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Preface

The belief that a committee of people make better decisions than any individual
is widely held and appreciated. We also understand that, for this to be true, the
members of the committee have to be simultaneously competent and comple-
mentary. This intuitive notion holds true for committees of data sources (such
as sensors) and models (such as classifiers). The substantial current research in
the areas of data fusion and model fusion focuses on ensuring that the differ-
ent sources provide useful information but nevertheless complement one another
to yield better results than any source would on its own. During the 1990s, a
variety of schemes in classifier fusion, which is the focus of this workshop, were
developed under many names in different scientific communities such as machine
learning, pattern recognition, neural networks, and statistics. The previous five
workshops on Multiple Classifier Systems (MCS) were themselves exercises in
information fusion, with the goal of bringing the different scientific communi-
ties together, providing each other with different perspectives on this fascinating
topic, and aiding cross-fertilization of ideas. These five workshops achieved this
goal, demonstrating significant advances in the theory, algorithms, and applica-
tions of multiple classifier systems.

Following its five predecessors published by Springer, this volume contains the
proceedings of the 6th International Workshop on Multiple Classifier Systems
(MCS 2005) held at the Embassy Suites in Seaside, California, USA, June 13–15,
2005. Forty-two papers were selected by the Scientific Committee, and they were
organized into the following sessions: Boosting, Combination Methods, Design
of Ensembles, Performance Analysis, and Applications. The workshop program
was enriched by an invited talk given by Leo Breiman (University of California,
Berkeley, USA).

The workshop was organized by the NASA Ames Research Center (USA),
Rowan University (USA), and PureSense Environmental (USA). It was spon-
sored by the International Association for Pattern Recognition through its Tech-
nical Committee TC1: Statistical Techniques in Pattern Recognition. We also
wish to express our gratitude to all who helped to organize MCS 2005. We thank
the authors of all the submissions for their hard work and efforts toward making
this workshop a true exercise in information fusion. We also thank the mem-
bers of the Scientific Committee and many other reviewers for performing the
difficult task of selecting the best papers from a large number of high-quality sub-
missions. Special thanks to Terry Windeatt (University of Surrey, UK), Darren
Galaviz (NASA), John Williamson (PureSense), Christopher Peri (PureSense),
and Giorgio Fumera (University of Cagliari, Italy) for their substantial
contributions to local organization and website management.

June 2005 Nikunj C. Oza, Robi Polikar, Josef Kittler, and Fabio Roli
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Semi-supervised Multiple Classifier Systems: 
Background and Research Directions 

Fabio Roli 

Dept. of  Electrical and Electronic Engineering, University of Cagliari, 
Piazza d’Armi, 09123 Cagliari, Italy 

roli@diee.unica.it 

Abstract. Multiple classifier systems have been originally proposed for 
supervised classification tasks. In the five editions of MCS workshop, most of 
the papers have dealt with design methods and applications of supervised 
multiple classifier systems. Recently, the use of multiple classifier systems has 
been extended to unsupervised classification tasks. Despite its practical 
relevance, semi-supervised classification has not received much attention. Few 
works on semi-supervised multiple classifiers appeared in the machine learning 
literature. This paper’s goal is to review the background results that can be 
exploited to promote research on semi-supervised multiple classifier systems, 
and to outline some future research directions. 

1   Introduction 

During the 1990’s, several classifier fusion schemes, especially the ones that operate 
at the so-called decision-level, have emerged under a plethora of names within 
various scientific communities, including information fusion, machine learning, 
neural networks, pattern recognition, and statistics. The initial works on multiple 
classifier systems (MCS) dealt almost exclusively with supervised classification, and 
this trend continued over the years. In the five editions of MCS workshop [1], most 
papers have dealt with design methods and applications of supervised multiple 
classifier systems. Only recently, the multiple classifiers approach has been extended 
to unsupervised classification, and some methods have been proposed to combine 
multiple clustering algorithms [2,3]. Although past MCS research was focused on 
supervised classification, many pattern recognition applications cannot be addressed 
effectively under the pure supervised approach. In fact, there are applications that are 
characterized by two contrasting factors: the need for large quantities of labelled data 
to design classifiers with high accuracy, and the difficulty of collecting such data. For 
example, in text classification, the common end-user is not available to manually 
label a large amount of data necessary to achieve reasonable classification accuracy 
[4]. In remote-sensing image classification, Jackson and Landgrebe pointed out that 
the large number of spectral bands of modern sensors and the large number of land-
cover classes of interest, require a number of training examples that are too expensive 
or tedious to acquire [5]. Similar scenarios occur in face recognition, medical 
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imaging, and intrusion detection in computer networks [6,7,8]. On the other hand, in 
these applications, collecting unlabelled data is often easy and inexpensive. In many 
text classification applications (e.g., web page categorization), unlabelled examples 
are freely and abundantly available. In remote sensing, thanks to the high spatial 
resolution of modern sensors, a large number of unlabelled examples become 
available when new images are captured. It is easy to see that such applications 
demand classification methods that achieve high accuracy using only a few labelled 
but many unlabelled examples. Semi-supervised classification deals with the design 
of classifiers using both labelled (possibly few) and unlabelled training examples. 
Various approaches to semi-supervised classification have been proposed [9]. 

Despite the theoretical and practical relevance of semi-supervised classification, 
the proposed approaches so far dealt with only single classifiers, and, in particular, no 
work was clearly devoted to this topic within the MCS literature. To the best of our 
knowledge, few works on semi-supervised multiple classifiers have appeared in the 
machine learning literature [7,10,11,12,13]. 

This paper is aimed at reviewing the background results that can be exploited to 
promote research on semi-supervised multiple classifier systems, and to outline some 
future research directions. Section 2 provides the basic concepts and briefly reviews 
the main approaches to semi-supervised classification. Section 3 reviews the few 
works which dealt with semi-supervised multiple classifiers, and attempts to give a 
systematic definition of semi-supervised MCS. Some directions for future research 
are outlined in Section 4.  

2   Semi-supervised Classification 

Given a set Dl (usually, small) of labelled data, and a set Du (usually, large) of 
unlabelled data, semi-supervised classification methods aim to design classifiers using 
both sets. In this section, we first review briefly the main methods proposed for semi-
supervised classification, with a particular attention paid to the co-training method 
due to its strong connection to MCS. Our review is biased due to its restricted focus  
on MCS, and consequently is not exhaustive. We refer the reader to [9] for a broader 
overview on semi-supervised classification methods. Finally, we briefly review the 
main arguments on the usefulness of unlabelled data in increasing the classification 
accuracy.  

2.1   Methods for Semi-supervised Classification 

Decision-Directed Methods 
It is easy to see that a most straightforward approach to semi-supervised classification 
should be based on exploiting the available labeled examples in automatically 
assigning class labels to unlabeled data. The basic approach works as follows. An 
initial classifier is designed using the labeled data set Dl. This classifier is then used to 
assign class labels to examples in Du. Then the classifier is re-trained using Dl ∪Du. 
As the convergence of this simple algorithm can not be guaranteed in general, the last 
two steps are usually repeated for a given number of times or until some heuristic 
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convergence criterion is satisfied. It is worth noting that, while traditional pattern 
recognition systems are “open-loop” systems, this approach corresponds to the 
implementation of simple “closed-loop” systems [15,16]. Although encouraging 
results have been reported in real applications [14], it is easy to see that the 
performance of this approach strongly depends on the accuracy of the classifiers used 
to assign the “pseudo-labels”. The classification accuracy can improve over the 
iterations only if the initial and subsequent classifiers correctly label most of the data. 
Unfortunately, the issue of labelling accuracy needed to guarantee low generalization 
error is nearly impossible to address [15]. In practical applications, unreliable class 
labels are disregarded using measures of classification confidence in order to limit the 
number of labelling errors. 

This simple approach to semi-supervised classification and its related methods, 
have been referred under various names by different communities: self-learning 
methods [9,15], self-corrective recognition [15,16], adaptive methods, naïve labelling 
approach [17], and decision-directed methods [18]. We choose the last name to refer 
to this paragraph since it reflects well the fundamental mechanism of this approach 
and it is used in statistical parameter estimation and signal processing areas. 
 
Expectation-Maximization Methods 
Expectation-maximization (EM) is a well known class of iterative algorithms for 
maximum-likelihood or maximum a posteriori estimation in problems with 
incomplete data [19,20]. In the case of semi-supervised classification, the unlabeled 
data are considered incomplete because they do not have class labels. The basic EM 
approach first designs a probabilistic classifier (e.g., a Gaussian classifier) with the 
available data set Dl. Then, such classifier is used to assign probabilistically-weighted 
class labels to unlabeled examples by calculating the expectation of the missing class 
labels. Then a new classifier is trained using both the original labelled data and the 
formerly unlabelled data, and the process is repeated.  

The main advantage of EM approach is that it allows exploiting, in a theoretically 
well grounded way, both labelled and unlabelled data. Therefore, it meets the main 
requirement of semi-supervised classification in a natural way. In addition, it is quite 
general, and it has been used with different probabilistic models of classifiers [10,20]. 

Results on different classification tasks showed that EM methods allow exploiting 
unlabelled data effectively. For example, Nigam et al. show that unlabelled data used 
with EM methods in a document categorization problem can reduce classification 
error by up to 30% [20]. On the other hand, Cohen et al. recently showed that EM 
methods can increase the classification accuracy only if the assumed probabilistic 
model of the classifier matches well with data distribution; otherwise, the use of 
unlabelled data can become counter productive [6]. 
 
Co-training 
A co-training approach to semi-supervised classification was proposed by Blum and 
Mitchell in 1998 [21]. The basic idea can be illustrated with the web-page 
classification example originally used by the authors. Web pages can be characterized 
by two distinct types of features: features characterizing the text appearing in the web 
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page, and features characterizing the hyperlinks pointing to the page. The key idea is 
to design two independent classifiers using the text and hyperlink features separately. 
These two classifiers are trained with the initial, small, labelled data set Dl, and it is 
assumed that the classifiers will exhibit a low, but better than random, accuracy (it is 
worth noting that this definition closely resembles the concept of  “weak” classifier 
used in the MCS field). Each classifier is then applied to the unlabeled examples. For 
each classifier, the unlabelled examples that received the highest confidence by this 
classifier are added to labelled data, so that the two classifiers contribute to increase 
the data set. Both the classifiers are re-trained with this augmented data set, and the 
process is repeated a specified number of times. When the co-training process 
finishes, the two resulting classifiers can be combined by the product of the outputs. 
However, it is worth noting that the basic co-training algorithm does not contain this 
combination phase. In fact, the main goal of this approach is to increase the accuracy 
of the two individual classifiers by co-training. But the reported results have shown 
that the combination can further increase the classification accuracy. 

Intuitively, co-training is expected to work because the two classifiers are assumed 
to be “complementary”, thanks to the use of disparate features. In particular, a 
classifier may assign correct labels to certain examples while it may be difficult for 
the other classifier to do so. Therefore, each classifier can increase the training set to 
be used by the other classifier. It should be also noted that co-training is expected to 
increase the size of the training set more quickly than what each individual classifier 
could do using a decision-directed, self-learning, mechanism. 

Several authors reported experimental results which show the effectiveness of co-
training [9,22,28]. Blum and Mitchell provided some theoretical support for co-
training within the PAC learning framework [21]. However, the fundamental issue 
about the conditions under which, and the extent at which, the use of unlabeled data 
with co-training can increase classification accuracy is basically unsolved. 

Although, to the best of our knowledge, co-training has always been used with just 
two classifiers, Blum and Mitchell pointed out that this approach can be used with a 
larger ensemble of classifiers, particularly if are “independent”. It is easy to see that 
this makes co-training a good candidate for the development of semi-supervised 
MCS. However, it should be noted that co-training was not originally meant as a 
method to create and combine classifiers; in fact, the basic co-training algorithm does 
not contain any classifier combination. Therefore, a lot of work remains to be done 
about the use of co-training to create good classifier ensembles, and, in particular, 
about the combination techniques when the independence assumption is likely to be 
violated. 
 
Active Learning 
This approach assumes the availability of an external “oracle” to assign class labels 
[9]. Basically, unlabeled examples are repeatedly selected, and the oracle (e.g., a 
human expert) is asked to assign class labels to such data. The goal of active learning 
is to select the most informative unlabeled examples, in order to effectively train the 
classifier with the minimum number of calls to the oracle. To this end, different 
selection strategies have been proposed [9]. For the purpose of this paper, the so-
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called query by committee selection strategy is worth pointing out; an ensemble of 
classifiers is first designed, and then the examples which cause the maximum 
disagreement among these classifiers are selected as the most informative [13].  

2.2   The Added Value of Unlabelled Data 

It is easy to see that the fundamental issues for semi-supervised classification concern 
the conditions and the extent to which the use of unlabeled data can increase the 
classification accuracy reached with a limited set of labelled examples. Experimental 
evidence on the usefulness of unlabeled data is in fact controversial. Some works 
based on current semi-supervised methods support the claim that unlabeled data can 
increase classification accuracy [20,22]. On the other hand, there are experimental 
results showing that unlabeled data can degrade the classification accuracy [6]. The 
few theoretical analyses on the added value of unlabeled data do not yet provide clear 
answers. Some researchers provided qualitative arguments in favour of the usefulness 
of unlabeled data. For example, Nigam et al. suggested that unlabeled data can 
provide information on correlations among features [20]. Castelli and Cover showed 
that unlabeled data are asymptotically useful for classification [23]. Recently, Cohen 
et al. showed that unlabeled data increase classification accuracy of EM methods 
when the probabilistic model assumed for the classifier matches the data generating 
distribution [6]. Despite these valuable works, the conditions and the extent to which 
the use of unlabeled data can increase classification accuracy are not clear for many 
current semi-supervised methods. In particular, clear conditions are not available to 
indicate when the use of unlabeled data is likely to be counter productive, and what is 
the right trade-off between labeled and unlabeled data. However, we already have 
some experimental evidences and theoretical supports on the usefulness of the semi-
supervised methods that we reviewed in the previous section.  

3   Semi-supervised Multiple Classifier Systems 

3.1   Background 

In the past editions of MCS workshop, no work was clearly devoted to semi-
supervised classification. In this section, we review the few works on semi-supervised 
multiple classifiers which, to the best of our knowledge, have appeared in the 
literature so far. 

Miller and Uyar proposed a mixture-of-expert classifier model which allows the 
use both labelled and unlabelled data [10]. The authors assume that the data is well 
modelled by a mixture density, and propose a generalized mixture model where the 
class labels are viewed as random quantities depending on the mixture components. 
This classifier model can be regarded as a mixture-of-experts, because the class 
posterior probabilities have a “mixture” structure where the “gating units” are the 
probabilities of mixture components [31].  The mixture is trained by maximising the 
data likelihood over both the labelled and unlabelled examples using EM algorithms. 
Although the authors have not stressed the aspects specifically related to MCS, this 
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work points out that EM methods can be easily used to design semi-supervised 
probabilistic mixtures of experts. In addition, the authors appropriately stressed an 
important point for extending the range of application of semi-supervised MCS,  
namely, the possibility of regarding the unknown test data as unlabeled, and 
performing a semi-supervision cycle before classifying a new batch of test data. This 
is an important point for the use of semi-supervised MCS in non stationary pattern 
recognition applications [29]. 

To the best of our knowledge, one of the first works clearly devoted to semi-
supervised MCS is by d’Alchè-Buc et al. [11], which is an extension of one authors’ 
previous work. In fact, the goal is to generalize Boosting to semi-supervised 
classification. To this end, they adopt MarginBoost, a version of AdaBoost based on 
the minimisation of an explicit cost functional. Such functional is defined for any 
scalar decreasing function of the margin. As the usual definition of margin cannot be 
used for unlabeled data, the authors extend the margin notion to unlabeled data. In 
practice, the margin is estimated using the MarginBoost classification output. Then, 
they reformulate the cost function of MarginBoost to accommodate both the labelled 
and unlabelled data. A mixture model is used as a base classifier because it is well 
suited to the use of unlabeled data by EM algorithms. Reported results show that 
semi-supervised MarginBoost clearly outperforms the classical AdaBoost only when 
very few labelled data are available (5% labelled vs. 95% unlabeled data).  

Bennet et al. proposed an interesting semi-supervised MCS, named ASSEMBLE, 
which iteratively constructs classifier ensembles using both labelled and unlabelled 
data.  It is worth noting that ASSEMBLE is explicitly aimed at overcoming some 
limitations of MarginBoost [12]. For example, while MarginBoost requires the base 
classifier to be an algorithm well suited to semi-supervision with EM (e.g., a mixture 
model), ASSEMBLE can be used with any cost-sensitive base classifier. ASSEMBLE 
operation alternates between assigning pseudo-classes to the unlabelled data using the 
current ensemble and constructing the next base classifier using both the labelled and 
pseudo-labelled data. ASSEMBLE is shown to work very well in practice, and it won 
the NIPS 2001 unlabeled data competition using decision trees as base classifiers. 

Martinez and Fuentes described an interesting application of semi-supervised MCS 
to face recognition [7]. They reported experiments with MCS made up of five strong 
classifiers (i.e., three k-nearest neighbour classifiers, one multi-layer perceptron, one 
locally weighted linear regression classifier) using a simple decision-directed semi-
supervision method. The classifier ensemble is first trained with a small set of 
labelled data. Then, this ensemble is used to assign pseudo-class labels to unlabelled 
data. These two steps are repeated until the number of available unlabeled data 
becomes lower than the number of pseudo-labelled examples. Their results appear to 
be preliminary, and a more extensive experimentation would be necessary to draw 
final conclusions. However, this work points out the relevance that semi-supervised 
MCS could have for face recognition. 

Melville and Mooney deal with active learning by the query by committee selection 
strategy [13]. They propose an algorithm, named ACTIVE-DECORATE (basically, a 
version of the authors’ DECORATE algorithm devoted to active learning), which 
uses ensembles created by the DECORATE algorithm to select the most informative 
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examples. Experimental results show that this active learning method leads to more 
effective sample selection than query by Bagging and query by Boosting. 

Finally, it is worth mentioning the recent work of Agogino dealing with an agent 
based method to combine different clustering algorithms [32]. Agogino’s ensemble 
method is quite different from traditional classifier combining techniques, as it is 
based on the COIN (COllective INtelligence) framework introduced by Wolpert and 
Tumer [33]. Although it was originally meant for unsupervised classification tasks, its 
use for semi-supervised classification could be investigated. In fact, clustering of 
unlabelled data, followed by the assignment of pseudo-class labels to identified 
clusters by a classifier previously trained with available labeled data, is a possible 
approach to semi-supervised classification [9]. 

3.2   A Definition of Semi-supervised Multiple Classifier System 

Current supervised MCS can be characterized by: 

• Architecture: Also called the topology, the architecture could be parallel, 
serial, dynamic, or a combination thereof. Different taxonomies of MCS 
architectures can be found in [24];     

• Ensemble of Classifiers: A single type of base classifiers can be used 
(e.g.., decision tree), such as in Bagging or AdaBoost, or different 
classification algorithms can be combined. The ensemble can be further 
decomposed into subsets in the case of non parallel architectures; 
Combination Function: Two main types of functions are currently used: 
the so-called fusers wherein all classifiers contribute to the final 
classification, and the selectors wherein for each pattern a single or subset 
of classifiers contributes to the final classification. It should be noted that 
some complex MCS architectures can have various combinations of the 
types [24]. 

In most of the supervised MCS, labelled data are used to design and train base 
classifiers and, if necessary, to implement the combination function. The so-called 
“fixed” combination functions, such as majority voting, average and product of 
classifier outputs, do not require training. On the other hand, there are trainable 
combination functions, such the Behaviour Knowledge Space combiner, which need a 
large and independent set of labelled data. The architecture, however, is usually fixed 
in these cases. 

Therefore, a simple definition of semi-supervised MCS can be given as follows: 

 Semi-supervised MCS is an MCS where the labelled and unlabelled data are 
jointly used to design and train the classifier ensemble, and/or the combination 
function, and/or the architecture.   

The works reviewed in Section 3.1 fit well within the above definition. 
MarginBoost and the semi-supervised mixtures of experts are examples of MCS 
which jointly use labelled and unlabelled data to train the classifier ensemble [10,11]. 
But this definition suggests further uses of unlabeled data in MCS. For example, it is 
well known that the effective use of trainable combiners is seriously limited by the 
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requirement of a large, independent set of labelled examples. As pointed by Raudys 
[25], such examples should be independent of the data set used to train the base 
classifiers. But this requirement is difficult to satisfy in practical applications. For 
some trainable combiners, simple decision-directed and self-corrective algorithms 
using unlabelled data could be investigated to reduce the generalization error. 

4   Research Directions 

On the basis of background presented in Section 3.1, the author thinks that the 
following three research directions should be considered. The following list is not 
obviously exhaustive, and it only outlines three possible directions, without 
discussing in detail the various activities which could be carried out within each 
direction. The main aim is to stimulate research on this challenging topic and to 
promote discussion and activities within the MCS community. 

1. Using unlabelled data in current MCS design 

This research direction should investigate the benefits of using unlabelled data 
within the current MCS design methods.  

As pointed out in section 3.2, unlabelled data could be exploited to improve the 
design of trainable combiners, which often needs a lot of training examples. To this 
end, the use of the decision-directed approach illustrated in Section 2.1 could be 
investigated. A multiple classifier system could be initially created using the available 
set of labelled data. Then, such system could be used to assign class labels to 
unlabelled data, disregarding unreliable class labels on the basis of some classification 
confidence measure. Then base classifiers could be re-trained with the data set 
augmented with the pseudo-labelled data. The last two steps could be iterated for a 
given number of times.  

Unlabelled data could be also exploited in the creation of classifier ensembles. In 
fact, there are methods for the creation of classifier ensembles which could benefit by 
increased data sets. For example, methods based on training data manipulation, such 
as data splitting belong to this category.  

2. Semi-supervised MCS 

The goal of this research direction should be the development of new semi-
supervised MCS.  

Some of the current MCS could be extended to semi-supervised classification in 
simple ways. For example, a first attempt to the development of a semi-supervised 
version of Bagging could be done using a decision-directed algorithm. The same 
approach could be used with other coverage optimisation methods, such as the 
random subspace method [27]. 

As outlined in Section 2.1, the co-training approach can be naturally exploited to 
develop semi-supervised MCS, because, in principle, it can be used with more than 
two classifiers. So far co-training was mainly used when a natural feature subdivision 
exists, that is, when patterns can be characterized by distinct sets of features. This is 



 Semi-supervised Multiple Classifier Systems: Background and Research Directions 9 

 

the case for the web-page classification task considered in the original work of Blum 
and Mitchell [21], and also for some multi-sensor, multi-modal classification tasks 
(e.g., multi-modal biometric recognition). However, when a natural feature 
subdivision does not exist, other techniques could be investigated to split features and 
use co-training. For example, the random subspace method could be used for feature 
splitting [27]. In addition, Goldman and Zhou showed that co-training can be also 
used with different classifiers using the same features [28]. Their work was limited to 
two classifiers, but the use of larger ensembles could be investigated. 

Finally, it should be noted that several methods to create and combine multiple 
classifiers have been developed by the MCS community. On the other hand, various 
approaches to semi-supervised classification have been developed in other 
communities. The development of new semi-supervised MCS should be based on the 
integration of both these bodies of work. 

3. Applications of semi-supervised MCS 

As discussed in the introduction, there are many pattern recognition applications 
which demand semi-supervised approaches, because they are suited for handling the 
scarcity of labelled data, and unlabelled examples are available freely and in 
abundance. On the other hand, it is easy to see that some of these applications could 
also benefit from the use of multiple classifiers (e.g., multi-source remote-sensing 
classification and face recognition [7,30]). Finally, in many applications, a lot of 
unlabelled data are acquired online during the course of operation of a pattern 
recognition system. This suggests the use of semi-supervised methods to design 
adaptive MCS which can improve with use. This could be a promising research 
direction for non stationary pattern recognition applications [29]. 
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Abstract. Boosting is an effecient method to improve the classifica-
tion performance. Recent theoretical work has shown that the boosting
technique can be viewed as a gradient descent search for a good fit in
function space. Several authors have applied such viewpoint to solve the
density estimation problems. In this paper we generalize such framework
to a specific density model – Gaussian Mixture Model (GMM) and pro-
pose our boosting GMM algorithm. We will illustrate the applications of
our algorithm to cluster ensemble and short-term traffic flow forecasting
problems. Experimental results are presented showing the effectiveness
of our approach.

Keywords: boosting, GMM, cluster ensemble, short-term traffic flow
forecasting.

1 Introduction

Boosting [1] is one of the most important developments in classification method-
ology. It can reduce the variance of the unstable classifiers and improve the clas-
sification performance [2]. Some theoretical work suggests that the effectiveness
of this method can be attributed to its tendency to produce large margin classi-
fiers [3]. Mason et al [4] generalized this margin-based idea and derived boosting
algorithms as gradient descent algorithms. They proved that the weights in every
iteration of the boosting algorithms correspond to the gradient of some margin
cost function at ”current” fit. In a recent paper, Rosset et al [5] showed that
the gradient-based boosting methodology can be applied to density estimation
problems and proposed a general boosting density estimation framework. They
also illustrated the potential of their framework by experiments with boosting
Bayesian networks to learn density models.

Gaussian Mixture Model (GMM) [6] is a popular parametric density model
that can approximate any arbitrary probability density functions. Usually we
use Maximum Likelihood Estimation (MLE) to estimate the parameters in a
GMM when data is available. The Expectation-Maximization (EM) algorithm

N.C. Oza et al. (Eds.): MCS 2005, LNCS 3541, pp. 12–21, 2005.
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is an effective method to carry out this procedure. But the main problem EM
faces is that it is sensitive to the initial parameters, which makes it easily get
trapped in a local maximum.

