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Preface

This volume contains the proceedings of the 26th International Conference on
Application and Theory of Petri Nets and Other Models of Concurrency
(ICATPN 2005). The Petri net conferences serve to discuss yearly progress in
the field of Petri nets and related models of concurrency, and to foster new ad-
vances in the application and theory of Petri nets. The conferences typically have
100–150 participants, one third from industry and the others from universities
and research institutions, and they always take place in the last week of June.
Successive editions of the conference are coordinated by the Steering Committee,
whose members are listed on the next page, which also supervises several other
activities—see the Petri Nets World at the URL www.daimi.au.dk/PetriNets.

The 2005 conference was organized in Miami by the School of Computer
Science at Florida International University (USA). We would like to express
our deep thanks to the Organizing Committee, chaired by Xudong He, for the
time and effort invested to the benefit of the community in making the event
successful. Several tutorials and workshops were organized within the confer-
ence, covering introductory and advanced aspects related to Petri nets. Detailed
information can be found at the conference URL www.cs.fiu.edu/atpn2005.

We received altogether 71 submissions from authors in 22 countries. Two
submissions were not in the scope of the conference. The Program Commit-
tee selected 23 contributions from the remaining 69 submissions, classified into
three categories: application papers (6 accepted, 25 submitted), theory papers
(14 accepted, 40 submitted), and tool presentations (3 accepted, 4 submitted).
We thank all authors who submitted papers. We would like to express our grati-
tude to the members of the Program Committee and the other reviewers for the
extensive, careful evaluation efforts they performed before the Program Com-
mittee meeting in Rennes; their names are listed on the next two pages. We also
gratefully acknowledge Martin Karusseit, of the University of Dortmund, for
his technical support with the Online Conference Service, which relieved many
administrative tasks in the management of the review process.

This volume contains the papers that were presented at the conference after
selection by the Program Committee, plus a few other papers that summarize
invited lectures given at the conference. The invited papers included in this vol-
ume reflect the lectures given by Giuliana Franceschinis, Ken McMillan, Manuel
Silva, and Jeannette Wing. Two more lectures were delivered at the conference:
New Dimensions for Nets by Carl Adam Petri, and Processes for a Service
Oriented World by Francisco Curbera. We are much indebted to Springer for
smoothing all difficulties in the preparation of this volume.

April 2005 Gianfranco Ciardo and Philippe Darondeau
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Anikó Costa
Deepak D’Souza
Zhengfan Dai
Pierpaolo Degano
Salem Derisavi
Jörg Desel
Raymond Devillers
Michel Diaz
Roxana Dietze
Junhua Ding
Susanna Donatelli
Zhijiang Dong
Michael Duvigneau
Joost Engelfriet
Rob Esser
Alessandro Fantechi
Berndt Farwer
Carlo Ferigato
Gianluigi Ferrari

Joern Freiheit
Yujian Fu
Guy Gallasch
Mauro Gaspari
Edgar de Graaf
Mark Griffith
Stefan Haar
Serge Haddad
Bing Han
Keijo Heljanko
David Hemer
Kunihiko Hiraishi
Hendrik Jan Hoogeboom
Ying Huang
Guillaume Hutzler
Dorothea Iglezakis
Andreas Jakoby
Ryszard Janicki
Kurt Jensen
Jens Baek Jo/rgensen
Kaustubh Joshi
Tommi Junttila
Mohamed Kaaniche
Seiichi Kawata
Victor Khomenko
Ekkart Kindler
Nicolas Knaak
Geoffrey Koh
Michael Köhler
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Expressiveness and Efficient Analysis of
Stochastic Well-Formed Nets

Giuliana Franceschinis

Dip.Informatica, Univ. del Piemonte Orientale, Alessandria, Italy
giuliana@mfn.unipmn.it

Abstract. This paper is a survey of the Stochastic Well-formed Net
(SWN) formalism evolution, in particular it discusses the expressiveness
of the formalism in terms of ease of use from the modeler point of view,
and briefly presents the main results that can be found in the literature
about efficient (state space based) analysis of SWN models. Software
tools supporting SWN design and analysis are also mentioned in the
paper. The goal of the paper is not to present in details the formalism
nor the analysis algorithms, but rather to recall the achieved results and
to highlight open problems and possible directions for new developments
in this research area.

1 Introduction

Well-formed Nets (SWN) and their stochastic extension (SWN) were first pre-
sented at the beginning of ’90s [15, 16], as an evolution of (Stochastic) Regular
Nets [34, 29]. SWN belong to the class of High Level Petri Nets (HLPN), and
includes (stochastic) timed transitions as well as immediate transitions, with a
semantics inherited from Generalized Stochastic Petri Nets (GSPN) [1]. A pe-
culiar feature of the SWN formalism is the ability to capture in its structured
color syntax the behavioral symmetries of the model which can be automatically
exploited for building a smaller state space, where markings are aggregated ac-
cording to an equivalence relation that preserves the interesting model properties
(both qualitative and quantitative).

This paper is a survey of the SWN formalism evolution, in particular it
discusses the expressiveness of the formalism in terms of ease of use from the
modeler point of view, proposing some useful extensions, and briefly presents
the main results that can be found in the literature about efficient (state space
based) analysis of SWN models. Software tools supporting SWN design and anal-
ysis are also mentioned in the paper. The ideas presented in this paper and the
cited bibliography mainly refer to the work developed in this field by researchers
at the University of Piemonte Orientale (Dip. di Informatica), Alessandria, and
at the University of Torino (Dip. di Informatica), Torino in Italy, at the Univer-
sity of Paris VI (LIP6), the University of Paris Dauphine (LAMSADE) and at
the University of Reims Champagne-Ardenne in France: these research groups
are actively cooperating in developing both new theoretical results, application
examples and software tools for SWN.

G. Ciardo and P. Darondeau (Eds.): ICATPN 2005, LNCS 3536, pp. 1–14, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 G. Franceschinis

The paper is organized as follows: Sections 2 and 3 contain the discussion of
the SWN expressiveness, in particular the first section considers possible exten-
sions to the original syntax that could ease the process of building SWN models,
without sacrificing the efficiency in the SWN model analysis, while the second
section discusses the issue of compositional SWN model construction methods.
Sections 4.1 and 4.2 surveys both consolidated and more recent methods for
efficient (state space based) analysis of SWN models. Section 5 presents some
existing tools that support design and analysis of SWN models. Section 6 outlines
some promising directions for future development.

2 On the SWN Formalism Syntax and Possible
Extensions

The Stochastic Well-formed Net (SWN) formalism has been introduced in 1990
as an extension of the Regular Net (RN) formalism: it is a high level Petri

net formalism similar to Coloured Petri Nets (CPN) [41, 42], but featuring a
constrained colour stucture syntax which allows to automatically discover and
exploit the behavioural symmetries of the model for efficient state space based
analysis. The Symbolic Marking and Symbolic Firing concepts defined for SWNs
lead to a Symbolic Reachability Graph construction algorithm [17] whose size
can be orders of magnitude smaller than the complete RG (examples have been
presented in [16, 2, 18]).

The constrained color syntax of SWN is based on the definition of a finite set
of basic types, called basic colour classes, and a limited set of basic functions and
basic predicates defined on such classes: the places and transition colour domains,
and the arc functions are then constructed upon these basic objects. In fact the
colours associated with places and transitions are tuples of typed elements, where
the element types are the basic colour classes, and the arc functions are (sums
of) tuples whose elements are basic functions defined on basic colour classes.
Basic predicates can be used to restrict the possible colours of a transition or to
obtain arc functions whose structure may change when applied to different color
instances of a given transition.

Basic color classes are finite sets of colors, can be ordered (circular order de-
fined through a successor function) and can be partitioned into static subclasses
(the partition into static subclasses is called the static partition of a basic color
class). Intuitively, colors in a basic color class are homogeneous objects (pro-
cessors, processes, resources, message types, hosts in a network, etc.) and each
static subclass groups objects of the same nature with similar behaviour (so if
all objects in a class behave in the same way, the static partition will contain a
unique static subclass).

Thedefinition of basic color classes static partition is a delicate step in themodel
definition, because this is the part of the model specification that defines the possi-
ble symmetries that can be exploited by the SRG. If the modeler fails to define the
coarsestpartitionallowingtocorrectlyexpressthesystembehaviour,thestatespace
aggregation automatically achieved by the SRG algorithm might be less effective.

[15]
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Observe that the static partition may need refinement if the model is built
in a compositional way: in fact the static partition of a given class defined for
one submodel might not be the same needed in another submodel, and when the
submodels are composed a new static partition taking into account those of the
two component submodels must be defined.

The above considerations suggest that the modeler should be supported in
the color structure definition phase by some automatic tool able to check the
model color inscriptions (initial marking, arc functions, transition guards) and
decide whether the static partition definition is adequate, and propose a change
if need be. A work in this direction is that presented in [49, 48], where the
proposal is to impose less constraints on the syntax, and let the modeler directly
refer to (subsets of) color elements within basic color classes when specifying the
model: an algorithm is provided that is able to automatically derive the optimal
static partition based on the analysis of the model color structure. In the same
work some new useful extensions to the formalism are also proposed (e.g. the
possibility of considering an ordering among elements in a class, not the circular
one allowed in SWN, and as a consequence the introduction of new comparison
operators in basic predicates: this is actually only syntactic sugar because it
can be expressed using static subclasses, but it is often very convenient for the
modeler).

Up to now the ”stochastic” part of the formalism has not been mentioned:
in SWN transitions can either be timed or immediate (fire in zero time after
enabling), the timing semantics of SWN reflects that of Generalized Stochastic
Petri Nets (GSPN), and in fact the net obtained by unfolding a SWN is a GSPN.
The complete specification of a GSPN model includes the definition of average
firing times of timed transitions, and the priority and weights of immediate tran-
sitions: the latter task is needed to give a deterministic or probabilistic criteria
for immediate transition conflict resolution (required to construct the underlying
stochastic process, or to simulate the model behavior in time, for performance
evaluation purposes). This task requires a clear knowledge of the potential (di-
rect and indirect) conflicts between immediate transitions: in [47] a technique
is proposed that can support a modeler in this complex task. The transition
times, priority and probability definition in SWN must take into account the
color structure of the model, and may influence the color classes static partition
(in fact different instances of a given transition may have different average firing
times or different priority/weight). Moreover the priority and weight definition
method proposed in [47] can be directly applied only at the level of the net
unfolding: to overcome this problem a way of expressing in a parametric and
symbolic way the potential conflict relations between different instances of SWN
(immediate) transitions is required, together with a symbolic calculus allowing
to compute such symbolic expressions using the net color structure information.
In [22, 11, 12] a syntax for expressing such structural conflict relations, and a
calculus for their computation has been proposed: the chosen syntax is very
similar to the SWN arc function syntax, and hence it should not be difficult
for the modeler to interpret them: the extension to SWN of the priority/weight
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definition method developed for GSPN exploiting the above mentioned symbolic
expressions is still under development.

3 Composing SWN Models

When modeling complex systems, possibly designing several models of a given
system, a compositional model construction method is more convenient than a
flat and monolithic modeling approach. In the CPN formalism [41] this idea has
led to the definition of hierarchical CPNs, with the possibility of defining sub-
models (pages) with well defined interface nodes (ports), of including substitution
transitions in a model, that are an abstraction for a submodel and are connected
to socket nodes (to be related with port nodes in the submodel represented by
the transition), and of using fusion places, which are a mechanism to merge
places within or across submodels. In the Stochastic Activity Network (SAN)
formalism [44], replicate and join constructs can be used to create instances of
submodels (possibly several replicas of the same submodel) and compose them
by merging common places. Other approaches to high level Petri nets compo-
sition have been defined, for example the Box Calculus[8] or the Cooperative
Nets[45, 46], or the compositional WNs (cWN)[43]. In the context of SWN, the
compositionality issue has emerged as a natural consequence of the application
of the formalism and related tools to non toy case studies: the problem has been
tackled both from a pragmatic point of view and from a theoretical point of
view. Composition operators working by superposition of nodes with matching
labels have been defined first for GSPNs [27] and then extended to SWNs: a
composition tool, called algebra[7] has been implemented and integrated into
the GreatSPN software package to support such operators.

A relevant aspect to be considered when composing colored submodels is the
treatment of the color structure: one possibility that highly simplifies composi-
tion is to assume that the submodels to be composed have already a ”compatible”
color structure (same definition of common color classes), that the identifiers of
the color elements coming from the component submodels that are intended to
represent the same object match, while identifiers that represent local and inde-
pendent objects in the two submodels are disjoint. In algebra, compatible color
definition is assumed, shared identifiers are preceded by a special symbol, and
must match in the submodels to be composed, while non shared identifiers are
automatically renamed in case of a clash. This pragmatic approach however is
not flexible enough: in [4] a more parametric method has been proposed, where
the submodels to be composed may have parametric color classes, which can
be instantiated when a parametric submodel is instantiated and composed with
another submodel; the original idea proposed in [4] is that color definitions can
flow from one submodel to another one, by means of color import/export speci-
fication: colors exported by one model can be imported by another model when
they are composed.

Trying to generalize the idea of parametric submodels, to allow the flexible
definition of submodel interface and composition operators, in the OsMoSys
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framework [52] the concept of model class has been defined. Model classes are
parametric models represented using a given formalism: they have a precise
interface, and they can be instantiated and connected to elements of a larger
model to build a complete (solvable) model or a more complex model class.
When a model class becomes a part of a larger model class, each parameter can
either be istantiated or become a parameter of the new model class, and each
interface can either be hidden or become an interface of the new model class
(possibly with different name).

Another important issue when defining model composition, is the definition
of composition operators: on one hand a minimal set of composition operators
allowing to express all interesting composition schema should be defined, on the
other hand if the ”final user” is not an expert in the use of formal languages
but rather an expert in a given application domain which wants to easily build
models of different scenarios by composing submodels taken from a library, a
rich and application oriented set of composition operators might be desirable. In
OsMoSys, composition operators can be part of the formalism used to express the
model classes to be composed, or can be an extended version of that formalism,
or can be a completely new formalism, defined for the purpose of composition
(this is easily realizable in OsMoSys because it is a multi-formalism framework
featuring a meta-formalism, that is a language for defining formalisms supporting
inheritance between formalisms). In [31] and [30] two examples of application
oriented SWN composition formalism defined within the OsMoSys framework
are presented.

Last but not least, (de)composition of models can be used for analysis effi-
ciency purposes (specifically, in case of SWNs decomposition can be combined
with state space aggregation in a very effective way, see [37, 38, 23], this aspect
shall be further discussed in Sec. 4.2): also in this case a flexible language for
describing the (de)composition structure of a model to be used for analysis pur-
poses is needed, the OsMoSys framework can be applied also to this case.

4 Efficient Analysis

In this section analysis methods for SWNs are discussed; we focus on state space
based analysis methods for both qualitative and quantitative evaluation. In Sub-
section 4.1 the Symbolic Reachability Graph (SRG), automatically exploiting
SWN models behavioral symmetries, and the Extended Symbolic Reachability
Graph (ESRG), able to deal with partially symmetric systems, are presented: the
aggregate state spaces generated by these algorithms can be used both for qual-
itative properties analysis, through model checking, and for quantitative prop-
erties analysis, by generating and solving a lumped Continuous Time Markov
Chain (CTMC). Some recent results on the possibility of using very efficient
data structures (Data Decision Diagrams [21] and Set Decision Diagrams [50])
for storing the Symbolic Markings and the SRG to increase the state space
size that can be generated for model checking purposes are also mentioned in
this subsection. In Subsection 4.2 algorithms combining SRG aggregation meth-
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ods and decomposition methods (based on tensor algebra representation of the
CTMC) are presented: the combination of these two methods allow to increase
the size of models that can be solved for performance evaluation purposes.

4.1 SRG, ESRG, and Further Evolution of ESRG for Model
Checking and Performance Analysis

The main motivation for introducing the SWN formalism has been the possi-
bility of automatically exploiting behavioral symmetries to build an aggregate
state space, which can be orders of magnitude smaller than the complete state
space (the maximum achievable reduction is the product of the factorial of all
static subclasses cardinalities for non ordered classes, multiplied by the product
of the cardinalities of ordered classes with only one static subclass): this reduc-
tion is achieved automatically through the definition of the Symbolic Marking
and Symbolic Firing concepts. Each Symbolic Marking represents in a compact
way an equivalence class of ordinary markings. Symbolic transition instances can
be checkled for enabling directly on the Symbolic Marking representation and a
Symbolic Firing Rule can be used to compute the new reached Symbolic Mark-
ing without ever explicitly representing the underlying ordinary markings and
transition firings. A canonical representation is defined for Symbolic Markings,
so that it is easy to check whether a reached Symbolic Marking corresponds to
an already reached equivalent class. Hence a Symbolic Reachability graph gener-
ation algorithm can be defined [16, 17] and the analysis can be performed on this
graph instead of the complete RG. When the model has to be used for perfor-
mance evaluation purposes, a stochastic process must be derived and analysed:
in the case of SWN the underlying stochastic process is a CTMC isomorphic to
the RG. It has been proven that, due to the constraints imposed by the formal-
ism on the color dependence of transition firing times and weights, the CTMC
of a SWN satisfies both the strong and exact lumpability conditions[9] with re-
spect to the aggregation induced by the SRG, so that performance analysis can
be performed on a CTMC which is isomorphic to the SRG, and its transition
rates can be directly computed from the Symbolic Marking and Symbolic Firing
information without need to ever expanding the complete RG.

It is also interesting to observe that the Symbolic Marking and Symbolic
Firing can be successfully exploited also in discrete event stochastic simulation
of SWN [32]: the gain in this case is due to the event list management, in fact the
event list contains the set of enabled transition instances in the current state,
and since one symbolic transition instance may group several ordinary transition
instances, fewer enabling tests are required at each state change, furthermore the
resulting ”symbolic” event list can be much smaller than the ordinary one thus
saving both time and space.

Unfortunately the effectiveness of the SRG method vanishes if the behaviour
of a model is not completely symmetric: as already discussed in Sec. 2 this is
related to the number and cardinality of static subclasses within each basic color
class. In the worst case where all non ordered basic color classes are partitioned
in cardinality one static subclasses and all ordered basic color classes are par-
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titioned into two or more static subclasses, the SRG coincides with the RG.
Often however, it happens that the asymmetries in the model behavior involve
only a small part of the state space, but they influence the level of aggrega-
tion of the whole RG. This consideration led to the evolution of the SRG called
Extended SRG (ESRG) [36]: it exploits symmetries in a more flexible way, and
takes into account the partition into static subclasses only when actually needed.
The ESRG structure uses a two level representation of the aggregate states: the
Extended Symbolic Markings in fact have a Symbolic Representation (SR) (first
level) that groups all the states that would be equivalent if all color classes had
only one static subclass, and a set of Eventualities (Ev) (second level) that are
the SRG Symbolic Markings included in the ESM SR. The gain that can be
obtained from the ESRG is due to the fact that eventualities are explicitly rep-
resented only when actually needed, that is only when asymmetries actually
arise in the behavior (typically because some transition which depend on the
static subclasses partition is enabled). Hence the effectiveness of ESRG aggrega-
tion depends on how often asymmetries influence the system evolution. A weak
point of the ESRG, with respect to the SRG, is that not all properties can be
checked on the ESRG, and in some case eventualities that were not created by
the ESRG algorithm, need to be generated in a second phase when properties
are checked on the ESRG or when a lumped CTMC has to be generated for
quantitative evaluation [13, 14, 5]. In particular when a CTMC has to be gener-
ated from the ESRG, the lumpability condition must be checked (while in the
SRG it is ensured by construction) on some markings: depending on the type of
performance index to be computed, one can choose whether to check for strong
or exact lumpability, achieving different degrees of aggregation. The lumpability
check algorithms working on the ESRG [14, 5] are in general more efficient than
those that may be applied directly on the SRG (without a clue on the possible
additional aggregations not captured by the SRG).

A further evolution of the ESRG consists in allowing a partial refinement of
a SR into its eventualities, which in some sense means adding a third level in the
ESM representation laying between SR and Ev: in fact subsets of eventualities
could remain aggregated, and this may happen when in a given state only the
static partition of a few classes is involved, while those of the other classes do
not influence the local behavior of the system (see [10, 35, 3, 39]). The E2SRG
first introduced in [10] and applied in [6] is an example of such three level repre-
sentation of a ESM: it has not yet been implemented, and still needs some work
to be completely worked out. This is one possible direction of further evolution
of these SRG-ESRG methods.

Combining two types of symmetries: SRG and Decision Diagrams The type of
symmetries exploited by the SRG are based on a notion of equivalence of similar
markings, however another type of symmetry can be exploited based on the de-
composition of the state into sub-states and factorisation of substates: this type
of symmetry in the states structure can be efficiently captured and exploited by
using specific data structures, the Decision Diagrams. The SRG technique and
DD based techniques however are not easily combined because of the mutual



8 G. Franceschinis

dependence of sub-states in Symbolic Markings: this dependence is due to pres-
ence of Dynamic Subclasses in its representation, whose definition and evolution
depend on the whole state (so that the representation of a given sub-marking
after a symbolic firing may change even if the fired transition had no connec-
tions with such sub-marking). Recently the problem has been faced by means of
a new type of Decision Diagram called Data Decision Diagrams (DDD) and Set
Decision Diagrams (SDD)[21, 48, 50]) that have shown to be very effective for
storing the states of huge SRG. Up to now these new techniques have been ex-
ploited only in the context of model checking algorithms: it would be interesting
to investigate the possibility of maintaining the same efficiency in the CTMC
generation phase.

4.2 De-composing SWN Models

In this section the analysis methods proposed in [37, 38, 23] are briefly summa-
rized: the main idea behind these methods consists of combining two orthogo-
nal techniques for coping with the state space explosion problem that often arises
when the CTMC of a complex SWN model is generated for performance analy-
sis. The first technique is state aggregation, which in the context of SWN can be
obtained using the SRG generation algorithm, the second technique is decompo-
sition of a model into submodels and representation of the CTMC infinitesimal
generator (the matrix of state transition rates) as an expression of much smaller
generators, obtained from each submodel in isolation and combined through ten-
sor algebra (Kronecker) operators (see [25, 24] for the application of this technique
to GSPN models). In the latter technique, the CTMC is solved using its decom-
posed representation, so that the space required to generate and solve the CTMC is
considerably smaller than that required to store the complete CTMC explicitely.

Two way of (de)composing a SWN model are considered: synchronous and
asynchronous. In both cases the component submodels need to be extended in
order to compute from each of them in isolation a local SRG. The method is not
completely general: in fact it can be applied to a decomposed SWN model only
if some constraints are satisfied: the constraints are needed to ensure that the
lumped CTMC resulting from Kronecker composition of local lumped CTMCs is
equivalent to the lumped CTMC corresponding to the SRG of the whole model.
The subclass of SWN models that satisfy the constraints may appear as rather
restricted, but it is representative of a relevant class of models from interesting
application domains. In [37, 38] both semantic conditions (defined on the state
space) and syntactic (sufficient) conditions (defined on the net structure and its
decomposition) are defined to ensure that the method can be applied.

These composition/decomposition methods have been implemented(see Sec. 5)
and partially integrated in GreatSPN: the most difficult part for the application
of the method is that currently no automatic support is provided to decompose
the model, build the extended subnets, and check that the syntactic conditions
for the applicability of the method are satisfied. Some theoretical results about
structural analysis of SWNs are available, but more work is needed to adapt
them to this specific problem, and to develop an automatized (or at least semi-
automatized) procedure for the application of these methods.
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5 Tools for the Design and Analysis of SWN Models

This section reports the current state of the main software tools supporting
SWN analysis: these tools have been developed at the University of Piemonte
Orientale (Dip. di Informatica), Alessandria, and at the University of Torino
(Dip. di Informatica), Torino in Italy, at the University of Paris VI (LIP6),
the University of Paris Dauphine (LAMSADE) and at the University of Reims
Champagne-Ardenne in France: there is an ongoing effort to integrate these
tools. A certain level of integration is already partially implemented[40].

GreatSPN extended with some new modules GreatSPN [19] is a software tool
supporting GSPN and SWN models: it can be used to design a model through
a GUI, to build a model by composing several submodels (this feature however
cannot be performed through the GUI), and to simulate or solve the models.
Both symbolic and ordinary reachability graph can be constructed, and the
corresponding CTMC automatically generated and solved (both steady state and
transient solutions are supported). Steady state discrete event simulation (using
the batch means method and providing confidence intervals for the required
performance measures) can be performed either by using symbolic marking and
firing, or using the ordinary marking and firing.

In order to exploit analysis modules developed by other research groups, some
translators have been implemented, that transform the internal model represen-
tation of GreatSPN in the representation expected by such analysis modules. For
example a translator from GreatSPN representation for SWN models to an high
level Petri net model accepted by the PROD tool has been implemented [26] to
allow verification of qualitative properties in PROD.

New modules for efficient analysis have been recently implemented and inter-
faced with GreatSPN (although not yet fully integrated in it). TenSWN, devel-
oped at LAMSADE, Univ. Paris Dauphine and at the Univ. Reims Champagne-
Ardenne, is a tool that applies the decomposition and aggregation solution tech-
niques introduced in Sec. 4.2 to properly decomposed SWN models. It relies
on the GreatSPN SRG generator to develop the SRG of each submodel, then
it computes the CTMC and its solution through very efficient techniques and
using very efficient data structures, the Multivalued Decision Diagrams (MDD)
to represent the whole set of SRG states in a very compact form, and MatriX
Diagrams (MXD) [20] to efficiently represent the Kronecker expression for the
lumped CTMC[23]. The WNESRG module, implemented at the Univ. of Paris
VI, builds the Extended SRG of a SWN model. A module that checks the lumpa-
bility of the CTMC of the SWN model with respect to the aggregation induced
by the ESRG, refines the ESRG if necessary, and generates the final lumped
CTMC is being implemented [5].

CPN-AMI and SPOT CPN-AMI is a Petri Net based CASE tool for the veri-
fication of parallel systems developed at LIP6, Univ. of Paris VI. It includes a
graphical interface (Macao), and integrates several solution modules developed
at the Univ. of Paris VI, as well as in other research institutions, for example
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it integrates several solution modules of GreatSPN. The most recent tools inte-
grated in CPN-AMI are a module for automatically discovering the asymmetries
of a model expressed with extended SWN syntax, and translating it into a proper
SWN model: the module uses the technique presented in [49]. It also includes a
model checking tool based on Data Decision Diagrams[21], a very efficient data
structure for the state space representation, which can be used to store the SWN
symbolic state space. An evolution of the tool based on a new data structure
defined very recently [50] is under development. Some model checking tools inte-
grated in CPN-AMI rely on SPOT [28], a C++ model checking library including
a set of building blocks for constructing model checkers. The GreatSPN SRG
generation module has been integrated (through an adaptation layer) with the
SPOT library to allow model checking of LTL (Linear-Time Temporal Logic)
formulas on the SRG of SWN models [48].

DrawNET The tools so far discussed, mainly deal with the problem of model
analysis, while in Sec. 3 the importance of a support for SWN model construction
has been highlighted, in particular user friendly tools are needed for composi-
tional model construction. In the last years, a new tool called DrawNET has
been designed, some versions have been implemented[51], and a new version is
now under devlopment[33]. DrawNET comprises several components, including
(1) a customizable graphical interface that can be configured to design hierar-
chical models expressed with user defined formalisms (multi-formalism models
can also be built), (2) a suite of XML based languages to describe (a) graph
based formalisms, (b) models expressed with such formalisms, and (c) the re-
sults that can be obtained by analysing such models as well as the queries to be
sent to solvers to obtain such results, (3) a number of libraries that can be used
to handle the formalism and model data structures defined in DrawNet, and
(4) a library to implement connections between DrawNet and existing as well as
new solvers. The tool has been experimented with different formalisms, including
various flavours of PNs: for example the application oriented formalisms used
to compose SWN models in [31] and [30] and developed within the OsMoSys
framework [52], have been implemented in DrawNET, and integrated with the
composer module algebra and the solution modules of GreatSPN.

6 Conclusions

This paper is a survey on the SWN formalism and some relevant analysis tech-
niques that have been developed and implemented since its introduction to now.
Although significant results have been achieved, there is still space for new re-
search and implementation efforts. Some possible topics for future work concern
both extensions of the formalism itself and further improvements in the analy-
sis algorithms and tools. Concerning the formalism extensions, the most urgent
ones are related with compositionality: in particular the possibility of defining
parametric submodels (where also the color structure can be a parameter) and
then instantiating and composing them in a flexible way would ease the model
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building process. This feature could be very useful also when SWN models are
automatically built from other modeling formalism and could be exploited to
ease the modeling task for not expert users, that may reuse existing submodels
from a library and compose them through connectors tailored to the specific
application field.

Another weak point is the lack of sufficiently complete structural analysis
algorithms and tools to support the modeler in building correct models be-
fore proceeding to the state space generation. These tools could be useful also
in support of decomposition methods, and in the development of partial order
methods.

From the point of view of the state space size reduction methods, on one
hand it would be worthwhile to push the Extended SRG method further along
the lines already proposed (e.g. the E2SRG), on the other hand the combination
of the SRG symmetry exploitation technique with orthogonal techniques based
on Decision Diagram data structures seem to have more potential for reduction,
hence, the methods already used for efficient model checking should be extended
to quantitative evaluation.

Finally a rich set of tools has already been implemented or are under develop-
ment: more integration among the tools would ease the application and diffusion
of all currently available techniques and solution modules.
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35. S. Haddad, J-M. Ilié, and K. Ajami. A model checking method for partially sym-
metric systems. In Proc. of FORTE/PSTV’00, pages 121–136. Kluwer Verlag,
2000.
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A Craig interpolant [1] for a mutually inconsistent pair of formulas (A,B) is a
formula that is (1) implied by A, (2) inconsistent with B, and (3) expressed
over the common variables of A and B. It is known that a Craig interpolant
can be efficiently derived from a refutation of A ∧ B, for certain theories and
proof systems. For example, interpolants can be derived from resolution proofs
in propositional logic, and for systems of linear inequalities over the reals [6, 4].
These methods have been recently extended to combine linear inequalities with
uninterpreted function symbols, and to deal with integer models [5]. One key
aspect of these procedures is that the yield quantifier-free interpolants when the
premises A and B are quantifier-free.

This talk will survey some recent applications of Craig interpolants in model
checking. We will see that, in various contexts, interpolation can be used as a
substitute for image computation, which involves quantifier elimination and is
thus computationally expensive. The idea is to replace the image with a weaker
approximation that is still strong enough to prove some property.

For example, interpolation can be used to construct an inductive invariant
for a transition system that is strong enough to prove a given property. In effect,
it gives us an abstract image operator that can be iterated to a fixed point to
obtain an invariant. This invariant contains only information actually deduced by
a prover in refuting counterexamples to the property of a fixed number of steps.
Thus, in a certain sense, we abstract the invariant relative to a given property.
This avoids the complexity of computing the strongest inductive invariant (i.e.,
the reachable states) as is typically done in model checking.

This approach gives us a complete procedure for model checking temporal
properties of finite-state systems that allows us to exploit recent advances in SAT
solvers for the proof generation phase. Experimentally, this method is found to
be quite robust for verifying properties of industrial hardware designs, relative to
other model checking approaches. The same approach can be applied to infinite-
state systems, such as programs and parameterized protocols (although there
is no completeness guarantee in this case). For example, it is possible to verify
systems of timed automata in this way, or simple infinite-state protocols, such
as the N -process “bakery” mutual exclusion protocol.

Alternatively, interpolants derived from proofs can be mined to obtain pred-
icates that are useful for predicate abstraction [7]. This approach has been used
in a software model checking to verify properties of C programs with in excess
of 100K lines of code [2]. Finally, interpolation can be used to approximate the
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transition relation of a system relative to a given property [3]. This is useful in
predicate abstraction, where constructing the exact abstract transition relation
is prohibitive.
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1 Context

Clashing security policies leads to vulnerabilities. Violating security policies leads to
vulnerabilities. A system today operates in the context of a multitude of security poli-
cies, often one per application, one per process, one per user. The more security policies
that have to be simultaneously satisfied, the more likely the possibility of a clash or vi-
olation, and hence the more vulnerable our system is to attack. Moreover, over time a
system’s security policies will change. These changes occur at small-scale time steps,
e.g., using setuid to temporarily grant a process additional access rights; and at large-
scale time steps, e.g., when a user changes his browser’s security settings. We address
the challenge of determining when a system is in a consistent state in the presence of
diverse, numerous, and dynamic interacting security policies.

Formal specifications of these security policies let us pinpoint two potential prob-
lems: when security policies for different components are inconsistent and when a com-
ponent does not satisfy a given security policy. We present a simple algebra for com-
bining and changing security policies, and show how our algebraic operations can be
used to explain different real-life examples of security policy clashes and violations.

2 Model and Definitions

We model security policies as access rights matrices:

SP ⊆ P × O × R

where P is a set of principals, O is a set of typed objects, and R is a set of rights.
Principals include processes, users, applications, etc. Objects include files, directories,
registry keys, communication channels, etc. Rights are type-specific: for each type of
object, there are certain associated operations. For example, for a file, the operations
might be open, close, read, write, and execute; for a Web service, the operations might
be search, recommend, and purchase. Henceforth, when we say “security policy,” we
mean its underlying access rights matrix.
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For a given security policy, sp, principal, p, and object, o, we write sp(p, o) to stand
for the set of rights in R that p has on o. Informally, this means that for an operation in
sp(p, o), p has the right to invoke that operation on o. Negative rights are represented
implicitly, by the absence of an explicit right in the security policy.

Definition 1. Two security policies, sp1 and sp2, clash iff sp1 �= sp2.

Definition 2. Given two security policies, sp1 and sp2, sp1 respects sp2 iff
∀p∀o . sp1(p, o) ⊆ sp2(p, o); otherwise, sp1 disrespects sp2.

Combining two security policies potentially introduces vulnerabilities. Whether there
is a vulnerability depends on the way in which the two security policies combine. Let
⊕ : SP ×SP → SP denote a combination operation on two security polices. There

is a potential vulnerability if sp1 ⊕ sp2 disrespects sp1 or sp1 ⊕ sp2 disrespects sp2.
Disrespecting security policies imply they clash.

3 An Algebra for Security Policies

Since security policies are ternary relations, i.e., sets of triples, we define combinations
of security policies in terms of operations on sets. In practice, in combining two security
policies we might require that we satisfy both (And); satisfy either (Or); or satisfy one
but not another (Minus). We might simply override (Trumps) the second by the first.

For the following combinations, we assume that the security policies are defined
over the same sets of P , O, and R.

spec SecurityPolicy
And : SP × SP → SP
Or : Sp × SP → SP
Minus : SP × SP → SP
Trumps : SP × SP → SP

sp1 And sp2 = sp1 ∩ sp2

sp1 Or sp2 = sp1 ∪ sp2

sp1 Minus sp2 = sp1 \ sp2

sp1 Trumps sp2 = sp1

end SecurityPolicy

Whereas And and Or are commutative, Trumps and Minus are not, as should be clear
from the equations above. The following facts follow from the definitions of respects,
And, and Trumps:

(sp1 And sp2) respects sp1

(sp1 And sp2) respects sp2

(sp1 Trumps sp2) respects sp1

When we use Or to combine two security policies, sp1 and sp2, the combination might
disrespect sp1 or disrespect sp2; similarly, when we use Trumps, the combination might
disrespect sp2.
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We also introduce a way for one principal to gain (Inherit) its rights from another, so
that Inherit(p1, p2) means p1 inherits rights from p2; and conversely, for one principal
to grant (Delegate) its rights to another. We include a revocation (Revoke) operator to
remove all rights associated with a given principal.

spec ChangeSP extends SecurityPolicy
Inherit : SP × P × P → SP
Delegate : SP × P × P → SP
Revoke : SP × P → SP

Inherit(sp, p1, p2) = sp ∪ {〈p, o, r〉|〈p1, o, r〉 ∈ sp ∧ p = p2}
Delegate(sp, p1, p2) = Inherit(sp, p2, p1)
Revoke(sp, p) = sp � (Prin(sp) \ {p})

end ChangeSP

where � is the domain restriction operator and Prin : SP → Set[P ] returns the set of
principals over which a given security policy is defined. Inherit (and similarly Delegate)
has the following compositional property:

Inherit(Inherit(sp, p2, p3), p1, p2) ⊇ Inherit(sp, p1, p3)
which informally says “If p2 inherits p3’s rights and then p1 inherits p2’s rights, then p1

inherits p3’s rights.”

4 Examples

We give a series of four examples. The first (Outlook and IE) illustrates an example
of two different components, each of which has their own security policy; when put
together, one security policy ”trumps” the other, causing a potential privacy violation
as well an surprising behavior to the user. The second (Run As) illustrates a use of in-
heriting rights that causes potential security vulnerabilities. The third (Google Desktop
Search) illustrates another use of inheritance. Finally, the fourth example (Netscape and
DNS) simply shows what can happen when an informally stated security policy is am-
biguous, leading to an implementation with a security vulnerability. We present the first
example in detail and give the gists of the problems for the other three. The first, third,
and fourth examples are also examples of composition flaws, when two independently
designed and implemented components are combined in a way that lead to unintended
interactions, which could lead to security vulnerabilities.

4.1 Outlook and IE

Many applications (e.g., email clients and browsers) have security settings that users
may modify. Each configuration of the settings represents a different security policy.

Let’s consider an example where we would like to block the display of embedded
graphics in our mail messages. Microsoft’s Outlook email client includes a setting “Don’t
Download Pictures” which lets the user specify this behavior. Microsoft’s Internet Ex-
plorer (IE) browser includes a similar setting “Show Pictures” which lets the user con-
trol the display of graphics embedded in any HTML document. Since Outlook uses IE’s
HTML rendering component, these two settings interact in the case of HTML email.
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Actual Behavior
The following table describes the actual behavior when reading and forwarding mes-

sages. There are four possibilities for how an image is displayed:

– display: Retrieve and display the image.
– red X: Display a small icon of a red X, with a textual comment saying “Right-

click here to download pictures. To help protect your privacy, Outlook prevented
automatic download of this picture from the Internet.”

– small graphic: Display a small “unknown graphic” icon, with the same textual
comment.

– sized graphic: Display a correctly-sized box with a small “unknown graphic” icon
(and no textual comment).

As will be discussed below, the behavior in italics is a vulnerability.

IE Show Pictures Outlook Don’t Download Pictures

False True
False Read: sized graphic Read: small graphic

Forward: sized graphic Forward: sized graphic
True Read: display Read: red X

Forward: display Forward: display

The Vulnerability and an Attack
From a security perspective, there are at least two reasons to disable graphics in email.
First, downloading the graphic transfers information back to the web site containing
the graphic; at a minimum, this kind of information disclosure confirms that the mail
was received and viewed, e.g., allowing spammers to confirm that an email address is
real. Second, disabling graphics is a Defense in Depth strategy that mitigates the risk
of unknown exploitable bugs, e.g., buffer overruns in image rendering code. Thus, the
counter-intuitive display of graphics while forwarding email is a vulnerability.

An attacker can exploit this vulnerability in a social engineering attack if he can
convince a user, Alice, to forward some email containing an image. For example,
consider the scenario where the attacker wants to validate whether an email address
Alice@bigco.com corresponds to a real user (perhaps in the context of a brute-
force generation of all email addresses for the domain bigco.com to discover which
are valid addresses to resell to spammers). If Alice has downloading of images disabled,
the straightforward attack of simply getting Alice to read the mail will fail. However, if
the attacker knows that bigco has an internal policy of forwarding all “phishing” email
to a central alias for followup, then the attacker simply sends an obviously fake “phish-
ing” email containing an embedded image to Alice@bigco.com. Alice can read the
email without any danger; but when she goes to forward it, because of the vulnerability,
the image is downloaded, and the attacker confirms that the address is valid.

A Fix
The vulnerability disappears if the behavior is as follows, where the only change, shown
in boldface, is to display a red X on mail forwarding instead of retrieving and displaying
the image.
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IE Show Pictures Outlook Don’t Download Pictures

False True
False Read: sized graphic Read: small graphic

Forward: sized graphic Forward: sized graphic
True Read: display Read: red X

Forward: display Forward: red X

Using our Security Policy Formalism
More formally, we can use our algebra for security policies to characterize the security
policy clash. Let viewread be the right associated with the operation that lets us view an
embedded graphic while reading a mail message; viewforward, while forwarding.

Security Policy for Outlook (SPOutlook): If the “Don’t Download Pictures” setting
is false (i.e., downloading pictures is ok), then all users can view embedded graphics
when both reading and forwarding mail messages. More precisely:

Download Pictures = true
⇔

∀p : user ∀o : embedded graphic
〈p, o, viewread〉 ∈ SPOutlook ∧ 〈p, o, viewforward〉 ∈ SPOutlook

(To avoid a double negative, we wrote above “Download Pictures = true” rather than
the more accurate “Don’t Download Pictures = false”.)

Security Policy for IE (SP IE): If the “Show Pictures” setting is true, then all users can
view embedded graphics when viewing HTML. This setting applies both when reading
and forwarding mail messages. More precisely:

Show Pictures = true
⇔

∀p : user ∀o : embedded graphic
〈p, o, viewread〉 ∈ SP IE ∧ 〈p, o, viewforward〉 ∈ SP IE

When Outlook is combined with IE, then the actual behavior differentiates between
the reading and forwarding cases:

Read: SP IE And SPOutlook

Forward: SP IE Trumps SPOutlook

When reading email, then the actual behavior reflects the conjunction of the security
policies associated with Outlook and IE; but when forwarding, then the actual behavior
reflects IE’s security policy, trumping Outlook’s. Thus, when forwarding, the combined
security policy disrespects the Outlook security policy:

(SPIE Trumps SPOutlook) disrespects SPOutlook

The fix reflects conjunction in both cases, regardless of whether we are reading or
forwarding email:
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Read: SPIE And SPOutlook

Forward: SPIE And SPOutlook

By properties of And (Section 3), we know that the combined security policies respect
both of the individual ones.

Note that the original combination of security policies led not only to a security
vulnerability but also to a confusing usability problem. Users would normally expect
a single policy to hold (whether it be Outlook’s, IE’s, or their conjunction) regardless
of what operation they perform, e.g., reading or forwarding a mail message. When the
two policies combine in one way for one operation and in another way for the other,
the user’s mental model is inconsistent, which invariably leads to usability issues. The
proposed fix also removes this inconsistency.

4.2 Run as

Suppose in a file system, FS, we wish to let a process, p, perform operations on behalf
of (i.e., “run as”) a user, u; this “run as” capability allows p to gain access temporarily
to a set of files owned by u. We can model this behavior in terms of inheriting rights.
For example, if u can read a file, f , and if p inherits u’s rights, then p can read f . The
Unix setuid mechanism and Windows impersonate privileges are implementations of
this functionality.

Let SPFS stand for the security policy on a given file system. Now consider the
following scenario. First, u1 executes p1. This has the effect of giving u1’s rights to p1:

[1] SPE = Inherit(SPFS , p1, u1)

Now, p1 “runs as” u2. This has the effect of first revoking p1’s original rights and then
giving u2’s rights to p1:

[2] SPRA = Inherit(Revoke(SPE , p1), p1, u2)

Assuming u1 controls p1’s behavior, then for the lifetime of p1, u1 gets whatever rights
p1 acquires:

[3] SPC = Inherit(SPRA, u1, p1)

From the compositional property of Inherits (Section 3), [2] and [3] leads to [4] below,
and we are left in a state where u1 has inherited u2’s rights:

[4] SPC ⊇ Inherit(SPFS , u1, u2)

Let’s see how the use of “run as” can lead to a security vulnerability. First, we
introduce a new kind of access right, a, to stand for “can run as.” In our security policy,
we have entries such as 〈p, u, a〉, which says that a process, p, “can run as” user, u.

Now consider a file system with entries such as 〈u1, p1.exe, x〉, which says that user
u1 has execute rights on the executable object, p1.exe (the executable associated with
process p1), as well as entries such as 〈u1, f, read〉, which says that user u1 has read
access to file f .
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A process’s rights may change over time, depending on what user they are running
as. Thus, a process can access a file, f , if the user the process is currently running as
has access to f .

More concretely, a vulnerability can arise, if SPFS consists of the following entries:

〈p1, ∗, a〉
〈u1, p1.exe, x〉
〈u2, f, read〉

The first entry is the troublesome one: it gives process p1 the ability to run as any
user. Since u1 can execute p1.exe, which creates a process p1 with the given rights, and
since p1 can run as u2 and u2 has access to f , then u1 gains access to f even though
that right is absent from the security policy.

4.3 Google Desktop Search

When a google.com request is made, Google Desktop Search (GDS) performs a
search on the local file system with the same request. The local search results include
30-40 character snippets of local files that contain the query’s terms. GDS integrates its
local search results with the webpage returned by google.com. If the query has been
made by a user in a standard browser window, the user sees a webpage that contains
results of the search on the local host and results from google.com; but if the query
is made by an applet, then GDS introduces a potential security vulnerability [2].

Security Policy for Google Desktop Search (SPGDS): The Google Desktop Search
process has read access to all files on the local host.

Or more formally,

∀f ∈ localhost 〈GDS, f, read〉 ∈ SPGDS

Suppose an applet, app, sends a query that GDS executes. We have the following
situation:

[1] SPApp = Inherit(SPGDS , app,GDS)

Since the applet can connect to a remote host, in particular, the host, rh, from which
the applet originally came, the remote host inherits the applet’s rights:

[2] SPRemHost = Inherit(SPApp, rh, app)

By compositionality of Inherits again ([1] and [2] leads to [3] below), we are in the
situation where the remote host inherits the rights of GDS:

[3] SPRemHost ⊇ Inherit(SPGDS , rh,GDS)

which means the remote host has read access to files on the local host—a security
vulnerability!

The fix that Google made to address this vulnerability is to disallow the applet from
seeing the results of a local search using GDS. This has the effect of invalidating the
state labeled [1] above.
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4.4 Netscape and DNS

Our final example shows what can go wrong when the specification of a security pol-
icy is ambiguous, leading to an implementation with a security vulnerability. Here the
vulnerable component is the browser, which operates in the DNS infrastructure envi-
ronment [1]. Applets running in the browser sometimes need to contact the server from
which it originated. We have the following security policy on applets (which also must
hold for the Google Desktop Search example):

Security Policy for Applet (SP applet): An applet should connect to the same server
from which it originated.

More formally, in terms of an access rights matrix, we have the following, where
conn stands for the right for an applet a to connect to a host h:

∀a : applet ∀h : host 〈a, h, conn〉 ∈ SPapplet

⇔ SameAs(a.OriginatingHost , h)

The ambiguity in the informal policy is what “same server” means. In the formal
statement, it boils down to how SameAs is interpreted. There are two sources of ambi-
guity. First, does SameAs mean “same IP address” or “same name”? An interpretation
of “same IP address” for SameAs seems too restrictive to support some common us-
age scenarios, and so Netscape chose to resolve this first ambiguity by using a check
based on DNS names. Unfortunately, the name-based check raises two problems: (1)
the name of a server might map to multiple IP addresses (machines) and (2) the map-
ping of names to IP addresses can change over time. The possibility of change over time
is a second source of ambiguity: Doing a DNS lookup on a name at one point in time,
e.g., when the applet is downloaded, does not guarantee the same result as doing it at a
later point in time, e.g., when the applet wishes to connect to a remote host.

In more detail, here is the problem. In the effort to enforce the security policy,
Netscape’s original check used two DNS name lookups. Let n2a be the many-to-many
relation that maps names to IP addresses, From be the name of the server from which the
applet originated, and To be the name of the server to which the applet wishes to con-
nect. If the lookup on both names yields a nonempty intersection of IP addresses, then
the assumption is that From and To are “the same server,” and we allow the connection.
More succinctly, Netscape implemented this check:

if n2a(From) ∩ n2a(To) �= ∅
then ∃x ∈ n2a(From) ∃y ∈ n2a(To) such that connect(x, y)

where connect :Host×Host →Bool means that for hosts h1 and h2 connect(h1, h2)=
true iff there is a connection from h1 to h2.

There are two problems with Netscape’s check. The first problem is directly related
to the second ambiguity and leads to a vulnerability: in doing the lookup on From at
the time when the applet wants to connect to To, the set of IP addresses to which From
maps may be different from the time when it was first downloaded. The second prob-
lem is simply a logical flaw: choosing some x in n2a(From) and some y in n2a(To) to
establish the connection does not even guarantee that the x and y are in the (nonempty)
intersection of n2a(From) and n2a(To).
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By manipulating DNS lookup (for example, by running his or her own name re-
solver), an attacker can effectively allow an applet to connect to any host on the network
without violating the policy.

Netscape fixed the vulnerability by storing the actual IP address i of the originating
server (eliminating the first lookup) and changing the intersection check to a member-
ship check, i ∈ n2a(To). This fix means the implementation matches the intended
security policy.

5 Summary and Future Work

We sketched the foundation of a simple algebra for reasoning about security policies,
viewed as access rights matrices. We also sketched the use of our algebra on four real-
life examples: the Outlook and IE example shows a security policy clash; the Run As
and the Google Desktop Search examples show two different uses of inheriting rights
as security policies change over time; and the Netscape and DNS example shows the
consequence of a violation of a security policy.

We would like to develop a security policy language and logic for expressing poli-
cies closer to the way in which software designers think about security requirements
and use our algebra to show when clashes can occur or when designs violate their re-
quirements. We are also interested in building tool support for automating our reasoning
and for letting us scale our approach to large examples.
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Abstract. State explosion is a fundamental problem in the analysis
and synthesis of discrete event systems. Continuous Petri nets can be
seen as a relaxation of discrete models allowing more efficient (in some
cases polynomial time) analysis and synthesis algorithms. Nevertheless
computational costs can be reduced at the expense of the analyzability
of some properties. Even more, some net systems do not allow any kind
of continuization. The present work first considers these aspects and
some of the alternative formalisms usable for continuous relaxations of
discrete systems. Particular emphasis is done later on the presentation
of some results concerning performance evaluation, parametric design
and marking (i.e., state) observation and control. Even if a significant
amount of results are available today for continuous net systems, many
essential issues are still not solved. A list of some of these are given in
the introduction as an invitation to work on them.

1 Introduction

It is well-known that Discrete Event Dynamic Systems (DEDS), and in particu-
lar Petri Nets (PN), suffer the state explosion problem, what is particularly true
when the system is “highly populated” (i.e., the initial marking is large). One
way to tackle that problem is to use some kind of relaxation. Fluidification (or
continuization) is a classical relaxation technique that tries to deal with the state
explosion by removing the integrality constraints. The idea is analogous to that
allowing the transformation of an Integer Linear Programming problem (ILP,
NP-hard) into a Linear Programming problem (LP, polynomial time complex-
ity). The systematic use of linear programming in the fundamental or “state”
equation for the analysis of Petri Nets was proposed in 1987 (see [1] for a revised
version of the seminal work, and [2] for a more recent survey).

In Queuing Networks (QN) approximating the clients flow with a continuous
fluid flow is a classical relaxation (see, for example, [3, 4, 5, 6]). For PN, a similar
relaxation was introduced and developed by R. David and co-authors, starting

� This work was partially supported by project CICYT and FEDER DPI2003-06376.

G. Ciardo and P. Darondeau (Eds.): ICATPN 2005, LNCS 3536, pp. 26–47, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Continuization of Timed Petri Nets 27

in 1987 [7] (see [8] for a very recent perspective). These models were called
continuous Petri Nets.

Fluidified models have advantages in the sense that they allow to obtain
better analytical characterizations, or computationally more efficient algorithms.
However, being an approximation, there are properties that cannot be analyzed
(mutex for example), and often only partial results can be obtained with respect
to their validity in the original system [9].

Even if the idea of continuization of Petri nets is well inscribed in the frame-
work of classical relaxations, even if several interesting analysis and synthesis
results have been obtained in the last years [8, 9, 10, 11], the field is still very
young and essential contributions are needed. Let us just start this overview
—we recognize partially biased from and towards our works— saying that many
essential questions do not have a satisfactory answer, in several cases because
the problem has not been addressed yet. Just quoting a few:

1. Is a given net system fluidizable? Some net models are not “approximated” at
all by its fluidization, just as many differential equation systems (as chaotic
models) do not admit a reasonable linearization.

2. How to define the firing policies of transitions when submerging nets systems
in time (i.e., how to define the routing decisions and service rates at conflicts
and at stations, respectively)? Today two servers semantics (finite or con-
stant speed, and infinite or variable speed) are mostly used in a deterministic
setting, but many others can be defined.

3. Provided that several firing (service and routing) semantics can be defined,
which one is the best —or a good one— for a given particular case?

4. Given a timing semantics: When does a steady state exist? (The apparent
mismatch being that the underlying markovian model may be ergodic, while
the continuous case is oscillatory.)

5. Marking reachability in untimed net systems has today a quite reasonable
characterization in algebraic terms. For timed models, even for steady state
markings, only necessary conditions are well known in general. Of course,
for particular classes of net systems (for example, live and bounded equal
conflicts), more powerful results are available. The issue is: How to improve
the characterization of which steady states can be reached from a given initial
marking (and, eventually, which is a “good” control policy)?

6. Even if for off-line design problems some interesting results are already
known, observation and, essentially, control of continuous net models require
still important improvements. Lose of observability or stability requires still
much work.

7. Assuming that “good” off-line designs or dynamic controls are obtained for
the continuous relaxation, how to come back to a “reasonable” design or
control (scheduling) in the original discrete setting? For this problem, some
post-optimization strategies (eventually using metaheuristics like simulated
annealing or taboo search [12] can be used, but the problem is essentially
unexplored).
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Therefore in this work no concluding remarks will be given, leaving the pre-
sentation relatively open. The reader is recommended to have the above open
questions and many others in mind while going trough the following material.
Even if the warning to existing “holes” in our basic understanding (the theory)
is put here in the introduction, some hopefully interesting results are available.
They provide some behavioral characterizations, sometimes in polynomial time.

The structure of the paper is as follows: In Sect. 2 both autonomous and
timed continuous PN are introduced. Sect. 3 briefly compares PN with other
formalisms in which similar relaxations are used (queuing networks, Forrester
diagrams and positive systems). Performance evaluation of continuous timed PN
is addressed in Sect. 4. The results that are obtained are applied in Sect. 5 to
some synthesis problems. Sect. 6 is devoted to the study of observability. Finally,
the dynamic control of continuous timed models is considered in Section 7.

2 Continuous Petri Nets: On the Relaxation of DEDS
Models

2.1 Autonomous Continuous Petri Nets

We assume that the reader is familiar with PN (for notation we use the standard
one, see for instance [13]).

The usual PN system, 〈N , m0〉, will be said to be discrete so as to distinguish
it from a continuous PN. The structure N = 〈P, T, Pre, Post〉 of continuous
Petri nets is the same as in discrete PN, the difference is in the evolution rule.
In continuous PN firing is not restricted to be done in integer amounts. As a
consequence the marking is not forced to be integer. More precisely, a transition
t is enabled at m iff for every p ∈ •t, m[p] > 0, and its enabling degree is
enab(t, m) = minp∈•t{m[p]/Pre[p, t]}. The firing of t in a certain amount α ≤
enab(t, m) leads to a new marking m′ = m + α ·C[P, t].

The set of reachable markings in continuous PN verifies some properties that
do not hold in the discrete case. For example, the set of reachable markings of
a continuous system is a convex set [14].

In continuous Petri nets the firing can be done in so small quantities that
a net can be “almost” in a deadlock state but never reach it. In our opinion,
these limit markings should also be considered as reachable. Otherwise, there
are nets, as the one in Fig. 1(a), that will deadlock as discrete for any initial
marking, but can never be completely blocked as continuous. In [14] the limit
reachability concept was introduced. The set of these limit-reachable markings
will be denoted as RSC(N , m0). The set of solutions of the relaxed fundamental
equation will be denoted as LRSC(N ,m0), that is, LRSC(N , m0) = {m |m =
m0 + C · σ ≥ 0, σ ≥ 0}. As in discrete PN, the fundamental equation re-
laxation may add spurious solutions to the relaxation made at the net level,
that is, RSC(N , m0) ⊆ LRSC(N , m0). However, and contrary to what hap-
pens in the discrete case, in most practical cases these sets are equal. More
precisely, if N is consistent (i.e., ∃x > 0 : C · x = 0) and every transition can
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Fig. 1. (a) If limit markings are not considered, liveness of a continuous net is not suf-
ficient for (structural) liveness of its discrete counterpart. (b) In any case, (structural)
liveness of the continuous net is not necessary for (structural) liveness of its discrete
counterpart

be fired, ∃σ > 0, m0
σ−→ (or, equivalently, ∃m > 0, m ∈ RSC(N , m0)), then:

RSC(N , m0) = LRSC(N , m0) [14]. Since the preconditions are very weak, this
means that in practice the relaxation at net level is “equivalent” to the relax-
ation at the fundamental equation level. That is, there do not exist spurious
solutions of the fundamental equation.

Hence, properties like deadlock-freeness can be analytically studied. More-
over, structural traps (Θ ⊆ P such that Θ• ⊆ •Θ) do not necessarily “trap”
tokens in continuous PN. That is, the behavioural counterpart of structural
traps is not true anymore: in continuous PN, traps may be emptied. Moreover,
if every transition of the net system can be fired, then every T-semiflow can
be fired in isolation [14]. This has an important consequence: behavioural and
structural synchronic relations [15] coincide.

Fluidification means simplifying the model, assuming that this will allow to
use computationally less expensive techniques and get more information about
the system. However, one has to keep on mind that those results refer to the
continuous PN, and do not always provide “useful” information about the un-
derlying discrete model. Since continuous PN are a relaxation of discrete PN, for
those properties based on universal (existential) quantifiers the continuous PN
will provide sufficient (necessary) conditions. For example, if the continuous PN
is bounded, so will be the discrete PN. For a marking to be reachable in the dis-
crete model, reachability in the continuous one must be guaranteed. However, for
those properties formulated interleaving universal and existential quantifiers the
analysis of the continuous PN may not provide information about the behaviour
of its discrete counterpart. For example, liveness (deadlock-freeness) of the con-
tinuous PN is neither necessary nor sufficient for liveness (deadlock-freeness)
of the discrete PN. Nevertheless, to be fair one should take into account that
maybe the only problem of the discrete net is that it does not have enough to-
kens. In fact, it can be proved that any (lim-)live continuous PN is structurally
live as a discrete PN, although not necessarily live, i.e., the structure of the net is
“correct”, although the marking may be “not large enough” [14]. On the other
hand, a live discrete net may be so only with a particular marking, and any
increase of the marking makes it non-live (see Fig. 1(b)). That kind of nets will
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never go well with continuization, since continuization can be interpreted as if
the marking were multiplied by a very large number (infinite populations).

Continuization leads to “easier to analyze” models compared to the discrete
models. Nevertheless, the price that has been payed for the relaxation is that
some properties of discrete PN cannot be observed in continuous systems, for
example mutex relationship, since this property is based on the notion of dis-
junctive resources, which is lost in the continuous models. Also the distinction
between reversibility and existence of home states is lost. This clearly extends
to some monopoly and fairness situations.

2.2 Timed Continuous Petri Nets

A simple and interesting way to introduce time in discrete PN is to assume that
all the transitions are timed with exponential probability distribution function
(pdf). This way, a purely markovian performance model is obtained, for which,
due to the memoryless property, the state of the underlying Markov chain is the
very marking of the autonomous PN [16].

For the timing interpretation of continuous PN we will use a first order (or
deterministic) approximation of the discrete case [17], assuming that the delays
associated to the firing of transitions can be approximated by their mean values.
Notice that for “congested” systems, this approximation is valid for any pdf —
applying the central limit theorem. Here, for simplicity, immediate transitions
will only be used for “free” conflicts that will be solved according to (marking
and time independent) routing rates R.

Different semantics have been defined for continuous timed transitions, the
two most important being infinite server (or variable speed) and finite server
(or constant speed) [18, 17]. Under finite server semantics, the flow of ti has
just an upper bound, λ[ti] (the number of servers times the speed of a server).
Then f(τ)[ti] ≤ λ[ti] (knowing that at least one transition will be in saturation,
that is, its utilization will be equal to 1). Under infinite server semantics, the
flow through a timed transition t is the product of the speed, λ[t], and the
instantaneous enabling of the transition, i.e., f [t] = λ[t] · enab(t, m) = λ[t] ·
minp∈•t{m[p]/Pre[p, t]}. In both cases piecewise linear differential systems are
obtained.

For discrete PN infinite server semantics is more general, since it allows to
implement finite server semantics by adding a place marked with as many to-
kens as the number of servers. However, this does not represent finite-servers
semantics if these tokens are interpreted as fluids. In the continuous case the
two evolution rules are related to different relaxations of the model. A transi-
tion is like an station in QN, thus “the meeting point” of clients and servers.
Assuming that there may be many or few of each one of them, fluidization can
be considered for clients, for servers or for both. Table 1 represents the four the-
oretically possible cases. Finite server semantics corresponds at conceptual level
to a hybrid behaviour: fluidization is applied only to clients, while servers are
kept as discrete, counted as a finite number (the firing speed is bounded by the
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Table 1. The four cases for possible continuization of a transition [11]. The third one
corresponds to delays in QN

Clients Servers Semantics of the transition

few (D) few (D) Discrete transition
many (C) few (D) Finite server semantics (bounds to firing speed)
few (D) many (C) Discrete transition (servers become implicit places)
many (C) many (C) Infinite server semantics (speed is enabling-driven)

P1 P2 P3 P4 P5

P6 P7 P8 P9 P10

T5 T7 T9 T11

T4 T6 T8 T10 T12T2

T1 T3

P12P11 P13

Fig. 2. A simplification of a production line in [20]

product of the speed of a server and the number of servers in the station). On
the other hand, infinite server semantics really relaxes both clients and servers.

In both cases, although the fluidization is total, models are hybrid in the
sense that they are piecewise linear systems, in which switching among the em-
bedded linear systems is not externally driven as in [19], but internally through
the minimum operators. If the PN belongs to the join-free subclass (i.e., transi-
tions cannot have more than one input place), its fluidization generates a linear
differential equation system.

The simple (asymmetric choice) model in Fig. 2 represents a production sys-
tem with two production lines (it is part of an example studied in [20]). It has
been analyzed using infinite server semantics and finite server semantics (single-
server). In both cases, as the marking of the net is multiplied by a constant k,
the throughput (normalized in the infinite server case) approaches to the one ob-
tained when the net is seen as continuous (Table 2). In this case, the continuous
net under infinite server semantics is a better approximation of the behaviour of
the original discrete system. The finite server semantics disregards the restric-
tions due to the shared resources, that in this example are quite important unless
the system is heavily loaded (large k). Since the two semantics are not com-
parable, an immediate question is: Do they provide really different performance
measures? The answer is positive, being possible to have large differences in the
throughput (finite server semantics being usually more optimistic). Therefore,
for a particular case, which continuous semantics is better? How much error can
we have? For these questions we have no definitive answer, and it is not clear
if some in depth understanding can be obtained; nevertheless, an experimental
analysis of benchmark examples from the literature is being considered [20]. As a
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Table 2. Steady state throughput of the system in Fig. 2, assuming each operation
takes 1 t.u. (For k=10 and k=50, markovian simulations are used.)

Reachable Infinite servers Single server
k markings Thr. of every ti Thr./k Thr. of every ti

1 250 0.172 0.172 0.172
2 6300 0.366 0.183 0.303
3 67375 0.564 0.188 0.399
5 2159136 0.966 0.193 0.528
10 ? 1.96 0.196 0.693
50 ? 9.97 0.199 0.91
· · · · · · · · · · · · · · ·

Continuous 0.2 1

preliminary remark, it seems that in most cases infinite server semantics provides
a better approximation, although it seems difficult to obtain a characterization
of the cases in which this happens. Moreover, other models —particularly use-
ful for population dynamic problems— obtained through decoloration of colored
models lead to a different semantics in which the “min” operator is replaced by
a product [9] (which naturally keeps positive the decolored model).

3 Alternative Formalisms

The approximation of a discrete event model by a continuous one is not new,
and can be found in different formalisms.

Deterministic first-order approximations have been long used in QN [21, 3,
22, 4]. The fluid QN arises as a limit, in the sense of functional strong law of
large numbers, of the stochastic network with the appropriate scaling. In [23] it
was proven that the fluid models of certain QN could be used to analyze the
(positive) recurrence of their discrete counterparts. In the last years, this has
been extended to open or closed multiclass networks under different policies.
Fluid models have also been applied in the synthesis of controls or scheduling
(see, for example, [5, 6, 24, 25, 26]), proving that the optimal policy of the fluid
networks can be somehow translated to a “good” policy for some discrete QN.
In this setting, the emphasis has been usually put on the rigorous mathematical
justification, even if that meant that fluid models were applied to “narrow” net
classes.

Comparisons of PN and (monoclass) QN can be seen in [27, 28, 29]. Both
formalisms are in essence bipartite: Places and transitions for PN; Queues and
stations for QN. From an structural point of view, the main differences are the
possible simultaneous existence in a single PN model of arc weights, attributions,
choices, forks and joins, and the possible absence of local conservation rules when
transitions are fired. QN are in essence timed models, that may be provided with
very rich routing service and queuing disciplines, while PN can be studied also
as autonomous (idea of non-determinism). Moreover, as it was be pointed out in
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Fig. 3. A system described using FD and PN [33]. In the Forrester diagram, St and E
are deposits with levels, while P, S and HF are valves regulating the flows

Subsect. 2.2, different timed interpretations of the net lead to different firing/flow
policies. The firing logic of PN is of the type consumption/production, a kind of
generalization of the classical client/servers in QN (Jackson, Gordon-Newell).

Forrester Diagrams (FD) appeared in the Systems Dynamics framework, and
is a well-known, essentially continuous timed formalism for modelling certain
classes of DES [30, 31]. FD provide a graphic representation of the system, that
corresponds to an hydrodynamic interpretation. A comparison of PN and FD
can be found in [32, 33]. For example, Fig. 3 represents both a FD and a PN
model of an example. It is a production system that maintains a certain stock
(St, with initial value 9) and a number of employees (E, with initial value 12).
Products decrease due to sales, which are constant in time (S=12), and increases
with production (P), which is proportional to the number of employees (here with
constant 1). Employees change due to hiring or firing (HF), which is proportional
to the difference between the desired stock (DSt=10) and the actual stock (St).
Two remarks with respect to the PN model of the system: (1) variables have to
be positive, hence variable HF has been split in two, hiring and firing; (2) to rep-
resent that sales are constant, or that firing depends on the stock, self-loops have
been added with large enough arc weights to guarantee that these places always
define the enabling degree (here weight 1 is enough). Although the continuous
net is not structurally bounded, it is bounded with this timing. That is, com-
plementary places (St, E) with a large enough marking could be added without
changing the behaviour. Continuous PN and FD provide a graphical support to
generate systems of differential equations easily and there is a clear correspon-
dence among their main types of nodes — place/level and transition/valve (or
firing-speed/flow-variable). However, there are some differences [32, 33]:

– Marking of places vs levels. In FD each level corresponds to a state variable.
Although in PN places are essentially state variables, redundancies may ex-
ist due to token conservation laws. Particular cases are structural implicit
places. Levels may be negative, but markings are in essence positive.
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– Transitions vs. valves: flows. The evolution of flows in FD takes place ac-
cording to the information that valves receive from the whole state of the
system, through the information channels. The evolution of the PN takes
place according to the information that each transition receives from its in-
put places. Thus, FD separate the material and the information flows, and
evolve according to global information of the system. On the other hand,
PN have only a flow of material that carries the information implicitly, and
evolve according to information that, in standard uses, is local to each tran-
sition (its input places).

– In FD synchronizations are not explicitly modelled: there exist no elements to
represent “rendez-vous”, and must be simulated by means of flow equations.

– In FD material is strictly conservative around the valves (the relationship
among input and output flow is always 1:1), while in PN weighted conser-
vation is often found.

As QN, FD are timed models. In FD the methodological analysis is basically
focused to simulation, although there are some researching groups who also did
go into the mathematical analysis of the system, basically sensibility, bifurca-
tions and qualitative analysis (see for example [34]). Contrarily to QN, in FD
the relationship between the solution of the continuous model and the original
discrete model has not received much attention.

Under both, finite and infinite server semantics, “unforced” PN models are
positive systems in Luenberger sense [35, 36], that is, the non-negativity con-
straints on the marking are redundant. A particularly interesting case of posi-
tive systems are compartmental systems, which are composed of a finite number
of subsystems (compartments), interacting by exchanging material among the
compartments and with the environment [37, 38, 39].

An immediate similarity between PN and compartmental systems is that
both allow representations based on graphs. However, PN are bipartite graphs,
while compartmental models have a single kind of nodes. In discrete PN there are
two different kinds of nodes: OR nodes (attributions/choices), and AND nodes
(joins/forks). Nevertheless, in continuous PN (under infinite server semantics)
the forward OR node in homothetic conflicts (if between t1 and t2, Pre[P, t1] =
α · Pre[P, t2]) is transformed into a “+” operation. Therefore, choices can be
seen as flow splitters.

As in FD, in compartmental systems there is a strong “strict” conservation
law: matter is not created, although it may “evaporate” and disappear if the
system is not (output) closed. In PN such kind of constraint does not exist.

Another difference between PN and the graphs associated to compartmental
systems is the arc weights. However, this is not a real generalization in the case of
continuous nets without synchronizations (join-free nets), since for any of those
nets, an equivalent one exists with arc weights one [36]. In other words, weights in
continuous models without synchronizations constitute a modelling convenience
(i.e., do not add theoretical expressive power).
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Putting all together, strongly connected and conservative PN without syn-
chronizations are equivalent, from the modelling point of view, to closed linear
compartmental systems [36].

The above consideration of alternative “fluidified” formalisms is a source
of opportunities in order to bridge the results in the analysis or synthesis of
continuous PN models with that in “close” or related paradigms.

4 Performance Evaluation

Analyzing the performance of a continuous PN both in the transient and in the
steady state involves integrating a set of differential equations. In theory it is
possible to solve it analytically: solve the linear differential equations defined by
the initial marking, and study among the different “minimums” associated to the
synchronizations which one will be reached before, then repeat the process. In
practice the existence of many differential equations, and many synchronizations
makes this “artisanal” approach unfeasible, although a numerical version can be
easily implemented in a computer, for example using Matlab. The equations that
define the behaviour of the system in Fig. 4(a) are:

f(τ)[t1] = λ[t1] ·m(τ)[p1]
f(τ)[t2] = λ[t2] ·m(τ)[p2]
f(τ)[t3] = λ[t3] ·min(m(τ)[p2], m(τ)[p3])
f(τ)[t4] = λ[t4] ·min(m(τ)[p3], m(τ)[p4])

If it is only the steady state we care about, some results and techniques have
been developed (see [10]). First of all, it has to be remarked that, in general,
there is no guarantee about the existence of a steady state. For example, the
net in Fig. 3(b) oscillates indefinitely without, even asymptotically, approaching
to a steady state [33](see Fig. 5). To the best of our knowledge, the existence
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of a steady state had always be assumed, even for hybrid nets. In the future
some work will be needed for the development of at least necessary or sufficient
conditions. In the rest of this section some results for the computation of the
steady state will be given, being assumed the existence of a steady state marking
under infinite server semantics. Nevertheless, it should be pointed out that the
markovian discrete counterpart of this model is ergodic. Let mss be the steady
state marking of a bounded continuous net system: mss = limτ→∞ m(τ). Then,
for every τ > 0 it must be true:

ṁ(τ) = C · f(τ)

f [t](τ) = λ[t] ·min
p∈•t

{
m[p](τ)
Pre[p, t]

}
∀ non-immediate transition t

R · f(τ) = 0

m(0) = m0

(1)

Using φ as an approximation of f in the steady state, and μ as an approxi-
mation of the marking in the steady state, the above equations can be relaxed
as follows:

μ = m0 + C · σ

φ[t] = λ[t] ·min
p∈•t

{
μ[p]

Pre[p, t]

}
∀ non-immediate transition t

R · φ = 0

C · φ = 0

μ, σ, φ ≥ 0}

(2)

With this relaxation we have replaced the condition of being a reachable
marking with that of being a solution of the fundamental equation. That is, we
are loosing the information about the feasibility of the transient path. Observe
that the system is non-linear (“min” operator) and a unique solution is not
guaranteed. For example, for the net system in Fig. 6 with λ = [2, 1, 1], any
marking [10 − 5 · α, 4 · α − 3, α, α], with 1 ≤ α ≤ 5/3, verifies (2), and all of
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Fig. 6. A net system for which, with λ = [2, 1, 1], infinite solutions of (2) exist

them lead to different throughput. Maximizing the flow of a transition, an upper
bound of the throughput is obtained:

max{φ[t1] | μ = m0 + C · σ

φ[t] = λ[t] ·min
p∈•t

{
μ[p]

Pre[p, t]

}
∀ non-immediate transition t

R · φ = 0

C · φ = 0,

μ, σ, φ ≥ 0}

(3)

Notice that the solution of (3) is always dynamically “reachable” in the sense
that with a suitable initial distribution of the tokens inside the P-semiflows, this
throughput can be obtained (for instance, with the steady state distribution).
Nevertheless, the programming problem in (3) is not easy to solve due to the
“min” operator, that makes it non linear. The problem is that there is no way to
know in advance which of the input places will restrict the flow, and so, a kind
of branch and bound algorithm is used to solve it [10]. The idea is to solve the
LPP defined by the system of (in)-equalities that appears choosing one input
place per transition as the one which gives the minimum. If the marking does
not correspond to a steady state (i.e., there is at least one transition such that all
its input places have “too many” tokens) choose one of the synchronizations and
solve the set of LPP that appear when each one of the input places are assumed
to be defining the flow. That is, build a set of LPP by adding an equation
that relates the marking of each input place with the flow of the transition.
These subproblems become children of the root search node. The algorithm is
applied recursively, generating a tree of subproblems. If an optimal steady state
marking is found to a subproblem, it is a possible steady state marking, but not
necessarily globally optimal. Since it is feasible, it can be used to prune the rest
of the tree: if the solution of the LPP for a node is smaller than the best known
feasible solution, no globally optimal solution can exist in the subspace of the
feasible region represented by the node. Therefore, the node can be removed from
consideration. The search proceeds until all nodes have been solved or pruned.
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Some results have been developed that help to further prune the tree [10], but
nevertheless, worst cases may be computationally expensive.

This suggests to go on with an additional relaxation, knowing that some
accuracy may be lost. Since the minimum is the hardest point, that equation
in (3) can be replaced with:

φss[t] = λ[t] · μss[p]
Pre[p, t]

if p = •t (4)

φss[t] ≤ λ[t] · μss[p]
Pre[p, t]

∀p ∈ •t otherwise (5)

φss[ti]
λ[ti]

=
φss[tj ]
λ[tj ]

∀ ti, tj in EQ relation (6)

This way we have a single linear programming problem (LPP), thus com-
putation is of polynomial time complexity. Unfortunately, the LPP provides in
general a non tight bound, i.e, the solution may be non reachable for any dis-
tribution of the tokens verifying the P-semiflow load conditions, y ·m0. This
may occur because it may be the case that for that solution none of the input
places of a synchronization really restricts the flow of that transition. When this
happens, the marking cannot define the steady state (the flow of that transition
would be larger). See [10] for conditions that guarantee in some systems the
reachability of the bound.

A slight relaxation of that LPP, using inequalities in all the transitions, leads
to a result that had been obtained long before for discrete nets. For bounded
discrete net systems, an upper bound of the throughput of one transition can
be obtained by means of that LPP [40, 41].

max{φ[ti] | μ = m0 + C · σ

φ[t] ≤ λ[t] · μ[p]
Pre[p, t]

∀p ∈ •t

R · φ = 0

C · φ = 0,

μ, σ, φ ≥ 0}

(7)

For nets in which the steady state visit ratio can be deduced from the struc-
ture and the rates of the transitions (mono T-semiflow reducible nets), it can
be proved that both statements are equivalent (in the sense that if one solu-
tion with inequality exists, another one with the same throughput verifies the
equality) [10].

5 Parametric Design

In engineering, analysis techniques frequently guide in the definition of synthesis
methods. Assuming approximate computation of performance with efficient al-
gorithms, the problem of designing the best set of resources (best m0), the best
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routing policy (best R), the best type of machines (machine selection problem,
appearing indirectly as determining the best λ) can be straightforwardly stated.
Observe that these are not “on-line” control problems, but “off-line” design prob-
lems in which parametric optimizations are being solved. A recent presentation
of some “easily” (i.e., polynomial time) solvable problems of this type can be
found in [11]. One of the basic statements is as follows: Let g·f−w·m−b·m0, be
the profit function to be optimized, where, g represents a gain vector associated
to flows/throughput, w is the cost vector due to immobilization to maintain
the production flow (e.g., due to the levels in stores), and vector b represent
depreciations or amortization of the initial investments (e.g., due to the size of
the stores, number of machines, . . . ). Assume also upper bounds in the use of
the resources (V ·m0 ≤ k), i.e., its availability is limited.

This kind of optimization problem admits a particularly elegant and efficient
solution if the LPP, stated in Sect. 4 lead to the exact value (otherwise upper
bounds are obtained). As was previously mentioned, this happens, for example,
for structurally live and bounded equal conflict (EQ) nets (its characterization
can be computed polynomially through the rank theorem [9]). For simplicity,
in the sequel of this section let us assume that nets are structurally live and
bounded EQ (thus mono-T-semiflow reducible), and conflicts among immediate
transitions are solved according to routing rates, R. The following LPP can be
written:

max{ g · φ−w · μ− b · μ0

s.t. μ = μ0 + C · σ
φ[t] ≤ λ[t] · μ[p]

Pre[p,t] ∀p ∈ •t

φ[t] = λ[t] · μ[p]
Pre[p,t] if p = •t

C · φ = 0
R · φ = 0
φ, μ, μ0 ≥ 0
V · μ0 ≤ k}

(8)

In other cases the problem to be solved is which are the minimum cost re-
sources (b ·m0) that guarantee a certain throughput (see Problem 5 in [11]).
The routing matrix R may be also the parameters to be optimized, looking for
best production mix, or better internal routing at the factory. A simple case
for optimizing a profit function w.r.t. the routing R is the following example:
Maximize g ·φ−w ·μ− b ·μ0, with respect to the routing. The following LPP
computes an optimal flow vector, φ, being R free.

max{ g · φ−w · μ− b · μ0

s.t. μ = μ0 + C · σ
φ[t] ≤ λ[t] · μ[p]

Pre[p,t] ∀p ∈ •t

φ[t] = λ[t] · μ[p]
Pre[p,t] if p = •t

C · φ = 0
μ ≥ 0}

(9)
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Once LPP (9) has been solved, the computation of the routing matrix R, is
straightforward, just proceed free-choice by free-choice. Assuming for simplicity
that choices are binary: φ1/φ2 = r1/r2, and r1 + r2 = 1.

If all free conflicts are solved with immediate transitions, and g = 1, w =
b = 0, this LPP is analogous to the one stated in [42], assuming boundedness.
Even if in this last case nets are P-timed (i.e., with delays associated to places),
and conflicts are solved according to a stationary routing policy (a simplifying
preselection policy, which in practice is equivalent a net without conflicts), and
have different transient behaviour, their steady state is the same.

6 Observation

In order to control a dynamic system, frequently it is necessary to know its
current state. Sensors can be used to get information from the plant, but often
some of the variables cannot be directly measured, either because it is not phys-
ically possible, or because of its cost. If the information that can be obtained
from the system allows to estimate the value of a variable, that variable is said
to be observable (with that instrumentation), and the estimate constitutes the
observation. The observability problem, i.e., the characterization of which state
variables are observable and its observation, has been studied both for continu-
ous systems (in particular linear systems) and for discrete event systems. Some
results related to observability of discrete event models can be found in [43, 44].

With respect to continuous systems, observability is quite a classical problem,
for which easy to understand and general results were obtained for time-invariant
linear systems in the sixties of the last century [45, 35]. The contribution of inputs
to the evolution of a linear system can be easily computed and subtracted from
the total output. Therefore, observability of linear systems can be studied using
its unforced counterpart.

A time-invariant linear system can be expressed as ẋ(τ) = A · x(τ) + B ·
u(τ), y(τ) = S · x(τ), where y represents its output, that is, “what is seen” of
it. A linear system is said to be observable iff knowing y(τ), it is possible to
compute its initial state x(τ0). That is, iff knowing y(τ) the equation

y(τ) = S · eA·τ · x(τ0)

can be solved for every x(τ0). It can be seen that this is equivalent to matrix
ϑ = (ST |(SA)T | · · · |(SAn−1)T )T having full rank. This result is known as the
observability theorem and the matrix is known as the observability matrix [45].
For linear systems, the observable subspace can be characterized algebraically.
Intuitively, a system state estimation can be theoretically obtained from the
output signal and the computation of its derivatives.

Hence observability is completely characterized for nets that can be described
with a linear system, that is, join-free nets (i.e., nets that do not have synchro-
nizations). If the net has synchronizations, there are several linear systems that
may define the evolution of the system, depending on which is the place that
restricts each transition. The observability theorem has been extended to gen-
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eral piecewise linear systems. The complete system is observable iff the pairwise
intersection of different observable subspaces is trivial, that is, the joint observ-
ability matrix of each pair of linear system has full rank [46]. However, continuous
PN have a characteristic that these general piecewise systems do not have: the
change of one linear system to another one is triggered by the continuous state
(the marking). This makes the observability of continuous PN a more simple
issue [47]: if the system passes through an observable linear system, its marking
at that moment can be observed. And since it is deterministic, it is possible to
simulate it backwards and deduce the initial marking.

Notice also that observability of a synchronization will not be possible in
general unless all its input places are measured (it might be possible to mea-
sure one place only if it were timed implicit). Moreover, observability cannot be
extended forward (the output flow of a transition does not provide information
to deduce the marking of the next place). Hence, the problem can be tackled
by measuring the places in synchronizations. The net that remains removing
those places and their input and output arcs—eventually composed of several
unconnected subnets—is join-free. For these subnets, the observability theorem
can be applied. Hence, given a set of measured places it is not difficult to prove
whether the net is observable or not.

Nets without synchronizations and attributions (p ∈ P is an attribution if
|•p| > 1) can be observed just measuring the “final” places (places without
output arcs) or measuring one (any) place if it is a weighted cycle. As a direct
consequence, it can be stated that a weighted T-system is observable for any
initial marking iff all synchronization places are measured, or, in the case of a
cycle, one arbitrary place is measured [48]. For this kind of nets, the rates of

Fig. 7. Observability in nets with attributions depends on both the rates, and the
structure

p3

p2
p1

t1
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the transitions do not have any influence on the observability of the system.
Attributions on the other hand, force to study the rates of the net. Observe for
example the net in Fig. 7(a), and assume that p3 is measured. The system is
observable iff the rates of t1 and t2 are not equal, i.e. λ[t1] �= λ[t2]. Intuitively,
if they have the same rate, it is not possible to distinguish which part of the
flow is coming from each place [47]. Moreover, this is not a local problem, but
a global one. On the one hand, it is not just the rates of the input transitions
of the attribution that have to be taken into account. For example, the net in
Fig. 7(b) is not observable if λ[t2] = λ[t3], but neither is if λ[t4] = 2·λ[t2]·λ[t3]

λ[t2]+λ[t3]
.

On the other hand, attributions are not “independent”. For example, the net in
Fig. 7(c) with λ[t2] �= λ[t3] and λ[t4] = λ[t5] = 2·λ[t2]·λ[t3]

λ[t2]+λ[t3]
is observable if p4 is

measured, but not if p5 is measured. For any other value of λ[t4] = λ[t5] it is
observable measuring either p4 or p5. A related “design” problem is to determine
minimal cost observability. That is, when a cost is assigned to measuring each
place, which is the best selection of the places guaranteeing that the system is
observable? To apply the previous result would mean to solve a combinatorial
set of observability problems. Nevertheless this number can be greatly reduced
in many cases applying the following property [48]: Let p and p′ be such that
there is a path from p′ to p without synchronizations or attributions. Then

– p′ can be deduced from the observation of p.
– If the net is not observable measuring a set of places containing place p, it

cannot be observable if p is replaced by p′.

An algorithm, and its application to an example showing how the combinatory
is reduced can be found in [48].

7 Dynamic Control: On “Forced” Continuous Net
Systems

In order to speak about dynamic control, some previous questions should be
answered. For example, what to control? According to the adopted time inter-
pretation, flows through transitions should be controlled, both w.r.t. routing and
service. Observe that this is not really something new; the same strategy is used
for QN, were servers activity and routing of customers are controlled; analo-
gously, when dealing with Forrester Diagrams, the opening of valves has to be
controlled. Now the second question, how to control? The only idea is to control
at routing points (what may be complex at non free-choices) and, eventually, to
slow down the activity of transitions (servers in a station). As a last question,
it should be decided how to express the control. Two main approaches can be
considered: multiplicative (the speed of t is controlled as α ·λ[t], with α ∈ (0, 1))
or additive (subtracting u, 0 ≤ u ≤ f). In any case, the flow can go from f [t]
to 0. That is, the control can locally slow down the activity of transitions. It
is not the moment to discuss that issue in detail, let us just say that they are
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“in essence” equivalent. Our choice here is to use the additive formulation. Pro-
ceeding in that way, using u as the slow down control vector, the fundamental
equation is now: ṁ = C · (f(m)− u), were 0 ≤ u ≤ f(m).

The above statement suggests two different remarks: (1) the system is not
positive anymore in the classical (and restrictive) sense of [35, 37] (see [36]);
(2) the slowing down action is dynamically bounded by the actual state (marking)
of the system.

Some results are already known for controllability in the previous frame-
work [49]. For the present purpose let us just point out that if all transitions
are controllable, reachability in timed models is equivalent to reachability in the
underlying untimed models [50]. In other words, if marking m is reachable in
the untimed model 〈N , m0〉, there exists a way of controlling the transitions for
reaching it in the controlled timed model.

Notice that it will take infinite time to reach a marking that empties a place,
unless perhaps if it were already empty in the initial marking. However, that kind
of markings will always have at least one transition with 0 throughput, hence
they are not very interesting as steady state markings. Once again, this problem
is not something new: the loading of a capacity in a basic RC-electrical circuit
cannot be “complete” in finite time. Nevertheless, engineers use the classical
concept of response time (at 5%, 3%, 1%) in order to have a practical view of
the duration of the transient behaviour.

Let us assume in the sequel that all the transitions are controllable, and let
us concentrate first in the steady state control. A first remark is that given a
net and a constant steady state control, u, there may exist several markings,
perhaps with different flows, that may be steady state markings. For example,
for the system depicted in Fig. 6, with λ = [2, 1, 1], and u = 0, marking [5, 1, 1, 1]
(with flow [1, 1, 1]) and marking [5/3, 11/3, 5/3, 5/3], (with flow [5/3, 5/3, 5/3])
can be both steady states. Hence, a first interesting step is to obtain the optimum
steady state, and a control action for it. A LPP similar to the one in (9) can be
used for that [50]:

max{ g · φ−w · μ− b · μ0

s.t. μ = μ0 + C · σ
φ[t] = λ[t] · μ[p]

Pre[p, t]
− v[p, t] ∀p ∈ •t

C · φ = 0
μ, σ ≥ 0
v ≥ 0}

(10)

The only difference is that now a set of slack variables v[p, t] have been
added in the equation that relates the marking with the flow. If |•t| = 1, the
slack variable v[•t, t] represents the control action of the transition. In general,
it can be seen that u[t] = minp∈•t v[p, t] is an appropriate control input.

With respect to the transient, the use of u as the single reference input is
not enough in general to reach the optimal flow in the net. In [11, 50] a schema
as the one in Fig. 8 is proposed, in which the control action depends on the
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Fig. 8. Control schema

steady state control action, and the difference between the actual marking and
the steady state one.

One approach that has been used in the literature to face the problem of opti-
mal control of hybrid systems is to approximate them by discrete-time systems,
and represent them as Mixed Logical Dynamical (MLD) systems [51]. Usually,
in a MLD system the time step is constant. Time discretization has two im-
portant drawbacks: (1) The length of the sampling period is not easy to define.
There exists a tradeoff between accuracy (short sampling period) and compu-
tational speed (long sampling period). In fact, the complexity typically grows
exponentially with the number of switching variables, and these, for a given time
interval, are inversely proportional to the length of the sampling period; (2) It
is assumed that events can occur only at time instants that are multiple of the
sampling period. In fact, it would be desirable to deal with a model that requires
a minimum number of steps (samples) without losing accuracy.

In [52] it was seen that the behaviour of finite server semantics continuous
PN system could be described by means of an MLD system. Moreover, since
PN are event-driven systems, it could be a continuous-time event-driven MLD,
instead of one that evolves with a fixed time step. Observe that this approach
has two interesting advantages: (1) Event-discretization does not imply loss of
accuracy: The marking evolution of a continuous PN is linear between events,
and so it can be determined from the marking of the net at the event instants.
(2) The number of steps is minimized: A step happens only when it is really
required (an event happens).

Different kinds of optimal control problems can be solved by means of the
explained event-driven approach, for example: reaching a target marking in min-
imum time, i.e., time optimal control, maximizing the steady state throughput,
or maximizing an optimization function in which several different parameters
are involved [52].

Some preliminary efforts are also being made to transform the optimal control
problem into a multi-parametric quadratic program, and apply the techniques
developed for this kind of systems [19].
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52. Júlvez, J., Bemporad, A., Recalde, L., Silva, M.: Event-driven optimal control of
continuous Petri nets. In: 43rd IEEE Conference on Decision and Control (CDC
2004), Paradise Island, Bahamas (2004)

53. Balbo, G., Silva, M., eds.: Proc. of Human Capital and Mobility MATCH—
Performance Advanced School. In Balbo, G., Silva, M., eds.: Performance Models
for Discrete Event Systems with Synchronozations: Formalisms and Analysis Tech-
niques, Jaca, Spain (1998)



Genetic Process Mining

W.M.P. van der Aalst, A.K. Alves de Medeiros, and A.J.M.M. Weijters

Department of Technology Management, Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

{w.m.p.v.d.aalst, a.k.medeiros, a.j.m.m.weijters}@tm.tue.nl

Abstract. The topic of process mining has attracted the attention of
both researchers and tool vendors in the Business Process Management
(BPM) space. The goal of process mining is to discover process models
from event logs, i.e., events logged by some information system are used
to extract information about activities and their causal relations. Several
algorithms have been proposed for process mining. Many of these algo-
rithms cannot deal with concurrency. Other typical problems are the
presence of duplicate activities, hidden activities, non-free-choice con-
structs, etc. In addition, real-life logs contain noise (e.g., exceptions or
incorrectly logged events) and are typically incomplete (i.e., the event
logs contain only a fragment of all possible behaviors). To tackle these
problems we propose a completely new approach based on genetic al-
gorithms. As can be expected, a genetic approach is able to deal with
noise and incompleteness. However, it is not easy to represent processes
properly in a genetic setting. In this paper, we show a genetic process
mining approach using the so-called causal matrix as a representation
for individuals. We elaborate on the relation between Petri nets and this
representation and show that genetic algorithms can be used to discover
Petri net models from event logs.

Keywords: Process Mining, Petri Nets, Genetic Algorithms, Process
Discovery, Business Process Intelligence, Business Activity Monitoring.

1 Introduction

Buzzwords such as Business Process Intelligence (BPI) and Business Activ-
ity Monitoring (BAM) illustrate the practical interest in techniques to extract
knowledge from the information recorded by today’s information systems. Most
information systems support some form of logging. For example, Enterprise Re-
source Planning (ERP) systems such as SAP R/3, PeopleSoft, Oracle, JD Ed-
wards, etc. log transactions at various levels. Any Workflow Management (WfM)
system records audit trails for individual cases. The Sarbanes-Oxley act is forcing
organizations to log even more information. The availability of this information
triggered the need for process mining techniques that analyze event logs.

The goal of process mining is to extract information about processes from
transaction logs [3]. We assume that it is possible to record events such that
(i) each event refers to an activity (i.e., a well-defined step in the process), (ii)
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Table 1. An event log (audit trail)

case activity origi- timestamp case activity origi- timestamp
id id nator id id nator

case 1 activity A John 09-3-2004:15.01 case 3 activity E Pete 10-3-2004:12.50
case 2 activity A John 09-3-2004:15.12 case 3 activity F Carol 11-3-2004:10.12
case 3 activity A Sue 09-3-2004:16.03 case 4 activity D Pete 11-3-2004:10.14
case 3 activity D Carol 09-3-2004:16.07 case 3 activity G Sue 11-3-2004:10.44
case 1 activity B Mike 09-3-2004:18.25 case 3 activity H Pete 11-3-2004:11.03
case 1 activity H John 10-3-2004:09.23 case 4 activity F Sue 11-3-2004:11.18
case 2 activity C Mike 10-3-2004:10.34 case 4 activity E Clare 11-3-2004:12.22
case 4 activity A Sue 10-3-2004:10.35 case 4 activity G Mike 11-3-2004:14.34
case 2 activity H John 10-3-2004:12.34 case 4 activity H Clare 11-3-2004:14.38

each event refers to a case (i.e., a process instance), (iii) each event can have
a performer also referred to as originator (the actor executing or initiating the
activity), and (iv) events can have a timestamp and are totally ordered. Table 1
shows an example of a log involving 18 events and 8 activities. In addition to
the information shown in this table, some event logs contain more information
on the case itself, i.e., data elements referring to properties of the case.

Event logs such as the one shown in Table 1 are used as the starting point for
mining. We distinguish three different perspectives: (1) the process perspective,
(2) the organizational perspective and (3) the case perspective. The process per-
spective focuses on the control-flow, i.e., the ordering of activities. The goal of
mining this perspective is to find a good characterization of all possible paths,
e.g., expressed in terms of a Petri net or Event-driven Process Chain (EPC). The
organizational perspective focuses on the originator field, i.e., which performers
are involved and how are they related. The goal is to either structure the or-
ganization by classifying people in terms of roles and organizational units or to
show relation between individual performers (i.e., build a social network [2]).
The case perspective focuses on properties of cases. Cases can be characterized
by their path in the process or by the originators working on a case. However,
cases can also be characterized by the values of the corresponding data elements.
For example, if a case represents a replenishment order it is interesting to know
the supplier or the number of products ordered.

The process perspective is concerned with the “How?” question, the orga-
nizational perspective is concerned with the “Who?” question, and the case
perspective is concerned with the “What?” question. In this paper we will focus
completely on the process perspective, i.e., the ordering of the activities. This
means that here we ignore the last two columns in Table 1. (Although the times-
tamps determine the order of events (activities) in a case, the actual timestamps
are not used during mining.) For the mining of the other perspectives we refer
to [3] and http://www.processmining.org. Note that the ProM tool described in
this paper is able to mine the other perspectives and can also deal with other
issues such as transactions, e.g., in the ProM tool we consider different event
types such as “schedule”, “start”, “complete”, “abort”, etc. However, for rea-
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sons of simplicity we abstract from this in this paper and consider activities to
be atomic as shown in Table 1.

If we abstract from the other perspectives, Table 1 contains the following
information: case 1 has event trace A, B, H, case 2 has event trace A, C, H, case
3 has event trace A, D, E, F, G, H, and case 4 has event trace A, D, F, E, G, H.
If we analyze these four sequences we can extract the following information
about the process (assuming some notion of completeness and no noise). The
underlying process has 8 activities (A, B, ..., H). A is always the first activity to
be executed and H is always the last one. After A is executed, activities B, C or
D can be executed. In other words, after A, there is a choice in the process and
only one of these activities can be executed next. When B or C are executed,
they are followed by the execution of H (see cases 1 and 2). When D is executed,
both E and F can be executed in any order. Since we do not consider explicit
parallelism, we assume E and F to be concurrent (see cases 3 and 4). Activity G
synchronizes the parallel branches that contain E and F . Activity H is executed
whenever B, C or G has been executed. Based on these observations, the Petri
net shown in Figure 1 is a good model for the event log containing the four cases.
Note that each of the four cases can be “reproduced” by the Petri net shown in
Figure 1, i.e. the Petri net contains all observed behavior. In this particular case,
also the reverse holds, i.e., all possible firing sequences of the Petri net shown in
Figure 1 are contained in the log. Generally, this is not the case since in practice
it is unrealistic to assume that all possible behavior is always contained in the
log, cf. the discussion on completeness in [4].

A

B

D

E

C

F

G

H

Fig. 1. Petri net discovered based on the event log in Table 1

Existing approaches for mining the process perspective [3, 4, 5, 6, 11, 13, 18]
have problems dealing with issues such as duplicate activities, hidden activities,
non-free-choice constructs, noise, and incompleteness. The problem with dupli-
cate activities occurs when the same activity can occur at multiple places in the
process. This is a problem because it is no longer clear to which activity some
event refers. The problem with hidden activities is that essential routing deci-
sions are not logged but impact the routing of cases. Non-free-choice constructs
are problematic because it is not possible to separate choice from synchroniza-
tion. We consider two sources of noise: (1) incorrectly logged events (i.e., the log
does not reflect reality) or (2) exceptions (i.e., sequences of events corresponding
to “abnormal behavior”). Clearly noise is difficult to handle. The problem of
incompleteness is that for many processes it is not realistic to assume that all
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possible behavior is contained in the log. For processes with many alternative
routes and parallelism, the number of possible event traces is typically expo-
nential in the number of activities, e.g., a process with 10 binary choices in a
sequence will have 210(= 1024) possible event sequences and a process with 10
activities in parallel will have even 10!(= 3628800) possible event sequences.

We can consider process mining as a search for the most appropriate process
out of the search space of candidate process models. Mining algorithms can use
different strategies to find the most appropriate model. Two extreme strategies
can be distinguished (i) local strategies primarily based on a step by step building
of the optimal process model based on local information, and (ii) global strategies
primarily based on a one strike search for the optimal model. Most process
mining approaches use a local strategy. An example of a such a local strategy is
used by the α-algorithm [4] where only local information about binary relations
between events is used. A genetic search is an example of a global search strategy;
because the quality or fitness of a candidate model is calculated by comparing
the process model with all traces in the event log the search process takes place
at a global level. For a local strategy there is no guarantee that the outcome
of the locally optimal steps (at the level of binary event relations) will result in
a globally optimal process model. Hence, the performance of such local mining
techniques can be seriously hampered when the necessary information is not
locally available because one erroneous example can completely mess up the
derivation of a right model. Therefore, we started to use genetic algorithms.

In this paper, we present a genetic algorithm to discover a Petri net given a
set of event traces. Genetic algorithms are adaptive search methods that try to
mimic the process of evolution [9]. These algorithms start with an initial popula-
tion of individuals (in this case process models). Populations evolve by selecting
the fittest individuals and generating new individuals using genetic operators
such as crossover (combining parts of two of more individuals) and mutation
(random modification of an individual). Our initial work on applying genetic
algorithms to process mining [14] shows that a direct representation of individ-
uals in terms of a Petri net is not a very convenient. First of all, the Petri net
contains places that are not visible in the log. (Note that in Figure 1 we cannot
assign meaningful names to places.) Second, the classical Petri net is not a very
convenient notation for generating an initial population because it is difficult to
apply simple heuristics. Third, the definition of the genetic operators (crossover
and mutation) is cumbersome. Finally, the expressive power of Petri nets is in
some cases too limited (combinations of AND/OR-splits/joins). Therefore, we
use an internal representation named casual matrix. However, we use Petri nets
to give semantics to this internal representation and adopt many ideas from Petri
nets (e.g., playing the token game to measure fitness). Moreover, in this paper
we focus on the relation between the casual matrix and Petri nets.

The remainder of this paper is organized as follows. First, we discuss some
related work (Section 2) and start with some preliminaries (Section 3). Then,
in Section 4, we present the causal matrix as our internal representation. In
Section 5 we explore the relation between the causal matrix and Petri nets.
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Section 6 introduces the genetic algorithm and in Section 7 some experimental
results are given. Finally, we conclude the paper.

2 Related Work

The idea of process mining is not new [3, 4, 2, 5, 6, 11, 13, 18]. Most of the scien-
tific papers aim at the control-flow perspective, although a few focus on other
perspectives such as the organizational perspective [2]. It is also interesting to
note that some commercial tools such as ARIS PPM offer some limited form of
process mining as discussed in this paper. However, most tools in the BPI/BAM
arena focus on key performance indicators such as flow time and frequencies.

Given the many papers on mining the process perspective it is not possi-
ble to give a complete overview. Instead we refer to [3, 4]. Historically, Cook et
al. [6] and Agrawal et al. [5] started to work on the problem addressed in this
paper. Herbst et al. [11] took an alternative approach which allows for dealing
with duplicate activities. The authors of this paper have been involved in dif-
ferent variants of the so-called α-algorithm [4, 18]. Each of the approaches has
its pros and its cons. Most approaches that are able to discover concurrency
have problems dealing with issues such as duplicate activities, hidden activities,
non-free-choice constructs, noise, and incompleteness.

There have been some papers combining Petri nets and genetic algorithms,
cf. [12, 15, 16, 17]. However, these papers do not try to discover a process model
based on some event log.

For readers familiar with Petri net theory, it is important to discuss the rela-
tion between this work and the work on regions [8]. The seminal work on regions
investigates which transition systems can be represented by (compact) Petri nets
(i.e., the so-called synthesis problem). Although there are related problems such
as duplicate transitions, etc., the setting is quite different because our notion
of completeness is much weaker than perfect knowledge of the underlying tran-
sition system. We assume that the log contains only a fraction of the possible
behavior, as mentioned in the introduction.

The approach in this paper is the first approach using genetic algorithms
for process discovery. Some more details about the experimental/genetic-side of
this approach can be found in a technical report [14]. The goal of using genetic
algorithms is to tackle problems such as duplicate activities, hidden activities,
non-free-choice constructs, noise, and incompleteness, i.e., overcome the prob-
lems of some of the traditional approaches. However, in this paper we focus on
the initial idea and the representation rather than a comparison with existing
non-genetic algorithms.

3 Preliminaries

This section briefly introduces the basic Petri net terminology and notations,
and also discusses concepts such as WF-nets and soundness.
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Definition 1 (Petri net). A Petri net is a triple (P, T, F ). P is a finite set of
places, T is a finite set of transitions (P ∩ T = ∅), and F ⊆ (P × T ) ∪ (T × P )
is a set of arcs (flow relation).

For any relation/directed graph G ⊆ N×N we define the preset •n = {(m1, m2) ∈
G | n = m2} and postset n• = {(m1, m2) ∈ G | n = m1} for any node n ∈ N .
We use G• n or n

G• to explicitly indicate the context G if needed. Based on the
flow relation F we use this notation as follows. •t denotes the set of input places
for a transition t. The notations t•, •p and p• have similar meanings, e.g., p• is
the set of transitions sharing p as an input place. Note that we do not consider
multiple arcs from one node to another.

At any time a place contains zero or more tokens, drawn as black dots. This
state, often referred to as marking, is the distribution of tokens over places, i.e.,
M ∈ P → IN. For any two states M1 and M2, M1 ≤ M2 iff for all p ∈ P :
M1(p) ≤ M2(p). We use the standard firing rule, i.e., a transition t is said to
be enabled iff each input place p of t contains at least one token, an enabled
transition may fire, and if transition t fires, then t consumes one token from
each input place p of t and produces one token for each output place p of t.

Given a Petri net (P, T, F ) and a state M1, we have the standard notations
for a transition t that is enabled in state M1 and firing t in M1 results in state
M2 (notation: M1

t→ M2) and a firing sequence σ = t1t2t3 . . . tn−1 leads from
state M1 to state Mn via a (possibly empty) set of intermediate states (notation:
M1

σ→ Mn). A state Mn is called reachable from M1 (notation M1
∗→ Mn) iff

there is a firing sequence σ such that M1
σ→ Mn. Note that the empty firing

sequence is also allowed, i.e., M1
∗→ M1.

In this paper, we will focus on a particular type of Petri nets called WorkFlow
nets (WF-nets) [1, 7, 10].

Definition 2 (WF-net). A Petri net PN = (P, T, F ) is a WF-net (Workflow
net) if and only if:

(i) There is one source place i ∈ P such that •i = ∅.
(ii) There is one sink place o ∈ P such that o• = ∅.
(iii) Every node x ∈ P ∪ T is on a path from i to o.

A WF-net represents the life-cycle of a case that has some initial state repre-
sented by a token in the unique input place (i) and a desired final state rep-
resented by a token in the unique output place (o). The third requirement in
Definition 2 has been added to avoid “dangling transitions and/or places”. In
the context of workflow models or business process models, transitions can be
interpreted as tasks or activities and places can be interpreted as conditions.
Although the term “WorkFlow net” suggests that the application is limited to
workflow processes, the model has wide applicability, i.e., any process where
each case has a life-cycle going from some initial state to some final state fits
this basic model.
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The three requirements stated in Definition 2 can be verified statically, i.e.,
they only relate to the structure of the Petri net. To characterize desirable dy-
namic properties, the notation of soundness has been defined [1, 7, 10].

Definition 3 (Sound). A procedure modelled by a WF-net PN = (P, T, F ) is
sound if and only if:

(i) For every state M reachable from state i, there exists a firing sequence leading
from state M to state o. Formally: ∀M (i ∗→ M)⇒ (M ∗→ o).1

(ii) State o is the only state reachable from state i with at least one token in
place o. Formally: ∀M (i ∗→ M ∧ M ≥ o) ⇒ (M = o).

(iii) There are no dead transitions in (PN , i). Formally: ∀t∈T ∃M,M ′ i
∗→ M

t→
M ′.

Note that the soundness property relates to the dynamics of a WF-net. The
first requirement in Definition 3 states that starting from the initial state (state
i), it is always possible to reach the state with one token in place o (state o).
The second requirement states that the moment a token is put in place o, all
the other places should be empty. The last requirement states that there are no
dead transitions (activities) in the initial state i.

4 Causal Matrix

After these preliminaries we return to the goal of this paper: genetic process
mining. In order to apply a genetic algorithm we need to represent individuals.
Each individual corresponds to a possible process model and its representation
should be easy to handle. Our initial idea was to represent processes directly
by Petri nets. Unfortunately, Petri nets turn out to be a less convenient way
to represent processes in this context. The main reason is that in Petri nets
there are places whose existence cannot be derived from the log, i.e., events
only refer to the active components of the net (transitions). Because of this it
becomes more difficult to generate an initial population, define genetic operators
(crossover and mutation), and describe combinations of AND/OR-splits/joins.
Note that given a log it is very easy to discover the activities and therefore the
transitions that exist in the Petri net. However, enforcing certain routings by just
connecting transitions through places is complex (if not impossible). Therefore,
we will use a different internal representation. However, this representation and
its semantics are closely linked to Petri nets as will be shown in Section 5.

Table 2 shows the internal representation of an individual used by our ge-
netic mining approach. This so-called causal matrix defines the causal relations
between the activities and in case of multiple input or output activities, the logic
is depicted. Consider for example the row starting with A. This row shows that

1 Note that there is an overloading of notation: the symbol i is used to denote both
the place i and the state with only one token in place i. The same holds for o.
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Table 2. A causal matrix is used for the internal representation of an individual

INPUT
true A A A D D E ∧ F B ∨ C ∨ G

→ A B C D E F G H OUTPUT

A 0 1 1 1 0 0 0 0 B ∨ C ∨ D

B 0 0 0 0 0 0 0 1 H

C 0 0 0 0 0 0 0 1 H

D 0 0 0 0 1 1 0 0 E ∧ F

E 0 0 0 0 0 0 1 0 G

F 0 0 0 0 0 0 1 0 G

G 0 0 0 0 0 0 0 1 H

H 0 0 0 0 0 0 0 0 true

Table 3. A more succinct encoding of the individual shown in Table 2

ACTIVITY INPUT OUTPUT

A {} {{B, C, D}}
B {{A}} {{H}}
C {{A}} {{H}}
D {{A}} {{E}, {F}}
E {{D}} {{G}}
F {{D}} {{G}}
G {{E}, {F}} {{H}}
H {{B, C, G}} {}

there is a not a causal relation between A and A (note the first 0 in the row),
but there is a causal relation between A and B (note the first 1 in this row). The
next two entries in the row show that there are also causal relations between
A and C and A and D. The last element in the row shows the routing logic,
i.e., B ∨C ∨D indicates that A is followed by B, C, or D. The column labelled
‘OUTPUT’ shows the logic relating an activity to causally following activities.
The first row below ‘INPUT’ shows the logic relating an activity to causally
preceding activities. Note that the input condition of A is true, i.e., no input
needed. Activity G has E ∧ F as input condition, i.e., both E and F need to
complete in order to enable G. Activity H has B ∨ C ∨ G as input condition,
i.e., B, C, or G needs to complete in order to enable H.

Table 3 shows a more convenient notation removing some of the redundancies.
Note that the 0 and 1 entries in Table 2 can be trivially derived from the input
and output conditions. Moreover, we assume that we can write the logical expres-
sions in a normal form, e.g., {{B, C, D}} corresponds to B ∨C ∨D, {{E}, {F}}
corresponds to E ∧ F , and {{A, B}, {C, D}} corresponds to (A ∨B) ∧ (C ∨D).
In fact, the logical expression is represented by a set of sets corresponding to a
conjunction of disjunctions, i.e., a kind of Conjunctive Normal Form (CNF).2

2 Note that unlike the conjunctive normal form we do not allow for negation and also
do not allow for “overlapping” disjunctions, cf. Definition 4.
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Let us now formalize the notion of a causal matrix.

Definition 4 (Causal Matrix). A Causal Matrix is a tuple CM = (A, C, I, O),
where

- A is a finite set of activities,
- C ⊆ A×A is the causality relation,
- I ∈ A → P(P(A)) is the input condition function,3

- O ∈ A → P(P(A)) is the output condition function,

such that

- C = {(a1, a2) ∈ A×A | a1 ∈
⋃

I(a2)},4
- C = {(a1, a2) ∈ A×A | a2 ∈

⋃
O(a1)},

- ∀a∈A ∀s,s′∈I(a) s ∩ s′ �= ∅ ⇒ s = s′,
- ∀a∈A ∀s,s′∈O(a) s ∩ s′ �= ∅ ⇒ s = s′,

- C ∪ {(ao, ai) ∈ A×A | ao
C•= ∅ ∧ C• ai = ∅} is a strongly connected graph.

The mapping of Table 3 onto CM = (A, C, I, O) is straightforward (the latter
two columns represent I and O). Note that C can be derived from both I and
O. Its main purpose is to ensure consistency between I and O. For example,
if a1 has an output condition mentioning a2, then a2 has an input condition
mentioning a1 (and vice versa). This is enforced by the first two constraints.
The third and fourth constraint indicate that some activity a may appear only
once in the conjunction of disjunctions, e.g., {{A, B}, {A, C}} is not allowed
because A appears twice. The last requirement has been added to avoid that the
causal matrix can be partitioned in two independent parts or that nodes are not
on a path from some source activity ai to a sink activity ao.

5 Relating the Causal Matrix and Petri Nets

In this section we relate the causal matrix to Petri nets. We first map Petri nets
(in particular WF-nets) onto the notation used by our genetic algorithms. Then
we consider the mapping of the causal matrix onto Petri nets.

5.1 Mapping a Petri Net onto a Causal Matrix

The mapping from an arbitrary Petri net to its corresponding causal matrix
illustrates the expressiveness of the internal format used for genetic mining.
First, we give the definition of the mapping ΠPN→CM .

Definition 5 (ΠPN→CM). Let PN = (P, T, F ) be a Petri net. The mapping of
PN is a tuple ΠPN→CM (PN ) = (A, C, I, O), where

3 P(A) denotes the powerset of some set A.
4 ⋃ I(a2) is the union of the sets in set I(a2).
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- A = T ,
- C = {(t1, t2) ∈ T × T | t1 • ∩ • t2 �= ∅},
- I ∈ T → P(P(T )) such that ∀t∈T I(t) = {•p | p ∈ •t},
- O ∈ T → P(P(T )) such that ∀t∈T O(t) = {p • | p ∈ t•}.

Let PN be the Petri net shown in Figure 1. It is easy to check that ΠPN→CM (PN )
is indeed the causal matrix in Table 2. However, there may be Petri nets PN for
which ΠPN→CM (PN ) is not a causal matrix. The following lemma shows that
for the class of nets we are interested in, i.e., WF-nets, the requirement that
there may not be two different places in-between two activities is sufficient to
prove that ΠPN→CM (PN ) represents a causal matrix as defined in Definition 4.

Lemma 1. Let PN = (P, T, F ) be a WF-net with no duplicate places in between
two transitions, i.e., ∀t1,t2∈T |t1 •∩• t2| ≤ 1. ΠPN→CM (PN ) represents a causal
matrix as defined in Definition 4.

Proof. Let ΠPN→CM = (A, C, I, O). Clearly, A = T is a finite set, C ⊆ A× A,
and I, O ∈ A → P(P(A)). C = {(a1, a2) ∈ A × A | a1 ∈

⋃
I(a2)} because

a1 ∈
⋃

I(a2) if and only if a1 •∩•a2 �= ∅. Similarly, C = {(a1, a2) ∈ A×A | a2 ∈⋃
O(a1)}. ∀a∈A ∀s,s′∈I(a) s ∩ s′ �= ∅ ⇒ s = s′ because ∀t1,t2∈T |t1 • ∩ • t2| ≤ 1.

Similarly, ∀a∈A ∀s,s′∈O(t) s ∩ s′ �= ∅ ⇒ s = s′. Finally, it is easy to verify that
C ∪ {(ao, ai) ∈ A×A | ao• = ∅ ∧ •ai = ∅} is a strongly connected graph. ��
The requirement ∀t1,t2∈T |t1 • ∩ • t2| ≤ 1 is a direct result of the fact that
in the conjunction of disjunctions in I and O, there may not be any overlaps.
This restriction has been added to reduce the search space of the genetic mining
algorithm, i.e., the reason is more of a pragmatic nature. However, for the success
of the genetic mining algorithm such reductions are of the utmost importance.

5.2 A Naive Way of Mapping a Causal Matrix onto a Petri Net

The mapping from a causal matrix onto a Petri net is more involved because we
need to “discover places” and, as we will see, the causal matrix is slightly more
expressive than classical Petri nets.5 Let us first look at a naive mapping.

Definition 6 (ΠN
CM→PN). Let CM = (A, C, I, O) be a causal matrix. The naive

Petri net mapping is a tuple ΠN
CM→PN (CM ) = (P, T, F ), where

- P = {i, o} ∪ {it,s | t ∈ A ∧ s ∈ I(t)} ∪ {ot,s | t ∈ A ∧ s ∈ O(t)},
- T = A ∪ {mt1,t2 | (t1, t2) ∈ C},
- F = {(i, t) | t ∈ A ∧ C• t = ∅} ∪ {(t, o) | t ∈ A ∧ t

C•= ∅} ∪ {(it,s, t) | t ∈
A ∧ s ∈ I(t)} ∪ {(t, ot,s) | t ∈ A ∧ s ∈ O(t)} ∪ {(ot1,s, mt1,t2) | (t1, t2) ∈
C ∧ s ∈ O(t1) ∧ t2 ∈ s}∪{(mt1,t2 , it2,s) | (t1, t2) ∈ C ∧ s ∈ I(t2) ∧ t1 ∈ s}.

5 Expressiveness should not be interpreted in a formal sense but in the sense of con-
venience when manipulating process instances, e.g., crossover operations.
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The mapping ΠN
CM→PN maps activities onto transitions and adds input places

and output places to these transitions based on functions I and O. These places
are local to one activity. To connect these local places, one transition mt1,t2

is added for every (t1, t2) ∈ C. Figure 2 shows a causal matrix and its naive
mapping ΠN

CM→PN (we have partially omitted place/transition names).

ACTIVITY INPUT OUTPUT

A {} {{C, D}}
B {} {{D}}
C {{A}} {}
D {{A, B}} {}

A

B

C

D

A

B

C

D

(a) Naive mapping.

(b) Incorrect mapping.

Fig. 2. A causal matrix (left) and two potential mappings onto Petri nets (right)

Figure 2 shows two WF-nets illustrating the need for “silent transitions” of
the form mt1,t2 . The dynamics of the WF-net shown in Figure 2(a) is consis-
tent with the causal matrix. If we try to remove the silent transitions, the best
candidate seems to be the WF-net shown in Figure 2(b). Although this is a
sound WF-net capturing incorporating the behavior of the WF-net shown in
Figure 2(a), the mapping is not consistent with the causal matrix. Note that
Figure 2(b) allows for a firing sequence where B is followed by C. This does
not make sense because C �∈ ⋃O(B) and B �∈ ⋃ I(C). Therefore, we use the
mapping given in Definition 6 to give Petri-net semantics to causal matrices.

It is easy to see that a causal matrix defines a WF-net. However, note that
the WF-net does not need to be sound.

Lemma 2. Let CM = (A, C, I, O) be a causal matrix. ΠN
CM→PN (CM ) is a

WF-net.

Proof. It is easy to verify the three properties mentioned in Definition 2. Note
that the “short-circuited” C is strongly connected and that each mt1,t2 transition
makes a similar connection in the resulting Petri net. ��

Figure 3 shows that despite the fact that ΠN
CM→PN (CM ) is a WF-net, the

introduction of silent transitions may introduce a problem. Figure 3(b) shows the
WF-net based on Definition 6, i.e., the naive mapping. Clearly, Figure 3(b) is not
sound because there are two potential deadlocks, i.e., one of the input places of E
is marked and one of the input places of F is marked but none of them is enabled.
The reason for this is that the choices introduced by the silent transitions are not
“coordinated” properly. If we simply remove the silent transitions, we obtain the
WF-net shown in Figure 3(a). This network is consistent with the causal matrix.
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ACTIVITY INPUT OUTPUT

A {} {{B}, {C, D}}
B {{A}} {{E, F}}
C {{A}} {{E}}
D {{A}} {{F}
E {{B}, {C}} {{G}}
F {{B}, {D}} {{G}}
G {{E}, {F}} {}

A C

D

B E

F

G

A C

D

B E

F

G

(a) Mapping without silent transitions.

(b) Naive mapping.

Fig. 3. Another causal matrix (left) and two potential mappings onto Petri nets (right)

This can easily be checked because applying the mapping ΠPN→CM defined in
Definition 5 to this WF-net yields the original causal matrix shown in Figure 3.

Figures 2 and 3 show a dilemma. Figure 2 demonstrates that silent transitions
are needed while Figure 3 proves that silent transitions can be harmful. There
are two ways to address this problem taking the mapping of Definition 6 as a
starting point.

First of all, we can use relaxed soundness [7] rather than soundness [1]. This
implies that we only consider so-called sound firing sequences and thus avoid the
two potential deadlocks in Figure 3(b). See [7] for transforming a relaxed sound
WF-net into a sound one.

Second, we can change the firing rule such that silent transitions can only fire if
they actually enable a non-silent transition. The enabling rule for non-silent tran-
sitions is changed as follows: a non-silent transition is enabled if each of its input
places is marked or it is possible to mark all input places by just firing silent tran-
sitions, i.e., silent transitions only fire when it is possible to enable a non-silent
transition. Note that non-silent and silent transitions alternate and therefore it is
easy to implement this semantics in a straightforward and localized manner.

In this paper we use the second approach, i.e., a slightly changed enabling/-
firing rule is used to specify the semantics of a causal matrix in terms of a
WF-net. This semantics allows us also to define a notion of fitness required for
the genetic algorithms. Using the Petri-net representation we can play the “token
game” to see how each event trace in the log fits the individual represented by
a causal matrix.

5.3 A More Sophisticated Mapping

Although not essential for the genetic algorithms, we elaborate a bit on the
dilemma illustrated by figures 2 and 3. The dilemma shows that the causal
net representation is slightly more expressive than ordinary Petri nets. (Note
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the earlier comment on expressiveness!) Therefore, it is interesting to see which
causal matrices can be directly mapped onto a WF-net without additional silent
transitions. For this purpose we first define a mapping ΠR

CM→PN which only
works for a restricted class of causal matrices.

