL∗. For a program P , acc(t1, t2) is regarded as abbreviation for
acc[Fields(P )](t1, t2).

What does accessibility between two objects exactly mean? Since our goal
is to cope with the design patterns mentioned above, we clarify the question by
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looking at one of them more carefully. In the Whole-Part pattern, the restricted
accessibility is supposed to ensure that the state of Parts cannot be modified
by clients others than from the corresponding Whole. State changes on a Part
object p are performed by invoking methods of p or directly assigning to a field
or to an array slot of p. Both possibilities require that the object that performs
the modification holds a reference to p. References may be held either in a local
variable, a field, or an array slot. Like when invariants are considered, we are
however only interested in states directly before and after method invocations
(visible states). Since such a method invocation cannot change the assignments
to local variables of the caller with the exception of the returned value, all local
variables but the one assigned to by the call, can be ignored. The return value
can be taken into consideration if we, without loosing generality, look at method
calls that assign to a field of an anonymous class (see Sect. 7). This justifies the
following two possibilities of how to access an object e1 directly from a given
one e0: e1 may be stored in a field of a class instance e0 or e0 is an array object
of which one slot stores e1.

In addition we say that e1 is accessed from e0 if there is some static field that
references e1. For encapsulation this is crucial: With static fields, encapsulation
is practically completely compromised since they provide global access to the
object of question. In fact, it would be sufficient only to consider visible static
fields. For simplicity, the slightly more conservative approach to take all static
fields into account is taken here.

The three possibilities for an access are reflected in the semantics of acc:

Definition 2 (Semantics of acc). s, β |= acc[A](t1, t2) is defined to hold for
a state s iff (vals,β(t1), vals,β(t2)) ∈ Acc[A]. Acc[A] is defined to be a relation on
D (that is a subset of D ×D) with (e0, e1) ∈ Acc[A] iff

– e0 is a class instance (i.e. not an array object) and there exists a ∈ Ainst

with e1 = e0.a, or
– there exists a ∈ Astat with e1 = vals,β(a), or
– e0 is an array and there exists j ∈ {0, . . . , e0.length} with e1 = e0[j].

5.2 The reachable Predicate

Reasoning about encapsulation often means reasoning about restricted reacha-
bility. In this section a reachable predicate is defined that can be used to reason
about these restrictions. Essentially, reachability is the reflexive and transitive
closure of the acc relation defined in the last section. So we define reachable , a
binary predicate for each set of fields, as follows:

Definition 3 (Syntax and Semantics of reachable). Let A be a set of fields
defined in a Java program P , and t1 and t2 JavaFOL∗ terms for P . Then
reachable [A](t1, t2) is a formula of JavaFOL∗. Again reachable (t1, t2) is con-
sidered to be an abbreviation for reachable [Fields(P )](t1, t2).

For a state s and a variable assignment β, s, β |= reachable [A](t1, t2) iff there
is a finite sequence of objects (e0, e1, . . . ek) (k ∈ N) such that e0 = vals,β(t1) and
ek = vals,β(t2) and for all i = 1, . . . , k: (ei−1, ei) ∈ Acc[A].
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6 Applications and Convenience Encapsulation
Predicates

Though the predicates acc and reachable provide a basic vocabulary for speci-
fying encapsulation behaviour, their use is still tedious. We thus provide handy
abbreviations, or convenience encapsulation predicates, for useful application
patterns. Below, their practicability is measured by formulating properties of
the design patterns and the alias control approaches. In the end, all predicates
introduced throughout this section are summarised in Table 1.

6.1 The guardAcc and uniqueAcc Predicates

We define an abbreviation for specifying the following property: If there is a
direct reference between an arbitrary guard object x and an object u then x
must satisfy ϕ(x). In JavaFOL∗ we formalise this property as

guardAccx[A; ϕ(x)](u)↔ ∀y
(
acc[A](y, u)→ ϕ(y)

)
.

As before the parameter A is optional and skipping it can be seen as abbre-
viation for using Fields(P ). The formula ϕ(x) is the characteristic function of
those objects, the guard objects, which are allowed to hold a reference to u. In
the easiest and most common case, ϕ(x) will consist just of an equality x

.= g,
thus having just one guard object g. This specification pattern is in fact so com-
mon that we introduce another convenience predicate called uniqueAcc which is
defined by the equivalence

uniqueAcc(g, u)↔ guardAccx[g .= x](u) .

Alias Control: Unique Pointer. A unique object is an object that is referenced by
at most one object [5]. The guardAcc predicate can easily be used to model this
property, e.g. to say that u is a unique object, we require that for every object
z that has a direct reference to u, all other objects referencing u must be equal
to z. Or simpler: z is the only guard object. Moreover there is an equivalent
formulation with uniqueAcc:
∀z(acc(z, u)→ guardAccx[x .= z](u)), ∀z(acc(z, u)→ uniqueAcc(z, u)) .

By inserting the definition of guardAcc and simplifying we get the following
formula, which obviously fits our expectations of a unique object:

∀z∀y
(
acc(z, u) ∧ acc(y, u)→ y

.= z
)

.

Pattern: Whole-Part. The guardAcc or the uniqueAcc predicate can be employed
for simple versions of the Whole-Part pattern, namely if the part’s state does
not depend on additional objects. In this case, the Whole-Part pattern forbids
direct access to the parts (instances of Part), only indirect accesses through the
Whole object are allowed. We can now formally note this property as

∀p:Part ∃w:Whole guardAccx[x .= w](p) .

or if we already know that the value in field p is a part of a Whole and using
uniqueAcc, we write simpler: ∀w:Whole uniqueAcc(w, w.p).
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Example 3. For the settings in Example 1, we would require the following in-
variant:

∀t:Triangle
(
uniqueAcc(t, t.p0) ∧ uniqueAcc(t, t.p1) ∧ uniqueAcc(t, t.p2)

)
.

This exactly describes the desired property that nodes may only be accessed by
means of Triangle. It is however not sufficient for the settings of Example 2
since then references to Colour objects would be allowed, even if they “bypass”
the corresponding Triangle object.

Patterns: Copy Mutable Parameters, Return New Objects from Accessor Method.
These two patterns ensure that an object stored in a field a of object o is only
accessed through o itself, denoted in JavaFOL∗ as guardAccx[x .= o](o.a). In
contrast to many other patterns, these two patterns exactly define how encapsu-
lation must be achieved, namely by copying parameters and return values. Only
the effect of the pattern can be specified with encapsulation predicates.

Alias Control: Confinement. The formula that specifies the confinement [19]
aliasing policy demonstrates that it is useful to have the possibility to use a
formula ϕ(x) to qualify guard objects.

We assume that we have a unary predicate confinedp which holds for every
object whose type is confined to package p. Let tp1, . . . , tpn be the classes in
package p. Only these classes may access types confined to p. The following
formula describes this property:

∀y
(
confinedp(y)→ guardAccx[instanceoftp1

(x) ∨ . . . ∨ instanceoftpn
(x)](y)

)
.

6.2 The guardReg and uniqueReg Predicates

The guardAcc predicate restricts the accessibility of one single object. Often
however, it is necessary to restrict the access to all objects (indirectly) referenced
by a particular one. To ensure, e.g., that in the object graph of Fig. 1 references ①

and ② are not allowed, it must be required that all objects reachable from t.p0
are only reachable through t. No restriction should however be imposed on
references within the group of objects reachable from t.p0. Using the guardAcc
predicate we can formalise such properties as follows and define the guardReg
predicate, an informal description follows afterwards:

guardRegx[A; ϕ(x)](u)↔
∀z

(
reachable [A](u, z)→ z

.= u ∨ guardAccx[ϕ(x) ∨ reachable [A](u, x)](z)
)

or equivalently:

guardRegx[A; ϕ(x)](u)↔
∀y∀z

(
(reachable [A](u, z) ∧ acc(y, z))→ (z .= u ∨ reachable [A](u, y) ∨ ϕ(y))

)
.

In this formalisation one can associate the objects of the protected “region” as
those objects z which are reachable with fields A starting from an object u. For
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u itself no restriction regarding incoming references is imposed (this explains
z

.= u on the right side of the implication). Any reference from an object y to
such a z must either satisfy ϕ(y) or is itself part of this region (i.e. reachable
from u via fields A).

Like there was a uniqueAcc predicate introduced for the guardAcc predi-
cate we define a uniqueReg predicate as follows to capture the most common
application of guardReg :

uniqueReg(g, u)↔ guardRegx[x .= g](u) .

Again, a survey of design patterns and alias control policies follows, to demon-
strate the usefulness of the two additional convenience predicates. In addition,
we mention how the predicate enables us to formally specify compositions of the
modelling language UML.

Alias Control: Islands. An object bridge plays the role of a bridge if in all states
the formula uniqueReg(bridge, bridge) holds [12]. By applying the definition and
simplifying we get:
∀y∀z

(
(reachable (bridge, z) ∧ acc(y, z))→ (z .= bridge ∨ reachable (bridge, y))

)
.

Alias Control: Balloons. For balloons, it is required [2] that for an object b of
a balloon type and the objects B indirectly referenced by b the property holds:
b is referenced at most once, the referencing object is not in B, and all objects
in B are only referenced by objects in B ∪ {b}. Formalised in JavaFOL∗, this
property is:

uniqueReg(b, b) ∧ ∀v
(
acc(v, b)→ (uniqueAcc(v, b) ∧ ¬reachable (b, v))

)
.

Pattern: Whole-Part. The Whole-Part pattern requires that there is no direct
access to the parts (instances of Part), only indirect accesses through the Whole
object are allowed. For simple structures, we have already observed above that
it is sufficient to use a formulation using the guardAcc predicate.

If, however, the Part objects’ representations consist of a more complex ob-
ject structure, this formulation is insufficient as Example 3 has illustrated. In-
stead, we can express the desired property with the help of guardReg . The basic
formalisation is:

∀p:Part ∃w:Whole uniqueReg(w, p) . (1)

The validity of this formula implies that all objects that are (indirectly) refer-
enced by a Part are only accessed among each other or by a particular Whole
object. For patterns like the Proxy or the Memento pattern similar conditions
can be formalised with guardReg , and even variations (like that some objects
may bypass a Proxy) are possible to formalise.

Example 4. We take up the settings of Example 2. The special variant of the
Whole-Part pattern imposed there is that parts of the same aggregate may access
internals of each other. The guard object is thus not only the Whole but also all
objects reachable from the parts, i.e. those x satisfying

ϕg := x
.= t ∨ reachable (t.p0, x) ∨ reachable (t.p1, x) ∨ reachable (t.p2, x)
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The desired property is now formalised in JavaFOL∗ as follows:

∀t:Triangle ( guardRegx[ϕg](t.p0)∧
guardRegx[ϕg](t.p1) ∧ guardRegx[ϕg](t.p2)) .

Pattern: Iterator. With this pattern, we show that the parameterisation of the
predicate with a set of fields A is in fact useful. The objects protected by guard
objects are the internals of the aggregate. For simplicity, we assume that the
aggregate object is a linked list implemented in a class LinkedList (like the
Java implementation java.util.LinkedList). We assume that the internals of
the list are made up by objects of a class Entry connected by a next field. The
first object of the internals is stored in the header field of a LinkedList. The
guard objects are both the LinkedList instance and the ListItr iterator object
(this could be made more precise by describing only ListItr instances of the
particular list). The encapsulation property for the Iterator pattern is thus:

∀l:LinkedList guardRegx[{next}; x .= l ∨ instanceofListItr(x)](l.header) .

UML Compositions. In the modelling language UML, classes and their interrela-
tion can be modelled in class diagrams. The relation between instances of classes

Fig. 2. UML composition

are represented as associations between
classes. Compositions are special kinds
of associations, which are depicted with
a filled diamond adornment (see Fig. 2).
They emphasise that one partner in the
relation has sole responsibility for managing the parts of the other partner. As
a consequence, accessing these objects directly is forbidden. This property can
be formally captured as in (1):

∀p:Part ∃w:AClass uniqueReg(w, p) .

6.3 Direct Applications of the Basic Predicates

Ownership. We assume to have given an acyclic partial function own [15], which
we formalise as predicate: own(t1, t2) holds iff an object t1 owns t2 or t1 is null
and t2 is not owned. We assume that the acyclicity of own is checked externally
before, since this is out of reach of a first order formulation, and can in fact be
enforced [15]. With the acc predicate, the ownership relation of [15] can simply
be written down in JavaFOL∗:

∀e∀e′acc(e, e′)→
(
own(e, e′) ∨ ∃e0

(
own(e0, e) ∧ own(e0, e

′)
))

.

7 Checking Encapsulation Predicates

This section deals with the question how specifications containing encapsulation
predicates can be checked against an implementation. Using deduction for this is
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Table 1. Overview of encapsulation predicates

Predicate Definition

acc[A](t1, t2) (Axiom, “there are direct references from t1 to t2”)
reachable [A](t1, t2) (Axiom, “there are access paths from t1 to t2”)

guardAccx[A; ϕ(x)](u) ∀y(acc[A](y, u)→ ϕ(y))
uniqueAcc(g, u) guardAccx[g

.
= x](u)

guardRegx[A; ϕ(x)](u) ∀y∀z
(
(reachable [A](u, z) ∧ acc(y, z))
→ (z

.
= u ∨ reachable [A](u, y) ∨ ϕ(y))

)
uniqueReg(g, u) guardRegx[g

.
= x](u)

most natural, since this is the preferred way to verify programs w.r.t functional
specifications; encapsulation properties can, as shown above, be formulated in
the very same way. Static analysis has the appeal of a fully automated technique
which should thus be made use of whenever possible. Our approach aims at a
framework which integrates both techniques. Due to space restrictions, we can
only give a brief impression of our approach and do not show correctness proofs.

7.1 Deductive Approach
The two predicates defined in Sect. 5 must be axiomatised to deductively treat
encapsulation predicates. Both acc and reachable predicates are challenging,
since both are beyond the original JavaDL expressibility (for the need to identify
all fields in the program) and the latter has no complete axiomatisation.

The acc Predicate. The following axiom for the acc predicate is correct:

∀x∀y
(
acc[A](x, y) ↔

(
∃i: int (x[i] .= y)
∨

∨
a∈Astat a

.= y ∨
∨

a∈A x.a
.= y

))
.

(2)

In contrast to the logic presented in Sect. 4, the logic implemented in the KeY
prover is a typed logic, so even on the syntactic level there are types. Then, for
every s, β and every term t of type tp, vals,β(t) is always assignment compatible to
tp, so basically they are subtypes. This gives rise to an optimisation. It is obvious
that we do not need to generate sub-formulae x.a

.= y if we already know by the
(static) type of x that x can not have a field a. By similar considerations we can
skip one disjunct of (2) since we know, just by considering the type of x, that a
term is either of an array type or not, and so one disjunct is irrelevant.

The reachable Predicate. The reachable predicate is axiomatised in a similar
way as other attempts in literature [16]. Basically it is the reflexive and transitive
closure of acc. The following axiomatisation is correct:

∀x∀y
(
reachable [A](x, y)↔

(
x

.= y ∨ ∃z(acc[A](x, z) ∧ reachable [A](z, y))
))

∀x∀y
(
reachable [A](x, y)↔ ∃z

(
reachable [A](x, z) ∧ reachable [A](z, y)

))
.

It is well known that there is no complete axiomatisation of the transitive closure,
and thus of reachable , in first order logic since the access graph may contain cy-
cles and our domain is infinite [3]. However, it seems that the above (incomplete)
axiomatisation is sufficient for practical purposes.
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Proving Encapsulation Properties of Programs. For treating programs
we need more than the first order fragment JavaFOL∗ used so far, that is full
JavaDL plus the extensions made in the last two sections. On the syntactic
level, JavaDL introduces a modality 〈·〉: For every JavaDL formula ϕ and every
sequence α of (correctly typed) Java statements, 〈α〉ϕ is a JavaDL formula.
JavaDL semantics [4] is defined formally in terms of Kripke structures. Here, we
just say informally that 〈α〉ϕ denotes the property of α to terminate in a state
in which ϕ holds (total correctness). So ψ → 〈α〉ϕ means (similar to a Hoare
triple) that, if ψ holds initially then α terminates and afterwards ϕ holds.

With the axiomatisation of encapsulation properties and modalities, we can
prove with a theorem prover that methods preserve encapsulation properties.
If all public methods and constructors preserve an encapsulation property the
property holds in all visible states of the program.

In order to prove the preservation of an (encapsulation) property ϕ for a
method call e.m(e0, ..., en); we have the following proof obligation:

ϕ→ 〈Ano.o = e.m(e0, ..., en);〉ϕ . (3)

Since our notion of accessibility refers only to field or array accesses, and
deliberately not to local variables, the method call we investigate assigns its
return value to a suitable static field of an “anonymous” class Ano which is
unused in the rest of the code. This reflects the fact that callers of the method
may reference the returned object and, thus, have direct access to it.

We have extended the KeY prover [1] with some of the predicates from above.
The example below reports on a sample application.

Example 5. Let us take up the settings from Example 1. To class Triangle,
we add a method getPoint0(). Our first attempt is to attach to getPoint0()
the implementation return p0;. This is however not acceptable since callers
reference p0 after getPoint0() has terminated, though the encapsulation spec-
ification requires unique access through the Triangle object.
Proof obligation (3), instantiated as follows, can thus not be proven:

∀t:Triangle guardAccx[x .= t](t.p0)
→ 〈Ano.o = tria.getPoint0();〉∀t:Triangle guardAccx[x .= t](t.p0) .

Implementing getPoint0() with return new Point(p0.getX(),p0.getY());
makes the proof obligation however – as desired – provable. The KeY prover
requires some manual, though trivial, quantifier instantiations to close the proof.

7.2 Static Analysis Techniques

Sect. 2.2 already referenced static analysis techniques called alias control policies
and the encapsulation properties they check. Though encapsulation predicates
provide a much more general framework than these rather specialised properties,
the use of deductive verification to prove properties expressed by means of en-
capsulation predicates has a major disadvantage compared to the static analysis
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techniques employed for alias control : In general, deduction requires user inter-
action, which is especially in the case of treating reachable non-trivial, while the
techniques to prove alias control properties are usually fully automated static
analyses. Automated techniques can nevertheless be used even in the general set-
ting of encapsulation predicates. By a simple type checker like algorithm (similar
to those of ownership type systems) we can, e.g., check that a piece of code α
preserves the property uniqueReg(w, w.p). So, instead of deductively verifying
this, this algorithm can be invoked by the following “sequent calculus rule”:

Γ, uniqueReg(w, w.p) � #analyse(〈α〉uniqueReg(w, w.p)), Δ
Γ, uniqueReg(w, w.p) � 〈α〉uniqueReg(w, w.p), Δ

.

If the static check is successful #analyse(. . .) is rewritten to true, otherwise the
argument 〈α〉uniqueReg(w, w.p) is returned.

8 Future Work and Conclusions

This work contributes to the application of formal methods to object-oriented
software development by

– emphasising the importance of encapsulation properties for the formally cor-
rect realisation of design decisions,

– giving specifiers means to easily formulate a wide range of encapsulation
properties within the traditional methodology design by contract by using
basic and convenience encapsulation predicates,

– providing means to verify encapsulation properties from within an interactive
theorem prover and integrating static analysis methods.

We have demonstrated that the approach is suited to formulate encapsulation
properties occurring in relevant software designs by formalising design patterns.

As future work, we want to further work on integrating advanced static pro-
cedures into our framework to resolve encapsulation properties. Moreover, we
envisage the automated generation of a formal encapsulation specification from
software components with an attached formal specification. As pointed out in
Sect. 2.3 such an encapsulation specification of a component is a major step
towards components with guaranteed functionality.
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Abstract. A predictive runtime analysis technique is proposed for de-
tecting violations of safety properties from apparently successful execu-
tions of concurrent systems. In this paper we focus on concurrent sys-
tems developed using common object-oriented multithreaded program-
ming languages, in particular, Java. Specifically, we provide an algorithm
to observe execution traces of multithreaded programs and, based on ap-
propriate code instrumentation that allows one to atomically extract a
partial-order causality from a linear sequence of events, we predict other
schedules that are compatible with the run. The technique uses a weak
happens-before relation which orders a write of a shared variable with
all its subsequent reads that occur before the next write to the vari-
able. A permutation of the observed events is a possible execution of a
program if and only if it does not contradict the weak happens-before
relation. Even though an observed execution trace may not violate the
given specification, our algorithm infers other possible executions (con-
sistent with the observed execution) that violate the given specification,
if such an execution exists. Therefore, it can predict concurrency errors
from non-violating runs.

1 Introduction

In multithreaded systems, threads can execute concurrently communicating with
each other through a set of shared variables, creating the potential for subtle
errors. The large number of potential interleavings makes it infeasible to check all
possible executions before deployment. Ordinary testing of such systems, on the
other hand, can be quite ineffective in practice, because of its low coverage with
respect to the number of interleavings and because of the difficulty to reproduce
many concurrency errors. The work presented in this paper builds upon our
experience with predictive runtime analysis (or predictive testing) techniques,
whose aim is to increase the effectiveness of testing by analyzing a class of
possible executions that are causally equivalent to the particular observed one.
What makes predictive analysis techniques appealing is the fact that some of
the causally equivalent executions may violate the requirements of the system
even though the observed execution does not.

Unlike model checking, predictive monitoring is not comprehensive. However,
it is far more efficient than model checking because it does not execute the pro-
gram but relies only on the information that is already available in a run-time
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execution. Specifically, we use a relatively non-restrictive semantic precedence
relation, extracted entirely automatically at runtime via appropriate program
instrumentation, to cluster events into equivalence classes. We then allow per-
mutations of these equivalence classes and show how these permutations can be
used to determine the effect of a large number of alternate schedules of threads.

Example. Consider an execution of the multithreaded program in Figure 1 for
airplane landing. Suppose in an execution, one thread (t2) in the program sets
the variable permit to false (event e′). Another thread (t1) in the program
checks with the control tower to see if the plane has permission to land. It then
sets a variable permit to true (event e1). At a subsequent point, the thread
t1 reads the variable permit (event e2), checks if permit is true, and sets the
variable landing to true (event e3).

Suppose we want to check that the property that “if landing then immedi-
ately before permit is true”. For the observed execution e′, e1, e2, e3, the prop-
erty holds. However, since there is no causal connection between e′ and e1, and
they are executed by different threads, we may permute these writes. Permuting
only the writes would require us to actually execute the program along a different
path (as in model checking). This would be inefficient and generally not feasible
at runtime. We avoid doing so by requiring all associated reads (i.e., all reads
of a variable that follow the latest preceding write of the variable) to also be
permuted. This allows us to construct an alternate execution path, e1, e2, e

′, e3

and the monitor infers that the property could be violated at e3 and produces
the trace as a witness.

Initially permit=f and landing=f;

Thread t1: Thread t2:

permit=checkTower(); permit=f;

if(permit)

landing=t

else

landing=f

t1

write(permit= t)

read(permit)

write(landing= t)

e1

e2

e3

write(permit= f)
t2

e'

Actual Execution Inferred

e1

e'

e3

e2

t1 t2

write(landing= f)

e1

e4

e2

t1

Un inferred

e'

t2

Fig. 1. Time increases downward and is assumed to be the same across the threads.
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Observe that, given the semantics of the program, the order of events could
also have been: e1, e

′, e2, .. in which case landing would never be set to true.
We do not infer this path because doing so would require actually running the
program with a different schedule (or semantically analyzing it) to determine
which event happens instead of e3. In particular, this means that violations
of some properties may never be detected. For example, consider the property
that “if landing is modified then landing is true or always in the past permit
was false”. This property is not violated by either the execution we observed,
nor the alternate execution we constructed. However, it would be violated by
the execution trace e1, e

′, e2, .. and a model checker could detect this and our
method could not, unless a related trace was one of the test cases. However, we
show that our generalized analysis can very efficiently uncover many errors that
standard testing would not with the same set of test cases.

2 Related Work

A number of runtime monitoring tools have been developed. These tools include
NASA’s JPaX [10], University of Pennsylvania’s Java-MaC [13], Bell Labs’
PET [9], and the commercial analysis systems Temporal Rover and DBRover
[6, 7]. Our work builds on experience with related techniques and tools–namely,
Java PathExplorer (JPaX) [10] and its sub-system Eagle [2]. These tools
treat the execution of a program essentially as a flat, sequential trace of events
or states. We proposed predictive runtime analysis in [17, 18]. The technique was
based on checking a specification against executions that are causally consistent
with a given execution – i.e., executions that do not permute writes to the same
shared variable.

In this paper, we have significantly extended the strength of our prediction by
abstracting a multithreaded computation in terms of two novel relations: weak-
happens-before relation and atomicity relation on post-write set of read events.
As a consequence of abstracting multithreaded computations this way, we are
able increase the coverage of runtime analysis of multithreaded programs by be-
ing able to predict more valid multithreaded runs from a given single execution.
In particular, in the example described above, the existing predictive technique
would not have detected a violation of our specification.

3 Monitors for Safety Properties

Safety properties form an important class of properties in monitoring. This is
because once a system violates a safety property, there is no way to continue its
execution to satisfy the safety property later. Therefore, a monitor for a safety
property can precisely say at runtime when the property has been violated, so
that an external recovery action can be taken. From a monitoring perspective,
what is needed from a safety formula is a succinct representation of its bad
prefixes, which are finite sequences of states leading to a violation of the prop-
erty. Therefore, one can abstract away safety properties by languages over finite
words. Nondeterministic automata are a standard means to succinctly represent
languages over finite words. We next define a suitable version of automata, called
monitor, with the property that it has a “bad” state from which it never exits:
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Definition 1. Let E be a finite or infinite set, that can be thought of as the set
of events generated by the program to monitor. Then an E-monitor or simply a
monitor, is a tuple Mon = 〈M, m0, b, ρ〉, where

– M is the set of states of the monitor;
– m0 ∈ M is the initial state of the monitor;
– b ∈M is the final state of the monitor, also called bad state; and
– ρ : M×E → 2M is a non-deterministic transition relation with the property

that ρ(b, e) = {b} for any e ∈ E.

Sequences in E�, where ε is the empty one, are called (execution) traces. A trace
π is said to be a bad prefix in Mon iff b ∈ ρ({m0}, π), where ρ : 2M × E� →
2M is recursively defined as ρ(M, ε) = M and ρ(M, πe) = ρ(ρ(M, π), e), where
ρ : 2M×E → 2M is defined as ρ({m}∪M, e) = ρ(m, e)∪ρ(M, e) and ρ(∅, e) = ∅,
for all finite M ⊆M and e ∈ E.

M is not required to be finite in the above definition, but 2M represents the
set of finite subsets of M. In practical situations it is often the case that the
monitor is not explicitly provided in a mathematical form as above. For example,
a monitor can be just any program whose execution is triggered by receiving
events from the monitored program; its state can be given by the values of its
local variables, and the bad state has some easy to detect property, such as a
specific variable having a negative value. There are fortunate situations in which
monitors can be automatically generated from formal specifications [2, 11, 16],
thus requiring the user to focus on system’s formal safety requirements rather
than on low level implementation details.

Example 1. Let us consider the program given in Figure 2. It consists of two
threads t1 and t2 accessing the variables x, y, and z. Let the safety property
that we want to monitor be “if x becomes positive then eventually in the past
x became negative” which can be written in past-time temporal logic as the
formula F = p→ ♦· q, where p represents the event that x becomes positive and
q represents the event that x becomes negative. The monitor automaton for this
formula is given in Figure 2. State 4 in this automaton represents the bad state.
Suppose that one runs the program and observes the execution t1: x=-1; t1:
z=x+3; t2: x=1; t2: y=x+z; in that order; then, the safety property is not
violated for this execution. Moreover, with the “happens-before” relation given
in [17, 18] which disallows any permutation of two accesses of the same variable
except when both of them are reads, one cannot predict any other possible
valid run (obtained through a different scheduling) that violates the property.
However, as shown later in this paper, our approach allows an observer of the
execution above to predict another possible valid run that violates the safety
property, namely the one in which t2 executes first. The interesting aspect here
is that the observer does not see the code, but only the flat sequence of read and
write events of shared variables, time-stamped appropriately.
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Initially x=0, y=0, z=0;

Thread t1: Thread t2:

x = -1; x = 1;

z = x+3; y = x+z;

Propositions:     p : x becomes greater than 0
q : x becomes less than 0
r : any other event

Safety Property:  p q
Monitor:

1

32

4
p

p,q,r

p

q,r

q

r

.

Fig. 2. Two threads t1 and t2 and a monitor.

4 Abstracting Multithreaded Computations

A multithreaded program consists of n threads t1, t2, ..., tn that execute con-
currently and communicate with each other through a set of shared variables.
The computation of each thread is abstracted out in terms of events, while the
multithreaded computation is abstracted out in terms of a partial order ≺ on
events. There can be three types of events: an internal event, a read or a write
of a shared variable. Internal events can be reads or writes of local variables,
calling a function, the value of a variable crossing some threshold, etc. We use ej

i

to represent the jth event generated by thread ti since the start of its execution.
When the thread or position of an event is not important we can refer to it
generically, such as e, e′, etc.; we may write e ∈ ti when event e is generated by
thread ti. Let us fix an arbitrary but fixed multithreaded execution and let S be
the set of all variables that are shared by more than one thread in the execution.

We can define a special “happens-before” relation over the accesses to each
shared variable: we say e x-happens-before e′, written e �x e′, iff e is a write of
x and e′ is a read of x such that the latest write to x that happens-before e′

is e. In other words, we say that e �x e′ if and only if the value of x read by
event e′ is the value written by the event e on variable x. This can be realized
by maintaining a counter for each shared variable, which is incremented at each
variable write. If the value of the counter at the read event e′ of x is same as
the counter value after the write event e of x, we say that e �x e′. Let Ei denote
the set of events of thread ti and let E denote

⋃
i Ei. Also, let � ⊆ E × E be

defined as follows:

1. e�e′ when e and e′ are events of the same thread and e happens immediately
before e′;

2. e � e′ whenever there is an x ∈ S with e �x e′.

The partial order ≺ is the transitive closure of the relation �. Let 	 be the
transitive, reflexive closure of �. We say e||e′ if e 
	 e′ and e′ 
	 e, i.e., the
events e and e′ are causally unrelated. The partial order ≺ captures a special
causal “happens-before” relation among the events in different threads, which we
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call weak-happens-before. This causality relation is called “weak” since it is less
constrained than the apparently more natural “happens-before” relation defined
and investigated in [17, 18], which assumed that e �x e′ also when e was a read
of x and e′ was a write of x or when both e and e′ were writes of x; we call the
causality in [18] apparently more natural since it captures exactly the common
intuition that any two unrelated read accesses to a variable can be permuted.