This paper generalizes the work in [5] and proposes a novel approach that
combines boosting and GMM together to make the estimated density model more
accurate. We use the negative log likelihood of the data as our object function and
apply the gradient-based boosting methodology to reduce it gradually until the
termination condition is met. Theoretical analysis of our algorithm guarantees
its feasibility.

We also illustrate two aspects of applications of our algorithm. One is apply-
ing it to solve the cluster ensemble problems. The other is using it to improve
the prediction precision of the short-term traffic flow forecasting system. Exper-
imental results are presented showing the effectiveness of our approach.

This paper is organized as follows: we formally present our Boosting GMM
algorithm in Section 2. Section 3 and section 4 show the applications of our
algorithm in cluster ensemble and short-term traffic flow forecasting respectively,
followed by the conclusions and discussions in section 5.

2 Boosting GMM

Assume that we observe a dataset X which is composed of N i.i.d. d-dimensional
data objects {x1, x2, · · · , xN} drawn from some unknown distribution f(x). The
goal of density estimation is to produce a density function f̂(x) from the dataset
to approximate f(x). The theory of MLE tells us to assess the estimation quality
by maximizing the expected data log-likelihood

L(f̂) = Ex log f̂(x) =
∫

f(x) logf̂(x)dx (1)

where the integral is performed over the whole sample space. Since we don’t
know the true f(x), we can approximate L(f̂) by Monte Carlo integration

L(f̂) ≈ L̂(f̂) =
1
N

N∑
k=1

log(f̂(xk)) (2)

where the expected data log-likelihood is estimated by its empirical value.
As we mentioned in section 1, boosting can be applied to minimize the neg-

ative data log-likelihood −L̂(f̂) gradually. We choose the GMM method as our
initialization method because it can guarantee the negative data log-likelihood
converge to a local minimum. The boosting procedure will be performed after-
wards to mix new components, which offer the largest decrease in the object
function at each step, with the current model sequentially to minimize −L̂(f̂).
We assume the component added in each boosting iteration is also a GMM.

More precisely, assume at each boosting step t, the density function estimated
so far is Ĝt−1. Now we want to add a new component g to Ĝt−1 with a small
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coefficient ε, that is Ĝt = Ĝt−1 + εg. Our objective is to minimize −L̂(Ĝt). We
can write −L̂(Ĝt) in a Taylor series around Ĝt−1 as follows.

−L̂(Ĝt) =
∑N

i=1
− log(Ĝt(xi)) =

∑N

i=1
− log(Ĝt−1(xi) + εg(xi))

=
∑N

i=1
− log(Ĝt−1(xi)) − ε

∑N

i=1

1
Ĝt−1(xi)

g(xi) + O(ε2) (3)

Because ε is small, we can ignore the second order term of ε, and choose g to
maximize

l̂(g) =
∑

i

1
Ĝt−1(xi)

g(xi) (4)

Since Ĝt must also be a probability distribution, we can not simply augment
Ĝt−1 to Ĝt = Ĝt−1 + εg. Instead we introduce a ”forgetting factor” η ∈ [0, 1],
and let Ĝt = (1−η)Ĝt−1 +ηg. Then we normalize the term 1

Ĝt−1(xi)
in equation

(4), and let

Wt(xi) =
1

Ĝt−1(xi)Z
(5)

where Z =
∑

i
1

Ĝt−1(xi)
is the normalization factor. Wt can be viewed as the

sample distribution in boosting iteration t.
In this way, our algorithm will adjust the sampling distribution (weights) of

the dataset at each step according to the current model, and keep on increasing
the total data likelihood until the termination condition has been met. The
detailed description of our algorithm is shown in Table 1.

There is still a problem remain unanswered which is how to determine the
size of a GMM. We choose the Bayesian Information Criterion (BIC) [7] to
solve the problem. BIC is a model selection criterion derived from the Laplace
approximation [8]. The BIC value of a GMM can be defined as follows :

Table 1. Boosting GMM

BoostingGMM

Input: Dataset X = {x1, x2, · · · , xN}, Iteration number T;

Output: GMM ĜT

1. Set Ĝ0 = 0.
2. For t=1:T

(a) Set Wt(xi) = 1

Ĝt−1(xi)Z
, Z =

N∑
i=1

1

Ĝt−1(xi)

(b) Sample the original dataset according to Wt and do GMM estimation
on the sampled dataset, then output the result gt

(c) Let Ĝt = (1 − ηt)Ĝt−1 + ηtgt, ηt = arg minη

∑
i
−log((1− η)Ĝt−1(xi) +ηgt(xi))

If L̂(Ĝt) < L̂(Ĝt−1), break;

3. Output ĜT
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Fig. 1. Data set and the corresponding BIC value curve

BIC(G|X) = log P (X|Ĝ) − d

2
log N (6)

The first term of (6) is the log-likelihood term, where Ĝ represent the GMM
with the ML parameter configuration. The second term is the model complexity
penalty term where d represents the number of parameters in G and N is the
size of the dataset. BIC selects the best GMM corresponding to the largest
BIC value by trading off these two terms. Our experiments show that the BIC
criterion can discover the true GMM size effectively. For example, Fig. 1(a) is a
dataset generated from a GMM composed of nine Gaussian kernels; Fig. 1(b) is
the BIC curve corresponding to the GMM model size.

3 Application in Cluster Ensemble

3.1 Related Work

Clustering is an old data analysis problem that seeks to construct homoge-
neous groups of data objects. A recent advance of clustering techniques is the
development of cluster ensemble methods, which can increase the robustness
and rationality of the clustering solution through combining several individ-
ual clustering results [9]. Previously resampling methods have been successfully
applied to this domain. But these methods are mostly based on the bagging
technique [10], which first randomly sample the original dataset with replace-
ment (which is called ”bootstrap”), and then clustering these sampled subsets.
Finally the algorithm integrate all the clustering results based on some criterion
[11][12][13].

For example, bagged clustering proposed by Friedrich et al [11] is one of the
earliest papers that used the bagging technique to solve the cluster ensemble
problem. It works as follows:

1. Bootstrap the dataset B times and get datasets{X1, X2, · · ·XB};
2. Do K-means clustering on each Xi and get the cluster center set

{c11, · · · c1K , c21 · · · , c2K , · · · cBK};
3. Run an agglomerative clustering algorithm on the center set using Eu-

clidean distance.
4. Assign each data to the cluster which corresponding to the closest center.
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Experimental results in [11] showed that ”bagged clustering” could perform
better than K-means.

3.2 Boosted Clustering

As it is known that GMM can also be treated as a ”soft assignment clustering”
method [14]. It first estimates the density function of the dataset as we mentioned
in section 1, and then assigns the data objects to the Gaussian kernel of the
result GMM under which their probability is the highest. This algorithm is
computationally efficient and yields good results if the clusters are compact,
hyper-ellipsoidal in shape. However, usually we do not know the shape of the
clusters in a real world dataset. So we propose our boosted clustering algorithm
based on the Boosting GMM algorithm presented in section 2. The algorithm is
summarized below.

Table 2. Boosted Clustering

Boosted Clustering

Input: Dataset X = {x1, x2, · · · , xN}, Iteration number T, Cutting threshold s.
Output: Clusters C = {c1, c2, · · · , cK}
1. Run boosting GMM on the dataset and get the final GMM G with M

Gaussian kernels.
2. Assign each data object to the Gaussian component in G under which its

probability is the highest.
3. Cut the Gaussian kernels whose data objects number is less than s
4. For i = 1 : (M − 1)

(a) For each pair of components gi, gj , which contain Ni, Nj samples respectively,
compute Sij =

∑
xu∈gj

gi(xu) +
∑

xv∈gi
gj(xv)

(b) Find S∗
ij = maxgi,gj Sij , merge gi, gj as Gij = Ni

Ni+Nj
gi +

Nj

Ni+Nj
gj .

(c) Delete gi, gj from G. Treat Gij as a new component in G. Calculate all
the probabilities the data under it.

5. Select the number K and output the resulting K clusters

Step 4 is the agglomerative cluster ensemble procedure. We do not adopt the
merging method in [11] based on Euclidean distance, because it is not suitable
for merging GMMs (which we can see from our experiments below).

3.3 Experimental Results

We tested our algorithm on several datasets. Some of the results are shown in
Fig. 2. Fig. 3(a) shows us that the data likelihood of the dataset ”4-clusters”
corresponding to Fig. 2(a) keeps on increasing with the boosting iterations. The
cluster number K can be decided by merging the clusters achieved from step
3 continuously and choosing the number of which the maximum similarity S∗

ij

approaching zero. Fig. 3(b) is the S∗
ij curve of the dataset ”4-clusters” versus
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Fig. 2. Some cluster results on synthetic datasets

0 2 4 6 8 10
−8293

−8292

−8291

−8290

−8289

−8288

−8287

(a)
0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(b)

Fig. 3. Data likelihood and maximum similarity of the dataset in Fig. 2(a)

Table 3. Basic information of the datasets

Name Size Dimension PCA Clusters

4-clusters 1400 2 N 900,100,200,200
2-circles 1500 2 N 500,1000
Banana 1000 2 N 531,469

Breast-cancer 683 10 2 444,239
Diabetes 768 8 2 500,268

the merging iterations. We also compared the results of our algorithm to 5 other
methods on five datasets. In all the experiments we set the cutting threshold
s=10 empirically. Table 3 is some basic information of these datasets including
three artificial datasets (the first 3) corresponding to Fig. 2(a), (b), (c) and two
UCI datasets (the last 2) .We do PCA on the last two datasets and reduce the
dimensionalities of them to two.

We use Accuracy [11] and Normalized Mutual Information (NMI) [9] to mea-
sure the quality of the final clustering solutions. The results are shown in table 4,
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Table 4. Experimental Results

Accuracy Results BoGMM BaGMM BeGMM BaKMN KMeans GMM

4-cluster Mean 0.9970 1.0000 0.9223 0.8976 0.8486 0.8429
std 0.0141 0.0000 0.0294 0.0580 0.0713 0.0703

2-circles Mean 0.9957 0.9294 0.6667 0.6667 0.6667 0.6667
std 0.0191 0.1028 0.0000 0.0000 0.0000 0.0000

banana Mean 1.0000 1.0000 0.7332 0.7210 0.7210 0.8270
std 0.0000 0.0000 0.0587 0.0000 0.0000 0.0000

Breast-cancer Mean 0.9758 0.9573 0.9729 0.9722 0.9722 0.9122
std 0.0037 0.0405 0.0029 0.0000 0.0000 0.0000

Diabetes Mean 0.6822 0.6734 0.6690 0.6654 0.6626 0.6510
std 0.0196 0.0211 0.0202 0.0000 0.0099 0.0000

NMI Results BoGMM BaGMM BeGMM BaKMN KMeans GMM

4-cluster Mean 0.9892 1.0000 0.7298 0.6636 0.5996 0.6275
std 0.0495 0.0000 0.0372 0.0845 0.1166 0.0881

2-circles Mean 0.9767 0.7729 0.0047 0.0001 0.0002 0.0001
std 0.0769 0.3053 0.0064 0.0000 0.0001 0.0001

banana Mean 1.0000 1.0000 0.2218 0.1448 0.1448 0.3447
std 0.0000 0.0000 0.1376 0.0000 0.0000 0.0000

Breast-cancer Mean 0.8422 0.7582 0.8303 0.8067 0.8067 0.6424
std 0.0145 0.1053 0.0115 0.0000 0.0000 0.0000

Diabetes Mean 0.0668 0.0616 0.0588 0.0556 0.0523 0.0510
std 0.0287 0.0253 0.0143 0.0000 0.0280 0.0000

Table 5. Time Comparison for BoGMM and BaGMM (in seconds)

4-cluster 2-circles banana Breast-Cancer Diabetes

Boosted clustering 25.2974 56.9510 37.0515 26.9239 27.3372
Bagged clustering 41.4971 62.2454 51.5625 34.1023 37.3554

where “BoGMM” represents our boosted clustering method; “BaGMM” repre-
sents the bagged GMM method which sequentially do GMM clustering on the
bootstrapped datasets, and combine all the result Gaussian kernels using our
merging criterion (step 4 in table 2); “BeGMM” is the method that first do
boosting GMM on the original dataset, then do agglomerative merging of the
Gaussian kernels based on the Euclidean distance of their means as in [11];
“BaKMN” is the bagged K-means method in [11]; “KMeans” and “GMM” re-
fer to the conventional K-means and GMM clustering respectively. Each entry
in table 4 is the result of 100 independent runnings. For each experiment the
iteration steps of our boosting GMM method (parameter T in Table 1) is 5.

From table 4 we can see that mostly the results of “BoGMM” and “BaGMM”
are better than other methods. But our boosting GMM method costs much less
time, which can be seen in table 5. Each entry in table 5 is the mean CPU time
of the 100 independent experiments.
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4 Application in Short-Term Traffic Flow Forecasting

4.1 Related Work

Intelligent Transportation Systems (ITS) is a young research area that has
achieved great developments in recent years. Short-term traffic flow forecast-
ing [15], which is to determine the traffic volume in the next interval usually in
the range of five minutes to half an hour, is one of the most important problems
of ITS. Zhang et al [15] proposed to use the Bayesian network to model the
casual relationship of time series of traffic flows among a chosen link and its
adjacent links in a road network. Then the GMM method is applied to approx-
imate the joint probability distribution of all nodes in the constructed Bayesian
network. Finally, traffic flow forecasting of the current link is performed under
the rule of Minimum Mean Square Error (MMSE). They showed experimentally
the effectiveness of their method. But as we mentioned above, the GMM method
may easily get trapped in a local maximum. So we propose to use our boosting
GMM algorithm to improve the precision of the forecasting results.

4.2 Overview of Our Method

The flow chart of our approach can be described as follows:

1. Construct the Bayesian network model between input (cause nodes, which
include the historical traffic flow values of the effect node and the adjacent
links)and output (effect node) for a chosen road link;

2. Approximate the joint probability distribution of all nodes in the con-
structed network by boosting GMM.

3. Perform the estimation of traffic flow of the current link as in [15].

4.3 Experimental Results

The experimental data is the vehicle flow rates of discrete time series recorded
every 15 minutes on many road links by the UTC/SCOOT system in Traffic
Management Bureau of Beijing, whose unit is vehicles per hour (vph). The data
is from Mar.1 to Mar.25, 2002 and 2400 data points totally. Fig. 4(a) is one patch
of the traffic map. Circle nodes denote road links, arrows show the directions of
the traffic flows of the corresponding road links. Fig. 4(b) is the original vehicle
flow of road link Ka.

The forecasting orders from the current link and from the adjacent links are
respectively taken as 4 and 5 as in [15] (for example, if we want to predict the
current traffic flow of Ka, then Ka(t) is the effect node, Ka(t − 1) · · ·Ka(t −
4),Hi(t−1) · · ·Hi(t−5),Hl(t−1) · · ·Hl(t−5), are the cause nodes). We employ
PCA to reduce the input (cause nodes) data dimension to 2. Fig. 5(a) shows the
results for the last 395 data points of Ka where the curve is the original curve
and the star curve refers to our predicted curve. Fig. 5(b) gives the Root Mean
Square Error (RMSE) curve corresponding to the boosting iterations, from which
we can see that the forecasting results can be more accurate when the boosting
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Fig. 5. Forecasting results of Ka

Table 6. RMSE Comparison for simple GMM and boosting GMM

Bb Ch Dd Fe Gb Ka Hi Dc

boosting GMM 77.5625 66.1572 61.7221 125.8233 83.2050 72.6480 87.4343 82.6639
simple GMM 77.6683 66.1659 61.7230 126.6164 84.3554 72.9788 87.5836 83.5509

iteration increases. Table 6 is the RMSE comparison for the last 395 data points
of the simple GMM method and our boosting GMM method after 3 iterations
(T=3 in table 1).

5 Conclusion and Discussion

In this paper we generalize the boosting framework to the GMM models and
present our boosting GMM algorithm. We show the applications of our algorithm
in cluster ensemble and short-term traffic flow forecasting problems. Theoretical
analysis and experimental results show the advantages of our approach.

Because we use GMMs as our “weak models”, our method may be limited
when the size of the dataset is small but the dimensionality of it is high although
we can preprocess the dataset with PCA. The application of the boosting tech-
nique to other density models seems like a promising avenue for future research.
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Abstract. We present an example-based algorithm for detecting objects
in images by integrating component-based classifiers, which automaticaly
select the best feature for each classifier and are combined according to
the AdaBoost algorithm. The system employs a soft-margin SVM for
the base learner, which is trained for all features and the optimal fea-
ture is selected at each stage of boosting. We employed two features
such as a histogram-equalization and an edge feature in our experiment.
The proposed method was applied to the MIT CBCL pedestrian im-
age database, and 100 sub-regions were extracted from each image as
local-features. The experimental results showed fairly good classification
ratio with selecting sub-regions, while some improvement attained by
combining the two features, histogram-equalization and edge. However,
the combination of features could to select good local-features for base
learners.

1 Introduction

In this paper, we present an example-based algorithm for detecting objects in
images by integrating component-based classifiers, which automatically se-
lect the best local-feature for each classifier and are combined according to the
AdaBoost[1] algorithm. Our method can be applied to any object composed of
distinct identifiable parts that are arranged in a well-defined configuration, such
as cars and faces. However, we focused on the pedestrian detection in images,
which could be used in driver assistance systems and video surveillance systems.
Pedestrian detection is more challenging than detecting other objects such as
cars and faces, since people take a variety of shapes and it is nontrivial to define
a single model that captures all of these possibilities.

Gavrila[3] employed hierarchical template matching to find pedestrian candi-
dates from incoming images. His method provide multiple templates in advance
that were outline edge images of typical pedestrians, and dissimilarities (or sim-
ilarities) between the edge feature of incoming images were measured by the
chamfer distance. The variety of shapes of pedestrians was accommodated with
the variety of templates, which bound system performance.

N.C. Oza et al. (Eds.): MCS 2005, LNCS 3541, pp. 22–31, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Viola et al.[4] presented a pedestrian detection system that integrated image
intensity information with motion information. Their detection algorithm scaned
a detector over two consecutive frames of a video sequence, and the detector
was trained using AdaBoost to take advantage of both motion and appearance
information. They achieved a high detection speed (about four frames/second)
and a very low false positive rate, while combining two different modalities of
information in one detector.

Although they showed the advantage of integrating motion information, it is
still difficult to apply their algorithm to an on-board pedestrian detection system,
since canceling out the movement of the camera only from visual information
is difficult. Therefore, we focused on pedestrian detection from static images to
achieve our example-based object detection method.

Mohan et al.[2] applied an Adaptive Combination of Classifiers (ACC) to
pedestrian detection. Their system consisted of two stage hierarchical classi-
fiers. The first stage was structured with four distinct example-based classifiers,
which were separately trained to detect different component of pedestrians, such
as the head, legs, right arm, and left arm. The second stage had an example-
based classifier which combined the results for the component detectors in the
first stage to classify the pattern as either a “person” or a “non-person”. A Sup-
port Vector Machine (SVM)[5][6][7] is employed for each classifier. Their results
indicated that combination of component-based detectors performed better than
a full-body person detector. The components in their system were determined
in advance and they were not exactly optimal to classify the examples.

We employed a feature-selection algorithm in the training phase of each
component-based classifier, so that the classifier could automatically select the
optimal component to classify the examples. Mohan et al.[2] pre-defined the num-
ber of the component-based classifiers as four; however, our proposed method
combines a larger number of component-based classifiers with the AdaBoost al-
gorithm.

Our experimental results show that the proposed method achieves a fairly
good classification ratio by selecting a sub-region of the input image, while a
slightly greater improvement is achieved by selecting the optimal feature from
histogram-equalization images and edge images of inputs.

We describe our object detection method in the next section, and the exper-
imental results are presented in the final section.

2 System Configuration

Our key-idea is introducing feature selection and the soft-margin SVM into Ad-
aBoost to enhance the generalization ability of a strong learner by automatically
selecting the best feature for base learners at each boosting step. We describe
our boosting algorithm with feature selection and outline the soft-margin SVM
in this section. We also describe the sample images and experimental conditions
we used for our experiments.
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2.1 Algorithm

Figure 1 presents the overall algorithm for our pedestrian detection system,
which introduces a feature selection algorithm into each step of AdaBoost. We
define a local-feature as the combination of a feature (a characteric extracted
from an input image such as an edge feature) and a sub-region of an input image.
Our feature selection method selects the best local-feature (with the lowest error
ratio) at each boosting step.

1. Let N be the number of samples, M be the number of boosting steps, L be the
number of sub-regions, and K be the number of features. Thus, K×L is the total
number of local-features in the local-feature pool.

2. Generate a local-feature pool for all local-features from input samples x, such as
x → x11, . . . , x1L, x21, . . . , xkl, . . . , xKL.

3. Initialize the observation weights wi = 1/N , i = 1, 2, . . . , N .
4. For m = 1, to M :

(a) For k = 1 to K, for l = 1 to L
i. Fit classifier Gkl

m(xkl) to the training samples of local-feature xkl which
are randomly selected depending on weights wi from all the training
samples

ii. Compute errkl
m =

∑N

i−1
wiI(yi �=Gm(xkl

i ))∑N

i=1
Wi

.

(b) Set errm with the smallest errkl
m, l = 1, 2, . . . , L,k = 1, 2, . . . , K.

(c) Set Gm(x) ← Gkl
m(xkl) with k and l in the above step.

(d) Compute αm = log((1 − errm)/errm).
(e) Set wi ← wi · exp[αm · I(yi �= Gm(xi))], i = 1, 2, . . . , N.

5. Output G(x) = sign[
∑M

m=1
αmGm(x)].

Fig. 1. AdaBoost with Feature Selection

Initially, features (in our experiment, histogram-equalizaton and edge features
are employed) are extracted from input images and a pre-defined number (in our
experiment: 100) of sub-region images for each feature are generated as a local-
feature pool (Fig. 2) with equal sample weight. In the ith boosting step, the
ith base learner is trained under the sample weights determined by the i−1th
base learner for all local-features in the local-feature pool, and it selects the
best local-feature for ith base learner. The sample weights for the next boosting
step and significance of the base learner are computed according to the error
ratio. Variations in features and sub-regions are determined by a trade-off in the
feasible CPU time and desired precision.

2.2 Boosting Soft-Margin SVM

We employed a soft-margin SVM for the base learner. We will first describe a
SVM briefly followed by a description of the soft-margin SVM.
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The classification function is given as

y = sign(wT x − h), (1)

where x stands for the input vector, w stands for the weight vector of input, and
h stands for the threshold. Function sign(u) is a sign function, which outputs 1
when u > 0 and outputs -1 when u ≤ 0. The SVM determines the separating
hyperplane with a maximal margin (distance), which is the distance between the
separating hyperplane and the nearest sample. If the hyperplane is determined,
there exists a parameter to satisfy

ti(wT xi) ≥ 1, i = 1, . . . , N, (2)

where ti stands for the correct class label for input vector xi. This means that
the samples are separated by two hyperplanes of H1: wT xi − h = 1 and H2:
wT xi − h = −1, and no samples exist between them. The distance between
the separating hyperplane and H1 (or H2) is defined as 1/‖w‖. Determining
parameters w and h that give a maximal margin is defined as an optimization
problem for the following evaluation function

L(w) =
1
2
‖w‖2 (3)

under constraint
ti(wT xi − h) ≥ 1, i = 1, . . . , N. (4)

A soft-margin SVM allows some training samples to violate hyperplanes H1
and H2. When the distance from H1 (or H2) is defined as ξi/‖w‖ for the violating
samples, the sum

N∑
i=1

ξi

‖w‖ (5)

should be minimized. Therefore, a soft-margin SVM is defined as an optimization
problem for the following evaluation function

L(w, ξ) =
1
2
‖w‖2 + C

N∑
i=1

ξi (6)

under constraint

ξi ≥ 0, ti(wT xi − h) ≥ 1 − ξi, i = 1, . . . , N (7)

where C stands for the cost parameter for violating hyperplane H1 (or H2).
Solving this problem with optimal solution α∗, the classification function can be
redefined as

y = sign(w∗T x − h∗)

= sign(
∑
i∈S

α∗
i tix

T
i x − h∗). (8)
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The samples are grouped with α∗
i ; sample xi is classified correctly when

α∗
i = 0, when 0 < α∗

i < C, sample xi is also classfied correctly and is located on
the hyperplane H1 (or H2) as a support-vector. If α∗

i = C, sample xi becomes a
support-vector but is located between H1 and H2 with ξ �= 0.

The kernel-trick, which drastically improved the performance of the SVM, can
also be applied to the soft-margin SVM. In Kernel-Trick, the input vectors are
transformed by non-linear projection φ(x) and linearly classified in the projected
space. Since SVM depends on the product of two input vectors, the product of
the input vectors in projected space can be used instead of computing the non-
linear projection of the each input vector, such as

φ(x1)T φ(x2) = K(x1,x2). (9)

K is called a Kernel Function and is usually selected as a simple function, a
Gaussian function

K(x1,x2) = exp
(−||x1 − x2||2

2σ2

)
(10)

for instance. The classification function can be redefined by replacing input vec-
tors with kernel functions, as follows

y = sign(w∗T φ(x) − h∗)

= sign(
∑
i∈S

α∗
i tiφ(xi)T φ(x) − h∗)

= sign(
∑
i∈S

α∗
i tiK(xi,x) − h∗). (11)

Introducing cost parameter C, we could have two choices to achieve sample
weighing with AdaBoost, the first is building the SVM by defining a cost pa-
rameter as the weight of each sample, the second is re-sampling according to
the sample weights. Schwenk et al.[8] showed that defining a pseudo-loss func-
tion and re-sampling had similar effects with AdaBoost. We therefore selected
re-sampling so that we could use LIBSVM[9] for our evaluation. One thousand
images were re-sampled from 1,400 in the training samples.