Definition 7 (ΠR
CM→PN). Let CM = (A, C, I, O) be a causal matrix. The re-

stricted Petri net mapping of is a tuple ΠR
CM→PN (CM ), where

- X = {(Ti, To) ∈ P(A)× P(A) | ∀t∈Ti
To ∈ O(t) ∧ ∀t∈To

Ti ∈ I(t)},
- P = X ∪ {i, o},
- T = A,
- F = {(i, t) | t ∈ T ∧ C• t = ∅} ∪ {(t, o) | t ∈ T ∧ t

C•= ∅} ∪ {((Ti, To), t) ∈
X × T | t ∈ To} ∪ {(t, (Ti, To)) ∈ T ×X | t ∈ Ti}.

If we apply this mapping to the causal matrix shown in Figure 3, we obtain
the WF-net shown in Figure 3(a), i.e., the desirable net without the superfluous
silent transitions. However, in some cases the ΠR

CM→PN does not yield a WF-
net because some connections are missing. For example, if we apply ΠR

CM→PN

to the causal matrix shown in Figure 2, then we obtain a result where there
are no connections between A, B, C, and D. This makes sense because there
does not exist a corresponding WF-net. This triggers the question whether it is
possible to characterize the class of causal matrices for which ΠR

CM→PN yields
the correct WF-net.

Definition 8 (Simple). Let CM = (A, C, I, O) be a causal matrix. CM is sim-
ple if and only if ∀tA,tB∈T ∀TA∈O(tA) ∀TB∈O(tB) ∀tC∈(TA∩TB) ∀TC∈I(tC){tA, tB} ⊆
TC ⇒ TA = TB and ∀tA,tB∈T ∀TA∈I(tA) ∀TB∈I(tB) ∀tC∈(TA∩TB) ∀TC∈O(tC)

{tA, tB} ⊆ TC ⇒ TA = TB.

Clearly the causal matrix shown in Figure 3 is simple while the one in Figure 2
is not. The following lemma shows that ΠR

CM→PN provides indeed the correct
mapping if the causal matrix is simple.

Lemma 3. Let CM = (A, C, I, O) be a causal matrix. If CM is simple, then
each of the following properties holds:

(i) ∀(t1,t2)∈C ∃T1,T2∈P(A) t1 ∈ T1 ∧ t2 ∈ T2 ∧ (∀t∈T1 T2 ∈ O(t)) ∧ (∀t∈T2 T1 ∈
I(t)),

(ii) ΠR
CM→PN (CM ) is a WF-net, and

(iii) ΠPN→CM (ΠR
CM→PN (CM )) = CM .

Proof. We only provide a sketch of the full proof (a more detailed proof is beyond
the scope of this paper). The first property can be derived by using the following
observation: (t1, t2) ∈ C iff ∃T2∈O(t1)t2 ∈ T2 iff ∃T1∈O(t2)t1 ∈ T1. Hence there is
exactly one T1 and T2 such that t1 ∈ T1, t2 ∈ T2, T2 ∈ O(t1), and T1 ∈ O(t2).
For t ∈ T1 we need to prove that T2 ∈ O(t). This follows from the definition of
simple by taking tA = t1 and tB = t. The other cases are similar. The second
property follows from the first one because if (t1, t2) ∈ C then a connecting
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place between t1 and t2 is introduced by the set X. The rest of the proof is
similar to the proof of Lemma 2. The third property can be shown using similar
arguments. Note that no information is lost during the mapping onto the WF-
net ΠR

CM→PN (CM ) and that ΠPN→CM retranslates the sets Ti and To in the
places of X to functions I and O. ��
In this section, we discussed the relation between the representation used by our
genetic algorithm and Petri nets. We used this relation to give semantics to our
representation. It was shown that this representation is slightly more expressive
than Petri nets because any WF-net can be mapped into causal matrix while
the reverse is only possible after introducing silent transitions and modifying the
firing rule or using relaxed soundness. We also characterized the class of causal
matrices that can be mapped directly. In the next sections, we will demonstrate
the suitability of the representation for genetic process mining.

6 Genetic Algorithm

In this section we explain how our genetic algorithm (GA) works. Figure 4
describes its main steps. In the following subsections (6.1 – 6.3) we roughly
explain the most important building blocks of our genetic approach: (i) the
initialization process, (ii) the fitness measurement, and (iii) the genetic operators.
For a more detailed explanation about the algorithm we refer to [14].

start I II III IV

VI

V end
yes

no

Fig. 4. Main steps of our genetic algorithm. (I) Read the event log. (II) Calculate
dependency relations among activities. (III) Build the initial population. (IV) Calcu-
late individuals’ fitness. (V) Stop and return the fittest individuals? (VI) Create next
population by using the genetic operators

6.1 Initial Population

The initial population is randomly built by the genetic algorithm. As explained in
Section 4, individuals are causal matrices. When building the initial population,
we roughly follow Definition 4. Given a log, all individuals in any population
of the genetic algorithm have the same set of activities (or tasks) A. This set
contains the tasks that appear in the log. However, the causality relation C and
the condition functions I and O may be different for every individual in the
population. Additionally, to guide the GA algorithm during the building of the
initial population, the initialization of the causality relation C is supported by
the dependency measure heuristics [18]. The motivation behind this heuristic is
simple. If, in the event log, the pattern t1t2 appears frequently and t2t1 only as
an exception, then there is a high probability that t1 and t2 are in the causality
relation (i.e., (t1, t2) ∈ C). The conditions functions I and O are randomly
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Table 4. Two randomly created individuals for the log in Table 1

Individual1

ACTIVITY INPUT OUTPUT

A {} {{B, C, D}}
B {{A}} {{H}}
C {{A}} {{H}}
D {{A}} {{E}}
E {{D}} {{G}}
F {} {{G}}
G {{E}, {F}} {{H}}
H {{C, B, G}} {}

Individual2

ACTIVITY INPUT OUTPUT

A {} {{B, C, D}}
B {{A}} {{H}}
C {{A}} {{H}}
D {{A}} {{E, F}}
E {{D}} {{G}}
F {{D}} {{G}}
G {{E}, {F}} {{H}}
H {{C}, {B}, {G}} {}

built. As a result, the initial population can have any individual in the search
space defined by a set of activities A. The higher the amount of tasks that a log
contains, the bigger this search space. Given the event log in Table 1, Table 4
shows two individuals that could be created during the initialization.

6.2 Fitness Calculation

If an individual in the genetic population correctly describes the registered be-
havior in the event log, the fitness of that individual will be high. In our approach
the fitness is strongly related to the number of correctly parsed traces from the
event log. Note that in case of noisy situation, we cannot aim at mining a process
model that can correctly parse all traces, because the traces with noise cannot
also be parsed by the desired model.

The parsing technique we use for the causal matrix is very similar to the
firing rule for Petri nets as discussed in Section 5.2. We use the naive semantics
with silent transitions that only fire when needed and simply play the “token
game”. When the activity to be parsed is not enabled, the parsing process does
not stop. The problem is registered and the parsing proceeds as if the activity
was enabled (conceptually, this is equivalent to adding the necessary missing
tokens in the Petri net to enable the activity and, then, firing it). We adopt
this parsing semantics because it is more robust to noisy logs and it gives more
information about the fitness of the complete process models (i.e not biased to
only the first part of the process model). In a noise-free situation, the fitness of a
model can be 1 (or 100%) (i.e. all traces can be parsed). In practical situations,
the fitness value ranges from 0 to 1. The exact fitness of an individual to a given
log is given by the formula:

fitness = 0.40× allParsedActivities
numberOfActivitiesAtLog + 0.60× allProperlyCompletedLogTraces

numberOfTracesAtLog

where: numberOfActivitiesAtLog is the number of activities in the log. For in-
stance, the log shown in Table 1 has 18 activities. numberOfTracesAtLog is the
number of log traces, e.g., in Table 1 there are 4. allParsedActivities is the sum
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of parsed activities (i.e. activities that could fire without the artificial addition
of tokens) for all log traces. allProperlyCompletedLogTraces is the number of log
traces that were properly parsed (i.e. after the parsing the end place is the only
one to be marked).

6.3 Genetic Operations

We use elitism, crossover and mutation to build the population elements of the
next genetic generation. Elitism means that a percentage of the fittest individ-
uals in the current generation is copied into the next generation. Crossover and
mutation are the basic genetic operators. Crossover creates new individuals (off-
springs) based on the fittest individuals (parents) in the current population. So,
crossover recombines the fittest material in the current population in the hope
that the recombination of useful material in one of the parents will generate an
even fitter population element. The mutation operation will change some minor
details of a population element. The hope is that the mutation operator will
insert new useful material in the population. The genetic algorithm (GA) stops
when: (i) it finds an individual whose fitness is 1; or (ii) it computes n genera-
tions, where n is the maximum number of generation that is allowed; or (iii) the
fittest individual has not changed for n/2 generations in a row. If none of these
conditions hold, the GA creates a new population as follows:

Input: current population, elitism rate, crossover rate and mutation rate
Output: new population

1. Copy “elitism rate × population size” of the best individuals in the current popu-
lation to the next population.

2. While there are individuals to be created do:

(a) Use tournament selection to select parent1.

(b) Use tournament selection to select parent2.

(c) Select a random number r between 0 (inclusive) and 1 (exclusive).

(d) If r less than the crossover rate:
then do crossover with parent1 and parent2. This operation generates two
offsprings: offspring1 and offspring2.
else offspring1 equals parent1 and offspring2 equals parent2.

(e) Mutate offspring1 and offspring2. (This step is only needed if the mutation
rate is non-zero.)

(f) Copy offspring1 and offspring2 to the new population. 6

3. Return the new population.

6 Note: If the population size is n and the new population has already n−1 individuals,
then only offspring1 is copied into this new population.
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Tournament Selection. To select a parent the tournament selection algorithm
randomly selects 5 individuals and returns the fittest individual among the five
ones.

Crossover. The most important and complex genetic operation in our genetic
approach is the crossover operation. Starting point of the crossover operation are
the two parents (i.e. parent1 and parent2). The result of applying the crossover
operation are two offsprings (offspring1 and offspring2). First, the crossover al-
gorithm randomly selects an activity t to be the crossover point. This means
that the INPUT and OUTPUT of t in parent1 will be recombined with the IN-
PUT and OUTPUT of t in parent2. Second, parent1 is copied to offspring1 and
parent2 to offspring2. Third, the algorithm randomly selects a swap point for the
INPUT(t) sets in both offsprings and another swap point for the OUTPUT(t)
sets. The swap point determines which subsets of the INPUT/OUTPUT of t in
the offspring are going to be swapped (or exchanged). A random swap point is
chosen for every INPUT/OUTPUT and offsprings. The respective INPUT and
OUTPUT sets of the crossover point at the two offsprings are then recombined
by interchanging the subsets from the swap point until the end of the set. The
recombined INPUT/OUTPUT sets are then checked to make sure that they are
proper partitions. Finally, the two offsprings undergo a repair operation called
update related elements.

Update Related Elements. When the parents (and consequently the off-
springs) have different causal matrices, the crossover operation may generate
inconsistencies. Note that the boolean expression may contain activities whose
respective cell in the causal matrix is zero. Similarly, an activity may not appear
in the boolean expression after the crossover and the causal matrix still has a
non-zero entry for it. So, after the INPUT/OUTPUT sets have being recom-
bined, we need to check the consistency of the recombined sets with respect to
the other activities boolean expressions and the causal matrix. When they are
inconsistent, we need to update the causal matrix and the related boolean expres-
sions of the other activities. As an example, assume Parent1 equals Individual1
and Parent2 equals Individual2 in Table 4. These two parents undergo crossover
and mutation to generate two offsprings. Let activity D be the randomly selected
crossover point. Since INPUT1(D) equals INPUT2(D), the crossover has no real
effect for D’s INPUT. Let us look at the D’s OUTPUT sets. Both D’s OUTPUT
sets have a single subset, so the only possible swap point to select equals 0, i.e.,
before the first and only element. After swapping the subsets Offpring1 (Parent1
after crossover) has INPUT1(D)= {{A}} and OUTPUT1(D)= {{E, F}}. Note
that OUTPUT1(D) now contains F . So, the update related elements algorithm
makes INPUT1(F)= {{D}}. Offspring2 is updated in a similar way. The two
offsprings are shown in Table 5.

Mutation. The mutation works on the INPUT and OUTPUT boolean expres-
sions of an activity. For every activity t in an individual, a new random number
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Table 5. Example of two offsprings that can be produced after a crossover between
the two individuals in Table 4

Offspring1

ACTIVITY INPUT OUTPUT

A {} {{B, C, D}}
B {{A}} {{H}}
C {{A}} {{H}}
D {{A}} {{E, F}}
E {{D}} {{G}}
F {{D}} {{G}}
G {{E}, {F}} {{H}}
H {{C, B, G}} {}

Offspring2

ACTIVITY INPUT OUTPUT

A {} {{B, C, D}}
B {{A}} {{H}}
C {{A}} {{H}}
D {{A}} {{E}}
E {{D}} {{G}}
F {} {{G}}
G {{E}, {F}} {{H}}
H {{C}, {B}, {G}} {}

r is selected. Whenever r is less than the “mutation rate” 7, the subsets in
INPUT(t) are randomly merged or split. The same happens to OUTPUT(t). As
an example, consider Offspring1 in Table 5. Assume that the random number
r was less than the mutation rate for activity D. After applying the mutation,
OUTPUT(D) changes from {{E, F}} to {{E}, {F}}. Note that this mutation
does not change an individual’s causal relations, only its AND-OR/join-split
may change.

7 Some Experimental Results

To test our approach we applied the algorithm to many examples, mostly ar-
tificially generated and some based on real-life logs [14]. In this paper we only
consider two WF-nets; one with 8 and one with 12 activities. Both models con-
tain concurrency and loops. The WF-net with 8 activities corresponds to the first
example in this paper, i.e., the Petri net shown in Figure 1. The other WF-net
represents a completely different process model. For each model we generated
10 different event logs with 1000 traces. Without noise the rediscovering of the
underlying WF-nets was no problem for the genetic algorithm. To test the be-
havior of the genetic algorithm for event logs with noise, we used 6 different
noise types: missing head, missing body, missing tail, missing activity, exchanged
activities and mixed noise. If we assume a event trace σ = t1...tn−1tn, these noise
types behave as follows. Missing head, body and tail randomly remove subtraces
of activities in the head, body and tail of σ, respectively. The head goes from t1
to tn/3. The body goes from t(n/3)+1 to t(2n/3). The tail goes from t(2n/3)+1 to
tn. Missing activity randomly removes one activity from σ. Exchanged activities
exchange two activities in σ. Mixed noise is a fair mix of the other 5 noise types.
Real life logs will typically contain mixed noise. However, the separation between

7 The mutation rate determines the probability that an individual’s task undergoes
mutation.
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the noise types allow us to better assess how the different noise types affect the
genetic algorithm.

For every noisy type, we generated logs with 5%, 10% and 20% of noise. So,
every process model in our experiments has 6 × 3 = 18 noisy logs. For each
event-log the genetic algorithms runs 10 experiments with a different random
initialization. The populations had 500 individuals and were iterated for at most
100 generations. The crossover rate was 1.0 and the mutation rate was 0.01. The
elitism rate was 0.01. Details about the experiments and results can be found in
[14]. Here we summarize the main findings.

Overall the higher the noise percentage, the lower the probability the al-
gorithm will come up with the original WF-net. In this particular setting the
algorithm can always handle the missing tail noise type. This is related to the
high impact of proper completion in our fitness measure. Also the exchanged
activities noise type does not harm the performance of the algorithm. This is
related to the heuristic that is used during the initialization of the population.
Missing head impacts more the algorithm because our fitness does not (yet!)
punish individuals with missing tokens. Missing body and missing activity noise
types are the most difficult to handle. This is also related to the heuristics during
the building of the initial population because the removal of activities generates
t1t2 “fake” subtraces that will not be counter-balanced by subtraces t2t1. Con-
sequently, the probability that the algorithm will causally relate t1 and t2 is
increased. Tables 6 and 7 contain the results obtained for the noisy logs of the
two process models with 8 and 12 activities.

Table 6. Results of applying the genetic algorithm for noisy logs of the process model
with 8 activities, i.e., Figure 1. The ratio relates the number of times the algorithm
found the correct model by the number of times the algorithm ran

noise type
noise Missing Missing Missing Missing Exchanged Mixed

percentage head tail body activity activities noise

5% 10/10 10/10 0/10 1/10 9/10 1/10

10% 10/10 10/10 1/10 1/10 5/10 3/10

20% 0/10 10/10 0/10 0/10 0/10 2/10

Tables 6 and 7 show that our approach works well for relatively simple exam-
ples. Moreover in contrast to most of the existing approaches it is able to deal
with noise. To improve our approach we are now refining the fitness calculation.
For instance, the fitness should consider the number of tokens that remained in
the individual after the parsing is finished as well as the number of tokens that
needed to be added during the parsing.

The generic mining algorithm presented in this paper is supported by a plu-
gin in the ProM framework (cf. http://www.processmining.org). Figure 5 shows
screenshot of the plugin. This screenshot presents the result for the process model
with 8 activities in terms of Petri nets and EPCs.
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Table 7. Results of applying the genetic algorithm for noisy logs of the process model
with 12 activities

noise type
noise Missing Missing Missing Missing Exchanged Mixed

percentage head tail body activity activities noise

5% 10/10 10/10 0/10 0/10 10/10 2/10

10% 1/10 10/10 0/10 0/10 9/10 3/10

20% 1/10 10/10 0/10 0/10 8/10 2/10

Fig. 5. A screenshot of the GeneticMiner plugin in the ProM framework analyzing the
event log in Table 1 and generating the correct WF-net, i.e., the one shown in Figure 1

8 Conclusion

In this paper we presented our first experiences with a more global mining tech-
nique (e.g. a genetic algorithm). For convenience we did not use Petri nets for
the internal representation of the individuals in a genetic population. Instead we
used causal matrices which are slightly more expressive. We elaborated on the
relationships between our representation and Petri nets. The bottom line is that
any WF-net can be mapped onto our notation and also some constructs that
require duplicate activities (i.e., two transitions with the same label) or silent
transitions (i.e., steps not visible in the log) can be discovered. This way the
approach overcomes some of the problems with earlier algorithms. For example,
it is possible to mine non-free choice constructs. The main added value of using
a genetic algorithm is the ability to deal with noise and incompleteness. At this
point in time we are fine-tuning our genetic algorithms based on many artificial
examples (i.e., process mining based on simulation logs) and real-life examples.
Experimental results on event logs with noise point out that we are on the right
track on our quest to develop a genetic algorithm that mines process models.
Our next steps will focus on further improvements of the fitness measurement
so that it gives a better indication of the optimal fit between a process model
and an event-log.
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The (True) Concurrent Markov Property
and Some Applications to Markov Nets
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Abstract. We study probabilistic safe Petri nets, a probabilistic exten-
sion of safe Petri nets interpreted under the true-concurrent semantics.
In particular, the likelihood of processes is defined on partial orders, not
on firing sequences.

We focus on memoryless probabilistic nets: we give a definition for
such systems, that we call Markov nets, and we study their properties.
We show that several tools from Markov chains theory can be adapted to
this true-concurrent framework. In particular, we introduce stopping op-
erators that generalize stopping times, in a more convenient fashion than
other extensions previously proposed. A Strong Markov Property holds
in the concurrency framework. We show that the Concurrent Strong
Markov property is the key ingredient for studying the dynamics of
Markov nets. In particular we introduce some elements of a recurrence
theory for nets, through the study of renewal operators. Due to the
concurrency properties of Petri nets, Markov nets have global and local
renewal operators, whereas both coincide for sequential systems.

1 Introduction

In the context of a continuously growing interest of the scientific community for
distributed systems, Petri nets in general, and their true-concurrent dynamics in
particular, become a paradigm used in various application areas. Good examples
are found in systems theory, where more and more Petri nets models are proposed
for the management of complex concurrent systems such as telecommunication
networks and services [1, 8].

In turn, studies motivated by various applications can bring back new concep-
tions and results about Petri nets. This is in particular the case of probabilistic
Petri nets that have interested both computer scientists [13, 12] and scientists
from systems theory [4]. I intentionally choose the term of probabilistic Petri
net to emphasize the difference with stochastic Petri nets. The latter refers to
processes where a real time parameter t describes the random evolution of a
Petri net—in this model, concurrency is interpreted through an interleaving se-
mantics. The purpose of probabilistic Petri nets is different. The dynamics of a
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probabilistic Petri net is directly defined through random discrete partial orders,
in order to fit the true-concurrent semantics of the underlying Petri net model.

The following advantages have been recognized to the true-concurrency se-
mantics. First, for large scale concurrent systems, the true-concurrency seman-
tics, by identifying different interleavings of a same process, saves a lot of com-
putational complexity: true-concurrency tackles the “state explosion” problem.
Second, events of a distributed system such as a telecommunication network with
real asynchronous components may obey only to local clocks, without reference
to any global clock [5]. This corresponds to events partially ordered, and thus to
a true-concurrent semantics, not to an interleaving semantics. Statistical treat-
ment of systems, such as state estimation or learning of parameters, need to have
at hand a probabilistic model, including results on the asymptotic dynamics of
systems. We contribute in this paper to the set up of this theory, within the
model of safe Petri nets.

True-concurrent processes of a Petri net, i.e. Mazurkiewicz traces of firing
sequences, can be regarded as configurations of the unfolding of the net [9, 7].
Configurations are partially ordered by the relation of set-inclusion (traces are
prefix from one another). Setting up a true-concurrent random dynamics for a
safe Petri net is done by considering a probability measure P on the space Ω of
maximal configurations of the unfolding of the net [13, 4, 12]. Referring to the
net as to a concrete device, the meaning of the so obtained probability space
(Ω, P) is as follows: Let v be a finite trace of the net. The P-probability for v
to occur in an execution of the net is P(A), where A is the subset of Ω defined
by: A = {ω ∈ Ω : ω ⊇ v}. This extends the framework of sequential discrete
events random processes studied from both the mathematical (e.g., [11]) and the
Computer Science (e.g., [10]) viewpoints.

The topic of this paper is the following: Can we go further in the generaliza-
tion, and extend to concurrent systems both the definition and some properties
of Markovian models such as finite Markov chains in discrete time (DTMC)? We
demonstrate that the answer is “yes”: we introduce a new definition for Markov
nets, and we obtain qualitative results on their dynamics by studying their re-
currence properties. This leads to elegant results with simple formulation, yet
with some strong hidden mathematical background.

Our definition of Markov nets relies on the intuitive concept of memory-
less systems. Here, the state of the system is the marking of the net. Hence a
Markov net will be a probabilistic net such that the probabilistic future of a
finite process v, ending to a marking M , only depends on M , and not on the
entire process v. Starting from this definition, we follow the classical theory of
Markov chains, adapting to concurrent systems several concepts and tools from
this theory. The effective construction of Markov nets is known for a large class
of safe Petri nets, including free-choice and confusion-free nets [2, 3]. But it is
rather a technical construction, more complicated than the classical construction
of Markov chains based on a transition matrix; therefore, in this paper, we will
assume that the existence of Markov nets is an established fact, in order to focus
on their properties.
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A first basic result for Markov chains is the so-called Strong Markov Property,
a formula which says in a condensed form that the system is indeed memory-
less. This formula relies on the notion of stopping time. We adapt the notion
of stopping time to true-concurrent systems, introducing stopping operator for
nets—this part was already challenging, since our framework does not posses
a global clock. Then we formulate and prove the Strong Markov property for
Markov nets. The remaining of the paper is devoted to illustrate the use of the
Strong Markov Property for concurrent systems. We present some elements of
a recurrence theory in the framework of concurrent systems: We prove that the
initial marking of a net has probability 0 or 1 to return infinitely often in an
execution, an extension of the same well-known result for Markov chains with
state instead of marking. Stopping operators, the Markov property for concur-
rent systems and its application to the recurrence properties of nets are the main
contributions of this paper, beside an abstract definition of Markov nets.

Hence, the new techniques that we introduce allow to extend existing results
from sequential to concurrent systems. But other developments are allowed where
the concurrency properties of the Petri nets model play a more significant role.
Due to lack of place, we only shortly introduce these properties that take into
account the local characteristics of concurrent systems. This constitutes elements
of a local recurrence theory, to be distinguished from the above recurrence, that
appears a posteriori as a global recurrence. For sequential systems, global and
local recurrences coincide, but not anymore for concurrent systems.

The paper is organized as follows. In §2 we recall the background from Prob-
ability and from finite Markov chains theory. We set up a symmetric frame-
work for concurrent systems in §3, introducing Markov nets and ending with the
statement of the Concurrent Strong Markov property. Then §4 is devoted to the
application of this new Markov property to elements of a recurrence theory for
Markov nets. Finally, §5 discusses some perspectives.

2 Background on Probability and Expectation

Notations for Usual Sets. We denote by N and R respectively, the sets of non-
negative integers and of real numbers. We consider the following extensions of
N and R:

N = N ∪ {+∞}, R = R ∪ {−∞, +∞} . (1)

σ-Algebra and Probability Spaces. Let Ω be a set, a family F of subsets of Ω
is said to be a σ-algebra of Ω if F is closed under countable intersection, if
A ∈ F ⇒ Ω \A ∈ F , and if ∅ ∈ F . The pair (Ω,F) is called a measurable
space, and the elements of F constitute the measurable sets of Ω. The set
R defined by Eq. (1) is equipped with its Borel σ-algebra, generated by the
Euclidean topology on R. If (Ω,F) and (Ω′,F ′) are two measurable spaces, a
mapping f : Ω → Ω′ is F-measurable (or simply, measurable) if f−1(A) ∈ F
for all A ∈ F ′.
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Let (Ω,F) be a measurable space. A probability measure on (Ω,F) is a
function P : F → R with P(Ω) = 1 and P(A) ≥ 0 for all A ∈ F , and such that
for every countable family (An)n∈N of measurable sets, if i �= j ⇒ Ai ∩Aj = ∅,
then: P

(⋃
n∈N

An

)
=
∑

n∈N
P(An) . The triple (Ω,F , P) is called a probabil-

ity space.
We follow some traditional language conventions that are convenient when

dealing with probability spaces. Measurable functions are called random vari-
ables. If X is a real-valued random variable, its integral under measure P is
called its expectation, and is denoted E(X). We also write {X = 0} to denote
the set of elements ω ∈ Ω such that X(ω) = 0, and P(X = 0) stands for “the
probability that X = 0”, i.e.:

P(X = 0) = P
({X = 0}) = P

({ω ∈ Ω : X(ω) = 0}) .

With a slight and classical abuse of terminology, we identify a random variable
X and the class of random variables X ′ that differ from X only on a set of
probability zero, i.e. the class of X ′ such that P(X �= X ′) = 0.

Finally, for A a subset of Ω, we use the notation 1A to denote the charac-
teristic function of A, defined by:

1A(ω) =

{
1, if ω ∈ A

0, if ω /∈ A
.

Then 1A is measurable if and only if A is measurable, in which case P(A) = E(1A).

Conditional Expectation. We first recall the definition of conditional expectation
w.r.t. a measurable subset. Let (Ω,F , P) be a probability space, let A be a
measurable subset of Ω, and assume that P(A) > 0. Then the following formula
defines a probability PA on (Ω,F), called probability conditional on A:

∀B ∈ F , PA(B) =
P(B ∩A)

P(A)
.

The probability PA( · ) is usually denoted by P( · |A).
We now recall the definition of conditional expectation w.r.t. σ-algebras (see

e.g. [6]). Let (Ω,F , P) be a probability space, let X be a nonnegative real random
variable, and let F ′ ⊆ F be a sub-σ-algebra of F . A classical result states that
there is a unique F ′-measurable random variable X ′ characterized by:

∀A ∈ F ′, E(1AX) = E(1AX ′) .

X ′ is called the expectation of X conditional on F ′, and is denoted by
X ′ = E(X | F ′). Intuitively, X ′ is the best F ′-measurable approximation of X.

In the sequel, we will use the two following properties of conditional expec-
tation:

1. For every nonnegative random variable X and sub-σ-algebra G of F , we
have:

E(X) = E
(
E(X | G)

)
. (2)
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2. For every sub-σ-algebra G of F and nonnegative random variables X, Y , if
Y is G-measurable, then:

E(XY | G) = Y E(X | G) . (3)

Sequential Probabilistic Processes. Consider a finite set S, thought of as a state
space. We define a process over S as a finite or infinite sequence of elements
of S. If v = (s0, . . . , sn) is a finite process, we say that sn is the end state of v,
and we denote it s(v) = sn. We denote by Ω the set of infinite processes over S,
i.e. Ω is the infinite product set Ω = SN. For each integer n ≥ 0, we denote by
Xn the nth projection Ω → S, so that we have:

∀ω ∈ Ω, ω = (X0(ω), X1(ω), . . .) .

For each integer n ≥ 0, consider the finite σ-algebra Fn of Ω spanned by the
subsets of the form:

{X0 = s0, . . . , Xn = sn},
with (s0, . . . , sn) ranging over Sn+1. The product σ-algebra F on Ω is defined
as the smallest σ-algebra that contains all Fn, for n ≥ 0.

We define a probabilistic process over S as a pair (S, P), where P is a
probability on (Ω,F). If there is an element s0 ∈ S such that X0 = s0, we say
that s0 is the initial state of the probabilistic process (S, P). Let v = (s0, . . . , sn)
be a finite process, and consider the measurable subset of Ω defined by:

S(v) = {X0 = s0, . . . , Xn = sn} . (4)

We define the likelihood of v by: p(v) = P
(S(v)

)
. Intuitively, p(v) is the

probability of v to occur in an execution of the system. Be aware however that
the likelihood function does not define a probability on the set of finite processes,
since it does not sum to 1.

Sequential Probabilistic Future and Markov Chains. Let (S, P) be a probabilistic
process, and let v be a finite process over S with p(v) > 0, with v given by
v = (s0, . . . , sn). Recall the definition (4) of S(v), and consider the measurable
mapping ρv : S(v) → Ω defined by:

ρv(s0, . . . , sn, Xn+1, Xn+2, . . .) = (sn, Xn+1, Xn+2, . . .) .

The mapping ρv let us define a probability Pv on (Ω,F) as follows:

∀A ∈ F , Pv(A) = P
(
ρ−1

v (A) | S(v)
)

, (5)

where P
( · | S(v)

)
is the probability conditional on S(v). We call the new prob-

abilistic process (S, Pv) the probabilistic future of process v. We denote by
the symbol Ev the expectation on Ω under probability Pv. By construction,
sn = s(v) is the initial state of the probabilistic future of v.
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We say that (S, P) is a Markov chain if, for every pair (v, v′) of finite
processes over S with p(v), p(v′) > 0, we have:

s(v) = s(v′) ⇒ Pv = Pv′
. (6)

Equation (6) formulates the intuition that, for Markov chains, the probabilistic
future of a process only depends on the current state of the system, i.e. state s(v),
and not on the entire history the process v. As a consequence, it makes sense to
denote by Ps and Es the probability and the expectation starting from state s,
and defined by:

Ps = Pv, Es = Ev,

for any finite process v with positive likelihood and with s as end state1.

Sequential Shift Operators. Stopping Times and the Markov Property. Consider
again the measurable space (Ω,F) constructed as above from finite set S, and
define the pointwise transformation θ : Ω → Ω as follows:

∀ω ∈ Ω, θ(ω) = (X1(ω), X2(ω), . . .) . (7)

Transformation θ is called the shift operator. The iterates of θ are traditionally
denoted by θn, for n ≥ 0, i.e. θ0 = Id and θn = θn−1 ◦ θ for n ≥ 1. Furthermore,
assume that T : Ω → N is an integer random variable. We denote by θT the
pointwise transformation Ω → Ω that “iterates T times θ”, which is defined by:

∀ω ∈ Ω, θT (ω) = θT (ω)(ω) . (8)

We shall authorize T to take an infinite value, so that T is defined Ω → N,
with N = N ∪ {∞}. If T (ω) = ∞, then θT (ω) is not defined. A random variable
T : Ω → N is called a stopping time if for every n ≥ 0 (see e.g. [6, 11]):

{T = n} is a Fn-measurable subset of Ω. (9)

We will see below the particular role of stopping times in the analysis of Markov
chains. To make the notion intuitive, we mention a typical example of stopping
time, the hitting time Tx of a given state x: for ω ∈ Ω, Tx(ω) is the smallest
integer n such that Xn(ω) = x, if such an integer exists, otherwise Tx(ω) =∞.

A stopping time T defines a sub-σ-algebra of F , denoted by FT , as follows:

∀A ∈ F , A ∈ FT ⇔ ∀n ≥ 0, A ∩ {T = n} ∈ Fn . (10)

We can now state the so-called “strong Markov property”, a basic tool in the
analysis of Markov chains (see for instance [11]): Let (S, P) be a Markov chain
over a finite set S. For every stopping time T , and for every nonnegative random
variable h : Ω → R, the following identity holds:

E
(
h ◦ θT | FT

)
= EXT (h) , (11)

1 With our definition, the transition matrix P of the chain can be retrieved as follows:
the sth row of matrix P is the probability vector Ps(X1 = s′), for s′ ranging over S.
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where, by convention, both members identically vanish on {T = ∞}. The
second member must be understood as the composition of the two functions
ω ∈ Ω �→ XT (ω)(ω) and s ∈ S �→ Es(h).

Instead of showing the consequences that are usually obtained from the
Markov property, we will instead show how the previous notions generalize in
a concurrent framework. After having established a Concurrent Markov prop-
erty, we will directly derive in the concurrent framework some of its classical
consequences as it is usually done in the sequential framework.

3 Probabilistic Safe Petri Nets

We now analyze the case of concurrent systems, within the model of safe Petri
nets. We will try to set up a probabilistic framework symmetric to the one that
we have introduced above in §2.

Safe Petri Nets and Unfoldings. True-Concurrent Dynamics. We assume basic knowl-
edge of the reader on Petri nets, true-concurrent dynamics and unfoldings of safe
Petri nets, such as set up in [9]. We consider a safe and finite Petri net N =
(P, T, F, M0), where P and T respectively denote the sets of places and transi-
tions, F stands for the flow relation, and M0 is the initial marking of the net.
We denote by (U , λ) the unfolding of N , where U is the universal occurrence
net associated with N , and λ : U → N is the canonical labeling mapping, with
the slight abuse of notations that identifies a net and its set of nodes. According
to the usual terminology, places of the unfolding are called conditions.

The causality relation in U is denoted by �. The set of �-minimal nodes of
U is called the initial cut of U , and we denote it by c0. We recall that c0 is in
bijection with M0 through λ. We say that a node x of a subset A ⊆ U is terminal
in A if x is a maximal node of A, the maximality being defined w.r.t. the causality
relation �. The set of terminal nodes of A is denoted by γ(A).

We denote by M the set of reachable markings of N , and for M ∈M, we
note with M as an exponent all objects related to net (P, T, F, M): NM stands
precisely for this net, (UM , λM ) for the unfolding of NM , etc.

We will analyze the dynamics of net N through the dynamics of its unfold-
ing U . Define a configuration of U as a conflict-free prefix of U , containing
the initial cut of U and with conditions only as terminal nodes. Configura-
tions are partially ordered by set inclusion. For those readers used to deal with
Mazurkiewicz traces instead, let us recall that both conceptions are equivalent,
as stated by [9–Prop. 6], in the sense that every the posets of finite traces and of
finite configurations are isomorphic. The end marking of a finite configuration
v is the marking reached by any finite sequence linearizing v. We denote this
marking by m(v), and it is well known that m(v) is given by:

m(v) = λ
(
γ(v)
)

,

where γ(v) denotes the set of terminal nodes (actually, conditions) of v.
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Probabilistic Petri Nets. To introduce a measurable space that will support a
probability measure and model a probabilistic dynamics of a safe Petri net, it is
not suitable to consider the set of infinite configurations of the unfolding. Indeed,
one branch of a configuration may be infinite, whereas other branches remain
finite, and this introduces non natural choices. A more convenient sample space
is found by considering the set of maximal configurations of the unfolding,
the maximality being defined w.r.t. the set inclusion.

Hence, considering a safe Petri net N with unfolding (U , λ), we denote by Ω
the set of maximal configurations of U . Elements of Ω are generically denoted
by ω; from time to time, we call an element ω an execution of the net. The
properties of occurrence nets, combined with an application of Zorn’s lemma,
show that every configuration is subset of a maximal configuration, and in par-
ticular Ω is non empty. For v a configuration of U , we define the shadow of v
as the following subset of Ω:

S(v) = {ω ∈ Ω : ω ⊇ v} .

The terminology of shadow is justified by thinking of U as lightened from its
initial cut, and of Ω as to the boundary at infinity of U .

We say that a shadow S(v) is a finitary shadow if v is a finite configuration—
be aware that S(v) is not a finite set however. The σ-algebra on Ω to be con-
sidered is the σ-algebra spanned by the finitary shadows S(v). We denote this
σ-algebra by F , so that F is the smallest σ-algebra of Ω that makes measurable
all the finitary shadows—and then every shadow is F-measurable. We define a
probabilistic net as a pair (N , P), where P is a probability measure on the
measurable space (Ω,F). This definition includes the case of probabilistic se-
quential processes defined in §2, provided that they have an initial state (this
later technical restriction could be easily removed).

We immediately derive the notion of likelihood of a configuration v: the
likelihood p(v), associated with probability P, is the probability of configuration
v to occur in an execution of the system, and is defined by:

p(v) = P
(S(v)

)
.

Probabilistic Future. Markov nets. From this definition of a probabilistic concur-
rent process, defining the probabilistic future is straightforward. Notice however
the slight difference with the sequential case, where all futures are defined on the
same measurable space. This could be done as well, but the following definition
is more suitable.

Let v be a finite configuration over a safe petri net N , and assume that
v has positive likelihood. Then the shadow S(v) is naturally equipped with
the conditional probability P

( · | S(v)
)
. It is straightforward to show (Cf. for

instance [2–Ch. 3]) that the shadow S(v) is isomorphic, as a measurable space,
to the space of maximal configurations of the unfolding Um(v) of net Nm(v).
Denoting by Ωm(v) the set of maximal configurations of Um(v), the isomorphism
φv : S(v) → Ωm(v) is given by:

∀ω ∈ S(v), φv(ω) = (ω \ v) ∪ γ(v) . (12)
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Combined with the conditional probability P( · | S(v)
)
, φv is the key to define a

probability Pv on Ωm(v), by setting (remark the analogy with the function ρv

defined in (5) for sequential systems):

∀A ∈ Fm(v), Pv(A) = P
(
φ−1

v (A) | S(v)
)

,

where Fm(v) is the σ-algebra on Ωm(v). We define then the probabilistic future
of finite configuration v as the probabilistic net (Nm(v), Pv). Following our re-
formulation (6) of Markov chains, we introduce the following definition of Markov
nets.

Definition 1 (Markov net). Let (N , P) be a probabilistic net. We say that
(N , P) is a Markov net if, for every pair (v, v′) of finite configurations with
positive likelihoods, the following holds:

m(v) = m(v′) ⇒ Pv = Pv′
. (13)

As for Markov chains, and from Eq. (13), it makes sense for a Markov net
(N , P) and for a reachable marking m, to use the notations:

Pm, Em, (14)

to respectively denote the probability Pv and the expectation Ev for any finite
configuration v with positive likelihood, and such that m = m(v), provided that
such a v exists.

Table 1 summarizes and compares the definitions introduced so far, and em-
phasizes the symmetry between sequential and concurrent systems.

Table 1. Comparison of sequential and concurrent probabilistic processes

Sequential systems Concurrent systems

Finite machine Finite state space S Finite safe Petri net N
State Element of S Marking of N
Finite process Finite sequence of states Finite configuration

State reached by
a finite process v

State s(v) Marking m(v)

Space Ω Ω = {Infinite sequences} Ω = {Maximal
configurations of U}

Probabilistic system (S, P) (N , P)

Probabilistic future
of finite process v

(S, Pv) (Nm(v), Pv)

Markovian system s(v) = s(v′) ⇒ Pv = Pv′
m(v) = m(v′) ⇒ Pv = Pv′

Example 1. Although we do not provide in this paper a general construction for
Markov nets (see [2, 3] for this topic), let us indicate an example. Consider the
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Petri net depicted in Fig. 1 (top), some pages forward. Let v be the configuration
depicted at bottom, that we write v = (acbdbe) (different interleavings make this
writing non unique). The choices involved in this configurations are the follow-
ing: 1) the first choice between a and d, which gives a, 2) the first choice between
b and b′, which gives b, 3) the second choice between a and d, which gives d, and
4) the second choice between b and b′, which gives b. Remark that, due to the
true-concurrency semantics, we do not have to answer a question like: “What
about the speed of the token coming from C to D? Does it influence the choice
between a and d?” This simply has no meaning in the true-concurrency seman-
tics. Hence the configuration v is the successive arrival of 4 choices. Although the
net presents concurrent events, there is never concurrent choices—found in more
sophisticated examples. We fix two probabilistic parameters q1 and q2, with q1

the probability of firing a versus d on the one hand, and q2 the probability of
firing b versus b′ on the other hand. Then we set the likelihood p(v) by:

p(v) = q1 × q2 × (1− q1)× q2 .

This construction of the likelihood function p could have been done for any
finite configuration. By a measure-theoretic extension argument, we conclude
that there is a unique probability P on Ω with the likelihood p. Since each
time we encounter a choice, we always use the same probabilistic parameter, it
is intuitively clear (and can be shown rigorously) that the probabilistic net so
constructed is indeed Markovian.

Stopping Operators. Still following and adapting the theory of sequential prob-
abilistic processes, we wish to establish a Strong Markov property. For this, we
need to formulate an adequate definition of stopping times for the concurrency
framework. By an adequate definition, we mean a definition that:

1. reduces to usual stopping times if the concurrent system is actually a se-
quential system,

2. is general enough to deal in particular with “hitting times” in the concurrent
framework,

3. is not too much general, so that the Markov property still holds.

It should be noticed that requirement 1 is not enough. For example, stopping
times of [4] satisfy this requirement, but they are not compliant with the second
requirement. We have thus proposed in [2] an other extension of stopping times
to concurrent systems, that is reproduced below.

Intuitively, for a sequential probabilistic process, a stopping time T (recall
that T is a integer random variable satisfying Eq. (9)

)
is set up in order to

evaluate state XT , or, equivalently, the finite process (X0, . . . , XT ). Hence the
“abstract” order {0, . . . , T} is lifted into the “concrete” order {X0, . . . , XT }.
The sequential framework takes benefit from the fact that all the “concrete”
orders {X0, . . . , Xn} corresponding to stopped executions of the system, can
be abstractly seen as embedded in a same total order, the canonical chain of
integers. This must be revised for concurrent systems, since different executions,
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supported by different partial orders, cannot be superimposed anymore. This
suggests to forget about the abstract universal order, and to only retain the
concrete orders. Whence the following definition.
Definition 2 (stopping operator). Let (N , P) be a probabilistic safe Petri
net, and denote by W the poset of configurations of the unfolding of N . We say
that a random variable V : Ω →W is a stopping operator if V satisfies the
two following properties:
1. ∀ω ∈ Ω : V (ω) ⊆ ω ( V (ω) is a prefix of ω),
2. ∀ω, ω′ ∈ Ω : ω′ ⊇ V (ω) ⇒ V (ω′) = V (ω).

We associate with V the σ-algebra FV , defined by:

∀A ∈ F , A ∈ FV ⇐⇒ ∀ω, ω′ ∈ Ω, ω ∈ A, ω′ ⊇ V (ω) ⇒ ω′ ∈ A . (15)

Point 1 of Def. 2 derives from the above discussion. The signification of Point 2
will be clear when discussing below the case of renewal operators, as a gener-
alization of hitting times introduced in §2 (cf. §3, Example 2). Our stopping
operators include in particular stopping times from [4]. If the safe Petri net con-
sidered actually simulates a sequential system, it is readily checked (Cf. [2–Ch. 5,
Prop. II-4.7] ) that there is a one-to-one association between stopping times in
the classical sense, and stopping operators of Def. 5. The association is defined
as follows—note the coherence with the above discussion:

for T a stopping time, set: VT = (X0, . . . , XT ),
for V a stopping operator, set TV such that: V = (X0, . . . , XTV

).

Moreover, the associated σ-algebras from Eq. (15) for VT and from Eq. (10) for
TV coincide.

Shift Operators and the Concurrent Markov Property. In order to set up a strong
Markov property for concurrent systems, we need to adapt the notion of shift
operators. If T is a stopping time defined for a sequential system, the shift
operator θT is defined by “iterating T times θ”, where θ : Ω → Ω is the canonical
shift operator, defined by Eq. (7). In the absence of a canonical shift operator
for concurrent systems, we can still define shift operators adapted to stopping
operators, as we detail next.

The following definition is based on a simple observation. Consider a safe Petri
netN with associated object U , Ω, etc. Let v be a finite configuration of U . Recall
that Ωm(v) denotes the space of maximal configurations of Um(v), and that we
have at our disposal the isomorphism of measurable spaces φv : S(v) → Ωm(v),
defined by Eq. (12). In particular, if V is a stopping operator, it follows from
Point 1 in Def. 2 that we have ω ∈ S(V (ω)

)
, and thus φV (ω)(ω) is well defined

if V (ω) is finite.
Definition 3 (shift operator). For V a stopping operator, the shift operator
θV associated with V is the mapping defined by:

∀ω ∈ Ω, θV (ω) = φV (ω)(ω) ,

if V (ω) is finite, θV (ω) is undefined otherwise.
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In particular, remark that we always have, if V (ω) is finite:

θV (ω) ∈ Ωm(V (ω)) . (16)

It seems that we now have all ingredients to formulate the Strong Markov
property: stopping operators, their associated σ-algebras and shift operators. A
last item is still needed, however. In the usual Markov property (11), real-valued
random variable h is to be seen as a test function. Remark that, in Eq. (11),
because of the action of the shift θT , h : Ω → R also acts on the probabilistic
futures of configurations. For concurrent systems, the unfolding formalism makes
it more convenient to consider that futures starting from different makings have
different sample spaces Ω’s. We are thus prompted to introduce the following
definition of test functions for concurrent systems.

Definition 4 (test functions). Let N be a safe Petri net, and let M denote
the set of reachable markings of N . We define a test function as a finite col-
lection h = (hm)m∈M, where hm : Ωm → R is a real-valued measurable function
for each m ∈M.

We say that test function h = (hm)m∈M is nonnegative if every hm is non-
negative, for m ranging over M.

The Strong Markov property for concurrent systems takes then the following
form. Recall the notion Em from Eq. (14).

Theorem 1 (Concurrent Markov Property). Let (N , P) be a Markov net.
The following identity holds for every stopping operator V and for every non-
negative test function h = (hm)m∈M:

E(h ◦ θV | FV ) = Em◦V
(
hm◦V

)
, (17)

where, by convention, both members vanish on {ω ∈ Ω : V (ω) is not finite}.
The right member of Eq. (17) must be understood as the composition of the
mappings ω �→ m

(
V (ω)

)
and m ∈M �→ Em(hm), whereas the notation h ◦ θV

stands for the real-valued random variable defined on {V is finite} by:

h ◦ θV (ω) = hm(V (ω))

(
θV (ω)

)
,

which is well defined according to Eq. (16).

The proof of Th. 1 is found in [2–Ch. 5]. The remaining of the paper is
devoted to illustrate how the Concurrent Markov property can be applied to
derive results on the dynamics of Markov nets.

4 Global and Local Renewals for Markov Nets

This section is devoted to the application of the Concurrent Markov property
to the renewal properties of Markov nets. As we shall see, we can derive that
the initial marking of a Markov net has probability either 0 or 1 to return
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infinitely often—a precise definition of the return of the initial marking is given
below—, which is a generalization of a well known result for Markov chains. With
this result, we demonstrate that the formalism introduced above successfully
overcomes the absence of a global clock in probabilistic Petri nets. But we do not
make use of the concurrency properties of the models. Nevertheless, it is already
a first interesting result, showing that we are not helpless in the framework of
probabilistic concurrent systems. Finer results, that make a specific use of the
concurrency properties of Petri nets, are discussed at the end of the section.

Global Renewal Operator. We define a stopping operator, called renewal operator,
that gives in some sense the first return of the initial marking. We first recall
an easy and well-known result, that makes an essential use of the safeness of the
net. Recall that, for v a finite configuration of U , γ(v) denotes the set of terminal
conditions of v.

Lemma 1. Let U be the unfolding of a safe Petri net N .

1. Let v, v′ be two finite and compatible configurations of U . The following
formula holds, where Min
(A) denotes the set of �-minimal nodes of a sub-
set A ⊆ U :

γ(v ∩ v′) = Min

(
γ(v) ∪ γ(v′)

)
.

2. Let M be a marking of N , and let u be a configuration of U . Denote by W0

the set of finite configurations of U , and set:

C(u) = {v ∈ W0 : v ⊆ u, m(v) = M} .

Then C(u) is a lattice.

Recall that c0 denotes the initial cut of U , and that M0 denotes the initial
marking of N . Keep the notation W0 from Lemma 1 to denote the set of finite
configurations of U , and set:

∀ω ∈ Ω, D(ω) = {v ∈ W0 : v ⊆ ω, m(v) = M0, γ(v) ∩ c0 = ∅} .

It follows from Lemma 1 that D(ω) is stable under finite intersections. Thus,
if non empty, D(ω) admits a unique minimal element, that belongs to D(ω),
whence the following definition.

Definition 5 (Global renewal operator). Let W denote the set of configu-
rations of unfolding U . We define the mapping R : Ω →W as follows:

R(ω) =

{
min
(
D(ω)

)
, if D(ω) �= ∅,

ω, otherwise.

R is called the global renewal operator of N , or renewal operator for short.

Intuitively, for each ω, R(ω) is the smallest sub-configuration of ω that re-
turns back to the initial marking, making all the tokens move in N , if such
configuration exists. It must be compared in the sequential framework with the
hitting times introduced in §2.
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Fig. 1. Top, a safe Petri net N . Bottom, a partial execution of net N that illustrates
the renewal operator

Example 2. Consider the net N depicted at top of Fig. 1, and any maximal
configuration ω that contains the configuration depicted at bottom of Fig. 1.
Let p be the prefix of this configuration with events labeled by (ab), and ending
with the conditions indicated by the tokens in Fig. 1. Then p does not constitute
the renewal R(ω) since the token in C has not moved, although the marking
reached by p is indeed the initial marking. The renewal R(ω) is given instead
by the complete configuration depicted, and containing the events labeled by
(abcdbe). It is intuitively clear that the renewal R(ω) is the same for any ω
containing this configuration: this is precisely the meaning of Point 2 in the
definition of stopping operators (Def. 2). Whence the following lemma.

Lemma 2. The renewal operator R is a stopping operator.

Proof. We first check that, by construction, D(ω) ⊆ ω for all ω ∈ Ω. It remains
thus to check point 2 of Def. 2, i.e.:

∀ω, ω′ ∈ Ω : ω′ ⊇ R(ω)⇒ R(ω′) = R(ω) . (18)

Let ω, ω′ ∈ Ω, and assume that ω′ ⊇ R(ω). According to Def. 5, we have to
distinguish two cases:

First case: D(ω) = ∅. Then R(ω) = ω, and thus ω′ ⊇ ω. Since ω is maximal, it
implies ω′ = ω, and thus R(ω) = R(ω′).

Second case: D(ω) �= ∅. Set v = R(ω). Then, since ω′ ⊇ v, we have D(ω′) �= ∅
and v ∈ D(ω′). By minimality, it implies that R(ω′) ⊆ v. Symmetrically, we
find that R(ω) ⊆ R(ω′) and thus finally: R(ω) = R(ω′).

Eq. (18) is satisfied in both cases: the proof of Lemma 2 is complete. �
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The Successive Renewal Operators. Having defined the renewal operator, we are
brought to iterate the renewal process. This is achieved without difficulty by
using the shift operator associated with the renewal operator. We first make the
following simple observation.

Lemma 3. Denote by θR the shift operator associated with the renewal opera-
tor R. Then we have:

∀ω ∈ Ω, R(ω) /∈ Ω ⇒ θR(ω) ∈ Ω .

Proof. Let ω ∈ Ω, and assume that R(ω) /∈ Ω. From Def. 5, it follows that
D(ω) �= ∅ and thus R(ω) is finite. According to Eq. (16), it implies:

θR(ω) ∈ Ωm(R(ω)) ,

but m
(
R(ω)
)

= M0 by construction, and ΩM0 = Ω, hence finally: θR(ω) ∈ Ω,
what was to be shown. �

Consider then the following inductive construction. Start from an element
ω ∈ Ω such that R(ω) /∈ Ω. Then θR(ω) represents the tail of ω, after hav-
ing subtracted the beginning R(ω). Since θR(ω) ∈ Ω, according to Lemma 3
above, we can apply again the renewal operator to θR(ω), to obtain the ele-
ment R ◦ θR(ω). Since R(ω) ends with marking M0, whereas R ◦ θR(ω) begins
with marking M0, we can form their catenation in the unfolding U , that we
denote by:

R(ω)⊕R ◦ θR(ω) ,

and that corresponds indeed to the catenation of any pair of linearization se-
quences of configurations R(ω) and R ◦ θR(ω).

Continuing this inductive construction, we are brought to state the following
generic formula, illustrated by Fig. 2.

S1 = R, Sn+1 = Sn ⊕R ◦ θSn
.

A more precise definition is as follows.

Definition 6. Denote by c0 the initial cut of U , and denote by W the set of con-
figurations of U . We define the successive renewal operators as the sequence
of mappings Sn : Ω →W, given by:

S0 = c0, Sn+1(ω) =

{
ω, if Sn(ω) ∈ Ω,
Sn(ω)⊕R ◦ θSn

(ω), if Sn(ω) /∈ Ω.

Remark that we have S1 = R. Generalizing Lemma 2, the following result
holds.

Lemma 4. For each integer n ≥ 0, Sn is a stopping operator.
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ω

S1

S2

S3

Fig. 2. The successive renewal operators applied to an element ω

Proof. We proceed by induction on integer n. The case n = 0 is trivial. As-
sume that Sn is a stopping operator for some integer n ≥ 0. By construction,
Sn+1(ω) ⊆ ω, so it remains to check Point 2 of Def. 2 applied to Sn+1. Let
ω, ω′ ∈ Ω, and assume that ω′ ⊇ Sn+1(ω). Without loss of generality, we can
assume that Sn(ω) /∈ Ω, otherwise Sn+1(ω′) = ω = Sn+1(ω) and we are done.
Then ω′ ⊇ Sn(ω), and since Sn is a stopping operator according to the induc-
tion hypothesis, it implies:

Sn(ω′) = Sn(ω) . (19)

It follows that θSn
(ω′) ⊇ R ◦ θSn

(ω). But since R is a stopping operator ac-
cording to Lemma 2, and since θSn

(ω′) and θSn
(ω) are two elements of Ω by

Lemma 3, we obtain that R ◦ θSn
(ω) = R ◦ θSn

(ω′). Together with Eq. (19) and
Def. 6, it implies that Sn+1(ω) = Sn+1(ω′), which completes the proof. �

Recurrent Nets. Now that we have defined the successive renewal operators, that
are the successive first returns to the initial marking—in the sense of Def. 5—
the natural question that arises is: will the successive renewal operators actu-
ally define non trivial renewals? Indeed, operator Sn falls into the trivial value
Sn(ω) = ω as soon as there is no nth return to the initial marking in execution ω.
This suggests the following definition.

Definition 7. We say that execution ω ∈ Ω has no trivial renewal if:

∀n ≥ 1, Sn(ω) /∈ Ω .

Theorem 2. Let (N , P) be a Markov net. Then there are only two possibilities:

1. Elements ω ∈ Ω have probability 1 to have no trivial renewal.
2. Elements ω ∈ Ω have probability 0 to have no trivial renewal.
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Case 1 holds if and only if P(R /∈ Ω) = 1.

Proof. We follow the formal proof that is usually given for sequential systems
(see for instance [11]), and that works with our formalism for concurrent systems.
From Def. 6, we have:

{Sn+1 /∈ Ω} = {Sn /∈ Ω} ∩ {R ◦ θSn
/∈ Ω} . (20)

Consider for j ≥ 0 the nonnegative random variables hj = 1{Sj /∈Ω}. Let n ≥ 0
and let G = FSn

be the σ-algebra associated with stopping operator Sn as in
Def. 2. Eq. (20) can be written as: hn+1 = hn1{R◦θSn /∈Ω}. Applying successively
properties (2) and (3) to hn+1 and σ-algebra G, we get, since hn is G-measurable:

P(Sn+1 /∈ Ω) = E(hn+1)

= E
(
E(hn+1 | G)

)
= E
(
hnE(1{R◦θSn /∈Ω} | G)

)
. (21)

By the Concurrent Markov property (Th. 1) applied to stopping operator Sn and
to any test function (Def. 4) that extends the nonnegative function 1{R◦θSn /∈Ω},
we have:

E(1{R◦θSn /∈Ω} | G) = Em(Sn)(1{R/∈Ω}) = P(R /∈ Ω) ,

the later equality since m(Sn) = M0 on {Sn /∈ Ω}. Setting a = P(R /∈ Ω), and
using Eq. (21), we get:

P(Sn+1 /∈ Ω) = aE(hn) = aP(Sn /∈ Ω) . (22)

We distinguish thus two cases. If a = 1, then P(Sn /∈ Ω) = 1 for all n ≥ 1, which
implies:

P
(⋂
n≥1

{Sn /∈ Ω}) = 1 ,

this is case 1 in Th. 2. Otherwise we have a < 1, and then, from Eq. (22):∑
n≥1

P(Sn /∈ Ω) < ∞ .

By the Borel-Cantelli Lemma (Cf. for instance [6]), it implies that {Sn /∈ Ω} has
probability 0 to occur for infinitely many integers n, which is case 2 of Th. 2. �

Comment on Th. 2. In case 1 of Th. 2, we will say that (N , P) is recurrent.
Then recurrent nets reduce to recurrent Markov chains in case of a Markov net
that reduces to a sequential system, and thus simulates a Markov chain. It follows
that Th. 2 extends a well-known result on Markov chains, where “marking” must
be replaced by “state”.

A practical recurrence criterion is given by the following result. It is conve-
nient to say that a marking m is P-reachable if there is a finite configuration
v such that p(v) > 0 and m = m(v). γ(v) denotes as usual the set of terminal
conditions of v.
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Proposition 1. A Markov net (N , P) is recurrent if and only if:

1. there is a configuration v such that p(v) > 0 and c0 ∩ γ(v) = ∅, and
2. for every P-reachable marking m, M0 is Pm-reachable.

Example 3. Consider again the net depicted in Fig. 1. We have seen in §3, Ex-
ample 1, that this net can be made a Markov net, by using two probabilistic
parameters q1 and q2. These parameters correspond respectively to the proba-
bilities of “local choices” between a and d on the one hand, and between b and
b′ on the other hand. Assume that both parameters are non-degenerated, i.e.
p, q /∈ {0, 1}. Then, using Prop. 1, one sees that net N is recurrent.

The probabilistic framework is well adapted to state the recurrence properties
of N . Indeed, although N is recurrent, there exists executions ω ∈ Ω with trivial
renewal (i.e., that return only finitely many times to the initial marking), for
instance ω = (c ab ab ab . . . ). But, as stated by Th. 2, these executions are “rare”:
all together, they have probability zero.

Example 4. Consider the net depicted in Fig. 3. An analysis of configurations
similar to the one explained about the previous example can also be done. As
for the previous example, we derive from this analysis the construction of a
Markov net from some local probabilistic parameters. One of these parameters
is the probability of firing b versus a, say q0. As soon as q0 > 0, the net is non-
recurrent. If moreover q0 < 1, the random number of renewals, say N , has the
geometric law of parameter (1 − q0), so that P(N = n) = (1 − q0)qn

0 for n ≥ 0.
Remark that the law of N only depends on the local probabilistic parameter
that concerns the transitions a and b.

Local Renewal for Nets. So far we have shown that our formalism allows to free
the probabilistic framework from any global clock, but still keeping qualitative
results on the probabilistic behavior of systems. One can argue that the re-
sults presented above do not take benefit from the concurrency properties of the
model, they only deal with the problems brought by concurrency! Yes. . . It is
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however possible to obtain positive results due to concurrency, in particular with
the notion of local renewal. This new topic is a refinement of the global renewal
presented above. The techniques for dealing with both renewals are the same:
the basic tool is still the Concurrent Strong Markov property. We introduce local
renewal on an example.

Consider again the recurrent net N depicted in Fig. 1. Extending the dis-
cussion of §3, Example 1, the dynamics of N can be seen as a partially ordered
succession of local choices. For instance, the component E → e → C can be seen
as a trivial choice, but still as a choice. As an other example, the choices made
between b and b′ are non trivial local choices. The local renewal is concerned by
the arrivals of local choices. Consider for instance the local choices made between
b and b′. As a consequence of the safeness of N , the different arrivals of these
choices, inside a same execution ω, are totally ordered. The sub-configurations of
ω that lead to the successive local choices {b, b′} constitute the successive local
renewals associated to the choice {b, b′}. As for the successive global renewals,
it is shown that local renewals are stopping operators.

Local renewal has the following properties: the finiteness of the global re-
newal guarantees the finiteness of the local renewal—hence iterate local re-
newals are well defined for recurrent nets. If the net simulates a sequential
system, global and local renewals coincide. Finally, if we extend the construc-
tion of Markov nets detailed in §3, Example 1, obtained from the decomposi-
tion of configurations through local choices, the local choices are precisely de-
termined by the successive local renewals: the local renewals are the random
configurations that lead to the local choices. Moreover, the local decisions per-
formed by the net, and associated to the successive occurrences of the same local
choice, constitute a sequence of i.i.d. random variables. This quite intuitive re-
sult does not hold for general Markov nets. It is the basis for instance of a local
performance evaluation, as well as a basic tool for a statistical estimation of
parameters.

5 Conclusion and Perspectives

This paper has introduced a new definition of Markov nets. Markov nets are
a special case of probabilistic nets, which are true-concurrent random systems
based on the model of safe Petri nets. Markov nets are defined as memory-less
probabilistic nets. We have also introduced for Markov nets notions adapted from
Markov chains theory. In particular, stopping operators play the same role than
stopping times, and a Concurrent Strong Markov property holds. The efficiency
of the Concurrent Strong Markov property is demonstrated by establishing some
elements of a renewal theory for nets. In particular, recurrent nets extend the
notion of recurrent Markov chains. Interesting enough, nets have tow kinds of
renewal: a global and a local one, whereas both coincide for Markov chains.

For further research, one first thinks to a decomposition of nets into recurrent
components. Another continuation consists in studying the relationship between
stochastic Petri nets and probabilistic Petri nets. In particular, can a probabilis-
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tic Petri net be seen as the “uniformization” of a stochastic Petri net, gener-
alizing the relationship between discrete and continuous time Markov chains?
Finally, we currently work on a compositional theory for Markov nets. Indeed,
it is well known that synchronization of sequential systems leads to concurrent
systems—for example, synchronizing transition systems bring safe Petri nets. A
probabilistic interpretation of the synchronization could furnish elements for a
validation a posteriori of our results.
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Abstract. This paper deals with the structure theory of Petri nets.
We define the class of P/T systems namely K-systems for which the
equivalence between controlled-siphon property (cs property), deadlock
freeness, and liveness holds. Using the new structural notions of ordered
transitions and root places, we revisit the non liveness characterization
of P/T systems satisfying the cs property and we define by syntactical
manner new and more expressive subclasses of K-systems where the in-
terplay between conflict and synchronization is relaxed.

Keywords: structure theory, liveness, deadlock-freeness, cs-property.

1 Introduction

Place / Transition (P/T) systems are a mathematical tool well suited for the
modelling and analyzing systems exhibiting behaviours such as concurrency, con-
flict and causal dependency among events. The use of structural methods for the
analysis of such systems presents two major advantages with respect to other ap-
proaches: the state explosion problem inherent to concurrent systems is avoided,
and the investigation of the relationship between the behaviour and the structure
(the graph theoretic and linear algebraic objects and properties associated with
the net and initial marking) usually leads to a deep understanding of the system.
Here we deal with liveness of a marking, i.e. , the fact that every transition can
be enabled again and again. It is well known that this behavioural property is as
important as formally hard to treat. Although some structural techniques can be
applied to general nets, the most satisfactory results are obtained when the inter-
play between conflicts and synchronization is limited. An important theoretical
result is the controlled siphon property[3]. Indeed this property is a condition
which is necessary for liveness and sufficient for deadlock-freeness. The aim of
this work is to define and recognize structurally a class of P/T systems, as large
as possible, for which the equivalence between liveness and deadlock freeness
holds. In order to reach such a goal, a deeper understanding of the causes of the
non equivalence between liveness and deadlock-freeness is required.

This paper is organized as follows. In section 2, we recall the basic concepts and
notationsofP/T systems. In section3,wefirstdefine a classofP/T systems, namely
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K-systems, for which the equivalence between controlled-siphon property (cs prop-
erty), deadlock freeness, and liveness holds. In section 4, we revisit the structural
conditions for thenon liveness under the cs propertyhypothesis. In section 5,we de-
finebyasyntacticalmanner severalnew subclassesofK-systemswherethe interplay
between conflict and synchronization is relaxed. Such subclasses are characterized
using the new structural notions of ordered transitions and root places. In section
6, we define two other subclasses of K-systems based on T-invariants. We conclude
in section 5 with a summary of our results and a discussion of an open question.

2 Basic Definitions and Notations

This section contains the basic definitions and notations of Petri nets’ theory
[11] which will be needed in the rest of the paper.

2.1 Place/Transition Nets

Definition 1. A P/T net is a weighted bipartite digraph N = 〈P, T, F, V 〉 where:

– P �= ∅ is a finite set of node places;
– T �= ∅ is a finite set of node transitions;
– F ⊆ (P × T ) ∪ (T × P ) is the flow relation;
– V : F → IN+ is the weight function (valuation).

Definition 2. Let N = 〈P, T, F, V 〉 be a P/T net.
The preset of a node x ∈ (P ∪T ) is defined as •x = {y ∈ (P ∪T )s.t.(y, x) ∈ F},
The postset of a node x ∈ (P ∪T ) is defined as x• = {y ∈ (P ∪T )s.t.(x, y) ∈ F},
The preset (resp. postset) of a set of nodes is the union of the preset (resp.
postset) of its elements.
The sub-net induced by a sub-set of places P ′ ⊆ P is the net N ′ = 〈P ′, T ′, F ′, V ′〉
defined as follows:

– T ′ = •P ′ ∪ P ′•,
– F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)),
– V is the restriction of V on F ′.

The sub-net induced by a sub-set of transitions T ′ ⊆ T is defined analogously.

Definition 3. Let N = 〈P, T, F, V 〉 be a P/T net.

– A shared place p (| p• |≥ 2) is said to be homogenous iff: ∀t, t′ ∈ p•, V (p, t) =
V (p, t′).

– A place p ∈ P is said to be non-blocking iff: p• �= ∅ ⇒ Mint∈•p{V (t, p)} ≥
Mint∈p•{V (p, t)}.

– If all shared places of P are homogenous, then the valuation V is said to be
homogenous.

The valuation V of a P/T net N can be extended to the application W from
(P × T ) ∪ (T × P ) → IN defined by:
∀u ∈ (P × T ) ∪ (T × P ), W (u) = V (u) if u ∈ F and W (u) = 0 otherwise.
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Definition 4. The matrix C indexed by P×T and defined by C(p, t) = W (t, p)−
W (p, t) is called the incidence matrix of the net.
An integer vector f �= 0 indexed by P (f ∈ ZP ) is a P-invariant iff f t.C = 0t.
An integer vector g �= 0 indexed by T (g ∈ ZT ) is a T-invariant iff C.g = 0.
‖f‖ = {p ∈ P/f(p) �= 0} (resp. ‖g‖ = {t ∈ t/g(t) �= 0}) is called the support of
f (resp. of g).
We denote by ‖f‖+ = {p ∈ P/f(p) > 0} and by ‖f‖− = {p ∈ P/f(p) < 0}.
N is said to be conservative iff there exists a P-invariant f such that ‖f‖ =
‖f‖+ = P .

2.2 Place/Transition Systems

Definition 5. A marking M of a P/T net N = 〈P, T, F, V 〉 is a mapping
M : P → IN where M(p) denotes the number of tokens contained in place p.
The pair 〈N,M0〉 is called a P/T system with M0 as initial marking.
A transition t ∈ T is said to be enabled under M , in symbols M t−→, iff ∀p ∈ •t:
M(p) ≥ V (p, t). If M t−→, the transition t may occur, resulting in a new marking
M ′, in symbols M t−→M ′, with: M ′(p) = M(p)−W (p, t) + W (t, p), ∀p ∈ P .
The set of all reachable markings, in symbols R(M0), is the smallest set such
that M0 ∈ R(M0) and ∀M ∈ R(M0), t ∈ T , M t−→M ′ ⇒ M ′ ∈ R(M0).
If M0

t1−→M1
t2−→ . . . Mn−1

tn−→, then σ = t1t2 . . . tn is called an occurrence se-
quence.

In the following, we recall the definition of some basic behavioural properties.

Definition 6. Let 〈N,M0〉 be a P/T system.
A transition t ∈ T is said to be dead for a marking M ∈ R(M0) iff ∃/ M∗ ∈ R(M)
s.t. M∗ t−→.
A marking M ∈ R(M0) is said to be a dead marking iff ∀t ∈ T, t is dead for M .
〈N,M0〉 is weakly live (or deadlock-free) for M0 iff ∀M ∈ R(M0), ∃t ∈ T such
that M t−→ (〈N,M0〉 has no dead marking).
A transition t ∈ T is said to be live for M0 iff ∀M ∈ R(M0), ∃M ′ ∈ R(M) such
that M ′ t−→ (t is not live iff ∃M ′ ∈ R(M0) for which t is dead).
〈N,M0〉 is live for M0 iff ∀t ∈ T , t is live for M0.
A place p ∈ P is said to be marked for M ∈ R(M0) iff M(p) ≥ Mint∈p•{V (p, t)}.
A place p ∈ P is said to be bounded for M0 iff ∃k ∈ IN s.t. ∀M ∈ R(M0),
M(p) ≤ k. 〈N,M0〉 is bounded iff ∀p ∈ P , p is bounded for M0.
If N is conservative then 〈N,M0〉 is bounded for any initial marking M0.

2.3 Controlled Siphon Property

A key concept of structure theory is the siphon.

Definition 7. Let 〈N,M0〉 be a P/T system.
A nonempty set S ⊆ P is called a siphon iff •S ⊆ S•. Let S be a siphon, S is
called minimal iff it contains no other siphon as a proper subset.
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In the following, we assume that all P/T nets have homogeneous valuation, and
V (p) denotes V (p, t) for a any t ∈ p•.

Definition 8. A siphon S of a P/T system N = 〈P, T, F, V 〉 is said to be con-
trolled iff:
S is marked at any reachable marking i.e. ∀M ∈ R(M0), ∃p ∈ S s.t. p is marked.

Definition 9. A P/T system 〈N,M0〉 is said to be satisfying the controlled-
siphon property (cs-property) iff each minimal siphon of 〈N,M0〉 is controlled.

In order to check the cs-property, two main structural conditions (sufficient but
not necessary) permitting to determine whether a given siphon is controlled are
developed in [3, 9]. These conditions are recalled below.

Proposition 1. Let 〈N,M0〉 be a P/T system and S a siphon of 〈N,M0〉. If
one of the two following conditions holds, then S is controlled:

1 ∃R ⊆ S such that R• ⊆ •R, R is marked at M0 and places of R are non-
blocking (siphon S is said to be containing a trap R).

2 ∃ a P-invariant f ∈ ZP such that S ⊆ ‖f‖ and ∀p ∈ (‖f‖− ∩ S), V (p) = 1,
‖f‖+ ⊆ S and

∑
p∈P [f(p).M0(p)] >

∑
p∈S [f(p).(V (p)− 1)].

A siphon controlled by the first (resp. second) mechanism is said to be trap-
controlled (resp. invariant controlled).
Now, we recall two well-known basic relations between liveness and the cs-
property [3]. The first states that the cs-property is a sufficient deadlock-freeness
condition, the second states that the cs-property is a necessary liveness condi-
tion.
Proposition 2. Let 〈N,M0〉 be a P/T system. The following property holds:
〈N,M0〉 satisfies the cs-property ⇒ 〈N,M0〉 is weakly live (deadlock-free).

Proposition 3. Let 〈N,M0〉 be a P/T system. The following property holds:
〈N,M0〉 is live ⇒ 〈N,M0〉 satisfies the cs-property.

Hence, for P/T systems where the cs-property is a sufficient liveness condition,
there is an equivalence between liveness and deadlock freeness. In the follow-
ing section, we define such systems and propose basic notions helping for their
recognition.

3 K-Systems

In this section, we first introduce a new class of P/T systems, namely K-systems,
for which the equivalence between liveness and deadlock freeness holds. Before,
let us establish some new concepts and properties related to the causality rela-
tionship among dead transitions.

Definition 10. Let 〈N,M0〉 be a P/T system. A reachable marking M∗ ∈
R(M0) is said to be stable iff ∀t ∈ T , t is either live ore dead for M∗. Hence,
T is is partitioned into two subsets TD(M∗) and TL(M∗) , and for which all
transitions of TL(M∗) are live and all transitions of TD(M∗) are dead.
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Proposition 4. Let 〈N,M0〉 be a weakly live but not live P/T system.
There exists a reachable stable marking M∗ for which TD �= ∅ and TL �= ∅.

Proof. trivial, otherwise the net is live (T = TL) or not weakly live (T = TD).

Remark : This partition is not necessarily unique but there exists at least one.
It is important to note that TD is maximal in the sense that all transitions that
do not belong to TD, will never become dead.

Definition 11. Let N = 〈P, T, F, V 〉 be a P/T net, r ∈ P , t ∈ r•. r is said to
a be a root place for t iff r• ⊆ p•, ∀p ∈ •t.

An important feature of root places is highlighted in the following proposition.

Proposition 5. Let N = 〈P, T, F, V 〉 be a P/T net, r ∈ P , t ∈ r•. If r is a root
place for t then ∀t′ ∈ r•, •t ⊆ •t′.

Proof. Let t be a transition having r as a root place and let t′ be a transition in
r•. Now, let p be a place in •t and let as show that p ∈ •t′:
Since r is a root place for t and p ∈ •t then we have r• ⊆ p• and hence t′ ∈ r•

implies that t′ ∈ p•, equivalently p ∈ •t′.

Given a transition t, Root(t)N denotes the set of its root places in N . When the
net is clear from the context, this set is simply denoted by Root(t).

Definition 12. Let t be a transition of T . If Root(t) �= ∅, t is said to be an
ordered transition iff ∀p, q ∈ •t,p• ⊆ q• or q• ⊆ p•.

Remark : An ordered transition has necessarily a root but one transition admit-
ting a root is not necessarily ordered. P/T Systems where all transitions are
ordered are called ordered systems. Consider the Figure 1, one can check that
Root(t1) = {a}, Root(t2) = {b}, Root(t3) = {e} and Root(t4) = {d}. Transitions
t1, t3, t4 are ordered but not t2.

Proposition 6. Let 〈N,M0〉 be a not live P/T system.
Let r be a root of a transition t: t ∈ TD ⇒ r• ∩ TL = ∅ (i.e. r• ⊆ TD).

Proof. As •t ⊂ •t′ for every t′ of r•: t, dead for M , can never be enabled, a
fortiori t′ can not be enabled.

Fig. 1. Illustration: a not ordered transition
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Also, we can state the following : if all input transitions of a place are dead, then
all its output transitions are dead.

Proposition 7. Let 〈N,M0〉 be a not live P/T system.
Let p be a place of P : •p ∩ TL = ∅ ⇒ p• ∩ TL = ∅.
Proof. Suppose that the proposition is not true. In this case, there exists a place
p with all input transitions in TD (•p∩TL = ∅) and at least one output transition
tv in TL (p• ∩ TD �= ∅). Since tv is live, after a finite number of firings, place p
becomes non marked because all its input transitions are dead. So tv becomes
dead. This contradicts that t ∈ TL (and maximality of TD).

Proposition 8. Let 〈N,M0〉 be a not live P/T system.
Let p be a bounded place of P : p• ∩ TL = ∅ ⇒ •p ∩ TL = ∅.

Definition 13. Let 〈N,M0〉 be a P/T system. 〈N,M0〉 is a K-system iff for all
stable markings M∗, TD(M∗) = T or TL = T . The above property is called the
K-property.

Remark:
According to the previous definition, one can say that the K-systems contain
all the live systems and a subclass of not deadlock-free systems. One can then
deduce the following theorem.

Theorem 1. Let 〈N,M0〉 be a P/T system. 〈N,M0〉 is a K-system. Then the
three following assertions are equivalent:

– (1) 〈N,M0〉 is deadlock free,
– (2) 〈N,M0〉 satisfies the cs-property,
– (3) 〈N,M0〉 is live.

Proof. ⇒ Note first that we immediately have (3) ⇒ (2) ⇒ (1) using proposition
2 and 3. The proof is then reduced to show that deadlock freeness is a sufficient
liveness condition for K-systems. Assume that the K-system 〈N,M0〉 is not live
then by definition it is not deadlock free (since TD(M∗) = T for each stable
marking M∗).
⇐ The converse consists to prove the following implication:
((1) ⇒ (3)) ⇒ 〈N,M0〉 is a K-system
Assume that 〈N,M0〉 is not a K-system. Then, by definition, there exists a stable
marking m∗ for which TD �= ∅ and TL �= ∅. Hence, 〈N,M0〉 is deadlock free but
not live, which contradicts ((1) ⇒ (3)).

The Definition13 of K-systems is a behavioural one. In the following part of
this paper, we deal with the problem of recognizing, in a structural manner, the
membership of a given P/T system in the class of K-systems.
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4 Structural Non-liveness Characterization

In this section, we highlight some intrinsical properties of systems satisfying the
cs-property but not live. Our idea is to characterize a ”topological construct”
making possible the simultaneous existence of dead and live transitions for such
systems.

Lemma 1. Let 〈N,M0〉 be a P/T system satisfying the cs-property but not live.
Let M∗ be a reachable stable marking. There exists t∗ ∈ TD such that:
∀p ∈ •t∗ such that •p ∩ TL = ∅, M(p) = M∗(p) ≥ V (p, t∗) ∀M ∈ R(M∗).

Proof. Suppose that ∀t ∈ TD, there exists pt ∈ •t with •p∩TL = ∅ and M∗(pt) <
V (pt, t

∗). Let S = {pt, t ∈ TD}. By construction, •S ⊆ TD and TD ⊆ S• (for all
pt ∈ S, •pt∩TL = ∅). So S is a siphon. Since ∀pt ∈ S, M∗(pt) < V (pt, t), S is non
marked for M∗ (M∗ ∈ R(M∗)) and hence the cs-property hypothesis is denied.
Using now the proposition 7, (if a place p has no live input transition then all
output transitions of p are dead), one can deduce that the marking of such places
does not change for all reachable markings from M∗.

Theorem 2. Let 〈N,M0〉 be a P/T system satisfying the cs-property but not
live. Let M∗ be a reachable stable marking.
There exists a non ordered transition t∗ ∈ TD and ∀M ∈ R(M∗), ∃p ∈ •t∗ s.t.
M(p) < V (p, t∗).

Proof. Let t∗ be a transition satisfying the previous lemma 1. Let us denote by
LP (t∗) the subset of shared places included in •t∗ and defined as follows:
LP (t∗) = {p ∈ •(t∗) s.t. •p ∩ TL �= ∅ and p• ∩ TL �= ∅}.
We first prove that LP (t∗) �= ∅ (Lp(t∗) ⊆ •t∗). Suppose that LP = ∅: any input
place of t∗ having a live input transition (there exists at least one otherwise
t∗ will be enabled at M∗ using proposition 7). As the other input places of t∗

are such that their pre-conditions on t∗ are satisfied at M∗ and remain satisfied
(proposition 7), we can reach a marking M from M∗ such that t∗ would be
enabled at M . This contradicts that t∗ is dead for M∗. Moreover, t∗ is not
ordered otherwise LP (t∗) = {p1, . . . , pm} (| LP |= m) can be linearly ordered.
Without loss of generality we may assume that p1

• ⊆ · · · ⊆ pm
•. Then there

exists a marking M ′ reachable from M∗ for which a transition t ∈ p1
• ∩ TL and

t∗ are enabled (homogenous valuation). This contradicts that t∗ is dead for M∗.
Since LP (t∗) (⊂ •t∗) has no root place we deduce that t∗ is not ordered.
Finally, ∀M ∈ R(M∗), LP (t∗) contains a non marked place otherwise t∗ would
be not dead for M∗.

From the previous theorem (theorem 2) one can derive easily the following result.

Theorem 3. Let 〈N,M0〉 be an ordered P/T system. The two following state-
ments are equivalent:

– (1) 〈N,M0〉 satisfies the cs-property,
– (2) 〈N,M0〉 is live.
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This last result permits us to highlight the structural and behavioural unity
between subclasses of ordered P/T systems i.e. (not necessarily bounded) asym-
metric choice systems [3] (AC), Join Free (JF) systems, Equal Conflict (EC)
systems[13], and Extended Free Choice (EFC) nets. Let us recall that, for theses
subclasses, except AC nets, the cs-property is reduced to the well-known Com-
moner’s property [2], [1], [5], [6] and the liveness monotonicity [3]) holds.

In the following, we show how to exploit this material in order to recognize
structurally other subclasses of K-systems, with non ordered transition, for which
the equivalence between deadlock-freeness and liveness hold. Such structural
extensions are based on the two following concepts: the notion of root places as
a relaxation of the strong property of ordered transitions and the covering of
non ordered transitions by invariants.

5 Dead-Closed Systems

From our better understanding of requirements which are at the heart of non
equivalence between deadlock-freeness and liveness, we shall define new sub-
classes of K-systems for which membership problem is always reduced to exam-
ining the net without requiring any exploration of the behaviour.
Let t be a transition of a P/T system, we denote by D(t) the set of transitions
defined as follows: D(t) = {t′ ∈ T s.t. t ∈ TD ⇒ t′ ∈ TD}
This set is called the dead closure of the transition t. In fact, D(t) contains all
transitions that are dead once t is assumed to be dead.
In the following, we show how one can compute structurally a subset DSub(t) of
D(t) for any transition t.
Given a transition t0, we set DSub(t0) = {t0} and enlarge it using the three
following structural rules related to propositions 6, 7, and 8 respectively:

R1. Let p be a root place of t, t ∈ DSub(t0) ⇒ p• ⊆ DSub(t0)
R2. Let p be a place of P , •p ⊆ DSub(t0) ⇒ p• ⊆ DSub(t0)
R3. Let p be a bounded place of P , p• ⊆ DSub(t0) ⇒ •p ⊆ DSub(t0).

Formally, DSub(t0) is defined as the smallest subset of T containing t0 and ful-
filling rules Ri (i = 1 . . . 3). When the computed subsets DSub(t) are all equal
to T , we deduce that the system is a K-system.

Definition 14. Let 〈N,M0〉 be a P/T system. 〈N,M0〉 is said to be a dead-
closed system if for every transition t of N : DSub(t) = T .

The algorithm5 [4] computes the subset DSub(t) for a given transition t. Its
complexity is similar to classical graph traversal algorithms. An overall worst-
case complexity bound is Ø(| P | × | T |).
Theorem 4. Let 〈N,M0〉 be a dead-closed system. Then 〈N,M0〉 is a K-system.

Proof. The proof is obvious since the computed set DSub(t) for every transition
t is a subset of D(t).
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Fig. 2. An example of K system

Using theorem 1 one can deduce the following result.

Corollary 1. Let 〈N,M0〉 be a dead-closed system. The three following state-
ments are equivalent:

– (1) 〈N,M0〉 is deadlock free,
– (2) 〈N,M0〉 satisfies the cs-property,
– (3) 〈N,M0〉 is live.

Consider the net of Figure2, note first that it is a conservative net. One can
check, by applying the algorithm computing D(t), that it is a dead-closed system.
It contains the four following minimal siphons: S1 = {a, b, d}, S2 = {e, c, f},
S3 = {e, b, d} and S4 = {a, f, d}. For any initial marking (e.g. M0 = a+b+e+f)
satisfying the four following conditions: a+b+d > 0, e+c+f > 0, e+b+d−f > 0
and a + f + d− e > 0, this net satisfies the cs-property and hence is live.

5.1 Root Systems

Here, we define a subclass of dead-closed systems called Root Systems exploiting
in particular the causality relationships among output transitions of root places.
Before, we define a class of P/T nets where each transition admits a root place,
such nets are called Root nets.

Definition 15. Let N = 〈P, T, F, V 〉 be a P/T net. N is a root net iff ∀t ∈ T ,
∃ a place r ∈ P which is a root for t.

Every transition t of N has (at least) a root place, but it is not necessarily or-
dered. Thus, ordered nets are strictly included in root nets.
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Algorithm 5.1 Computing DSub(t)
1: Input: a transition t; // t is assumed to be dead
2: Output: DSub(t), a set of transitions; // D(t)
3: Variable Dtmarked: a set of transitions//
4: Begin
5: DSub(t) ← {t};
6: Dtmarked ← ∅
7: for (Dtmarked ← ∅; (DSub(t) \ Dtmarked) �= ∅;Dtmarked ← Dtmarked ∪ {t})

do
8: get t from DSub(t) \ Dtmarked;
9: if r is root place then

10: DSub(t) ← DSub(t) ∪ r•; //application of R1

11: for each (p ∈ t•) do
12: if (•p ⊆ DSub(t)) then
13: DSub(t) ← DSub(t) ∪ p•; //application of R2

14: end if
15: end for
16: for for each (p ∈ •t) such that (p is bounded) do
17: if p• ⊆ DSub(t) then
18: DSub(t) ← DSub(t) ∪ •p;// application of R3

19: end if
20: end for
21: end if
22: end for
23: End

The class of Root nets is extremely large, we have to add some structural con-
straints in order to recognize structurally their membership in the class of dead-
closed systems.
Given a root net N , we first define a particular subnet called Root component
based on the set of the root places of N . The Root component is slightly differ-
ent from the subnet induced by the root places: It contains all root places and
adjacent transitions. But, a (root) place p admits an output transition t in the
root subnet if and only if p is a root place for t.

Definition 16. Let N = 〈P, T, F, V 〉 be a root net and RootN be the set of its
root places.
The Root component of N is the net N ′∗ = 〈RootN , T ∗, F ∗, V ∗〉 defined as
follows:

– T ∗ = RootN
• = T ,

– F ∗ ⊆ (F ∩ ((RootN ×T ∗)∪ (T ∗×RootN ))), s.t. (p, t) ∈ F ∗ iff (p, t) ∈ F and
p is a root place for t, and (t, p) ∈ F ∗ iff (t, p) ∈ F

– V ′ is the restriction of V on F ∗.

Definition 17. Let 〈N,M0〉 be P/T system.
〈N,M0〉 is called a Root System iff N is a root net and its root component N∗

is conservative and strongly connected.
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Theorem 5. Let 〈N,M0〉 be a Root-system.
〈N,M0〉 is a dead-closed system.

Proof. Note first that the subnet N∗ contains all transitions of N (N is weakly
ordered). Let us show that D(t) = T for all transition t ∈ T in N∗. Let t and t′

be two transitions and suppose that t is dead. Since N∗ is strongly connected,
there exists a path Pt′→t = t′r1t1 . . . tnrnt leading from t′ to t s.t. all the places ri

(i ∈ {1 . . . }) are root places. Let us reason by recurrence on the length | Pt′→t |
of Pt′→t.

– | Pt′→t |= 1: Obvious
– Suppose that the proposition is true for each path Pt′→t with | Pt′→t |= n.
– Let Pt′→t be a n + 1-length path leading from t′ to t.

Using proposition 6 (or rule R1), one can deduce that all output transitions
of rn are dead. Now, since r is a bounded place, we use proposition 8 (or R3)
to deduce that all its input transition are dead and fortiori the transition
tn (the last transition before t in the path) is dead. Now the path Pt′→tn

satisfies the recurrence hypothesis. Consequently, one can deduce that t′ is
dead as soon as tn is dead.

The following corollary is a direct consequence of theorem 5, theorem 4 and
theorem 1 respectively.

Corollary 2. Let 〈N,M0〉 be a Root-system. The three following assertions are
equivalent:

– (1) 〈N,M0〉 is deadlock free,
– (2) 〈N,M0〉 satisfies the cs-property,
– (3) 〈N,M0〉 is live.

Example: The K-system (dead-closed) of figure 2 is not a Root system. Indeed,
its root component N∗ (Figure 3) is not strongly connected.

Fig. 3. An example of non Root but K system
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Fig. 4. An example of Root system

However, the non ordered system 〈N,M0〉 of Figure4 (t1 is not ordered and
p11, p12 are not root places) is a Root system. In fact, the corresponding root
component is conservative and strongly connected.

Let us analyze structurally the corresponding net N . One can check that N
admits the eight following minimal siphons: S1 = {p5, p6}, S2 = {p3, p4}, S3 =
{p1, p2}, S4 = {p5, p10, p4, p9}, S5 = {p5, p10, p7, p2, p8, p9}, S6 = {p12, p2, p4},
S7 = {p3, p7, p2, p8} and S8 = {p5, p11, p9}. These siphons are invariant-controlled
for any initial marking satisfying the following conditions: p5+p6 > 0, p3+p4 > 0,
p1+p2 > 0, p5+p10+p4+p9 > 0, p5+p10+p7+p2+p8+p9 > 0, p12+p2+p4 > 0,
p3 + p7 + p2 + p8 > 0 and p11 + 2.p9 + 2.p5 − p3 − p7 > 0}. Such conditions hold
for the chosen initial marking M0 = p1 + p3 + p5 + p12. Consequently, 〈N,M0〉
satisfies the cs-property i.e. live (according to theorem 5).

Obviously, the structure of N∗ is a sufficient but not a necessary condition to
ensure the K-property (and its membership in the class of K-systems). However,
by adding structure to the subnet induced by the Root places (considered as
modules) one can provide methods for synthesis of live K-systems.

In the following section, we first prove that the class of dead-closed systems is
closed by a particular synchronization through asynchronous buffers. Then, this
result will be used to extend the subclass of dead-closed systems structurally
analyzable.

5.2 SDCS: Synchronized Dead-Closed Systems

In this section we prove that the class of dead-closed systems admits an inter-
esting feature: it is closed by a particular synchronization through asynchronous
buffers. The obtained class is a modular subclass of P/T nets called Synchronized
dead-closed Systems (SDCS). By modular we emphasize that their definition is
oriented to a bottom-up modelling methodology or structured view: individual
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agents, or modules, in the system are identified and modelled independently by
means of live (i.e. cs-property) dead-closed systems (for example root systems),
and the global model is obtained by synchronizing these modules through a set of
places, the buffers. Such building process was already be used to define the class
of Deterministically Synchronized Sequential Processes (DSSP) (see [10], [7] [12]
for successive generalization) where elementary modules are simply live and safe
state machines and where the interplay between conflict and synchronization is
limited compared to dead-closed systems.

Definition 18. A P/T system 〈N,M0〉, with N = 〈P, T, F, V 〉, is a Synchro-
nized dead-closed System (or simply an SDCS) if and only if P is the disjoint
union P1, . . . , Pn and B, T is the disjoint union T1, . . . , Tn, and the following
holds:

– (1) For every i ∈ {1, . . . , n}, let Ni = 〈Pi, Ti, F�((Pi×Ti)∪(Ti×Pi)),
V�((Pi×Ti)∪(Ti×Pi))〉. Then 〈Ni,m0�Pi

〉 is a live dead-closed system.
– (2) For every i, j ∈ {1, . . . , n}, if i �= j then V�((Pi×Ti)∪(Ti×Pi)) =0.
– (3) For each module Ni, i ∈ {1, . . . , n}:

• (a) ∃ (a buffer) b ∈ B s.t. b• ⊆ Ti (a private output buffer),
• (b) ∀b ∈ B, b preserves the sets of root places of Ni (i.e., ∀t ∈ Ti,

Root(t)Ni
⊆ Root(t)N ).

– (4) Let B′ ⊆ B denotes the set of the output private buffers of N , then
there exists a subset B′′ ⊆ B′ such that the subnet induced by the dead-
closed systems (Ni, i ∈ {1, . . . , n}) and the buffers of B′′ is conservative and
strongly connected.

Actually, we synchronize dead-closed system in such a way that we preserve
the K-property (i.e. the equivalence between deadlock-freeness and liveness).
Contrary to the DSSP modules, competition between those of an SDCS sys-
tem is allowed, as long as the sets of root places of modules are preserved by
composition(3.b) (but not necessarily the set of equal conflicts). After composi-
tion, a buffer can be a root place in the composed net but it cannot take the place
of another one. Moreover, no restriction is imposed on the connection nature of
the buffers. This allows modules to compete for resources. A second feature of
SDCS class which enlarge the description power of DSSP is the fact that a given
buffer does not have to be a output (destination) private as long as it exists such
a buffer for each module (3.a).

Hence, one can easily prove that the class of SDCS represents a strict gener-
alization of conservative and strongly connected DSSP systems. Moreover, when
we compose dead-closed systems, or even root systems, the obtained system
remains dead-closed.

Figure 5 illustrates an example of SDCS system. This system is composed of
two modules, N1 and N2 (enclosed by the dashed lines) communicating through
three buffers b1, b2 and b3. Each module is represented by a Root system (N1

is not a state machine). Also, each buffer is not restrained to respect internal
modules conflict as long as it preserves their root places. For instance, the buffer
b1 doesn’t respect the conflict between transitions t1 and t3 of N1 (V (b1, t1) = 1
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but V (b1, t3) = 0) but it preserves the root place p1 of t1. This system is not
a Root-system since its root component N∗, induced here by N1, N2 and the
buffers b2 and b3, (the buffer b1 is not a root place), is strongly connected but not
conservative (the buffer b3 is not structurally bounded). However, this system
is an SDCS since, with notations of definition 18 (4), the subset B′′ = {b1, b2}
allows the condition (4) of to be satisfied.

The following theorem states that the class of SDCS is a subclass of dead-
closed Systems. This means that when we synchronize several dead-closed sys-
tems as described in definition18 we obtain a dead-closed system.

Theorem 6. Let 〈N,M0〉 be an SDCS system. Then 〈N,M0〉 is a dead-closed
system.

Proof. Let t and t′ be two transitions of N and suppose that t is dead. Let Nn

and N1 be the modules containing t and t′ respectively. Since the subnet induced
by modules and output private buffers is strongly connected, there exists an
(elementary) path PN1→Nn

= N1b1 . . . bn−1Nn leading from N1 to Nn and each
bi (i ∈ {1, . . . , n − 1}) is a buffer having Ni+1 as output private. Let us reason
by induction on the number of modules Ni (i ∈ {1, . . . , n}) involved in the path,
Let us note | PNi

| such a number.

– | PNi
|= 0: i.e. t and t′ belong to the same module N1. Since N1 is a dead-

closed system, one can use Theorem 4 (N1 is also a K-system) to deduce
that t′ is dead.

Fig. 5. An example of SKS system



104 K. Barkaoui, J.-M. Couvreur, and K. Klai

– Suppose that the proposition is true for each path PN1→Nn
involving less

than n modules.
– Let PN1→Nn

be a path leading from N1 to Nn and passing through n mod-
ules.
Consider bn−1, the output private buffer of the module Nn. Using Theorem
5 one can deduce that all transitions in Nn are dead. Now, since bn−1 is a
bounded place, we use proposition 8 to deduce that all its input transitions
are dead and fortiori those of the module Nn−1 (the module that appears
before Nn in the path) are dead. The subpath leading from N1 to Nn−1

involves n − 1 modules and hence satisfies the recurrence hypothesis. Con-
sequently, one can deduce that t′ is dead as soon as an input transition of
bn−1 (belonging to Nn−1) is dead.

Corollary 3. Let 〈N,M0〉 be an synchronized dead-closed system.
The three following assertions are equivalent:

– (1) 〈N,M0〉 is deadlock free,
– (2) 〈N,M0〉 satisfies the cs-property,
– (3) 〈N,M0〉 is live.

The previous corollary is a direct consequence of theorem 6, theorem4 and
theorem1 respectively.

The main practical advantage of the definition of the SDCS class systems is
that the equivalence between deadlock freeness and liveness can be preserved
when we properly synchronize several dead-closed systems. A larger subclass
based on the root nets structure can be obtained by applying the basic building
process of the SDCS in a recursive way, i.e. modules can be Root systems, SDCS
(or simply synchronized root systems) or more complex systems defined in this
way. We are then able to revisit and extend the building process of the class
of modular systems called multi-level deterministically synchronized processes
(DS)*SP systems proposed in [8] which generalizes DSSP. Such a result will
permit to enlarge the subclass of K-systems, structurally recognizable, for which
the cs-property is a sufficient liveness condition. One can follow the same building
process of (DS)*SP by taking live root systems as elementary modules (instead
of safe and live state machines). We synchronize these root systems leading to
an (root-based system) SDCS which is not necessarily a Root system. Then, one
can take several (root-based system based) SDCS and synchronize them in a
the same way. The resulting net, that is dead-closed system, can be considered
as an agent in a further interconnection with other agents, etc. Doing so, a
multi-level synchronization structure is built: the obtained system is composed
of several agents that are coupled through buffers; these agents may also be
a set of synchronized agents, etc. This naturally corresponds to systems with
different levels of coupling: low level agents are tightly coupled to form an agent
in a higher level, which is coupled with other agents, and so on. The class of
systems thus obtained is covered by dead-closed systems, but largely generalizes
strongly connected and conservative (DS)*SP (for which the deadlock freeness
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is a sufficient liveness condition [8]). From this view, the system of Figure5
can be viewed as ”multilevel” SDCS where the module N1 is composed of two
submodules (Root systems) communicating through three buffers b11, b12 and
b13 (which is not output private but it preserves the set of the root places).

6 Other Subclasses Based on T-Invariants

Finally, we define two other subclasses of live K-systems, exploiting the fact that
in every infinite occurrence sequence there must be a repetition of markings
under boundedness hypothesis. We denote by Tno the subset of non ordered
transitions. Nets of the first class are bounded and satisfy the following structural
condition : the support of each T-invariant contains all non-ordered transitions.
This class includes the one T-invariants nets from which (ordinary) bounded
nets covered by T-invariants can be approximated as proved in [9].

Theorem 7. Let 〈N,M0〉 be a P/T system such that:

(i) N is conservative
(ii) ∀ T-invariant j: Tno ⊆ ‖j‖.
〈N,M0〉 is live if and only if 〈N,M0〉 satisfies the controlled-siphon property.

Proof. Assume that 〈N,M0〉 satisfies the cs-property but is not live. According to
theorem 2, TD �= ∅ and TL �= ∅. Consider the subnet induced by TL. This subnet
is live and bounded for M∗. There exists necessarily an occurrence sequence for
which count-vector is a T-invariant j and Tno �⊂ ‖j‖. This contradicts condition
(ii).

Now, we define a last subclass of non-ordered systems (systems having a non
ordered transition) where the previous structural condition (ii) is refined as
follows: for any non-ordered transition t, we can not get a T-invariant on the
subnet induced by T \D(t).

Theorem 8. Let 〈N,M0〉 be a non-ordered system satisfying the two following
conditions:

(i) N is conservative
(ii) ∀ T-invariant j and ∀t ∈ Tno: (‖j‖ ∩D(t)) �= ∅
〈N,M0〉 is live if and only if 〈N,M0〉 satisfies the controlled-siphon property.

Proof. Let 〈N,M0〉 be satisfying the cs-property but not live. Consider the sub-
net induced by TL. This subnet is live and bounded. Hence, there exists a
T-invariant j corresponding to an occurrence sequence in the subnet and do
not cover neither the (not ordered) transition t∗ nor any transition in D(t∗)
((‖j‖ ∩D(t∗)) = ∅). This contradicts condition (ii).

Remark: Note that the non ordered system (t3 is not ordered) of Figure 2 can
also be recognized structurally as a K-system since conditions (i) and (ii) of
Theorem 8 (D(t3) = T ) are satisfied.
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7 Conclusion

The aim of this paper was to deepen into the structure theory on P/T sys-
tems,namely K-systems, for which the equivalence between controlled-siphon
property, deadlock freeness, and liveness holds. Using the new structural con-
cepts of ordered transitions and root places, we present a refined characterization
of the non-liveness condition under cs property hypothesis. Such result permits
us to revisit from a new perspective some well known results and to structurally
characterize new and more expressive subclasses of K-systems. This work poses
a challenging question: What are the structural mechanisms ensuring a siphon
to be controlled other than based on trap or p-invariant concept? The interest
of a positive answer is a broader decision power of controlled siphon property
in particular for systems where the purely algebraic methods such rank theorem
[5] are important.

Acknowledgements. The authors wish to thank anonymous referees for their
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Abstract. We give a method to compute the throughput in a timed
live and bounded free-choice Petri net under a total allocation (i.e. a 0-1
routing). We also characterize and compute the conflict-solving policies
that achieve the smallest throughput in the special case of a 1-bounded
net. They do not correspond to total allocations, but still have a small
period.

1 Introduction

Petri nets are logical objects, originally and above all. However, the interest of
Petri nets for modelling purposes has induced the need for timed and stochastic
extensions of the model. Performance evaluation then becomes a central issue,
and the throughput is arguably the main performance indicator.

Consider now a live and bounded free-choice Petri net (LBFC). Such Petri
nets realize a good compromise between modelling power and mathematical
tractability, see [6] for several striking examples of the latter. Assume that the
Petri net is timed with a timing specified by a constant real-valued firing time
for each transition. To remove the undeterminism of the behavior of the Petri
net, a policy for the resolution of all the conflicts needs to be decided. Once it
is chosen, all the enabled transitions start to fire as soon as possible, and the
time that elapses between the beginning and the completion of the firing of a
transition is equal to the firing time. Therefore, the timed evolution of the Petri
net is completely determined.

Our goal is to study the global activity or throughput or firing rate of the
transitions of the Petri net in a sense to be made precise later on. Of course, the
activity depends on the chosen policy for resolving conflicts.

In a free-choice Petri net, one may view a conflict-solving policy as a set of local
functions associated with conflict places, and assigning tokens to output transi-
tions. The simplest class of policies consists of the so-called 0-1 policies: for a con-
flict place p, allocate all the tokens to a fixed transition. Zero-one policies are called
total allocations in [6]. The next simplest class of policies is, arguably, the periodic
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ones: for a conflict place p, allocate the tokens to the output transitions according
to some fixed periodic pattern. Obviously, 0-1 policies are also periodic policies.

In this paper, we address the following natural questions:

– A. Given a periodic policy, is the activity explicitly computable?
– B. Consider the set of all possible, arbitrarily complex, policies for resolving

conflicts. Is the infimum, resp. supremum, of the activity over this set at-
tained by a 0-1 or a periodic policy? Can we explicitly determine the policies
realizing the infimum, resp. supremum?

For both questions, we are also concerned by the algorithmic complexity of
the computations.

Consider first Question A. It is known that the activity is explicitly com-
putable when the timings are rational-valued [3]. The solution relies on the
construction of a very large finite graph G in which a state incorporates three
different types of information: the current marking; the remaining time before
completion for the currently firing transitions; and the current position of the
cursor within the periods for the periodic policy. The timed behavior is ultimately
periodic and the period corresponds to an elementary circuit in the graph G.
The activity is computed along this circuit.

The method has two major drawbacks. First, it is not efficient from an algo-
rithmic point of view. Indeed, the graph G is in general much larger than the
reachability (marking) graph whose size may already be exponential in the one
of the Petri net. Second, it does not provide much insight on the structure of
the timed behavior.

Here, we show that both restrictions can be overcome in the special case of
a 0-1 policy: the live part of the Petri net becomes a disjoint union of event
graphs. Consequently, the activity can be computed in polynomial (cubic) time
in the size of the Petri net, using classical results on the throughput of timed
event graphs [1, 4, 5]. Furthermore, the previous restriction on having rational
timings is not necessary anymore for 0-1 policies.

Consider now Question B and assume that the timings are rational-valued
for simplicity. Using a simplified version of the above graph G, in which the
periodic policy is not coded anymore, one can easily prove that the supremum
and the infimum of the activity are obtained for periodic policies. The drawbacks
are the same as before: the time complexity, and the lack of structural insight.
Concerning the latter, the method does not allow to answer the question: is the
supremum or infimum attained by 0-1 policies?

Presumably against the intuition,we exhibit an example of a live and 1-bounded
Petri net with firing times all equal to one, and for which the infimum is attained
only by non-0-1 periodic policies. More generally, we show that for 1-bounded Petri
nets with general (0,∞)-valued timings, the infimum is attained by a periodic pol-
icy which may not be 0-1 but which can be characterized at the net level and which
has a very small period (i.e. bounded by the total number of tokens). The same re-
sult fails to hold for a k-bounded Petri net, k ≥ 2 where the general structure of in-
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fimum policies is not understood. An example is given of a 2-bounded net with tim-
ings all equal to one, for which the infimum is attained by periodic policies which
are not 0-1 nor have small periods. To be complete, let us mention that the general
structure of supremum policies is not well understood, even for 1-bounded nets.
It is easy to build examples of 1-bounded LBFC with rational timings for which
the supremum is attained only by non-0-1 Sturmian-like periodic policies, as well
as examples with irrational timings for which the supremum is attained only by
Sturmian-like non-periodic policies, see [9] and Example 6.2.

In order to obtain the above results, we use three different types of building
blocks:

– The theory of timed event graphs;
– A structural result stating that the live part of a LBFC with a total allocation

is a disjoint union of T-components; and that, given a T-component, there
exists a total allocation making this T-component the only live part of the
LBFC;

– The notion of Token-Transition invariants. It is a refinement of the classical
notion of T-invariants with a dynamical flavor to it, since it “follows” the
evolution of a token.

The first point is very classical [1, 4, 5], while the other two may be original
and of some interest by their own.

The paper is organized as follows. The known results on Question A appear
in Section 3. In Section 4, we study the 0-1 policies in detail. Section 5 intro-
duces the TT-invariants. Section 6 is devoted to Question B. In particular, we
characterize the policies which provide the infimum throughput for a 1-bounded
net in Subsection 6.3.

Due to lack of space, all the proofs are not included. The missing proofs can
be found in the corresponding research report [2].

2 Notations and Preliminaries

Denote by N the nonnegative integers, and by N∗ the positive integers. Given a
set T and a subset S, denote by χS : T → {0, 1} the characteristic function of S
in T defined by: χS(u) = 1 if u ∈ S and χS(u) = 0 if u ∈ T\S.

A net is a bipartite directed graph (P, T ,F) with P ∪ T as the set of nodes
(P ∩ T = ∅) and F ⊆ (P × T ) ∪ (T × P) as the set of arcs. A Petri net is a
quadruple (P, T ,F , M), where (P, T ,F) is a net and M is a map from P to N.
We sometimes write the Petri net N as (N , M) to emphasize the special role of
M . The elements of P are called places and are represented by circles and those
of T are called transitions and represented by rectangles. The function M is
called the (initial) marking of the net and is represented by tokens in places. Let
x ∈ P ∪ T be a node. We denote by •x the set of its predecessors and by x• the
set of its successors. We also set •X = ∪x∈X

•x and X• = ∪x∈Xx•. A transition
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is conflicting if one of its input place has at least two successors. Otherwise, the
transition is non-conflicting.

The marking evolves according to the firing rule. A transition t is enabled
if: ∀p ∈ •t, M(p) ≥ 1. An enabled transition can fire, and then the marking
becomes M ′ with M ′(p) = M(p)− χ•t(p) + χt•(p).

If the marking M ′ is obtained from M by firing the transition t, we write
M

t→ M ′. If M ′ is obtained by successively firing σ = t1t2 · · · tn ∈ T ∗, we write
M

σ→ M ′. The sequence σ is called ad (admissible) firing sequence. Finally, if
M ′ can be reached from M by firing some sequence, we write M → M ′. The set
of the reachable markings of M is R(G, M) = R(M) = {M ′ | M → M ′}.

A Petri net is live if for every transition t and every reachable marking M1

there exists a marking M2, reachable from M1, that enables t. A Petri net is
deadlock-free if there exists no reachable marking in which no transition is en-
abled. A Petri net is k-bounded, k ∈ N, if for every reachable marking, the
number of tokens in a place is less or equal to k. A Petri net is bounded if it
is k-bounded for some k. A net N is structurally live if there exists a marking
M such that the Petri net (N , M) is live. A net N is well-formed if there is a
marking M that makes the Petri net (N , M) live and bounded.

An event graph is a (Petri) net where: ∀p ∈ P, |•p| = |p•| = 1. A state
machine is a (Petri) net where: ∀t ∈ T , |•t| = |t•| = 1. A free-choice (Petri) net
is a (Petri) net where: ∀(p, t) ∈ P×T , (p, t) ∈ F ⇒ (p• = {t}) or (•t = {p}). We
use the acronym LBFC for a live and bounded free-choice Petri net. A choice-
free (Petri) net is a (Petri) net where: ∀p ∈ P, |p•| = 1.

The incidence matrix of a Petri net is N ∈ ZP×T with Np,t = χt•(p)−χ•t(p).
Let σ ∈ T ∗ be a firing sequence. The commutative image (or Parikh vector) of
σ is −→σ = (|σ|t)t∈T , the vector of the number of occurrences of each transition t

in σ. If M
σ→ M ′, then the equation M ′ = M + N−→σ is satisfied.

Invariants of Petri nets. A column vector J ∈ NT \{(0, . . . , 0)T } (resp. I ∈
NP\{(0, . . . , 0)T }) is a T-invariant (resp. S-invariant) if NJ = 0 (resp. IT N =
0). A T-invariant (resp. S-invariant) is minimal if it is minimal for the component-
wise ordering among all the T-invariants (resp. S-invariants). A subnet N ′ of the
net N with the set of nodes X is a T-component (resp. S-component) if for ev-
ery transition t of X, •t ∪ t• ⊆ X (resp. for every place p of X, •p ∪ p• ⊆ X)
and N ′ is a strongly connected event graph (resp. state machine). If (P1, T1,F1)
is a T-component (resp. S-component) of the net N , then χT1 (resp. χP1) is
a minimal T-invariant (resp. S-invariant) of N . For a well-formed free-choice
net, the converse is true: if J is a minimal T-invariant (resp. S-invariant), set
T1 = {t ∈ T | Jt �= 0} (resp. P1 = {p ∈ P | Jp �= 0}) and P1 = •T1 ∪ T •

1 (resp.
T1 = •P1∪P•

1 ), then (P1, T1,F1) is a T-component (resp. S-component). See for
instance [6–Prop. 5.7, Prop. 5.14, Th. 5.17].

A set of T-components (resp. S-components) forms a T-cover (S-cover) if ev-
ery node belongs to one of these components. Well-formed free-choice nets are
covered by T-components and also by S-components ([6–Theorems 6.6
and 5.18]).
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We will also need the following result.

Theorem 2.1. [6–Theorem 5.9] Let p be a place of a live and bounded free-
choice Petri net (N , M). The bound of p is min{∑s∈P1

M(s) | p∈P1, (P1, T1,F1)
is a S-component of N}.

Clusters. The cluster [x] of x ∈ P ∪T is the smallest subset of P ∪T such that:
(i) x ∈ [x]; (ii) p ∈ P, p ∈ [x] ⇒ p• ∈ [x]; (iii) t ∈ T , t ∈ [x] ⇒ •t ∈ [x]. The
set of all the clusters of a net defines a partition of the nodes of the net. For
free-choice nets, each cluster contains only one place or only one transition.

Blocking marking. Let (N , M) be a Petri net and t a non-conflicting transition
of N . A blocking marking of the transition t is a reachable marking such that
the only enabled transition is t. If t is a conflicting transition, a blocking marking
of t is a reachable marking such that the only enabled transitions belong to the
cluster [t].

In [8–Theorem 3.1], it is shown that in a connected LBFC, for any transition
b, there exists a unique blocking marking Mb. Moreover, Mb is reachable from
any other reachable marking without firing b.

Timed and routed nets. A timed Petri net is a Petri net in which timings have
been added on places and transitions. With no loss of generality, we only consider
timings on the transitions, and not on the places. We also consider non-null
timings. This is assumed for convenience. The results of the paper could be
generalized with null timings, under the assumption that it is not possible to
have an infinite number of firings occurring in 0 time. Set R∗

+ = (0, +∞). A
timed Petri net is denoted by (N , M, τ) with (N , M) a Petri net and τ ∈ (R∗

+)T

the vector of the timings. The timed semantics is the following one. Consider a
transition t with timing τt which gets enabled at instant d. If the transition t is
fired, the firing occurs as follows:

– At time d, the firing begins. A token is frozen in each input place of t and
cannot enable another transition.

– At time d+τt, the firing ends. The frozen tokens are removed from the input
places of t and one token is added in each output place of t.

Observe that it is possible for a transition to have several ongoing firings at a
given instant. The resulting evolution is called as soon as possible (asap), since
a firing transition begins to fire as soon as it is enabled.

Any conflict-solving policy may be viewed as a set of local routing functions at
each conflicting place. The global routing function is a vector u = (up)p∈P where
up is a function from N∗ to p•. The k-th token arriving in place p (we consider
the tokens in place p in the initial marking as the first arriving tokens) can only
enable the transition up(k). So the notion of enabled transition is modified by
the routing function. A transition can be fired if all its input places contain a
token which is routed to that transition. We denote by (N , M, u) a routed Petri
net with routing u and by (N , M, τ, u) a timed and routed Petri net.
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A marking is reachable for a routed Petri net (N , M, u) if it is reachable for
(N , M) via a firing sequence compatible with u. The notions of boundedness
and liveness of (N , M, u) are defined accordingly.

If the Petri net (N , M) is bounded, so is the routed Petri net (N , M, u).
If the Petri net (N , M) is live, (N , M, u) is not necessarily live, nor deadlock-
free. However, if (N , M) is a LBFC, the routed net (N , M, u) cannot have any
deadlock, because choices and synchronizations are separated. Hence, if a routed
free-choice net is not live, we can always define its non-empty live part.

A routing u = (up)p∈P is periodic if up is a periodic function for every p. A
routing u is 0-1 if: ∀p ∈ P, up is a constant function. A 0-1 routing is called a
total allocation in [6].

3 Throughput in Routed Free-Choice Petri Nets

With no loss of generality, all Petri nets considered are assumed to be connected.
Consider a timed Petri net and let σ = σ(1)σ(2) · · · ∈ T N be an infinite

firing sequence. Set σn = σ(1) · · ·σ(n). Consider the timed evolution starting
at instant 0 and associated with σ. The activity A(σ) of σ is the asymptotic
average number of firings per unit of time:

A(σ) = lim inf
n→∞

n

d(n)

where d(n) is the first instant of completion of all the firings from σn.
To make this definition more general and more flexible, it is possible to

“weight” the activity of each transition.
A weight αt ∈ R+ is associated to each transition t, we set α = (αt)t∈T , and

we assume that α �= (0, . . . , 0). The throughput D(σ) of σ (for the weight α) is
defined by:

D(σ) = lim inf
n→∞

∑
t∈T αt(−→σn)t

d(n)
.

If all the weights are equal to one, the throughput is equal to the activity.
On the other hand, if αt = 1, αt′ = 0, t′ �= t, then the throughput measures the
firing rate of transition t.

The above notion of throughput allows one to modify a Petri net without
changing its throughput, for example, by replacing a transition of timing n and
weight α by n transitions of timing 1 and weight α/n.

3.1 Periodic Routings

Consider a timed and routed LBFC (N , M, τ, u) with a periodic routing and
integer firing times (rational firing times can be treated in a similar way).

The state of the Petri net at time t is a triple (Mt, Rt, Ut) where Mt is the
marking at time t, Rt is the remaining firing time of all the current firings at
time t and Ut is the current routing decision in all the routing places. Observe
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that the number of states is finite and bounded by (k + 1)|P| × F k|T | × L|P|,
where k is a bound on the number of tokens per place, F is a bound on the firing
times of all the transitions and L is a bound on the period of the routing at each
place.

Since the behavior of the net is deterministic, the net jumps from one state
to its unique successor at each time-step.

The state space being finite, there exists a state which is visited twice for
the first time, and the whole behavior becomes periodic from that point on.
This shows that the throughput exists and can be computed along the periodic
behavior of the net. However, this computation may have a very high complexity
(in time and in space) because the state space is potentially huge.

A construction similar to the above one is proposed in [3].

3.2 A Particular Case: Event Graphs

In a live and bounded event graph (G, M), there is no routing place, hence no
routing. In that case, it is useless to sweep the whole state space to compute the
throughput. It is well-known that the firing rate is the same for all transitions
and the throughput is given by:

D =
∑

t∈T αt

ρ(G, M)
, where ρ(G, M) = max

c circuit of G

∑
t∈c τt∑

p∈c M(p)
. (1)

The throughput can be computed in cubic time using Karp’s algorithm, see for
instance [1]. The constant ρ(G, M) is usually called the cycle time of (G, M) (see
[1, 4, 5] for details).

4 Zero-One Policies

In this section, we consider 0-1 routing policies instead of arbitrary periodic
routings. We show that all the combinatorial difficulties of periodic routings can
be overcome for 0-1 routings.

4.1 Total Allocations and 0-1 Policies

An allocation is a function u from a set of clusters C to T such that: ∀c ∈ C,
u(c) ∈ c. A transition is allocated if it belongs to the image of u. An allocation is
total if it is defined on all clusters. An allocation points to C if for every place p
not belonging to C, there exists a path π from p to a place of C such that every
transition along the path π is allocated.

A firing sequence σ agrees with an allocation u : C → T if it does not contain
any transition t such that [t] ∈ C and t �= u([t]).

Lemma 4.1. [6–Lemma 6.5] Let C be a set of clusters of a strongly connected
free-choice Petri net N and let C̄ be the complementary set of C in the clusters
of N . Then there exists an allocation u defined on C̄ that points to C, and if M
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is a bounded marking and M
σ→ is an infinite sequence that agrees with u, then

some transition of C is fired an infinite number of times in σ.

In this paper, we see total allocations as 0-1 routing policies in the places:
each place routes all its tokens to its unique allocated output transition.

When u is a 0-1 routing, (N , u) is a free-choice Petri net where all the tran-
sitions which are not allocated can be removed. Therefore, exactly one output
transition remains for each place. We obtain a choice-free Petri net. We first
study general choice-free nets before giving a characterization of the choice-free
nets obtained as the live part of a free-choice Petri net with a 0-1 routing.

4.2 Choice-Free Nets

A siphon is a set of places R such that •R ⊆ R•. A trap is a set of places R such
that R• ⊆ •R.

Lemma 4.2. Consider a strongly connected and live choice-free Petri net. It is
an event graph if and only if it is bounded.

A connected live and bounded Petri net is strongly connected. So it follows
from the above lemma, that a connected and live choice-free Petri net is either
unbounded, or bounded in which case it is a strongly connected event graph.

4.3 Live Part of a LBFC with a 0-1 Routing

Consider a LBFC (N , M) with a 0-1 routing. Let Ñ be the net obtained by
removing all the transitions (together with their input and output arcs) which
are not chosen by the 0-1 routing. This means that the net Ñ may not be
strongly connected anymore (some places may have no inputs). Figure 1 shows
the construction of Ñ on an example.

The Petri net (Ñ , M) is choice-free and bounded, on the other hand it may
not be live. We are interested in characterizing the live part of (Ñ , M). This live
part may depend on M . More precisely, let M ′ be a reachable marking of (N , M),
let (N1, M1) be the live part of (Ñ , M) and let (N2, M2) be the live part of
(Ñ , M ′). We may have N1 �= N2, as well as N1 = N2,R(N1, M1) �= R(N2, M2).

a b

1

3

a b

412

3

N Ñ

Fig. 1. The net Ñ is constructed by removing all non-allocated transitions. The 0-1
routing sends all tokens to transition 1 in routing place a and all tokens to transition
3 in routing place b. Transitions 2 and 4 are removed to construct Ñ
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The net Ñ can be decomposed into non-trivial maximal strongly connected
components (mscc). There are two kinds of such components: the final compo-
nents and the non-final components.

Lemma 4.3. The final mscc are T-components of N . The non-final mscc are
event graphs, but not T-components of N . The final mscc may or may not be
live in Ñ , the non-final mscc are not live in Ñ .