While the causality in [18] allowed JMPaX to have strong predictive capa-
bilities, the weak-happens-before causality considered in this paper significantly
increases the coverage of runtime analysis of multithreaded systems and implic-
itly the predictive strength of tools implementing it, by allowing more possible
runs to be inferred from just one observed execution of the system. All these pre-
dicted runs can occur under different thread scheduling or interleavings, meaning
that the increase in coverage comes at no expense, that is, our technique is still
free of false alarms. The fact that there are more possible execution traces to
analyze must be clearly regarded as an advantage in the context of predictive
runtime analysis; if, in the context of a highly unsynchronized multithreaded
program, one finds the number of possible runs too large to analyze effectively,
then one has the option to discard online as many of those “uninteresting” runs
as needed. JMPaX already provides this functionality by allowing its users to
tune an analysis breadth “knob”, ranging from only one possible execution (the
observed one), like in testing, to all possible executions, like in model-checking.

Unlike in [18], the weak-happens-before relation above is not sufficient to
completely describe the multithreaded computation; if e and e′ are two events
such that e�x e′ and e′′ is another event writing x such that e′′||e and e′′||e′, one
cannot interleave e′′ between e and e′. This is because if e′′ happens in between e
and e′, then by the definition of �x, it is the case that e′′�x e′, which contradicts
e′′||e′. This observation suggests that given a write event, say e, of x, the set
{e} ∪ {e′ | e′ ∈ E ∧ e �x e′} should be regarded as atomic with respect to any
other event outside the set that reads or writes x. Such a set is called an atomic
set for the variable x. Therefore, each atomic set of x ∈ S contains exactly one
write and the corresponding reads. Any set which is a proper subset of an atomic
set is called an incomplete atomic set. The atomic sets define another relation,
called atomicity relation over the set of events E. We say that two events e and e′

are x-atomically related, denoted by e ,x e′, if and only if e and e′ belong to the
same “atomic set” for the variable x. Formally, e ,x e′ if an only if there exists
an event e′′ such that both e and e′ belong to the set {e′′} ∪ {e′′′ | e′′ �x e′′′}.
Therefore, ,x is an equivalence relation on E. Let [e]x denote the corresponding
atomic equivalence class of an event e ∈ E.

The structure described by C = (E,≺,,) is called a multithreaded computa-
tion. A possible linearization of the events in E is consistent with ≺ if for any
two events e and e′ in E, e ≺ e′ implies that e appears before e′ in the lin-
earization. Similarly, a linearization of the events in E is consistent with , if for
any two events e and e′ and an arbitrary shared variable x, e ,x e′ implies that
any other access (read or write) event e′′ of x, such that e′′ 
,x e, appears either
before or after both e and e′ in the linearization. Combining the two conditions,
we say that a linearization of the events E is consistent with a multithreaded
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computation C = (E,≺,,) if and only if it is consistent with both ≺ and ,.
Any such linearization of events consistent with the multithreaded computation
is called a consistent multithreaded run, or simply, a multithreaded run.

A multithreaded computation can be thought of as the most general assump-
tion that an observer of the multithreaded execution can make about the system
without knowing what it is supposed to do. Indeed, an external observer sim-
ply cannot disregard the order in which the same variable is modified and used
within the observed execution, because this order can be part of the semantics
of the multithreaded program. However, multiple consecutive writes of the same
variable can be permuted provided that the set of a write and all reads following
the write occur atomically. As seen in Section 6, by allowing an observer to an-
alyze multithreaded computations rather than just multithreaded executions, one
gets the benefit of predicting errors from analyzing successful executions, errors
which can occur under a different thread scheduling.

5 Capturing Multithreaded Computations

To capture and transmit to an external observer the weak-happens-before and
atomicity relations in a multithreaded computation, we use data-structures such
as vector clocks and atomicity identifiers, respectively, as explained below. The
algorithm based on vector clocks, which correctly and efficiently implements the
weak-happens-before relation, is motivated by related work [1, 3, 8, 14]. However,
the vector clock algorithm described in this paper differs from the algorithms
described in previous works, because our focus here is to implement a different,
less usual but more powerful w.r.t. monitoring “happens-before” relation. Let a
vector clock V : ThreadId → Nat be a partial map from thread identifiers to
natural numbers. We call such a map a dynamic vector clock (DVC) because
its partiality reflects the intuition that threads are dynamically created and
destroyed. To simplify the presentation, we assume that each DVC V is a total
map, where V [t] = 0 when V is not defined on thread t.

We associate a DVC with every thread ti and denote it by Vi. Moreover,
we associate a DVC Vx with every shared variable x. All the DVCs Vi are kept
empty at the beginning of the computation, so they do not consume any space.
For DVCs V and V ′, we say that V ≤ V ′ if and only if V [j] ≤ V ′[j] for all j,
and we say that V < V ′ iff V ≤ V ′ and there is some j such that V [j] < V ′[j];
also, max{V, V ′} is the DVC with max{V, V ′}[j] = max{V [j], V ′[j]} for each j.

Further, we associate a counter, called atomicity identifier, with every shared
variable. Let cx denote the counter associated with a shared variable x. These
counters are initialized to 0. An atomicity counter associated with a variable
keeps track of its atomic sets. A set of events corresponding to a read or write
of x belong to an atomic set if and only if the atomicity identifiers associated
with the variable x at those events are the same.

At every event in the multithreaded computation the DVCs and the atomicity
identifiers are updated according to the following algorithm, which acts as a
program instrumentation technique to emit events to an external observer of the
system. If a thread ti with current DVC Vi processes event ek

i then
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1. Vi[i]← Vi[i] + 1;
2. if ek

i is a write of a shared variable x then
Vx ← Vi

cx ← cx + 1;
3. if ek

i is a read of a shared variable x then
Vi ← max{Vi, Vx};

4. if ek
i is a read or write of a shared variable x

then send message 〈ek
i , i, Vi, x, cx〉 to observer

else send message 〈ek
i , i, Vi,⊥,−1〉 to observer.

Intuitively, at every write event of a shared variable x, the DVC of x is
updated with the DVC of the thread writing x. Thus, the thread passes its
current time-stamp to the variable. This ensures that every event of the thread ti
till ek

i happens before any event that reads the value written to x. The atomicity
identifier is incremented by 1 to indicate that a new atomic set is starting; all
the following read events, before another write of the same variable, will share
the same atomicity identifier. At a read event of a variable x, the DVC of the
reading thread is updated with the maximum of the DVC of the thread and
the DVC of the variable x. This ensures that the read event happens after any
previous event of the thread and the last write event of the variable x.

Theorem 1. After event ek
i is processed by thread ti,

a) Vi[j] equals the number of events of tj that “weak-happens-before” ek
i ; if j = i

then this number is k;
b) Vx[j] is the number of events of tj that “weak-happens-before” the most recent

write of x; if i = j and ek
i is a write of x then this number also includes ek

i .

Therefore, if 〈e, i, V, x, c〉 and 〈e′, j, V ′, x′, c′〉 are different messages sent by the
algorithm, then e ≺ e′ if and only if V [i] ≤ V ′[i]; if i and j are not given, then
e ≺ e′ if and only if V < V ′. Moreover, e ,x e′ if and only if x = x′ 
= ⊥ and
cx = c′x′ .

Therefore, the code instrumentation algorithm above correctly implements
the weak-happens-before and the atomicity relations.

6 Runtime Model Generation and Predictive Analysis

We now consider what happens at the observer’s site, which receives messages
〈e, i, V, x, c〉 from the running multithreaded program, and which, because of
Theorem 1, can infer the weak-happens-before and atomicity relations on these
events. The observer can effectively, online and in parallel. analyze all possible
interleavings of events that are consistent with the weak-happens-before and
atomicity relations. Only one of these corresponds to the real execution. Since
the other interleavings correspond to other possible executions, the presented
technique has the capability to predict violations from successful executions.
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6.1 Multithreaded Computation Lattice

Inspired by [1], we show how to incrementally generate an abstract model from
a multithreaded computation, the computation lattice, with the properties: (1)
every path in the computation lattice corresponds to a consistent multithreaded
run; (2) every node in the computation lattice represents a set of events that can
be observed as a prefix of a consistent multithreaded run. Our purpose in this
paper is to check safety requirements against all consistent multithreaded runs
of a system by systematically and efficiently exploring the computation lattice.

Let us fix an arbitrary multithreaded computation C = (E,≺,,). Let ek
i be

the kth event generated by the thread ti since the start of its execution. A cut
Σ is a subset of E such that for all i ∈ [1, n], if ek

i ∈ Σ then el
i ∈ Σ for all l < k.

Let Σk1k2...kn denote the cut containing the latest events ek1
1 , ek2

2 , . . . , ekn
n from

each of the threads. If a thread i has not seen any event then ki is considered 0.

Definition 2 (Consistent Cut). A cut Σ is consistent if for all e, e′ ∈ E,

(a) if e ∈ Σ and e′ ≺ e then e′ ∈ Σ, and
(b) if e, e′ ∈ Σ and e 
,x e′ for some x ∈ S, then [e]x ⊆ Σ or [e′]x ⊆ Σ.

(a) says that a consistent cut is closed under the weak-happens-before re-
lation, and (b) says that a consistent cut can contain at most one incomplete
atomic set for any shared variable. Indeed, if (b) fails, then there is no way to
reorder the remaining events in E −Σ without violating the atomicity relation.

Definition 3. An event el
i is enabled for a consistent cut Σ = Σk1k2...kn iff

(a) l = ki + 1,
(b) for all events e ∈ E, if e ≺ el

i then e ∈ Σ, and
(c) if el

i is an access (read or write) event of an x ∈ S and e is any access event
of x in Σ then either el

i ∈ [e]x or [e]x ⊆ Σ.

Since el
i can be in at most one atomic set for a given shared variable, the

above actually says that el
i can be safely considered a next event in the execution.

Indeed, the following can be regarded as an equivalent definition of enabledness:

Proposition 1. el
i is enabled for a consistent Σ iff Σ ∪ {el

i} is also consistent.

Proof. Since Σ is a cut, all the events e1
i , e

2
i , . . . , e

ki

i are in Σ. Therefore, Σ∪{el
i}

contains all events em
i , for m < l, if l = ki + 1. This implies that Σ ∪ {el

i} is a
cut. Since Σ is a consistent cut, for all events e ∈ Σ, if e′ ≺ e then e′ ∈ Σ. It is
given that for all events e′ ≺ el

i, e′ ∈ Σ. Therefore, for all events e ∈ Σ ∪ {el
i},

if e′ ≺ e then e′ ∈ Σ. This is the first condition for Σ ∪ {el
i} being a consistent

cut. Let e be any access event of x in Σ. Given that Σ is a consistent cut, if
el

i ∈ [e]x then the second condition for the definition of consistent cut continues
to hold for Σ ∪ {el

i} because the addition of el
i to Σ cannot create a new atomic

set for x. Otherwise, if el
i 
∈ [e]x then we know that [e]x ⊆ Σ. This implies that

[e]x ⊆ Σ∪{el
i} or [el

i]x ⊆ Σ∪{el
i}. Hence, the second condition for the definition

of consistent cut holds for Σ∪{el
i}. Since both the first and second conditions for

the definition of consistent cut holds for the cut Σ∪{el
i}, Σ∪{el

i} is a consistent
cut. #$
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Definition 4. If Σ = Σk1k2...kn is consistent and el
i is enabled for Σ, then let

δ(Σ, el
i) denote the consistent cut Σ ∪ {el

i}, that is, Σk1k2...ki−1(ki+1)ki+1...kn .

Therefore, δ maps a consistent cut Σ and a corresponding enabled event e
into another consistent cut, which can be regarded as the result of executing e
after executing all the events in Σ in some consistent way. Let ΣK0 = Σ00...0 be
the consistent cut at the beginning of the computation. Then
Proposition 2. A consistent multithreaded run R = e1e2 . . . e|E| generates a
sequence of consistent cuts ΣK0ΣK1 . . . ΣK|E| such that for all r ∈ 1, |E|, ΣKr−1

is a consistent cut, er is enabled for ΣKr−1 , and δ(ΣKr−1 , er) = ΣKr .

Proof. The proof is by induction on r. By definition ΣK0 is a consistent cut.
Moreover, it is easy to see that e1 is enabled in ΣK0. Since ΣK0 is a consistent
cut and e1 is enabled in ΣK0 , δ(ΣK0 , e1) is defined. Let ΣK1 = δ(ΣK0 , e1).

Let us assume that ΣKr−1 is a consistent cut, er is enabled in ΣKr−1 , and
δ(ΣKr−1 , er) = ΣKr . Therefore, by Proposition 1, δ(ΣKr−1 , er) = ΣKr is also
a consistent cut. Let ΣKr = Σk1k2...kn and C = ΣKr . We want to prove that
er+1 is enabled in ΣKr . Let er+1 = el

i for some i and l i.e. er+1 is the lth event
of thread ti. For every event ek

i , such that k < l, ek
i ≺ el

i. Therefore, by the
definition of consistent run, in R, ek

i appears before el
i for all 0 < k < l. This

implies that all ek
i for 0 < k < l are included in C. Therefore, ki = l − 1. Thus

the first condition for er+1 being enabled for ΣKr is met. Since C is a consistent
cut, for all events e and e′, if e 
= el

i then (e ∈ C∪{el
i})∧(e′ ≺ e)→ e′ ∈ C∪{el

i}.
Otherwise, if e = el

i then by the definition of consistent run, if e′ ≺ el
i then e′

appears before el
i in R. This implies that e′ is included in C ∪ {el

i}. Therefore,
for all events e and e′, if e ∈ C ∪ {el

i} and e′ ≺ e then e′ ∈ C ∪ {el
i}. Thus

the second condition for er+1 being enabled for ΣKr is met. Let er+1 be access
event of a shared variable x. Let e be an event in the incomplete atomic set (if
exists) for x in C. If e ,x er+1, the third condition for the enabledness of an
event is not violated. If e 
,x er+1 and ∃e′ ∈ E − (C ∪ {el

i}) such that e ,x e′

then any run that extends e1e2 . . . er+1 will be inconsistent with respect to the
“atomicity” relation. Therefore, if e 
,x er+1 then [e]x ⊆ C ∪ {er+1}. Thus the
third condition for er+1 being enabled for ΣKr is met. Therefore, we proved that
er+1 is enabled for the consistent cut ΣKr . Since, ΣKr is a consistent cut and
er+1 is enabled in ΣKr , δ(ΣKr , er+1) is defined. We let δ(ΣKr , er+1) = ΣKr+1 .

#$
From now on, we identify sequences ΣK0ΣK1 . . . ΣK|E| as above with multi-
threaded runs, and simply call them runs. We say that Σ leads-to Σ′, written
Σ 
 Σ′, when there is some run in which Σ and Σ′ are consecutive consistent
cuts. Let 
∗ be the reflexive transitive closure of the relation 
. The set of all
consistent cuts together with the relation 
∗ forms a lattice with n mutually
orthogonal axes representing each thread. For a consistent cut Σk1k2...kn , we call
k1+k1+· · · kn its level. A path in the lattice is a sequence of consistent cuts where
the level increases by 1 between any two consecutive consistent cuts in the path.
Therefore, a run is just a path starting with Σ00...0 and ending with Σr1r2...rn ,
where ri is the total number of events of thread ti in the multithreaded com-
putation. This lattice, called computation lattice, can be regarded as an abstract
model of the running multithreaded program.
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Fig. 3. Successful Execution and Computation Lattice.

Figure 3 shows the weak-happens-before and atomicity relations on the events
generated by the multithreaded execution in Example 1, together with the cor-
responding computation lattice. The rectangular boxes enclose the atomic sets
{e1

1, e
2
1}, {e3

1, e
3
2}, and {e1

2, e
2
2}. The actual execution is marked with solid edges in

the lattice. It can be readily seen that the temporal property defined in Example
1 holds on the actual execution of the program, but that it is violated on some
other consistent run represented by the sequence of events e1

2, e
2
2, e

1
1, e

2
1, e

3
1, e

3
2, e

4
2.

6.2 Level by Level Analysis of the Computation Lattice

A naive observer of a multithreaded program would just check the observed
execution trace against the monitor for the safety property, sayMon, and would
maintain at each moment a set of states, say MonStates, in Mon. When a new
event e arrives, it would replace MonStates by ρ(MonStates, e). If the bad state b
occurs in MonStates then a property violation error would be reported, meaning
that the current execution trace led to a bad prefix of the safety property. Here
we assume that the events are received in the order in which they are emitted.

A smart observer, as seen next, analyzes not only the observed execution
trace, but also all the other consistent runs of the multithreaded system, thus
being able to predict violations from successful executions. The observer receives
the events from the running program and enqueues them in an event queue Q.
At the same time, it traverses the computation lattice level-by-level and checks
whether the bad state of the monitor can be hit by any of the runs up to the
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current level. We next provide an algorithm that a smart observer can use to
construct and traverse the computation lattice.

The observer maintains a set of consistent cuts, (CurrLevel), that are present
in the current level of the lattice. For each event e in Q, it tries to construct
a new consistent cut from the set of consistent cuts in the current level and
the event e. If the consistent cut is created successfully then it is added to the
set of consistent cuts (NextLevel) for the next level of the lattice. The process
continues until no more consistent cut can be created for the next level. At that
time, the current level is complete and the observer starts constructing the next
level by setting CurrLevel to NextLevel and NextLevel to the empty set, and
reallocating the space occupied by CurrLevel. Fig. 4 shows the pseudo-code.

Every consistent cut Σ contains a set of monitor statesM(Σ), a DVC VC (Σ)
to represent the latest events from each thread that resulted in that consistent
cut, and an atomic identifier map AI(Σ) that maps every shared variable x to
the atomic identifier corresponding to the incomplete atomic set in Σ for x ∈ S,
if it exists, or to -1 if there is no incomplete atomic set for x in Σ. The predicate
enabled(Σ, m), checks if the event e contained in the message m is enabled in
the consistent cut Σ. For that, it first checks if for every event e′ ∈ Σ, e′ ≺ e,
by comparing the DVCs. If this is not the case then enabled(Σ, m) returns false.
Otherwise, it checks if the atomic identifier of e matches the atomic identifier of
the incomplete atomic set, if it exists, for the shared variable x. If this is not the
case, then enabled(Σ, m) returns false; otherwise returns true. The correctness of
the function follows from Theorem 1 and the definition of enabledness of an event

while(not empty(Q)){
monitorLevel()

}

State cut(Σ, m, Q){
create Σ′ such that

VC(Σ′) = VC(Σ)
and AI(Σ′) = AI(Σ)

let m is of the form 〈e, i, V, x, c〉
VC(Σ′)[i] ← VC(Σ)[i] + 1
if c ≥ 0 and
∃〈e′, i′, V ′, x, c′〉 ∈ Q such that
V ′ �≤ max(VC(Σ), V ) and c = c′{

AI(Σ′)[x]← c
}

for each s ∈M(Σ){
M(Σ′)←M(Σ′) ∪ ρ(s, e)
if b ∈ M(Σ′)

output ′property violated′}
return Σ′

}

boolean monitorLevel(){
for each m ∈ Q and Σ ∈ CurrLevel{

if enabled(Σ, m) {
NextLevel ← NextLevel # cut(Σ, m, Q)}}

Q← removeUselessMessages(CurrLevel, Q)
CurrLevel ← NextLevel
NextLevel ← ∅

}

boolean enabled(Σ, m){
let m is of the form 〈e, i, V, x, c〉
if not(∀j �= i : VC(Σ)[j] ≥ V [j] and

VC(Σ)[i] + 1 = V [i]) return false
if c ≥ 0andAI(Σ)[x] ≥ 0andAI(Σ)[x] �= c{

return false
}
return true

}

Fig. 4. Level-by-level traversal.
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for a consistent cut. It essentially says that event e can generate a consecutive
consistent cut from the consistent cut Σ iff Σ “knows” everything e knows about
the current evolution of the multithreaded system except for the event e itself.
Note that e may know less than Σ knows with respect to the evolution of other
threads in the system, because Σ has global information.

The function cut(Σ, m, Q), which implements the function δ in Definition 4,
creates a new consistent cut Σ′, as the consistent cut resulting from Σ after
adding the event e of message m. It first copies the DVC and the atomic identifier
map associated with Σ to Σ′. Then it increments the ith element of the DVC of
Σ′ and updates the atomic identifier map of Σ′ for variable x with the atomic
identifier of e if Σ′ still contains an incomplete atomic set for x. For every monitor
state s in M(Σ), it applies the monitoring function ρ to s and e and adds the
resulting states in the set M(Σ′). After the update, if M(Σ′) contains the bad
state b then a ‘property violated’ error is raised.

The merging operation nextLevel � Σ adds the consistent cut Σ to the set
nextLevel. If Σ is already present in nextLevel, it updates the existing cut’s
MonStates with the union of the existing state’s MonStates and the Monstates
of Σ. Two consistent cuts are the same if their DVCs are equal. The function
removeUselessMessages(CurrLevel,Q) removes from Q all the messages that can-
not contribute to the construction of any cut at the next level. To do so, it creates
a DVC Vmin for which each component is the minimum of the corresponding
component of the DVCs of all the consistent cuts in the set CurrLevel. It then
removes all the messages in Q whose DVCs are less than or equal to Vmin. This
function makes sure that we do not store any unnecessary messages.

6.3 Handling Synchronization Constructs

In Java, one can synchronize blocks of statements by using the keyword
synchronize with an object over which the block is synchronized. When the
execution enters the synchronized block, it acquires the lock associated with the
object and releases the lock when it exits the block. The main goal of synchro-
nization is to attain atomicity: if two synchronized blocks over the same lock are
executed by two different threads, then their execution cannot be interleaved.
This atomicity can be naturally achieved in our approach by generating dummy
write and read events of the lock variable when the lock is acquired or released,
respectively. In particular, since in Java synchronized blocks holding the same
lock cannot be interleaved, so corresponding events cannot be permuted, locks
are considered shared variables and a write event of a lock is generated whenever
a lock is acquired, and a read event of the lock is generated whenever a lock is
released. This way, we make a block holding a lock atomic with respect to any
other block holding the same lock, thus avoiding reporting any false alarms.

7 Application to Data-Race Detection

Since the predictive runtime analysis approach discussed in the previous sections
is parameterized by a very generic concept of monitor as a nondeterministic
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finite state machine of bad prefixes, it can be applied to predict violations of
requirements specifications given in a variety of formalisms. Temporal logics and
regular expressions are just special cases. In particular, our technique can be
used as a complementary approach to model-checking, when the total number
of states to be model-checked is prohibitively large.

We next discuss another interesting application of our runtime analysis tech-
nique, namely in predicting data-races from data-race-free executions. The idea
is to specify some simple temporal logic formulae, which, if violated, imply the
existence of data-races in a multithreaded computation. A data-race occurs when
two threads access a shared variable simultaneously without any synchronization
and at least one of the accesses is a write. Data-races can lead to very unexpected
behaviors of concurrent systems, and are notorious for their difficulty to detect.
Plain testing can easily escape data-races, due to their dependency on thread-
scheduling. For example, suppose that two threads increment a shared variable
x simultaneously by executing statements x++ without any synchronization. If
the initial value of x is 0 then at the end of the execution the value of x can be
1 or 2. The former is obviously wrong, but hard to catch during testing.

It has been broadly recognized that tools capable of detecting data-races
automatically in programs at runtime can be very valuable. There has been
a substantial effort dedicated to developing tools and techniques that detect
data-races online, such as those based on “happens-before” relations over locks
[5], or those based on locksets, such as Eraser [15]. We next show how one can
use our predictive runtime analysis technique to precisely detect data-races in
a way somewhat similar to [5]. An advantage of our technique over the for-
mer approaches based on “happens-before” causality, such as the one in [5],
is that we can permute two synchronized blocks holding the same lock due
to our less constrained weak-happens-before relation. For example, if one sees
the execution trace t1: z=1; t1: lock(l); t1: x=0; t1: unlock(l); t2:
lock(l); t2: y=10; t2: unlock(l); t2: z=0;, then the “happens-before”
data-race detection algorithm in [5] cannot detect the potential data-race over
the variable z. However, it is easy to see that our approach can construct
the consistent run t2: lock(l); t2: y=10; t2: unlock(l); t2: z=0; t1:
z=1; t1: lock(l); t1: x=0; t1: unlock(l); that exhibits the data-race
over z. Moreover, since we do the analysis at runtime, we can take a necessary
recovery action whenever we find a data-race.

We conservatively say that two accesses of a shared variable x, of which at
least one is a write, by two threads are in data-race conflict, if one can permute
events consistently with the multithreaded computation such that the two ac-
cesses become consecutive events. Using our predictive monitoring approach, one
can detect such data-race conflicts by monitoring the following simple property
for every shared variable x and for every pair of threads ti and tj :

(write(x, ti)→ ¬. write(x, tj)) ∧(write(x, ti)→ ¬. read(x, tj))
∧(read(x, ti)→ ¬. write(x, tj))

where the temporal operator .F means “F holds at the previous event”, the
events read(x, t) (or write(x, t)) are generated whenever the thread t reads (or



Detecting Errors in Multithreaded Programs 225

writes) x. The first conjunct in the formula states the absence of write-write data-
races. A write-write data-race happens if there is a consistent run in which two
different threads write a variable x consecutively. Similarly, the second and the
third conjunct state the absence of write-read and read-write data-races. Using
our approach, by monitoring the above formulae, one can detect data-races in
multithreaded programs precisely, that is, without false positives.

8 Implementation

We have implemented this novel predictive runtime analysis technique as part
of version 3.0 of the tool Java MultiPathExplorer (JMPaX) [12], designed to
monitor multithreaded Java programs. The current implementation is written
in Java and it removes the previous limitation of version 2.0 that all the shared
variables are static and of type int. The tool has three main modules, the
instrumentation module, the observer module and the monitor module.

The instrumentation module takes a specification file and a list of class files as
command line arguments, and it instruments each class file provided as argument
to send messages to the observer module whenever a relevant read, write, or
internal event occurs at runtime. The instrumentation module uses the BCEL
Java library [4] to modify Java class files.

The observer module generates the lattice level-by-level as the events are re-
ceived from the instrumented program. The monitor module reads the require-
ments specification file, currently using either linear temporal logic or regular
expression formalism, and generates the non-deterministic monitor correspond-
ing to the bad prefixes of the specification. An implementation of the monitor
transition function ρ is provided as an interface method to the observer module.
This method raises an exception if at any point the set of states returned by ρ
contains the “bad” state of the monitor. The system being modular, the user
can plug in his/her own monitor module for his/her logic of choice.

9 Conclusion

We have developed a simple and efficient technique to predict violations of safety
properties of concurrent object-oriented programs. Our algorithm requires main-
taining an atomic identifier map for every consistent cut. The size of this map
is linearly proportional to the number of shared variables. This can lead to con-
sumption of a large amount of memory space if the number of shared variables
is large and slow down the monitoring process. As an aside, this reinforces the
view that avoiding unnecessary sharing of variables is good software practice;
in this case, fewer variables will improve the efficiency of monitoring (as well
as reduce the chances of errors). While our technique will not find all errors, it
can be applied to detect important software errors such as unintended data-race
conditions which may otherwise be missed. The technique is, however, sound: it
does not produce any false positives (any errors predicted could actually occur
in a different execution).



226 Koushik Sen, Grigore Roşu, and Gul Agha
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Abstract. RDF looks like the first step to build the Semantic Web vi-
sion. Our long-term goal is to have a sound way to verify and validate
the semantic web interactions that applications and agents may develop
in a distributed environment. The first step for reaching this goal is to
provide a useful semantic support to RDF itself. Based on this formal
support, properties may be analyzed, as well as transformations and ver-
ifications can be performed. In this paper we propose an intuitive and
formal semantics for RDF by means of a translation of RDF documents
into executable object-oriented modules in the formal language Maude.
This translation provides a semantics for RDF documents and allows
programs managing them to be expressed in the same formalism, since
Maude specifications are executable. Moreover, due to the reflective fea-
tures of Maude, this translation can be implemented in Maude itself.
Finally, translated RDF documents are integrated in an agent applica-
tion written in Mobile Maude, that is, the same framework is used for
both translating RDF documents and expressing the programs that ma-
nipulate them.

Keywords: RDF, Semantic Web, formal methods, rewriting logic, Maude.

1 Introduction

The current human-centered web is still largely encoded in HTML. Over the
past few years, XML has been proposed as an alternative encoding which is
intended also for efficient machine processing. It has become the standard for
the exchange of information on the Internet. However, it is not a final solution
because it only gives support for syntactic representation of information, but not
for its meaning. RDF (Resource Description Framework) [12] and RDFS (RDF
Schema) [5] represent an attempt to resolve these deficiencies by building on top
of XML, although they are still a bit limited for knowledge representation.
� Research supported by MCyT projects AMEVA: Desarrollo Formal de Sistemas
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Tim Berners-Lee conceives the Semantic Web as a layered architecture [3].
At the lowest level RDF provides a simple data model and a standardized syntax
for metadata (data about data) about web resources by providing the language
for writing down factual statements. The next layer is the schema layer where
the definition of concrete vocabularies is given by means of the RDF Schema
language. The final layer is the logical layer given by a formal knowledge repre-
sentation language. It is important that each layer is an extension of RDF.

Our long-term goal is to have a sound way to verify and validate the Semantic
Web interactions that service agents may develop in a distributed environment,
for example as part of web services management. This will enable the possibility
of reasoning about the information that is being exchanged allowing all the
involved partners to have a common understanding. One first step for reaching
this goal is to provide a formal, intuitive, and executable semantics to RDF and
RDFS. The “official” model-theoretic semantics for RDF and RDFS is presented
in [11] (more on this at the end of next section).

We propose in this paper an alternative semantic support to RDF by means
of Maude, which is a formal language based on a first-order rewriting logic [7,
16] with well-defined syntax, formal models, and corresponding soundness and
completeness theorems. Maude provides an executable language integrated in a
global framework including functional elements and concurrency facilities. Using
these facilities mobile agents and other advanced elements may be managed as
natural elements into the logic of Maude. Maude includes in the same declarative
framework both logic and control, which is a key difference with respect to other
logic-based languages. We use the language Maude for:

– giving semantics to RDF documents by translating them into executable
object-oriented Maude modules;

– implementing this translation; and
– implementing the applications that make use of the translated documents.