2.3 Sample Images and Local Features

We employed the MIT CBCL database for the sample data, which contained
926 pedestrian images with 128×64 pixels, and we collected 2,000 random non-
pedestrian images. We reduced the resolution of all the samples to 64×32 before
we applied them to our system. We extracted histogram-equalization and edge
features from the input images, and local-features were extracted as adequate
sub-regions of the featured images. We selected 100 sub-regions for our evalu-
ation; extracting small sub-regions from input images with a variety of region
sizes such as 4×8 pixels ranging to the whole image.

Figure 2 shows the original image, extracted features, and local features. We
selected 700 pedestrian and 700 non-pedestrian images for training, and 200
pedestrian and 200 non-pedestrian images to test the generalization error.
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Fig. 2. Sample Images and Local Features

3 Results

We first examined the effect of SVM cost parameter C by using a raw input
image with ten sub-regions, such as the whole body, upper half, lower half, right
half, left half, right arm, left arm, head, legs, and center body. Figure 3 plots
error ratio against the number of boosting steps with cost parameter C for 0.1,
0.7, and 100. Ten local features are almost evenly selected at each boosting step.
After 100 boosting steps, test error reaches 4% with C=0.7, 4.5% with C=100,
and 5.25% with C=0.1. Figure 4 plots test error against cost parameter C after 50
boosting steps. Test error records a minimal value of 4% at c=0.7. This indicates
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that the soft-margin SVM advantageous to usual hard-margin (or firm-margin)
SVM for boosting; however, there exists an optimal value for cost parameter C.

Figure 5 plots error ratio against the number of boosting steps with cost
parameter C for 0.7, accorcding to the previous results. The experimantal results
were averaged over three trials.

The training error converges to zero at boosting step 5 for histogram-
equalization, and at boosting step 10 for Edge features. This indicates the
histogram-equalization tends to have lower training error than edge features.
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Athough histogram-equalization has the lower training error, edge features has
the lower test error after 100 boosting steps, 3% for edge features and 3.5% for
histogram-equalization.

Combination (Histogram-Equalization, Edge)

Edge

Histogram-Equalization

5 4 4 3 3 3 3 3 3 3

8 6 5 5 4 4 4 3 3 3

7 4 4 4 4 4 3 3 3 3

e

Fig. 6. Example of Selected Local Features
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Selecting the best local feature from the combination of histogram-equalization
and edge features, test error reached 2.7% after 100 boosting steps. Eighty-four
boosting steps selected histogram-equalization for their base-learners, and 16
steps selected edge features. This indicates that the test error is improved by only
16 classifiers selecting edge features, since test error for histogram-equalization
tends to be higher than that of edge feature.

Although we provided 100 sub-regions, only about 50 sub-regions were se-
lected. Figure 6 shows examples of selected local features. This indicates that
pedestrian components are automatically selected by our local-feature selection.
Small sub-regions, which are not meaningful as pedestrian components, tend
to be selected with one feature (such as histogram-equalization or edge), while
large sub-regions, which can be meaningful as pedestrian components, are se-
lected with a combination of the two features. Therefore, the combination of
features selects good local-features.

Table 1. The Error Ratio Comparison

Error Ratio

Gavrila 10-40%�

Mohan 1-2%

Viola 10%

Our Result 2.7-3%

* For first stage

Table 1 compares error ratio against previous research. Our results achieved
a better error ratio than Gavrila and Viola et al., while it was a little worse
than Mohan’s. Considering the difference in non-pedestrian data, we concluded
that our result had almost the same performance as that achieved by Mohan
et al.

4 Conclusion

We presented an object detection method that was achieved by boosting the
soft-margin SVM with feature selection. In this paper, we focused on pedestrian
detection using a combination of two features, histogram-equalization and edge
features. The experimental results showed a fairly good generalization error ra-
tio of 2.7%. The good components were automatically selected by local-feature
selection by the combining the two features.

We had to limit the number of sub-regions to 100 in this paper, because we
had limited computational time to train the classifiers. We are planning to eval-
uate with a larger number of sub-regions to prove our method can automatically
extract good pedestrian components.
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Abstract. This paper presents a study of the Boosting Feature Selec-
tion (BFS) algorithm [1], a method which incorporates feature selection
into Adaboost. Such an algorithm is interesting as it combines the meth-
ods studied by Boosting and ensemble feature selection researchers.

Observations are made on generalisation, weighted error and error
diversity to compare the algorithms performance to Adaboost while using
a nearest mean base learner. Ensemble feature prominence is proposed as
a stop criterion for ensemble construction. Its quality assessed using the
former performance measures. BFS is found to compete with Adaboost
in terms of performance, despite the reduced feature description for each
base classifer. This is explained using weighted error and error diversity.
Results show the proposed stop criterion to be useful for trading ensemble
performance and complexity.

1 Introduction

Adaboost first proposed by Freund and Schapire [2] has emerged as one of the
most successful ensembling algorithms in recent years. A number of variations
and improvements on the original implementation have since been proposed.

In its simplest form Adaboost, know generally as Boosting drives down the
ensemble error rate by concentrating on points that are particularly difficult
to classify. At each iteration Boosting updates the weighting on the training
patterns emphasizing those that are incorrectly classified. The base learner is
then retrained using the reweighted training patterns. The resulting ensemble
is a linear combination of each base learners decision. The final decision is an
approximate large margin as Boosting concentrates the final decision on the class
boundary. Later extensions and study have confirmed this more rigorously [3].

Another active area of ensemble research in recent years has been ensem-
ble feature selection which involves building ensembles using different feature
sets for each base learner [4, 5, 6, 7, 8, 9, 10]. Separate from the dimensionality
reduction aspect of feature selection, the main theme of much of the research
in this area has been error decorrelation or specifically error diversity. Feature
selection provides a additional way of promoting error diversity in comparison
to reweighting or partitioning of training patterns [11].

The first suggestions of combining Boosting and ensemble feature selection
were indirectly made for Decision Stumps [12] and Domain-Partitioning for

N.C. Oza et al. (Eds.): MCS 2005, LNCS 3541, pp. 32–41, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Boosting [13]. In both cases the motivation was to improve base classifer be-
haviour to that of a weak learner. Later, Boosting Feature Selection [1] explicitly
performed feature selection as a means to extract relevant features for ensemble
classification. However, these authors did not refer to the implications of com-
bining the two areas toward improving error diversity, and no analysis of this
type was conducted.

Here Boosting feature selection is studied. Observations on generalisation,
weighted error and error diversity are used to comment on the properties of
the algorithm. In particular, we propose using ensemble feature prominence, a
measure representing the ensemble feature exploitation, as a stopping criterion
for building the ensemble. The paper is organized as follows. Section 2 introduces
the Boosting feature selection algorithm. Section 3 presents the measures we
use to analyse the behaviour of the algorithm. Section 3.2 introduces feature
prominence. Section 4 presents experimental results and discussions based on a
number of benchmark datasets. Section 5 concludes the paper.

2 Boosting Feature Selection

2.1 Ensemble Feature Selection

Building ensembles using features has been studied by a number of researchers.
Several methods based around improvements of the Random Subspace Method
(RSM) [4] have been proposed. Refinement of RSM accuracy [5, 6] can be used to
improve ensemble accuracy. Whereas genetic search starts with a randomisation
stage on which feature populations are refined [7]. These can create good ensem-
bles, but do not explicitly perform feature selection to remove redundancy and
irrelevance. Alternatively, methods using sequential feature selection [8, 9] have
also been proposed but require a careful choice of selection criteria to prevent
overfitting. In each of these methods the principal objective is to use different
feature subsets for training base learners, as a means of decorrelating errors
between them.

2.2 Boosting Feature Selection

The Boosting Feature Selection (BFS) algorithm proposed by Tieu and Viola
[1] was first to explicitly combine Adaboost and ensemble feature selection to-
gether. The BFS algorithm shown in Fig. 1 differs for Adaboost only by the
way the weights are initialised and that each base hypothesis ht, is trained on
and classifies only one feature. The feature is selected on the basis of lowest
weighted error εt for the given weighting wt. As the weighting changes, different
features are selected for the current hypothesis ht which best reduce εt. Using
different features this way provides an additional means of error decorrelation
for Boosting (Sect. 3.1).

In this study, a weighted Nearest Mean (NM) classifier is used. Typically,
when Boosting all the features the NM classifier performs poorly for two rea-
sons. Firstly, the classifier complexity is limited to linear descison hyperplanes
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Input: Training set S = {(x1, y1), ...,xM , yM )}, Number of Iterations T .
Initialize: Sample weights w1,m = 1

2M− , 1
2M+ for ym = −1, 1, m = 1, ...,M ,

where M− and M+ are the number of negatives and positives respectively.
Do for t=1,...,T
1. Train: Find N hypotheses hn, by training the base learner on each

feature xn of the given training set, using current weighting wt,m.
Calculate: the weighted training error for each hypothesis hn

εn =
M∑

m=1

wt,mI(ym �= hn(xm,n)). (1)

2. Select: hypothesis hn with the lowest εn, set ht = hn and εt = εn.
3. if εt = 0 or εt ≥ 0.5, reset to initial weights wt,m = w1,m, goto 1.
4. Calculate: hypothesis coefficient

αt =
1
2
ln

(
1 − εt

εt

)
.

5. Update: sample weights

wt+1,m =
1
Zt

wt,m exp(−αtymht(xm)),

where Zt is a normalisation coefficient such that
∑

m(wt+1,m) = 1.
Output: Final hypothesis

HT (x) = sign

(
T∑

t=1

αtht(x)

)
.

Fig. 1. Boosting feature selection as proposed by Tieu and Viola [1]

uncommon in many problems. Secondly, reweighting the training set does not
invoke a significant decision change, compared to an unstable classifer such as a
neural network. However, Boosting one dimension at a time demands less com-
plex decisions and is optimal as long as the data is unimodal. Therefore, the NM
classifier is suitable for BFS.

3 Indicators of Performance

3.1 Error Diversity

Over using a single classifier, one of the benefits of an ensemble comes from
combining base learners that make different mistakes on different parts of the
problem space. The ideal condition would be to have base learners as accu-
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rate and diverse as possible, such a condition is termed error diversity. The
previously mentioned ensemble feature selection methods promote decision di-
versity through resampling the training set features. In a recent review [11]
this was regarded as the most effective way of creating an ensemble of di-
verse decisions. The extent to which accuracy and diversity should be traded
in an ensemble is a difficult issue. In a regression context the role of accuracy
and diversity can be clearly explained using the bias-variance decomposition.
However, no analogy has yet been found for classification involving non-ordinal
outputs. This difficulty has resulted in a number of qualitative definitions of
error diversity and there is no unique choice for measuring it. The literature
has proposed numerous ways of measuring error diversity which can be broadly
split into pairwise and non pairwise measures [14]. Here the non-pairwise mea-
sure of inter-rater agreement or kappa statistic is used [15]. It is defined as
follows.

A set of classifiers in an ensemble have the decisions D = {D1, ...,DL}, trained
using labelled dataset S = [s1, ..., sM ], where sm is the training pair (xm, ym)
and xm ∈ R

N . The Kappa statistic can then be defined as

κ = 1 −
1
L

∑M
m=1 l(sm)(L − l(sm))
M(L − 1)p̄(1 − p̄)

. (2)

where p̄ denotes the average individual classification accuracy in the ensemble
and l(sm) is the number of classifiers from D that correctly recognise sm. The
kappa statistic measures the degree of similarity between classifiers while com-
pensating for the probability that a similarity occurs by chance. κ is equal to zero
when classifier agreement equals that expected by chance (but can be negative)
and is equal to 1 when the classifiers agree on every example. It has also been
shown to be related to Kohavi-Wolpert variance and the disagreement measures
of diversity [14].

3.2 Ensemble Feature Prominence

The implementation of BFS used allowed features to be reselected during con-
struction. At any time an ensemble of size T will consist of the equivalent number
of features T . Some of these features will be unique selections denoted Funique,
the remainder are replicated selections. The replicated selections may not neces-
sarily be redundant as they may offer additional information based on the sample
weighting. The unique selections Funique normalised by the ensemble size T can
be used to find the Ensemble Feature Unicity (EFU), defined as

EFU =
Funique

T
(3)

which is unity when only unique selections are present and decreases as redun-
dant features are included into the ensemble. At some point, no new selections
will be made and the EFU continues to fall at rate of c/T , where c is the maxi-
mum number of informative features and perhaps the total number N .
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As the number of replicate selections by BFS rises, the effective feature in-
formation to the ensemble begins to reach a limit. The remaining features can
then be considered irrelevant for classification purposes. The unique selections
Funique in terms of the total number of features available for selection |F| can
be used to determine the Ensemble Feature Exploitation (EFE), defined as

EFE =
Funique

|F| (4)

where a unity EFE indicates that all features have been used once and no feature
redundancy is present. Depending on how many irrelevant features are present,
a point might be reached when the EFE tends towards a constant rate f/|F|,
where f is the number of informative features.

The number of features and intrinsic feature relevance is problem dependant.
A suitable ensemble size should be selected so that the ensemble includes all the
relevant features from the dataset without including too much redundancy. We
propose to combine the two previous measures of ensemble feature unicity and
feature exploitation to allow a way of observing how well the current ensemble
size has exploited the total number of features in the dataset. Combining (3)
and (4) leads to the following, termed Ensemble Feature Prominence (EFP) and
defined

EFP =
F2

unique

T |F| . (5)

The falling EFU and rising EFE combine to make a function that peaks
distinctly. This behaviour can be used as a stop criterion for building a BFS
ensemble. As an illustrative example, the EFU, EFE and EFP plots against T
are shown in figure 2 for the Wdbc dataset described in Sect. 4. The EFU is
seen to reach a distinct peak when T = 21, meaning not all of the 30 features
available for selection have been useful to the ensemble. On average only 15
unique selections have been made in T = 21 iterations. Therefore when T > 21,
the number of repeated selections increases and the plots of EFU and EFE begin
to fall and rise respectively at the fore mentioned rates. These then combine to
make the observed peak in EFP.
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Fig. 2. Ensemble feature unicity, exploitation and resulting prominence for the Wdbc
dataset
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4 Comparison of BFS Against Adaboost

The ensembling quality of BFS and Adaboost were compared on a NM classifer.
Performance was assessed using four benchmark datasets from the UCI reposi-
tory [16]. The binary learning datasets Wdbc, Sonar and Musk were selected for
experimentation. Additionally, the multiclass dataset Multiple Features (Mfeat)
was used. We re-formulate it as a binary learning problem of classifying the
numbers 0-4 from 5-9. All the features were used in this dataset except the pro-
file correlation and pixel averages. All data was used in the case of Wdbc and
Sonar, but the Musk and Mfeat were reduced in size (for computational rea-
sons) to 600 training samples using stratified random sampling. The datasets
were pre-processed by rejecting 3% of outlying samples furthest from the global
mean. Features were then normalised to zero mean and unit variance.

The performance of each method was estimated on the benchmark datasets
using the following measures: Training and test error were used to measure gen-
eralisation, weighted error (1) to check the bounds of the base learner. The kappa
statistic (2) was measured over base learner outputs using training and test data
to assess error decorrelation of the ensemble. Finally, feature prominence (5) was
estimated for the BFS ensembles to assess feature exploitation. Adaboost was
prevented from stopping when εt ≥ 0.5 by resetting sample weightings to initial
conditions [17]. This was necessary to keep the two types of ensembles consistent
in size for comparison. BFS and Adaboost were run for T = 1 → 1.5N iterations
and observations made over this range. The mean of each performance measure
was found for 10 runs of 2-fold cross validation. The results are shown in Figs. 3-6.
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Fig. 3. Training and test error of BFS and Adaboost ensembles using benchmark data
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Fig. 4. Weighted error of BFS and Adaboost ensembles
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Fig. 6. Feature prominence for BFS ensembles

4.1 Discussion

Using the observations on generalisation, weighted error, kappa diversity and
feature prominence the following differences between Adaboost and BFS were
observed.

Training error was lower overall for BFS than for Adaboost (Fig. 3). Test error
of BFS was lower than Adaboost for the Musk dataset, comparable for the Sonar
and Mfeat2 datasets but higher for Wdbc. The poorer performance of Adaboost
on the Musk dataset was caused by features containing multimodal data which
the linear classifier could not correctly fit using all dimensions. These results show
that Boosting features can compete with Adaboost despite the lower dimensional
description when using only one feature. Feature selection can provide a better
match between data and classifier than using the entire feature description. Two
explanations for this behaviour are presented based on weighted error and error
diversity.

Adaboost had a lower weighted error than BFS (Fig. 4), as frequently εt ≥ 0.5
causing the weights to be reset to initial conditions (Fig. 1). Although BFS using
the NM classifer has a high weighted error, it has kept within the weighted error
bounds required for Boosting 0 ≤ εt ≤ 0.5 [18, 19]. Hence Boosting continues to
provide an incremental reduction in training and test error. Adaboost using the
NM classifer has less Boosting effect. Cases where et ≥ 0.5 reflect that the linear
NM classifer has been unable to represent the complexity of the mult-dimensional
decision surface. Despite resetting to initial weighting to continue, this has not
provided any improvement in performance as confirmed by the minimum test
and training error shown in (Fig. 3).

Decision diversity was consistently higher (lower kappa) for BFS than Ad-
aboost (Fig. 5). This was consistent for both training and test data, though the
latter was slightly less diverse. As already stated in Sect. 2, training Adaboost
using different features has provided a better method of error decorrelation. This
provides an additional method than relying on the reweighted training set alone.
However, the increased diversity cannot be shown to correlate with improved
performance in these experiments.

Final observations are on EFP, our proposed ensemble construction stop cri-
terion based on ensemble feature exploitation. Examining (Fig. 6), BFS gives
a strong peak for each dataset which is below that of the dataset dimensional-
ity |F|EFP < N . The peak in feature prominence does not correspond to the
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Table 1. Summary of the unique selections |F| present at peak ensemble feature promi-
nence T = EFPmax, compared to the complete number of iterations T = 1.5N

Dataset Name |F|N |F|,EFPmax Error |F|T,1.5N Error

Wdbc 30 14 0.049±0.013 19 0.049±0.014
Sonar 60 31 0.236±0.036 36 0.232±0.032
Musk 167 49 0.095±0.015 77 0.083±0.016
Mfeat2 193 68 0.098±0.019 99 0.088±0.019

lowest achievable error rates (Fig. 3), but indicates that most of the reduction
in error has occurred. Table 1 summarises the number of unique features se-
lected at maximum feature prominence and at T = 1.5N along with the test
set error rate for each benchmark dataset. Boosting beyond feature prominence
continues to include more features. However, these features provide only small
improvements and might not justify the cost of feature extraction and a larger
classifier ensemble. Similar conclusion can be made for diversity (Fig. 5). After
peak prominence there are no improvements in diversity. Only a slow decrease
as replicate features are added to the ensemble.

5 Conclusion

In conclusion, a number of observations have been made on BFS which have not
been previously studied. We have shown BFS to be suitable for Boosting a low
complexity NM classifier on which Adaboost performs more poorly.

Despite the reduced complexity, BFS has been shown to have a competitive
error rate to Adaboost. This of course depends of the fitting of the selected base
classifer to the source data, as with all classification problems. Improvements in
error decorrelation have been illustrated Boosting on different features, unfortu-
nately this was not correlated with low error rate in all cases. Ensemble feature
prominence has been presented as an ensemble construction stop criterion and
displayed as a means of trading feature exploitation and redundancy. Such a con-
dition is particularly important for problems involving high dimensional feature
representation.
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Abstract. In this paper, a set of hybrid dimension reduction schemes is con-
structed by unifying principal component analysis (PCA) and linear discrimi-
nant analysis (LDA) in a single framework. PCA compensates LDA for singu-
lar scatter matrix caused by small set of training samples and increases the ef-
fective dimension of the projected subspace.  Generalization of hybrid analysis 
is extended to other discriminant analysis such as multiple discriminant analysis 
(MDA), and the recent biased discriminant analysis (BDA), and other hybrid 
pairs. In order to reduce the search time to find the best single classifier, a 
boosted hybrid analysis is proposed. Our scheme boosts both the individual fea-
tures as well as a set of weak classifiers. Extensive tests on benchmark and real 
image databases have shown the superior performance of the boosted hybrid 
analysis. 

1   Introduction 

Dimension reduction is an important problem in machine learning and also arises in 
many other fields such as information processing, data compression, scientific visu-
alization and pattern recognition.  The aim of dimension reduction is to obtain com-
pact representation of data which captures desired information without loss of too 
much information.  

Dimension reduction techniques can be categorized into two major classes: linear 
and non-linear techniques. The linear methods include Principal Component Analysis 
(PCA), Factor Analysis, and Independent Component Analysis (ICA). The nonlinear 
methods include Multidimensional Scaling (MDS), Self-Organizing Map (SOM), and 
Neural Network, etc.  

The classical techniques, PCA [1] and MDS [2], are simple to implement, effi-
ciently computable, and guaranteed to discover the true structure of data lying on or 
near a linear subspace of the high-dimensional input space. PCA finds a low-
dimensional embedding of the data points that best preserves their variance as meas-
ured in the high-dimensional input space. Classical MDS finds an embedding that 
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preserves the interpoint distances, equivalent to PCA when those distances are Euclid-
ean. However, many data sets contain essential nonlinear structures that are invisible 
to PCA and MDS. Tenenbaum et al. [3] proposed a nonlinear dimension reduction 
technique, Isomap, which combines the major algorithmic features of PCA and MDS 
– computational efficiency, global optimality, and asymptotic convergence guarantees 
– with the flexibility to learn a broad class of nonlinear manifolds.  Their approach 
builds on classical MDS but seeks to preserve the intrinsic geometry of the data, as 
captured in the geodesic manifold distances between all pairs of data points.  Given 
sufficient data, Isomap is guaranteed asymptotically to recover the true dimensionality 
and geometric structure of a nonlinear manifold.   

Isomap has been successfully applied to many problems in nonlinear dimensional-
ity reduction. Isomap’s embeddings, however, are optimized to preserve geodesic 
distances between general pairs of data points, which can only be estimated by com-
puting shortest paths through large sublattices of data. Recently, Roweis and Saul [4] 
introduced locally linear embedding (LLE). The basic idea of LLE is that each data 
point and its neighbors lie on or close to a locally linear patch of the manifold and 
therefore the local geometry is characterized by linear coefficients that can reconstruct 
each data point from its neighbors. Different from Isomap, LLE eliminates the need to 
estimate pairwise distances between widely separated data points.  It thus avoids the 
need to solve large dynamic programming problems, and it also tends to accumulate 
very sparse matrices, whose structure can be exploited for savings in time and space. 
Many other popular nonlinear dimensionality reduction algorithms do not share the 
favorable properties of LLE. Iterative hill-climbing methods such as autoencoder 
Neural Network, Self-Organizing Maps, and latent variable models do not have the 
same guarantees of global optimality or convergence; they also tend to involve many 
more free parameters, such as learning rates, convergence criteria, and architectural 
specifications.  

We should add that nonlinear dimensionality reduction (NLDR) by itself is a very 
large area of research. In our scenario dimension reduction is the first step for index-
ing or classification in similarity search from very large databases such as content-
based image retrieval and biometrics-based person recognition.  Real-time implemen-
tation is very desirable. Use of iterative NLDR techniques such as Isomap, LLE, 
Laplacian Eigenmaps [5] is usually prohibited by the need to perform real-time and 
repeatable projections or closed-form computation.  

Linear discriminant analysis (LDA) [6] is a simple and efficient algorithm that is 
used for both dimension reduction and classification. LDA plays a key role in many 
research areas in science and engineering such as face recognition, image retrieval, 
and bio-informatics. Compared to PCA, LDA constructs the most discriminant fea-
tures while PCA constructs the most descriptive features in the sense of packing most 
“energy”. LDA attempts to minimize the Bayes error by selecting the feature vectors 

w which maximize 
||

||

wSw

wSw

W
T

B
T

, where BS measures the variance between the class means, 

and WS  measures the variance of the samples in the same class. 

In pattern classification community, when comparing LDA with PCA, there is a 
tendency to prefer LDA over PCA, because, as intuition would suggest, the former 
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deals directly with discrimination between classes, whereas the latter deals without 
paying particular attention to the underlying class structure. However, an interesting 
result is reported by Martinez ad Kak [7] that PCA might outperform LDA when the 
number of samples per class is small or when the training data non-uniformly sample 
the underlying distribution.  

PCA and LDA are often used alone without combining other types of analysis. It 
would be interesting to investigate the possibility of combining these two techniques. 
In this paper, a novel hybrid dimension reduction scheme is proposed to unify LDA 
and PCA in a single framework. This hybrid analysis can be generalized to combine 
other discriminant analysis. 

The rest of paper is organized as follows. Section 2 describes the hybrid discrimi-
nant analysis. Section 3 shows the experimental results on image databases. AdaBoost 
is applied in Section 4 to construct a more powerful classifier from a set of weak 
classifiers. Conclusions and discussions are given in Section 5. 

2   Hybrid Discriminant Analysis 

2.1   Linear Discriminant Analysis 

It is common practice to preprocess data by extracting linear and non-linear features. 
What one would like to obtain is a feature, which is as invariant as possible while still 
covering as much of the information necessary for describing the data’s properties of 
interest. A classical and well-known technique that solves this type of problem is the 
maximization of the Rayleigh coefficient [6].  
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Here, W denotes the weight vector of a linear feature extractor (i.e., for an example 
x, the feature is given by the projections (WT·x) and 1S  and 2S are symmetric matrices 
designed such that they measure the desired information and the undesired noise 
along the direction W.  The ratio in equation (1) is maximized when one covers as 
much as possible of the desired information while avoiding the undesired. 