Lemma 4.4. Let (G, M) be a live and 1-bounded event graph. Then
- if one token is removed, the event graph is not live anymore,
- if one token is added, the event graph is not 1-bounded anymore.

As a consequence of Lemma 4.3 and Lemma 4.4, we have the following
theorem.

Theorem 4.1. Let (N , M0) be a LBFC with a 0-1 routing. Let Ñ be the net
obtained from N by removing the arcs and transitions which are not selected by
the routing. The live part of (Ñ , M0) is a non-empty disjoint union of strongly
connected event graphs (G1, M1), . . . , (Gk, Mk), where each Gi is a T-component
of N . If (N , M0) is 1-bounded, or if k = 1, then the sets of reachable markings
R(G1, M1), . . . ,R(Gk, Mk), do not depend on the 0-1 routing such that the live
part of (N , M0) consists of G1, . . . ,Gk.

If G is a T-component of N , then there exists a 0-1 routing such that the live
part of (Ñ , M0) is precisely (G, M) for some marking M .

4.4 Throughput of 1-Bounded Free-Choice Nets with 0-1 Routings

We now have all the ingredients to prove the main result.

Theorem 4.2. Consider a LBFC (N , M0) with a 0-1 routing. Assume that the
live part is (G, M), where G is a single T-component corresponding to the T-
invariant JG. Then the throughput does not depend on the 0-1 routing such that
G is the live part, and it is equal to

DG =
αT JG

ρ(G, M)
.

Assume that the live part is (G1, M1), · · · , (Gk, Mk), where Gi is a T-component.
Then the throughput is

D =
k∑

i=1

DGi
=

k∑
i=1

αT JGi

ρ(Gi, Mi)
.

If the free-choice Petri net is 1-bounded, then this throughput does not depend
on the 0-1 routing such that the live part consists of G1, . . . ,Gk.

Proof. The proof easily follows from (1) and Theorem 4.1. Observe that the cycle
time ρ(G, M) of an event graph depends on M only through the token count of
circuits, see (1).



Extremal Throughputs in Free-Choice Nets 117

5 Token-Transition-Invariants

Let (N , M) be a Petri net. Let σ = σ1 · · ·σk be a firing sequence. We say that
σ′ = σ′

1 · · ·σ′
h , h ≤ k is a subsequence of σ if there exists an increasing function

f : {1, . . . , h} → {1, . . . , k} such that σ′
i = σf(i) for all i ∈ {1, . . . , h}.

Definition 5.1 (compatible firing sequence). Let π = p1t1p2t2 · · · p�t�,
pi ∈ P, ti ∈ T be a path of N and M be a marking that marks p1. Let σ
be an admissible firing sequence of (N , M). The sequence σ is compatible with
π if the first subsequence of σ in [t1][t2] · · · [t�] is t1t2 · · · t�.

In the above definition, first has the following meaning. Order all subse-
quences of σ according to the point-wise ordering of the increasing functions
used to defined them (f ≤ g is f(i) ≤ g(i) for all i in the domain of f). First
means smallest according to this ordering.

In other words, an admissible firing sequence σ is compatible with a path in
the Petri net if all the transitions along that path are fired and in that order when
σ is fired. This means that the token which was initially in place p1 successively
enters places p2, . . . , p� when σ is fired.

Definition 5.2 (Token-Transition-Invariant). Let c = p1t1p2t2 · · · p�t� be a
circuit of N and M be a marking that marks p1. A vector J ∈ NT is a Token-
Transition-invariant (or TT-invariant) generated by c and the marking M if it is
a T-invariant and if it is the commutative image of an admissible firing sequence
compatible with c.

A TT-invariant J generated by c and the marking M is minimal if for every
other TT-invariant J ′ generated by c and the marking M , J ′ is not smaller
than J .

A TT-invariant generated by c is minimal if for every other TT-invariant J ′

generated by c and some marking, J ′ is not smaller than J .

In words, a TT-invariant is a T-invariant such that one token has moved
along a circuit and is back to its original place when the corresponding sequence
is fired (hence the name).

In spite of what the definition suggests, TT-invariants generated by c do
not depend on the initial marking: if the commutative image of σ1 · σ2 is a TT-
invariant for c, so is the commutative image of σ2 ·σ1, since it is a firing sequence
from the marking M ′ such that M

σ1→ M ′.
However, unlike general T-invariants, TT-invariants depend on the set of

reachable markings. We will see in the following that they actually mainly depend
on the maximal possible number of tokens in circuit c.

The following Lemma characterizes minimal TT-invariants in event graphs,
where things are easy.

Lemma 5.1. Let c be an elementary circuit of a live and 1-bounded event graph
containing n tokens. The minimal TT-invariant generated by c is(n, . . . , n)∈NT .
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Proof. Recall that the T-invariants of an event graph are of the form (x, . . . , x),
x ∈ N\{0}, see [6–Prop. 3.16]. Now, let J be a minimal TT-invariant associated
with c = p1t1 · · · , and let σ be a corresponding compatible firing sequence. Since
the Petri net is 1-bounded, tokens along the circuit c cannot overtake each other.
Hence, when the token initially in p1 is back to p1, after the firing of σ, we know
that transition t1 must have fired n times.

Example 5.1. Figure 2 shows the evolution of an event graph containing 2 tokens
in circuit c. We look at the minimal TT-invariant generated by c. Using Lemma
5.1, the minimal TT-invariant is (2, 2, 2, 2, 2, 2, 2, 2, 2). The white token (as well
as the black one) is back to its original place (Figure 2(c)).

The minimal T-invariant is (1, 1, 1, 1, 1, 1, 1, 1, 1). Note that, after a single
firing of every transition (Figure 2(b)), the marking is unchanged , but the white
token has switched its position with the black one. After firing every transition
again (Figure 2(c)), the white token is back in the right place.

(a) (b) (c)

c

Fig. 2. TT-invariant in an event graph

We now characterize the minimal TT-invariants generated by a circuit of a
live and 1-bounded free-choice Petri net. This is a more difficult case.

Let us first give an algorithm to build every minimal TT-invariant (Lemma
5.2 and Proposition 5.1). The following results (Lemma 5.3 and Proposition 5.2)
show that a minimal TT-invariant generated by a circuit c is the sum of at most
n minimal T-invariants, where n is the maximal number of tokens that c may
contain.

Lemma 5.2. Let c be a circuit of N a live and 1-bounded free-choice net, and b
be a transition of c. Recall that Mb is the unique blocking marking associated with
b. For every minimal TT-invariant J , there exists a firing sequence σ compatible
with c such that J = −→σ that can be fired from Mb.

Proposition 5.1. Let c be a circuit of N , a live and 1-bounded free-choice net.
Every minimal TT-invariant generated by c is found by applying Algorithm 1.
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Algorithm 1 : Construction of minimal TT-invariants
Input: N , a live and 1-bounded free-choice net, c = t1 · · · tk, tk+1 = t1 circuit of N .
Output: A minimal TT-invariant generated by c.
σ ← ε;
for all i ∈ {1, · · · , k} do

σi ← a minimal firing sequence from Mti to Mti+1 in N ;
σ ← σ1 . . . σk;
Return −→σ .

In the algorithm, a firing sequence σ : M
σ→ M ′ is a minimal firing sequence

if it does not contain any subsequence σ′ : M
σ′
→ M ′. Such a minimal firing

sequence has no reason to be unique. Hence the algorithm may yield several
different outputs for a given input.

We now show that a minimal TT-invariant generated by an elementary circuit
is the sum of n minimal T-invariants, where n is the maximal number of tokens
in c (it is given by the number of tokens in c under the blocking marking of any
transition of c). Lemma 5.3 is a lemma used to prove Proposition 5.2.

Lemma 5.3. Let c be an elementary circuit of N , a live and 1-bounded free-
choice net and n be the maximal number of tokens in c. There exists a minimal
TT-invariant generated by c that is n times the same minimal T-invariant.

Proposition 5.2. Let c be an elementary circuit of N , a live and 1-bounded
free-choice net and n be the maximal number of tokens in c. Every minimal
TT-invariant generated by c is the sum of n minimal T-invariants.

Example 5.2. Figure 3 illustrates Proposition 5.2: consider the circuit c = 1, 2, 3,
5, 6, 7, 9, 10, 11. The blocking marking of transition 1 is {d, g, k}. To reach the
blocking marking of transition 2, the two possible firing sequences are 1, 9, 10, 11
or 1, 9, 12. To reach the blocking marking of transition 3, 2 is fired, and to reach

1 2 3

4

a b c

d
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g
h

i

k
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11
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8
7

6

l

12

j

Fig. 3. Example of a free-choice net



120 A. Bouillard, B. Gaujal, and J. Mairesse

the blocking marking of transition 5, 3 is fired. By symmetry of the net, there
are also two possible minimal firing sequences from M5 to M6, that are 5, 1, 2, 3
or 5, 1, 4 and from M9 to M10, 9, 5, 6, 7 or 9, 5, 8. Every other minimal firing
sequence from a blocking marking to the next on circuit c is made of only one
transition. Then, there are 8 minimal TT-invariants (for three subsequences,
there are two possibilities). For example, 1, 9, 10, 11, 2, 3, 5, 1, 4, 6, 7, 9, 5, 8, 10, 11
is a firing sequence compatible with c whose commutative image is a minimal
TT-invariant, which can be written as I + J , where I and J are minimal T-
invariants, of respective support 1, 2, 3, 5, 6, 7, 9, 10, 11 and 1, 4, 5, 8, 9, 10, 11.

Lemma 5.4. Let C be a circuit in a live and 1-bounded free-choice net and J be
a minimal TT-invariant of C. The circuit is composed of the elementary circuits
c1, . . . , ck. Then there exists k minimal TT-invariants, J1, . . . , Jk respectively
generated by c1, . . . , ck such that J =

∑k
i=1 Ji.

6 Extremal Throughputs

We now consider all possible, arbitrarily complex, routing policies and try to
address the following questions: Can one compute the routing policy which yields
the best or worst throughput? Are the best and worst policies periodic? Are the
best and worst policies 0-1?

6.1 Dominance of Periodic Policies

In this section we show that the best and worst throughputs in LBFC with ra-
tional firing times are achieved by periodic policies, and we provide an algorithm
to construct them. The construction is very close to the one given in Section 3.1
and is basically the one in [3].

Consider a timed LBFC with non-null rational timings (τt)t∈T and with a
vector of weights α = (αt)t∈T , see Section 3. Let x ∈ Q be such that τt =
ktx, kt ∈ N\{0}, for all t ∈ T . Build a new LBFC by replacing each transition
by a path: a transition with timing τt and weight αt is replaced by kt transitions
of timing 1 and weight αt/(ktx). Consider an infinite firing sequence σ for the
original Petri net and the corresponding firing sequence σ′ in the new Petri net.
Then the throughputs, defined as in Section 3, associated with σ and σ′ coincide.
Therefore we can, without loss of generality, consider LBFC with timings all
equal to 1.

Asap Marking Graph of a Free-Choice Net. Consider a timed LBFC
(N , M, τ) and assume that all the timings are equal to 1: ∀t ∈ T , τt = 1.
Denote by N the incidence matrix. In a given marking, a transition may be
enabled several times. So the transitions that can be fired simultaneously form
a multi-set.
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The asap marking graph is defined as follows:

Q ← {M}; Arc← ∅; Q̃ ← {M};
while Q̃ �= ∅ do

Pick M ′ ∈ Q̃;
for all maximal multi-set U of transitions that can be fired simultaneously
from M ′ do

M ′′ ← M ′ + N.U ;
if M ′′ /∈ Q then

Q ← Q ∪ {M ′′}; Q̃ ← Q̃ ∪ {M ′′};
Arc← Arc ∪ {M ′ → M ′′, with label and weight [U |∑t∈U αt]

}
;

Q̃ ← Q̃ \ {M ′};
The above construction stops because the Petri net is bounded. So the asap

marking graph is finite.
All the as soon as possible (asap) evolutions of the Petri net can be read on

this graph, hence its name. In this graph, the weight of a path is the sum of the
weights of the arcs. The average weight of a path is its weight divided by its
length (number of arcs).

Theorem 6.1. Let (N , M, τ) be a timed LBFC with non-null rational timings.
The minimal and maximal throughputs are obtained for periodic routings.

Proof. Let (Ñ , M̃) be the LBFC obtained from (N , M) after duplicating the
transitions such that every transition in the new Petri net has timing 1. Consider
the asap marking graph of (Ñ , M̃). Let c be a circuit of the asap graph of
maximum average weight. The maximal throughput can be reached by following
this circuit.

Also, the minimal throughput can be reached by following the circuit of
minimal average weight.

This shows that the corresponding routings are periodic. Indeed the routing
can be deduced from the labels along the circuit of the asap marking graph. In
particular, the period is smaller than the length of the circuit.

Example 6.1. Consider the Petri net of Figure 3. Every transition has timing 1
and weight 1. The asap marking graph is represented in Figure 4.

The minimal average weight of a circuit is 15/9, given by the circuit
{(dek), (afl), (cgl), (chi), (dej), (dgk), (agl), (bhi), (chk)}. This gives the minimal
throughput and the routing to reach it. The maximal average weight is attained
for the circuit {(dek), (agl), (chi)}. And the maximal throughput is 2.

When the graph is built, computing the throughput can be made in cubic
time in the number of nodes of the asap marking graph. But this graph can have
an exponential size in the size of the original Petri net. One reason is that the
number of markings of the net can be exponential in the size of the net. The
other reason is that transitions are duplicated to build the Petri net with timings
1 starting from a Petri net with rational timings. Moreover, this method gives
no information about the structure of the corresponding extremal policies.
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Fig. 4. Asap marking graph corresponding to the Petri net of Figure 3

0 000
τta τtb

pa pb

Fig. 5. One-bounded Petri net for which the optimal routing is not periodic

6.2 Non-rational Timings

For general non-rational timings, the maximal throughput is not always periodic,
even for one-bounded nets, as shown in the following example.

Example 6.2. Look at Figure 5. The value of the firing times are given next to
the transitions on the Figure. We have τta

/τtb
/∈ Q. This model has been studied

in [9]. The optimal routing is Sturmian aperiodic. The best routing consists in
choosing the left (ta) or right transition (tb) depending on whether one token
appears first in pa or in pb. If ta has fired na times and tb nb times, it suffices to
compare naτa and nbτb. The non-periodicity comes from the irrationality of the
ratio of the timings.

The same Petri net can be considered with non-null rational timings approx-
imating the ones in Figure 6.2. In this case, the maximal throughput is achieved
for a Sturmian-like periodic routing policy. In particular, it is not possible to
give an absolute bound for the period.

The above behaviors contrast sharply with the results to be proved in Section
6.3 on the minimal throughput for 1-bounded nets.

For general non-rational timings, we do not know if the minimal throughput
is always attained by periodic policies. In the next section, we show however
that it is the case for the subclass of 1-bounded Petri nets.
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6.3 Minimal Throughput in 1-Bounded Free-Choice Nets

Consider a timed live and 1-bounded free-choice net (N , M, τ). In this part,
we show that the minimal throughput is obtained for a periodic routing even
for general non-rational timings. Furthermore, we give a precise insight on the
structure of the periodic routing reaching the minimal throughput. Roughly it
corresponds to a critical TT-invariant.

From Theorem 4.2, we can easily deduce the following lemma:

Lemma 6.1. The worst 0-1 routing can be chosen among those that make only
one T-component live.

Critical circuit. Suppose again that the timings are 1. The worst routing can
be read on the asap marking graph by considering an elementary circuit, c =
(M0, · · · , MT−1), of minimal average weight. The length of c is T , the period of
the evolution.

Let t0 be a live transition of the net appearing in the label between states M0

and M1 of the circuit c. We build a path in the Petri net with final extremity t0
in the following recursive way.

If the path ti, · · · , t1, t0 is built, we choose the transition ti+1 in the label Ui

of the arc between MT−i−1[T ] and MT−i[T ] and such that ti+1 ∈ ••ti.
We stop the construction when we find m ∈ N∗ and a transition tj such that

tj = tj−mT . Consider the circuit of the Petri net corresponding to the sequence
of transitions tj , tj−1, . . . , tj−mT+1, and denote it by Cc. The length of this circuit
is mT by construction.

Let Ui be the set of transitions whose firing leads from MT−i−1[T ] to MT−i[T ].
(Here Ui is a set and not a multi-set, because the Petri net is 1-bounded.)

Let K be the commutative image of σ = Uj−1 · · ·Uj−mT . By construc-
tion, K is a T-invariant. Also by construction, (tj−1 · · · tj−mT ) is the first sub-
word of σ belonging to [tj−1], . . . , [tj−mT ]. So, K is a TT-invariant generated
by Cc.

Since K is a T-invariant associated with a firing sequence following a minimal
weight circuit in the asap marking graph, we deduce that the worst throughput
D of (N , M, τ) satisfies:

D =
αT K

mT
.

Since K is a TT-invariant for Cc, there exists Jc a minimal TT-invariant for
Cc such that K ≥ Jc. The circuit Cc may not be elementary. In full generality,
it is composed of, say, k elementary circuits c1, · · · , ck of length �1, · · · , �k, with∑k

i=1 �i = mT . By Lemma 5.4, we have Jc =
∑k

i=1 Ji where Ji is a minimal
TT-invariant of ci. Then,

D =
αT K

mT
≥ αT Jc

mT
=

αT (
∑k

i=1 Ji)∑k
i=1 �i

=
∑k

i=1 αT Ji∑k
i=1 �i

≥
k

min
i=1

αT Ji

�i
.
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Now, by definition, D ≤ mink
i=1(α

T Ji)/�i. Therefore, we can find an elemen-
tary circuit c of the Petri net, of length � and of associated minimal TT-invariant
J , such that D = αT J/�. Such a circuit is called a critical circuit of the Petri net.

We are now ready to state the main result of this section. Set R∗
+ = (0, +∞).

Theorem 6.2. Consider a timed live and 1-bounded free-choice net with general
timings in R∗

+. Let α be a weight on the transitions. The minimal throughput is
obtained for a periodic routing. For each place, the period of the routing function
is bounded by the maximal number of tokens in the net.

Example 6.3. Consider again the example of Figure 3. Form the corresponding
asap marking graph shown on Figure 4, (1, 2, 3, 5, 6, 7, 9, 10, 11) is the critical cir-
cuit. Since every transition has weight 1, the firing sequences of minimal weight
from the blocking marking of a transition of c to the blocking marking of the
next transition of c are (starting from the blocking marking of transition 1 which
is {d, k, g}): (1, 9, 12); (2); (3); (5, 1, 4); (6); (7); (9, 5, 8); (10); (11). The mini-
mal TT-invariant achieving the minimal throughput is composed of two mini-
mal T-invariant of support 1, 2, 3, 5, 6, 7, 9, 10, 11 and 1, 4, 5, 8, 9, 12. The minimal
throughput is then 15/9 as anounced before. As for the worst routing policy, it
can be obtained directly from the minimal TT-invariant: ua = (2, 4)∞, ue =
(8, 6)∞ and ui = (12, 10)∞.

6.4 Algorithm to Compute a Routing that Minimizes the
Throughput

Consider a timed live and 1-bounded free-choice net (N , M, τ). Let N be the
incidence matrix. Let Clusters be the set of clusters. Define the matrix K ∈
{0, 1}Clusters×T such that Ka,t = 1 if t belongs to the cluster a and Ka,t = 0
otherwise.

Let S be a subset of T . Let Lightest-T-invariant(S) be the algorithm that
computes a minimal T-invariant of minimal weight that contains the transitions
of S. It is the solution of the following linear programming problem:

Algorithm 2 : Lightest-T-invariant
Input: S ⊆ T
Minimize αT · I
With constraints N · I = 0; K · I ≤ (1, . . . , 1)T ; I ≥ χS .

When the algorithm is called when S is a set of transitions belonging to the
same T-component, the condition K · I ≤ (1, . . . , 1)T ensures that the output is
a set of disjoint minimal T-invariants, with only one containing S.

This algorithm runs in polynomial time since it is a linear program over Q.
Due to the form of the constraints, the solution will always be {0, 1}-valued.

Let us define the functions Blocking-Marking(t), Cycle-time(A), and
Timing(c).
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– Blocking-Marking(t) computes the blocking marking of transition t. This
marking can be computed in time O(|T |2) when the Petri net is an event
graph, and in time O(|T |3) for the general free-choice case, see [8].

– Cycle-time(A) computes the cycle time of a (max,+) matrix A. Here, it
is used for matrices of dimension at most |P|. Then, the time complexity is
O(|P|3) using Karp’s algorithm, see for instance [1].

– Timing(c) computes the sum of the firing times of the transitions along the
circuit. The time complexity is linear.

In the algorithm below, the (max,+) representation of the behavior of live
and 1-bounded free-choice nets is used. For every transition b, Ab is the (max,+)
matrix representing the time behavior of the firing of b (see [7] for more details).
The symbol ⊗ denotes the multiplication of matrices in the (max,+) algebra.
This operation can be done in cubic time in the dimension of the matrices. Here,
it is used for matrices of dimension at most |P|.

Using the previous results, we get the following theorem.

Theorem 6.3. Algorithm 3 finds the minimal throughput of a timed live and
1-bounded free-choice Petri net.

Algorithm 3 : Worst-routing
Input: (N , M, τ) a timed (τ ∈ (R∗

+)T ) 1-bounded LBFC; and α = (αt)t∈T �=
(0, . . . , 0), a weight vector.
for all b ∈ T do

Mb ← Blocking-Marking(b);
for all b, b′ ∈ T such that ∃p, b → p → b′ do

J ←Lightest-T-invariant(b, b′);
σbb′ ← b, t1, · · · , tm minimal firing sequence from Mb to Mb′ with transitions of J ;
Abb′ ← Ab ⊗ At1 ⊗ · · · ⊗ Atm ;
αbb′ ← αb + αt1 + · · · + αtm ;

Throughput ← +∞;
Tmin ← ∅;
for all elementary circuit c = t1 · · · tk of N do

A ← At1t2 ⊗ At2t3 ⊗ · · · ⊗ Atkt1 ;
α ← αt1t2 + · · · + αtkt1 ;
if cycle-time(A) = Timing(c) then

if α/cycle-time(A) <Throughput then
Jmin ← −−−−−−−−−−→σt1t2 . · · · .σtkt1 ;
Throughput← α/Timing(c);

At each iteration in the first loop, the time complexity is O(|T |3), and there
are |T | iterations. Consider now the second loop. There are at most |T |2 iter-
ations in the loop. At each iteration, we need to find a minimal sequence from
Mb to Mb′ in a T-component. This can be done in time O(|T |2). The length of
a minimal sequence is of order O(|T |2), see [8]. Hence the matrix Abb′ can be
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computed in time O(|P|3|T |2). At each iteration of the last loop, the time com-
plexity is O(|P|3|T |)) and there are as many iterations as elementary circuits
in the net. Therefore, the total time complexity is O(C|P|3|T |), where C is the
number of elementary circuits. Since the number of elementary circuits can be
exponential in the number of places (O(2|T |)), the time complexity is exponen-
tial in the worst case. As for the space complexity, it remains polynomial in the
size of the Petri net.

For comparison, consider the method of computation given (for rational tim-
ings) in Section 6.1 and which uses the asap marking graph. The size of the asap
marking graph is exponential in the size of the original Petri net, more precisely
its size is O(2|P|). So the complexity in time is O((2|P|)3) = O(8|P|) and the
space complexity is at least O(2|P|). Observe that these complexities are eval-
uated without taking into account the necessity of transforming the Petri net
with rational timings into an equivalent one with timings equal to 1, see Section
6.1. This transformation makes both time and space complexity of the classical
method even worse.

Finally, remark that our construction also gives some insight on the period
of the worse policy. Since the critical TT-invariant associated with the critical
circuit (with n tokens) is the sum of n T-invariants, this means that the period of
the worse routing policy in each routing place is periodic with a period n ≤ |P|.
This is several order of magnitude smaller than the period that can be deduced
from the classical algorithm which is exponential O(2|P|).

6.5 Bounded Nets

If one considers a live and k-bounded free-choice net with k ≥ 2, then the
previous constructions for 1-bounded nets do not work anymore. If the timings
are rational, the worst throughput is reached for periodic routings (Theorem
6.1), but the period is not bounded by the number of tokens in a circuit, as
shown by the following example.

Example 6.4. Figure 6(a) represents a 2-bounded free-choice net where the pe-
riod of the worst routing is greater that the number of tokens in any circuit.
Furthermore the critical circuit for this routing is not elementary.

All the timings are equal to 1, as well as the weights. The routing in p1 which
gives the minimal throughput is, (t1t4t4t4)∞, and the periodic evolution is given
in Figure 6(b).

(a)

p1

p2

p4

p3

p5

p6t1t2

t3

t4 t5

(b)

p3p5

p1p1

p5p5

p1p5p1p2

t5

t1t5

t2t4

t3t5 t4t4

Fig. 6. Free-choice net and its worst evolution
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The throughput of this evolution is 9/5, whereas if only the left (or right)
event graph is live the throughput is 2. The period of the routing function of
place p1 is greater than the number of tokens in the circuits containing this place
(2 tokens), as opposed to what happens in the case of 1-bounded nets. In this
example, by changing the timings and/or increasing the number of transitions,
but keeping the same number of tokens, it is possible to increase the period
of the worst routing function arbitrarily. Therefore, bounding the period of the
worst routing seems difficult, even for 2-bounded nets.
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Av. Ipiranga, 6681 – 90619-900 – Porto Alegre, Brazil
{lbrenner, paulof, asales, twebber}@inf.pucrs.br

Abstract. This paper presents a framework to decompose a single
GSPN model into a set of small interacting models. This decomposition
technique can be applied to any GSPN model with a finite set of tangi-
ble markings and a generalized tensor algebra (Kronecker) representation
can be produced automatically. The numerical impact of all the possi-
ble decompositions obtained by our technique is discussed. To do so we
draw the comparison of the results for some practical examples. Finally,
we present all the computational gains achieved by our technique, as well
as the future extensions of this concept for other structured formalisms.

1 Introduction

It is common knowledge in the research community the advantages in using
the GSPN (Generalized Stochastic Petri Nets) formalism [2] to model complex
systems, i.e., systems with both parallel and synchronous behavior. For a quite
long time, the main limitation to use the GSPN formalism was the absence of
an efficient numerical support to handle useful, and consequently large, models.
Ciardo and Trivedi’s work [14] brought a first approach that could be employed
to decompose a single model into components. However, their approach does
not mention any specific storage or numerically suitable solution technique. The
need of a theoretical tool to represent such structured models naturally leads
to Tensor Algebra representations [4, 8, 3, 15]. The term Tensor Algebra is being
employed in this paper, but many authors still prefer the classic denomination
Kronecker Algebra chosen in honor of Leopold Kronecker.

The first complete approaches in this direction were the works of Donatelli
in the SGSPN (Superposed GSPN ) formalism [16, 17]. By complete, we under-
stand that it was proposed a complete framework to: construct a SGSPN model
by assembling synchronized components; generate a Markovian descriptor, i.e.,
a tensor algebra formula, as the infinitesimal generator of the equivalent Markov
chain; and consequently an efficient way to solve it (functional elements). How-
ever, the SGSPN formalism could only be used to model a rather small class
of GSPN models which comply to the restrictive rules of generation defined by
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Donatelli, i.e., a SGSPN model is composed of a set of standard GSPN models
which interact only through a set of synchronized transitions.

The SGSPN application scope restriction, and the consequent disadvantages
in terms of numerical performance, suggests the use of other formalisms that
could be closer to the tensor representation, such as SAN (Stochastic Automata
Networks) [26]. At this time, the solution through the shuffle algorithm used
in SAN [18, 7] presents an efficient solution with reasonable memory needs.
Evidently, the use of other structured storage and solution techniques instead
of the tensor algebra also presents good alternatives to the limited scope of the
SGSPN formalism. This is the case of the quite impressive techniques based on
MDD (Multi-valued Decision Diagrams) [22] and MxD (Matrix Diagrams) [21]
proposed by Ciardo and Miner. Furthermore, the MDD and MxD techniques
are very efficient to solve very sparse models, i.e., models with a huge product
state space and a comparatively small number of reachable states. In fact, we
believe that the techniques based on tensor algebra are still worthy, at least
considering the new improvements to handle tensor structures [5, 10].

This paper presents a study about the decomposition of a very general class of
GSPN models, exploiting the description power of the GSPN formalism. It also
proposes a memory efficient tensor algebra format to describe the components
and their interactions. As the first step, we formally define the class of GSPN
models in which our technique can be applied. The proposed decomposition
technique and the consequent tensor format representation are generalizations
of the SGSPN formalism [17], but we extend the application scope following the
ideas firstly advanced in [14] and employed later in [20]. The new contribution
of our work is justified by the numerical impact of the decomposition choices on
the storage demands.

We are specifically interested to handle models with a really large reachable
state space. Buchholz, Ciardo, Donatelli, Kemper, and Miner [9, 23, 11] already
present very efficient methods to deal with absolutely huge models (e.g., 9.18×
10626 states in 1000 dining philosophers example [22]), but with considerably
fewer reachable states. Our decomposition technique intends to split a GSPN
model into subnets providing a structured representation. Regardless the number
of subnets, we will always have the same reachable state space. With many
(small) subnets, we have a very structured (and therefore memory efficient)
representation, but also a product state space much larger than the reachable
state space. With few (large) subnets, we have a less structured representation,
but a product state space equal or a little bit larger than the reachable state
space. In fact, we intend to compare possible decompositions in order to show
the trade off between many small and few large subnets.

In addition, we point out the underestimated benefits of the use of guards in
the GSPN formalism, which can be clearly demonstrated by the tensor format
proposed in our work. We do not pay much attention in this paper to the com-
putational cost to solve the tensor representations. The recent evolutions in pure
tensor solutions [5, 10], the promising ideas of parallel implementations, and the
MDD and MxD techniques [12] suggest many changes in the computational
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cost in a near future. We focus our interest in the memory savings due to our
decomposition techniques and the corresponding tensor format.

The next section briefly presents the theoretical tool used to the tensor rep-
resentation: Classical (CTA) and Generalized Tensor Algebra (GTA). Section 3
describes the GSPN formalism, the application scope of our technique and the
scope of the technique proposed for SGSPN. Section 4 presents our decomposi-
tion technique and the corresponding tensor format. Section 5 draws some con-
siderations about the possible choices of decomposition. Section 6 presents some
modeling examples in order to discuss numerical issues about the decomposition
technique. Finally, the conclusion summarizes our contribution and suggests the
still vast future work to be done.

2 Tensor Algebra

In this section, the concepts of Classical Tensor Algebra [3, 15] and Generalized
Tensor Algebra [25, 18] are briefly presented.

2.1 CTA - Classical Tensor Algebra

The tensor product of two matrices: A of dimensions (ρ1 × γ1) and B of dimen-
sions (ρ2×γ2) is a tensor with dimensions (ρ1ρ2×γ1γ2) which may be considered
as consisting of ρ1γ1 blocks each having dimensions (ρ2γ2), i.e., the dimensions
of B. To specify a particular element, it suffices to specify the block in which
the element occurs and the position within that block of the element under con-
sideration. Thus, as mentioned previously, element c36 (a11b02) is in the (1, 1)
block and at position (0, 2) of that block. The tensor C = A ⊗ B is defined by
assigning to the element of C that is in the (k, l) position of block (i, j), the
value aijbkl, i.e., c[ik][jl] = aijbkl. The tensor sum of two square matrices A and
B is defined in terms of tensor products as:

A⊕B = A⊗ InB
+ InA

⊗B

where nA is the order of A; nB is the order of B; Ini
is the identity matrix of order

ni; and “+” represents the usual operation of matrix addition. Since both sides
of this operation (matrix addition) must have identical dimensions, it follows
that tensor addition is defined for square matrices only. The value assigned to
the element c[ik][jl] of the tensor C = A⊕B is c[ik][jl] = aijδkl + bklδij , where δij

is the element of ith row and jth column of an identity matrix defined as δij = 1
for i = j and δij = 0 for i �= j.

2.2 GTA - Generalized Tensor Algebra

Generalized Tensor Algebra is an extension of Classical Tensor Algebra. The
main distinction of GTA with respect to CTA is the addition of the concept of
functional elements. However, a matrix can be composed of constant elements
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(belonging to R) or functional elements. A functional element is a function eval-
uated in R according to a set of parameters composed of the rows of one or
more matrices. Generalized tensor product is denoted by ⊗

g
. The value assigned

to the element c[ik][jl] of the tensor C = A(B)⊗
g

B(A) is c[ik][jl] = aij(bk)bkl(ai).

Generalized tensor sum is also analogous to the ordinary tensor sum, and is
denoted by ⊕

g
. The elements of the tensor C = A(B) ⊕

g
B(A) are c[ik][jl] =

aij(bk)δkl + bkl(ai)δij .

3 Generalized Stochastic Petri Nets

The GSPN formalism [2] is a performance analysis tool on the graphical system
representation typical of Petri Nets [27, 24]. The GSPN formalism is derived
from the SPN formalism and contains two types of transitions: timed and im-
mediate. An exponentially distributed random firing time is associated with each
timed transition, whereas immediate transitions, by definition, fire in zero time.
Immediate transitions always have precedence to fire over timed transitions. The
GSPN models with immediate transitions can always be represented by a model
with timed transitions.

In the graphical representation of a GSPN model, places are drawn as circles,
timed transitions as rectangles and immediate transitions as bars. Places may
contains tokens, which are drawn as black dots. A place is an input to a transition
if an arc exists from the place to the transition. A place is an output from a
transition if an arc exists from the transition to the place. A transition is enabled
when all of its input places contain at least one token. Enabled transitions can
fire, thus removing one token from each input place and placing one token in each
output place. Additionally, a condition can be associated to enable the firing of
the transitions. Such conditions are called guards and, with the availability of
tokens in the input places, they are the only restrictions to enable the firing of
a given transition. A formal description is presented as follows.

Let

C set of conditions associated to transitions of T .

Definition 1. A GSPN is defined by tuple (P, T , π, I, O, W , G, M0), where:

1.1. P non-empty set of places;
1.2. T non-empty set of transitions;
1.3. π: T → {0, 1} priority function of the transitions;
1.4. I and O: T → P input and output functions of the transitions;
1.5. W : T → R+ function that assigns a rate to each transition;
1.6. G: T → C function, called guard, that associates a necessary, but not suffi-

cient, condition c ∈ C to the firing of each transition t ∈ T ;
1.7. M0: P → N initial marking in each place.
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Definition 2. c ∈ C is a condition that may be associated to a transition t ∈ T ,
which depends on tokens of one or more p ∈ P. This condition is a function with
domain on tokens of all places p and counter-domain on R.

A condition c defines the firing rate of a transition according to the number
of tokens in a specific set of places. Although the counter-domain of c is R,
only a discrete set of values can be obtained, since the possible combination of
markings of places (i.e., the domain of c) is a discrete set.

Definition 3. Set of timed transitions TT of a GSPN is defined as TT = {t ∈
T | π(t) = 0}.
Definition 4. Set of immediate transitions TI of a GSPN is defined as TI =
{t ∈ T | π(t) = 1}.
Definition 5. Set of transitions T of a GSPN is defined as T = TT ∪ TI and
TT ∩ TI = ∅.

Numerical Solution Restriction. Although the framework proposed in this
paper could be applied to a larger class of GSPN models, we assume a single
restriction in order to facilitate the stationary or transient numerical solution:
the set of tangible markings of the models must be finite.

4 Framework

We present in this section a framework to decompose GSPN models. Our de-
composition technique is shown in Fig. 1.

The basic idea is to decompose a GSPN model into N components GSPN (i)

(i ∈ [1..N ]), where each component GSPN (i) is viewed as a subsystem of the
GSPN model. A component GSPN (i) may not be a GSPN model. It is then
necessary to know the possible tangible markings. This is done by the con-
struction of T RG(i) considering the possible firing of all transitions limited
by: availability of tokens; guards; and maximum number of tokens in each
place.

A component GSPN (i) has an independent behavior (local transitions) and
occasional interdependencies (synchronized transitions and/or transitions with
guards). It is important to notice that there is a strong equivalence between
the decomposition of all T RG(i) and the T RG of the whole GSPN (which is
the underlying Markov Chain). Nevertheless the computational cost to obtain
the T RG from the composition of all T RG(i) is usually too high. In fact, the
memory needs can be prohibitive as will be seem in the Section 6.

In the next section, we define a component GSPN (i) and its properties. In
Section 4.2, we formally present the tensor format (Markovian Descriptor) used
to obtain the infinitesimal generator Q of a decomposed GSPN model.
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4.1 Decomposition

There is no restriction to decompose a GSPN model with a finite set of tan-
gible marking into N components GSPN (i) (i ∈ [1..N ]). Our technique is less
restrictive than the definition of the SGSPN formalism.
Definition 6. Each component GSPN (i) is defined as a GSPN, i.e., it is
defined by tuple (P(i), T (i), π(i), I(i), O(i), W (i), G(i), M

(i)
0 ), where:

6.1. P(i) non-empty set of places, such that p(i) ∈ P(i) → p(i) ∈ P and
N∪

i=1
P(i) =

P and �P(i) = P;
6.2. T (i) non-empty set of transitions, such that t(i) ∈ T (i) → t(i) ∈ T and

∃p ∈ I(i)(t) or ∃p ∈ O(i)(t) such that p ∈ P(i);
6.3. π(i): T (i) → {0, 1} priority function of the transitions;
6.4. I(i) and O(i): T (i) → P(i)∗ input and output functions of the transitions in

which P(i)∗ denotes a possibly empty set of places;
6.5. W (i): T (i) → R+ function that assigns a rate to each transition;
6.6. G(i): T (i) → C function guard that associates a necessary, but not sufficient,

condition c(i) ∈ C to the firing of each transition t(i) ∈ T (i);
6.7. M

(i)
0 : P(i) → N initial marking in each place p(i) ∈ P(i).

It is important to notice that the set of places P(i) is a subset of P, as well as
the set of transitions T (i) is a subset of T . Obviously, the subset of places P(i)

of a component GSPN (i) cannot be the whole set of places P, otherwise there
is no decomposition. The same restriction does not apply to T (i), since it can be
identical to T .

There is no restriction to places superposition. A place p ∈ P can be in as
many subsets of places P(i) as wanted. Obviously, the same applies to transi-
tions. The sole restriction regards the immediate transitions that cannot be used
to synchronized two or more partitions. However such restriction is a minor dis-
comfort since all GSPN model can be described by an equivalent SPN (i.e.,
without immediate transitions) model. Elements of tuple (P(i), T (i), π(i), I(i),
O(i), W (i), G(i), M

(i)
0 ) are conservatives, i.e., an element in component GSPN (i)

has the same value of the corresponding element in that original GSPN, e.g., if
t(i) correspond to t, then W (i)(t(i)) has the same value of W (t).

4.2 Tensor Format

We now formally present the tensor format (Markovian Descriptor) used to
obtain the infinitesimal generator Q of a decomposed GSPN model. As shown
in Fig. 1, the decomposition technique uses the concepts of Tangible Reachability
Graph and Stochastic State Machine.

So we firstly remind the classical definitions of P-invariants, Reachability Set
(RS), Tangible Reachability Set (TRS), Tangible Reachability Graph (TRG)
and Stochastic State Machine (SSM).
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Descriptor
Markovian

...

...

...

T RG(1) T RG(N)

SSM(1) SSM(N)

GSPN
GSPN (1) GSPN (N)

Fig. 1. Decomposition technique

Let

C incidence matrix of a GSPN (dimensions: |P| × |T |);
cjk element from row j and column k of an incidence matrix.

Definition 7. Elements of an incidence matrix C are defined by:

7.1. ∀pj ∈ P,∀tk ∈ T

cjk =

⎧⎪⎨⎪⎩
+1 if pj ∈ O(tk)
−1 if pj ∈ I(tk)
0 if pj �∈ O(tk) and pj �∈ I(tk)

Definition 8. P-invariants of a GSPN are defined by vector solutions σ com-
posed of non-negative integer: 0 and 1, given by equation σC = 0 [27], where
value 1 in ith position of σ means that ith place of GSPN belongs to the P-
invariant.

Let

PI minimal set of P-invariants, where PI = {PI1,PI2, ...}.
The scalar product between a P-invariant and any marking M produces a

constant. If in a GSPN all places are covered by P-invariant, the maximum
number of tokens in any place in any reachable marking is finite, and the net
is said to be bounded [1]. Therefore, a GSPN must have all places covered by
P-invariants (all places are bounded) in order to have a finite set of tangible
markings. We assume a minimal set of P-invariants as a set with the smaller
number of P-invariants that covers all places of the whole net.

Let

Mi(p) number of tokens in place p in marking Mi;

B(PIi) number of tokens in any P-invariant PIi (bound);

max(p) maximum number of tokens in place p defined as the minimum
B(PIi) for all PIi, where p ∈ PIi;

Mk[t > Ml change from marking Mk to Ml due to the firing of t.
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Definition 9. Reachability Set RS(i)(M (i)
0 ) of component GSPN (i) is defined

as the smallest set of markings, such that:

9.1. M
(i)
0 ∈ RS(i)(M (i)

0 );
9.2. M

(i)
l ∈ RS(i)(M (i)

0 ), if and only if ∀p(i), M
(i)
l (p(i)) ≤ max(p(i)); and

∃M
(i)
k ∈ RS(i)(M (i)

0 ) and ∃t ∈ T (i) such that M
(i)
k [t > M

(i)
l .

Definition 10. Tangible Reachability Set T RS(i)(M (i)
0 ) of component GSPN (i)

is composed of all tangible markings of RS(i)(M (i)
0 ).

Definition 11. Tangible Reachability Graph T RG(i)(M (i)
0 ) of component

GSPN (i) given an initial marking M
(i)
0 is a labelled directed multigraph whose

set of nodes TM(i) is composed of markings of Tangible Reachability Set T RS(i)

(M (i)
0 ) and whose set of arcs T ARC(i) is defined as follows:

11.1. T ARC(i) ⊆ T RS(i)(M (i)
0 )×T RS(i)(M (i)

0 )× T (i)
T ×T (i)∗

I ;
11.2. a(i) = [M (i)

k , M
(i)
l , t0, σ] ∈ T ARC(i), if and only if

M
(i)
k [t0 > M

(i)
1 , σ = t1, . . . , tn, (n ≥ 0); and

11.3. ∃M
(i)
2 , . . . , M

(i)
n such that M

(i)
1 [t1 > M

(i)
2 [t2 > . . . M

(i)
n [tn > M

(i)
l .

Definition 12. A Stochastic State Machine (SSM) is defined by tuple
(P, T , F, Λ), where:

12.1. P set of non-empty places;
12.2. T set of non-empty transitions;
12.3. F ⊆ ((P × T ) ∪ (T × P)) with dom(F ) ∪ codom(F ) = P ∪ T is the flow

relation. It has to satisfy the following restriction1: ∀t ∈ T : |◦t| = |t◦|= 1;
12.4. Λ : T → R+, where Λ(t) is the rate of the exponential probability distribu-

tion associated to transition t.

A decomposed GSPN model has N components GSPN (i), where i ∈ [1..N ].
Each component GSPN (i) has a tangible reachability graph T RG(i) (Definition
12). Each tangible reachability graph T RG(i) has an equivalent stochastic state
machine SSM(i) such that:

1. Each node M
(i)
j ∈ TM(i) corresponds to p(i) ∈ P(i) of SSM(i);

2. Each arc a(i) ∈ T ARC(i) corresponds to [p(i), t(i)] ∈ F (i) and [t(i), q(i)] ∈
F (i), if and only if exist a(i) = [M (i)

k , M
(i)
l , t, σ] such that M

(i)
k corresponds

to place p(i) ∈ P(i), M
(i)
l corresponds to place q(i) ∈ P(i), t ∈ T (i)

T , and
σ ∈ T (i)∗

I .

1 |◦t| and |t◦| indicate the number of input and output places of t.
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The transition rate of t(i) ∈ T (i) (obtained from [M (i)
k , M

(i)
l , t, σ]) can be

computed as Λ(t).Λ(σ)2, where Λ(t) is the transition rate of t. Any transition
t(i) ∈ T (i), whose guard has dependency on markings of other components
GSPN (j) (i, j ∈ [1..N ] and i �= j), has a function f multiplied by its rate.
Function f is evaluated as true for all markings whose its guard is satisfied, and
false otherwise. So we can now classify a transition as local or synchronized.

Let

T (i)
l set of local transitions of component SSM(i);

T (i)
s set of synchronized transitions of component SSM(i).

Definition 13. Set of synchronized transitions Ts of a decomposed GSPN model
is defined as Ts = T (1)

s ∪ T (2)
s ∪ . . . ∪ T (N)

s .

Markovian Descriptor is an algebraic formula that allows to store, in a com-
pact form, the infinitesimal generator of an equivalent Markov chain. This math-
ematical formula describes the infinitesimal generator through the transition
tensors of each component. Each component SSM(i) has associated:

– 1 tensor Q
(i)
l , which has all transition rates for local transitions in T (i)

l ;
– 2|Ts| tensors Q

(i)
t+ and Q

(i)
t− , which have all transition rates for synchronized

transitions in T (i)
s .

Let

Q(i)
k (p(i), q(i)) tensor element Q

(i)
k from row p(i) and column q(i), where i ∈

[1..N ] and k ∈ {l, t+, t−};
I|P(i)| identity tensor of order |P(i)|, where i ∈ [1..N ];

τt(p(i), q(i)) occurrence rate of transition t ∈ T (i), where [p(i), t] ∈ F (i) and
[t, q(i)] ∈ F (i);

succt(p(i)) successor place q(i) such that [p(i), t] ∈ F (i) and [t, q(i)] ∈ F (i).

Definition 14. Tensor elements Q
(i)
l , which represent all local transitions t ∈

T (i)
l of component SSM(i), are defined by:

14.1. ∀p(i), q(i) ∈ P(i) such that q(i) ∈ succt(p(i)) and p(i) �= q(i)

Q
(i)
l (p(i), q(i)) =

∑
t∈T (i)

l

τt(p(i), q(i));

14.2. ∀p(i) ∈ P(i) such that q(i) ∈ succt(p(i))
Q

(i)
l (p(i), p(i)) = − ∑

t∈T (i)
l

τt(p(i), q(i));

2 See [1] for the computation of Λ(σ) (sequence of immediate transitions).
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14.3. ∀p(i), q(i) ∈ P(i) such that q(i) �∈ succt(p(i)) and p(i) �= q(i)

Q
(i)
l (p(i), q(i)) = 0.

Let

η(t) set of indices i (i ∈ [1..N ]) such that component SSM(i) has at
least one transition t ∈ T (i);

ι(t) index of the component SSM which has the transition rate of
synchronized transition t ∈ Ts, where ι(t) ∈ [1..N ].

Actually a transition t can be viewed as local transition if |η(t)|= 1 or as
synchronized transition if |η(t)|> 1.

Definition 15. Tensor elements Q
(i)
t+ , which represent the occurrence of syn-

chronized transition t ∈ T (i)
s , are defined by:

15.1. ∀i �∈ η(t)

Q
(i)
t+ = I|P(i)|;

15.2. ∀p(ι(t)), q(ι(t)) ∈ P(ι(t)) such that q(ι(t)) ∈ succt(p(ι(t)))

Q
(ι(t))
t+ (p(ι(t)), q(ι(t))) = τt(p(ι(t)), q(ι(t)));

15.3. ∀i ∈ η(t) such that i �= ι(t), ∀p(i), q(i) ∈ P(i) such that q(i) ∈ succt(p(i))
Q

(i)
t+ (p(i), q(i)) = 1;

15.4. ∀i ∈ η(t), ∀p(i), q(i) ∈ P(i) such that q(i) �∈ succt(p(i))
Q

(i)
t+ (p(i), q(i)) = 0.

Definition 16. Tensor elements Q
(i)
t− , which represent the adjustment of syn-

chronized transition t ∈ T (i)
s , are defined by:

16.1. ∀i �∈ η(t)

Q
(i)
t− = I|P(i)|;

16.2. ∀p(ι(t)) ∈ P(ι(t))

Q
(ι(t))
t− (p(ι(t)), p(ι(t))) =

{
0 if �q(ι(t)) ∈ succt(p(ι(t)))
−τt(p(ι(t)), q(ι(t))) if ∃q(ι(t)) ∈ succt(p(ι(t)))

16.3. ∀i ∈ η(t), i �= ι(t) and ∀p(i) ∈ P(i)

Q
(i)
t−(p(i), p(i)) =

{
0 if �q(i) ∈ succt(p(i))
1 if ∃q(i) ∈ succt(p(i))

16.4. ∀i ∈ η(t), ∀p(i), q(i) ∈ P(i) and p(i) �= q(i)

Q
(i)
t−(p(i), q(i)) = 0.

Definition 17. Infinitesimal generator Q corresponding to the Markov chain
associated to a decomposed GSPN model is represented by tensor formula called
Markovian Descriptor:

Q =
N⊕

g
i=1

Q
(i)
l +

∑
t∈Ts

⎛⎝ N⊗
g

i=1

Q
(i)
t+ +

N⊗
g

i=1

Q
(i)
t−

⎞⎠ (1)
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Once a tensor sum is equivalent to a sum of particular product tensors, the
Markovian Descriptor may be represented as:

Q =
(N+2|Ts|)∑

j=1

N⊗
g

i=1

Q
(i)
j , (2)

where Q
(i)
j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

I|P(i)| if j ≤ N and j �= i

Q
(i)
l if j ≤ N and j = i

Q
(i)

t+(j−N)
if N < j ≤ (N+ | Ts |)

Q
(i)

t−(j−(N+|Ts|))
if j > (N+ | Ts |)

5 Choosing a Decomposition

In this section, we present several approaches to decompose a GSPN model.
We show the necessary steps to obtain all components SSM. Afterwards, we
comment about the side effect of guards and its consequences.

Fig. 2 presents an example of a GSPN model. Based on this model, we show
our decomposition technique applied in three different approaches. For all the
possible decomposition approaches, the demonstration in Section 4.2 can be used
to obtain the equivalent tensor algebra representation automatically.

5.1 Decomposing by Places

Firstly, we analyse a quite naive approach, which is based on decomposing a
GSPN model by places. Each place has a maximum number of tokens K, and
so we can view each place as a SSM with K + 1 states. A decomposed GSPN
model by places of Fig. 2 is presented in Fig. 3.

Each component SSM(i) represents the possible states of place pi of a GSPN
model. Note that places p2 and p5 in Fig. 2 are 2-bounded, i.e., there are no

P1

P2 P3 P4

t1

t2 t3 t4

P5 P6 P7

t5

Fig. 2. An example of a GSPN model
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SSM(1)

SSM(3) SSM(4)

SSM(5)

SSM(6) SSM(7)

t1 t5

t3

t3

t2

t2
t3 t1 t4 t1

t2

t2

t3

t3

t5 t3 t5 t4

SSM(2)

0

1

2

0

1

0

1 1

0

0

1

2

0

1

0

1

Fig. 3. Decomposed GSPN model by places

more than 2 tokens in each place in any marking M ∈ RS. Hence SSM(2)

and SSM(5) have three places which represent the states (0, 1 and 2) of places
p2 and p5 respectively. Analogously, places p1, p3, p4, p6, and p7 are 1-bounded.
So SSM(1), SSM(3), SSM(4), SSM(6), and SSM(7) have two states
(0 and 1).

5.2 Decomposing by P-Invariants

Other decomposition of GSPN models is based on P-invariants. A P-invariant
is composed of a set of places with constant token count. Fig. 4 presents a
decomposed model of Fig. 2 using the P-invariants concept.

There are three minimal solutions of σ given by equation σC = 0 (see Def-
inition 8). So we can define three P-invariants to GSPN model of Fig. 2. PI1

has two places (p2 and p5), PI2 has three places (p1, p3 and p6), and PI3 also
has three places (p1, p4 and p7).

SSM(1) SSM(2) SSM(3)

t2

t2

t3

t3

t1

t4

t5

t1

t3

t5

Fig. 4. Decomposed GSPN model by P-invariants
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Each PIi corresponds to a component SSM(i) of the GSPN model. So, in
this example, we can decompose the GSPN model in three components SSM.
It is important to note that, besides the transition superposition, there is a place
superposition between components SSM(2) and SSM(3).

5.3 Decomposing as Superposed GSPN

Another possible approach to decompose a GSPN model is through transition
superposition proposed by Donatelli [17]. Donatelli proposed the SGSPN for-
malism in which components (subsystems) interact each other through transition
superposition.

Example of Fig. 2 can be decomposed by SGSPN, since there is a transition t3
which synchronizes two components GSPN . Component GSPN (1) is composed
of two places (p2 and p5), whereas component GSPN (2) is composed of five places
(p1, p3, p4, p6, and p7). Once defined the components GSPN (i), it is possible
to obtain the equivalent components SSM(i). Fig. 5 presents the equivalent
components SSM of the GSPN model (Fig. 2).

SSM(2)

SSM(1)

t2

t2

t3

t3

t3

t4

t4

t3

t5

t1

Fig. 5. Decomposed GSPN model by SGSPN

5.4 Decomposing Arbitrarily

It is also possible to decompose a GSPN model according to an arbitrarily chosen
semantic. We can decompose the GSPN model of Fig. 2 as follows: markings
of places p1, p2, p3, and p4, as well as markings of places p5, p6, and p7. Hence
component SSM(1) is obtained from distinct markings of places p1, p2, p3, and
p4 of T RG, and component SSM(2) is also obtained from distinct markings of
places p5, p6, and p7 of T RG.

Note that the decomposition choice may privilege some features of the tensor
format which is important to the solution method. In some cases, it may be
important to decompose a GSPN model considering: a large or small number
of components SSM; a small number of reachable states; or even the difference
between reachable and unreachable states.
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5.5 Side Effect of Guards

The concept of guards in the GSPN formalism allows transition firing depen-
dency according to the number of tokens in each place. Guards in GSPN are
quite similar to functional elements in the SAN formalism [26, 18]. A natural
decomposition among components GSPN of a GSPN model can be viewed
through the use of guards. Therefore, guards in the GSPN models can allow to
produce disconnected GSPN models, which have synchronization through the
guards on theirs transitions.

As shown in Section 4.2, tensor format (Markovian Descriptor) of a decom-
posed GSPN model uses generalized tensor sum and products. GTA operators
in the Markovian descriptor are used to represent the functional rates of tran-
sitions, but as long as there are no guards defined to transitions, they can be
classical tensor products. Hence, guards on transitions are evaluated in Marko-
vian Descriptor by GTA operators.

Another consequence of the use of guards is the possibility to define GSPN
models with “disconnected parts”, i.e., models where there is not only a single
net, but two or more nets with no arcs connecting them. In this case, there
must be guards referring to places of other components in order to establish an
interdependency (not a synchronization) among parts. The last example (Section
6.3) shows a net with disconnected parts and the use of guards to establish the
interdependency.

6 Modeling Examples

We now present three modeling examples in order to present the approaches
discussed in the previous section. The first one presents a Structured model, the
second one describes a Simultaneous Synchronized Tasks model, whereas the last
one shows a Resource Sharing model.

6.1 Structured Model

Fig. 6 presents an example of a Structured model composed of four submod-
els. The submodel i is composed of four places (pai

, pbi
, pci

, pdi
) and two local

transitions. There are also four synchronized transitions responsible for the syn-
chronization of the submodels. It is important to observe that guards were chosen
to define the possible firing sequence of transitions. This model was introduced
by Miner [20].

In this model, the decomposition by places is rather catastrophic, since there
is a correlation among marking of places. It results in a quite large product state
space (65, 536 states) for a rather small reachable state space (only 486 states).
According to the SGSPN and P-invariants approaches, we have exactly the same
decomposition and a more reasonable product state space (1, 296 states). As a
general conclusion one may discard the decomposition by places approach, but
this is not really a fair conclusion, since this model is quite particular. Models
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3

2

4

1

Guards
ga1 = (tk(pb1) == 0)
gd1 = (tk(pa1) == 0)
ga2 = (tk(pb2) == 0)
gb2 = (tk(pc2) == 0)
gb3 = (tk(pc3) == 0)
gc3 = (tk(pd3) == 0)
gc4 = (tk(pd4) == 0)
gd4 = (tk(pa4) == 0)
g12 =((tk(pc1) == 0)&(tk(pa2) == 0))
g23 =((tk(pd2) == 0)&(tk(pb3) == 0))
g34 =((tk(pa3) == 0)&(tk(pc4) == 0))
g41 =((tk(pd1) == 0)&(tk(pb4) == 0))

pa1 ta1
pb1 pa2 ta2

pb2

td1

pd1 pd2

tsynch41

pa4 pb4 pa3 pb3

td4

pd4
tc4 pd3

tc3

pc1 pc2

tsynch12

tsynch23

tsynch34

pc4 pc3

tb2

tb3

Fig. 6. Example of a structured model

with places with a larger bound (nets with more tokens) may be more interesting,
as the next example will demonstrate.

6.2 Simultaneous Synchronized Tasks

Fig. 7 describes a Simultaneous Synchronized Tasks (SST) model in which five
tasks are modeled. Such tasks have synchronization behavior among them, and
those synchronization behaviors occur in different levels of the task execution.

t0

P0

t1

P1 P5 P9

t5t2

P2 P6 P7 P10

t3 t6 t9

P3 P8 P11 P13

t10t7t4

P4 P12 P14

P16
t11P15

N

t8

Fig. 7. Simultaneous Synchronized Tasks
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Table 1. Indices of decomposed SST models

N approach #SSM SSM sizes pss rss mem

1
Places 17 (2 × · · · × 2 × 2 × 2) 1.31 × 105 98 1 KB
P-Inv 6 (5 × 5 × 5 × 5 × 5 × 2) 6.25 × 103 98 1 KB
SGSPN 2 (49 × 2) 9.80 × 101 98 1 KB

3
Places 17 (4 × · · · × 4 × 2 × 2) 4.29 × 109 12, 100 2 KB
P-Inv 6 (35 × 35 × 35 × 35 × 35 × 2) 1.05 × 108 12, 100 7 KB
SGSPN 2 (6, 050 × 2) 1.21 × 104 12, 100 236 KB

9
Places 17 (10 × · · · × 10 × 2 × 2) 4.00 × 1015 22, 391, 512 6 KB
P-Inv 6 (715 × · · · × 715 × 2) 3.74 × 1014 22, 391, 512 201 KB
SGSPN 2 (11, 195, 756 × 2) 2.24 × 107 22, 391, 512 672 MB

10
Places 17 (11 × · · · × 11 × 2 × 2) 1.67 × 1016 51, 887, 550 6 KB
P-Inv 6 (1, 001 × · · · × 1, 001 × 2) 2.01 × 1015 51, 887, 550 288 KB
SGSPN 2 (25, 943, 775 × 2) 5.19 × 107 51, 887, 550 -

20
Places 17 (21 × · · · × 21 × 2 × 2) 2.72 × 1020 18, 994, 747, 662 12 KB
P-Inv 6 (10, 626 × · · · × 10, 626 × 2) 2.71 × 1020 18, 994, 747, 662 3 MB
SGSPN 2 (9, 497, 373, 831 × 2) 1.90 × 1010 18, 994, 747, 662 -

21
Places 17 (22 × · · · × 22 × 2 × 2) 5.48 × 1020 29, 368, 986, 350 13 KB
P-Inv 6 (12, 650 × · · · × 12, 650 × 2) 6.48 × 1020 29, 368, 986, 350 4 MB
SGSPN 2 (14, 684, 493, 175 × 2) 2.94 × 1010 29, 368, 986, 350 -

27
Places 17 (28 × · · · × 28 × 2 × 2) 2.04 × 1022 286, 448, 238, 746 16 KB
P-Inv 6 (31, 465 × · · · × 31, 465 × 2) 6.17 × 1022 286, 448, 238, 746 10 MB
SGSPN 2 (143, 224, 119, 373 × 2) 2.86 × 1011 286, 448, 238, 746 -

Table 1 presents some indices to compare the decomposition alternatives.
In this example, we use the following approaches: decomposing by Places (Sec-
tion 5.1), decomposing by P-invariants (Section 5.2) and decomposing by Su-
perposed GSPN (Section 5.3). N represents the number of tokens in place
P0. The number of SSM components, decomposed by all approaches, is indi-
cated by #SSM. SSM sizes represents the number of states in each component
SSM. Product State Space, Reachable State Space, and memory needs to store
the Markovian Descriptor3 of the model are denoted by pss, rss, and mem
respectively.

The first important phenomenon to observe in Table 1 is the increasing gains
of the P-invariant and Places approaches achieved to models with large N values.
For small N values, there is much waste in the product state space that is not
significant compared to the memory savings, specially for the Places approach.
Regarding the comparison between SGSPN and P-invariant approaches, the
model with N = 9 is a turning point, since the memory savings are already quite
significant. In fact, larger models could not even be generated using the SGSPN
decomposition. The relationship between product and reachable state space for

3 We do not take into account the memory needs to store neither the probability
vector to compute solution, nor any special structure to represent the reachable
state space.
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decomposition based on P-invariants is considerably large, but we believe that
an optimized solution for models with sparse reachable state space could take
great advantage from this decomposition approach.

The second very impressive results taken from Table 1 is the very consistent
gains of the Places approach. Even though the product state space waste is
considerably large for smaller models (roughly one or two orders of magnitude),
the difference between the product state space for the P-invariant and Places
approaches becomes insignificant for the N = 20 model. Taking the model to its
limits (N = 21 to 27) we observe an inversion, since the Places approach has a
smaller product state space than the P-invariant approach.

6.3 Resource Sharing

Fig. 8 (a) shows a traditional example of a Resource Sharing (RS) model, which
has N process sharing R resources. Each process i is composed of two places: Si

(sleeping) and Ui (using). Tokens in place RS represent the number of available
resources, whereas they represent the number of using resources in place RU .
Fig. 8 (b) is an equivalent model in which guards impose a restriction to the
firing of each transition tai.

...

...

...

...

S1

ta1

U1

tr1

UN

trN

taN

SN RS

RU

R

(a)

...

...

...

...

S1

ta1

U1

tr1

(b)

trN

UN

taN

SN

Guards
ga1 = ((tk(U1) + ... + tk(UN)) < R)

.

.

.
gaN =((tk(U1) + ... + tk(UN)) < R)

Fig. 8. (a) Resource Sharing without guards - (b) Resource Sharing with guards

Table 2 shows some indices to compare the use of guards in a GSPN model
producing, in this case, an equivalent disconnected model. The indices for the
model of Fig. 8 (a) are shown in the without guards rows, whereas indices for the
model of Fig. 8 (b) are presented in the with guards rows. R indicates the number
of tokens in place RS of Fig. 8 (a), as well as the number of available resources
in the model of Fig. 8 (b). The computational cost (number of multiplications)
to evaluate the product of a probability vector by the Markovian Descriptor4,
the memory needs and the CPU time to perform one single power iteraction
are denoted by c.c., mem and time respectively. The numerical results for those

4 The vector-descriptor multiplication is the basic operation for most of the iterative
solutions, e.g., Power method, Uniformization [28].
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Table 2. Indices of decomposed RS models (N = 16)

R model #SSM SSM sizes pss rss c.c. mem time

1
without guards 17 (2 × · · · × 2 × 2) 131, 072 17 1.34 × 108 6 KB 0.33 s
with guards 16 (2 × · · · × 2) 65, 536 17 2.10 × 106 1 KB 0.45 s

3
without guards 17 (2 × · · · × 2 × 4) 262, 144 697 2.73 × 108 8 KB 0.71 s
with guards 16 (2 × · · · × 2) 65, 536 697 2.10 × 106 1 KB 0.49 s

9
without guards 17 (2 × · · · × 2 × 10) 655, 360 50, 643 6.88 × 108 14 KB 1.81 s
with guards 16 (2 × · · · × 2) 65, 536 50, 643 2.10 × 106 1 KB 0.53 s

15
without guards 17 (2 × · · · × 2 × 16) 1, 048, 576 65, 535 1.10 × 109 20 KB 3.07 s
with guards 16 (2 × · · · × 2) 65, 536 65, 535 2.10 × 106 1 KB 0.53 s

examples were obtained on a 2.8 GHz Pentium IV Xeon under Linux operating
system with 2 GBytes of memory.

The results in Table 2 show the decomposition based on P-invariants, since
decomposition based on SGSPN could only be applied to the without guards
model. Observe that SGSPN approach would result in exactly the same decom-
position as P-invariants. The main conclusion observing this table is the absolute
gains represented by the use of guards. It results in a model which has the same
product state space independently from the number of resources, as well as the
pss sizes are always smaller than those in the without guards models. It also
has a smaller memory need and a more efficient solution (smaller computational
cost).

It is a common mistake in some segments of the research community to
assume that a model which requires functional evaluations (GTA operators) has
a bigger CPU time to perform vector-descriptor multiplication than equivalent
models described only with CTA operators. In fact, such use of guards gives to
this GSPN model an efficiency as good as the one achieved by an equivalent SAN
model [7]. Obviously, it happens due to the Markovian Descriptor representation
using GTA.

7 Conclusion

The main contribution of this paper is to follow up the pioneer works of Cia-
rdo and Trivedi [14], Donatelli [17], and Miner [20]. Our starting point is the
assumption that for really large (and therefore structured) models the main dif-
ficulty is the storage of the infinitesimal generator. The solution techniques are
rapidly evolving and many improvements, probably based on efficient parallel
solutions, will soon enough be available. Using this assumption, we do believe
that the tensor format based on Generalized Tensor Algebra has an important
role to play.

For the moment, it benefits the Stochastic Automata Networks and it can
also be applied to Generalized Stochastic Petri Nets. A natural future theoret-
ical work is to expand those gains to other formalisms, such as PEPANETs
[19]. A more immediate future work would be the integration of this decompo-
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sition analysis to the solvers for SAN and GSPN (PEPS [6] and SMART [13]
software tools respectively). It is easy to precompute the possible decomposi-
tion with their memory and computational costs. Therefore, the integration of
such precalculation may automatically suggest the best decomposition approach
according to the amount of memory available.

Finally, we would like to conclude stating that the use of tensor based storage
can still give very interesting results and allows the solution (which cannot be
done without the storage) of larger and larger models.
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Abstract. Well-formed Nets (WN) structural analysis techniques allow
to study interesting system properties without requiring the state space
generation. In order to avoid the net unfolding, which would reduce sig-
nificantly the effectiveness of the analysis, a symbolic calculus allowing
to directly work on the WN colour structure is needed. The algorithms
for high level Petri nets structural analysis most often require a common
subset of operators on symbols annotating the net elements, in particular
the arc functions. These operators are the function difference, the func-
tion transpose and the function composition. This paper focuses on the
first two, it introduces a language to denote structural relations in WN
and proves that it is actually closed under the difference and transpose.

1 Introduction

Several flavours of High Level Petri Nets (HLPN) [1] have been introduced to
allow more parametric and compact Petri Net (PN) based representations of
complex systems. Although HLPN models can be translated into PN ones by
applying an unfolding procedure, usually the unfolding is avoided, and ad-hoc
analysis techniques are applied directly to the high level representation: this
approach usually leads to improved efficiency and sometimes allows also to obtain
parametric results.

Several types of analysis techniques can be applied to HLPN models, for
example a reachability graph (RG) can be computed, allowing to perform reach-
ability analysis, or structural analysis methods can be applied, which allow to
derive marking independent properties of PN models. Structural analysis results
are often used to check some properties before proceeding to the RG construc-
tion, and they can be exploited for early detection of modelling errors, or for
improving the efficiency of the RG construction process.

� The work of Massimiliano De Pierro was done when he was at the Dipartimento
d’Informatica, Università del Piemonte Orientale.

G. Ciardo and P. Darondeau (Eds.): ICATPN 2005, LNCS 3536, pp. 168–187, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A High Level Language for Structural Relations in Well-Formed Nets 169

This paper is about structural analysis of Well-formed Nets (WN) [2], an
HLPN formalism similar to Coloured PNs (CPN) [3], characterised by a struc-
tured syntax that has been exploited for developing efficient RG generation
algorithms [4]. In particular the paper develops the basis for a symbolic cal-
culus of different structural properties and relations which can be used for a
number of different applications. Examples of such relations are the structural
conflict and the causal connection relations between transitions, which can be
used to improve the RG construction process efficiency (through partial order
techniques [5]); they are also useful in the construction of Stochastic WN models
(SWN formalism includes timed transitions with exponentially distributed de-
lays, and immediate transitions enriched with priorities and probabilities for im-
plementing different conflict resolution policies), to help the modeller in correctly
specifying the priorities and weights of immediate transitions (as proposed in [6]
for Generalised Stochastic PNs). Another example of useful HLPN structural
analysis technique which has been studied in the literature concerns deadlock
detection [7]. Finally structural considerations can speed up the computation of
enabled transition instances in HLPN discrete event simulation or RG construc-
tion (for example in [8] some structural ad-hoc rules are applied to WN models
to this purpose).

Some results on HLPN models structural relation computation have been
presented in [9, 10], however they apply to a rather restricted subclass of WN,
namely Unary Regular Nets: the present paper extends such results to the whole
WN class. The core result of this paper is the formalisation of a calculus for the
computation of symbolic structural properties and of symbolic structural relations
between WN nodes: more details can be found in [11]. A language for represent-
ing such properties and relations in symbolic form is proposed, which is based
on the same syntax used to specify WN arc functions, extended with an inter-
section operator and an output guard (called filter): this representation has been
chosen with the aim of being easily interpreted by the modeller. The derivation
of the symbolic structural properties and relations of interest is based on the
application of the following set of operators on the expressions of the language:
transpose, difference, support and composition. Only the first two operators are
developed in details in this paper (due to space constraints), the other operators
are developed in [11] and [12]. A practical example of application of the calculus
and a discussion about the results interpretation has been proposed in [13].

The rest of the paper is organised as follows: Section 2 introduces the basic
WN’s definitions and the notation used in the paper. Section 3 proposes the
language for expressing WN structural properties and defines the operators on
the elements of such language. Section 4 discusses in details the transpose and
difference operators: it proves that the proposed language is closed with respect
to these two operators, and illustrates the algorithms to symbolically compute
the result of the application of such operators. Section 5 discusses the presented
results and the planned future work.
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2 Well-Formed Nets Basics

This section highlights the aspects of the WN definition which are useful to
describe the topic of this paper, namely the arc function syntax and the colour
domain structure. The complete WN formalism definition is not included for the
sake of space, and the interested reader can find it in [2].

WN belongs to the Coloured Petri Nets (CPN) family. In WN anyway par-
ticular constraints are imposed on the colour specification syntax, they are dis-
cussed in detail next. To help introducing the WN basics, the net of Fig. 1(a)
is utilised, it shows a modified WN version of the well-known database system
CPN model treated in [3]. Figure 1(b) shows a variant of the colour structure of
the same example, used to illustrate more complex colour definitions. Symbols
F1 :, F2 :, F3 : are not part of the WN definition, but are labels used only to
introduce the variant in (b).

〈S −X1, X2〉

〈X1, X2〉

C1 × C2 C1

C2

〈X1, X2〉

〈X2〉 〈X1〉

C1

〈X1〉

C1 × C2

C1 × C2

C1 × C2

〈X2〉 〈X1, X2〉

〈X1, X2〉

〈X1, X2〉

〈S −X1, X2〉

〈X1, X2〉

〈X1〉〈X1〉
〈SC1,1

−X1, SC2,1
〉[d(X1) = C1,1] +

+ 〈S −X1, X2〉[d(X1) = C1,2]

〈SC2,1
〉[d(X1) = C1,1]+

〈X2〉[d(X1) = C1,2]

〈X1, SC2,1
〉[d(X1) = C1,1]+

〈X1, X2〉[d(X1) = C1,2]

F1 :

F2 :

F3 :

(b)(a)

C1 = {C1,1, C1,2}
C2 = {C2,1, C2,2}

F1 :

F2 :
F3 :

F1 :

F2 :
F3 :

Fig. 1. Case (a) and case (b) of the database system WN model

The Colour Domains Structure. In WN, each place and transition has an
associated colour domain which is defined as the Cartesian product of finite
sets called basic colour classes and belonging to a finite collection; formally the
symbols C1, . . . , Cn are used to denote such sets and the mapping C(s) is used to
denote the colour domain of a WN node s, which may be either a transition or
a place. Thus C(s) = C

m1,s

1 ×C
m2,s

2 × . . .×C
mn,s
n , where the superscript mi,s ∈ N

depends upon s and indicates the multiplicity (i.e. the number of occurrences)
of the basic colour class Ci in C(s). Basic colour classes are not primitive sets
meaning that each one may be partitioned into further elements called static
subclasses: the number of elements of the partition of Ci is denoted ||Ci|| and
the j-th static subclass of Ci is denoted Ci,j , so that Ci =

⋃||Ci||
j=1 Ci,j and∑||Ci||

j=1 |Ci,j | = |Ci|. A colour class Ci may be cyclically ordered.
A place colour domain defines the type of objects the place can contain:

generally a marking of a place is not simply a set but is a multiset on C(p).
The set of all multisets on C(p) is denoted Bag[C(p)], whereas the sum notation∑|Ci|

j=1 λj .cj , λj ∈ N, is utilised to denote a multiset on Ci = {c1, c2, . . . , c|Ci|}.
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The net in Fig. 1 has got two basic colour classes {C1, C2} which respectively
model the database managers and the files; let us look at some place: place
Proc has colour domain C1, whereas places Wait and Mes have colour domain
C1 × C2. A token in place Mes models a sent message, which is formed by a
sender datatbase manager and a modified file. Version (b) of the database-system
partitions both the database managers and the files into two static subclasses.
This partition will allow to model a different system behaviour for elements
belonging to different subclasses.

The Arc Function Syntax. As in CPN, functions on colour domains label arcs
connecting places and transitions. By the CPN definition a function F labelling
an arc between transition t and place p is a mapping which assigns to each colour
in C(t), a multiset of colours in C(p). The following notation is used to indicate
the domain and codomain of a function F : C(t) → Bag[C(p)].

The WN formalism prescribes a syntax to express such functions, built on a
limited set of primitive symbols:

F =
∑

i

λiTi[guardi], λi ∈ N

The innermost term Ti of the definition is a function tuple and represents a
mapping C(t) → Bag[C(p)]. To denote the colour domain of a function tuple,
symbol C is extended to functions, so that C(Ti) is the colour domain of the
function tuple Ti. Symbols T , Ti are reserved to indicate function tuples. The
name function-tuple given to T derives from its syntax which has the form
〈f1, . . . , fk〉, where each component fi is a function mapping the elements of
C(T ) into elements of Bag[Cj ], Cj ∈ {C1, . . . , Cn}. The application of tuple T to
colour c ∈ C(T ) is defined as T (c) = ⊗k

i=1fi(c) where ⊗ is the multiset Cartesian
product operator.

The components fi of a tuple T are called class-functions and are expressed
as linear combinations of elementary functions, formally a class-function fi :
Bag[C(T )] → Bag[Cj ] is so defined:

fi =
ej∑

k=sj

αkXk +
||Cj ||∑
q=1

βqSq +
ej∑

k=sj

γk!Xk, where αk, βk, γk ∈ Z

The symbols si and ei will be used to denote the position of the first and last
occurrence of basic class Ci in a colour domain. If Ci does not appear in the
colour domain, then mi = ei = si = 0 (by definition), otherwise mi = ei − si +
1. Xk, !Xk, S, Sq are the elementary functions and represent the limited set of
symbols upon which class-functions are defined. Obviously, they have the same
domain and codomain as fi. Namely the projection Xk maps a colour c ∈ C(T ),
c = 〈c1, . . . , cm〉, into its k-th component ck ∈ Cj , the successor !Xk maps a
colour c ∈ C(T ) into the successor of its k-th component and may be used only
when basic class Cj is ordered, the constant function S maps a colour c ∈ C(T )
into the constant multiset

∑
c∈Cj

c, the constant Sq on the q-th static subclass
of Cj maps its argument into the constant multiset

∑
c∈Cj,q

c.
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In WN the class-functions must always map into multisets with non negative
coefficients, so αi, βi, γi must be defined consistently with such assumption. A
class-function expressed by means of a linear combination with positive integer
coefficients of the functions Xi, S−Xi, Sq−Xi, S, Sq and !Xi, surely satisfies the
above constraints. Hereafter the class functions are assumed to be expressed in
this simple form: this is not restrictive since any class function expression that
satisfies the above constraint (for any possible argument) can always be rewritten
in simple form, for example 2S−Xi = S +(S−Xi). In Fig. 1(a), transition Send
defines the system behaviour when a database file is being modified; the functions
on the arcs surrounding transition Send highlight this situation: when a database
manager m modifies a file f then the messages {(m′, f) : m′ ∈ C1 ∧m′ �= m}
are sent over the network. Function F2, selecting the identity of the database
manager m of the transition instance Send(m, f) is expressed as X1 (projection
on first component of (m, f) in WN syntax, similarly function F1:〈X2〉 selects
the file identity f , finally the set of messages to be sent over the network is given
by F1: 〈S−X1, X2〉 that returns the result of the Cartesian product C1−m×f .

[guardi] : C(Ti) → Bag[C(Ti)] in the expression of F represents a guard.
Guards are functions which are right composed to function tuples, that is they
are applied before the function tuple, and act as the identity function for those
elements of the domain which satisfy a given condition, represented by the guard,
otherwise map into the empty multiset. Guards in WN can also be associated
with transitions: in this case they are used to restrict the transition colour domain
to those elements that satisfy the guard. WN guards are Boolean expressions
whose terms are the predicates Xi = Xj , Xi �= Xj , d(Xi) = d(Xj),d(Xi) �=
d(Xj), d(Xi) = Cj,q and d(Xi) �= Cj,q. The term Xi = Xj (Xi �= Xj) is true
if the i-th and j-th component of the (guard) argument are equal (not equal),
d(Xi) = d(Xj) (d(Xi) �= d(Xj)) is true if the static subclass to which the
i-th and j-th component of the argument belong are equal (not equal), finally
d(Xi) = Cj,q (d(Xi) �= Cj,q) is true if the i-th component of the argument belongs
to (does not belong to) static subclass Cj,q. The truth value of the whole Boolean
expression can then be established following the standard evaluation rules for
Boolean expressions.

In version (b) of the database-system of Fig. 1 the guards are used on the
arc functions to specify different behaviours for managers belonging to different
groups: managers in C1,2 behave like managers of version (a) for any file in C2;
instead, managers in C1,1 access only files in C2,1 and in an exclusive way, that
is all files in C2,1 must be locked prior to modify them and thus transition Send
requires 〈SC2,1〉 from place Files (see function F3).

The calculus presented in this paper shall often need the application of the
functions, so far discussed, to multisets of colours rather than to single colours.
The linear extension of the WN functions is considered: the linear extension
F* of function F, (where F may be either a function tuple or a class-function
or an elementary function) is assumed by definition: F ∗(a + b) = F (a) + F (b),
F ∗(λ.a) = λ.F (a) where a and b are colours in C(F ), λ is any integer and the
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domain of F ∗ is Bag[C(F )]. For convenience, in the rest of the paper F will be
used instead of F ∗ abusing notation.

Although the function tuples in the arc functions may have elements that are
sums of class functions, sometimes it is convenient to deal only with function
tuples whose elements are elementary functions: the tuple expansion operation
can be used in this cases. Using the distributive property of the multiset Carte-
sian product with respect to the multiset sums it is possible to rewrite any WN
function tuple into a sum of tuples whose components are (weighted) elementary
functions only:

Property 1 (Tuple expansion). Let T = 〈∑j1
i1=1 λi1f1

i1
, . . . ,
∑jk

ik=1 λik
fk

ik
〉 a WN

tuple where f j
i are elementary WN functions and λi ∈ N , then T is rewriteable

as a sum of tuples T =
∑j1

i1=1

∑j2
i2=1 · · ·

∑jk

ik=1〈λi1f1
i1

, λi2f2
i2

. . . , λik
fk

ik
〉.

Moreover the weights of the components may be factorised outside the tuple:
〈λ1f1, . . . , λkfk〉 = (

∏k
i=1 λi)〈f1, . . . , fk〉. This property is useful to simplify the

presentation of the algorithms in next sections.

3 Structural Relations in WN

3.1 Motivation

The structured syntax of WN’s arc functions, recalled in the previous section,
allows to implicitly encode the system’s symmetries into its model specification;
in this way efficient methods can be applied that exploit such symmetries and
build an aggregated state space.

This paper deals with WN syntax from a different point of view: is it appro-
priate to symbolically express structural relations between the coloured nodes of
a WN? What type of extension is required to this purpose? Many analysis tools
base their algorithms on the ability to derive structural relationships on the net,
and sometimes even state-space based methods require some structural consid-
eration; an example of method belonging to this latter group is the stubborn-set
one ([14, 15, 16]). The method tries to reduce the number of RG states to be
generated by reducing the number of considered transition interleavings to be
fired from a given marking. This of course must be done in a way that preserves
the properties to be studied. A stubborn set is a subset of enabled transitions
in a given marking m to be fired for generating the (subset of) states reachable
from m in this method. Since the set have to be inferred without looking at the
future, that is without generate the next states, both structural and marking
considerations are used. Structural relations between the nodes of a PN which
are often used by algorithms dealing with the stubborn sets computation are the
structural conflict (SC), the structural causal connection (SCC) and the struc-
tural mutual exclusion (SME), that are all binary relations between transitions.
Structural analysis is thus a relevant framework to develop and consider in PN
qualitative and quantitative analysis.
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The first question is how to express the known PN structural relations, such as
the ones mentioned above, in WN. Once this has been done, the second question
is how to efficiently manipulate them to extend the PN algorithms to work on
WN models: for instance a symbolic version of the stubborn-set algorithm might
be developed if relations such as SC, SCC and SME could be computed without
unfolding the net.

In [9, 10] a convenient way to express coloured structural relations in CPN is
introduced. A structural relation R between two coloured nodes s, s′ is defined
by means of a function F (s, s′) : Bag[C(s′)] → Bag[C(s)] mapping any colour
instance c′ of s′ into the instances c of s that are in relation R with instance c′

of s′. According to the definition, for example, coloured version of the structural
conflict and causal connection between transitions t, t′ are functions denoted
respectively SC(t, t′) and SCC(t, t′).

To illustrate how the above definition may be exploited in case of WN, let us
introduce an example using the modified database-system model (b) of Fig. 1.
Assume to represent the predecessor relationship between place Files and transi-
tion Send, denoted Γ−(Files, Send). Such relation expresses for a given coloured
instance c of Send the coloured instances of Files connected to it in the graph of
the unfolded net. Γ−(Files, Send) is easy to derive since it is given by the function
〈SC2,1〉[d(X1) = C1,1] + 〈X2〉[d(X1) = C1,2] on the arc connecting Files to Send.
Thus, evaluating this function for a given colour of Send returns the instances
of Files that are connected to it through an output arc in the unfolded net.

Assume now to represent the predecessor between transition Send and place
Mes, denoted Γ−(Send, Mes): although it is related to the function 〈SC1,1 −
X1, SC2,1〉[d(X1) = C1,1] + 〈S − X1, X2〉[d(X1) = C1,2] labelling the arc, in
this case some computation and reasoning on the unfolded net must be done.
With a little extension to the WN’s syntax the function [d(X1) = C1,1]〈S −
X1, S〉[d(X1) = C1,1 ∧ d(X2) = C2,1] + [d(X1) = C1,2]〈S − X1, X2〉 may be
computed, which is the correct result. The interpretation of this expression is
the following: given a token (m, f) in place Mes, denoting a pair of a database-
manager and a file, the database modification events (transition Send instances)
producing it could be composed either by all managers in C1,2, except m, that
are modifying file f (rightmost addend) or by all managers in C1,1, except m,
that are modifying any file in class C2,1 only (leftmost addend).

The keypoint is the ability to determine algorithmically, and without unfold-
ing the net, such expressions. In [9, 10] it is shown that the predecessor may be
computed by means of an operator applied to the involved arc function, and
called the transpose. Moreover, also the other relations such as the conflict and
causal connection may be computed by means of formulae expressed in terms
of the arc functions and appropriate operators. Figure 2 illustrates the case of
SCCp(t, t′) and SCp(t, t′) formulae.

The remainder of this section introduces the language to express structural
relations in WN, whereas the next section formally treats the manipulation of
such expressions under a limited set of operators. This paper focuses on two op-
erators, namely the difference ! and the transpose (.)t. Although the transpose
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p

t t′

W+(t, p)

W−(t, p) W−(t′, p)

SCCp(t, t
′) =

(W+(t, p) � W−(t, p))t ◦ W+(t′, p)

SCp(t, t
′) =

(W−(t, p) � W+(t, p))t ◦ W+(t′, p)

Fig. 2. Formulae and structural conditions for causal connection and conflict

and difference without the composition operator are not enough to compute the
SC and SCC relations, they can be used to derive expressions that can be use-
ful in optimising the computation of the enabled transition instances in a given
marking, during RG construction or in simulation. The trivial way of computing
the enabled instances of t in marking m consists of considering each possible
colour c ∈ C(t), and for each input and inhibitor place apply the corresponding
arc function, and check whether the place marking contains the required number
of coloured tokens. Since C(t) can be quite large, a method to reduce the number
of colour instances to be checked is needed (for example in [8] some heuristics
devised to this purpose for speeding up SWN simulation are described). Using
simply the transpose and difference operators, it is possible to derive some ex-
pressions from which the exact set of enabled transition instances in a given
marking can be directly derived, as a function of the marking. In alternative the
expressions can be used to derive a superset of the enabled transition instances
(usually much smaller than the complete colour domain) to which the normal
enabling test can then be applied.

3.2 The Language to Denote WN Structural Relations

The language syntax is an extension of the WN arc function syntax and intro-
duces the following new elements: (1) the successor operator ! is extended to the
k-th successor !kXi where k ranges in 1, . . . , |Cj | (2) class-function terms may
be intersection of the elementary functions, (3) guards can appear on the left of
a tuple (i.e. they can be left composed to a tuple), in this case they are called
filters. The definition of the language follows.

Definition 1. Given a domain D = Cm1
1 × . . . × Cmn

n and a codomain D′ =
Bag[Cm′

1
1 × . . .× C

m′
n

n ], s =
∑

∀i mi, k =
∑

∀i m′
i, then

– S =
{

Xi, S, S −Xi, Sq, !kXi : i ∈ {1 . . . s} ∧ q ∈ {1 . . . max∀j ||Cj ||}
}

– R[D, D′] =
∑

j [filter]jλjTj [guard]j

where Tj = 〈∑j1
i1=1 λi1f j,1

i1
, . . . ,
∑jk

ik=1 λik
f j,k

ik
〉 and

fr
ij

=
⋂

l Γl : Γl ∈ S where l depends on ij , r

– K[D, D′] =
{

Fi : λ〈fi,1, . . . , fi,k〉 ∧ fi,j =
⋂r

i,j Γ r
i,j : Γ r

i,j ∈ S
}

the language is the union of all the possible D, D′ of R[D, D′].
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Set S is the collection of all the primitive symbols denoting elementary func-
tions. It is observable that symbols Sq − Xi do not belong to S although they
satisfy the WN syntax, that is because an equivalent form is utilised, pre-
cisely (S − Xi) ∩ Sq. For a given domain D and codomain D′, set R[D, D′]
is the collection of the expressions which are weighted sums of tuples possi-
bly preceded by a filter and followed by a guard. The tuples are such that
their components are sums of a finite number of terms, and each term is an
intersection of a finite number of symbols in S. K[D, D′] denotes the tuples
in R[D, D′] (so K[D, D′] ⊂ R[D, D′]) whose class-functions are constituted by
single addends. As an example the following element belongs to the language
R[C1 × C1 × C2; C1 × C2]: 〈X1 ∩ (S − X2), S〉 + 〈X1, X3〉 and both the tuples
appearing in the expression singularly belong to K[C1 ×C1 ×C2; C1 ×C2]. Ex-
pression 〈X1 ∩ (S −X2) + X1, S −X2〉 is also an element of the same language
but it does not belong to K[C1 × C1 × C2; C1 × C2].

Note that syntactically different tuples in R[D, D′] may represent the same
function, for instance it is easy to verify that 〈X1∩(S−X2), S〉 and 〈X1, S〉[X1 �=
X2] identify the same function. The language of symbolic expressions used in this
paper is the union on any D, D′ of R[D, D′].

The operators defined on the language are the transpose, the difference, the
support and the composition, plus some auxiliary ones. Let F, G ∈ R[D, D′] be
two expressions of the language: the transpose of F is denoted F t, its support
is denoted F , the difference of F and G is denoted F ! G, the composition of
F and G is denoted F ◦ G, finally the intersection and the the componentwise
multiplication are respectively denoted F∩G and F ∗G. The following definitions
introduce the operators above mentioned.

Definition 2. (Transpose) Let f be a linear function from Bag[C] to Bag[D]
then the transpose of f denoted f t is a function from Bag[D] to Bag[C] so
defined: f t(x)(y) = f(y)(x) ∀x ∈ D,∀y ∈ C.

Definition 3. (Composition) Let F : Bag[D′′] → Bag[D′] and G : Bag[D] →
Bag[D′′] be linear functions, then their composition F ◦G is defined as follows:
(F ◦G)(c) = F [G(c)] ∀c ∈ D.

Definition 4. (Difference) Let a =
∑|C|

i=1 λi.ci and b =
∑|C|

i=1 γi.ci be multisets
on C then a! b is so defined: a! b =

∑|C|
i=1 sup[0, λi − γi].c.

Let F and F ′ be linear functions from Bag[C] to Bag[D] and c ∈ C then (F !
F ′)(c) = F (c) ! F ′(c). The following linear extension is assumed for F ! F ′:
let F and F ′ be linear functions from Bag[C] to Bag[D] and c, c′ ∈ C then the
(F ! F ′)(c + c′) = [F (c)! F ′(c)] + [F (c′)! F ′(c′)].

Observe that the last part of the definition is needed because generally it
holds (F ! F ′)(c + c′) �= F (c + c′) ! F (c + c′): the reason is that the second
member is equal to (F (c) + F ′(c′))! (F (c) + F (c′)) and since ! and + are not
associative (due to the presence of the sup in the definition of !), it is not equal
to the first member.
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Definition 5. (Support) Let a ∈ Bag[C] then the support of a denoted a is a
function from Bag[C] to Bag[C] such that a =

∑
c∈C:a(c)>0 c.

Let F be a linear function from Bag[C] to Bag[D], then its support is defined
as F (c) = F (c), ∀c ∈ C.

Definition 6. (Multisets Operators) Let a =
∑|C|

i=1 αi.ci and b =
∑|C|

i=1 βi.ci be
multisets on C then the Componentwise Multiplication ∗ is defined as a ∗ b =∑|C|

i=1(αiβi).ci, and the Intersection ∩ is defined as a ∩ b =
∑|C|

i=1 inf [αiβi].ci

Let E1 and E2 be two expressions of the language, which represent two linear
functions: the problem to solve now is how to compute in a completely symbolic
way the expressions of the language representing the function E1 !E2, Et

1, E1,
etc., Section 4 provides a set of rewriting rules leading to symbolic manipulation
algorithms that solve this problem. The symbolic here is relative to the fact that
no function unfolding is done, that is no evaluation for any value of the argument
is done. Each rewriting rule is justified by a set of algebraic properties which the
operands satisfy. In the rest of the paper the term rewriting rule always denotes
symbolic manipulation that can be implemented algorithmically. Properties are
instead used to justify the rewriting rule.

4 Symbolic Manipulation

This section introduces the algebraic properties and the rewriting rules needed
to deal with the transpose and the difference operators. It also treats a group
of secondary operators needed in the development of the transpose and the
difference, namely the intersection and the componentwise multiplication.

4.1 The Transpose Operator

This section deals with the computation of the transpose for the elements of the
language. For this purpose an incremental approach is followed. The discussion
is organised as follow: in the next two subsections the case of WN arc functions is
first illustrated. Two properties are introduced, which respectively give the rules
to transpose WN class-functions in terms of the elementary function transposes
and the rules to transpose WN function tuples. The general case in which the
function to transpose is a sum of guarded tuples and includes the language ex-
tensions, that is the filters and the elementary functions intersection, are treated
in the final subsection where a practical algorithm is also illustrated.

WN Elementary and Class-Function Transpose. The first step towards
the transpose computation of a tuple consists in formalising the class-function
transpose. This requires to consider general linear combinations of elementary
functions. Let us consider the following example, which allows us to introduce
in an intuitive way some problems and the corresponding solution.

Example 1. Let us consider the class-function !X1+X2 so defined: F : Bag[C1×
C1] → Bag[C1] such that F (c1, c2) =!c1 + c2. In this case set C1 is ordered
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z

y

S

= {(x, y) ∈ C1×C1 : x∈C1 ∧ y=z} = 〈S,X2〉

Xt
2(z) = {(x, y)∈C1×C1 : X2(x, y)=z} =

C1

C1 × C1

C1

x = z − 1

z

!Xt
1(z) = {(x, y)∈C1×C1 :!X2(x, y)=z} =

= {(x, y) ∈ C1×C1 : y∈C1 ∧ x=z − 1} = 〈!|C1|−1X1, S〉

S

Fig. 3. Graphical representation respectively of the transpose of functions X2 and !X1

because the successor function !X1 is used. Observe that class C1 occurs twice
in the function domain. Let us represent in the three dimensional Cartesian space
the mappings of function F . Natural numbers are associated with colour of C1

and in a way to satisfy the ordering in C1, υ will denote such mapping from
C1 to N and is defined as υ(ci) = i, ∀ci ∈ C1, where i = 1 . . . |C1|. The image
F (ci, cj) ∈ Bag[C1] of the colour (ci, cj) ∈ Bag[C1 × C1], which corresponds
to the point (υ(ci), υ(cj)) in the plane xy, is represented along the z dimension
depicting the whole set of points corresponding to the colours in the multiset
F (ci, cj), an integer number should also be associated to each image’s point and
represents the respective colour multiplicity in the multiset, hence there should
be a fourth dimension, here not represented for simplicity.

Both X2 and !X1 may be visualised as planes in the Cartesian space, precisely
the planes z = y and z = x + 1. The image of F is represented by the points
(x, y, z) with discrete coordinates in 1 . . . |C1| laying on the union of such planes,
let us denote Ω such set. Observe that points at the intersection sum up their
multiplicity.

Fixing z = υ(ck), the transpose F t(ck) is represented by the set of points at
the intersection of Ω with the plane z = υ(ck), projected on plane xy. Observe
that the multiplicity of such points (x, y) corresponds to that of (x, y, z). Fig. 3
shows a graphical representation of the two components of F .

Informally what above said may be translated into symbolic computation as:

F t = (X2 + !X1)t = Xt
2 + !Xt

1 = 〈S, X1〉 + 〈!|C1|−1X1, S〉
where !|C1|−1 is equivalent to the predecessor function. ��

The previous example is interesting because it shows how the transpose of
general class-functions can be obtained by combining the elementary functions
transposes: this observation is generalised and formalised in Property 2. The
example suggests that in order to generalise the approach the transposes of all
the elementary functions are needed. Table 1 shows the transposes of all the WN
elementary colour functions.

For the projection and successor functions, the derivation is a straightforward
extension of the previous example (see Fig. 3). The transpose of the constant
function on the static subclass Ci,j , at the last line of the table, has been ex-
pressed using a guard that maps colours not belonging to the static subclass Ci,j
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Table 1. WN elementary colour function transposes, D = Cm1
1 × . . . × Cmn

n

f : Bag[D] → Bag[Ci] f t : Bag[Ci] → Bag[D] Notes

S 〈S, S, . . . , S〉 the tuple is composed by all S

Xi 〈S, . . . , S, X, S, . . . , S〉 all S but X at the i-th position

!kXi 〈S, . . . , S, !|Ci|−kX, S, . . . , S〉 all S but !|Ci|−kX at the i-th position

S − Xi 〈S, . . . , S, S − X, S, . . . , S〉 all S but S − X at the i-th position

SCi,j 〈S, S, . . . , S〉 ◦ [d(X) = Ci,j ] all S and a guard

onto the empty set. The St
Ci,j

is thus equal to the empty set for such colours not
in Ci,j due to the fact that, for a property of linear functions, the image of the
empty set is the empty set itself. Table 1 does not show an entry for (Sq −Xi)t,
in fact, as discussed previously, it can be rewritten into an expression of the
language using symbols in S only. For this reason its transpose is not provided
here.

The next property states how to compute the transpose of a linear combina-
tion of linear functions starting from the transposes of the functions themselves.
This property is not only useful in this case, while calculating the transpose of
the class-functions in terms of the elementary ones, but will be also useful later
for calculating the transpose of a sum of tuples

∑
i[filteri]λiTi[guardi].

Property 2. Let {Fi : i = 1 . . . n} be a collection of functions from Bag[C] to
Bag[D] and let F =

∑
i λi · Fi be a linear combination of such functions, whose

coefficients λi are in N and where + and · are the multi-set addition and the
scalar multiplication, then the transpose F t of F is defined by

F t =
∑

i λi · F t
i

Property 2 appears as an algebraic property of linear functions, however it
is combined with the elementary function transposes of Table 1, it also provides
a rewriting rule for obtaining the language (sub)expression for the transpose of
the linear combination of language (sub)expressions. This is the basic building
block on which the tuple transpose computation can be constructed.

WN Tuple Transpose. The algorithm for general WN arc function transpos-
ing is based on the ability to compute the transpose of a tuple. The next property
expresses the transpose of a tuple in terms of the transposes of its components.
In turn the transpose of each component can be computed using Property 2.

Property 3 (Transpose of a function tuple). Let fj , j = 1 . . . k, be linear func-
tions defined from Bag[D] to Bag[Cij

], where D = Cm1
1 × . . . × Cmn

n and
ij ∈ {1, . . . , n}, then ( k⊗

j=1

fj

)t

=
k∏

j=1

(
f t

j ◦ πj

)
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where the product
∏

is the componentwise product on multi-sets, and πj is
defined as πj : Bag[

⊗k
s=1 C

is
] → Bag[Cij

] such that πj(c1, c2, . . . , ck) = cj .

Example 2. An application of the above property is illustrated on a practical
case. Let us compute the transpose of the tuple 〈X1, S − X2, S〉 : C1 × C1 →
C1 × C1 × C2. Given that by Table 1 the transposes of the components of F
are in order Xt

1 : Bag[C1] → Bag[C1 × C1] = 〈X1, S〉, (S − X2)t : Bag[C1] →
Bag[C1×C1] = 〈S, S−X1〉, S : Bag[C2] → Bag[C1×C1] = 〈S, S〉, the transpose
of the tuple can be computed applying property 3. It is noticeable that there is no
correlation between symbols Xi appearing in the first step of the computation
and symbols Xi appearing in the second, in fact the indices depend on the
domain to which they apply. :

〈X1, S −X2, S〉t : Bag[C1 × C1 × C2] → Bag[C1 × C1]
= 〈X1, S〉 ◦ π1 ∗ 〈S, S −X1〉 ◦ π2 ∗ 〈S, S〉 ◦ π3 =
= 〈X1, S〉 ∗ 〈S, S −X2〉 ∗ 〈S, S〉 =
= 〈X1, S −X2〉 ��

To completely define the above calculation by means of an algorithm it is
necessary to be able to deal with ∗ (the component-wise multiplication) operation
between Cartesian products of multi-sets. The task is straightforward if the
following property is considered:

〈a1, . . . , an〉 ∗ 〈b1, . . . , bn〉 = 〈a1 ∗ b1, . . . , an ∗ bn〉

where aj , bj ∈ Bag(Cij
) and ij = 1, . . . , n.

Observation: when class-functions map into multisets whose coefficients may
be in {0, 1} only, then the product ∗ is equivalent to the intersection. Moreover
the following property λf1 ∗ γf2 = λγ(f1 ∩ f2) holds, where f1 and f2 are
functions satisfying to the assumption above. The elementary symbols in S map
into multisets with coefficients 0 or 1, then actually it is always possible to replace
∗ with the intersection ∩ operator. In the algorithm proposed in the following
subsection such feature is utilised. The intersection between elementary symbols
may be stored as a mapping assigning to each pair of symbols in S the expression
corresponding to the intersection result. Table 2 shows such mapping. The table
shows only the cases leading to simplifications, in all the others situations the
rewriting rules simply leave the operation indicated, for instance tuple 〈X1 ∩
X2, S ∩X2〉 is rewritten as 〈X1 ∩X2, X2〉.

Language Expression Transpose. The rules so far discussed allow to operate
on expressions of the language composed by a single tuple and which satisfy the
WN syntax only. This section completes the transpose computation extending
the calculus to any element of the language R[D, D′]. The following properties
are the basis of the computation:
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Table 2. Intersection among elementary functions

Symbolic Rewriting Symbolic Rewriting
Operation Rule Operation Rule

S ∩ Xi Xi Xi∩!kXi Xi if k = |Cij | else φ
Xi ∩ Xi Xi Xi ∩ (S − Xi) φ

!kXi ∩ (S − Xi) φ if k = |Cij | else !kXi Xi ∩ (S−!kXi) φ if k = |Cij | else Xi

S∩!kXi !kXi

Property 4 (Transpose properties).

i. [Transpose of an intersection] Let f and f ′ be functions from Bag[C] to
Bag[D], if ∀c ∈ C both f and f ′ maps into multisets with coefficients in
{0, 1} then (f ∩ f ′)t = f t ∩ f ′t.

ii. [Transpose of a guard] the transpose of a guard (filter) is the guard (filter)
itself.

iii. [Transpose of a composition] Let f : Bag[D′] → Bag[D] and f ′ : Bag[C] →
Bag[D′] be functions on multiset, the transpose of a composition is the com-
position of the transposes exchanged: (f ◦ f ′)t = f ′t ◦ f t.

Properties 4(ii) and 4(iii) complete the elements needed to transpose an ex-
pression of the language R[D, D′]. In fact, property 2 allowed to rewrite the
transpose of a sum (

∑
i[filteri]λiTi[guardi])t in terms of its addend in the fol-

lowing way
∑

i([filteri]λiTi[guardi])t, Property 4(iii) about the transpose of a
composition of linear functions says that the previous expression is equivalent
to
∑

i[guardi]t(λiTi)t[filteri]t, moreover by property 4(ii) filters and guards ex-
pressions are not modified by the transpose operator. Thus, so far the calculus
needs to do simply manipulation of the expression elements to compute the
transpose. The innermost transpose (λiTi)t is by Property 2 simply λi(T t

i ). The
core point is thus the tuple transpose. Property 4i allows to extend the trans-
pose computation to class-functions whose addends are not simply symbols in S

but intersection between them. Its application to Property 3, assuming the fi as
intersections, will result in an intersection of as many tuples as the components
of the intersection in fi.

Let us consider again the example of structural relation Γ−(Send, Mes) for
the database-system and show how the algorithm behaves.(〈SC1,1 −X1, SC2,1〉[d(X1) = C1,1] + 〈S −X1, X2〉[d(X1) = C1,2]

)t Prop.2
=

=
(〈SC1,1 −X1, SC2,1〉[d(X1)=C1,1]

)t+(〈S −X1, X2〉[d(X1)=C1,2]
)t Prop.4iii

=

= [d(X1) = C1,1]t〈SC1,1 −X1, SC2,1〉t + [d(X1) = C1,2]t〈S −X1, X2〉t Prop.4ii
=

= [d(X1) = C1,1]〈SC1,1 −X1, SC2,1〉t + [d(X1) = C1,2]〈S −X1, X2〉t

Let us compute the transpose of the second tuple in the above expression.
Using Table 1 and simplification rules of Table 2 results in the following steps:
〈S −X1, X2〉t = 〈S −X1, S〉 ∩ 〈S, X2〉 = 〈(S −X1)∩ S, S ∩X2〉 = 〈S −X1, X2〉.
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Avoiding waste of rewriting can be obtained exploiting that the intersections
with S’s, shown above, are known a priori. So, some intermediate step may be
skipped. In general, if T is the starting tuple and T ′ its transpose, the algorithm
may proceed in this way: T ′ is initialised with all S and a guard always true.
Then, each element s of tuple T that is a basic symbol of set S is considered
separately. If s = S then it is ignored. If s = SCi,j

then st produces a basic
predicate which is composed through a logical AND with the guard of tuple T ′

(see Table 1). If s ∈ {Xi, S − Xi, !kXi, S−!kXi}, the index i of the projection
appearing in s defines the position j in tuple T ′ where the transposed symbol st

should end up (combined through intersection with the current j-th component
of T ′), whereas the index of the projection that will appear in st is the position
of s in T . For the sake of clarity, Fig. 4 shows an example of the application of
these rules to a more complex tuple than that of the example.

〈X3, X2∩!X3, X2, S −X1〉 〈S −X4, X3 ∩X2, X1∩!|Ci|−1X2, S〉

Fig. 4. An example of the application of the rules to transpose a tuple

Let us complete the transpose computation of the above example. The trans-
pose of the first tuple is computed using the optimised steps. Prior to transpose
〈SC1,1 − X1, SC2,1〉t the tuple must be rewritten in simple form 〈SC1,1 ∩ (S −
X1), SC2,1〉t. Thus, let us start with a tuple T ′ = 〈S, S〉 of all S and analyse how
the transposes of the single components modify it:

- St
C1,1

produces a guard [d(X1) = C1,1] applied to tuple T ′, which becomes
〈S, S〉[d(X1) = C1,1] (see Table 1 for the rules about the guard’s form);

- (S −X1)t produces S −X1 at the first component of tuple T ′: at this step
tuple T ′ becomes 〈S −X1, S〉[d(X1) = C1,1] ;

- St
C2,1

produces a guard [d(X2) = C2,1] applied to tuple T ′: the resulting
tuple is 〈S −X1, S〉[d(X1) = C1,1 ∧ d(X2) = C2,1] (see Table 1).

Concluding, the final result is: [d(X1) = C1,1]〈S−X1, S〉[d(X1) = C1,1∧d(X2) =
C2,1] + [d(X1) = C1,2]〈S −X1, X2〉.

4.2 The Difference Operation

This section works out the problem of computing the difference F !F ′ between
two expressions F, F ′ of the language. Situations involving difference F ! F ′

may arise in several applications of the structural analysis. As concrete example,
assume the necessity to evaluate the actual multiset of tokens a given transition
t firing instance puts into an input place p, this can be obtained by evaluating
the expression W+(t, p) !W−(t, p) on that instance of t, where W+(t, p) and
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W−(t, p) are respectively functions on the input and output arcs between t and
p. This operation has been already illustrated in Sec. 3 Fig. 2 for the calculus of
both the structural relations SC(t, t′) and SCC(t, t′).

The topic of this section is to represent F!F ′ by means of an expression of the
language, that is to solve the ! operator. The problem is actually more complex
than it may seem, in fact F and F ′ are generally sums of tuples and due to the
! semantics the correct procedure must be followed in doing the subtraction.
Initially, in the development of the solution, guards and filters are not consider
because of simplicity, so that the problem is finding out an expression ν1T1 +
. . . + νmTm satisfying the equation:

ν1T1 + . . . + νmTm = (λ1T ′
1 + . . . + λm′T ′

m′)! (γ1T ′′
1 + . . . + γm′′T ′′

m′′) (1)

where νi, λi, γi ∈ N. Once equation (1) has been worked out the more general
situation involving filters and guards is treated. The algorithm solving problem
in (1) involves several sub-tasks which are discussed next:

a) the most elementary sub-task to be considered is the difference between
forms of type

⋂
i Γi where Γi ∈ S. Exploiting the fact that actually the

elements of set S represent functions mapping into multiset with coefficient
0 or 1, the rules in Table 3 are used in dealing with such difference, such
rules are closed on the form given above.

Table 3. (a) rules used to deal with subtraction �; (b) rules to rewrite the complement

(a) Class-functions subtraction rules (b) Complement
a, b are functions mapping into sets, Symbolic Rewriting

c is the complement Operation Rule

a � b → a ∩ cb a ∩ ca → φ c!kXi S−!kXi
c(a ∩ b) → ca + cb c(ca) → a c(S−!kXi) !kXi

a ∩ a → a cSq

∑
i�=q Si

cS φ

b) the second sub-task the algorithm dealing with equation (1) requires is the
ability to solve single tuples difference λT!γT ′. When T and T ′ are elements
of K[D, D′], the following property allows to represent the difference λT!γT ′

into an expression of the language:

Property 5. Let T = 〈u1, . . . , un〉 and T ′ = 〈v1, . . . , vn〉 be tuples whose
components are functions mapping to sets then it holds:

λT ! γT ′ = λ〈u1 ! v1, U ′〉+ λ〈u1 ∩ v1, U ′ ! V ′〉+ (λ! γ)(T ∩ T ′)
where U ′ = 〈u2, . . . , un〉 and V ′ = 〈v2, . . . , vn〉.
The first term of the right member is a tuple, the latter also represents a
tuple because T ∩T ′ = 〈u1∩v1, u2∩v2, . . . , un∩vn〉. The second term may be
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recursively derived applying the property itself. Observing that after the first
step the third term never appears, since U ′ and V ′ always have coefficient
1, it is easy to verify that the result is a sum of n + 1 terms. A feature of
such rewriting is that the tuples on the conclusion of the Property 5 are
disjoint, this will simplify the solution of the general problem of difference
(1) as discussed later;

c) the third sub-task considered is the expansion of a tuple T ∈ R[D, D′],
that is its translation into a sum of elements belonging to K[D, D′]. By
Property 1 such rewriting is easily performable, however, for a motivation
that will be clearer later, a pre-transformation is applied to T first, this pre-
transformation guarantees that after the expansion the resulting tuples will
be disjoint. Such rewriting operates on the class-functions of T and is based
on the following property.

Property 6. Let F and G functions mapping into sets and λ, γ ∈ N then it
holds:

λf + γg = λ(f ! g) + (λ + γ)(f ∩ g) + γ(g ! f)
and the addends λ(f ! g),(λ + γ)(f ∩ g),γ(g ! f) are disjoint.

As an example, assume to expand tuple 〈2S + X1, X2〉, instead of simply
applying 〈2S + X1, X2〉 → 2〈S, X2〉 + 〈X1, X2〉, Property 6 is considered,
giving 〈2(S −X1) + (X1 − S) + 3S ∩X1, X2〉, then using Table 2 and 3 the
tuple becomes 〈2(S−X1)+3X1, X2〉. Expansion finally gives 2〈S−X1, X2〉+
3〈X1, X2〉.
The remainder of the section illustrates how to utilise the basic steps, intro-

duced above, in a general algorithm to solve (1) → E ∈ R[D, D′]. For simplicity
of notation the rules next provided consider expressions involving tuples whose
multiplicity is 1, later on it will result clear that this is not a restriction. So let
us consider the following simplification of problem (1):

(T1 + . . . + Tk)! (T ′
1 + . . . + T ′

k′) (2)

Assume that expression (2) is composed by tuples mapping into multiset with
coefficients 0 and 1, this is not a restriction since, by Property 1, each expression
is rewriteable into a form satisfying such assumption. This allows to use sub-task
b) and operate on basic differences in the following way: T !T ′ → E ∈ R[D, D′].

To explain the difference algorithm let us start considering the case where
the subtrahend is composed by one term only, namely let us consider (T1 + T2 +
. . .+Tk)!T ′

1, and see how such expression may be translated into an expression
of the language using sub-task b), that is how to solve the problem

(T1 + T2 + . . . + Tk)! T ′
1 → E′ ∈ R[D, D′] (3)

observe that, once (3) is solved, and more tuples constitute the subtrahend as in
(2), it is sufficient to consider one tuple T ′

i of (2) at the time and subtract it from
the partial result E′

i: actually, Property 1 is applied to E′ and the computation
reiterated: E′ ! T ′

2 → E′
2 ∈ R[D, D′] and so on.
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Let us thus consider problem (3), using subtask b), it could be rewritten as

(T1!T ′
1)+[T2!(T ′

1!T1)]+[T3!((T ′
1!T1)!T2)]+. . .+{Tk![(T ′

1!T1)!. . .)!Tk−1]}
That is, first T ′

1 is subtracted to T1, then the part of T ′
1 not subtracted to T1,

is subtracted to T2, and so on. It is observable that in this expression only the
innermost operations involve simple tuples, while the others involve a tuple and
an expression E ∈ R[D, D′], for this reason a sort of recursion appears in dealing
with the formula above. In [11, 12] a recursive algorithm is illustrated, which
uses the technique above. This paper provides another approach that exploits a
feature the expressions of the language often satisfy to improve the solving of
(3). In fact, if it is assumed by hypothesis that T1, T2, . . . , Tk in (3) are disjoint
for any colour they are applied to, then the formula (3) may be rewritten as
(T1 ! T ′

1) + (T2 ! T ′
1) + . . . + (Tk ! T ′

1), which is less complex to manage, in
fact each difference can be handled with subtask b) (actually the complexity is
moved into the step needed to rewrite the tuples into a disjoint form, anyway it
is required to be done only the first time).

To obtain disjoint tuples a two step procedure is followed: first, each time
there is the necessity to apply Property 1 to expand the tuples the technique
provided in case c) is followed, this assures that in (3) tuples Ti of the minuend
eventually coming from the expansion of the same tuple are disjoint; second,
tuples coming from different expansions must be disjoint in turn. This latter
step may be practically obtained using Property 6 on each pair of tuples and
rewriting the expression.

Dealing with Guards. Difference between two guarded tuples may be cor-
rectly managed encoding the guards into the respective tuples and utilising the
rules of the difference above described. Formally the following rewriting rule is
performed on both the minuend and the subtrahend: T [guard] → 〈T ; T ′〉. The
extension T ′ has as many components as the number of classes appearing in the
guard’s codomain and has the same semantics of the guard. Here is an example:
in the difference 〈S〉 ! 〈X1〉[X2 �= X3] the tuples, whose domain is assumed to
be C1×C1×C1, are rewritten as 〈S; X1, X2, X3〉!〈X1; X1, X2∩ (S−X3), X3∩
(S − X2)〉. Once the difference is computed the codomain of the result can be
reverted to the original codomain translating the extended part of the tuples in
guards right after them. Turning back to the above example the difference would
result in 〈S−X1; X1, X2, X3〉+ 〈S ∩X1; X1, X2 ∩X3, X3〉 which reverted to the
original codomain becomes 〈S −X1〉 + 〈X1〉[X2 �= X3]. Observe that extended
tuples belong to the language.

Table 4. Tuple representation of the basic predicates (assume i < j)

Predicate Tuple

[Xi = Xj ] 〈X1, . . . , Xi−1, Xi ∩ Xj , Xi+1, . . . , Xj−1, Xi ∩ Xj , Xj+1, . . . , Xk〉
[Xi �= Xj ] 〈X1, . . . , Xi−1, Xi ∩ (S − Xj), Xi+1, . . . , Xj−1, Xj ∩ (S − Xi), Xj+1, . . . , Xk〉
[Xi ∈ Sq] 〈X1, . . . , Xi−1, Xi ∩ Sq, Xi+1, . . . , Xk〉
[Xi �∈ Sq] 〈X1, . . . , Xi−1, Xi ∩ (S − Sq), Xi+1, . . . , Xk〉
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Table 4 shows the rewriting rules of basic predicates into a tuple notation.
Basic predicates d(Xi) = d(Xj) and d(Xi) �= d(Xj) are not shown in table since
they can rewritten respectively as [(Xi ∈ C1 ∧Xj ∈ C1)∨ . . .∨ (Xi ∈ Cn ∧Xj ∈
Cn)] and [(Xi ∈ C1 ∧Xj �∈ C1) ∨ . . . ∨ (Xi ∈ Cn ∧Xj ∈ Cn)]. The translation
of general guards in form of Boolean expression built on the basic predicates is
described in [11].

5 Conclusions and Future Work

The contribution of this paper is the definition of a high-level language that
may be used to represents structural relations between nodes of WN models.
The language syntax is very close to the WN arc function syntax, with some
extensions, namely the filters and the elementary functions intersection. Filters
are syntactically similar to WN guards but they appear on the left (i.e. they
are left composed) of both tuples and functions. The proposed language has
two advantages: the first is that it allows to give a compact representation of
high-level net structural relations which, being expressed in a language similar
to that used by the modeller to describe WN models, may be relatively easy to
interpret by the user; the second is that several properties have been proven on
the symbols of the language and some relevant operators, leading to the pos-
sibility of developing symbolic manipulation algorithms implementing efficient
structural analysis, and avoiding the need to unfold the model.

This paper focuses on two main operators, the transpose and the difference,
commonly utilised in many structural analysis methods, providing both the the-
oretical background to implement them algorithmically and possible algorithms.

The symbolic calculus dealing with the composition operator is described in
[11, 12]: in these reports the closure of the language with respect to the composi-
tion operator it is not yet proven, but only conjectured. The authors are confident
that the conjecture is true: the complete proof is currently under development.

Together with the composition operator, the transpose and the difference pro-
vide a uniform framework for the implementation of several structural analysis
algorithms. A concrete implementation of the symbolic computation algorithms
is planned for a future integration in the GreatSPN tool. Possible applications
of the results presented, which the authors plan to develop, are the computation
of enabling functions from the input and inhibitor arc functions of transitions,
and the computation of structural conflict and causal connection: the results of
these structural analysis algorithms can be used to speed up state space based
analysis methods, for example providing a basis for enabled transition instances
computation, and for partial order techniques.
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Derivation of Non-structural Invariants of Petri Nets
Using Abstract Interpretation

Robert Clarisó, Enric Rodrı́guez-Carbonell, and Jordi Cortadella

Universitat Politècnica de Catalunya,
Barcelona, Spain

Abstract. Abstract interpretation is a paradigm that has been successfully used
in the verification and optimization of programs. This paper presents a new ap-
proach for the analysis of Petri Nets based on abstract interpretation. The main
contribution is the capability of deriving non-structural invariants that can in-
crease the accuracy of structural methods in calculating approximations of the
reachability space. This new approach is illustrated with the verification of two
examples from the literature.

1 Introduction

The analysis of the state space of a Petri Net can be done by using different methods.
Traditionally, three types of methods have been proposed [24]:

– Enumeration techniques, which provide an exact characterization for bounded sys-
tems and partial approximations for unbounded systems. These techniques suffer
from the state explosion problem that often appears in highly concurrent systems.

– Transformation techniques, which alleviate the previous problem by reducing the
system into a smaller one that still preserves the properties under analysis.

– Structural techniques, which provide information of the system based on the un-
derlying graph structure of the net. Structural techniques typically compute upper
approximations of the state space that can be effectively used for the verification of
safety properties.

Structural techniques provide linear descriptions of the state space by exploiting the
information given by the state equation [19]. As an example, the following invariant
characterizes the markings that fulfill the state equation for the Petri Net in Fig. 1(a):

2p1 +p2 +p3 +p4 +p5 = 2. (1)

The reachability graph is depicted in Fig. 1(b), in which the shadowed states represent
spurious (unreachable) markings. The presence of spurious markings is the cost that
must be paid when using approximation techniques to calculate the state space.

This paper presents an attempt to explore a different analysis approach that lives
between the accuracy of the enumeration methods and the efficiency of structural tech-
niques. The goal is to reduce the set of spurious markings by generating more accurate

G. Ciardo and P. Darondeau (Eds.): ICATPN 2005, LNCS 3536, pp. 188–207, 2005.
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Fig. 1. (a) Petri Net (from [24]), (b) reachability graph

Table 1. Non-structural invariants for the Petri Net in Fig. 1(a)

Linear inequalities Polynomial equalities

p2 + p4 ≤ p3 + p5 (2) p2
5 − p5 = 0 (5)

p3 + p4 ≤ p2 + p5 (3) p4p5 − p4 = 0 (6)
p5 ≤ p2 + p3 + p4 (4) 2p3p5 + p2 + p4 = p3 + p5 (7)

characterizations of the state space taking into account both the initial marking and the
structure of the net.

The approach is based on the paradigm of abstract interpretation [9], successfully
used in different areas for the verification and optimization of systems [7]. In this paper
we present two abstract domains that are able to derive non-structural invariants for
Petri Nets: linear inequalities and polynomial equalities.

As an example, abstract interpretation has been able to obtain the invariants in Ta-
ble 1 for the previous Petri net.1

Some observations on the new invariants:

– The invariants (1)-(4) represent the exact reachability graph.
– The invariants (1) and (5)-(7) also represent the exact reachability graph.