Under this formalized approach, RDF documents can be easily translated
into Maude modules and therefore they may be data for Maude applications,
as we show in Sections 4 and 5. Translating RDF documents into Maude allows
their integration with web agents also defined in Maude. Hence, the development
of web agents and their behavior is fully integrated and formally defined in a
simple framework, as we will see in Section 5. One of the key features of our
approach is that it is object-oriented, so the full power of object-orientation is
supported, including inheritance.

In Section 2 RDF and RDFS are briefly introduced. In Section 3 the language
Maude is presented by showing its syntax and key features. We pay special at-
tention to object-oriented Maude modules. In Section 4 we describe the proposed
translation that provides a semantics for RDF and RDFS documents, and how
this translation is implemented by using Maude itself. A case study is presented
in Section 5, where the translation is used by agents in a mobile system. We
conclude with some comments on future work in Section 6.
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2 RDF and RDFS: Syntax and Semantics

The Resource Description Framework (RDF) [19] is a general-purpose language
for representing information in the World Wide Web. It provides a common
framework for expressing this information in such a way that it can be exchanged
between applications without loss of meaning, by providing a simple way to state
properties of web resources, that is, objects that are uniquely identifiable by a
Uniform Resource Identifier (URI) [18].

RDF is based on the idea that the things we want to describe have properties
which have values (which can be literals or other resources), and that resources
can be described by making statements that specify those properties and values.
A statement has three components: a specific resource (subject), a property
(predicate), and the value of this property for that resource (object). A collection
of these statements that refers to the same resource is called a description. A
concrete machine-readable syntax using XML is defined in [12]. For example,
the following RDF document describes a laser printer:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:ps="http://printers.org/schema/">

<ps:LaserPrinter about="http://HPprinters/HPLaserJet1100" >

<ps:PrinterTechnology>Laser Jet</ps:PrinterTechnology>

<ps:PrinterResolution>600 dpi</ps:PrinterResolution>

<ps:Price>399</ps:Price>

</ps:LaserPrinter>

</rdf:RDF>

In order to uniquely identify properties and their meaning, RDF uses the
XML namespaces mechanism [4]. Meaning in RDF is expressed through reference
to a schema (see below). For example, in the previous example the resource
LaserPrinter and the property Price are imported from http://printers.
org/schema. The statements in a Description refer to the resource determined
from the about attribute (interpreted as a URI).

Two important RDF concepts are containers, used to hold collections of
resources, and reification, used for making statements about other statements
(for a more detailed explanation of these two concepts we refer to [12]).

RDF user communities require the ability to say certain things about certain
kinds of resources. The declaration of these properties (attributes) and kinds
of resources (classes) is done by means of an RDF schema (RDFS) [5]. This
mechanism provides a basic type system for use in RDF models. Instead of
defining a class in terms of the properties its instances may have, an RDF schema
will define properties in terms of the classes of resources to which they apply.

The following RDFS document1 describes a class of printers with a subclass
of laser printers, and a printer property, namely, its price (the rest of properties
could be defined in the same way):

1 We use &rdfsns; as an abbreviation of http://www.w3.org/2000/01/rdf-schema.
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<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdfs:Class rdf:ID="Printer">

<rdfs:subClassOf rdf:resource="&rdfsns;#Resource"/>

</rdfs:Class>

<rdfs:Class rdf:ID="LaserPrinter">

<rdfs:subClassOf rdf:resource="#Printer"/>

</rdfs:Class>

<rdfs:Property rdf:ID="Price">

<rdfs:domain rdf:resource="#Printer"/>

<rdfs:range rdf:resource="&rdfsns;#Literal"/>

</rdfs:Property>

...

</rdf:RDF>

The domain property is used to indicate the class on whose members a prop-
erty can be used. The range property is used to indicate the class that the values
of a property must be members of.

In [11] a model-theoretic semantics for RDF and RDFS is presented. The
semantic definition translates an RDF graph into a logical expression “with the
same meaning.” Basically, a graph arc is mapped to an atomic assertion and the
complete graph is mapped to the existential closure of the conjunction of the
translations of all the arcs in the graph. Also a notion of entailment in RDF is
studied. A similar approach is followed in [10] where an axiomatization for RDF
is provided by specifiying a mapping of a set of descriptions into a logical theory
expressed in first-order predicate calculus. This translation not only specifies the
intended meaning of the descriptions, but also produces a representation of the
descriptions from which inferences can automatically be made using traditional
automatic theorem provers and problem solvers. Although these approaches have
different important strengths of their own, they are not well suited for directly
executing a system.

In our approach we translate into a formal language, but where the transla-
tions can be executed. So we gain both the advantages of moving into a formal
world where properties can be formally verified, and the advantages of being
able to implement prototypes with which we get confidence of our systems spec-
ifications and implementations. The fact of having executable specifications is
important not from the point of view of RDF documents that specify data, but
from using the same framework both for translating RDF documents and for
expressing the programs that manipulate them.

3 Rewriting Logic and Maude

Maude [7] is a high level, general purpose language and high performance sys-
tem based on rewriting logic [16], a logic of change in which deduction directly
corresponds to the change [13]. Among the advantages of rewriting logic, we may
emphasize the following:
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– It has a simple formalism, with only a few rules of deduction that are easy
to understand and justify;

– It is very flexible and expressive, capable of representing change in systems
with very different structure;

– It allows user-definable syntax, with complete freedom to choose the opera-
tors and structural properties appropriate for each problem;

– It is intrinsically concurrent, representing concurrent change and supporting
reasoning about such change;

– It supports modelling of concurrent object-oriented systems in a simple and
direct way;

– It has a semantics based on initial models that support a “no junk, no con-
fusion” version of the closed world assumption;

– It is realizable in a wide spectrum logical language (Maude) supporting exe-
cutable specification and programming.

In rewriting logic the state of a system is formally specified as an algebraic
data type by means of an equational specification. In this kind of specifications
we can define new types (by means of keyword sort(s)); subtype relations be-
tween types (subsort); operators (op) for building values of these types, giving
the types of their arguments and result, and which may have attributes such as
being associative (assoc) or commutative (comm), for example; and equations
(eq) that identify terms built with these operators. The following functional
module (with syntax fmod...endfm) defines the natural numbers with an addi-
tion operation:

fmod NAT is

sort Nat .

op 0 : -> Nat .

op s : Nat -> Nat .

op _+_ : Nat Nat -> Nat [assoc comm].

vars N M : Nat .

eq 0 + N = N .

eq s(N) + M = s(N + M) .

endfm

Equations are assumed to be confluent and terminating, that is, we can use
the equations to reduce a term t to a unique, canonical form t′ that is equivalent
to t (they represent the same value). The Maude system does not check these
properties of equational specifications, but there are related tools that can be
used for that purpose.

The dynamic behavior of such a distributed system is then specified by
rewrite rules of the form t −→ t′, that describe the local, concurrent transi-
tions of the system. That is, when a part of a system matches the pattern t, it
can be transformed into the corresponding instance of the pattern t′. Rewrite
rules are included in system modules (with syntax mod...endm). For example,
the next module defines nondeterministic natural numbers and nondeterministic
choice. A module can import, or include, the definitions of another module by
means of keyword inc.
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mod ND-NAT is

inc NAT .

sort NdNat .

subsort Nat < NdNat .

op _?_ : NdNat NdNat -> NdNat [assoc comm].

var N : Nat . var ND : NdNat .

eq N ? N = N .

rl [choice] : N ? ND => N .

endm

A set of natural numbers is regarded as a nondeterministic natural number
of sort NdNat, that is, a number that could be anyone of those in the set. The
operation _?_ denotes the union of nondeterministic natural numbers, which
is associative and commutative, and obeys also an idempotence equation. The
choice rule provides nondeterministic choice.

Rewriting logic has revealed itself to be a general and flexible logical and
semantic framework [14], in which many different logics, models of computation,
and a wide range of languages can be represented, can be given a precise seman-
tics, and can be executed. In this paper we claim that it can also be used to give
semantics to metadata description frameworks such as RDF.

One of the main properties of Maude (and rewriting logic) is that it is reflec-
tive, that is, Maude can be represented into itself in such a way that a program
(or module) M in Maude may be data for another Maude program, which can
modify M , obtain information about it, or ask to execute it.

In Maude, key functionality of this reflective power has been efficiently imple-
mented in the functional module META-LEVEL, where Maude terms are reified as
elements of a data type Term, Maude modules are reified as terms in a data type
Module, the process of reducing a term to normal form is reified by a function
metaReduce, and the process of rewriting (executing) a term by applying the
rewrite rules of a module is reified by a function metaRewrite [7]. We use these
features in the implementation of the translation from RDF into object-oriented
Maude modules, and when the translation is used in an example about a mobile
agent system in Section 5.2.

3.1 Object-Oriented Specification in Maude

In an object-oriented Maude module (a special kind of system module, with syn-
tax omod...endom) classes are declared with the syntax class C | a1:S1,. . .,
an:Sn, where C is the class name, ai is an attribute identifier, and Si is the sort
of the values this attribute can have. An object in a given state is represented
as a term < O : C | a1 : v1, . . ., an : vn >, where O is the object’s name
(belonging to a set Oid of object identifiers), and the vi’s are the current values of
its attributes. Messages are defined by the user for each application (introduced
with syntax msg). Subclass relations can also be defined, with syntax subclass.

In a concurrent object-oriented system the concurrent state, which is called
a configuration, has the structure of a multiset made up of objects and messages
that evolves by concurrent rewriting (modulo the multiset structural axioms of
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Table 1. RDF concepts translated into Maude.

RDF/RDFS Maude

RDF document Object-oriented module
Class Class
Resource Object
Property Attribute
Container Abstract data type
URI Object identifier

associativity, commutativity, and identity) using rules that describe the effects
of communication events between some objects and messages. The rewrite rules
in the module specify in a declarative way the behavior associated with the
messages. The general form of such rules is

M1 . . . Mn 〈O1 : F1 | atts1〉 . . . 〈Om : Fm | attsm〉

−→ 〈Oi1 : F ′
i1 | atts

′
i1〉 . . . 〈Oik : F ′

ik
| atts ′

ik
〉

〈Q1 : D1 | atts ′′
1 〉 . . . 〈Qp : Dp | atts ′′

p〉
M ′

1 . . . M ′
q if C

where k, p, q ≥ 0, the Ms are message expressions, i1, . . . , ik are different numbers
among the original 1, . . . , m, and C is a rule condition. The result of applying a
rewrite rule is that the messages M1, . . . , Mn disappear; the state and possibly
the class of the objects Oi1 , . . . , Oik

may change; all the other objects Oj vanish;
new objects Q1, . . . , Qp are created; and new messages M ′

1, . . . , M
′
q are sent.

We will use this kind of system modules to provide the semantics for RDF
documents and to implement the examples.

Later, in Section 5.2 we will integrate the translated RDF documents in an
agent application written using Mobile Maude. This extension of Maude provides
some new concepts related with mobility (mobile objects and processes) that are
expressed in Maude itself, as explained in Section 5.1.

4 RDF/RDFS Translation into Maude

The main pieces in an RDF document are resources, properties, containers, URIs,
and classes. We identified which elements of a Maude module could correspond
naturally to these RDF pieces. The principal result is that Maude object-oriented
modules are a good choice to represent RDF documents in Maude by giving them
the natural, intuitive meaning. Table 1 shows the correspondence between RDF
pieces and Maude elements.

In this section we describe the translation of RDF (including reification and
containers) and RDFS documents into object-oriented modules in Maude. The
driving idea is that an RDF description of a resource will be translated into an
object in Maude.

Maude modules are used for describing RDF schemas. Those modules will be
included in the translation of any particular RDF document using the predefined
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vocabulary. The following module defines the basic vocabulary for RDFS. It
defines a data type for URI references and declares that they can be used as
object identifiers (Oid). A class for resources is defined with several attributes.
Every described resource will be an instance of this class, although we have
used the same relaxed idea used by RDF of what an instance is. An object
O is an instance of class C if it is declared as belonging to this class and it
only has attributes defined for this class (or any of its superclasses), but not
all the attributes have to be initialized. Apart from this consideration, all the
power of object-orientation is supported, including inheritance (as explained
in Section 5.2). URI references and instances of the class of resources are put
together in a general type Resource. A class for properties is defined, and it is
declared as a subclass of resources. There is also a data type for representing
literals, which uses the predefined type of quoted identifiers (Qid).

omod http://www.w3.org/2000/01/rdf-schema is

inc QID .

sorts URI Resource . subsort URI < Oid .

op uri : Qid -> URI .

class ResourceClass | comment : Literal, label : Literal,

seeAlso : Resource, isDefinedBy : Resource .

subsorts URI ResourceClass < Resource .

class Property .

subclass Property < ResourceClass .

sort Literal .

op literal : Qid -> Literal .

endom

There is another module defining the predefined vocabulary for RDF. A
class Statement is declared for representing RDF statements, that is, a reified
statement will be represented as an instance of this class. The class has three
attributes: subject, predicate, and object. The module also declares classes
for the different RDF containers by giving precise definitions of what they mean.
For example, there is a class for bag containers which are described in [12] as
“unordered lists of resources or literals.” In Maude, we can define what this
exactly means by defining a data type for multisets of resources and literals, with
a constant operator mt for the empty multiset and a union operator _&_ which is
declared to be associative, commutative, and with the empty multiset as identity
element. There are similar classes for sequences and alternatives, although in
each case the union operator is defined in a different way. For example, the
union operator for sequences is declared as associative and with identity the
empty sequence, but it is not declared as commutative, because a sequence is
“an ordered list of resources or literals” [12].

omod http://www.w3.org/1999/02/22-rdf-syntax-ns is

inc http://www.w3.org/2000/01/rdf-schema .

class Statement | subject : Resource, predicate : Property,

object : Resource .

*** containers
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class Container . subclass Container < Resource .

class Bag | val : BVal . subclass Bag < Container .

sort BVal . subsorts Literal Resource < BVal .

op mt : -> BVal .

op _&_ : BVal BVal -> BVal [assoc comm id: mt] .

...

endom

The translation of a user-defined RDF document into an object-oriented mod-
ule of Maude is summarized in Table 1. Let us see some examples for illustrating
the translation of user-defined RDF documents. The RDF document describ-
ing a laser printer in Section 2 is translated into the following object-oriented
module in Maude:

omod example is

inc http://www.w3.org/1999/02/22-rdf-syntax-ns .

inc http://printers.org/schema .

op http://HPprinters/HPLaserJet1100 : -> Object .

eq http://HPprinters/HPLaserJet1100 =

< uri(’http://HPprinters/HPLaserJet1100) : LaserPrinter |

PrinterTechnology : literal(’Laser‘Jet),

PrinterResolution : literal(’600‘dpi),

Price : literal(’399) > .

endom

The two namespaces used in the RDF document have been translated to
module inclusions. The resource has been translated to an object constant and
one equation defining it. This object has three attributes whose values are liter-
als.

Anonymous resources are also supported and translated to object constants
as above, although instead of a URI we use a local identifier to name them.
Container descriptions are translated to objects of a class like the class Bag
commented above, and the enumerated items are included in its attribute as a
value built by using the corresponding union operator.

The RDFS description of printers in Section 2 is translated as follows:

omod Printers is

inc http://www.w3.org/1999/02/22-rdf-syntax-ns .

inc http://www.w3.org/2000/01/rdf-schema .

class Printer | Price : Literal,

PrinterTechnology : Literal,

PrinterResolution : Literal .

subclass Printer < ResourceClass .

class LaserPrinter .

subclass LaserPrinter < Printer .

endom

The namespaces have been translated into module inclusions, as above. The
RDFS class declarations have been translated into Maude class declarations,
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and the subclass properties have been translated into subclass declarations in
the Maude module. When a subclass relation is declared as subclass C < C′,
the class C is the subclass and the class C′ is the superclass. The effect of a
subclass declaration is that the attributes, messages, and rules of the superclass
are inherited by the subclass. The property Price, with domain Printer and
range Literal, has been translated into an attribute declaration of class Printer
whose values can be of sort Literal. The other two properties are translated
similarly.

By using the reflective features of rewriting logic and Maude, and moving up
to the metalevel, where Maude modules become data that can be manipulated,
we can equationally define operations that perform the translation described
above in an automatic way. These operations traverse the elements of an RDF
value and build the module step by step by including the translation of each
element, as explained by means of examples above. The complete Maude code
implementing this translation together with the predefined modules described
above can all be found in http://www.ucm.es/sip/alberto/semantic-web.

5 Case Study

In this section we present a simple application of the translation process. The
proposed translation has been used in an example where a buyer agent visits
several sellers which give him their printers information in RDF. The buyer
keeps the price of the cheapest printer. The example has been implemented
using Mobile Maude, a Maude extension that supports mobile computation.

5.1 Mobile Maude

The flexibility of rewriting logic for representing very different styles of com-
munication, either synchronous or asynchronous, its facility for supporting dis-
tributed, concurrent object-oriented systems, and its reflective capabilities for
supporting metaprogramming and dynamic reconfiguration, make it a very suit-
able formalism for the specification of distributed systems based on mobile
agents, on which the proof of properties about security, correctness, and per-
formance, can be based.

Mobile Maude [8] is an extension of the Maude language supporting mo-
bile computation. It is appropriate for the specification and prototyping of dis-
tributed systems based on mobile agents, where data, states, and programs can
be moved. Moreover, it has a formal basis for the development of security mod-
els and the verification of properties for such models. The key entities in Mobile
Maude are processes and mobile objects. Both are defined as classes in Maude.
Processes are computational environments where mobile objects evolve and com-
municate with each other. Mobile objects are created inside a process, they can
move to another process, they can operate inside a process, and they can send
(receive) messages to (from) other mobile objects in the same process or in other
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Fig. 1. A view of processes and mobile objects.

processes2. This is illustrated in Figure 1, where there are two processes (P1 and
P2) and three mobile objects (O1, O2, and O3). Mobile object O3 is moving
from process P1 to process P2, while the object O2 has just sent a message
addressed to the moving object O3.

Processes and mobile objects are defined in Maude as classes P and MO, re-
spectively. The class P of processes is declared as follows:

class P | cnt : Nat, cf : Configuration, guests : Set[Mid],

forward : PFun[Nat, Tuple[Pid, Nat]] .

The main attribute is cf, the configuration of guest mobile objects. The
attribute guests is the set of identifiers of mobile objects that currently reside
in the process; cnt is the counter of mobile objects created in the process; and
forward is a function used to locate the mobile objects created in the process.
The names of processes range over the sort Pid, whereas the names of mobile
objects range over the sort Mid and have the form o(PI,N), where PI is the
name of the object’s parent process, that is, the process where it was created,
and N is a number that distinguishes the children of PI.

The class MO of mobile objects is defined as follows:

class MO | mod : Module, s : Term, p : Pid,

hops : Nat, gas : Nat, mode : Mode .

The mobile object’s module that defines a mobile object behavior must be
object-oriented, and mod is the metarepresentation of that module. The term s
is the metarepresentation of the actual configuration of the mobile object; this
configuration has the following form: C & C’, where C’ is the outgoing messages
tray (a multiset of outgoing messages) and C contains the state of the mobile
object (as defined in the module mod) and a multiset of unprocessed incoming
messages. The rest of the attributes in the class are: p, the identifier of the
process where the mobile object currently is; hops, a natural number indicating
the number of hops between processes that the object has performed so far; gas,
a natural number that limits the rewrite steps that the object can do; and mode,
that indicates if the process is active or not.
2 Some mobile agents languages, as Cardelli’s Ambient Calculus [6], forbid this last

kind of communication, allowing only communications inside the same process.
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Messages in the configuration and in the module may be of any form, but
those being pulled in or out of the mobile object must have a specific form. In
particular, messages getting in and out of mobile objects must be of one of the
following forms:

– to MID : MSG, to send the message content MSG to the object whose identifier
is MID. The MSG part is built with user-defined syntax.

– go(PID), to go to the process whose identifier is PID.
– go-find(MID, PID), to go to the process where the object MID is, trying as

first alternative the process PID.
– newo(MOD, OBJ, OID), to create a mobile object where MOD is the metarep-

resentation of the module where the object is defined, OBJ is the initial state
of the object to be created, and OID is its identifier.

When a mobile object wants to deliver messages of this kind it puts them in its
outgoing messages tray.

The complete Mobile Maude system code, plus some related information, can
be found in http://maude.cs.uiuc.edu/maude1/mobile-maude.

The code describing the behavior of mobile objects is called application code.
In the next section we will present several examples of this kind of code.

In [9] a case study using Mobile Maude is presented, and it is shown how an
object-oriented specification in Maude can be made mobile. An ambitious wide
area application, namely the reviewing system for a conference, going from its
announcement to the edition of the proceedings, is specified and implemented.
Such example was proposed by Cardelli in [6] as a challenge for any wide area
language to demonstrate its usability, although it was previously used by dif-
ferent authors. Mobile Maude was used successfully to implement this system.
Moreover, the Maude formal specification of Mobile Maude was used to execute
the example. This case study and the possibility of executing it allowed us to test
different alternatives both in the language and in the specification of the sys-
tem. Although in the actual specification RDF documents are not used (different
agents communicate with each other with a pre-established small vocabulary),
it can be easily modified in such a way that agents communicate by means of
RDF documents. Then the translation presented in this paper could be used by
the agents to translate and understand the received information.

5.2 Buying Printers

In this example we have two different classes of mobile objects: sellers and buyers.
Although in the simple example described here sellers do not move, they have
to be mobile objects because they communicate with other mobile objects, so
they have to be recognized as mobile objects by the Mobile Maude system.
There is another class of objects, the comparers, that are used by buyers to
compare printers. These are not mobile objects, as described below. A buyer
visits several sellers. The buyer asks each seller he visits for the description of
the seller’s printer. The seller sends this description in RDF format, which the
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buyer translates and gives to his comparer, that keeps the price of the cheapest
printer.

First we define the sellers. They are static agents whose behavior is defined
in the following module. The class Seller has an attribute description with
the RDF description of the printer it sells, using the schema in Section 2. When
a seller receives a description request, it sends the description in RDF form.

omod SELLER is

inc RDF-SYNTAX .

class Seller | description : RDF .

op get-printer-description : Oid -> Contents .

op printer-description : RDF -> Contents .

vars S B : Oid . var D : RDF .

rl [get-des] : (to S : get-printer-description(B))

< S : Seller | description : D > & none

=> < S : Seller | > & (to B : printer-description(D)) .

endom

Note how the seller’s state is described in rule get-des by means of the _&_
operator in order to separate the inner state and incoming messages from the
outgoing messages. Due to that we can use this module to build mobile objects
in Mobile Maude.

Before defining the buyers, we define the class Comparer whose instances
are able to compare different printers, keeping the price of the cheapest printer.
When a comparer is near a printer, it looks the price of the printer, and compares
it with the best printer it knows, updating its knowledge if necessary. Note
that the printer object disappears, because it does not represent a real printer,
but a printer information, that is useless after the comparer has looked up its
information.

omod COMPARER is

inc Printers .

inc DEFAULT[Nat] .

class Comparer | best : Default[Nat] .

var P C : Oid . var Q : Qid . var N : Nat .

var Atts Atts’ : AttributeSet .

rl [compare] : < P : Printer | Price : literal(Q), Atts >

< C : Comparer | best : N, Atts’ >

=> < C : Comparer | best : if (convert(Q) < N) then

convert(Q) else N fi, Atts’ > .

endom

A comparer is not a mobile object of Mobile Maude. It does not move inde-
pendently, and cannot send or receive messages from other mobile objects. It is
a Maude object that will travel inside a buyer’s attribute, as we will see below.

Note how the variable Atts of sort AttributeSet is used in the printer
object. By using this variable, the rule can be applied to any printer with at
least an attribute Price; if the printer has more attributes, they will be caught
by the variable Atts.
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This style of programming is quite useful for the Semantic Web. If a seller
has defined its own RDF schema, extending the one presented in Section 2 by
defining a subclass of printers with new properties which are important for him,
it will send printer descriptions with some properties unknown for our comparer.
But the above implementation will also be useful in this case, because the extra
properties (attributes) will be caught by the variable Atts.

Finally, we define the buyers. The module BUYER describes the behavior of
a buyer agent. It has a list IPs with the addresses of the sellers. It has to visit
all the sellers, asking each one for the description of the printers. The buyer has
an attribute app-state with the current state of its comparer, metarepresented.
It has to be metarepresented because the buyer wants to be able to execute
the comparer. Each time it receives a new description, it translates the RDF
description into a Maude module M with a Printer object. It puts this object
together with the current state of its comparer, and asks to rewrite them (by
using metaRewrite, see Section 3) in the Maude module obtained by joining M
with the module containing the comparer code.

omod BUYER is

inc RDF-Translation .

sort Status .

ops onArrival asking done : -> Status .

class Buyer | IPs : List[Oid], status : Status, app-state : Term .

op get-printer-description : Oid -> Contents .

op printer-description : RDF -> Contents .

var PD : RDF . var Ss : List[Oid] . vars B S : Oid .

var PI : Pid . var N : Nat . var T : Term .

rl [move] : < B : Buyer | IPs : o(PI,N) + Ss, status : done > & none

=> < B : Buyer | status : onArrival > & go-find(o(PI,N),PI) .

rl [onArrival] : < B : Buyer | IPs : S + Ss, status : onArrival > & none

=> < B : Buyer | status : asking > &

(to S : get-printer-description(B)) .

rl [new-des] : (to B : printer-description(PD))

< B : Buyer | IPs : S + Ss, app-state : T, status : asking >

=> < B : Buyer | IPs : Ss, app-state : metaRewrite(

addDecls(up(COMPARER), translate(’Printer,PD)),

’__[T,extractResources(translate(’MOD,PD))],0), status : done > .

endom

The first rewrite rule, move, handles the travels of the buyer: if it has finished
in the current process (its status is done) and there is at least one seller name
in the IPs attribute, it asks the system to take it to the host where the seller
is. On arrival, the buyer asks the seller for the printer description, giving the
seller’s name. When the RDF description arrives, the buyer translates it to
Maude, extracts the resource corresponding to the printer description, puts it
together with the comparer, and asks to rewrite the result in the module with
the comparer’s behavior, which will change the comparer’s state.

The full code of this example can be found in http://www.ucm.es/sip/
alberto/semantic-web.
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Fig. 2. DF ↔ Maude translations.

6 Conclusions and Future Work

In this paper we presented the first results of a translation from RDF/RDFS
to the language Maude. This translation produces a formal version of the orig-
inal RDF/RDFS data, without requiring any extra information in the original
RDF/RDFS documents, thus preserving compatibility with other approaches.
We think this approach offers a sound way for formalizing the Semantic Web.

A key point for success of our translation model is to integrate the approach
using Maude with the real Web, as described in Figure 2, where an agent with
Mobile Maude code interacts with usual Internet services by getting the RDF file
that contains all the required information. Then an RDF2Maude translation will
be carried out. After operating, one or more result files will be produced. These
files will be translated into RDF by a Maude2RDF translation. This approach
will allow the formalized service to interact with the usual Web applications and
services. Maude has already been integrated with real Web applications in [1, 2].

The work presented here is the first step to allow a formal model for Web
services. This promising area will be enriched with the Semantic Web services
approach by enriching not only the services with a semantic definition over RDF
or OWL-S [15], but also allowing to access a specification of the dynamic seman-
tics of the operations carried out by this service.

We plan to carry out further research in order to integrate our work with the
OWL specification [17] and specially with OWL-S, to extend it on a formal way
in order to enable a possible wide future of new formal Semantic Web services.
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Modeling- and Analysis Techniques
for Web Services and Business Processes

Wolfgang Reisig

Humboldt-Universität zu Berlin

Abstract. Open distributed systems include in particular Web services
and business processes. There is a need of techniques to model such
systems formally, and to derive decisive properties from such models.
Three such techniques are presented in this paper, exemplified by help of
realistic examples, and mutually related w.r.t. their respective expressive
power and the availability of analysis techniques.

1 Web Services and Business Processes

The term Web service describes a wide range of software architectures, and has
no entirely clear-cut definition. But most experts in the field would agree that
the following two aspects are essential for Web services:

Firstly, a Web service has a technological basis, which is a systematic com-
bination of conventional middleware components for transport (e.g. TCP/ IP),
messaging (e.g. SOAP, XML), description (WSDL), quality of service (e.g. WS-
coordination, WS-transaction) and integration (UDDI). This combination of
technologies has occasionally been denoted as the “technology stack” of Web
services. Business processes as well as other distributed services can then be
implemented on top of this. Hence, the technological basis of Web services is a
combination of existing middleware. The essential idea of Web services is however
not merely the middleware components and their combination in the technology
stack, but the second aspect of Web services, its abstraction from its technolog-
ical basis.

Web services are a prominent example for the paradigm of service oriented
architectures. They in turn are intended to overcome well known problems of
updating or replacing single components of conventional, monolithic IT systems.
Abstracting from their technological basis, Web services themselves provide the
ground for further abstractions, in particular abstractions from the technolog-
ical foundation of business processes. Such abstractions turn high-level objects
and operations into elementary notions. Typical examples include objects like
“client” and “message to client”, and operations such as “to answer a client’s re-
cent request”. This kind of objects and operations are elementary in the world of
business process. Their implementation in the technological basis of Web services
remains irrelevant for the user of business processes.

M. Steffen and G. Zavattaro (Eds.): FMOODS 2005, LNCS 3535, pp. 243–258, 2005.
c© IFIP International Federation for Information Processing 2005
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2 Modeling- and Analysis Techniques

The definition of a Web service must be communicated among its designers,
implementers, users, etc. This requires a language, i.e. a meta-model, capable
to represent Web services intuitively and uniquely. A commonly accepted meta-
model does not exist, however. Instead, notions and notations in the area of
Web services emerged quickly and, occasionally, with little mutual recognition.
Quoting the W3C consortium, and specifically the group involved in the Web
service activity [17], a web service is “a software application identified by a
URI, whose interfaces and bindings are capable of being defined, described and
discovered by XML artefacts. A Web service supports direct interactions with
other software agents, using XML-based messages exchanged via Internet-based
protocols.” Hence, a meta-model for Web services must in particular be capable
of describing interfaces and bridging of services, in addition to abstract objects
as described in Section 1.