If we look for discriminating directions for classification, we can choose 1S   to 
measure the between-class variance BS , and 2S  to measure the within-class vari-
ance WS . In this case, we recover the Fisher discriminant analysis (FDA) [6], where 

BS  and WS  are given by: 
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We use CjNix j
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i ,,1},,,1,{ )( == ( 2=C  for FDA) to denote the feature vec-

tors of samples. C is the number of classes, jN  is the size of the jth class, )( j

ix is the ith 
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sample of the jth class, jm is mean vector of the jth class, and m is grand mean of all 

samples. 
Multiple discriminant analysis (MDA) is a natural generalization of Fisher’s lin-

ear discriminative analysis for multiple classes [6].  If WS  is nonsingular matrix then 

the ratio in Eq. (1) is maximized when the column vectors of the projection matrix, 
W, are the eigenvectors of BW SS 1− . It should be noted that W maps the original 1d -

dimensional data space X to a 2d -dimensional space Δ  (where 12 −≤ Cd , C is the 

number of classes). Because FDA and MDA are linear techniques, they are called 
LDA.  

2.2   Biased Discriminant Analysis 

Contrary to FDA and MDA which treats every class symmetrically when finding the 
optimal projection subspace, Zhou and Huang [8] modified MDA and proposed bi-
ased discriminant analysis (BDA) and applied it in content-based image retrieval 
(CBIR). The intuition behind the BDA is that “all positive examples are alike, and 
each negative example is negative in its own way”. Compared with the state-of-the-art 
methods such as Support Vector Machine (SVM), kernel BDA outperforms SVM 
when the size of the negative example is small (<20). 

BDA differs from MDA in the computation of between-class scatter matrix BS  and 

within-class scatter matrix WS . They are substituted by PNS →  and PS , respectively. 
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where },,1,{ xi Ni =x denotes the positive examples and },,1,{ yi Ni =y denotes 

the negative examples, xm is the mean vector of the sets }{ ix , respectively. PNS →  is 

the scatter matrix between the negative examples and the centroid of the positive 
examples, and PS  is the scatter matrix within the positive examples. PN → indicates 

the asymmetric approach, which means the user’s biased opinion towards the positive 
class [8]. 

2.3   Hybrid PCA and LDA analysis 

If 1S  in equation (1) is the covariance matrix ΣS of all the samples, and 2S  identity 

matrix, we recover standard principal component analysis (PCA) [1]. If 1S  is the data 

covariance and 2S  the noise covariance, we obtain oriented PCA (OPCA) [1], which 

aims at finding a direction that describes most variance in the data while avoiding 
known noise as much as possible. 
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If we design our optimal function as 
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where λ, η are two parameters in the range of (0,0) to (1,1), ΣS  is the covariance 
matrix of all the training samples, and I is the identity matrix.  

With different ),( ηλ values, the equation (6) provides a set of alternatives to PCA 

and LDA: )0,0( == ηλ  reduces to the full LDA; )1,1( == ηλ  recovers the full PCA; 

)1,0( == ηλ gives a subspace that is mainly defined by maximizing the scatters 

among all the classes with minimal effort on clustering each class; )0,1( == ηλ  gives 

a subspace that mainly preserves the most energy while minimizing the scatter matri-
ces of within-classes;  ),( 2

1
2
1 == ηλ gives a subspace that is a trade-off between LDA 

and PCA.  With continuous ),( ηλ values, more alternatives beyond PCA and LDA, 

which haven’t been studied before, can be easily obtained. 
The difference of the hybrid analysis from the existing formulae for LDA is subtle, 

but critical. Two points are worth mentioning: regularization; and effective dimension. 

Regularization. It is well known that sample-based plug-in estimates of the scatter 
matrices based on equations (2-5) will be severely biased for small number of training 
samples. If the number of the feature dimensions is large compared to the number of 
training examples, the problem becomes ill-posed, i.e., 0|| =WSW W

T in equation (1). 
A compensation or regularization can be simply done by adding quantities to the 
diagonal of the scatter matrices [9]. It is denoted as simple regularization scheme. It 
has been shown in [10] that even simple regularization scheme can significantly im-
prove the classification accuracy in average by 15% ~ 40%.  

If we examine the denominator of equation (6), adding the matrix I⋅η  achieves 

simple regularization. But the difference from simple regularization is that we also 
consider preserving the descriptive features in the nominator of equation (6). 

Effective Dimension. In LDA, the maximum dimension of the projected subspace is 
1−C , where C is the number of the classes [6], while in PCA there is no such limita-

tion. Due to the full rank of the matrix ISW ⋅+⋅− ηη)1( , the hybrid PCA-LDA 

analysis has effective dimension up to 1d , while for FDA it is only 1 and for MDA it 

is at most 1−C ( Cd >>1 usually). This gives the hybrid approach significantly higher 

capacity for informative density modeling, for which FDA has virtually none. 

2.4   Hybrid MDA and BDA Analysis 

The main difference of MDA and BDA is their symmetric/asymmetric treatment to 
the positive and negative examples. They can also be unified. Similarly to equation 
(6), we design our optimal function as 

|])1[(|
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where PNS → (or NPS → ) is the between-class scatter matrix from the negative (or posi-

tive) examples to the centroid of the positive (or negative) examples, and PS (or NS ) 

is the within-class scatter matrix for the positive (or negative) examples, respectively. 
Similar to the PCA-LDA analysis, both BDA and MDA become the special cases 

in the unified framework, and a rich set of the discriminant analysis beyond BDA and 
MDA can be obtained by setting parameters ),( ηλ .  

It is our expectation that these new alternatives could boost the classification per-
formance since they compensate each other but overcome their drawbacks. 

3   Experiments and Analysis 

3.1   Comparison of PCA, LDA and Hybrid Analysis 

In the first experiment, several benchmark1 data sets are used. It contains three differ-
ent data sets: Hearts, Breast-Cancer and Banana. The data dimensions of these three 
data sets are 13, 9, and 2, respectively. The sizes of the training sets are 170, 200, 400, 
and the sizes of the testing data sets are 100, 77, and 4900, respectively. 

The original data is first projected to the lower subspace and expectation-
maximization (EM) algorithm [6] is applied on the projected data for classification. 
The distribution of the labeled samples, i.e., training data set, is learned and the unla-
beled test samples will be classified with the learned distribution. Empirical observa-
tions suggest that the transformed image data often approximates a Gaussian in the 
lower subspace, and so in our implementation, we use low-order Gaussian mixture to 
model the transformed data.  

Figure 1 shows the classification error rate using PCA, LDA and hybrid PCA-LDA 
analysis. For Heart data, the error rate is 20.7% for PCA, 18.8% for LDA, and 16.1% 
for the hybrid PCA-LDA analysis for the best pair )0,4.0( == ηλ .  For Breast-
Cancer data, the error rate is 26.4% for PCA, 28.5% for LDA, and 25.4% for the 
hybrid PCA-LDA analysis for the best pair )2.0,4.0( == ηλ . 

          
                     (a) Heart Dataset                                              (b) Breast-Cancer Dataset 

Fig. 1. Comparison of PCA, LDA, and hybrid PCA-LDA analysis PCA: )1,1( == ηλ , LDA: 
)0,0( == ηλ ,  best hybrid pair: )0,4.0( == ηλ for Heart Dataset; )2.0,4.0( == ηλ for 

Breast-Cancer Dataset 

                                                           
1 The benchmark data sets are obtained from http://mlg.anu.edu.au/~raetsch/ 
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Table 1. Comparison of PCA, LDA, and hybrid PCA-LDA analysis on the Heart dataset 

Projected Subspace Dimension 
Error Rate (%) 

1 2 4 8 
LDA 18.8 18.3 21.0 24.5 
PCA 20.7 21.2 20.8 21.5 

Best PCA-LDA 
pair *)*,( ηλ  

16.1 
(0.4, 0) 

17.9 
(0.2, 0.2) 

18.7 
(0.4, 0.2) 

20.5 
(0.4, 0) 

Table 1 shows the error rates for different dimensions of the projected subspace. 
It is obvious that the hybrid PCA-LDA analysis performs best among three tech-
niques. 

3.2   Comparison to State-of-the-Art 

In the second experiment, hybrid PCA-LDA analysis combined with semi-supervised 
learning through the EM algorithm is compared to state-of-the-art classification tech-
niques, which include a single Radial Basis Function (RBF) classifier, a support vec-
tor machine (SVM), AdaBoost, and the Kernel Fisher discriminant (KFD), and DEM 
and its kernel version (KDEM) [12] on the benchmark dataset [11]. RBF kernels are 
used in all kernel-based algorithms. 

Besides the hybrid PCA-LDA analysis, we also consider the hybrid oriented PCA 
(OPCA) and BDA analysis. Oriented PCA has the property of maximizing Signal-to-
Noise Ratio (SNR) of a given signal.  The formulation of hybrid OPCA-BDA analysis 
is similar to equations (6) and (7). 

Table 2 shows the classification error and their standard deviation for various clas-
sification methods. The hybrid analysis is well comparable to state-of-the-art kernel-
based methods except for the Banana data (the original dimension is 3, the gain by all 
linear projections is limited), even though for the former methods only linear trans-
formations are performed.  

Table 2. Benchmark test: The average error rate (%) and standard deviation  

Benchmark Error rate (%) and 
standard deviation Heart Breast-Cancer Banana 

RBF 17.6±0.33 27.6±0.47 10.8±0.06 
AdaBoost 20.3±0.34 30.4±0.47 12.3±0.07 

SVM 16.0±0.33 26.0±0.47 11.5±0.07 
KFD 16.1±0.34 25.8±0.48 10.8±0.05 
DEM 19.42±1.43 28.57±1.37 38.43±2.5 

KDEM 16.5±0.85 27.4±1.53 11.03±0.26 
PCA−LDA *)*,( ηλ  17.6±0.71 (0.4, 0) 25.4±1.69 (0.4, 0.2) 43.16±1.69 (0.4, 0) 

OPCA−BDA *)*,( ηλ  16.3±0.82 (0.2, 0.2) 27.01±1.42 (0.2, 0) 38.79±3.12 (0.4, 0) 
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3.3   Comparison to Variants of Discriminant Analysis 

In the third experiment, we compare our hybrid analysis with discriminant-EM algo-
rithm (DEM) and kernel DEM (KDEM) [12], BDA, and kernel BDA (KBDA) [8].  

The data sets used are the MIT facial image dataset (2358 images) and non-face 
images (2958 images) from Corel database. All the face and non-face images are 
scaled down to 1616×  gray images and normalized feature vector of dimension 256 
is used to represent the image. The size of the training set is 100, 200, 400, and 800, 
respectively. Compared with the feature vector dimension of 256, the training sample 
size is set from relatively small to relatively large. 

Table 3. Comparison of DEM, BDA, KDEM, KBDA, and the hybrid pairs 

Size of Training Set 
Error Rate (%) 100 200 400 800 

DEM 10.5 19.3 15.0 9.0 
BDA 34.7 25.4 18.5 19.3 

KDEM 6.93 1.43 0.7 0.5 
KBDA 3.04 2.89 2.58 1.44 

PCA-LDA *)*,( ηλ  1.73 (0.4, 0.2) 2.2 (0.2, 0) 1.5 (0.2, 0) 0.73 (0.2, 0.2) 

OPCA-BDA *)*,( ηλ  4.0 (0.2, 0) 3.2 (0.2, 0) 1.3 (0.2, 0.2) 1.2 (0.2, 0) 

MDA-BDA *)*,( ηλ  4.2 (0.2, 0) 1.9 (0.4, 0.2) 1.7 (0.2, 0.2) 1.6 (0.2, 0.2) 

OPCA-MDA *)*,( ηλ  2.3 (0.4, 0.2) 1.9 (0.4, 0.2) 1.8 (0.2, 0) 1.3 (0.4, 0) 

Several conclusions can be drawn from results in Table 3. (i) When compared with 
DEM or BDA, the PCA-LDA pair performs much better. (iii) When compared with 
KDEM and KBDA, the PCA-LDA pair performs better than KBDA, and comparable 
to KDEM. It should be noted only linear transformation is used in the hybrid analysis. 
The performances of other hybrid pairs are very comparable to KDEM and KBDA. 
These results show the robust performance of the hybrid analysis.  

4   Boosting Hybrid Analysis 

Hybrid PCA-LDA analysis has shown promising performance in Section 3. However 
the optimal classifier often lies between PCA and LDA in the parametric space of 

),( ηλ . We have to search the whole parametric space to find the best pair *)*,( ηλ . 
This will result in extra computational complexity. It is also true that the best pair we 
found for one particular dataset is often different from that of another dataset and 
therefore this cannot lead to a generalization. 

AdaBoost [13] developed in the computational machine learning area has strong 
justification in terms of bounds on the generalization error, and connection to additive 
models in statistics. The basic idea of boosting is to iteratively re-weight the training 
examples based on the outputs of some weak learners, with difficult-to-learn points 
receiving higher weights to enter the next iteration. The final learner is a weighted 
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combination of the weaker learners. Therefore AdaBoost provides a general way of 
combining and enhancing a set of PCA-LDA classifiers in the parametric space.  

Unlike most of the existing approaches that boost individual features to form a 
composite classifier, our scheme boosts both the individual features as well as a set of 
weak classifiers. Our algorithm is shown below: 

Algorithm AdaBoost with PCA-LDA as weak learner 
Given: Training Sample set X and corresponding label Y 
               K  PCA-LDA classifiers with different ),( ηλ  

Initialization: weight )(1, xw tk = =1/|X| 

Adaboost: 
For Tt ,,1=  

     For each classifier Kk ,,1=  do 

• Train the classifier on weighted mean and weighted scatter matrices in the following 
way. Note that =
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As a comparison, we also boost individual features for a single classifier of PCA, 
LDA, and the best pair *)*,( ηλ classifier found in the parametric space, respectively. 

Figure 2 shows the results. Clearly as iteration goes on, the error rate decreases for all 
boosted algorithms. Boosted PCA-LDA starts with a set of weak classifiers (com-
pared to the best pair *)*,( ηλ  classifier), but after one iteration, the boosted PCA-

LDA outperforms the single best classifier )0*,4.0*( == ηλ . This is because not only 
individual features are boosted but also a set of weak classifiers are combined into a 
strong one. 

 

Fig. 2. AdaBoost on Heart benchmark data set 

For simply searching the parametric space, the larger the searched space, the better 
is the performance of the best single classifier. However, the exhaustive search means 
more computational costs. Table 4 shows the boosted PCA-LDA classifier and the 
best single classifier of PCA-LDA analysis in the different search spaces. The search-
ing step size of λ  and η is 0.25, 0.2, 0.167, and 0.1 resulting in the searching space 

size 16, 25, 36, and 100, respectively. The boosted PCA-LDA classifier is not sensi-
tive to the size of the search space, e.g., the boosted PCA-LDA classifier from a weak 
set of 16 single classifiers achieves the better performance (i.e., 16.45%) than the best 
single classifier (i.e., 16.95%) of search space size 100 after three iterations.  There-
fore, instead of exhaustive search, the boosted PCA-LDA classifier provides a more 
efficient way to combine a small set of weak classifiers into a more powerful one. 

Table 4. Comparison of the boosted PCA-LDA classifier and best single classifier of PCA-
LDA pair on Heart dataset 

Boosted PCA-LDA 
Search space size 

Error rate (%) of the best 
single classifier ( *, *) 1=T  T=3  5=T  

16 17.85 (0.33, 0) 17.03 16.45 16.45 
25 17.2 (0.5, 0.25) 16.95 16.6 16.5 
36 17.6 (0.4, 0) 16.9 16.55 16.0 

100 16.95 (0.5, 0.1) 17.05 16.37 15.9 

5   Conclusions and Discussions 

Curse of dimensionality is an impediment for any computer vision applications. To 
address this issue, we propose a novel hybrid feature dimension reduction scheme for 
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classification. In order to reduce the computational complexity and combine a set of 
weak classifiers into a powerful one, the boosted hybrid analysis is applied. The 
weighted training scheme in AdaBoost adds indirect non-linearity and adaptivity to 
the linear methods and thus enhances it by iterations. 

Many interesting issues are worth investigating in the future. (i) The first is the fu-
sion of PCA and LDA.  (ii) The second is to investigate the variants of standard 
AdaBoost to remove the outliers in the boosting. (iii) The third is to apply the hybrid 
analysis to other classification problems in bioinformatics and biometrics.  
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Abstract. Biometric authentication is a process of verifying an identity claim
using a person’s behavioural and physiological characteristics. Due to the vul-
nerability of the system to environmental noise and variation caused by the user,
fusion of several biometric-enabled systems is identified as a promising solution.
In the literature, various fixed rules (e.g. min, max, median, mean) and train-
able classifiers (e.g. linear combination of scores or weighted sum) are used to
combine the scores of several base-systems. How exactly do correlation and im-
balance nature of base-system performance affect the fixed rules and trainable
classifiers? We study these joint aspects using the commonly used error mea-
surement in biometric authentication, namely Equal Error Rate (EER). Similar
to several previous studies in the literature, the central assumption used here is
that the class-dependent scores of a biometric system are approximately normally
distributed. However, different from them, the novelty of this study is to make a
direct link between the EER measure and the fusion schemes mentioned. Both
synthetic and real experiments (with as many as 256 fusion experiments carried
out on the XM2VTS benchmark score-level fusion data sets) verify our proposed
theoretical modeling of EER of the two families of combination scheme. In par-
ticular, it is found that weighted sum can provide the best generalisation perfor-
mance when its weights are estimated correctly. It also has the additional advan-
tage that score normalisation prior to fusion is not needed, contrary to the rest of
fixed fusion rules.

1 Introduction

There exists a vast literature study that proposes to model theoretical classification er-
rors for fusion, e.g., [1, 2, 3]. However, to the best of our knowledge, a direct modeling
of Equal Error Rate (EER), i.e., an evaluation error commonly used in biometric au-
thentication tasks, has not been attempted. This is partly because of the unknown deci-
sion threshold which prevents further analysis. Analysis of EER is cumbersome with-
out making any assumption about the distribution of the classifier scores, e.g., using a
non-parametric approach. We tackle this problem by assuming that the class-dependent
scores are normally distributed. With a very large number of independent experiments,
our previous work [4] shows that although the class-dependent scores are often not nor-
mally distributed, the estimated EER is fairly robust to deviation from such assumption.

N.C. Oza et al. (Eds.): MCS 2005, LNCS 3541, pp. 74–85, 2005.
c©Springer-Verlag Berlin Heidelberg 2005
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In [1], the theoretical classification error of six classifiers are thoroughly studied for
a two-class problem. This study assumes that the base classifier scores are probabilities
∈ [0, 1]. Hence probability of one class is one minus the probability of the other class
and the optimal threshold is always set to 0.5. It also assumes that all baseline classi-
fier scores are drawn from a common distribution. Gaussian and uniform distributions
are studied. The first assumption is not always applicable to biometric authentication.
This is because the output of a biometric system is often not necessarily a probability
but a distance measure, a similarity or a log-likelihood ratio. Moreover, decisions are
often taken by comparing a classifier score with a threshold. The second assumption,
in practice, is also unrealistic in most situations, particularly in multimodal fusion. This
is because the (class-dependent) score distributions are often different across different
classifiers. The proposed EER model is also different from the one presented in [2, 3]
in terms of application, assumption and methodology (see Section 3).

The goal of this paper is thus to study the EER of fixed and trainable fusion classi-
fiers with respect to the correlation and the imbalance performance nature of baseline
systems. Section 2 briefly discusses the general theoretical EER framework and how it
can be applied to study several commonly used fusion classifiers. Section 3 discusses
the important assumptions made and draws differences between EER and current the-
oretical model to explaining why fusion works. Sections 4 and 5 present experimental
results on synthetic and real data. These are followed by conclusions in Section 6.

2 Theoretical EER

The fundamental problem of biometric authentication can be viewed as a classification
task to decide if person x is a client or an impostor. In a statistical framework, the
probability that x is a client after a classifier fθ observes his/her biometric trait can be
written as:

y ≡ fθ(fe(s(x))), (1)

where, s is a sensor, fe is a feature extractor, θ is a set of classifier parameters associated
to the classifier fθ.

Note that there exists several types of classifiers in biometric authentication, all of
which can be represented by Eqn. (1). They can be categorized by their output y, i.e.,
probability (within the range [0, 1]), distance metric (more than or equal to zero), or log-
likelihood ratio (a real number). the context of multimodal BA, y is associated to the
subscript i, which takes on different meanings in different context of fusion, as follows:

yi(x) =

⎧⎪⎪⎨
⎪⎪⎩

fθ(fe(s(xi))) if multi-sample
fθ(fe(si(x))) if multimodal
fθ(fe,i(s(x))) if multi-feature
fθ,i(fe(s(x))) if multi-classifier

(2)

Note that i is the index to the i-th sample in the context of multi-sample fusion. i can
also mean the i-th biometric modality in multimodal fusion, etc. In a general context, we
refer to yi(x) as the i-th response and there are altogether N responses (i = 1, . . . , N ).
It is important to note that all yi(x) belong to the same access. We write yi instead of
yi(x) for simplicity, while bearing in mind that yi is always dependent on x.
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To decide if an access should be granted or not, all yi|∀i have to be combined to
form a single output. This can be expressed as: yCOM = fCOM (y1, . . . , yN ). Several
types of combination strategies are used in the literature, e.g., min, max, median, mean
(or sum), weighted sum, product and weighted product. They are defined as follow:

ymin = mini(yi), ymax = maxi(yi) ymed = mediani(yi),
ywsum =

∑N
i=1 wiyi, and ywprod =

∏N
i=1 ywi

i ,
(3)

where wi|∀i are parameters that need to be estimated. The mean operator is a special
case of weighted sum with wi = 1

N . Similarly, the product operator is a special case of
weighted product with wi = 1.

The decision function based on the score y (for any y after fusion {yCOM |COM ∈
{min,max, mean, median, wsum, prod, wprod} or any yi prior to fusion; both cases
are refered to simply as y) is defined as:

decision =
{

accept if y > Δ
reject otherwise.

(4)

Because of the binary nature of decision, the system commits two types of error called
False Acceptance (FA) and False Rejection (FR) errors, as a function of the threshold
Δ. FA is committed when x belongs to an impostor and is wrongly accepted by the
system (as a client) whereas FR is committed when x belongs to a client and is wrongly
rejected by the system. They can be quantified by False Acceptance Rate (FAR) and
False Rejection Rate (FRR) as follow:

FAR(Δ) = FA(Δ)
NI and FRR(Δ) = FR(Δ)

NC , (5)

where FA(Δ) counts the number of FA, FR(Δ) counts the number of FR, NI is the
total number of impostor accesses and NC is the total number of client accesses.

At this point, it is convenient to introduce two conditional variables, Y k ≡ Y |k, for
each k being client or impostor, respectively i.e., k ∈ {C, I}. Hence, yk ∼ Y k is the
score y when person x is k ∈ {C, I}. Let p(Y k) be the probabilistic density function
(pdf ) of Y k. Eqns. (5) can then be re-expressed by:

FAR(Δ) = 1 − p(Y I > Δ) and FRR(Δ) = p(Y C > Δ). (6)

Because of Eqn. (4), it is implicitly assumed that E[Y C ] > E[Y I ], where E[z] is
the expectation of z. When p(Y k) for both k ∈ {C, I} are assumed to be Gaussian
(normally distributed), they take on the following parametric forms (see [4]):

FAR(Δ) = 1
2 − 1

2erf
(

Δ−μI

σI
√

2

)
and FRR(Δ) = 1

2 + 1
2erf
(

Δ−μC

σC
√

2

)
(7)

where μk and σk are mean and standard deviation of Y k, and the erf function is defined
as follows:

erf(z) =
2√
π

∫ z

0

exp
[−t2

]
dt. (8)

At Equal Error Rate (EER), FAR=FRR. Solving this constraint yields (see [4]):

EER = 1
2 − 1

2erf
(

F-ratio√
2

)
≡ eer(F-ratio) where F-ratio = μC−μI

σC+σI . (9)
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Table 1. Summary of theoretical EER based on the assumption that class-independent scores are
normally distributed

Fusion methods EER where

average baseline1 EERAV = eer
(

μC
AV −μI

AV

σC
AV

+σI
AV

) μk
AV = 1

N

∑
i μk

i(
σk

AV

)2
= 1

N

∑
i

(
σk

i

)2
single-best classifier EERbest = eer

(
maxi

(
μC

i −μI
i

σC
i +σI

i

))
–

mean rule EERmean = eer
(

μC
mean−μI

mean

σC
mean+σI

mean

) μk
mean = 1

N

∑
i μk

i(
σk

mean

)2
= 1

N2

∑
i,j Σk

i,j

weighted sum3 EERwsum = eer
(

μC
wsum−μI

wsum

σC
wsum+σI

wsum

) μk
wsum =

∑
i ωiμ

k
i(

σk
wsum

)2
=
∑

i,j ωiωjΣ
k
i,j

OS combiners2 EEROS = eer
(

μC
OS−μI

OS

σC
OS

+σI
OS

) μk
OS = μk + γ1σ

k(
σk

OS

)2
= γ2

(
σk
)2

Remark 1: This is not a classifier but the average performance of baselines when used inde-
pendently of each other. By its defintion, scores are assumed independent as classifiers function
independently of each other. Remark 2: OS classifiers assume that scores across classifiers are
i.i.d. The reduction factor γ is listed in Table 2. The mean and weighted sum classifiers do not
assume that scores are i.i.d. Remark 3: the weighted product (respectively product) takes the
same form as weighted sum (respectively sum), except that log-normal distribution is assumed
instead.

The function eer is introduced here to simplify the EER expression as a function of
F-ratio because eer will be used frequently in this paper. Note that the threshold Δ is
omitted since there is only one unique point that satisfies the EER criterion.