Even though in this case abstract interpretation can characterize the reachability
graph exactly, in general it provides an upper approximation, which may be more accu-
rate than the one defined by the structural invariants. Nevertheless, these conservative
invariants can be used to prove safety properties of the Petri Net, like boundedness and

1 The invariant (1) is also obtained in both abstract domains.
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Fig. 2. Approximating a set of values (left) with several abstract domains

deadlock freedom (by studying whether the conjunction of the disabling conditions for
all the transitions and the invariants is feasible).

Some previous works have also studied the generation of linear inequality invariants.
Many of them have been based on the analysis of structural properties and objects [16],
including siphons and traps [5]. Another approach, presented in [23], uses Farkas’
lemma to generate inductive linear invariants. Finally, Presburger arithmetics [13] and
real arithmetics [2] can be used to represent the state space of Petri Nets, providing
again linear inequality invariants.

Abstract interpretation offers new chances for the analysis of concurrent systems
and, in particular, of Petri Nets. The possibility of deriving non-structural invariants can
open the door to a new family of strategies that can better explore the trade-off between
accuracy and efficiency in the modeling of concurrent systems. In this paper, the ap-
plicability of abstract interpretation is illustrated with the verification of an automated
manufacturing system and the alternating bit protocol.

2 Abstract Interpretation

2.1 Fundamentals

Abstract interpretation [9] is a generic approach for the static analysis of complex sys-
tems. The underlying notion in abstract interpretation is that of upper approximation: to
provide an abstraction of a complex behavior with less details. Upper approximations
are conservative in the sense that they can be used to prove safety properties, e.g. “no
errors in the abstraction” means “no errors in the system”. A property about a system
such as an invariant is in some way an abstraction: it represents all the states of the
system that satisfy the property.

Intuitively, abstract interpretation defines a procedure to compute an upper approx-
imation for a given behavior of a system. This definition guarantees (a) the termination
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of the procedure and (b) that the result is conservative. An important decision is the
choice of the kind of upper approximation to be used, which is called the abstract do-
main. For a given problem, there are typically several abstract domains available. Each
abstract domain provides a different trade-off between precision (proximity to the exact
result) and efficiency.

There are many problems where abstract interpretation can be applied, several of
them oriented towards the compile-time detection of run-time errors in software [6].
For example, some analysis based on abstract interpretation can discover numeric in-
variants among the variables of a program. Several abstract domains can be used to
describe the invariants: intervals [8], octagons [17], convex polyhedra [10] or polyno-
mial equalities [22]. These abstract domains provide different ways to approximate sets
of values of numeric variables. For example, Figure 2 shows how these abstract domains
can represent the set of values of a pair of variables x and y.

2.2 Application to the Reachability Problem

The reachable markings of a Petri Net can be studied using abstract interpretation. We
will consider the classic model of Petri Nets, extended with inhibitor arcs and param-
eters in the initial marking. A reachable marking of a Petri Net N can be seen as an
assignment to k non-negative integer variables, where k is the number of places in
N . Therefore, a set of markings can be approximated using the abstract domains from
Figure 2. This approach has several benefits. First, the abstract domains can represent
large sets of markings compactly. Even infinite sets of markings can be represented ef-
ficiently. Moreover, the analysis can work with parametric markings where the number
of tokens in a place is defined by a parameter. Finally, the approximation leads to a
faster generation of the reachable state space. The result may contain some unreach-
able markings, but all reachable markings will be included in the solution. Thus, all
invariants discovered by abstract interpretation hold in all the reachable markings.

We will show the computation of the reachable markings using the convex polyhe-
dra abstract domain, even though other abstract domains could be used. The abstract
interpretation procedure applied to the reachability analysis is shown in Figure 3. Intu-
itively, the algorithm behaves as follows. Initially, only the initial marking is reachable.
There may be several enabled transitions, which will discover new reachable markings
when they are fired. The algorithm keeps on firing transitions until no more reachable
states can be found. The enabling condition can be expressed using linear inequalities,
while the effect of firing a transition can be expressed as linear assignments. Both op-
erations are available in the abstract domain of convex polyhedra. Notice that each step
deals with sets of reachable markings instead of individual markings.

The algorithm consists in computing the following sequence:

reachable0 = M0

reachablei+1 = reachablei ∪ next(reachablei, T ) .

In this recurrence, M0 is the initial marking of the Petri Net. The set next(M, T )
represents the markings reached by firing once any transition in t ∈ T from any marking
m ∈ M such that t is enabled in m. The union operator (∪) is not exact for convex
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Input: A Petri Net N = 〈P, T, F, M0〉 with a set of places P , a set of transitions T , a flow-
relation F and an initial marking M0.
Output: An upper approximation of the set of reachable markings of N , described in the abstract
domain used in this analysis (e.g. a set of linear inequalities or polynomial equalities).

reachable = { M0 } # Start from the initial marking
do {

old := reachable
for each transition t ∈ T {

enabling := enablingCondition( t, F ) # Enabling condition of t defined by F
enabled := reachable ∩ enabling # Reachable markings where t is enabled
if ( enabled = ∅ ) continue # Check if t is not enabled yet
next := fire( t, enabled, F ) # Fire t from the enabled markings
reachable := reachable ∇ ( reachable ∪ next ) # Accumulate the new markings

}
} while ( reachable �= old );

Fig. 3. Abstract interpretation algorithm used to compute the set of reachable markings

polyhedra, so some degree of approximation is introduced in this way. However, solving
this recurrence has a problem: there is no guarantee that the algorithm will terminate.
If the Petri Net is unbounded, the algorithm might iterate an infinite number of times.
So instead of this recurrence, the algorithm solves another recurrence that relies on a
widening operator (∇). Widening extrapolates the effect of repeating a computation an
unbounded number of times. Its definition ensures the termination of the analysis after a
finite number of steps. Given A, the states before the computation, and B the states after
the computation, the widening is denoted as A∇B. A possible high-level definition of
widening can be “keep the constraints from A that also hold in B”, considering that any
property modified during the computation might be further modified in later iterations.
Using this operator, the recurrence can be rewritten as:

reachable0 = M0

reachablei+1 = reachablei ∇ ( reachablei ∪ next(reachablei, T ) ) .

Figure 4 illustrates the effect of the widening on the computation. On the top, we
show the computation of the reachable markings if the widening is not used. This com-
putation does not terminate. On the bottom, we see the same computation using widen-
ing. In this case, the computation terminates quickly. Notice that, between (p = 0) and
(0 ≤ p ≤ 1), the only common property is (p ≥ 0).

2.3 An Example

The example used to present the abstract interpretation algorithm is shown in Figure 5.
This Petri Net is modeling a producer-consumer system that communicates through a
lossy channel. The left subnet, the producer, generates tokens while the right subnet,
the consumer, removes these tokens. The place p4 models the communication channel
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Fig. 5. Petri Net model of a producer-consumer system

between the producer and the consumer, while places p3 and p5 count the number of
executions of the producer and the consumer respectively. The transition t5 models
the possible loss of data in the channel: some tokens generated by the producer will
disappear before reaching the consumer. Initially, we assume that there are already k
tokens in the channel, where k is a parameter of the system.

Several interesting invariants hold in this system. For example, the consumer cannot
process more elements than those created by the producer or initially in the channel, i.e.
(p5 ≤ p3 + k). It should also be noted that the places p3, p4 and p5 are not bounded, so
the set of reachable markings is infinite.

Let us discuss a part of the execution of the algorithm in this example. For the sake
of brevity, the constraints of the form (pi ≥ 0) and (k ≥ 0) will not be shown. The
initial markings, parametrized by the value of k, are the following:

(p1 = 1) ∧ (p2 = 0) ∧ (p3 = 0) ∧ (p4 = k) ∧ (p5 = 0) ∧ (p6 = 0) ∧ (p7 = 1).
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In these markings, there are three transitions enabled: t2, t3 and t5. When t2 is fired,
the following markings are reached:

(p1 = 0) ∧ (p2 = 1) ∧ (p3 = 1) ∧ (p4 = k + 1) ∧ (p5 = 0) ∧ (p6 = 0) ∧ (p7 = 1).

These new markings can be combined with the initial markings using union and widen-
ing, producing the invariant:

(p1 + p4 = k + 1) ∧ (p2 + k = p4) ∧ (p3 + k = p4) ∧ (p5 = 0) ∧
(p6 = 0) ∧ (p7 = 1) ∧ (p4 ≥ k) ∧ (p4 ≤ k + 1).

The algorithm does the same computation for the enabled transitions t3 and t5. After
this step, new transitions become enabled, which once they are fired, increase again the
set of reachable markings. The procedure is repeated until the set of markings does not
change. When the fixpoint is found in this example, the set of reachable markings is
defined by:

(p1 + p2 = 1) ∧ (p6 + p7 = 1) ∧ (p2 ≤ p3) ∧ (p5 ≥ p6) ∧ (p3 + k ≥ p4 + p5).

The most interesting invariant in this result is (p3 + k ≥ p4 + p5). This property is
stating that any element that is consumed (p5) or remains in the channel (p4) was ei-
ther produced (p3) or initially available (k). Note that this invariant implies the one
presented previously, (p5 ≤ p3 + k).

The following sections will present in detail two abstract domains that are suitable
for the discovery of Petri Net invariants. Convex polyhedra and polynomial equalities
can both represent a large class of interesting invariants. On one hand, convex polyhedra
describe the set of reachable markings as a system of linear inequalities, so properties
like (p = 1) or (p1 ≤ p2) are easy to represent. The weakness of convex polyhedra
is the loss of precision in the union, e.g. (p1 = 3) ∪ (p2 = 3) can only be approxi-
mated as (p1 + p2 ≥ 3). On the other hand, polynomial equalities are very precise in
terms of describing disjunctions, e.g. (p1 = 3) ∪ (p2 = 3) can be represented exactly
as ((p1 − 3) · (p2 − 3) = 0). However, the description of inequality properties is more
difficult: it is only possible when an upper bound is known, e.g. (p1 ≤ 2) can be rep-
resented exactly as (p1 · (p1 − 1) · (p1 − 2) = 0); but for instance, that is not possible
with (p1 ≤ p2).

3 Linear Inequality Invariants

3.1 Convex Polyhedra

Convex polyhedra can be described as the set of solutions of a conjunction of linear in-
equality constraints with rational (Q) coefficients. Let P be a polyhedron over Qn, then
it can be represented as the solution to the system of m inequalities P = {X|AX ≥ B}
where A ∈ Qm×n and B ∈ Qm. The set of variables X contains the counters of
the number of tokens in each place and the parameters of the initial marking. Convex
polyhedra can also be characterized in a polar representation by means of a system
of generators, i.e. as a linear combination of a set of vertices V (points) and a set
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P

System of generators

P ={λ1 · (3, 3) + λ2 · (3, 2) + μ1 · (1, 1) + μ2 · (1, 0)|
λ1 ≥ 0, λ2 ≥ 0, μ1 ≥ 0, μ2 ≥ 0, λ1 + λ2 = 1}

System of constraints

P = {(x, y) | (y ≥ 2) ∧ (x ≥ 3) ∧ (x − y ≥ 0)}

Fig. 6. An example of a convex polyhedron (shaded area) and its double description

of rays R (vectors). Formally, the convex polyhedron P can also be represented as
P = {∑vi∈V λi · vi +

∑
rj∈R μj · rj | λi ≥ 0, μj ≥ 0,

∑
i λi = 1}. Figure 6 shows an

example of a convex polyhedron and its double description.
The fact that there are two representations is important, because several of the oper-

ations for convex polyhedra are computed very efficiently when the proper representa-
tion is available. There are efficient algorithms [3, 10] that translate one representation
into the other. Also, the dual representations can be used to keep a minimal description,
removing redundant constraints and generators.

In the remaining of the paper, we will denote the number of tokens in a place
pi as xi.

3.2 Abstract Semantics

The abstract domain of convex polyhedra provides all the operations required in ab-
stract interpretation. This section will describe the implementation of the operations
used in our problem: guards, assignments, test for inclusion (⊆), union (∪) and widen-
ing (∇).

Initial Marking. The initial marking defines the number of tokens in each place, and
therefore, the value of all token counter variables. Therefore, the convex polyhedron
that represents the initial marking has the following system of constraints:∧i(xi = mi),
where mi is the initial number of tokens in place i.

Guards. There are two kinds of guards that arise in our analysis: guards testing the
presence of tokens in the input nodes, of the form (x1 ≥ 1); and guards describing
inhibitor arcs, of the form (x2 = 0). In any case, these guards are linear inequalities, so
the resulting convex polyhedron only adds these guards to its system of constraints.

Assignments. The assignments that appear in our analysis increase or decrease counter
variables by a constant value, e.g. (xi := xi ± c). These assignments can be applied to
a convex polyhedron by changing its system of generators: each vertex is modified by
increasing variable xi by the constant c.

Test for Inclusion. In order to decide whether a fixpoint has been reached, the con-
vex polyhedra approximating the reachability set must be compared with the one com-
puted in the previous iteration. This comparison is made using the test for inclusion
(P ⊆ Q), which requires both representations of polyhedra. A convex polyhedron P ,
whose system of generators is the set V of vertices and the set R of rays, is included in a
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polyhedron Q, whose system of constraints is AX ≥ B, if and only if ∀v ∈ V, Av ≥ B
and ∀r ∈ R, Ar ≥ 0.

Union. The new markings discovered when a transition is fired must be added to the
previously known set of markings using the union operator. In the convex polyhe-
dra domain, the union of convex polyhedra is not necessarily a convex polyhedron.
Therefore, the union of two convex polyhedra is approximated by the convex hull,
the smallest convex polyhedron that includes both operands. The system of genera-
tors of the convex hull can be computed by joining the systems of generators of the
operands.

Widening. The extrapolation operator on convex polyhedra works on the system of
constraints. The widening P∇Q can be simply defined as the inequalities from P that
are also satisfied by Q. More complex definitions of widening may provide a better
precision in the analysis [1, 15].

The firing of a transition can be modeled as a sequence of these operations. First,
testing if the transition is enabled can be performed by guard operations that check the
number of tokens in the input places, e.g. (x1 ≥ 1)? or (x2 = 0)? for inhibitor arcs.
Then, the changes in the number of tokens in a place are modeled as linear assignments,
e.g. (x1 := x1 +1). The new reachable markings will be added to the current reachable
set using the union and widening operator, as it was described in Section 2.2. Figure 8
shows an example of this computation.

Figure 7 shows several examples of the operations described in this section. Notice
that the intersection and linear assignment are exact, while the union and the widening
operations are approximate.
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(a) P Q

P Q P P[ x:= x + 3 ]

P

Q

P Q

P

P

Q

Q

Fig. 7. Example of the operations on convex polyhedra: (a) intersection, (b) union, (c) widening
and (d) linear assignment
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(x1 = 1) ∧ (x2 = 0) � (x1 + x2 = 1) ∧ (0 ≤ x1 ≤ 1) ∧ (0 ≤ x2 ≤ 1)

(a)

(x1 = 1) ∧ (x2 = 0) � (x1 + x2 = 1) ∧ (x2(x2 − 1) = 0)

(b)

Fig. 8. Computation of the invariants when a transition is fired, in the case of (a) linear inequalities
and (b) polynomial equalities

4 Polynomial Equality Invariants

4.1 Ideals of Polynomials

In the abstract domain of convex polyhedra (Section 3), we have represented states
as solutions of a system of linear inequalities; now, in the domain of ideals of
polynomials, we will consider states as solutions of a system of polynomial equal-
ities.

Namely, we abstract as follows: given a set of states S, regarded as points in Qn,
the corresponding abstraction is a set of polynomials P with rational coefficients such
that P (σ) = 0 ∀σ ∈ S, i.e. all points in S are zeroes of P . This set of polynomials has
the algebraic structure of an ideal: by definition, an ideal I is a set of polynomials such
that it a) contains 0, b) is closed under addition, and c) for any polynomial P , if Q ∈ I
then P ·Q ∈ I . Thus, we take ideals as our abstract values: an ideal I is an abstraction
of the common zeroes of its polynomials, {σ ∈ Qn| P (σ) = 0 ∀P ∈ I}, which we call
the variety of I and denote by V(I).

The set of polynomials with rational coefficients is denoted as Q[X]. Given a subset
S ⊆ Q[X], the ideal generated by S is

〈S〉 = {f ∈ Q[X] | ∃k ≥ 1 f =
k∑

j=1

PjQj with Pj ∈ Q[X], Qj ∈ S}.

For an ideal I , a set of polynomials S such that I = 〈S〉 is called a basis of I .
By Hilbert’s basis theorem, all ideals of polynomials admit a finite basis. Therefore
any ideal is associated to a finite system of polynomial equality constraints: the ideal
I = 〈P1(X), ..., Pk(X)〉 corresponds to the system {P1(X) = 0, ..., Pk(X) = 0}, or
equivalently to the formula

∧k
j=1 Pj(X) = 0.

For example, the ideal 〈x(x2 + y2 − 16), y(x2 + y2 − 16)〉 is associated to the sys-
tem {x(x2 +y2−16) = 0 , y(x2 +y2−16) = 0}. Its solutions, which form the variety
V(〈x(x2 + y2 − 16) , y(x2 + y2 − 16)〉), are the union of a circle and a point, pic-
tured in Figure 9. Notice that this set, unlike convex polyhedra, is not convex or even
connected.
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= 16+y 2x 2

Fig. 9. An example of variety of an ideal

4.2 Abstract Semantics

This section shows the operations required to perform the abstract interpretation of Petri
Nets using ideals of polynomials. For a more detailed description, see [22].2

Initial Marking. If we are given an initial marking (m1, m2, ..., mn) for the Petri Net
(where each mi may be a constant or a parameter), at first we know that (xi = mi) for
every place of the net, and so we take the ideal

〈x1 −m1, x2 −m2, ..., xn −mn〉
as initial ideal.

Guards: Inhibitor Arcs. A guard describing an inhibitor arc, i.e. checking that there
are no tokens in the inhibitor place pi, is of the form (xi = 0). Similarly as we did with
convex polyhedra, we have to add the guard to the system of constraints. In this case,
we just need to add the polynomial xi to the list of generators of the input ideal.

Guards: Presence of Tokens. Testing the presence of tokens is conservatively trans-
lated into polynomial disequality guards: checking that there are at least C tokens at
place pi is expressed as (xi �= 0 ∧ · · · ∧ xi �= C − 1). Given an input ideal I , for each
of these disequalities (xi �= c) we want to represent the points that belong to V(I) but
not to V(〈xi − c〉), in other words V(I)\V(〈xi − c〉). The polynomials in the quotient
ideal I : 〈xi − c〉 [12] evaluate to 0 at this difference of sets, and therefore abstract the
states we are interested in; so we take this quotient as output ideal.

Assignments. The assignments that appear in our analysis are of the form xi := xi±c,
as they express the change in the number of tokens at place pi after firing a transition.
Given an ideal I = 〈P1, ..., Pk〉, we want to compute the effect of applying the assign-
ment xi := xi + c on I (in case of a subtraction, we may take c as a negative value). In
terms of formulas, we need to express the following assertion using ideals:

∃x′
i(xi = x′

i + c ∧ (
k∧

j=1

Pj(xi ← x′
i) = 0)) ,

2 The abstract domain of ideals of polynomials and its semantics have been simplified in this
paper with respect to [22] for the sake of clearness and efficiency.
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where x′
i stands for the value of the assigned variable previous to the assignment, and

← denotes substitution of variables. In this case, the auxiliary variable x′
i can be easily

eliminated by substitution, as x′
i = xi − c. So we get the formula ∧k

j=1 Pj(xi ←
xi − c) = 0, which translated into ideals yields I(xi ← xi − c).

Test for Inclusion. In order to check whether a fixpoint has been reached, we need
to test if the newly computed reachable states, represented by the ideal I , are already
included in our previous approximation given by Iprev . So we need to see if V(I) ⊆
V(Iprev), which can be done by duality by checking that I ⊇ Iprev .

Union. Unlike with convex polyhedra, we can perform exact unions of states in the
domain of ideals of polynomials. Let I, J be ideals corresponding to the sets of states
V(I) and V(J) respectively, and assume that we want to represent V(I) ∪V(J). In
this case the abstraction is given by the intersection ideal I ∩ J , which satisfies that
V(I ∩ J) = V(I) ∪V(J).

Widening. In order to get termination if the initial marking has parameters or the Petri
Net is not bounded, we need to introduce a widening operator. Similarly as we did with
convex polyhedra, given the ideals I and J we have to perform an upper approximation
of V(I) ∪V(J). By duality, we have to compute a lower approximation of I ∩ J ; i.e.,
we need to sieve the polynomials in the intersection so that the result is still sound and
also the analysis terminates in a finite number of steps without much loss of precision.

Given a degree bound d ∈ N and a graded term ordering $, our widening operator
I∇dJ is defined as the ideal generated by the polynomials of a Gröbner basis of I ∩ J
(with respect to $) of degree at most d; more formally,

I∇dJ = 〈{P ∈ GB(I ∩ J,$) | degree(P ) ≤ d}〉,
where GB(·,$) stands for a Gröbner basis of an ideal with respect to the term ordering
$. For definitions of Gröbner basis, graded term ordering and related concepts, we refer
the reader to [12].

Figure 10 shows several examples of the operations described in this section. Con-
trary to convex polyhedra, the union operator is exact. Widening can be seen as a
parametrized union, where any polynomial in the basis with a degree higher than the
bound is abstracted. Varying this bound achieves different levels of precision in the re-
sult. For instance, Figures 10(b) and (c) show two widenings with degree bounds 2 and
3 respectively; notice that the latter represents exactly the union of states.

5 Examples

The techniques presented in the previous sections have been implemented and applied
to several Petri Net examples from the literature. The linear inequality analysis has been
implemented as a C program using the New Polka convex polyhedra library [21]. On
the other hand, the polynomial equality analysis is performed by means of the algebraic
geometry tool Macaulay 2 [14]. When it is not computationally feasible to work with
polynomials over the rationals, we heuristically employ coefficients in a finite field in-
stead. As the invariants obtained in the finite field might not necessarily be invariants in
Q, the polynomials thus generated are finally checked to be truly invariants of the system.
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Fig. 10. Example of the operations on ideals of polynomials: (a) intersection, (b) widening with
degree bound 2, (c) widening with degree bound 3 (union) and (d) linear assignment

5.1 Comparison with Structural Invariants

Structural invariants [20] are properties of the Petri Net structure, so they are indepen-
dent of the initial marking. For instance, a Petri net may be bounded for a given initial
marking, i.e. the number of tokens in each place is bounded in all reachable markings.
Moreover, a net may be bounded for any initial marking, i.e. structurally bounded. Any
structurally bounded net is also bounded, but the reverse does not necessarily hold.
The approaches presented in this paper can be used to detect structural properties of
a Petri Net: a parameter defines the initial marking of each place, hence the invariants
obtained describe properties that are independent on the initial marking. For example,
Figure 11(a) shows a Petri Net whose initial marking is defined by the parameters p, q
and r: x1 = p, x2 = q, x3 = r. In this Petri Net, the linear inequality invariants that
can be computed with our approach appear in Figure 11(b). Notice that these invariants
are structural as they are satisfied by any initial marking; for instance, (r + p ≥ x3)
meansthat place x3 is structurally bounded. Invariant polynomial equalities can be sim-
ilarly obtained using the same concept.

If a net is bounded, the analysis with polynomial invariants discovers the exact state
space, for a sufficiently large degree. Thus, if a net is bounded but not structurally
bounded, the analysis with polynomial invariants obtains a description of the state space
which is more precise than structural invariants.

Regarding the analysis with convex polyhedra, or Petri nets with an infinite state space,
using a widening adds some approximation. This approximation may make us fail to dis-
cover some structural invariants. In practice, in all the examples that we have studied, the
state space computed by abstract interpretation satisfies all the structural invariants.

Furthermore, invariants describing properties which depend on the initial marking
can also be computed with our approach. For example, Figure 12 shows a Petri Net
where a place p is bounded for the initial marking depicted in the figure, while it is not
structurally bounded. Abstract interpretation analysis discovers this property, encoded
as the linear inequalities (0 ≤ p ≤ 1) or the polynomial equality p · (p− 1) = 0.

Another example of a non-structural property discovered by these invariants appears
in Figure 13. This Petri Net can have a deadlock depending on the initial marking. For
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Fig. 11. (a) Petri Net with a parametric initial marking and (b) the computed linear inequality
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Fig. 12. Petri Net with a bounded place p which is not structurally bounded

instance, for the initial marking p1p8 there is no deadlock, while for the initial marking
p1 the deadlocks p3p8 and p5p8 are reachable. The invariants produced by both linear
inequalities and polynomial equalities are sufficient to prove the absence of deadlocks
for the former initial marking, as the conjunction of these invariants with the disabling
conditions of all the transitions is unfeasible.

5.2 Automated Manufacturing System

Figure 14 shows a Petri Net model of an automated manufacturing system [25]. This
manufacturing system consists of several elements: four machines (M1 − M4), two
robots (R1 − R2), two buffers with capacity 3 (B1 − B2) and an assembly cell. The
place x1 models the entry point for raw material, while the place x10 (x15) represents
the availability of the buffer B1 (B2). The place x12 (x13) models the availability of the
robot R1 (R2), whereas the place x25 represents the delivery point for the final product.
Finally, the places x4, x7, x16 and x19 model the availability of the machines M1 to M4.

The initial marking of this Petri Net is as follows. The entry point x1 has an unde-
termined number of tokens p, as we want to study the behavior of the system depending
on the quantity of available raw materials. The capacities of the buffers, x10 and x15,
have 3 tokens as the buffers have size 3. Finally, places x2, x4, x7, x12, x13, x16, x19

and x24 have one token, and the rest of places have no tokens in the initial marking.



202 R. Clarisó, E. Rodrı́guez-Carbonell, and J. Cortadella

p
9

p
2

p
3

p
4

p
5

p
6

p
1

p
7

p
8

(a)

p
9

p
2

p
3

p
4

p
5

p
6

p
1

p
7

p
8

(b)

Fig. 13. Petri Net with a non-structural deadlock: (a) no deadlock, (b) potential deadlock
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Fig. 14. Petri Net model of an automated manufacturing system

Some relevant properties in this system are boundedness and liveness, i.e. deadlock
freedom. In previous work, these properties have been studied in detail. In [25], it was
proven that the system is bounded, and that it is live only for some values of p, namely
2 ≤ p ≤ 4. A different approach based on integer programming [4] managed to prove
liveness for a wider interval of values, 1 ≤ p ≤ 8. Also, a sequence of firings leading
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to a deadlock when p > 8 was shown. Later work has revisited these results using other
techniques such as Presburger arithmetics [13], real arithmetics [2] and inductive linear
inequalities based on Farkas’ lemma [23].

We have analyzed the manufacturing system using both linear inequality invariants
and polynomial equality invariants. Using linear inequalities, the computation takes 2.2
seconds and 68 Mb of memory. The resulting invariants are the following (we show the
equalities and the inequalities separatedly):

x18 + x19 = 1 x2 + x3 = 1
x8 + x12 + x20 = 1 x4 + x5 = 1
x22 + x23 + x24 + x25 = 1 x6 + x7 = 1
x9 + x13 + x21 + x23 + x25 = 1 x10 + x11 = 3
x19 + x17 + x15 + x13 + x11 + x7 + x5 + x2 − x24 − x12 = 5 x14 + x15 = 3
x19 + x17 + x15 + x13 + x11 + x7 + x5 − x24 − x12 − x3 = 4 x16 + x17 = 1
x19 + x15 + x13 + x12 + x7 + p − x17 − x11 − x5 − x1 = 7

x25 + x24 + x23 ≤ 1 x7 ≤ 1
x25 + x23 + x21 + x13 ≤ 1 x15 ≤ 3
x19 + x15 + x13 + x7 − x24 − x1 ≤ 5 x19 ≤ 1
x19 + x17 + x15 + x13 + x11 + x7 + x5 − x24 − x12 ≥ 4 x20 + x12 ≤ 1

This set of constraints suffices to prove that the manufacturing system is bounded.
On the other hand, we have applied our analysis with ideals so as to discover poly-

nomial equality invariants of degree at most 2. In order to speed up the computation,
we have employed a finite field Zp instead of Q, with p a relatively big prime number
(in particular, we have taken p = 32749, the largest prime allowed in Macaulay 2); the
generation of the candidate invariants takes 16 minutes and 304 Mb of memory. After
checking that the polynomials obtained are invariant, which requires 6 minutes and 490
Mb, we get (we separate the linear invariants from the quadratic ones):

x8 + x12 + x20 = 1 x2 + x3 = 1
x9 + x13 + x21 + x23 + x25 = 1 x4 + x5 = 1
x24 + 2x16 + 2x12 + 2x10 + 2x4 − x2 − x1 + p = 12 x6 + x7 = 1
x16 − x18 − x14 + x13 + x12 + x10 − x6 + x4 − x1 + p = 7 x10 + x11 = 3
x19 + x16 − x14 + x13 + x12 + x10 − x6 + x4 − x1 + p = 8 x14 + x15 = 3
x21 − x22 + 2x16 + x13 + 2x12 + 2x10 + x9 + 2x4 − x2 − x1 + p = 12 x16 + x17 = 1

x2
2 = x2 x8x12 = 0

x2
4 = x4 x9x13 = 0

x2
6 = x6 x13x21 = 0

x2
8 = x8 x9x21 = 0

x2
9 = x9 x9x23 = 0

x2
12 = x12 x21x23 = 0

x2
13 = x13 x13x23 = 0

x2
16 = x16 x2

23 = x23

x2
21 = x21

and four other more complex polynomial constraints.
Unlike with linear inequalities, these invariants are not enough to prove that all

places in the net are bounded; the reason is that polynomial equalities cannot express
relations such as x1 ≤ p, where the bounds are parametric. However, some of the
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places can be shown to be bounded: for instance, x2 = x2
2 means that either x2 = 0

or x2 = 1. Notice that each family of constraints uses a different approach to represent
boundedness: linear inequalities give an upper bound on the number of tokens (for
example, the linear invariant x20 + x12 ≤ 1 implies x12 ≤ 1), whereas polynomial
equalities encode an exact disjunction of the possible values.

Further, by means of these quadratic constraints, together with the implicit invari-
ant that all variables are non-negative, it is also possible to prove that the system is
deadlock-free for 1 ≤ p ≤ 8; in order to do that, we show that the conjunction of the
invariants and the disabling conditions of all the transitions is not satisfiable. Moreover,
as in [23], for p = 9 we are able to isolate four potential deadlocks, one of which is the
deadlock corresponding to the sequence of firings in [4] mentioned above.

5.3 Alternating Bit Protocol

The Petri Net in Figure 15 models the alternating bit protocol for retransmitting lost or
corrupted messages. The correctness of the protocol has already been shown in previous
work: while in [11] all the proofs were done by hand, in [13] Fribourg and Olsén em-
ployed Presburguer arithmetics to automatically characterize the reachable states and
thus prove that the system behaves properly.

The initial marking is x1 = 1, x13 = 1 and xi = 0 for 1 ≤ i ≤ 16, i �= 1, 13.
Notice that the net has eight inhibitor arcs, linked to the places xj , j = 5..12, which
can be proved to be unbounded; these inhibitor arcs are pictured as circle-headed arrows
on the figure. Thus, this example cannot be handled by other techniques for generating
invariants that do not deal with equality guards, such as [18].

For this Petri Net, by means of convex polyhedra the following linear constraints:

x4 + x3 + x2 + x1 = 1 x16 + x15 + x14 + x13 = 1

x 15

x 13

x 5
x9

x 10

x 12

x 11

x 3

x 14x 2

x 7

1x

x 8

x 6

x 16x 4

Fig. 15. Petri Net model of the alternating bit protocol
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are obtained as invariants in 1.1 seconds using 65 Mb of memory. In this case, these lin-
ear invariants are not enough to show correctness, due to the fact that convex polyhedra
cannot represent disjunctions in general.

As regards the analysis with polynomials, in 74.7 seconds and using 21 Mb of mem-
ory we get the following linear and quadratic constraints:

x4 + x3 + x2 + x1 = 1 x16 + x15 + x14 + x13 = 1

x1x2 = 0 x2x3 = 0 x2
1 = x1

x1x3 = 0 x1x6 = 0 x2
2 = x2

x2x8 = 0 x3x8 = 0 x2
3 = x3

x5x7 = 0 x6x8 = 0 x2
13 = x13

x9x11 = 0 x10x12 = 0 x2
14 = x14

x9x15 = 0 x11x13 = 0 x2
15 = x15

x11x14 = 0 x13x14 = 0 x6x3 + x6x2 = x6

x13x15 = 0 x14x15 = 0 x14x9 + x13x9 = x9

Note that, out of the 26 computed constraints, just the first two are linear and coin-
cide with the linear equalities obtained above using convex polyhedra; the rest of the
polynomial constraints are implicitly defining disjunctions. This explains why the linear
inequality analysis does not yield enough information to verify the system.

Unfortunately, the quadratic invariants do not suffice to prove the correctness of the
Petri Net either. This leads us to generate cubic invariant polynomials, i.e. of degree 3;
the computation takes 102.9 seconds and 34 Mb of memory and gives

x2x7x9 = 0 x7x9x10 = 0 x2x12x13 = x2x12

x2x7x12 = 0 x7x10x13 = 0 x5x8x13 = x5x8

x2x7x13 = 0 x8x9x10 = 0 x5x12x13 = x5x12

x2x11x12 = 0 x2x5x6 = x5x6 x6x12x13 = x6x12

x5x8x10 = 0 x2x5x10 = x5x10 x7x9x13 = x7x9

x5x8x11 = 0 x2x5x11 = x5x11 x7x9x13 = x7x9

x5x11x12 = 0 x2x6x9 = x6x9 x8x9x13 = x8x9

x6x7x9 = 0 x2x6x12 = x6x12 x9x12x13 = x9x12

x6x7x12 = 0 x2x6x13 = x6x13 x2x5x13 + x5 = x5x13 + x2x5

x6x7x13 = 0 x2x9x10 = x9x10 x2x9x13 + x9 = x9x13 + x2x9

x6x11x12 = 0 x2x10x13 = x10x13

in addition to the quadratic constraints above. Unlike with the quadratic case, the cubic
invariants allow us to prove that⎧⎪⎪⎨⎪⎪⎩

x1 = 1 =⇒ (x2 = x3 = x4 = x6 = x7 =x10 = x11 =x14 = x15 =x16 = 0) ∧ (x13 = 1)
x3 = 1 =⇒ (x1 = x2 = x4 = x5 = x8 = x9 = x12 = x13 =x14 =x16 = 0) ∧ (x15 = 1)

x14 = 1 =⇒ (x1 = x3 = x4 = x7 = x8 = x11 =x12 =x13 = x15 =x16 = 0) ∧ (x2 = 1)
x16 = 1 =⇒ (x1 = x2 = x3 = x5 = x6 = x9 = x10 =x13 =x14 =x15 = 0) ∧ (x4 = 1)

which implies that the system is correct (see [11]).

6 Conclusions

The applicability of abstract interpretation can be extended to the analysis of Petri Nets.
This paper has presented an approach that can generate a rich set of invariants using
this paradigm.
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Abstract interpretation is a general approach that accepts different algorithmic tech-
niques to calculate approximations. We believe that different strategies can be studied to
explore the trade-off between efficiency and accuracy in analyzing concurrent systems.
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17. A. Miné. The octagon abstract domain. In Analysis, Slicing and Tranformation (in Working
Conference on Reverse Engineering), IEEE, pages 310–319. IEEE CS Press, Oct. 2001.

18. M. Müller-Olm and H. Seidl. Computing Polynomial Program Invariants. Information Pro-
cessing Letters (IPL), 91(5):233–244, 2004.

19. T. Murata. State equation, controllability, and maximal matchings of petri nets. IEEE Trans.
Autom. Contr., 22(3):412–416, June 1977.

20. T. Murata. Petri nets: Properties, analysis and applications. Proc. of the IEEE, 77(4), 1989.
21. New Polka: Convex Polyhedra Library. http://www.irisa.fr/prive/bjeannet/newpolka.html.
22. E. Rodrı́guez-Carbonell and D. Kapur. An Abstract Interpretation Approach for Automatic

Generation of Polynomial Invariants. In Int. Symp. on Static Analysis (SAS 2004), volume
3148 of Lecture Notes in Computer Science, pages 280–295. Springer-Verlag, 2004.

23. S. Sankaranarayanan, H. Sipma, and Z. Manna. Petri net analysis using invariant generation.
In Verification: Theory and Practice, pages 682–701. Springer-Verlag, 2003.

24. M. Silva, E. Teruel, and J. M. Colom. Linear algebraic and linear programming techniques
for the analysis of place/transition net systems. Lecture Notes in Computer Science: Lectures
on Petri Nets I: Basic Models, 1491:309–373, 1998.

25. M. Zhou, F. DiCesare, and A. Desrochers. A hybrid methodology for synthesis of Petri
net models for manufacturing systems. IEEE Transactions on Robotics and Automation,
8(3):350–361, June 1992.



Modeling Multi-valued Genetic Regulatory
Networks Using High-Level Petri Nets

Jean-Paul Comet, Hanna Klaudel, and Stéphane Liauzu
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Abstract. Regulatory networks are at the core of all biological functions
from bio-chemical pathways to gene regulation and cell communication
processes. Because of the complexity of the interweaving retroactions,
the overall behavior is difficult to grasp and the development of formal
methods is needed in order to confront the supposed properties of the
biological system to the model. We revisit here the tremendous work of
R. Thomas and show that its binary and also its multi-valued approach
can be expressed in a unified way with high-level Petri nets.

A compact modeling of genetic networks is proposed in which the
tokens represent gene’s expression levels and their dynamical behavior
depends on a certain number of biological parameters. This allows us
to take advantage of techniques and tools in the field of high-level Petri
nets. A developed prototype allows a biologist to verify systematically
the coherence of the system under various hypotheses. These hypothe-
ses are translated into temporal logic formulae and the model-checking
techniques are used to retain only the models whose behavior is coherent
with the biological knowledge.

1 Introduction

To elucidate the principles that govern biological complexity, computer mod-
eling has to overcome ad hoc explanations in order to make emerge novel and
abstract concepts[1]. Computational system biology [2] tries to establish meth-
ods and techniques that enable us to understand biological systems as systems,
including their robustness, design and manipulation[3, 4]. It means to under-
stand: the structure of the system, such as gene/metabolic/signal transduction
networks, the dynamics of such systems, methods to control, design and modify
systems in order to cope with desired properties[5].

Biological regulatory networks place the discussion at a biological level in-
stead of a biochemical one, that allows one to study behaviors more abstractly.
They model interactions between biological entities, often macromolecules or
genes. They are statically represented by oriented graphs, where vertices abstract
the biological entities and arcs their interactions. Moreover, at a given stage, each
vertex has a numerical value to describe the level of concentration of the corre-

G. Ciardo and P. Darondeau (Eds.): ICATPN 2005, LNCS 3536, pp. 208–227, 2005.
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sponding entity. The dynamics correspond to the evolutions of these concentra-
tion levels and can be represented, for instance, by differential equation systems.

R. Thomas introduced in the 70’s a boolean approach for regulatory networks
to capture the qualitative nature of the dynamics. He proved its usefulness in
the context of immunity in bacteriophages[6, 7]. Later on, he generalized it to
multi-valued levels of concentration, so called “generalized logical” approach.
Moreover, the vertices of R. Thomas’ regulatory networks are abstracted into
“variables” allowing the cohabitation of heterogeneous information (e.g., adding
environmental variables to genetic ones).

The R. Thomas boolean approach has been justified as a discretization of
the continuous differential equation system[8], then has been confronted to the
more classical analysis in terms of differential equations[9]. Taking into account
“singular states”, Thomas and Snoussi showed that all steady states can be found
via the discrete approach[10]. More recently Thomas and Kaufman have shown
that the discrete description provides a qualitative fit of the differential equations
with a small number of possible combinations of values for the parameters[11].

A direct or indirect influence of a gene on itself corresponds to a closed
oriented path which constitutes a feedback circuit. Feedback circuits are funda-
mental because they decide the existence of steady states of the dynamics: it
has been stated and proved [12, 13, 14, 15] that at least one positive regulatory
circuit is necessary to generate multistationarity whereas at least one negative
circuit is necessary to obtain a homeostasis or a stable oscillatory behavior[16].

These static properties (number of stationary states) can be reinforced by
introducing some properties on the dynamics of the system extracted from the
biological knowledge or hypotheses. It becomes necessary to construct models
which are coherent not only with the previous static conditions but also with the
dynamical ones. Formal methods from computer science should be able to help
modeler to automatically perform this verification. In [17, 18] the machinery of
formal methods is used to revisit R. Thomas’ regulatory networks: all possible
state graphs are generated and model checkers help to select those which satisfy
the temporal properties. All this approach is based on the semantics of the reg-
ulatory graph, i.e., its dynamics, which has to be computed before. The state
explosion phenomenon in the transition graph limits the readability of these
modelings and the possible extensions like, for instance, the introduction of de-
lays for transitions. These observations motivated our interest for applying in
this context the Petri net theory.

In this article we present a modeling of the R. Thomas’ regulatory networks
in terms of high-level Petri nets. To ensure the appropriateness between both
formalisms, we first present formally the biological regulatory graphs which de-
scribe the interactions between biological entities, the parameters which pilot
the behaviors of the system and the associated dynamics (section 2). Then, after
a brief introduction to the high-level Petri nets, a modeling of regulatory graphs
is introduced in section 3. In section 4 we show how model-checking can be used
to determine which models have to be considered. Sections 5 and 6 illustrate
our approach with the LTL model-checker Maria, and describe our prototype
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for computer aided modeling in the context of genetic regulatory networks. The
last section 7 discusses the results and the possible extensions.

2 Genetic Regulatory Graphs and Associated Semantics

In this section we formally define the biological regulatory networks. We first
introduce the biological regulatory graph which represents interactions between
biological entities. A vertex represents a variable (which can abstract a gene or
its protein for instance). The interactions between genes are represented by arcs
and each arc is labelled with the sign of the interaction: “−” for an inhibition
and “+” for an activation.

The interactions have almost always a sigmoid nature (see Fig. 1): for each
positive interaction of i on j, if variable i has a concentration below a certain
threshold (defined by the inflection point of the sigmoid), then the variable j
is not influenced by i, and for any concentration of i above this threshold, j is
activated by i (and symmetrically for negative interactions). Figure 1 assumes
that the variable i acts positively on j and negatively on j′; each curve represents
the concentration of the target after a sufficient delay for the regulator i to act on
it. Three regions are relevant: the first one corresponds to the situation where i
does neither activate j nor inhibit j′, the second to the situation where i activates
j and does not inhibit j′, and the last one corresponds to the situation where i
activates j and inhibits j′. This justifies the discretization of the concentration
of i into three abstract levels (0, 1 and 2) corresponding to the previous regions
and constituting the only relevant information from a qualitative point of view.

j′

j

i

i

i

210

Fig. 1. The discretization is supervised by the thresholds of actions on targets

For a variable which has τ targets (itself possibly included), τ + 1 abstract
levels have to be considered if all thresholds are distinct, but possibly less in the
case where two or more thresholds are equal.

Definition 1. A biological regulatory graph is a labelled directed graph G =
(V, E) where each vertex i of V, called a variable, is provided with a boundary
βi ∈ IN less or equal to the out-degree (the number of out-going arcs) of i, except
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21(2,+)

(1,+)

(1,−)

Fig. 2. Regulatory graph for mucus production in pseudomonas aeruginosa

if the out-degree is 0 in which case βi = 1. Each edge (i −→ j) is labelled with
a pair (tij , εij) where tij, called the threshold of the interaction, is a natural
number between 1 and βi and εij ∈ {−, +} is its sign.

The threshold tij of a positive interaction (i −→ j) determines the conditions
which allow the variable i to stimulate j: if variable i has an abstract level below
tij , the interaction is not active and j is not stimulated, otherwise, it is. For
negative interactions, the conditions are symmetrical.

At a given stage, each variable of a regulatory graph has a unique abstract
concentration level. So, the state of the system may be represented as a vector
of concentration levels ni of each variable i.

Definition 2. A state of a biological graph is a tuple n = (n1, n2, ..., np), where
p is the number of variables and ni is the abstract concentration level of the
variable i with ni ∈ IN and ni ≤ βi.

Running example: We take as running example the mucus production in Pseu-
domonas aeruginosa. These bacteria are commonly present in the environment
and secrete mucus only in lungs affected by cystic fibrosis. As this mucus in-
creases the respiratory deficiency of the patient, it is the major cause of mor-
tality. The regulatory network which controls the mucus production has been
elucidated [19]. The main regulator for the mucus production, AlgU, supervises
an operon which is made of 4 genes among which one codes for a protein that
is an inhibitor of AlgU. Moreover AlgU favors its own synthesis. The regulatory
network can then be simplified into the regulatory graph of Fig. 2, where variable
1 represents AlgU, and variable 2 its inhibitor. The order of thresholds t12 and
t11 is not deductible from biological knowledge and in fact both orderings have
to be considered 1. Figure 2 assumes that t12 < t11. Variable 1 can take three
different abstract concentration levels: 0,1 or 2. Similarly, variable 2 which is an
inhibitor of variable 1, can take two levels: 0 and 1. Consequently, there are 6
possible states (0, 0), (0, 1), (1, 0), (1, 1), (2, 0) and (2, 1).

Up to now, the discretization of continuous concentrations into the abstract
levels allows us to define when a regulator has an influence on its targets, but
we need to determine towards which abstract levels the targets are attracted.

1 Two regulatory graphs should be considered; for simplicity we explain the concepts
on one of them.
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To answer this question, one has to know for each state n which regulators
are actually effective on the considered target i, in other words, which are the
“resources” of i in the state n.

Definition 3. Given a biological regulatory graph G = (V, E) and a possible
abstract state n = (n1, n2, ..., np), the set of resources of a variable i is the set

Ri(n) ={
j ∈ V | (j

(tji,εji)−→ i) ∈ E, (((nj ≥ tji) ∧ (εji = +)) ∨ ((nj < tji) ∧ (εji = −)))
}

.

Ri(n) contains the activators of i whose abstract level is above the threshold
and the inhibitors of i whose abstract level is below the threshold. A resource is
either the presence of an activator or the absence of an inhibitor.

It remains to define towards which abstract level a variable i is attracted
when its resources are ω. We call this level the attractor of i for resources ω and
denote it by ki,ω.

Having the values of attractors, it is straightforward to define the synchronous
state graph of the biological network. For a state n = (n1, n2, ..., np) where p is
the number of variables, we take for each variable i, the attractor ki,Ri(n), where
Ri(n) is the set of resources of variable i when the system is in the state n.
The synchronous state graph is obtained by setting for the unique possible next
state n′ = (k1,R1(n), k2,R2(n), ...kp,Rp(n)), the state towards which the system is
attracted. However, this definition has at least two drawbacks:

– first, it allows two or more variables to change simultaneously, while the
probability that several variables pass through their respective thresholds at
the same time is negligible in vivo. But we do not know which one will pass
through its threshold first;

– and second, it does not prevent that a variable passes directly two or more
thresholds, which is not realistic because an abstract concentration level
should evolve gradually.

Then, an improved semantics is defined in terms of an asynchronous state graph
which:

– replaces each diagonal transition of the synchronous state graph (transition
with 2 or more variables changing their concentration levels) by the collection
of transitions each of them modifying only one of the involved variables,

– replaces a transition of length greater or equal to 2 (which passes two or
more thresholds at once) by a transition of length 1 in the same direction.

We then introduce the evolution operator which allows us to define formally
the asynchronous state graph.

Definition 4. Let x, k ∈ IN. The evolution operator � is defined as follows:

x � k =

⎧⎨⎩
x− 1 iff x > k
x + 1 iff x < k

x otherwise.
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Definition 5. Let G = (V, E) a regulatory graph with p variables. Its asyn-
chronous state graph is defined as follows :

– the set of vertices is the set of states Πi∈V [0, βi] = {(n1, ..., np) ∈ INp | ∀i ∈
[1, p], ni ≤ βi}

– there is a transition from the state n = (n1, ..., np) to m = (m1, ..., mp) iff{∃ unique i ∈ [1, p] such that mi �= ni

mi = (ni � ki,Ri(n))
or
{

m = n
∀i ∈ [1, p], ni = (ni � ki,Ri(n)).

From the R. Thomas modeling towards a modeling with Petri nets. A natural
way to define an equivalent Petri net, i.e., whose dynamics is exactly the same
as the asynchronous approach of R. Thomas, consists in introducing inhibitor
arcs [20]. A place is associated to each gene, and a transition to each attractor.
The input places of the transition corresponding to ki,ω are all the predecessors
of i, with the places of ω connected to the transition by standard arcs and the
predecessors of i not included in ω connected to the transition by inhibitor arcs.

In such a modeling, there are as many transitions as attractors. For a non
trivial regulatory graph, it leads to a Petri net which is difficult to interpret
because of its size. Moreover, in general, using inhibitor arcs changes the com-
plexity of the Petri net class and may lead to introduce difficulties in proofs of
some properties.

3 Modeling with High-Level Petri Nets

3.1 Introduction to High-Level Petri Nets

Definition 6. A (low-level) Petri net is a triple L = (S, T, W ), where S is a
set of places, T is a set of transitions, such that S ∩ T = ∅ and W : (S × T ) ∪
(T × S)→ IN is a weight function.

A marking of a Petri net (S, T, W ) is a mapping M : S → IN, which associates
to each place a natural number of tokens. The behavior of such a net, starting
from an arbitrary initial marking, is determined by the usual definitions for
place/transition Petri nets.

High-level nets that we consider can be viewed as simple abbreviations of the
low-level ones.

Let Val and Var be fixed but suitably large disjoint sets of values and vari-
ables, respectively. A multiset over a set E is a function μ : E → IN; μ is finite
if {e ∈ E | μ(e) > 0} is finite. We denote by Mf (E) the set of finite multisets
over E. The set of all well-formed predicates built from the sets Val, Var and a
suitable set of operators is denoted by Pr.
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Definition 7. A high-level Petri net, HLPN for short, is a triple (S, T, ι), where
S and T are disjoint sets of places and transitions, and ι is an inscription
function with domain S ∪ (S × T ) ∪ (T × S) ∪ T such that:

– for every place s ∈ S, ι(s) ⊆ Val, is the type of s, i.e., the set of possible
values the place may carry;

– for every transition t ∈ T , ι(t) is the guard of t, i.e., a predicate from Pr;
– for every arc (s, t) ∈ (S × T ) : ι((s, t)) ∈ Mf (Val ∪ Var) is a multi-set

of variables or values (analogously for arcs (t, s) ∈ (T × S)). The inscrip-
tions ι((s, t)) and ι((t, s)) will generally be abbreviated as ι(s, t) and ι(t, s),
respectively. The arcs with empty inscriptions are omitted.

A marking of a high-level Petri net (S, T, ι) is a mapping M : S →Mf (Val)
which associates to each place s ∈ S a multi-set of values from its type ι(s). A
binding is a mapping σ: Var → Val and an evaluation of an entity η (which can
be a variable, a vector or a (multi-)set of variables, etc.) through σ is defined as
usual and denoted by η[σ].

The transition rule specifies the circumstances under which a marking M ′ is
reachable from a marking M . A transition t is activated at a marking M if there
is an enabling binding σ for variables in the inscription of t (making the guard
true) and in inscriptions of arcs around t such that ∀s ∈ S : ι(s, t)[σ] ≤ M(s),
i.e., there are enough tokens of each type to satisfy the required flow. The effect
of an occurrence of t, under an enabling binding σ, is to remove tokens from its
input places and to add tokens to its output places, according to the evaluation
of arcs’ annotations under σ.

P

Q

R

(a)

b

a

1

2, 3

{1}

a > b a
1

{1, 2, 3}

{1, 2, 3}
P

Q

R

(b)

b

a
3

{1}

a > b a
1, 2

{1, 2, 3}

{1, 2, 3}

Fig. 3. A simple marked high-level Petri net before (a) and after (b) the firing of the
transition

For the example of Fig. 3-(a), the marking is given by: M(P ) = {2, 3},
M(Q) = {1}, M(R) = {1}. Bindings are σ1 =

{
a → 1
b → 1 , σ2 =

{
a → 2
b → 1 and

σ3 =
{

a → 3
b → 1 . Only σ2 and σ3 are enabling (σ1 does not make the guard true).

At the marking M , the transition t is activated for both σ2 and σ3. Figure 3-(b)
shows the new marking if σ2 is chosen.

An important property of high-level Petri nets is that they may be unfolded
to low-level ones, which may be helpful when using various verification tools.
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The unfolding operation associates a low-level net U(N) with every high-level
net N , as well as a marking U(M) of U(N) with every marking M of N .

Definition 8. Let N = (S, T, ι); then U(N) = (U(S),U(T ), W ) is defined as
follows:

– U(S) = {sv | s ∈ S and v ∈ ι(s)};
– U(T ) = {tσ | t ∈ T and σ is an enabling binding of t};
– W (sv, tσ) =

∑
a ∈ ι(s, t)
a[σ] = v

ι(s, t)(a), where ι(s, t)(a) is the number of occurrences

of a in the multiset ι(s, t), and analogously for W (tσ, sv).

Let M be a marking of N . The unfolding of a marking U(M) is defined as
follows: for every place sv ∈ U(S), (U(M)) (sv) = (M(s)) (v) where (M(s)) (v) is
the number of occurrences of v in the marking M(s) of s. Thus, each elementary
place sv ∈ U(S) contains as many tokens as the number of occurrences of v in
the marking M(s). Figure 4 presents the Petri net obtained by unfolding of the
high-level Petri net of Fig. 3-(a).

P2

P1

P3

Q1

R1

R2

R3

tσ2

tσ3

Fig. 4. Unfolded Petri net of high-level Petri net of Fig. 3-(a)

3.2 Modeling of Genetic Regulatory Networks

We can represent a regulatory network by a high-level Petri net which has a
unique transition and as many places as genes in the regulatory graph. Each place
corresponds to a gene i and carries one token: its abstract concentration level ni.
The marking of this net corresponds thus to an abstract state n = {n1, . . . , np}.
The transition can fire at a marking n leading to the marking n′ if its guard

asyn guard(n, n′) =⎧⎪⎪⎨⎪⎪⎩
(
∃i ∈ [1, p], (ni �= ki,Ri(n)) ∧ (n′

i = ni � ki,Ri(n)) ∧ (∀j �= i, n′
j = nj)

)∨(
∀i ∈ [1, p], (ni = ki,Ri(n)) ∧ (n′

i = ni)
)

⎫⎪⎪⎬⎪⎪⎭
is true. This guard translates directly the asynchronous semantics of R. Thomas.
Indeed, the marking represents a stable steady state for the asynchronous se-
mantics, when the attractors ki,Ri(n) equal the current concentrations ni for all
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n2

b

b′a′

a

asyn guard((a, b), (a′, b′))n1

variable2variable1

Fig. 5. HLPN modeling a genetic regulatory network with 2 genes. Each place abstracts
a gene and carries one token: its abstract concentration level. The guard expresses
the relationship between the current marking (nvariable1

, nvariable2
) and the possible

updated marking (n′
variable1

, n′
variable2

)

variables i ∈ V . The guard gives in this case the same marking for the next one2.
If the marking does not correspond to any stable steady state, then some vari-
ables are not equal to their attractors. Following Thomas’ semantics, a possible
next marking is a marking for which the variables do not change unless one of
them which changes (plus or minus one) in the direction of its attractor.

Figure 5 represents the high-level Petri net for the running example. Let
us consider furthermore that the attractors of the running example are given:
k1,{} = 0, k1,{1} = 2, k1,{2} = 2, k1,{1,2} = 2, k2,{} = 0 and k2,{1} = 1.
Let us choose the state (1, 0) as the initial marking. The resources of variable
1 are R1((1, 0)) = {2} since both inhibitor and activator are absent, and the
resources of variable 2 are R2((1, 0)) = {1} since the activator is present. Both
variables are attracted towards values different from their current values. Two
possible new markings are possible: (2, 0) if the variable 1 evolves first, and (1, 1)
otherwise. Globally, the sequence of markings during an execution corresponds
to a particular possible path.

Thus, for implementation reasons, we propose a more compact modeling
which is in fact a folding of the previous one. It consists in a unique place called
cell, which abstracts the cell in which each token represents a specific gene and
its expression level. A particular structured type gene is needed: it represents a
couple (gene, level) where level is the abstract level of the variable gene. The arc
inscriptions are also modified: the input one becomes {(1, a1), . . . , (p, ap)}, with
ai �= aj for i �= j, and the output one becomes {(1, a′

1), . . . , (p, a′
p)}, with a′

i �= a′
j

for i �= j. The state of the system is now represented by the set of tokens present
in the unique place. Let be ν = {(i, ni), i ∈ [1, p]} and ν′ = {(i, n′

i), i ∈ [1, p]}.
The guard of the unique transition can then be written:

asyn guard(ν, ν′) =⎧⎪⎪⎨⎪⎪⎩
(
∃i ∈ [1, p], (ni �= ki,Ri(n)) ∧ (n′

i = ni � ki,Ri(n)) ∧ (∀j �= i, n′
j = nj)

)∨(
∀i ∈ [1, p], (ni = ki,Ri(n)) ∧ (n′

i = ni)
)

⎫⎪⎪⎬⎪⎪⎭
2 The self loop corresponds in this case to the stability of the system which is quite

different from a deadlock, especially when verifying temporal properties.
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Cell (1, a′), (2, b′)

(1, a), (2, b)

(2, n2)
(1, n1)

asyn guard( {(1, a), (2, b)} , {(1, a′), (2, b′)} )

Fig. 6. Second HLPN modeling of a genetic regulatory network with 2 genes

Then, for every biological/genetic regulatory network, the high-level Petri
net has a unique place and a unique transition. The only things that distinguish
different nets are the number and the type of tokens, and the attractors ki,Ri(n)

which are present in the guard. This property is very useful in practice because
it allows us to have a generic description (and so a generic source file) and to
generate automatically the high-level Petri net for an arbitrary genetic regula-
tory network. As an illustration, Fig. 6 presents the high-level Petri net for the
regulatory graph of our running example.

4 Determination of Valuable Models

The execution of regulatory networks depends on the initial state which is of-
ten unknown, so the analysis of its behavior has to be performed a priori from
every possible one. Parameters {ki,ω, i ∈ V and ω ⊆ G−1(i)}, where G−1(i) de-
notes the set of predecessors of variable i in the regulatory graph, play also a
major role on the dynamics of the regulatory networks. In fact, they are suf-
ficient for entirely defining their dynamics. For this reason, a set of particular
attractor values is called a model of the system. Unfortunately, most often they
cannot be deduced from experiments and the modeler has to consider the dif-
ferent possible values of attractors. For a given regulatory graph, the number
of different sets of attractor values, i.e., the number of models, is exponential
with the number of predecessors of each variable. More precisely, this number
is equal to

∏
i∈V 2|G

−1(i)|. This enormous number prevents us to construct all
possible dynamics of the regulatory network and to let biologist select only in-
teresting ones. Some interesting results can therefore be used for reducing the
number of models to be considered. In [10] the modeling of Thomas is seen as
a discretization of a particular class of continuous differential equation systems,
and attractors ki,ω reflect a discretization of sums of ratios of positive constants.
In such a case, the attractors in the set {ki,ω | i ∈ V and ω ⊆ G−1(i)} have to
satisfy the following constraints

ki,∅ = 0 and ω ⊂ ω′ =⇒ ki,ω ≤ ki,ω′ .

Nevertheless, it is possible to enlarge the set of models which can be described
by this discrete formalism leading to slacken these previous constraints which
cannot be added arbitrarily.
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Then, the modeling activity focuses on the determination of a suitable class
of models, i.e., attractor values that lead to a dynamics which is coherent with
the experimental knowledge. Biological knowledge about the behavior can then
be used as indirect criteria constraining the set of models. For instance, multi-
stationarity or homeostasis which are experimentally observable, are useful to
reduce the set of attractor values. This relies on notions of positive/negative
functional circuits and of their characteristic states [21].

But, it is possible to take into account not only such conditions as homeostasis
and multistationarity, but also particular temporal properties extracted from
biological knowledge or hypotheses[18]. These knowledge or hypotheses may be
translated into a formal temporal language as LTL (Linear Temporal Logic) or
CTL (Computational Tree Logic) in order to be manipulated automatically by
computer. The coherence of the model may then be verified automatically by
model checking.

For the running example, the presence of a positive circuit in the regulatory
graph of Pseudomonas aeruginosa makes possible a dynamics with two stable
steady states which would correspond, from a biological point of view, to an
epigenetic switch (stable change of phenotype without mutation) from the non-
mucoid state (the bacterium does not produce mucus) to the mucoid state (it
does). In other words, the question is to find at least one model of the bacteria,
which is compatible with the known biological results and which has a multi-
stationarity where one stable steady state produces mucus and the other one
does not. It turns out that the mucus production is triggered by a high level
of variable 1. Then, a recurrent production of mucus is equivalent to the fact
that the concentration level n1 of variable 1 is repeatedly equal to 2. So, the
stationarity of the mucoid state can be expressed as:

(n1 = 2) =⇒ XF (n1 = 2) (1)

where XF ϕ means that ϕ will be satisfied in the future. Moreover, we know
that the bacteria never produce mucus by them-selves when starting from a
basal state (second stable steady state):

(n1 = 0) =⇒ G(¬(n1 = 2)). (2)

However, even if it may be easy to express in this way particular properties
of a given system, proposing a general method allowing to express formally a
biological hypothesis remains a difficult open problem.

Nevertheless the formal properties being given, it becomes possible to design
a general approach for selecting suitable models. We are interested in models
which lead to a dynamics coherent with the considered temporal properties.
This approach can be summarized as follows (see Fig. 7):

1. Design the regulatory graph corresponding to the biological system. Because
of the partial information on the system, the biological regulatory network
can be represented by several regulatory graphs. For this step it is not nec-
essary to describe all details of the system but only the key concepts. In
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Generation of
parameters

...

regulatory graph

model checking

1 3

5

4

Temporal logic formulae2

List of coherent models

HLPN

ka,∅ = 0

ϕ1, ϕ2, ..., ϕk

︸ ︷︷ ︸
Inputs

Outputs

{

ka,{a} = 1

Fig. 7. Computer aided modeling approach. The first step consists in designing the
regulatory graph (1) and the temporal logic formulae expressing temporal properties
of the underlying biological system (2). Generation of a potential model (3) and con-
struction of the HLPN (4). The model checker is then called for verifying the temporal
properties (5). If the model satisfies the properties, the model is stored. Back to (3)
for generating another potential model

particular, positive and negative circuits have to be present as well as their
intertwined interactions.

2. Design the temporal logic formulae which express formally dynamical knowl-
edge or hypotheses that biologist want to take into account. This step should
be performed with care in order not to forget important information.

3. Generate, from the regulatory graphs, all potential models (set of attractor
values).

4. Construct the high-level Petri net for each of them.
5. For each Petri net, call the model checker for verifying if the temporal prop-

erties are satisfied. Return only the models and associated state graphs which
satisfy the formulae.

5 Implementation with Maria

For implementing, we chose the model checker MARIA [22] (Modular Reach-
ability Analyzer for Algebraic System Nets) which takes as input a high-level
Petri net described in a particular language (see Fig. 13 in the appendix for an
example), a LTL formula and performs the checking.

As said above, the execution of regulatory networks depends on the initial
state and so the checkings have to be done from each possible initial state unless
the formulae specify the opposite. Maria makes possible to specify a unique
initial marking. Then, it is necessary to include a mechanism allowing to take
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G1 G2

(1
, n

1
),

...
, (

p, n
p
)

Bool1 Cell

Succ

btrue

s s g g

Inits

{(i, n′
i)} {(i, ni)}

Fig. 8. Implementation in MARIA of the HLPN. The guard G1 = (b = false) ∧
(s = ((1, n1), (2, n2), ..., (p, np))) is fired only once for the initialization step. G2 is the
asynchronous guard completed with the number of the gene which evolves (see text)

into account all interesting initial markings. In order to do this, we add two
places and a new transition (see Fig. 8).

– The first place, Inits, contains all initial states that have to be considered
for the current checking. If no restriction has to be taken into consideration,
all states are added in this place.

– The second place, Bool1, contains only a boolean token initially set to false,
which means that the initial state has to be chosen. Then the token becomes
true.

– The transition G1 takes an initial marking from Inits and the value false
from Bool1 and generates the corresponding tokens in the place Cell, the
value true in Bool1 and gives back the initial marking to Inits.

At the beginning, the place Cell is empty. The transition G2 is not enabled but
the transition G1 can fire. It chooses a possible initial state and generates the
corresponding tokens in the place Cell. The token of the place Bool1 becomes
true and the transition G1 is disabled. The fact that G1 gives back to Inits the
chosen initial state prevents to generate supplementary states of the Petri net
which do not correspond to anything in the regulatory network.

The high-level Petri net which models an asynchronous state graph contains
some non-determinism due to the fact that several successor states may be reach-
able from a given state. Representing this in Maria assumes the definition of a
supplementary place Succ initialized with all natural numbers from 0 to p where
p is the number of genes present in the regulatory graph. The transition G2 reads
the current state, chooses a particular token from the place Succ and generates
the next state according to the Succ’ token. For example, if the token 3 is chosen,
the next marking corresponds to the state where only gene 3 has changed. If 0
is chosen, it means that no gene evolves.

The guard of G2 is almost as asyn guard seen before, the only change concerns
the token g read from the place Succ. It can be written as follows:
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Fig. 9. Implementation a HLPN manipulating a set of models for a regulatory network

G2(ν, ν′, g) =⎧⎪⎪⎨⎪⎪⎩
(
(g �= 0) ∧ (ng �= kg,Rg(n)) ∧ (n′

g = ng � kg,Rg(n)) ∧ (∀j �= g, n′
j = nj)

)∨
(g = 0) ∧

(
∀i ∈ [1, p], (ni = ki,Ri(n)) ∧ (n′

i = ni)
)

⎫⎪⎪⎬⎪⎪⎭
With this modeling it is possible to implement the global approach described

in section 4. In such an approach the majority of models are rejected. It could be
interesting to test directly a set of models which are considered as non suitable
in order to reject them in only one call to the model checker. We construct now
a new modeling which is able to manage a set of models.

Three supplementary places and a transition are added (see Fig. 9). The place
Models is initialized with all models considered as suitable, the place Model
is initially empty and carries the current model to check, and Bool2 contains
a boolean token which is false iff Model is empty. The transition G′

3 takes a
possible model from Models and the value false from Bool2 and generates the
corresponding token in the place Model as well as the value true in Bool2. The
transition G′

2 which simulates the evolution of the regulatory network reads now
the attractors from the place Model, and the guard is modified accordingly. The
size of this Petri net does not depend on the number of genes nor on the number
of models.

This modeling does not replace the previous one but completes it. It becomes
possible to verify the temporal properties on a set of models similarly as it was
possible to do it for a set of initial markings.

This approach could also be used for finding a first model that is compatible
with the temporal properties. Let us assume that we are looking for a model
that satisfies a set of formulae ϕ1, ϕ2, ..., ϕn. The model checker MARIA tries
to validate the formulae for all possible paths and for all possible models. If no
path contradicts the formulae, Maria answers that the Petri net satisfies them.
In our current modeling, it would mean that all possible models are coherent
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with the biological temporal properties. If one path refutes the conjunction of
the formulae, then the computation stops.

Let us initialize the Petri net with all possible models and give to the model
checker the formula XX(¬(ϕ1∧ϕ2∧ ...∧ϕn)). The double X expresses that the
formulae are checked after the initialization of attractors and after the initial-
ization of markings. The model checker is looking for a model which contradicts
the negation of the conjunctions of formulae. If there exists such a path, Maria
stops and gives the associated attractors. This direct way does not allow us to
exhibit all models that we are looking for but only the “first” one.

Unfortunately, the used temporal logic limits this approach. Let us assume
that we are looking for models satisfying the temporal property ϕ. If we give the
model checker the negation of the formula, Maria tries to exhibit a path that
contradicts the negation, i.e., that satisfies the formula. This path corresponds
to a model, but for this parameterization, there could exist another path that
refutes the formula. In fact, in order to develop such an approach, one needs to
express in the formulae that something is possible or that something is true for
all possible choices, in other words, the suitable temporal logic would be rather
CTL. For example, if we have to check the formula on all paths and for all initial
markings, we are looking for a model that satisfies the formula EX AX ϕ. It
means that there exists a model for which all initial markings lead to a state
where ϕ is satisfied. The model checker is given the negation of the previous
formula, AX EX ¬ϕ, and it will answer, if any, a path that refutes the previous
formula, i.e., a model such that for all initial markings, we have ϕ.

As mentioned before this modeling permits the user to exhibit, if any, a
model which satisfies the temporal properties. The existence of such a model
proves the coherence between the regulatory graph and the temporal properties,
but it is not sure that the biological system works in the same way. From a
biological point of view it is more useful to exhibit all possible models which are
coherent with the temporal properties since it permits the biologist to explain
the behaviors by various models. It would be interesting to develop a model
checker which enumerate all counterexamples.

6 Prototype for Computer Aided Modeling

We have designed and developed a prototype for computer aided modeling which
implements our general approach described above. It contains principally 3 mod-
ules (see Fig. 10):

– The first module permits the user to design the regulatory graph with a
user friendly interface (see Fig. 12 in the appendix). NetworkEditor is able
to generate a XML file to represent the regulatory graph according to the
GINML document type definition [23].

– FormulaEditor helps the user to write the LTL formula which describes
the biological knowledge or hypothesis on the dynamics of the system. The
editor translates the LTL formula into the Maria LTL format.
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Fig. 10. A prototype for computer aided modeling

– Marianne takes as input a GINML file or a text file representing a biological
regulatory graph and an LTL formula. Marianne computes then for each
potential model the corresponding HLPN. It selects the models which satisfy
the LTL formula using MARIA. It offers also the possibility to generate the
corresponding asynchronous state graph (see Fig. 11 in the appendix).

7 Conclusion and Future Work

We have defined a modeling of regulatory networks in terms of high-level Petri
nets. Applied to the Pseudomonas aeruginosa, this modeling approach selects 4
models leading to 4 different asynchronous state graphs for each regulatory graph
corresponding to two possible orderings of t11 and t12 (see footnote 1). These 8
models prove that the proposed regulatory graphs of Pseudomonas aeruginosa
are coherent with the hypothesis of epigenetic switch. Figure 13 presents one
model which satisfies the temporal specifications and Fig. 11 the corresponding
state graph obtained directly from Maria. If Pseudomonas aeruginosa is actually
compatible with one of these models (no matter which model, because there are
observationally equivalent), it could open new therapeutics in prospects. Since
the formula 2 is known to be satisfied, one has just to confirm in vivo the
formula 1. An experiment schema may be suggested by the structure of the
formula: it consists in pulsing variable1 up to saturation by an external signal,
and in checking, after a transitory phase due to the pulse, if the mucus production
persists [19].

Besides this biological case study, the contribution of the paper is also on a
more abstract level. Indeed, our approach overpasses the pure application con-
text and allows a computer aided manipulation of the semantics of the discrete
modeling of R. Thomas. It consists in defining an automatic translation from reg-
ulatory graphs to high-level Petri nets and to provide the means to express and
check some behavioral properties. In particular, temporal properties expressed
in temporal logics can be checked in order to confirm or refute some biological
hypotheses. These analyses may be performed using various existent Petri net
methods and tools. Moreover, the method based on an intensive use of model
checking has been shown both useful from the computer science point of view
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and sensible from the biological one. Indeed, this approach has been applied for
various biological systems represented by networks with a few variables (sup-
ported also by our tools), which confirms the applicability of this method to a
significant class of problems.

Our compact and generic representation through high-level Petri nets opens
up some extensions. First, recent extensions [24] taking into account non sigmoid
character of the interaction function may easily be handled. Second, resources,
like time or energy, may be introduced in the net model, for instance, using high-
level buffers, as in [25, 26]. Moreover, Petri net representation naturally leads to
various kinds of semantics. In particular, one may consider non sequential ones,
which allow on one hand combating the state explosion and on the other hand
using more efficient verification techniques [27, 28].

The paper presents also a user friendly environment we developed, helping
biologists in modeling and analyzing regulatory networks and to express desired
properties. Our experiments showed that it would be interesting to extend the
model checker MARIA with CTL logics. Also, since Maria allows the user to un-
fold the model into the native input formats of PEP [28], LoLA [29] or Prod [30],
it gives a possibility to use different analysis techniques offered by these tools. In
particular, the problem of using a CTL model checker may be resolved with Prod.

This approach has been compared in terms of efficiency with another environ-
ment for regulatory networks [18], which uses the classical CTL model checker
NuSMV [31] and the execution times were similar. It was not surprising be-
cause the semantics was explicitly sequential. We hope that for some extensions
accepting truly concurrent behaviors, the verification could be more efficient if
partial order representation and dedicated tools are used.
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Appendix

@0

6

boolean1:false
initial_states:{0,0},{1,0},...,{2,1}
succ:0,1,2

@1

2(1)

boolean1:true
initial_states:{0,0},{1,0},...,{2,1}
cell:{1,0},{2,0}
succ:0,1,2

g1
f:false
e:{0,0}

@2

2(2)

boolean1:true
initial_states:{0,0},{1,0},...,{2,1}
cell:{2,0},{1,1}
succ:0,1,2

g1
f:false
e:{1,0}

@3

1(2)

boolean1:true
initial_states:{0,0},{1,0},...,{2,1}
cell:{2,0},{1,2}
succ:0,1,2

g1
f:false
e:{2,0}

@4

1(3)
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initial_states:{0,0},{1,0},...,{2,1}
cell:{1,0},{2,1}
succ:0,1,2

g1
f:false
e:{0,1}

@5

1(2)

boolean1:true
initial_states:{0,0},{1,0},...,{2,1}
cell:{1,1},{2,1}
succ:0,1,2

g1
f:false
e:{1,1}

@6

1(4)

boolean1:true
initial_states:{0,0},{1,0},...,{2,1}
cell:{2,1},{1,2}
succ:0,1,2

g1
f:false
e:{2,1}

g2
n1:0
n2:0
g:1

g2
n1:0
n2:0
g:2

g2
n1:1
n2:0
g:1

g2
n1:1
n2:0
g:2

g2
n1:2
n2:0
g:2

g2
n1:0
n2:1
g:0

g2
n1:1
n2:1
g:1

g2
n1:2
n2:1
g:0

Fig. 11. State graph obtained directly from Maria

Fig. 12. The interface allows the user to specify the regulatory network in term of
regulatory graph. The thresholds and the sign of the interactions are added on vertices
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//////////////////////////
// DEFINITION OF TYPES //
//////////////////////////
typedef unsigned (1..2) numero_of_gene;
typedef unsigned (0..2) level;
typedef struct{ numero_of_gene g;

level n; } gene;
typedef unsigned (0..2) level_gene1;
typedef unsigned (0..1) level_gene2;
typedef struct{ level_gene1 n1;

level_gene2 n2; } state;
typedef unsigned (0..2) succt;
typedef bool flag;

//////////////////////////////
// DEFINITION OF FUNCTIONS //
//////////////////////////////
state vector(gene g1,gene g2)

is state({is level_gene1 g1.n,
is level_gene2 g2.n});

state synchronous(state e) is state(e?
{2,1}: // attractor for the state {2,1}
{2,1}: // attractor for the state {1,1}
{0,1}: // attractor for the state {0,1}
{2,1}: // attractor for the state {2,0}
{2,1}: // attractor for the state {1,0}
{2,1} // attractor for the state {0,0});

state step1(state e) is state(
(e.n1<synchronous(e).n1) ?{+e.n1,e.n2}:
( (e.n1>synchronous(e).n1)?{|e.n1,e.n2}:e));

state step2(state e) is state(
(e.n2<synchronous(e).n2) ?{e.n1,+e.n2}:
( (e.n2>synchronous(e).n2)?{e.n1,|e.n2}:e));

gene gene1(state e) is gene({1,e.n1});
gene gene2(state e) is gene({2,e.n2});

//////////////////////////
// DEFINITION OF PLACES //
//////////////////////////
place boolean1 flag: false;
place initial_states state: state e : e;
place cell gene;
place succ succt: succt g: g;

////////////////////////////////
// DEFINITION OF TRANSITIONS //
////////////////////////////////

trans g1
in { place boolean1: f;

place initial_states : e; }
out { place boolean1: true;

place initial_states : e;
place cell : (gene1(e),gene2(e)); }

gate (f==false);

trans g2
{ state v=vector({1,n1},{2,n2});

state v1=step1(v);
state v2=step2(v); }

in { place succ : g;
place cell : {1,n1},{2,n2}; }

out { place succ : g;
place cell : (b ?

(gene1(v2),gene2(v2)): // b==2
(gene1(v1),gene2(v1)): // b==1
({1,n1},{2,n2}) ); // b==0

}
gate (

(g==0 && v1.n1==v.n1 && v2.n2==v.n2 ) ||
(g==1 && v1.n1!=v.n1) ||
(g==2 && v2.n2!=v.n2) );

deadlock fatal;

Fig. 13. File describing the high-level Petri net corresponding to the regulatory network
of Fig. 12 for model checker Maria. The values of attractors are the following: k1,∅ = 0,
k1,{1} = 2, k1,{2} = 2, k1,{1,2} = 2, k2,∅ = 1 and k2,{1} = 1
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Abstract. The Transmission Control Protocol (TCP) is the most widely
used transport protocol in the Internet, providing a reliable data trans-
fer service to many applications. This paper analyses TCP’s Connection
Management procedures for correct termination and absence of dead-
locks. The protocol is assumed to be operating over a reordering lossless
channel and is modelled using Coloured Petri nets. The following con-
nection management scenarios are examined using state space analysis:
client-server and simultaneous opening; orderly release; and abortion.
The results demonstrate that TCP terminates correctly for client-server
and simultaneous connection establishment, orderly release after the con-
nection is established and aborting of connections. However, we discover
a deadlock when connection release is initiated before the connection has
been fully established when operating over a reordering lossless channel.

1 Introduction

The Transmission Control Protocol (TCP) [3,32] provides a reliable data transfer
service to Internet applications such as the web and email, which ensures that
data will be delivered in order and without loss or duplication. TCP is also the
basis for the development of two new protocols for the Internet: SCTP [39] and
DCCP [19]. TCP is a complex protocol originally specified in RFC 793 [32] using
narrative descriptions, message sequence diagrams, and a finite state machine
(FSM) diagram. It was then improved and modified in [1, 3, 8, 9, 15–17, 23, 29].
The number of bugs reported in TCP implementations [29] spans 60 pages. This
and other experience led us to believe that a more formal approach to TCP
specification and analysis may prove beneficial.

TCP comprises a connection management protocol for establishing and ter-
minating connections and a data transfer protocol for reliable data transfer.
Before data transfer begins, a connection needs to be set up between two end
points, each of which is identified by a socket comprising an IP address and a
port number [32]. TCP uses a three-way handshake [40] to open a connection,
that is, three messages are exchanged by the two communicating entities. A TCP
connection is full duplex allowing independent data flow in both directions. The
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connection is fully released when both ends close in an orderly manner and the
procedure is known as orderly release. The connection establishment, release and
abort procedures are known as TCP Connection Management, which is critical
for reliable data delivery. Research on verifying TCP’s correctness usually falls
into two camps: those that verify the connection management protocol and those
that verify the data transfer protocol. This paper focuses on verifying TCP Con-
nection Management.

Using Coloured Petri nets (CPNs) [18], we model TCP Connection Man-
agement according to the pseudo code provided in Section 3.9 of RFC 793.
We use a realistic model of the Internet’s service that can lose, delay and re-
order packets. In this paper, we analyse TCP Connection Management operat-
ing over a reordering channel with no loss. This ensures [2] that errors such as
unspecified receptions will be discovered as terminal states and not removed
by loss. Two important functional properties of the protocol are examined:
correct termination and absence of deadlocks. The analysis is undertaken by
checking the properties over the state spaces of the CPN model and is con-
ducted incrementally [2]. We present detailed results to back up every conclusion
reached.

This paper is organised as follows. Section 2 provides an introduction to
TCP Connection Management. Section 3 reviews related work. Section 4 briefly
describes the CPN model. Section 5 defines the desired properties of TCP: termi-
nation and absence of deadlocks. Section 6 describes the different configurations
of the CPN model. Sections 7 and 8 summarise and discuss the state space
analysis results. Finally, section 9 concludes this paper.

2 TCP Connection Management

The messages exchanged in a TCP connection are known as segments. A segment
is a sequence of 32-bit words, comprising header fields and a data field. At the
beginning of the header fields are the 16 bit source and destination port fields.
They are used to identify the two communicating application processes. Every
octet of data sent by a TCP entity is assigned a sequence number. The 32-bit
sequence number field contains the sequence number of the first data octet in the
segment, known as the sequence number of the segment. The acknowledgement
number field (also 32-bit) contains the next sequence number that the sender of
the segment is expecting to receive.

There are also six 1-bit control flags in the header: URG (urgent), ACK
(acknowledgement), PSH (push), RST (reset), SYN (synchronisation), and FIN
(finish). Control bits URG and PSH are concerned with data segments, which
we do not describe here. A segment which has the SYN flag set is the first
segment sent in a connection and its sequence number is the initial sequence
number for the connection. A segment with the FIN flag set indicates that the
sender of the segment has no more data to send. The ACK flag indicates that
the acknowledgement number field of the segment is valid. When set, the RST
flag informs the receiver of the segment to abort the connection.
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SYN_SENT

(active open)

SYN_RCVD
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(passive open)

ESTABLISHED

ESTABLISHED

Client Server

SYN (ISS1)

SYNACK (ISS2,  ISS1+1)

ACK (ISS1+1, ISS2+1)

(a) Normal establishment

ESTABLISHED

CLOSED CLOSED

SYN_RCVD

SYN_SENT

SYN_RCVD

(active open)

ESTABLISHED

SYN_SENT

(active open)
SYN (ISS1)

SYN (ISS2)

SYNACK (ISS2, ISS1+1)

TCP Entity 2TCP Entity 1

SYNACK (ISS1,  ISS2+1)

(b) Simultaneous establishment

Fig. 1. Message sequences for TCP connection establishment

TCP maintains the state of a connection by storing a set of variables in a data
structure known as the transmission control block (TCB) [32]. The important
variables for TCP connection management relate to sequence numbers. They are:
send oldest unacknowledged (SND UNA), send next (SND NXT), initial send
sequence number (ISS) and receive next (RCV NXT). When TCP transmits a
segment, it increments SND NXT. When TCP accepts a segment, it increases
RCV NXT and sends an acknowledgement. Upon the receipt of an acknowl-
edgement, TCP advances SND UNA. The amount by which each of the three
variables is increased is given by the length of the segment in octets, i.e., the
sequence space for both data and control bits SYN and FIN. The SYN and FIN
bits each require one sequence number [32]. If the SYN or FIN segment does not
carry data, the amount by which each variable is advanced is 1.

Connection Establishment. A connection is initiated by the TCP entity
(TCP client) that sends a SYN segment, and is responded to by the peer TCP
entity (TCP server). The TCP server receiving a SYN segment has no way of
telling whether it is a new SYN to open a connection or an old duplicate SYN
from an earlier incarnation. Therefore it must ask the other side (through the
exchange of segments) to verify the SYN. This process is illustrated in Fig. 1 (a).
TCP states (e.g., CLOSED, SYN SENT and ESTABLISHED) are written next
to the vertical lines. User commands (i.e., active open and passive open) are
written in parentheses. The sequence number and the acknowledgement number
(when relevant) are included with the segment name. TCP also allows both sides
to initiate a connection simultaneously, as illustrated in Fig. 1(b).

Connection Release. Orderly release ensures that all data is received before
the connection is fully closed. As shown in Fig. 2(a), the procedure comprises an
exchange of FIN and ACK segments by each party. Assume the FIN segment has
sequence number x and acknowledgement number y. If no data is transferred by
TCP entity 1 after the connection is established, then x=ISS1+1 and y=ISS2+1.
The ACK has an acknowledgement number x+1, that is, the sequence number of
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TCP Entity 1 TCP Entity 2

ACK (x+1, y+1)

FIN (y, x+1)

ACK (y, x+1)

FIN (x,  y)

ESTABLISHED

FIN_WAIT_2

(close)
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TIME_WAIT
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(a) Normal release

ESTABLISHED

(close)
(close)
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TIME_WAIT

FIN (y, x)

TIME_WAIT

FIN (x,  y)

ACK (y+1, x+1)
ACK (x+1, y+1)

CLOSING

TCP Entity 1 TCP Entity 2

(b) Simultaneous release

Fig. 2. Message sequences for TCP connection release

the FIN segment plus 1. The sequence number of the ACK depends on whether
data has been sent before the FIN is received. If no data is sent, then the ACK
has sequence number y, as shown in the figure.

After initiating orderly release, TCP entity 1 receives the ACK from TCP
entity 2 and changes state from FIN WAIT 1 to FIN WAIT 2, waiting for a con-
nection release request from TCP entity 2. Meanwhile, data can still be trans-
mitted from TCP entity 2 to 1 (but not vice versa) until the user of TCP entity
2 issues a close command. TCP entity 2 then sends a FIN segment. If no data
is sent by TCP entity 2 after it receives the FIN from TCP entity 1, then the
sequence number of the FIN sent to TCP entity 1 is the same as that of its
preceding ACK segment. The acknowledgement number of the FIN is also x+1
as no other segment with a higher sequence number will have been received.

Upon receipt of the FIN segment, TCP entity 1 enters the TIME WAIT
state and responds to the FIN with an ACK segment that has sequence number
x+1 and acknowledgement number y+1. When TCP entity 2 receives the ACK
from TCP entity 1, it enters CLOSED from LAST ACK. TCP entity 1 remains
in TIME WAIT for two maximum segment lifetimes (MSL) before entering
CLOSED. The MSL is the longest time that a segment can exist in the Internet
(about 2 minutes) [32]. Fig. 2(b) illustrates the simultaneous release procedure.

3 Related Work

In their pioneering work on verifying TCP Connection Management, Sunshine
and Dalal [40] address the design issues of early versions [4–6] of TCP, which
was still evolving at that time. They conduct informal case studies (manual
walk-through of the sequences) to investigate the functional behaviour of TCP’s
connection establishment procedures and their result corroborates that of Tom-
linson [42] on the necessity of employing the three-way handshake in connec-
tion establishment. In addition, they construct a simplified reachability graph of
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the three-way handshake by omitting details such as symmetrical states. Their
analysis indicates that the protocol is free of deadlocks and livelocks. However,
simultaneous opening of connections is not analysed in [40], nor is the orderly
release procedure. This significantly simplifies the study of TCP Connection
Management.

Based on another early version [31] of TCP, Schwabe [33] specifies the con-
nection establishment protocol using the SPEX language [34]. SPEX is based
on a non-deterministic state transition system. The verification is aided by the
theorem prover AFFIRM [28]. Schwabe finds that in a simultaneous open sce-
nario, the presence of an old duplicate SYN prevents the connection from being
established. However, the simultaneous open Schwabe investigated is different
from that in the current TCP specification [32], where TCP sends a SYNACK
rather than an ACK upon receiving a SYN.

Kurose and Yemini [20] specify and verify the connection establishment pro-
tocol based on another version [30] of TCP. They only consider the client-server
situation and specify the protocol using a PASCAL-like language. They for-
malise two desired properties of the protocol using temporal logic. One property
is that if the connection is established, then the send next sequence number
(SND NXT) should equal the receive next sequence number (RCV NXT). The
other property is that eventually the connection will be established. They prove
the two properties are correct through deductive reasoning [10].

Lin [21] specifies a connection establishment protocol [40,42] using finite state
machines and proves that the connection will be eventually established. Again,
only the client-server connection is examined. In addition, the behaviour of the
TCP server is not correctly specified as it does not go through LISTEN.

Mehrpour and Karbowiak [24] model and analyse an early and simplified
version [38] of TCP using Numerical Petri nets [41]. They model TCP segments
by their names without sequence and acknowledgement numbers. Hence, the
model is inadequate. It is also incomplete in that no arc inscriptions are given.

Sidhu and Blumer [35] spotted a few problems in the military standard TCP
[25], while they were studying the protocol with a view to verifying connection
management. According to [25], the military standard TCP is the same as TCP
[32] except that it is specified with action statements and tables. The problems
they find are syntax errors of the specification and the consequences of the errors
are that: (1) TCP can not receive data sent with a SYN segment; (2) TCP can
not establish a connection if the first SYN is lost; and (3) TCP can not receive
data while in the ESTABLISHED state.

Murphy and Shankar [26,27] specify a transport protocol using a state tran-
sition model and invariant and progress assertions. The protocol is similar to
TCP only with respect to the connection establishment procedures. They re-
ported some correctness problems of TCP connection establishment when dupli-
cate SYNs are present in the channel. The problems are described under three
scenarios. In the first two scenarios, the connection is initiated in a client-server
mode. After the TCP client sends a SYN, an old duplicate SYN arrives and the
connection finishes with one TCP entity being in CLOSED and the other in
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LISTEN. So the old duplicate SYN prevents the connection from being estab-
lished by the desired SYN. A third scenario shows that in a connection where
each TCP entity is in LISTEN, and when two old duplicate SYNs arrive at each
end, each TCP entity sends ACKs indefinitely, resulting in a livelock.

Smith [36,37] specifies TCP Connection Management using the general timed
automaton [22]. He demonstrates that the quiet time of two maximum segment
lifetime (MSL) given in [32] is insufficient to prevent old duplicate data from
being delivered, which was previously pointed out by Murphy and Shankar [27].
Smith uses a phase-based approach to specify the protocol, which is different
from the way TCP is specified in [32]. This makes it difficult to validate this
model against the official TCP specification. As well as excluding simultaneous
opening of connections and user aborts, Smith’s specification does not address
the following details that are part of TCP’s functional behaviour and can have
an impact on its logical correctness: (1) the release of a connection in any state
including SYN RCVD, (2) entering TIME WAIT from FIN WAIT 1 upon re-
ceiving a FINACK segment, as specified in RFC 1122 [3], and (3) state variable
SND UNA (send oldest unacknowledged number) that is used to check whether
or not an ACK is a duplicate segment.

In [12], we provided a quite simple model of TCP Connection Management
based on the FSM diagram [32]. The model does not include protocol details
such as sequence numbers and state variables. A more detailed model enhanced
with these features is given in [2, 13], which is structured according to a state-
based approach. Using an event processing approach, we re-structured the model
to comply with the way TCP is specified in [32] and also incorporated the re-
transmission mechanism and lossy channel [14]. The contribution of this paper
is two-fold: (1) investigating TCP Connection Management’s correctness when
including retransmissions; and (2) providing some insights into TCP’s operation
by discussing a deadlock that can occur, even when the channel is lossless.

4 TCP Connection Management CPN

This section briefly describes our TCP Connection Management model. The full
model and its description is provided in [11]. The basic idea of modelling TCP is
that we consider two peer TCP entities, communicating over the Internet Pro-
tocol (IP) as well as interacting with their application processes. Figure 3 shows
the TCP Overview page. Places User 1 and User 2 model TCP user commands,
such as active (A Open) and passive (P Open) open. The TCB places model
TCP states and the transmission control block state variables. Places H1 H2
and H2 H1 model TCP buffers and all network storage (e.g., router buffers).
H1 H2 indicates the data flow direction is from host 1 to host 2, whereas H2 H1
indicates data flow in the opposite direction. Transitions Lossy Channel1 and
Lossy Channel2 can be switched on and off by their guards to model lossy and
non-lossy channels respectively. The TCP entities are modelled by two substitu-
tion transitions: TCP’1 and TCP’2.
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Fig. 3. Top level CPN page: TCP Overview

The CPN model contains another 18 CPN pages and a declarations page, as
shown in Fig. 4. The TCP Overview page is at the first level of the hierarchy.
The second level contains the Event Processing page, which is known as a page
instance for TCP’1 and TCP’2. It models TCP’s responses to user commands,
segment arrivals and retransmissions. The Segment Processing page models the
processing of segments for each of TCP’s 11 states.

In modelling TCP Connection Management, we consider that security and
precedence are always met and only consider a single connection between users,
which allows us to omit port numbers. A segment in the CPN model contains
a sequence number, an acknowledgement number and four control bits: SYN,
ACK, FIN and RST.

In contrast to data transfer, TCP Connection Management only consumes a
small portion of the sequence number space. If we omit data transfer and choose
a small value for the initial sequence number for each TCP entity, sequence num-
bers will not wrap. In this case, we don’t need to implement modulo arithmetic.
Given that connection management segments are always small (when there is no
data), it is reasonable to assume that the receive window is always big enough to
accept incoming segments. We can thus omit modelling the window field in seg-
ments and implementing checks associated with window size. This simplifies the
model, but means that our results may not be applicable when sequence num-
bers do wrap. We also assume that segments can be lost, delayed, and reordered
while traversing the network.

The official TCP specification [3,32] is incomplete in terms of specifying the
retransmission mechanism for the connection management protocol. In particu-
lar, it does not provide an adequate description of which type of segments need to
be retransmitted. It only mentions the retransmission of data segments on page
10 of RFC 793 [32] and the retransmission of SYNs on page 95 of RFC 1122 [3].
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Fig. 4. The Hierarchy page of TCP Connection Management CPN

According to Wright and Stevens [44], TCP retransmits a SYN, SYNACK and
FIN to recover from loss in the channel. It is also not clear from [3, 32] when
TCP sets and turns off timers. From our reading of RFC 793 (pages 10 and 77)
and our understanding of the protocol, we believe that retransmissions related
to connection management occur as follows. When sending a segment (SYN,
SYNACK or FIN), the TCP entity puts a copy of the segment into its retrans-



236 B. Han and J. Billington

mission queue and starts a timer. If an acknowledgement for that segment arrives
in time, the copy is removed from the queue and the timer is stopped. If the
acknowledgement does not arrive in time, the timer expires, TCP retransmits
the segment and resets the timer. We consider that TCP sets four retransmission
timers for connection management: (1) when it sends a SYN and enters state
SYN SENT; (2) when it sends a SYNACK and enters SYN RCVD; (3) when it
sends a FIN and enters FIN WAIT 1; and (4) when it sends a FIN and enters
LAST ACK.

5 Desired Properties

To define the termination and absence of deadlocks properties, we firstly intro-
duce some notation. Let ‘empty’ represent an empty multiset. Let M0 denote the
initial marking and M(p) the marking of place p. A desired terminal marking is
a state in which the protocol terminates correctly under normal circumstances.
We use Mdt to denote a desired terminal marking in Definition 3. An acceptable
terminal marking is a state in which the protocol terminates successfully under
special situations, as explained later. We use Mat to denote an acceptable ter-
minal marking in Definition 4. For TCP, a deadlock is a terminal marking that
is neither desired nor acceptable.

We define four projection functions that project the transmission control
block, effectively a 6 tuple, to a TCP state and three state variables. The pro-
jection functions are used to define the desired and acceptable terminal markings
of TCP Connection Management. In Definition 1, the set ST AT E is the set of
TCP states: CLOSED, LISTEN, SYN SENT, SYN RCVD, EST, FIN WAIT 1,
FIN WAIT 2, CLOSE WAIT, CLOSING, LAST ACK and TIME WAIT. The
set LISTENstat contains two values, ‘lis’ and ‘cls’, which indicate a TCP en-
tity has been in LISTEN or not respectively. This is used to determine the next
state TCP enters from SYN SENT or SYN RCVD upon receiving a RST seg-
ment. The set N4 is the set of values of the four TCP state variables, where each
component is a natural number.

Definition 1. The projection functions are given by
State : STATE × N4 × LISTENstat → STATE
where State(s, sv, i) = s
SndNxt : STATE × N4 × LISTENstat → N
where SndNxt(s, (RCV NXT, SND NXT, SND UNA, ISS), i) = SND NXT
SndUna : STATE × N4 × LISTENstat → N
where SndUna(s, (RCV NXT, SND NXT, SND UNA, ISS), i) = SND UNA
RcvNxt : STATE × N4 × LISTENstat → N
where RcvNxt(s, (RCV NXT, SND NXT, SND UNA, ISS), i) = RCV NXT

Each projection function takes a tuple as its argument and hence can not be
applied directly to the marking of place TCB, which is a singleton multiset. To
solve this, we need a function that converts a singleton multiset into its basis
element, as defined below.
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Definition 2. Let SMS1 be the set of all singleton multisets over a basis set S:
SMS1 = {{(s, 1)} | s ∈ S}. A function that converts a singleton multiset to its
basis element is given by fc : SMS1 → S, where fc({(s, 1)}) = s.

The termination property is concerned with whether a protocol can termi-
nate in a desired state. For TCP Connection Management, this means that a
connection should be able to be established, released and aborted successfully.
We formulate the termination property as follows.

Property 1. The termination property for TCP Connection Management com-
prises:
(I) Successful Establishment — If one host requests that a connection be
opened and the other host is willing to accept the connection or to request that
the same connection be opened at the same time, then the connection should be
established.
(II) Proper Establishment — When a connection has been established at
both ends, the variable SND NXT must equal SND UNA at the same end of the
connection, which must also equal RCV NXT at the other end of the connection.
(III) Successful Release — If one host requests that the connection be closed
and the other host is willing to close the connection or also requests that the
connection be closed at the same time, then the connection should be able to be
released.
(IV) Successful Abort — A connection should be able to be aborted in the
case that either or both users issue an abort command.

The successful and proper establishment properties can be verified by exam-
ining the terminal markings of the state space of TCP connection establishment.
We define the desired terminal state for connection establishment as follows.

Definition 3. The desired terminal state, Mdt, for connection establishment is
a marking where

Mdt(H1 H2) = empty (1)

Mdt(H2 H1) = empty (2)

State(fc(Mdt(TCB 1))) = EST (3)

State(fc(Mdt(TCB 2))) = EST (4)

SndNxt(fc(Mdt(TCB 1))) = SndUna(fc(Mdt(TCB 1)))

= RcvNxt(fc(Mdt(TCB 2))) (5)

SndNxt(fc(Mdt(TCB 2))) = SndUna(fc(Mdt(TCB 2)))

= RcvNxt(fc(Mdt(TCB 1))) (6)

The desired terminal state for connection establishment has no messages
left in the channel and both TCP entities in state ESTABLISHED with state
variables related as described in (II) of Property 1. The user places are not
included in the definition as their purpose is to allow different scenarios to be
analysed using an incremental methodology [2]. Thus the details of the markings
of the user places are not important for termination.
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Below we formalise two acceptable terminal states for connection establish-
ment.

Definition 4. An acceptable terminal state, Mat, for connection establishment
satisfies:

Mat(H1 H2) = empty (7)

Mat(H2 H1) = empty (8)

Mat(TCB 1) = 1‘(CLOSED, (0, 0, 0, 0), cls) (9)

Mat(TCB 2) = 1‘(LISTEN, (0, 0, 0, ISS), lis) or 1‘(CLOSED, (0, 0, 0, 0), cls)(10)

Equation 9 indicates that when a TCP entity enters CLOSED, its state vari-
ables are reset to 0, implying that the TCB for that connection is deleted. The
LISTEN flag is reset to the initial value ‘cls’. Equation 10 indicates that when a
TCP entity returns to LISTEN, its state variables are reset to 0 except for the
initial send sequence number, which is set for the next connection instance. The
LISTEN flag has a value of ‘lis’, indicating it has been in LISTEN.

In client-server connection establishment, the protocol can also terminate in a
state where the TCP client is in CLOSED and the TCP server is in LISTEN. This
is acceptable because when the TCP server is down and therefore in CLOSED
and receives a SYN, it sends a RST which changes the state of the TCP client
from SYN SENT to CLOSED. The TCP server then enters LISTEN after it has
come up on receiving a passive open.

Another acceptable state where both TCP entities are CLOSED can happen
in both client-server and simultaneous connection establishment. In client-server
connection establishment, it can result when the TCP server retransmits the
SYNACK after sending a SYNACK in response to a SYN, and then aborts the
connection (due to the maximum number of retransmissions being reached). On
aborting the connection, the TCP server sends a RST and enters CLOSED. The
RST can terminate the connection at the client side. In simultaneous connection
establishment, this acceptable state can result from when one TCP entity opens
the connection while the other TCP entity is CLOSED.

The desired terminal state for connection release and abort is given in Defi-
nition 5.

Definition 5. A desired terminal state for connection release and abort is a
marking where

Mdt(H1 H2) = empty (11)

Mdt(H2 H1) = empty (12)

Mdt(TCB 1) = 1‘(CLOSED, (0, 0, 0, 0), cls) (13)

Mdt(TCB 2) = 1‘(CLOSED, (0, 0, 0, 0), cls) (14)

TCP should be able to terminate in a desired or acceptable terminal marking,
and be absent from deadlocks.
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6 Analysis Approach

The analysis is undertaken for two models for a reordering but lossless channel:
Model 1 (without retransmissions) and Model 2 (with retransmissions). To en-
sure the detection of errors in each phase of the protocol, we take an incremental
approach [2] which considers different connection scenarios. Each scenario is de-
fined by configuring, for each model, the initial markings of places User 1 and
User 2 and place TCB. As shown in Table 1, each model has 11 configurations.
Configurations A and B are used to analyse the client-server and simultaneous
connection establishment procedures respectively. Configurations C, D and E
examine the connection release procedures. The other configurations investigate

Table 1. The initial marking for each configuration

Config. Initial Marking

A M0(User 1) = 1‘A Open
M0(User 2) = 1‘P Open
M0(TCB 1) = 1‘(CLOSED, (0, 0, 0, 10), cls)
M0(TCB 2) = 1‘(CLOSED, (0, 0, 0, 20), cls)

B M0(User 1) = 1‘A Open
M0(User 2) = 1‘A Open
M0(TCB 1) = 1‘(CLOSED, (0, 0, 0, 10), cls)
M0(TCB 2) = 1‘(CLOSED, (0, 0, 0, 20), cls)

C M0(User 1) = 1‘Close
M0(User 2) = 1‘Close
M0(TCB 1) = 1‘(EST, (21, 11, 11, 10), cls)
M0(TCB 2) = 1‘(EST, (11, 21, 21, 20), cls)

D M0(User 1) = 1‘A Open + +1‘Close
M0(User 2) = 1‘P Open + +1‘Close
M0(TCB 1) = 1‘(CLOSED, (0, 0, 0, 10), cls)
M0(TCB 2) = 1‘(CLOSED, (0, 0, 0, 20), cls)

E M0(User 1) = 1‘A Open + +1‘Close
M0(User 2) = 1‘A Open + +1‘Close
M0(TCB 1) = 1‘(CLOSED, (0, 0, 0, 10), cls)
M0(TCB 2) = 1‘(CLOSED, (0, 0, 0, 20), cls)

F M0(User 1) = 1‘A Open + +1‘Abort
M0(User 2) = 1‘P Open + +1‘Abort
M0(TCB 1) = 1‘(CLOSED, (0, 0, 0, 10), cls)
M0(TCB 2) = 1‘(CLOSED, (0, 0, 0, 20), cls)

G M0(User 1) = 1‘A Open + +1‘Abort
M0(User 2) = 1‘A Open + +1‘Abort
M0(TCB 1) = 1‘(CLOSED, (0, 0, 0, 10), cls)
M0(TCB 2) = 1‘(CLOSED, (0, 0, 0, 20), cls)

H M0(User 1) = 1‘Close + +1‘Abort
M0(User 2) = 1‘Close + +1‘Abort
M0(TCB 1) = 1‘(EST, (21, 11, 11, 10), cls)
M0(TCB 2) = 1‘(EST, (11, 21, 21, 20), cls)

I M0(User 1) = 1‘A Open + +1‘Close
M0(User 2) = 1‘P Open + +1‘Abort
M0(TCB 1) = 1‘(CLOSED, (0, 0, 0, 10), cls)
M0(TCB 2) = 1‘(CLOSED, (0, 0, 0, 20), cls)

J M0(User 1) = 1‘A Open + +1‘Abort
M0(User 2) = 1‘P Open + +1‘Close
M0(TCB 1) = 1‘(CLOSED, (0, 0, 0, 10), cls)
M0(TCB 2) = 1‘(CLOSED, (0, 0, 0, 20), cls)

K M0(User 1) = 1‘A Open + +1‘Close
M0(User 2) = 1‘A Open + +1‘Abort
M0(TCB 1) = 1‘(CLOSED, (0, 0, 0, 10), cls)
M0(TCB 2) = 1‘(CLOSED, (0, 0, 0, 20), cls)
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the connection management procedures involving aborts. The markings of places
H1 H2 and H2 H1 are ‘empty’ for each configuration and are not included in
the table. The initial send sequence number (ISS) is set to the same value for
each configuration, that is, for one side of the connection ISS is 10 and for the
other side ISS is 20. A Open and P Open represent active open and passive open
commands respectively.

As part of an incremental approach, we consider Configuration C that models
the releasing of a connection after it has been established. In Configuration C,
each user place is initialised to have a Close token, with both TCP entities in their
established states and with their state variables satisfying the proper establish-
ment property (i.e., item (II) of Property 1). In addition to releasing a connection
after it has been established, TCP allows the user to close a connection even be-
fore it has been established, for example, closing from the SYN RCVD state.
Configuration D models the situation where closing a connection can occur as
soon as either side makes a connection request, that is, after the client user issues
an active open or after the server user issues a passive open. Configuration E
models closing a connection once a simultaneous open is attempted at either side.
Configurations F – K consider various connection scenarios involving user aborts.

7 Termination and Absence of Deadlocks (Model 1)

The CPN model is analysed using Design/CPN [43] on a machine with an In-
tel Pentium 2.6GHz CPU and 1GB RAM. Table 2 shows the statistics of the
state space for each configuration of Model 1, which include calculation time (in
seconds), the number of markings (|V |), arcs (|A|), terminal markings (TMs),
and deadlocks (DLs). Except for Configurations D and E, each configuration
analysed satisfies the termination property and is free from deadlocks. Configu-
ration D contains one deadlock, which is explained in Section 7.1. Configuration
E contains two deadlocks which are similar to that of Configuration D.

7.1 Failure to Terminate the Connection

A path leading to the deadlock of Configuration D is shown in Fig. 5 with
its corresponding time sequence diagram in Fig. 6. The scenario begins with a

Table 2. State space statistics of the TCP CM configurations (Model 1)

Config. Time |V| |A| TMs DLs

1-A 0 11 12 2 0
1-B 0 42 60 2 0
1-C 0 57 92 1 0
1-D 0 225 455 3 1
1-E 3 2850 8260 6 2
1-F 0 51 91 3 0
1-G 1 355 870 4 0
1-H 1 356 792 13 0
1-I 0 79 141 2 0
1-J 0 73 129 3 0
1-K 1 742 1896 4 0
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1 
0:2

1
User 1: 1‘A_Open++ 1‘Close
User 2: 1‘P_Open++ 1‘Close
H1_H2 1: empty
H2_H1 1: empty
TCB 1: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 10},cls)
TCB 2: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 20},cls)

2 
1:2

2
User 1: 1‘A_Open++ 1‘Close
User 2: 1‘Close
H1_H2 1: empty
H2_H1 1: empty
TCB 1: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 10},cls)
TCB 2: 1‘(LISTEN,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 20},lis)

5 
2:3

5
User 1: 1‘Close
User 2: 1‘Close
H1_H2 1: 1‘{SEQ = 10,ACK = 0,CTL = (SYN,off)}
H2_H1 1: empty
TCB 1: 1‘(SYN_SENT,{RCV_NXT = 0,SND_NXT = 11,SND_UNA = 10,ISS = 10},cls)
TCB 2: 1‘(LISTEN,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 20},lis)

10 
1:3

10
User 1: 1‘Close
User 2: 1‘Close
H1_H2 1: empty
H2_H1 1: 1‘{SEQ = 20,ACK = 11,CTL = (SYN,on)}
TCB 1: 1‘(SYN_SENT,{RCV_NXT = 0,SND_NXT = 11,SND_UNA = 10,ISS = 10},cls)
TCB 2: 1‘(SYN_RCVD,{RCV_NXT = 11,SND_NXT = 21,SND_UNA = 20,ISS = 20},lis)

17 
1:3

17
User 1: 1‘Close
User 2: empty
H1_H2 1: empty
H2_H1 1: 1‘{SEQ = 20,ACK = 11,CTL = (SYN,on)}++ 1‘{SEQ = 21,ACK = 11,CTL = (FIN,on)}
TCB 1: 1‘(SYN_SENT,{RCV_NXT = 0,SND_NXT = 11,SND_UNA = 10,ISS = 10},cls)
TCB 2: 1‘(FIN_W1,{RCV_NXT = 11,SND_NXT = 22,SND_UNA = 20,ISS = 20},lis)

36 
1:2

36
User 1: 1‘Close
User 2: empty
H1_H2 1: 1‘{SEQ = 11,ACK = 21,CTL = (ACK,on)}
H2_H1 1: empty
TCB 1: 1‘(EST,{RCV_NXT = 21,SND_NXT = 11,SND_UNA = 11,ISS = 10},cls)
TCB 2: 1‘(FIN_W1,{RCV_NXT = 11,SND_NXT = 22,SND_UNA = 20,ISS = 20},lis)

46 
1:1

46
User 1: 1‘Close
User 2: empty
H1_H2 1: empty
H2_H1 1: empty
TCB 1: 1‘(EST,{RCV_NXT = 21,SND_NXT = 11,SND_UNA = 11,ISS = 10},cls)
TCB 2: 1‘(FIN_W1,{RCV_NXT = 11,SND_NXT = 22,SND_UNA = 21,ISS = 20},lis)

58 
2:1

58
User 1: empty
User 2: empty
H1_H2 1: 1‘{SEQ = 11,ACK = 21,CTL = (FIN,on)}
H2_H1 1: empty
TCB 1: 1‘(FIN_W1,{RCV_NXT = 21,SND_NXT = 12,SND_UNA = 11,ISS = 10},cls)
TCB 2: 1‘(FIN_W1,{RCV_NXT = 11,SND_NXT = 22,SND_UNA = 21,ISS = 20},lis)

73 
1:1

73
User 1: empty
User 2: empty
H1_H2 1: empty
H2_H1 1: 1‘{SEQ = 22,ACK = 12,CTL = (ACK,on)}
TCB 1: 1‘(FIN_W1,{RCV_NXT = 21,SND_NXT = 12,SND_UNA = 11,ISS = 10},cls)
TCB 2: 1‘(CLOSING,{RCV_NXT = 12,SND_NXT = 22,SND_UNA = 21,ISS = 20},lis)

95 
1:0

95
User 1: empty
User 2: empty
H1_H2 1: empty
H2_H1 1: empty
TCB 1: 1‘(FIN_W2,{RCV_NXT = 21,SND_NXT = 12,SND_UNA = 12,ISS = 10},cls)
TCB 2: 1‘(CLOSING,{RCV_NXT = 12,SND_NXT = 22,SND_UNA = 21,ISS = 20},lis)

26 
1:2

26
User 1: 1‘Close
User 2: empty
H1_H2 1: empty
H2_H1 1: 1‘{SEQ = 20,ACK = 11,CTL = (SYN,on)}
TCB 1: 1‘(SYN_SENT,{RCV_NXT = 0,SND_NXT = 11,SND_UNA = 10,ISS = 10},cls)
TCB 2: 1‘(FIN_W1,{RCV_NXT = 11,SND_NXT = 22,SND_UNA = 20,ISS = 20},lis)

1:1->2
Open’Passive_Open 2: {v={RCV_NXT = 
0,SND_NXT = 0,SND_UNA = 0,ISS = 20},
i=cls}

4:2->5
Open’Active_Open 1: {v={RCV_NXT = 0,
SND_NXT = 0,SND_UNA = 0,ISS = 10},
i=cls}

11:5->10
LISTEN’Rcv_SYN 2: {v={RCV_NXT = 0,
SND_NXT = 0,SND_UNA = 0,ISS = 20},
seg={SEQ = 10,ACK = 0,CTL = (SYN,
off)},i=lis}

22:10->17
Close’SYNRCVD_EST 2: {v={RCV_NXT = 
11,SND_NXT = 21,SND_UNA = 20,ISS = 
20},s=SYN_RCVD,i=lis}

67:36->46
FIN_WAIT_1’Rcv_ACK 2: {v={RCV_NXT = 
11,SND_NXT = 22,SND_UNA = 20,ISS = 
20},seg={SEQ = 11,ACK = 21,CTL = (
ACK,on)},i=lis}

85:46->58
Close’SYNRCVD_EST 1: {v={RCV_NXT = 
21,SND_NXT = 11,SND_UNA = 11,ISS = 
10},s=EST,i=cls}

108:58->73
FIN_WAIT_1’Rcv_FINsim 2: {v={
RCV_NXT = 11,SND_NXT = 22,SND_UNA = 
21,ISS = 20},seg={SEQ = 11,ACK = 21,
CTL = (FIN,on)},i=lis}

140:73->95
FIN_WAIT_1’Rcv_ACKonA 1: {v={
RCV_NXT = 21,SND_NXT = 12,SND_UNA = 
11,ISS = 10},seg={SEQ = 22,ACK = 12,
CTL = (ACK,on)},i=cls}

36:17->26
SYN_SENT’noSYN_noRST 1: {v={RCV_NXT 
= 0,SND_NXT = 11,SND_UNA = 10,ISS = 
10},seg={SEQ = 21,ACK = 11,CTL = (
FIN,on)},i=cls}

51:26->36
SYN_SENT’Rcv_SYNACK 1: {v={RCV_NXT 
= 0,SND_NXT = 11,SND_UNA = 10,ISS = 
10},seg={SEQ = 20,ACK = 11,CTL = (
SYN,on)},i=cls}

Fig. 5. A path in the occurrence graph for Configuration D (Model 1)

passive open from TCP entity 2 and then TCP entity 1 sends a SYN segment
with sequence number 10. TCP entity 2 responds with a SYNACK which has
sequence number 20 and acknowledgement number 11. It then sets SND UNA
to 20 and enters the SYN RCVD state. Now the user of TCP entity 2 issues
a close command, which results in a FIN segment being sent with sequence
number 21 and acknowledgment number 11. Note SND UNA is still 20, since
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Fig. 6. Connection release fails

TCP entity 2 has yet to receive an acknowledgement for its SYNACK. TCP
entity 2 then changes state from SYN RCVD to FIN WAIT 1. The SYNACK
sent earlier is delayed in the network and is overtaken by the FIN and received
by TCP entity 1. Because it is a FIN segment received in state SYN SENT,
TCP entity 1 ignores it, according to page 75 of RFC 793 [32]. When TCP
entity 1 receives the delayed SYNACK, it sends an ACK which has sequence
number 11 and acknowledgement number 21 (acknowledging the receipt of the
SYNACK) and goes to ESTABLISHED. When the ACK is received, TCP entity
2 accepts it since its ACK number (21) is greater than SND UNA (20), and
updates SND UNA from 20 to 21 (see pages 72 and 73 of RFC 793).

If TCP entity 1 (a client) is waiting for data to be sent by TCP entity 2
(the server), then the protocol hangs with TCP entity 1 in ESTABLISHED and
TCP entity 2 in FIN WAIT 1, and no data being sent (since the user of TCP
entity 2 has issued a close command). If the user of TCP entity 1 issues a close
command to terminate the connection, a FIN is sent to TCP entity 2, which has
sequence number 11 and acknowledgement number 21. TCP entity 1 then enters
state FIN WAIT 1. Since TCP entity 2 has sent a FIN to TCP entity 1 and has
yet to receive an acknowledgment of its FIN, it treats this FIN from TCP entity
1 as a simultaneous release request. TCP entity 2 sends an acknowledgement for
it, which has sequence number 22 and acknowledgement number 12, and enters
CLOSING from FIN WAIT 1. When receiving this ACK, TCP entity 1 changes
state from FIN WAIT 1 to FIN WAIT 2, and is waiting for TCP entity 2 to
send a FIN to complete the graceful release. TCP entity 1 is oblivious to the
FIN it received while it was in SYN SENT. On the other hand, TCP entity 2 is
expecting TCP entity 1 to send an acknowledgement to its first FIN, which will
never come. So the protocol is deadlocked.
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7.2 Resolution of the Deadlock Using Retransmission

In this section, we discuss the impact of TCP’s retransmission mechanism on
removing this deadlock. Referring to Fig. 6, when TCP sends a FIN in state
FIN WAIT 1, it sets a retransmission timer for the FIN. The timer keeps running
until it receives an acknowledgment to its FIN or until it expires. We firstly con-
sider the situation where the timer expires while TCP entity 2 is in FIN WAIT 1.
When the timer expires, the FIN is retransmitted. We consider two important
cases: (1) when all the retransmitted FINs arrive before the SYNACK; and (2)
when one of the retransmitted FINs arrives after the SYNACK. If the FIN arrives
before the SYNACK, then TCP entity 1 will discard it the same as before. This
can happen a number of times until TCP entity 2 reaches its maximum number
of retransmissions, if the SYNACK is greatly delayed. If TCP entity 2 reaches
its maximum number of retransmissions, then TCP aborts the connection. That
is, it sends a RST and enters CLOSED. On arrival the RST changes the state of
TCP entity 1 to CLOSED. On the other hand, if one of the retransmitted FINs
arrives after the SYNACK, then TCP entity 1 can close the connection in the
usual way. Hence the deadlock problem will not occur in the situation where the
timer expires in FIN WAIT 1.

If the timer is still running when TCP entity 2 receives a FIN and enters
CLOSING (see Fig. 6), then the deadlock can also be removed. Consider that
TCP entity 2 retransmits a FIN in state CLOSING, which has sequence num-
ber 21 and acknowledgement number 12. The FIN will be received either be-
fore TCP entity 1 receives ACK(22,12) or after it receives ACK(22,12). In the
first case, TCP entity 1 enters TIME WAIT due to receiving this FIN (which
is a FINACK) and sends an ACK. When TCP entity 2 receives this ACK,
it enters TIME WAIT. Segment ACK(22,12) will be discarded by TCP en-
tity 1 as a duplicate ACK. Both TCP entities will then enter CLOSED from
TIME WAIT. In the second case, TCP entity 1 enters TIME WAIT after re-
ceiving the retransmitted FIN and sends an ACK. When TCP entity 2 receives
this ACK, it enters TIME WAIT. The connection will then be CLOSED at both
ends after the 2MSL timers expire. Hence the deadlock will not occur in this
case also.

To conclude, FIN retransmission can remove the deadlock. In the case where
out of order segments are buffered and reordered in the receiver before delivery,
TCP retransmissions are required to recover from loss. However, in this case, the
medium does not lose segments, so one would not expect retransmission to be
necessary. The conclusion we draw from this informal analysis is corroborated
by the analysis in Section 8.

8 Termination and Absence of Deadlocks (Model 2)

Due to space limitations, we only present the state space statistics of Configu-
rations A – H of Model 2 (see Table 3). Results for Configurations I – K can
be found in [11]. In the Configuration column of Table 3, a case is represented
by three elements: (1) the model number; (2) the configuration class; and (3) a
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four tuple of natural numbers. The four tuple represents the maximum number
of retransmissions set for a SYN, SYNACK, FIN retransmitted in FIN WAIT 1
and/or CLOSING, and FIN retransmitted in LAST ACK. For example, in case
2-D-(0,1,0,1), the tuple indicates that the maximum number of retransmissions
for SYN is 0, for SYNACK is 1, for FIN retransmitted in FIN WAIT 1 and/or
CLOSING is 0, and for FIN retransmitted in LAST ACK is 1. The maximum
number of retransmissions for each segment is identical for each end.

Except for Configurations D and E where each maximum number of retrans-
missions is limited to 1, the other configurations have the maximum number of
retransmissions limited to 2. Since Configurations A and B are only concerned
with connection establishment, the last two numbers of the tuple are 0 since
there are no FINs retransmitted. This rule also applies to Configurations F and
G, where no close command is issued. Configuration C is concerned with con-
nection release from the ESTABLISHED state, hence the first two numbers of
the tuple concerning the retransmissions of the SYN and SYNACK are always 0.
This also applies to Configuration H. For Configurations I – K, the last number
in the tuple is 0. This is because neither of the TCP entities go through state
LAST ACK (there is one close token in one of the user places), so no FINs are
retransmitted in LAST ACK.