Specification languages for Web services and business processes differ funda-
mentally from conventional programming languages: The semantical basis of a
conventional programming language essentially consists of objects such as sym-
bols, sequences of symbols, binary integer representations, and operations such
as composing and comparing symbol sequences. The corresponding theoretical
framework is the world of computable functions. This framework can however
not be employed as the semantical basis of specification languages for Web ser-
vices and business processes, because elementary objects can be any items, and
elementary operations can be any operations. We consider two approaches to
tackle this problem: The first one starts out with the observation that many ques-
tions can be stated and answered without detailed semantical aspects, focusing
only onto the control structure of services. Typical examples of such questions
include necessary conditions for proper termination, usability and equivalence.
Low-level Petri nets turned out to be particularly useful for this purpose. This
line of research has mainly been started by [15], [16], and continued by e.g.
[6], [7], [9], [8], [13], and [14]. The second solution to the above stated problem
applies a kind of mathematics that has been designed to cope with any kind of
items and operations on then: General Algebra and first order logic. This kind
of mathematics, however, describes static structures, whereas we have to tackle
dynamic behavior. This goal is achieved by two formalisms, high-level Petri nets
and Gurevich’s Abstract State Machines. Each of the three modeling techniques
trades expressivity for analysis techniques: The more expressive the modeling
technique, the less it offers specific analysis techniques.

Various versions of automata and process algebras have been suggested to
model web services and business processes. They do not decisively contribute to
the aspects considered in this paper.

3 Low-Level Petri Nets for Business Processes

We start out with the quite elementary technique of business process nets (BP
nets), a special class of elementary Petri nets. BP nets model the structure of
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control within a single business process, as well as control of communication
among processes.

Elementary Petri nets have frequently been advocated to model control as-
pects of communicating business processes. (e.g. [15], [16], [9]) We suggest a
variant that is technically simpler, and slightly more general.

A reasonable well structured business process exhibits a number of regular-
ities and important properties: It can properly terminate in combination with
any “serving” environment, it may exhibit a “most liberal” serving environment
and a most abstract “public view”. One business process may simulate or be
equivalent to an other business process. Business processes may be composed to
larger business processes, thereby systematically transferring important proper-
ties of the component processes to the composed process. It should be possible
to decide those properties and to derive those processes from a representation of
given processes. A number of reasons favors low-level Petri nets as an adequate
technique for many of those questions:

– Many of those questions depend essentially on the control structure only, i.e.
are independent of concrete data and operations.

– The paradigm of message passing of business processes ignores concrete de-
lays among processes. In particular, the order of sent messages may swap
upon their arrival. This corresponds naturally to the behavior of tokens in
the places of Petri nets.

– Composition of business processes correlates exactly with gluing interface
places of the corresponding Petri nets.

– In business processes, in particular in cooperating, distributed processes,
actions occur locally and causally independently. Petri nets support and
describe this kind of behavior by help of distributed runs.

– Criteria for selecting an activity out of a set of alternative in a business
process, are frequently not fully characterized. Nondeterministic choice of
conflicting transitions of a Petri net adequately simulate this kind of behav-
ior.

– There exits a number of specific analysis tools for Petri nets, well applicable
to Petri net models of business processes.

3.1 Business Process Nets

As mentioned above, a business process is intended to begin its activities in a
definite start state and to terminate in a definite stop state. Activities include
message exchange with an appropriately cooperating environment. This fixes the
structure of Petri net models of the control structure of business processes. A
simple example is

N1:

��

� � �

��

(1)
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The places a and c are input places, and b is an output place of the net.
Furthermore, the net has a start marking, with one token at place α1 and no
tokens elsewhere. Furthermore, the stop marking of this net has a token on place
ω1, and no tokens elsewhere. We assume the reader be familiar with the basics
of elementary Petri nets, and define the general pattern of a business process net
(a BP net, for short) N as a Petri net structure, consisting as usual of places
(circles), transitions (squares) and arcs (arrows) together with

– a distinguished subset of its places where no arcs end, called the input places
of N

– a distinguished subset of its places where no arcs start, called the output
places on N

– a start marking, startN , and a stop marking, stopN , both with empty input-
and output places.

The input- and output-places form together the environment places (also
called the channels) of N ; all other places are inner places. startN often has
tokens only on a set of inner places without ingoing arcs, usually denoted by
the (indexed) symbol “α”. stopN often has tokens only on a set of inner places
without outgoing arcs, usually denoted by the (indexed) symbol “ω”. We fol-
low the convention to draw α and ω at the left and right margin of graphical
representations, respectively. This implies control flowing from left to right. (1)
follows this convention. This definition of BP nets, as well as the forthcoming
definition of their composition, is more liberal than corresponding definitions
of [15], [7] and [13]. It is technically simpler and intuitively more natural, while
preserving all relevant properties.

3.2 Closed Business Processes

Business process nets without input- and output places are useful for a number
of purposes. Such a net is closed ; here an example:

��

� �

��

��

�

��

(2)

Its start marking has tokens on α1 and α2, its stop marking has tokens on
ω1 and ω2.
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We will see later on that a closed net may result from composing two business
process nets. By construction, a closed net remains if we skip the environment
places of a BP net N , retaining the inner subnet of N, written inner(N).

3.3 Composition

Cooperation of business processes is properly reflected by the composition of
business process nets. Without loss of generality we assume for any two BP nets
M and N that a place or a transition of M does not belong to inner(N) and
vice versa: Otherwise one may construct two instances. Formulated differently,
M and N share only places in their environments.

Composition M ·N of M and N is then a BP net again, defined by identifying
shared places. This way, an input place of M that coincidently is an output place
of N , evolves into an inner place of M ·N .

As an example, one may compose (1) with the BP net

N2:

��

� � �

��

(3)

The resulting net N1 · N2 is the closed BP net (2). Fig. 1 shows a further
example.

Composition of BP nets is commutative, i.e. for any BP nets M and N holds

M ·N = N ·M (4)

Furthermore, for any three BP nets L, M and N with no interface place shared
by all three processes, the product is also associative, i.e.

(L ·M) ·N = L · (M ·N) (5)

3.4 Well-Formed Business Process Nets

We focused the static structure of BP nets so far, in particular their input- and
output-places, their start- and stop marking, and their composition. Now we
consider aspects of dynamic behavior, i.e. reachable states, runs, termination
etc.

The most important property of a BP net, concerning its dynamic behavior,
is termination: A BP net N can terminate if for each marking m reachable from
startN , the marking stopN is reachable from m. This definition reflects potential
loops of N .

Occasionally we require each component of a BP net to be “useful”: A BP
net N is covered in case each transition t of N occurs at least in one occurrence
sequence

startN −→ . . .
t−→ . . . −→ stopN . (6)
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BP net N ·M

Fig. 1. Composition of BP nets.

It is furthermore reasonable to assume unambiguous start- and stop mark-
ings: A BP net N is unambiguous if there exist sets α and ω of inner places of
N such that

– startN is the only reachable marking with tokens on all places of α
– stopN is the only reachable marking with tokens on all places of ω.

The above three conditions define the important class of well formed BP nets:
A BP net N is well formed if N can terminate, is covered, and is unambiguous.

Any reasonable, closed business process has a well formed model. It remains
to decide whether or not a given BP net is well formed. [15] reduces this problem
to classical problems of Petri nets: Given a BP net N , he suggests to construct a
Petri net N∗ from N , by an additional transition t that leads the stop marking
ω back to the start marking α. N is then shown to be well formed iff N∗ is live
and safe. (As a technicality, [15] and others restrict α and ω to one place. Our
definition appears technically simpler, in particular the definition of composition,
while all analysis techniques are retained).

3.5 Usable Business Process Nets

A well-formed bp exhibits a reasonable inner structure. In this section we ask
for “reasonable” behavior w.r.t. the partners in the environment of a BP net.

Two BP nets are partners if they together can reach their joint stop state.
As an example, (1) and (3) are partners.
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More precisely formulated, two BP nets M and N are partners if M ·N is
unambiguous and can terminate (as defined in 3.4). We do not expect M and
N together can employ all alternatives of M and of N . Hence we do not require
M ·N be covered.

Based on the above notion of partners, we can now define the central notion
of usability: A BP net is usable if there exists at least one partner of N . As an
example, (1) is usable due to its partner (3).

Here an example of a BP net that is not usable:

�

�

�

�
(7)

Intuitively formulated, this business process decides whether to expect a
or b from its environment. The process fails to propagate this decision to its
environment. But the environment needs this information to act accordingly. In
contrast, the following BP net is very well usable, e.g. by (3):

��

� �

� �

�

��

�

(8)

This rises the quest for an algorithm to decide whether or not a BP net is
usable. In fact, such algorithms have been constructed (e.g. in [7]).

3.6 Further Properties

Usability is a fundamental property; but a number of other non-trivial proper-
ties and derived artefacts are likewise important, including equivalence, abstract
views, operating guidelines, fault handling, and transactions. Various algorithms
to decided those properties and to generate those artefacts have been published,
including [4], [9], [10], and [14].
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4 High-Level Petri Nets for BPEL

Here we suggest schematic high-level Petri nets as a modeling technique that
is expressive enough to model quite complex behavior, such as essentials of the
semantics of the business process execution language, BPEL. The core concept
of schematic high-level Petri nets are symbols to be interpreted by any item or
operation, not confined to conventional data structures. In analogy to low-level
Petri nets as considered above, this technique fits perfectly to model business
processes.

A number of analysis techniques are available for schematic high-level Petri
nets, quite useful for (but not particularly confined to) models of business pro-
cesses.

Efficient and reliable implementation of business processes is a tedious task.
Different local business processes, running on different hardware on different
software platforms, must correctly co-operate.

The business process execution language for web services, BPEL [3] has risen
to a quasi-standard to describe and to run distributed business processes on an
abstract level.

The semantics of BPEL has been presented in plain English, with some am-
biguities, in particular when it comes to the compensation of activities.

By help of a small example we will show in the sequel, why high-level Petri
nets provide adequate means to formulate the semantics of BPEL.

4.1 The BPEL Language

A BPEL program describes the structure of a business process as a particular
Web service, and specifies the interaction of a business process with partner
processes in its environment.

A central problem of business processes is compensation of already executed
sub-activities (e.g. canceling an already booked flight) whenever it turns out
later on that the overall goal fails (e.g. no hotel room was available).

BPEL consequently distinguishes positive control flow of a business process,
formulating the intended activities to achieve its goal, and negative control flow,
managing the case of faults, in particular the problems of compensation.

4.2 Activities

A core construct of BPEL are activities : An activity may be elementary (e.g. it
may receive a message from its environment), or it may be composed from ele-
mentary activities. There are different ways to compose activities. They essen-
tially correspond to control structures of conventional programming languages,
i.e. sequences, loops and conditional alternative. In the next section we will
consider one of them, called scope. An activity may be executed. Execution of
an elementary activity strongly resembles conventional programming languages,
and will not be considered in detail here. Executing a composed activity means to
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iteratively select the next component activity to be executed, in accordance with
the activity’s control structure, and governed by actual values and predicates.

An execution of an activity can come to an end in three different manners:

– it terminates successfully
– it causes a fault
– it is canceled by a stop signal from its environment

The activity would signal to its environment the manner of ending. Actually,
it is not activities but instances of activities that are executed. Various instances
of an activity may co-exist and be executed concurrently. The phrase “to execute
an activity” stands for “to execute one of the activity’s instances”. As it is
intuitive and convenient, we will apply the shorthand whenever confusion can
be ruled out.

4.3 Scopes

As mentioned above already, a set of activities may be combined in a scope. In
addition to its “ordinary” activities, a scope includes a fault handler managing
fault signals sent from the scope’s ordinary activities. In particular, the fault
handler may cancel all activities of the scope. Consequently, each activity must
be prepared to accept a stop signal, and to process it accordingly.

A message m, as controlled by a scope, has two components: Its contents
which is irrelevant in the sequel, and its correlation set, cor(m). Details of the
correlation set will not be relevant in the sequel. We only must be able to decide
whether or not two correlation sets are equal. So, it suffices to represent each
correlation set as a symbol.

4.4 The Activity receive

A typical activity is receive. Its instances access three components of the receive
activity, provided by the overall process : an input channel, carrying messages
to be processed by receive, a correlation set to direct incoming messages to the
corresponding instance, and a variable to store the last accepted message.

Each instance i of receive processes an incoming message, m. If the correlation
set cor(m) of m and the correlation set of i coincide, the variable of receive is
updated and given the message m as its new value. Otherwise the message is
extinguished and a “failed” message is generated. As described above, there is
always a chance for the fault handler to stop running instances of receive.

We are now prepared to state the problem to be solved: How can activities
such as receive be described? This includes in particular

– to properly administer the various instances of receive
– to provide a composition technique for descriptions, that reflect the cooper-

ation of activities.

In the next chapter we show that high-level Petri nets provide a more than
adequate technique to model such systems.



252 Wolfgang Reisig

4.5 A Model for Receive

Fig. 2 shows a high-level Petri net model for the receive activity. The reader
familiar with high-level Petri nets will easily grasp this model. Other readers are
helped by the following explanations. One may conceive those explanations as
coincidentally providing an introduction to high-level Petri nets.
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Fig. 2. The receive activity.

In Fig. 2, the dotted frame separates the inner components of the model
from its surface and its environment. The five circles on the frame’s surface
(initial, stop, stopped, failed, final) are places, intended to exchange black dot
tokens with other activities. Tokens on these places represent control signals
to trigger activities, as discussed above. The three ellipses outside the frame
(channel, corr.set, var) are places that model the activities’ communication with
the overall process: The activity may receive a message along the place channel.
The process furthermore provides an initial correlation set at the place corr.set,
and an initial value at var. This place represents a variable that always carries
the last acceptable message.

Fig. 2 shows a typical state where the activity is ready to act: Some other
activity has triggered receive (black dot token on initial) and the scope has sent
a message, (token m on channel) A correlation set cs is anyway assumed at place
corr.set, as well as some value, n, at the place var.
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Describing the behavior of the net, we start with the intended, positive con-
trol flow. The state shown in Fig. 2 enables the transition t1, provided the
variables X and CS are properly valuated: X by m, and CS by cs, respectively.
Occurrence of t1 then

– removes the black dot token from initial, and the m token from channel
– produces the pair (m, cs) as a token at place running
– retains the cs token at corr.set, as ←−� is a read arc.

In this situation, to continue one has to evaluate the predicates inscribed in
t2 and t3, again with X = m and CS = cs. If the correlation set cor(m) of the
message m coincides with the correlation set cs provided by the environment,
the transition t2 is enabled. Occurrence of t2 then updates the value at the place
var. With the fresh value X = n, given the old value Y = m, the execution
terminates (black dot token at final). If the predicate inscribed in t2 fails with
X = m and CS = cs, t3 is enabled and “throws a fault”, i.e. triggers some
other activity (black dot token on failed). This token will eventually, via the
fault handler activity, cause a token on stop, thus enabling t6. The activity then
terminates with a black dot token at stopped. This completes description of the
positive control flow.

A stop token may arrive any time. Hence at any state, the activity may leave
its positive control flow by one of the transitions t4, t5 or t7, resulting in a stopped
token.

During execution of receive, a fresh message, l, may arrive and another activ-
ity may provide a fresh start signal to the receive activity. This is the situation
where a new instance of receive must be created, executing concurrently to the
existing one.

In the Petri net of Fig. 2, this may be modeled by a token “l” on the channel
place, and another black dot token at the place initial. Concurrent execution of
the two instances is then properly modeled by the Petri net, due to the definition
of distributed runs, not considered here.

Schematic Petri nets come with a number of useful analysis techniques. For
example, for the model of the receive activity as given in Fig. 2, one may prove
that the token m, initially at the channel, eventually reaches the place var, or
the system fails. Technically, this is represented by the temporal logic formula

(channel.X ∧ initial ∧ |corr.set| ≥ 1) �→ (var.X ∨ stopped)

with “ �→” denoting the “leads-to” operator. This formula can be proven to be
valid in Fig. 2, by the help of techniques described e.g. in [11].

4.6 Lessons Learned

The above example provides a first glimpse at schematic high-level Petri nets,
and the motivation to model business processes with this kind of Petri nets. Here
the most important aspects:
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– Elementary objects and operations of business processes are fairly abstract.
Examples are “message”, “correlation set of an activity”, or “correlation
set of a message”, but also “reply to a quest” or “cancel an order”. All
these objects and operations, though elementary in the given context, come
without any fixed or agreed representation in conventional data structures.
High-level Petri nets, in their schematic setting as applied in Fig. 2, support
this approach.

– The paradigm of business processes ignores delays of messages passing be-
tween processes. In particular, messages may “overtake”. The semantics of
Petri nets, with tokens residing at a place without any order, correspond
naturally to this paradigm.

– Single business processes cooperate along message channels: An output chan-
nel of one process serves as an input channel of another process. This is
mimicked in Petri nets by glueing (identifying) the corresponding places.

– Activities of different business processes operate locally and independently.
This is reflected in Petri nets by the occurrence rule for transitions: The
behavior of a transition depends only on and only affects the adjacent places.
No notion of global state or global time is required.

– Generation of instances of a business process, to occur concurrently, are per-
fectly modeled in Petri nets by more than one initiating tuple of transitions,
and the notion of distributed runs. We refrain from details here.

– Analysis techniques as available for schematic high-level nets, are useful to
verify business processes.

5 ASMs for Web Services

As a most universal modeling technique we suggest Gurevich’s Abstract State
Machines (ASM). The demand of ASM to be “most universal” has been justified
in [5]. We refrain from details here. But we show that ASM in fact are expressive
enough to model a wide range of Web Service oriented Systems in a natural way.

5.1 The Abstract Basis of Web Services

The monograph [1] provides a comprehensive view on Web services. Concepts
are presented in plain English, supported by various kinds of graphical repre-
sentations, in about 140 Figures. About half of the figures show static, mainly
hierarchical structures. The rest of the figures show dynamic behavior, both
of middleware components (i.e. the technological basis of Web services) and of
abstract components (in particular, components for business processes).

Web services are usually implemented on top of some middleware. Any for-
mal description of the semantics of Web services hence must rely on a formal
semantics of those middleware components. Fortunately, the semantics of Web
services requires only quite abstract aspects of middleware semantics. What is
needed, however, is a formalism to adequately represent those aspects of mid-
dleware. This comes in addition, of course, to an adequate representation of the
Web service components themselves.
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5.2 The Core Idea of ASM

The above problem can be solved by help of an idea that we applied in the
context of high-level Petri nets already: Items and operations are symbolically
represented, leaving their semantical aspect to be defined elsewhere. For example,
in Fig. 2, m is a constant symbol and cor(m) is a term. We only informally
specified what a “message” is assumed to be; we only assume that a message
has a correlation set, and that the term cor(m) represents the correlation set
of m. This idea of “pseudo code” used to represent dynamic behavior, given
meaning only up to the interpretation of the involved symbols. It is central to the
specification technique of Abstract State Machines (ASM). An ASM is essentially
a set of conditional assignment statements, to be executed in parallel. Condition,
left side, and right side of each assignment statement are terms over a signature
(i.e. a set of symbols, each with an arity). An ASM can be executed for any
arity respecting interpretation of its symbols. Details on the ASM method can
be found e.g. in [2].

ASM provide in fact an adequate framework to formally represent Web ser-
vices.

5.3 A Small Case Study

Here we consider a small example, taken from [1]. This case study assumes a
scenario where a customer and a supplier communicate along the web. The
customer starts an interaction, sending a request for an offer (a quote request)
to a supplier. After receiving a quote from the supplier, the customer returns
and order, and after receipt of the ordered goods, submits his payment. Fig. 3
outlines this behavior, as given in [1], page 198.
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Fig. 3. A sample conversation between a customer (client) and a supplier (Web service).

The supplier Web service offers three operations, symbolically represented
as requestQuote, orderGoods and makePayment to the customer. The customer
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is allowed to envoke the operations only in the order as fixed by the supplier.
This order is denoted as conversation. To demonstrate the ASM method, we just
model the – admittedly quite simple – customer behavior.

We first consider the items we speak about. Each time the customer starts
a conversation, he newly chooses the goods he wants to order, as well as the
supplier for those goods. In the ASM formalism, this is modeled by the two
constant symbols Goods and SupplierMsg. One may have expected variables at
this point. But the idea is that the value of a constant symbol is fixed upon
the start of an ASM program. Each time the forthcoming ASM conversation
is started, it starts in a different initial state. Each initial state interprets the
above mentioned two constant symbols by a newly chosen set of goods, and a
newly chosen supplier. We assume corresponding messages to be sent from the
client to the supplier Web service. Technically, Messages represents the set of
potential messages symbolically. The undefined element, symbolically undef, is
also assumed as a message. Furthermore, we assume the two constant symbols,
true and false, to be always interpreted as expected. Finally, we assume two
further constant symbols, GoodsOrdered and GoodsPayed, each to be initially
valuated by a truth value.

The next issue to be tackled are the necessary functions. The first function
is, symbolically,

RequestQuote : Messages×Messages→ Messages

Semantically, the parameters should be the supplier to offer a quote, and the
goods. The function should return the quote as given by the supplier.

The second function is

OrderGoods : Messages×Messages→ Boolean

This is merely a predicate, expecting a supplier and an order, and declares
whether goods have been ordered already.

Finally,
MakePayment : Messages×Messages→ Boolean

is again a predicate and declares whether goods have been payed.
We are now ready to formulate the ASM. This is a program, i.e. a text,

using the above introduced constant- and function symbols, together with the
keywords par, endpar, if, and, 
= :

par
if (Goods 
= undef) and (SupplierMsg 
= undef) and (Quote = undef)

Quote := RequestQuote(SupplierMsg, Goods)
if (Quote 
= undef) and (GoodsOrdered 
= true)

GoodsOrdered := OrderGoods(SupplierMsg, Quote)
if (GoodsOrdered = true) and (GoodsPayed 
= true)

GoodsPayed := MakePayment(SupplierMsg, Quote)
endpar
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Constant symbols play the role of variables of programming languages here.
In general, an ASM may employ any kind of terms also on the left side of an

assignment statement. Variables are used in ASM as bounded by a quantifier,
as usual in logic.

Further examples of ASM models for Web services business processes, and
the language BPEL can be found in [12], [4].

6 Conclusion

Service orientation is a principle to organize software architectures, independent
of platforms, programming languages, and any other implementation oriented as-
pect. Service oriented architectures nevertheless deserve a unique representation,
i.e. a formal model. This raises the quest for adequate techniques to formulate
such models.

In this paper we advocate three such techniques, spanning from a very spe-
cific class of low-level Petri nets up to the most universal technique of Abstract
State Machines. High-level Petri nets are located somewhere in the middle of
the spectrum.

Each modeling technique trades expressivity for analysis techniques. This
implies the following rule of thumb: To cover a specific problem, choose a mod-
eling technique expressive enough to represent all relevant aspects intuitively
and comprehensively. Coincidently, the chosen modeling technique should be as
restrictive as possible, thus exploiting particular structures and regularities for
verification issues.

Business process nets have been defined as a special class of elementary Petri
nets. Consequently, their distinguished structure is exploited in the definition
of derived notions such as well formedness, usability, etc. This structure has
furthermore been exploited in analysis algorithms.

One my define corresponding classes of schematic high-level Petri nets and
Abstract State Machines, together with corresponding analysis algorithms.

The above outlined spectrum of modeling techniques may cover operational
models. One my wonder what other models may be useful. An example may
be logic based models, with Lamport’s Temporal Logic of Actions as a typical
representative. It was particularly useful in this context, would composition of
specifications just turn out as conjunction, and implementation as implication.
These principles have been advocated by Abadi and Lamport in the early 1990ies
already.
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Abstract. Mobile nets arise as a combination of the name managing techniques
of the π-calculus with the representation of concurrency and locality of Petri nets.
We propose MAGNETs, a variant of mobile nets that are suitable for an effective,
distributed implementation. Such implementation extends an implementation of
the Join calculus virtual machine with dynamic reconfiguration features.

1 Introduction

Service Oriented Computing is an emerging paradigm for developing autonomous com-
putational elements in a wide-area, distributed setting. Web Services provide an im-
portant instantiation of such paradigm, and are supported by a number of standardized
technologies for specifying service interfaces, interaction between services, service dis-
covery, service composition and orchestration.

In this context, a variety of languages and infrastructures for Web Services have
been recently proposed by leading consortia of industries and organizations. However,
before the Service Oriented Computer paradigm becomes reality, there is a number
of challenging issues that need to be addressed, including a formal framework for the
rigorous specification of their semantics, as well as prototype implementations.

Petri nets [16] and the π-calculus [15] are the most prominent candidates for the
definition of a formal semantics of Web Services infrastructures [1].

Petri nets are a widespread formalism for the representation of the behavior of con-
current systems. Since their introduction, they have been deeply studied, providing a
variety of analysis techniques and making them suitable for industry applications. How-
ever, they fall short in modelling the dynamic features arising in systems for Service
Oriented Computing: these systems are characterized by an evolving structure, where
both the number of the involved components and the links between them may change
during the computation. The π-calculus [15] has been specifically introduced to deal
with dynamically evolving systems: dynamicity is achieved by means of transmission
of channel names, in combination with a name scoping mechanism. A modeling weak-
ness of the π-calculus is the lack of support for advanced synchronization patterns, for
which Petri nets provide a direct, natural representation [1].

Mobile nets [2, 7] arise as an attempt to combine Petri nets with the name managing
techniques of the π-calculus, yielding a formalism that is suitable to modelling systems
with an evolving structure, while retaining the natural representation of concurrency
and locality typical of Petri nets.
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From a practical point of view, both the π-calculus and Petri nets (hence Mobile
nets also) exhibit complex conflict and contact situations that hinder an effective dis-
tributed implementation. In the context of mobile calculi, the Join calculus [9] solves
this problem by providing a local management of conflicting reaction rules.

The aim of this paper is to provide MAGNETs, a variant of Mobile nets that is
suitable for a distributed implementation. The peculiar properties of MAGNETs are the
following: we prevent the need to resolve distributed conflicts by enforcing locality
of transition guards in the model, and we enable a constrained form of mobility that
preserves the locality property. We support the effectiveness of MAGNETs by providing
a distributed implementation, which is based on an enhancement of the Join calculus
virtual machine developed in [17].

The paper is organized as follows: in the next section we present an informal over-
view of MAGNETs; the syntax and the semantics are presented in Section 3; the features
of these nets are further explored by two examples in Section 4, while the distributed
implementation is described in Section 5. We conclude with a comparison of related
literature.

2 An Overview of MAGNETs

A system is modeled as a dynamic pool of net systems, each net system being essentially
a mobile net. The pool is dynamic in the sense that new net systems may be created
during the computation. Each net system is a triple with three components: a set of
places, a set of transitions, and a marking. As for classical Petri nets, the marking, i.e.,
the distribution of tokens in the places, represents the current state of the system, and
the system evolution is represented by firing, i.e., execution of the transitions.

Tokens coloring. As in Colored Petri Nets [11], tokens carry information; the “color”
of a token is a (possibly empty) tuple of (place) names, either referring to local places of
the nets or to remote places, belonging to another net of the configuration. The main dif-
ferences between Mobile Nets and classical and Colored Petri Nets regard transitions,
whose key features are listed below.

Local versus remote tokens. A transition can produce tokens for local places (places
belonging to the net system where the transition resides) as well as for remote places
(places belonging to a different net system). Consider the configuration C1 = Na, Nb,
consisting of two mobile nets Na and Nb, which are defined as follows:

Na = [{a1, a2}, {a1 �→ a2b1}, a1]
Nb = [{b1, b2, b3}, {b1 �→ b2, b2 �→ b3a1}, b3b3]

The net Na consists of two places, a1 and a2, a transition a1 �→ a2b1 and an initial
marking containing one uncolored token (or, equivalently, colored with the empty tuple)
in place a1. The net Nb consists of three places, two transitions, and an initial marking
with two tokens in place b3. The transition ta = a1 �→ a2b1 in Na is enabled in the
current marking of Na: when t fires, the token in a1 is consumed, and two new tokens
are produced: one is produced locally in place a2 whereas the other is a token for the
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remote place b1, belonging to Nb. When the token b1 reaches the net Nb, the transition
tb = b1 �→ b2 becomes enabled (whereas the other transition of Nb, t′b = b2 �→ b3a1,
is still disabled); transition tb has only a local effect on the marking of Nb, whereas
transition t′b also produces a token for a remote place of net N1.

Mobility. Besides being used to determine the color of the tokens produced by a tran-
sition – as in colored nets – the color of the tokens consumed by a transition can be
used to determine the place where the transition puts the produced tokens. Consider the
configuration C2 = Na, Nb, consisting of the following nets:

Na = [{a1, a2}, {a1(x) �→ x〈b2〉}, a1〈a2〉a1〈b1〉]
Nb = [{b1, b2}, {b1(x) �→ b2〈x〉}, ∅]

The marking of Na contains the tokens a1〈a2〉 and a1〈b1〉, hence the transition ta =
a1(x) �→ x〈b2〉 can consume either the token a1〈a2〉, thus producing a local token
a2〈b2〉 (i.e., a token colored with b2 in the local place a1), or it can consume the token
a1〈b1〉, thus producing a remote token b1〈b2〉 for the net Nb.