2.1 Theoretical EER of Fusion Classifier

We now derive several parametric forms of fused scores using different types of clas-
sifiers, namely the single-best classifier, mean, weighted sum, product rule and Order
Statistics (OS)-combiners such as min, max and median. The OS-combiners are fur-
ther discussed in Section 2.2.

The analysis in this section is possible due to the simple expression of F-ratio, which
is a function of four parameters: {μk, σk|∀k={C,I}} as shown in Eqn. (9). Suppose that
the i-th response is yk

i sampled from p(Y k
i ) and there are N classifiers, i.e., i = 1, . . . , N .

The average baseline performance of classifiers, considering that each of them works
independently of the other, is shown in the first row of Table 1. The (class-dependent)
average variance, σk

AV , is defined as the average over all the variances of classifier. This is
in fact not a fusion classifier but the average performance of classifiers measured in EER.
The single-best classifier in the second row chooses the baseline classifier that maximises
the F-ratio. This is the same as choosing the one with minimum EER because F-ratio is
inversely proportional to EER, as implied by the left part of Eqn. (9).

The derivation of EER of weighted sum (as well as mean) fusion can be found
in [5]. The central idea consists of projecting the N dimensional score onto a one di-
mensional score via the fourth equation in Eqns. (3). Suppose that the class conditional
scores (prior to fusion) are modeled by a multivariate Gaussian with mean (μk)T =
μk

1 , . . . , μk
N and covariance Σk of N -by-N dimensions. Let Σk

i,j be the i-th row and
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j-th column of covariance matrix Σk for k = {C, I}. E[·] is the expectation operator
(over samples) and W k

i is the noise variable associated to classifier i for all k. The linear
projection from N dimensions of score to one dimension of score has the same effect on
the Gaussian distribution: from N multivariate Gaussian distribution to a single Gaus-
sian distribution with mean μk

wsum and variance (σwsum)2 defined in the fourth row
of Table 1 for each class k. The mean operator is derived similarly with wi = 1

N ∀i.
Note that the weight wi affects both the mean and variance of fused scores. In [4], it
was shown mathematically that the EER of mean, EERmean, is always smaller than or
equal to the EER of the average baseline performance (EERAV ). This is closely related
to the ambiguity decomposition [6] often used in the regression context (as opposed to
classification as done in [4]). However, there is no evidence that EERmean ≤ EERbest,
i.e., the EER of the best-classifier. In [7], it was shown that σk

wsum ≤ σk
mean, suppos-

ing that the wi∀i are optimal. In [3], when the correlation among classifiers is assumed
to be zero, wi ∝ (EERi)−1. As a result, this implies that EERwsum ≤ EERmean.
The finding in [7] is more general than that of [3] because the underlying correlation
among baseline classifiers is captured by the covariance matrix. Hence, fusion using
weighted sum can, in theory, have better performance than the mean rule, assuming
that the weights are tuned optimally. A brief discussion of weight-tuning procedures
are discussed in Section 5.2. Although there exists several methods to tune the weights
in the literature, to the best of our knowledge, no standard algorithm directly optimises
EER (hence requiring further investigation which cannnot be dealt here).

For the product operator, it is necessary to bound Y to be within the range [0, 1], oth-
erwise the multiplication is not applicable. Consider the following case: two instances
of classifier score can take on any real value. The decision function Eqn. (4) is used
with optimal threshold being zero. With an impostor access, both classifier scores will
be negative if correctly classified. Their product, on the other hand, will be positive.
This is clearly undesirable.

The weighted product (and hence product) at first seems slightly cumbersome to ob-
tain. However, one can apply the following logarithmic transform instead: log(Y k

wprod) =∑
i wi log(Y k

i ), for any yk
i sampled from p(Y k

i ). This turns out to take the same form
as weighted sum. Assuming that Y k

i is log-normally distributed, we can proceed the
analysis in a similar way as the weighted sum case (and hence the mean rule).

2.2 Theoretical EER of Order Statistics Combiners

To implement fixed rule order statistics (OS) such as the maximum, minimum and
median combiners, scores must be comparable. Unfortunately, attempting to analyse
analytically the EER values as done in the previous section is difficult without making
(very) constraining assumptions.

The first assumption is that the instance of scores must be comparable. If scores of
various types of classifiers are involved for fusion, their range may not be comparable.
Hence, score normalisation is imperative while this pre-processing step is unnecessary
in the previous section. The second assumption assumes that scores are i.i.d. In this
case, there exists a very simple analytical model1. Although this model seems too con-

1 This assumption will be removed during experimentation with synthetic data.
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Table 2. Reduction factor γ2 of variance (2 for the second moment) with respect to the standard
normal distribution due to fusion with min, max (the second column) and median (third column)
OS combiners for the first five samples according to [8]. The fourth column is the maximum
reduction factor due to mean (at zero correlation), with minimum reduction factor being 1 (at
perfect correlation). The fifth and sixth columns show the shift factor γ1 (for the first moment) as
a result of applying min and max for the first five samples. These values also exist in tabulated
forms but here they are obtained by simulation. For median, γ1 is relatively small (in the order
of 10−4) beyond 2 samples and hence not shown here. It approaches zero as N is large

N γ2 values γ1 values
OS combiners mean OS combiners

min, max, median ( 1
N

) min max

1 1.000 1.000 1.000 0.00 0.00
2 0.682 0.682 0.500 -0.56 0.56
3 0.560 0.449 0.333 -0.85 0.85
4 0.492 0.361 0.250 -1.03 1.03
5 0.448 0.287 0.200 -1.16 1.16

straining, it is at least applicable to fusion with multiple samples which satisfies some of
the assumptions stated here: scores are comparable; and they are identically distributed
but unfortunately not necessarily independently sampled.

All OS combiners will be collectively studied. The subscript OS can be replaced
by min, max and median. Supposing that yk

i ∼ Y k
i is an instance of i-th response

knowing that the associated access claim belongs to class k. yi has the following model:
yk

i = μk
i + ωk

i , where μk
i is a deterministic component and ωk

i is a noise component.
Note that in the previous section ωk

i is assumed to be normally distributed with zero
mean. The fused scores by OS can be written as: yk

OS = OS(yk
i ) = μk + OS(ωk

i ),
where i denotes the i-th sample (and not the i-th classifier output as done in the previous
section). Note that μk is constant across i and it is not affected by the OS combiner. The
expectation of yk

OS as well as its variance are shown in the last row of Table 1, where γ2

is a reduction factor and γ1 is a shift factor, such that γ2(σk)2 is the variance of OS(ωk
i )

and γ1σ
k is the expected value of OS(ωk

i ). Both γ’s can be found in tabulated form for
various noise distributions [8]. A similar line of analysis can be found in [2] except that
class-independent noise is assumed. The reduction factors of combining the first five
samples, assuming Gaussian distribution, are shown in Table 2. The smaller γ2 is, the
smaller the associated EER. The fourth column of Table 2 shows the reduction factor
due to mean (as compared to the second and third columns). It can be seen that mean
is overall superior.

3 General Discussion

We gather here a list of assumptions made that will be used in simulating a theoretical
comparison of fixed and trainable fusion classifiers listed in Table 1. For each assump-
tion, we discuss its relevance and acceptability in practice.

1. Class-dependent gaussianity assumption. Perhaps this is the most severe assump-
tion as this does not necessarily hold in reality. In [4], 1186 data sets of scores
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were used to verify this assumption using the Kolmogorov-Smirnov statistics. Only
about a quarter of the data sets supported the gaussianity assumption. However,
to much surprise, the theoretical EER (estimated using the Gaussian assumption)
matches closely its empirical counterpart (obtained by directly estimating the EER
from scores). Hence, the theoretical EER employed here is somewhat robust to de-
viation from such assumption. This in part may be due to the fact that the classifier
scores are unimodal but not necessarily Gaussian. The Gaussianity assumption is
used mainly because of its easy interpretation. A mixture of Gaussian components
could have been used in place of a single Gaussian. However, this subject requires
a dedicated study which cannot be adequately dealt in the present context.

2. Score comparability assumption. This assumption is only necessary for OS com-
biners because of their nature that requires comparison relation “≥”. Scores can be
made comparable by using score normalisation techniques. We use here the zero-
mean unit-variance normalisation (or z-score), where a score is subtracted from its
global mean and divided by its standard deviation, both of which are calculated
from a training set. For the product rule which naturally assumes classifier out-
puts are probabilistic (in the range [0, 1]), the min-max normalisation is used. This
is done by subtracting the score from its smallest value and divided by its range
(maximum minus minimum value), all of which calculated from a training set

3. Class-dependent correlation assumption. Under such assumption, one assumes
that the correlation of client and impostor distributions are correlated, i.e., ρI ∝
ρC . This means that knowing the covariance of impostor joint distribution, one
can actually estimate the covariance of the client joint distribution. A series of 70
intramodal and multimodal fusion experiments taken from the BANCA database
were analysed in [4] and it was shown that the correlation between ρI and ρC is
rather strong, i.e., 0.8.

Different from studies in [1, 2], we do not assume identical distribution across different
classifiers. In fact, for OS combiners, the analytical EER expression that does not com-
mit such assumption is cumbersome to be evaluated. Hence, we propose to resolve to
simulations, which are relatively easier to carry out and reflect better the fusion tasks in
biometric authentication.

Note that we do not make the independence assumption in the sense that corre-
lation across different classifiers is non-zero. In fact, the correlation among classifier
scores is captured by the covariance matrix via the definition of correlation, as follows:

ρk
i,j ≡ Σk

i,j

σk
i σk

j

. This indicates that if one uses a multivariate Gaussian, the correlation is

automatically taken care of by the model.
Our theoretical analysis is different from [2, 3] in several aspects. In [2, 3], two

types of errors are introduced, namely Bayes (inherent) error and added error. The for-
mer is due to unbiased classifier whose class posterior estimates correspond to the true
posteriors. The latter is due to biased classifiers which result in wrongly estimated class
posteriors. The EER used here is commonly found in binary classification problems
while the error (sum of bayes error and added error) applies to any number of classes. It
is tempting to conclude that EER is equivalent to the Bayes error for a two-class prob-
lem. There are, however, important differences. In [2, 3] (the former), the bayes error is
due to additive error in the feature space near the decision boundary. In EER (the latter),
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the input measurement is not a set of features but a set of scores of one or more base-
classifiers. The output posteriors between the two classes in the former are enforced by
linear approximation, whereas in the latter, they are assumed to be (integral of) Gaus-
sian. The local continuity at the boundary is hence implicitly assumed. Furthermore,
the Bayes error cannot be reduced (the added error can) but EER can [4].

4 Experiments with Synthetic Data

We designed a series of 110 synthetic experiment settings. Each experiment setting
consists of a fusion task of two classifier outputs. All three assumptions mentioned in
Section 3 are used here, i.e., (1) the 2D scores will be sampled from a multivariate
Gaussian distribution for each class (client and impostor); (2) scores are comparable,
i.e., the mean of client and impostor distributions are fixed to 0 and 1, respectively.
However, for the product rule, scores are further normalised into the range [0, 1] by the
min-max normalisation; and finally, (3) the same covariance matrix is used for the client
and impostor distributions.

In order to evaluate classifier performance, Half Total Error Rate (HTER) is com-
monly used for biometric authentication. It is defined as: HTER = 1

2 (FAR(Δ) +
FRR(Δ)), where the threshold Δ is chosen to minimise the Weighted Error Rate (WER)
at a given pre-defined α ∈ [0, 1] which balances between FAR and FRR. WER is de-
fined as:

WER(α) = αFAR(Δ) + (1 − α)FRR(Δ). (10)

To optimise the EER criterion, instead of WER, α = 0.5 is used. We further define a

performance gain variable called βmin, as follows: βmin = HTERbest

HTERCOM
where COM

is any one of the fusion classifiers/rules under study. When βmin > 1, the particular
fusion classifier is better than the best underlying system.

The first classifier, designed as the better classifier of the two, has a (class-dependent)
variance of 0.5 and is kept constant across all synthetic data sets, whereas the second
classifier has a variance that varies with a ratio between 1 to 4 (or absolute variance
value between 0.5 to 2). This causes the first expert to have a HTER between 5.3% and
6.2%, with a mean of 5.8% and the second expert between 5.4% and 22% of HTER with
a mean of 15% at the EER point. Furthermore, the correlation value is varied between
0 and 1, at a step of 0.1 increment.

The simulation results are shown in Figure 1. For figures (a)-(e), the plane with
βmin = 1 indicates the best single classifier, i.e., the baseline performance. As can be
seen, the weighted sum classifier achieves the best overall gain. In fact, its βmin > 1
across all variance ratios and across all correlation values. The mean rule shows that the
performance gain is more than 1 only when the variance ratio is 3 at correlation=0. As
correlation increases, to maintain a positive gain, the variance ratio has to be decreased.
This behaviour has been theoretically verified in [4]. The min and max rules follow the
same trend as mean and weighted sum except that their gain is much smaller. There
is no significant difference between the min and max rules. This is somewhat expected
following their theoretical EER models presented in Table 1.

We further examined the weight attributed to the second (weaker) classifier by the
weighted sum classifier to see how the weights evolve with various variance ratios and



82 N. Poh and S. Bengio

1
2

3
4 0

0.5

1

0

1

2

3

4

5

corrr

mean

var ratio

β m
in

0.5

1

1.5

2

2.5

3

3.5

4

(a) mean

1
2

3
4 0

0.5

1

0

1

2

3

4

5

corrr

wsum

var ratio

β m
in

1

1.5

2

2.5

3

3.5

4

(b) wsum

1
2

3
4 0

0.5

1

0

1

2

3

4

5

corrr

min

var ratio

β m
in

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(c) min

1
2

3
4 0

0.5

1

0

1

2

3

4

5

corrr

max

var ratio 0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(d) max

1
2

3
4 0

0.5

1

0

1

2

3

4

5

corrr

prod

var ratio

β m
in

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) product

Correlation

V
ar

ia
nc

e 
ra

tio

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.00

1.33

1.67

2.00

2.33

2.67

3.00

3.33

3.67

4.00
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) weights

erformance gain of HTER, at EER criterion, with respect to the best underlying classifier,
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is involved here. In real applications, where there is a mismatch between training and
test data sets, generalisation performance becomes an important concern. This is treated
in the next section with real data.

5 Experiments with Real Data

5.1 Database Settings and Evaluation

The publicly available2 XM2VTS benchmark database for score-level fusion [10] is
used. There are altogether 32 fusion data sets and each data set contains a fusion task
of two experts. These fusion tasks contain multimodal and intramodal fusion based on
face and speaker authentication tasks. For each data set, there are two sets of scores,
from the development and the evaluation sets. The development set is used uniquely to
train the fusion classifier parameters, including the threshold (bias) parameter, whereas
the evaluation set is used uniquely to evaluate the generalisation performance. They
are in accordance to the two originally defined Lausanne Protocols [11]. The 32 fusion
experiments have 400 (client accesses) × 32 (data sets)= 12,800 client accesses and
111,800 (impostor accesses) × 32 (data sets) = 3,577,600 impostor accesses.

The most commonly used performance visualising tool in the literature is the De-
cision Error Trade-off (DET) curve. It has been pointed out [12] that two DET curves
resulting from two systems are not comparable because such comparison does not take
into account how the thresholds are selected. It was argued [12] that such threshold
should be chosen a priori as well, based on a given criterion. This is because when a
biometric system is operational, the threshold parameter has to be fixed a priori. As a
result, the Expected Performance Curve (EPC) [12] was proposed. This curve is con-
structed as follows: for various values of α in Eqn. (10) between 0 and 1, select the
optimal threshold Δ on a development (training) set, apply it on the evaluation (test) set
and compute the HTER on the evaluation set. This HTER is then plotted with respect
to α. The EPC curve can be interpreted similarly to the DET curve, i.e., the lower the
curve, the better the generalisation performance. In this study, the pooled version of
EPC is used to visualise the performance. The idea is to plot a single EPC curve instead
of 32 EPC curves for each of the 32 fusion experiments. This is done by calculating the
global false acceptance and false rejection errors over the 32 experiments for each of
the α values. The pooled EPC curve and its implementation can be found in [10].

5.2 Experimental Results and Discussion

Figure 2 shows the pooled EPC curves of several fusion classifiers/rules under study,
each over the 32 XM2VTS fusion data sets. As can be observed, the weighted sum gives
the best generalisation performance. The mean rule follows closely. As expected, both
min and max rules have improved generalisation performance after score-normalisation.
For the normalised case (see figure (b)), max turns out to outperform min significantly
for a large of α, according to HTER significance test at 90% of confidence [13].

2 Accessible at http://www.idiap.ch/∼norman/fusion
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Fig. 2. Pooled EPC curves, each derived from 32 fusion data sets, as a result of applying
min, max, mean and weighted sum fusion, with (a) unnormalised orignal scores, (b) margin-
transformed scores, (c) z-scores and (d) F-ratio transformed scores

The weight parameters in the weighted sum are optimised using a 1D search proce-
dure with a constant step-size of 0.05 within the bound [0, 1] since only two classifier
outputs are involved. This strategy has been employed by [14] for user-specific weight-
ing. The advantage of this technique over the technique assuming zero-correlation, such
as [3] or Fisher-ratio [7–Sec. 3.6] is that no assumption is made about the underlying
class-dependent distribution. Support Vector machines with linear kernel could also
have been used instead since it too does not make this assumption. We actually carried
out the two control experiments using the two techniques mentioned and found that
their generalisation performance are significantly inferior to our line search or SVM
approach (not shown here). This is a probable reason why the empirical study con-
ducted here is somewhat different from [15], where the authors did not find weighted
sum significantly outperforms the mean rule, although the same database was used.

6 Conclusions

In this study, the theoretical and empirical aspects of fixed and trainable fusion clas-
sifiers are studied using the EER. Although this subject is well studied [1, 2, 3], the
effects of correlation on Order Statistics (OS) combiners, e.g, min, max, and median,
are largely unknown or rarely discussed due to intractable analysis. We studied the joint
effect of correlation and base-classifier imbalance performance on EER by simulation.
This simulation is based on three major assumptions: class-dependent Gaussianity as-
sumption, score comparability assumption and class-dependent correlation assumption.
Each assumption is adequately addressed (see Section 3). In particular, for the second
assumption, several score normalisation techniques are discussed. Based on 4 fusion
classifiers × 2 normalisation techniques (and) × 32 data sets = 256 fusion experiments,
we show that weighted sum, when weights are tuned correctly, can achieve the best
generalisation performance, with the additional advantage that no score normalisation
is needed.
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Abstract. This paper describes a unified approach, based on Gaussian
Processes, for achieving sensor fusion under the problematic conditions of
missing channels and noisy labels. Under the proposed approach, Gaus-
sian Processes generate separate class labels corresponding to each indi-
vidual modality. The final classification is based upon a hidden random
variable, which probabilistically combines the sensors. Given both la-
beled and test data, the inference on unknown variables, parameters and
class labels for the test data is performed using the variational bound
and Expectation Propagation. We apply this method to the challenge
of classifying a student’s interest level using observations from the face
and postures, together with information from the task the students are
performing. Classification with the proposed new approach achieves ac-
curacy of over 83%, significantly outperforming the classification using
individual modalities and other common classifier combination schemes.

1 Introduction

There are a growing number of scenarios in pattern recognition where multi-
modal information is used, and where information from multiple sensors needs
to be fused to recover the variable of interest. Multi-sensor classification is a
problem that has been addressed previously by using either data-level fusion
or classifier combination schemes. In the former, a single classifier is trained on
joint features; however, when the data has even one missing channel, a frequent
problem, then usually all the data is ignored for that time block, resulting in a
significant reduction in the total amount of data for training. One way to address
this problem is by training a classifier for each modality that is present, and then
combining these for a final decision.

The problem becomes even more challenging when there is labeling noise;
that is, some data points have incorrect labels. In many computer vision and
HCI applications like emotion recognition, there is always an uncertainty about
the true labels of the data; thus, requiring a principled approach to handle any
labeling noise in the data.

The highly challenging problem we address in this paper combines the three
problems described above: there is multi-sensory data, channels are frequently
missing and there might be labeling errors in the data.

N.C. Oza et al. (Eds.): MCS 2005, LNCS 3541, pp. 86–96, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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We address this challenging problem in a Bayesian framework using a com-
bination of Expectation Propagation [9] and variational approximate inference
[1]. The framework utilizes a mixture of Gaussian Processes, where the classifi-
cation using each channel is learned via Expectation Propagation, a technique
for approximate Bayesian inference. The resulting posterior over each classifica-
tion function is a product of Gaussians and can be updated very quickly. We
evaluate the multi-sensor classification scheme on the task of detecting the af-
fective state of interest in children trying to solve a puzzle, combining sensory
information from the face, the postures and the state of the puzzle task, to infer
the student’s state. The proposed unified approach achieves a significantly bet-
ter recognition accuracy than classification based on individual channels and the
standard classifier combination methods. Also, on the affect data set we found
that the standard classifier combination rules, which are justified using the prob-
ability theory, work better when the individual classifiers are probabilistic (as in
the Gaussian Process classification) as opposed to the SVM.

1.1 Previous Work

There are many methods, including Boosting [12] and Bagging [2], which gen-
erate an ensemble of classifiers by choosing different samples from the training
set. These methods require a common set of training data, which is a set of
joint vectors formed by stacking the features extracted from all the modalities
into one big vector. As mentioned earlier, often in multi-sensor fusion problems
the training data has missing channels and labels; thus most of the data can-
not be used to form a common set of training data. Similarly, most of the data
remains unused in “feature-level fusion,” where a single classifier is trained on
joint features.

Kittler et al. [7] have described a common framework for combining classifiers
and provided theoretical justification for using simple operators such as major-
ity vote, sum, product, maximum and minimum. Hong and Jain [4] have used
a similar framework to fuse multiple modalities for personal identification. Sim-
ilarly, Han and Bhanu [3] also perform rule-based fusion for gait-based human
recognition. One problem with these fixed rules is that, it is difficult to predict
which rule would perform best. Then there are methods, such as layered HMMs
proposed by Oliver et al. [10], which perform decision fusion and sensor selection
depending upon utility functions and stacked classifiers. One main disadvantage
of using stacked based classification is that these methods require a large amount
of labeled training data. There are other mixture-of-experts [5] and critic-driven
approaches [8] where base-level classifiers (experts) are combined using second
level classifiers (critics or gating functions) that predict how well an expert is
going to perform on the current input. To make a classifier selection, the critic
can either look at the current input or base its decision upon some other contex-
tual features as well. For example, Toyama and Horvitz [13] demonstrate a head
tracking system based on multiple algorithms, that uses contextual features as
reliability indicators for the different tracking algorithms. The framework de-
scribed by us in this paper is also based on sensor-selection and is most similar
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to Tresp [14], where the mixture of Gaussian Processes is described. The key dif-
ferences include classification based on Gaussian Process rather than regression;
also, we use Expectation Propagation for Gaussian Process classification and our
classification likelihood is robust to labeling errors and noise. Our framework is
also capable of quickly re-learning the classification given updated label associa-
tions. Further, we provide a complete Bayesian treatment of the problem rather
than using a maximum-likelihood training.

2 Our Approach

Figure 1 shows the model we follow to solve the problem. In the figure, the data
xp from P different sensors generate soft class labels y. The switching variable
λ, determines modalities that finally decide the hard class label t ∈ {1,−1}.
In section 2.1, we first review classification using Gaussian Process (GP). Sec-
tion 2.2 then extends the idea to a Mixture of Gaussian Processes and de-
scribes how to handle multiple modalities in the same Bayesian framework.

21x x x x

t

1 2

y y y

p-1 p

p-1 yp

λ

Fig. 1. A mixture of Gaussian Pro-
cesses for p sensors

2.1 Gaussian Process
Classification

Assume we are given a set of labeled data
points X = {x1, ..,xn}, with class labels
t = {t1, .., tn}. For two-way classification,
the labels are, t ∈ {−1, 1}. Under the
Bayesian framework, given an unlabeled
point x∗, we are interested in the distri-
bution p(t∗|X, t,x∗). Here t∗ is a random
variable denoting the class label for the
point x∗. Although, in this paper we only
describe how to classify one new point, all

the machinery described applies as well to a set of new points without any ad-
ditional computational overhead.

The idea behind GP classification is that the hard labels t depend upon hid-
den soft-labels y = {y1, ..., yn}. These hidden soft-labels arise due to application
of a function f directly on the input data points (i.e. yi = f(xi) ∀i ∈ [1..n]). Fur-
ther, we assume a Gaussian Process prior on the function f ; thus, the results y of
the evaluation of the function f on any number of input data points x are jointly
Gaussian. Further, the covariance between two outputs yi and yj can be specified
using a kernel function applied to xi and xj . Formally, {y1, .., yn} ∼ N(0,K)
where K is a n-by-n kernel matrix with Kij = K(xi,xj).

The observed labels t are assumed to be conditionally independent given the
soft labels y and each ti depends upon yi through the conditional distribution:

p(ti|yi) = ε + (1 − 2ε)Φ(yi · ti)
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Here, ε is the labeling error rate and Φ(z) =
∫ z

−∞ N(z; 0, 1). Very similar like-
lihoods have been previously used for Gaussian Process classification [11] and
Bayes-point machines [9]. The above described likelihood explicitly models the
labeling error rate; thus, the model should be more robust to label noise.