We limit the maximum computation time to 6 hours for configurations other
than D and E, and to 24 hours for D and E. If a case takes more than these
limits to compute, we classify it as having a large state space requiring advanced
state space techniques, such as the sweep-line method [7], which we would like
to apply in the future.

Except for Configurations D and E, each case analysed satisfies the termina-
tion property and contains no deadlocks. Referring to Table 1, Configuration D
has an A Open token and a Close token in place User 1, and a P Open and a
Close token in place User 2. If the first element in the four-tuple of Configura-
tion D is set to 1 (which means that a SYN can be retransmitted once by user
1), then the deadlock discovered in Model 1 can still exist. This is because the
SYN can be delayed in the network and arrive at TCP entity 2 when it is in
CLOSING. TCP entity 2 drops the SYN and sends an ACK in response due to
its unacceptable sequence number, and TCP entity 1, in FIN WAIT 2, accepts
the ACK and remains in the same state. Hence there are two deadlocks, one
has the SYN retransmitted and the other does not. If the second element in the
four-tuple of Configuration D is set to 1 (which means that a SYNACK can be
retransmitted once by user 2), then the deadlock can exist for the same reason.
If the third element of the tuple is set to 1 (which means that a FIN can be re-
transmitted in FIN WAIT 1 or CLOSING), then the number of deadlocks is 0.
This corroborates the discussion in Section 7.2. Since the scenarios leading to the
deadlock do not involve a TCP entity being in LAST ACK, the retransmission
of FIN in state LAST ACK does not affect the deadlock.

Cases 2-D-(1,1,0,0) and 2-D-(1,1,0,1) each have both the first and second
elements in the tuple set to 1, so there exist four combinations of the value of
the retransmission counter for SYN and SYNACK, and hence four deadlocks.
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Table 3. State space statistics of Configuration A – H of Model 2

Configuration hh:mm:ss |V| |A| TMs DLs

2-A-(0,1,0,0) 00:00:00 41 60 4 0
2-A-(1,0,0,0) 00:00:00 99 176 6 0
2-A-(1,1,0,0) 00:00:00 438 1006 12 0
2-A-(0,2,0,0) 00:00:00 78 133 5 0
2-A-(2,0,0,0) 00:00:00 279 575 9 0
2-A-(1,2,0,0) 00:00:01 823 2012 16 0
2-A-(2,1,0,0) 00:00:01 1480 4067 18 0
2-A-(2,2,0,0) 00:00:03 2880 8388 24 0
2-B-(0,1,0,0) 00:00:01 1191 3334 7 0
2-B-(1,0,0,0) 00:00:02 1465 3938 8 0
2-B-(1,1,0,0) 00:01:01 29254 112180 28 0
2-B-(0,2,0,0) 00:00:06 5083 16320 14 0
2-B-(2,0,0,0) 00:00:12 8837 27614 18 0
2-B-(1,2,0,0) 00:11:59 116420 489726 56 0
2-B-(2,1,0,0) 03:40:24 247977 1123602 63 0
2-C-(0,0,0,1) 00:00:00 311 744 3 0
2-C-(0,0,1,0) 00:00:06 5138 16294 11 0
2-C-(0,0,1,1) 00:00:09 6742 21384 15 0
2-C-(0,0,0,2) 00:00:00 691 1802 5 0
2-C-(0,0,2,0) 00:06:13 73707 282914 38 0
2-C-(0,0,1,2) 00:00:13 9394 30122 19 0
2-C-(0,0,2,1) 00:07:03 78815 301236 44 0
2-C-(0,0,2,2) 00:09:25 87291 332366 50 0
2-D-(0,0,0,1) 00:00:01 1309 3899 5 1
2-D-(0,1,0,0) 00:00:01 1362 3498 7 2
2-D-(1,0,0,0) 00:00:02 1810 4810 6 2
2-D-(0,1,0,1) 00:00:11 8743 31122 11 2
2-D-(0,0,1,0) 00:00:15 10156 34825 11 0
2-D-(1,1,0,0) 00:00:15 10381 33056 16 4
2-D-(1,0,0,1) 00:00:16 10481 38071 10 2
2-D-(0,0,1,1) 00:00:28 16612 59184 15 0
2-D-(0,1,1,0) 00:04:26 64871 258399 24 0
2-D-(1,1,0,1) 00:05:07 65381 273981 24 4
2-D-(1,0,1,0) 00:07:16 77940 317337 24 0
2-D-(0,1,1,1) 00:14:34 104046 426872 32 0
2-D-(1,0,1,1) 00:48:35 126098 530381 32 0
2-E-(0,0,0,1) 00:00:48 19354 75158 8 2
2-E-(0,1,0,0) 00:06:26 45293 163984 21 8
2-E-(1,0,0,0) 00:22:50 98627 392610 24 8
2-E-(0,0,1,0) 00:25:25 122654 516530 12 0
2-E-(0,1,0,1) 09:10:37 328023 1524604 29 8
2-F-(0,1,0,0) 00:00:00 202 420 7 0
2-F-(1,0,0,0) 00:00:00 371 890 6 0
2-F-(1,1,0,0) 00:00:02 1611 4401 14 0
2-F-(0,2,0,0) 00:00:00 479 1098 10 0
2-F-(2,0,0,0) 00:00:01 1236 3461 9 0
2-F-(1,2,0,0) 00:00:04 3792 11162 20 0
2-F-(2,1,0,0) 00:00:07 5978 19196 21 0
2-F-(2,2,0,0) 00:00:23 14563 50327 30 0
2-G-(0,1,0,0) 00:00:05 4524 13810 15 0
2-G-(1,0,0,0) 00:00:12 8495 29146 16 0
2-G-(1,1,0,0) 00:10:59 103670 422326 60 0
2-G-(0,2,0,0) 00:00:35 21612 73264 32 0
2-G-(2,0,0,0) 00:04:47 66355 271050 36 0
2-H-(0,0,0,1) 00:00:01 1078 2698 21 0
2-H-(0,0,1,0) 00:00:21 13544 44478 53 0
2-H-(0,0,1,1) 00:00:30 17874 58326 69 0
2-H-(0,0,0,2) 00:00:02 2278 6072 29 0
2-H-(0,0,1,2) 00:00:49 25740 84568 85 0
2-H-(0,0,2,0) 02:09:17 188793 743234 167 0
2-H-(0,0,2,1) 02:34:09 203217 795326 191 0
2-H-(0,0,2,2) 03:36:12 229587 893332 215 0
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Cases 2-D-(1,1,1,0) and 2-D-(1,1,1,1) could not be generated in 24 hours, but we
conjecture that they will not have deadlocks given that the third element of the
tuple is 1.

Also referring to Table 1, Configuration E has an A Open token and a Close
token in place User 1, and an A Open and a Close token in place User 2. If the
first element in the four-tuple of a case of Configuration E is set to 1 (which
means that a SYN can be retransmitted by either end), then there are four
combinations of the retransmission values. Because Configuration E of Model 1
has two deadlocks, we expect these cases of Configuration E of Model 2 to have
eight deadlocks, differing only in the marking of the Retransmission Counter
place for each TCP entity. Similar results hold for the cases where the second
element in the four-tuple is set to 1, which means that a SYNACK can be
retransmitted by either end. If the third element of the tuple is set to 1, then
the number of deadlocks is 0, again corroborating the discussion in Section 7.2.
Finally, the number of the fourth element indicates the maximum number of
FINs retransmitted in state LAST ACK, which does not affect the deadlock.

9 Conclusions

Although TCP has been used in the Internet for over twenty years, its protocol
mechanisms are still not fully understood, due to its complexity. This is demon-
strated in [29] where some 60 pages of errors were reported in TCP implemen-
tations in 1999. Moreover, TCP is being used as the basis for the development
of new Internet protocols [19, 39]. Thus it is important to have a more funda-
mental understanding of TCP’s operations. To address this situation we have
developed a detailed CPN model of TCP’s Connection Management procedures
with a view to verifying their correctness. We have also provided insights into
TCP’s operation through in-depth functional analysis.

In this paper, we have investigated the termination properties of TCP Con-
nection Management. We define the notions of desired and acceptable terminal
states, and then check that these are the only possible dead markings that the
TCP CPN model can enter. We check these properties for 11 different connec-
tion management scenarios using state spaces. Our analysis indicates that, over
a reordering channel without loss, TCP terminates correctly for client-server
and simultaneous connection establishment, orderly release after the connection
is established and aborting of connections. We have discovered, however, that
termination problems can occur when the user releases the connection while the
TCP entity is in the SYN RCVD state, i.e. before the connection has been fully
set up. In this case TCP can deadlock: the client can be waiting for data from
the server, while the server is waiting for an acknowledgement of its FIN that
never comes. Further, if the client decides to close, TCP also deadlocks where
the client waits for the server to close its half connection, while the server is still
waiting for an acknowledgement of its FIN.

Loss of TCP segments can occur either due to routers dropping packets or due
to the detection of transmission errors. When there is no loss and out of order
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segments are buffered and reordered in the receiver before delivery, retransmis-
sions should not be needed. However, we have also shown that retransmission
of the FIN in state FIN WAIT 1 or CLOSING removes these deadlocks, for the
cases investigated. It is therefore recommended that TCP implementations al-
ways include a retransmission timer for FIN segments, even over media that do
not lose or corrupt packets and have negligible transmission errors.
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Abstract. We study concurrent processes modelled as workflow Petri
nets extended with resource constraints. We define a behavioural cor-
rectness criterion called soundness: given a sufficient initial number of
resources, all cases in the net are guaranteed to terminate successfully,
no matter which schedule is used. We give a necessary and sufficient con-
dition for soundness and an algorithm that checks it.

Keywords: Petri nets; concurrency; workflow; resources; verification.

1 Introduction

In systems engineering, coordination plays an important role on various levels.
Workflow management systems coordinate the activities of human workers; the
principles underlying them can also be applied to other software systems, like
middleware and web services. Petri nets are well suited for modelling and verifi-
cation of concurrent systems; for that reason they have proven to be a successful
formalism for Workflow systems (see e.g. [1, 2, 3, 4]).

Workflow systems can be modelled by so-called Workflow Nets (WF-nets) [1],
i.e. Petri nets with one initial and one final place and every place or transition
being on a directed path from the initial to the final place. The execution of
a case is represented as a firing sequence that starts from the initial marking
consisting of a single token on the initial place. The token on the final place with
no garbage (tokens) left on the other places indicates the proper termination
of the case execution. A model is called sound iff every reachable marking can
terminate properly.

WF-nets are models emphasising the partial ordering of activities in the pro-
cess and abstracting from resources, such as machines, manpower or money,
which may further restrict the occurrence of activities. In this paper we consider
the influence of resources on the processing of cases in Workflow Nets. We con-
sider here only durable resources, i.e. resources that are claimed and released
during the execution, but not created or destroyed. We introduce the notion of
the Resource-Constrained Workflow net (RCWF-net), which is a workflow net
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consisting of a production (sub)net — a workflow net where resources are ab-
stracted away, and a number of resource places restricting the functionality of
the production net.

We adapt the notion of generalised soundness introduced for WF-nets [11] to
the nature of RCWF-nets: We say that an RCWF-net with k case tokens (tokens
on the initial place of the production net) and a resource marking R is (k , R)-
sound iff all cases can terminate properly, whatever choices are made during the
execution, and all resources are returned to their places. We will say that an
RCWF-net is sound iff there exists a resource marking R0 such that the RCWF-
net is (k , R)-sound for any number of cases k and any resource marking R ≥ R0.
This definition is very natural, especially in the area of business processes, since
we would like to have a system specification such that any number of orders
could be processed correctly, and buying new machines or obtaining additional
financial resources would not require to reconsider the specification, lest the
system become unreliable.

In many practical applications, cases processed in the Workflow net are inde-
pendent of each other, which can be modelled by introducing simple colours for
tokens going through the production net. We build a transition system corre-
sponding to the work of the production net with a single initial token, extending
this transition system with the information about consumptions and releases of
resources for every transition in it. Then we represent this transition system as a
state machine, which can be considered as a model of the production net where
the colours of tokens can be removed without influencing the system behaviour,
and finally we extend this state machine up to the RCWF-net by adding resource
places according to information about resource consumptions/releases that we
have for every transition of the net. Thus our task of checking the correctness
of arbitrary RCWF-nets is reduced to checking the correctness of RCWF-nets
whose production nets are state machines.

In this paper we consider only RCWF-nets with one resource type, which is
sufficient for many practical applications (memory and money are typical exam-
ples of such resources). We give a necessary and sufficient condition of soundness
for the nets of this class and give a decision algorithm with a polynomial com-
plexity w.r.t. the number of states of the state machine describing the behaviour
of the production net.

Related Work. The problem of the correct functioning of parallel processes
that share resources is not new at all. The famous banker’s algorithm of Di-
jkstra (cf. [8]) is one of the oldest papers on this topic. The problem of the
banker’s algorithm is different from ours, because in the bankers algorithm a
schedule (i.e. an ordering of processes for granting their resource claims) is de-
signed. It is a pessimistic approach because it assumes that each process might
eventually claim its maximal need for resources, a number that has to be known
in advance. In our situation the pessimistic scheduling is too restrictive. An-
other important difference is that we do not consider a scheduling strategy
at all: we look for conditions such that a workflow engine can execute tasks
(i.e. fire transitions) as soon as all preliminary work has been done, if there
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are enough resources available. So the workflow engine may assign resources
considering the local state only. This means that if the processes are designed
properly, a standard workflow engine can be used to execute the process in a
sound way.

The problem of resource sharing in flexible manufacturing systems has been
studied extensively, specifically by modelling them as Petri nets (see [14, 13,
10, 6, 9] for an overview of works in this field). In these works the authors fo-
cus on extending a model that represents the production process with a sched-
uler in order to avoid deadlocks and to use resources in the most efficient way.
As mentioned above, our goal is to allow the workflow engine to execute pro-
cesses without further scheduling. Therefore we concentrate here on fundamen-
tal correctness requirements for RCWF-nets: resource conservation laws (ev-
ery claimed resource is freed before the case terminates and no resource is cre-
ated) and the absence of deadlocks and livelocks that occur due to the lack of
resources.

In [5] the authors consider structural analysis of Workflow nets with shared
resources. Their definition of structural soundness corresponds approximately to
the existence of k cases and R resource tokens such that the net is sound for
this k and R. We consider systems where a number of cases with id’s are going
through the net and the number of available resources can vary; so we require
that the system should work correctly for any number of cases and resources.
Therefore the results of [5] are not applicable to our case.

The rest of the paper is organised as follows. In Section 2, we sketch the basic
definitions related to Petri nets and Workflow nets. In Section 3 we introduce the
notion of Resource-Constrained Workflow Nets and define the notion of sound-
ness for RCWF-nets. In Section 4 we give a necessary and sufficient condition of
soundness and in Section 5 we give a decision algorithm for soundness. We con-
clude in Section 6 with discussing the obtained results and indicating directions
for future work.

2 Preliminaries

N denotes the set of natural numbers and Q the set of rational numbers.
Let P be a set. A bag (multiset) m over P is a mapping m : P → N. The set

of all bags over P is NP . We use + and − for the sum and the difference of two
bags and =, <, >,≤,≥ for comparison of bags, which are defined in a standard
way. We overload the set notation, writing ∅ for the empty bag and ∈ for the
element inclusion. We write e.g. m = 2[p] + [q ] for a bag m with m(p) = 2,
m(q) = 1, and m(x ) = 0 for all x �∈ {p, q}. As usual, |m| stands for the number
of elements in bag m.

For (finite) sequences of elements over a set T we use the following notation:
The empty sequence is denoted with ε; a non-empty sequence can be given by
listing its elements. A concatenation of sequences σ1 and σ2 is denoted with
σ1σ2, tσ and σt stand for the concatenation of t and sequence σ and vice versa,
and σn for the concatenation of n sequences σ.
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Transition Systems. A transition system is a tuple E = 〈S , Act, T 〉 where S
is a set of states, Act is a finite set of action names and T ⊆ S × Act × S is a
transition relation. A process is a pair (E , s0) where E is a transition system and
s0 ∈ S an initial state. We denote (s1, a, s2) ∈ T as s1

a−→E s2, and we say that
a leads from s1 to s2 in E . We omit E and write s a−→ s ′ whenever no ambiguity
can arise. For a sequence of transitions σ = t1 . . . tn we write s1

σ−→ s2 when
s1 = s0 t1−→ s1 t2−→ . . .

tn−→ sn = s2. In this case we say that σ is a trace of E .
Finally, s1

∗−→ s2 means that there exists a sequence σ ∈ T ∗ such that s1
σ−→ s2.

We say that s2 is reachable from s1 iff s1
∗−→ s2.

Petri Nets. A Petri net is a tuple N = 〈P , T , F+, F−〉, where:

– P and T are two disjoint non-empty finite sets of places and transitions
respectively; we call the elements of the set P ∪ T nodes of N ;

– F+ and F− are mappings (P × T ) → N that are flow functions from tran-
sitions to places and from places to transitions respectively.

F = F+ − F− is the incidence matrix of net N .
We present nets with the usual graphical notation.
Given a transition t ∈ T , the preset •t and the postset t• of t are the bags

of places where every p ∈ P occurs F−(p, t) times in •t and F+(p, t) times in
t•. Analogously we write •p, p• for pre- and postsets of places. We will say that
a node n is a source node iff •n = ∅ and n is a sink node iff n• = ∅.

A marking m of N is a bag over P ; markings are states (configurations) of
a net. A pair (N , m) is called a marked Petri net. A transition t ∈ T is enabled
in marking m iff •t ≤ m. An enabled transition t may fire. This results in a
new marking m ′ defined by m ′ def= m − •t + t•. We interpret a Petri net N as a
transition system/process where markings play the role of states and firings of
the enabled transitions define the transition relation, namely m + •t t−→ m + t•,
for any m ∈ NP . The notion of reachability for Petri nets is inherited from the
transition systems. We denote the set of all markings reachable in net N from
marking m as R(N , m). We will drop N and write R(m) when no ambiguity
can arise.

Place Invariants. (see [12]) A place invariant is a row vector I : P → Q such
that I · F = 0. When talking about invariants, we consider markings as vectors.

State Machines. A subclass of Petri nets that we will heavily use further on
is state machines. State machines can represent conflicts by a place with several
output transitions, but they cannot represent concurrency and synchronisation.
Formally: Let N = 〈S , T , F 〉 be a Petri net. N is a state machine (SM) iff
∀ t ∈ T : |•t|= 1∧ |t•|= 1.

Workflow Petri Nets. In this paper we primarily focus upon the Workflow
Petri nets (WF-nets) [1]. As the name suggests, WF-nets are used to model the
processing of tasks in workflow processes. The initial and final nodes indicate
respectively the initial and final states of processed cases.
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Definition 1 (WF-net). A Petri net N is a Workflow net (WF-net) iff:

1. N has two special places: i and f . The initial place i is a source place, i.e.
•i = ∅, and the final place f is a sink place, i.e. f • = ∅.

2. For any node n ∈ (P ∪T ) there exists a path from i to n and a path from n
to f .

We consider the processing of multiple tasks in Workflow nets, meaning that
the initial place of a Workflow net may contain an arbitrary number of tokens.
Our goal is to provide correctness criteria for the design of these nets. One natural
correctness requirement is proper termination, which is called soundness in the
WF-net theory. We will use the generalised notion of soundness for WF-nets
introduced in [11]:

Definition 2 (soundness of WF-nets).
N is k -sound for some k ∈ N iff for all m ∈ R(k [i ]), m ∗−→ k [f ].
N is sound iff it is k-sound for all k ∈ N.

3 Resource-Constrained Workflow Nets

Workflow nets specify the handling of tasks within the organisation, factory,
etc. without taking into account resources available there for the execution. We
extend here the notion of WF-nets in order to include information about the use
of resources into the model.

A resource belongs to a type; we have one place per resource type in the net
where the resources are located when they are free. We assume that resources are
durable, i.e. they can neither be created nor destroyed, they are claimed during
the handling procedure and then released again. Typical examples of resources
are money, memory, manpower, machinery. By abstracting from the resource
places we obtain the WF-net that we call production net.

Definition 3 (RCWF-net). A WF-net N = 〈Pp ∪Pr , T , F+
p ∪F+

r , F−
p ∪F−

r 〉
with initial and final places i , f ∈ Pp is a Resource-Constrained Workflow net
(RCWF-net) with the set Pp of production places and the set Pr of resource
places iff

– Pp ∩ Pr = ∅,
– F+

p and F−
p are mappings (Pp × T ) → N,

– F+
r and F−

r are mappings (Pr × T ) → N, and
– Np = 〈Pp , T , F+

p , F−
p 〉 is a WF-net, which we call the production net of N .

Workflow Nets with Id-Tokens. Cases processed in the Workflow net are
often independent of each other, i.e. tokens related to different cases cannot
interfere with each other. This can be modelled by assigning a unique id-colour
to each case, and allowing firings only on the tokens of the same colour. Colouring
does not concern the resource tokens: resources are shared by all cases processed
in the net and are colourless.
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Therefore, we extend the semantics of Petri nets by introducing id-tokens.
Our RCWF-nets will have tokens of two types: coloured tokens on production
places, which are pairs (p, a), where p is a place and a ∈ Id is an identifier, and
uncoloured tokens on resource places. We assume Id to be a countable set. We
will write xp for the projection of x ∈ NP on production places (coloured part
of the marking) and xr for the projection of x on resource places (uncoloured
part). A transition t ∈ T is enabled in m iff (•t)r ≤ m and there exists a ∈ Id
such that mp contains tokens on (•t)p with identifier a. A firing of t results
in consuming these tokens and producing tokens with identifier a to (t•)p and
uncoloured tokens to (t•)r . Later on, we will use the extended semantics when
working with id-tokens, and the standard semantics for classical tokens.

Though being a very simple sort of coloured nets, WF-nets with id-tokens are
often expressive enough to reflect the essence of a modelled process, separating
different cases which are processed in the net concurrently.

Soundness of RCWF-Nets. Soundness in WF-nets is the property that says
that every marking reachable from an initial marking with k tokens on the initial
place terminates properly, i.e. it can reach a marking with k tokens on the final
place, for an arbitrary natural number k . In the RCWF-net, the initial marking
of the net is a marking with some tokens on the initial place and a number of
resource tokens on the resource places. With the proper termination for RCWF-
nets we mean that the resource tokens are back to their resource places and all
tasks are processed correctly, i.e. all the places of Np except for f are empty.
Moreover, we want the net to work properly not only with some fixed amount of
resources but also with any greater amount: we want the verified system to work
correctly also when more money, memory, manpower, or machinery is available.
On the other hand, it is clear that there is some minimal amount of resources
needed to guarantee that the system can work at all.

Another correctness requirement that should be reflected by the definition of
soundness is that resource tokens cannot be created during the processing, i.e.
at any moment of time the number of available resources does not exceed the
number of initially given resources. The extended definition of soundness reads
thus as follows:

Definition 4 (soundness of RCWF-nets). Let N be an RCWF-net.
N is (k , R)-sound for some k ∈ N, R ∈ NPr iff for all m ∈ R(

∑
a∈Id [(i , a)] + R)

with |Id|= k holds: mr ≤ R and m ∗−→ (
∑

a∈Id [(f , a)] + R).
N is k -sound iff there exists R ∈ NPr such that N is (k , R′)-sound for all R′ ≥ R.
N is sound iff there exists R ∈ NPr such that N is (k , R′)-sound for all k ∈
N, R′ ≥ R.

The soundness problem is a parameterised problem formulated on a coloured
Petri net. We will first use the nature of the colouring to reduce this problem to
a problem on an uncoloured net.

Lemma 5. The production net of a sound RCWF-net is 1-sound.
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Proof. Since we want to prove 1-soundness, we only have to consider the pro-
cessing of a single case in the net, and therefore all production tokens have the
same colour, which we abstract from. Let N be a sound RCWF-net and assume
that Np is not 1-sound. Then there exist a firing sequence σ and a production
marking mp such that [i ] σ−→Np

mp and mp � ∗−→Np
[f ]. Take enough resources

m0 ∈ NPr to enable σ in N , then mp + mr is reachable in (N , [i ] + m0) but
mp + mr � ∗−→N [f ] + m0, which contradicts the soundness of the RCWF-net. ��

1-soundness of the production net is thus a necessary condition of the sound-
ness of the RCWF-net. 1-soundness of a WF-net can be checked by checking
that the closure1 of the WF-net is live and bounded [1]. In the rest of the paper
we assume that the check of 1-soundness of the production net has been done
and its result is positive.

Corollary 6. For any sound RCWF-net N,R(Np ,[(i , a)]) is finite for anya ∈ Id.

Proof. All production tokens in (Np , [i , a]) will have colour a and thus the colour
does not influence the behaviour of the net and we can abstract from it. Assume
R(Np , [i ]) is infinite. Then there are m1, m2 ∈ R(Np , [i ]) such that m2 = m1 + δ

for some δ > ∅. Since N is sound, Np is 1-sound and m1
∗−→Np

[f ]. Thus
m1+δ

∗−→Np
[f ]+δ. Hence [f ]+δ ∈ R(Np , m2) ⊆ R(Np , [i ]) and [f ]+δ

∗−→Np
[f ],

which is impossible since f is a sink place and any transition of Np has at least
one output place. ��

Given an RCWF-net N with one resource type we construct a resource-
constrained state machine WF-net with the same behaviour as N as follows.
First, let T be a transition system corresponding to (Np , [i ]) extended with the
information about resource consumption and production for every transition
of T . Then we build a resource-constrained state machine workflow net N ′ by
creating a place for every state of T and a transition with the corresponding
resource consumption/production for every transition of T . Observe that due to
the use of id-tokens, N ′ is sound iff N is. Hence, we can check soundness of an
RCWF-net by checking soundness of the corresponding state machine workflow
net.

In this paper we restrict our attention to Resource-Constrained Workflow
nets with one type of resources. This is a typical situation in various practical
applications with memory, money or manpower being the considered resource.
Therefore, in the remainder of the paper we consider only state machine workflow
nets with one resource type (SM1WF-nets):

Definition 7. An RCWF-net N = 〈Pp ∪Pr , T , F+
p ∪F+

r , F−
p ∪F−

r 〉 is called a
state machine workflow net with one resource type (SM1WF-net) if Pr = {r}
and the production net Np of N is a state machine.

1 The closure of a WF-net N is the net obtained by adding to N a transition with f
as the input place and i as the output place.



Soundness of Resource-Constrained Workflow Nets 257

Note that a production token in the SM1WF-net represents a part of a pro-
duction marking of the original RCWF-net related to one case (one id-colour).
Thus all production tokens in the SM1WF-net have different id-colours. Note
that every firing in an SM1WF-net requires only one production token (and a
number of resource tokens) and results in the production of a single production
token (and a number of resource tokens). Therefore we can abstract from colours
when considering soundness of SM1WF-nets.

For SM1WF-nets we write ◦t and t◦ for the input/output place of t in the
production net.

4 Soundness Check for SM1WF-Nets

In this section we will give a necessary and sufficient condition for the soundness
of SM1WF-nets. We start by introducing a notion of path that we will use here.
Unlike a trace, a path does not deal with the processing of multiple production
tokens. Formally, given an SM1WF-net N , a path is a sequence t1 . . . tn of tran-
sitions in T such that ∀ k : 1 ≤ k < n : t◦k = ◦tk+1. We write ◦σ and σ◦ for
the input and the output place of a nonempty path σ = t1 . . . tn , i.e. for ◦t1, t◦n
respectively. A path σ is called a successor of a path ρ (and ρ a predecessor of
σ) if ρ◦ = ◦σ. Their juxtaposition ρσ then is again a path of N .

With every path we associate three numbers: its resource production, con-
sumption and effect.

Definition 8. Let N be an SM1WF-net. The resource effect E, production P
and consumption C are defined as follows:

– for the empty path ε, E(ε) = P(ε) = C(ε) = 0;
– for a path t, t ∈ T, E(t) = t•(r)− •t(r), P(t) = t•(r), and C(t) = •t(r);
– for a path σt, E(σt) = E(σ)+E(t), P(σt) = max(P(t),P(σ)+E(t)) and for

a path tσ, C(tσ) = max(C(t), C(σ)− E(t)).

The notion of effect allows us to distinguish three kinds of paths. A path σ
is called a C-path (consumption path) if E(σ) < 0, an E-path (equality path) if
E(σ) = 0, and a P-path (production path) if E(σ) > 0.

Example 9. Now we will illustrate the intuitive meaning of E ,P and C on an
example and in the rest of the section we will prove that E ,P and C confirm
this intuition indeed. Consider paths tu and vx of SM1WF-net N in Fig. 1.2

The resource effect of these paths E(tu) = 1 − 4 + 5 − 2 = 0 and E(vx ) =
3 − 1 + 3 − 2 = 3, which corresponds to the change of the number of resource
tokens due to the firing of the transitions of the corresponding path. P(tu) =
max(P(u),P(t) + E(u)) = max(5, 1 + 3) = 5 and P(vx ) = max(P(x ),P(v) +

2 Instead of drawing a resource place and its in- and outgoing arcs, we put the weights
of the arcs from and to the resource place under the corresponding transitions. So
(4, 1) for transition t means that t consumes 4 resource tokens and then releases 1
resource token.
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Fig. 1. Example of an SM1WF-net

E(x )) = max(3, 3 + 1) = 4. Note that P(tu),P(vx ) correspond to the minimal
number of resource tokens we are guaranteed to have immediately after the firing
of tu/vx respectively. C(tu) = max(C(t), C(u) − E(t)) = max(4, 2 + 3) = 5 and
C(vx ) = max(C(v), C(x )−E(v)) = max(1, 2−2) = 1. C(tu) and C(vx ) correspond
to the minimal number of resource tokens needed to make the firings of tu/vx
possible.

4.1 Properties of the Resource-Effect Function

Lemma 10. Let N be a sound SM1WF-net. Then for any place p ∈ Pp and any
two paths σ and ρ such that ◦σ = ◦ρ = i and σ◦ = ρ◦ = p holds E(σ) = E(ρ) ≤ 0.

Proof. Since N is sound, Np is sound as well and there exists a firing sequence
γ such that [p]

γ−→ [f ]. Take R large enough to make both σγ and ργ firable
from [i ] + R[r ]. Thus [i ] + R[r ] σ−→ [p] + (R + E(σ))[r ]

γ−→ [f ] + R[r ] and
[i ] + R[r ]

ρ−→ [p] + (R + E(ρ))[r ]
γ−→ [f ] + R[r ], which implies that E(σ) = E(ρ).

Moreover, since N is sound and thus no resource creation happens, R+E(σ) ≤ R,
i.e. E(σ) ≤ 0. ��

Thus, in a sound SM1WF-net, each production place p has a unique weight
defined as −E(σ) for some σ such that ◦σ = i and σ◦ = p, showing how many
resources a production token on place p possesses. (Clearly, the weight can be
equivalently defined as E(ρ) where ρ is some sequence with ◦ρ = p and ρ◦ =
f .) This observation leads to the following place invariant property for sound
SM1WF-nets:

Lemma 11. Let N be a sound SM1WF-net with the initial place i, the final
place f , and the resource place r. Then there exists a unique place invariant W
such that W (i) = W (f ) = 0, W (r) = 1. Moreover, for every place p ∈ Pp,
W (p) = −E(σ) for any σ with ◦σ = i and σ◦ = p, and hence W (p) ≥ 0 for all
p ∈ Pp.

Proof. The proof is done in a constructive way. Since N is sound, we have a
unique mapping W : P → N such that for every place p ∈ Pp W (p) = −E(σ)
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where σ is some path with ◦σ = i and σ◦ = p, and W (r) = 1. By construction,
for any sound net W (i) = W (f ) = 0 and W (p) ≥ 0, for all p ∈ Pp .

Now we will show that W is a place invariant, i.e. W · F = 0. Since Np is a
state machine, a column of F corresponding to a transition t has −1 in the cell
◦t , 1 in t◦ and t•(r)−•t(r) in the resource place r . Hence, the product of W and
the t-column of F can be written as −W (◦t)+W (t◦)+(t•(r)− •t(r)) ·W (r) =
E(σ)−E(σt)+ t•(r)−•t(r) = 0 (σ is some path with ◦σ = i and σ◦ = ◦t). Since
the same reasoning can be applied to any transition t , we have W · F = 0.

By induction on the length of σ with ◦σ = i , σ◦ = p, it is easy to show
that W is unique, i.e. for any invariant W ′ such that W ′(i) = W ′(f ) = 0 and
W ′(r) = 1 we have W (p) = −E(σ). ��

Thus the existence of such an invariant is a necessary condition of soundness.
This condition can be easily checked by standard algebraic techniques. For net
N from Fig. 1 the invariant is r +3p +q , i.e. the weights of places are W (p) = 3,
W (q) = 1 and W (s) = 0. We assume further on that N is an SM1WF-net with
a unique place invariant W satisfying W (i) = W (f ) = 0 and W (r) = 1, and
moreover, we have W (p) ≥ 0.

4.2 Properties of the Consumption and Production Functions

The following lemma states that at least C(σ) resources are needed to execute σ
and at least P(σ) resources become available after the execution of σ.

Lemma 12. Let σ be a path in N . Then

1. If M σ−→ M ′ for some markings M , M ′, then M ′(r) ≥ P(σ) and M (r) ≥
C(σ).

2. [◦σ] + C(σ)[r ] σ−→ [σ◦] + P(σ)[r ] if σ �= ε.

Proof. We prove Part 1 by induction on the length of σ. If σ = ε, the lemma
holds. We prove the P-part by setting σ = ρt . Let M ′′ be such that M

ρ−→
M ′′ t−→ M ′. By the induction hypothesis, M ′′(r) ≥ P(ρ) and thus M ′(r) ≥
max(P(t),P(ρ) + E(t)), i.e., M ′(r) ≥ P(σ), completing the proof of the P-part
in Part 1. We omit the proof of the C-part since it can be obtained analogously
by taking σ = tρ.

Part 2 follows from the existence of markings M and M ′ such that

M σ−→ [σ◦] + P(σ)[r ] and [◦σ] + C(σ)[r ] σ−→ M ′. (1)

We prove (1) by induction on the length of σ. The case σ = t , where t ∈ T ,
is clear. For the P-part, let σ = ρt , with ρ �= ε. By the induction hypothesis,
there exists M ′′ such that M ′′ ρ−→ [ρ◦] + P(ρ)[r ]. Note that P(σ) = P(ρt) =
max(P(t),P(ρ) + E(t)). We distinguish between two cases:

– If P(σ) = P(ρ) + E(t), then P(ρ) + E(t) ≥ P(t), i.e., P(ρ) ≥ P(t)− E(t) =
•t(r). Hence, P(ρ) ≥ C(t) and [ρ◦] + P(ρ)[r ] t−→ [σ◦] + (P(ρ) + E(t))[r ].
Recall that P(ρ) + E(t) = P(σ), i.e., [ρ◦] + P(ρ)[r ] t−→ [σ◦] + P(σ), so we
take M = M ′′ and have M σ−→ [σ◦] + P(σ)[r ].
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– If P(σ) = P(t), then P(ρ)+E(t) ≤ P(t), i.e., P(ρ) ≤ P(t)−E(t). Therefore,
P(ρ) ≤ C(t) and we take M = M ′′ + (C(t) − P(ρ))[r ]. Thus, M

ρ−→ [ρ◦] +
C(t)[t ] t−→ [σ◦] + P(t)[t ]. Since σ = ρt , M σ−→ [σ◦] + P(σ)[r ].

The C-part is analogous, using σ = tρ. Due to Part 1 of the lemma, M and M ′

in (1) satisfy M ≥ [◦σ] + C(σ)[r ] and M ′ ≥ [σ◦] +P(σ)[r ]. Hence M σ−→ M ′ + δ

where δ = M − ([◦σ] + C(σ)[r ]) and M + δ′ σ−→ M ′ where δ′ = M ′ − ([σ◦] +
P(σ)[r ]). Thus we conclude that δ = δ′ = ∅ and [◦σ]+C(σ)[r ] σ−→ [σ◦]+P(σ)[r ].

��

Corollary 13. E(σ) = P(σ)− C(σ) and E(σ) = W (◦σ)−W (σ◦) for all σ.

Proof. Follows directly from Lemma 12.(2) and the definition of W . ��

Corollary 14. Let k > 0 and σ be a path such that E(σ) ≤ 0. Then,

k [◦σ] + (C(σ)− (k − 1) ∗ E(σ))[r ] σk

−→ k [σ◦] + P(σ)[r ]

Proof. The proof is done by induction on k with the use of Lemma 12(2) and
Corollary 13. ��

Next we show that under certain conditions two paths can be swapped.

Lemma 15 (Interchange Lemma). Let M , M ′ be markings and σ, ρ be paths
such that E(σ) ≤ 0 ≤ E(ρ), and ρ is not a successor of σ. If M

σρ−→ M ′ then
M

ρσ−→ M ′.

Proof. Let M1 be a marking such that M σ−→ M1
ρ−→ M ′. Since σ◦ �= ◦ρ,

M1 ≥ [σ◦] + [◦ρ] + max(C(ρ),P(σ))[r ]. Hence, M ≥ [◦σ] + [◦ρ] + max(C(ρ) −
E(σ), C(σ))[r ]. Since E(σ) ≤ 0, there exists a marking M2 such that M

ρ−→ M2

and M2 ≥ [◦σ] + [ρ◦] + max(P(ρ) − E(σ), C(σ) + E(ρ))[r ]. Therefore, M2 ≥
[◦σ] + [ρ◦] + (C(σ) + E(ρ))[r ]. Recall that E(ρ) ≥ 0, so M2 ≥ [◦σ] + C(σ)[r ] and
thus M

ρσ−→ M ′. ��
The next lemma gives implicit lower bounds for the number of resources in

states reachable from the initial marking and states that reach the final marking.

Lemma 16. Let M , M ′ ∈ NP with M (r) < M ′(r).
If M ′ ∗−→ M , there exists a C-path ρ such that M ≥ [ρ◦] + P(ρ)[r ].
If M ∗−→ M ′, there exists a P-path σ such that M ≥ [◦σ] + C(σ)[r ].

Proof. Let M ′ α−→ M . We normalise the trace α as follows. We write α as
the concatenation of paths σ1 . . . σn , where no σk+1 is a successor of σk . If α
contains a C-path σk succeeded by a P-path or by an E-path σk+1, we swap

them in α, obtaining α′. By the interchange lemma, M ′ α′
−→ M . We continue

with normalizing α′ further by using the same procedure. The normalisation
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Fig. 2. Example of an unsound SM1WF-net

process terminates since every swap decreases the number of P- and E-paths
following a C-path.

Thus, there exists a trace β such that M ′ β−→ M and the division of β into
paths consists of a number of P- and/or E-paths followed by C-paths. Since
M (r) < M ′(r), β contains at least one C-path. Let ρ be the last path of β. Then
ρ is a C-path, M (ρ◦) > 0 and by statement (1) of Lemma 12, M (r) ≥ P(ρ).

Similarly, if M
γ−→ M ′, there exists a trace δ containing P-paths followed by

C- and/or E-paths such that M δ−→ M ′. Since M (r) < R, δ contains at least
one P-path. Let σ be the first P-path. Then by Lemma 121, M (r) ≥ C(σ). ��

We will show that the C-bound in Lemma 16 is sharp. (Sharpness of the
P-bound can be proved but is not needed here.)

Lemma 17. Let k0 > 0 and let σ be a C-path. Then there exist k > k0 and
R ∈ N such that k [i ] + R[r ] ∗−→ k [σ◦] + P(σ)[r ].

Proof. Let p = ◦σ, q = σ◦. There exists a path ρ with ◦ρ = i , ρ◦ = p. Since we
assume the existence of the place invariant as described in Lemma 11, E(ρ) ≤ 0.

So by Corollary 14, k [i ] + (C(ρ) − (k − 1) ∗ E(ρ))[r ]
ρk

−→ k [p] + P(ρ)[r ] for all
k > 0. Since E(σ) < 0, there exists k > k0 such that C(σ)− (k − 1)E(σ) ≥ P(ρ).
By taking R = C(ρ)− (k − 1) ∗ E(ρ) + (C(σ)− (k − 1)E(σ)−P(ρ)), we obtain by

Corollary 14: k [i ]+R(k)[r ]
ρk

−→ k [p]+(C(σ)− (k −1)E(σ))[r ] σk

−→ k [q ]+P(σ)[r ].
��

The construction described in the proof of Lemma 17 will be later on used
for giving a meaningful verification feedback on unsound nets, namely we will
construct an example of a deadlock/livelock in an unsound net.

Example 18. Consider the consumption path σ = w in net N ′ from Fig. 2 (which
differs from net N from Fig. 1 only in the resource consumption/production of
transition w); ◦σ = q , σ◦ = p, E(σ) = −2, C(σ) = 2. Take tv as ρ; E(ρ) =
−1, C(ρ) = 4,P(ρ) = 3. Pick some k ∈ N satisfying C(σ)− (k − 1)E(σ) ≥ P(ρ),
i.e. k ≥ 1.5, and choose R as C(ρ)− (k−1)∗E(ρ)+(C(σ)− (k−1)E(σ)−P(ρ)) =
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4 + (k − 1) + 2 + 2(k − 1)− 3 = 3k . Then k [i ] + 3k [r ]
(tv)k−→ k [q ] + 2k [r ] wk

−→ k [p].
Note that no resources are left and thus we obtained a deadlock since we need
resources to proceed. We can get R larger than any given number just by taking
a larger k .

Finally, we are ready to state the main theorem, giving a necessary and
sufficient condition for the soundness of SM1WF nets.

Theorem 19. An SM1WF net N is sound iff there exists a unique place in-
variant W such that W (i) = W (f ) = 0, W (r) = 1, and moreover W (p) ≥ 0
for all p ∈ Pp, and for each C-path ρ there is a successor P-path σ such that
P(ρ) ≥ C(σ).

Proof. (⇒): Assume there exists a C-path ρ such that all succeeding P-paths
σ satisfy P(ρ) < C(σ). By Lemma 17, there exist k and R > P(ρ) such that
k [i ] + R[r ] ∗−→ M = k [ρ◦] + P(ρ)[r ]. If M ∗−→ k [f ] + R[r ], by Lemma 16
there exists a P-path σ with M (r) ≥ C(σ), contradicting the assumption. So
M � ∗−→ k [f ] + R[r ] and the net is not sound.
(⇐): Let R0 be a maximal C(ρ) over all paths ρ of N with ρ◦ = f . The choice of
R0 ensures that if at least R0 resources are present, one token in the production
net can be successfully transferred from any place to f .

Suppose that R ≥ R0 and k [i ] + R[r ] ∗−→ M . We prove by induction on
R−M (r) that there exists a marking M ′ with M ′(r) = R such that M ∗−→ M ′,
i.e., that for any reachable marking there is a way to continue and to return all
the resources consumed so far. Note that M (r) ≤ R since the number of the
resources consumed is always non-negative, i.e. no resources are created (due to
the existence of the place invariant W ). If M (r) = R, the statement clearly holds.
If M (r) < R, by applying Lemma 16 to k [i ]+R[r ] ∗−→ M , we conclude that there
exists a C-path ρ such that M ≥ [ρ◦]+P(ρ)[r ]. By the condition of the theorem,
there exists a P-path σ and a marking M ′′ = M − [◦σ]+ [σ◦]+E(σ)[r ] such that
M σ−→ M ′′, so M ∗−→ M ′′. Since M ′′(r) > M (r), the induction hypothesis is
applicable to M ′′, i.e. finally we obtain that M ′′ ∗−→ M ′ and M ′(r) = R.

Let p ∈ Pp be such that M ′(p) > 0. Then since R ≥ R0 and by the choice of
R0, we have [p] + R[r ] ∗−→ [f ] + R[r ]. So M ′ ∗−→ M ′ − [p] + [f ]. We can repeat
this procedure for all p �= f with M (p) > 0, reaching k [f ] + R[r ]. ��

Note that the net may be unsound if it contains a deadlock (a nonterminal
marking where there are not enough resources to proceed any further even with
one single step) or a livelock (there are always enough resources to make a
following step, but all possible steps are not “progress”-steps, i.e. we cannot
leave the cycle in order to terminate properly). With a slight modification of
the condition in Theorem 19 we can diagnose whether the net has no deadlock:
along with the invariant requirement we require that for each C-path ρ there
is a successor path σ (no matter whether σ is a P-path or a C-path) such that
P(ρ) ≥ C(σ). This reflects the requirement that there is always some next step
possible. If the net has no deadlock but does not meet the requirements of
Theorem 19, this net has a livelock.
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5 Decision Algorithm

The necessary and sufficient condition formulated in Theorem 19 allows to char-
acterise soundness of SM1WF-nets. The condition as stated is however not di-
rectly verifiable, since infinitely many different paths should be taken into ac-
count. In this subsection we show that checking finitely many paths is sufficient.
The decision algorithm we give here is polynomial in the size of the SM1WF-net.

We start by the following simple observation.

Lemma 20. Let σ be a cyclic path (i.e. ◦σ = σ◦). Then for any ρ1, ρ2 such that
◦σ = ρ◦

1 and σ◦ = ◦ρ2 we have E(ρ1σρ2) = E(ρ1ρ2), P(ρ1σρ2) = P(ρ1ρ2), and
C(ρ1σρ2) = C(ρ1ρ2).

Proof. For E the lemma follows from Lemma 11. Results for P and C can be
obtained analogously. ��

Hence, to check the condition of Theorem 19 it is sufficient to consider acyclic
paths only. Since there are finitely many acyclic paths, soundness of SM1WF-
nets is decidable. As we showed in Section 3, the soundness of RCWF-nets can
be reduced to the soundness of SM1WF-nets, and thus we can conclude the
following:

Corollary 21. Soundness of RCWF-nets with one resource is decidable.

Next we give an efficient decision algorithm for SM1WF-nets. The algorithm
is based on the following property of paths.

Lemma 22. Let ρ, σ be paths such that ρ◦ = ◦σ. Then, P(ρσ) = max(P(ρ) +
E(σ),P(σ)) and C(ρσ) = max(C(ρ), C(σ)− E(ρ)).

Proof. Suppose [◦ρ] + A[r ]
ρ−→ [ρ◦] + B [r ] = [◦σ] + B [r ] σ−→ [σ◦] + C [r ]. Then

by Lemma 12.(1) (applied both to ρ and to σ) A ≥ C(ρ) and C ≥ P(σ).
Since B = A + E(ρ) ≥ C(ρ) + E(ρ) = P(ρ) and C = B + E(σ), i.e. B =
C − E(σ) ≥ P(σ) − E(σ) = C(σ), we deduce that B ≥ max(P(ρ), C(σ)). Thus
A ≥ max(C(ρ), C(σ) − E(ρ) and C ≥ max(P(σ),P(ρ) + E(σ)). By applying
Lemma 12.(2) to ρ and σ, we deduce that [◦ρ] + max(C(ρ), C(σ) − E(ρ))[r ]

ρ−→
[ρ◦] + max(P(ρ), C(σ))[r ] σ−→ [σ◦] + max(P(ρ) + E(σ),P(σ))[r ] indeed. Finally,
using Lemma 12.(1) and Lemma 12.(2) on ρσ, we conclude that P(ρσ) =
max(P(ρ) + E(σ),P(σ)) and C(ρσ) = max(C(ρ), C(σ)− E(ρ)). ��

For X = ∅ we assume min X = ω. For p, q ∈ Pp , we define μ(p, q) as
min {P(σ)+W (q) | ◦σ = p ∧ σ◦ = q}. If ◦σ = p and σ◦ = q , then C(σ)+W (p) =
P(σ)+W (q), so μ(p, q) can alternatively be defined as min {C(σ)+W (p) | ◦σ =
p ∧ σ◦ = q}. Then, the condition from Theorem 19 can be now reformulated in
the following way, assuming the existence of the place invariant W :

Corollary 23. N is sound if and only if

∀ x ∈ Pp : min {μ(y , x ) | W (y) < W (x )} ≥ min {μ(x , y) | W (y) < W (x )}.
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Analogously to Corollary 23, we can show that SM1WF-net has no deadlock
iff

∀ x ∈ Pp : min {μ(y , x ) | W (y) < W (x )} ≥ min {μ(x , y)}.
With these conditions we can diagnose SM1WF-nets as sound, non-sound

due to deadlock, or non-sound due to livelock.
Function μ has the following important property:

Lemma 24. For all p and q in Pp we have μ(p, q) = min {max(μ(p, x ), μ(x , q)) |
x ∈ Pp}.

Proof. Recall that μ(p, q) is defined as min {P(σ) + W (q) | ◦σ = p ∧ σ◦ = q}.
Every path from p to q can be seen as ρ1ρ2 for some paths ρ1 from p to some x
and ρ2 from x to q . Hence, P(σ)+W (q) = P(ρ1ρ2)+W (q), and by Lemma 22,
P(ρ1ρ2) + W (q) = max(P(ρ1) + E(ρ2),P(ρ2)) + W (q) = max(P(ρ1) + E(ρ2) +
W (q),P(ρ2)+W (q)). Since ρ2 is one of the possible paths from x to q , P(ρ2)+
W (q) ≥ μ(x , q). By Corollary 13, E(ρ2) + W (q) = W (x ). Therefore, P(ρ1) +
E(ρ2)+W (q) = P(ρ1)+W (x ) and P(ρ1)+E(ρ2)+W (q) ≥ μ(p, x ). Summarizing
these two parts we obtain P(σ) + W (q) = max(P(ρ2) + W (q),P(ρ1) + E(ρ2) +
W (q)) ≥ max(μ(x , q), μ(p, x )). Thus, μ(p, q) ≥ min {max(μ(p, x ), μ(x , q)) | x ∈
Pp}.

Let s be such that min {max(μ(p, x ), μ(x , q)) | x ∈ Pp} = max(μ(p, s), μ(s, q)),
i.e. the minimum is reached on s, and let μ(p, s) = P(σ) + W (s) for some σ
with ◦σ = p and σ◦ = s and μ(s, q) = P(γ) + W (q) for some γ with ◦γ = s
and γ◦ = q . Then, σγ is a path from p to q and it should be taken into account
while computing the minimum for μ(p, q). Hence, μ(p, q) ≤ P(σγ) + W (q) =
max(P(σ) + E(γ),P(γ)) + W (q) = max(P(σ) + E(γ) + W (q),P(γ) + W (q)) =
max(P(σ) + W (s), μ(s, q)) = max(μ(p, s), μ(s, q). It implies that μ(p, q) ≤
min {max(μ(p, x ), μ(x , q)) | x ∈ Pp}.

Therefore, μ(p, q) = min {max(μ(p, x ), μ(x , q)) | x ∈ Pp}. ��

Lemma 24 leads to the following efficient algorithm for computing μ. For
two matrices A, B : Pp × Pp → N, A = (a(p, q)), B = (b(p, q)), we define A ◦
B = (c(p, q)) where c(p, q) = min {max(a(p, x ), b(x , q)) | x ∈ Pp}. The matrix
μ(p, q) is computed by initializing the matrix A = (a(p, q)) by a(p, p) = 0 and
a(p, q) = min {P(t) + W (q) | t ∈ T ∧ ◦t = p ∧ t◦ = q}. We then compute the
subsequent powers of A with respect to ◦. The computation eventually reaches
the fixpoint since the values in the matrix can be changed only to strictly smaller
ones with respect to a well-founded ordering on N ∪ {ω}. Moreover, Ak takes
into account all paths of length up to k . Therefore, the process terminates after
no more steps than the length of the longest acyclic path in the net. Upon
termination the matrix becomes (μ(p, q)).

Example 25. In our example net from Fig. 1, we have only one transition t
leading from i to p and W (i) = 0, W (p) = 3, C(t) = 4,P(t) = 1, giving a(i , p) =
4 initially. Our full initial matrix A and its iterations become
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A =

i p q s f
i 0 4 ω ω ω
p ω 0 4 5 ω
q ω 4 0 3 ω
s ω ω ω 0 6
f ω ω ω ω 0

A2 =

i p q s f
i 0 4 4 5 ω
p ω 0 4 4 6
q ω 4 0 3 6
s ω ω ω 0 6
f ω ω ω ω 0

A3 =

i p q s f
i 0 4 4 4 6
p ω 0 4 4 6
q ω 4 0 3 6
s ω ω ω 0 6
f ω ω ω ω 0

We find A4 = A3, so A3 gives the desired μ(x , y). We now check our condition:
∀ x ∈ Pp : min {μ(y , x ) | W (y) < W (x )} ≥ min {μ(x , y) | W (y) < W (x )}.

Now min {μ(y , x ) | W (y) < W (x )} = min {μ(x , y) | W (y) < W (x )} = ω for
x ∈ {i , r , f }, since W (i) = W (r) = W (f ) = 0 and no place has a smaller weight.
Since W (p) = 3 and all other places have smaller weight, we have min {μ(y , p) |
W (y) < W (p)} = 4 and min {μ(x , y) | W (y) < W (p)} = 4. Finally, for x = q
we have min {μ(y , q) | W (y) < W (q)} = 4 and min {μ(x , y) | W (y) < W (q)} =
3. Our condition holds, so the net is sound.

Now consider net N ′ from Fig. 2. Then the (μ(x , y)) is computed as follows:

A =

i p q s f
i 0 4 ω ω ω
p ω 0 4 5 ω
q ω 3 0 3 ω
s ω ω ω 0 6
f ω ω ω ω 0

A2 =

i p q s f
i 0 4 4 5 ω
p ω 0 4 4 6
q ω 3 0 3 6
s ω ω ω 0 6
f ω ω ω ω 0

A3 =

i p q s f
i 0 4 4 4 6
p ω 0 4 4 6
q ω 3 0 3 6
s ω ω ω 0 6
f ω ω ω ω 0

A3 is the fixpoint. Now, min {μ(y , p) | W (y) < W (p)} = 3 and min {μ(x , y) |
W (y) < W (p)} = 4, so the net is not sound. Moreover, min {μ(x , y)} = 4, and
thus we can use the construction from the proof of Lemma 17 to reproduce a
deadlock from this net (see Example 18).

Observe that the computation proposed strongly resembles the All-Pairs
Shortest Paths problem (Floyd-Warshal algorithm, see [7]; for a more efficient
algorithm see [15]; also see [16] for a survey). Hence, our computation can benefit
from efficient matrix multiplication algorithms. Moreover, to decrease the num-
ber of multiplication steps we can repeatedly square the result of the previous
step, i.e., instead of A, A2, A3, . . . we compute A, A2, A4, . . .. The number of mul-
tiplication steps is logarithmic in the length of the longest acyclic path of the net.

Corollary 26. For an SM1WF-net with P places and T transitions the sound-
ness decision algorithm presented above has complexity of O(P3 log P + T ).

6 Conclusion

We have introduced an extension of Workflow nets: Resource-Constrained Work-
flow nets and defined a notion of soundness on this class of nets, which is an
extension of the soundness notion for WF-nets. In addition to the soundness
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requirements for WF-nets, soundness for RCWF-nets states that no resources
are created during the processing and all resources are returned to their resource
place when the processing is completed; moreover, no deadlock or livelock can
arise due to the lack of resources. We showed how to reduce the problem of
soundness for a general class of RCWF-nets with one resource type to the prob-
lem of soundness for SM1WF-nets and gave a necessary and sufficient condition
of soundness for SM1WF-nets. The decision algorithm we described has a poly-
nomial complexity w.r.t. the number of states of the production net marked with
a single initial token.

Future Work. We have considered here the problem of soundness for RCWF-
nets with one resource type. Finding a necessary and sufficient condition of
soundness for RCWF-nets with multiple resource types is left for future work.
Another direction for future research is to find a method to transform a given
unsound RCWF-net into a sound one by applying modifications of one type only:
transitions may claim and release more resources than in the original situation.

Future work includes also the integration of our algorithm into tools working
with this class of nets.
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Abstract. High-Level net models following the paradigm “nets as to-
kens” have been studied already in the literature with several interesting
applications. In this paper we propose the new paradigm “nets and rules
as tokens”, where in addition to nets as tokens also rules as tokens are
considered. The rules can be used to change the net structure. This leads
to the new concept of high-level net and rule systems, which allows to in-
tegrate the token game with rule-based transformations of P/T-systems.
The new concept is based on algebraic high-level nets and on the main
ideas of graph transformation systems. We introduce the new concept
with the case study “House of Philosophers”, a dynamic extension of
the well-known dining philosophers. In the main part we present a basic
theory for rule-based transformations of P/T-systems and for high-level
nets with nets and rules as tokens leading to the concept of high-level
net and rule systems.

Keywords: High-level net models, algebraic high-level nets, nets and
rules as tokens, integration of net theory and graph transformations, case
study: House of Philosophers, algebraic specifications, graph grammars
and Petri net transformations.

1 Introduction

The paradigm “nets as tokens” has been introduced by Valk in order to allow nets
as tokens, called object nets, within a net, called a system net (see [Val98, Val01]).
This paradigm has been very useful to model interesting applications in the
area of workflow, agent-oriented approaches or open system networks. Especially
his concept of elementary object systems [Val01] has been used to model the
case study of the hurried philosophers proposed in [Sil01]. In elementary object
systems object nets can move through a system net and interact with both
the system net and with other object nets. This allows to change the marking
of the object net, but not their net structure. According to the requirements
of the hurried philosophers in [Sil01] the philosophers have the capability to
introduce a new guest at the table, which - in the case of low level Petri nets -
certainly changes the net structure of the token net representing the philosophers
at the table. We use the notion of token net instead of object net in order to
avoid confusion with features of object-oriented modeling. Instead our intention
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is to consider the change of the net structure as rule-based transformation of
Petri nets in the sense of graph transformation systems [Ehr79, Roz97]. In order
to integrate the token game of Petri nets with rule-based transformations, we
propose in this paper the new paradigm “nets and rules as tokens” leading to
the concept of high-level net and rule systems.

In Section 2 we show how this new concept can be used to model the main
requirements of the hurried philosophers [Sil01]. Of course, this concept has
interesting applications in all areas where dynamic changes of the net structure
have to be considered while the system is still running. This applies especially
to flexible workflow systems (see [Aal02]) and medical information systems (see
[Hof00]).

In Section 3 we introduce the basic theory for rule-based transformations
of P/T-systems. This theory is inspired by graph transformation systems
[Ehr79, Roz97], which have been generalized already to net transformations sys-
tems in [EHK91, EP04], including high-level and low-level nets. The theory in
these papers is based on pushouts in the corresponding categories according to
the double-pushout approach of graph transformations in [Ehr79]. In order to
improve the intuition of our concepts for the Petri net community we give in
this paper an explicit approach of rule-based transformations for P/T-systems,
which is new and extends the theory of P/T-net transformations taking into
account also initial markings, and avoids categorical terminology like pushouts.
Moreover, the interaction of the token game and transformation of nets - as
considered in this paper - has not been studied up to now.

In Section 4 we introduce high-level nets with nets and rules as tokens leading
to our new concept of high-level net and rule (HLNR) systems motivated above.
This new concept is based on algebraic high-level (AHL) nets [PER95] using the
terminology of [EHP02]. In order to model nets and rules as tokens we present
a specific signature together with a corresponding algebra with specific sorts for
P/T-systems and rules. Moreover, there are operations corresponding to firing
of a transition and applying a rule to a P/T-system respectively. Since AHL-
nets are based on classical algebraic specifications (see [EM85]) we are able to
give a set theoretic definition of domains and operations. In order to obtain
also an algebraic specification we need algebraic higher-order specifications as
presented in HasCasl [Hets, SM02], which allows to specify function types with
set-theoretic notions of semantics using intensional algebras.

In Section 5 we discuss specification and implementation aspects for our ap-
proach. More precisely, we discuss how the concept of algebraic higher-order
(AHO) nets based on HasCasl, which has been already introduced in [HM03],
can be used to specify the algebra of HLNR-systems. Since tools for HasCasl
already have been implemented [Mos05, Hets] this is an important step towards
implementation and tool support for HLNR-systems. Unfortunately, this is not
possible using CPN tools [RWL03] for Coloured Petri (CP) Nets [Jen92]. Ac-
tually, CP-Nets are based on an extension of the functional language Standard
ML [MTH97]. As Standard ML does not allow functional equivalence testing, it
is not suitable for our purpose where we need a form of functional equivalence.
The conclusion in Section 6 includes proposals for future work.
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2 Case Study: House of Philosophers

In order to illustrate the concepts described in Section 3 and Section 4 we will
present a small system inspired by the case study “the Hurried Philosophers”
of C. Sibertin-Blanc proposed in [Sil01] which is a refinement of the well-known
classical “Dining Philosophers”.

Requirements. In our case study “House of Philosophers” presented below
we essentially consider the following requirements:
1. There are three different locations in the house where the philosophers can

stay: the library, the entrance-hall, and the restaurant;
2. In the restaurant there are different tables where one or more philosophers

can be placed to have dinner;
3. Each philosopher can eat at a table only when he has both forks, i.e. the

philosophers at each table follow the rules of the classical “Dining Philoso-
phers”;

4. The philosophers in the entrance-hall have the following additional capabil-
ities:
(a) They are able to invite another philosopher in the entrance-hall to enter

the restaurant and to take place at one of the tables;
(b) They are able to ask a philosopher at one of the tables with at least two

philosophers to leave the table and to enter the entrance-hall.

System Level. In Fig. 1 we present the system level of our version of the case
study. The system level is given by a high-level net and rule system, short HLNR-
system, which will be explained in Section 4. The marking of the HLNR-system
shows the distribution of the philosophers at different places in the house and
the firing behavior of the HLNR-system describes the mobility of the philoso-
phers. There are three different locations in the house where the philosophers
can stay: the library, the entrance-hall, and the restaurant. Each location is rep-
resented by its own place in the HLNR-system in Fig. 1. Initially there are two
philosophers at the library, one philosopher at the entrance-hall, and four ad-
ditional philosophers are at table 1 resp. table 2 (see Fig. 5 and Fig. 6) in the
restaurant.

Philosophers may move around, which means they might leave and enter the
library and they might leave and enter the tables in the restaurant. The mobility
aspect of the philosophers is modeled by transitions termed enter and leave
library as well as enter and leave restaurant in our HLNR-system in Fig. 1. While
the philosophers are moving around, the static structure of the philosophers is
changed by rule-based transformations. E.g. a philosopher enters the restaurant
and arrives at a table. Then the structure and the seating arrangement of the
philosophers have to be changed. For this reason, we have tokens of type Rules,
rule1, . . ., rule4, which are used as resources. Because the philosophers have
their own internal behavior, there are two transitions, start/stop reading and
start/stop activities, to realize the change of the behavior.
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table2

table1

rule2

start/stop

reading

t :Transitions
enabled(n, t) = tt

rule1

enter library

m :Mor

cod m = n

applicable(r, m) = tt

phi1

phi3

transform(r, m)

n

fire(n, t)

phi2

Entrance-Hall : System

fire(n, t)

cod m = n1 coproduct n2

applicable(r, m) = tt

enter restaurant

m :Mor

n

r

r

t :Transitions
enabled(n, t) = tt

start/stop
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r
rule3

n1 n1transform(r, m) n4

r
rule4

Rule4 : Rules

Rule3 : Rules

Rule1 : Rules

Rule2 : Rules

Restaurant : System

Library : System

n

leave library

applicable(r, m) = tt

cod m = n

m :Mor

n2 ⊕ n3
n2 ⊕ n3

n

transform(r, m)
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n3

m :Mor

leave restaurant

cod m = n1

applicable(r, m) = tt

transform(r, m) =
n2 coproduct n4

isomorphic (n2, n3) = tt

Fig. 1. High-level net and rule system of “House of Philosophers”

thinking1 reading1

Fig. 2. Token net phi1 of philosopher 1 Fig. 3. Token net phi ′1 of philosopher 1

thinking1 reading1
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L1

thinking reading

R1I1

thinkingthinking

Fig. 4. Token rule of rule rule1

Token Level. The token level consists of two different types of tokens: P/T-
systems and rules. They are represented as tokens in the places typed System and
Rules of the HLNR-system in Fig. 1. The tokens on system places are modeled
by P/T-systems, i.e. Petri nets with an initial marking. In Fig. 2 the net phi1 of
the philosopher 1 is depicted, which - in the state thinking - is used as a token
on the place Library in Fig. 1. To start reading, we use the transition start/stop
reading of the HLNR-system in Fig. 1. First the variable n is assigned to the net
phi1 of the philosopher 1 and the variable t to a transition t0 ∈ T0 where T0 is a
given vocabulary of transitions. The condition enabled(n,t)=tt means that under
this assignment t0 is an enabled transition in the net of phi1. The evaluation
of the term fire(n, t) computes the follower marking of the net (i.e. token
reading1) and we obtain the new net phi ′1 of the philosopher 1 depicted in Fig. 3.

Mobility of Philosophers by Application of Rules. We assume that the
philosopher 1 wants to leave the library, i.e. the transition leave library in the
HLNR-system in Fig. 1 must fire. For this purpose we have to give an assignment
for the variables n, r and m in the net inscriptions of the transition. They are
assigned to the net phi1 (see Fig. 2), the rule rule1 (see Fig. 4), and a match
morphism m1 : L′ → G between P/T-systems. The first condition cod m=n
requires G = phi1 and the second condition applicable(r,m)=tt makes sure that
rule rule1 is applicable to phi1, especially L′ = L1, s.t. the evaluation of the term
transform(r,m) leads to the new net phi ′′1 isomorphic to R1 of rule1 in Fig. 4. As
result of this firing step phi1 is removed from place Library and phi ′′1 is added
on place Entrance-Hall. In general, a rule r = (L i1←− I

i2−→ R) is given by three
P/T- systems called left-hand side, interface, and right-hand side respectively.

In a further step the philosopher 1 is invited by the philosopher 3 to en-
ter the restaurant in order to take place as a new guest at the table 1. The
philosopher 3 accompanies philosopher 1 but returns to the entrance-hall. The
token net phi3 of philosopher 3 is isomorphic to R1 of rule1 in Fig. 4 where
thinking in R1 is replaced by thinking3. Currently the philosophers 4 and 5 are
at the table 1 (see Fig. 5). Both philosophers may start eating, but apparently
compete for their shared forks, where left fork4=right fork5 and left fork5=right
fork4. Analogously table 2 has the same net structure as table 1 but different
philosophers are sitting at table 2 (see Fig. 6). To introduce the philosopher 1
at the table 1 the seating arrangement at table 1 has to be changed. In our case
the new guest takes place between philosopher 4 and 5. Formally, we apply rule
rule2 = (L2

i1←− I2
i2−→ R2), which is depicted in the upper row of Fig. 7 and

used as token on place Rule2. We have to give an assignment v for the variables
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thinking4

eating4

eating5

thinking5

left
fork4

left
fork5

Fig. 5. Token net table1 of
philosopher 4 and 5 at table 1

Fig. 6. Token net table2 of
philosopher 6 and 7 at table 2

thinking6

eating6

eating7

thinking7

left
fork6

left
fork7

of the transition enter restaurant, i.e. variables n1, n2, n3, r, and m. The assign-
ment v is defined by v(n1) = table1, v(n2) = phi′′1 , v(n3) = phi3, v(r) = rule2,
and v(m) = g (see match morphism g : L2 → G in Fig. 7). Then we compute the
disjoint union of the P/T-system phi ′′1 and the P/T-system table1 as denoted by
the net inscription n1 coproduct n2 in the firing condition of the transition enter
restaurant. The result is the disjoint union of both nets shown as P/T-system G
in Fig. 7.

In our case the match g maps thinkingj and eatingj in L2 to thinking4 and
eating4 in G of Fig. 7. The condition cod m = n1 coproduct n2 makes sure that
the codomain of g is equal to G. The second condition applicable(r,m)=tt checks
if rule2 is applicable with match g to G (see “gluing condition” (Def. 4) and
“applicability” (Def. 5) in Section 3). In the direct transformation shown in Fig.
7 we delete in a first step g(L2 \I2) from G leading to P/T-system C. Note, that
a positive check of the “gluing condition’ makes sure that C is a well-defined
P/T-system (see Prop. 2 in Section 3). In a second step we glue together the
P/T-systems C and R2 along I2 leading to P/T-system H in Fig. 7. H shows
the new version of table 1 given by the net table ′

1 of table 1, where philosophers
1, 4, and 5 are sitting at the table, all of them in state thinking. The effect of
firing the transition enter restaurant in Fig. 1 with assignments of variables as
discussed above is the removal of P/T-systems phi ′′1 from place Entrance Hall
and table1 from place Restaurant and adding P/T-System table ′

1 to the place
Restaurant.

Philosophers in the entrance-hall have the capability to ask one of the philoso-
phers in the restaurant to leave; this is realized in our system by the transition
leave restaurant in Fig. 1. We use the rule rule3 defined as inverse of rule2 in
Fig. 7, i.e. rule3 = (R2

i2←− I2
i1−→ L2), which is present as a token on place

Rule3. This rule is applied with inverse direct transformation to that depicted
in Fig. 7. Finally, the rule rule4 is the inverse of rule rule1 (see Fig. 4), enabling
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Fig. 7. Direct Transformation

the philosopher to enter the library by firing of the transition enter library in
Fig. 1. We have to guarantee that after the application of rule3 the philosopher
who is leaving the restaurant goes into the entrance-hall. In our case one philoso-
pher is asked by philosopher 3 in the entrance-hall to leave the table. Formally
this is denoted by the firing condition isomorphic(n2, n3) = tt which ensures
that the net of the philosophers denoted by n2 is isomorphic to the net phi3 of
philosopher 3 denoted by n3.

The execution of philosopher activities at different tables, i.e. the firing of
the transition start/stop activities in Fig. 1, is analogously defined as the firing
of the transition start/stop reading described above.

Validation of Requirements. Our case study “House of Philosophers”
satisfies the requirements presented in the beginning of this section.

1. The three different locations in the house are represented by places Library,
Entrance-Hall, and Restaurant in Fig. 1;

2. In the initial state we have the two tables table1 with philosophers 4 and 5
and table2 with philosophers 6 and 7 on place Restaurant. In a later state
also philosopher 1 is sitting at table1 as shown by net H of Fig. 7;

3. If there are n ≥ 2 philosophers sitting at each table, the table with n philoso-
phers is presented by the classical “Dining Philosophers” net;

4. The capability of a philosopher in the entrance-hall to invite another
philosopher to enter (leave) the restaurant is given by firing of the transition
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enter restaurant (leave restaurant) in Fig. 1. The applicability of the rule
rule3 ensures that a philosopher only leaves a table with at least two
philossphers.

Related Work. In [ADC01] there are several other solutions for the case study
“the Hurried Philosophers” modeled by different kinds of (high-level) net classes.
Most of these approaches integrate object-oriented modeling and Petri nets,
including e.g. inheritance, encapsulation, and dynamic binding, etc. In this paper
we do not need features of object-oriented modeling. But it is an interesting
aspect to extend our approach by integration of these features.

In the solution of the case study using elementary object systems [Val01], each
philosopher has his own place and the exchange of forks between the philoso-
phers is realized by an interaction relation. By contrast in our case each table
is modeled by its own P/T-system and describes the states and the seating ar-
rangement of present philosophers. Moreover we use rule-based transformations
to change the structure of P/T-systems, especially the states and the seating
arrangement. In the sense of object-oriented modeling it might be considered to
split up the table with philosophers into a net table with only the table prop-
erties and nets for each philosopher at the table. In fact our approach allows to
model such self-contained components but this would lead to a much more com-
plex model. The advantage of our approach compared with elementary object
systems is a more flexible modeling technique. While the HLNR-system in Fig.
1 is fixed we can add further philosophers and philosophers at tables by adding
further tokens of type System to our model. Analogously we can add further
token rules to realize other kinds of transformations.

Note, that elementary object systems [Val01] allow a simple notion of nets
as tokens, such that most principles of elementary net theory are respected and
extended. Here on the one hand the system-object interaction relation consists
of transitions in the system net and transitions in the object net which have to
be fired in parallel, and on the other hand the object-object interaction relation
guards the parallel firing of transitions in different object nets. By contrast, we
are using different formal frameworks for the token level and the system level.
In order to integrate interaction relations into our concept of HLNR-system
we can extend the signature and the algebra of the algebraic high-level net
by appropriate operations and formulate the dependencies between transitions
in the firing conditions of the HLNR-system. In this way we can show that
elementary object systems can be translated into semantically equivalent HLNR-
systems extended by interaction relations.

The idea of controlled modification of token nets is discussed in the context of
linear logic Petri nets [Far99] and feature structure nets [Wie01]. The difference
to our approach is that in those approaches, the modification is not carried out
by rule tokens, but by transition guards. We are not restricted to define a specific
token rule for each transition, but we are able to give a (multi-)set of token rules
as resources bound to each transition, which realize the local replacement of
subnets.
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3 Rule-Based Transformation of P/T-Systems

In this section we present rule-based transformations of nets following the
double-pushout (DPO) approach of graph transformations in the sense of
[Ehr79, Roz97]. As net formalism we use P/T-systems following the notation
of “Petri nets are Monoids” in [MM90]. In this notation a P/T-system is
given by P N = (P, T, pre, post, M0) with pre- and post domain functions
pre, post : T → P⊕ and initial marking M0 ∈ P⊕, where P⊕ is the free com-
mutative monoid over the set P of places with binary operation ⊕. Note that
M0 can also be considered as function M0 : P → N with finite support and the
monoid notation M0 = 2p1 ⊕ 3p2 means that we have two tokens on place p1

and three tokens on p2. A transition t ∈ T is M -enabled for a marking M ∈ P⊕

if we have pre(t) ≤ M and in this case the follower marking M ′ is given by
M ′ = M ! pre(t) ⊕ post(t). Note that the inverse ! of ⊕ is only defined in
M1 !M2 if we have M2 ≤ M1.

In order to define rules and transformations of P/T-systems we have to in-
troduce P/T-morphisms which are suitable for our purpose.

Definition 1 (P/T-Morphisms).
Given P/T-systems P Ni = (Pi, Ti, prei, posti, M0

i ) for i = 1, 2, a P/T-morphism
f : P N1 → P N2 is given by f = (fP , fT ) with functions fP : P1 → P2 and
fT : T1 → T2 satisfying

(1) f⊕
P ◦ pre1 = pre2 ◦ fT and f⊕

P ◦ post1 = post2 ◦ fT

(2) f⊕
P (M0

1|p) ≤ M0
2|fP (p) for p ∈ P1

Note that the extension f⊕
P : P⊕

1 → P⊕
2 of fP : P1 → P2 is defined by

f⊕
P (
∑n

i=1 ki · pi) =
∑n

i=1 ki · fP (pi) and the restriction M0
1|p by M0

1|p = M0
1 (p) · p

where M0
1 is considered as function M0

1 : P → N. (1) means that f is compatible
with pre- and post domain and (2) that the initial marking of N1 at place p is
smaller or equal to that of N2 at fP (p). Moreover the P/T-morphism f is called
strict if f⊕

P (M0
1|p) = M0

2|fP (p) and fP , fT are injective (3).

The category defined by P/T-systems and P/T-morphisms is denoted by
PTSys where the composition of P/T-morphisms is defined componentwise for
places and transitions. Examples of P/T-morphisms are given in Fig. 7.

The next step in order to define transformations of P/T-systems is to define
the gluing of P/T-systems in analogy to concatenation in the string case.

Definition 2 (Gluing of P/T-Systems).
Given P/T-systems P Ni = (Pi, Ti, prei, posti, M0

i ) for i = 0, 1, 2 with strict
inclusion inc : P N0 → P N1 and P/T-morphism f : P N0 → P N2. Then the
gluing P N3 of P N1 and P N2 via (P N0, f), written P N3 = P N1 +(PN0,f) P N2,
is defined by the following diagram (1), called “gluing diagram”, with

1. ∀p ∈ P1 = P0 % (P1 \ P0) : f ′
P (p) = if p ∈ P0 then fP (p) else p

∀t ∈ T1 = T0 % (T1 \ T0) : f ′
T (t) = if t ∈ T0 then fT (t) else t
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2. P N3 = (P3, T3, pre3, post3, M0
3 ) with

- P3 = P2 % (P1 \ P0), T3 = T2 % (T1 \ T0),
- pre3(t) = if t ∈ T2 then pre2(t)

else f ′⊕
P (pre1(t)),

- post3(t) = if t ∈ T2 then post2(t)
else f ′⊕

P (post1(t)) and
- M0

3 = M0
2 ⊕ (M0

1 !M0
0 ).

P N0

f

��

inc ��

(1)

P N1

f ′

��
P N2

inc′
�� P N3

Remark 1. The disjoint union in the definition of P3 and T3 takes care of the
problem that there may be places or transitions in P N2, which are - by chance -
identical to elements in P1 \P0 or T1 \T0, but only elements in P N0 and f(P N0)
should be identified. In this case the elements of P1 \ P0 and T1 \ T0 should be
renamed before applying the construction above.

Proposition 1 (Gluing of P/T-Systems).
The gluing P N3 = P N1 +(PN0,f) P N2 is a well-defined P/T-system such that
f ′ : P N1 → P N3 is a P/T-morphism, inc′ : P N2 → P N3 is a strict inclusion
and the gluing diagram (1) commutes, i.e. f ′ ◦ inc = inc′ ◦ f .

Proof. 1. P N3 is a well-defined P/T-system, because pre3, post3 : T3 → P⊕
3

are well-defined functions. Now f ′ = (f ′
P , f ′

T ) : P N1 → P N3 is a P/T-
morphism, because we have pre3 ◦ f ′

T = f ′⊕
P ◦ pre1 (and similar for post) by

case distinction:

Case 1. For t ∈ T0 we have pre3(f ′
T (t)) = pre3(fT (t)) = pre2(fT (t)) =

f⊕
P (pre0(t)) = f ′⊕

P (pre0(t)) = f ′⊕
P (pre1(t)).

Case 2. For t ∈ T1 \ T0 we have pre3(f ′
T (t)) = pre3(t) = f ′⊕

P (pre1(t)).

We have marking compatibility of f ′ by:

Case 1. For p ∈ P0 we have
f ′⊕

P (M0
1|p) = f⊕

P (M0
0|p) ≤ M0

2|fP (p) ≤ M0
3|fP (p) = M0

3|f ′
P (p).

Case 2. For p ∈ P1 \ P0 we have
f ′⊕

P (M0
1|p) = f ′⊕

P ((M0
1 !M0

0 )|p) = (M0
1 !M0

0 )|p ≤ M0
3|f ′

P (p) .

2. inc′ : P N2 → P N3 is a P/T-system inclusion by construction. The marking
M0

3 is well-defined because M0
0 ≤ M0

1 and M0
0|p = M0

1|p for p ∈ P0 by
strict inclusion inc : P N0 → P N1. Moreover inc′ is strict, because we have
M0

1 !M0
0 ∈ (P1 \ P0)⊕ which implies for p ∈ P2 M0

2|p = M0
3|p.

3. f ′ ◦ inc = inc′ ◦ f by construction
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Remark 2. The gluing diagram (1) is a pushout diagram in the category PTSys.
This implies that the transformation of P/T-systems defined below is in the
spirit of the double-pushout approach for graph transformations and high-level
replacement systems (see [Ehr79, EHK91]).

Two examples of gluing and gluing diagrams are given in Fig. 7, where
G = L2 +I2 C and H = R2 +I2 C in the left hand and the right hand glu-
ing diagram respectively. Our next goal is to define rules, application of rules
and transformations of P/T-systems.

Definition 3 (Rule of P/T-Systems). A rule r = (L i1←− I
i2−→ R) of P/T-

systems consists of P/T-systems L, I, and R, called left-hand side, interface,
and right-hand side of r respectively, and two strict P/T-morphisms I

i1−→ L

and I
i2−→ R which are inclusions.

Remark 3. The application of a rule r to a P/T-system G is given by a P/T-
morphism L

m−→ G, called match. Now a direct transformation G
r=⇒ H via r

can be constructed in two steps. In a first step we construct the context C given
by (G−m(L))∪m ◦ i1(I) and P/T-morphisms I

c−→ C

and C
c1−→ G, where c1 is a strict inclusion. This means

we remove the match m(L) from G and preserve the
interface m◦i1(I). In order to make sure that C becomes
a subsystem of G we have to require a “gluing condition”
(see Def. 4). This makes sure that C is a P/T-system

L

m

��
(1)

I
i1�� i2 ��

c

��
(2)

R

n

��
G Cc1

��
c2

�� H

and we have m ◦ i1 = c1 ◦ c in the “context diagram” (1). In the second step
we construct H as gluing of C and R along I, this means we obtain the gluing
diagram (2) from I

c−→ C and I
i2−→ R.

Now we define the gluing condition and the context construction.

Definition 4 (Gluing Condition).
Given a strict inclusion morphism i1 : I → L and a P/T-morphism m : L → G
the gluing points GP , dangling points DP and the identification points IP of L
are defined by

GP = PI ∪ TI

DP = {p ∈ PL|∃t ∈ (TG \mT (TL)) : mP (p) ∈ preG(t)⊕ postG(t)}
IP = {p ∈ PL|∃p′ ∈ PL : p �= p′ ∧mP (p) = mP (p′)}

∪ {t ∈ TL|∃t′ ∈ TL : t �= t′ ∧mT (t) = mT (t′)}
where p ∈ PL =

∑n
i=1 ki ·pi means p = pi and ki �= 0 for some i. Then the gluing

condition is satisfied if all dangling and identifications points are gluing points,
i.e DP ∪ IP ⊆ GP .

Proposition 2 (Context P/T-System). Given a strict inclusion i1 : I → L
and a P/T-morphism m : L → G then the following context P/T-system C is
well-defined and leads to the following commutative diagram (1), called “context
diagram”, if the gluing condition DP ∪ IP ⊆ GP is satisfied.
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C = (PC , TC , preC , postC , M0
C) is defined by

PC = (PG \mP (PL)) ∪mP (PI),
TC = (TG \mT (TL)) ∪mT (TI),
preC = preG|C , postC = preG|C and
M0

C = M0
G|C .

I

c

��

i1 ��

(1)

L

m

��
C c1

�� G

The morphisms in (1) are defined by c : I → C to be the restriction of m : L → G
to I, and c1 : C → G to be a strict inclusion.

Proof. The P/T-system C and preC , postC : TC → P⊕
C with preC = preG|C and

postC = preG|C are well-defined if DP ∪ IP ⊆ GP . For t ∈ TC we have to show
preC(t) ∈ P⊕

C (and similar for postC(t)).

Case 1. For t ∈ TG \mT (TL) we have preC(t) = preG(t) =
∑n

i=1 ki ·pi. Assume
pi �∈ PC for some i ≤ n. Then pi ∈ mP (PL) \mP (PI) with pi ∈ preG(t). Hence
there is p′i ∈ PL \ PI with mP (p′i) = pi. This implies p′i ∈ DP and p′i �∈ GP and
contradicts the gluing condition DP ∪ IP ⊆ GP .

Case 2. For t ∈ mT (TI) we have t′ ∈ TI with t = mT (t′). This implies preC(t) =
preG(t) = preG(mT (t′)) = m⊕

P (preL(t′)) = m⊕
P (preI(t′)) ∈ m⊕

P (P⊕
I ) =

(mP (PI))⊕ ⊆ P⊕
C .

Moreover c : I → C satisfies the marking condition (2) in Def. 1, because this
is true for m : L → G and c is restriction of m. Finally c1 : C → G is a strict
inclusion by construction. This leads to the commutative diagram (1) in PTSys.

Remark 4. Note that we have not used the “identification condition” ID ⊆ GP ,
which is part of the gluing condition. But this is needed to show that the context
diagram (1) is - up to isomorphism - also a gluing diagram and hence a pushout
diagram in the category PTSys. This means that C is constructed in such a
way that G becomes the gluing of L and C via I, i.e. G ∼= L +I C.

An example of a context diagram is the left diagram in Fig. 7, where C
is the context P/T-system for i2 : I2 → L2 and g : L2 → G. Now a direct
transformation is given by the combination of a context diagram and a gluing
diagram.

Definition 5 (Applicability of Rules and Transformation).
A rule r = (L i1←− I

i2−→ R) is called applicable at match L′ m−→ G if L = L′

and the gluing condition is satisfied for i1 and m. In this case we obtain a
context P/T-system C with context diagram (1) and a gluing diagram (2) with
H = C +I R leading to a direct transformation G

r=⇒ H
consisting of the following diagrams (1) and (2). A (rule-
based) transformation G

∗=⇒ H is a sequence of direct
transformations G = G0

r1=⇒ G1
r2=⇒ . . .

rn=⇒ Gn = H
with G = H for n = 0. An example for a direct transfor-
mation is given in Fig. 7.

L

m

��
(1)

I
i1�� i2 ��

c

��
(2)

R

n

��
G Cc1

��
c2

�� H
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Remark 5. As pointed out in Remark 2 and Remark 4 already the context di-
agram (1) and the gluing diagram (2) are pushout diagrams in the category
PTSys. Hence a direct transformation G

r=⇒ H is given by the two pushouts
(1) and (2), also called double pushout (DPO). In the DPO-approach of graph
transformations (see [Ehr79]), high-level replacement systems [EHK91] and Petri
net transformations [EP04] a direct transformation is defined by a DPO-diagram.
For P/T-systems our definition is equivalent up to isomorphism to the existence
of a DPO in the category PTSys.

4 High-Level Nets with Nets and Rules as Tokens

In this section we review the definition of algebraic high-level (AHL) nets in
the notation of [EHP02] and [EM85] for algebraic specifications. Moreover we
present a specific HLNR-System-SIG signature and algebra. Both are essential
for our new notion of high-level net and rule (HLNR) systems in order to model
high-level nets with nets and rules as tokens.

Definition 6 (Algebraic High-Level Net). An algebraic high-level (AHL)
net AN = (SP, PAN , TAN , preAN , postAN , condAN , typeAN , A) consists of

– an algebraic specification SP = (Σ, E; X) with signature Σ = (S, OP ), equa-
tions E, and additional variables X;

– a set of places PAN and a set of transitions TAN ;
– pre- and post conditions preAN , postAN : TAN → (TΣ(X)⊗ PAN )⊕;
– firing conditions condAN : TAN → Pfin(Eqns(Σ; X));
– a type of places typeAN : PAN → S and
– a (Σ, E)-algebra A

where the signature Σ = (S, OP ) consists of sorts S and operation symbols
OP , TΣ(X) is the set of terms with variables over X, (TΣ(X) ⊗ PAN ) =
{(term, p)|term ∈ TΣ(X)typeAN (p), p ∈ PAN} and Eqns(Σ; X) are all equations
over the signature Σ with variables X.

Definition 7 (Firing Behavior of AHL-Nets). A marking of an AHL-
Net AN is given by MAN ∈ CP⊕ where CP = (A ⊗ PAN ) = {(a, p)|a ∈
AtypeAN (p), p ∈ PAN}.

The set of variables V ar(t) ⊆ X of a transition t ∈ TAN are the variables of
the net inscriptions in preAN (t), postAN (t) and condAN (t). Let v : V ar(t) → A
be a variable assignment with term evaluation v� : TΣ(V ar(t)) → A, then
(t, v) is a consistent transition assignment iff condAN (t) is validated in A un-
der v. The set CT of consistent transition assignments is defined by CT =
{(t, v)|(t, v) consistent transition assignment}.

A transition t ∈ TAN is enabled in MAN under v iff (t, v) ∈
CT and preA(t, v) ≤ MAN , where preA : CT → CP⊕ defined by preA(t, v) =
v̂(pre(t)) ∈ (A ⊗ PAN )⊕ and v̂ : (TΣ(V ar(t)) ⊗ PAN )⊕ → (A ⊗ PAN )⊕ is the
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obvious extension of v� to terms and places (similar postA : CT → CP⊕). Then
the follower marking is computed by M ′

AN = MAN ! preA(t, v)⊕ postA(t, v).
The marking graph MG of AN consists of all markings M ∈ CP⊕ as nodes

and all MAN
(t,v)−→ M ′

AN as edges where M ′
AN is the follower marking of MAN

provided that t is enabled in MAN under v with (t, v) ∈ CT . For an initial
marking INIT of AN the reachability graph RG is the subgraph of MG reachable
from INIT .

In order to allow P/T-systems and rules as tokens of an AHL-net AN we
provide a specific specification SP and SP-algebra A based on the construction
in the previous section. In fact, it is sufficient to consider as specific SP a sig-
nature, called HLNR-System-SIG, together with a suitable HLNR-System-
SIG-algebra A, where HLNR-System refers to high-level net and rule systems.

Definition 8 (HLNR-System-SIG Signature and Algebra).
Given vocabularies T0 and P0, the signature HLNR-System-SIG is given by
HLNR-System-SIG =
sorts: T ransitions, P laces, Bool, System, Mor, Rules
opns: tt, ff:→ Bool

enabled : System× T ransitions → Bool
fire : System× T ransitions → System
applicable : Rules×Mor → Bool
transform : Rules×Mor → System
coproduct : System× System → System
isomorphic : System× System → Bool
cod : Mor → System

and the HLNR-System-SIG-algebra A for P/T-systems and rules as tokens is
given by

– ATransitions = T0, APlaces = P0, ABool = {true, false},
– ASystem the set of all P/T-systems over T0 and P0, i.e.

ASystem = {P N |P N = (P, T, pre, post, M) P/T-system, P ⊆ P0, T ⊆ T0}
∪ {undef},

– AMor the set of all P/T-morphisms for ASystem, i.e.
AMor = {f |f : P N → P N ′ P/T-morphism with P N, P N ′ ∈ ASystem},

– ARules the set of all rules of P/T-systems, i.e.
ARules = {r|r = (L i1←− I

i2−→ R) rule of P/T-systems with
strict inclusions i1, i2},

– ttA = true, ffA = false,

– enabledA : ASystem×T0 → {true, false} for P N = (P, T, pre, post, M) with

enabledA(P N, t) =

{
true if t ∈ T, pre(t) ≤ M

false else

– fireA : ASystem × T0 → ASystem for P N = (P, T, pre, post, M) with



282 K. Hoffmann, H. Ehrig, and T. Mossakowski

fireA(P N, t) =

⎧⎪⎨⎪⎩
(P, T, pre, post, M ! pre(t)⊕ post(t))

if enabledA(P N, t) = tt

undef else

– applicableA : ARules ×AMor → {true, false} with

applicableA(r, m) =

{
true if r is applicable at match m

false else

– transformA : ARules ×AMor → ASystem with

transformA(r, m) =

{
H if applicableA(r, m)
undef else

where for L
m−→ G and applicableA(r, m) = true we have a direct transfor-

mation G
r=⇒ H,

– coproductA : ASystem × ASystem → ASystem the disjoint union (i.e. the two
P/T-systems are combined without interaction) with

coproductA(P N1, P N2) = if (P N1 = undef ∨ P N2 = undef) then undef
else ((P1 % P2), (T1 % T2), pre3, post3, M1 ⊕M2)

where pre3, post3 : (T1 % T2) → (P1 % P2)⊕ are defined by
pre3(t) = if t ∈ T1 then pre1(t) else pre2(t)
post3(t) = if t ∈ T1 then post1(t) else post2(t)

– isomorphicA : ASystem ×ASystem → {true, false} with

isomorphicA(P N1, P N2) =

{
true if P N1

∼= P N2

false else

where P N1
∼= P N2 means that there is a strict P/T-morphism f = (fP , fT ) :

P N1 → P N2 s.t. fP , fT are bijective functions,
– codA : AMor → ASystem with codA (f : P N1 → P N2) = P N2.

Definition 9 (High-Level Net and Rule Systems).
Given the signature HLNR-System-SIG and the HLNR-System-SIG-algebra
A as above, a high-level net and rule system HLNR = (AN, INIT ) consists of
an AHL-net AN (see Def. 6) with SP = (HLNR-System-SIG; X) where X are
variables over HLNR-System-SIG, and initial marking INIT of AN such that

1. all places p ∈ PAN are either
- system places i.e. p ∈ PSys = {p ∈ PAN |typeAN (p) = System} or
- rule places i.e. p ∈ PRules = {p ∈ PAN |typeAN (p) = Rules},

2. all rule places p ∈ PRules are contextual, i.e. for all transitions t ∈ TAN

connected with p there exists a variable r ∈ X such that preAN (t)|p =
postAN (t)|p = r, i.e. in the net structure of AN the connection between
p and t is given by a double arrow labeled with the variable r.
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n transformation

m :Mor
cod m = n
applicable(r, m) = tt

n

transform(r, g)fire(n, t)

token game

enabled(n, t) =tt

t :Transitions

(HLNR-System-SIG,A)

p1 : System

r

p2 : Rules

Fig. 8. Basic high-level net and rule system

Remark 6. Our notion of HLNR-systems has static rules. This means that the
tokens representing our rules do not move and remain unchanged on the rule
places (see Section 6 for extensions). According to our paradigm “nets and rules
as tokens” we only allow system and rule places, but no places which are typed
by other sorts of HLNR-System-SIG. A HLNR-system with only one system
place and one rule place is called basic HLNR-system.

Example 1 (Basic HLNR-System). A basic HLNR-system with system place p1

and rule place p2 is shown in Fig. 8 where the empty initial marking can be
replaced by suitable P/T-systems resp. rules on these places.

Example 2 (House of Philosophers). In Section 2 we have given a detailed discus-
sion of the HLNR-system “House of Philosophers” as given in Fig. 1 with system
places Library, Entrance-Hall, and Restaurant and rule places Rule1, . . . , Rule4.

The behavior of a HLNR-system HLNR = (AN, INIT ) is given by the
reachability graph in the sense of AHL-nets (see Def. 7), but it can be represented
more explicitly as follows:

Proposition 3 (Reachability Graph of High-Level Net and Rule Sys-
tem). The reachability graph RG of a HLNR-system HLNR = (AN, INIT )
can be characterized as follows:

1. Each node of RG is represented by a system family F ∈ (ASystem × PSys)⊕

i.e. F =
∑n

i=1(P Ni, pi) with P Ni ∈ ASystem and pi ∈ PSys;

2. Each edge of RG is represented by F
(tAN ,v)−→ F ′, where (tAN , v) ∈ CTAN is

a consistent transition assignment.

A system family F =
∑n

i=1(P Ni, pi) is well-formed if P Ni �= undef for
all i = 1, . . . , n. If the system family of INIT is well-formed and all
(tAN , v) ∈ CTAN of RG are strongly consistent, i.e. all terms of sort System
in preAN (tAN ), postAN (tAN ) and condAN (tAN ) are evaluated under v� to
defined elements P N �= undef , then we have:
3. The reachability graph RG is well-formed, i.e. the system families of all nodes

of RG are well-formed.

Proof. Each node of RG is given by a marking MAN ∈ (A⊗PAN )⊕, i.e. MAN =∑n
i=1(ai, pi) with pi ∈ PAN and ai ∈ Atype(p). Since we have PAN = PSys ∪
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PRules and all rule places are contextual the restriction MRules of MAN to all
pi ∈ PRules is the same for all markings and represents the token rules on
the rule places in the initial marking INIT . This means that each MAN is
uniquely represented by the restriction MSys of MAN to all pi ∈ PSys, w.l.o.g.
MSys =

∑n′

i=1(ai, pi) with n′ ≤ n and pi ∈ PSys, ai ∈ ASystem(i = 1, . . . , n′).
This means MSys ∈ (ASystem×PSys)⊕. Hence each MAN of RG is represented by

the system family MSys and each edge MAN
(tAN ,v)−→ M ′

AN by MSys
(tAN ,v)−→ M ′

Sys.

If INITSys is well-formed then for each MSys
(tAN ,v)−→ M ′

Sys with well-formed
MSys strong consistency of (tAN , v) implies that also M ′

Sys is well-formed. This
implies that the reachability graph RG is well-formed.

Remark 7. Strong consistency of (tAN , v) ∈ CTAN can be achieved for a
HLNR-system HLNR by including equations of the form enabled(n, t) = tt
or applicable(r, m) = tt into condAN (tAN ) as shown in Fig. 1 and Fig. 8.

An interesting special case of HLNR-systems are basic HLNR-systems as
presented in Fig. 8 of Example 1. Let us assume that the initial marking is given
by a P/T-system P N on place p1 and a set RULES of token rules on place
p2. Then (P N, RULES) can be considered as reconfigurable P/T-system in the
following sense: on the one hand we can apply the token game and on the other
hand rule-based transformations of the net structure of P N . Moreover these
activities can be interleaved. This allows to model changes of the net structure
while the system is running. This is most important for changes on the fly of
large systems, where it is important to keep the system running, while changes of
the structure of the system have to be applied. It would be especially important
to analyze under which conditions the token game activities are independent
of the transformations. This problem is closely related to local Church-Rosser
properties for graph resp. net transformations, which are valid in the case of
parallel independence of transformations (see [Ehr79, EP04]).

5 Specification and Implementation Aspects

In the previous section we have presented an explicit version of HLNR-systems
based on AHL-nets. The main idea was to present a set theoretical version
of the HLNR-System-SIG-algebra A which defines our concept of “nets and
rules as tokens”. For various reasons it is also interesting to present an algebraic
specification of this algebra. Unfortunately first-order algebraic specifications in
the sense of [EM85] or Casl [CAS94] are not suitable for this purpose. Actually
we need higher-order features which are provided by HasCasl [SM02], a higher-
order extension of the common algebraic specification language Casl.

HasCasl-specifications combine the simplicity of algebraic specifications
with higher-order features including function types. It is geared towards speci-
fication of functional programs, in particular in Haskell. The semantics of Has-
Casl is defined by a set-theoretic notion of intensional algebras. The advantage
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is that in an intensional setting function equivalence testing is possible within
some models. Moreover, we can distinguish between different functions that ex-
hibit the same behavior. By contrast extensional equality of functions means
that two functions are equal if they always produce the same results for the
same arguments. Standard ML, the data type part of Coloured Petri (CP) nets
[Jen92], cannot implement equality on function types. This means that it would
be difficult to consider P/T-systems and rules as defined in Section 3 as first-
class citizens and thus tokens in CP-nets. In our technical report [HM04] we
have presented a HasCasl-specification of P/T-systems, P/T-morphism and of
rule-based transformations according to the definitions in Section 3. This leads
to the formalism of algebraic higher-order (AHO) nets [HM03] where in contrast
to AHL-nets higher-order algebraic specifications in HasCasl are used. Since
tools for HasCasl already have been implemented this is a first step towards
an implementation of our approach presented in this paper.

In fact several aspects of HLNR-systems are supported by tools. The algebraic
approach to graph transformations which can also be used for rule-based transfor-
mations of nets, is supported by the graph transformation environment AGG (see
the homepage of [AGG]). AGG includes an editor for graphs and graph grammars,
a graph transformation engine, and a tool for the analysis of graph transforma-
tions. On top of the graph transformation system AGG there is the GenGED
environment (see the homepage of [Gen]) that supports the generic description
of visual modeling languages for the generation of graphical editors and the sim-
ulation of the behavior of visual models. Especially, rule-based transformations
for P/T-systems can be expressed using GenGED. These transformations can be
coupled to other Petri net tools using the Petri Net Kernel [KW01], a tool infras-
tructure for editing, simulating, and analyzing Petri nets of different net classes
and for integration of other Petri net tools. On the level of the data type part the
Heterogeneous Tool Set (Hets) (see the homepage of [Hets]) provides a parser and
static analysis for Casl and HasCasl-specifications; theorem proving support
in form of a translation to the Isabelle/HOL prover is under development. Also, a
translation tool from a HasCasl subset to Haskell is provided.

6 Conclusion and Future Work

In this paper we have presented the new concept of high-level nets with rules and
nets as tokens and initial marking, short HLNR-systems, which realizes our new
paradigm of “nets and rules as tokens”. This extends Valk’s paradigm “nets as
tokens”and also partly his notion of elementary object systems [Val98, Val01]. In
Section 2 we have presented a detailed case study of the “House of Philosophers”,
which allows to give an example driven introduction to HLNR-systems. Moreover
we have discussed the relationship to other approaches and pointed out that
it seems to be useful and possible to extend our approach by object-oriented
features and also to an interaction relation in the sense of Valk.

In Section 3 we have presented the main concepts for our paradigm “nets
and rules as tokens”. Due to the net inscriptions a firing step in the system
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level realizes on the one hand the computation of the follower marking of a
net (i.e. a P/T-system) and on the other hand the modification of a net by an
appropriate rule. Thus transformations become effectively included in the system
enabling the system to transform nets as tokens in a formal way by using also
rules as tokens. For this purpose we have introduced rule-based transformations
for P/T-systems in this paper. In fact we have presented an explicit version
of transformations avoiding pushout constructions, but our approach is equal
- up to isomorphism - to a double-pushout (DPO) approach in the sense of
[Ehr79, EHK91], which will allow to obtain also several other results already
known for the DPO-approach [Roz97]. From this point of view the paper presents
an interesting integration of concepts in the area of graph transformations and
Petri nets.

In HLNR-systems the coupling of a set of rules as tokens to certain transitions
is fixed due to the given net topology. In future work we will consider also
the migration of rules as tokens. This means the mechanism of mobility and
modification presented in our example could be transferred to rules as tokens in
order to achieve even more expressive models. The mobility aspect of rules as
tokens can be easily introduced by further transitions connecting places of the
type Rules. However the modification of rules as tokens (see [PP01]) requires an
extension of the corresponding algebra in Section 4.

Another interesting aspect for future work is to study transformations of
P/T-systems which preserve properties like safety or liveness. Especially in the
area of workflow modeling the notion of soundness (which comprises liveness)
is of importance (see e.g. [Aal98]). Here we can use the approach of property
preserving rules (see [PU03] for an overview). To integrate these kinds of rules
into HLNR-systems the set of rules ARules of the HLNR-System-Sig-algebra
A (see Section 4) would have to be restricted to property preserving rules.

Finally in Section 5 we have presented several specification and implementa-
tion aspects which are useful towards tool-support for our new concepts.
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Abstract. In this paper we present a polynomial algorithm to decide whether a
scenario (given as a Labelled Partial Order) is executable in a given place/transition
Petri net while preserving at least the given amount of concurrency (adding no
causality). In the positive case the algorithm computes a process net that respects
the concurrency formulated by the scenario. We moreover present a polynomial
algorithm to decide whether the amount of concurrency given by a Labelled Par-
tial Order is maximal, i.e. whether the Labelled Partial Order precisely matches
a process net w.r.t. causality and concurrency of the events, if this process net
represents a minimal causality of events among all process nets.

1 Introduction

Specifications of distributed systems are often formulated in terms of scenarios. In other
words, it is often part of the specification that some scenarios should be executable by
the system. Given the system, a natural question is whether a scenario can be executed.
In this paper we consider Petri net models instead of systems, and we restrict our con-
sideration to place/transition Petri nets. Transforming the above question to this model,
we ask whether a given scenario represents a possible execution of a given Petri net. If
the answer is positive for all specified scenarios then the Petri net model can be used as
a design specification of the system to be implemented. We have not been precise w.r.t.
scenarios and executions yet. In general, there are different ways to represent single
executions of Petri nets. The most prominent concepts are occurrence sequences, i.e.,
sequences of transition names that can occur consecutively, and process nets ([4, 5]),
i.e., Petri nets representing transition occurrences by events (transitions of process nets)
with explicit pre- and post-conditions representing token occurrences of the original
net (places of process nets). Playing the token game, it is very easy to check whether
a given sequence of transition names is in fact an occurrence sequence of a given net
with initial marking. For process nets, we can easily verify the defining conditions of a
process net, which reads for marked place/transition Petri nets as follows:

– The underlying net has no cycles, hence the transitive closure of the relation given
by arcs is a partial order,

– conditions are not branched,
– no event has an empty pre-set or an empty post-set,
– events are labelled by transitions and conditions by places,

G. Ciardo and P. Darondeau (Eds.): ICATPN 2005, LNCS 3536, pp. 289–308, 2005.
c©Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. A p/t-net (left figure) with two of its process nets

– the set of conditions with empty pre-set corresponds to the initial marking (if place
p has m0(p) initial tokens then m0(p) conditions of this set are labelled by p),

– the pre- and post-sets of events respect the pre- and post-sets of the corresponding
transitions (if a transition t consumes k tokens from a place p then each event
labelled by t has k pre-conditions labelled by p, and similarly for post-conditions).

Clearly, deciding whether an occurrence sequence can be executed in a place/transition
net as well as deciding whether an acyclic labelled net is a process net of a place/transition
net can be done in linear time (w.r.t. the size of the occurrence sequence / process net)
if the size of the original net is assumed to be constant. For motivation purpose, con-
sider the following example. In Figure 1 a place/transition net is shown. One possible
occurrence sequence is a b c c. Figure 1 also shows two process nets.

Occurrence sequences lack any information about independence and causality. So
it is impossible to specify that events should occur concurrently by an occurrence se-
quence. Therefore, as soon as concurrency of events has to be specified, occurrence
sequences cannot be used for specification of scenarios. Process nets are also not very
suitable for specification purposes for two reasons. First, conditions are labelled by
names of places of the model specified. So it is not possible to specify that two events
have to occur in some order but it is rather also necessary to state which place is re-
sponsible for establishing this order. So the specification includes already details of an
implementation. The second disadvantage is that a process net determines the precise
causality between events. Hence it is not possible to specify a scenario with two events
that may either occur (causally) ordered or concurrently. One way to overcome these
problems is to specify scenarios in terms of Labelled Partial Orders of events, where
the labels refer to the transitions of the specified model. These LPOs are called pomsets
(partially ordered multisets) in [9], emphasizing their close relation to partially ordered
sets (we have multisets here because the same transition can occur more than once in
a pomset, formally represented by two distinct events labelled by the same transition
name). LPOs are called partial words in [6], emphasizing their close relation to words
or sequences; the total order of elements in a sequence is replaced by a partial order.
Actually, pomsets and partial words do not distinguish isomorphic LPOs, because the
order of transition occurrences only depends on the labels. So LPOs are somehow in-
between occurrence sequences and process nets.
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Fig. 2. Four labelled partial orders. All except the most right one are executions of the net in
Figure 1. The third one (from the left) is the only strict execution of this net. The most left one
refers to both process nets shown in Figure 1

An LPO represents a scenario that can (or cannot) be executed by a marked Petri
net. The order defined between events of a so-called executable LPO is interpreted
as follows: If two events e1 and e2, labelled by transitions t1 and t2 respectively, are
ordered (e1 < e2) then either t1 occurs causally before t2 or both occur concurrently. If
e1 and e2 are not ordered, then concurrent executions of t1 and t2 is demanded. Another
interpretation of the order between events defines strictly executable LPOs: If e1 and e2

are ordered (e1 < e2) then t1 is demanded to occur causally before t2. If e1 and e2 are
not ordered, then concurrent executions of t1 and t2 is demanded.

It is immediate to see that occurrence sequences are special cases of LPOs: A se-
quence t1 t2 . . . tn can be viewed as a partially ordered set of events e1 < e2 < · · · < en

where ei is labelled by ti for 1 � i � n. Process nets can be translated to LPOs by re-
moving all conditions and keeping the partial order for the events. We will call such
LPOs runs. Formally, an LPO is executable by a given marked place/transition net if it
includes (is more sequentialized than) a run of the net. An LPO is strictly executable, if
it equals a minimal run (w.r.t. to set inclusion).

Figure 2 shows four LPOs. The first three represent executions of the net in Figure 1.
The third one (from the left) is the only strict execution (it is the run given by the first
process given in Figure 1). The fourth one is not an execution of this net.

The aim of this paper is to provide an efficient algorithm for deciding whether a given
LPO is executable by a given place/transition net. We will provide such an algorithm
and prove that its runtime is O(n4|P |), where n is the number of events of the LPO
and |P | is the number of places of the net. In the positive case, the algorithm computes
a run included in the LPO, and thus an underlying process net. Moreover, we provide a
(polynomial) characterization which tells us whether the computed run equals the LPO.

The surprising message of this paper might not be the existence of a polynomial
algorithm but conversely the fact that this is not a trivial problem. In fact, for elementary
Petri nets or 1-safe place/transition nets there exists an immediate algorithm to decide
the problem because a unique corresponding process net can be constructed from an
LPO – if it exists. The crucial point for place/transition nets is that in general there
is not a unique process net corresponding to a given LPO (i.e. an LPO can include
different runs). For example, the first LPO given in Figure 2 refers to both process nets
of Figure 1.

Astrid Kiehn [8] and Walter Vogler [11] showed that an LPO can be executed if and
only if for each cut of the LPO the marking reached by firing all transitions correspond-
ing to events smaller than the cut enables the multiset of transitions given by the cut.
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Unfortunately, this result does not lead to an efficient algorithm because the number of
cuts grows exponentially with the size of the LPO in general. This result seems to be
not very surprising. However, its proof in [8] is quite complicated, and the shorter proof
in [10, 11] employs a version of the nontrivial Marriage Theorem known from Graph
Theory.

The construction of the algorithm for testing executability and the proof of our result
is based on Flow Theory [2]. We will transform a part of our construction to the problem
of finding a maximal flow in a flow network associated to the LPO. This maximal flow
problem was extensively studied for decades. In [7] an algorithm is presented running
in cubic time, and there are several improvements since then (see [3] for an overview).
We obtain our complexity result by repeated transformations to flow networks and com-
putations of the maximal flow.

The structure of the remainder of this paper is as follows. In section 2 we provide
standard definitions of place/transition nets, occurrence sequences, process nets and
LPOs. In Section 3 we establish the so-called flow property of an LPO as a necessary
and sufficient condition for its executability. Section 4 is the core of the paper. By ap-
plying a maximum flow algorithm we decide whether a given LPO satisfies the flow
property. Section 5 introduces the strong flow property which characterizes LPOs cor-
responding exactly to a run of a process net and briefly presents a polynomial test of
strict executability of LPOs.

2 Place/Transition Nets

We use N to denote the nonnegative integers. Given a function f from A to B and a
subset C of A we write f |C to denote the restriction of f to the set C. Given a finite
set A, the symbol |A| denotes the cardinality of A. The set of all multi-sets over a set
A is denoted by NA. Given a binary relation R ⊆ A× A over a set A, the symbol R+

denotes the transitive closure of R.

2.1 Place/Transition Net Definitions

Definition 1 (Net).
A net is a triple (P, T, F ), where P is a finite set of places, T is a finite set of transitions,
satisfying P ∩ T = ∅, and F ⊆ (P ∪ T )× (T ∪ P ) is a flow relation.

Let (P, T, F ) be a net and x ∈ P ∪ T be an element. The preset •x is the set
{y ∈ P∪T | (y, x) ∈ F}, and the post-set x• is the set {y ∈ P∪T | (x, y) ∈ F}. Given
a set X ⊆ P ∪ T , this notation is extended by •X =

⋃
x∈X •x and X• =

⋃
x∈X x•.

For technical reasons, we consider only nets in which every transition has a nonempty
pre-set and a nonempty post-set.

Definition 2 (Place/transition net).
A place/transition net (shortly p/t-net) N is a quadruple (P, T, F, W ), where (P, T, F )
is a net and W : F → N+ is a weight function.

We extend the weight function W to pairs of net elements (x, y) ∈ (P×T )∪(T×P )
satisfying (x, y) �∈ F by W ((x, y)) = 0.
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A marking of a net N = (P, T, F, W ) is a function m : P → N, i.e. a multi-set
over P .

Definition 3 (Occurrence rule).
Let N = (P, T, F, W ) be a p/t-net. A transition t ∈ T is enabled to occur in a marking
m of N iff m(p) ≥ W ((p, t)) for every place p ∈ •t. If a transition t is enabled to
occur in a marking m, then its occurrence leads to the new marking m′ defined by
m′(p) = m(p)−W ((p, t)) + W ((t, p)) for every p ∈ P .

Definition 4 (Marked p/t-net).
A marked p/t-net is a pair (N, m0), where N is a p/t-net and m0 is a marking of N
called initial marking.

2.2 Labelled Partial Orders

In this section we recall the definition of semantics of p/t-nets based on labelled partial
orders, also known as partial words [6] or pomsets [9]. For proofs of the presented
results see e.g. [10].

Definition 5 (Directed graph, (Labelled) partial order).
A directed graph is a pair (V,→), where V is a finite set of nodes and →⊆ V × V is
a binary relation over V called the set of arcs. As usual, given a binary relation → we
write a → b to denote (a, b) ∈→.

A partial order is a directed graph po = (V, <), where < is an irreflexive and
transitive binary relation on V .

For a set S ⊆ V and a node v ∈ V \ S we write v < S, if v < s for a node s ∈ S.
Two nodes v, v′ of a partial order (V, <) are called independent if v �< v′ and

v′ �< v. By co ⊆ V × V we denote the set of all pairs of independent nodes of V . A
co-set in a partial order (V, <) is a subset S ⊆ V fulfilling: ∀x, y ∈ S : x co y. Clearly
the relation co is symmetric and reflexive. A cut is a maximal co-set.

Given partial orders po1 = (V, <1) and po2 = (V, <2), we say that po2 is a se-
quentialization of po1 if <1⊆<2.

A labelled partial order is a triple lpo = (V, <, l), where (V, <) is a partial order,
and l is a labelling function on V . If X is a set of labels of lpo, i.e. l : V → X , then
for a cut S ⊆ V , we define the multi-set μ(S) ⊆ NX by μ(S)(x) = |{v ∈ V | v ∈
S ∧ l(v) = x}|.

We use the above notation defined for partial orders also for labelled partial orders.

Definition 6 (Enabledness of LPOs).
A labelled partial order lpo = (V, <, l) with l : V → T is called enabled to occur in
a marking m if the following statement holds: For every cut S of < and every p ∈ P :
m(p) +

∑
v∈V ∧v<S(W ((l(v), p)) −W ((p, l(v)))) ≥ ∑v∈S W ((p, l(v))). Its occur-

rence leads to the marking m′(p) given by m′(p) = m(p) +
∑

v∈V (W ((l(v), p)) −
W ((p, l(v)))).

A labelled partial order lpo = (V, <, l) enabled in m is said to be minimal iff there
exists no labelled partial order lpo′ = (V, <′, l) enabled in m with <′⊂<.
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Proposition 1. If a labelled partial order is enabled in m and leads to m′, then every
sequentialization is enabled in m and leads to m′, too.

2.3 Processes, Runs and Executability of LPOs

Definition 7 (Occurrence net).
An occurrence net is a net O = (B, E, G) such that | • b|, |b • | � 1 for every b ∈
B (places are unbranched) and O is acyclic, i.e. the transitive closure G+ of G is a
partial order. Places of an occurrence net are called conditions and transitions of an
occurrence net are called events.

The set of conditions of an occurrence net O = (B, E, G) which are minimal
(maximal) according to G+ is denoted by Min(O) (Max(O)). Clearly, Min(O) and
Max(O) are cuts w.r.t. G+ (recall that events have nonempty pre- and post-sets by
assumption).

Definition 8 (Process).
Let (N, m0) be a marked p/t-net, N = (P, T, F, W ). A process of (N, m0) is a pair
K = (O, ρ), where O = (B, E, G) is an occurrence net and ρ : B ∪ E → P ∪ T is a
labelling function, satisfying

(i) ρ(B) ⊆ P and ρ(E) ⊆ T .
(ii) ∀e ∈ E, ∀p ∈ P : |{b ∈ •e | ρ(b) = p}| = W ((p, ρ(e))) and

∀e ∈ E, ∀p ∈ P : |{b ∈ e• | ρ(b) = p}| = W ((ρ(e), p)).
(iii) ∀p ∈ P : |{b ∈ Min(O) | ρ(b) = p}| = m0(p).

Definition 9 (Run).
Let K = (O, ρ) be a process of a marked p/t-net (N, m0). The labelled partial order
lpoK = (E, G+|E×E , ρ|E) is called run of (N, m0) representing K.

A run lpo = (E, <, l) of (N, m0) is said to be minimal iff there exists no other run
lpo′ = (E, <′, l) of (N, m0) with <′⊂<.

Definition 10 (Executability of LPOs). A labelled partial order lpo = (V,≺, l) is
called executable in a marked p/t-net (N, m0) if there exists a run (V, <, l) of (N, m0)
with <⊆≺.

A labelled partial order lpo = (V,≺, l) is called strictly executable in a marked
p/t-net (N, m0) if it is a minimal run of (N, m0).

Directly from the definition of processes we obtain:

Proposition 2. Every run of (N, m0) is enabled in m0.

From proposition 1 and proposition 2 follows:

Proposition 3. If a labelled partial order is executable in (N, m0), then it is also en-
abled in m0.

The important result completing the relationship between enabled and executable
labelled partial orders was proven in [8, 10].

Theorem 1. If a labelled partial order is enabled in m0 in a p/t-net N , then it is exe-
cutable in (N, m0).
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3 Flow Property

As described in the introduction, the definition of enabledness of LPOs is inherently
exponential, since an LPO can have exponentially many cuts in the number of nodes.
That means, the definition is not appropriate to develop a test of executability.

Instead, we introduce the so called flow property of labelled partial orders w.r.t.
a marked p/t-net (N, m0). In this section we show: A labelled partial order fulfills the
flow property w.r.t (N, m0) if and only if it is executable in (N, m0). In the next section
we will give a polynomial test of fulfilling the flow property for a labelled partial order.
In the positive case, this test will compute a run included in this labelled partial order.

We fix a marked p/t-net (N, m0) and a place p of N . Given a labelled partial order
lpo = (V, <, l) with l(V ) = T we assign non-negative integers to its edges through a
so called flow function. The aim is to find a flow function assigning values x(v, v′) to
edges (v, v′) in such a way that there is a process with exactly x(v, v′) post-conditions
of v labelled by p which are also pre-conditions of v′. Thus, such a flow function of lpo
abstracts from individuality of conditions of a process and encodes the flow relation of
this process by natural numbers. Clearly, finding such a flow function for every place
means that lpo includes the run of this process.

In order to simplify the formal definition of the flow property, let us define an exten-
sion of lpo = (V, <, l) by adding an initial node which is smaller than all nodes from
V and which is labelled by a new label.

Definition 11 (0-extension of a labelled partial order). Let lpo = (V, <, l) be a la-
belled partial order. Then a labelled partial order lpo0 = (V 0, <0, l0), where V 0 =
(V ∪ {v0}), v0 /∈ V , <0=< ∪({v0} × V ), l0(v0) /∈ l(V ) and l0|V = l, is called
0-extension of lpo.

Assigning natural numbers to the arcs of a 0-extension of a labelled partial order
we define a so called flow function of this labelled partial order (with v0 as its unique
smallest element).

Definition 12 (Flow function of a labelled partial order). Let lpo = (V, <, l) be
a labelled partial order and lpo0 = (V 0, <0, l0) be a 0-extension of lpo. A function
x :<0→ N is called flow function of lpo. For v ∈ V , we denote

–
∑

v′<0v x((v′, v)) the ingoing flow of v w.r.t. x, and
–
∑

v<0v′ x((v, v′)) the outgoing flow of v w.r.t. x.

Let lpo = (V, <, l) be a run representing a process of (N, m0). For every place
p define the canonical flow function of the run w.r.t. p, by counting for every v < v′

the number of post-conditions of v labelled by p which are pre-conditions of v′ in the
process. The outgoing flow of the source event v0 represents the the number of minimal
conditions labelled by p which are used by further events.

Definition 13 (Canonical flow function of a run). Let K = (O, ρ) be a process of
(N, m0) with O = (B, V, G) and let lpo = (V, <, l) be the run representing K. Let
lpo0 = (V 0, <0, l0) be a 0-extension of lpo. Define v0• = Min(O) for the unique
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smallest element v0 of (V 0, <0). We define for every place p ∈ P the flow function
xp :<0→ N0 of lpo as follows:

xp(v, v′) = |{b ∈ B | ρ(b) = p ∧ b ∈ v • ∩ • v′}|.
By definition, this canonical flow function respects the weight function and the ini-

tial marking of (N, m0) in the following sense:

(A) The ingoing flow of an event v equals the number of tokens consumed from place
p by the occurrence of transition l(v).

(B) The outgoing flow of an event v (i.e. the number of post-conditions of v labelled
by p which are used as pre-conditions of other events) is less than or equal to the
number of tokens which are produced by the occurrence of transition l(v) in place
p. In particular, the outgoing flow of the source event v0 is less or equal to the
number of tokens in place p of the initial marking m0.

In general, we say that an arbitrary labelled partial order, whose labels are transitions
of (N, m0), fulfils the flow property w.r.t. (N, m0), if for every place there exists a flow
function which fulfils the properties (A) and (B).