Dynamicity. The last key feature of MAGNETs regards their dynamicity: not only the
marking, but also the structure of the mobile nets may vary during the computation.
A change in the structure of the nets is carried out by transitions: a transition can add
a new transition (either to the net which it belongs to or to a remote net), or spawn a
new (part of a) net. More precisely, the firing of a transition may produce either a new
mobile net, or a set of places and transitions to be added to an existing net. Consider the
configuration C3 = Na, where

Na = [{a1, a2}, {a1 �→ {{b1, b2}, {b1 �→ b2a1}, b1}, a1]

When transition t = a1 �→ {{b1, b2}, {b1 �→ b2a1}, b1} fires, the token in place a1 is
consumed and the new mobile net

Nb = [{b1, b2}, {b1 �→ b2a1}, b1]

is added to the configuration. In other words, configuration C3 evolves to configuration
N ′

a, Nb, where N ′
a is the evolution of net Na after the firing of transition t, that removes

token a1 from the marking of Na:

N ′
a = [{a1, a2}, {a1 �→ {{b1, b2}, {b1 �→ b2a1}, b1}, ∅]

Consider now the configuration C4 = Na, Nc, where

Na = [{a1, a2}, {a1 �→ {{b1, b2}, {b1c1 �→ b2a1}, b1}, a1]
Nc = [{c1}, {c1 �→ c1}, c1]

The firing of transition ta = a1 �→ {{b1, b2}, {b1c1 �→ b2a1}, b1} produces a so called
pre–net N = {{b1, b2}, {b1c1 �→ b2a1}, b1}; such a pre–net has a transition tb =
b1c1 �→ b2a1 whose pattern contains both a place of the pre–net and a place of the
existing net Nc; hence, the places and the transitions of the pre–net N will be added
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to the net Nc. The configuration C4 evolves to the configuration N ′
a, N ′

c, where N ′
a is

obtained from Na by removing the consumed token a1, and N ′
c is obtained from Nc by

adding the places, transitions and tokens in the pre–net N :

Na = [{a1, a2}, {a1 �→ {{b1, b2}, {b1c1 �→ b2a1}, b1}, ∅]
Nc = [{c1, b1, b2}, {c1 �→ c1, b1c1 �→ b2a1}, c1b1]

Locality and linearity of patterns. One of the peculiar differences of MAGNETs w.r.t.
the previous definitions of Mobile Nets [2, 7] consists in the locality and linearity of
patterns. Patterns locality means that – given a transition t = p �→ N ′ belonging to a
net system N = [S, T, m] – all the place names in the pattern p are local to N ; in other
words, each place from which transition t consumes tokens belongs to the set S of local
places of the net system. This feature turns out to be crucial in the implementation of
MAGNETs, as the conflict between transitions competing for the same resource can be
resolved locally, with no need for an agreement between the distributed components of
the system.

The behavior of a transition that produces a pre–net is driven by the locality re-
quirement on patterns. If each transition in a pre–net {S′, T ′, m′} consumes tokens
only from local places belonging to S′, then the pre–net will evolve in a stand-alone
net system (see configuration C3 above). On the other hand, if some transition in the
pre–net requires token consumption from a remote place (i.e., a place not in S′), and
all the remote places occurring in patterns of transitions in T ′ belong to the same net
system N = [S, T, m], then the components of the pre–net are added to the net system
N , which roughly evolves to the net system [S ∪S′, T ∪T ′, m∪m′] (see configuration
C4). If the remote places occurring in the patterns of transitions in T ′ belong to at least
two different net systems, there is no way to add the components of the pre–net to an
existing net system, while respecting the locality condition and avoiding to merge the
two existing, distinct nets into a single one. In such a case, the pre–net {S′, T ′, m′}
can neither evolve to a stand-alone net system, nor being added to an existing net sys-
tem; hence, the transitions in T ′ will never fire and the tokens in m′ will never become
available. As an example, consider the configuration C5 = Na, Nc, where

Na = [{a1, a2}, {a1 �→ {{b1, b2}, {a1c1 �→ b2}, a1}, a1]
Nc = [{c1}, {c1 �→ c1}, c1]

When transition t = a1 �→ {{b1, b2}, {a1c1 �→ b2}, a1} fires, the following pre–net is
produced:

{{b1, b2}, {a1c1 �→ b2}, a1}

Note that, for transition u = a1c1 �→ b2 to fire, both a token from place a1 of the net
Na and a token from place c1 of net Nc are necessary. Hence, such a pre–net will never
evolve to a (part of a) net system.

Pattern linearity requires that the bound names in a pattern are pairwise different.
Linearity simplifies the implementation of the firability check for a transition; for lin-
ear patterns, this check can be carried out independently on each place in the pattern.
Consider the transition a(x)b(y) �→ c〈x, y〉: the firability check consists in looking for
a token in place a and a token in place b (both colored with a single place name). On
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the other hand, if we consider the nonlinear pattern of transition a(x)b(x) �→ c〈x, y〉,
the firability check becomes more involved, as it amounts to finding two tokens, one in
place a and the other one in place b, with the same color.

3 Syntax and Semantics

We start with some auxiliary definitions. The names for the places in the nets are taken
from a denumerable set. Markings and quasi–patterns are essentially multisets: a mark-
ing represents the distribution and the color of tokens in the places of a net, whereas
quasi–patterns are an auxiliary notion useful for defining patterns: a pattern is a quasi–
pattern for which the linearity condition holds.

Definition 1. Let S be a denumerable set of place names; s, s′, . . . , a, b, . . . , x, y, . . .
range over S, while S, S′ range over sets of place names. Let S∗ be the set of sequences
over S; s̄, s̄′ . . . , ā, b̄, . . . , x̄, ȳ, . . . range over S∗.

A quasi–pattern is generated by the following grammar:

p ::= a(x̄) | p⊕ p

A marking is generated by the following grammar:

m ::= ∅ | a〈b̄〉 | m⊕m

The definition of linearity requires a definition of the bound names occurring in a
quasi–pattern:

Definition 2. The set of bound names in quasi–patterns is defined as follows:

bn(a(x1 . . . xn)) = {x1, . . . , xn}
bn(p⊕ p′) = bn(p) ∪ bn(p′)

The set of linear quasi–patterns is the least set satisfying the following conditions:

– a(x1 . . . xn) is a linear quasi–pattern if ∀1 ≤ i, j ≤ n: xi = xj implies i = j;
– p ⊕ p′ is a linear quasi–pattern if p and p′ are linear quasi–patterns and bn(p) ∩

bn(p′) = ∅.

We are now ready to introduce the main notions of MAGNETs: patterns, transitions,
net expressions, net systems and configurations. A transition is a pair composed by a
pattern – specifying the tokens to be consumed – and a net expression – specifying
the tokens and the new components that are produced when the transition fires. A net
expression is essentially a multiset, whose elements are tokens, transitions, and pre–
nets. A net system represents a single component of the system; a net system is a triple
composed by the set of local places, the set of transitions and the current marking of the
local places. A (system) configuration represents the distributed system, and consists of
a multiset of net systems.
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Definition 3. A pattern is a quasi–pattern that is linear. A transition has the form t ::=
p �→ N where p is a pattern and N is a net expression. We use T, T ′, . . . to range over
sets of transitions. A net expression is generated by the following grammar:

N ::= ∅ the empty net
| a〈b̄〉 a token
| t a transition
| {S, T, m} a pre–net
| N ⊕N a composition of nets

A net system is a triple [S, T, m], where S is the set of places of the net, T is the set
of transitions and m is the current marking. A system configuration is generated by the
following grammar:

C ::= [S, T, m] | N | C ⊕ C

The notions of bound (bn) and free (fn) names occurring in (components of) con-
figurations are as usual and we omit them here for brevity. The set of place names in
a pattern is the set of places from which the pattern consumes tokens. The set of place
names in a marking is the set of places that are not empty in such a marking. Finally,
the set of place names in the preset of a transition is the set of places from which the
transition consumes tokens, i.e., is the set of place names in the pattern of the transition.

Definition 4. The set of place names in patterns and markings is defined as follows:

places(a(x̄)) = {a}
places(p⊕ p′) = places(p)

∪ places(p′)

places(∅) = ∅
places(a〈b〉) = {a}

places(m⊕m′) = places(m)
∪ places(m′)

The set of place names in the preset of a transition (of a set of transitions) is

pre(p �→ N) = places(p) pre(T ) = ∪t∈T pre(t)

To lighten the definition of the semantics, we reason up to the structural congruence
≡, defined as the least congruence satisfying the commutative monoidal laws for the
(overloaded) composition operator⊕.

Definition 5. Let ≡ be the least congruence over configurations (net expressions, pat-
terns, markings) satisfying the following axioms:

C ⊕ ∅ ≡ C C ⊕ C′ ≡ C′ ⊕ C C ⊕ (C′ ⊕ C′′) ≡ (C ⊕ C′)⊕ C′′

To lighten the notation, we usually drop the composition operator. E.g., a(x) b(y) de-
notes a(x) ⊕ b(y). We also drop the token color, if this is the empty tuple. E.g., ab(ȳ)
denotes a()b(ȳ), and abb denotes a〈〉b〈〉b〈〉.

We introduce a notion of well–formedness for net systems and configurations; this
notion is needed for a correct definition of the semantics. The set of places of a net
system consists of the places that are managed locally in the net, i.e., the tokens in such
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places are consumed only by local transitions. Thus, a net system [S, T, m] is well–
formed if all the tokens in its marking and the place names in its transitions belong
to the set of places S. A configuration is well–formed if its net system components
are well–formed, the set of places in its components are pairwise disjoint, and all the
free place names occurring in tokens, transitions or pre–nets that are moving towards
their destination are names occurring in the set of places of some component. Well–
formedness of configurations ensures that each place in the configuration is managed
by a unique net system; hence, the destination of a remote token, transition or pre–net
is uniquely determined.

Definition 6. A net system [S, T, m] is well–formed if places(m) ⊆ S and pre(T ) ⊆
S. A system configuration C is well–formed if C ≡ N ⊕

⊕k
i=1[Si, Ti, mi], and the

following conditions are satisfied:

– ∀i : 1 ≤ i ≤ k ⇒ [Si, Ti, mi] is well–formed, and
– Si ∩ Sj = ∅ for 1 ≤ i, j ≤ k, i 
= j, and

– fn(N) ⊆
⊕k

i=1 Si

In the following, we assume that the net systems and the configurations we deal with
are well–formed.

We recall the standard notion of substitution, that will be used in the semantics:

Definition 7. A substitution ρ on S is a partial function from S to S with finite domain
(i.e., the set dom(ρ) = {x | ∃y : (x, y) ∈ ρ} is finite).

We say that a substitution ρ is applicable to a net expression if, for all x ∈ dom(ρ),
each free occurrence of x in the expression does not lie within the scope of a binder
ρ(x). If ρ is applicable to a net expression N , then the application of ρ to the expres-
sion N – notation Nρ – is obtained from N by simultaneous substitution of each free
occurrence of x with ρ(x), for all x ∈ dom(ρ). Before performing a substitution, it may
be necessary to perform alpha conversion to satisfy the applicability condition.

We use the notation {x/y} as a shorthand for the substitution {(x, y)}.

To define the firing rule, we need the following definitions. A pattern instantiation
for a pattern is a substitution that renames the bound names of the pattern (i.e., the
placeholders for token colors). An instance of a pattern is a multiset satisfying the re-
quirements specified by the patterns, i.e., containing the exact number of tokens, and
such tokens are decorated with a tuple of the right length.

Definition 8. A pattern instantiation for a pattern p is a substitution ρ on S such that
dom(ρ) = bn(p). The instance of p via ρ, denoted by p[ρ] is the marking defined as

a(x1 . . . xn)[ρ] = a〈ρ(x1) . . . ρ(xn)〉
(p⊕ p′)[ρ] = p[ρ]⊕ p′[ρ] .

For example, the substitution ρ = {a/x, b/y, b/z} is a pattern instantiation for pattern
p = c(x, y)d(z), and c〈a, b〉d〈b〉 is the instance of p via ρ.

Now we are ready to define the semantics of configurations. The reduction relation
is the least relation satisfying the axioms and rules reported in Table 1.
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Table 1. Operational semantics of MAGNETs.

(1)
p → N ∈ T

[S, T, m⊕ p[ρ]]→ [S, T, m]⊕Nρ
(2)

s ∈ S

[S, T, m]⊕ s〈s̄〉 → [S, T, m⊕ s〈s〉]

(3)
places(p) ⊆ S

[S, T, m]⊕ (p �→ N)→ [S, T ∪ (p �→ N), m]

(4)
S fresh ∧ ∀t ∈ T∀s ∈ S : s ∈ pre(t)⇒ pre(t) ⊆ S

{S, T, m} → [S, ∅, ∅]⊕ T ⊕m

(5)
S fresh ∧ pre(T ) ∩ S′ �= ∅ ∧ ∀t ∈ T∀s ∈ S : s ∈ pre(t)⇒ pre(t) ⊆ S ∪ S′

{S, T, m} ⊕ [S′, T ′, m′] → [S ∪ S′, T ′, m′]⊕ T ⊕m

(6)
C → C′

C ⊕ C′′ → C′ ⊕C′′ (7)
C ≡ C′ C′ → C′′ C′′ ≡ C′′′

C → C′′′

Firing rule (1). If the marking of a net system contains the tokens required by the pat-
tern of a transition t = p �→ N (i.e., there exists a pattern instantiation such that the
instance p is contained in the marking) then the transition is enabled. When t fires, the
tokens required by the pattern are removed from the marking, and the (tokens, transi-
tions and pre–nets contained in the) net expression Nρ, obtained by application of the
pattern instantiation to N , is produced. All the components of the net expression are
treated in the same way, regardless whether they are local (i.e., belong to the net sys-
tem of transition t) or remote. The components will reach the net system to which they
belong by axioms (2) and (3)1.

Token and transition migration (2,3). The tokens, as well as the new transitions, pro-
duced by a firing of a transition reach the proper net system by application of this
reduction.

Net creation (4). If the environment contains a pre–net whose transitions consume
tokens only from places local to the pre–net, then such a prenet evolves in a new net
system. The transitions and the marking of the pre–net are produced in the environment,
as they may refer to another, already existing net system. Such components will reach
the right net system by axioms (2) and (3). The freshness condition on the set of places
of the pre–net, that can be enforced by performing alpha conversion, ensures the well–
formedness of the reached configuration. The condition ∀t ∈ T∀s ∈ S : s ∈ pre(t)⇒
pre(t) ⊆ S requires that all the transitions that will be local to the newly created net

1 An alternative, equivalent semantics for the firing rule consists in partitioning the components
of the net expression in two sets: the components that must be added to the net system of
transition t, and those that must migrate to a remote net system. Then, the local components are
directly added to the net system, while the remote components are released in the environment.
This alternative semantics is closer to the implementation, while our choice provides a simpler
rule.
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do not consume tokens from remote places belonging to other existing nets. However,
the pre–net may contain a transition u consuming all its token from places of another
existing net; this is permitted, as the transition u will migrate to the proper net system
after creation of the new net.

Net extension (5). If the transitions of a pre–net consume tokens from places of an
already existing net system, then the components of the pre–net are added to the net
system. The condition pre(T ) ∩ S′ 
= ∅ requires that at least one transition in the pre–
net consumes a token from a place of an existing net system (otherwise, the pre–net
evolves in a new, independent net system by axiom (4)). The condition ∀t ∈ T∀s ∈ S :
s ∈ pre(t)⇒ pre(t) ⊆ S ∪ S′ requires that all the transitions, that will be local to the
net obtained by adding the pre–net to the existing net system, do not consume tokens
from remote places.

Composition (6). This rule permits the application of the axioms independently of the
presence of other components in the configuration.

Structural congruence (7). Structurally congruent configurations behave equivalently.
The following proposition ensures that the well-formedness is preserved by the

structural congruence relation and by the reduction semantics.

Proposition 1. Let C be a well–formed configuration. If C ≡ C′, then C′ is a well–
formed configuration. If C → C′, then C′ is a well–formed configuration.

4 Examples

4.1 Applet

In the first example we model the execution of some code à la Java, where an applet is
downloaded from a server, and the computation occurs in the client:

Client = [{runHere}, . . . , appletX 〈runHere〉runHere]
Server = [{appletX }, {appletX (run) �→ {∅, {run �→ . . .}, ∅}}, ∅]

The applet download is triggered by a token in place appletX . The token carries the
client’s location in its color (runHere). The applet code, which is contained in the
spawned pre–net, is executed after the applet has migrated to the client.

4.2 Web Service Generation

The second example models a scenario in which some Web Services are generated from
the corresponding factories. The idea in this case is that some services may be compu-
tationally too expensive to be carried over the server side. Instead, the Web Service is
forked off its origin site and migrates to the client, where the computation occurs. A
service factory is a net system with a transition expecting two place names in and out
representing the place where the service expects its input and the place where the result
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Fig. 1. Two different ways of combining services for computing f ◦ f .

will be produced, once the computation is finished. These two places will usually be
local to the client, thus forcing the generated service to move.

The following are service factories for the x2 and sinx functions:

[{squareFactory}, {squareFactory(in , out) �→
{{tmp}, {in(x) �→ tmp〈. . . x . . .〉, tmp(y) �→ out〈. . . y . . .〉}, ∅}}, ∅]

[{sinFactory}, {sinFactory(in , out) �→ {∅, {in(x) �→ out〈. . . x . . .〉}, ∅}}, ∅]

Next we show how to model a second-order Web Service generator twiceFactory
which, given a service factory for a generic function f , generates a service for the func-
tion f ◦ f . In fact, there are at least two possible ways for modelling twiceFactory . In
the first solution, the factory for f is invoked twice, and the two services are sequentially
composed by means of a common place out1in2 (left hand side of Figure 1):

[ {twiceFactory1},
{twiceFactory1(in , out , fFactory) �→ { {in1, out1in2, out2},

{in(x) �→ in1〈x〉, out2(x) �→ out〈x〉},
fFactory〈in1, out1in2〉
fFactory〈out1in2, out2〉}, ∅]

In the second solution the factory for f is invoked only once, and the iterated ap-
plication is enforced by means of an appropriate control flow in the generated service
(right hand side of Figure 1):

[ {twiceFactory2},
{twiceFactory2(in , out , fFactory) �→ { {fIn, fOut , stage1, stage2},

{in(x) �→ stage1 fIn〈x〉,
stage1 fOut(r1) �→ stage2 fIn〈r1〉,
stage2 fOut(r2) �→ out〈r2〉},

fFactory〈fIn , fOut〉}, ∅]
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Roughly speaking, the two solutions resemble the differences between function in-
lining and function call.

The following is a possible invocation of twiceFactory1 with the squareFactory
service, which yields a service for the computation of the x4 function:

[{in, out}, ∅, twiceFactory1〈in , out , squareFactory〉]

5 Implementation

Entities in the formal model and their representation in the implementation have been
purposefully given different names: not every entity in the implementation is paired
with an entity in the abstract model, or the correspondence is only approximate.

5.1 Overall Organization of the Virtual Machine

The virtual machine that implements MAGNETs consists of the following kinds of ob-
jects.

Locations. Locations represent nets: the name “location” enforces the idea of a well-
defined boundary that discriminates what is part of a net from what is not. Each location
consists of a set of ports, representing places, a set of rules, representing transitions, and
a set of running threads, representing ongoing computations. Migration of locations is
controlled by the move instruction. Location handles have type lid .

Threads. Threads represent units of sequential computation within a location. As such,
threads have no direct counterpart in the formal model. One can think of a thread as a
sequence of actions implementing the semantics associated with a transition, once this
has fired. A thread is made of

– a code segment, containing the list of virtual machine instructions to be executed;
– a data segment, containing the associations between names occurring in the thread

and values;
– a stack, used for storing temporary data.

Thread handles have type tid .

Rules. Rules represent transitions. Each rule depends on a multiset of ports indicating
the incoming transition arcs and has an associated blocked thread. Upon firing of the
transition, the thread is spawned and its data segment enriched with the newly deter-
mined associations between names and values received from the ports.

Ports. Ports represent places. Each port has an associated queue of messages and has
references to all the rules which depend upon it. Port handles have type pid and are
made of the identifier of the location the port resides in, and a hidden, local port identi-
fier.
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Messages. Messages represent tokens. Messages can be sent to any known port, re-
gardless of the location the port resides in.

5.2 Virtual Machine Instructions

The virtual machine is stack-based: every instruction takes its operands and produces
results on a stack, just like the Java virtual machine does. Values of the virtual machine
include port, thread, and location handles, as well as native data types (not shown for
the sake of brevity). Table 2 lists the instructions of the virtual machine, as well as their
signature specifying how the instruction manipulates the stack. The notation x :: S
represents a stack whose topmost value is x and where the stack underneath x is S.

Table 2. Instructions of the virtual machine.

Instruction Stack before Stack after
port S pid :: S
thread(n) c x1 :: · · · :: xn :: S tid :: S
rule(n) tid :: pid1 :: · · · :: pidn :: S S
location S lid :: S
send(n) pid :: x1 :: · · · :: xn :: S S
spawn lid :: tid :: S S
load(n) S x :: S
store(n) x :: S S
whereis pid :: S lid :: S
move lid :: S S

What follows is an informal description of the semantics of the instructions. When
talking about the values consumed or produced by instructions of the virtual machine,
we will usually say “port” instead of “port handle”. We will abuse the language similarly
when referring to locations and threads. We will say “current thread” for the thread
executing the instruction and “current location” for the location where the current thread
is running:

port creates a new port in the current location. The port handle is pushed onto the stack;
thread(n) c creates a new thread, without executing it. The thread’s code segment is

c (a list of instructions), its environment is made of the xi’s vales on the stack
(i = 1, . . . , n). The thread handle is pushed onto the stack;

rule(n) creates a new rule in the current location involving the n ports on the stack.
As soon as there is at least one message in the queue of each of the n ports, the
specified thread is spawned;

location creates a new, empty location as a child of the current location. The new loca-
tion is pushed onto the stack;

send(n) sends a tuple of n values to the port on the stack;
spawn causes the specified thread to be spawned in the specified location, which must

be either an ancestor of the current location, or the current location itself;
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load(x) pushes the value associated with the name x in the data segment onto the stack;
store(x) associates the name x with the topmost value on the stack;
whereis pops a port from the stack and pushes the port’s location onto the stack;
move causes the current location to migrate inside location found on top of the stack.

5.3 Compiling MAGNETs

We now show the compilation rules for MAGNETs, that is how a net in the formal
model is translated into instructions of the virtual machine. For the sake of brevity,
only the most significant rules are presented here. We denote lists of instructions as
[i1; i2; . . . ; in] and we use @ for the usual append operation over lists.

A marking is compiled as a message communication. The names to be sent as well
as the destination port are pushed onto the stack, and then the send instruction is exe-
cuted:

�x〈y1, . . . , yn〉� = [load(yn); . . . ; load(y1); load(x); send(n)]

Message communication is asynchronous, that is the send instruction is nonblocking.
A transition p �→ N is compiled as a rule that associates the places in the pattern

places(p) with a thread that “implements” N . In order to create such thread, any free
name occurring in N and that is not bound by p must be loaded onto the stack, so that
an appropriate closure is created. Let {z1, . . . , zk} = fn(N) \ bn(p), we have

�x1(y1), . . . , xn(yn) �→ N� =
[load(xn); . . . ; load(x1); load(zk); . . . ; load(z1); thread(k) �N�; rule(n)]

It is an error to create a rule for a pattern including ports that are not local to the
current location. If this situation occurs, the current location “dies”.

Consider now a prenet {S, T, m} such that pre(T ) ⊆ S. This net is unrelated to
any other net since its set of transitions only involve ports that are locally defined. The
net is represented as a fresh location within which an initialization thread is spawn. The
thread creates the ports in S, stores them in its data segment, creates the rules for the
transitions in T and finally sets the places with the initial marking. Let {z1, . . . , zl} =
fn({S, T, m}), we have

�{{x1, . . . , xn}, {t1, . . . , tk}, m}� =
[load(zl); . . . ; load(z1);
thread(l) [port; store(x1); . . . ; port; store(xn)]@�t1�@ · · ·@�tk�@�m�;
location; spawn]

The last interesting case we examine is that of a net extension, that is a prenet
{S, T, m} connected with an existing net. This condition is formally specified as S �
pre(T ), or equivalently there exists a place z ∈ pre(T ) \ S that belongs to a different
net. As in the case of a standalone net, a fresh location is created. However, this loca-
tion must first migrate into the location owning z. Once it has reached z’s location, a
new locally spawned thread takes care of creating the new rules. Let {y1, . . . , yl} =
fn({S, T, m}), we have
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�{{x1, . . . , xn}, {t1, . . . , tk}, m}� =
[load(yl); . . . ; load(y1); thread(l)

[load(z); whereis; move; load(yl); . . . ; load(y1); thread(l)
[port; store(x1); . . . ; port; store(xn)]@�t1�@ · · ·@�tk�@�m�;

load(z); whereis; spawn];
location; spawn]

Finally, the composition of two nets N1 and N2 simply amounts at appending the
code resulting from compiling N1 and N2 in isolation:

�N1 ⊕N2� = �N1�@�N2�

5.4 Remarks

Synchronous communication. As it is stated, the formal model imposes a continuation-
passing style arrangement of any sequential computation. As this imposes a consid-
erable overhead in terms of both time and resource consumption (the creation of sev-
eral temporary, short-living ports), we have enriched the actual implementation with
primitive instructions for synchronous communication. Each thread is equipped with
a continuation port that is used any time synchronization is required. The model syn-
tax can be consequently enriched so as to provide a more comfortable (and familiar)
programming framework for MAGNETs.

Rule matching. No mention has been made to the technicalities of pattern matching
compilation but a number of optimizations can improve the naive algorithm that checks
every rule upon reception of a message (see [14]). We briefly introduce two of them:
Simple port optimization. A simple port is a port occurring alone in one pattern only.
Roughly speaking, such a place denotes a function as it is normally understood in con-
ventional, sequential programming languages and the action of “firing” corresponds to
function application. In this case, no pattern matching is actually necessary, and “firing”
can be optimized to a real function call.
Static analysis of net configuration. Places whose names are not communicated out-
side the net where they reside can undergo a number of optimizations, since their inter-
action with other places is statically determined by the net configuration. In these cases,
some places might be better represented as “net data”, possibly protected by a locking
mechanism that preserves atomic access.

Migration. The move instruction is by far the most unusual instruction in the virtual
machine. One might argue that the compilation rules we have presented do not high-
light sufficiently the complexity that underlies migration. Although the implementation
of the move instruction indeed raises lots of technical issues, in particular the mar-
shalling and unmarshalling of information, according to the experience gained from
our development we can state that the main difficulty of mobile computation is not mo-
bility per se. As soon as we have a neat definition of the boundaries of what we want to
move, it does not make a great difference whether we move data, or code, or working
environments.
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Message routing. As locations migrate, the physical location of ports therein contained
changes over time. In our implementation, each instance of the virtual machine keeps
track of outgoing migrations. When a message is received for a port hosted in a location
that has moved, the virtual machine does two things: first, it forwards the message to
the site where the location has migrated to, thus ensuring that the message is eventually
delivered; second, it notifies the sender with the new physical location of the destination
port, so that subsequent communications can be direct and no routing is necessary.

6 Conclusion

MAGNETs are a formal model for the representation of systems with an evolving struc-
ture, suitable for a distributed implementation.

In the last years several extensions of Petri nets, dealing with mobility and/or dy-
namicity, have been proposed. Most of these extensions are devoted to adding object-
oriented features on top of (colored) Petri nets (see e.g. [4, 6, 8, 12, 13, 18]): the object
structure is represented through a net, and dynamic reconfiguration features are ob-
tained by some mechanism external to the net. There are two main differences w.r.t.
our approach: first, our model lies at a lower level of abstraction, because the object-
oriented features are not embedded in MAGNETs, but they need to be encoded; second,
our aim is to embody dynamicity in our model, not to add it by an external structure.

Some recent extensions are devoted to the modeling of mobile agents in the so
called nets-within-nets approach [5, 10, 20–22]: mobile agents are modeled as nets
that move inside an environment, represented by a net. The two main differences w.r.t.
MAGNETs are concerned with the technique adopted to obtain mobility and dynamicity.
While MAGNETs borrows the name managing techniques of mobile process calculi, in
the nets-within-nets approach mobility and dynamicity are achieved through an higher-
order technique: namely, the tokens of the “environment” net are themselves nets. The
extension of MAGNETs with higher-order features is a challenging endeavor, for which
we plan further investigation.

Another extension, which is closer to the spirit of our model, is given by Self Mod-
ifying Nets [19]; in this case, the main difference regards the “locality” of transitions:
while in Self Modifying nets the pre and post sets of a transition depend on the whole
marking of the net, in MAGNETs they depend only on the color of the consumed tokens.

Finally, we should remark the close relationship between MAGNETs and the Join
calculus [9]. MAGNETs extend the Join calculus by allowing join definitions (reaction
sites in the CHAM) to evolve at runtime, still preserving the locality constraints, and
by having a weaker notion of pattern linearity. Another difference is given by the def-
inition of the boundaries that mark a mobile agent. In the Join calculus with mobile
agents there is an explicit notion of named location, and locations move by means of
a primitive go operation of the formal model. In MAGNETs, there is no need to define
such primitive operation, nor there is any need to give nets a name. Migration occurs
transparently depending on the use of remote place names. To cope with these differ-
ences the implementation of the Join calculus with mobile agents presented in [17] has
been suitably adapted.
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Abstract. Replacing or adding network protocols at runtime is prob-
lematic – it must involve synchronization of the protocol switch with
ongoing local and network communication. We define a formal math-
ematical model of dynamic protocol update (DPU) and use it to define
two DPU algorithms. The algorithms are based on fully-synchronized and
lazy strategies. The two strategies implement updates with respectively,
strong and weak safety properties. Our model allowed us to express the
properties and the DPU algorithms clearly and abstractly, aiding algo-
rithm design and correctness proofs.

1 Introduction

There is an important class of distributed applications that must run “non-stop”.
This is especially true of time-critical services, such as financial transactions,
telephone switch systems, flight reservations and air traffic control systems. The
service providers must be able to update their software, e.g. to fix program
bugs, improve performance, and expand functionality. Unfortunately, stopping
the system results in loss of service and revenue; it may also compromise safety.
Moreover, systems that modify their behavior based on changes in the environ-
ment, require the ability to update their functionality dynamically, with minimal
service interruption. There are quite a number of relevant implementations and
techniques (e.g. [1, 4, 6, 9]). Software components can be rebound on-the-fly,
using a mechanism of dynamic class loading and linking [10, 15].