Our task is then to infer p(t∗|D), where D = {X, t,x∗}. Specifically:

p(t∗|D) = p(t∗|X, t,x∗) ∝
∫
y,y∗

p(t∗|y, y∗)p(y, y∗|X, t,x∗) (1)

Where the posterior p(y, y∗|X, t,x∗) can be written as:

p(y, y∗|X, t,x∗) = p(y, y∗|D) ∝ p(y, y∗|X,x∗)p(t|y)

The term p(y, y∗|X,x∗) ∼ N(0,K) is the GP prior and it enforces a smooth-
ness constraint. The second term, p(t|y) incorporates information provided in
the labels. In the frameworks described here, p(y, y∗|D) is approximated as a
Gaussian distribution using Expectation Propagation (EP), a technique for ap-
proximate Bayesian inference [9]. Assuming conditional independence of labels
given the soft-labels, p(t|y) can be written as:

p(t|y) =

n∏
i=1

p(ti|yi) =

n∏
i=1

[ε + (1 − 2ε)Φ(yi · ti)]

The idea behind using EP is to approximate P (y, y∗|D) as a Gaussian. Although
the prior p(y, y∗|X,x∗) is a Gaussian distribution, the exact posterior is not a
Gaussian due to the form of p(t|y). Nonetheless, we can use EP to approximate
the posterior as a Gaussian. Specifically, the method approximates the terms
p(ti|yi) as:

p(ti|yi) ≈ t̃i = si exp(− 1

2vi
(yi · ti − mi)

2) (2)

EP starts with the GP prior N(0,K) and incorporates all the approximate terms
t̃i to approximate the posterior p(y, y∗|D) = N(M,V) as a Gaussian. For de-
tails readers are encouraged to look at [9]. To classify the test point x∗, the
approximate distribution p(y∗|D) ≈ N(M∗, V ∗) can be obtained by marginaliz-
ing p(y, y∗|D) and then equation 1 can be used:

p(t∗|D) ∝
∫

y∗
p(t∗|y∗)N(M∗, V ∗) = ε + (1 − 2ε)Φ(

M∗ · t∗√
(1 + V ∗)

) (3)

2.2 Mixture of Gaussian Processes for Sensor Fusion

Given n data points x̄1, .., x̄n, obtained from P different sensors, our approach
follows a mixture of Gaussian Processes model described in figure 1. Let every
ith data point be represented as x̄i = {x(1)

i , ..,x(P )
i }, and the soft labels as

ȳi = {y(1)
i , .., y

(P )
i }. Given λi ∈ {1, .., P}, the random variable that determines

the combination of the channels for the final classification, the classification
likelihood can be written as:

P (ti|ȳi, λi = j) = P (ti|y(j)
i ) = ε + (1 − 2ε)Φ(ti · y(j)

i )
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Given {X̄, t} and x̄∗

Step 1: Initialization
-For all the labeled points i = 1 to n do

· Initialize Q(λi) using uniform distribution
-For all the modalities p = 1 to P do

· Incorporate all the labeled data points to obtain a Gaussian posterior for the soft labels:

p0(y(p)) = N(y(p);M
y(p) , V

y(p) )

· Initialize: Q(y(p)) = p0(y(p))

Step 2: Variational Updates
-Repeat until change in posteriors is less than some small threshold

· Update Q(Λ) using equation 6.
· Update Q(Ȳ) using equation 7.

Step 3: Classifying Test Data

-Compute Λ̂ = arg maxΛ Q(Λ)
-Use P -way classification to get the posterior Q(λ∗)
-Estimate p(t∗|X̄, t) using equation 9

Fig. 2. Summary of the algorithm to classify the test data point using a mixture of
Gaussian Processes. This algorithm can be readily extended to more than one test
points without any computational overhead

Given a test point x̄∗, let X̄ = {x̄1, .., x̄n, x̄∗} denote all the training and the
test points. Further, let Ȳ = {y(1), ..,y(P )}, denote the hidden soft labels corre-
sponding to each channel of all the data including the test point. Let, Q(Ȳ) =∏P

p=1 Q(y(p)) and Q(Λ) =
∏n

i=1 Q(λi), denote the approximate posterior over
the hidden variables Ȳ and Λ, where Λ = {λ1, .., λn} are the switches corre-
sponding only to the n labeled data points. Let p(Ȳ) and p(Λ) be the priors
with p(Ȳ) =

∏P
p=1 p(y(p)), the product of GP priors and p(Λ) uniform. Given

X̄ and the labels t, our algorithm iteratively optimizes the variational bound:

F =

∫
Ȳ,Λ

Q(Ȳ)Q(Λ) log(
p(Ȳ)p(Λ)p(t|X̄, Ȳ,Λ)

Q(Ȳ)Q(Λ)
) (4)

The classification using EP is required only once, irrespective of the number of
iterations. In each iteration to optimize the bound given in equation 4, the clas-
sification rules are updated using the Gaussian approximations provided by EP.
The algorithm is shown in figure 2 and can be divided into 3 steps: initialization,
optimization and classification, which are described below.

Step 1: Initialization: In the first step, the approximate posterior Q(Ȳ)Q(Λ)
=
∏P

p=1 Q(y(p))
∏n

i=1 Q(λi) is initialized. Here, Q(λi) are multinomial distri-
butions and are initialized randomly using a uniform distribution. Q(y(p)) are
normal distributions and to initialize them, we first use EP as described in section
2.1, considering all the data points irrespective of the state of the switches. EP
results in the approximate Gaussian posteriors p0(y(p)) = N(y(p);My(p) ,Vy(p))
for all p ∈ {1, .., P}, which are used to initialize Q(y(p)).A very useful bi-
product of EP is the Gaussian approximations of the likelihoods, which would
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later be used to update our classification during the variational iterations in
step 2.

Step 2: Optimization: The bound given in equation 4 is optimized by itera-
tively updating Q(Ȳ) and Q(Λ). Given the approximations Qk(Λ) and Qk(Ȳ)
from the kth iteration, Qk+1(Λ) and Qk+1(Ȳ) can be updated using variational
updated rules [1]. Specifically, update rules for Q(λi) and Q(y(p)) are as follows:

Qk+1(λi) ∝ exp{
∫
Ȳ

Qk(Ȳ) log p(ti|Ȳ, λi)}

Qk+1(y(p)) ∝ exp{
∫
Λ

Qk(Λ) log p(y(p))p(t|y(p),Λ)}

The update for Q(λi = p) can be written as:

Qk+1(λi = p) ∝ exp{
∫

y
(p)
i

Qk(y
(p)
i ) log p(ti|y(p)

i )} (5)

= exp{
∫

y
(p)
i

Qk(y
(p)
i ) log(ε + (1 − 2ε)Φ(tiy

(p)
i ))} (6)

Equation 6 is intractable but can be computed efficiently by importance sam-
pling using the 1-D Gaussian Qk(yp

i ) as a proposal distribution. Further, we
have the Gaussian approximations from EP for the likelihood term p(ti|y(p)

i ) ≈
s
(p)
i exp(− 1

2v
(p)
i

(y(p)
i · ti − m

(p)
i )2). It can be shown that the update rule for Q(y(p))

reduces down to:

Qk+1(y(p)) ∝ p(y(p))
n∏

i=1

N(y
(p)
i ; m

(p)
i · ti,

v
(p)
i

Qk(λi)
) (7)

This is just a product of Gaussian terms; thus, there is no need to rerun the
EP to estimate the new posterior over soft classifications. Further, note that
Q(λi) divides the variance, hence controlling the contribution of each labeled
data point for different channels.

Step 3: Classification: In the final step, given the posterior over the switches,
Q(λi) ∀i ∈ [1..n], we first infer the switches for the test data x̄∗. For this, we
do a P -way classification using the GP algorithm described in 2.1 with Λ̂ =
arg maxΛ Q(Λ) as labels. Specifically, for an unlabeled point x̄∗, P different
classifications are done where each classification provides us with q∗r , where r ∈
{1, .., P}, and equals to the probability that channel r was chosen to classify
x̄∗. The posterior Q(λ∗ = r) is then set to q∗

r∑P
p=1 q∗

p

. In our experiments, for

each of these P classifications, we clubbed all the channels together using -1 as
observations for the modalities that were missing. Note, that we are not limited
to using all the channels clubbed together; but, various combinations of the
modalities can be used including other indicator and contextual variables.
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Once we have the posterior over the switch for the test data, Q(λ∗), we can
infer class probability of an unlabeled data point x̄∗ using:

p(t∗|X̄, t) =

∫
Ȳ,λ∗

p(t∗|Ȳ, λ∗)Q(λ∗)Q(Ȳ) (8)

=

P∑
p=1

Q(λ∗ = p)(ε + (1 − 2ε)Φ(
M∗

y(p) · t∗√
1 + V ∗

y(p)

)) (9)

Here, M∗
y(p)

and V ∗
y(p) are the mean and the variance of the marginal Gaussian

approximation for pth channel corresponding to the hidden soft label ȳ∗.

3 Experiments and Results

We first demonstrate the features of the approach on a toy dataset and then apply
it to the task of affect recognition using multiple modalities. We also evaluate
the performance of other classifier combination schemes by training SVMs and
the GP classifiers on the complete data. These standard classifier combination
schemes are shown in Table 1.

Toy Dataset: A toy dataset is shown in figure 3(a), which has been previously
introduced by Zhou et al. [15]. The top and the bottom half moon correspond
to two different classes. The example shown in the figure has 15 labeled points
from each class (30 total) and 100 test points (200 total). First, we perform
two GP classifications using the method described in 2.1; one classifies the test
points by just using the X-modality (dimension) and the other just using the Y-
modality (dimension). Figures 3(b) & (c) show the results of these classifications
using each individual modality, which is fairly poor. Figure 3(d) & (e) show
classification using the sum and the product rule applied using the result of X
and the Y classification. Finally, figure 3(f) shows successful classification using
the mixture of GP framework. In figure 3(f) the data points drawn as triangles
were classified with a greater weight on the Y modality and the data points
drawn as circles with a greater weight on the X-modality. We can see from the

Table 1. Classifier Combination Methods

Rule Criteria

Sum p(t = 1|x(1)..x(P )) ∝ ∑P
p=1 p(t = 1|x(p))

Product p(t = 1|x(1)..x(P )) ∝ ∏P
p=1 p(t = 1|x(p))

Max p(t = 1|x(1)..x(P )) ∝ maxp p(t = 1|x(p))

Min p(t = 1|x(1)..x(P )) ∝ minp p(t = 1|x(p))

p(t = 1|x(1)..x(P )) ∝
Vote { 1 if

∑P
p=1 �p(t = 1|x(p)) ≥ �P

2 
0 otherwise

}

Table 2. Average recognition rates
(standard deviation in parenthesis) for
24 runs on affect data

SVM GP

Face 52.66%(1.4) 52.78%(0.7)
Posture 82.99%(0.6) 82.02%(0.9)
Puzzle 60.82%(1.5) 60.54%(0.9)
Sum 63.63%(0.9) 81.34%(1.2)
Prod 63.76%(0.9) 81.34%(1.2)
Max 71.94%(1.5) 81.37%(1.0)
Min 71.94%(1.5) 81.37%(1.0)
Vote 62.35%(1.2) 60.90%(0.6)
Mix of GP NA 83.55%(1.2)
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Fig. 3. (a) Toy dataset with the labeled points highlighted, and classification results
using (b) X-modality only, (c) Y-modality only, (d) sum rule, (e) product rule and (f)
the mixture of GP. The circles in (f) represent points classified with a greater weight
on the X-modality and the triangles with a greater weight on the Y-modality

figure, that the final classification decision adapts itself according to the input
space; thus, demonstrating the capability to perform sensor selection.

Recognizing Affect: We applied the mixture of GP framework to the problem
of machine recognition of affect using multiple modalities. We look at the prob-
lem of detecting the affective state of interest in a child who is solving a puzzle
on the computer. The training and the testing data consists of observations from
three different channels: the face, posture and the puzzle activity. Every feature
vector corresponding to a datapoint encodes the facial activity, posture activity
and game information for a time segment of 8 secs [6]. The database includes 8
children and consists of 61 samples of high-interest, 59 samples of low-interest
and 16 samples of refreshing. Only 49 samples had all three channels present.
The other 87 samples had the face channel missing. In this paper, we only look
at the binary problem of detecting the state of high-interest (61 samples) versus
the states of low-interest and refreshing (75 samples).

We trained GP classifiers for each of the three channels using an RBF ker-
nel to compute the similarity matrices for the GP priors with the kernel-width
hyper-parameter σ fixed to 0.81, 7.47 and 5.90 for the face, the posture and the
puzzle channel respectively. The value of ε was fixed at 0.42 for face, 0.0 for
posture and 0.37 for the puzzle modality. These parameters were choosen using
evidence maximization a standard approach within the Bayesian framework. We



94 A. Kapoor, H. Ahn, and R.W. Picard

50 55 60 65 70 75 80 85

1

2

3

4

5

6

7

8

9

10

< Recognition Accuracy >

SVM Sum
GP Sum
SVM Product
GP Product
SVM Max
GP Max
SVM Min
GP Min
SVM Voting
GP Voting

80 81 82 83 84 85

80

81

82

83

84

85

GP (posture)
M

ix
tu

re
 o

f 
G

P

< Recognition Accuracy >

81.5 82 82.5 83 83.5 84 84.5 85 85.5

81.5

82

82.5

83

83.5

84

84.5

85

85.5

SVM (posture)

M
ix

tu
re

 o
f 

G
P

< Recognition Accuracy >

(a) (b) (c)

Fig. 4. (a) MATLAB boxplots comparing the standard classifier combination methods
for GP and SVM on the affect data. The squares represent the mean, the lines in the
middle of the box represents the median, the bounding box represent quartile values
and the ’+’ symbols represent the statistical outliers. (b) Recognition rates of mix of
GP vs. GP(posture) and (c) Mix of GP vs. SVM(posture) for the 24 runs. Each point is
(accuracy SVM/GP (posture), accuracy mix of GP). Points over the lines correspond
to the trials when mix of GP had the better recognition rate. The circle radii represent
repeating results; the larger the circle the more the repetition of the points

randomly selected 87.5% of the points as training data and computed the hyper-
paramters using evidence maximization. This process was repeated 10 times and
the mean values of the hyperparameters were used in our experiments. The P -
way classification for estimating the posterior over λ∗ was also performed using
an RBF kernel with kernel width set to 10.38.

We also evaluate the performance of SVM on this dataset. The SVMs were
trained using an RBF kernel and the leave-one-out validation procedure was
applied for selecting the penalty parameter C and the kernel width σ. The vali-
dation procedure was performed ten times, where each time 87.5% of datapoints
were randomly choosen as training data. The mean of the resulting 10 param-
eters (σ, C) were finally choosen and were equal to (10.48, 1.49), (11.47, 1.33)
and (10.66, 2.24) for the face, the posture and the puzzle modality respectively.

We performed 8-fold cross-validation to report the results. In every round the
dataset was equally split into 8 parts. The algorithms were tested on every part
with the other 7 parts (87.5% of data) used as the training set. Each of these
rounds was repeated 24 times to report the results.

First, we compare the performance of standard classifier combination meth-
ods for GP based classification and SVMs. The GP classification provides class
probabilities for the datapoints, which can directly be used in the standard clas-
sifier combination methods (table 1). The sigmoid function can be used to map
an SVM output to a value between 0 and 1 and can be used to combine classifiers
using the standard rules. There have been many other approaches suggested to
convert the SVM output to a probability value and we leave the comparison
of those as future work. Figure 4 shows the MATLAB boxplots and compares
the performance of the different fixed classifier combination approaches for GP
and SVM. The figure plots the mean, the median and quartile values. The fig-
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ure shows that the GP based classifier combinations outperform the classifier
combinations based on the probabilistic interpretation of the SVM output.

Further, table 2 shows the recognition results for each individual modality
and many classifier combination rules. Among the individual modalities, the
posture channel achieves the highest recognition both with the GP classification
and the SVM. Further, it can be easily seen that the classification based on the
posture modality outperforms the standard classifier combination rules. Since
most of the discriminating information is contained in the posture channel, the
standard classifier combination methods don’t work well as they assign equal
importance to all the channels. The mixture of GP approach on the other hand
is sensitive to this kind of information and thus can adapt to whichever channel
works well. The scatter plots shown in the figures 4 (b) and (c) compares the
performance of every single trial among the 24 runs of the mixture of GP ap-
proach vs SVM/GP classifiers trained on the posture modality. It can be seen
clearly that the mixture of GP based approach outperforms the posture modal-
ity both when using SVM and GP classification and with table 2 we can see that
it outperforms the standard classifier combination methods.

4 Conclusions and Future Work

In this paper, we proposed a unified approach using a mixture of Gaussian Pro-
cesses for achieving sensor fusion under the challenging conditions of missing
channels and noisy labels. We provide a Bayesian algorithm designed with a
fast update of classification decisions based on variational and Gaussian ap-
proximations. On both a toy example, and on the task of classifying affective
state of interest using information from face, postures and task information,
the mixture of GP method outperforms several standard classifier combination
schemes. Future work includes incorporation of active learning and application
of this framework to other challenging problems with limited labeled data.
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Abstract. The diversity of application domains of pattern recognition makes it 
difficult to find a highly reliable classification algorithm for sufficiently inter-
esting tasks. In this paper we propose a new combining method, which harness 
the local confidence of each classifier in the combining process. Our method is 
at the confluence of two main streams of combining multiple classifiers: classi-
fier fusion and classifier selection. This method learns the local confidence of 
each classifier using training data and if an unknown data is given, the learned 
knowledge is used to evaluate the outputs of individual classifiers. An empirical 
evaluation using five real data sets has shown that this method achieves a prom-
ising performance and outperforms the best single classifiers and other known 
combining methods we tried. 

1   Introduction 

In the field of character recognition, multiple classifier systems based on classifier 
fusion (or combination) methods have been proposed as an approach to develop a 
high performance recognition system [1,2,3,4,5]. At this point, it is well known that a 
combination of many different classification algorithms can improve classification 
accuracy. This is because classification algorithms based on different methodologies 
and/or using different input features have complementary characteristics. Classifiers 
based on different architectures and different feature sets do not necessarily have the 
same recognition error, which may be regarded as error independent [6]. By exploit-
ing the complementary characteristics, combination mechanisms can take advantage 
of the strengths of the individual classifiers, avoid their weaknesses, and improve 
their classification accuracy. As described above, it is generally easier to apply sev-
eral error independent classifiers to the same recognition task and use their error inde-
pendence to improve recognition performance of a combined system than to invent a 
new architecture or a feature extractor to achieve the same accuracy. Despite promis-
ing results reported in the literature, performances of a multiple classifier system 
greatly depend on the assumption that classifiers exhibit a sufficiently large uncorrela-
tion in their classification errors [7]. Some researchers clearly showed an increase in 
classification accuracy of combination scheme is possible only if the assumption  
is satisfied [7]. In real pattern recognition problem, this assumption of independent 
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classification error is very difficult to keep. To design and train independent classifiers 
is difficult, even if each classifier is based on different methodologies or feature sets. 
This significantly limits their applicability. 

In this paper, we present a new ensemble method called dynamic fusion. This 
method exploits the advantages of both of classifier fusion system and selection system. 

2   Previous Works 

Generally, combining method of multiple classifiers can be divided into two types: 
classifier fusion and classifier selection. The conventional approaches belonging to 
the classifier fusion method generally calculate the weight of each classifier by esti-
mating its average error over the entire range of training data. This averaging activity 
causes the combining algorithm to become insensitive to differences in the local per-
formance of base classifiers. As a result, it is unable to take into account the local 
expertise of each classifier for a final decision. When a new instance is difficult to 
classify, then the average classifier will give an erroneous prediction, and the majority 
vote will probably result in a wrong prediction. The problem may consist in discard-
ing base classifiers (by assigning small weights through averaging process) that are 
highly accurate in a restricted region of the instance space because this accuracy is 
swamped by their inaccuracy elsewhere. It may also consist in the use of classifiers 
that are accurate in most of the space but still unnecessarily confuse the entire classi-
fication committee in some regions of the space.  

Classifier selection has the merit of considering the locality. This method divides 
the entire feature space into partitions and nominates the best classifier for each parti-
tion during the training time. The classifier selection method has two main problems: 
The first problem is owing to the selection of best classifier. If a classifier pairs with a 
partition of feature space, some classifiers might be never selected and never have a 
chance to take part in the combining scheme afterwards. This is because the number 
of classifiers is not necessarily equal to the number of regions K. When a new in-
stance is difficult to classify, then the selected classifier will give a wrong prediction. 
The problem may consist in discarding the classifiers with a highest accuracy over the 
whole feature space and can give complementary information to cover the mistake of 
the selective classifier. For highly noisy data, this method is less desirable than the 
classifier fusion method since the decision is compromised by a single large error. In 
short, the weakening of a group consensus strategy is one drawback of the classifier 
selection approach. Generally, Classifier selection method partitions a space into 
separate regions with a one-to-one mapping to classifiers and trains each classifier as 
a local expert [8,9,10,11,12)]. Such mapping information is used as a gating function 
for expert selection for a given unknown pattern. One of the most representative 
methods of classifier selection is Mixture of Experts (MoE) [8,9]. 

Recently, some works addressed problems produced by the “divide-and-conquer” 
strategy. Different classifiers will tend to make errors in different ways because of 
their varying architecture or their differing measurements extracted from the pattern. 
For the same reasons, the skilled regions of one classifier can also be distinct from 
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those of other classifiers. Dynamic integration of classifiers is based on the assump-
tion that each committee member is best inside certain sub areas of the whole feature 
space. A common point of most works belonging to this category is that they estimate 
each classifier’s accuracy in local regions of feature space surrounding an unknown 
test sample, and then use the decision of the most locally accurate classifier [8,9,10]. 
For implementation, the local regions are frequently defined in terms of the K-nearest 
neighbors located in the vicinity of a given test sample in the training data.  

A dynamic meta-classification framework consisting of two levels was proposed 
by [10]. The first level contains base classifiers, while the second level contains a 
combining algorithm that predicts the local classification errors for each of the base 
classifiers through several cross-validation runs. In the training phase, the information 
is collected about the local errors of the base classifiers for each training instance. The 
weighted nearest neighbor prediction (WNN) is used to predict classification error of 
each base classifier in the application phase. Woods et al. [13] proposed a method that 
estimates local accuracy of each classifier instead of dividing the whole feature space. 
The basic idea is to estimate each classifier’s accuracy in local regions of feature 
space surrounding an unknown test sample, and then uses the decision of the most 
locally accurate classifier. They define the local regions in terms of the K-nearest 
neighbors of input instance in the training data.  

A dynamic integration system can be regarded as a sort of classifier selection ap-
proach in that it selects the best classifier from multiple base classifiers. However, it 
differs from the classifier selection approach in that it is not concerned about how 
each base classifier is generated. Instead, it concentrates on learning the local region 
in which each classifier is expert. 

As mentioned above, dynamic integration methods generally perform a “lazy selec-
tion” in the application phase by employing “lazy learning” method such as K-nearest 
neighbor algorithm to estimate the local accuracy of each base classifier and select of 
best classifier [16]. Lazy classifier selection method based on lazy learning defers the 
definition of local area until each new instance is encountered, in the application phase. 
They divide the whole input space into two regions in view of a new input instance 
(local region near to new instance and the remaining long-distance region). Their region 
segmentation method and segmentation time differ from the traditional classifier  
selection method, which divides the entire feature space into several sub regions during 
training phase. Fig.1 illustrates those two types of region segmentation. 

Region R1

v1

Region R2

Region R3

v2

v3

New 
instance

(a) Traditional feature space partition

New 
instance

Local region

The remaining
region

(b) Lazy feature space partition  

Fig. 1. Comparison between eager and lazy partition 
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In this paper, we introduce a new combining algorithm belonging to the dynamic 
integration approach, but use a sort of “eager learning” method rather than “lazy 
learning” method to speed up the processing time of evaluating the local accuracy of 
each base classifier. Our method is at the confluence of two main streams: classifier 
fusion and classifier selection.  

3   Dynamic Classifier Integration 

Here, we propose a framework of the classifier integration method based on local 
confidence. Our system consists of three parts: base classifiers, an aggregation net-
work and a weight-adapting network as shown in Fig. 2. 

 

Classifier 1Classifier 1 Classifier 2Classifier 2 Classifier Classifier KK

Combining Module

AggregationAggregation
NetworkNetwork

WeightWeight--AdaptingAdapting
NetworkNetwork

Base Classifiers

g x

E : E1,...,EK

  

Fig. 2. Combination framework based on local confidence 

An aggregation network and a weight-adapting network are closely connected to 
each other, since the outputs of the weight-adapting network are used as weights of 
the aggregation network. Without the weight-adapting network, this framework can 
be regarded as a sort of classifier fusion system with a linear combination methodol-
ogy. The weight-adapting network introduces dynamic characteristics to this fusion 
system. It learns the degree of expertise of each classifier in local area and informs 
aggregation network of the learned knowledge. The training process only occurs in 
the weight-adapting network and the aggregation network merely exploits the learned 
knowledge of weight-adapting network by using outputs of the weight-adapting net-
work as its weight values. 

The concept of local confidence and process of training and test will be discussed 
in more detail in the next sub sections. 

3.1   Local Confidence 

Different classifiers will tend to make errors in different ways because of their vary-
ing architecture or their different measurement extracted from the pattern. For the 
same reasons, the skilled regions of one classifier can also be distinct from other clas-
sifiers. The conventional approaches to combining multiple classifiers with weight 
calculate the weight of each classifier by estimating the average error on the whole 
training data. Because of the diversity of the ways in which individual classifiers 
make a mistake as described above, a more elaborate weighting scheme is needed.  
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Definition 1. The Local Confidence LCk of classifier k is a degree of expertise of 
classifier k in a local region of feature space. 

In the literature of dynamic integration system, several ways exist to estimate the 
local confidence. Woods et al. [13] simply defines local region in terms of K-nearest 
neighbor during the application phase and suggests two methods for calculating local 
accuracy. One is simply the percentage of training samples in the region that are cor-
rectly classified. Another possibility is to estimate local accuracy with respect to some 
output class. We can determine the percentage of the local training samples assigned 
to class Ci by a classifier k that has been correctly labeled.  