Definition 14 (Flow property). Let lpo = (V, <, l) be a labelled partial order with
l(V ) = T and let lpo0 = (V 0, <0, l0) be a 0-extension of lpo. Denote W ((l(v0), p)) =
m0(p) for each place p. We say that lpo fulfils the flow property w.r.t. (N, m0) if the
following statement holds: For every place p ∈ P there exists a flow xp :<0→ N such
that

(A) For every v′ ∈ V :
∑

v<0v′ xp(v, v′) = W ((p, l(v′))).
(B) For every v ∈ V 0:

∑
v<0v′ xp(v, v′) � W ((l(v), p)).

The ingoing flow of a node v w.r.t. xp is also called (A)-sum of xp w.r.t. v and the
outgoing flow of a node v w.r.t. xp is also called (B)-sum of xp w.r.t. v.

Given a run lpo of (N, m0), it follows directly from the definitions of processes and
runs that for every p ∈ P the canonical flow function xp of lpo fulfils the statements
(A) and (B):

Lemma 1. Every run of (N, m0) fulfils the flow property w.r.t. (N, m0).

By the definition of the flow property, given a labelled partial order lpo = (V, <, l)
fulfilling (A) and (B) w.r.t. a place p and a flow function xp and a labelled partial order
lpo′ = (V, <′, l) with <⊂<′ we have: lpo′ fulfils (A) and (B) w.r.t. to the place p and
the flow function x′

p given by x′
p|< = xp and x′

p|<′\< = 0. Therefore:

Lemma 2. Every labelled partial order executable in (N, m0) fulfils the flow property
w.r.t. (N, m0).

The following lemma states the converse:

Lemma 3. Let lpo = (V,≺, l) be a labelled partial order which fulfils the flow property
w.r.t. (N, m0). Then lpo is executable in (N, m0), i.e. there exists a run (V, <, l) of
(N, m0) such that <⊆≺.
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Proof. From the definition of the flow property, for every place p ∈ P there exists
a function xp which fulfils (A) and (B). We will fix these functions and use them to
construct a process K = (O, ρ) of (N, m0) with O = (B, V, G) and ρ|V = l, satisfying
<= G+|V ×V ⊆≺. According to the definition of runs, this will conclude the proof.

For convenience, denote V = {v1, . . . , v|V |} such that vi ≺ vj implies i < j. First
define the set of conditions and the labelling of conditions. For every event v ∈ V 0 we
define the set of post-conditions of v labelled by p ∈ P :

Bv
p = {p1

v, . . . pW ((l(v),p))
v }.

Thus, the number of these post-conditions equals the value W ((l(v), p)). Especially,
the number of post-conditions of v0 labelled by p ∈ P equals m0(p). Denote Bp =
∪v∈V 0Bv

p the set of all conditions labelled by p. Define the labelling of conditions
by ρ(b) = p for b ∈ Bp. Finally, the set of all conditions of the process is given by
B = ∪p∈P Bp.

It remains to define the flow relation G. It is the union of all ingoing and outgoing
arcs of all events v ∈ V . An event v ∈ V has an outgoing arc to each of its post-
conditions (observe that v0 �∈ V ). Thus, the set of outgoing arcs of an event v ∈ V
labelled by p ∈ P is

Gv•
p = {v} ×Bv

p .

The ingoing arcs are defined w.r.t. the flow functions. If xp(v, vm) > 0, then we connect
exactly xp(v, vm) post-conditions of v labelled by p with vm. In order to avoid branch-

ing of conditions, we connect the post-conditions p1
v, . . . , p

xp(v,vm)
v with the event vm

which has the smallest index m from all events vm with xp(v, vm) > 0, and so on.
Formally, define the set of ingoing arcs from conditions labelled by p ∈ P to an event
vm ∈ V by

G•vm
p = {(pi

v, vm) | v ∈ V0, xp(v, vm) > 0,∑
j<m

xp(v, vj) < i �
∑
j�m

xp(v, vj)}.

Because xp fulfils (B), i.e. the number of post-conditions of an event v ∈ V 0 is not
less than the outgoing flow of v, by this construction any event vm ∈ V is connected
with exactly xp(v, vm) post-conditions of v labelled by p whenever xp(v, vm) > 0.
Because of this and because xp also fulfils (A), by this construction every vm ∈ V
has exactly W ((p, l(vm))) pre-conditions labelled by p ∈ P . Finally denote Gp =
∪v∈V (G•v

p ∪Gv•
p ) for every p ∈ P and G = ∪p∈P Gp.

By construction, the conditions are unbranched and the defined net is acyclic, i.e.
O = (B, V, G) is an occurrence net. From the previous reasoning K = (O, ρ) is a
process of (N, m0).

It remains to show that <= G+|V ×V ⊆≺. Denote R = {(v, v′) ∈ V × V |
v • ∩ • v′ �= ∅}. Observe that G+|V ×V = R+ and (by construction of G) we have
(v, v′) ∈ R =⇒ (∃p ∈ P : xp(v, v′) > 0). Because xp(v, v′) > 0 implies v ≺ v′ and
≺ is transitive, this gives <= G+|V ×V ⊆≺. ��
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4 Testing the Flow Property

In this section we give a polynomial algorithm to test whether a labelled partial order
lpo = (V, <, l) with l(V ) = T fulfils the flow property w.r.t. (N, m0). In the case that
lpo fulfils the flow property, the algorithm constructs flow functions for all places.

4.1 The Algorithm

We describe the algorithm for a fixed place p. Let lpo0 = (V 0, <0, l0) be a 0-extension
of lpo. Throughout this section denote V 0 = {v0, v1, . . . , vn} with vi < vj ⇒ i < j.
The algorithm starts with a flow function x0 fulfilling part (A) of the flow property. Such
x0 always exists, e.g. set x0(v0, v′) = W ((p, l(v′))) for each v′ ∈ V and x0(v, v′) = 0
otherwise. In general this flow function will not fulfil part (B) of the flow property. We
denote max0 the smallest index for which x0 does not fulfil property (B):

–
∑

vmax0<0v′ x0(vmax0 , v′) > W ((l(vmax0), p)), and

– ∀j < max0:
∑

vj<0v′ x0(vj , v′) � W ((l(vj), p)).

Thus, the aim is to modify x0, such that the (B)-sum of x0 w.r.t. the index max0

is reduced as much as necessary to fulfil (B) w.r.t. max0, while preserving property
(A) for all indexes and property (B) for all indexes smaller than max0. In Subsection
4.4 we will describe in detail a procedure which modifies x0 in such a way while min-
imizing the (B)-sum w.r.t. max0 in some sense. In the following we will refer to this
procedure as the main procedure of the algorithm. Repeating the main procedure, we
get the algorithm:

1. Set i = 0 and compute a flow function xi fulfilling (A).
2. If xi does not fulfil (B):

• Compute the smallest index maxi for which xi does not fulfil (B).
• Repeat:

∗ Apply the main procedure to modify xi into a flow function xi+1 (in such a
way that xi+1 still fulfils (A) for all indexes, still fulfils (B) for all indexes
smaller than maxi, and the (B)-sum of xi+1 w.r.t. maxi is smaller than
(or equal to) the (B)-sum of xi w.r.t. maxi).

∗ If xi+1 does not fulfil (B), compute the smallest index maxi+1 for which
xi+1 does not fulfil (B).

∗ Set i = i + 1.
until xi fulfils (B) or maxi = maxi−1.

The algorithm terminates, if either xi fulfils property (B) or maxi = maxi−1. In
the first case xi is a flow function, for which lpo fulfils the flow property. In the second
case we will prove in Subsection 4.5 that lpo is not enabled w.r.t. (N, m0).

The algorithm has to be applied for every place p ∈ P . Since maxi � n, the main
procedure is repeated at most n times. The main procedure itself requires at most O(n3)
time as shown in the Subsection 4.4. Altogether we get that the test of executability
takes O(n4|P |) time.
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index > maxiindex < maxi
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Fig. 3. The left part shows an example of a flow decreasing sequence of the first kind with k =
3. The right part shows the modifying operation to get a flow function x′ from xi satisfying
x′(vmaxi , w

1) < xi(vmaxi , w
1), property (A) for all indexes and property (B) for all indexes

smaller than maxi

4.2 Flow Decreasing Sequences

We start with a brief motivation of the main procedure for modifying xi: Consider the
following two possibilities of reducing the (B)-sum of xi w.r.t. maxi while respecting
property (A) for all indexes and property (B) for all indexes smaller than maxi.

The first possibility is to move positive values xi(vmaxi
, v′) onto edges (vj , vl) with

j > maxi (see Figure 3): Suppose a sequence of nodes v0 = vmaxi
, w1, v1, . . . , wk, vk

such that

– wj �= wm and vj �= vm for j �= m,
– x(vj , wj+1) > 0 and vj < wj ,
– For each 0 < j < k there is an index m < maxi with vj = vm,
– For j = k there is an index m > maxi with vk = vm.

Such a sequence allows to modify xi into a new flow function x′ defined as follows:

x′(vj , wj) = xi(vj , wj) + 1,

x′(vj , wj+1) = xi(vj , wj+1)− 1.

Obviously x′ satisfies x′(vmaxi
, w1) < xi(vmaxi

, w1), property (A) for all indexes
and property (B) for all indexes smaller than maxi. This modification can be applied
for each such sequence as long as x′(vj , wj+1) > 0 for all j, thus reducing the (B)-sum
of xi w.r.t. maxi. As a consequence x′(vk, wk) > xi(vk, wk), i.e. the (B)-sum w.r.t.
vk is increased. Nevertheless property (B) remains satisfied for all indexes smaller than
maxi.

The second possibility is to move positive values xi(vmaxi
, v′) onto edges (vj , vl)

with j < maxi and
∑

vj<v′ xi(vj , v′) < W ((l(vj), p)) (see Figure 4): Suppose a

sequence of nodes v0 = vmaxi
, w1, v1, . . . , wk, vk such that
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index > maxiindex < maxi

xi(e)>0

xi(e)>0

index > maxiindex < maxi

-1
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+1
(B)-sum(v)
< post(l(v))(p0)

v v (B)-sum(v)
≤ post(l(v))(p0)

xi x‘

Fig. 4. The left part shows an example of a flow decreasing sequence of the second kind with
k = 2. The right part shows the modifying operation to get a flow function x′ from xi satisfying
x′(vmaxi , w

1) < xi(vmaxi , w
1), property (A) for all indexes and property (B) for all indexes

smaller than maxi

– wj �= wm and vj �= vm for j �= m,
– x(vj , wj+1) > 0 and vj < wj ,
– For each 0 < j � k there is an index m < maxi with vj = vm ,
–
∑

vk<v′ xi(vk, v′) < W ((l(vk), p)).

Such a sequence allows to modify xi into a new flow function x′ defined as follows:

x′(vj , wj) = xi(vj , wj) + 1,

x′(vj , wj+1) = xi(vj , wj+1)− 1.

Obviously x′ satisfies x′(vmaxi
, w1) < xi(vmaxi

, w1), property (A) for all indexes
and property (B) for all indexes smaller than maxi. This modification can be applied
for each such sequence as long as x′(vj , wj+1) > 0 for all j and

∑
vk<v′ x′(vk, v′) <

W ((l(vk), p)), thus reducing the (B)-sum of xi w.r.t. maxi. As a consequence x′(vk,
wk) > xi(vk, wk), i.e. the (B)-sum w.r.t. vk is increased. Nevertheless property (B)
remains satisfied for all indexes smaller than maxi.

Such sequences (of the first or second kind) will be called flow decreasing sequences
w.r.t. xi). We want reduce the (B)-sum of the modified flow w.r.t. maxi by flow de-
creasing sequences in a maximal way. This can be done by transforming this problem
for (V, <, l) w.r.t. the flow function xi into a maximum flow problem for a suitable flow
network. The maximum flow problem is intensively studied since four decades and sev-
eral algorithms running in cubic time in the number of nodes ([7]) and faster (see e.g.
[3] for an overview) were developed.

4.3 The Associated Flow Network

We briefly introduce the necessary notations:
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Definition 15 (Flow network). A flow network is a directed graph (V ′,→) together
with a capacity function c assigning nonnegative integers to edges in E→ = {(v, v′) |
v → v′ ∨ v′ → v}, satisfying: there is a node s ∈ V , called source, with no incoming
edges w.r.t. →, there is a node t, called sink, with no outgoing edges w.r.t. →, and
c(v, v′) = 0 for v �→ v′.

A flow f in (V ′,→, c) is a function assigning integers to edges in E→ in such a way
that

– f does not exceed c: f(v, v′) � c(v, v′).
– f(v, v′) = −f(v′, v).
– For each node v except source and sink the flow into (resp. out of) v equals 0:∑

(v′,v)∈E→
f(v′, v) = 0.

The value |f | of a flow f is defined as the outgoing flow of the source (or equivalently
the ingoing flow of the sink)

∑
s→v′ f(s, v′). The maximal flow is the flow with maximal

value among all flows.
Given a flow f , the residual capacity cr w.r.t. f of (v, v′) ∈ E→ is defined by

cr(v, v′) = c(v, v′) − f(v, v′) if v → v′ and cr(v, v′) = f(v′, v) if v �→ v′. The
residual network of a flow f consists of all edges e ∈ E→ with cr(e) > 0 together
with the residual capacity. A flow augmenting path w.r.t. a flow f of a flow network is a
simple path from source to sink in the residual network of f .

One of the first algorithms solving the maximum flow problem was the flow aug-
menting path method by Ford and Fulkerson ([2]). They proved the following theorem
giving a characterization of the maximum flow:

Theorem 2. Let f be a flow in a flow network. If there is no flow augmenting path w.r.t.
f , then f is maximal.

The flow network G(xi) = (V (xi),→, c) associated to lpo = (V, <, l) and xi

is defined in such a way that the flow decreasing sequences in (V, <) (w.r.t. xi) will
correspond to flow augmenting paths in (V (xi),→, c) (w.r.t. to the zero flow). The
possibility of reducing the (B)-sum w.r.t. maxi through a flow decreasing sequence
by a certain amount shall exactly correspond to a flow of the same amount through an
associated augmenting path from source to sink. Therefore the capacity restricting the
flow on edges (vj , wj+1) corresponds to the value of the flow function xi(vj , wj+1).
Since a node vm with m < maxi can serve as a node vj in a flow decreasing sequence
and as a node wj in the same or another flow decreasing sequence, we split each node
v ∈ V into two nodes in the flow network: (v, out), playing the role of a node vj , and
(v, in), playing the role of a node wj . Formally, we define V (xi) = (V × {in, out})∪
{t}) with a node t �∈ V , which will serve as the sink. The node (vmaxi

, out) will
have no incoming edges and serve as the source of the flow network. We will use a
constant M as an edge capacity which can not be exceeded by the value of the maximum
flow of the flow network (see Figure 5)). Since the value of the maximal flow can
never exceed the sum of capacities of the edges outgoing of the source, we set M =∑

vmaxi
→v′ xi(vmaxi

, v′).

(a) For l > maxi and xi(vmaxi
, vl) > 0: (vmaxi

, out) → (vl, in) and
c((vmaxi

, out), (vl, in)) = xi(vmaxi
, vl).
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Fig. 5. The left part shows a part of a labelled partial order where it is indicated on which edges
the flow function xi has positive values. For clearness only the skeleton is regarded. The right part
shows the corresponding part of the associated flow network. The ”out”-nodes are filled whereas
the ”in”-nodes are not filled. Each edge carry its capacity

(b) For j < maxi and xi(vj , vl) > 0: (vj , out)→ (vl, in) and
c((vj , out), (vl, in)) = xi(vj , vl)

(c) For j < maxi and vj < vl: (vl, in) → (vj , out) and
c((vl, in), (vj , out)) = M .

(d) For l > maxi and vj < vl for some vj with j > maxi: (vl, in) → t and
c((vl, in), t) = M

(e) For j < maxi and
∑

vj<v′ xi(vj , v′) < W ((l(vj), p)): (vj , out) → t and
c((vj , out), t) = W ((l(vj), p))−∑vj<v′ xi(vj , v′).

The following lemma states that for each flow f we can modify xi into a flow
function xf fulfilling property (A) for all indexes and property (B) for all indexes
smaller than maxi with its (B)-sum w.r.t. maxi reduced by |f |.
Lemma 4. Let f be a flow in G(xi) = (V (xi),→, c). Then the flow function xf , de-
fined by modifying xi in the following way, fulfils (A) for all indexes and (B) for all
indexes smaller than maxi:

(a) For l > maxi and xi(vmaxi
, vl) > 0:

xf (vmaxi
, vl) = xi(vmaxi

, vl)− f((vmaxi
, out), (vl, in)).

(b) For j < maxi and xi(vj , vl) > 0:
xf (vj , vl) = xi(vj , vl)− f((vj , out), (vl, in)).

(c) For j < maxi, vj < vl and xi(vj , vl) = 0:
xf (vj , vl) = xi(vj , vl) + f((vl, in), (vj , out))
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(d) For l > maxi such that vj < vl for some vj with j > maxi:
Let J be the maximal index with vJ < vl and define xf (vJ , vl) = xi(vJ , vl) +
f((vl, in), t).

Proof. Observe first that by construction all values of xf are non-negative:
ad (a): f((vmaxi

, out), (vl, in)) � c((vmaxi
, out), (vl, in)) = xi(vmaxi

, vl).
ad (b): f((vj , out), (vl, in)) � c((vj , out), (vl, in)) = xi(vj , vl).
ad (c): f((vl, in), (vj , out)) > 0 since c((vj , out), (vl, in)) = 0.
ad (d): f((vl, in), t) > 0 since c(t, (vl, in)) = 0.

We first show that xf fulfils part (A) of the flow property. For this we claim that the
(A)-sums of xi and xf are equal w.r.t. each node vl. For convenience assume f(ν, μ) =
0 for (ν, μ) �∈ E→. The argumentation is based on the observation, that by definition
for a node vl with (t, (vl, in)) �∈ E→:∑

vj<vl

f((vj , out), (vl, in)) =
∑

(ν,(vl,in))∈E→

f(ν, (vl, in)) = 0.

The last equality follows by the definition of flows. In this case:∑
vj<vl

xf (vj , vl) =
∑

vj<vl

(xi(vj , vl)− f((vj , out), (vl, in)))

=
∑

vj<vl

xi(vj , vl)−
∑

vj<vl

f((vj , out), (vl, in))

=
∑

vj<vl

xi(vj , vl).

In case (t, (vl, in)) ∈ E→ we similarly get the same result.
Finally we show that xf fulfils part (B) of the flow property for all indexes j <

maxi. If (t, (vj , out)) �∈ E→, we deduce as above that the (B)-sums of xi and xf are
equal w.r.t. vj . In the case (t, (vj , out)) ∈ E→ we get:

∑
vj<vl

f((vj , out), (vl, in)) =

⎛⎝ ∑
((vj ,out),μ)∈E→

f((vj , out), μ)

⎞⎠− f((vj , out), t)

= −f((vj , out), t).

As above we deduce∑
vj<vl

xf (vj , vl) =
∑

vj<vl

xi(vj , vl)−
∑

vj<vl

f((vj , out), (vl, in))

=
∑

vj<vl

xi(vj , vl) + f((vj , out), t)

�
∑

vj<vl

xi(vj , vl) + c((vj , out), t) = W ((l(vj), p)).

��
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4.4 The Main Procedure

By Lemma 4, for each flow f in the associated flow network we can decrease the (B)-
sum for the index maxi by |f |, while (A) for all indexes and (B) for all indexes smaller
then maxi remain satisfied. Thus, the main procedure is defined as follows:

– Input: Flow function xi.
– Compute associated flow network w.r.t. xi.
– Compute maximal flow f in this flow network.
– Compute xf .
– Output: Flow function xi+1 = xf .

Computing the maximal flow f depends on the applied maximum flow algorithm.
As already mentioned, there are maximum flow algorithms taking cubic time and faster.
The other steps take at most quadratic time. Altogether the main procedure takes at most
cubic time.

Let us mention that the main procedure could be optimized by terminating the max-
imum flow algorithm as soon as

∑
vmaxi

<v′ xi(vmaxi
, v′)− |f | � W ((l(vmaxi

), p)).

4.5 Termination of the Algorithm

If the algorithm terminates because xi fulfils (B), then lpo fulfils the flow property for
the place p.

It remains to prove that if the algorithm terminates because maxi = maxi−1, then
lpo is not enabled w.r.t. (N, m0). From proposition 3 this implies that lpo is not exe-
cutable in (N, m0).

Theorem 3. Let f be the maximal flow of the associated flow network w.r.t. xi. Assume
moreover that xf does not fulfil (B) for the index maxi. Then there is a cut C, such
that lpo is not enabled w.r.t. C:

m0(p) +
∑

v<C,v∈V

W ((l(v), p))−
∑
v<C

W ((p, l(v)))−
∑
v∈C

W ((p, l(v))) < 0.

The proof is based on the following lemma which states that for each flow f and
each flow decreasing sequence w.r.t. xf there is a flow augmenting path w.r.t. f in the
flow network associated to xi.

Lemma 5. Let f be a flow in the flow network G(xi) = (V (xi),→, c) and let v0 =
vmaxi

, w1, v1, . . . , wk, vk be a flow deceasing sequence w.r.t. xf . Then

– If the flow decreasing sequence is of the first kind,
then (v0, out) = (vmaxi

, out), (w1, in), (v1, out), . . . , (wk, in), t is a flow aug-
menting path w.r.t. f .

– If the flow decreasing sequence is of the second kind,
then (v0, out) = (vmaxi

, out), (w1, in), (v1, out), . . . , (wk, in), (vk, out), t is a
flow augmenting path w.r.t. f .
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Proof. Let vmaxi
, w1, v1, . . . , wk, vk be a flow decreasing sequence of the first kind.

We have to show that (vmaxi
, out), (w1, in), (v1, out), . . . , (wk, in), t is a path in the

residual network (V (xi),→r, cr) of f . We have

– cr((wj , in), (vj , out)) = c((wj , in), (vj , out)) − f((wj , in), (vj , out)) = M −
f((wj , in), (vj , out)) > 0 since (wj , in) → (vj , out).

– cr((vj , out), (wj+1, in)) = c((vj , out), (wj+1, in))− f((vj , out), (wj+1, in)) =
xi((vj , out), (wj+1, in))− f((vj , out), (wj+1, in)) = xf (vj , wj+1) > 0.

– cr((wk, in), t) = c((wk, in), t)− f((wk, in), t) = M − f((wk, in), t) > 0.

Let now vmaxi
, w1, v1, . . . , wk, vk be a flow decreasing sequence of the second

kind. We show that (vmaxi
, out), (w1, in), (v1, out), . . . , (wk, in), (vk, out), t is a path

in the residual network of f .
To show cr((wj , in), (vj , out)), cr((vj , out), (wj+1, in)) > 0 works as above.

Moreover, we get analogously as in the proof of lemma 4:
cr((vk, out), t) = c((vk, out), t)−f((vk, out), t) = W ((l(vk), p))−∑vk<v′ xi(vk, v′)
−f((vk, out), t) = W ((l(vk), p))−∑vk<v′ xf (vk, v′) > 0. ��

From lemma 5 and theorem 2 we get immediately that for the maximal flow f there
is no flow decreasing sequence w.r.t. xf .

Lemma 6. Let f be the maximal flow of the network G(xi) = (V (xi),→, c) associated
to xi. Assume further xf does not fulfil property (B) for the index maxi.

DefineW as the set consisting of vmaxi
and all events v ∈ V 0 such that there exists

a sequence v0 = vmaxi
, w1, v1, . . . , wk, vk = v with

(i) wj �= wm and vj �= vm for j �= m,
(ii) xf (vj , wj+1) > 0 and vj <0 wj .

Define C as the set of all w ∈ V with w �∈ W such that there exists v ∈ W with
xf (v, w) > 0. Then it holds:

(a) If vj ∈ W then j � maxi.
(b) v <0 C ⇔ v ∈ W .
(c) C is a co-set.
(d) C ′ = {w ∈ V | w /∈ W ∧ (v <0 w ⇒ v ∈ W)} is a cut and C ⊆ C ′.
(e) For every vj ∈ W with j �= maxi we have

∑
vj<0v′ xf (vj , v′) = W ((l(vj), p)).

Proof. ad (a): Assume vj ∈ W with j > maxi. There is a sequence v0 = vmaxi
, w1, v1

, . . . , wk, vk = vj fulfilling (i) and (ii). Take the smallest index m such that there is
u > maxi with vm = vu. By definition v0 = vmaxi

, w1, v1, . . . , wm, vm is a flow
decreasing sequence of the first kind. This contradicts the assumption (since by Lemma
5 there is no flow decreasing sequence w.r.t. xf ).

ad (b): (=⇒) Let v <0 C. If v = vmaxi
, then v ∈ W by definition of W . Let

v �= vmaxi
: v <0 C implies that there is w ∈ C with v <0 w. By definition of C

there exists v′ ∈ W with xf (v′, w) > 0. If v = v′, we get v ∈ W . Let v �= v′.
If v′ = vmaxi

, then the sequence v′, w, v fulfils (i) and (ii) and therefore v ∈ W .
Otherwise by definition ofW there is a sequence v0, w1, v1, . . . , wk, vk = v′ fulfilling
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(i) and (ii). If v = vj for some j, then v ∈ W . Let v �= vj for all j. If wj �= w for
all j, then also the sequence v0, w1, v1, . . . , wk, v′, w, v fulfils (i) and (ii), i.e. v ∈ W .
If wj = w for some j, let m be the smallest index with wm = w. Then the sequence
v0, w1, v1, . . . , wm = w, v fulfils (i) and (ii), i.e. v ∈ W .

(⇐=) Let v ∈ W . If v = vmaxi
then we have: Because xf does not fulfil (B) for

the index maxi, there exists a node vj ∈ V with j > maxi such that xf (v, vj) > 0
and in particular v <0 vj . According to (a) and the definition of C we have vj ∈
C and v <0 C (in particular C is nonempty). If v �= vmaxi

then there is a se-
quence v0, w1, v1, . . . , wk, vk = v fulfilling (i) and (ii). Since vk−1 ∈ W , we get
xf (vk−1, wk) > 0. If wk �∈ W , this implies wk ∈ C. From v = vk < wk we obtain
v <0 C. If w = wk ∈ W , there is a sequence v0, w1, v1, . . . , wl, vl = w fulfilling (i)
and (ii). From v <0 w and w <0 wl we obtain v <0 wl. Again if wl �∈ W , we are
done, else repeat this procedure. Obviously, this procedure terminates according to the
the fact that V is finite and for every v ∈ W there is a w ∈ V satisfying v <0 w, i.e.W
does not contain maximal elements w.r.t. partial order <0.

ad (c): Assume two events w, w′ ∈ C with w < w′. From (b) we obtain w ∈ W ,
which is a contradiction to w ∈ C.

ad (d): From (b) and (c) we get that W is a downward closed. From definition of
W we have that it does not contain maximal elements. It is a well known fact that then
the set C ′ is a cut. From (b) we also get C ⊂ C ′.

ad (e): Assume vj ∈ W with j �= maxi and
∑

vj<0v′ xf (vj , v′) �= W ((l(vj), p)).
From (a) we get j < maxi. Since xf fulfils (B) for all indexes smaller than maxi,
this implies

∑
vj<0v′ xf (vj , v′) < W ((l(vj), p)). Let v0, w1, v1, . . . , wk, vk = vj be

a sequence fulfilling (i) and (ii). By the above consideration this sequence is a flow
decreasing sequence of the second kind. This is a contradiction to the assumption. ��

Lemma 7. Let f be the maximal flow of the associated flow network G(xi) w.r.t. xi

and assume xf does not fulfil (B) for the index maxi. Then C ′ is a cut satisfying

m0(p) +
∑

v<C′,v∈V

W ((l(v), p))−
∑

v<C′

W ((p, l(v)))−
∑
v∈C′

W ((p, l(v))) < 0.

Proof. We first prove the inequality for the co-set C. Since xf fulfils (A) we can replace
W ((p, l(v))) by

∑
v′<0v xf (v′, v) for each v <0 C and v ∈ C. Because xf fulfils

statement (b) of the last lemma we can replace W ((l(v), p)) by
∑

v<0v′ xf (v, v′) for
each v <0 C, v �= vmaxi

. Moreover m0(p) equals
∑

v0<0v′ xf (v0, v′). Finally we can
use W ((l(vmaxi

), p)) <
∑

vmaxi
<0v′ xf (vmaxi

, v′).
Altogether it is enough to show that

∑
v<0C

∑
v<v′

xf (v, v′)−
∑

v<0C

∑
v′<0v

xf (v′, v)−
∑
v∈C

∑
v′<0v

xf (v′, v) = 0.

We claim that in this sum each value xf (v, v′) equals either 0 or is counted once
positively and once negatively. The second alternative is obviously fulfiled if v′ < C
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or v′ ∈ C. Observe now that for v < C and xf (v, v′) > 0 we get by the definition
of W and C that v′ <0 C or v′ ∈ C. That means if xf (v, v′) does not fulfil the first
alternative, it fulfils the second alternative.

Observe v <0 C ⇔ v <0 C ′. That means, replacing C by C ′ in the above sum
could only change the value of the third sum, namely by values xf (v′, v) with v ∈
C ′ \ C. These values are equal to 0 by the definition of C. ��

5 Strict Executability

In this section we briefly outline a polynomial test for the strict executability of an
LPO. The flow property is a necessary and sufficient condition of the executability of
a labelled partial order. We extend the flow property to get a necessary and sufficient
condition for an LPO to be exactly a run of a marked p/t-net.

Given a partial order (V, <), let �⊆< be the skeleton of <, i.e. the smallest subset
of < which fulfils: �+=<.

Definition 16 (Strong flow property). A labelled partial order (V, <, l) fulfils the
strong flow property w.r.t. (N, m0) if there exists a family X = {xp | p ∈ P} of
flows fulfilling the flow property which satisfies: the skeleton � of < is a subset of the
relation QX = {(v, v′) ∈ V × V | ∃p ∈ P : xp(v, v′) > 0}.

One can easily check that the canonical flow of a run fulfils the strong flow property.
Observe that the flow functions of a labelled partial order which fulfil the flow property
used for construction of the process in the proof of lemma 3 are the canonical flow
functions of the underlying run of the constructed process. Thus, we obtain:

Theorem 4. A labelled partial order fulfils the strong flow property w.r.t. (N, m0) if
and only if it is a run of (N, m0).

By Definition 10, the executability of an LPO is a necessary condition for its strict
executability. Now, take an LPO lpo = (V, <, l) which is executable in a marked p/t net
(N, m0), i.e. which fulfils the flow property w.r.t. (N, m0). Denote X = {xp | p ∈ P}
the family of flows fulfilling the flow property computed by the algorithm presented in
the previous section. The following algorithm decides whether lpo is strictly executable
w.r.t. (N, m0), i.e. whether it is a minimal run of (N, m0). If the answer is positive,
then X is the family of canonical flows of the underlying minimal run.

– Compute skeleton � of the partial order (V, <);
– if ��⊆ QX then return ”lpo is not strictly executable”;
– else for each edge e ∈�: test whether (V, < \{e}, l) is executable; if yes, return

”lpo is not strictly executable”;
– return ”lpo is strictly executable”.

Due to lack of space, we omit a detailed proof of the correctness of the algorithm
and just give some intuition: Observe that after removing a skeleton edge from a partial
order < one still gets a partial order. Moreover, any proper subset of a partial order <,
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which is itself a partial order, is a subset of a partial order obtained from < by removing
a skeleton edge. Thus, if the algorithm returns ”lpo is not strictly executable”, then
a run was computed which is a proper subset of lpo, i.e. lpo cannot equal a minimal
run. If the algorithm returns ”lpo is strictly executable”, then lpo fulfils the strong flow
property and therefore it is a run, and all LPOs which are proper subsets of lpo are not
executable, i.e. do not include a run. That means lpo does not properly include any run
and therefore it is a minimal run. Obviously the algorithm runs in polynomial time.

6 Conclusion

We have presented a polynomial algorithm for testing whether an LPO is executable in
a place/transition net while preserving at least the given amount of concurrency, or in
other words, adding no causality (i.e. whether it is a sequentialization of a run). Further,
we have formulated a polynomial test deciding whether an LPO is strictly executable,
i.e. whether the given amount of concurrency is maximal, or complementary, whether
the amount of causality is minimal (i.e. whether the LPO equals a minimal run). It is
a question of further research to determine efficiently whether an LPO is executable
preserving exactly the given amount of concurrency and causality, i.e. whether it equals
a (not necessarily minimal) run. Another interesting question is generalization of so
called ”legal firing sequence” problem, namely to determine whether an LPO can be
executed while preserving at least the given amount of causality (adding no concur-
rency). Finally, one could combine both approaches into a scenario based specification
prescribing minimal/maxiamal level of causality and concurrency.
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Abstract. The concept of mobile agents imposes a great security risk
for information systems. In this paper we propose object nets as a spec-
ification formalism for multi-agent systems. Since the general formalism
is Turing-powerful not every analysis method that is common for Petri
net can be applied. So, we define the subclass of “ordinary” object nets
that allows for the application of standard P/T-net techniques, i.e. the
computation of boundedness, liveness etc.

1 Introduction

Object Petri nets following the nets-within-nets paradigm are a very powerful
formalism to describe dynamic multi-levelled systems, e.g. mobile agent systems.
It is well known that severe security problems arise in the context of mobile
agents (cf. [5]). So, the use of formal methods to overcome security problems
is necessary. In [10] the authors showed how the formalism of nets-within-nets
can be used to model mobility, especially in the case of mobile agents. Mobile
agents are developed using our architecture Mulan [9]. The Mulan-framework
offers intuitive modelling even of large agent systems.1 What was missing is
the possibility to profit from analysing tools. This paper undertakes an attempt
to build a conceptual background for the transformation of object net systems
to P/T-nets. Several requirements have to be met for this transformation to
succeed. These requirements are the subject of the following sections.

The need for analysis of object nets is paired with the choice of the firing rule
for object nets: There exist two fundamental semantics (i.e. firing rules) for object
nets introduced in [20], called reference and value semantics. The difference of
reference and value semantics is the concept of “location” for net-tokens which
is explicit for value but not for reference semantics, since it is unclear which
reference can be considered as the location of a net-token.

As shown in [10] the concept of mobility cannot be expressed adequately by ref-
erence semantics due to the possibility of side-effects. Instead value semantics has
to be applied. As shown in [12] the concept of locality makes value semantics richer

1 Student projects created agent systems containing more than 200 different reference
nets resulting in tens of thousands of net instances at run-time.
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than reference semantics – for example the reachablity problem becomes undecid-
able while boundedness remains decidable. However, the reference semantics can
be simulated by a (larger) P/T net, so analysis methods can be applied directly.

Value semantics is adequate from a modelling point of view while reference
semantics is adequate from an analytical point of view. In this paper we focus on
a restricted class of object nets, the so called ordinary object nets. For this class
of object nets it can be shown, that value semantics is as expressible as reference
semantics. This is shown by providing a direct embedding and simulation of one
semantics using the other one.

In this paper we study semantical aspects of the nets-within-nets paradigm.2

The paradigm that allows nets as tokens was introduced by Rüdiger Valk in [19]
and extended to the formalism of elementary object net systems in [20, 21] which
allows to model a two-levelled system. The formalism has been extended in [11, 12]
to an arbitrary nesting structure. A similar approach which allows nested Petri net
structures is presented in [15]. For Hypernets [1] net-tokens are restricted to syn-
chronisations of state machines. Reference nets [13] are a specialised nets-within-
nets formalism based on reference semantics. Due to the nested structure of object
nets the formalism is closely related to mobility calculi like the ambient calculus
[4] or to formalism combining mobility calculi and Petri nets like [3].

The paper is structured as follows: Section 2 gives the formal definition of
object-net systems. Firing is defined both for value and for reference semantics.
Section 3 analyses located markings, i.e. markings that describe a unique relation
of tokens and their locations: for each net-token there exists exactly one place
containing it. Section 4 defines the subclass of ordinary object-net systems. It
is shown that for this class of object nets all reachable markings are located.
Using this result it is shown that reference and value semantics can simulate
each other directly. In Section 5 we analyse the processes of ordinary object-net
systems. It turns out that the firing relation, the mapping from a process to
the original object net and the mappings from reference and value semantics are
compatible with each other which results in a three-dimensional cube structure
of embeddings. After having cleared the conceptual background we present a
case study in Section 6 and present some analysis results. Finally, we give an
outlook and conclusion.

2 Object-Net Systems

We define a generalised model of object-net systems, which drops the restriction
of [20] to exactly two levels of nesting: Object-Net Systems (Os) are defined
to give a precise definition of nets-within-nets using nested multi-set rewriting
specifications.

2 As [18] mentioned in the outlook it is a quite natural extension of algebraic Petri
nets [16] to allow tokens to be active which is impossible for algebraic Petri nets. The
canonic way for this extension is to consider nets as active tokens. These tokens are
called net-tokens.
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2.1 Informal Introduction to Object Nets

There exist two fundamental semantics for object nets introduced in [20], called
reference and value semantics. The intuitive meaning of both semantics can be
explained using the example Os given in Fig. 1. The example is known as the
“α-centauri” example. The name is due to the interpretation that the net token
describes a log which is copied and one copy remains on earth while the other one
is sent to α-centauri. It then seems somehow counter-intuitive that for reference
semantics the state change on α-centauri (the upper branch of the system net)
becomes visible immediately on earth (the lower branch).

The arrow from the token on place s1 expresses that the inner structure of the
token is itself a net. The different levels in the object-net system are connected by
channels. Transitions inscribed by corresponding channel expressions like on:ch()
and :ch() must be fired synchronously. If there is more than one possible partner
the choice is non-deterministic. In the Figure each transition pair (t2, t11) and
(t3, t12) must fire synchronously.

For reference semantics (cf. Fig. 2) the place s1 initially contains a reference
to the object-net: M = s1 + s11. Firing of t1 duplicates this reference onto s2

and s3 resulting in M1 = s2 + s3 + s11. This marking enables the transition pair
(t2, t11) but not (t3, t12). The resulting marking is M2 = s4 + s3 + s12. Since the
effect in the object-net is visible in the whole system, the pair (t3, t12) is now
enabled. Firing leads to M3 = s4 + s5 + s13.

s11

t1

t2

t11 t12
s12 s13

:ch2():ch1()

on:ch1()s1

t3
on:ch2()

s6
t4

s5

s4s2

s3

Fig. 1. An Os: The α-centauri example

s4

t1

t2

t11
s12

:ch1()

on:ch1()s1

t3

s11

s5s3

s6
t4

s13

on:ch2()

t12
:ch2()

s2

Fig. 2. Firing of transition t1 w.r.t. reference semantics
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t1

t2
on:ch1()s1

t3
s5

s6
t4

on:ch2()

s4

t11
s12

:ch1()

s11 s13
t12

:ch2()

t11
s12

:ch1()

s11 s13
t12

:ch2()

s3

s2

Fig. 3. Firing of transition t1 w.r.t. value semantics

For value semantics (cf. Fig. 3) we have the nested multiset M = s1[s11]
as the initial marking which corresponds to the initial marking s1 + s11 w.r.t.
reference semantics. Firing of t1 distributes the marking of the net-token. A
possible distribution is the marking M1 = s2[s11] + s3[0] (where 0 denotes
the empty multiset) – corresponding to s2 + s3 + s11 for reference semantics.
This marking enables the transition pair (t2, t11) but not the pair (t3, t12). The
resulting marking is M2 = s4[s12] + s3[0]. Since the effect in the object net is
only local the pair (t3, t12) is not enabled. So w = t1(t2, t11)(t3, t12) is a possible
firing sequence for reference but not for value semantics.

2.2 Petri Net Notations

A P/T net structure is a tuple N = (P, T, W ), such that: P is a finite set of places,
T is a finite set of transitions, with P ∩T = ∅, and W : ((P ×T )∪ (T ×P ))→ N
is the arc-weight function. A marked P/T-net N = (P, T, W, M0) is an P/T net
structure (P, T, W ) together with an initial marking M0 ∈ MS (P ). The term
P/T net is used both for the unmarked and the marked case. The flow relation
is F := {(x, y) | W (x, y) > 0}. Given a net P (N) denotes its places, T (N) its
transitions etc. N is called ordinary iff W (x, y) ≤ 1 for all (x, y). For an ordinary
P/T net the mapping W coincides with the characteristic function of the flow
relation χF : ((P × T ) ∪ (T × P )) → {0, 1}. In the case of ordinary nets the
relation F is also used to denote the arc weight W and vice versa.

A transition t ∈ T of a P/T net N = (P, T, W, M0) is enabled in marking
M iff ∀p ∈ P : M(p) ≥ W (p, t) holds. The successor marking when firing t is
M′(p) = M(p)−W (p, t)+W (t, p). The enablement of t in marking M is denoted
by M t−→. Firing of t is denoted by M t−→M′.

A P/T net is equivalently characterised as N = (P, T, pre, post, M0) where
the multi-set mappings pre, post : T → MS (P ) are pre(t)(p) := W (p, t) and
post(t)(p) := W (t, p). For notations cf. the appendix.
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2.3 Nets as Tokens

An Object-Net System (Os) OS = (N , d, Θ, M0) consists of a finite set N of
pairwise disjoint P/T nets which includes the black token net N• and the system-
net Nsn. The black token net N• is defined as the object-net with no places and
no transitions: P (N•) = T (N•) = ∅. Let P (OS ) be the union of all components:
P (OS ) :=

⋃
N∈N P (N). Analogously for T (OS ), F (OS ), and W (OS ).

Markings are nested multi-sets. Tokens are described as pairs of the marked
place p and the marking of M its net-token which is denoted as p[M] to em-
phasize the nesting. The place typing d : P (OS ) → N is used to define which
net-tokens are allowed on a place. A black token is the special net-token p[0]
which can be identified with p. The basic tokens are black tokens, higher-order
tokens are generated using net-tokens.

P0(N) := {p | p ∈ P (N) ∧ d(p) = N•}
Pn+1(N) := {p[M] | p ∈ P (N) ∧M ∈ MS (Pn(d(p)))} (1)

Define P(N) :=
⋃∞

i=0 Pn(N). Each mapping f defined on P can be extended
to a mapping f � on nested markings P by setting f �(p[M]) = f(p)[f �(M)]. In
the following f � is also denoted as f .

A transition t ∈ T (OS ) may be synchronised with transitions of the net-
tokens. The resulting synchronisations are nested transitions, i.e. trees:3

T0(N) := {id}
Tk+1(N) := {t[θN1 , . . . , θNn

] | t ∈ T (N) ∧ θNi
∈ ⋃k

j=0 Tj(Ni)} (2)

Analogously to markings we identify the minimal synchronisation tree t[id ] :=
t[id , . . . , id ] with the transition t itself. Here id is a “pseudo” transition with
pre(id) = post(id) = 0 (see below). So, every node in the tree has the same
degree of branching.

Define T (N) :=
⋃∞

i=0 Tn(N) and T (OS ) := T (N ) :=
⋃

N∈N T (N). A syn-
chronisation structure Θ(OS ) consits of a finite subset of T (N ).

The nesting structure of markings is removed by fl :Mv →Mr with Mr :=
MS (P (OS )) where fl(p[M])) := p + fl(M).

The nesting structure of synchronisations is removed by fl : T (OS ) → T (OS )
where fl(t[θ1, . . . , θn]) := t + fl(θ1) + · · ·+ fl(θn) and fl(id) = 0.

Let Θ ⊆ T (N) be a set of synchronisations. To avoid cycles the set of synchro-
nisations has to contain each transitions eaxactly once: fl(Θ) = T (OS ) (Note,
that minimal synchronisation trees t[id ] are allowed).

A marking is a multi-set of system-net tokens: M ∈Mv := MS (P(Nsn)).

Definition 1. An Object-Net System is the tuple OS = (N , d, Θ, M0), where

– N = {N1, . . . Nn} is a set of pairwise disjoint P/T-nets Ni = (Pi, Ti, Wi)
including the black token net N• and the system-net Nsn.

– d : P → N is the place typing.

3 In the graphical representation these trees are formalised by channel inscriptions.
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– Θ ⊆ T (N ) is a finite set of synchronisations with fl(Θ) = T (OS ).
– The initial marking is M0 ∈ MS (P(Nsn)).

We generalise the notion of pre- and post-set for object nets by defining

(N)t := •t ∩ d−1(N) = {p ∈ •t | d(p) = N}
t(N) := t• ∩ d−1(N) = {p ∈ t• | d(p) = N}

Definition 2. For the synchronisation tree t[θ] ∈ Θ where θ = (θN1 , . . . , θNn
)

the firing rule is generated inductively from the firing rule of the subtrees θN

(where the multi-set variables Xp,t,i, X′
p,t,i describe the tokens that are trans-

ported and Yp,t,i, Y′
p,t,i describe the tokens that are used for synchronisation):

∑
p∈•t

W (p,t)∑
i=1

p[Xp,t,i + Yp,t,i]
t[θ]−−→ ∑

p∈t•

W (t,p)∑
j=1

p[X′
p,t,j + Y′

p,t,j ]

if ∀N ∈ N :
∑

p∈(N) t

∑W (p,t)
i=1 Xp,t,i =

∑
p∈t(N)

∑W (t,p)
j=1 X′

p,t,j

∧ ∑p∈(N) t

∑W (p,t)
i=1 Yp,t,i = pre(θN )

∧ ∑p∈t(N)

∑W (t,p)
j=1 Y′

p,t,j = post(θN )

For the minimal synchronisations t[id ] this implies Yp,t,i = Y′
p,t,i = 0.

The marking M can be fired by θ ∈ Θ to M′ iff pre(θ) is a subterm of M and
M′ is obtained from M by substituting pre(θ) with post(θ). Firing is denoted
by M θ−→M′.

This firing relation formalises value semantics. For reference semantics the
“flat” version of OS is needed (for more details cf. [12]).

Definition 3. The underlying P/T net of OS = (N , d, Θ, M0) is defined as:

fl(OS ) := (P (OS ), Θ,prefl, postfl, fl(M0))

where prefl(θ) := pre(fl(θ)) and postfl(θ) := post(fl(θ)).

Reference semantics is obtained by forgetting the nesting structure:

Theorem 1. For an Os OS the mapping fl provides a direct embedding of the
value semantics, i.e. every firing w.r.t. value semantics is possible w.r.t. reference
semantics:

Mv
θ−−−−→

OS
M′

v

fl

⏐⏐, ⏐⏐,fl

fl(Mv) θ−−−−→
fl(OS)

fl(M′
v)

Proof. Since prefl(θ) := pre(fl(θ)) and postfl(θ) := post(fl(θ)) it is sufficient
to show fl(pre(θ)) = prefl(θ) and fl(post(θ)) = post(fl(θ)). This is shown by
induction over the synchronisation tree.
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– For the minimal synchronisation tree we have (since
∑

p∈•t
Xp,t,i =

∑
p∈t•

(X′
p,t,j)):

fl(pre(t[id ])) = fl(
∑

p∈•t

∑W (p,t))
i=1 p[Xp,t,i])

=
∑

p∈•t

∑W (p,t))
i=1 fl(p[Xp,t,i])

=
∑

p∈•t

∑W (p,t))
i=1 p + fl(Xp,t,i) = pre(fl(t[id ]))

post(t[id ]) =
∑

p∈t•
∑W (t,p))

j=1 p + fl(X′
p,t,j)

=
∑

p∈t•
∑W (t,p))

j=1 fl(p[X′
p,t,j ])

= fl(
∑

p∈t•
∑W (t,p))

j=1 p[X′
p,t,j ]) = fl(post(t))

– By assumption we have fl(
∑

p∈(N) t

∑W (p,t))
i=1 Yp,t,i) = pre(fl(θN )) and also

fl(
∑

p∈t(N)

∑W (t,p))
j=1 Y′

p,t,j) = post(fl(θN )). Induction on θ = t[θ]:

fl(pre(t[θ])) = fl(
∑

p∈•t

∑W (p,t))
i=1 p[Xp,t,i + Yp,t,i])

=
∑

p∈•t

∑W (p,t))
i=1 fl(p[Xp,t,i + Yp,t,i])

=
∑

p∈•t

∑W (p,t))
i=1 p + fl(Xp,t,i) + fl(Yp,t,i)

=
∑

p∈•t

∑W (p,t))
i=1 p + fl(Xp,t,i) +

∑
N∈N pre(fl(θN ))

= pre(fl(t[θ]))

fl(post(t[θ])) =
∑

p∈t•
∑W (t,p))

j=1 p + fl(X′
p,t,j) +

∑
N∈N post(fl(θN ))

=
∑

p∈t•
∑W (t,p))

j=1 p + fl(X′
p,t,j) + fl(Y′

p,t,j)
=
∑

p∈t•
∑W (t,p))

j=1 fl(p[X′
p,t,j + Y′

p,t,j ])
= fl(
∑

p∈t•
∑W (t,p))

j=1 p[X′
p,t,j + Y′

p,t,j ])
= fl(post(t[θ]))

This proves the embedding. ��
The converse (every firing w.r.t. reference semantics is possible w.r.t. value

semantics) of Theorem 1, however, does not hold in the general case as seen for
the α-centauri example.

3 Located Markings

In the following we consider markings where the localisation of tokens coincide
with the type structure induced by the mapping d.

Definition 4. A marking Mr ∈ Mr is located iff for each net N there exists
exactly one place containing N and no place contains the net Nsn:

∀N ∈ N \ {Nsn, N•} :
∑

p∈d−1(N) |Mr(p)| = 1 ∧∑
p∈d−1(Nsn) |Mr(p)| = 0

A marking Mv ∈Mv is located iff fl(Mv) is located.
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Therefore for all N ∈ N \ {Nsn, N•} the uniquely defined place for which
|M(p)| = 1 holds is denoted by p(N).

Note, that if Mv is located, then there cannot be any recursive nesting, since
otherwise there is more than one place containing a net token of type N . Thus,
the location of each token is uniquely determined.

Definition 5. The localisation lc(M) is defined recursively starting with the
system net: lc(M) := lcM (M|P (Nsn)) where

lcM (p) :=
{

p[lcM(M|P (Nd(p)))], if d(p) �= N•
p, otherwise

For events t ∈ T we define lc(t) = t.

Theorem 2. For located markings the mapping lc is inverse to fl.

1. If Mr ∈Mr is located, then we have fl(lc(Mr)) = Mr.
2. If Mv ∈Mv is located, then we have lc(fl(Mv)) = Mv.

Proof. 1. Let Mr ∈Mr. Define the relation RMr
⊆ (N \ {N•})2 by

(N1, N2) ∈ RMr
⇐⇒ ∃p1 ∈ M : p1 ∈ P (N1) ∧ d(p1) = N2

If Mr is located, then the place p1 such that d(p1) = N2 with N2 ∈
N \ {Nsn, N•} is uniquely defined, i.e. it is p1 = p(N2). So, it follows
that RMr

describes a tree with the system net Nsn as the root node (since∑
p∈d−1(Nsn) |Mr(p)| = 0).

It is easy to see from the definition of lc that the marking is nested along
the relation RM , i.e. all markings of the nets N ′ ∈ (N RMr

) on paths from
the root of the tree are located by lcM (M|P (N)):

fl(lcM (M|P (N))) =
∑

N ′∈(N RMr )

M|P (N ′)

For the whole marking it follows that:

fl(lc(M)) = lcM (M|P (Nsn))

= fl
(∑

N ′∈(Nsn RMr )
M|P (N ′)

)
= M|P (Nsn) + M|P (N•) + · · ·+ M|P (Nn)

= M

Note, that MP (N•) = 0 since P (N•) = ∅.
2. Let Mv ∈Mr. Define the relation RMv

⊆ (N \ {N•})2 by

(N1, N2) ∈ RMv
⇐⇒ ∃ subterm (p1, M1) of Mv : p1 ∈ P (N1)∧d(p1) = N2

it is easy to see, that if Mv is located, then the relations RMr
and RMv

are
equal, so lc just reconstructs Mv, i.e. lc(fl(Mv)) = Mv.

��
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4 Ordinary Object-Net Systems

As we have seen for the α-centauri example, the converse of Theorem 1 does not
hold in general. It will be shown, that for the case of so called ordinary ONS the
opposite direction can also be proved.

Definition 6. Let OS be an Os. A transitions t is simple iff

∀N ∈ N \ {N•} : |(N)t| = |t(N) | ≤ 1

OS is ordinary iff all its object nets are ordinary, all transitions are simple and
the initial marking M0 is located.

Consider t[θ] ∈ Θ. For ordinary Os all arc weights W (x, y) = 1 iff (x, y) ∈ F .
Additionally, if |(N)t| > 0 there is exactly one place pN ∈ •t such that d(p) = N
and one place p′N ∈ t• such that d(p′) = N . So, the variable Xp,t can be denoted
as Xd(p) (and similar for X′

t,p etc.). Due to this one-to-one correspondence the
representation can be simplified further:

– Value semantics: For the synchronisation tree t[θ] ∈ Tn+1(OS ) the firing rule
is generated from the firing rule of the θN :∑

p∈•t
p[Xd(p) + pre(θN )]

t[θ]−−→ ∑
p∈t•

p[X′
d(p) + post(θN )]

For a minimal synchronisation tree this further simplifies to:∑
p∈•t

p[Xd(p)]
t[id ]−−−→ ∑

p∈t•
p[X′

d(p)]

– Reference semantics: For the synchronisation tree t[θ] ∈ Tn+1(OS ):∑
p∈•t

p + pre(fl(θd(p)))
fl(t[θ])−−−−→ ∑

p∈t•
p + post(fl(θd(p)))

For the minimal synchronisation tree this simplifies to:∑
p∈•t

p
fl(t[id ])−−−−→ ∑

p∈t•
p

Theorem 3. If OS is an ordinary Os, then all reachable markings are located
and all places p with d(p) �= N• are 1-safe.

Proof. The initial marking is located by definition. If Mr
t−→ M′

r then there
is exactly one location for N (since

∑
p∈d−1(N) |Mr(p)| = 1 for all N ∈ N \

{Nsn, N•}), which is either untouched or relocated, since all t are simple.
If Mr is located, then all places p with d(p) �= N• are marked with at most

one net-token. Since every reachable marking of a simple Os is located these
places are 1-safe. ��
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Using Theorem 3 we know that all reachable markings are located, we can
conclude from Theorem 2:

∀Mr ∈ R(fl(OS )) : fl(lc(Mr)) = Mr

∀Mv ∈ R(OS ) : lc(fl(Mv)) = Mv

Theorem 4. For ordinary Os OS the mapping lc provides a direct embedding
of the reference semantics. If Mr is located, then:

Mr
θ−−−−→

fl(OS)
M′

r

lc

⏐⏐, ⏐⏐,lc

lc(Mr)
θ−−−−→

OS
lc(M′

r)

Proof. Induction over the synchronisation tree t[θ].

– If Mr
t[id ]−−−→ M′

r then by monotonicity we can add fl(Xd(p)) with Xd(p) =
lc(Mr |P (d(p))).

Mr +
∑
p∈•t

fl(Xd(p))
t[id ]−−−→M′

r +
∑
p∈•t

fl(X′
d(p))

Since
∑

p∈•t Xd(p) =
∑

p∈t• X′
d(p) =: X the basic tree is:

= lc(prefl(t + idfl(X)))
= lc(

∑
p∈•t p + fl(Xd(p)))

=
∑

p∈•t p[Xd(p)])
t[id ]−−−→∑p∈t• p[X′

d(p)])
= lc(

∑
p∈t• p + fl(X′

d(p)))
= lc(postfl(t + idfl(X)))

– Induction: We add fl(Yd(p)) with Yd(p) = pre(θN ) and fl(Xd(p)) with Xd(p) =
lc(Mr |P (d(p)))−Yd(p). Note, that lc(Mr |P (d(p))) ≥ Yd(p) since θd(p) is acti-
vated. Let Y′

N = post(θN ).

By assumption pre(θN ) θN−−→ post(θN ):

= lc(prefl(t[θN1 , . . . , θNn
] + idfl(X)))

= lc(
∑

p∈•t p + fl(Xd(p)) + fl(Yd(p)))
=
∑

p∈•t p[Xd(p) + Yd(p)])
t[θ]−−→∑p∈t• p[X′

d(p) + Y′
d(p)]

= lc(
∑

p∈t• p + fl(X′
d(p)) + fl(Y′

d(p))
= lc(postfl(t[θN1 , . . . , θNn

] + idfl(X)))

This shows the property. ��
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Mv
θ−−−−−→

OS
M′

v

fl

⏐⏐, ⏐⏐,fl

fl(Mv)
θ−−−−−→

fl(OS)
fl(M′

v)

lc

⏐⏐, ⏐⏐,lc

lc(fl(Mv))
θ−−−−−→

OS
lc(fl(M′

v)) = M′
v

Mr
θ−−−−−→

fl(OS)
M′

r

lc

⏐⏐, ⏐⏐,lc

lc(Mr)
θ−−−−−→

OS
lc(M′

r)

fl

⏐⏐, ⏐⏐,fl

fl(lc(Mr))
θ−−−−−→

fl(OS)
fl(lc(M′

r)) = M′
r

Fig. 4. Embeddings extended to an Simulation

Theorem 5. If OS is a ordinary Os, then reference and value semantics can
simulate each other directly.

Proof. Composition of the two diagrams in Theorem 1 and 4 is shown in Fig. 4.
Both diagrams can be further reduced to the following two simulations:

Mv
θ−−−−→

OS
lc(fl(M′

v)) = M′
v

fl

⏐⏐, -⏐⏐lc

fl(Mv) θ−−−−→
fl(OS)

fl(M′
v)

Mr
θ−−−−→

fl(OS)
fl(lc(M′

r)) = M′
r

lc

⏐⏐, -⏐⏐fl

lc(Mr)
θ−−−−→

OS
lc(M′

r)

So, the embeddings in Theorem 1 and 4 also imply a direct simulation. ��

5 Processes of Ordinary Object-Net Systems

In [8] we have given a characterisation of those processes of the reference
semantics that can be simulated by the value semantics for the general case.
For ordinary object-net systems we know due to Theorem 5 that there is a
one-to-one correspondence of reference and value semantics. In the following
we will show that this correspondence carries over for processes.

5.1 Basic Definitions

Petri net processes (cf. [6, 2]) describe the behaviour of Petri nets. Processes
are themselves Petri nets from the class of causal nets, where no branching is
allowed for the places. A run of a net N is defined as a causal net R with a pair
of mappings φ = (φP : B → P, φT : E → T ). Extending φP and φT to multi-
sets, the run is associated to the net, by requiring the commutativity expressed
by: φP (•e) = pre(φT (e)) and φP (e•) = post(φT (e)). That is, φ preserves the
localities of transitions.4

4 Alternatively, a process (R, φ) can be constructed from the possible firings, i.e. the
enabling of transitions, of the net N by adding transitions according to the enabling
condition of the net N . The starting point is given by the initial marking.
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Definition 7. Let N = (P, T, W, M0) be a P/T net and R = (B, E, �) a causal
net. Furthermore let φ = (φP : B → P, φT : E → T ) be a pair of mappings.
Then (R, φ) is a process of N if the following conditions hold:

1. Preservation of the flow relation: x � y =⇒ φ(x) F φ(y).
2. Representation of the initial marking M0 by ◦R: φP (◦R) = M0.
3. Compatibility of φ with the arc-weight function:

φP (•e) = pre(φT (e)) and φP (e•) = post(φT (e)).
4. Representability of R as the limit of finite processes.

For a run (R, φ) of a Petri net N the symmetric and reflexive relations li
and co are defined by li := (< ∪ <−1 ∪ idA) and co := ( l̄i ∪ idA). A ken
with respect to li is often called a line, while a ken with respect to co is called
a cut. If C ∈ ken(<) and C ⊆ P then C is called a P -cut of R.

5.2 Processes of Ordinary Object Nets

The definition of of an object net process is based on the net fl(OS ) defined in
Def. 3.

Definition 8. Let OS = (N , d, Θ, M0) be an Os. The pair (R, φ) is a process
of OS iff it is a process of fl(OS ).

Define the set of elements of a P -cut C belonging to a net type N :

BN (C) := C ∩ φ−1(d−1(N)) = {b ∈ C | d(φ(b)) = N}
Analogously to Theorem 3 we obtain that all reachable P -cuts are located:

Lemma 1. Let (R, φ) be a process of an ordinary Os OS. For each P -cuts C
of R there is exactly one element b ∈ C carrying a net-token of type N .

∀N ∈ N : |BN (C)| = 1

The uniquely defined element of BN (C) is denoted by b(N).

Similarly to Def. 5 we define a localisation of P -cuts resulting in a nested
structure. The restructuring also extends to events, where each e is mapped to
an nested event et[ε] where ε is a nested structure of events which mimics the
structure of φ(e) = t[θ].

Definition 9. For a P -cut C of a process R, we define the localisation lc(C) of
C as lc(C) := lcC(BNsn

(C)) where

lcC(b) :=
{

b[lc(Bd(φ(b))(C))], if d(φ(b)) �= N•
b, otherwise

For events e ∈ E we define lc(e) := fe(φ(e)) where

fe(t[θ]) := et[fe(θ)]
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The process mapping is extended to nested sets by defining φ(b[X]) :=
φ(b)[φ(X)]. Then the localisation commutes with the process map φ.

Theorem 6. Let (R, φ) be a process of of an ordinary Os OS. The process map
φ commutes with lc. For each P -cut C of R we have:

φ(lcC(C)) = lcφ(C)(φ(C))

Proof. Induction base for N•:

φ(lcC(BN•(C)) = φ(BN•(C)) = lcφ(C)(φ(BN•(C))

Induction step:

φ(lcC(B)) = φ
(∑

b∈B(b, lcC(Bd(φ(b))(C)))
)

=
∑

b∈B φ(b)[φ(lcC(Bd(φ(b))(C))]
=
∑

b∈B φ(b)[lcφ(C)

(
φ(Bd(φ(b))(C))]

=
∑

b∈B φ(b)[lcφ(C)

(
φ(C ∩ φ−1(d−1(N)))]

=
∑

b∈B φ(b)[lcφ(C)

(
φ(C) ∩ d−1(N)]

=
∑

b∈B φ(b)[lcφ(C)(φ(C)|P (N))]
= lcφ(C)(φ(B))

This proves the commutativity. ��

Theorem 7. Let (R, φ) a process of an ordinary Os OS. Then we have for all
P -cuts C and C ′ of R:

C
e−−−−→
R

C ′

φ

⏐⏐, ⏐⏐,φ

φ(C)
φ(e)−−−−→

fl(OS)
φ(C ′)

lc

⏐⏐, ⏐⏐,lc

lc(φ(C))
φ(e)−−−−→
OS

lc(φ(C ′))

Proof. By definition R is a process of fl(OS ), which shows the first embedding
via φ. Theorem 4 shows that every step for an ordinary Os can be simulated via
lc which is the second embedding. ��

The map lc associates with each process R a nested process which is an object
net system: “The semantics of an object net is an object net.”

Definition 10. Let (R, φ) with R = (B, E, �) be a process of the Os OS =
(N , d, Θ, M0). Define the located process (lc(R), φR) by the Os

lc(R) = (NR, dR, ΘR, MR)

where NR = {RN | N ∈ N} with
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B(RN ) = B ∩ φ−1(P (N))
E(RN ) = {et | t ∈ fl(φ(e)) ∧ t ∈ T (N)}
F (RN ) = �|(B(RN )×E(RN ))∪(E(RN )×B(RN ))

and dR(b) = d(φ(b)), ΘR(b) = E, and MR(b) = lc(◦R). The process mapping is
defined by φR(b) = φ(b) and φR(et) = φ(e).

Analogously to the previous Theorem we obtain the following embedding
when the application order of lc and φ is switched.

Theorem 8. Let OS = (N , d, Θ, M0) be an ordinary Os and (R, φ) a process
of OS. Then we have for all P -cuts C and C ′ of R:

C
e−−−−→
R

C ′

lc

⏐⏐, ⏐⏐,lc

lc(C)
lc(e)−−−−→
lc(R)

lc(C ′)

φR

⏐⏐, ⏐⏐,φR

φR(lc(C))
φR(lc(e))−−−−−−→

OS
φR(lc(C ′))

Proof. Let C
e−→
R

C ′ and φ(e) = t[θ] then by Def. 9 lc(e) = et[ε]. It is easy to

see that by the construction in Def. 10 the event et[ε] is enabled in lc(R) for the

nested cut lc(C): lc(C)
lc(e)−−−→
lc(R)

lc(C ′).

C �φ
φ(C)

�

e

�

φ(e)

C′ �φ
φ(C′)

�
�

�
���

lc

lc(C)

�φ

�φ

�
�

�
���

lc

lc(φ(C))

�

lc(e)

�

lc(φ(e))

�
�

�
���

lc

lc(C′)

�
�

�
���

lc

lc(φ(C′))

Fig. 5. Process embeddings
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Since φR equals φ on places, we have φR(lc(C)) = φ(lc(C)). Using Theorem 6
and 7 we know, that φR(lc(C)) = lc(φ(C)) can be rewritten by φ(e).

Since φR(lc(e)) = φR(fe(φ(e))) = φR(et[ε]) = t[θ] = φ(e) holds, we have

φR(lc(C))
φR(lc(e))−−−−−−→

OS
φR(lc(C ′)) for the object-net system OS . ��

The cube in Figure 5 summarises all the embeddings of Theorem 7 and 8.
The vertical dimension illustrates the firing steps, the dimension from left to
right illustrates the mapping from the process to the object system, the dimen-
sion from the front to the back illustrates the relation of reference and value
semantics.

6 The Household Robot Example, Revisited

In [10] the authors showed how the formalism of nets-within-nets can be used
to model mobility, especially in the case of mobile agents. A case study was
presented that models a mobile household robot. We adapt this case study for
a first approach on how to analyse agent systems. To reach this aim the overall
system architecture is simplified while the ideas are still visible. Going along
with a better tool support for the analysis we will switch back to the original
model.

The household is represented by the system net in Figure 6.5 The household
consists of several rooms (locations): hall, living room, kitchen, next room, and
the front yard (dark places). Each room offers special services to the robot: it can
fetch coffee in the kitchen, serve it in the living room, fetch mail in the front yard,
open and close the door in the hall, and so on (light transitions). The possible
movements from one location to another are displayed as dark transitions. Note
that moving from room to room is not symmetric in this scenario. For example
it is not possible to move directly from the kitchen to the next room. Service
transitions are supplemented with additional information (service state/buffer,
light places) showing for instance if new mail has arrived, coffee is available and
so on. Extraneous actions not accessible for the robot are displayed as thin-lined
transitions: arrival of new mail, new assignments for the robot etc.

The door of the house is used to show another possibility of viewing special
parts of the system: the state of the door (open/closed) is modelled directly.
This system state does not belong to a single service (as for example the state
of the mailbox), but is queried by a couple of service transitions including the
movements into and out of the house.

This model of the household is filled with life by implementing an appropriate
robot agent and defining the desired services for the platforms. The behaviour
modelling for this kind of agents has been introduced in [9]. While the Petri net
model of the household hides some details – namely the transition inscriptions

5 The use of colour greatly supports the differentiation of different types of places,
transitions, or arcs. Unfortunately this is – even in the adapted form of the figures
– not so obvious in a black and white representation.
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s

s

s

prt

protocols

reactive
[s,p] [s,p] guard false

prt

start
prt:start()

prt

in out

import de.renew.net.NetInstance;
import de.renew.net.Net;
NetInstance prt;
String s,p;

["coffee","serve_coffee"]
["mail","fetch_mail"]

:in(s) :out(s)

action prt=Net.forName(p)
.buildInstance()

prt

action prt=Net.forName(p)
.buildInstance()

prt:stop()

Fig. 7. The robot

e.g. for moving around – the nets for the robot (Fig. 7) and one of its plans
(Fig. 8) are presented in full detail using the syntax of Renew [14].

Figure 7 shows the interface net of the robot implemented as a Mulan agent.
This kind of agents is explained in [9]. The Figure shows a simplified version still
capable of autonomous, pro- or reactive and reconfigurable behaviour. What is
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:stop()

:out("getcoffee")

:start()

:in("getcoffee")
:out("lr")

:in("lr")
:out("servecoffee")

:in("servecoffee")
:out("nr")

:in("nr")

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

:out("kitchen")
:in("kitchen")

Fig. 8. Plan for serving coffee

omitted in this publication is the platform net, the layer between the overall
system (household) and the agent (robot). It is necessary only if one is interested
in a dynamically changing environment. Leaving it out we get an architecture
of three layers: system - agent - behaviour protocol (plan).

Figure 8 presents a behaviour protocol of the robot. This protocol only con-
sists of sequential actions, therefore we call it a plan. Protocols tell the agent
what to do and when to do it. Protocol nets can be generated at run-time, which
can not be shown here. The plan for serving coffee instruments the robot to move
to the kitchen, fetch the coffee, move to the living room, serve the coffee and
move back to the next room. Having done this the plan stops.

We have analysed the household system where the house net has been re-
stricted to the kitchen, the next and the living room, since the yard and the
hall are not relevant in the restricted scenario. The transitions new assignment,
fresh coffee, and coffee drunk have been fused to generate some kind of loop at
the system net level. For this example an analysis with INA [17] (integrated
in the PEP tool [7]) shows that the simulating P/T net is ordinary, extended
simple, bounded, reversible and live. It has no transitions without any pre- or
without any post-place. The system is covered by semi-positive P-invariants and
thus structurally bounded. It is covered by a semi-positive T-invariant contain-
ing each transition once. There are 99 minimal deadlocks. All nonempty traps
are initially marked. The system is state-machine decomposable.

Since the system is bounded we know that the design relies on only finitely
many resources and since it is live we know e.g. that the robot can offer its
service regularly.

7 Conclusion

In this presentation we have introduced the subclass of ordinary object-net sys-
tems. This subclass is of special importance because its structure guarantees
that each marking is located. We have shown that this implies further, that ref-
erence and value semantics can simulate each other directly for this subclass.
The structural simulation is also compatible with the concept of a Petri net pro-
cess – illustrated by the cube in Figure 5. Due to this one-to-one correspondence
a formal analysis based on standard tools is possible. Structural and dynamic
properties were checked for our household/robot example using the tool INA.
Current work is undertaken to investigate extensions of the formalism to allow
for high-level concepts as arc inscriptions, bindings etc.



326 M. Köhler and H. Rölke

References

1. M. A. Bednarczyk, L. Bernardinello, W. Pawlowski, and L. Pomello. Modelling
mobility with Petri hypernets. In J. L. Fiadeiro, P. D. Mosses, and F. Orejas, edi-
tors, Recent Trends in Algebraic Development Techniques (WADT 2004), Lecture
Notes in Computer Science. Springer-Verlag, 2004.

2. E. Best and C. Fernández. Nonsequential processes: a Petri net view. Springer-
Verlag, 1988.

3. N. Busi. Mobile nets. Formal Methods for Open Object-Based Distributed Systems,
pages 51–66, 1999.

4. L. Cardelli, A. D. Gordon, and G. Ghelli. Mobility types for mobile ambients.
In Proceedings of the Conference on Automata, Languages, and Programming
(ICALP’99), volume 1644 of Lecture Notes in Computer Science, pages 230–239.
Springer-Verlag, 1999.

5. D. M. Chess. Security issues in mobile code systems. In G. Vigna, editor, Mobile
Agents and Security, volume 1419 of Lecture Notes in Computer Science, pages
1–17. Springer-Verlag, 1998.

6. U. Goltz and W. Reisig. The non-sequential behaviour of Petri nets. Information
and Control, 57:125–147, 1983.

7. B. Grahlmann and E. Best. PEP — more than a Petri net tool. In T. Margaria
and B. Steffen, editors, Tools and Algorithms for the Construction and Analysis
of Systems, volume 1055 of Lecture Notes in Computer Science, pages 397–401.
Springer-Verlag, 1996.
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A Notations and Basic Definitions

Let R ⊆ A×B be a relation. A pair (a, b) ∈ R will also be denoted a R b in infix
notation. The identity relation is defined as idA := {(a, a) | a ∈ A}. For a ∈ A
and b ∈ B define the domain of an element b ∈ B by ( R b) := {a | (a, b) ∈ R} and
its co-domain by (a R ) := {b | (a, b) ∈ R}. We generalise the notion of domain
and co-domain to sets C ⊆ A and D ⊆ B by (C R ) := {b | ∃a ∈ C : (a, b) ∈ R}
and ( R D) := {a | ∃b ∈ D : (a, b) ∈ R}.

Let R ⊆ A × A be a symmetric and reflexive relation. The set K ⊆ A is a
clique with respect to R iff all pairs of its elements are in the relation, i.e. for all
x, y ∈ K we have (x, y) ∈ R. A maximal clique is called a ken and the set of all
kens of R is denoted by ken(R).

The definition of Petri nets relies on the notion of multisets. A multiset on
the set D is a mapping A : D → N. Multisets are generalisations of sets in the
sense that every subset of D corresponds to a multiset A with A(x) ≤ 1 for all
x ∈ D. The empty multiset 0 is defined as 0(x) = 0 for all x ∈ D. The cardinality
is |A| :=

∑
x∈D A(x). A multiset A is called finite iff |A| < ∞. The multiset

sum A + B is defined as (A + B)(x) := A(x) + B(x) the difference A −B by
(A − B)(x) := max(A(x) − B(x), 0). Equality A = B is defined element-wise:
∀x ∈ D : A(x) = B(x). Multisets are partially ordered: A ≤ B ⇐⇒ ∀x ∈
D : A(x) ≤ B(x) The strict order A < B holds iff A ≤ B and A �= B. The
notation is overloaded, being used for sets as well as multisets. The meaning will
be apparent from its use.

Any mapping f : D → D′ can be generalised to a mapping f : MS (D) →
MS (D′) on multisets:

f

(
n∑

i=1

ai

)
=

n∑
i=1

f (ai)

This includes the special case f(0) = 0. These definitions are in accordance with
the set-theoretic notation f(A) = {f(a) | a ∈ A}.

The set of all finite multisets over the set D is denoted MS (D). A multiset A
can be considered as the formal sum A =

∑
x∈D A(x)·x. Finite multisets are the
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freely generated commutative monoid (MS (D), +, 0). If the set D is finite, then
a multiset A ∈ MS (D) can be represented equivalently as a vector A ∈ N|D|.

N = (P, T, F ) is a Petri net iff the set of places P and the set of transitions
T are disjoint, i.e. P ∩ T = ∅, F ⊆ (P × T ∪ T × P ) is the flow relation. Some
commonly used notations for Petri nets are •y := ( F y) for the preset and
y• := (y F ) for the postset of a net element y. The set of minimal elements of
a net N is denoted ◦N := {x ∈ P ∪ T | •x = ∅}, the set of maximal elements is
N◦ := {x ∈ P ∪ T | x• = ∅}.

A finitely branching Petri net N = (B, E, �) is an causal net iff the transitive
closure �+ of the flow is acyclic and |•b| ≤ 1 and |b•| ≤ 1 holds for all b ∈ B. For
a causal net N = (B, E, �) we define the order < on the net elements (B ∪ E)
by < := �+.
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Abstract. In the framework of the study and analysis of new flight
procedures, we propose a new Petri net-based formalism to represent
both continuous and discrete evolutions and uncertainties: the particle
Petri net. This model is based on a particle filtering-like representation of
the probabilistic uncertainty on the continuous part of the procedure, and
a possibilistic Petri net-inspired approach to deal with the uncertainty
on events. After introducing this formalism, we propose an analysis of
an approach procedure, and a further application to the on-line tracking
of pilots’ activities.

1 Introduction

The air traffic is expected to increase by about 40% in the next ten years. This
spectacular development makes specialists wonder about how to manage such a
traffic, from human, infrastructural, systems and safety points of view.

Some research are dedicated to the improvement of the flight safety and focus
on:

1. the design of systems to analyse the pilot’s activity [1],
2. the design of systems to help pilots during the flight [2],
3. the analysis of accident reports to help modifying systems and procedures

[3],
4. the analysis of conflicts between systems [4],
5. the analysis of flight procedures [5].

Our contribution takes place in the latter domain, i.e. modelling and analysing
flight plan and procedures to diagnose some possible conflicts. Though the work
of [5] is based on a modular representation of the flight plan using Petri nets and
their classical analysis tools, the analysis is mainly based on Petri nets proper-
ties, and not really related to procedure safety. Moreover, continuous evolutions
are not represented and uncertainties are not dealt with.

After a short state of the art on hybrid system analysis formalisms (next
section), we introduce a Petri net-based model of flight procedures (Sect. 3)
considering a hybrid evolution of the man–aircraft system. Then we propose to
extend this formalism to deal with numerical and discrete uncertainties (particle

G. Ciardo and P. Darondeau (Eds.): ICATPN 2005, LNCS 3536, pp. 329–348, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Petri nets, see Sect. 5). Finally the analysis of an approach procedure illustrates
this formalism (Sect. 6) before concluding with the use of particle Petri nets
within a hybrid estimation principle (see Sect. 7).

2 The Pilot-Aircraft System as a Hybrid System

A flight procedure is described as a plan: the aircraft has to fly over some way-
points, with given headings, speeds, altitudes. . . Actually, the plan is split up
into segments and the evolution of the aircraft along these segments amounts to
a continuous evolution of the aircraft flight parameters.

The pilot has to act on the aircraft systems to put the aircraft in the right
configuration according to the segment (e.g. the gear has to be down in a landing
segment) and conversely the aircraft sends information to the pilot. This pilot–
aircraft interaction is based on events: pressing switches, speaking to the control,
information, alarms. . .

Therefore, the man–aircraft system can be considered as a hybrid system,
whose evolution is both continuous (the aircraft motion along the segment) and
discrete (the events generated both by the pilot and by the systems).

Several methods are used to deal with hybrid systems monitoring, which are
based on automata [6] or on Bayesian nets [7] linked to some numerical evolution
models. As far as the extension of Petri nets is concerned to deal with continuous
– and consequently hybrid – systems, several approaches have been proposed.

[8] propose to associate a firing speed to a continuous transition, representing
the fact that this transition does not fire immediately: the token passes through
the transition at the firing speed. In the same way, [9] associate speeds to arcs to
represent the motion of matter from a transition to a place. These two formalisms
are dedicated to systems based on matter flows.

In [10], the approach is quite different. The continuous places are linked to
differential equations, which are the evolution equations of the system. This
formalism, used for instance in [11] to analyse a landing system, can be applied
to most hybrid systems.

As far as aircraft procedures modelling is concerned, the continuous evolution
of flight parameters is governed by differential equations. Therefore, differential
Petri nets seem to be relevant to represent procedures. An example is presented
in the next section.

3 The Flight Plan Representation

Usually, the pilot’s activity is represented as a three-level control architecture :

1. navigation: the several steps of the flight, also called the flight phases,
2. guidance: the set of manœuvres dedicated to a phase,
3. control: the control of the aircraft motion.



Particle Petri Nets for Aircraft Procedure Monitoring Under Uncertainty 331

This representation leads to consider the flight plan as a hierarchy: the nav-
igation is the global sequence of phases, each phase is detailed as a guidance
procedure, which is structured as a set of controlled segments.

3.1 A Modular Representation

To be consistent with this representation, a modular Petri net representation of
the flight plan is relevant. In the navigation net (see Fig. 1) each place is associ-
ated to a flight phase. Each phase is then detailed in a guidance net, composed
of a set of segments (see Fig. 2). The navigation net and the guidance nets are
linked by transition fusions [12].

Taxi

Landing

Approach
Cruise

Departure

Take Off

Taxi

Arrival

Landing

Fig. 1. The navigation net

Each guidance net is then a hybrid – differential / discrete – Petri net, where
the control activity is actually the set of the differential equations representing
the aircraft motion within each segment.

Example 1. The Petri net of Fig. 2 models an “approach” procedure from Agen
(AGN) to land on runway 14R of the Toulouse-Blagnac airport. This differential
Petri net, based on the definition of [10], is composed of differential places (in
thin) and discrete places (in bold).

The transitions labelled Arrival and Landing are merged between Fig. 1 and
Fig. 2 Petri nets.

3.2 State Representation

Once the Petri net model of the procedure has been drawn, the tokens repre-
senting the state of the pilot–aircraft system have to be defined. Two tokens are
considered: a numerical token, carrying the state vector of the aircraft, i.e. the
continuous parameters that will evolve according to the differential equations
of the guidance nets, and a symbolic token, carrying the configuration of the
aircraft resulting from the pilot’s actions, i.e. the discrete parameters.

3.3 Playing a Differential Petri Net

The firing rule of differential Petri nets [10], applied to our procedure model, is
illustrated through the following example.
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Press APPR

h = 144

d(AGN) > 7NM

z = DH Landing

Flaps Full

d(TBS) < 7.9NM

Arrival(AGN)

Flaps 3

Gear Down

Flaps 2

Flaps 1

Engage AP

o144

220kt

3000
o144

220kt

3000
o144o097

o097
3000FL070

3000 5%

Fig. 2. The “AGN to Toulouse” approach guidance net: the differential – thin – places
are labelled by a segment description, translated into a differential equation. For in-
stance the last place segment consists in a descent from a 3000-ft altitude at a 5%
rate, steering heading 144. The discrete – bold – places represent the checklist, i.e. the
actions the pilot has to perform during a segment. For instance, during the descent,
the pilot has to set flaps2, then gear down and finally flaps3 and flaps full

Example 2. Figure 3 represents the top of the guidance net of Fig. 2 with the
initial marking – let us say at time k0. The value of the numerical vector – carried
by the numerical token (in black) – is {d = 0, h = 97, z = 7000}, where d is the
distance of the aircraft to waypoint AGN, h is the heading of the aircraft and
z its altitude. The value of the parameter APPR within the symbolic vector –
carried by the symbolic token (in white) – is 0, meaning that the APPR mode
is not engaged.

Let K be the time of the Press APPR event occurrence. At k0, no transition
is enabled: the guard is not satisfied (d < 7) and k0 �= K.

The numerical token evolves according to the differential equation associated
to the first segment, which represents a descent from 7000 to 3000ft steering
heading 97, and at k1 (k1 < K) the numerical token carries vector {d = 7.1, h =
97, z = 3000}. d > 7NM , therefore the guard is satisfied and the transition fires.
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Arrival(AGN)

d(AGN) > 7NM

h = 144

Press APPR

FL070 3000
097 o

097 o 144 o
3000

220kt

Fig. 3. Initial marking of the approach guidance net

Then the continuous evolution of the numerical token goes on according to
the second segment equation, i.e. a turn from heading 97 to heading 144 at
speed 220kt. At time K, the Press APPR event occurs, and the corresponding
transition fires.

Finally, at time k2, the numerical token matches condition h = 144, and the
corresponding transition fires.

The successive markings of the sequence are represented on Fig. 4.

k2Kk1

Fig. 4. Markings reached with the example of Fig. 3

Although this formalism is proper to model and simulate flight procedures,
the next section discusses the necessity to consider numerical and symbolic un-
certainties within the evolution process.

4 Uncertainty in the Procedures

4.1 Numerical Uncertainty

As far as numerical parameters are concerned, uncertainty exists because: (1)
the evolution models do not reflect perfectly what actually happens and (2)
the numerical values are imprecise. These two kinds of uncertainties are usually
dealt with through an estimator, whose aim is to estimate the parameter values
according to a model noise and a measurement noise.

The particle filter [13] allows the state xk at time k of a dynamic system
subject to deterministic and random inputs to be estimated from observations



334 C. Lesire and C. Tessier

Prediction

Resampling

Correction

Particles
N Expected

k + 1 

k + 1 | k + 1

k + 1 | k

Observation

Fig. 5. Particle filtering [14–slide 8]

zk spoilt with stochastic errors. It is based on a discretization of the uncertainty
on the state value: the probability distribution function of the estimate x̂k|k –
meaning the state estimated at time k knowing the measurement at time k – is
represented by a set of N particles x

(1)
k|k, . . . , x

(N)
k|k (see Fig. 5). The estimation is

achieved through a two-step process.
The first step – called prediction – consists in estimating the next particles

x̂
(1)
k+1|k, . . . , x̂

(N)
k+1|k according to the noisy evolution model. The second step –

called correction – is based on a comparison of the expected particle values with
the observation, represented as a Gaussian value on the figure: the closer the
expected particle values are to the most probable value of the observation, the
bigger weight they are assigned. Then N new particles x̂

(1)
k+1|k+1, . . . , x̂

(N)
k+1|k+1

are generated from a resampling of the weighted corrected particles.
The particle filter is well suited to our problem as Petri nets are mainly

discrete and particle filters can easily model non linear evolutions. This will lead
to the numerical part of particle Petri nets, that is presented in Sect. 5.

4.2 Symbolic Uncertainty

As far as symbolic parameters are concerned, uncertainty can be discussed
through the example of Fig. 4: we can notice that the marking of Fig. 6 has
not been reached; this is due to the choice of K. What the checklist actually
says is that the pilot has to perform the Press APPR action during a (some)
segment(s). Consequently, when simulating the pilot’s behaviour, we have to
consider all the possible times they will possibly press APPR. A way of dealing
with this uncertainty could be by starting a new simulation for each time the
event might happen – within [k0, k2] – and repeat this for each event, which is
far too complex.

Symbolic uncertainty could be dealt with considering an imprecise firing time
of the symbolic transitions, based on timed Petri nets [15] or stochastic Petri nets
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Arrival(AGN)

d(AGN) > 7NM

h = 144

Press APPR

FL070 3000
097 o

097 o 144 o
3000

220kt

Fig. 6. A “reachable” marking that is not reached during the simulation

μ

λ

(a) be-
fore the
pseudo-
firing

μ

λ

ν

(b) af-
ter the
pseudo-
firing

Fig. 7. Pseudo-firing within a possibilistic Petri net

[16]. Nevertheless, as there is no knowledge about this time, it is quite difficult
to quantify this uncertainty [17].

The formalism described in [18] allows uncertainty on the marking of a place
to be considered: possibilistic Petri nets allow a possibility measure to be asso-
ciated to the fact that a token is in a place. A possibility is also associated to
transition firing.

Let us consider the possibilistic Petri net of Fig. 7. In Fig. 7(a), the possibility
value associated to the token is μ, meaning that the possibility that the token is
really in this place is μ. The possibility of firing the transition is λ. The pseudo-
firing of the transition results in the marking of Fig. 7(b): the token is marking
the output place with a possibility ν, with ν = λ.μ.

Now let us consider the marking of Fig. 7(b). The transition can be pseudo-
fired again, which changes the possibilities of the tokens: let ν′ be the possibility
of the second token after the second pseudo-firing of the transition. ν′ is given
by the following equation

ν′ = max(λ.μ, ν) . (1)

Remark 1. The fact that nothing is known about the transition firing time can
be represented by the fact that all the transitions are completely enabled, i.e.
λ = 1. Moreover, if the value of μ has not changed, one can notice that (1)
implies ν′ = ν.

The pseudo-firing within possibilistic Petri nets will inspire the symbolic part
of the particle Petri nets.
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5 Particle Petri Nets

5.1 Definition

Definition 1. A particle Petri net is defined as a tuple P =< P, T, A, D, C, E,
M0

0 > where

1. P is the set of places, partitioned in numerical and symbolic places,

P = PN ∪ PS and PN ∩ PS = ∅
with PN (resp. PS) the set of numerical (resp. symbolic) places,

2. T is the set of transitions, partitioned in numerical and symbolic transitions,

T = TN ∪ TS and TN ∩ TS = ∅
with TN (resp. TS) the set of numerical (resp. symbolic) transitions,

3. A is the set of arcs, A ⊂ P × T ∪ T × P ,
4. D is the set of differential equations associated to the places of PN : for each

numerical place p ∈ PN , the differential equation D(p) represents the con-
tinuous evolution of a numerical token when p is marked, i.e. the evolution
of continuous parameters,

5. C is the set of conditions associated to numerical transitions: condition C(t)
is a boolean function of the numerical token values,

6. E is the set of effects associated to symbolic transitions: the effect E(t) is an
assignment of some parameters carried by a symbolic token,

7. M0
0 is the initial marking of the Petri net.

The marking M(p) of a place p consists in a set of tokens, defined as follows:

1. A particle π
(i)
k is a numerical token at time k. It is one of the possible

numerical vectors representing the continuous state of the aircraft at time k;
2. A configuration δ

(i)
k is a symbolic token at time k. It is one of the possible

symbolic vectors representing the discrete state of the aircraft at time k.

Numerical places can only be marked by particles while symbolic places can
only be marked by one configuration. Numerical uncertainty is represented by
a set of possible particles within a (or several) numerical place(s) whereas the
symbolic uncertainty is represented by a set of symbolic places marked by one
possible configuration.

Example 3. The particle Petri net of the Toulouse-Blagnac approach has the
same structure as the hybrid Petri net of Fig. 2, with:

1. numerical places, represented by thin circles, whose differential equations
are described through a label (for instance descending from flight level 70 to
3000 ft steering heading 97),

2. symbolic places, represented by bold circles,
3. numerical transitions, such as the transition whose condition is

d(AGN)>7NM,
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4. symbolic transitions, such as the transition whose label is Press APPR and
effect is to set parameter APPR to 1 within the configuration.

The main differences between particle Petri nets and hybrid Petri nets are on
the marking and on the firing rules, which are defined in the following section.

5.2 Firing Rules

Firing a Symbolic Transition. According to the possibilistic Petri net for-
malism, the fact that a configuration is active – a symbolic token is marking the
corresponding place – can be considered as a 1-valued possibility, whereas the
fact that a configuration is inactive – the corresponding place is not marked – is
represented as a 0-valued possibility.

Then we can apply a pseudo-firing that represents the possibility that an
event may occur and change the configuration accordingly.

Definition 2. A symbolic transition t is enabled if and only if each of its input
places is marked.

t ∈ TS is enabled ⇔
{∀p ∈ •t ∩ PN , ∃π ∈M(p)
∀p ∈ •t ∩ PS , ∃δ ∈M(p) . (2)

Firing a symbolic transition amounts to update the possibility of the tokens,
as in [18]. In particle Petri nets, the configurations can only have possibility
values of 0 or 1, which induces the firing rules:

∀p ∈ •t ∩ PN , ∀π ∈M(p), ∀p′ ∈ t • ∩PN , M(p′) :=M(p′) ∪ {π} . (3)
∀p ∈ •t ∩ PS , ∀δ ∈M(p), ∀p′ ∈ t • ∩PS , M(p′) :=M(p′) ∪ {E(t)(δ)} .(4)

where E(t)(δ) is configuration δ modified by effect E(t).

Remark 2. When computing the discrete evolution at time k, we can notice that
a fired symbolic transition remains enabled, as the tokens are not removed from
the input places. We can also notice that firing this transition twice (or more)
has no effect: the input tokens are still in their places and the output tokens are
already present within the next places (with a possibility of 1 that cannot evolve
according to (1)). This problem is solved associating a mark to the transition:
when a transition fires for the first time, it is marked. A transition is enabled
only if (2) is satisfied and if not marked. The mark is removed when the markings
of the input places are modified.

Example 4. Let us consider the marking shown in Fig. 8(a). The configuration
is δ(1) such as AP P R = 0, meaning that the approach mode is not selected. The
symbolic transition is enabled, as its input place is marked by δ(1). Therefore the
transition fires, and the resulting marking is shown in Fig. 8(b): the configuration
δ(2), such as AP P R = 1 is added to the next place, δ(1) remains in the input
place, and the transition is marked (which is represented by a white transition).
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Arrival(AGN)

d(AGN) > 7NM

h = 144

Press APPR

δ (1)

097 o 144 o
3000

220kt

FL070 3000
097 o

(a) before the firing

Arrival(AGN)

d(AGN) > 7NM

h = 144

Press APPR

δ (1)

097 o 144 o
3000

220kt

FL070 3000
097 o

δ (2)

(b) after the firing

Fig. 8. Firing of a symbolic transition

Firing a Numerical Transition.

Definition 3. A numerical transition is enabled if and only if each of its input
places is marked by a token satisfying the associated condition.

t ∈ TN is enabled ⇔
{∀p ∈ •t ∩ PN , ∃π ∈M(p) /C(t)(π)
∀p ∈ •t ∩ PS , ∃δ ∈M(p) (5)

where C(t)(π) is true if particle π satisfies condition C(t).

Firing a numerical transition t consists in moving all the particles satisfying
condition C(t) from the numerical input places to the numerical output places
and copying the input configurations to the symbolic output places:

Arrival(AGN)

d(AGN) > 7NM

h = 144

Press APPR

097 o 144 o
3000

220kt

FL070 3000
097 o π (1)

π (2)

(a) before the firing

Arrival(AGN)

d(AGN) > 7NM

h = 144

Press APPR

097 o 144 o
3000

220kt

FL070 3000
097 o

π (1)

π (2)

(b) after the firing

Fig. 9. Firing of a numerical transition
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∀p ∈ •t ∩ PN , ∀π ∈M(p) / C(t)(π), M(p) := M(p)\{π} . (6)
∀p′ ∈ t • ∩PN , M(p′) :=M(p′) ∪ {π} . (7)

∀p ∈ •t ∩ PS , ∀δ ∈M(p), ∀p′ ∈ t • ∩PS , M(p′) :=M(p′) ∪ {E(t)(δ)} .(8)

Example 5. Let us consider the Petri net of Fig. 9(a) with initial marking π(1) =
{d = 7.1, h = 97, z = 3200} and π(2) = {d = 7, h = 96, z = 3200}. The
numerical transition is enabled as particle π(1) satisfies condition d > 7. Firing
this transition generates the marking of Fig. 9(b).

5.3 Evolution of the Marking

According to the previously defined firing rules, the evolution of the marking
through the whole particle Petri net can be simulated. At time k, the marking
is M0

k, meaning the initial estimated marking at time k.
The evolution of the marking consists in a two-step process, alternating a

continuous evolution of the particle values and a discrete evolution of the Petri
net markings:

Isoparticle Evolution of the Marking. This evolution is processed at time
k when at least one transition is enabled. It consists in applying the firing rules
previously defined to compute the evolution of the marking. LetMf

k be the final
state of the marking at time k.

Isomarking Evolution of the Particles. This evolution is processed at time
k when no more transition is enabled. It consists in computing the continuous
evolution of the particle values, according to the differential equations associated
to the places they are marking. The differential equations are discretized so that
the isomarking evolution computes the particles at time k + 1 according to
the discretized differential equations. Let M0

k+1 be the result of the isomarking
evolution of the particles (Fig. 10).

To illustrate the particle Petri nets presented in this section and their evolu-
tion processes, an application to an approach procedure analysis is presented in
the next section.

k+1k

k
fM

evolution
isomarking

evolution
isoparticle

evolution
isoparticle

k+1
0M

k+1
fM

k
0M

Fig. 10. The evolution process: isoparticle evolution of the marking and isomarking
evolution of the particles
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6 Example: Simulation of the Toulouse Approach
Procedure

This section first illustrates the firing process of particle Petri nets through the
evolution of an initial marking within the guidance Petri net of Fig. 2, then a
way to use this evolution to analyse the procedure operation is proposed.

6.1 Simulation of the Activities

Let us consider the initial marking M0
0 at time k = 0 shown in Fig. 11(a).

The particles are π
(1)
0 = {d = 0.1, h = 97, z = 7000}, π

(2)
0 = {d = 0, h = 96, z =

7000} and π
(3)
0 = {d = 0, h = 97, z = 6900}, representing the initial uncertainties

on three parameters within the numerical vector. The initial configuration is δ
(1)
0

such as AP P R = 0, meaning that the approach mode is not selected.

Arrival(AGN)

d(AGN) > 7NM

h = 144

Press APPR

097 o 144 o
3000

220kt

FL070 3000
097 o π (1)

0
π (2)

0π (3)
0

δ (1)
0

(a) Marking M0
0

0

Arrival(AGN)

d(AGN) > 7NM

h = 144

Press APPR

(2)

097 o 144 o
3000

220kt

FL070 3000
097 o π (1)

0
π (2)

0π (3)
0

δ (1)
0

δ

(b) Marking Mf
0

Fig. 11. First step of the evolution: isoparticle evolution of the marking at k = 0

As explained in Example 4, the symbolic transition whose label is Press
APPR fires, and the resulting marking is shown in Fig. 11(b): δ

(2)
0 is such as

AP P R = 1. As no transition is enabled anymore, an isomarking evolution is
processed. The resulting marking M0

1, whose representation is the same as Fig.
11(b), is π

(1)
1 = {d = 0.6, h = 97, z = 6900}, π

(2)
1 = {d = 0.5, h = 96, z = 6900}

and π
(3)
1 = {d = 0.5, h = 97, z = 6800}. At time 1, no transition is enabled, and

the isomarking evolution goes on.
At time 50, the particles values are π

(1)
50 = {d = 7.1, h = 97, z = 3200},

π
(2)
50 = {d = 7, h = 96, z = 3200} and π

(3)
50 = {d = 7, h = 97, z = 3100}.

The numerical transition whose condition is d > 7 is enabled, and the resulting
marking is shown in Fig. 12(a) (see Example 5).

Then no more transition is enabled, and the isomarking evolution goes on.
At time k = 51, particles π(2) and π(3) have evolved according to the “descent”
equation, while particle π(1) has evolved according to the “turn” equation. The
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50

Arrival(AGN)

d(AGN) > 7NM

h = 144

Press APPR

(2)

097 o 144 o
3000

220kt

FL070 3000
097 o

δ (1)
50

δ (2)
50π (1)

50

π (3)
50
π

(a) Marking Mf
50

51

Arrival(AGN)

d(AGN) > 7NM

h = 144

Press APPR

(2)097 o 144 o
3000

220kt

FL070 3000
097 o

δ (1)
51

δ (2)
51π (1)

51

π (3)
51
π

(b) Marking Mf
51

Fig. 12. Evolution of the markings between k = 50 and k = 51

(2)
70

Press APPR

h = 144

d(AGN) > 7NM

Arrival(AGN)

δ

o097
3000FL070

220kt

3000
o144o097

π

70
(2)π

70
(1)π

70
(1)δ

70
(2)δ70

(3)

(a) Marking Mf
70

(2)
73

Press APPR

h = 144

d(AGN) > 7NM

Arrival(AGN)

δ

o097
3000FL070

220kt

3000
o144o097

δ

73
(1)π

73
(3)π

73
(2)π

73
(2)δ

73
(1)

(b) Marking Mf
73

Fig. 13. Evolution of the markings between k = 70 and k = 73

computed particles are π
(1)
51 = {d = 7.3, h = 99, z = 3200}, π

(2)
51 = {d = 7.4, h =

96, z = 3000} and π
(3)
51 = {d = 7.4, h = 97, z = 2800}. The numerical transition

d > 7 becomes enabled again, and the firing results in markingMf
51 represented

on Fig. 12(b).
The numerical transition whose condition is h=144 is enabled at time k = 70,

when the particles values are π
(1)
70 = {d = 7.7, h = 144, z = 3200}, π

(2)
70 = {d =

7.8, h = 136, z = 3000} and π
(3)
70 = {d = 7.8, h = 140, z = 2800}. The transition

fires, moving particle π(1) to the next numerical place and copying configuration
δ(2) to the next symbolic place (see Fig. 13(a)).

At time k = 71, particle π(3) can pass through the transition, and so can
particle π(2) at time k = 73. As configuration δ(2) has already been copied to the
output symbolic place, the markings of the symbolic places are not modified. The
resulting marking of this example (Fig. 13(b)) is then Mf

73 where tokens values
are π

(1)
73 = {d = 7.7, h = 144, z = 3200}, π

(2)
73 = {d = 8.2, h = 144, z = 3000},
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δ (1)

δ (2)

π (1)

π (3)

π (2)
δ (2)

δ (1)

δ (2)π (2)

π (3)

π (1)

δ (2)

0 50

51

70
7173

δ (1)

(2)δ(3)π
(1)π

(2)π (2)δ

(1)

π (3)
π (2) δ (1)

δ (2)

ππ (1)

π (3)
π (2) δ (1)

δ (1)

δ (2)
π (1)

π (2)

π (3)

π (3)
π (2) δ (1)

δ (2)
π (1)

Fig. 14. The reachable markings from M0
0

π
(3)
73 = {d = 8, h = 144, z = 2800}, δ

(1)
73 such as AP P R = 0 and δ

(2)
73 such as

AP P R = 1.
To summarize, the successive markings reached during the simulation are

represented on Fig. 14.
The next section suggests some ways to deduce properties from the reachable

markings.

6.2 Analysis of the Procedure

Once the flight plan has been defined by a set of modular particle Petri nets,
these nets have to be studied to determine the correctness of the procedure, in
regard to its achievement and to flight safety.

Transition Liveness. A useful property to analyse flight procedures is the
liveness of transitions. This property guarantees that a transition can fire from
any reachable marking of the Petri nets, ensuring that the aircraft will proceed
correctly with the flight plan. For instance, the liveness of Landing transition of
Fig. 2 ensures that the aircraft will actually enter the landing phase.
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To be consistent with the particle representation of numerical uncertainty,
the notion of π-liveness is defined as follows:

Definition 4. A transition t is π-live from the marking M if t is live from the
marking M/π, i.e. the marking containing the particle π and the configurations
of M.

This means that particle π passes through transition t during the evolution
of marking M.

Thus, the analysis of the π-liveness of a transition allows to distinguish the
particles that are consistent with the procedure (the particles for which the cru-
cial transitions – transitions whose firing matters – are π-live) from the conflict-
ual particles whose associated aircraft states do not match the nominal procedure
(and this non-matching matters for safety [19]).

Example 6. Let us consider the marked Petri net of Fig. 13(a) with the particle
values π

(2)
70 = {d = 7.8, h = 136, z = 3000} and π

(3)
70 = {d = 7.8, h = 140, z =

2800}. Let us suppose that the isomarking evolution computes the next values
π

(2)
70 = {d = 8, h = 144, z = 3000} and π

(3)
70 = {d = 8, h = 148, z = 2800}.

Then the numerical transition whose condition is h = 144 is enabled by π(2):
this transition is π(2)-live. On the contrary, π(3) does not enable the transition,
and the aircraft goes on turning. As the transition will never be enabled by π(3),
π(3) is considered as a conflictual particle.

Safety Zones. In flight safety and procedures design, flight zones are associated
to each segment, to be sure that the aircraft is safe within this zone, in regard
to the ground and to the traffic. This zone is well defined according to the
description of each segment.

The analysis of safety zones is dedicated to check whether the position rep-
resented by a particle value is within the safety zone associated to the segment
it follows.

Thus, the particles that do not respect segment safety zones can be deter-
mined, and finally, as for liveness analysis, the possible aircraft states that do
not match the nominal procedure can be determined.

Example 7. Let us consider the second segment (a turn from heading 97 to 144
at 3000ft and 220kt), and its associated “safety zone” defined by the constraints
z > 2500 and 180 < s < 250, meaning that the altitude must be greater than
2500ft and the speed between 180kt and 250kt. In the example presented before,
all the particles satisfy these constraints, which ensures that the aircraft remains
on a safe trajectory.

These two analysis principles allow to extract the conflictual particles from
the set of particles. This information may help the procedure designer either to
confirm or to update the procedure.
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7 Towards Particle Petri Nets for Pilot’s Activity
Tracking

As far as flight safety is concerned, systems to help the pilot during the flight
are currently studied. In this paper, a formalism has been proposed to model
and analyse aircraft procedures. In this section, some ideas are given about how
to use this formalism within an estimation process to track the pilot’s activities
during the flight. Tracking – and consequently analysing – their activities can be
used as an input for other systems (such as [2]) to help the pilot with conflictual
situations.

7.1 The Estimation Principle

Several approaches have been proposed to track human activities, based on au-
tomata [20], on Bayesian nets [21] or on Petri nets [22].

The latter paper proposes a symbolic estimator for activity tracking. The
estimation principle consists in a two-step process: a prediction step, which com-
putes the expected activities, and a correction step, which updates prediction
according to a new observation.

This principle is close to the particle filter principle, whose process has been
explained through Fig. 5: a prediction of the expected particles and an update
according to the observation.

Thus the estimation process described in this section is both based on the
particle filter and on [22]. Its principle, previously introduced in [23], is detailed
in Fig. 15: from the current expected situation Sit(k|k) – meaning the expected
situation at time k knowing the measurement at time k –, the prediction com-
putes the further expected situations Sit(k + i|k). The correction step computes

Sit(k+i|k)

Sit(k’|k’)

Prediction

Correction

Obs(k’)

Sit(k|k)

possible states

Fig. 15. The estimation principle
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the corrected situation Sit(k′|k′) according to the observation at time k′. The
following section presents the particle Petri net-based prediction of the pilot’s
activities, then the correction step is introduced.

7.2 Particle Petri Nets to Predict Pilot’s Activity

Particle Petri nets allow to deal with uncertainty within the prediction process,
i.e the uncertainty on the numerical models, the uncertainty on the observed
data and the uncertainty on the pilot’s actions.

The current situation Sit(k|k) is a marking of the modular particle Petri net,
composed of some probable values of the aircraft numerical parameters – the
particles – and some possible aircraft configurations.

From this marking, the set of expected situations Sit(k + i|k) is computed,
applying the previously defined firing rules and evolution processes of the particle
Petri nets.

As this computation can be quite complex, a temporal horizon HP is defined.
Its aim is to limit the computation of the reachable markings. Its value is deter-
mined according to the structure of the guidance nets, the information needed
during prediction and the discretization time step. Then the computed expected
situations are the markings Mf

i for i within [k, k + HP ].

Example 8. Let the current situation Sit(0|0) be the marking of the guidance
net of Fig. 11(a): the pilot is starting the approach procedure with three probable
particles. Let HP = 70 be the prediction horizon of the estimation process. Then
the expected situations computed by the prediction step are Mf

0 (Fig. 11(b)),
Mf

50 (Fig. 12(a)), Mf
51 (Fig. 12(b)) and Mf

70 (Fig. 13(a)).

7.3 Correction of the Markings

The correction is dedicated to the update of the expected situations according
to a new observation. In the pilot’s activity tracking domain, the observation
consists in a set of aircraft observed parameters Z(k′) – meaning the observation
vector at time k′. Z(k′) can be split into a numerical vector ZN (k′) containing the
continuous parameters of the aircraft and a symbolic vector ZS(k′) containing
the discrete parameters of the aircraft.

The correction step consists in the comparison of:

1. the expected particles with the numerical observation, which is called nu-
merical correction, and

2. the expected configurations with the symbolic observations, which is called
symbolic correction.

The numerical correction is inspired from the particle filter update: the ex-
pected particles within situation Sit(k′|k) – the expected situation at time k′

knowing the observation at time k – are weighted according to the numerical
observation ZN (k′), which is spoilt with a measurement noise.

The symbolic correction consists in determining the configurations that
match the symbolic observation. These configurations are ranked from the “best”
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3000FL070

220kt

3000
o144o097

Fig. 16. Inconsistent predicted marking (see Fig. 13(a))

matching to the “worst”, according to rules [24]. This step is currently under
study.

Finally, the numerical correction and the symbolic correction are compared
to select the consistent markings in regard to the structure of the Petri nets.
Once this update is done, the prediction can go on with the updated situation
Sit(k′|k′).

As far as the inconsistent markings resulting from correction are concerned,
they may reveal some crucial points to focus on: they may be due to an observa-
tion error – a system giving a parameter value is out of order – or to a conflictual
situation between the aircraft state and what the pilot has done. For instance,
if the estimated situation is the marking of Fig. 7.3, and the corrected marking
is (π(1), δ(1)), some conflictual situation can be suspected, as this marking is
inconsistent: the pilot may have forgotten to press the APPR button.

In the case of inconsistent markings, some information may be sent to the
pilot to help them with the conflictual situation [2].

8 Conclusion

In the framework of modelling and analysing aircraft procedures, a new formal-
ism has been defined: the particle Petri net. Its structure is based on a hybrid
modelling of the marking, which includes both particles – representing the pos-
sible continuous states of the aircraft – and configurations – representing the
possible discrete states of the aircraft.

The evolution of this marking is based on a two-step process: an isomarking
evolution of the particles that consists in computing the particles values at the
next time step, and an isoparticle evolution of the marking that consists in
applying the firing rules to the tokens.

An application to modelling an approach procedure has illustrated the for-
malism. Then some analysis properties have been proposed to determine the
states that are conflictual with the procedure.

Finally, an application to an online estimation of the pilot’s activity has been
introduced, based on a prediction of the pilot’s activities using particle Petri net
reachable markings and a correction of the prediction from the incoming obser-
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vation. In this scope, uncertainty management within particle Petri net allows
to detect and predict conflictual situations – thanks to inconsistency analysis –
in order to help the pilot to prevent or to cure them.
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20. Vu, V., Brémond, F., Thonnat, M.: Automatic video interpretation: a novel algo-
rithm for temporal scenario recognition. In: IJCAI’03, Acapulco, Mexico (2003)

21. Intille, S., Bobick, A.: Visual recognition of multi-agent action using binary tem-
poral relations. In: CVPR’99, Fort Collins, CO (1999)

22. Tessier, C.: Towards a commonsense estimator for activity tracking. In: AAAI
Spring Symposium, Palo Alto, CA (2003)

23. Lesire, C.: A numerical/symbolic estimator for activity tracking. A preliminary
report. In: KR’04 Doctoral Consortium, Whistler, BC (2004)

24. El-Sayed, M., Pacholczyk, D.: A qualitative reasoning with nuanced information.
In: JELIA’02, Consenza, Italy (2002)



On the Expressive Power of Petri Net Schemata

W. Reisig

Department of Computer Science, Humboldt-Universität zu Berlin

Abstract. High-level Petri nets are frequently represented as Petri net
schemas, with places, transitions and arcs inscribed by terms. A concrete
system is then gained by interpreting the symbols in those terms. The
behavior of a concrete system is a transition system. The composition
of all those transition systems represents the behavior of the Petri net
schema.

This paper characterizes the expressive power of (a basic class of)
Petri net schemas. It turns out that quite simple as well as quite general
requirements at a transition system suffice to generate it by such a Petri
net schema.

1 Introduction

Among the various versions of high level Petri nets there is the particular version
of basic Petri net schemata: The places, transitions and arcs of a net are inscribed
by terms, constructed from constant- and function symbols of a signature, Σ. To
turn such a schema into a full-fledged Petri net, the symbols in the inscriptions
must be interpreted by concrete constants and functions, respectively.

Fig. 1 shows an example of a schema: a, b, c, f1 and f4 are constant symbols,
l and r are unary function symbols. Fig. 2 shows an interpretation. For the
sake of simplicity, each constant symbol is interpreted by itself. There are two
additional constant symbols (and, hence, constants) f2 and f3, not shining up
in Fig. 1. The function symbols l and r are interpreted by functions from P to
F , as described in Fig. 2.

For the sake of simplicity, these functions are also denoted as l and r, respec-
tively. The interpretation of Fig. 2 turns the schema of Fig. 1 into the well-known
system of three dining philosophers; with an additional, never used fork, f4.

Fig. 3 shows a different interpretation: Intuitively formulated, the philoso-
phers a and c no longer share a fork, f3. Instead, philosopher a employs f4 as his
right fork. This yields a high-level Petri net quite different form the net gained
form the interpretation as in Fig. 2. Summing up, different interpretations of the
symbols in a net schema’s inscriptions yield different concrete system nets.

In this paper we are interested in the expressive power of basic Petri net
schemata. This is useful e.g. to estimate the relevance of various extensions of
such schemata. Fig. 1 shows a schema of the most simple form. One may addi-
tionally include symbols for sets of constants, set valued functions and variables
in transition inscriptions, allowing for different occurrence modes of a transition.

G. Ciardo and P. Darondeau (Eds.): ICATPN 2005, LNCS 3536, pp. 349–364, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. A Petri net schema

P = {a, b, c} l(a) = r(b) = f1

F = {f1, f2, f3, f4} l(b) = r(c) = f2

l, r : P → F l(c) = r(a) = f3

P = {a, b, c} l(a) = r(b) = f1

F = {f1, f2, f3, f4} l(b) = r(c) = f2

l, r : P → F l(c) = f3

r(a) = f4

Fig. 2. Interpretation of Fig. 1 Fig. 3. Another interpretation of Fig. 1

In fact, all these extensions have turned out useful and have frequently been
employed, e.g. for the representation of Distributed Algorithms as in [Rei97].

The conventional way to characterize the expressive power of a formalism
is its classification in the Chomsky Hierarchy, or in a complexity class of com-
putable functions. However, a Petri net schema does not characterize a formal
language, nor does it compute a function. So, the expressive power of Petri net
schemata can not be expressed in conventional terms.

Nielsen, Rozenberg and Thiagarajan in [NRT92] address the expressive power
of elementary Petri nets, i.e. Petri nets where each place never carries more than
one “black dot” token. They describe the semantics of an elementary Petri net
as a transition system – as is commonly done – and characterize a class of
transition systems in quite general and abstract terms. Then they show that
those transition systems exactly describe the semantics of elementary Petri nets.

We similarly proceed for a basic class of Petri net schemata, constructing a
transitions system for a Petri net schema in two steps: A high level Petri net N ,
i.e. a Petri net schema together with an interpretation of its inscriptions, yields
a transition system: Its nodes are the reachable states of N , and its arcs are
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with interpretation Fig. 3

Fig. 4. The transition system to Fig. 1

the steps as defined by the occurrence rule for Petri nets. Hence, this transition
system describes the behavior of N . As an example, Fig. 4 shows two transi-
tion systems to the schema of of Fig. 1, interpreted as in Fig. 2 and in Fig. 3.
A node in Fig. 4 consists of three lines, representing (from up to down) the to-
kens on the places thinking philosophers, available forks, and eating philosophers,
respectively.

As two transition systems together form again a transition system, each Petri
net schema characterizes a transition system – in fact quite a large one, composed
of the behavior of all transition systems of the schema’s interpretations.

The problem of this paper now reads:

Which transition systems are characterized by basic Petri net schemata? (1)

We will answer (1) for the case of Petri net schemata without symbols for
sets of constants, set valued functions or variables in arc inscriptions.

This characterization turns out intuitively quite simple, as well as quite gen-
eral. A transition system A is characterized by a basic Petri net schema if it
meets six requirements:

1. All nodes of A are structures of the same signature.
2. If R is a node of A and if S is isomorphic to R, then S is a node of A, too.
3. If S −→ S′ is a step of A then the universes of S and S′ are equal, and the

function symbols are interpreted alike in S and S′.
4. There exists a bound, k ∈ IN such that to each node S of A there exist at

most k successor nodes S′, i.e. at most k arcs shaped S −→ S′.
5. All initial states of A can be represented by the same finite set of terms.

Those requirements are merely technicalities. The decisive 6th requirement
is the existence of a finite set T of terms which must suffice to “describe” the
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transition system. We don’t require any details of how this description would
look like. But any such description must meet the following requirement for all
nodes R and S of A:

6. If R and S interpret the terms in T alike, then to each step S −→ S′ there
exists a step R −→ R′ such that both steps yield the “same amount of
change”.

This result immediately rises the quest for similar characterizations of other
versions of Petri net schemata, in particular schemata with symbols for sets of
constants, set valued functions and variables in transition inscriptions. These
questions will be addressed elsewhere.

The problem (1), as well as the central proof ideas of this paper, are not en-
tirely new. In fact, Yuri Gurevich in [Gur85] raises the question for a “computa-
tion model that is more powerful and more universal than standard computation
models”. He compiles a list or requirements and motivates why every reasonable
notion of “algorithm” would meet these requirements. Gurevich then in [Gur00]
proved that any set of states and steps, fulfilling the requirements, can in fact
be generated by a sequential abstract state machine. [Rei03] critically examines
Gurevich’s requirements, as well as Gurevich’s proof of the above mentioned
theorem.

The above list of 6 requirements for transition systems to be representable
by basic Petri net schemata resembles Gurevich’s requirements. Likewise, the
forthcoming proof outline in Section 4 picks up decisive arguments of Gurevich’s
proof, in the version of [Rei03].

The rest of this paper is organized as follows: Section 2 introduces basic
Petri net schemata and their interpretation. The presentation slightly deviates
from what is common in Petri nets, but it is more convenient for the sequel,
and, I assume, less technical than usual presentations. Section 3 introduces basic
schematic transition systems: The above mentioned list of 6 requirements is made
precise, together with some fundamental Lemmata for such transition systems.
Section 4 finally outlines the proof that each basic schematic transition system
can be represented as a basic Petri net schema.

2 Basic Petri Net Schemata

We start out with the algebraic notions as required throughout the paper. 2.2
provides the syntax of basic Petri net schemata; 2.3 gives the semantics.

2.1 Structures and Signatures

This subsection provides elementary notions and notions on structures, signa-
tures and terms, as they are common in General Algebra. In this paper we will
require structures including both function as well as predicates.
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Definition 1 (structure). Let U be a set.

i. A function shaped f : Un −→ U is a function over U . n is the arity of f . A
function f is a constant in U if its arity is 0.

ii. A subset p ⊆ U is a predicate over U .

iii. Let F be a finite set of functions and let P be a finite set of predicates over
U . Then S = (U, F, P ) is a structure. U is the universe of S.

We define a version of signatures that fits the above structures:

Definition 2 (signature). Let Φ and Π be finite, disjoint sets of symbols. For
each f ∈ Φ assume a natural number, its arity. Then Σ = (Φ, Π) is a signature.

A symbol f ∈ Φ is a constant symbol if its arity is 0, and a function symbol
if its arity exceeds 0. A symbol p ∈ Π is a predicate symbol.

Each structure can be assigned a signature:

Definition 3 (Σ-structure). Let S = (U, F, P ) be a structure and let Σ =
(Φ, Π) be a signature such that the n-ary symbols f ∈ Φ are bijectively assigned
the n-ary functions fS ∈ F , and the predicate symbols p ∈ Π are bijectively
assigned the predicates pS ∈ P . Then S is a Σ-structure.

By str(Σ) we denote the set of all Σ-Structures.

In the rest of this paper we assume a signature Σ = (Φ, Π).
In this paper we stick to ground terms, i.e. variable free terms:

Definition 4 (terms). The set TΦ of terms over Φ is the smallest set of symbol
sequences such that

i. Each constant symbol t ∈ Φ is a term over Σ,

ii. For each n-ary f ∈ Φ and all t1, . . . , tn ∈ TΦ, f(t1, . . . , tn) ∈ TΦ.

Definition 5 (interpretation). Let S = (U, F, P ) be a Σ -structure.

i. Each term t ∈ TΦ denotes an element tS ∈ U , inductively defined by
1. tS if t is a constant symbol

2. fS(t1S , . . . , tnS) if t = (t1, . . . , tn). tS is the interpretation of t in S.

ii. For a set T ⊆ TΦ, let TS = {tS |t ∈ T}
We need Boolean terms in the sequel, defined as follows:

Definition 6 (bool terms). Assume “=”, “∧” and “¬” not in Φ ∪Π. Then
the set of boolean terms of Φ is the smallest set of symbol sequences such that

i. For all t, t′ ∈ TΦ t = t′ is a boolean term,

ii. If β and β′ are boolean terms, so are ¬β and β ∧ β′.

The interpretation βS of a boolean term β in a Σ-structure S is obvious; we
refrain from a formal definition.
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2.2 Syntax of Petri Net Schemata

As a technical convenience, we compose a basic Petri net schema (such as Fig. 1)
from transitions together with their environments. Each transition, in turn, is
a collection of arc pairs, one for each place. Each place is a predicate symbol
p ∈ Π and each arc is a set of V ⊆ TΦ of terms. Fig. 5 and Fig. 6 outlines these
constructs, depicting an arc pair and a transition of the schema of Fig. 1. Here
the technicalities:
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Fig. 5. Graphical outline of a transition (∅-inscribed arcs and set braces are skipped,
as usual)

Definition 7 (Σ-transition).

i. Let p ∈ Π and let V, W ⊆ TΦ be finite sets of terms. Then a = (p, V, W ) is
an arc pair for p.

ii. Let β ∈ TΦ be a boolean term. For each p ∈ Π let ap be an arc pair for p.
Then (β, {ap|p ∈ Π}) is a Σ-transition. β is its guard.

A basic Petri net schema is now a finite set N of Σ-transitions, together with
a symbolic representation I of an initial state:

Definition 8 (basic Petri net schema). For each p ∈ Π let Ip ⊆ TΦ be
a finite set of terms, and let I =def {Ip|p ∈ Π}. Let N be a finite set of Σ-
transitions. Then M = (N, I) is a basic Petri net schema based on Σ.