In this paper, we focus on global update of network components that assumes
modification of a network protocol implemented by the components. Such type
of update introduces a new problem, however. Replacement of network compo-
nents involves delicate synchronization (or coordination) of local updates which,
if not handled appropriately, could easily prove so disruptive as to, at best, shut
the system down, and, at worst, introduce malicious behaviour. Synchronizing
local updates so that all software components in the distributed system end up
updated in a consistent manner, and doing this while the system continuously
provides service, represent serious challenges. It is therefore important to un-
derstand what are the minimal properties which must be satisfied by dynamic
protocol update (DPU), and what is the range of possible DPU strategies?
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Most of software update implementations concentrate on bug-fixes or soft-
ware upgrades that do not alter the communication protocol. Thus, coordinating
the protocol switch with ongoing communication can be done locally. Few imple-
mentations provide solutions to the problem described in this paper. Examples
are implementations of dynamic protocol adaptation using Ensemble [21] and
Cactus [6] protocol frameworks. They implement complex DPU algorithms for
global synchronization of local updates. However, they lack both simplicity and
generality and it is not clear what properties are actually guaranteed. Therefore,
we believe a formal, mathematical model of DPU should be developed, in order
to understand by both users and implementors of DPU technology what design
choices can be considered, and what impact they have on DPU complexity and
scalability. Unfortunately, little formalization work has been carried out to date
(e.g. [3, 8, 19]; we discuss this work in Section 8). However, we are not aware of
past efforts that have formalized the algorithms for global coordination of local
updates or the DPU correctness properties.

A critical safety property of many network services is message order preserva-
tion. Consider group communication middleware [14] that can be used for repli-
cating servers in order to make them tolerant to server crashes. Each replica in
the system is guaranteed to receive all messages in the same order. Any update
of middleware protocols must not affect this semantics. In this paper, we explain
what it really means in case of updating any kind of protocols. For this, we con-
struct a model of DPU and use it to define two synchronization-extreme DPU
algorithms: a fully-synchronized algorithm that satisfies the message order prop-
erty but seems impractical for Internet-wide update, and a synchronization-free,
lazy algorithm that is scalable but does not guarantee this property.

What are the significant results of our work? Firstly, the lazy DPU strategy
does not require any distributed infrastructure, which means that update with
weak semantics is no more difficult than a local update. Secondly, the fully-
synchronized and lazy strategies define the design space for more practical DPU
algorithms that use only as much synchrony as required in a given case. We have
actually designed and implemented such algorithms for updating protocols of the
group communication middleware. In the end of this paper, we summarize results
of this experiment; a complete report is also available [16]. It was somewhat
surprising to us that the design space can be indeed usefully explored, leading to
specialized DPU algorithms that are more efficient than the fully-synchronized
strategy but preserving properties required by correct global update.

Our model abstracts away from any concrete implementation of modular
protocols and of the DPU technology. We only make sure that our network com-
munication is directly implementable above standard networks, such as Internet.
For this, we assume that protocols use asynchronous, unordered, point-to-point
messages; this is a realistic assumption about wide-area networks and common
middleware services, where communication delays are not predictable. Our model
abstracts away however from any unnecessary details of this communication. For
instance, message addressing and message routing are the details of protocols
themselves that we do not model here.
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Symbols

Service names x, y ∈ Mvar

Required services R ∈ 2Mvar

Messages m

Protocol modules a, b, c

Module types t ::= (x,R) x /∈ R

Module bindings w ::= & | ↑

Terms

Protocol stacks P = {a w, ..., b w′}
Module a in stack P P.a

Peer modules of a δ(a) = {P.a′ w for any P | a′ : (x,R)} where a : (x, R)

Distributed protocols D = {P1, ..., Pn} or D = {δ(a), ..., δ(b)}
Messages sent to a, .., b SS = (mP.a, ..., m′P ′.b)

Messages delivered by a, .., b SD = (mP.a, ..., m′P ′.b)

Message history S = (SS, SD)

Sub-histories (i = S, D) Si|a = {mP.a′
for any P | mP.a′ ∈ set(Si), a′ : (x,R)}

where a : (x,R)

Si|P.a = {mP.a | mP.a ∈ set(Si)}
Protocol states D, S

Call service x in P P.x(m)

Deliver m using a in P [m]P.a

Fig. 1. The DPU model: Symbols and terms.

The paper is organized as follows. Section 2 and Section 3 define our model.
Section 4 specifies DPU, and Section 5 defines its correctness properties. Sec-
tion 6 defines two DPU algorithms. Section 7 sketches our implementation work,
Section 8 contains related work, and Section 9 concludes.

2 Model

In this section, we define basic notions of protocol modules and protocol stacks
in our DPU model. All symbols and terms are in Fig. 1.

Protocol stacks. Protocol services (or services in short), denoted by metavari-
ables x, y, are programming abstractions implemented by network protocols. Ex-
ample services are “send a message reliably”, “broadcast a message with FIFO
guarantee”, etc. Services can be called as functions, as in x(m), where m is a
message. No protocol data persist after the call returns.

We assume that protocols are modular, i.e. they can be composed from com-
municating protocol modules (or modules in short), denoted a, b. Modules are
typed using pairs (x, R), where x is the name of a single service provided by the
module, and R is a set of names of services that are required by the module in
order to handle a call of x (x /∈ R). We say that x is a module’s interface.
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Protocol stacks (or stacks), denoted P , are sets of modules accompanied by
module bindings w, as in P = {a w, ..., b w′}; two kinds of bindings (/ and ↑)
will be explained in Section 3. We write P.a w to denote a module a in stack P
with binding w. We often omit bindings or stack names if we mean any binding
or any stack, or the stack is known from the context. We abstract away in the
model from physical machines – intuitively, stacks are located on machines that
are interconnected via network.

Distributed protocols. Distributed protocols, denoted D, can be defined
vertically or horizontally, i.e. either as sets of stacks {P1, ..., Pn}, or as sets of
logical protocols {δ(a), ..., δ(b)}, where a logical protocol δ(a) is a set of peers
of module a, i.e. all modules in the system that have the same type as a. Each
logical protocol defines a level of abstraction in a stack. Unless a distributed
protocol is being updated, any two stacks are exactly the same.

For clarity, we assume in this paper a system model with no failures, where
messages are not lost nor duplicated, and stacks are basically reliable. In our
implementation of DPU, however, stacks may crash while a protocol is being
updated, with a guarantee that all non-crashed stacks get updated.

3 Operational Semantics

Actions. Interaction between protocol modules (and stacks) is by means of
asynchronous messages. We use two kinds of actions to express the communica-
tion: a service call and a message delivery.

Service call P.x(m) requests a service x of a stack P to deliver a fresh message
m in one or many stacks, depending on if the communication is point-to-point
or multicast. The call therefore appends to a global list of sent messages SS ,
a list (mP ′.a′

, ..., mP ′′.a′′
) of duplicated messages m decorated with all modules

a′, ..., a′′ of type (x, R) for some R, that should be used to deliver m in stacks
P ′, ..., P ′′. Note that our stacks are symmetric: modules that are used to output
and to deliver a message have the same type.

Message delivery [m]P.a denotes delivery of a message m in a stack P using
a module a. The intended semantics is that m is delivered by a to some other
module in the local stack that can use m. We assume that the name of this
module has been encoded in the message itself. We do not model it explicitly,
however, as we only need to know who delivers a message. The delivery adds
(using a Lisp-like constructor “::”) an element mP.a to a global list of delivered
messages SD; the list has the same structure as SS .

Protocol states are denoted as D, S, where D is a distributed protocol and
S = (SS , SD) is a pair of the (initially empty) lists of the sent and delivered
messages. We define the execution (or evaluation) of a protocol D as a state
transition relation −→, which transforms a state D, S to (D, S)′ as a result of
a single action e, denoted e−→; we sometimes omit the label e. The notation
(D, S)′ means D′, S or D, S′ or D′, S′, depending on the context. We also use
=⇒ to denote a possibly empty sequence of small step transitions.
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Communication and freedom

a : (x, R)
mP.a /∈ set(SS) mP.a /∈ set(SD)

mP.a ∈ set(S′
S)

S′′′ = (S′′
S , mP.a :: S′′

D)
a w ∈ P w ∈ {&, ↑} P ∈ D′

D, (SS, SD)
x(m)−→ D, (S′

S, SD) =⇒ D′, (S′′
S, S′′

D)
[m]P.a−→ D′, S′′′

(Comm)

S = (SS, SD) SS|a = SD|a
(a, (D, S)) Free

(Freedom)

Module bindings

a w ∈ P w �= w′

a w′ /∈ P
(Sanity-1)

a : (x, R) b : (x,R′) a �= b
a & ∈ P b w ∈ P

w = ↑ (Sanity-2)

Fig. 2. The DPU model: Operational semantics.

Communication. We write set(Si) to denote a set of all elements in list Si.
The rule (Comm) in Fig. 2 says that each delivery action [m]P.a in a stack P
must be preceded in the execution trace by a corresponding call x(m), where
module a provides x (remember that our stacks are symmetric). There can be
an arbitrary number of evaluation steps in-between since different protocol (or
update) actions can be interleaved. The sets of sent, SS , and delivered messages,
SD, are modified accordingly.

The details of message routing within a stack and between stacks are omitted
here, as they are not useful in this paper. Example approaches can be found
in [23], where we describe the semantics of module interaction and binding in
Cactus and Appia – two example protocol frameworks that can be used to encode
modular protocols in Java.

In network protocols, we can usually identify different levels of abstraction
at which communication takes place. Consider delivery [m]P.a of message m in
stack P by module a, as the result of a service call P ′.x(m) in some other stack
P ′. The call may trigger several calls of services that x depends on (all that
services are known from module type). In protocol frameworks, each of these
calls gets as its argument a message m′, that contains m and any additional
data that are required in order to complete the call and to deliver the message
using corresponding modules in stack P ′.

Freedom. In this paper, we consider network protocols that execute in ter-
minating rounds, where a round is a sequence of reduction steps that has com-
menced with a service call P.x(m) for some stack P , where message m must be
fresh. The round terminates with delivery of message m for the last time. Or,
more precisely, a round spawned with a fresh message m terminates (or com-
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pletes) in a state D, (SS , SD) if SS |m = SD|m, where Si|m (i = S, D) is a list
that is constructed from Si by removing from it all messages other than m.

There can be many rounds executed concurrently. A distributed protocol D
does not get stuck if all its rounds eventually complete.

A module a of a protocol D is free in a state D, S, denoted (a, (D, S)) Free,
if there is currently no active round of the protocol that would deliver a message
using either module a or any module (in any stack) that has the same type as a.
We can define this property formally using sub-histories Si|a of messages that
were sent (i = S) and delivered (i = D) by all modules of type of module a; see
rule (Freedom) in Fig. 2 and the definition of Si|a in Fig. 1.

Bindings. We assume that modules can be added and removed from stacks
at runtime. This means that modules can be dynamically bound and rebound.
Consider a module a of type (x, R) for some x and R. We write a / to denote the
module a which has been bound, i.e. calls of service x to deliver a fresh message
can use a, and messages can be also delivered by a.

We write a ↑ to denote a module a which is passive, i.e. calls of a service
x provided by a are not allowed, unless there is another module b in the same
stack that provides service x, and b is bound. A passive module can however
deliver messages. Therefore, any round of a protocol δ(a) can complete using
passive modules in δ(a), assuming that any services that are required by δ(a) to
complete the round in a given stack, have bound modules in the stack.

Each module in a stack is either bound or passive. We also assume that for
a given service in each stack, there can be at most one bound module at a time
providing the service; these sanity conditions are defined formally in the bottom
of Fig. 2.

4 Dynamic Protocol Update

We define dynamic protocol update (DPU) as a dynamic change of a distributed
protocol, i.e. replacement or addition of its modules. We require that the change
must eventually occur in all protocol stacks within, say, a cluster of servers or a
large LAN. Below we use our model to formalize this definition.

Replaceability. We can replace a module a by a module b in a protocol stack
P only if b has the interface of a (or at least of a, if we had a notion of interface
subtyping). This is motivated by requirements of real systems. If module b does
not provide the service of a, then it means that the distributed protocol updated
with b may get stuck since not all service calls can be effectuated, thus violating
the (desirable) termination property of protocol rounds. We must also require
that stack P provides all services that are required by b. These two requirements
are expressed in Fig. 3 as a replaceability property P{b/a}, read “a replaceable
by b in P”. The property can be verified statically by checking module types.

Global update. A global update GU(D, a, b) in Fig. 3, updates all stacks of
a distributed protocol D with a module b, yielding an updated protocol D′. To
update a stack locally, GU calls a local update function LU (explained below).
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a : (x,R) a ∈ P
b : (x,R′) R′ = {y | ∃c : (y, ..) c ∈ P}

P{b/a} (Replaceable)

P{b/a} w ∈ {&, ↑}
LU : (P, a, b)→ (P \ {a w}) ∪ {a ↑} ∪ {b &} (Local-Update)

D = {P1, ..., Pn} D′ = {LU(P1, a, b), ..., LU(Pn, a, b)}
GU : (D, a, b)→ D′ (Global-Update)

Fig. 3. The DPU specifications.

For practical reasons, global update should be concurrent with the execution
of system services whenever possible. Blocking the whole system during update
is unrealistic for large systems, and also not acceptable for non-stop systems.

Thus, the transition D, S
GU(D,a,b)

=⇒ D′, S′ consists of many evaluation steps that
may be interleaved (under control of GU) with actions of the protocol that gets
updated. Moreover, several global updates can occur concurrently.

Local update. A local update function LU in Fig. 3 takes as arguments a stack
P , an old module a, and a new module b, and yields a new stack in which the
new module is bound and the old one is passive. This has the effect of replacing
a by b in stack P in one atomic action. After a call of LU returns, any calls of
the service provided by a and b will use the new implementation b instead of a.
However, any pending rounds can still complete using the old module.

The definition of global update does not specify when a function LU is actu-
ally called. Updating some protocols at “wrong” moment may invalidate safety
properties of these protocols. In Section 5, we identify two safety properties
(strong and weak) that cover a broad range of distributed protocols. Then we
describe in Section 6 two implementations of GU ; the first one satisfies strong
safety, while the second one satisfies weak safety (but not strong safety).

5 Dynamic Update Correctness

The static replaceability property is necessary but not sufficient for DPU cor-
rectness. In this section, we define some safety properties that formalize what
we regard to be correct DPU.

Correctness. Intuitively, global update GU is correct if updating a distributed
protocol does not interfere with the concurrent execution of the protocol, i.e. the
update cannot be observed by any services of the protocol. In our model, the only
observable actions of the distributed protocol are message outputs and deliveries
(since they can modify state S). Obviously, correct global update must not cause
the updateable protocol to loose nor duplicate messages. Some applications may
also require that GU does not change the order of message delivery.
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Judgments

x �h S S is a correct message history of service x
�dpu GU GU is a correct DPU algorithm

DPU correctness

D, S
GU(D,a,b)

=⇒ D′, S′

a : (x, R)
x �h S x �h S′

�dpu GU
(Correct-Update)

S = (nil, nil)

x �h S
(Null-History)

x �h (S′
S , S′

D)
x �h (S′′

S , S′′
D)

S = (S′
S@S′′

S , S′
D@S′′

D)

x �h S
(Consistent-Cut)

DPU properties

D, S
GU(D,a,b)

=⇒ D′, (S′
S , S′

D)
D, S =⇒ D, (S′′

S , S′′
D)

set(S′
S) = set(S′′

S)

set(S′
D) = set(S′′

D)
(Weak-Update)

D, S
GU(D,a,b)

=⇒ D′, S′

D, S =⇒[m]P.b−→ =⇒ D′′, S′′

S′′ = (S′′
S , S′′

D)

S′′
S |a = S′′

D|a
(Strong-Update)

Fig. 4. Judgments and DPU properties.

We define DPU correctness using two judgments, one for message histories,
and one for the GU algorithm; the judgments and the rules for reasoning about
the judgments are given in Fig. 4. The message history judgment has the form
x �h S, read “S is a correct message history of service x”. The algorithm correct-
ness judgment has the form �dpu GU , read “GU is a correct DPU algorithm”.

The rule (Correct-Update) says that global update of a service x with a DPU
algorithm GU is correct, if given a distributed protocol D and a correct history of
messages S, the algorithm would transform the system D, S into system D′, S′

where S′ describes a correct message history from the point of view of x.
The rule (Consistent-Cut) is a core rule for reasoning about message histories.

It states that a message history constructed by appending two (possibly empty)
histories that are themselves correct is also correct. The Lisp-like append opera-
tion Si@S′

i returns a new list whose elements are the elements in the given lists
Si and S′

i, in the order that they appear in the argument lists.

Properties. We can identify at least two update safety properties: strong
and weak; they specify some desirable guarantees on a message history. We can
then say that global update GU is correct for updating a service x, if it satisfies
safety properties that are required by the correct execution of x. It depends
on the semantics of x which property the implementation of GU should hold.
(Obviously, we assert that updateable services must be themselves correct.)

Below are the two safety properties defined informally; a precise semantics is
given in the bottom half of Fig. 4.

Property 1 (Weak Update) A global update GU of a distributed protocol D
has the weak update property if: (i) GU eventually terminates, (ii) if D does
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not get stuck, then the updated D will deliver exactly the same set of messages
as the non-updated D would.

The DPU algorithms that only satisfy the weak safety property cannot be
used to update services that order messages. Below we define a stronger property.

Property 2 (Strong Update) A global update GU replacing old modules by
new modules in a protocol D has the strong update property if: (i) GU eventually
terminates, (ii) after a new module has been used to deliver a message in some
stack, the old module will never be used to deliver messages in any stack.

Theorem 1 (Strong Update Correctness). Global update that ensures the
strong update property is correct.

Proof. Consider update D, S
GU(D,a,b)

=⇒ D′, S′, where a, b provide x and x �h S.

Take any state D′′, S′′ such that D, S =⇒ .., X
[m]P.b−→ .., Y =⇒ D′′, S′′ and b is

used a first time. Then

1. x �h X by x �h S and premise that up to this state x can only use δ(a),
2. x �h Y \X 1 by premise that b can replace a,
3. x �h S′′ \X by 2. and S′′

S |a = S′′
D|a (from definition of (Strong-Update)),

4. x �h S′′ by 1. and 3. and (Consistent-Cut),
5. �dpu GU by premise x �h S and 4. and (Correct-Update). �

Below are two examples of services that can be updated with a DPU algo-
rithm that has the strong update property.

Consider a bug-fix of a security protocol that is used by a distributed transac-
tions service to encrypt transaction-related communication. After a local update
action terminated in a stack, and the newly added change has been applied to
the security protocol, the strong update property guarantees that no transaction
(on any node) will commit using the old erroneous security protocol.

Consider services that must deliver messages in a certain order. The strong
update property guarantees that the old module is used only until the new mod-
ule is used (somewhere) for the first time. Up to this (global) time, all messages
are delivered (with order) by the old protocol, after this time all messages will
be delivered (also with order) using only the new protocol.

Theorem 2 says that weak update can be always replaced by strong update
(the opposite is obviously not true); the proof is straightforward.

Theorem 2 (Strong Update Implies Weak Update). Any implementation
of global update satisfying strong update, also satisfies weak update.

6 Dynamic Update Algorithms

Consider updating a distributed protocol D = {P | P = {a /, b /, ..}} with a new
module b 2. Below we describe two example DPU algorithms. They are defined
1 We write Y \X to denote a prefix of list Y obtained by removing sublist X.
2 UpdatingD with b may involve adding new modules to each stack, so that all services

required by b are eventually provided; the algorithm is similar to L-DPU in Section 6.
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Synchronized DPU
a & ∈ P P{b/a}

P, S
P.ABcast(S1,a,b)−→ P, S

(S1)

[S1, a, b] P.abcast abcast : (ABcast, ..)
P ′ = (P \ {a &}) ∪ {a ↑} ∪ {b ↑}

P, S −→ P ′, S
P.ABcast(S2,a,b)−→ P ′, S

(S2)

S = (SS, SD) SS|P.a = SD|P.a

(a, P S) Idle
(Idle)

[S2, a, b] P.abcast from all P ′ ∈ D
(a, P S) Idle

P, S
P.ABcast(S3,a,b,Idle)−→ P, S

(S3)

[S3, a, b, Idle] P.abcast from all P ′ ∈ D
P, S −→ (P \ {a ↑} \ {b ↑}) ∪ {b &}, S

(S4)

Lazy DPU

[m, b] P.c for some c ∈ P
b /∈ P a & ∈ P P{b/a}

P ′ = (P \ {a &}) ∪ {a ↑} ∪ {b &}
S = (SS, SD)

P, S −→ P ′, S
[m]P.b−→ P ′, (SS , mP.b :: SD)

(L1)

[m, b] P.c for some c ∈ P
b ∈ P

S = (SS, SD)

P, S
[m]P.b−→ P, (SS , mP.b :: SD)

(L2)

Fig. 5. Synchronized and lazy DPU algorithms.

using a set of transition rules, each rule describing a single or double (atomic)
evaluation step. The rules are expressed using the syntax in Fig. 1, extended
with polyadic messages, i.e. a message is a sequence of names. For readability,
we give in each rule only part of the state, i.e. the name of a local protocol stack
in which a given action occurs (instead of D). The steps of the algorithms can
be freely interleaved with the steps of the protocol D being updated.

Synchronized update. The Synchronized Dynamic Protocol Update (S-DPU)
algorithm in the upper part of Fig. 5, updates a distributed protocol by replacing
old modules by new ones. Firstly, it “passivate” bindings of the old and new
modules in each stack so that the modules are passive. Then, the old module is
removed and the new module is bound in every stack; this takes place locally
only after it can be guaranteed that the old module is not needed anymore to
complete any round of the distributed protocol.

To support concurrent global updates and termination under stack crashes,
our algorithm communicates control messages using a totally ordered broadcast
[7, 14] service ABcast. We assume abcast to be some implementation of ABcast.
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Execution of ABcast(m), where m is a fresh message, broadcasts m to all stacks
with a guarantee that the round of ABcast terminates and if some stack delivers
m before another broadcast message m′, then every stack delivers m before m′.

Formally, if we take any two stacks P, P ′ ∈ D and modules a ∈ P and a′ ∈ P ′

of type (ABcast, R) for some R, then for any state D, S and S = (SS , SD) such
that (a, (D, S)) Free and (a′, (D, S)) Free, we have SD|P.a = SD|P ′.a′, where
the Free property is defined in Fig. 2.

Below are steps of the S-DPU algorithm. Note that the output and delivery
of update-related control messages do not modify message histories!

S1. Broadcast a fresh message (S1, a, b) to all stacks, where module a is bound
in the local stack P and replaceable in P by module b. (We assume that
initially, i.e. when a message history is (nil, nil), all stacks are identical.)

S2. Upon receipt of (S1, a, b), passivate module a in the local stack P and extend
P with passive module b. Then, broadcast a fresh message (S2, a, b).

S3. A module a of stack P is idle, denoted (a, P S) Idle where S is a message
history, if all messages sent to a (by any stack) have been delivered by a 3.
Upon receipt of (S2, a, b) from all stacks, wait until module a is idle in the
local stack P , then broadcast a fresh message (S3, a, b, Idle).

S4. Upon receipt of (S3, a, b, Idle) from all stacks, remove module a from the
local stack P and bind module b.

Lemma 1 (Safe Rebinding) If S-DPU algorithm binds a new module in some
state, then a module being replaced with the new module is free in this state.

Proof. Consider binding of some module a in step (S4) of S-DPU. Then

1. by premise of (S4) and ABcast, each stack P ∈ D has executed (S3)

2. by 1. and (S3) and definition of (a, (P, S)) Idle, each stack P ∈ D has been
in a state D, S, such that SS |P.a = SD|P.a,

3. by premise of (S3) and ABcast, each stack has executed (S2),
4. by 3. and (S2), each stack has unbound a in (S3), so SS |P.a = SD|P.a is true

not only in (S3) but also in (S4),
5. by 4. and premise of (S4) and ABcast, SS |P.a = SD|P.a for all stacks P ∈ D,
6. by 5. and definition of Si|a (i = S, D) in Fig. 1, SS |a = SD|a,
7. by 6. and (Freedom), (a, (D, S)) Free. �

We conclude that the S-DPU algorithm satisfies strong update.

Theorem 3 (S-DPU Strong Safety). Updating a distributed protocol with
the S-DPU algorithm satisfies strong update.

Proof. By Lemma 1 and (S4), when a new module is bound in D, S, the old
module a is free. By (S2), a is unbound in D, S, i.e. for any state D′, S′ following
D, S, we have S′

S |a = S′
D|a. By (Strong-Update) this completes the proof. �

3 We assume the existence of a global snapshot algorithm [11] to determine this pred-
icate.
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Lazy update. The Lazy Dynamic Protocol Update (L-DPU) algorithm in the
bottom of Fig. 5, updates a distributed protocol lazily, by extending stacks with
a new module whenever needed.

We associate messages with modules that are used to deliver the messages. If
a module required to deliver a message is not in a local stack, then it is added to
the stack, bound, and the binding of the old module providing the same service
is “passivated”, so that any new protocol round in this stack can use the new
module. The algorithm allows however the old and new modules to coexist in
the distributed protocol, i.e. they can deliver their messages concurrently.

The L-DPU algorithm does not require any distributed infrastructure, except
the one used by protocolD to communicate messages via network. Thus, it scales
to large networks. Below are actions of the L-DPU algorithm.

L1. Upon delivery of a message (m, b) by some module c in the local stack P ,
if module b is not in P , then take any module a in P that is bound and
replaceable by b, passivate a and bind b. Finally, deliver m using b.

L2. Upon delivery of a message (m, b) by some module c, if module b is available
locally, then deliver m using b.

To guarantee termination of the global update, we could require that stacks
periodically broadcast and deliver an “update” message containing new modules.

According to Theorem 4, the Lazy DPU algorithm guarantees that all pro-
tocol messages are delivered but message ordering is not preserved.

Theorem 4 (L-DPU Weak Safety).Updating a distributed protocol with the
L-DPU algorithm satisfies weak update.
Proof. Straightforward by (Weak-Update) and atomicity of rebinding in (L1). �

7 Practical Experiment

To facilitate experimentation, we have designed and implemented DPU sup-
port for Fortika [13, 14] – a group communication middleware that is developed
within our project. We have encoded middleware components using the SAMOA
library [24]. The most complex components that Fortika uses are two agreement
services: distributed consensus and totally ordered broadcast (ABcast). We have
proposed DPU algorithms that can switch between different implementations of
these services dynamically, while preserving safety properties of each service. By
exploring the semantics of consensus and ABcast, the DPU algorithms can be
less synchronous than the S-DPU algorithm in Section 6. In effect, the service
is available almost continuously while it is updated.

Consider update of the consensus service [5]. The service ensures that given
a group of distributed processes, after a round of consensus, all processes would
agree on the same value, which has been chosen from values proposed individ-
ually by each process. Our DPU algorithm uses the semantics of consensus for
replacement of the consensus implementation; it has three steps. Firstly, an in-
tend to replace a consensus protocol δ(a) by δ(b) is broadcast. Then, all processes
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must decide when b can be bound locally. For this, b could be piggybacked on
any message that must be also processed by the consensus service. Finally, when
the decision about b has been delivered (that means all stacks reached consensus
about binding b), a is passivated and b is bound. The time between binding a
new module and making the old one passive is therefore maximally reduced.

The results of our practical experiment demonstrate that dynamic replace-
ment of network protocols in a group communication system can be done effi-
ciently. Description of the DPU algorithms for agreement protocols and perfor-
mance measurements are in our companion paper [16].

8 Related Work

In this section, we describe some of the work most closely related to ours.
There are quite a number of implementations that support dynamic updat-

ing of software components. For example, the Erlang programming language [1]
allows software modules to be replaced at runtime, however with no safety guar-
antees. A Java HotSpot VM [20] allows a class instance to be replaced with the
new instance in a running application through the debugger APIs.

There have been work on safe dynamic software updating by construction, en-
suring that if an update is accepted by the system, then the resulting program
will be type-correct. Dynamic ML [22] enables type-safe module replacement
at runtime; changes can include the alternation of abstract types at update-
time, and the addition (and possibly removal) of module definitions via garbage-
collection. Dynamic Java classes [12] offer type safety preservation but compro-
mise portability by modifying the Java Virtual Machine; also, class replacement
is not synchronized with threads using old code.

Duggan [8] describes a type-safe approach that allows a new module to change
the types exported by the original module; it however does not discuss the re-
binding facility. Bierman et al. [3] study dynamic software updating with a small
extension of a lambda calculus that supports an Erlang-like updating features.
A preliminary discussion of safety properties is included, however without con-
sidering the use of concurrency and coordinated updates. Stoyle et al. [19] inves-
tigate type-safe dynamic updating in C-like languages. However, this work does
not address the issues of global coordination of local updates.

Few systems offer support for coordinating local updates. For example, Van
Renesse et al. [21] describe a switching protocol, which synchronizes dynamic
replacement of protocols in the Ensemble protocol framework, however it does
so only for whole stacks, thus blocking applications on top of the stack during
update. Chen et al. [6] describe switching between network components within
the Cactus protocol framework. A replacement manager on each host interacts
explicitly with replaceable network components; it uses barrier synchronization
for coordinating the beginning of the replacement across different hosts. A similar
solution has been proposed in [18], but it uses a centralized manager, which limits
its scope of applicability. However, in none of the above systems is there any well
developed evidence as to what conditions are needed to guarantee the correctness
of updating distributed protocols on-the-fly.
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To date relatively little work has been carried out on formalization of dynamic
protocol update. The previous work closest to our own is by Bickford at al. [2]
on designing a generic switching protocol for Ensemble using the Nupr logical
programming environment. They have formally defined several communication
(not structural, though) meta properties on traces of send and deliver events,
that should be preserved by updateable protocols. While we have identified space
between lazy and synchronized updates, they only describe one example switch-
ing protocol. The algorithm is correct only for replacement of protocols that
must exhibit all their (six) meta-properties; it cannot be applied for arbitrary
protocols, contrary to the S-DPU algorithm presented in this paper.

Methods of distributed versioning, such as Sewell’s [17] fine-grain versioning
control of values of abstract types, could be used to support interoperation of
old and new modules, and e.g. verify statically the replaceability property.

9 Conclusions and Future Work

In this paper we make several contributions. We have defined a simple but ex-
pressive model of dynamic protocol update (DPU). We use our model to define
static and dynamic requirements that, we believe, should be considered by any
valid dynamic protocol update support:

– The replaceability property specifies minimal structural, static requirements
on module replacement;

– The strong and weak update safety properties specify that updating a dis-
tributed protocol must not cause message loss; the strong property addition-
ally requires that message order is always preserved.

Based on the above requirements, we have constructed two DPU algorithms
which are based on synchronized and lazy updating strategies. The former al-
gorithm exhibits strong safety guarantees but requires a subtle distributed in-
frastructure (totally ordered broadcast) which does not scale to large networks.
The latter algorithm scales well but the order of message delivery by updateable
service is not respected that limits its applicability.