In this paper, we evaluate three functions estimating local confidence, derived from 
the predicted error of each classifier with respect to the given input as follows: 
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where LCk(x) means the local confidence of classifier k on give input x, LCik(x) is a 
confidence value of classifier k on the class i, d(x) is a target class of the given input 
x, di(x) is a desired output value for class i on given input x, and mik is a measurement 
value of classifier k, meaning the possibility assigning input x to class i. 

3.2   Training 

In our implementation, the local confidence vector LCk =( w1k, w2k, …, wMk) of classi-
fier k is a M-dimensional vector which contains the measurement values on local 
expertise of the kth classifier with respect to each class and wik is a local confidence 
value of classifier k with respect to class i. To learn the local confidence of each clas-
sifier, the training data set should be generated from the predictions of base classifiers 
and the transformed vector of the input. 

Training data are generated through two parallel steps: the base classifier predic-
tion and the feature transformation (or reduction). The prediction results of base clas-
sifiers and transformed feature values are merged as a training data set for weight-
adapting network. Various transformation functions can be used for this purpose. For 
example, Clustering algorithm such as K-means or Self Organizing Map (SOM), 
Principle Component Analysis (PCA), and other statistical methods able to reduce 
feature dimensions can be used. An identity function without reducing feature dimen-
sions can be also used. 

r_vec = g(x) (4) 

where r_vec = (r_vec1, r_vec2, …, r_vecr) is a reduced feature vector, r_veci is a ith 
value of r_vec, g is a selected transformation function, and x = (x1, x2, …, xn) is an 
original feature vector.  
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The weight-adapting network can be single- or multi-layered perceptrons. In this 
paper, we construct the weight-adapting network with a multi-layered perceptrons. 
Note that the weights of a classifier can be different from each other identical for all 
classes according to the selection of a confidence function LCk(x). 

The error function E(x) of weight-adapting network is defined by: 
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where K is the number of base classifiers, M is the number of classes, WNet ik(x) is the 
output of weight-adapting network for classifier k with respect to class i. The standard 
back-propagation (BP) algorithm has been used for weight adjustments in the mode of 
pattern-by-pattern updating [17]. 

Our training algorithm can be summarized as follows: 

Training Process of Dynamic Fusion based on Local Confidence 

TW: weight-adapting network training set 
WNet: weight-adapting network 
LCk: Local Confidence vector of classifier k 

1. Design the individual classifiers E1, …, EK using the labeled data set T. 

2. For each data x in T, estimate the local accuracy of Ei with respect to class s. To 
accomplish this, take measurement values offered for x by classifier Ei, i=1, …, L, 
and calculate the errors by comparing the measurement values with class label of x. 
Estimate the local confidence with respect to each class with those errors. 

3. Construct weight-adapting network training set Tw using all x in T and the local 
confidence obtained for x. 

4. Train weight-adapting network WNet with Tw to approximate the local confidence 
vector LCk with respect to each classifier for every x in T. 

5. Return trained weight-adapting network WNet. 

3.3   Operation 

The aggregation network takes E1, …, EK, as input, where Ek =(m1k, m2k, …, mMk) is a 
M-dimensional vector containing the measurement values the kth classifier produces 
for the given pattern. The output of the aggregation network is the final decision. Let 
O = (o1, …, oM) be the final decision vector. If we consider a single-layered percep-
tions without bias as an aggregation network and the linear transfer function as activa-
tion function, the output oi for class i is the weighted summation of the measurement 
values. This can be shown as: 

=
=

K

k
ikiki mwo

1
 (6) 

The weight wik denotes the degree of importance of the kth classifier for class i and 
implies the estimation of how important the kth classifier is for the classification of 
the class i compared to other classifiers.  
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Fig. 3. Inner architecture of the combining module 

Fig.3 shows the relation between the aggregation network and weight-adapting 
network. As shown in the figure, the outputs of the weight-adapting network are ex-
ploited as a weight of aggregation network. Therefore, the number of nodes in the 
output layer in the weight-adapting network equals the total number of weights in 
aggregation network. This architecture gives our method the ability to dynamically 
estimate the local expertise of individual classifiers. 

The outputs of weight-adapting network can be organized as the matrix W: 
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The kth row of W is the estimated LCk meaning the local expertness of classifier k 
for each class. 

4   Experimental Results 

Five real datasets from University of California, Irvine (UCI) Repository of Machine 
Learning Database [18] were used in the experiment for our combining approach. The 
properties of the datasets are shown in Table 1. We used fifteen base classifiers for this 
experiment: three neural networks trained by a general backpropagation algorithm 
(NN1, NN2, and NN3), another three decor related neural networks (DCNN1, DCNN2, 
and DCNN3) [2], five K-nearest neighbor classifiers using different number of K: K=3, 
7, 11, 15, 21 (KNN1, KNN2, KNN3, KNN4, and KNN5) and four support vector  
machines with different kernel functions: linear, RBF, polynomial with degree 2, and 
polynomial with degree 3 (SVM1, SVM2, SVM3, and SVM4). All neural networks are 
different from each other in the number of hidden units and initial weights.  

Table 2, 3, 4 and 5 show the experimental results on those four groups, respec-
tively. In the table 4, the improvement from LCCOMB was relatively small. We as-
sume this is because K-nearest neighbor classifiers are ‘stable’ and therefore don’t 
benefit as much from combining as ‘unstable’ classifiers such as neural networks.  

Table 5 shows the comparison between combining algorithms. For the experiment, 
results from all classifiers (NN1, NN2, NN3, DCNN1, DCNN2, DCNN3, DCNN4, 
KNN1, KNN2, KNN3, KNN4, KNN5, SVM1, SVM2, SVM3, and SVM4) were 
combined.  
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Table 1. Dataset properties 

Data Set Properties Data Set 
# Cls. # Attr. # Instances Test 

Australian Credit 2 14 690 (10-fold CV) 
Image Segment 7 19 2,310 (10-fold CV) 

Satellite Image 6 36 6,435 2,000 
Vehicle 4 18 846 (9-fold CV) 

Pima Indian 2 8 768 (10-fold CV) 

Table 2. Classification errors of the three neural networks and our proposed method on them 

Data Set  
Classifier Australian 

Credit 
Image 
Segment  

Satellite 
image  

Vehicle 
Pima 
Indian 

NN1 14.78 5.15 17.65 19.51 24.48 
NN 2 14.49  5.24 18.30 19.27 24.48 
NN 3 14.78 5.15 17.65 19.27 24.48 

LCCOMB(ORG) 13.91 4.02 15.30 18.21 23.08 
LCCOMB(KM) 14.49 4.98 13.64 16.44 23.61 

Error 
Rate 
(%) 

LCCOMB(PCA) 13.35 5.02 12.30 18.79 22.16 

Table 3. Classification errors of three decorrelated neural networks and our method on them 

Data Set  
Classifier Australian 

Credit 
Image 
Segment  

Satellite 
image  

Vehicle 
Pima 
Indian 

DCNN1 15.51 4.07 12.60 17.84 23.42 
DCNN 2 14.78 4.50 11.73 16.19 23.71 
DCNN 3 15.51 4.28 11.25 17.96 24.00 

LCCOMB(ORG) 14.64 3.25 11.00 15.13 21.71 
LCCOMB(KM) 15.22 3.25 10.70 15.13 20.00 

Error 
Rate 
(%) 

LCCOMB(PCA) 14.93 3.20 11.35 15.01 18.42 

Table 4. Classification errors of the five K-neaneighbor classifiers and our method on them 

Data Set  
Classifier Australian 

Credit 
Image 

Segment 
Satellite 
image 

Vehicle 
Pima 

Indian 

KNN 1 15.94 4.94 10.75 31.21 25.66 
KNN 2 15.07 5.24 10.75 29.43 25.66 
KNN 3 15.36 5.41 10.90 31.32 26.05 
KNN 4 14.64 5.50 12.25 30.73 25.00 
KNN5 14.06 6.10 11.90 32.03 25.13 

LCCOMB(ORG) 14.93 4.33 10.55 28.72 24.74 
LCCOMB(KM) 14.64 4.50 10.70 29.31 24.21 

Error 
Rate 
(%) 

LCCOMB(PCA) 14.49 4.33 10.65 28.96 24.74 
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Table 5. Classification errors of the four support vector machines and our method on them 

Data Set  
Classifier Australian 

Credit 
Image 

Segment  
Satellite 
image  

Vehicle 
Pima 

Indian 

SVM1 14.49 6.80 17.85 22.23 24.74 
SVM2 14.49  6.71 16.80  20.57 26.58 
SVM3 14.50  6.58 16.20 21.09 24.47 

SVM4 14.86 6.45 16.35 22.00 24.82 

LCCOMB(ORG) 14.49 6.57 15.78 19.24 24.34 

LCCOMB(KM) 14.35 6.32 15.06 20.09 24.34 

Error 
Rate 
(%) 

LCCOMB(PCA) 14.49  5.26  15.78  19.83 23.86 

Table 6. Classification errors of combining algorithms 

Data Set  
Classifier Australian 

Credit 
Image 

Segment 
Satellite 
image 

Vehicle 
Pima 
Indian 

Majority Vote 14.05 4.72 16.95 17.69 24.10 
ProductRule 13.98 4.58 16.34 18.62 23.96 

LCCOMB(ORG) 12.96 3.60 11.64 16.83 22.37 

LCCOMB(KM) 13.24 3.12 11.82 16.98 22.93 

Error 
Rate 
(%) 

LCCOMB(PCA) 11.94 3.12 10.09 16.98 20.00 

To implement our method, we use three different transformation functions: original 
data (ORG), reduced feature by K-means algorithm (KM), reduced feature by PCA 
(PCA). The error rate of every table is the average of 10-fold (or 9-fold) cross-
validation runs except the satellite image dataset. For the aggregation network, a sin-
gle-layered feedforward neural network was used and for the weight-adapting net-
work, a multi-layered feedforward neural network was used. The weight-adapting 
network was trained with a gradient-descendent method with a momentum. The pro-
posed method shows a better performance than any individual classifiers on all the 
dataset we tried. 

5   Conclusions 

We have proposed a multiple classifier combining method based on local confidence. 
Our main idea is based on the fact that different classifiers potentially offer comple-
mentary information about the patterns to be classified. Specifically, if we can con-
sider the local expertise of each classifier into the combining process, the performance 
will be improved. The proposed method combines the advantages of classifier fusion 
and classifier selection, which are the two main categories of traditional combining 
algorithms. This method reflects the opinions of all classifiers like in classifier fusion 
approach and the weight of each classifier’s opinion (the importance of individual 
classifier) is recalculated dynamically according to the given input as in the classifier 
selection approach.  
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The contributions of our proposed method can be summarized as follows. In the 
view of accuracy, we attempt to obtain more accuracy than the classifier fusion 
method by using the local accuracy of each classifier. We also try to improve on the 
classifier selection method by strengthening the aspect of “group consensus.” From 
the viewpoint of efficiency, we choose “eager learning” rather than “lazy learning” to 
learn the local accuracy of each classifier, compared with the work of Woods et al. 
We believe that this choice makes our method more effective than that of Woods.  

We used the five real data sets from UCI data repository in the experimental 
evaluation. The results show that the proposed combining method outperforms the 
other combining methods as well as any individual classifiers. Based on these encour-
aging results, we can expect that the proposed combining method can be successfully 
applied to the classification task in the real world case with more accuracy than tradi-
tional data mining approaches. 
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Abstract. Recursive ECOC (RECOC) classifiers, effectively deals with 
microarray data complexity by encoding multiclass labels with codewords taken 
from Low Density Parity Check (LDPC) codes. Not all good LDPC codes result 
in good microarray data RECOC classifiers. A general scoring method for the 
identification of promising LDPC codes in the RECOC sense is presented.  

1   Introduction 

We revisit the current dismissed formulation of  Error Correcting Ouput Coding 
(ECOC) [1] regarding microarray data classification [2]. In [3], we introduced the 
Recursive ECOC (RECOC) approach, which systematize the design of ECOC 
classifiers by taking codewords from recursive error correcting codes [4]. If recursive 
codes are of the LDPC type [5][6], RECOC classifiers can be tought as constructed 
from sparsely connected small ECOC machines, each of them verifying a parity code. 

In this paper, we show that RECOC LDPC classifiers can competently deal with 
microarray data complexity. RECOC classifiers can be improved along the accuracy 
of their induced binary classifiers e.g., by boosting [7]. Hence, our proposal 
generalizes previous work about microarray data, binary based, boosted classifiers 
[8]. In addition, we generalize the scoring method we introduced in [3] for selecting 
potential good LDPC codes in the ECOC sense.  

The remainder of this paper is organized as follows. In section 2, we briefly review 
RECOC LDPC classifiers and present a general scoring method for selecting potential 
good LDPC codes in the ECOC sense. In section 3, we present experimental results. 
Finally, in section 4, we present conclusions and further work. 

2   Recursive ECOC Classifiers 

A natural application of Coding Theory [9] in Bioinformatics is to the design of  
microarray data ECOC classifiers. Properly, we are given a training data set S  
defined by q  data pairs ( ) ( )qq11 y  , ... y  , xx , p

i ℜ∈x , { }  M,..., yi 10 −∈ , being 2M  
the number of classes involved. Actually, each data pair ( )ii y  ,x  can be considered an 
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independent realization of a random vector ( )Y  ,X . For microarray data, X  models 
p - dimensional gene expression profiles while Y  models phenotype conditions e.g., 

the cancer type associated to the tissue sample represented by X . Assuming that 
multiclass labels Y  come as binary strings of length Mlogk 2= , an ECOC code can 
be defined as a binary matrix [ ]ijc=C , 10 −≤≤ Mi , 10 −≤≤ nj , which rows ic = 
( )10 − nii c...c  provide a redundant ( kn ) binary representation of multiclass labels 
Y . Hence, C 's rows can be thought as a set of codewords taken from some error 
correcting code { } { } nk

,,:C 1010 →  working at channel coding rate n
kr = . An ECOC 

code is then a template for the induction of kn  binary classifiers. The response jL  
of the thj −  binary classifier is defined as follows: 

 iY    if    cL j ij ==      { }  , c j i 10∈   , 10 −≤≤ nj  (1) 

The classification of a pℜ∈x  requires predictions 
ir , 10 −≤≤ nj , from each 

binary classifier so that a vector ( )10 −= nr...rr  can be assembled. The vector r  can 

be imagined being the result of transmitting a valid ECOC codeword c  over a a noisy 
channel. Hence, the ECOC classification of a microarray sample pℜ∈x  can be 
reinterpreted as the problem of decoding c  from a received  r  under the assumption 
of  a well-known channel.     

2.1   RECOC LDPC Classifiers 

Theoretically, no matter how weak are ECOC induced binary classifiers, we could 
always recover from their errors by reducing r  i.e., by augmenting the number 

knm −=  of redundant binary classifiers. However, in practice, ECOC classifiers have 
been far away from materializing this Coding Theory promise. Let us briefly recall 
how RECOC LDPC classifiers work to reduce this gap.  

LDPC codes are characterized by a binary, pseudorandom, sparse, parity check 
matrix nm×H [6]. Given n

kr = ,  the construction of nm×H  requires the specification of 
the number j  of ones per column. Valid LDPC codewords ( )1-n0 c... c=c  satisfy  

0c =×
t

nm  . , where tc  stands for the transpose codeword. Let Θ  be an LDPC code 
with length Mlogkn 2= , rate n

kr = . Let  Θ→Γ Y:  be a transformation which 

maps multiclass labels Y  to Θ  codewords and let C  be the corresponding RECOC 
LDPC code. If kM 2≠ , any subset of M  different Θ  codewords can be used for 
defining C . Given a training sample S , Θ→Γ Y: , a binary classifier L  and a 
number T ≥  1 of boosting steps, we construct a vector of binary boosted classifiers 

( )[ ]TL jT =L , being ( )TL j  the boosted version of jL , 10 −≤≤ nj . The aim of binary 

boosting is to induce an almost perfect learning channel i.e., an almost null [ ]jp=p , 

10 −≤≤ nj . Upon seeing an input sample x , each ( )TL j  issues a noisy prediction jr . 

The set of binary predictions on pℜ∈x defines a noisy codeword r . Assuming that 
binary errors occur independently, randomly and symmetrically, the channel can be 
completely characterized by a vector of probabilities [ ]jp=p , 10 −≤≤ nj . Our goal 

is to compute bit by bit Maximum A Posteriori (MAP) estimations jĉ , so that a 
transmitted codeword ĉ  can be estimated:   
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{ }
( )    ,, |cp Maxargĉ j

,   jc
j Θ=

∈
pr  

10
10 −≤≤ nj  (2) 

For LDPC codes, the iterative decoding Sum Product Algorithm (SPA) does this 
work [6].  The SPA algorithm involves a number of iterations I through which binary 
classifications are improved. The final classification is given by and by ( )ĉ1−Γ .  

RECOC LDPC Algorithm 

Input 

Sample S , { }10 −= M,...,Y , Mlogk 2= , Θ -LDPC code at 
n

k
r =  

Θ→Γ Y: , Binary Classifier L  

Iterations T and I for binary boosting and iterative decoding 

Processing 

Compute [ ]jL=L , n,...,j 1=  from L , Γ  and S  

Compute ( )[ ]TL jT =L , n,...,j  1=   

Compute p  from TL , Γ  and S  

Output 

( ) ( )[ ]ISPA ,,,h T pLxx 1−Γ=   

End RECOC LDPC 

2.2   Finding Good RECOC LDPC Codes   

In [3], we introduced a simple scoring method for detecting potential good LDPC in 
the ECOC sense. Regarding the independence between binary induced classifiers, we 
asked LDPC codes yielding to high Dμ  and low Dσ  scores, being Dμ  and Dσ  the 
mean and standard deviation of pairwise Column Hamming Distances (CHD) in 
RECOC LDPC codes. At high channel rates, the empirical distribution of Dμ  scores 
becomes discrete and equivalence classes of LDPC codes emerge. Within each of 
these classes, RECOC LDPC classification performance is variable. In [3], we did not 
care about this problem because data sets allowed rather low channel rates. But 
microarray data sets showed an striking preference for high channel rates. Hence, 
further refinment to the ( Dμ , Dσ ) scoring system was needed. We recall that each 
RECOC LDPC code derives from a parity check matrix nm×H , which rows define 
small ECOC classifiers. We desire that these rows are distant so that component 
ECOC classifiers are diverse. We define a matrix [ ]ijf=F , 10 −≤≤ mj,i , being ijf , 
the Hamming distance between rows j,i , ji , in nm×H . We desire LDPC codes 
having high Dμ , low Dσ  together high Fμ  and low Fσ . Hence, we propose a pipeline 
of filters, with the order between filters reflecting our insight about the weight of the 
property being measured. Specifically, we first place an outer ( Dμ , Dσ ) stage of filters 
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which, for a given set of LDPC codes ordered increasingly w.r.t. to their Dμ  scores,  
selects the last DB  entries (high Dμ ), reorder them increasingly w.r.t. their Dσ  scores 
and pick the first DD BW ≤  entries (low Dσ ). This  stage is followed by a new ( Fμ , Fσ ) 
stage, which for a given set of DD BW ≤  LDPC codes ordered increasingly w.r.t. their 

Fμ  scores, selects the last DF WB ≤  entries, reorder them increasingly w.r.t. their Fσ  
scores and picks the first FF BW ≤  entries. The first LDPC code leaving the pipeline is 
selected (see the paper website for a graphical explanation).  

3   Experimental Results 

We evaluated RECOC LDPC performance on three public available microarray data 
sets. The Java software for constructing RECOC LDPC classifiers, which uses the 
WEKA  library [10], is public available at the paper website [11].   

NCI 60 Data Set  
The data set comprises gene expression levels of 5244=p  genes for 61=q  human 
tumour cell lines from cDNA microarrays. They are divided into 8=M  classes: 9 
breast, 5 central nervous system, 7 colon, 8 leukemia, 8 melanoma, 9 non-small cell 
lung carcinoma, 6 ovarian and 9 renal tumours.  

GCM - General Cancer Map Data Set   
The data set comprises gene expression levels of 16063=p  genes for 190=l  human 
tumour cell lines on Affymetrix Genechips.  They are divided into 14=M  classes: 14 
prostate, 11 bladder, 10 melanoma, 10 uterine, 30 leukemia, 12 breast, 12 colorectal, 
11 renal, 12 ovarian, 11 pancreatic, 12 lung, 22 lymphoma, 20 central nervous system 
and  11 pleural mesothelioma.  

GCM with Repeated Measurements  
The data set comprises gene expression levels for 7129=p  genes for 123=l  human 
tumour cell lines on Affymetrix Genechips. They are divided into 11=M  classes: 7 
breast, 6 lung, 10 colorectal, 19 lymphoma, 5 melanoma, 9 uterus, 29 leukemia, 8 
renal, 7 pancreas, 11 mesothelioma and 12 central nervous system. This data set, 
which we refer as GCM RM, is a subset of the GCM data set compiled by Yeung et 
al., (2003) regarding microarray cancer classification with repeated measurements.  

3.1   RECOC LDPC Parameters  and Feature Selection Methods 

Given a pair ( )j,r , 10000=N  RECOC LDPC codes are generated. An LDPC code 

was selected using the methodology described in section 2.2. In all but the GCM data 
set, we used 20=DB , 10== FD BW  and 5=FW . RECOC LDPC performance was 
evaluated over a wide range of stopping times I for iterative decoding and levels T of 
binary AdaBoost [7] boosting. We use linear Support Vector Machines (SVMs) [12] 
with complexity constant  set  either to 1.0 or 0.5 as typical strong binary classifiers 
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and Decision Stumps (DS) [13] as typical weak ones. To gain a first insight about 
RECOC LDPC classification under  gene selection, we applied Golub et al. S2N 
method [14]. For each induced binary classifier, genes were ranked w.r.t. their S2N 
ratio and increasing fractions Q  ∈  (0, 1] of them were selected.  

3.2   Results on the NCI 60 Data 

Dudoit et al. [15] evaluated a variety of multiclassification methods including 
Linear Discriminant Analysis (DLDA) and a multiclass version of AdaBoost. They 
performed Monte Carlo Cross Validation (CV) over 150 2:1 random partitions of 
the data. At each run, 40 samples were used for training and 21 for test. Using 200 
genes, median test errors of 33.33 and 42.85 % were reported for DLDA and 
AdaBoost (50 boosting iterations) multiclassifiers. Dettling et al. [8] tried with the 
One Against All  (OAA) strategy over boosted DS binary classifiers. Using 
LOOCV and 75 genes per binary classifier, they reported an error  rate of  22.95 % 
at 32 boosting iterations. This error rate increased to 31.15 %  when the complete 
set genes was used. At a first glance these results improve Dudoit et al. [15]. 
However, that less training samples were used in Monte Carlo CV. Finally, Yeung 
et al. [16] evaluated a modified version of the Shrunken Centroid (SC) algorithm 
[17] by means of the "typical" test error over an unspecified number of  data  
partitions involving 43 samples for training and 18 for test. Using 2315 genes, they 
reported a typical test error of 27.77 %.  This error increased to 38.88 % when using 
all genes.   

In what follows, we report RECOC LDPC performance with AdaBoost linear 
SVMs using fraction of genes ∈ Q { }12015010 ,.... ,. ,. and with AdaBoost DSs using 
fractions of genes { }10380019001400095000190  ,. ,. ,. ,. ,. Q ∈ [8]. Pairs ( r , j ) were 
selected from ( ) ( ) ( ) ( ) ( ){ }22111 9

3
8
3

7
3

6
3

5
3 ,,,,,,,,, .  

3.2.1   RECOC LDPC on NCI 60 Data 
Table 1, Table 2 and Table 3 summarize RECOC LDPC performance on the NCI 60 
data set. In particular, RECOC LDPC Montecarlo CV  (Table 1) based on  AdaBoost 
linear SVMs at 150.Q = , 3750.r = , 2=j  achieved a median error of 33.33% 
equaling best results of [15] at the expense of using slightly more genes.   

In addition, RECOC LDPC LOOCV (Table 2) based on AdaBoost linear SVMs at 
20.Q = , 50.r = , 1=j  achieved error rates of [19.67, 27.86] % improving best results 

of [8] at the expense of using slightly more genes (see Fig. 1). This result implies that 
only 6=n  binary classifiers are used for solving the 8=M  classification problem. 
We note in pass that despite of  the selected Q , our maximun LOOCV error rates 
were significantly lower than those reported in [8] (see paper website).  

Finally, we evaluated RECOC LDPC Montecarlo CV on 150 Yeung’s et al. [16] 
partitions of  NCI 60  data set. Once more, RECOC LDPC based on AdaBoost linear 
SVMs at 30.Q = , 37508

3 .r == , 2=j  achieved a median error of 27.77 % equaling best 
results of [11] at the expense of using slightly more genes.  
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Table 1. RECOC LDPC Montecarlo CV results on Dudoit et al. [15] partitions of the NCI 60 data 

RECOC LDPC  Dudoit et al., (2000) 
Parameters 

SVM  (C =1.0) DS DS DLDA 

r (#classifiers) 0.375 (8) 0.375 (8) NA NA 

j  2 2 NA NA 

T  [1, 15] [95, 150] [50, ?] NA 

I  [20, 100] [1, 100] NA NA 

Q (# genes) 0.15 (786) 0.038 (200) 0.038 (200) 0.038 (200) 

Median Genes† 3578 956 200 200 

Min Error % [9.52, 14.28] 14.28 23.81 19.04 

1-Quartil Error % 28.57 33.33 38.09 28.57 

Median  Error % 33.33 38.09 42.85 33.33 

3-Quartil Error % 42.85 47.61 52.38 38.09 

Max Error % [52.38, 61.90] [61.90, 66.66] 61.90 52.38 

†Median Genes refers to the median number of distinct genes used by the set of binary 
classifiers. The symbol ? denotes an unpublished  value of  a relevant parameter.  