The graphical representation of basic Petri net schemata is obvious: Each
p ∈ Π is depicted as a circle, and each Σ-transition t as a box, inscribed by the
guard. An arc pair ap = (p, V, W ) of t is depicted by a V -inscribed arrow from p
to t and a W -inscribed arrow form t to p. Fig. 6 shows an example. The guard
true is usually skipped.
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Fig. 6. Graphical outline of an arc pair

As a matter of convenience, ∅-inscribed arrows as well as set braces in arc
inscriptions are skipped, as in the representation of a transition in Fig. 5.

The graphical representation of the basic Petri net schema in Fig. 1 is now
obvious.



On the Expressive Power of Petri Net Schemata 355

2.3 Semantics of Basic Petri Net Schemata

For a transition based on Σ, a Σ-structure S interprets the inscription of an arc
as a subset of element of the universe U of S, to be removed from or augmented to
the adjacent place, respectively. In addition, S likewise interprets the inscription
of each place as a subset of U , i.e. as a marking.

We first define the steps (S, S′) defined by a single transition. The steps of a
basic Petri net schema are then just the steps of all its transitions.

Definition 9 (step of transition). Let b = (β, K) be a Σ-transition and let
S be a Σ-structure.

i. b is enabled at S if βS = true and for all (p, V, W ) ∈ K holds: VS ⊆ pS,
and WS ∩ pS = ∅.

ii. Let b be enabled at S and let S′ be a Σ-structure, defined for each p ∈ Π by
pS′ = (pS \ VS) ∪WS, with (p, V, W ) ∈ K. For f ∈ Φ let fS′ = fS. Then
(S, S′) is a step of b.

iii. Let sem(b) denote the set of all steps of b.

Definition 10 (step of a basic Petri net schema). Let M = (N, I) be a
basic Petri net schema. Then the set semM of all steps of all transitions in N
is the semantics of M .

3 Basic Schematic Transition Systems

Here we give the general notion of transition systems, and introduce the six
requirements mentioned in the introduction, in greater detail.

3.1 Signature Based Transition Systems

The starting point of this section is the usual notion of nondeterministic transi-
tion systems, together with a set of initial states.

Definition 11 (transition system). Let states be a set, let init ⊆ states, and
let τ ⊆ states× states. Then A = (states, init, τ) is a transition system.

As usual, one may define a behavior of a transition system as a finite or
infinite sequence S0S1S2 . . . of states Si, starting with an initial state S0 ∈ init.
We don’t dwell onto this notion, hence don’t introduce it formally.

We will stick to transition systems where each state is a Σ-structure, for a
signature Σ = (Φ, Π) as assumed in Section 2.1:

Definition 12 (transition system based on Σ). Let A = (states, init, τ) be
a transition system with states ⊆ str(Σ). Then A is based on Σ.
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3.2 Isomorphism Closed Transition Systems

From General Algebra it is well known that the language of Σ-terms can not dis-
tinguish isomorphic Σ-structures. So we will consider states of transition systems
up to isomorphism:

Definition 13 (isomorphic structures). Let S = (U, F, P ), S′ = (U ′, F ′, P ′)
be two Σ-structures. S and S′ are isomorphic, written S ( S′, if there exists a
bijective mapping h : U → U ′ such that

– For all p ∈ Π and all d ∈ U , d ∈ pS iff h(d) ∈ pS′ .
– For all t = f(t1, . . . , tn) ∈ TΦ, h(fS(t1S , . . . , tnS)) = fS′(h(t1S), . . . , h(tnS)).

Definition 14 (isomorpic closed transition system ). Let A = (states,
init, τ) be a transition system based on Σ. A is isomorphism closed iff for all
Σ-structures R and S holds:

i. If R ∈ states and R ( S then S ∈ states.

ii. If R ∈ init and R ( S then S ∈ init.

3.3 Structure Preserving Transition Systems

We stick to transition systems that preserve universes and operations.

Definition 15. Let A = (states, init, τ) be a transition system based on Σ.

i. A preserves universes if for all steps (S, S′) ∈ τ , the universes of S and of
S′ are identical.

ii. A preserves operations if for all steps (S, S′) ∈ τ and all f ∈ Φ, fS = fS′ .

3.4 Bounded Branching

In contrast to [Gur00] and [Rei03], we consider here a nondeterministic version
of transition systems: Each state S may have not just one, but a set of successor
states. We assume nondeterminism not only be finite (each state has finitely
many successors), but even bounded (each state has at most k successors).

Definition 16 (bounded branching). Let A = (states, init, τ) be a transition
system. A is boundedly branching if there exist an integer k ∈ IN such that to
each state S ∈ states there exists at most k states S′ with (S, S′) ∈ τ .

3.5 Initial Normalization

We require all initial states S to be representable by the same set of terms.

Definition 17 (Initial normalization). Let A = (states, init, τ) be a transi-
tion system based on Σ. To each p ∈ Π, let Tp ⊆ TΣ be a finite set of terms.
Then A is initially normalized with {Tp | p ∈ Π} iff for each S ∈ init and each
p ∈ Π, pS = {tS | t ∈ Tp}.
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3.6 Bounded Exploration

Here we formally define the decisive 6th requirement: The existence of a finite
set T of terms, capable to describe all steps. We start with the update Δ(S, S′)
of a step (S, S′): The update describes the change, i.e. the difference, between S
and S′:

Definition 18 (update of a τ-step). Let A = (states, init, τ) be a transition
system based on Σ , preserving operations and universes. Let S, S′ ∈ states.

i. For each p ∈ Π, Δp(S, S′) =def (p, pS\pS′ , pS′\pS) is the p-update of
(S, S′).

ii. The set Δ(S, S′) =def {Δp(S, S′) | p ∈ Π} is the p-update of (S, S′).

Definition 19 (bounded exploration). Let A = (states, init, τ) be a transi-
tion system based on Σ, preserving operations and universes.

i. Let T ⊆ TΦ such that for all R, S ∈ states holds: If for all t ∈ T tR = tS

then to each step (R, R′) ∈ τ there exists a step (S, S′) ∈ τ with Δ(R, R′) =
Δ(S, S′). In this case, T is characteristic for A.

ii. A is bounded exploration if there exists a finite characteristic set T ⊆ TΦ.

3.7 Basic Schematic Transition Systems

A transition system A fulfilling all above described properties will be denoted as
basic schematic, because it will turn at that its semantics, τ , can be described
as the semantics semM of a basic Petri net schema M .

Definition 20 (basic schematic transition system). Let A = (states, init, τ)
be an isomorphism closed, finitely branching, initially normalized and bounded
exploration transition system based on Σ, preserving operations and universes.
Then A is basic schematic.

4 Expressiveness Theorem

We are now ready to state the central theorem of this paper: Every basic
schematic transition system can be mimicked by a basic Petri net schema.

4.1 To e hown

In addition to a signature Σ = (Φ, Π) as in Section 2.1 we assume in the entire
rest of this section

– a basic schematic transition system A = (states, init, τ) based on Σ, and
– a finite set T ⊆ TΦ of terms, characteristic for A.

We have to show the following

B S
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Theorem. There exists a basic Petri net schema M based on Σ with initial
marking {Ip | p ∈ Π} such that

i. τ = semM

ii. For each state S ∈ states holds for each p ∈ Π: S ∈ init iff pS = IpS
.

The basic Petri net schema to be constructed will be characteristic, i.e. will
be constructed only from terms in the set T of characteristic terms:

Definition 21 (characteristic basic PN schema). A basic Petri net schema
M based on Σ is characteristic iff for each arc pair (p, V, W ) of each transition
of M holds: V, W ⊆ T .

Lemma 1 (Isomorphism). Let R, S be two Σ-algebras.

i. Let h : R → S be a homomorphism. Then for all t ∈ TΣ holds h(tR) = tS

ii. Let h : R → S be an isomorphism. Then for all t, v,∈ TΣ holds: tR = vR iff
tS = vS.

Proof.

i. By induction on the structure of TΣ : If t is a constant symbol, the property
follows from Def. 5. Otherwise, let t = f(t1, . . . , tn) and assume the property
for t1, . . . , tn. Then

h(tR) = h(f(t1, . . . , tn)R) = h(fR(t1R, . . . , tnR))
= h(fR(t1S , . . . , tnS)) = fS(t1S , . . . , tnS))
= f(t1, . . . , tn)S = tS .

ii. tR = vR iff h(tR) = h(vR) (as h is bijective) iff tS = vS (by i.). �

4.2 Updates of Basic Petri Net Schemata

In this subsection we consider elementary properties of basic Petri net schemata:
Each step yields a set of updates, i.e. the change of tokens in the net’s places.
Isomorphic steps yield isomorphic updates. For a characteristic Petri net schema
holds even more: States that can not be distinguished by the characteristic terms,
yield equal sets of updates.

Definition 22 (update of transitions). Let b = (β, K) be a Σ-transition, let
p ∈ Π, (p, V, W ) ∈ K, and let (S, S′) be a step of b. Then (p, VS , WS) is the
p-update of b for (S, S′).

p-updates can be described by the help of set differences:

Lemma 2 (p-update). Let b = (β, K) be a Σ-transition and let (S, S′) ∈
sem(b). Then for each p ∈ Π, (p, pS\pS′ , pS′\pS) is the p-update of b for (S, S′).
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Proof. There exists V, W ⊆ TΣ with (p, V, W ) ∈ K. Then pS′ = (pS\VS) ∪WS ,
by Definition 9.ii. Then VS = pS\pS′ and WS = pS′\pS , by Definition 9.i. Hence
the proposition. �

Each basic Petri net schema M yields a unique set delta(M, S, S′) of updates
for each step (S, S):

Definition 23 (update of a PN step). Let M = (N, I) be a basic Petri net
schema based on Σ, and let (S, S′) be a step of M . Then let delta(M, S, S′) =def

{(p, A, B) | ex. b ∈ N and p ∈ Π such that (p, A, B) is the p-update of b for
(S, S′)}, called the update of (S, S′) by M .

The forthcoming delta-isomorphism-Lemma shows that isomorphic steps of
isomorphic states of a basic Petri net schema yield isomorphic updates:

Lemma 3 (delta-isomorphism). Let M be a basic Petri net schema over Σ,
let (R, R′) and (S, S′) ∈ semM and let h : R → S be an isomorphism. Then
(p, A, B) ∈ delta(M, R, R′) iff (p, h(A), h(B)) ∈ delta(M, S, S′).

Proof. Let M = (N, I).
(p, A, B) ∈ delta(M, R, R′)
iff ex. b ∈ N and (p, A, B) is the p-update of b for (R, R′)
iff ex. b ∈ N with (p, V, W ) ∈ b, A = VR and B = WR

iff ex. b ∈ N with (p, V, W ) ∈ b, h(A) = h(VR) and h(B) = h(WR)
iff ex. b ∈ N with (p, V, W ) ∈ b, h(A) = VS and h(B) = WS

iff ex. b ∈ N and (p, h(A), h(B)) is the p-update of b for (S, S′)
iff (p, h(A), h(B)) ∈ delta(M, S, S′).

1st equivalence: Definition 23
2nd equivalence: Definition 22
3rd equivalence: as h is an isomorphism
4th equivalence: Lemma 1
5th equivalence: Definition 22
6th equivalence: Definition 23 �

The delta-Coincidence-Lemma relates updates of a characteristic Petri net
schema to the characteristic terms: Two states generate the same updates if
they interpret the characteristic terms equally:

Lemma 4 (delta-coincidence). Let M be a characteristic basic Petri net
schema over Σ and let (R, R′) and (S, S′) ∈ sem(M) with tR = tS for all
t ∈ T . Then delta(M, R, R′) = delta(M, S, S′).

Proof. in analogy to the proof of Lemma 3 we argue as follows:
Let M = (N, I).

(p, A, B) ∈ delta(M, R, R′)
iff ex. b ∈ N and (p, A, B) is the p-update of b for (R, R′)
iff ex. b ∈ N with (p, V, W ) ∈ b, A = VR and B = WR

iff ex. b ∈ N with (p, V, W ) ∈ b, A = VS and B = WS

iff ex. b ∈ N and (p, A, B) is the p-update of b for (S, S′)
iff (p, A, B) ∈ delta(M, S, S′).
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1st equivalence: Definition 23
2nd equivalence: Definition 22
3rd equivalence: the Lemma’s assumption on T
4th equivalence: Definition 22
5th equivalence: Definition 23 �

4.3 The Transition of a Step

In this subsection we consider elementary properties of basic schematic transition
systems.

Each step (S, S′) of the transition system A yields an update (p, A, B) on
each predicate p ∈ Π. The next Lemma shows that the subsets A and B of the
universe of S can be represented by characteristic terms in T . This is not at all
trivial. The proof exploits and combines arguments on isomorphism closedness,
bounded exploration and universe preservation of A.

As a first and fundamental property of an basic schematic transition system
we show that isomorphic states yield isomorphic updates:

Lemma 5 (Δ-Isomorphism). Let (R, R′) and (S, S′) be steps of A and as-
sume a mapping h that constitutes isomorphisms h : R → S and h : R′ → S′.
Then Δp(τ, R, R′) = (p, A, B) iff Δp(τ, S, S′) = (p, h(A), h(B)).

Proof. (p, A, B) ∈ Δp(R, R′) iff pR\pR′ = A and pR′\pR = B iff h(pR)\h(pR′) =
h(A) and h(pR′)\h(pR) = h(B) iff pS\pS′ = h(A) and pS′\pS = h(B) iff
(p, h(A), h(B)) ∈ Δp(S, S′).

1st equivalence: Definition 18.i
2nd equivalence: h is an isomorphism
3rd equivalence: Lemma 1
4th equivalence: Definition 18.i �

Lemma 6 (characteristic subsets). Let (S, S′) ∈ τ , let p ∈ Π and let σ =
(p, A, B) be the p-update of (S, S′). Then there exist sets T A, T B ⊆ T of charac-
teristic terms, with T A

S = A and T B
S = B.

Proof. By contradiction, assume an element e ∈ (A∪B)\TS . Let c be any item,
not in the universe U of S, and replace in S each occurrence of e by c. This
yields a Σ-structure, R, with universe V = U\{e} ∪ {c}. Obviously R ( S,
hence R ∈ states (as A is isomorphism closed).

We construct two contradicting arguments:
Firstly, e /∈ TS , hence tR = tS for all t ∈ T . This implies a step (R, R′) ∈ τ

with Δ(R, R′) = Δ(S, S′), because A is bounded exploration. Hence, in partic-
ular σ is the p-update of (R, R′).

Secondly, e /∈ V , hence e is not in the universe of R and of R′, because A is
universe preserving. Hence e /∈ (A ∪B). Hence σ is not the p-update of (R, R′).

�
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For a step (S, S′), the existence of sets T A and T B of characteristic terms,
as stated in the above Lemma, lies the ground for the construction of a Σ-
transition, that later will turn out to mimic the step (S, S′), as well as all steps
equivalent to this step.

To each step (S, S′) ofA we now construct an unconditional transition (S, S′),
describing the updates (S, S′) by help of characteristic terms:

Definition 24 (transition of (S, S′)). Let S, S′ ∈ states. Let σ = (p, A, B) be
the p-update of (S, S′) and let T A, T B ⊆ T with T A

S = A and T B
S = B. Then

bp = (p, T A, T B) is the p-arcpair for (S, S′), and (S, S′) =def {bp | p ∈ Π} is the
unconditional transition for (S, S′).

4.4 Updates of Characteristic PN Schemata

Lemma 7 (delta((S, S′), S, S′)). Let (S, S′) ∈ τ . Then delta((S, S′), S, S′) =
Δ(τ, S, S′).

Proof. (p, A, B) ∈ delta((S, S′), S, S′)
iff (p, A, B) is the p-update of (S, S′) for (S, S′), with A = pS\pS′ and B = pS′\pS

iff (p, A, B) = Δp(τ, S, S′) with A = pS\pS′ and B = pS′\pS

iff (p, A, B) = Δ(τ, S, S′)

1st equivalence: Definition 23
2nd equivalence: Lemma 2
3rd equivalence: Definition 18 �

Lemma 8 (delta-Δ-coincidence). Let R, R′, S, S′ ∈ states, (R, R′) ∈ τ . For
each t ∈ T let tR = tS. Then
delta((R, R′), S, S′) = Δ(S, S′).

Proof. delta((R, R′), S, S′) = delta((R, R′), R, R′) = Δ(R, R′) = Δ(S, S′).

1st equation: Lemma 4
2nd equation: Lemma 7
3rd equation: Definition 19 �

Lemma 9 (QRS). Let Q, Q′, R, R′, S, S′ ∈ states, let (R, R′) ∈ τ , let
delta((R, R′), Q, Q′) = Δ(Q, Q′) and assume a mapping h such that h : Q → S
and h : Q′ → S′ are isomorphisms. Then delta((R, R′), S, S′) = Δ(S, S′).

Proof. Let h : S → Q be an isomorphism. Then

(p, A, B) ∈ delta((R, R′), S, S′)
iff (p, h(A), h(B)) ∈ delta((R, R′), Q, Q′)
iff (p, h(A), h(B)) ∈ Δ(τ, Q, Q′)
iff (p, h−1(h(A)), h−1(h(B))) ∈ Δ(τ, S, S′)
iff (p, A, B) ∈ Δ(τ, S, S′)
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1st equivalence: Lemma 3
2nd equivalence: the Lemma’s assumption
3rd equivalence: Lemma 5
4th equivalence: h is an isomorphism �

Lemma 10 (Δ-τ). Let M be a Petri net schema based on Σ, and let S, S′ ∈
states such that delta(M, S, S′) = Δ(τ, S, S′). Then (S, S′) ∈ semM iff (S, S′) ∈
τ .

Proof. (S, S′) ∈ semM

iff ex. transition b = (β, K) ∈ M such that (S, S′) ∈ sem(b)
iff for all p ∈ Π (p, pS\pS′ , pS′\pS) is the p-update of some transition b of M for
(S, S′)
iff for all p ∈ Π (p, pS\pS′ , pS′\pS) ∈ delta(M, S, S′)
iff for all p ∈ Π (p, pS\pS′ , pS′\pS) ∈ Δ(S, S′)
iff (S, S′) ∈ τ

1st equivalence: Definition 10
2nd equivalence: Lemma 2
3rd equivalence: Definition 23
4th equivalence: the Lemma’s assumption
5th equivalence: Definition 18 �

The existence of the finite set T of characteristic terms implies an equivalence
on terms and on states with finitely many equivalence classes, such that all states
in one class behave essentially alike: One transition will suffice to describe a step
of all states in one equivalence class.

Definition 25 (equivalence ≈).

i. Each S ∈ states defines an equivalence ∼S on T , defined for t, t′ ∈ T by
t ∼ t′ iff tS = t′S.

ii. Let ≈ be an equivalence on states, defined for all R, S ∈ states by R ≈ S iff
∼R=∼S.

As an immediate consequence of this definition, equivalent states can’t dis-
tinguish terms in T . Furthermore, isomorphic states are equivalent.

Lemma 11 (equivalence). Let R, S ∈ states.

i. If R ≈ S then for all t, t′ ∈ T : tR = t′R iff tS = t′S.

ii. If R ( S then R ≈ S.

Proof. i. follows from the first part of Definition 25. For ii., let h : R → S be an
isomorphism. Then for all t ∈ T : tR = t′R iff h(tR) = h(t′R) iff tS = t′S .

1st equation: h is an isomorphism.
2nd equation: Lemma 1 �
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The semantics lemma characterizes steps in τ by the help of transitions:

Lemma 12 (semantics). Let R, R′, S, S′ ∈ states, (R, R′) ∈ τ , R ≈ S and
R′ ≈ S′. Then (S, S′) ∈ sem(R,R′) iff (S, S′) ∈ τ .

Proof. 1st case: The universes UR and US of R and S are disjoint. Then for
each characteristic term t ∈ T , replace in US the value of tS by tR. This is
well defined as to proposition i. of the above equivalence Lemma 11. Let Q
denote the new state. Obviously, tQ = tR for each t ∈ T . Then Lemma 8 implies
delta((R, R′), Q, Q′) = Δ(τ, Q, Q′). Furthermore, by construction of Q there
exists a mapping h such that h : Q → S and h : Q′ → S′ are isomorphisms. Then
Lemma 9 implies delta((R, R′), S, S′) = Δ(τ, S, S′). Then Lemma 10 implies the
proposition.

2nd case: The universes UR and US are not disjoint. Then replace each ele-
ment in UR ∩US by some new element in US . The resulting state, Q, is isomor-
phic to S and its universe is disjoint to UR. The second proposition of Lemma 11
implies Q ≈ S. This reduces the 2nd case to the 1st case. �

4.5 Guards and Final Proof

For each state S we define a boolean term, the guard of S, that is true at S and
at all states equivalent to S:

Definition 26 (S-guard). Let S ∈ states.

i. For two terms t, t′ ∈ T , the boolean term t = t′ is an S-guard in case tS = t′S.
The term ¬(t = t′) is an S-guard in case tS �= t′S.

ii. Let βS denote the conjunction of all S-guards constructed from terms in S.

The S-guard in fact characterizes the equivalence class of S:

Lemma 13 (guard). Let R, S ∈ states. Then βS
R = true iff R ≈ S.

Proof. follows immediately from Lemma 11.i. �

We are now ready to prove the Theorem as follows:

Proof of the Theorem. ≈ has finitely many equivalence classes. Let R1, . . . , Rn

be representants of these classes. Obviously, to each step (S, S′) ∈ τ there exist
states R, R′ ∈ {R1, . . . , Rn} with S ≈ R and S′ ≈ R′. Let L be the set of all
steps (R, R′) with R, R′ ∈ {R1, . . . , Rn} and some (S, S′) ∈ τ with S ≈ R and
S′ ≈ R′. (R, R′) ∈ τ by bounded exploration. Let N be the set of all transitions
(βR, (R, R′)) with (R, R′) ∈ L. Assume A is initially normalized with I. Then
let M = [N, I].

Then (S, S′) ∈ semM

iff for some R ≈ S and R′ ≈ S′ with (R, R′) ∈ L holds: (S, S′) ∈ sem(βR,(R,R′))

iff for some R ≈ S and R′ ≈ S′ with (R, R′) ∈ L holds: (S, S′) ∈ sem(R,R′)

iff (S, S′) ∈ τ .



364 W. Reisig

1st equivalence: construction of L and Definition 9
2nd equivalence: Lemma 13
3rd equivalence: Lemma 12 and construction of L �

5 Conclusion

As mentioned in the Introduction already, the Theorem and its proof as given
above, are a variant of a theory of Abstract State Machines [Gur00]. This theory
seems to expand to a wide range of system models. In particular, in a forthcoming
paper we will show how other variants of Petri net schemata can be captured by
similar means.
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Abstract. STGs give a formalism for the description of asynchronous
circuits based on Petri nets. To overcome the state explosion problem one
may encounter during circuit synthesis, a nondeterministic algorithm for
decomposing STGs was suggested by Chu and improved by one of the
present authors. To find the best possible result the algorithm might
produce, it would be important to know to what extent nondeterminism
influences the result, i.e. to what extent the algorithm is determinate.

The result of the algorithm clearly depends on the partition of output
signals that has to be chosen initially. In general, it also depends on the
order of computation steps. We prove that for live marked graphs — a
subclass of Petri nets of definite practical importance in the area of cir-
cuit design — the decomposition result depends only on the signal parti-
tion. In the proof, we also characterise redundant places in these marked
graphs as shortcut places; this easy-to-apply graph-theoretic characteri-
sation is of independent interest.

1 Introduction

Signal Transition Graphs (STG) are a formalism for the description of asyn-
chronous circuits. An STG is a labelled Petri net where the labels denote signal
changes between logical high and logical low. Signals are subdivided into input
signals, which are produced by the environment, and output signals, which the
circuit should produce as specified by the STG. The synthesis of circuits from
STGs is supported by several tools, e.g. Petrify [CKK+97], and it often involves
the generation of the reachability graph, which may have a size exponential in
the size of the STG (state explosion). To cope with this problem, Chu suggested
a nondeterministic method for decomposing an STG into several smaller ones
[Chu87]. While there are strong restrictions on the structure and labelling of
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STGs in [Chu87], the improved decomposition algorithm given in [VW02] works
under – comparatively moderate – restrictions on the labelling only.

Roughly, the decomposition algorithm works as follows; see [VW02] for de-
tails. Initially, a partition of the output signals has to be chosen, and for each
set in this partition a component producing the respective output signals is con-
structed. The result clearly depends on this partition, so we will only consider
the case that it has been fixed, and we will concentrate on the construction of
one component. To construct a component, one finds a set of signals that (at
least initially) can be regarded as irrelevant for the output signals under con-
sideration; then, one takes a copy of the original STG and turns each transition
corresponding to an irrelevant signal into an internal (λ-labelled) transition; fi-
nally, one tries to remove all internal transitions by so-called secure transition
contractions and deletions of (structurally) redundant places, resulting in the
final component.

The aim is to find components with small reachability graphs. In principle,
this requires to consider all possible sequences of contractions and deletions;
but if the algorithm is determinate, i.e. nondeterminism does not influences
the result, it is sufficient to consider only one sequence, which greatly increases
efficiency. Our main contribution is a determinacy result for a subclass of STGs,
where a part of the result applies to STGs in general.

In general, one might find during the processing of a component that addi-
tional signals are relevant; then, one has to start anew from a suitably modified
copy of the original STG – which eventually gives a correct component as proven
in [VW02]. Even in simple cases, the order of operations may influence for which
signals this backtracking is performed, resulting in different components as shown
in [VW02–Fig. 7]. Since this does not give much hope for a general determinacy-
result, we will not consider backtracking in this paper; we will mostly concentrate
on the subclass of live marked graphs, for which backtracking is never needed as
already noted in [VW02–p. 178].

Although marked graphs are a rather restricted subclass of Petri nets, our
results for this subclass are non-trivial. Marked graphs are definitely of practical
importance for asynchronous circuit and particularly prominent in benchmark
examples studied in the respective community.

As a result of the above considerations, we can abstract from all signals or
signal changes, and study the problem under which circumstances the following
algorithm is determinate: given an unlabelled Petri net where some transitions
are marked as internal, apply secure transition contractions and redundant place
deletions as long as possible.

We will show that for live marked graphs the algorithm is determinate, i.e. it
produces a unique component (up to isomorphism). Part of this result applies to
general Petri nets, for which we show that secure transition contractions satisfy a
weak diamond property. We give an easy-to-apply graph-theoretic characterisa-
tion of redundant places in marked graphs as so-called shortcut places; our result
is a small generalisation of a result in [CCJS94] and our contribution is a much
simpler proof. This result is an important ingredient to prove our main result.
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The paper is organised as follows. In the next section, Petri nets and their
basic notions are introduced, as well as redundant places and secure transition
contractions. In Section 3, we characterise redundant places in marked graphs
as shortcut places. The other contribution is proven in Section 4. We conclude
with Section 5.

2 Basic Definitions

Definition 1. A Petri net is a 4-tuple N = (P, T, W, MN ) with

– P the finite set of places, T the finite set of transitions with P ∩ T = ∅,
– W : P × T ∪ T × P → N0 the weight function,
– MN the initial marking, where a marking is a function P → N0

A Petri net can be considered as a bipartite graph with weighted and directed
edges between its nodes. A marking is a function which assigns a number of
tokens to each place; for a (sub)set Q of places we define M(Q) =

∑
p∈Q M(p)

(where the sum is zero if Q = ∅). A node is a place or a transition. ��

Definition 2. Let N be a Petri net. The preset of a node x is denoted as •x and
defined by •x = {y ∈ P ∪T | W (y, x) > 0}, the postset of a node x is denoted as
x• and defined by x• = {y ∈ P ∪ T | W (x, y) > 0}. We say that there is an arc
from each y ∈ •x to x. We write •x• as shorthand for •x ∪ x•. All these notions
are extended to sets as usual. ��

Whenever a Petri net N, N ′, N1, etc. is introduced, the corresponding tuples
(P, T, W, MN ), (P ′, T ′, W ′, MN ′), (P1, T1, W1, MN1) etc. are introduced implic-
itly. In a graphical representation of a Petri net, places are drawn as circles,
transitions as rectangles, the weight function as directed arcs xy (labelled with
W (x, y) if W (x, y) > 1) and a marking of a place as a number or as a set of small
dots drawn in the interior of the corresponding circle. We will regard isomorphic
Petri nets as equal.

Definition 3. Let N be a Petri net. A path w is a sequence x0x1 . . . xn, n ≥ 0
of different nodes such that W (xi, xi+1) > 0 ∀i = 0, . . . , n − 1. A cycle c is
a sequence x0x1 . . . xnx0, n ≥ 1 with x0 . . . xn is a path and W (xn, x0) > 0.
Frequently, we will treat paths and cycles like sets consisting of the respective
nodes. By the marking of a path (cycle resp.) we mean the marking (i.e. the sum
of the tokens) of the set of its places.

Definition 4. Let N be a Petri net. A transition t is enabled under a marking
M if M(p) ≥ W (p, t) ∀p ∈ •t, which is denoted by M [t〉. An enabled transition
can fire or occur yielding a new marking M ′, which is written as M [t〉M ′ if M [t〉
and M ′(p) = M(p)−W (p, t) + W (t, p) ∀p ∈ P .

A transition sequence v = t0t1 . . . tn is enabled under a marking M if
M [t0〉M0[t1〉M1 . . . Mn−1[tn〉Mn, and we write M [v〉, M [v〉Mn resp., v is called
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firing sequence if MN [v〉. The empty transition sequence is written as λ and
enabled under every marking.

M ′ is called reachable from M if a transition sequence v with M [v〉M ′ exists.
The set of all markings reachable from M is denoted by [M〉. For [MN 〉 we just
write reachable markings (of N).

A transition t is called live under a marking M if for every M ′ ∈ [M〉 there
exists an M ′′ ∈ [M ′〉 with M ′′[t〉, t is live if it is live under MN and N is live
if every t ∈ T is live. A transition t is dead under a marking M if there is no
M ′ ∈ [M〉 with M ′[t〉. ��

Definition 5. A place p of a Petri net N is bounded if for some k ∈ N, M(p) ≤ k
holds for every reachable marking M . N is bounded if every place is bounded.

A marking M is a home marking of N if it is reachable from every reachable
marking. N is called reversible if MN is a home marking. ��

Definition 6. A Petri net N is a marked graph (MG) (or T-system) if:

1. ∀p ∈ P. |•p| = 1 = |p•|
2. ∀x, y ∈ P ∪ T.W (x, y) ≤ 1 ��

Due to this, we often identify •p and t if •p = {t}, and analogously for p•.

Definition 7. Let N be a Petri net and p ∈ P . Place p is called implicit if it
can be removed from N without changing the set of firing sequences.

Place p is (structurally) redundant [Ber87] if there is a set of places Q – called
reference set – with p �∈ Q, a valuation V : Q∪{p} → N and some d ∈ N0 which
satisfy the following properties for all transitions t:

1. V (p)MN (p)−∑q∈Q V (q)MN (q) = d

2. V (p)(W (t, p)−W (p, t))−∑q∈Q V (q)(W (t, q)−W (q, t)) ≥ 0
3. V (p)W (p, t)−∑q∈Q V (q)W (q, t) ≤ d

We call V balanced if, for all transitions t ∈ T , V (p)(W (t, p) −W (p, t)) −∑
q∈Q V (q)(W (t, q)−W (q, t)) = 0 . ��
When constructing a component in our STG decomposition, we would like to

remove implicit places. Implicitness is hard to decide, and therefore we actually
consider only structural redundancy, since checking this does not require to
generate the reachability graph.

Remark: It is well-known that the reachability problem (RP) for Petri nets is
EXPSPACE-hard. This even holds for SPZ-RP (Single-Place-Zero RP) where
we ask if a given place p can be emptied; we can also assume arc-weights to be 1.
Given an instance of SPZ-RP, we can add a fresh t and the arcs (p, t), (t, p), and
observe that p is implicit iff no marking with zero tokens in p is reachable. This
shows EXPSPACE-hardness of the implicitness problem. On the other hand,
redundancy can be solved by linear programming.
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The proof that a redundant place p is indeed implicit argues that initially
the valuated token number of p is at least d greater than the valuated token sum
on Q by the first item, and that this difference can only get greater when firing
transitions by the second item; the third item says that each transition needs at
most d ‘valuated tokens’ more from p than from the places in Q. This shows that
for the enabling of a transition the presence or absence of p does not matter.

Since deletion of p preserves the firing sequences it also preserves liveness.
In general implicitness does not imply redundancy, but we will show that these
notions coincide for live marked graphs.1

Throughout this paper, if a place p (p′, p1, . . .) is considered to be redundant,
a corresponding reference set Q (Q′, Q1, . . .) and valuation function V (V ′, V1,
. . .) are implicitly given. If only some valuation function V is given, the reference
set is implicitly determined as its support by Q = {p ∈ P | V (p) > 0}.

Furthermore, it is useful to distinguish between different types of redundant
places as introduced in the following definition.

Definition 8. Let p be a place of a Petri net N .

– p is an extended duplicate of place p′ ∈ P if ∀t ∈ T. W (p, t) = W (p′, t) ∧
W (t, p) = W (t, p′) and MN (p) ≥ MN (p′).

– p is a loop-only place place if ∀t ∈ T. MN (p) ≥ W (p, t) ≤W (t, p).
– If N is a marked graph, p is a shortcut place if a path w = •p . . . p• exists

containing at least one place but not p and satisfying p �∈ w and MN (p) ≥
MN (w ∩ P ). ��

Definition 9. Let N be a Petri net and t ∈ T . If t is not incident to an arc with
weight greater than 1 and •t∩ t• = ∅, we define the t-contraction of N , denoted
by N

t
or just N , as follows:

T = T − {t} P = {(p, �)|p �∈ •t•} ∪ {(p1, p2)|p1 ∈ •t, p2 ∈ t•}
W ((p1, p2), t′) = W (p1, t′) + W (p2, t′)
W (t′, (p1, p2)) = W (t′, p1) + W (t′, p2)
M((p1, p2)) = M(p1) + M(p2)

In this definition � �∈ P ∪ T is a dummy element used to make all places of
N to be pairs; we assume M(�), W (�, t′) and W (t′, �) to be 0.

If more than one contraction is applied to a net N , e.g. N
t1

t2

, this is denoted
by N

t1,t2 .
A t-contraction is called secure iff (•t)• ⊆ {t} or •(t•) = {t}. ��
The rationale for secure transition contractions is explained in [VW02]. In this

paper, arbitrary contractions in general Petri nets are considered in Theorem 20;
otherwise, we consider marked graphs where all contractions are secure.

1 [CCJS94] shows that the second redundancy item characterizes that p is structurally
implicit, i.e. each marking of the other places can be extended to p such that p is
implicit.
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3 Redundant Places in Marked Graphs

This section deals with redundant and implicit places in live marked graphs. The
main result will be that redundant and implicit places coincide in live marked
graphs and furthermore they are either loop-only places or shortcut places.

We start with two propositions about redundant places in general.

Proposition 10.

1. Extended duplicates, loop-only places and shortcut places are redundant.
2. If p is a redundant place of a Petri net N , it is a loop-only place iff some

reference set Q is empty.

Proof. (1) For an extended duplicate p of place p′ set Q = {p′}, V (p) = V (p′) =
1. For a loop-only place p set Q = ∅, V (p) = 1. For a shortcut place p with
corresponding path w, set Q = w ∩ P, V (p) = 1 and V (q) = 1 for q ∈ Q.

(2) The first direction follows from the proof of part (1). Therefore assume
the reference set Q to be empty. Since p is redundant we get immediately ∀t ∈ T :

V (p)MN (p) = d

V (p)(W (t, p)−W (p, t)) ≥ 0
V (p)W (p, t) ≤ d

Dividing by V (p) and combining the first and the last (in)equation yields: ∀t ∈
T.MN (p) ≥ W (p, t), W (t, p) ≥ W (p, t), which is equivalent to the definition of
a loop-only place. ��

The first part of the following proposition was used in an alternative proof
of Theorem 13, and we think that it is of independent interest. The second part
will be applied below.

Proposition 11. 1. Let p be a redundant place of a live Petri net N with at
least one home marking. Then V is balanced.

2. If, in an arbitrary net N , p is redundant under a marking M ∈ [MN 〉 with a
balanced valuation, it is also redundant under MN with the same valuation.
In particular, if p is a shortcut place under M , it is also one under MN .

Proof. 1) Let MH be a home marking of N . Using part 2 of Definition 7, it can be
shown that ∀t ∈ T.M1[t〉M2 ⇒ V (p)M1(p) −∑q∈Q V (q)M1(q) ≤ V (p)M2(p) −∑

q∈Q V (q)M2(q) (∗).
Let MH [v1〉M [v2〉MH , such that v1 contains every transition t ∈ T at least

once. Such a sequence v1 exists because N is live, v2 exists because MH is a
home marking. Together with (∗) we get:

V (p)MH(p)−
∑
q∈Q

V (q)MH(q)
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≤ V (p)M(p)−
∑
q∈Q

V (q)M(q)

≤ V (p)MH(p)−
∑
q∈Q

V (q)MH(q)

Since N is live, there exists a marking M1 ∈ [MH〉 for each transition t with
M1[t〉M2 and

V (p)M1(p)−
∑
q∈Q

V (q)M1(q) = V (p)M2(p)−
∑
q∈Q

V (q)M2(q)

Together with M2(s) = M1(s)−W (s, t) + W (t, s) ∀s ∈ P this leads to:

V (p)M1(p)−
∑
q∈Q

V (q)M1(q)

= V (p)(M1(p)−W (p, t) + W (t, p))−
∑
q∈Q

V (q)(M1(q)−W (q, t) + W (t, q))

= V (p)M1(p)− ( ∑
q∈Q

V (q)M1(q)
)

+ V (p)(W (t, p)−W (p, t))

−
∑
q∈Q

V (q)(W (t, q)−W (q, t))

⇒ V (p)(W (t, p)−W (p, t))−
∑
q∈Q

V (q)(W (t, q)−W (q, t)) = 0

This implies directly that V is balanced.
2) Items 2 and 3 of Definition 7 do not depend on the marking and item 1

follows directly from the valuation being balanced. If p is a shortcut place then
the respective path induces a balanced valuation V (as observed in the proof of
10) and, since item 1 can be transferred from M to MN , the marking of this
path is at most the marking of p also under MN . ��

Before we prove the main theorem of this section, we note an easy lemma
about liveness in marked graphs.

Lemma 12. Let c be a cycle of a marked graph N . For every reachable marking
M , M(c) = MN (c). If N is live, c is initially marked.

Proof. Let M [t〉M ′. We show that M(c) = M ′(c). For t ∈ c this is trivially true,
since all edge weights are 1 in marked graphs. Otherwise, t is not adjacent to
any place of c, since N is a marked graph.

The second statement now follows easily; if c is not marked under MN it is
not marked under any reachable marking and therefore no transition of c can
ever fire, a contradiction. ��

Actually, marked graphs are live if and only if every cycle is initially marked,
see e.g. [DE95]. This is a deeper result, which we do not need here. In fact,
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our proof of the next theorem has the advantage that it does not require pro-
found knowledge about marked graphs, and we only proved the above lemma to
demonstrate that our proof of Theorem 13 is indeed elementary.

Theorem 13. Let N be a live marked graph and p ∈ P . The following properties
are equivalent:

1. p is a redundant place
2. p is an implicit place
3. p is a loop-only place or a shortcut place

Proof. ”1→2” even holds for arbitrary Petri nets – as we observed already –,
and ”3→1” follows from Proposition 10.

”2→3”: Let p be an implicit place but not a loop-only one. We define {ti} = •p
and p• = {to}, obviously ti �= to, otherwise MN (p) = 0, which contradicts with
liveness. Let N ′ be the net obtained from N by deleting ti and all incident
arcs. Observe that p is also implicit in N ′, since the set of firing sequence of N ′

coincides with the set of those firing sequences of N which do not contain ti.
In N ′, starting from the initial marking we fire transitions until a maximal

set D of transitions is dead.2 From this marking fire every transition not in D
at least once; we denote the marking reached by M . Observe that (∗) M can be
reached in N by the same firing sequence.

Since to can fire at most MN (p) times in N ′, we must have to ∈ D. Further-
more, there exists a p1 ∈ •to, p1 �= p with M(p1) = 0. If not, p would be the
only place in •to preventing the firing of to, hence would not be implicit in N ′.

This implies •p1 ∈ D; otherwise p1 would have been marked when every
transition not in D fired once. Now there is an unmarked place p2 in •(•p1) and
so on. This leads either to a cycle not containinig any tokens, which is by (∗)
a contradiction to N being live (cf. Lemma 12); or ends up in a place p′ with
an empty preset in N ′, hence p′ ∈ ti

• and so we have constructed an unmarked
path from ti to to not containing p. Therefore p is a shortcut place under M in
N , cf. (∗), and we are done by Proposition 11.2. ��
Remark: Javier Esparza pointed out to us that a weaker version of this theorem
could be proved as follows. Assume p is a redundant place of a live and bounded
marked graph N (or more generally: free-choice net N); then the removal of p
results again in a live and bounded marked graph N ′, which is (roughly speak-
ing) strongly connected by [Bes87]; in particular the transitions •p and p• are
connected by a path in N ′. This result is close to the above theorem, but it is
in fact not useful for the purpose of the present paper, since it does not make
any statements about the marking of such a path; the pure existence of a path
is not sufficient for a place to be redundant.

A result very close to Theorem 13 can be found in [CCJS94]. The differ-
ence is that strong connectedness is assumed there – an assumption that we do

2 D does not neccessarily contain all transitions, since we do not assume boundedness
or connectedness.
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not need. Furthermore, the proof in [CCJS94] makes heavy use of deep results
about marked graphs, while our direct proof only needs elementary knowledge.
[CCJS94] also considers some form of decomposition of marked graphs; we will
discuss the relationship to our approach at the end of the next section.

To determine whether a place is structurally redundant, one can set up an
instance of linear programming [STC98]. Our theorem leads to a more efficient
algorithm for live marked graphs as already noted in [CCJS94]: to check whether
place p is structurally redundant, regard each place p1 as an edge from •p1 to p•1,
weighted according to the initial marking. Remove the edge corresponding to p
and determine the shortest path from •p to p•; if its length (i.e. its cumulated
weight) is at most MN (p), p is redundant. With the basic version of Dijkstra’s
algorithm, this takes time O(n2), where n is the number of transitions.

Actually, in [CCJS94] the addition of implicit places is considered; for decid-
ing whether a given place is redundant we note the following improvement.

Dijkstra’s algorithm determines all distances from •p in increasing order;
hence, the algorithm can already be finished with a negative answer, if all tran-
sitions with a distance of no more than MN (p) have been found and if p• is not
among them. If MN (p) = 0, one can delete all edges corresponding to initially
marked places, and simply check for a path from •p to p• in the remainder e.g.
with depth first search in time linear in the number of transitions and places.

4 Determinacy of Petri Net Operations

In this section the determinacy of the decomposition method — with its opera-
tions of secure transition contraction and redundant place deletion — is studied.
For this we view these Petri net operations as a terminating reduction system,
such that determinacy is related to confluence and local confluence.

The notion ’reduction system’ comes from the field of term rewriting. The
following definition and lemma are taken from [BN98], where a detailed intro-
duction can be found.

Definition 14. Let A be a nonempty set with a, a′, . . . ∈ A.

1. A reduction system is a pair (A,→) with →⊆ A × A. The relation → is
called reduction or reduction rule; →∗ denotes the reflexive and transitive
closure of →, and →= the reflexive closure.

2. A reduction →
(a) is terminating if there exists no infinite chain a0 → a1 → a2 . . .
(b) is confluent if a →∗ a1, a →∗ a2 implies a1 →∗ a′, a2 →∗ a′ for some a′

(c) is locally confluent if a → a1, a → a2 implies a1 →∗ a′, a2 →∗ a′ for some
a′

(d) has the diamond property if a → a1, a → a2 implies a1 → a′, a2 → a′

3. An element a is
(a) in normal form if ¬∃a′. a → a′

(b) a normal form of a′ if a′ →∗ a and a is in normal form. ��
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Lemma 15.

1. A terminating relation is confluent iff it is locally confluent.
2. If → is terminating and confluent, every element has a unique normal form.

Next, we model the behaviour of the decomposition algorithm as a reduction
system. As explained in the introduction, we can restrict ourselves to the pro-
cessing of one net, where repeatedly structurally redundant places are removed
and transitions from a distinguished set are securely contracted. Also, we con-
centrate on live marked graphs, although the reduction rules below are actually
defined for general nets; Theorem 20 gives a result for general Petri nets.

Definition 16. Let MGR := {(N, Λ)|N is a live marked graph, Λ ⊆ T}, where
Λ denotes the set of internal transitions to be contracted. We define the following
reduction rules on MGR.

1. (N, Λ) →stc (N
t
, Λ− {t}), where secure contraction of t ∈ Λ is applied.

2. (N, Λ) →rpd (N ′, Λ) if N ′ is obtained from N by deleting a redundant place.
3. →red = →stc ∪ →rpd ��

These reductions are well-defined according to the following proposition.

Proposition 17. Applying →red preserves the marked graph properties (Defi-
nition 6) as well as liveness.

Proof. Deleting a redundant place does not change the firing sequences of the
net and therefore liveness is preserved. Since the other places are not affected,
the marked graph properties remain valid.

Let p′ = (p1, p2) be a place resulting from a secure transition contraction.
Since p1 has exactly one transition in its preset, so has p′, and analogously for the
postset. Since the contraction of a transition t shortens each cycle c containing
t but leaves MN (c) unchanged, the cycles of N

t
still contain at least one token

each, and thus N
t

is live. ��
Furthermore,→red is a terminating reduction, as noted in [VW02] for general

Petri nets: only finite nets are considered,→stc reduces the number of transitions,
this stays the same under →rpd, and →rpd reduces the number of places.

Each normal form of (N, Λ) ∈ MGR is a possible result of the decomposition
algorithm; thus, by Lemma 15, it suffices to show that →red is locally confluent
in order to prove decomposition to be determinate, because in this case every
element of MGR has a unique normal form; recall that we regard isomorphic
nets as equal.

To show the local confluence of →red, we need to show the local confluence
for every of the three combinations of →stc and →rpd.

Local Confluence of →stc

We will show now the local confluence for secure transition contractions in live
marked graphs. Before that, a result for arbitrary transition contractions in
arbitrary Petri nets similar to local confluence is given, namely Theorem 20,
which is something like a weak diamond property.
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Table 1. Structures of possible places after two transition contractions. This table
is obtained from all syntactically possible places by omitting cases which contains a
leading , e.g. (, (p, )). Here, p is only a placeholder for an arbitrary place; in Table 2
all possible allocations are considered

Group Structure

1 ((p, ), )

2 ((p, p), )

3 ((p, ), (p, ))

4 ((p, ), (p, p))

5 ((p, p), (p, ))

6 ((p, p), (p, p))

Definition 18. Let N be a Petri net and N ′ a Petri net obtained from N
by arbitrary transition contractions. Each p′ ∈ P ′ is a structured tuple with
components from P ∪ {�}. MN ′

N (p′) is defined as the multi-set of those places
p ∈ P occurring in p′. ��

As an example: Let N be a Petri net with P = {p1, p2, . . . , pn}, then
MN ′

N (((((p1, �), (p2, �)), �), (((p1, �), (p3, p4)), �))) = {2 · p1, p2, p3, p4}.
Lemma 19. Let N be a Petri net, N ′ = N

t1,t2 and p′1, p′2 ∈ P ′. If N
t2,t1 is

defined as well, MN ′

N (p′1) = MN ′

N (p′2) implies p′1 = p′2.

Proof. This proof works with the Tables 1 and 2. In the first one, all possibilities
for the structure of a place after two transition contractions are listed. In the
latter one these 6 cases are instantiated resulting in 30 combinations of places
from the original net.

As indicated in Table 2 many of the combinations are actually not posssible
for simple reasons. For example, if (p1, p1) is part of the place then p1 ∈ •t1
and p1 ∈ t1

•, a contradiction since a contraction of a transition with a loop is
not defined. As another example, case 23 drops out, because p1 belongs to the
preset of t1 due the occurrence of (p1, p2), and on the other hand p1 is element
of its postset, due to the occurrence of (p2, p1). Therefore p1 forms a loop with
the first contracted transition. With the same argumentation cases 24 and 28
are impossible.

The remaining impossible cases 25, 27, and 30 are considered in more detail.
Case 25 leads either to a loop after contracting t1 or to an arc with weight

2 after contracting t2, see Figure 1. Case 27 is very similar to the previous one,
only the pre- and postsets of t1 are exchanged.

At last case 30 remains which is more complicated but nevertheless turns out
to be impossible, see Figure 2.

In summary, it sufficies to consider the cases 1, 3, 5, 10 and 15 (also shown
in Table 3, middle column, the last column is used later). We distinguish three
cases for MN ′

N (p′1).

1. MN ′

N (p′1) = {p1} = MN ′

N (p′2). This is only possible if both p′1 and p′2 are in
the form of case 1 which implies p′1 = p′2.
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Table 2. All combinatory possible places (up to isomorphism) after contraction of t1
and then t2. This table is obtained from Table 1 by instantiating p. The places pi are
pairwise different. The places which have an ’type error’-entry are not possible, since
a place is treated as being and at the same time as not being adjacent to a contracted
transition; ’initial loop’ means that there is a loop at one of the transitions initially.
Rows with a leading � are considered in greater detail in the text

No. Group # Places Example Possible If not, why?

� 1 1 1 ((p1, ), ) •
2 2 1 ((p1, p1), ) - initial loop p1 − t1

� 3 2 2 ((p1, p2), ) •
4 3 1 ((p1, ), (p1, )) - initial loop p1 − t2

� 5 3 2 ((p1, ), (p2, )) •
6 4 1 ((p1, ), (p1, p1)) - type error

7 4 2 ((p1, ), (p1, p2)) - type error
8 4 2 ((p1, ), (p2, p1)) - type error
9 4 2 ((p2, ), (p1, p1)) - initial loop p1 − t1

� 10 4 3 ((p1, ), (p2, p3)) •
11 5 1 ((p1, p1), (p1, )) - type error

12 5 2 ((p1, p1), (p2, )) - initial loop p1 − t1
13 5 2 ((p1, p2), (p1, )) - type error
14 5 2 ((p2, p1), (p1, )) - type error

� 15 5 3 ((p1, p2), (p3, )) •
16 6 1 ((p1, p1), (p1, p1)) - initial loop p1 − t1
17 6 2 ((p1, p1), (p1, p2)) - initial loop p1 − t1
18 6 2 ((p1, p1), (p2, p1)) - initial loop p1 − t1
19 6 2 ((p1, p2), (p1, p1)) - initial loop p1 − t1
20 6 2 ((p2, p1), (p1, p1)) - initial loop p1 − t1
21 6 2 ((p1, p1), (p2, p2)) - initial loop p1 − t1 and p2 − t1
22 6 2 ((p1, p2), (p1, p2)) - loop after contracting t1
23 6 2 ((p2, p1), (p1, p2)) - initial loop p1 − t1
24 6 3 ((p1, p2), (p3, p1)) - initial loop p1 − t1

� 25 6 3 ((p1, p2), (p1, p3)) - loop after contracting t1 or
weight 2 after contracting t2
first

26 6 3 ((p1, p1), (p2, p3)) - initial loop p1 − t1
� 27 6 3 ((p2, p1), (p3, p1)) - loop after contracting t1 or

weight 2 after contracting t2
first

28 6 3 ((p2, p1), (p1, p3)) - initial loop p1 − t1
29 6 3 ((p2, p3), (p1, p1)) - initial loop p1 − t1

� 30 6 4 ((p1, p2), (p3, p4)) - loop or weight 2 after contract-
ing t2 first

2. MN ′

N (p′1) = {p1, p2} = MN ′

N (p′2). Hence, p′1, p′2 ∈ {((p1, p2), �), ((p2, p1), �),
((p1, �), (p2, �)), ((p2, �), (p1, �))}. If a fixed p′1 from this set occurs in the net
N

t1,t2 it is not possible that a different element from this set occurs, too;
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(a)

1

2 3

1 2

(b)

1

2 3

1 2

Fig. 1. Case 25 - p′ = ((p1, p2), (p1, p3)). p1 has to be an element of •t1 p2 and p2, p3

have to be elements of t1
•. Then there are 4 cases: 1) p1 ∈ •t2, p3 ∈ t2

•: loop after
contracting t1, see (a) 2) p1 ∈ •t2, p1 ∈ t2

•: initial loop p1−t1 3) p2 ∈ •t2, p1 ∈ t2
•:

loop after contracting t1 4) p2 ∈ •t2, p3 ∈ t2
•: weight 2 after contracting t2, see (b)

1

2

3

4

1 2

1

2

3

4

1 2

(a) (b)

Fig. 2. Case 30 - ((p1, p2), (p3, p4)). p1 and p3 have to be in the preset of the first
transition to be contracted (t1), p2 and p4 in the postset. For the connection to t2 there
are several possibilities; all of them satisfy that p1 or p2 (or both) are in the preset and
p3 or p4 (or both) are in the postset, which leads to 9 sub-cases. Exemplarily two of
them are considered. (a) leads to an arc with weight 2 when t2 is contracted first and
(b) leads to a loop. The other cases are similar to these ones or contain them

for example: if p′1 = ((p1, p2), �) there is no place p′′1 = ((p2, p1), �), since the
existence of p′1 implies that p1 is an element of •t1 but the existence of p′′1
implies p1 is an element of t1

•; a contradiction, since the contraction was pos-
sible. With similar argumentations one can exclude the other combinations.
Hence, MN ′

N (p′1) = MN ′

N (p′2) implies p′1 = p′2 for this case.
3. MN ′

N (p′1) = {p1, p2, p3} = MN ′

N (p′2). Analogous to the second case we obtain
twelve possible structures for p′1, p′2 resp. which all exclude each other as
places of P ′, see the following table.

1 ((p1, p2), (p3, �)) 7 ((p1, �), (p2, p3))
2 ((p1, p3), (p2, �)) 8 ((p1, �), (p3, p2))
3 ((p2, p1), (p3, �)) 9 ((p2, �), (p1, p3))
4 ((p2, p3), (p1, �)) 10 ((p2, �), (p3, p1))
5 ((p3, p1), (p2, �)) 11 ((p3, �), (p1, p2))
6 ((p3, p2), (p1, �)) 12 ((p3, �), (p2, p1))
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Without loss of generality, assume p′1 = ((p1, p2), (p3, �)) (case 1) or p′1 =
((p3, �), (p1, p2)) (case 11). (p3, �) implies that p3 is not adjacent to t1, and
therefore the existence of such a place excludes the existence of places 2,4-10.
The remaining cases 3 and 12 can be excluded, since (p2, p1) implies p1 ∈ t1

•

whereas p′1 implies p1 ∈ •t1; in this case p1 would be a loop place which is
a contradiction. Case 1 cannot coexist with case 11, since the latter implies
(p1, p2) ∈ t2

• whereas the former case implies (p1, p2) ∈ •t2 after contracting
t1, also a contradiction. ��

Table 3. Possible places after two transition contractions. In the middle column one can
find the places from Table 2 which turned out to be possible according to Definition 9.

In each case there exists a place in N
t2,t1 which uses the same places from N as the

one in the middle column. This place is shown in the last column; for line 4 and 5 there
are two possibilities, but only one of them exists

No. N
t1,t2 N

t2,t1

1 ((p1, ), ) ((p1, ), )

2 ((p1, p2), ) ((p1, ), (p2, ))

3 ((p1, ), (p2, )) ((p1, p2), )

4 ((p1, ), (p2, p3)) ((p1, p2), (p3, )) / ((p2, ), (p1, p3))

5 ((p1, p2), (p3, )) ((p1, ), (p2, p3)) / ((p1, p3), (p2, ))

Theorem 20. Let N be a Petri net and t1, t2 ∈ T . If both N
t1,t2 and N

t2,t1 are
defined then they are isomorphic (even if the contractions are not secure).

Proof. For this proof Table 3 is used again; the last column shows the place of
N2 = N

t2,t1 , which uses the same places from N as the place from N1 = N
t1,t2

in the middle column. If there are two possibilities, only one of them exists. For
lines 1-3, it is quite clear that these places exist in N2, for line 4 see Figure 4:
since the place ((p1, �), (p2, p3)) exists in N

t1,t2 , N must contain the net fragment
(a); observe that exactly one of the dotted arcs exists but not both (in this case
contracting t1 would generate an arc with weight 2). Depending on which arc
exist in N

t2,t1 , exactly one of the places in the last column exists. Line 5 is
analogous.

We define a relation f ⊆ P1 × P2 ∪ T1 × T2 by f |T1×T2 = Id and (p′1, p′2) ∈
f ⇔ MN1

N (p′1) = MN2
N (p′2). We will show that f is an isomorphism.

a) f is a partial function: (p′1, p′2), (p
′
1, p′′2) ∈ f ⇒ MN2

N (p′2) = MN2
N (p′′2).

Lemma 19 implies p′2 = p′′2 .
b) f is total (surjective): After two contractions each place p′1 ∈ P1 has a

structure shown in Table 3, middle column, and MN1
N (p′1) = MN2

N (p′2) holds for
the corresponding place p′2 in the last column. Analogous for surjective.

c) f is injective: f(p′1) = f(p′′1) ⇒ MN1
N (p′1) = MN1

N (p′′1). From Lemma 19
follows p′1 = p′′1 .
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1

2

3

2

1

1 1

(3,*)

(1,2) (2,*)

(1,3)

a

b

(a) (b) (c)

Fig. 3. For line 4 from Table 3. Since the place ((p1, ), (p2, p3)) exists in N
t1,t2 , N

must contain the net fragment (a); observe that exactly one of the dotted arcs exists
but not both (in this case contracting t1 would generate an arc with weight 2). If arc a,
b resp. exists, contracting t2 first results in (b), (c) respectively; the next contraction
results in ((p1, p2), (p3, )), ((p2, ), (p1, p3)) resp. as it is written in the last column

d) f preserves the structure, i.e. W1(p′1, t) = W2(f(p′1), f(t)), W1(t, p′1) =
W2(f(t), f(p′1)) ∀p′1 ∈ P1, t ∈ T1. This follows from the definition of tran-
sition contraction. Since the weight of an arc incident to a composite place
is the sum of the related weights of the component places, we derive that
W1(p′1, t1) =

∑
p∈M

N1
N (p′

1)
W (p, t1) =

∑
p∈M

N2
N (f(p′

1))
W (p, t1) = W2(f(p′1), f(t1)).

Observe that for every place p′1 of N1 shown in Table 3, MN1
N (p′1) is a set. Anal-

ogous for the second case. ��

The proof for the following lemma uses Theorem 20; if this is not applica-
ble, we show that – since N ∈ MGR – in N1 and N2 loop-only places can be
deleted such that the contraction of t2 and t1 resp. is applicable afterwards. Af-
ter the contraction, extended duplicates can be deleted such that the results are
isomorphic.

Lemma 21. For (N, Λ) ∈ MGR, let (N, Λ) →stc (N1, Λ1) and (N, Λ) →stc

(N2, Λ2). Then, there exists (N ′, Λ′) ∈ MGR with (N1, Λ1) →∗
red (N ′, Λ′) and

(N2, Λ2) →∗
red (N ′, Λ′).

Proof. Let the contractions concern transition t1 and t2. If both N
t1,t2 and N

t2,t1

are defined, Theorem 20 implies that the results are isomorphic. In this case even
the diamond property is fulfilled.

Therefore assume that w.l.o.g. N
t1,t2 is not defined. Since N1 = N

t1 is defined
by hypothesis, the contraction of t2 is not possible in N1, although it is possible
in N . Since N1 is a marked graph — in particular no arc weight becomes greater
than 1 —, the contraction of t1 in N must have generated a loop place adjacent to
t2, because t1 and t2 form a cycle with two places in N . Since N is a live marked
graph, this cycle contains at least one token making the loop place redundant.

This situation is schematically shown in Figure 4(a): each place represents a
set of places connected to t1 and t2 in the same way, e.g. places of type 1 are in
the preset of t1 and not adjacent to t2. Figure 4(b) and (c) depict the results of
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(a)

1 2 3

4 5 6

1 2

(1,4) 2

(1,5)

(2,4) (3,*)

(6,*)

(2,5) 1

(1,*)

(4,*)

(5,2) (6,3)

(5,3)

(6,2)

(b) (c)

Fig. 4. (a) Scheme of a net fragment where contraction generates a loop (b) After
t1-contraction (c) After t2-contraction

contracting t1 and t2 resp. in the same way, e.g. places of type (2, 4) are pairs
(p, p′) with p of type 2 and p′ of type 4.

Places of type (2, 5) and (5, 2) are loop-only places, which can be removed
as noted above; afterwards, the other transition contraction becomes possible.
These contractions give places of types ((1, 4), ∗), ((1, 5), (3, �)), ((1, 5), (2, 4)),
((6, ∗), (2, 4)), ((6, ∗), (3, ∗)) in the first case and ((1, ∗), (4, ∗)), ((1, ∗), (5, 3)),
((6, 2), (5, 3)), ((6, 2), (4, ∗)), ((6, 3), ∗) in the second. We will argue that the re-
sulting nets are isomorphic after removal of some redundant places.

As noted in the proof of Theorem 20, the connections of these places to the
remaining transitions are determined by their at most four components, and
analogously for the initial marking. In particular, places of type ((1, 5), (2, 4))
are connected in the same way as places of type ((1, 4), ∗) in the first case – since
t1 and t2 are not present anymore – and they carry even more tokens, since at
least one of a type-2 and a type-5 place is marked in N . Therefore, places of type
((1, 5), (2, 4)) are extended duplicates, and so are places of type (6, 2), (5, 3)); we
remove them in the two nets.

For the other types, we find a matching between ((1, 4), ∗) and ((1, ∗), (4, ∗)),
((1, 5), (3, ∗)) and ((1, ∗), (5, 3)) etc., which matches each place of type ((1, 4), ∗)
to the place of type ((1, ∗), (4, ∗)) with the same component-places etc. By the
above, this gives an isomorphism between the remaining nets when the above
extended duplicates are removed. ��

Local Confluence of →rpd

We will now proceed to the next part of the local confluence proof. Although
the local confluence of redundant place deletion might seem rather obvious, in
fact some effort is already needed to prove it at least for marked graphs.
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p1

p2q1
1 q1

m

q2
nq2

1

Fig. 5. Two redundant places p1, p2 with p1 �∈ Q2, p2 ∈ Q1

Let p1, p2 be redundant places of N ∈ MGR with p1 �= p2. If one of them,
lets say p1, is a loop-only place, then p2 �∈ Q1 = ∅ and p1 �∈ Q2, because p1 is
only adjacent to one transition. This case obviously fulfils the diamond property,
since the deletion of one of the redundant places does neither affect the other
one nor its reference set.

Due to Theorem 13 we can now assume that p1 and p2 are shortcut places
and the reference sets consist of the places of the corresponding paths.

We will distinguish three cases: 1) p1 �∈ Q2, p2 �∈ Q1, 2) p1 �∈ Q2, p2 ∈ Q1

(w.l.o.g.) and 3) p1 ∈ Q2, p2 ∈ Q1.
The first case is treated as above. For the second case take a look at Figure

5. Since p1 is not a loop-only place, p2 lies on a Q1-path w1 = •p1q1
1 . . . qm

1 p1
•.

Since p2 is not a loop-only place either, a Q2-path w2 = •p2q1
2 . . . qn

2 p2
• ex-

ists. This implies that there is a path w connecting •p1 and p1
• and using only

places from q1
1 . . . qm

1 excluding p2 and from q1
2 . . . qn

2 . MN (p1) ≥
∑m

i=1 MN (qi
1)

and MN (p2) ≥
∑n

i=1 MN (qi
2) (Definition 7(1)) directly imply that MN (p1) ≥∑m

i=1 MN (qi
1)−MN (p2) +

∑n
i=1 MN (qi

2); hence, w also shows that p1 is redun-
dant; the corresponding reference set does not contain p2 and we are done by
case (1).

The last case p1 ∈ Q2, p2 ∈ Q1 is impossible, because it implies

MN (p1) ≥
∑

q∈Q1\{p2}
MN (q) + MN (p2) MN (p2) ≥

∑
q∈Q2\{p1}

MN (q) + MN (p1)

From this we get immediately:

MN (p1) = MN (p2) and
∑

q∈Q1\{p2}
MN (q) =

∑
q∈Q2\{p1}

MN (q) = 0 (∗)

Since p1 ∈ Q2, there are Q2-paths •p2 . . . •p1 and p1
• . . . p2

• not using p1, and
analogously there are Q1-paths •p1 . . . •p2 and p2

• . . . p1
• not using p2. Therefore,

either a cycle c using only places from (Q1∪Q2)\{p1, p2} exists which contradicts
N being live by Lemma 12, since (∗) implies MN (c) = 0; or (Q1∪Q2)\{p1, p2} =
∅. In the latter case, p1 and p2 are extended duplicates of each other with the
same initial marking; thus, removing either of them gives the same net up to
isomorphism.

Altogether the following lemma holds.
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Lemma 22. Let (N, Λ) →rpd (N1, Λ1) and (N, Λ) →rpd (N2, Λ2) for some
(N, Λ) ∈ MGR. Then an (N ′, Λ′) ∈ MGR exists with (N1, Λ1) →=

rpd (N ′, Λ′)
and (N2, Λ2) →=

rpd (N ′, Λ′).

Observe that two steps of →rpd fulfil the diamond property or lead to iso-
morphic results; in particular we have not used →stc.
Local Confluence of →stc and →rpd

Lemma 23. Let (N, Λ) →rpd (N1, Λ1) and (N, Λ) →stc (N2, Λ2) for some
(N, Λ) ∈ MGR. Then, there exists an (N ′, Λ′) ∈ MGR with (N1, Λ1) →∗

red

(N ′, Λ′) and (N2, Λ2)→∗
red (N ′, Λ′).

Proof. Let p be the redundant place and t the transition to be contracted. In
live marked graphs p is either a loop-only place or a shortcut place.

In the first case t and p are not adjacent because the contraction of t is possible
for (N, Λ), i.e. p forms a loop with another transition and the operations can be
performed independently.

If p is a shortcut place, there are the following possibilities: 1) t is neither
adjacent to p nor part of the path making p redundant; then both operations are
independent of each other again. 2) t is part of the path but not adjacent to p.
The contraction of t shortens the path but does not interrupt it, and also the sum
of the markings remains unchanged; hence, the two operations are independent.
3) t is adjacent to the path and p – leading to two sub-cases, one of them shown
in Figure 6(a). In the other one, analogously the path starts from t and p ∈ t•.

We will only consider the case depicted in (a), with the results of contraction
and deletion shown in (b) and (c) resp. Each place (ps, pxi) in (b) is a shortcut

3

n

x1 xk

x1 xk

1

1

s

2

n+1

n

3x1 xk

1

(1,*)

n

2

(n,xk)

(s,xk)

(n,x1)

(s,x1)

3

x1 xk

x1 xk

1

n+1

n

1

2

n

(a) (b) (c)

Fig. 6. Confluence of shortcut place deletion and transition contraction. (a) p ≡ ps is
a shortcut place of {p1, . . . , pn} and t ≡ tn+1 is the transition to be contracted. The
net in (b) is obtained by contracting tn+1, (c) by deleting ps
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place of {(p1, ∗), . . . , (pn−1, ∗), (pn, pxi)} because they give a path and the ini-
tially marking of this path as well as MN (ps) are increased by the same value
MN (xi). Therefore, these shortcut places can be deleted yielding a Petri net
which also results from (c) when contracting t. ��

Altogether, our results can be collected in the central theorem of this section.

Theorem 24. The reduction rule →red is confluent and terminating for live
marked graphs.

Corollary 25. The STG-decomposition algorithm of [VW02] is determinate for
live marked graphs.

In [CCJS94] a decomposition of strongly connected live marked graphs into
two components is considered. In this approach the nets are unlabelled, while our
STG decomposition is directed by the labelling with signal transitions; therefore
the decomposition of [CCJS94] is not applicable in our setting.

What is interesting is that in the decomposition of [CCJS94] a whole sub-
net is removed and this could be used in our setting to remove several internal
transitions together. A result of [CCJS94] implies that this removal preserves
the language, but this does not immediately imply that subnet removal can be
used to determine correct STG decompositions in the sense of [VW02]. In fact,
the correctness criterion of [VW02] is of bisimulation type, but does not imply
language equivalence. Furthermore, redundant place deletion and secure transi-
tion contractions always lead to a correct decomposition while subnet removal
presupposes liveness and strong connectedness. Liveness is a precondition for
determinacy of STG decomposition but not for its correctness.

Nevertheless subnet removal might be closely related to redundant place dele-
tion and secure transition contractions. If one could show some sort of coinci-
dence this might lead to an alternative proof of our determinacy result. Such a
result would not imply that subnet removal is more efficient; the latter involves
solving an all-pairs shortest paths problem, which takes time of O(n3) where n
is the number of removed internal transitions plus the number of ”neighbouring”
non-internal transitions.

5 Conclusion

We have shown that the STG decomposition algorithm presented in [VW02] is
determinate if applied to live marked graphs, a subclass of considerable interest
in the area of circuit design. The proof of this result is based on several state-
ments, and only one of them could be shown for general Petri nets. It would be
clearly interesting to generalise some other partial results to other net classes. We
currently look at nets where the marked-graph requirements are only violated ‘in
a few places’; such nets also turn up often in circuit design. A problematic point
is that our proofs rely several times on the liveness characterisation of marked
graphs via the markings of cycles.
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Related to the determinacy result, but also of independent interest, is the
conceptionally and algorithmically easy characterisation of redundant places in
live marked graphs, for which we provided a new easy proof. Again, we would like
to generalise this result; it is clear that in S-Systems [DE95] — which coincide
with finite automata — no place can be redundant if every place has at least one
transition in its postset, and we currently consider a generalisation to free-choice
nets, which is not obvious at all.

Acknowledgement: We thank the anonymous referees for their comments
which helped to improve the paper.
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Networks of Timed Automata
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Abstract. We establish mutual translations between the classes of 1-
safe timed-arc Petri nets (and its extension with testing arcs) and net-
works of timed automata (and its subclass where every clock used in the
guard has to be reset). The presented translations are very tight (up to
isomorphism of labelled transition systems with time). This provides a
convenient characterization from the theoretical point of view but is not
always satisfactory from the practical point of view because of the possi-
ble non-polynomial blow up in the size (in the direction from automata to
nets). Hence we relax the isomorphism requirement and provide efficient
(polynomial time) reductions between networks of timed automata and
1-safe timed-arc Petri nets preserving the answer to the reachability ques-
tion. This makes our techniques suitable for automatic translation into
a format required by tools like UPPAAL and KRONOS. A direct corol-
lary of the presented reductions is a new PSPACE-completeness result
for reachability in 1-safe timed-arc Petri nets, reusing the region/zone
techniques already developed for timed automata.

1 Introduction

One of the major challenges in theoretical computer science is to establish a pre-
cise relationship among a wide range of modelling formalisms available nowadays
and to compare their descriptive power and verification capabilities. Recently,
various models to describe concurrent systems with real-time features attracted
lots of attention. The most wide-spread models include timed automata of Alur
and Dill [3] and several timed extensions of Petri nets (see [10, 29] for overviews).
Verification tools for timed automata have been developed (including tools like
UPPAAL [21], KRONOS [12] and CMC [19]) as well as tools for timed Petri
nets (including tools like ROMEO [24] and TINA [6]).

� The author is supported in part by grants ITI-1M0021620808, 1ET-408050503, and
GACR 201/03/1161.

�� Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

G. Ciardo and P. Darondeau (Eds.): ICATPN 2005, LNCS 3536, pp. 385–402, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



386 J. Srba

In this paper we focus on timed-arc Petri nets [7, 17], a model where time
(age) is associated with tokens and transitions are labelled by time intervals
which restrict the age of tokens that can be used to fire them. We consider
the weak (non-urgent) semantics. The reachability problem for general timed-
arc Petri nets is undecidable [26], even in the case where tokens in different
places are not required to age at the same rate [23]. On the other hand, cover-
ability and boundedness are decidable [25, 1]. We compare the timed-arc Petri
net model with timed automata. Unlike the other models of timed Petri nets,
timed-arc Petri nets still suffer from a lack of analysis and verification tools and
hence automatic translations to already existing tools (e.g. to UPPAAL timed
automata) are of a relatively high interest.

Our Contribution. We provide a comparison of the (sub/super)-classes of net-
works of timed automata (also called concurrent timed automata) and 1-safe
timed-arc Petri nets up to isomorphism of labelled transitions systems with time
(and hence also up to timed bisimilarity). The usefulness of the presented trans-
lations is documented by a PSPACE-completeness result for reachability of 1-safe
timed-arc Petri nets where we directly reuse the recent results for reachability
in networks of timed automata by Aceto and Laroussinie [2]. At the practical
level, we describe polynomial time (and size) translations between the mentioned
models up to reachability and we show a technique to reduce the general type of
synchronization function in networks of timed automata into the synchroniza-
tion policy accepted by UPPAAL (handshake synchronization). Last but not
least our results provide a natural motivation for the study of the extension
of timed-arc Petri net with testing arcs and of the subclass of timed automata
where clocks used in guards are mandatorily reset by the same transition.

Related Work. Techniques to translate Petri nets extended with time features into
equivalent timed automata have not been often studied in the past. Only recently,
there has been some focus on translating different variants of timed-transitions
Petri nets into timed automata [22, 16, 8]. A work most related to ours is by Cassez
and Roux [14]. In their paper they propose (independently of our work) a struc-
tural translation of bounded timed-transitions Petri nets into communicating
timed automata. Each transition in their model is translated into a single timed
automaton and transition firing is supervised by an additional timed automaton.
Our model is, however, different from timed-transitions Petri nets (time features
are associated to tokens, not to transitions) and we provide a translation that
does not rely on additional UPPAAL features like arrays of integers that are used
in [14]. As concluded in [11], timed-transitions Petri nets express timed behaviour
and timed-arc Petri nets express time behaviour and time constraints.

Considering the class we study (timed-arc Petri nets), the only related work
we are aware of is by Sifakis and Yovine [27]. They provide a different (non-
structural) translation of timed-arc Petri nets (with urgent behaviour) into timed
automata (with invariants), hence achieving essentially the result of our Corol-
lary 3, except for the fact that their translation causes an exponential blow up
in the size of the timed automaton whereas our translation is structural and can
be implemented in polynomial time (and space).
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2 Basic Definitions

2.1 Labelled Transition Systems with Time

A rooted labelled transition system with (real) time (or simply LTS) is a tuple
T = (S,Act,−→, s0) where S is a set of states, Act is a set of actions such that
Act∩R+ = ∅, −→⊆ S× (Act∪R+)×S is a transition relation, written s

a−→ s′

for (s, a, s′) ∈−→ where a ∈ Act, and s
ε(r)−→ s′ for (s, r, s′) ∈−→ where r ∈ R+,

and s0 ∈ S is a distinguished initial state.
Hence LTS have two kinds of transitions: the standard ones under the visible

actions from Act and time-elapsing ones under the actions ε(r), where for all
r ∈ R+ the symbol ε(r) represents a special action name called a time delay.

We write s −→ s′ whenever s
a−→ s′ for some a ∈ Act or s

ε(r)−→ s′ for
some r ∈ R+. Let −→∗ denote the reflexive and transitive closure of −→. By
Reach(s0) def= {s ∈ S | s0 −→∗ s} we denote the set of all reachable states in T .

Let T1 = (S1,Act1,−→1, s0
1) and T2 = (S2,Act2,−→2, s0

2) be two LTS. We
say that T1 and T2 are isomorphic (and write T1

∼= T2) whenever there is a
bijection f : Reach(s0

1) → Reach(s0
2) such that for all a ∈ Act, r ∈ R+ and

s, s′ ∈ Reach(s0
1) it is the case that s

a−→1 s′ iff f(s) a−→2 f(s′), and s
ε(r)−→1 s′ iff

f(s)
ε(r)−→2 f(s′). Hence the reachable parts of the transition systems are identical

up to renaming of states.

2.2 Time Domains and Time Intervals

In this paper we consider a continuous time domain, i.e., time values are from
the set of nonnegative real numbers R+. The set of natural numbers (including
0) is denoted by N and is used in guards.

Remark 1. We can use also discrete time in the time domain and/or rational
numbers in guards and this does not influence the results presented in this paper.

The set I of time intervals is defined by the following abstract syntax where a
and b range over N such that a < b.

I ::= [a, b] | [a, a] | (a, b] | [a, b) | (a, b) | [a,∞) | (a,∞)

Let I ∈ I. Given a time point r ∈ R+, the validity of the expression r ∈ I is
defined in the usual way, e.g., r ∈ [a, b) iff a ≤ r < b and r ∈ (a,∞) iff a < r.

Remark 2. It is easy to see that any intersection of finitely many time intervals
I1, . . . , In ∈ I (denoted by ∩n

i=1Ii) is either empty (∅) or it belongs to I.

2.3 Timed-Arc Petri Nets

A (labelled) timed-arc Petri net (TAPN) is a tuple N = (P, T, F, c,Act, λ), where
P is a finite set of places, T is a finite set of transitions such that T ∩ P = ∅,
F ⊆ (P × T ) ∪ (T × P ) is a flow relation, c : F |P×T → I is a time constraint
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assigning a time interval to every arc from a place to a transition, Act is a set
of labels (actions), and λ : T → Act a labelling function.

We also define •t
def= {p | (p, t) ∈ F} and t• def= {p | (t, p) ∈ F}. Let N =

(P, T, F, c,Act, λ) be a TAPN. A marking M on the net N is a function M : P →
B(R+) where B(R+) denotes the set of finite multisets on R+. Each place is thus
assigned a certain number of tokens, and each token is annotated with a real
number (age). Let B ∈ B(R+) and a ∈ R+. We define B + a in such a way that
we add the value a to every element of B, i.e., B +a

def= {b+a | b ∈ B}. As initial
markings we allow only markings with all tokens of age 0. A marked TAPN is a
pair (N, M0) where N is a timed-arc Petri net and M0 is an initial marking.

Let us now define the dynamics of TAPN. We introduce two types of transi-
tion rules: firing of a transition and time-elapsing.

Let N = (P, T, F, c,Act, λ) be a TAPN, M a marking and t ∈ T .

– We say that t is enabled by M iff ∀p ∈ •t. ∃x ∈ M(p). x ∈ c(p, t).
– If t is enabled by M then it can fire, producing a marking M ′ such that:

∀p ∈ P. M ′(p) =
(

M(p) � C−(p, t)
)
∪ C+(t, p)

where C− and C+ are chosen to satisfy the following equations (note that
there may be more possibilities and that all the operations are on multisets):

C−(p, t) =
{ {x} if p ∈ •t s.t. x ∈ M(p) ∧ x ∈ c(p, t)
∅ otherwise

C+(t, p) =
{ {0} if p ∈ t•

∅ otherwise.

Then we write M [t〉M ′. Note that the new tokens added to the places in t•

are of the initial age 0.
– We define a time-elapsing transition ε(r), for r ∈ R+, as follows:

M [ε(r)〉M ′ iff ∀p ∈ P. M ′(p) = M(p) + r.

A marked TAPN (N, M0) where N = (P, T, F, c,Act, λ) generates a LTS

T (N, M0)
def= (P → B(R+),Act,−→, M0)

where states are markings on N , and the transition relation −→ is defined as
follows:

M
a−→ M ′ whenever M [t〉M ′ for some t ∈ T such that λ(t) = a

M
ε(r)−→ M ′ whenever M [ε(r)〉M ′.

In standard P/T Petri nets there is a simple construction to ensure that
a transition can be fired only if a token is present in a certain place, without
removing the token. This is done by adding two arcs: one from the place to the
transition and one in the opposite direction. A similar construction, however,
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does not work in TAPN, as consuming a (timed) token resets its age. In order
to recover this possibility we shall explicitly add so called testing arcs. Testing
arcs (called read arcs in e.g. [28, 13]) were also investigated in connection with
partial order semantics for (untimed) P/T nets.

A timed-arc Petri net with testing arcs is a tuple N =(P, T, F, c,Act, λ, F∗, c∗)
such that (P, T, F, c,Act, λ) is a timed-arc Petri net, F∗ ⊆ P ×T is a set of test-
ing arcs, and c∗ : F∗ → I is a function which assigns a time interval to every
testing arc from F∗. We define ∗t

def= {p | (p, t) ∈ F∗}.
The dynamics of TAPN with testing arcs is defined as in the case of TAPN

with the only difference that for a transition t to be enabled, it has to satisfy an
extra condition, namely

∀p ∈ ∗t. ∃x ∈ M(p). x ∈ c∗(p, t).

In other words, a necessary condition for a transition to fire is that all places
which are connected via testing arcs to the transition contain a token satisfying
the constraint on the testing arc. The transition can then fire according to the
rules defined above, which means that the testing arcs do not consume any tokens
and hence do not influence their age.

A 1-safe marking is a marking M having at most one token in every place,
i.e., |M(p)| ≤ 1 for all p ∈ P . A 1-safe marked TAPN is a marked TAPN (N, M0)
where all markings from Reach(M0) are 1-safe markings. In case of 1-safe nets we
will require that F ∩F∗ = ∅. This is without loss of generality as the conditions
on testing arcs can be inserted (by Remark 2) onto standard arcs whenever we
know that every place contains at most one token.

We shall use the following abbreviations: TAPN for timed-arc Petri nets;
TAPN* for timed-arc Petri nets with testing arcs; 1-TAPN for 1-safe timed-arc
Petri nets; and 1-TAPN* for 1-safe timed-arc Petri nets with testing arcs. The
size of (N, M0) where N = (P, T, F, c,Act, λ, F∗, c∗) is the size of N (the size of
the description of N) plus the size of M0, formally size(N, M0)

def= |P | + |T | +
|F |+ |Act|+ |F ∗ |+∑p∈P |M0(p)|.

2.4 Concurrent Timed Automata

Let C be a finite set of clocks. A (time) valuation of clocks from C is a function
v : C → R+. Let v be a valuation and r ∈ R+. We define a valuation v + r :
C → R+ by (v + r)(x) def= v(x) + r for every x ∈ C. For every set R ⊆ C we
define a valuation v[R := 0] : C → R+ by v[R := 0](x) def= v(x) for x ∈ C � R

and v[R := 0](x) def= 0 for x ∈ R. A clock guard is a partial function g : C ↪→ I
assigning a time interval to selected clocks. We say that a valuation v satisfies a
guard g (written v |= g) iff v(x) ∈ g(x) for all x ∈ dom(g).

Remark 3. The definition of a clock guard given above enables to encode also
boolean combinations of clock constraints in such a way that conjunction of se-
veral guards for a certain clock is replaced by intersection using Remark 2 and
disjunction is replaced by multiple edges (see e.g. [5]). We also do not consider
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difference constraints since from the expressive point of view there are tech-
niques for their replacement with simple constraints [5] and because of the well
accepted observation that difference constraints are not crucial for modelling
real-life systems [9].

A timed automaton (TA) is a tuple A = (S,Act, C,−→, s0) where S is a finite
set of control states, Act is a finite set actions, C is a finite set of clocks, −→⊆
S × (C ↪→ I)×Act× 2C × S is a finite transition relation written s

g,a,R−→ s′ for
(s, g, a, R, s′) ∈−→, and s0 ∈ S is an initial control state.

A configuration of a timed automaton A is a pair (s, v) where s is a control
state (s ∈ S) and v is a time valuation on C (v : C → R+). An initial configura-
tion of A is (s0, v0) such that v0(x) def= 0 for all x ∈ C. A given timed automaton
A = (S,Act, C,−→, s0) determines a LTS

T (A) def= (S × (C → R+),Act,−→, (s0, v0))

where states are configuration of A and the transition relation −→ is defined by

(s, v) a−→ (s′, v[R := 0]) whenever there is a transition s
g,a,R−→ s′ in A s.t. v |= g

(s, v)
ε(r)−→ (s, v + r) for all r ∈ R+.

In modelling real-time systems using timed automata, we often design sev-
eral subcomponents and then define the composed behaviour of the whole sys-
tem. This is usually done by parallel composition with a certain communication
scheme (see e.g. the tools UPPAAL [21] and KRONOS [12]). Assume that the
system consists of n concurrent components. As suggested e.g. in [2] a general
synchronization scheme in the style of Arnold-Nivat [4] can be described by a
so called synchronization function φ : (Act ∪ {•})n ↪→ Act which is a partial
function where • denotes a distinguished symbol of inactivity such that • �∈ Act.
The components different from • are called active components and we require
that (•, •, . . . , •) �∈ dom(φ), i.e., at least one component in every synchronization
tuple is active. By |φ| we understand the cardinality of the set dom(φ) and by
width(φ) we denote the maximum number of active components over all tuples
from dom(φ).

Let A1, . . . , An be timed automata where (for all i, 1 ≤ i ≤ n) Ai =
(Si,Act, C,−→i, s0

i ) and where Act and C are fixed sets of actions and clocks,
respectively. Let φ be a synchronization function. A concurrent timed automaton
(CTA) with a synchronization function φ is a parallel composition of A1, . . . , An

denoted by A = (A1|| · · · ||An)φ.
A CTA A determines an LTS

T (A) def= (S1 × · · · × Sn × (C → R+),Act,−→, (s0
1, . . . , s0

n, v0))

where states are Cartesian products of the control states of the individual au-
tomata together with a clock valuation, and the transition relation −→ is
defined by
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– (s1, . . . , sn, v) a−→ (s′1, . . . , s′n, v′) whenever there is a tuple (a1, . . . , an) ∈
dom(φ) such that:
• for all i, 1 ≤ i ≤ n, with ai = • we have s′i = si, and we set Ri

def= ∅
• for all i, 1 ≤ i ≤ n, with ai ∈ Act we have (in Ai) a transition rule

si
gi,ai,Ri−→ s′i s.t. v |= gi

• v′ = v[R := 0] where R is defined by R
def= ∪n

i=1Ri,
• a = φ(a1, . . . , an)

– (s1, . . . , sn, v)
ε(r)−→ (s1, . . . , sn, v + r) for all r ∈ R+.

This means that the composition of timed automata can perform a synchro-
nization step whenever the individual automata can perform transitions labelled
according to the function φ. Moreover, if some automaton resets a clock, the
clock is also reset in the concurrent timed automaton. The size of a concurrent
automaton A is the sum of the sizes of all its components Ai plus the size of the
synchronization function φ, formally size(A) def= |φ| +∑n

i=1 |Ai| where |Ai| for
Ai = (Si,Act, C,−→i, s0

i ) is equal to |Si|+ |Act|+ |C|+ | −→i |.
We now define subclasses of TA and CTA called mandatory reset TA (mrTA)

and mandatory reset CTA (mrCTA). The intuition is that every clock which is
tested in a guard while performing a transition must be mandatorily reset on that
transition. Formally, a mandatory reset TA is a TA such that every transition
s

g,a,R−→ s′ in the automaton satisfies dom(g) ⊆ R. A CTA is called a mandatory
reset CTA iff each of its components is a mrTA.

Remark 4. The idea of mandatory reset in the case of one clock only was con-
sidered by Laroussinie, Markey and Schnoebelen in [20]. Their definition forms
a natural subclass of timed automata and we will provide further justification
of this notion in what follows.

3 From Automata to Nets

We shall now demonstrate that the class of LTS generated by CTA is contained
(up to isomorphism) in the class of LTS generated by 1-TAPN*, i.e., we present a
construction that for a given CTA A algorithmically defines a marked 1-TAPN*
(N, M0) such that T (A) ∼= T (N, M0).

Let {Ai = (Si,Act, C,−→i, s0
i )}n

i=1 be a collection of TA and let φ be an
arbitrary synchronization function. Without loss of generality we assume that
the sets of control states Si are pairwise disjoint for all i, 1 ≤ i ≤ n, and that
the function φ satisfies that whenever (a1, . . . , an) ∈ dom(φ) then for each ai

different from • there exists at least one transition rule in Ai labelled with the
action ai.

Remark 5. Without loss of generality we also assume that every TA Ai contains
a distinguished clock delay i ∈ C which is never used in any guard of any timed
automaton but is always reset in all transition rules of the automaton Ai. This
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means that the clock delay i measures how much time has elapsed (in the i’th
component) from the last occurrence of a transition labelled by an action from
Act. These additional clocks do not influence the behaviour of the concurrent
automaton A and are considered only for technical reasons in order to establish
isomorphism of the respective labelled transition systems. They are not necessary
if we were interested in weaker equivalence notions (e.g. in timed bisimilarity).

We now consider a CTA A = (A1|| · · · ||An)φ with the initial configura-

tion (s0
1, . . . , s0

n, v0) where v0(x) def= 0 for all x ∈ C, and with the special
clocks delay i according to Remark 5. We shall construct a 1-TAPN* N

def=
(P, T, F, c,Act, λ, F∗, c∗) with an initial marking M0 such that it generates an
LTS isomorphic to T (A). The intuition is that every tuple (a1, . . . , an) from
dom(φ) defines a set of transitions in the net, which simulate the effect of the
synchronization function. The set of transitions enumerates all possible combina-
tions of transition rules available in the components of the CTA and labelled by
the corresponding actions. Places in the net represent control states and there
are also special places designed for storing tokens representing clocks. An ex-
tra place called e (which will never become marked) is added for a technical
convenience.

P
def= C ∪ {s | s ∈ ∪n

i=1Si} ∪ {e}
T

def= {t(a1,...,an),(w1,...,wn) | (a1, . . . , an) ∈ dom(φ) and for all i, 1 ≤ i ≤ n,
wi = • if ai = •; otherwise wi = (si, gi, ai, Ri, s′i) whenever there is

a transition rule si
gi,ai,Ri−→ i s′i in Ai}

For every transition t(a1,...,an),(w1,...,wn) ∈ T we define λ(t(a1,...,an),(w1,...,wn))
def=

φ(a1, . . . , an). The set of arcs associated with every transition from T is given
as follows. Let t = t(a1,...,an),(w1,...,wn) ∈ T where every wi is either • or of the
form (si, gi, ai, Ri, s′i) for all i, 1 ≤ i ≤ n. We define a set J ⊆ {1, . . . , n} of
active components of t by i ∈ J iff wi �= •, and the set of all reset clocks by
R

def= ∪i∈JRi. For each clock x ∈ C such that there is at least one gi where
x ∈ dom(gi) we also define the combined guard

Ix
def=

⋂
i∈J ∧ x∈dom(gi)

gi(x)

which expresses a combined requirement (time interval) of all active components
of A on the clock x. In the case that these requirements are not consistent, we
have Ix = ∅ according to Remark 2. Let us now construct the set of arcs of N
incident with t.

– For every wi, i ∈ J , we add the following arcs: (si, t) ∈ F with c(si, t) =
[0,∞) and (t, s′i) ∈ F .
(The intuition is that a token in a place si means that Ai is in the control
state si and the defined arcs represent the change of control states of the
active automata; the age of the tokens is irrelevant here.)
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– For every clock x ∈ C with at least one gi, i ∈ J , such that x ∈ dom(gi)
we add the following arcs (the age of the token in place x represents the
corresponding clock value):
• (x, t) ∈ F with c(x, t) = Ix and (t, x) ∈ F whenever Ix �= ∅ and x ∈ R

(The clock x is used in a guard and reset afterwards.)
• (x, t) ∈ F∗ with c∗(x, t) = Ix whenever Ix �= ∅ and x �∈ R

(The clock x is used in a guard but not reset.)
• (e, t) ∈ F with c(e, t) = [0,∞) whenever Ix = ∅

(If the guards for x are inconsistent, t is disabled: the place e will never
become marked.)

– For every clock x ∈ R such that there is no gi, i ∈ J , where x ∈ dom(gi) we
add the arcs: (x, t) ∈ F with c(x, t) = [0,∞) and (t, x) ∈ F .
(The clock x is not used in any guard but it is reset.)

The construction is schematically depicted in Figure 1 using the standard Petri
net notation (testing arcs are drawn by dashed arrows).

For every configuration (s1, . . . , sn, v) of A reachable from its initial state we
define a corresponding marking M(s1,...,sn,v) in N by

M(s1,...,sn,v)(p) def=

⎧⎪⎨⎪⎩
{v(delay i)} if p = si for some i, 1 ≤ i ≤ n

{v(p)} if p ∈ C

∅ otherwise.

The initial marking M0 of N is then given by M0
def= M(s0

1,...,s0
n,v0). It is easy to

see that (N, M0) is a 1-safe net.

Theorem 1. Every CTA can be transformed into 1-TAPN* preserving isomor-
phism of LTS.

Proof. It can be verified that for any reachable configuration (s1, . . . , sn, v) of A

whenever we have (s1, . . . , sn, v) a−→ (s′1, . . . , s′n, v′) then also M(s1,...,sn,v)
a−→

M(s′
1,...,s′

n,v′) and vice versa (any transition from M(s1,...,sn,v) corresponds to a
transition from (s1, . . . , sn, v)). The same holds also for time-elapsing transitions
under the actions ε(r) where r ∈ R+. ��

Corollary 1. Every mrCTA can be transformed into 1-TAPN preserving iso-
morphism of LTS.

Proof. By inspecting the translation presented above we notice that no testing
arcs are used, provided that the CTA A is with mandatory reset. ��

Remark 6. In general the translation from CTA to 1-TAPN* (and from mrCTA
to 1-TAPN) produces more than an exponential blow up in the size of the 1-
TAPN* (caused by the number of transitions; in general this number can be
kΩ(width(φ)) where k

def= max1≤i≤n | −→i |, which is kΩ(n) if φ is of the maximal
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Fig. 1. Schematic construction of the net N

width n). However, considering synchronization functions of constant width (and
this is often a common practice — e.g. UPPAAL uses only synchronization of
width 2), the translation defines a 1-TAPN* of polynomial size with regard to
the size of the CTA.

Corollary 2. Every CTA resp. mrCTA where the width of the synchronization
function is constant can be transformed in polynomial time into a 1-TAPN* resp.
1-TAPN (of polynomial size) preserving isomorphism of LTS.

4 From Nets to Automata

In this section we present a structural translation from 1-TAPN* to CTA pre-
serving isomorphism of LTS. Let N = (P, T, F, c,Act, λ, F∗, c∗) be 1-TAPN*
and M0 its initial marking.

Remark 7. Without loss of generality assume that P = {p1, . . . , pn, fired} where
p1, . . . , pn are the standard places of the net and fired is a newly added place
together with the following arcs (for all t ∈ T ): (fired , t) ∈ F and (t, fired) ∈ F
such that c(fired , t) = [0,∞) and M0(fired) = {0}. The intuition is that the place
fired will always contain exactly one token (representing the time elapsed from
the most recent transition firing). This token has no influence on the behaviour
of the net.
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We shall construct a CTA A (having n parallel components) such that T (A) is
isomorphic to T (N, M0). Let us define a set Interv of all time intervals1 that
appear as a time constraint in N , i.e., Interv def= range(c) ∪ range(c∗). For all i,
1 ≤ i ≤ n, we define a timed automaton Ai representing a place of the net N
and storing the information whether a token is present in the place pi (control
state ini) or not (control state out i), and what is its age (the age will be stored
in a clock xi). In this reduction every transition of the net N will correspond to
a certain tuple in the synchronization function φ. Let Act

def= {(remove, I) | I ∈
Interv} ∪ {(reset, I) | I ∈ Interv} ∪ {(test, I) | I ∈ Interv} ∪ {(add), (null)} and
let C

def= {x1, . . . , xn}. We define Ai
def= (Si,Act, C,−→i, s0

i ) such that

– Si
def= {ini, outi},

– for all I ∈ Interv we have the following transitions:

ini
g,(remove,I),{xi}−→ outi ini

g,(reset,I),{xi}−→ ini ini
g,(test,I),∅−→ ini

outi
g′,(add),{xi}−→ ini ini

g′,(null),∅−→ ini outi
g′,(null),{xi}−→ outi

such that g(xi)
def= I and g(xj)

def= undef for all j, 1 ≤ j �= i ≤ n; and

g′(xj)
def= undef for all j, 1 ≤ j ≤ n,

– s0
i

def= outi if M0(pi) = ∅, and s0
i

def= ini otherwise.

��������ini

xi∈I

(remove,I)

xi:=0 ��

xi∈I
(reset,I)

xi:=0 ��
xi∈I

(test,I)��

(null)

  

��������outi

(add)

xi:=0
��

(null)
xi:=0

��

ai
def
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(remove, c(pi, t)) if pi ∈ •t � t•

(reset, c(pi, t)) if pi ∈ •t ∩ t•

(test, c∗(pi, t)) if pi ∈ ∗t

(add) if pi ∈ t• � •t

(null) otherwise.

Fig. 2. Timed automaton Ai and definition of the synchronization tuples

A picture of the timed automaton Ai is depicted in Figure 2. Let us now
consider a CTA A

def= (A1|| · · · ||An)φ where for every transition t ∈ T we define

φ(a1, . . . , an) def= λ(t) such that the tuple (a1, . . . , an) is given in Figure 2. For
the remaining tuples not defined in Figure 2, the partial function φ is undefined.
Note that because N is a 1-safe net, we can freely assume that ∗t ∩ t• = ∅.

1 For technical convenience, only one Interv set is defined. The construction can be
further optimized by considering a separate Intervp (for every place p of the net)
containing only the relevant intervals.
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Remark 8. In case that a certain place is not involved in firing the transition t,
we use the action (null) in the synchronization tuple. The reason is again that
we aim at proving isomorphism of the labelled transition systems: if a token is
present in such a place, performing the action (null) does not have any influence;
if there is no token in the place then the action (null) resets the corresponding
clock xi and hence we know that all the empty places have the clock xi set to
the age of the token in the Petri net place fired according to Remark 7. If we
aimed at relating the transition systems up to e.g. timed bisimilarity, the (null)
actions can be replaced with •.

Theorem 2. Every 1-TAPN* can be transformed in polynomial time into a
CTA (of polynomial size) preserving isomorphism of LTS.

Proof. Every marking M reachable in (N, M0) defines a unique configuration
(s1, . . . , sn, v) of the CTA A such that

– si
def= ini and v(xi)

def= r if M(pi) = {r}
– si

def= out i and v(xi)
def= r if M(pi) = ∅ and M(fired) = {r}.

It is now easy to verify that every transition (including time elapsing) from M in
the net can be matched by a transition under the same action from (s1, . . . , sn, v)
such that the mapping defined above is preserved and vice versa. ��

Corollary 3. Every 1-TAPN can be transformed in polynomial time into a
mrCTA (of polynomial size) preserving isomorphism of LTS.

Proof. Observe that the construction translates 1-TAPN into mandatory reset
CTA. ��

Theorem 3. Reachability for 1-TAPN* (and 1-TAPN) is PSPACE-complete.

Proof. The hardness of the problem follows from PSPACE-hardness of the reach-
ability problem for (untimed) 1-safe Petri nets [15]. The containment follows
from Theorem 2 and from the fact that reachability is decidable in PSPACE for
CTA [2]. ��

5 Reducing the Width of Synchronization Function

So far we have characterized the correspondence between the classes of automata
and nets up to isomorphism. This has established a precise relationship w.r.t. to
expressiveness, however, when transforming automata to nets, the reduction does
not work in polynomial time. Moreover, when transforming nets to automata
(in polynomial time), we use a synchronization function of width n, hence the
reduction does not provide a direct way to verify problems for 1-TAPN* (and
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1-TAPN) by means of UPPAAL, which allows for handshake synchronization
(width 2) only. Even the possibility of broadcast communication does not seem
to help in this case.

Most of the practical approaches to verification of timed systems focus on
reachability. In this section we will hence describe a polynomial time reachability
preserving reduction from CTA with arbitrary synchronization function into
CTA with synchronization function of width 2.

Let A = (A1|| · · · ||An)φ be a CTA with an arbitrary synchronization function
φ such that Ai = (Si,Act, C,−→i, s0

i ).

Remark 9. Without loss of generality we can assume that the CTA A contains
a distinguished clock delay ∈ C which is never used in any guard of any Ai but
is always reset in all transition rules of every single automaton. This means that
the clock delay measures how much time has elapsed from the last occurrence
of some transition labelled by an action from Act, but does not influence the
behaviour of the concurrent automaton. We also assume that there are at least
two active components in every synchronization tuple from dom(φ) (if not we
can add an additional “dummy” component).

We will construct a CTA A′ with a synchronization function φ′ of width 2
such that reachability in A is reducible in polynomial time into reachability in
A′.

First, we define timed automata A′
i (small modifications of Ai where new

intermediate states are inserted for every transition in Ai). Let the new sets of
actions and clocks be defined by Act′ def= Act ∪ {!a@i, ?a@i | a ∈ Act, 1 ≤ i ≤
n} ∪ {τ} and C ′ def= C ∪ {z} where τ is a fresh action and z is a fresh clock. The
intuition is that actions of the form !a@i and ?a@i (or !ai@i and ?ai@i) where
a, ai ∈ Act are designed for synchronization with the i’th component. For all i,
1 ≤ i ≤ n, the automata A′

i are defined by

A′
i

def= (Si ∪ {v(si, gi, ai, Ri, s′i) | (si, gi, ai, Ri, s′i) ∈−→i},Act′, C ′, =⇒i, s0
i )

such that v(si, gi, ai, Ri, s′i) are newly added states and the transition relation
=⇒i is given by:

– si
gi,?ai@i,∅

=⇒ i v(si, gi, ai, Ri, s′i) and

– v(si, gi, ai, Ri, s′i)
g′,?ai@i,Ri=⇒ i s′i where g′(x) def= undef for all x ∈ C ′

for all (si, gi, ai, Ri, s′i) ∈−→i. The following picture illustrates the transforma-
tion.

��������si
gi ai Ri

i
����������s′i

��

��������si
gi ?ai@i

i
���� ����  !v(si, gi, ai, Ri, s′i)

?ai@i Ri

i
����������s′i
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For a given tuple (a1, . . . , an) ∈ (Act ∪ {•})n let J(a1, . . . , an) def= {i ∈
{1, . . . , n} | ai �= •} be the set of active components. We define a new paral-
lel component of A′, a timed automaton A′

n+1 given by

A′
n+1

def= (S′
n+1,Act′, C ′, =⇒n+1, init)

where S′
n+1

def= { test(a1, . . . , an, i), reset(a1, . . . , an, i) | (a1, . . . , an) ∈ dom(φ),
i ∈ J(a1, . . . , an)} ∪ {init} with the following transitions for all (a1, . . . , an) ∈
dom(φ) (assume that J(a1, . . . , an) = {i1, . . . , im} such that i1 < i2 < · · · < im):

– init
g′,a,{z}
=⇒ n+1 test(a1, . . . , an, i1) where a = φ(a1, . . . , an)

– test(a1, . . . , an, i�)
gz,!ai�

@i�,∅
=⇒ n+1 test(a1, . . . , an, i�+1) for all �, 1 ≤ � < m

– test(a1, . . . , an, im)
gz,!aim@im,∅

=⇒ n+1 reset(a1, . . . , an, i1)

– reset(a1, . . . , an, i�)
gz,!ai�

@i�,∅
=⇒ n+1 reset(a1, . . . , an, i�+1) for all �, 1 ≤ � < m

– reset(a1, . . . , an, im)
gz,!aim@im,∅

=⇒ n+1 init

where g′ is the empty guard (g′(x) def= undef for all x ∈ C ′), and gz(z) def= [0, 0]
and gz(x) def= undef for all x ∈ C ′ � {z}. It first decides which tuple from
the domain of φ is going to be synchronized upon and then performs twice the
sequence of actions !ai1@i1, . . . , !aim

@im and becomes init again. The intuition
is that the action !ai�

@i� can synchronize only with the corresponding action
?ai�

@i� in the component i�. Because of the guard gz no time elapsing steps are
possible during the pairwise synchronization, otherwise the whole system gets
stuck (and hence cannot reach the requested configuration). During the first
sequence of actions !ai1@i1, . . . , !aim

@im the guards of the active components
are consecutively verified and in the second round the requested clocks are reset.
(Note that it is not possible to do both guard verification and resetting of clocks
in one run as clocks reset in some earlier synchronized components can still be
used in guards later on.) A graphical representation of the automaton An+1 is
depicted in Figure 3 (only one loop for a particular (a1, . . . , an) ∈ dom(φ) is
included). The synchronization function φ′ is defined exactly for the following
tuples:

– φ′(•, . . . , •, a) def= a for all a ∈ Act
(only the last component can make moves without synchronizing with other
components; in the initial state init it selects an element (a1, . . . , an) from
dom(φ) to be used)

– φ′(•, . . . , •, ?a@i, •, . . . , •, !a@i) def= τ for all a ∈ Act and 1 ≤ i ≤ n such that
?a@i is at the i’th coordinate
(the last component can handshake with the i’th component).

Obviously, φ′ is of width 2 as required. Let us define A′ def= (A′
1|| · · · ||A′

n||A′
n+1)φ′ .
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�� ����  !init

φ(a1,...,an)

z:=0

������������������

����������������

�� ����  !reset(a1, . . . , an, im)

z∈[0,0]

!aim@im

������������������

���������������� �� ����  !test(a1, . . . , an, i1)

z∈[0,0]

!ai1@i1

 !�� ����  !reset(a1, . . . , an, im−1)

z∈[0,0]

!aim−1@im−1

!�

�� ����  !test(a1, . . . , an, i2)

z∈[0,0]

!ai2@i2

 !
...

z∈[0,0]

!aim−2@im−2

!�

...

z∈[0,0]

!aim−1@im−1

 !�� ����  !reset(a1, . . . , an, i1)

z∈[0,0]

!ai1@i1

!�

�� ����  !test(a1, . . . , an, im)
z∈[0,0]!aim@im"�

Fig. 3. Automaton An+1

Theorem 4. Reachability for CTA with an arbitrary synchronization function
is reducible in polynomial time (and space) into reachability for CTA with syn-
chronization function of width 2. The number of parallel components and of
clocks is increased by one.

Proof. Let c = (s1, . . . , sn, v) be a reachable configuration in A. A corresponding
configuration f(c) in A′ is defined by f(c) def= (s1, . . . , sn, init , v′) where v′(x) def=
v(x) for all x ∈ C and v′(z) def= v(delay). Let c0 = (s0

1, . . . , s0
n, v0) be the initial

configuration of A. We claim that a given configuration c is reachable (in A)
from c0 if and only if f(c) is reachable (in A′) from f(c0). The claim follows
from the following observation.

Let c = (s1, . . . , sn, v) be an arbitrary configuration of A. It is easy to see
that whenever c

a−→ c′ for some c′ = (s′1, . . . , s′n, v′) by using a tuple (a1, . . . , an)
from dom(φ) then also f(c) a−→ ◦ ( τ−→)2m f(c′) where m is the number of
active components in (a1, . . . , an). In A′ we can first perform the transition

init
g′,a,{z}
=⇒ test(a1, . . . , an, i1) where i1 is the first active component. This tran-

sition is followed by a unique continuation according to the path in Figure 3,
all guards (of the corresponding component automata) during the first part of
the path are satisfied by our assumption that c

a−→ c′ in A. The corresponding
clocks are reset during the second part of the path, until f(c′) is finally reached.
On the other hand, if f(c) performs a sequence of moves starting with selecting
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a tuple (a1, . . . , an) from dom(φ) such that we finally reach c′′ where in the last
component appears again the state init , we know that no time-elapsing steps
were performed because of the clock z which is tested to zero by every transi-
tion. Moreover, for a selected tuple (a1, . . . , an) this computation is unique and
by similar arguments as above we know that there is also some configuration c′

in A such that c
φ(a1,...,an)−→ c′ and f(c′) = c′′. Similarly, time elapsing steps on

both sides can be directly matched in the other automaton. As it can be seen
from the construction, only one extra parallel component and one additional
clock were introduced. ��

6 Conclusion

The main results of the paper are outlined in Figure 4. We have identified a
naturally motivated subclass of concurrent (networks of) timed automata by
introducing the mandatory reset feature and a natural superclass of 1-safe timed-
arc Petri nets extended with testing arcs such that the corresponding classes
coincide up to isomorphism of labelled transition systems. We have then studied
more practically oriented questions of reachability and demonstrated polynomial
time reductions between the corresponding classes in Figure 4.

Our study justifies that it is interesting to investigate the extension of timed-
arc Petri nets with testing arcs. This feature is present in the untimed Petri net
model (using a standard trick) but it is missing when time features are added. We
claim that all the classes CTA, mrCTA, 1-TAPN and 1-TAPN* are polynomially
equivalent w.r.t. reachability. The answer to the question of polynomial equiv-
alence w.r.t. reachability for (unbounded) TAPN and TAPN* seems to be also
positive, even though more involved techniques need to be used to establish the
reduction. In the future work we plan to consider TAPN extended with urgency
and see how they compare to networks of timed automata with invariants. We
will also investigate which TCTL properties are preserved by the polynomial
time reductions presented in this paper and what is the relationship between
TAPN and Merlin’s time Petri nets.

CTA
blow up ��

1-TAPN*
poly-time

�� CTA
poly-time ��

1-TAPN*
poly-time

��

mrCTA
blow up ��

1-TAPN
poly-time

�� mrCTA
poly-time ��

1-TAPN
poly-time

��

arbitrary φ: up to isomorphism
constant width φ: up to isomorphism
arbitrary φ: up to reachability

Fig. 4. Summary of results
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Finally, let us draw our attention to an interesting observation. Already for
concurrent finite automata (untimed), the reachability problem is PSPACE-
complete [18] and adding time features (CTA) does not increase the theoret-
ical complexity of the problem [2]. The results of this paper enable to draw a
similar conclusion also for the case of 1-safe Petri nets: the reachability prob-
lem for untimed 1-safe Petri nets (a formalism which can model concurrency) is
PSPACE-complete [15] and adding time features does not increase its complexity.
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Abstract. Safety-critical systems are systems that can cause
undesired loss or damage to life, property, or the environment. Standards
for developing safety-critical software often recommend that semi-formal
or formal methods should be used to specify, analyze, and verify the
behavior of safety-critical software. This paper presents results from a
project in which Coloured Petri Nets were used to specify and analyze
software safety requirements of a frequency converter being developed
by Danfoss Drives. Frequency converters are used to control the speed
of motors. The analysis of the model revealed behavior which could lead
to hazardous situations or unnecessary failures. Prototype tool support
was developed for validating the behavior of an Java-based executable
software architecture prototype against the CP-net that specified the
desired behavior of the software.

1 Introduction

Safety-critical systems are systems that can cause undesired loss or damage to
life, property, or the environment, and safety-critical software is any software
that can contribute to such loss or damage [1]. Since such systems have the
potential to cause extensive damage, there are many standards and guidelines
describing processes, techniques, and methods for developing safety-critical sys-
tems. The IEC 61508 [2] is one such standard for achieving functional safety of
programmable electronic safety-related systems. The standard contains recom-
mendations regarding which techniques and measures should be used throughout
the entire life-cycle of a product (including both hardware and software) – from
initial safety requirement specification, to design, realization, test, installation,
commissioning, operation, maintenance and decommissioning.

Danfoss Drives produces frequency converters which are used to control the
speed of motors, e.g. for elevators, cranes, and conveyor belts. Frequency con-
verters are safety-critical in that their behavior can lead to hazardous situations,
e.g., if an elevator continues to run even though the emergency stop button has
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c©Springer-Verlag Berlin Heidelberg 2005
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been pushed, or if the speed of a conveyor belt is not kept below a given thresh-
old during a routine maintenance check. In order to meet the needs of their
customers, Danfoss Drives is developing a frequency converter that is to be eval-
uated and certified by international safety certification authorities. As part of the
certification process, Danfoss will have to conform to the development process
described in IEC 61508.

IEC 61508 recommends that semi-formal methods should be used in order
to avoid mistakes during the specification of requirements, and to express and
structure the requirements such that they are “clear, precise, unambiguous, ver-
ifiable, testable, maintainable and feasible”. In order to comply with this recom-
mendation, Danfoss used one of the recommended semi-formal methods, namely
finite state machines in the form of a Statechart [3] model, to make a somewhat
informal specification of system-level safety requirements in the initial project
proposal that has been approved by the safety certification authorities. The Stat-
echart was informal in that it was drawn in a generic drawing tool rather than
in a CASE tool supporting Statecharts. By creating the Statechart in this way,
Danfoss could not take advantage of any of the benefits that a CASE tool offers,
such as automatic syntax checking, or static and dynamic verification that can
identify safety-related problems such as deadlock or unreachable states.

Danfoss was interested in investigating the advantages of using semi-formal
methods and associated CASE tools for the specification of safety requirements.
This is one of the problems that was addressed in a collaborative research project
between Danfoss Drives, ISIS Katrinebjerg, the Department of Computer Science
at the University of Aarhus, and Systematic Software Engineering. As part of this
project, software safety requirements, which are more detailed than system-level
safety requirements, were specified in two different formalisms, namely State-
charts and Coloured Petri Nets (CPNs or CP-nets) [4, 5]. The goal of this work
was to create a software safety requirement specification that fulfilled the re-
quirements of IEC 61508 and, more importantly, that was thorough, detailed,
understandable, and suitable as a basis for further software development steps.

This paper presents the CPN model that specifies the software safety require-
ments for a frequency converter. Analysis of the model identified potentially
hazardous behavior in the frequency converter, and this hazardous behavior has
been flagged for additional analysis during later development phases at Danfoss.
The paper also presents a technique and prototype tool support for validating
the behavior of a Java program against a CPN-based requirement specification.

The paper is structured as follows. Section 2 describes the hardware and
software of frequency converters. It also presents the original system safety re-
quirements that were to be refined into software safety requirements. Section 3
presents the CPN model of the software safety requirements. Section 4 discusses
the results of the analysis of the CPN model and the technique for validating
a Java program against the CPN-based executable requirement specification.
Section 5 discusses related work.
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2 Frequency Converter

Danfoss Drives is currently developing a frequency converter with integrated
safety functions, where the safety functions are directly used to control and stop
the attached motor. Such frequency converters are increasingly applied in the
process industry and production, where they replace classical electromechanical
safety devices such as power relays. An advantage with safety-related frequency
converters is that a higher up-time of processes and installations can be achieved.
Section 2.1 describes the hardware in a frequency converter. Section 2.2 describes
the safety-related software of a frequency converter. Section 2.3 describes the sys-
tem safety requirements that were defined before the project started. Section 2.4
describes how the system safety requirements were to be refined into software
safety requirements.

2.1 Hardware

The hardware structure of the frequency converter is shown in Fig. 1. The two
blocks PWM Generator and Power Electronics make up the normal, “non safety-
related” part of a frequency converter. These two blocks convert the main power
supply to the desired output frequency, and thereby control the speed of the
attached motor.

The safety functionality is achieved by an additional subsystem on the Safe
Board composed of Channels 1 and 2, each consisting of a microprocessor (uP),
a Switch off path, a number of Digital Inputs, and one Speed Information input.
The two microprocessors can, independently from each other, activate its own
switch-off path to stop the rotational torque in the motor. The two Channels
cross-monitor each other through Feedbacks 1 and 2 and through the Cross Com-
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GeneratoruP1
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Electronics

Switch off 1
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Feedback 2Speed Info 1

M
ai

n
s

Digital Input 1

Digital Input 2

Speed Info 2

n

n

Frequency Converter

CHANNEL 1

CHANNEL 2

Cross
Communication

Fieldbus

Safe Board Control Board

P
ow

er
 B

oa
rd

Fig. 1. Hardware structure of a frequency converter with safety functions



406 L. Wells and T. Maier

munication connection. Channel 1 is also connected to a PROFIbusR© fieldbus
with fail-safe properties (PROFIsafeR©). The two Channels are physically diverse
to provide a maximal protection against common cause failures by factors such
as electromagnetic fields.

2.2 Software

A number of so-called designated safety functions (DSF, or safety function) can
be realized on the basis of the physical capabilities of the frequency converter.
The logic of these safety functions is implemented in software that runs on the
two microprocessors on the Safe Board. A specific safety function is activated
upon reception of signals either at digital inputs at each of the Channels, or via
the fieldbus connection at Channel 1.

The simplest safety function is a so-called ’uncontrolled stop’ which imme-
diately stops torque generation in the motor. Another safety function is a ’con-
trolled stop’, where the stop of torque generation is delayed, allowing the non-
safety-related part of the frequency converter to ramp the motor down in a con-
trolled way. A more complex example is the ’safe speed’ where an uncontrolled
stop is made if the motor speed exceeds a set limit.

All diagnostic functionality with respect to cross monitoring and self moni-
toring of the Channels is implemented in software. On detection of a dangerous
failure, an appropriate fault reaction is initiated, and the motor is stopped.

2.3 System Safety Requirements

The software that runs on the two microprocessors on the Safe Board is safety-
critical since it can contribute to loss or damage to the environment of the
frequency converter through its affect on the speed and control of the attached
motor. System-level safety requirements were already defined at the outset of
the project. These requirements addressed issues such as, when output to the
motor should be enabled, what should happen when an error occurs (either in
hardware or software), how requests for safety functions should be made and
handled, and what should happen after a safety function completes.

As mentioned previously, one of the recommendations of standard IEC 61508
is that semi-formal methods should be used to specify safety requirements. In or-
der to comply with this recommendation, Danfoss developed a Statechart model
that was included in the initial product proposal that was approved by the certi-
fication authorities. Figure 2 shows the informal Statechart model that specifies
the system-level safety requirements for the frequency converter. The model is
informal in that it was drawn in a generic drawing tool, and the states, tran-
sitions, and event triggers are described separately in simple, natural-language
texts.

The Statechart specifies that the frequency converter must always be in one
of three top-level states, namely No dangerous failure, Fail-safe or the Final state

(denoted by a dot in a circle in the upper right-hand corner of the figure). If
any kind of error occurs, then the frequency converter must enter Fail-safe state,
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Fig. 2. Informal Statechart specification of system-level safety requirements

and the output to the motor must be disabled, i.e. the motor must be stopped.
Examples of errors are short circuits in the hardware, exceeding the delay period
when the ’controlled stop’ DSF is active, or if the external temperature is too
high. The only way to leave Fail-safe state is to turn the frequency converter off
(Transition 14), and thereby enter Final state.

If no errors have occurred, then the frequency converter must be in No danger-

ous failure state, and more specifically, in one of its three composed states: Normal

operation, DSF activated or Safe stop. In Safe stop state, output to the motor is al-
ways disabled. After turning the power on (Transitions 1a, 1b, 1,c), the frequency
converter must be in Power-up/Self test state in which the frequency converter is
initialized. If initialization is successful, and if there are no requests for safety
functions, then the frequency converter will enter Normal operation state via Tran-

sition 2. If a request for a DSF exists at start up, then Safe end state may be
entered via Transition 3. Normal operation can only be reached from Safe end (via
Transition 11) after all requests for DSFs have been removed, and after a user
has confirmed that all DSF requests have been removed. If a safety function is
requested during Normal operation, then an appropriate substate of DSF activated

is entered, i.e. Safe speed limit activated, Safe delay activated, Safe ramp ramp down

activated, or Power removal inactive, depending on which DSF is requested. It is
possible to request several different DSFs simultaneously, in which case more
than one of these states may be active at the same time. When one of the DSFs
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completes (Transition 9a, 9b or 10b), then Safe end state is reached, and output to
the motor is disabled.

2.4 From System to Software Safety Requirements

Using the system safety requirements already defined at the beginning of the
project, one of the goals of the project was to specify software safety require-
ments. The software safety requirements were a refinement of the system safety
requirements. Again, the IEC 61508 standard highly recommended that semi-
formal methods should be used to define software safety requirements. Examples
of the software safety requirements that needed to be clarified and formalized
are as follows:

– Safety-related software would run on two microprocessors, as shown in Fig. 1.
– The software running on each of the two microprocessors must essentially

fulfill the requirements specified in the Statechart model shown in Fig. 2, in
addition to other requirements.

– The software running on the two microprocessors must run concurrently.
– The software running on the two microprocessors must regularly communi-

cate and synchronize to ensure that they are in the same state. For example,
requests for a DSF must be present at the redundant digital inputs at each
of the microprocessors, and the redundant software must enable/disable the
output to the motor at more or less the same time.