Our DPU algorithms work correctly also in the presence of stack crashes, in
the sense that all non-crashed stacks are guaranteed to get eventually updated.

In the future work, it may be worthwhile to extend the model presented in
this paper with system failures and message omissions; this would allow us to
reason about such cases formally.
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Abstract. The coordination of time-dependent simulation models is an
important problem in environmental systems engineering. We propose a
solution based on a rigorous formal modelling of the participating pro-
cesses. Methodologically, our approach is driven by property processes
which are used for the formal specification of the coordination prob-
lem. Property processes are supported by the CSP-like language FSP of
Magee and Kramer which will be used throughout this paper for mod-
elling the system requirements and the system design. The heart of our
design model is a global time controller which coordinates distributed
simulation models according to their local time scales. We will show
with model checking techniques that all safety and liveness requirements
are guaranteed by the timecontroller design.
The strong practical relevance of the approach is ensured by the fact
that our strategy is used to produce a formally verified design for the
kernel of the integrative simulation system DANUBIA developed within
the GLOWA-Danube project.

1 Introduction

In the last decade environmental systems engineering became an important ap-
plication area for information and software technology. Setting out from geo-
graphical information systems and GIS-based expert systems nowadays one is
particularly interested in the development of integrative systems with a multi-
lateral view of the world in order to understand better the mutual dependencies
between environmental processes. Of particular importance are water-related
processes which have an impact on the global change of the hydrological cycle
with various consequences concerning water availability, water quality and water
risks like water pollution, water deficiency and floods.

There are several projects dealing with methods, techniques and tools to sup-
port a sustainable water resource management, for instance within the European
research activity EESD (Energy, Environment and Sustainable Development,
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cf. [3]) or within the German initiative GLOWA (Global Change in the Hy-
drological Cycle; cf. [4]). Within the GLOWA framework the project GLOWA-
Danube [8] deals with the Upper Danube watershed as a representative area
for mountain-foreland regions. The principle objective of GLOWA-Danube is to
identify, examine and develop new techniques of coupled distributed modelling
for the integration of natural and socio-economic sciences. For this purpose the
integrative simulation system DANUBIA is developed which supports the anal-
ysis of water-related global change scenarios. DANUBIA is designed as an open,
distributed network integrating the simulation models of all socio-economic and
natural science disciplines taking part in GLOWA-Danube. Actually seventeen
simulation models are integrated in the DANUBIA system covering the disci-
plines of meteorology, hydrology, remote sensing, ground- and surface water re-
search, glaciology, plant ecology, environmental psychology, environmental and
agricultural economy, and tourism. As a result of coupled simulations transdisci-
plinary effects of mutually dependent processes can be analysed and evaluated.

An important characteristics of DANUBIA is the possibility to perform in-
tegrative simulations where the single simulation models run concurrently and
exchange information at run time. Since any simulation models water-related
processes over a specific period of time (usually some years) a global time con-
trol is necessary which coordinates the distributed models to work properly to-
gether. This is a non-trivial task since each simulation model has an individual
time step in which computations are periodically executed ranging from hours,
like in meteorology, to months, like in social sciences. To ensure that an integra-
tive simulation provides reliable results it must be guaranteed that during the
simulation run

– all values accessed through model interfaces are in a stable state (which
corresponds to the usual read/write exclusion) and, moreover, that

– every simulation model is supplied with valid data, i.e. with data that fits
to the local model time of the importing simulation model.

This informal description of the synchronization conditions provides only an
intuitive idea of the coordination problem to be considered. For a full under-
standing it is necessary to clarify several issues, like the notion of time and the
precise timing conditions for correct data exchange on the basis of the local
time scales of the cooperating models. Taking into account that a distributed
simulation is an open system where in principal arbitrarily many models (with
different time scales) can participate it is obvious that the coordination problem
soon becomes untractable without the use of formal specification techniques.

An example of a formalization of the coordination problem on a meta level
using purely mathematical notations is given in [2]. Here we will use as a spec-
ification formalism the language FSP (Finite State Processes) of Magee and
Kramer [9] which provides an appropriate basis for applying model checking
techniques. Moreover, FSP allows us to follow a property-oriented approach
where first the system requirements are specified by means of so-called prop-
erty processes. The use of property processes has several advantages which are
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essential for our application. First, a requirements specification can be developed
piecewise by collecting single property processes which focus on one aspect of
the system at a time. This is particularly useful for the coordination problem
where it is sufficient to consider the cooperating simulation models pairwise and
under different roles, one model acting (only) as a provider and the other one
acting (only) as a user of information. In this way the complexity of the problem
can be drastically reduced. Also the exclusion condition for providing and re-
trieving data can be specified by a seperate property process. However, as usual,
there is still a danger that the requirements are not adequately met by the single
property processes. To deal with this issue FSP assigns to each property process
a finite labelled transition system which can be animated with the LTSA tool
(Labelled Transition System Analyzer; cf. [7]). Thus we can reveal the legal and
illegal execution paths which is indeed helpful to analyse and validate whether
the single property processes reflect correctly the desired time dependent coordi-
nation constraints. In addition to the property processes which represent safety
conditions we also specify liveness conditions stating that each simulation model
must repeatedly provide data during the whole simulation period according to
its local time scale.

The requirements specification developed in this paper is a good example
of a highly non-constructive formal specification in the sense that it cannot be
directly transformed into an executable program. In the next step we will focus
on the design of a constructive solution for the coordination problem. For this
purpose we define a global timecontroller process which stores the current status
of all simulation models in order to coordinate them appropriately. The design
of the whole simulation system is then given by the parallel composition of the
timecontroller and all concurrent simulation models. It is shown with model
checking techniques that the design model indeed satisfies the desired safety
and liveness properties. All processes occurring in the system design are also
represented in terms of FSP notation and model checking is performed with
the LTSA tool. The separation of property specifications from design is of great
methodological value for our application. This approach is well supported by
FSP but not e.g. by SPIN [6] or related model checkers where it is necessary to
integrate the assertions into a given design model.

The proposed approach can be applied to all kinds of systems where con-
currently executing components must be coordinated in accordance with some
discrete order. Within the GLOWA-Danube project the approach is of high prac-
tical relevance for the development of the DANUBIA system because integrative
simulations are the heart of all current and future features of DANUBIA and
hence the reliability of the whole system depends on the correctness of the co-
ordination implementation.

2 A Brief Introduction to FSP

The language FSP has been introduced by Magee and Kramer as a formalism
for modelling concurrent processes. An elaborated description of the syntax and
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semantics of FSP can be found in [9]. Syntactically FSP resembles CSP [5].
Frequently used constructs for building FSP processes are

STOP process termination
(a→ P ) action prefix
(a→ P | when (cond) b→ Q) choice (involving a guarded action)
P + {a1, . . . , an} alphabet extension
(P ||Q) parallel composition
P \ {a1, . . . , an} hiding
P@{a1, . . . , an} interface definition

Each process P has an alphabet, denoted by αP , consisting of those actions in
which the process can be engaged. If we build the parallel composition (P ||Q)
then actions that are shared by P and Q (i.e., belong to αP and αQ) must
be performed simultaneously. For the non-shared actions interleaving semantics
of parallel processes is used. The hiding operator allows to hide certain actions
which are then invisible and represented by τ . The construction of an interface
is the complement of hiding.

Processes can be defined by process declarations of the form P = E or, in the
case of parallel processes, by ||P = (E||F ). A (non-parallel) process declaration
can be recursive and can involve local, indexed processes of the form

P = Q[value],
Q[i : T ] = E.

where T is a (finite) type and i is an index variable of type T .
Often we will use indexed actions of the form a[i]. A shorthand notation for

a choice over a finite set of indexed actions is (a[T ] → P ), which is equivalent
to (a[x] → P | . . . | a[y] → P ), where range T = x..y. We will also use labelled
actions of the form [label ].a and choice over a finite set of labelled actions [T ].a
with T as above. To obtain several copies of a process P we use process labelling
[label] : P which denotes a process that behaves like P with all actions labelled
by [label ] .

The semantics of a process is given by a finite labelled transition system
(LTS) which can be pictorially represented by a directed graph whose nodes are
the process states and whose edges are the state transitions labelled with actions.
Since FSP is restricted to a finite number of states one can automatically check
safety and progress properties of processes. This will be essential for checking
the correctness of our design model for distributed simulations. FSP is equipped
with a model checking tool LTSA [7] which will be used for this purpose.

3 Simulation Models

Before we can specify the system requirements we have to analyse the problem
domain. Let us first consider single simulation models and provide a formal de-
scription of their general behaviour. A simulation model simulates a physical or
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social process for a certain period of time which we call simulation time. The
simulation time is finite which means that there is always a start and an end
time. The whole simulation period is represented by a strictly ordered, discrete
set of points in time (denoted by natural numbers), at which data is provided by
a simulation model. Each model has an individual time step which determines
the distance between two subsequent simulation points. For instance, a meteo-
rological model provides the air temperature every hour, while a groundwater
model provides the amount of groundwater withdrawal only once a day. We
assume that the time step of a model remains fixed during the whole simulation.

A simulation model provides data for other models via export ports and gets
data from other models (needed for its own computations) via import ports.

3.1 Lifecycle of a Simulation Model

After a simulation model has been started it provides first some initial data.
Then it performs periodically the following steps until the end of the simulation
is reached:

1. Get required data from other models (via the import ports).
2. Compute new data which are valid at the next simulation point.
3. Provide the newly computed data (via the export ports).

Since any simulation model has the same lifecycle we can model its general
behaviour by the following (generic) FSP process which is parameterized w.r.t.
the individual time step of a simulation model. Note that in the process defin-
tion we have to provide a default time step (e.g. Step = 1) which is necessary
according to the finite states assumption of FSP. For the same reason it is nec-
essary to model the simulation start and the simulation end by some predefined
constants.

const SimStart = 0
const SimEnd = 6
range Time = SimStart..SimEnd

MODEL(Step = 1) = (start -> INIT),
INIT = (prov[SimStart] -> M[SimStart]),
M[t:Time] =

if (t+Step <= SimEnd)
then (get[t] -> compute[t] -> prov[t+Step] -> M[t+Step])
else STOP.

In the above process description the (indexed) actions prov[x] represent
providing of export data which are valid at time x, the actions get[x] represent
getting of import data which are valid at time x and the actions compute[x]
represent the computation of new data based on import data which are valid at
time x. Indeed the choice of the time dependent indices of the actions is crucial
for the behaviour of the whole system to be developed. To explain our choice let
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us assume for the moment that the simulation time is a multiple of the model’s
time step. Then, according to the above process description, the last data that
a model gets is valid at time SimEnd−Step and the last data a model provides
is valid at time SimEnd. For the whole simulation, this means that imported
data is considered to be last recently valid for the computation of new export
values to be valid at time t if the imported data is valid at time t− Step.

Of course, there are other choices for the definition of last recently valid data.
For instance, the intuitively best choice would be to require that the imported
values used for the computation of exported values to be valid at time t are also
valid at time t (instead of being valid at time t−Step). But then the analysis of
any attempt to construct a design model for the coordination problem will show
that there is no deadlock-free solution (whenever there are, as usual, mutually
dependent export and import data). Exactly for this kind of problem analysis,
which is not further elaborated here, the use of formal models is indispensable.

To represent a particular instance of a simulation model we have to pro-
vide a model name (model identifier) and the particular time step of the model
under consideration. For specifying model identifiers we use process labels (cf.
Section 2) and the time step of a model is determined by an actual parameter.
For instance, the FSP processes [1] : MODEL(2) and [2] : MODEL(3) represent
two simulation models, one with number 1 and time step 2 and the other one
with number 2 and time step 3, resp. The behaviour of model 2 is illustrated by
the following LTS.

0 1 2 3 54 6 7 8

[2].start [2].prov[0] [2].get[0] [2].compute[0] [2].prov[3] [2].get[3] [2].compute[3] [2].prov[6]

3.2 Integrative Simulations

In an integrative simulation various simulation models work together by mutually
exchanging data via their import and export ports.

Model 1 Model 2 Model 3
E

I

I

E E

EI

I

IEE I

Each of the participating models performs a local simulation for the same
overall time period (the global simulation time) but has usually a different local
time step. It is crucial for integrative simulations that each model gets, whenever
needed, the last recently valid data from partner models. A first attempt to
model an integrative simulation could be to simply combine the processes which
represent the single simulation models by parallel composition. For instance, for
the two simulation models from above we would obtain the following composite
process:
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const NrModels = 2
range Models = 1..NrModels

||SYS = ([1]:MODEL(2)||[2]:MODEL(3))/{start/[Models].start}

The relabelling clause {start/[Models].start} ensures that the processes
synchronize on the start action. Let us now consider some possible execution
traces of the composite process which illustrate three characteristic problems
that we have to take into account when we want to specify the desired safety
properties for the system.

1. Missing import data

start→ [1].prov[0]→ [1].get[0]→ . . .

Model 1 gets data while model 2 has not yet provided data.
2. Obsolete import data

start→ [2].prov[0]→ [1].prov[0]→ [1].get[0]→ [1].compute[0]
→ [1].prov[2]→ [1].get[2]→ [1].compute[2]→ [1].prov[4]
→ [1].get[4]→ . . .

Model 1 gets data expected to be valid at time 4 while the last data provided
by model 2 was valid at time 0 and model 2 has not yet provided data valid
at time 3 (which would be the last recently valid data according to the time
step of model 2).

3. Overwritten import data

start→ [2].prov[0]→ [1].prov[0]→ [2].get[0]→ [2].compute[0]
→ [2].prov[3]→ [1].get[0]→ . . .

Model 1 gets data expected to be valid at time 0 while model 2 has already
provided data that is valid at time 3.

4 Formalization of the Coordination Problem

In this section we provide a formalization of the coordination problem in terms
of safety and liveness conditions.

4.1 Safety Properties

In Section 3 we have pointed out the essential difficulties concerning the validity
of exchanged data when simulation models cooperate concurrently with different
time scales. We start by formalizing the corresponding synchronization condi-
tions by means of FSP property processes. The crucial idea is that the problem
can be simplified if we consider only two simulation models at a time and, more-
over, if we consider each of the two models only under one particular aspect,
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either as a provider or as a user of information. In the following let U denote a
user model and let P denote a provider model. From the user’s point of view we
obtain the following condition (1), from the provider’s point of view we obtain
condition (2).

(1) U gets data expected to be valid at time tU only if the following holds:
P has last provided data valid at time lastP with lastP ≤ tU and the next
data that P provides is valid at time tP with tU < tP .

(2) P provides data valid at time tP only if the following holds:
The next data that U gets is expected to be valid at time tU with tU ≥ tP .

An execution trace w of an integrative simulation with an arbitrary number
of simulation models [1] : MODEL(Step1), . . . , [n] : MODEL(Stepn) is called
legal w.r.t. a user U and a provider P , if w meets the above requirements (1)
and (2). We model the legal execution traces by a generic FSP property process
which is parameterized w.r.t. the model number and the time step of the user
and the provider model respectively.

property VALIDDATA(User=1,StepUser=1,Prov=1,StepProv=1) =
VD[SimStart][SimStart],

VD[nextGet:Time][nextProv:Time] =
(when (nextProv-StepProv<=nextGet & nextGet<nextProv)

[User].get[nextGet] -> VD[nextGet+StepUser][nextProv]
|when (nextGet>=nextProv)

[Prov].prov[nextProv] -> VD[nextGet][nextProv+StepProv]).

The first alternative of the property process formalizes condition (1) from
above where the index variable nextUser corresponds to tU , nextProv corre-
sponds to tP and hence nextProv-StepProv corresponds to lastP . The second
alternative formalizes condition (2) from above. For the sake of simplicity we did
not take into account the end of a simulation in the above process definition. For
this purpose the process can be appropriately extended in order to avoid index
overflow when the simulation end is reached and to ensure that the user and the
provider have a clean termination.

All system requirements concerning the validity of data are now obtained
by pairwise instantiations of the generic property process VALIDDATA. As an
example let us consider model 1 with time step 2 as a user and model 2 with
time step 3 as a provider. The corresponding safety property is then given by the
property process VALIDDATA(1,2,2,3). The labelled transition system of this
process is shown in Figure 1.

Labelled transition systems assigned to property processes have an error
state, pictorially represented by −1, and are complete in the sense that for
any action and any state (apart from the error state) there is always an out-
going transition. This transition leads to the error state if it is not properly
defined in the property process definition. Thus the legal and illegal execu-
tion traces determined by a property process are revealed. For instance, the
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0 1 2 3 4 5 6−1

[1].get[2][1].get[0][2].prov[0] [2].prov[3] [1].get[4] [2].prov[6]

{[1].get[0..4],
[2].prov[1..6]}

{[1].get[1..6], [2].prov[0..6]}

{[1].get.{[0..1], [3..6]}, [2].prov[0..6]}

{[1].get[0..6], [2].prov.{[0..2], [4..6]}}

{[1].get.{[0..3], [5..6]}, [2].prov[0..6]}

{[1].get[0..6], [2].prov[0..5]}

{[1].get[0..6], [2].prov[0..6]}

Fig. 1. LTS of the property process VALIDDATA(1,2,2,3)

three example traces considered in Section 3.2 are illegal w.r.t. the property pro-
cess VALIDDATA(1,2,2,3), because their restrictions to the alphabet of VALID-
DATA(1,2,2,3) lead to the error state.

Besides the requirements concerning the validity of exchanged data we have
to cope also with data access. Since, in reality, getting and providing data are
non-atomic actions we have to ensure that a model gets data only if no other
model provides data at the same time and vice versa.

To formalize mutual exclusion we first enclose the critical regions, which in
our case are represented by the get and prov actions, by corresponding enter
and exit actions. For this purpose the process definition for simulation models
of Section 3.1 is slightly adapted in the following way.

MODEL(Step=1) = (start -> INIT),
INIT = (enterProv[SimStart] -> prov[SimStart] ->

exitProv[SimStart] -> M[SimStart]),
M[t:Time] =
if (t+Step <= SimEnd)
then (enterGet[t] -> get[t] -> exitGet[t] -> compute[t] ->

enterProv[t+Step] -> prov[t+Step] ->
exitProv[t+Step] -> M[t+Step])

else STOP + {Labels}.

where

set GetProvs = {{get,prov}[Time]}
set EnterExits = {{enterGet,exitGet,enterProv,exitProv}[Time]}
set Labels = {GetProvs,EnterExits}
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Note that the alphabet extension by Labels is necessary for technical reasons
because the alphabet of property processes must be included in the alphabet of
processes to be checked. By means of the enter and exit actions the desired
exclusion conditions can now be expressed by a further property process, called
EXCLUSION, which follows a standard scheme; cf. [9].

const NrModels = 2
range Models = 1..NrModels
range CountModels = 0..NrModels

property EXCLUSION =
([Models].enterGet[Time] -> GET[1]
|[Models].enterProv[Time] -> PROV[1]),

GET[i:CountModels] =
([Models].enterGet[Time] -> GET[i+1]
|when (i>1) [Models].exitGet[Time] -> GET[i-1]
|when (i==1) [Models].exitGet[Time] -> EXCLUSION),

PROV[i:CountModels] =
([Models].enterProv[Time] -> PROV[i+1]
|when (i>1) [Models].exitProv[Time] -> PROV[i-1]
|when (i==1) [Models].exitProv[Time] -> EXCLUSION).

4.2 Liveness Properties

In contrast to the safety properties it is easy to identify the required liveness
properties for integrative simulations. Obviously, we want that each simulation
model provides data during the whole simulation period at any time that fits
to its local time step. More formally, this means that for all execution traces
w of an integrative simulation, for all models m ∈ Models and for each time
t ∈ T ime with t%Stepm = 0 we have [m].prov[t] ∈ w.

5 Design Model for Integrative Simulations

5.1 Design of the Timecontroller

The specification of the system requirements of the last section is highly non-
constructive. In this section we focus on a solution of the coordination problem
which can be easily transformed into an executable program. The basic idea is to
introduce a global timecontroller that coordinates appropriately all simulation
models participating in an integrative simulation. More precisely, we want to
design an FSP process, called TIMECONTROLLER, such that for n simulation
models the composite process

||SYS = ([1] : MODEL(Step1)|| . . . ||[n] : MODEL(Stepn)||
TIMECONTROLLER(Step1, . . . , Stepn))/{start/[Models].start}
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restricts the execution traces of the uncontrolled simulation models to the legal
ones. The composite process SYS is then considered as the design model for the
system. The (static) structure of SYS is represented by the diagram in Figure 2
which indicates the required communication links.

[n]:MODEL(Step )

TIMECONTROLLER(Step , ..., Step )

[1].EnterExits [n].EnterExits

start

1 n

n

[1]:MODEL(Step )

1

...

Fig. 2. Structure diagram of the design model

The communication links show that each simulation model m communicates
with the timecontroller via the shared enter and exit actions in the (labelled)
set [m].EnterExits (see Section 4.1 for the definition of EnterExits). This
means that the simulation models synchronize with the timecontroller on actions
of the form [m].enterGet[t] etc., where m ∈ Models and t ∈ Time. It is then
the task of the timecontroller to guarantee that synchronization can only occur
if the constraints determined by all property processes (given in Section 4) are
satisfied. For this purpose the enter actions of the timecontroller are guarded
by appropriate conditions which monitor the validity of the safety properties.
To express the necessary conditions the timecontroller is equipped with a local
state (modelled by index variables) which records the execution status of all
simulation models to be coordinated. More precisely, the timecontroller stores
for each model the time for which it gets the next import data (represented
by the index nextGet) and the time for which the model will provide the next
export data (represented by the index nextProv).

The following time controller definition is formulated for the case of two sim-
ulation models where the time steps of the two models are given by parameters.
It is obvious that this description provides a general pattern which can be easily
applied to an arbitrary number of simulation models. For a timecontroller defi-
nition which is generic w.r.t. the number of simulation models one would need
array types which are not available in FSP (but would be available in SPIN [6]).
Let us still remark that the guards of the enter actions are inferred from the
requirements specification by building the conjunction of the guards occuring in
the property processes for the validity of data. Moreover, note that model check-
ing shows that the exclusion property for get and prov is already guaranteed
by these conditions and therefore does not need a special treatment.
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TIMECONTROLLER(Step1=1,Step2=1) =
(start -> TC[SimStart][SimStart][SimStart][SimStart]),

TC[nextGet1:Time][nextProv1:Time][nextGet2:Time][nextProv2:Time] =
(dummy[t:Time] ->
//enterGet
(when (nextProv1-Step1<=t & t<nextProv1 &

nextProv2-Step2<=t & t<nextProv2)
[Models].enterGet[t] ->
TC[nextGet1][nextProv1][nextGet2][nextProv2]

//exitGet
|[1].exitGet[t] -> TC[t+Step1][nextProv1][nextGet2][nextProv2]
|[2].exitGet[t] -> TC[nextGet1][nextProv1][t+Step2][nextProv2]
//enterProv
|when (nextGet1>=t & nextGet2>=t)

[Models].enterProv[t] ->
TC[nextGet1][nextProv1][nextGet2][nextProv2]

//exitProv
|[1].exitProv[t] ->

if (t+Step1<=SimEnd)
then TC[nextGet1][t+Step1][nextGet2][nextProv2]
else TC[SimStart][SimStart][SimStart][SimStart]

|[2].exitProv[t] ->
if (t+Step2<=SimEnd)
then TC[nextGet1][nextProv1][nextGet2][t+Step2]
else TC[SimStart][SimStart][SimStart][SimStart]

|dummy[t] -> TC[nextGet1][nextProv1][nextGet2][nextProv2])
)\{dummy[Time]}.

Let us still comment the role of the actions dummy[t:Time] in the above
process description. In fact, we would not need these actions if we could write

TC[nextGet1:Time][nextProv1:Time][nextGet2:Time][nextProv2:Time] =
//enterGet
(when (nextProv1-Step1<=t & t<nextProv1 &

nextProv2-Step2<=t & t<nextProv2)
[Models].enterGet[t:Time] ->
TC[nextGet1][nextProv1][nextGet2][nextProv2]

...

This would make perfect sense expressing that for any m ∈ Models and
for any t ∈ Time the action [m].enterGet[t] can only happen if the guard
is satisfied for t. Unfortunately FSP does not support this possibility since the
index variable t is considered to be undefined in the guard. However, if we first
introduce the (non-sense) actions dummy[t:Time] then the index variable t is
known where necessary. The dummy actions are made invisible by applying the
hiding operator.
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As an example, the design model of a distributed simulation with two simu-
lation models having time steps 2 and 3 resp. is given by the following composite
process.

const StepModel1 = 2
const StepModel2 = 3
||SYS =

([1]:MODEL(StepModel1)||[2]:MODEL(StepModel2)||
TIMECONTROLLER(StepModel1,StepModel2))/{start/[Models].start}.

We cannot visualize the labelled transition system of the process SYS because
it has too many states and transitions. However, for an analysis of the behaviour
of the design model we can consider different views on the system which can be
formally defined by means of the interface operator. For instance, if we want to
focus only on the get and prov actions executed by the system we can build the
process SYS@{[Models].GetProvs} where the set GetProvs has been defined in
Section 4.1. The corresponding LTS, after minimalization w.r.t. invisible actions,
is shown in the following diagram.
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[2].get[0] [1].get[0]

[1].get[0] [2].get[0]
[1].prov[2]

[1].get[2]

[2].prov[3]

[2].get[3]

[1].prov[4][1].get[4][2].prov[6]

[1].prov[6] [2].prov[6]

[1].prov[6]

[1].prov[0] [2].prov[0]

[1].prov[0]

[2].prov[0]

5.2 Checking the Safety Properties

In order to check that the design model indeed satisfies the required safety
properties we apply standard model checking techniques. For this purpose we
construct for each property process the parallel composition with the design
model. If in the resulting LTS the error state is not reachable then the safety
property is fulfiled, otherwise it is violated. For instance, if the two simulation
models from above are involved in an integrative simulation we construct the
following processes.
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||CHECK_VALIDDATA_USER1_PROV2 =
(SYS||VALIDDATA(1,StepModel1,2,StepModel2)).

||CHECK_VALIDDATA_USER2_PROV1 =
(SYS||VALIDDATA(2,StepModel2,1,StepModel1)).

||CHECK_EXCLUSION = (SYS||EXCLUSION).

The analysis with the LTSA tool shows that no errors occur, i.e. the design
model satisfies the coordination requirements for the validity of data and for
get/provide exclusion. For more complex configurations more efficient model
checkers like SPIN [6] should be used. Several runs with SPIN have shown that
the efficiency of model checking the design of the timecontroller depends strongly
on the distribution of the individual model steps whereby it is beneficial if their
greatest common divisor is as small as possible. Otherwise one may run out
of memory and therefore appropriate abstraction techniques have still to be
investigated.

5.3 Checking the Liveness Properties

In section 4 we have stated a liveness property which requires that each simula-
tion model provides data during the whole simulation period at any time that
fits to its local time step. To check this condition with LTSA we can define a
collection of progress properties of the form

progress PROV_Modelm_t = {[m].prov[t]}

for each m ∈ Models and t ∈ T ime with t%Stepm = 0. With this approach,
however, two difficulties arise. First, we obtain quite a lot of progress properties
to be considered and, more seriously, none of the properties will be fulfilled
because simulations are finite but progress properties assume infinite execution
traces.

The first difficulty can be easily solved by using indexed progress properties.
In our case we define for each model a family of progress properties indexed by
the time for which the model should provide data. This means that for each
m ∈Models we obtain an (indexed) progress property of the following form:

progress PROV_Modelm[i:0..(SimEnd-SimStart)/StepModelm] =
{[m].prov[SimStart + i * StepModelm]}

To overcome the second problem the idea is to introduce artificial cycles
such that after a simulation is finished it is automatically restarted. We will not
further detail here the necessary, straightforward modifications of the processes
occurring in the design model. It should be obvious that for checking the required
liveness property for integrative simulations it is now (necessary and) sufficient
to check that the modified design model satisfies all progress properties from
above. Indeed a progress analysis with LTSA shows that no progress property is
violated. Thus, in summary, we have shown that the timecontroller-based design
model is a correct solution of the coordination problem.
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6 Conclusion

We have demonstrated the usefulness of a rigorous formal modelling approach for
the development of a solution for a non-trivial coordination problem occurring,
for instance, in environmental systems engineering. The general strategy of this
approach which is driven by property processes can, however, be applied in all
situations where single components run concurrently with local time scales but
must cooperate according to some predefined global order. We believe that the
incremental specification of system requirements by using property processes is
methodologically very useful. This method is supported by the language FSP [9]
but not by SPIN [6] or related model checking approaches. On the other hand we
have seen that FSP has also some technical deficiencies (concerning array types
and guarded indexed actions) which is not the case for SPIN. Also for checking
complex models the performance of the SPIN tool is much better than the one
of the FSP tool LTSA. To check complex configurations, however, we still need
appropriate abstraction techniques to overcome the problem of state explosion.

For lack of space we have not shown in this paper how to construct an imple-
mentation of the timecontroller-based design model. Indeed for this purpose we
can apply a general translation scheme which transforms the design model into
a Java implementation realizing the single simulation models by concurrently
executing threads and the timecontroller by a monitor object with appropriate
synchronized methods which implement the enter and exit actions of the time-
controller.
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Abstract. Mobile ad hoc networks (MANETs) are wireless networks
formed spontaneously. Communication in such networks typically in-
volves multi-hop relays, and is subjected to dynamic topology changes
and frequent link failures. This complex scenario demands robust routing
protocol standards that ensure correct and timely delivery of messages.
Recently, formal verification has been successful in detecting ambiguities
in protocol standards. We consider the Ad hoc On Demand Distance
Vector (AODV) protocol, a reactive protocol currently undergoing stan-
dardisation at the IETF (RFC3561). AODV performs route discovery
whenever a route to the destination is needed, and retains routing in-
formation for a period of time specified by the standard. We apply the
real-time model checker Uppaal to consider the effect of the protocol
parameters on the timing behaviour of AODV, thus complementing the
earlier untimed verification effort. Our study of the recent versions of the
standard (RFC3561-bis-01) has highlighted a dependency of the lifetime
of routes on network size, which can be alleviated by allowing the route
timeouts to adapt to network growth.