– If the internal states of the software on the two microprocessors is signifi-
cantly different for a significant period of time, then an error has occurred.

– Diagnostics must be run regularly to ensure that hardware failures, such as
short circuits, have not occurred. The two microprocessors must coordinate
to run diagnostics, and the results of the diagnostics must be compared.

Timed Petri nets are listed as one of the recommended semi-formal meth-
ods for specifying software safety requirements. Given that the software safety
requirements needed to specify behavior that included concurrency, synchroniza-
tion, states, and discrete state changes, (Coloured) Petri Nets was an obvious
choice as one of the specification languages.

3 Specifying Software Safety Requirements with CPN

This section describes the hierarchical CPN model that specifies software safety
requirements for the safe frequency converter. All of the requirements that are
specified in the Statechart model from Fig. 2 are included in the CPN model.
Those requirements have been specified more formally, and the specification is
much more detailed. In addition, the CPN model specifies requirements that are
not addressed in the Statechart model, such as diagnostics and synchronization
of the state of the software on the two microprocessors. Section 3.1 provides an
overview of the model. Section 3.2 describes the specification of the software
requirements for the safe board in the frequency converter.
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3.1 Model Overview

Figure 3 provides an overview of the model. The model was created in CPN Tools
[6], and the model consists of 28 modules (also called pages in CPN terminology).
Each node in the figure corresponds to one page in the model. An arc from one
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Fig. 3. Module hierarchy of the CPN model

node to another indicates that the page represented by the source node contains
a so-called substitution transition whose detailed behavior is described on the
page of the destination node. The page represented by the destination node
is called a subpage of the page with the corresponding substitution transition.
The model contains 75 places and 31 regular transitions, i.e. transitions that
are not substitution transitions. Of the 75 places, 14 places are unique, and the
61 remaining places are so-called port places which conceptually glue places on
different pages together.

The Application page (at the top of Fig. 3) is the most abstract representation
of the frequency converter and its environment. This page has two subpages,
namely User IO and Safe Inverter, modeling the means for user input/output, i.e.
the digital inputs (page Digital IO) described in Fig. 1, and the frequency con-
verter itself, respectively. Due to time constraints, neither the redundant speed
information from the motor nor the ProfiSAFE bus from Fig. 1 were modeled.
The use of the ProfiSAFE bus and redundant speed information is, however,
optional for users, which made the absence of these components from the model
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acceptable within the context of this project. Obviously these components would
have to be included in a complete requirement specification for the frequency
converter. The Safe Inverter consists only of the Safe Board – the Power and Control
boards from Fig.1 are also not modeled. The Safe Board and its two micropro-
cessors MicroProc1 Lg and MicroProc2 Sm are described in detail below.

3.2 Specifying Safety-Critical Behavior in the Safe Board Module

The most abstract representation of the safe board from Fig. 1 is modeled on
the Safe Board page which is shown in Fig. 4. This page has three subpages,
namely the pages PowerSwitch, MicroProc1 Lg and MicroProc2 Sm as indicated by
the small tags at the lower left-hand corner of the corresponding substitution
transitions. The place InternalIO represents the internal communication channels

UserIO

UserIO
I/O

InternalIO

InternalIO
I/O

PrToPr

NRxBuffer

Env2

MPEnv

Env1

MPEnv

MicroProc2

MicroProc2_Sm

MicroProc1

MicroProc1_Lg

Power
Switch

PowerSwitch

.

Fig. 4. The SafeBoard page

between the safe board and the power and control boards, i.e. the switch off
and feedback channels in Fig.1. The User IO place represents the values of the
digital inputs. The PrToPr place represents the processor-to-processor communi-
cation channel, i.e. the cross-communication channel in Fig.1. In the following
these three places will be collectively referred to as the communication places.
Tokens on the communication places represent either messages that are being
passed between two entities, or the voltage (24v (high), 0v (low), or error) of the
corresponding digital circuits.

The internal state and environment of the software on the two microproces-
sors is modeled by tokens on the places Env1 and Env2 in Fig. 4. Figure 5 shows
an example of the tokens that can be found on an Environment place. Each mi-
croprocessor has an ID (1 or 2). A microprocessor has a State, such as Ready,
Sending, Waiting or Failed. A number of parameters for the frequency converter
can be set by users, such as whether the frequency converter can automatically
start after successful initialization (AutoRelease(true)), whether it is necessary to
confirm the removal of a request for a safety function (ConfirmRemoval(false)), and
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1‘ID(1)++1‘State(Ready)++
1‘AutoRelease(true)++
1‘LastStateFailSafe(false)++
1‘DSFn((1,SpeedLimit))++
1‘DSFn((2,UncontrolledStop))++
1‘DSFn((3,Delay))++
1‘ConfirmRemoval(false)++
1‘DSFStatus((SpeedLimit,Inactive))++
1‘DSFStatus((Delay,Inactive))++
1‘DSFStatus((RampDown,Inactive))++
1‘DSFStatus((UncontrolledStop,Inactive))

Fig. 5. Examples of tokens representing the software state on microprocessor 1
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Fig. 6. The Fail page

which safety function is mapped to each of the n=3 digital inputs, for example,
DSFn(2,UncontrolledStop) indicates that the uncontrolled stop safety function is
mapped to digital input number 2. Furthermore, there are tokens indicating the
status of each of four safety functions, e.g. DSFStatus(SpeedLimit,Inactive) indicates
that the speed limiting safety function is currently inactive. Whenever an event
takes place in a microprocessor one or more tokens are removed and added to
the corresponding Environment place.

The use of a single place to model the state of the software on a microproces-
sor is necessitated by Statechart Transition 13 from No dangerous failure to Fail safe

in Fig.2. Transition 13 indicates that a dangerous failure can occur at any time
and in any state, and it must always be possible to reach the Fail safe state. If
the internal state of a microprocessor was represented by tokens on a number of
places, then it would have been difficult to create an understandable CPN that
modeled this functionality since extra transitions would have to be connected
to each of these places in order to remove or update the appropriate tokens
when a dangerous failure is detected. Using one place to represent the internal
state of a microprocessor does not reduce the concurrency in the model. It does,
however, make it very easy to model the fact that something similar to Fail-safe

state can be reached from virtually any state in the CP-net. Figure 6 shows the
Fail page that models the detection of dangerous failures. Two kinds of failures
can occur: dangerous failures that are detected and handled properly (transition
Handle Failure), and sudden failures that occur spontaneously and which cannot
be handled properly (transition Sudden Failure).

The MicroProc1 Lg page, shown in Fig. 7, is the most abstract representation of
the software to be run on microprocessor 1. A similar page models microprocessor
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2. In this page, the Environment port place is conceptually glued to the Env1

place on the SafeBoard page shown in Fig. 4. The two microprocessors have the
same functionality for some tasks, as modeled by the COMMON page and its
subpages, but the functionality of the two microprocessors differs for Diagnostics

and Handle Incoming Messages. When it comes to diagnostics, microprocessor 1
will act as a master and initiate all diagnostic routines, and microprocessor 2
will act as a slave and will only run diagnostics after a request has been made
by microprocessor 1. The two microprocessors will also send different kinds of
messages in different situations, such as during initialization and diagnostics,
and will therefore have to handle different kinds of incoming messages.

The functionality that is common for the two microprocessors is shown in
Fig. 8 which shows the COMMON page. Each microprocessor can TimeOut if a
response to a message is not received in time. Output to the motor can be enabled
or disabled (Enable PWM) when appropriate. Safety functions can be started when
they are requested, they can be stopped when a request is removed, and they can
complete (ManageDSF and its subpages). A SelfTest is run once immediately after
the frequency converter is turned on. After most of the aforementioned events
occur, a message must be sent (SendMsg) to the other microprocessor to indicate
that the internal state has changed. Messages that are received (RcvMsg) are
either acknowledgements or messages indicating that the state has changed in the
other microprocessor. When the state has changed in the other microprocessor
an acknowledgement must be sent if the current microprocessor is (or will soon
be) in the same state, otherwise an error has occurred, an appropriate message
must be sent back, and the frequency converter must enter a fail-safe state in
which output to the motor is disabled (transition Handle Failure in Fig. 6).

In this model, regular transitions can only be found on pages that do not
have subpages, i.e. on the pages represented by nodes that do not have outgoing
arcs in Fig. 3. Furthermore, each page with regular transitions contains at most
3 transitions, and for most pages it is rare that there is more than one enabled
transition on the page at any one time. Almost every transition in the model
updates tokens on an Environment place for one of the microprocessors, and many
transitions also add or remove tokens on the communication places, as can be
seen by the arcs connected to these places in Figs. 7 and 8.
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Fig. 9. The StartDSF page for starting a safety function

A fairly typical example of a page with a regular transition is the StartDSF

page as shown in Fig. 9. The arc and guard expressions are quite detailed in order
to make explicit what conditions must be fulfilled in order for the corresponding
event to occur. For example the voltage on digital input number n (n=1,2, or
3) for microprocessor i must be low (as indicated by DSFRequest(i,n,Low) on the
arc from place User IO to transition Start DSF), digital input number n must be
mapped to the safety function dsf, and the safety function dsf must be inactive
(as indicated by DSFn(n,dsf) and DSFStatus(dsf,Inactive) on the arc from place
Environment to transition Start DSF). A number of functions are used in the guard
to ensure that additional conditions are fulfilled. Given the complexity of the
inscriptions and the fact that each transition is connected to an Environment

place and one or more communication places, the model would have been quite
illegible if pages contained more than one or two transitions.

4 Analysis and System Validation

This section discusses the analysis of the CPN model. Section 4.1 discusses the
results of the simulations that were run and the experiences we had discussing
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the CPN model with project team members who were unfamiliar with CP-nets.
Section 4.2 comments on state space analysis. Section 4.3 presents the tool for
validating a Java program against a CPN-based requirement specification.

4.1 Simulation

Simulations of the model were run for three main purposes: for debugging the
model, for analyzing the behavior of the model, and for discussing the software
requirement specification with the project team. The model was developed itera-
tively whereby a CPN expert added increasing detail to the model, and problems
and ambiguities regarding expected behavior were discussed with a domain ex-
pert from Danfoss. For these discussions it was rarely necessary to examine the
CP-net directly.

Simulations were also run in order to investigate the specified behavior of
the frequency converter. The goal of running the simulations was to identify
potentially hazardous behavior, such as deadlocks or situations in which failures
occurred but were undetected. Even though an exhaustive investigation of the
behavior of the model was not performed, a number of important problems were
identified through the construction and simulation of the model. Examples of
these problems are:

– A simple diagnostic algorithm that was proposed for use with peer (rather
than master-slave) microprocessors could lead to deadlock or unnecessary
errors.

– Outdated messages in message queues between the two microprocessors
could lead to hazards, such as enabling output to the motor after an er-
ror occurred in one microprocessor.

– If requests for safety functions are not removed prior to turning off the
frequency converter, then there are ambiguities regarding the subsequent
power-up phase.

– Identification of new sequences of events that could lead to dangerous fail-
ures.

– The system safety requirements, including the Statechart in Fig. 2, did not
specify when or how the frequency converter could be turned off if a danger-
ous failure did not occur.

Figure 10 shows a simplified scenario in which an outdated message can lead
to a potentially hazardous situation. In this scenario, a user requests a DSF, both
microprocessors start the DSF, and microprocessor 2 adds an acknowledgement
to a DSF requested message to the message queue for microprocessor 1. Before
microprocessor 1 handles the acknowledgement, the user removes the request for
the DSF, and then immediately requests the DSF again, after which micropro-
cessor 2 fails. When microprocessor 1 retrieves the outdated acknowledgement
from its message queue, a potentially hazardous situation arises because the
failure of microprocessor 2 has not yet been discovered. Presumably the fail-
ure would be discovered reasonably quickly, e.g. through diagnostics, however,
Danfoss had not considered the problem of outdated messages before it was
illustrated through simulation.
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Fig. 10. Scenario in which an outdated message leads to a potential hazard

Fig. 11. Using page names to run step-by-step simulations

The problems that were identified had to be discussed with the project team.
As several members of the project team were not familiar with CP-nets, we
faced the usual challenges of discussing a (Coloured) Petri net with people who
are unfamiliar with the formalism. In this case, the way in which the net was
constructed proved to have unexpected benefits when discussing the net with
the project team. Each page name provides a good indication of the action(s)
that was modeled on the page. In CPN Tools, enabled transitions and the pages
that they are on are highlighted (in green). In Fig. 11, each text is the name of
a page in the net, and a line under a page name indicates that the page contains
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an enabled transition. The left-hand side of Fig. 11 shows that the PowerSwitch

may be pressed (in this case, to turn the power off), DigitalIO actions may occur
(to request a safety function or to remove a request), and the following actions
can occur in microprocessor 1: it may Fail, Diagnostics 1 can be started, and the
StartDSF action will start a recently requested safety function. In the left-hand
side of Fig. 11, the Single Step simulation tool can be clicked on the StartDSF page
name to fire the enabled transition on the page. The right side of Fig. 11 shows
how the simulation feedback is updated after the transition on the StartDSF page
is fired – it is no longer possible to start diagnostics, and the transition on the
SendMessage page is enabled. Since pages rarely contain more than one enabled
transition at a time, the highlighted page names provide a good indication of
exactly which actions can occur in a given state. By running simulations in this
manner, non-CPN experts had no difficulty in discussing and examining the
functionality of the CPN model together with CPN experts.

The problems and ambiguities that were identified in the specified behavior
were simulated, as described above, for the project team, and decisions subse-
quently had to be made about how to deal with the problems. The deadlock
problems in the diagnostic routine were solved by using a master-slave rela-
tionship between the two microprocessors (an earlier version of the CPN model
modeled the two microprocessors as peers). Due to time constraints, most of the
other problems that were identified were not fixed by updating the CPN model.
Rather they have been flagged as potential problem areas that will probably
require further analysis during software development at Danfoss.

4.2 State Space Analysis

State space analysis of the model could help to identify problems that were not
found during simulation, such as the possibility of deadlock, the identification of
additional hazardous situations, or the identification of dangerous failures that
are not handled properly. Attempts were made to generate the state space for
the model presented in Sect. 3, but the state space was too large to be generated.
One of the goals of the project was to construct a model that specifies the behav-
ior of the frequency converter as accurately as possible, since the requirement
specification would have to be evaluated and approved by safety certification au-
thorities. Unfortunately, this resulted in a model that was too complex for state
space analysis. Many kinds of events can happen in almost all states: safety
functions can be requested or requests for safety functions can be removed, di-
agnostics can be started, and the frequency converter can fail or be turned off.
Allowing so many concurrently enabled events contributes significantly to the
state explosion problem for this particular model. The model was modified such
that limits were put on the number of times that these kinds of events could
occur, but it was still not possible to generate a full state space. This is com-
mon problem when using (Coloured) Petri nets within industrial projects. It is
difficult create a model that provides a sufficiently detailed representation of the
system while at the same time being abstract enough to allow for meaningful
state space analysis.
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4.3 Validation of an Executable Architecture Prototype

One of the challenges in any software development project is ensuring that the
developed software conforms to the requirement specification. One of the advan-
tages of using a semi-formal method for specifying software safety requirements
is that there may be methods both for validating the behavior of the model
itself and for ensuring that the developed software conforms to the specified be-
havior. For example, in the visualSTATE tool, that Danfoss uses for creating
Statecharts, there are both static and dynamic analysis methods that can be
used to identify live- and deadlock and states and transitions that are never
activated. Furthermore, the tool can be used to generate code that implements
the functionality of a Statechart, thereby ensuring that the software fulfills the
requirements specification.

Danfoss does not intend to generate code from visualSTATE, so another
one of the goals of this project was to investigate and develop techniques for
ensuring that safety-critical software fulfills the corresponding software safety
requirements. In other words, we were interested in closing the gap between a
semi-formal requirement specification and a software implementation. We fo-
cused on techniques for specifying and validating a software architecture (rather
than the final software) for the frequency converter. A software architecture was
developed using a technique similar to Krutchen’s 4+1 technique [7] in which an
architecture is described from different viewpoints. These viewpoints describe
different aspects of the software architecture such as the structuring of software
components, the distribution of software components on hardware components,
and use scenarios.

The architecture was defined largely by UML diagrams, including class, pack-
age, deployment, and sequence diagrams. Once the architecture had been de-
signed, an executable architecture prototype [8] was implemented as skeleton
classes in Java. A number of important use scenarios, such as initialization dur-
ing power-up and requesting safety functions were implemented as simple Java
programs that exercised the architecture prototype by emulating external events
of the frequency converter, e.g. pressing the power button or requesting a safety
function by activating a digital input, by calling appropriate methods in the ex-
ecutable architecture prototype. Given this architecture prototype, Danfoss was
interested in developing techniques for ensuring that the architecture fulfilled
the software safety requirements, including those specified by the CPN model.

A technique and prototype facilities for validating a Java program against a
CPN-based requirement specification expressed in CPN Tools has been devel-
oped. With this technique, a mapping between methods in the Java program and
transitions in the CPN model must be made. A method may correspond to a sin-
gle transition, a method may not correspond to any transitions, a method may
correspond to a sequence of transition occurrences, and a sequence of method
calls may correspond to a single transition. Currently this mapping must be
made manually. An execution of the architecture prototype corresponds to a
sequence of calls to methods in the prototype. Such an execution is legal if the
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Fig. 12. Validating prototype against CPN-based requirement specification

sequence of method calls corresponds to a legal occurrence sequence that starts
in the initial marking of the CPN model.

The structure of the architecture validation facilities is shown in Fig. 12.
On the left is the architecture prototype. The architecture is tested by running
the executable use scenarios. An additional Java Validator class sends method
names to CPN Tools, and waits for responses from CPN Tools. The simulator
of CPN Tools was slightly modified so that sequences of transitions could be
specified and fired if they were enabled. The net-specific Standard ML functions
in CPN Tools specify the mapping between method names and transitions, and
fire sequences of transitions.

The facilities work as follows. Each of the relevant methods in the architec-
ture prototype must be instrumented so that they send their own method name
to the Validator object which then sends the method name to CPN Tools. The
architecture prototype is blocked until a response is received from the Validator.
If the method corresponds to a sequence of enabled transitions, then the transi-
tions are fired, and an appropriate response is returned to the Validator. If the
method corresponds to a transition that is not enabled, then the response from
CPN Tools indicates that the architecture prototype has attempted to perform
a sequence of actions that do not fulfill the requirement specification. Similarly,
if an unknown method name is received in the simulator, then it returns an
appropriate response.

Textual feedback provides information about the success or failure of an
attempt to validate a use scenario. Figure 13 shows output generated by the
architecture prototype and the Validator. All methods that are called in the
architecture prototype are logged by printing the method name in the console
window. For example, the first method that is called is the powerUp method in the
Controller object. The third line in Fig. 13 shows that the Controller.powerUp
method was successfully validated in the CPN simulator. Not all methods are
instrumented to be validated, as indicated by a missing validate... line after
the method name. The upper half of Fig. 13 shows the successful validation of a
use scenario in which a safety function is requested via digital input and there-
after activated. The bottom half of the figure shows an unsuccessful validation
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$ java safeinverter/scenarios/DSFExecution_2_1_1DigitalIO
Controller.powerUp

validate (Controller.powerUp) with CPN...OK
Controller.selfCheck

validate (Controller.selfCheck) with CPN...OK
DigitalIO.selfCheck
DigitalIO.requestDSF

validate (DigitalIO.requestDSF) with CPN...OK
SafeDelay.activate

validate (SafeDelay.activate) with CPN...OK
Timer.run

$ java safeinverter/scenarios/DSFExecution_2_1_1ProfiSafe
Controller.powerUp

validate (Controller.powerUp) with CPN...OK
Controller.selfCheck

validate (Controller.selfCheck) with CPN...OK
ProfiSafe.selfCheck
ProfiSafe.requestDSF

validate (ProfiSafe.requestDSF) with CPN...Unknown event

Fig. 13. Output when validating the architecture prototype against the CPN model

of a use scenario as the ProfiSafe.requestDSF method was instrumented to
be validated, but it was not mapped to any transitions (because the PROFIsafe
fieldbus is not modeled in the CP-net). Standard simulation reports are gener-
ated in CPN Tools to provide a trace of the transitions that occur when val-
idating a particular use scenario. Such trace files are particularly useful when
investigating illegal behavior in the architecture.

Due to time constraints, a full architecture prototype could not be imple-
mented and validated. However, the proof-of-concept validation tools were use-
ful, and the technique certainly has the potential for being useful for validating
software against a CPN-based requirement specification.

5 Related Work

IEC 61508 recommends the use of the following semi-formal methods for require-
ment specification: finite state machines/state transition diagrams, timed Petri
nets, logic/function block diagrams, sequence diagrams, data flow diagrams, and
decision/truth tables. Of these methods only finite state machines and timed
Petri nets are executable. In the following, we will restrict our discussion of re-
lated work to the use of these methods for specifying and analyzing the behavior
of safety-critical systems.

Petri nets and related formalisms have been used to model and analyze differ-
ent aspects of safety-critical systems. Stochastic Well-formed nets and Stochas-
tic Activity networks have been used to analyze the reliability of safety-critical
systems [9, 10]. Leveson and Stolzy developed an algorithm for starting with
hazardous states in a PN model and working backward to see how to change the
model to make the hazardous states unreachable [1]. Petri nets have also been
combined with other kinds of formal methods for the purpose of analyzing differ-
ent kinds of behavior. One technique is based on converting CP-nets to prototype



420 L. Wells and T. Maier

verification system (PVS) specifications [11] in order to use the theorem-proving
techniques of PVS as a means to avoid the state explosion problem that is often
experienced when generating state spaces for CP-nets. In another technique, Z
specifications are associated with transitions in a Petri net in order to analyze
the concurrent behavior of a system while at the same time ensuring that the
PN model of the system fulfilled the Z specification of the data-handling aspects
of the system [12]. An observation that can be found in most of these works, is
that Petri nets are not necessarily a practical modeling language for real systems
either because it can be difficult to create understandable, detailed PN models
of real systems or because the state explosion problem is often met when gener-
ating state spaces for complex Petri nets. While these observations are certainly
true, this and other case studies [13, 14] indicate that the process of building a
(possibly incomplete) executable model of a system and running simulations can
help to identify problems and resolve inconsistencies even though an exhaustive
analysis of system behavior cannot be performed.

CP-nets have also been used to evaluate software architectures. In [15], soft-
ware architectures are modeled as CP-nets and non-functional qualities such
as reliability and efficiency of the proposed architecture are estimated using
simulation-based performance analysis. To the best of our knowledge no other
work provides a technique for validating an executable software architecture
against a CPN-based requirement specification.

Several variations of Statecharts have also been used to specify and analyze
behavior of safety-critical systems. Safecharts [16] are a variety of Statecharts for
modeling behavior of safety-critical systems. Tools and techniques for analyzing
the completeness of safety-related requirements were originally developed for a
Statechart-like specification language [17], and methods and tools for these tech-
niques have been developed for traditional Statecharts [18]. As with Petri nets,
Statecharts have been combined with other formal methods, such as Z [19] and
extended time graphs [20] in an attempt to find formalisms that complement
each other and that can be used to analyze different kinds of behavior. Stat-
echarts have the advantages that they are more widely used in industry than
Petri nets, and there is support for generating code from models thus ensuring
consistency between the model and the code. On the other hand, Statecharts
do not support modeling multiple instances of the same functionality (as is use-
ful for modeling the common functionality of the two microprocessors in this
project), and they have lacked a well-defined and widely accepted semantics.

6 Conclusion

This paper has presented a case study in which Coloured Petri Nets were used to
specify and analyze software safety requirements for a frequency converter. Anal-
ysis of the model revealed several ways in which the specified behavior could lead
to hazardous situations or unnecessary failures. Each of the problem areas have
been flagged for additional analysis as development of the frequency converter
progresses. Relying on the simulation feedback and flexibility of the simulation
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tools in CPN Tools, it was possible to discuss and examine the behavior of the
model with non-CPN experts while hiding most of the detailed net structure.
Prototype tools for validating Java programs against corresponding CPN-based
requirement specifications have also been developed.

While the results of the project have been very satisfactory, there are many
interesting topics for future work. Requirement completeness analysis is based on
state machine representations of system behavior [17], and this type of analysis
could be performed using state spaces for CP-nets. Future work could be done
to reduce the size of the state space, either through state reduction techniques
or by limiting the behavior of the model, in order to perform at least partial re-
quirement completeness analysis. The tools for validating a Java process against
a CPN-based requirement specification could also be improved significantly: us-
ing Aspect-oriented programming or the Java debugger would remove the need
to instrument Java classes with code for activating the validator, it should be
possible to specify and fire transitions with specific variable bindings (rather
than just transitions), and it would be advantageous if the simulation feedback
in the GUI for CPN Tools could be updated when a simulation is controlled by
an external process.
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Abstract. Workflow languages offer constructs for coordinating tasks. Among
these constructs are various types of splits and joins. One type of join, which
shows up in various incarnations, is the OR-join. Different approaches assign
a different (often only intuitive) semantics to this type of join, though they do
share the common theme that synchronisation is only to be performed for active
threads. Depending on context assumptions this behaviour may be relatively easy
to deal with, though in general its semantics is complicated, both from a defini-
tion point of view (in terms of formally capturing a desired intuitive semantics)
and from a computational point of view (how does one determine whether an
OR-join is enabled?). In this paper the concept of OR-join is examined in detail
in the context of the workflow language YAWL, a powerful workflow language
designed to support a collection of workflow patterns and inspired by Petri nets.
The OR-join’s definition is adapted from an earlier proposal and an algorithmic
approach towards determining OR-join enablement is examined. This approach
exploits a link that is proposed between YAWL and Reset nets, a variant of Petri
nets with a special type of arc that can remove all tokens from a place.

Keywords: OR-join, YAWL, Workflow patterns, synchronizing merge, Petri nets,
Reset nets.

1 Introduction

Workflow specifications should capture various aspects of business models such as
the flow of control, the flow of data, the structure of the organisation, and the use of
resources (see e.g.[13]). The control flow perspective captures the execution interde-
pendencies between the tasks of a business process. In-depth analysis and comparison
of a number of commercially available workflow management systems has been per-
formed [4]. The findings demonstrate that the interpretation of even the basic control
flow constructs is not uniform and it is often unclear how the more complex require-
ments could be supported. The authors propose 20 workflow patterns to address con-
trol flow requirements in a language independent style. YAWL (Yet Another Workflow
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Language) is a result of this analysis, it provides direct support for most patterns [3].
YAWL has a formal semantics specified as a transition system. Although YAWL ex-
ploits concepts from Petri nets, it also provides direct support for those patterns hard to
realise in Petri nets. One of these patterns corresponds to the synchronising merge or
the OR-join, the focus of this paper. In practice, there is a need for a construct like the
OR-join as is evident from e.g. the fact that some commercial systems support OR-join
like constructs. However, experience with these systems shows that it is difficult to se-
lect a suitable semantics and implement it efficiently. Workflow management systems
like InConcert, eProcess, and WebSphere MQ Workflow have solved problems related
to the OR-join using syntactical restrictions. IBM WebSphere MQ Workflow [17] (for-
merly known as MQSeries Workflow and FlowMark and also used as a basis for the
new BPEL standard) offers full support for the OR-join but in order to do this it re-
quires the workflow to be acyclic, i.e., the only way to introduce loops is by executing
the entire (sub)process [2]. Other systems like Eastman and Domino Workflow seem to
use a non-local semantics similar to the one used in YAWL. Such a non-local semantics
may lead to unexpected results. Moreover, a non-local semantics may result in poor per-
formance as is stated in the manual of Eastman: “Parallel instances can accumulate at a
Join workstep if the instances are routed to the workstep by preprocessing rules. These
instances will eventually be joined by a RouteEngine subprocess (thread) that examines
Join worksteps for such instances. This Join scavenger thread reduces system efficiency,
so routing to Join worksteps using preprocessing rules should be avoided” [9]. These
examples illustrate the practical relevance of the OR-join and serve as a motivation for
the work reported in this paper. For a more complete discussion on workflow systems’
support for OR-join semantics, we refer to [2, 4, 14, 15].

The OR-join is a control flow construct that sometimes behaves like an AND join
and sometimes like an XOR join based on the current context. Variants and interpreta-
tions of the OR-join have been proposed in the literature. In [18], several possible inter-
pretations of OR-join semantics in the context of Event-driven Process Chains (EPCs)
are discussed. If there is a matching OR-split, the OR-join semantics is taken to be
“wait for the completion of all paths activated by the matching split”. If there is no
matching split, there could be at least three interpretations of an OR join: wait-for-all,
first-come and every-time [18]. In [2], the authors highlight the technical, conceptual
and practical problems with the formal semantics of the OR-join in Event driven Pro-
cess Chains (EPCs). The authors suggest that there is no sound formal semantics for
EPCs that is fully compliant with the informal semantics and that any formal seman-
tics for EPCs will impose some restrictions or will deviate from the informal semantics
to some extent. The authors demonstrate the problems using vicious circles, which are
formed when two or more OR-joins are in a feedback loop and each OR-join waits for
the other OR-join to complete first. On the other hand, in [15] a semantic framework for
formally defining the non-local semantics of EPCs including the OR-join is proposed.
The author states that “a single transition relation cannot precisely capture the informal
semantics of EPCs”. It is proposed that the non-local semantics be defined as a pair of
transition relations and a semantic definition using techniques from fixed point theory
is presented [15]. The current OR-join approach in YAWL [3] is intended to be a gener-
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alised approach and the formal semantics of the OR-join is defined by ignoring all other
OR-joins. This approach is described as “ad hoc in some way” [15].

The contributions of this paper are threefold. Firstly, we re-examine the OR-join
semantics as proposed in [3], because its behaviour is non-intuitive in the context of
OR-joins depending on other OR-joins and composite tasks (they cannot be treated
like black boxes). Secondly, for the purposes of the OR-join definition and analysis,
we propose an abstract view on YAWL, one which is formalised in terms of Reset nets
[5, 6, 7, 8, 10, 11, 12]. Reset nets are considered the most suitable formalism as reset arcs
provide direct support for the cancellation feature in YAWL (another concept introduced
to YAWL as a result of the workflow patterns and the difficulty of realising this feature
in Petri nets). Thirdly, the mapping of YAWL nets to Reset nets is exploited to find
an algorithmic solution to the non-trivial problem of OR-join enablement. Note that the
contribution of this paper is not limited to YAWL. Many systems and languages struggle
with the semantics and implementation of the OR-join. This paper provides suitable
semantics and gives a concrete algorithm to support an efficient implementation.

This rest of the paper is organised as follows. In Section 2, we introduce the current
OR-join semantics in YAWL, discuss the problems with this semantics and propose
alternative treatments for OR-joins depending on other OR-joins in a YAWL net. In
Section 3, the definitions of EWF-nets (Extended Workflow Nets) and Reset nets are
presented together with the proposed abstractions to enable EWF-net to Reset net map-
pings. In Section 4, we propose a new semantics for the OR-join in YAWL. In Section 5,
we propose an algorithm for OR-join analysis based on well-known backwards search
techniques. Section 6 concludes the paper.

2 Current Semantics of the OR-Join in YAWL

In this section, we first outline the challenges associated with the non-local semantics
of the OR-join. In particular, we show how ignoring other OR-joins during the analysis
can lead to counter-intuitive results. We then propose some alternative treatments for
OR-joins on the path to other OR-joins.

2.1 The OR-Join in YAWL

A YAWL model is made up of tasks, conditions and a flow relation between tasks and
conditions. In YAWL, tasks may be directly connected graphically. The splits, joins, con-
ditions and cancellation symbols for YAWL are shown in Figure 1. YAWL uses the terms
tasksandconditions toavoidconfusionwithPetrinet terminology(transitionsandplaces).

Fig. 1. Splits, joins, conditions and cancellation in YAWL
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Fig. 2. A YAWL net with an OR-split task B and two OR-join tasks C and D

Fig. 3. Reachability graph of the YAWL net in Figure 2 (assuming some OR-join behaviour)

If there is a cancellation set associated with a task, the execution of the task removes all the
tokens from the conditions and tasks in the cancellation set. Cancelling a task is achieved
by removing tokens from internal conditions of the task. An OR-join task is enabled at
a marking iff at least one of its input conditions is marked and it is not possible to reach
a marking that marks all currently marked input conditions (possibly with fewer tokens)
and at least one that is currently unmarked. If it is possible to place tokens in the unmarked
input conditions of an OR-join in the reachable markings from the current marking, then
the OR-join task should not be enabled and wait until either more input conditions are
marked or until it is no longer possible to mark more input conditions.

The example in Figure 2 demonstrates an unstructured YAWL net with AND-split
task A, AND-join task E, OR-split task B and OR-join tasks C and D. This example
demonstrates the different behaviours of OR-joins in the context of two different mark-
ings. First consider a marking M = c1+c2+c3 where there is a token in input condition
c1 of OR-join task C and in input condition c3 of OR-join task D. To determine whether
tasks C and/or D should be enabled at M , we need to find out whether tokens could be
put into c4 or c5 in the reachable markings from M . The reachability graph of Figure
3 shows the reachable markings from the initial marking M0 = ci to the end marking
M = co.1 We can see that by executing task B, we can reach markings c1 + c3 + c5
or c1 + c3 + c4 + c5 that mark c5, an unmarked input condition of task D in M . Also,
markings c1 + c3 + c4, c1 + c3 + c4 + c5 could be reached by executing task B and
they mark c4, an unmarked input condition of task C in M . As we can reach a new
marking from M which can put a token in an unmarked input condition of the OR-join

1 Note the overloading of notation, i.e., here co is a multiset denoting the marking with one
token in condition co.
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Fig. 4. Cancellation task C with an infinite loop

tasks C and D, neither task C or D should be enabled at M . If we consider a marking
M ′ = c1+c3+c4, where all the input conditions of C (i.e., c1 and c4) are marked, then
C would be enabled at M ′. We will also enable task D at M ′ as it is not possible for
another token to arrive at input condition c5. Note that in the scenario where we move
from M to M ′, task D was not enabled in M and, although no tokens were added to
the input conditions of this task, it got enabled in M ′.

Now, let us consider OR-joins in the light of cancellation. In Figure 4, we describe
a YAWL net with (i) task C removing tokens from the conditions c1, c2 and task B
when firing, and (ii) an OR-join task E. At a marking M = c2, we marked one of the
input conditions of E and we need to perform an analysis to decide whether both c2
and c3 could be marked in a reachable marking from M . We can observe the following
sequence of reachable markings from M : c2 →C c3 →D c1 + c2 →B 2c2 →C c3.
This is due to the cancellation feature of C, removing tokens from c2 when firing. We
can conclude that it is not possible to reach a bigger marking c2 + c3 from M and
therefore, E should be enabled at M . Let us consider a different situation where task
C does not have a cancellation set associated with it. From marking M = c2, we can
observe the following sequence of reachable markings: c2 →C c3 →D c1 + c2 →B

2c2 →C c2+c3. As we can reach c2+c3 which marks more input places of the OR-join
task E, the analysis will conclude that task E should not be enabled at M . This example
demonstrates the possible effect that the cancellation feature of a task can have on the
OR-join enablement analysis.

From the above examples, it is obvious that the OR-join semantics requires careful
analysis and the decision to enable an OR-join cannot be made locally. Any OR-join
algorithm must evaluate all the reachable markings from a current marking to determine
whether there is a possibility of a token arriving at an input condition of an OR-join
which is not currently marked (while all input conditions which were already marked
remain marked though possibly with fewer tokens). This algorithm potentially needs
to be applied every time the marking changes and the OR-join analysis could place a
significant load on any workflow engine required to execute it, cf. the quote from the
manual of Eastman [9] in the introduction.

2.2 Problems with Current OR-Join Semantics in YAWL

Two problems may be identified with the current OR-join semantics of YAWL which
are related to the treatment of OR-joins and composite tasks preceding an OR-join under
consideration.
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Fig. 5. A YAWL net with two OR-join tasks E and F

The current OR-join semantics ignores other OR-joins when analysing whether a
particular OR-join should be enabled at a given marking [3]. In Figure 5, there are two
OR-join tasks, E and F in the YAWL net. Consider a marking M = c1 + c3 where the
analysis for the OR-join task, F is performed. After executing task C, it is possible to
reach either c3 + c4, c3 + c5 or c3 + c4 + c5. One possible occurrence sequence is
c1 + c3 →C c3 + c4 + c5 →D c3 + c4 + c6 →E c3 + c7. Hence, M ′ = c3 + c7
is a reachable marking from M . However, the current OR-join semantics ignores other
OR-joins on the path to F, so task E and the associated conditions will not be taken into
account, and M ′ is therefore not considered as a reachable marking during the OR-join
analysis of F. As a result, the analysis will conclude that there is no possibility of another
token arriving in c7 and F would be enabled at M . This behaviour is probably not what
one would expect from this specification. It could also result in multiple executions
of task F and more than one token could be produced for co e.g. (c1 + co). A YAWL
model which can produce a token for the output condition co while still having tokens
in the other conditions is considered as not having proper completion and is therefore
not sound [1]. We have seen that as the analysis of a given OR-join does not consider
the possibility of a token arriving from a path which has an OR-join, this could result
in premature enabling and multiple execution of OR-join tasks when they are nested.

The other problem is that the OR-join semantics in [3] does not treat composite
tasks as “black boxes”, i.e., the semantics is based on the “unfolding” of the YAWL
model. This semantics implies that a YAWL net at a lower level cannot be considered
as a black box, thus impacting the OR-join analysis at a higher level net. Consider
a specification where task B in Figure 5 is a composite task with an OR-join. When
evaluating whether an OR-join should be enabled at a given marking, the analysis will
be performed at lower level nets that make up a YAWL specification. This also applies
for composite tasks which can deadlock. Consider marking c2 + c7. If task B contains
a subprocess that will deadlock, then F is enabled. If B has proper completion, then F
is not enabled. This also demonstrates that in the current semantics, composite tasks
cannot be treated as black boxes.

2.3 Optimistic and Pessimistic Approaches

Instead of ignoring other OR-join tasks altogether during the analysis, we propose two
alternative treatments for those OR-joins: treat them either as XOR-joins (optimistic)
or as AND-joins (pessimistic). Both optimistic and pessimistic approaches achieve the
desired behaviour for an OR-join analysis by delaying enablement when there is a pos-
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sibility of more tokens arriving to unmarked input conditions of the OR-join. We believe
that these two alternatives result in an analysis which is more closely related to the in-
formal semantics of OR-joins and still allow for sound semantics (i.e., avoid the fixpoint
problems discussed in [2]).

The treatment of an OR-join on the path to another OR-join as an XOR-join is an
optimistic approach. Consider a marking M = c1 + c3 in Figure 5 where an OR-join
analysis for task F would be performed. Instead of ignoring the other OR-join task E
during the analysis, task E will be treated as an XOR-join task. This will mean that the
occurrence sequence c1 + c3 →C c3 + c4 →E c3 + c7 would be considered. As a
result, task F is not enabled at M . This interpretation of OR-join task E as an XOR-
join, prevents F from being enabled prematurely and it matches more closely with the
informal semantics of OR-joins.

The treatment of an OR-join on the path to another OR-join as an AND-join is a
pessimistic approach, as this now requires tokens in all input conditions of the AND-
join before enabling. Consider again M = c1 + c3 in Figure 5 where an OR-join
analysis for task F would be performed. This time, instead of ignoring task E, it will
be treated as an AND-join task. Due to the OR-split behaviour of task C, tokens can
be present in c4 or c5 or both after firing C. This occurrence sequence c1 + c3 →C

c3+c4+c5 →D c3+c4+c6 →E c3+c7 is possible. As a token can be put in c7 while
c3 remains marked, F is not enabled at M . This preserves the same informal semantics
as an optimistic approach, and both approaches result in delaying the enablement of the
OR-join task F.

In some cases, we observe that treating other OR-joins on the path as XOR-joins
using an optimistic approach is more appropriate for the analysis. Consider a scenario
where task C in Figure 5 is an XOR-split task rather than the OR-split task. Let us
consider a marking c1 + c3 and that we treat task E as an AND-join task. As it is
not possible for task E to fire due to the XOR-split and AND-join combination, the
OR-join analysis will conclude that F should be enabled. As a result, task F could be
executed more than once and the YAWL net does not have proper completion. The
analysis will reach the same conclusion as the current semantics in YAWL where the
semantics ignores the OR-join dependencies.

We have also found that when OR-joins are in conflict, there might not be a satisfac-
tory treatment for OR-joins. Let N be a YAWL net and o1, o2 be two OR-join tasks. We
define o1 and o2 to be in conflict iff o1 is on a directed path to o2 and o2 is on a directed
path to o1. We have in Figure 6 an unusual situation described as a vicious circle in [15]
where the OR-joins are in conflict and it is unclear what the exact informal semantics
of the model should be. In Figure 6, there are two OR-join tasks B and C which are in
conflict with each other. Condition c3 is an output condition of C and an input condition
of B and c4 is an output condition of B and an input condition of C. Figure 6 is inspired
by [15]. Consider a marking c1 + c2 where an OR-join analysis is carried out for task
B and C. Using the optimistic approach, we treat task C as an XOR-join task during the
analysis for B. As a result, we can find a reachable marking c1 + c3 + c6, which marks
both input conditions of B. Therefore, B should not be enabled at c1 + c2. Similarly,
we will treat B as an XOR-join task for the analysis of task C and there is a reachable
marking c2+ c4+ c5. Therefore, task C should not be enabled at c1+ c2. As a result of
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Fig. 6. OR-join tasks B and C in conflict

this optimistic approach, the YAWL net will deadlock because of the OR-join seman-
tics using the optimistic approach. Using the pessimistic approach, we treat task C as an
AND-join task during the analysis for B. At the marking c1 + c2, it is not possible to
enable C due to the AND-join semantics, and therefore, task B will be enabled and can
be fired. This will enable task C and after firing C, tokens will be placed in c3 and c6.
Therefore, tasks B and C could potentially keep firing alternatingly thus resulting in a
potentially infinite number of firings of task D. The same is true for the analysis of task
C. We can see that the pessimistic approach would also result in improper completion.
The original semantics that ignores other OR-joins would also result in a similar be-
haviour to the pessimistic approach. In this case, all three approaches deviate from the
informal semantics of the OR-join and it is not possible to define the formal semantics
accurately.

From the above discussions, it can be seen that there is no ideal treatment for non-
local OR-join semantics in YAWL. Any formal semantics will impose some restrictions
or deviate from the informal semantics to some extent. In our opinion, the XOR-join
treatment of other OR-joins matches more closely the informal semantics of the OR-
join. Consider the YAWL example in Figure 5 with a marking M = c3 + c4. If we
treat E as an XOR-join during the analysis for task F, the outcome would be that F is
not enabled at M because it is possible to reach a marking M ′ = c3 + c7 by executing
E first. On the other hand, AND-join treatment of E will result in F being enabled at
M and could result in F being executed twice. Hence, we chose to use the optimistic
approach (XOR-join treatment) for our formal semantics.

3 Establishing a Formal Foundation

The formal semantics of YAWL is expressed in terms of a transition system [3] and
while inspired by Petri nets, YAWL should not be seen as an extension of these. New
concepts were introduced in YAWL to suitably deal with the workflow patterns [4].
YAWL constructs such as OR-join, cancellation and multiple instances are not directly
supported by Petri nets. To perform an OR-join analysis, a multiple instances task does
not effect the analysis but cancellation plays an important role (as shown in Figure 4).
This cancellation feature of YAWL is theoretically closely related to Reset nets, which
are Petri nets with reset arcs. For an OR-join analysis, we propose to map a YAWL
model represented as an EWF-net (Extended Workflow Net) to a Reset net. In this sec-
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tion, we first present the definitions of EWF-nets and then discuss the proposed abstrac-
tions to the EWF-nets. We then present the definition and firing rules for Reset nets.

3.1 EWF-Nets

A YAWL model is formally defined as a nested collection of EWF-nets [3]. As we will
show later, it suffices to consider only one EWF-net in isolation when evaluating an
OR-join.

Definition 1 (EWF-net [3]). An extended workflow net (EWF-net) N is a tuple (C, i, o,
T, F, split , join, rem, nofi) such that2

– C is a set of conditions and T is a set of tasks,
– i ∈ C is the unique input condition and o ∈ C is the unique output condition,
– F ⊆ (C \ {o} × T ) ∪ (T × C \ {i}) ∪ (T × T ) is the flow relation,
– every node in the graph (C ∪ T, F ) is on a directed path from i to o,
– split: T → {AND, XOR, OR} specifies the split behaviour of each task and

join: T → {AND, XOR, OR} specifies the join behaviour of each task,
– rem: T � P(T ∪ C \ {i, o}) specifies the additional tokens to be removed by

emptying a part of the workflow;
– nofi: T � N × Ninf × Ninf×{dynamic, static} specifies the multiplicity of each

task (minimum, maximum, threshold for continuation, and dynamic/static creation
of instances).

In an EWF-net, it is possible for two tasks to have a direct connection. We will
add an implicit condition c(t1,t2) between two tasks t1, t2 if there is a direct connection
from t1 to t2. We denote as Cext the set of conditions extended to include implicit
conditions, and denote the extended flow relation as F ext. We now define an explicit
extended workflow net (E2WF-net) using Cext and F ext as follows:

Definition 2 (E2WF-net). Let N = (C, i, o, T, F, split , join, rem, nofi) be an EWF-
net, the corresponding explicit EWF-net (E2WF-net) is defined as
(Cext, i, o, T, F ext, split , join, rem, nofi) where

Cext = C ∪ {c(t1,t2) | (t1, t2) ∈ F ∩ (T × T )} and
F ext =(F \ (T × T ))

∪{(t1, c(t1,t2)) | (t1, t2) ∈ F ∩ (T × T )}
∪{(c(t1,t2), t2) | (t1, t2) ∈ F ∩ (T × T )}.

Let N be an E2WF-net and x ∈ Cext ∪ T , we use •x and x• to denote the set of
inputs and outputs of a node i.e. •x = {y|(y, x) ∈ F ext} and x• = {y|(x, y) ∈ F ext}.
A marking is denoted by M and, just as with ordinary Petri nets, it can be interpreted
as a vector, function, and multiset. M is an m-vector, where m is the total number
of conditions. This vector can also be seen as a function M : Cext → N, where M(c)
returns the number of tokens in a condition c of a marking M . Functions mapping some
domain (in this case C) onto N can also be seen as multisets, i.e., M is a multiset over

2 Note that we are using basic mathematical notations such as � for a partial function, P for
powerset, N for natural numbers, and Ninf for N ∪ {inf }.
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C. Since a marking is a multiset, we can use notations such as M ≤ M ′, M + M ′,
and M − M ′. M ≤ M ′ iff ∀c∈dom(M)M(c) ≤ M ′(c). M + M ′ and M − M ′ are
a multisets such that for any c ∈ dom(M): (M + M ′)(c) = M(c) + M ′(c) and
(M −M ′)(c) = M(c)−M ′(c).

Tasks are the active components of an E2WF-net and when a task t fires at a marking
M , it changes the state and reaches a new marking M ′, denoted as M →t M ′. A YAWL
specification supports hierarchy and a composite task is mapped onto an EWF-net. As
we will abstract from composition, we refer the reader to [3] for a formal definition of
a YAWL specification.

3.2 Abstractions

We propose to abstract the constructs in YAWL that do not affect an OR-join analysis.
They include multiple instances, composite tasks and internal conditions of a task. We
can assume that if a multiple instances task is enabled and executed, it will complete
and put tokens into the appropriate output conditions of the task. Similarly, with the
state transitions and internal conditions within a task, we can abstract from these tran-
sitions and only consider the input and output conditions of a task. In the mappings to
Reset nets, we will introduce one place for each task which indicates whether a task
is currently executing and as a result, abstract from the internal conditions of a task.
We also propose to treat EWF-nets as flat nets, and ignore the hierarchical structure for
the purpose of an OR-join analysis. In other words, when deciding whether an OR-join
should be enabled at a given marking, we will not be considering the effect of deadlock
within a composite task. We assume that a YAWL subnet which is used as a composite
task at a given level is sound. Therefore, if a composite task can be enabled and exe-
cuted, it will terminate at some time, and tokens will be placed in the appropriate output
condition(s) of the composite task. As a result, even if there is an OR-join task in the
composite task, it will not influence the decision to enable an OR-join task at a higher
level. We recognise that due to the semantics of only considering tasks at the same level,
the OR-join task could wait and result in a deadlock if a composite task is not sound
and could deadlock. Because of these proposed abstractions from an EWF-net, we are
now able to map to a Petri net like formalism. During an OR-join analysis, we are only
required to consider the split and join behaviours of tasks and the cancellation set that is
associated with a task. To support the cancellation feature of an EWF-net, we propose
to map an EWF-net onto a Reset net.

3.3 Reset Nets

A Reset net is a Petri net with special reset arcs, that can clear the tokens in selected
places. Reset arcs do not change the requirements of enabling a transition but when a
transition fires, they will remove tokens from the specified places. The reset arcs are
used to underpin the rem function that models the cancellation feature of EWF-nets, cf.
Definition 1. This approach allows us to leverage existing literature and techniques in
the area of Petri nets and Reset nets in particular [5, 6, 7, 8, 10, 11, 12].

Definition 3 (Reset net). A Petri net is a tuple (P, T, F ) where P is a set of places, T
is a set of transitions, P ∩ T = ∅ and F ⊆ (P × T ) ∪ (T × P ). A Reset net is a tuple
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(P, T, F, R) where (P, T, F ) is a Petri net and R ∈ T � P(P ) is the set of reset arcs
associated with every transition t ∈ T .

In the remainder of the paper, when we use the expression F (x, y), it denotes 1 if
(x, y) ∈ F and 0 if (x, y) �∈ F . A reachable marking M ′ is defined by first removing
tokens needed for enabling t from its input places (•t), then removing all tokens from
reset places and then finally adding tokens to the output places of t (t•). The notation
M [P ] denotes function restriction and restricts M to a set of places P , i.e., a projection.

Definition 4 (Enabling and firing Reset nets). Let (P, T, F, R, M) be a marked Reset
net. A transition t ∈ T is enabled iff •t ≤ M . Firing t at marking M reaches marking
M ′, denoted by M →t M ′, iff •t ≤ M and M ′ = (M − •t)[P \R(t)] + t•.

Definition 5 (Occurrence sequence). Let ((P, T, F, R), M0) be a marked Reset net.
Let M1, ..., Mn be markings of the reset net and let t0, t1, ..., tn−1 be transitions in T .
Sequence s = M0t0M1...tn−1Mn is an occurrence sequence iff Mi →ti Mi+1 for all
i, 0 ≤ i ≤ n− 1. A marking M ′′ is reachable from a marking M , written M →∗ M ′′,
iff there is an occurrence sequence with initial marking M and final/last marking M ′′.

To conclude this section, we define the notion of backward firing. This notion will
be used to analyze coverability and is required for the OR-join analysis as is described
in the remainder of this paper.

Definition 6 (Backward firing). Let (P, T, F, R) be a Reset net and let M and M ′

be a markings of this net. M ′ ��	t M if and only if it possible to fire a transition t
backwards starting from M and resulting in M ′. 3

M ′ ��	t M ⇔ ∀p ∈ R(t) : M(p) ≤ F (t, p) ∧
M ′(p) =

{
(M(p) � F (t, p)) + F (p, t) if p ∈ P \R(t)
F (p, t) if p ∈ R(t).

For any reset place p, M(p) ≤ F (t, p) because it is emptied when firing and then
F (t, p) tokens are added. We do not require M(p) = F (t, p) because the aim is cov-
erability and not reachability. M ′, i.e., the marking before (forward) firing t, should
at least contain the minimal number of tokens required for enabling and resulting in a
marking of at least M . Therefore, only F (p, t) tokens are assumed to be present in a
reset place p.

4 Linking YAWL to Reset Nets

In this section, we describe how an EWF-net could be transformed into a Reset net.
After the abstractions from multiple instances, composite tasks and internal places in
a YAWL net, we can consider a YAWL net as having tasks with various split and join
behaviours and possible cancellation sets and explicit and implicit conditions. For an

3 For any natural numbers a, b: a � b is defined as max(a − b, 0).
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EWF-net without OR-join tasks, there is then a straight-forward mapping into a Reset
net. For an EWF-net with OR-join tasks, we propose to use the optimistic treatment
whereby other OR-joins on the path are replaced with XOR-joins, and perform the
necessary transformations.

4.1 Semantics of an EWF-Net Without OR-Joins

For every task t in an E2WF-net, we split t into tstart and tend to support the various
split and join constructs in YAWL. The number of tstart transitions depends on the join
behaviour of a task and the number of tend transitions depends on the split behaviour.
Figure 7 illustrates the approach taken in the transformation.

Fig. 7. Reset net transformations for YAWL split and join behaviours

Definition 7 (E2WF-Reset net). Let N = (Cext, i, o, T, F ext, split , join, rem, nofi)
be an E2WF-net without OR-joins. A corresponding E2WF-Reset net is a tuple
(P, T ′, F ′, R) such that

P = Cext ∪ {pt|t ∈ T} is a set of places,
T ′ = Tstart ∪ Tend such that
Tstart = {tstart|t ∈ T ∧ join(t) = AND}

∪{tp
start|t ∈ T ∧ join(t) = XOR ∧ p ∈ •t},

Tend ={tend|t ∈ T ∧ split(t) = AND}
∪{tp

end|t ∈ T ∧ split(t) = XOR ∧ p ∈ t•}
∪{tx

end|t ∈ T ∧ split(t) = OR ∧ x ⊆ t • ∧ x �= ∅},
F ′ ={(p, tstart)|t ∈ T ∧ join(t) = AND ∧ p ∈ •t}

∪{(tstart, pt)|t ∈ T ∧ join(t) = AND}
∪{(pt, tend)|t ∈ T ∧ split(t) = AND}
∪{(tend, p)|t ∈ T ∧ split(t) = AND ∧ p ∈ t•}
∪{(p, tp

start)|t ∈ T ∧ join(t) = XOR ∧ p ∈ •t}
∪{(tp

start, pt)|t ∈ T ∧ join(t) = XOR ∧ p ∈ •t}
∪{(pt, tp

end)|t ∈ T ∧ split(t) = XOR ∧ p ∈ t•}
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∪{(tp
end, p)|t ∈ T ∧ split(t) = XOR ∧ p ∈ t•}

∪{(pt, tx
end)|t ∈ T ∧ split(t) = OR ∧ x ⊆ t • ∧ x �= ∅}

∪{(tx
end, p)|t ∈ T ∧ split(t) = OR ∧ p ∈ x ∧ x ⊆ t • ∧ x �= ∅},

R ∈T ′ � P(P ) and dom(R) ⊆ Tend such that
t ∈ T ∧ split(t) = AND

⇒ R(tend) = {pt′ |t′ ∈ rem(t) ∩ T} ∪ (rem(t) ∩ Cext),
t ∈ T ∧ split(t) = XOR ∧ p ∈ t•

⇒ R(tp
end) = {pt′ |t′ ∈ rem(t) ∩ T} ∪ (rem(t) ∩ Cext),

t ∈ T ∧ x ⊆ t • ∧ x �= ∅ ∧ split(t) = OR
⇒ R(tx

end) = {pt′ |t′ ∈ rem(t) ∩ T} ∪ (rem(t) ∩ Cext).

The set of reset places for a given transition tend has been defined in R to support the
cancellation feature in YAWL. A place pt is also introduced to represent an internal
place between tstart and tend. The flow relation F ′ is also modified so that the newly
introduced places in P and transitions T ′ are properly connected.

The function marked returns the set of marked conditions in an EWF-net for a given
marking M .

Definition 8 (Marked). For a marking M of an E2WF-Reset net:
marked(M)={c ∈ dom(M) |M(c) > 0}.

The * relation indicates that M marks fewer or the same places as M ′. This is
a looser notion of smaller markings than ≤, because only the marking of places is
considered and the number of tokens in a place is ignored. The notation � is used to
indicate that M marks strictly less places than M ′. The notation M [C] restricts M to
a set of conditions C, i.e., a projection. For instance, M [t•] � M ′[t•], represents a
comparison between M and M ′ that is restricted to the output places of t.

Definition 9 (*). Let M, M ′ be two markings of an E2WF-Reset net and C a set of
conditions: M * M ′ iff marked(M ) ⊆ marked(M ′), M � M ′ iff M * M ′ and
¬(M ′ * M).

We now define how a given marking M in an E2WF-net can be linked to a mark-
ing M∗ in the corresponding E2WF-Reset net. For all the conditions that exist in an
E2WF-net, they will be marked exactly the same in M∗ and zero tokens for the newly
introduced places in the E2WF-Reset net i.e. M = M∗.

Definition 10 (M∗). Let (N, M) be a marked E2WF-net and N∗ be the corresponding
marked E2WF-Reset net of N, then M corresponds in a natural way to a marking of
N∗. This marking marks all the places in N∗ which correspond to conditions in N
with the same number of tokens. We will refer to this as the corresponding marking and
denote it as M∗.

We define the enabling and firing rules for tasks in an E2WF-net using the transition
firing rules as defined for Reset nets. Executing a task of an E2WF-net corresponds to
executing the corresponding start and end transitions tstart and tend of the E2WF-Reset
net.
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Definition 11 (Enabling and firing E2WF-net). Let (N, M) be a marked E2WF-net
and (N∗, M∗) be the corresponding marked E2WF-Reset net. A task t is enabled at
(N, M) iff •t ≤ M∗. Firing t at M reaches M ′, denoted by M →t M ′ iff for the
corresponding start transition tstart and end transition tend, we have M∗ →tstart

M ′′ →tend M∗′
.

Note that this definition allows us to transfer typical Petri-net concepts such as reacha-
bility to E2WF-nets.

We are seeking a predicate superM to determine whether we can reach a marking
that marks more places than M for a certain set of places. From a given marking M and
a given set of places P ′, we can determine whether it is possible to reach a marking from
M which marks more places in P ′. If we define P ′ = •o-j, a set of input conditions
of an OR-join, then we can determine whether a bigger marking (restricted to places in
P ′) exists for a given marking M (in which case the OR-join is not enabled).

Definition 12 (superM). Let N = (P, T, F, R, M) be a marked E2WF-net and P ′ ⊆
P be a set of places for consideration, superM(N, M, P ′) holds iff there is a marking
M ′ such that M →∗ M ′ and M [P ′] � M ′[P ′].

4.2 Semantics of an EWF-Net with OR-Joins

The transformation from an EWF-net with OR-join tasks into an E2WF-OJ is identical
to E2WF-Reset net transformation for all tasks that are not OR-join tasks. The addi-
tional steps to incorporate OR-join tasks are include creating a set OJ for the tstart

transition of each OR-join task in the E2WF-net and adding tstart transitions in OJ
into Tstart.

Definition 13 (E2WF-OJ). Let N be an EWF-net with OR-joins and N ext be the
E2WF-net of N, the corresponding E2WF-OJ is a tuple (P, T ′′, F ′′, R, OJ ) such that
P , T ′, Tstart, Tend, F ′, and R are as defined in Definition 7 and T ′′, F ′′, OJ are
defined as follows:

T ′′ = T ′
start ∪ Tend,

T ′
start = Tstart ∪ {tstart|t ∈ T ∧ join(t) = OR)},

F ′′ = F ′ ∪ {(p, tstart)|t ∈ T ∧ join(t) = OR ∧ p ∈ •t}∪
{(tstart, pt)|t ∈ T ∧ join(t) = OR}, and

OJ = {tstart|t ∈ T ∧ join(t) = OR}.
The function OJ-Remove is used to transform E2WF-OJ by replacing the join be-

haviour of all the OR-join tasks in an E2WF-net to XOR-join and removing the OR-join
task in question. This effectively converts an E2WF-OJ into an E2WF-Reset net so that
we can use the transition firing rules and superM predicate defined for Reset nets.

Definition 14 (OJ-Remove function). Let N ′ = (P, T, F, R, OJ ) be an E2WF-OJ
for an EWF-net N and j ∈ OJ be an OR-join task under consideration. The function
OJ-Remove(N ′, j) returns (P ′, T ′, F ′, R′) such that

P ′ = P ,
T ′ = (T \OJ ) ∪ {tp

start|t ∈ OJ \ {j} ∧ p ∈ •N t},
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F ′ =F ∩ ((P ′ × T ′) ∪ (T ′ × P ′))
∪{(p, tp

start)|p ∈ •N t ∧ t ∈ OJ \ {j}}
∪{(tp

start, pt)|p ∈ •N t ∧ t ∈ OJ \ {j}}
R′ = R.

The firing rules for an E2WF-OJ are defined as follows. The firing rule for a transi-
tion t which is not an OR-join is the same as for Reset nets. For transitions o-j that are
OR-joins in E2WF-net, (i.e. o-j ∈ OJ ), the firing rule is defined in two steps. We first
use the OJ-Remove function to transform other OR-joins (except o-j) into XOR-joins
and produce an equivalent E2WF-Reset net. We then check whether superM holds.
If superM holds then the OR-join, o-j, should not be enabled at M . Otherwise, o-j is
enabled at M .

Definition 15 (Enabling rule). Let (P, T, F, R, OJ , M) be a marked E2WF-OJ. A
transition t ∈ T \ OJ is enabled at M iff •t ≤ M . A transition o-j ∈ OJ is en-
abled at marking M iff at least one of its input places is marked and superM(OJ-
Remove(P, T, F, R, OJ , o-j), M, •o-j) does not hold.

Definition 16 (Forward firing). When a transition t of an E2WF-OJ is enabled at a
marking M ′, it can fire and a new marking M is reached.

M ′ →t M ⇔ ∀p ∈ P : M ′(p) ≥ F (p, t) ∧
M(p) =

{
M ′(p)− F (p, t) + F (t, p) if p ∈ P \R(t)
F (t, p) if p ∈ R(t).

Definition 17 (Reachable markings). We denote M → M ′ iff there is a t ∈ T such
that M →t M ′. We denote M →∗ M ′′ if there is an occurrence sequence from
M to M ′′.

We will now describe how the transformations will be performed for an EWF-net
with two OR-join tasks C and D as shown in Figure 8. The shaded place indicates the
explicit condition cBD which has been added for the implicit condition between tasks
B and D. Figure 9 shows an equivalent Reset-net for the E2WF-net in Figure 8 for OR-
join analysis of task D. The OR-join task C is on the path to task D and the OJ-Remove
function is applied to treat task C as an XOR-join task. Also note that OR-join task D
has been removed from the net by the OJ-Remove function.

Consider a marking M = c1+cBD of N where OR-join analysis for task D would be
performed. The input places of task D are c4 and cBD. We need to investigate whether

Fig. 8. An E2WF-net N with OR-join tasks C and D
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Fig. 9. An E2WF-Reset net for OR-join analysis of task D in Figure 8

it is possible to reach a marking that marks both c4 and cBD. We can observe the
sequence c1 + cBD →Cc1

start pC + cBD →Cend c4 + cBD exists and that we can
reach M ′ = c4 + cBD from M . Therefore, superM predicate holds as M →∗ M ′ and
M [{c4, cBD}] � M ′[{c4, cBD}]. The OR-join analysis for task D will conclude that D
should not be enabled at marking M as it is possible to reach a marking from M that
marks more input places of the OR-join than M does.

5 OR-Join Algorithm Proposal

The main objective of the OR-join algorithm is to determine, for a given OR-join,
whether or not a marking M ′ is reachable from a given marking M that marks more
input places of that OR-join exists. We perform this analysis by first transforming an
EWF-net (with OR-joins) into an E2WF-Reset net for a given OR-join task and then
by calling the OR-join algorithm. Our algorithm is based on backward search tech-
niques for Well-Structured Transition Systems (WSTSs) [5, 7, 10, 11, 12]. The algo-
rithm works backwards by computing the predecessor markings for a given marking, as
opposed to the forward approach used in coverability tree algorithms. A Reset net can
be represented as a WSTS and the backwards algorithm has been successfully applied
to solve the coverability problems for Reset nets [7, 16].

5.1 Backward Algorithm for OR-Join Analysis

WSTSs are “a general class of infinite state systems for which decidability results rely
on the existence of a well-quasi-ordering between states that is compatible with the
transitions.” [12]. The existence of a well-quasi-ordering over an infinite set of states
ensures the decidability of termination and coverability properties [7, 12].

Definition 18 (Well-Structured Transition System [7]). A well-structured transition
system (WSTS) is a structure S = 〈Q,→,≤〉 such that Q = {m, ...} is a set of states,
→⊆ Q × Q is a set of transitions, ≤⊆ Q × Q is a well-quasi-ordering (wqo) on the
set of states, satisfying the simple monotonicity property, m → m′ and m1 ≥ m imply
m1 → m′

1 for some m′
1 ≥ m′.

Reset nets can be seen as a WSTS 〈Q,→,≤〉 with Q the set of markings, M → M ′ if
for some t, we have M →t M ′ and ≤ the corresponding ≤ order on markings (which
is a wqo) [16].

Definition 19 (Upward-closed set [12]). Given a quasi-ordering ≤ on X, an upward-
closed set is any set I ⊆ X such that y ≥ x and x ∈ I entail y ∈ I . To any x ∈ X
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we associate ↑x =def {y|y ≥ x}. A basis of an upward-closed I is a set Ib such that
I =
⋃

x∈Ib ↑x.

Given a WSTS 〈Q,→,≤〉 and a set of states I ⊆ Q, Pred(I), pb(I) and Pred∗(I)
can be defined [16]. The immediate predecessors of I: Pred(I) = {x|x → y ∧ y ∈ I},
all predecessor states of I, Pred∗(I) = {x|x →∗ y ∧ y ∈ I} and pb(I) =

⋃
y∈I pb(y)

where pb(y) yields a finite basis of ↑Pred(↑{y}) (i.e., pb(y) yields a finite set such that
↑pb(y) =↑Pred(↑{y})) [16]. The coverability problem for a Reset net is as follows:
given two markings x and y can we reach y′ ≥ y starting from x [16]. Provided that
≤ is decidable and pb(y) exists and can be effectively computed [12], the backwards
reachability analysis can be performed to decide the coverability [7, 10, 16]. {y} is a
basis of upward closed set ↑{y} and we can determine that y is coverable from x if
there exists a x′ ∈ Pred∗(↑{y}) such that x′ ≤ x (because ≤ is a wqo). As ↑{y}
is upward-closed, Pred∗(↑{y}) is upward-closed [12]. We can compute a finite basis
of Pred∗(↑{y}) as the limit of the sequence I0 ⊆ I1 ⊆ ... where I0 =def {y} and
In+1 =def In ∪ pb(In) [16]. The sequence eventually stabilises at some In when
↑In+1 =↑In and we have reached a stabilisation point that has the property ↑In =
Pred∗(↑{y}) [16]. The coverability question now becomes: is there an x′ ∈↑In such
that x′ ≤ x. In is a finite basis for Pred∗(↑{y}) and the coverability question can now
be answered by testing whether there exists a x′ ∈ In such that x′ ≤ x.

We now present the procedures that operationalise the coverability question for Re-
set nets. The procedure Coverable returns a Boolean value to indicate whether a mark-
ing t is coverable from a marking s of a Reset net [16].

PROCEDURE Coverable (Marking x, y): Boolean
Marking x′;
BEGIN

for x′ ≤ x do
if x′ ∈ FiniteBasisPred∗({y}) then return TRUE; end if;

end for;
return FALSE;

END

The procedure FiniteBasisPred∗ returns a set of markings which represents a finite
basis of all predecessors and is based on the method described in [16].

PROCEDURE FiniteBasisPred∗ (SET Marking I): SET Marking
SET Marking K, Knext;
BEGIN

K := I; Knext := K ∪ pb(K);
while not IsUpwardEqual(K, Knext) do

K := Knext; Knext := K ∪ pb(K);
end while;
return K;

END
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The procedure call IsUpwardEqual(K, Knext) is used to detect whether the stabili-
sation point has been reached i.e. ↑Knext =↑K, cf. [11]. The procedure pb(I) returns
pb(I) such that pb(I) =

⋃
x∈I pb(x) [16].

PROCEDURE pb (SET Marking I): SET Marking
Set Marking Z = ∅; Marking M ;
BEGIN

for M ∈ I do Z := Z ∪ pb(M); end for;
return Z;

END

pb(M) is effectively computed for Reset nets by “executing the transitions backwards
and setting a place to the minimum number of tokens required to fire the transition if
it caused a reset on this place” [16].4 Note that, in our case, this minimum is one as
we do not have weighted arcs. We will make use of backward firing rule as defined in
Definition 6. For each transition t ∈ T , we determine whether an M ′ exists such that
M ′ ��	t M . Hence, pb(M) = {M ′|∃t∈T M ′ ��	t M}.
PROCEDURE pb (Marking M ): SET Marking
SET Marking Z = ∅;
BEGIN

for t ∈ T do
if M [R(t)] ≤ t • [R(t)] then

Z := Z ∪ {(M � t •+ • t)[P \R(t)] + (M + •t)[R(t)]};
end if;

end for;
return Z;

END

We can then apply the coverability findings of a Reset net to the OR-join analysis.
Let (N, M) be a marked E2WF-net, o-j be the OR-join task under consideration, X be
• o-j, N ′ be the corresponding E2WF-Reset net and Y be a set of markings such that
each marking in Y has only one token in each of the marked input places of o-j in M
and one token in exactly one of the unmarked input places of the o-j in M . To deter-
mine whether o-j should be enabled at M , we need to determine whether there exists a
M ′ ∈ Pred∗(Mw) such that M ′ ≤ M for each of the markings Mw ∈ Y (coverability
question). Each marking Mw in Y satisfies the condition M [X] � Mw[X], i.e. Mw has
tokens in more input places of the OR-join o-j and if Mw can be reached from M , the
OR-join is not enabled. The procedure OrJoinEnabled is called with parameters M
and X and it returns a Boolean value to indicate whether the OR-join should be enabled
at M .

4 Note that the algorithm described in [16] is incorrect. On Page 105 in [16], pb(M) is defined
in a rather naive way. Applying pb(M) to the empty marking yields a counter example, since
it is not a finite basis for ↑Pred∗(↑{M}).
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PROCEDURE OrJoinEnabled (Marking M , SET Place X): Boolean
SET Marking Y ; Marking Mw;
BEGIN

Y = {q +
∑

p∈X:M(p)>0 p | q ∈ X ∧ M(q) = 0};
for Mw ∈ Y do

if Coverable(M, Mw) then return FALSE; end if;
end for;
return TRUE;

END

5.2 A Worked Example

Throughout the paper we have shown several examples where it is a non-trivial task to
decide if an OR-join is enabled or not. Clearly, the algorithm can be applied successfully
to these situations. To illustrate its inner working in some detail we use one last example.

Consider a marking M = c1 + c7 in Figure 10 where the OR-join analysis for task
G is carried out. It is possible to have an occurrence sequence, c1 + c7 →B cBB +
c3 + c7 →E cBB + c5 + c7 →B cBB + c3 + c5 + c7 →D c4 + c5 + c7 →F

c6+c7. As a result, c6+c7 is a reachable marking from c1+c7 and the OR-join should
not be enabled at marking M . The evaluation will start with a call to the procedure
OrJoinEnabled(c1 + c7, {c6, c7}). Y := {c6 + c7} and for Mw = c6 + c7, we
will obtain a finite basis of all the predecessors of c6 + c7. Figure 12 illustrates the
backwards reachability analysis [11], with the basis of the predecessor markings for
c6 + c7. It can be seen that c1 + c7 is a predecessor of c6 + c7. M ′ ≤ M includes
the following markings {c1, c7, c1 + c7}. As M ′ = c1 + c7 is in the predecessors for

Fig. 10. A YAWL net with an OR-join task G and cancellation

Fig. 11. A corresponding Reset net for Figure 10 (note the double-headed arrow denoting the
reset arc from CBB to Dend)
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Fig. 12. Illustration of backwards reachablility analysis

c6 + c7, the procedure will return FALSE, concluding that the OR-join should not be
enabled at M .

6 Conclusion

This paper focuses on the OR-join construct in YAWL and proposes a new semantics.
The decision to enable an OR-join task cannot be made locally: an OR-join task should
only be enabled when there is at least one token in one of the input conditions and
there is no possibility of a token arriving at one of the yet unmarked input conditions
of the OR-join. Otherwise, the OR-join task should wait for synchronisation. Instead
of ignoring other OR-joins on the path, we propose two alternative approaches (opti-
mistic or pessimistic) for OR-joins which are on the path of other OR-joins. Reset nets
are used as formal basis for OR-join analysis to support cancellation features. This is
made possible by the fact that we can abstract from the concepts of YAWL such as
multiple instances, composite task and internal state transitions of a task. We present
transformation rules from a YAWL model with OR-joins to a Reset net for a specific
OR-join analysis. We then propose an OR-join evaluation algorithm which is based on
the backward search techniques for Well-Structured Transition Systems. The algorithm
does not yet exploit potential optimisation techniques as e.g. presented in [10].

To conclude the paper, we would like to emphasise that the results reported in this
paper are not limited to YAWL. As is indicated in the introduction, many workflow man-
agement systems, but also other process-aware information systems (e.g., ERP, CRM,
and PDM systems), have problems dealing with the OR-join. In fact, the problem sur-
faces in many other domains [19].

Acknowledgements. We would like to especially thank Philippe Schnoebelen and
Jerome Leroux for their valuable input on the issue of decidability of OR-join
algorithm and for many useful references provided in the area of Reset nets.
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Abstract. Under the umbrella of buzzwords such as “Business Activ-
ity Monitoring” (BAM) and “Business Process Intelligence” (BPI) both
academic (e.g., EMiT, Little Thumb, InWoLvE, Process Miner, and
MinSoN) and commercial tools (e.g., ARIS PPM, HP BPI, and ILOG
JViews) have been developed. The goal of these tools is to extract knowl-
edge from event logs (e.g., transaction logs in an ERP system or audit
trails in a WFM system), i.e., to do process mining. Unfortunately, tools
use different formats for reading/storing log files and present their re-
sults in different ways. This makes it difficult to use different tools on
the same data set and to compare the mining results. Furthermore, some
of these tools implement concepts that can be very useful in the other
tools but it is often difficult to combine tools. As a result, researchers
working on new process mining techniques are forced to build a mining
infrastructure from scratch or test their techniques in an isolated way,
disconnected from any practical applications. To overcome these kind of
problems, we have developed the ProM framework, i.e., an “pluggable”
environment for process mining. The framework is flexible with respect
to the input and output format, and is also open enough to allow for
the easy reuse of code during the implementation of new process mining
ideas. This paper introduces the ProM framework and gives an overview
of the plug-ins that have been developed.

1 Introduction

The research domain process mining is relatively new. A complete overview of
recent process mining research is beyond the scope of this paper. Therefore, we
limit ourselves to a brief introduction to this topic and refer to [3, 4] and the
http://www.processmining.org web page for a more complete overview.

The goal of process mining is to extract information about processes from
transaction logs. It assumes that it is possible to record events such that (i) each
event refers to an activity (i.e., a well-defined step in the process), (ii) each event
refers to a case (i.e., a process instance), (iii) each event can have a performer
also referred to as originator (the actor executing or initiating the activity), and
(iv) events have a timestamp and are totally ordered. Table 1 shows an example

G. Ciardo and P. Darondeau (Eds.): ICATPN 2005, LNCS 3536, pp. 444–454, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Table 1. An event log (audit trail)

case id activity id originator case id activity id originator

case 1 activity A John case 5 activity A Sue
case 2 activity A John case 4 activity C Carol
case 3 activity A Sue case 1 activity D Pete
case 3 activity B Carol case 3 activity C Sue
case 1 activity B Mike case 3 activity D Pete
case 1 activity C John case 4 activity B Sue
case 2 activity C Mike case 5 activity E Clare
case 4 activity A Sue case 5 activity D Clare
case 2 activity B John case 4 activity D Pete
case 2 activity D Pete

of a log involving 19 events, 5 activities, and 6 originators. In addition to the
information shown in this table, some event logs contain more information on
the case itself, i.e., data elements referring to properties of the case. For example,
the case handling system FLOWer logs every modification of some data element.

Event logs such as the one shown in Table 1 are used as the starting point
for mining. We distinguish three different perspectives: (1) the process perspec-
tive, (2) the organizational perspective and (3) the case perspective. The process
perspective focuses on the control-flow, i.e., the ordering of activities, as shown
in Figure 1(a). The goal of mining this perspective is to find a good charac-
terization of all possible paths, e.g., expressed in terms of a Petri net [15] or
Event-driven Process Chain (EPC) [11, 12]. The organizational perspective fo-
cuses on the originator field, i.e., which performers are involved and how are
they related. The goal is to either structure the organization by classifying peo-
ple in terms of roles and organizational units (Figure 1(b)) or to show relation
between individual performers (i.e., build a social network as described in [2] and
references there, and as shown in Figure 1(c)). The case perspective focuses on
properties of cases. Cases can be characterized by their path in the process or by
the originators working on a case. However, cases can also be characterized by
the values of the corresponding data elements. For example, if a case represents
a replenishment order, it is interesting to know the supplier or the number of
products ordered.

Orthogonal to the three perspectives (process, organization, and case), the
result of a mining effort may refer to logical issues and/or performance issues.
For example, process mining can focus on performance issues such as flow time,
the utilization of performers or execution frequencies.

After developing ad hoc tools for the mining of the process perspective (e.g.,
EMiT [1] and Little Thumb [17]) and other ad hoc tools (e.g., MinSoN [2]) for
the other mining perspectives we started the design of a flexible framework in
which different algorithms for each of the perspectives can be plugged in.
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(a) The control-flow structure expressed in terms of a Petri net.

(b) The organizational structure expressed in
terms of a activity-role-performer diagram.

John Sue Mike Carol Pete Clare

role X role Y role Z

John Sue
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Clare

(c) A sociogram based on transfer of work.

Fig. 1. Some mining results for the process perspective (a) and organizational (b and
c) perspective based on the event log shown in Table 1

2 Architecture

As indicated in the introduction, the basis for all process mining techniques is
a process log. Such a log is a file generated by some information system, with
information about the execution of a process. Since each information system has
its own format for storing log files, we have developed a generic XML format
for the ProM framework to store a log in. This format was based on a thorough
comparison of the input needs of various existing (ad-hoc) process mining tools
and the information typically contained in an audit trail or transaction log of
some complex information system (e.g., an ERP or a WFM system).

Another important feature of the ProM framework is that it allows for in-
teraction between a large number of so-called plug-ins. A plug-in is basically
the implementation of an algorithm that is of some use in the process mining
area, where the implementation agrees with the framework. Such plug-ins can
be added to the entire framework with relative ease: Once the plug-in is ready
it can be added to the framework by adding its name to some ini -file. Note that
there is no need to modify the ProM framework (e.g., recompiling the code)
when adding new plug-ins, i.e., it is a truly “pluggable” environment. This in
contradiction to open-source initiatives, such as the data mining software Weka1.

In Figure 2, we show an overview of the framework that we developed. It
explains the relations between the framework, the process log format, and the
plug-ins. As Figure 2 shows, the ProM framework can read files in the XML
format through the Log filter component. This component is able to deal with
large data sets and sorts the events within a case on their timestamps before

1 Weka is available from http://www.cs.waikato.ac.nz/∼ml/weka/
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Fig. 2. Overview of the ProM framework

the actual mining starts. (If no timestamps are present, the order in the XML
file is preserved.) Through the Import plug-ins a wide variety of models can
be loaded ranging from a Petri net to logical formulas. The Mining plug-ins
do the actual mining and the result is stored in memory, and in a window on
the ProM desktop. The framework allows plug-ins to operate on each others
results in a standardized way. Typically, the mining results contain some kind of
visualization, e.g., displaying a Petri net [15], an EPC [12] or a Social network
[2], or further analysis or conversion. The Analysis plug-ins take a mining result
an analyze it, e.g., calculating a place invariant for a resulting Petri net. The
Conversion plug-ins take a mining result and transform it into another format,
e.g., transforming an EPC into a Petri net. In the remainder of this section, we
describe both the process log format and the plug-ins.

2.1 Process Log Format

Figure 3(a) visualizes the XML schema that specifies the process log format.
The root element is a WorkflowLog element. (The name “workflow log” is cho-
sen for backwards compatibility and we prefer to talk about process log.) The
WorkflowLog element contains (in the given order) an optional Data element, an
optional Source element, and a number of Process elements. A Data element al-
lows for storing arbitrary textual data, and contains a list of Attribute elements.
A Source element can be used to store information about the information system
this log originated from. A Process element refers to a specific process in an in-
formation system. Since most information systems typically control several pro-
cesses, multiple Process elements may exist in a log file. A ProcessInstance is an
instance of the process, i.e., a case. An AuditTrailEntry may refer to an activity
(WorkflowModelElement), an eventtype (Eventtype), a timestamp (Timestamp),
and a person that executed the activity (Originator).
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(a) Process log XML format

reassign 

schedule assign 

start 
resume 

suspend 

autoskip complete 

manualskip 

ate_abort 

pi_abort 

withdraw 

(b) Transactional model for EventType

Fig. 3. Process log XML format (a) and transactional model (b)

As will be clear from what was mentioned earlier, a log file typically contains
information about events that took place in a system. Such events typically refer
to a case and a specific activity within that case. Examples of such events are:

– The activity send message is now ready to be executed.
– The activity wait for incoming transmission has not been started for three

weeks.
– The case with ID 203453 was aborted.

In order to be able to talk about these events in a standard way, we developed
a transactional model that shows the events that we assume can appear in a
log. Again this model is based on analyzing the different types of logs in real-life
systems (e.g., Staffware, SAP, FLOWer, etc.) Figure 3(b) shows the transactional
model.

When an activity is created, it is either scheduled or skipped automatically
(autoskip). Scheduling an activity means that the control over that activity is put
into the information system. The information system can now assign this activity
to a certain person or group of persons. It is possible to reassign an assigned
activity to another person or group of persons. This can be done by the system,
or by a user. A user can start working on an activity that was assigned to him, or
some user can decide to withdraw the activity or skip it manually (manualskip),
which can even happen before the activity was assigned. The main difference
between a withdrawal and a manual skip is the fact that after the manual skip
the activity has been executed correctly, while after a withdrawal it is not. The
user that started an activity can suspend and resume the activity several times,
but in the end he either has to complete or abort (ate abort) it. Note the activity
can get aborted (pi abort) during its entire life cycle.
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We do not claim that we have captured all possible behavior of all systems.
However, we have verified our transactional model against several commercial
systems and they all seem to fit nicely. Nonetheless, in the XML format, we
allow for other event types to be defined on the fly.

2.2 Plug-ins

In this section, we provide an overview of the plug-ins as currently implemented
in the context of the ProM framework. For more technical documentation and
scientific publications, we refer to our website http://www.processmining.org.
As shown in Figure 2 there are five kinds of plug-ins:

Mining plug-ins which implement some mining algorithm, e.g., mining algo-
rithms that construct a Petri net based on some event log.

Export plug-ins which implement some “save as” functionality for some ob-
jects (such as graphs). For example, there are plug-ins to save EPCs, Petri
nets (e.g., in PNML format [7]), spreadsheets, etc.

Import plug-ins which implement an “open” functionality for exported ob-
jects, e.g., load instance-EPCs from ARIS PPM.

Analysis plug-ins which typically implement some property analysis on some
mining result. For example, for Petri nets there is a plug-in which constructs
place invariants, transition invariants, and a coverability graph. However,
there are also analysis plug-ins to compare a log and a model (i.e., confor-
mance testing) or a log and an LTL formula.

Conversion plug-ins which implement conversions between different data for-
mats, e.g., from EPCs to Petri nets.

The current version of the framework contains a large set of plug-ins. A detailed
description of these plug-ins is beyond the scope of this paper. Currently, there
are nine export plug-ins, four import plug-ins, seven analysis plug-ins, and three
conversion plug-ins. Therefore, we only mention some of the available mining
plug-ins. For each of the three perspectives which were mentioned in the intro-
duction, there are different mining plug-ins.
For the process perspective, four plug-ins are available:

α-algorithm which implements the α-algorithm [5] and its extensions as devel-
oped by the authors. The α-algorithm constructs a Petri net which models
the process recorded in the log.

Tshinghua-α algorithm which uses timestamps in the log files to construct
a Petri net. It is related to the α algorithm, but uses a different approach.
Details can be found in [18]. It is interesting to note that this mining plug-in
was the first plug-in developed by researchers outside of our research group.
Researchers from Tshinghua University in China (Jianmin Wang and Wen
Lijie) were able to develop and integrate this plug-in without any help or
changes to the framework.
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Genetic algorithm which uses genetic algorithms to tackle possible noise in
the log file as described in [13]. Its output format is a heuristics net (which
can be converted into an EPC or a Petri net).

Multi-phase mining which implements a series of process mining algorithms
that use instance graphs (comparable to runs) as an intermediate format.
The two-phase approach resembles the aggregation process in Aris PPM.

For the organizational perspective, one plug-in is available:
Social network miner which uses the log file to determine a social network of

people [2]. It requires the log file to contain the Originator element.
Finally, for the case perspective, also one plug-in is available:
Case data extraction which can be used for interfacing with a number of

standard knowledge discovering tools, e.g., Viscovery and SPSS AnswerTree.
Sometimes a collection of plug-ins is needed to achieve the desired functionality.
An example is the LTL-checker which checks whether logs satisfy some Linear
Temporal Logic (LTL) formula. For example, the LTL-checker can be used to
check the “four eyes” principle, i.e., two activities within the same case should
not be executed by the same person to avoid possible fraud. The LTL-checker
combines a mining plug-in (to get the log), an import plug-in (to load the file with
predefined LTL formulas), and an analysis plug-in (to do the actual checking).

3 User Interface

Since the ProM framework contains a large number of plug-ins, it is impossible
to discuss them all in detail. Therefore, we only present some screenshots of a
few plug-ins that we applied to the example of Table 1. In Figure 4, we show the
result of applying the α-mining plug-in to the example. The default settings of
the plug-in were used, and the result is a Petri net that is behaviorally equivalent
to the one presented in Figure 1. In Figure 5, we show the result of the social
network mining plug-in. We used the handover of work setting, considering only
direct succession, to generate this figure. Comparing it to Figure 1(c) shows that
the result is an isomorphic graph (i.e. the result is the same).

Petri nets are not the only modelling language supported by the framework.
Instead, we also have built-in support for EPCs (Event-driven Process Chains).
In Figure 6, we show the result of the multi-phase mining plug-in. The result is
an aggregated EPC describing the behavior of all cases. Note that it allows for
more behavior than the Petri net, since the connectors are of the type logical or.
In Figure 7 we show the user interface of the analysis plug-in that can be used
for the verification of EPCs.

In this section, we have shown some screenshots to provide an overview of
the framework. We would like to stress that we only showed a few plug-ins of
the many that are available. We would also like to point out that most plug-ins
allow for user interaction. The latter it important because process mining is often
an interactive process where human interpretation is important and additional
knowledge can be used to improve the mining result.
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Fig. 4. The α-mining plug-in Fig. 5. The social network mining plug-in

Fig. 6. The discovered EPC Fig. 7. Analyzing the EPC for correctness

4 Related Work

Process mining can be seen as a tool in the context of Business Activity Mon-
itoring (BAM) and Business (Process) Intelligence (BPI). In [9] a BPI toolset
on top of HP’s Process Manager is described. The BPI tools set includes a so-
called “BPI Process Mining Engine”. However, this engine does not provide any
techniques as discussed before. Instead it uses generic mining tools such as SAS
Enterprise Miner for the generation of decision trees relating attributes of cases
to information about execution paths (e.g., duration). In [14] the PISA tool is
described which can be used to extract performance metrics from workflow logs.
Similar diagnostics are provided by the ARIS Process Performance Manager
(PPM) [11]. The latter tool is commercially available and a customized version
of PPM is the Staffware Process Monitor (SPM) [16] which is tailored towards
mining Staffware logs.2

2 Note that the ProM Framework interfaces with Staffware, SPM, ARIS Toolset, and
ARIS PPM.
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Given the many papers on mining the process perspective it is not possible to
give a complete overview. Instead we refer to [3, 5]. Historically, Cook et al. [8]
and Agrawal et al. [6] started to work on the problem addressed in this paper.
Herbst et al. [10] took an alternative approach which allows for dealing with
duplicate activities. The authors of this paper have been involved in different
variants of the so-called α-algorithm [1, 5, 17]. Each of the approaches has its
pros and its cons. Most approaches that are able to discover concurrency have
problems dealing with issues such as duplicate activities, hidden activities, non-
free-choice constructs, noise, and incompleteness.

The ProM framework subsumes process mining tools like EMiT [1], Lit-
tle Thumb [17] and MinSon [2]. Most of these tools had their own format to
store log files in, and had their own limitations. The tool EMiT for example
was unable to deal with log files of more than 1000 cases. To be able to use
all these tools together in an interactive way, we developed the ProM frame-
work, which can be seen as a successor of all these tools. The framework allows
researchers to seamlessly combine their own algorithms with algorithms from
other people. Furthermore, using the framework allows you to interface with
many existing tools, both commercial and public. These tools include: the Aris
Toolset, Aris PPM, Woflan, The Petri net kernel, Netminer, Agna, Dot, Viscov-
ery, etc.

5 Conclusion

The ProM framework integrates the functionality of several existing process
mining tools and provides many additional process mining plug-ins. The ProM
framework supports multiple formats and multiple languages, e.g., Petri nets,
EPCs, Social Networks, etc. The plug-ins can be used in several ways and
combined to be applied in real-life situations. We encourage developers and re-
searchers to use the ProM framework for implementing new ideas. It is easy to
add a new plug-in. For adding new plug-ins it suffices to add a few lines to the
configuration files and no changes to the code are necessary, i.e., new mining
plug-ins can be added without re-compiling the source code. Experiences with
adding the Thingua-α plug-in and the Social network miner show that this is
indeed rather straightforward.
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Abstract. This paper presents the high level Petri nets analyzer Helena.
Helena can be used for the on-the-fly verification of state properties, i.e.,
properties that must hold in all the reachable states of the system, and
deadlock freeness. Some features of Helena make it particularly efficient
in terms of memory management. Structural abstractions techniques,
mainly transitions agglomerations, are used to tackle the state explosion
problem. Benchmarks are presented which compare our tool to Maria.

Helena is developed in portable Ada and is freely available under the
conditions of the GNU General Public License.

1 Introduction

Model checking is an automatic method for the verification of finite state sys-
tems. It consists of enumerating all the possible configurations or executions of
the system to track the ones which do not match the specification.

Helena (a High LEvel Net Analyzer) is a model checker developed at the
CNAM university in Paris. The formalism supported by Helena makes it suitable
for the verification of concurrent software. Helena is part of the Quasar project
(a tool for the analysis of concurrent Ada programs [1]), but it is also a fully
autonomous tool which can be used independently. In its current version, Helena
can be used for the verification of state properties, i.e., properties that must
hold in all the reachable states of the system, and deadlock freeness. Helena is
a command-line oriented tool without any graphical user interface though we
consider to include a graphical interactive simulator.

This paper is structured as follows. Section 2 explains the reasons which
motivated us to design and implement Helena. The main features of Helena are
presented in Section 3. A set of benchmarks which compare our tool to Maria
[2] are presented in Section 4. Finally we conclude in Section 5.

2 Motivations

The model checking of concurrent programs involves a translation task from
the original programming language to a formalism suitable for the expression
of concurrency, e.g., Promela, Petri nets. In order to limit the state explosion

G. Ciardo and P. Darondeau (Eds.): ICATPN 2005, LNCS 3536, pp. 455–464, 2005.
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problem of a model checking procedure, the produced model has to remain as
small as possible, but still must be an exact translation of the program to guar-
antee a correct verification process. Quasar is a tool which aims at the automatic
verification of concurrent Ada programs based on colored Petri nets. It can not
currently handle the whole language, though a large part of the language which
is related to concurrency is supported. The main task of Quasar is to perform
automatic abstraction (or slicing) of a program and to translate it into a colored
Petri net. In its current state, Quasar does not perform reachability analysis but
interfaces with another tool which realizes this task. The high level formalism
supported by Maria [2] pushed us into choosing this tool, though Quasar can
also interface with Prod [3].

After an intensive use of Quasar on various examples, we identified two main
factors which limit the efficiency of our tool. Firstly, the translation from the
source code to the colored Petri net is not straightforward. As the constructions
of high level programming language do not have their exact counterpart in col-
ored Petri nets, even in the Maria formalism, the translation step introduces
additional transitions which generate intermediate states that are not relevant
for the verification purpose. Secondly, the state vectors exhibited by models ob-
tained from the translation of a program are usually quite large as software
make heavy use of structured data types. Thus, though optimized to represent
multiplicity in a compact way [4], the encoding scheme of Maria fails to rep-
resent efficiently state vectors with large color domains, and many tokens in
places.

Helena has been designed from this previous experience to meet these two
requirements : enable a straightforward and automatic translation of concurrent
programs without resort to the introduction of many useless transitions and
intermediate states, and handle state spaces with large state vectors.

3 Main Features of Helena

High Level Description Language. The class of high level Petri nets used
in Helena was primarily designed to enable the simulation and verification of
concurrent Ada programs. To achieve this, we naturally decided to include in
Helena the possibility to define high level data types. There are four categories
of data types : numerical type, enumerate type, structured type, and vector, i.e.,
array type. Another feature of Helena is the possibility for the user to define
complex functions written in a pseudo-C syntax. These functions may then be
used in arc expressions. Such a possibility allows to automatically translate sub
programs and sequences of statements which do not include synchronizations into
a single transition, provided that the input programming language can easily be
mapped into Helena functions.

Compilation and Execution of the Model. A well known and efficient ap-
proach to reduce the execution time of a model checking procedure is to compile
the model into a source code which will correspond to the actual reachability
analyzer. Compiling and executing the model has numerous advantages over
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an interpretation of the model. Mainly, the evaluation of the expressions in arc
mappings can be drastically fasten. Tools that use this technique include Prod,
Spin [5], and Maria. It has been shown in [6] that this technique greatly reduces
the execution time even for small models for which we may think that the com-
pilation of the generated code is a too severe overhead (which does not exist if
the model is interpreted).

Helena models are also translated into executable code. For performance and
portability issues we chose the language C. In order to ease the readability of
the generated code, and the debugging of the compilation process, this code is
commented, nicely formatted, and divided into several libraries.

Enabling Test Algorithm. Verification and simulation tools based on high
level Petri nets spend a significant amount of time in determining under which
assignments (or bindings) a high level transition is firable. This non trivial prob-
lem is known under the term of enabling test. The enabling test algorithm im-
plemented in Helena has been described in [7]. It basically includes two main
components.

1. We exploit the locality principle of Petri nets which states that the firing of
a transition only affects the status (enabled/disabled) of its neighbor tran-
sitions. Thus, a depth first search algorithm can benefit from this locality
principle by
(a) maintaining a set of enabled transitions
(b) updating this set when a transition instance is fired by only inspecting

the neighbor transitions of the fired instance.
Our implementation of this locality principle is based on the definitions of
structural conflict and causality [8]. The basic idea is to translate these
relations into equivalent constraints systems [9] before the search algorithm.
During the search, the systems built are solved in order to identify disabled
and enabled bindings. We illustrate our purpose with an example. Let us
consider the net of figure 1.
From the structure of the net and the arc expressions we can deduce that the
firing of an instance (t, 〈Xt〉) disables the firing of an instance (u, 〈Xy, Yu〉)
if the following constraint is verified : [Xt = Xu ∧ Yu = 0]. During the
search, at each firing of an instance of transition t we instantiate this system
with the firing binding to identify the instances of u which are disabled. We
also observe that the firing of an instance (t, 〈Xt〉) enables the firing of an

q

p

u t

v

〈Xt〉

〈Xt, 0〉

〈Xv〉

〈Xu, Yu〉

Fig. 1. Translating arc expressions into constraints system
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instance (v, 〈Xv〉) if the following holds : [Xv = Xt]. Consequently, the firing
of an instance (t, 〈Xt〉) causes the insertion of the instance (v, 〈Xt〉) into the
set of enabled transitions without any additional check.

2. We showed in [7] that this approach is unfortunately not always sufficient
to determine valid transitions assignments at the new marking. In most
cases, this must be followed by an unification algorithm. The algorithm we
proposed is an improvement of Mäkelä’s unification algorithm [10].

State Space Storage. Model checking tools usually represent states in two
different forms :

– an expanded form which is convenient for the implementation of the transi-
tion relation

– a compressed form in which expanded states are encoded before their inser-
tion into the state space in order to save memory

An interesting feature of Helena is the way it represents compressed states. The
method, called Δ-markings method, has been described in [11]. The underlying
idea is to store a large set of states in a non explicit way by only storing references
on others states. Figure 2 illustrates the principle of the method. Markings met at
a depth d such that d mod kδ = 0 (with kδ a user defined parameter) are stored
explicitely whereas other markings are represented in the state space by a couple
(pred, (t, ct)), where pred is the ”address” in the hash table of one of the pre-
decessors of the marking and (t, ct) is the transition instance which firing leads
from the predecessor to the marking. Retrieving the actual value of a marking
from its ”Δ encoding” can simply be done by following the links which point
on the predecessors until a marking stored explicitely is reached. The marking
is then obtained by firing the sequence of instances (t, ct) which label the links
followed to reach the explicit marking. For instance, the actual value of marking
m can be retrieved by first backtracking to m′ and then to m0 and to apply
on it the firing of sequence (t, ct).(t′, ct′). For models exhibiting large state vec-
tors, the compression ratios observed are quite impressive, whereas the method
becomes less interesting for small models. The price to pay is an acceptable in-
crease of the run time. Both the compression ratio and the run time increase
can be influenced by parameter kδ.

The state collapsing [12] method of Spin is also implemented in Helena. This
method is based on the observation that even if the set of syntactical possible
values for a token in a place is huge (let us denote it size by m), the set of values
really met during the search (which size is denoted by n) is in practice usually
much smaller. This is so because the types of the places and transitions of the net
are usually over-approximations made by the user of the possible values really
met during the search.

With the collapse method a token is represented with log2(n) bits. This ”col-
lapsed token” is in fact an index of a table of size n which stores all the ”true
tokens” already met during the search on log2(m) bits. This table is initially
empty, and filled during the search by the token values met. Thus, we make use
of the two following functions to query the tokens table:
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Δ-marking pointer

Δ-marking

Explicit marking

Sequence firing

Transition firing

m0

m′

m

Depth = 0

Depth = kδ

Depth = 2.kδ

(t′, ct′)

(t, ct)

Fig. 2. Illustration of the Δ-markings method

– index of(token t) → int looks for token t into the tokens table and returns
the index at which the token has been found. It may also add an entry in
the table if the token is not already in it.

– token at(int i) → token returns the token at index i in the tokens table.

Since n can not be known a priori, Helena can detect overflows in this table, i.e.,
cases where the number of different tokens met is greater than n, and report it
to the user who, in turn, can increase it and rerun the search. This restriction
may seem quite bothering, but after intensive experiments, we observed that
overflows are usually quickly detected during the search, causing only a small
run time overhead.

Structural Abstraction Techniques. The efficiency of the explicit model
checking approach is seriously limited by the state explosion problem inher-
ent to the concurrent execution of several components. An efficient way to
tackle this problem is to perform structural abstractions on the initial model in
order to obtain a simpler model which is equivalent to the initial one for to the
specified property. For Petri nets and Colored Petri nets, transitions agglom-
erations are surely the most efficient abstraction techniques. They have been
defined by Berthelot in his doctoral thesis [13], and generalized by Haddad to
Colored Petri nets in [14]. Transition agglomerations merge consecutive transi-
tions into a virtual atomic one which effect is the composition of the effects of
these transitions. It results in a drastic reduction of the combinatory explosion
due to the elimination of some intermediate states. In addition, the complexity
of these transformations is linear with respect to the size of the net, and their
application is totally automatic.

These agglomerations are implemented in Helena. This implementation is
based on the symbolic calculus of some structural relations which ensure cor-
rect agglomerations in the unfolded net. Though this symbolic computation is
not always possible, it usually works fine. To our best knowledge, Helena is cur-
rently the only tool that implement structural agglomerations for high level Petri
nets.
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Stack Representation. Model checking algorithms based on a depth first
search, e.g., LTL model checking, store the set of non fully processed states in
a stack. For some models, this stack can grow very large, and include almost
all the states of the state space. For instance, models for which the state space
forms a single strongly connected component usually follow this behavior. Thus,
an awkward choice for the representation of this stack can lead to important
memory wastes.

In Helena, the stack is represented as a vector of bits, and it uses a nice prop-
erty of Petri nets : the transition relation is a reversible mechanism, that is, given
a marking m and a transition t, there is a single marking m′ such that m′[t〉m.
This marking m′ is defined by ∀p ∈ P, m′(p) = m(p) + W−(p, t) − W+(p, t).
Instead of representing the search stack as a stack of states we therefore chose
to represent it as the sequence of transition bindings which leads from the initial
marking to the current marking. When a state has been fully expanded, the
binding on top of the stack is ”unfired”, and the next enabled binding is pro-
cessed. This representation can naturally be combined with the collapse method
to store transition bindings of the stack more compactly.

Expressing State Properties. The query language of Helena is rich enough
to express a wide range of state properties. It is based on four basic operations :

– The count operation allows to count the number of distinct items in a place
which fulfill a given condition.

– The mult operation allows to count the cumulated multiplicities of distinct
items in a place which fulfill a given condition.

– The exists token operation allows to check that at least one token in a
place fulfills a given condition.

– The forall token operation allows to check that all the tokens present in a
place fulfills a given condition.

For instance, the property

forall_token(p in P : exists_token(q in Q : q->1 = p->2))

could be stated in an informal way as : for each token p held in place P there is
a token q in place Q which is such that the first component of q and the second
component of p are equal.

4 Benchmarks

We have compared our tool with Maria to study the performances of both tools
concerning time and memory consumption. We considered these six examples :

– The distributed database system
– The slotted ring protocol
– The dining philosophers
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– The sieves of Eratosthene to find prime numbers
– The leader election protocol of Chang and Roberts
– The Peterson algorithm for the mutual exclusion problem

All these examples can be found in the Helena distribution (directory samples).
Experiments were done on a Pentium 4 with 2.5Ghz and a main memory of
1Gb. To allow a fair comparison, Maria was invoked with option --compile
which allows to compile arc expressions into a dynamically linkable library. In
addition, no capacity constraint was indicated in the Maria model and structural
agglomerations were disabled in Helena in order to obtain the same numbers of
markings and arcs.

The results of our experiments are reported in table 1. For each model, row T
reports the times observed for the exploration of the state space in seconds, row S
reports the size of the state space in kilobytes, and row V reports the average size
of the state vector in bytes. Compilation times of the models are included. Helena
was invoked with several values of parameter kδ within the set {1, 5, 10, 20, 50}.
Let us recall that kδ is the parameter of the compression method implemented
in Helena. The higher this parameter is, the more compressed the state space

Table 1. Results of the Comparison of Helena with Maria

Maria Helena
kδ = 1 kδ = 5 kδ = 10 kδ = 20 kδ = 50

The distributed database system, N=12, 2 125 765 states

T 900 452 492 533 778 782
S 303 409 336 330 80 111 52 496 16 493 15 997
V 146.15 162.01 38.59 25.29 7.95 7.71

The dining philosophers, N=12, 4 126 351 states

T 360 306 425 474 549 647
S 57 992 67 947 35 679 31 587 29 527 28 290
V 14.39 16.86 8.85 7.84 7.33 7.02

The sieves of Eratosthene, N=40, 2 028 969 states

T 116 90 121 151 206 368
S 82 056 92 868 35 274 28 046 24 432 22 294
V 41.41 46.87 17.80 14.15 12.33 11.25

The leader election protocol, N=14, 1 518 111 states

T 155 103 141 181 264 354
S 29 367 33 258 15 930 13 667 12 786 11 616
V 19.81 22.43 10.75 9.22 8.62 7.84

The Peterson algorithm, N=4, 3 407 946 states

T 136 91 133 154 188 315
S 35 899 43 366 28 287 26 511 25 630 25 094
V 10.78 13.03 8.50 7.97 7.70 7.54

The slotted ring protocol, N=8, 3 294 720 states

T 214 164 245 276 325 401
S 37 622 42 760 26 370 23 456 23 342 22 730
V 11.39 13.29 8.20 7.57 7.25 7.06
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will be, and the more slow the search will be. If kδ = 1 then no compression
is performed. In addition, the state collapsing method was not helpful for these
simple models and therefore disabled.

We observe that the results obtained by Helena without any compression
technique are comparable to the ones obtained by Maria. The encoding scheme
of Maria gives a slight advantage to Maria in terms of memory usage, while
Helena usually explores the state space in less time. When using the Δ-markings
method, Helena outperforms its competitor concerning the size of the state space,
especially for models with large state vectors (the distributed database system,
and the sieves of Eratosthene). The best compression ratio is obtained for the
distributed database system, with kδ = 50. For this case, the size of the state
space is divided by almost 19. The drawback is an increase of the execution
time. This one is acceptable for low values of kδ but tends to grow with it. For
models with small vectors, e.g., the slotted ring protocol, our storage method
is clearly less interesting though a reduction factor of 2, which is the average
reduction factor observed for these models, can still be helpful for systems with
large numbers of states. Finally, we observe that with our storage method, the
average size of the state vector could be reduced to approximatively 10 bytes,
whatever the model is.

5 Conclusions and Perspectives

The validation of software is a difficult problem. Few tools based on high level
Petri nets have been designed to face this challenge as most of them focus on
the representation of control, e.g. tools based on Well Formed Petri nets such as
GreatSPN [15], over data. Thanks to multiple features, Helena can handle the
validation of software systems.

The possibility to define high level data types and functions enables to model
concurrent software written in high level programming languages such as Ada
in a succinct way.

The Δ-markings method [11] is implemented in Helena. This one is partic-
ularly efficient when dealing with state spaces with large state vectors. This is
why we believe that it should be adapted within the scope of the verification of
software as these make heavy use of structured data types and usually exhibit
large state vectors.

Lastly, structural abstractions help to tackle the state explosion problem.
We plan to extend Helena in the following ways :

– At the current implementation stage, Helena supports the verification of
state properties and the deadlock freeness. We plan to extend the field of
properties that Helena can verify by including a module for the verification
of linear time temporal logic properties (LTL). An interface with the exten-
sible library SPOT [16] is currently under study. The main interest of using
SPOT is that it relies on transition-based generalized Büchi automata and
allows translation of LTL formula to smaller automata and thus, smaller
synchronized products.
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– The current version of Helena tackles the state explosion problem by the use
of structural abstraction techniques. We envisage to combine these with the
stubborn set method of Valmari [17, 18, 19]. However, defining an algorithm
which computes good stubborn sets for colored Petri nets is a difficult task.
To our best knowledge, the only tool that compute stubborn sets for colored
Petri nets (without unfolding) is CPN tools [20]. The algorithm has been
described in [19].

– New transitions agglomeration rules have been recently defined for ordinary
and colored Petri nets in [21, 22]. An implementation of these agglomerations
in Helena is scheduled.

Availability. Helena is a free software available under the conditions of the
GNU General Public License. It can be downloaded at the following URL :
http://helena.cnam.fr.
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Abstract. Many consider simulation to be a highly specialist activity:
it is difficult to undertake and is even more difficult to understand its
outcomes. The new version of the business process modeling tool Protos
attempts to more closely integrate modeling and simulation facilities into
one tool. The assumed benefit is that business professionals may more
easily undertake simulation experiments when they are enabled with the
same tool to extend their existing process models to carry out simulation
experiments. This paper explains how the existing engine of the Petri-
net based tool ExSpect is integrated into Protos 7.0. It also shows the
extended user interface of Protos and the simulation reports it generates.

1 Introduction

In the early 90s, it was no less than a revolution when companies started fo-
cusing their attention on the performance of entire business processes. In the
21st century, “process thinking” has become mainstream organizational prac-
tice [11]. The pursuit of specifically supporting business processes with all kinds
of methods, techniques, and systems has become known as Business Process
Management (BPM) [2].

For any BPM effort, which includes designing, enacting, controlling, or an-
alyzing a business process, it is important to have a conception of the business
process in question. Various approaches exist to model such business processes,
but particularly graphical approaches such as the UML and IDEF have become
prevalent. Petri nets too have become quite popular in this respect, resulting
in various proposed Petri net classes (see e.g. [8]). The influence of Petri nets
on other modeling languages is substantial; consider for example how they in-
spired UML’s Activity Diagrams. Next to widespread academic and industrial
use of Petri nets for the purpose of business process modeling, various commer-
cial vendors made Petri nets the backbone of their process-aware information
systems. Consider, for example, the COSA Workflow Management System and
the Dynamic Enterprise Modeler of the SSA ERPLN System (formerly known
as BAAN).

G. Ciardo and P. Darondeau (Eds.): ICATPN 2005, LNCS 3536, pp. 465–474, 2005.
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The BPM modeling and analysis tool that we will focus on in this paper
is Protos from the company Pallas Athena. Current versions of Protos are in
use by thousands of organizations in more than 25 countries. In The Nether-
lands alone, more than half of all municipalities use Protos for the specifica-
tion of their in-house business processes. Protos is perfectly suitable to model
well-defined Petri net structures. Nevertheless, it also permits freehand
specifications of business processes without formal semantics, e.g. to support
initial and conceptual modeling. In an earlier publication [1] we reported on the
use of Protos in the context of the Petri-net based ExSpect tool. We showed
how a specific set of Protos models could be automatically translated to be en-
acted and analyzed with the tool ExSpect (for an introduction, see [7]). Due to
the formal Petri net semantics of Protos models, translations to various other
process-based systems are feasible as well, e.g. to the workflow management
system COSA and the workflow analyzer Woflan [12].

The main use of Protos is to define models of business processes as a step
towards either the implementation of quality systems, the redesign of a busi-
ness process, communication enhancement between process stakeholders, or the
implementation of workflow management systems. Until now, Protos only al-
lowed for basic analyses of the models. For example, it is possible to view a
Protos process model from different perspectives, i.e. the data, user, or control
logic perspective. Considering the main use of Protos, it can perhaps be imag-
ined that a more quantitative analysis of a business process may be valuable.
For example, ahead of the implementation of a workflow management system, a
simulation of a process assuming such a system to be in place could give insight
into the attractiveness of pursuing an implementation project. Similarly, alterna-
tive redesign scenarios of a business process could be compared in terms of their
ability to meet due dates, execution cost, etc. In short, many of the advantages
of simulation seem to be applicable in the realm of business processes, just as
they are in the design of more tangible artifacts such as airplanes and cars.

Taking into account the popularity of process modeling, it may come as a
surprise that simulation is hardly applied by the same business professionals that
use tools such as Protos for modeling. Simulation is considered by many as a
highly specialist activity, which is difficult to undertake, while it is even more
difficult to understand its outcomes. Protos 7.0 is an attempt to more closely
integrate modeling and simulation facilities into one tool. The assumed benefit
is that business professionals may more easily undertake simulation experiments
when they find out that they could use the same model and the same tool for this
purpose. By restricting the simulation settings and the development of a simple
user interface, it is expected that the parameterization of a business model is
understandable and executable by most business professionals. By creating a
standardized simulation report, it is expected that the analysis of a simulation
becomes easier too. The main technological means to accomplish the integration
is to incorporate the engine of the Petri-net based package ExSpect into the
Protos software architecture.
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This paper is structured as follows. In section 2, the main architecture of
Protos 7.0 is explained. Section 3 presents a short tour through the user interface
of the tool, illustrated with an example of the application of Protos 7.0. This
paper ends with a conclusion that reflects on the envisioned use of Protos and
future work.

2 Architecture

In a bird’s eye view, Protos 7.0 embeds the ExSpect COM-server [1] (which
we simply call the server from now on) and communicates with the server by
means of two XML [4] formatted streams. The first formatted stream is used to
communicate the process modeled in Protos to the server; the second stream is
used to communicate the simulation report back to Protos. For ease of reference,
we will call these streams the process stream and the report stream. Because the
formats of both streams give a good overview of the simulation features offered
by Protos 7.0, this section will go into details about them.

To map the process stream onto an ExSpect stream, an XSLT [5] file is used.
One advantage of doing so is that by replacing this XSLT file we can also feed
the process stream to a different simulation server. For example, we can use an
XSLT file that maps the process stream onto a CPN Tools [10] stream, and use
CPN Tools to obtain a simulation report.

2.1 Process Stream

The following figures are XMLSpy content model views [3], which visualize the
XML schema [6] that underlies the process stream. The root element of the

Fig. 1. Format of a process
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Fig. 2. Format of duration (and histogram)

schema is called run, for which Figure 1 shows a high level overview. From this
figure, we learn for example, (i) that a process element contains (in the given
order) a set of resource elements, a set of status elements, a set of task ele-
ments, and an arrival element, and (ii) that an arrival element contains either
a batch element or a stochastic element. For some elements shown by Figure 1
the contained elements are not shown (which would take too much space), which
is indicated by a plus sign underneath the element. For these elements, namely
resource, batch, duration, and stochastic, Figure 2 shows the contained elements,
where elements resource and batch have type histogramType and elements dura-
tion and stochastic have type durationType.

The simulation element prescribes the length of one subrun (length), the
number of subruns used for measurements (subruns), and the number of sub-
runs used to obtain a reasonable starting state (and for which the measure-
ments are discarded) (start). Thus, the length of the entire simulation run equals
(start+subruns)*length. A resource element contains only the name of a partic-
ular resource class (or role) (name) and a histogram that describes the number
of available resources of this class at a specific time. A status element contains
only its name, and basically corresponds to a place in a Petri net. A task ele-
ment basically corresponds to a transition in a Petri net and contains up to 10
names of input statuses (input), 10 names of output statuses (output), the name
of the resource which should perform the task (need), the fixed and variable
cost of performing this task (cost), and a function for determining the time it
takes to perform it (duration). Furthermore, the task contains its name (name),
its frequency (frequency), and its join and split behavior (join, split). A task
frequency determines the relative weight of a task and is relevant only if it is
involved in a choice. If two tasks with frequencies f1 and f2 share input places,
and if both tasks can be chosen, then the probabilities the tasks are chosen
are f1/(f1 + f2) and f2/(f1 + f2). Please note that output statuses contain
also frequencies, which determine the chosen output status if that tasks split
behavior is XOR. A task’s join and split behavior can either be AND (all in-
put/output statuses) or XOR (exactly one input/output status). A batch element
results in a batch-driven arrival process, whereas a stochastic element results in
a case-based arrival process with stochastic inter-arrival times.
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2.2 Report Stream

Figure 3 visualizes the XML schema that underlies the report stream. The report
contains the following items:

– the utilization rate of a resource class (resource/utilization), that is, the part
of the time available resources of this class were actually working on some
task;

– the wait time of a status (status/waitTime), that is, the average time a case
has to wait for synchronization in this status;

– the combined wait and queue time of a status (status/waitQueueTime), that
is, the average time a case spends in the corresponding status;

– the cost of a task (task/cost);
– the queue time of a task (task/queueTime), that is, the average time a case

has to wait for a resource to become available for it;
– the work time of a task (task/workTime), that is, the average time it takes

to perform this task for any case;
– the sojourn time of cases (time), that is, the average time a case spends in

the entire process;
– the cost of cases (cost), that is, the average cost per case for the entire

process;
– the work time of cases (workTime), that is, the average work time per case

for the entire process.

As Figure 3 shows, the report contains for each item an estimated average
(mean), a 90% confidence interval (lo90 up to hi90 ) and a 99% confidence in-
terval (lo99 up to hi99 ).

Fig. 3. Format of a report
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3 User Interface

The User Interface for the simulation feature in Protos 7.0 includes native forms
to parameterize the process stream, and Microsoft Excel to inspect the (con-
verted) report stream.

3.1 Parameterizing the Process Stream

Figure 4 shows a simplified complaint-handling process of an actual Dutch in-
spection agency, modeled using Protos. After a complaint has been received, we
first check whether the complaint is for the inspection agency or not. If not, the
complaint will be referred. The inspection agency first stores the relevant data
on both the complainant and the complaint, and then determines the procedure
to be followed etc.

If we take a closer look at the properties of one activity, for instance De-
termine procedure, we discover the role occupied with the execution of this ac-

Fig. 4. An example process modeled in Protos
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Fig. 5. Setting simulation parameters for activity determine procedure

Table 1. Simulation parameters on non-activity levels

Object Parameters

Role Number of persons
Cost

Connection Frequency

Trigger Frequency

Proces Number of Sub-runs
Length of Sub-run
Number of Start-runs
Arrival Time of Cases Stochastic Function

tivity. We also see the tab to set the simulation parameters; this is shown in
Figure 5.

Figure 5 shows the simulation parameters we can set for the activity De-
termine procedure. An activity corresponds to a task element in the process
stream, and every parameter corresponds to some element from that task ele-
ment: a number of resources corresponds to a resource element (a one-bin his-
togram), a resource class corresponds to a need element, a fixed cost corresponds
to the fixed attribute of a cost element, and a frequency corresponds to the
frequency attribute.

At the top, we can set the number of resources needed to perform this activ-
ity (which resource class is needed is set on the General tab), the fixed cost of
performing this activity, and its frequency.
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At the middle, we can set a stochastic function to determine the time needed
to perform this activity for the case at hand (duration element) together with
its parameters. In this case, the activity Determine procedure uses a PERT Beta
[9] function with an optimistic time of 100 units (minimum), a pessimistic time
of 260 units (maximum), and a most likely time of 180 units (modus).

At the bottom, we can set the join and split behavior of the activity (join
and split attribute). In this case, the activity Determine procedure synchronizes
(and) cases on all input places, and selects exactly one output state (xor) to
forward the case to. Except for the parameters on the activity level, parameters
on four other levels can be set: on the process level, on the resource level, on
the arc level (on output arcs, frequencies can be set), and on the trigger level.
Table 1 shows these levels with their parameters.

3.2 Inspecting the Report

Figure 6 shows the final report (using Microsoft Excel). For the sake of
completeness, we mention that we changed the format of the data cells (two

Fig. 6. Report for the example process
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digits following the decimal point) and reduced the column width of the data
columns.

At the moment, a report can only be inspected using this spreadsheet for-
mat. At a later stage, we plan to incorporate the possibility for inspection (and
visualization) into the Protos tool.

A report like this reveals a lot of information. For example, from Figure 6 we
can conclude that the wait time at the Complaint archived status is excessive
and needs to be reduced. Furthermore, such a report could be used for validating
the process modeled by comparing the results against measurements taken from
the real-world situation.

4 Conclusion

In this paper, we have presented Protos 7.0, which extends the popular business
process modeling tool Protos with simulation capabilities. We showed how the
technical integration of the engine of the Petri-net based ExSpect tool into Protos
7.0 was established. Using a simplified case from practice, we illustrated how
Protos models can be extended with various parameter settings so that the
simulation of such models becomes feasible. Finally, we showed what the output
of a simulation looks like in Protos 7.0 and how such output may be used to
improve the design of the process.

As Protos 7.0 has been released only recently, we have no figures on industrial
usage of the simulation facility. A beta version of the tool has been introduced
recently in a course of the bachelor education program on industrial engineering
at Eindhoven University of Technology. This has led to various improvements
of the tool, but, more importantly, seems to confirm the relative ease of cre-
ating simulation models by non-simulation experts. Considering this and the
widespread use of earlier Protos versions, we expect business professionals to get
increasingly involved in simulation experiments. Nevertheless, the gathering of
accurate data needed as input for a simulation still needs to be performed by
professionals.

In upcoming versions of the tool, we plan to improve the tool in several ways.
First, we plan to enable the process designer to specify histograms for certain
simulation parameters, for example, for resource availability, or for interarrival
times. The format of the process stream and the simulation engine already pro-
vide support for these histograms, but the user interface does not yet. Second, we
plan to integrate the report into the tool. The current version of the tool relies
on Microsoft Excel for displaying the report results, while we could display these
results in the tool itself. For example, wait times could be displayed near the
corresponding status and queue times near to the corresponding activity. Ex-
cessive queue and/or wait times and ditto utilization rates, which are likely to
correspond to bottlenecks, can even be visualized using, for example, a coloring
scheme.
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Köhler, Michael 309

Lesire, Charles 329
Liauzu, Stéphane 208
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