1 Introduction

Mobile ad hoc networks (MANETs) are networks of mobile devices that commu-
nicate without the need for a central authority and infrastructure, formed with-
out a-priori knowledge or planning. Ad hoc networks can be set up anywhere and
anytime, are dynamic and often exhibit frequent topology changes due to loss of
contact and movement. Three basic approaches to routing are taken: proactive
protocols, which continuously exchange routing information between the nodes
(e.g. OLSR); reactive, which build routes on demand (e.g. AODV); and hybrid
combinations of the two (e.g. ZRP).

The Ad hoc On Demand Distance Vector (AODV) protocol [6] is a reactive
routing protocol currently in the process of being standardized at the IETF
(RFC3561) and implemented [12, 19]. To transmit data over such a network, the
AODV protocol enables dynamic, multihop routing between devices. AODV is
an on demand algorithm, meaning that a route discovery mechanism is invoked
only when the sender wishes to transmit data. These routes are maintained as
long as they are needed by the senders, and are deleted after a certain amount
of time has passed so as not to overload the routing tables. AODV is designed
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for ad hoc networks of a wide range of sizes, from the very small to networks
of tens to thousands of mobile, Internet enabled, nodes. Simulation experiments
for 1000 nodes have been reported, and first implementations are available [19].

The dynamic aspects of mobile ad hoc networks mean that both the topology
of such networks and their size varies over time, giving rise to an unbounded
execution tree and infinitely many states. This scenario is much more complex
than for existing network protocols, and consequently designing protocols that
achieve correct and timely delivery of messages is inherently more difficult. Much
valuable effort is therefore being directed towards the formulation of routing
protocol standards for MANETs, of which AODV RFC3561 is one example,
to serve as a specification to which a protocol implementation must conform.
The implementations are then developed according to the guidelines set by the
standard. Unfortunately, the resulting protocol complexity sometimes results in
unintentional ambiguities introduced into the standard, which, if undetected, can
be transferred to the implementation. An analysis of the proposed standards is
therefore desirable, and it results in subsequent revisions.

Recently, formal verification has been successfully employed as an aid to
detect ambiguities in the proposed AODV standards and implementations [9,
15], resulting in the discovery of routing loop errors in early protocol versions
(version 4) that have been addressed in later revisions of the draft standard. Both
these approaches do not model real-time, and instead replace the real-valued
timer events with non-deterministic time-outs. This can result in false positives,
i.e. error traces that do not correspond to realistically timed scenarios, and is
undesirable since the AODV protocol uses real-valued timers in an essential way,
for example to determine the lifetime of routes. It is important that routing is
handled in a timely manner, i.e. route discovery and message delivery happen
without unnecessary time delays. The timing values are determined by formulas
dependent on protocol parameters (constants) specified by the standard. Clearly,
the choice of the constants and the route lifetimes will affect the timeliness of
protocol actions, especially as the network size and topology change dynamically
over time.

In this paper, we complement the existing analyses of the AODV protocol by
model checking its timing aspects. Working from the most recent draft standard
documents, we build a timed automata model for AODV using the Uppaal
[22, 24] model checker. We consider the effect of the default protocol parameters
on the timing behaviour of AODV, and investigate properties such as timely
route discovery and the ability to deliver messages within a specified time period.
Our study of the AODV draft standard has highlighted a dependency of the
lifetime of routes on network size, which may lead to failure to discover the
route if it exists or failure to deliver the data to destination. The observation
pertains to the latest version (RFC3561-bis-01 [6]) and, in a simpler form, to
earlier versions (13 and RFC3561-bis-00) of the draft standard. Having inspected
a recent implementation of AODV [19], we confirm our observation also for this
implementation with the help of an ns-2 simulation experiment. We propose a
modification to the standard that alleviates the problem by allowing the route
timeouts to adapt to network growth.
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2 The AODV Protocol

The Ad Hoc On-Demand Distance Vector (AODV) Protocol is an IP routing
protocol that allows users to find and maintain routes to other users in the net-
work. AODV is on-demand, or reactive, in the sense that routes are established
only when needed. The routing decisions are made using distance vectors, i.e.
distances measured in hops to all available routers. The protocol supports uni-
cast, broadcast, and multicast. The version of AODV we describe below is based
on the RFC draft standard [6].

Each nodes maintains a sequence number, which saves a time stamp, and
a routing table, which contains routes to destinations. Sequence numbers are
used to determine the freshness of routes (the higher the number, the fresher
the route, and the older one can be discarded). Each table entry contains the
address of the next hop (next node to destination), a hop count (number of
hops to the destination) and a destination sequence number. Since this is an on-
demand distance vector scheme, routers maintain distances of those destinations
only that they need to contact or relay information to. Each active route is
associated with a lifetime stored in the table; after this time has passed route
timeout is triggered, and the route is marked as invalid and later on removed.
AODV uses two main procedures, route discovery and route maintenance, which
are described below.
Route Discovery. If a sender (source node) needs a route to destination, it
broadcasts a ROUTE REQUEST (RREQ) message. Every node also maintains
a broadcast id which, when taken together with the originator’s IP address,
uniquely identifies a RREQ. Every time a sender issues a RREQ, it increments
its broadcast id and sequence number by one. The sender buffers this RREQ
for PATH DISCOVERY TIME (PDT) so that it does not reprocess it when its
neighbours send it back. The sender then waits for NET TRAVERSAL TIME
(NETT) for a ROUTE REPLY (RREP). If a RREP is not received within this
time, the sender will rebroadcast another RREQ up to RREQ TRIES times.
With each additional attempt, the waiting time (NETT) is doubled.

When a node receives a RREQ message it has not seen before, it sets up a re-
verse route back to the node where the RREQ came from. This reverse route has
a lifetime value of ACTIVE ROUTE TIMEOUT (ART). The reverse route entry
is stored along with the information about the requested destination address. If
the node that receives this message does not have a route to the destination, it
rebroadcasts the RREQ. Each node keeps track of the number of hops the mes-
sage has made, as well as which node has sent it the broadcast RREQ. If nodes
receive a RREQ, which they have already processed, they discard the RREQ
and do not forward it.

If a node has a route to the destination, it then replies by unicasting a RREP
back to the node it received the request from. The reply is sent back to the sender
via the reverse route set by the RREQ. As the RREP propagates back to the
source, nodes set up forward pointers to the destination. Once the source node
receives the RREP, the route has been established and data packets may be
forwarded to the destination.
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Route Maintenance. The role of route maintenance is to provide feedback
to the sender in case a router or link has gone down, to allow the route to be
modified or re-discovered. A route can stop working simply because one of the
mobile nodes has moved. If a source node moves, then it must rediscover a new
route. If an intermediate node moves, it must inform all its neighbours that
needed this hop. This message is forwarded to all the other hops and the old
route is deleted. The source node must then re-discover a new route.

One proposed way for a node to keep track of its neighbours is by using
HELLO messages. These are periodically sent to detect link failures. Upon re-
ceiving notification of a broken link, the source node can restart the rediscovery
process. If there is a link breakage, a ROUTE ERROR (RERR) message can be
broadcast on the net. Any host that receives the RERR invalidates the route and
rebroadcasts the error messages with the unreachable destination information to
all nodes in the network.

3 Correctness Requirements for Routing Protocols

Reactive routing protocols for mobile ad hoc networks are complex schemes for
the following reasons. Firstly, the scheme must allow for an unbounded number
of nodes acting in parallel, with each node acting as a router, destination and
relay node. Secondly, the topology can change dynamically, and hence the pro-
tocol must be able to recover from link failures. Finally, real-time clocks play a
key role in the protocol, both in setting the lifetimes of routes and triggering
timeouts. Achieving efficient and correct routing in such scenarios is a non-trivial
undertaking for standardisation efforts. The main correctness requirements for
a routing protocol, first stated in [27], are:

I. If a path exists between two nodes, then a route between them will eventually
be discovered.

II. When a route has been discovered and it is valid, packets are eventually
delivered from source to destination.

Property II implies that a so-called routing loop is prevented. A routing loop is
a situation in which, during the route discovery process, a flawed route is formed
in which nodes point to each other in a forwarding circle. Thus, packets are not
delivered to the destination. Such a situation can arise if a link breaks during
route discovery and a node is not notified that its route became invalid.

The conventional approach to analysing network protocols is via testing and
simulation. Neither is able to rule out logical flaws in the protocols because of
partial coverage of executions: simulation or test runs can often miss certain con-
ditions dependent on timing, so called ‘corner cases’, thus bypassing a possible
erroneous execution that may be exhibited by an implementation in future. On
the other hand, subjecting the protocol to formal verification, for example via
model checking, enables detailed and exhaustive analysis of network protocols. A
model of the protocol together with the required properties, usually expressed in
temporal logic, is submitted to a software tool called a model checker. The pro-
cess of model checking can definitively establish that the property holds, or that
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it is violated, in which case a trace leading to error is produced. The limitation
of model checking is that only finite-state models/configurations can be han-
dled, and thus infinite-state systems can be verified only if they have property
preserving finite-state abstractions. Thus, these tools are particularly useful to
demonstrate violations of properties that can serve as important feedback for the
standardisation effort. A more powerful approach is that of theorem proving; it
enables correctness proofs for all possible parameter values, but at a substantial
manpower effort.

The use of formal verification methods to analyse Internet standards has been
advocated in [10, 15]. A model of the protocol can be built from the standard
specification and subjected to verification. In [10], a routing loop error detected
in AODV version 2 with the SPIN model checker and verification of routing loop
freedom was performed with the help of HOL theorem prover. However, newer
versions of AODV, version 5 onwards, crucially depend on timing. The standard
sets certain parameters (constants), and those are then used to assign route
lifetimes and define event timeouts. There are then two issues that one needs to
consider about the protocol. Firstly, properties I and II should be established
with the additional proviso of “in a timely manner”. More importantly, the
particular combination of timing constants may have an effect on the correctness
of the protocol: for example, routes may time out too early. With the exception of
a small-scale study in [29], this issue has not been investigated; the models built
were untimed, derived by replacing a delay with a non-deterministic timeout
event. This may miss timing errors. Therefore, as already suggested in [10] [page
566], AODV from version 5 onwards necessitates a real-time verification. We
address this in this paper by analysing most recent versions of AODV [6] using a
state-of-the-art real-time model checker Uppaal [24], with emphasis on how the
parameters as set by the standard affect the correctness of routing and message
delivery (properties I and II) of the protocol.

4 Modelling AODV Using Timed Automata

Since we are interested in analysing timing aspects of AODV, we model the
protocol with timed automata as opposed to a C-like program in previous works
[10, 15]. Uppaal [24] is an established and widely used model checker which
provides an easy to use environment for constructing timed automata models
and verifying them against timed temporal logic specifications. The Uppaal
model-checking engine works on-the-fly and takes advantage of some advanced
techniques to overcome the state space explosion. Experimental results show
that, thanks to these techniques, Uppaal is significantly faster than other real-
time verification tools [23] and also able to verify more complex systems [7].
Some of the industrial case studies include: the Bounded Retransmission Protocol
whose correctness was shown [16] to be dependent on correctly choosing time-
out values; the Bang & Olufsen Audio/Video Protocol, known to be faulty, for
which an error trace was uncovered [20] and a corrected model automatically
verified; and the Collision Avoidance Protocol, which was shown to be collision
free [1].
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This paper concerns the latest version RFC3561-bis-01 of the standard. Ev-
ery node in an AODV network acts as a sender, router (intermediate node) or
destination depending on the situation. Therefore, all nodes in an ADOV net-
work have identical functions. We first model this behaviour as a generic AODV
node. Since an AODV network is symmetric, we can use a template of Uppaal
to simplify the model.

We define node parameters as set by the draft standard [6]. As we investigate
the effect of the timing values that are suggested in the draft standard on the
correctness of the protocol, we can abstract the actual control packets from the
model since they are of no interest in this particular case. For simplicity, we also
abstract the use of RERRs and HELLO messages since we only analyse the route
discovery process and not the route maintenance process. If a node receives a
data packet, and the intended destination’s route is expired or does not exist,
we halt the verification. The model of the generic node can be found in [14]. An
n-node AODV network is then modelled using n instances of the generic node.

Since we have worked from the draft standard [6], the model that we have
derived can serve as standard timed specification. We have performed an analysis
of thus derived specification, and were able to confirm a routing loop error of
[10] for an appropriately adapted version of the model. However, the state-space
explosion means that the maximum size of the network that we could consider
by direct verification is 5. For larger network sizes the verification becomes in-
feasible. We note, however, that the routing loop error has been exhibited in [15]
with 4 nodes and in [10] with 3 nodes. We therefore seek ways to reduce the size
of the model while preserving the properties of interest. For a protocol model
S (specification) and its refinement R (implementation), denoted by R ≤ S, we
say R preserves S’s properties of interest if R |= ϕ implies S |= ϕ.
AODV Specification vs Implementation. Observe that, for the properties
we are interested in analysing, it suffices to consider one specific sender and one
destination. This can be achieved by refining the generic node into nodes that
perform the specific functions, while preserving key behaviour. The generic node
is thus refined separately into three main functions, the sender, destination and
intermediate node, as follows:

– sender: this node will only generate and send RREQs, receive RREPs and
send data packets,

– intermediate node: this node will only receive RREQs, RREPs and data
packets and forward them,

– destination: this node will only receive RREQs and data packets, and gen-
erate and send RREPs.

Since we only consider the route discovery process, only the destination node
will increment its own destination sequence number. The individual nodes in
the model, see [14] for the timed automata, behave as follows:
The Sender Node. The sender will increment its sequence number and broad-
cast id by one, then sends a RREQ and moves to state wait for reply to wait
for a RREP. If a RREP is not received within NET TRAVERSAL TIME time
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(NETT), the sender times out and sends another RREQ. The NETT is dou-
bled and the broadcast id incremented by one every time a RREQ is resent. The
sender will resend RREQs up to RETRIES times. If a RREP corresponding to a
RREQ that has timed out is received, it is ignored. When the anticipated RREP
is received, the sender establishes the route to the destination node and starts
sending data packets. When the sender has tried RETRIES times for a route
and still times out after the RETRIES th time, the sender node concludes that
a route to the desired destination does not exist.

The Intermediate Node. The intermediate node will accept a RREQ, RREP
or data packets from its neighbouring nodes, update its own routing table, broad-
cast the RREQ or forward the RREP/data packets to the next node along the
route to the destination node for the data packets and the source node for the
RREPs, according to its (intermediate node) routing table only if the route is
still active. If the route has expired, the intermediate node does not forward the
RREPs or data packets. If intermediate nodes are allowed to reply to RREQs,
an intermediate node will generate a RREP to a RREQ if it knows the route to
the destination sought. Every RREQ has a flag that is set to enable, or unset to
disable, intermediate nodes to reply to RREQs.

The Destination Node. The destination node will accept RREQs from its
neighbouring nodes, then updates its routing table, increments its sequence num-
ber (destination sequence number) by one, and generates a RREP. The desti-
nation node will also accept data packets. We model the destination to receive
just the first data packet, and, once the first data packet gets to the destination
node, we restart the route discovery process.

Establishing Refinement Between AODV Specification and Implemen-
tation Models. When deriving the specialised nodes from the generic node
model, we must ensure that the properties of interest are preserved through this
derivation, i.e. R ≤ S and R |= ϕ implies S |= ϕ. In our case, S is a parallel
composition of individual components, for example S = S1‖S2, where each com-
ponent has a corresponding implementation (refinement) R1, R2 respectively.
The principle of compositionality allows us to tackle the state space explosion
in the following way.

We first need to establish that Ri are true implementations (refinements) of
Si, i.e. Ri ≤ Si. A number of relations are possible as refinement in the context of
timed automata. Since we have used timed automata with committed locations
(no delay is allowed to occur in a committed state), urgent channels (in a state
where two components may synchronize on an urgent channel, no further delay
is allowed) and shared variables (global variables), we work with timed ready
simulation [21] as refinement; it relates states of one timed automaton A to
states of another timed automaton B in such away that the actions and their
timings in admissible timed executions correspond (as in timed simulation) in
the presence of shared variables, urgent channels and committed states. Unlike
timed simulation, timed ready simulation ≤ is a pre-congruence for the parallel
operator, that is, R ≤ S implies R‖A ≤ S‖A. Let ≤ preserve a chosen class of
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properties, i.e. Ri ≤ Si and Ri |= ϕ implies Si |= ϕ. In Uppaal, the verification
of A ≤ B can be reduced to the following reachability problem:

A ≤ B iff A‖TB does not reach error

where TB is the test automaton derived from B [28]. Next, assuming we have
established that Ri ≤ Si holds for i = 1, 2, by compositionality based on the
result of [2, 21] we have:

R1 ≤ S1 R2 ≤ S2

R1‖R2 ≤ S1‖S2

We represent the AODV protocol specification as a network of generic AODV
nodes, i.e. a composition of the form:

AODVspec ≡ generic1‖ . . .‖genericn−1‖genericn

and, as implementation, we can consider a network, where we have one sender
node requesting a route, several intermediate nodes to forward packets, and one
destination node, namely:

AODVimpl ≡ sender‖inter1‖ . . .‖intern‖dest

Thus, application of the technique of [28] to the AODV node models, that
is, a manual derivation of the test automaton in each case and execution of a
reachability check confirming that error is not reached, allows us to conclude by
compositionality:

AODVimpl ≤ AODVspec

In the test automaton, error is a designated error-location entered whenever
the behaviour of AODVimpl is outside the behaviour specified by AODVspec.
With this approach, we reduce the size of the models that have to be analysed, in
a manner preserving chosen properties. We focus on existential properties, which
are preserved under refinement, i.e. R ≤ S and R |= ϕ implies S |= ϕ, where ϕ
is of the form E<> ψ (eventually ψ) and may refer to real-time deadlines.

The model AODVimpl is a refinement of the original specification model
AODVspec built from generic nodes, which is nevertheless sufficiently detailed to
exhibit a timing flaw in the specification, described in the next sections.

5 The Verification Approach

We consider the effect of default timing constants on the properties of eventual
route formation and eventual delivery of packets. It suffices, in our case, to
assume absence of data loss. In this paper, we focus on route discovery and
management and consider active routes.

A route is deemed active as long as there are data packets periodically trav-
elling from the source to the destination along that path. Once the source stops
sending data packets, the links will time out and eventually be deleted from the
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intermediate node routing tables. We focus on specific verification scenarios with
finite static topologies and look for property violations. Since we have established
refinement, it follows that any existential properties true of the implementation
also hold for the specification. The model of the protocol can be investigated
under different topology scenarios; the analysis we report here pertains to the
(static) linear topology.
The Linear Topology Scenario. We arrange nodes of an n-node network into
a chain, with one sender and one destination, as follows. IP addresses are selected
using integers from 0 to n−1. Node 0 will be our originating node (sender), node
n− 1 will be the destination node, and the rest are intermediate nodes with IP
addresses allocated consecutively. Thus, node 0 has node 1 as its neighbour and
the destination node has n− 2 as its neighbour.

The AODV draft standard [6] suggests that a sender tries three times to
discover a route before concluding that a node cannot be reached. To allow easy
instantiation of the model for different numbers n of the intermediate nodes,
we have formulated an n nodes node which combines n nodes linearly into one
multiple node.

Thus, the obtained n node has fewer states, which ensures feasibility of the
verification. The correctness of the construction is confirmed by checking refine-
ment as before. Now, we model the linear topology scenario with one sender, one
destination and three identical sets of intermediate nodes, one for each RREQ
attempt. In other words, we have three copies of each intermediate node running
in parallel, as illustrated in Figure 1.

destination

intermediate nodes

sender

RREP3

RREQ1

RREP1

RREQ3

RREP3

RREP2

RREQ2

RREP2

RREQ2

RREQ3

RREP1

intermediate nodes

RREQ1

intermediate nodes

Fig. 1. The AODV linear topology model

For the remainder of the paper we consider the simplified model for AODVimpl

which employs the n node. We successfully proved that twelve intermediate
nodes simulate a 12 node multiple node. The automata models can be found
in [14].

6 A Timing Analysis of AODV

In this paper we consider some of the default constants suggested in the lat-
est version of AODV draft standard [6]. We are particularly interested in the
NET DIAMETER (ND) value. This value is a measure of the network size,
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defined as the maximum possible number of hops between two nodes in the net-
work, and is used to determine route lifetime and time-out values. The protocol
suggests that the value of ND be a constant, but does not mention how this value
should be adjusted to suit the dynamic changes in network size. The following
are some of the default constants suggested in [6]:

NODE TRAVERSAL TIME = 10ms. This is the time taken by a node on
average to process a packet.

NET DIAMETER = 20. We use 2 for model reduction.
NET TRAVERSAL TIME = 2 * NODE TRAVERSAL TIME *

NET DIAMETER ms. Time a sender
waits for a RREP.

ACTIVE ROUTE TIMEOUT= max(3000,PATH DISCOVERY TIME)
(abbrev. ART ) where PATH DISCOVERY TIME =

2* 2 * NET TRAVERSAL TIME.
This is lifetime of a valid route. If maximum is
3000ms then we have the situation described
version 13, else version 00.

RETRIES = 3.

Though we work with average message delivery times, it is also possible to
rerun the analysis for an interval of values. We separately consider two cases set
out in the standard:

1. when intermediate nodes are allowed to respond to RREQs, and
2. when intermediate nodes are not allowed to respond to RREQs, with only

the destination node allowed to respond.

Below we describe the outcome of our analysis when intermediate nodes are
allowed to reply to a RREQ; the other case is omitted for reasons of space. As-
sume we have a linear topology with fourteen nodes in the network, one sender
(number 0), one destination (number 13) and twelve intermediate nodes (num-
bered 1 to 12). We also assume that we have no message loss and no delays in
the network. The sender (node 0) sends a message to node 13, and is allowed
to try three times for a route to a destination. We refer to each route discovery
attempt as the Route Request Process (RRP). We ensure that the sender issues
five RRPs, each with three attempts, before it can conclude that a route does
not exists. In real life a sender might try one RRP and conclude that a route
does not exist. At a later stage the same node may try again to find a route to
the same destination, maybe for a different set of data packets, and the topology
might have changed.

We first investigate the correctness property I, i.e. eventual route discovery,
assuming the route exists, in negated form.
I. Can a sender fail to find a route to a destination when the route
exists? Using Upppal we verify the property ‘eventually the sender reaches a
state with no route found’:

E<> sender.no route
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where the no route state is a state in which the sender learns that no route exists,
for a situation in which the route is known to exist.

Because the topology remains static, the number of RREQs the sender issues
does not affect the outcome. This undesirable property is satisfied and the fol-
lowing trace is produced, where we use ‘ip[n]=m’ to denote that the node with
the IP address n is sending to node with address m, and similarly for destination
IP address ‘dip[n]=m’:

RREQ trace : ip[0] = 13 ip[1] = 11 ip[2] = 7
RREP trace : dip[0] = 1 dip[1] = 2 dip[2] = 3

This trace (see detailed illustration in Figures 2 and 3) means that the
first RREQ (RREQ1) gets to the destination node (node 13). The first RREP
(RREP1) is generated and sent back to the sender. When RREQ1 is at node
4, the sender’s RREQ timer times out and the second RREQ (RREQ2) is sent.
RREQ2 gets to node 11 and finds a route (set by RREP1). RREP2 is gener-
ated by node 11. The sender’s RREQ timer times out again and another RREQ
(RREQ3) is sent. RREQ3 gets to node 7 and finds that node 7 has a route to the
destination (set by RREP1). RREP3 is generated by node 7. When RREP1 gets
to node 1, the route to the sender has timed out and is not forwarded. When
RREP2 and RREP3 get to node 1, they are both not forwarded as well, as the
route to the sender node has since expired. Thus, eventually the sender times
out, failing after 3 attempts to find a route to the destination when, in fact, the
route existed.

Note that, in Figures 2 and 3, we show route timers for the intermediate
nodes only, i.e. nodes 1 to node 12. After 70ms, RREQ1 is at the destination
and RREQ2 is at node 8. In the first step, after 40ms in Figure 2, the sender
times out as the RREQ timer is initially set to 40ms. A second RREQ is sent,
and the sender’s RREQ timer is set to 80ms (2*40ms).

In step 3, in Figure 2, RREP1 has been generated by the destination and has
been propagated to node 10. RREQ2 is at node 11. Node 11 has a route to the
destination set by RREP1 and because intermediate nodes are allowed to reply
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to RREQs, RREP2 is generated by node 11. RREQ2 has been updating the life
of the route to the sender on its way to the destination. RREQ3 is at node 2.

After 60ms, see Figure 3, RREP1 is at node 5, RREP2 at node 6 and RREQ3
at node 7. Node 7 has a route to the destination set by RREP1, and hence can
reply to RREQ3. RREP3 is generated. RREQ3 has been updating the route
to the sender. After 100ms, as shown in Figure 3 (since RREQ3 was sent),
RREP1 is at node 1, and RREP2 and RREP3 are at nodes 2 and 3 respectively.
The route lifetime at node 1 is 90ms (which is greater than ART=80ms), and
hence RREP1 will not be forwarded to the sender. RREP2 and RREP3 will be
forwarded to node 1 where the route has expired and will not be forwarded to
the sender either. The sender will eventually time out and conclude that the
route does not exist.

Next we consider property II, again in negated form.

II. Can a route expire before a data packet is transmitted? We assume
that the sender starts sending data packets as soon as the route is found. We
consider the first data packet along the way from the sender to the destination
and test to see if any of the intermediate node’s routes to the destination will
time out before they have actually forwarded the first data packet. The property,
‘eventually the intermediate node times out’, is as follows:

E<> (inter.data route timeout)

Assume we have 7 nodes in the network, one sender, one destination and five
intermediate nodes. When the first data packet gets to node 5, the route to the
destination at that node would have timed out, and this property is satisfied.
Below is the trace that is obtained:

RREQ trace : ip[0] = 6 ip[1] = 6 ip[2] = 0

RREP trace : dip[0] = 0 dip[1] = 0 dip[2] = 0

Route Lifetime : route[0] = [170, inf ] route[1] = 30 route[2] = 20
route[3] = 10 route[4] = 0 route[5] = 100

Data trace : dataip = 5
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To explain this outcome, let us consider the point when the sender has just
received RREP2. Below are the values of route timers along the way to the
destination:

Route Lifetime : route[0] = [170, inf ] route[1] = 0 route[2] = 10
route[3] = 20 route[4] = 30 route[5] = 50

The sender will take another 10ms to process the RREP and start sending
data packets, then another 40 ms to get to node 5. Thus, by the time the first
data packet gets to node 5, after 50ms the route timer at node 5 will be 100ms,
which is greater than ART=80ms.

In summary, we have established that, in a network with (constant) default
parameters set by the standard, the correctness requirements I and II are not
satisfied. We have exhibited this property in the refined implementation model,
assuming absence of message loss and delays; since it is existential, it follows that
it is also exhibited by the specification, and in a realistic scenario with message
loss and delays.
How to Define NET DIAMETER. The AODV draft standard may be im-
proved by allowing the value of NET DIAMETER to grow with the network size.
Initially, we can set it to be e.g. the constant suggested by the standard, and
then let individual nodes modify it. If a node receives a RREQ, RREP, or RERR
packet that has a hop count that is greater than the node’s NET DIAMETER,
then the node should adjust its NET DIAMETER to the value of this hop count.
This allows the nodes to learn and adapt to the new network size.

We have modified the model accordingly and re-verified the corrected model
for the variant where intermediate nodes are allowed to reply to RREQs. The
automata for this model can again be found in [14]. We observe that the proper-
ties I and II are now satisfied; in particular, the validity of routes is prolonged.
Note that this does not amount to a full verification of correctness, which would
have required a theorem prover, but is automatic.

For a decrease in network size, we propose to leave the NET DIAMETER
unchanged. This ensures that, if a route exists, the requesting node will eventu-
ally find it. However, if the route does not exist, then the requesting node has
to wait longer before it can conclude that this is so.

7 Related Work

Model checking has been successfully used to analyse various distributed proto-
cols, but few papers have applied model checking in the context of mobile ad
hoc network routing. We mention the discovery of a routing loop error found in
early versions of AODV with the Spin model checker [8] and Murphi [15]. En-
gler et al [18] have analysed three AODV implementations using CMC (a model
checker for the C programming language), reporting several errors of which one
can be attributed to the standard specification on RERR handling. In their
earlier work [15], they explain how reordering of RERR messages by the link
layer could lead to a routing loop. Other errors reported include mishandling of
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memory allocation, missed essential checks of packets and routing loops. Their
handling of time to ensure a compact model can miss timing errors. A pred-
icate abstraction approach (requiring human intervention) was used in [17] to
verify the absence of routing loops. In [9], an automated proof of routing loop
freedom is given under certain conditions, using the model checker Spin and the-
orem prover HOL. Real-valued time-outs are represented as non-deterministic
time-out events, which does not faithfully model real-time passage.

None of the verification studies that we are aware of considered the tim-
ing aspects of AODV, with the exception of [29] which used DTSpin [11], an
extension of Spin with discrete time, but was not as extensive as our study.
They reported that their DTSpin version was too unstable and abandoned their
automatic verification attempt using DTSpin in favour of a manual proof. All
the above AODV studies concern earlier, less complex versions of the standard.
Some aspects of timing properties have been analysed for the LUNAR protocol
[27], using the Uppaal model checker, but for very small models only.

The NET DIAMETER issue has been raised briefly on the MANET mailing
list [25, 26], but not followed up since. Preliminary reports of this work appeared
as [13, 14].

8 Conclusion

We have modelled the AODV protocol with timed automata and analysed certain
configurations using a number of techniques developed for the Uppaal model
checker to obtain model reductions. We observe that the protocol as specified
may unnecessarily result in failure to discover the route or deliver the message.
The problem occurs because nodes wait for a fixed time for RREPs that, in
a dynamically growing network, may take much longer to reach the requesting
node. We propose a modification to the AODV routing algorithm by allowing
the nodes to amend the value of NET DIAMETER through learning about the
size of the network from the incoming packets. To our knowledge, this is the first
solution to this problem.

In contrast with previous work, we have analysed the latest draft specification
[6], as well as earlier versions 00 [4] and 13 [5]. All three exhibit this problem,
albeit in slightly different form. As a sanity check, we ran ns-2 experiments for the
AODV-UU implementation code [30] that complies with version 13, confirming
our observations for this implementation also by obtaining identical traces to
those exhibited by the model. We have notified the AODV authors about our
findings and they have accepted our suggestions [3].
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