Table 2. RECOC LDPC on NCI 60 Data: LOOCV results 

RECOC LDPC 
Parameters 

SVM (C =1.0) DS 
Dettling et al., 

(2003) 

r (#classifiers) 0.375 (8) 0.5 (6) 0.375  (8) 0.375 (8) 

j  2 1 1 NA 

T  [1, 15] [5, 15] [73, 150] [32, 100] 

I  [1, 100] [1, 100] [1, 100] NA 

Q (# genes) 0.2 (1048) 0.2 (1048) 0.014 (75) 0.014 (75) 

Total genes 4213 3585 371 ? 

Error  % [19.67,  26.23]  [19.67, 27.86]  [24.59, 29.50]  [22.95,39.34] 

Table 3.  RECOC LDPC Montecarlo CV results on Yeung et. al, (2003) partitions of  the NCI 
60 data 

RECOC LDPC 
Parameters 

SVM (C =1.0) DS 
Yeung et al., 

(2003) 

r (#classifiers) 0.375 (8) 0.6 (5) 0.375 (8) NA 

j  2 1 2 NA 

T  [8, 15] [5,15] [80, 150] NA 

I  [40,100] [10,100] [1, 100] NA 

Q (# genes) 0.3 (1574) 0.3 (1574) 0.038 (200) 0.44 (2315) 

Median Genes 4853 4437 1280 2315 

1-Quartil Error % 22.22 27.77 27.77 ? 

Median  Error % 27.77 33.33 33.33 27.77 

3-Quartil Error % [33.33, 38.88] [38.88, 44.44] 38.88 ? 
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Fig. 1. RECOC LDPC LOOCV Error on the NCI 60 Data. AdaBoost  linear SVMs at 50.r = , 
1=j , 20.Q =  (left). AdaBoost  DS at 3750.r = , 2=j , 0140.Q =  (right) 

3.3   Results on GCM Data  

Yeang et al. [2] applied the OAA strategy with finely tuned linear SVMs. They 
reported a test error of 21.74 % (144 samples for training and 46 for test)  when using 
the complete set of 16063 genes. They also reported discouraging test error rates of 
[36.96, 54.34] % for ECOC classifiers.  

In what follows, we report RECOC LDPC performance with AdaBoost  
linear SVMs using fractions of genes { }12010 ,.... ,.  Q ∈ and  with AdaBoost DS  
using fractions of genes ∈  Q { }0300120060 .  ..., ,.  ,. i.e., { }500200100  ,..., ,  genes  
per binary classifier. Pairs ( r , j ) were selected from ( ) ( ){ }21 12

4
8
4 ,,,  and 

( ) ( ) ( ) ( ){ }3332 24
4

20
4

16
4

14
4 ,,,,,,, . In the former case, code selection was done using 

20=DB , 10== FD BW , 5=FW . In the latter one, a single filter stage with 10=DB , 
5=DW  yielded better results.   

3.3.1   RECOC LDPC on GCM Data 
Table 4 sumarizes RECOC test error on the GCM data set. RECOC LDPC based on 
AdaBoost linear SVMs at at 1=Q , 2020

4 .r == , 3=j  achieved test error rates of  

[19.56, 21.74] %  in the region 20001165 ≤≤ I , 14=T . These results could not be 
improved or even approximated (see paper website) with AdaBoost DS.  

3.4   Results on GCM RM Data 

Yeung et al. [16] evaluated a reduced version of the hard GCM data set, which we 
call GCM RM. They reported a test error rate of 22.22 % when using 1626 genes 
selected with optimal cross validated parameters and  a test error rate of 7.4 % when 
using 680 genes selected with "eye-guided" cross-validation. They claimed that 
reported results improved Yeang et al.[2]. However, they hold only at a precise region 
of the bidimensional parameters' space. Also, the GCM RM classification problem is 
easier than the GCM one both in the number of classes and the number of genes.  



 Recursive ECOC for Microarray Data Classification 115 

 

In what follows, we report RECOC LDPC performance with AdaBoost linear 
SVMs using fractions of genes ∈  Q  { } { }1201001000200010 ,.... ,.. ..., ,. ,. ∪  and with 
AdaBoost DS using fractions of genes ∈  Q  { }01000200010 . ..., ,. ,. . Pairs ( r , j ) were 
selected from ( ) ( ) ( ){ }111 7

4
6
4

5
4 ,,,,,  and ( ) ( ){ }32 12

4
8
4 ,,, . Code selection was done 

using 20=DB , 10== FD BW , 5=FW . We note that we did not use variability 
estimates of repeated measurements.  

3.4.1   RECOC LDPC on GCM RM  Data 
Table 5 sumarizes RECOC LDPC test error on the GCM RM data set. At 0080.Q = , 

80.r = , 1=j , RECOC LDPC based on AdaBoost linear SVMs achieved test error 
rates of [3.7, 7.4] %  (see Fig. 2) clearly improving [16]. This result implies that only 

5=n  binary classifiers are used for solving the 11=M  classification problem. 

Table 4. RECOC LDPC on GCM Data: Test Error Results 

RECOC LDPC 
Parameters 

SVM (C =1.0) DS 
Yeang  et al., (2001) 

r (#classifiers) 0.2 (20) 0.286 (14) 0.2 (20) 0.286 (14) 

j  3 2 3 NA 

T  [7,15] [13, 15] [130, 250] NA 

I  [583, 2000] [47, 2000] [51, 200] NA 

Q (# genes) 1(16063) 1 (16063) 0.012 (200) 1(16063) 

Total Genes 16063 16063 2052 16063 

Error  % [19.56, 28.26] [26.08, 30.43] [39.13, 50.00] 21.74‡ 

‡Despite of the adjustment of the complexity constant C in the Weka OAA-SVM 
implementation, we could not replicate this result (30.43 % instead).      

Table 5. RECOC LDPC on GCM RM Data: Test Error Results 

RECOC LDPC 
Parameters 

SVM (C =0.5) DS 
Yeung et al., (2003) 

r  (#classifiers) 0.8 (5) 0.8 (5) 0.5 (8) 0.57 (7) NA NA 

j 1 1 2 1 NA NA 

T [9, 15] [2, 15] [2,15] [53, 150] NA NA 

I [1, 100] [1, 100] [1,100] [2, 100] NA NA 

Q (# genes) 0.008 (57) 1 (7129) 1 (7129) 0.004 (28) 0.004(28) 0.095(680) 

Total Genes 236 7129 7129 153 28 680 

Error % [3.7, 7.4] 25.92 18.52 [18.52, 22.22]  29.62 7.4 
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Fig. 2.  RECOC LDPC Test Error on the GCM RM data set. AdaBoost linear SVMs at 
80.r = , 1=j , 0080.Q =  (left). AdaBoost  DS at 570.r = , 1=j , 0040.Q =  (right)  

3.5   Summary of Results  

We showed that properly designed RECOC LDPC classifiers together with boosted 
(AdaBoost) linear SVMs or DS produce comparable or lower error rates than current 
state of art microarray data multiclassifiers. The promising Coding Theory exchange 
of lower channel rates for lower error rates holds only at rather high channel rates and 
is limited by data dependent error floors. For a given channel rate, RECOC LDPC 
classifiers based on boosted SVMs yield to lower error rates than those based on 
boosted DSs, at the expense of using more genes. For a given training sample and a 
binary classifier, the optimal number of genes is roughly independent of the channel 
rate. In addition and resembling human classification abilities, reasonable error rates 
are attainable without gene selection. Regarding convergence issues, around ten 
boosting steps and one hundred decoding iterations are required for RECOC LDPC 
AdaBoost linear SVMs classifiers. Similarly, one hundred of boosting steps and 
decoding iterations are  required for RECOC LDPC AdaBoost DS ones.      

4   Conclusions and Further Work 

RECOC LDPC classifiers are the first family of ECOC classifiers suitable for 
microarray data classification. Corresponding ECOC matrices are constructed taking 
codewords from general recursive error correcting codes, in particular from LDPC 
ones. In this paper, a general method for selecting potential good RECOC LDPC 
codes from LDPC ones has been presented. Experimental results pretty show Coding 
Theory power when dealing with information recovery in the presence of noise. In 
addition, they suggest that previous discouraging ECOC results were due to an 
improper design of ECOC matrices in the context of noisy data.  



 Recursive ECOC for Microarray Data Classification 117 

 

Regarding future work, it remains the extension of present results to other families 
of recursive codes as well as the experimentation with other microarray data sets. 
Currently, we are working on the design of  simple rules regarding the choice of 
binary classifiers, the usefulness and extent of boosting over strong binary classifiers, 
the gene selection pressure and the channel rate. These are central problems to the 
design of biological data driven, binary based, multiclassifiers. They are not isolated 
problems but related by the common independence factor, which in turn is assessable 
by mutual information measures [18].  
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Abstract. In this paper the Dempster-Shafer theory of evidence is uti-
lised in multiple classifier systems to define rejection criteria for samples
presented for classification. The DS theory offers the possibility to derive
a measure of contradiction between the classifier decisions to be fused.
Moreover, assigning positive belief mass to the universal hypothesis Θ
in the basic probability assignments produced by the classifiers, allows
to quantify the belief in their correctness. Both criteria have been evalu-
ated by numerical simulations on two different benchmark data sets. The
results are compared to standard static classifier combination schemes
and basic classifiers. It is shown that DS classifier fusion can boost the
combined classifier accuracy to 100% on the set of accepted data points
(∼ 70%). This behaviour could be of interest in applications with high
costs for a miss, e.g. in medical screening tests.

1 Introduction

The Dempster-Shafer (DS) theory of evidence, also known as the theory of belief
functions, is a tool for representing and combining evidence. Being a generali-
sation of Bayesian reasoning, it does not require probabilities for each question
of interest, but the belief in a hypothesis can be based on the probabilities of
related questions. Contributing to its success is the fact that the belief and the
ignorance or uncertainty concerning a question can be modelled independently.

Here, Dempster-Shafer theory has been chosen over probability theory [1],
possibility theory [2] and fuzzy theory [3, 4] because of its straightforward ap-
plication to the problem, and experimental results [5] showing that it performs
well in the area of classifier fusion. The above mentioned theories are categorised
with respect to their behaviour and the information they depend on in [6].

The Dempster-Shafer theory was brought forward by Dempster [7] and Shafer
[8], then came to the attention of artificial intelligence researchers in the early
1980s as an approach to adopt probability theory to expert systems [9] and
is still applied in this field [10, 11]. We will use the theory in the context of
the fusion of multiple classifiers in order to define rejection criteria, exploiting
its features to model uncertainty and conflict of final decisions. This allows to
boost the accuracy on the accepted data, which is desired in situations where

N.C. Oza et al. (Eds.): MCS 2005, LNCS 3541, pp. 118–127, 2005.
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a missclassification is very expensive or must not happen. As a possibility to
evaluate the doubt in a decision, certainty measures are used.

In the next section, the basic concepts of the Dempster-Shafer theory and
some special aspects needed for our purpose will be presented; Section 3 briefly
describes how in related works the sensor answers are converted into measures
suitable for the DS theory. The experiment setup and results are presented in
Section 4 and evaluated in Section 5.

2 Introduction into the Basic Concepts of the
Dempster-Shafer Theory

The Dempster-Shafer theory starts by assuming a universe of discourse, or frame
of discernment, consisting of a finite set of mutually exclusive atomic hypotheses
Θ = {θ1, ..., θq}. Let 2Θ denote the set of all subsets of Θ. Then a function
m : 2Θ → [0, 1] is called a basic probability assignment (bpa) if it satisfies

m(∅) = 0 and
∑
A⊆Θ

m(A) = 1 . (1)

So, according to the conditions above, belief can not only assigned to an atomic
hypothesis, but some set A = {a1, ...an} ⊂ Θ. Hence, our belief in m(A) repre-
sents our ignorance, which can not be subdivided among the subsets of A. Each
element B with m(B) > 0 is called a focal element. Now with a bpa m, the belief
function bel : 2Θ → [0, 1] is defined as

bel(B) =
∑
A⊆B

m(A) . (2)

It represents the minimum trust we can have in B because of the support-
ing subsets A. Looking at the definition, it can be noticed that bel({θk}) =
m({θk}) ∀ k = 1 . . . n. Furthermore, if every focal element is an atomic hypoth-
esis, we find ourselves in the situation of standard probability theory. To get an
intuitive understanding, one can consider a basic probability assignment a gen-
eralisation of a probability density function and a belief function a generalisation
of a probability function [12].

The most interesting part of the theory is the possibility to combine two bpas
m1 and m2 on Θ with the orthogonal sum m12 = m1 ⊕ m2 which is defined as

m12(C) = K
∑

A,B:A∩B=C

m1(A) · m2(B) (3)

where

K−1 = 1 −
∑

A,B:A∩B=∅
m1(A) · m2(B) =

∑
A,B:A∩B �=∅

m1(A) · m2(B) . (4)

The factor K is a measure of contradition between m1 and m2, with log(K) being
called the weight of conflict. The orthogonal sum m1 ⊕ m2 exists iff K−1 �= 0,
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elsewise the sources are said to be total contradictory. Combining multiple bpas
can easily be realised, as the orthogonal sum is commutative and associative.

In the following, two aspects of the Dempster-Shafer framework will be pre-
sented that allow us to reject samples.

2.1 Assigning Belief to Θ (Doubt)

Any belief mass assigned to Θ, the universal hypothesis or proposition [13],
represents the belief that the assignment of masses to other focal elements may
be based on evidence that is not legitimate. Hence, m(Θ) > 0 constitutes the
doubt into the correctness of the bpas, and can be used to reject a sample to
be classified. Except for [14], this rejection criterion possibility is not yet widely
exploited in the literature.

Assigning belief to Θ can be effectuated by the sensor producing the bpas to
be combined [15], or by the technique of discount factors.

The discount factors are an idea that dates back to Shafer’s initial work [8]
and have later been justified [16] in the context of the transferable belief model.
Assuming a certainty measure C concerning the output of a classifier is given
(in our case, 0 ≤ C ≤ 1, where C = 1 indicates a very certain classifier). Then
the bpa m induced by the output are scaled, or discounted, with C:

md(Ai) = C · m(Ai), md(Θ) = 1 − C · (1 − m(Θ)) (5)

The advantage is that the doubt, represented by md(Θ), inferred by the certainty
measures, is taken into account automatically when now combining sensors with
the orthogonal sum. But basically, the combined md(Θ) is based on the product
of the inverted certainty measures, meaning that its value will decrease with each
combination. This has to be taken into consideration when comparing doubt
values, preferably restricting this to bpas that have been calculated over the
same number of classifier combination steps.

Discounting can be done at different stages of the fusion process, for example
for each classifier or even each class of each classifier, giving ample opportunity
to incorporate expert knowledge.

2.2 Assigning Belief to ∅ (Conflict)

The combination via the orthogonal sum is not without problems. When bpas
are combined, the result does not allow for any conclusions if there had been a
conflict between the sources. In fact, Zadeh [17] constructed an example where
the resulting bpas are equal, regardless if the sources were totally agreeing or
quite contradictory. To get around this, it was suggested [18] to show a measure
of conflict with each combination of two bpas m1 and m2:

conflict(m1,m2) = − log(1 − K) (6)

Here K is the conflict as defined earlier in Eq. 4.
But there is an even better way to preserve information about the conflicts of

the merged sources: Using the orthogonal sum without its normalising denomi-
nator. The idea was brought up by Smets in the framework of the transferable
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belief model, which is based on the work of Dempster-Shafer. As explained in [19],
the distribution of the probability mass missing to the sum of 1 among the re-
maining bpas Ai with m(Ai) > 0 is not good, inter alia, because plausibility(Ai)
is defined as the maximal degree of support that can be assigned to Ai, and must
not be increased by the combination. Instead, the missing mass should be as-
signed to some contradictory state, which is shown to be the empty set ∅. Thus,
the belief m(∅) is a measure for the conflict or disagreement between all the
sources that have been combined using the orthogonal sum without normalisa-
tion. Again, setting a threshold value for the conflict and rejecting samples that
induced a higher conflict allows to boost the rate of correct classification.

Note that the combination of the two methods, hence unnormalised sum and
using certainty factors to discount, does not work. The certainty factors alter
the answers of each classifier, so that the conflict is not a viable measure any
more.

3 How to Produce the Basic Probability Assignments -
A Look at the Literature

As early as 1988, Mandler and Schürmann [20] developed a method to make
use of the Dempster-Shafer theory in the process of multiple classifier fusion.
Applied to on-line script recognition, they used a prototype based classification
system. Each classifier, termed expert, produced a bpa that was calculated as
the likelihood ratio of the intra-class-distance model to the inter-class-distance
model, a measure that is also motivated by DS theory.

In their influential 1992 paper on methods of combining multiple classifiers
[13], Xu, Krzyzak and Suen also tackled the issue. They used crisp classifiers,
whose answer is a vote for exactly one class or rejection of the sample. On a
test set, they estimated the recognition rate εk

r and substitution rate εk
s for each

of the K classifiers. Out of those, a bpa function was constructed by basically
defining

mk(θc) = εk
r , mk(¬θc) = εk

s , mk(Θ) = 1 − εk
r − εk

s (7)

with θc ∈ frame of discernment referring to one of the C possible classes. The
introduction of mk(Θ) was necessary to account for the rejection rate.

Rogova [12] applied the DS concept to the combination of multiple classifiers
with fuzzy, not crisp, outputs. She built a bpa for each class c for each classifier,
then combined the bpas per class with the orthogonal sum. The final decision was
made for the class c with the highest pro-c evidence. The interesting twist is that
the information concerning the other ¬c classes was used in the construction of
the first per-class-per-classifier bpas. Kuncheva, Bezdek and Duin included this
approach in their experimental comparison [5] of the decision templates (DT )
fusion technique with other, established methods. They came to the conclusion
that the method ”rated comparatively high on both data sets. It had a little
lower final rank than the best DT techniques, and can be put basically in the
same group.”
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Al-Ani and Deriche came up with a new variant in 2002 [21]. Their idea was
to improve on the way Rogova calculated the bpas for each classifier and class.
In her work, it was based on the distance between the classification of an input
vector and a reference vector, which was calculated as the mean classification
output on training data for the class. Now, the reference vectors are adopted so
that the mean square error between the final output per class and the training
vectors is minimised.

A somewhat similar approach has been taken by Denoeux [14] in 2000. How-
ever, his aim was to build a single classifier which produces a bpa. He uses pro-
toypes with fuzzy memberships and adapts them using a neural network (MLP)
to optimise a performance criterion. The Dempster-Shafer theory is employed to
merge the information provided by each of the prototypes.

The papers by Milisavljevic and Bloch [15] and Le Hégarat-Mascle et al. [22]
use expert knowledge about the domain of application, the detection of anti-
personnel mines and the combination of multi-scale satellite data respectively,
to produce the bpas. Because of this they are, unlike the other approaches, able
to assign belief not only to atomic but also to compound hypotheses.

4 Experiments

The experiments were performed on two datasets, the images of fruits and of
handwritten numerals. The first data set comes from a robotic environment.
In the camera image, regions of interest are detected, and the task is to clas-
sify the fruit contained [23]. The dataset employed has 840 samples from 7
different classes (apples, oranges, plums...). Four features are extracted from
each image: three histograms based on different parts of the greyscale image
(left/middle/right) using the Sobel edge detector [24], representing the form of
the three dimensional object, and the mean colour values of the image after it
has been converted to the HSV colour space representation [25]. In our frame-
work, the features are each classified with a Gaussian RBF network [26], the 10
and 7 prototypes per class for which have been calculated using the K-Means
algorithm (details see [27]). Results are calculated using 5-fold cross validation.

The handwritten numerals data set consists of 10000 samples which are la-
beled according to their class 0 - 9 [28], each sample being originally represented
by a 16x16 matrix containing greyscale values of 8 bit resolution. Three features
have been used: The data projected onto the first 8 principal components of the
training data, extracted by means of a Karhunen-Loève transformation (PCA)
[29, 30], the sums over the rows and columns of the picture, with it being rotated
ten times in the process (forming a big feature vector with a dimension of 320),
and the picture matrix simply flattened to a 256-dimensional vector. The first
two features were classified using the same procedure as described above, the last
one using a Fuzzy K-Nearest-Neighbour algorithm [31]. Results are calculated
using 10-fold cross validation on this set.

For the purpose of this paper, a straightforward method is used to construct
the bpas: for a sample, the output of each classifier is normalised to sum up
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to one, and thus forms the bpa that will be fused with the belief assignments
of the other classifiers using the orthogonal sum. The final classifying answer is
extracted from the combined bpa using the maximum rule.

4.1 Rejection ue to High Conflict

As described in Section 2.2, the not normalised orthogonal sum can be used to
preserve knowledge about conflicting answers from the combined classifiers. If
the conflict was above a certain threshold, meaning the allocation of belief mass
above a certain threshold to ∅, the sample will be rejected (see Figure 1). The
experiments (see Figure 2) showed that the accuracy on the accepted samples
can be increased significantly. Accuracy of about 100% can be achieved on both
data sets while discarding only about 34% of the presented data.

Fig. 1. Architecture of the two combination schemes. Classifier answers are fused, and
a sample is rejected if the associated conflict or doubt is too high (meaning above a
set threshold)
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Fig. 2. Accuracy with not normalised DS fusion on the fruits and handwritten numerals
data. Samples rejected if m(∅) above threshold (conflict)
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4.2 Rejection to High Doubt

The belief in Θ, the universal hypothesis, represents the doubt that the combined
bpa is correct. The assignment of belief mass to Θ can, as mentioned in Section
2.1, be done by each classifier or sensor, or by using the technique of discount
factors. As classifiers producing bpas on the fruits data set, we used the software
published by Denoeux, which implements his algorithm described in [14]. As
explained above, it is based on prototypes with fuzzy memberships, which are
adapted using a neural network (MLP) to optimise a performance criterion.
The output is a bpa which assigns masses only to atomic hypotheses but also
Θ, which is why it was employed instead of our own framework. The software
was run with the standard settings, mandating 5 prototypes per class and fuzzy
memberships for them, also running the optimisation part. Each feature of the
fruits data was classified separately, the results then fused using the standard
orthogonal sum. The classifier seems to be rather dependent on the initialisation,
the combined classification performance when not rejecting samples having a
rather high standard deviation of 2.02, varying between an accuracy of 90% and
95%. The experiment was successful (see Figure 3) in that the accuracy can be
increased by rejecting data points, for example a rejection rate of 0.3 yields an
increase in the classification rate of 3 percent points.

For the assignment of belief to Θ in the experiment with the handwritten
numerals data set, the discounting technique was employed. The certainty fac-
tor used was gained by calculating the Shannon entropy [32] for each classifier
answer, normalising by log2 (#classes), and subsequent inversion. The final fac-
tor is in the range between 0 and 1, with its maximum in the case of a crisp
answer. Our assumption that the basic classifiers would tend to answer less fuzzy
if they are sure and correct turned out to be true on the test data sets. The mean
certainty factor of answers to samples a classifier labeled correctly was higher
than for those samples on which the classifier was wrong. This resulted in a very
successful setup, an accuracy of 100% being possible while rejecting only 13.7%
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of the samples. For the performance on other data sets and techniques to even
improve on that result, see [27].

5 Discussion

The main question was how much accuracy we can achieve by allowing a percent-
age of the samples to be rejected1. Thus we compared (Table 1) our Dempster-
Shafer approaches to the basic classifiers we employed as well as the two static
combination techniques probabilistic product and median, which had a generally
good accuracy on our example data sets. It turns out that the combined clas-
sifiers always have a higher accuracy then any single classifier, with only the
exception of the one operating on the picture feature which gives astonishingly
clear answers. When rejecting samples, it is always one of our Dempster-Shafer

Table 1. Accuracy (in %) of different classifiers when rejecting at most the percent-
age of samples given in the first row. In the first half, accuracies are given for single
classifiers working on only one feature, in the second half, accuracies for combined
answers

Numerals 0 5 10 20 50 Fruits 0 5 10 20 50

PCA 87.6 90.7 92.1 94.9 98.8 histo left 80.5 83.7 84.6 89.1 94.9

sums 92.0 94.4 96.2 97.8 99.6 histo middle 83.3 85.6 88.0 90.4 96.1

picture 88.0 91.9 99.0 99.9 99.9 histo right 82.4 84.4 86.7 90.2 94.4

HSV 80.8 83.9 85.2 89.1 96.2

product 91.6 93.4 94.1 94.3 92.6 product 95.4 95.5 95.3 95.3 95.1

median 92.1 93.6 95.4 96.8 96.8 median 94.1 93.7 93.5 93.4 92.6

DS conflict 91.6 94.9 96.0 99.2 100 DS conflict 93.6 98.0 98.0 98.8 100

DS doubt 88.0 92.0 97.4 100 100 DS doubt 91.6 92.7 93.5 95.9 99.7

rejection methods who has the highest accuracy, being significantly better than
the other basic combination schemes. While employing methods like Decision
Templates [5, 35] or BKS [36] that incorporate further statistical information
calculated by the classifiers on the training set will yield a higher accuracy, it is
by using one of the Dempster-Shafer approaches and rejection that an accuracy
of 100% can be achieved. This is useful in applications like medical screening
tests where a false-negative is very expensive or must not happen, but rejected
samples can just be reevaluated, decided using new data, or simply passed on to
a human for review.
1 On the basic classifiers, the RAD criterion [33] (the normalised distance to the

nearest hard target vector) was used as basis for the rejection, the DIF criterion
not yielding significantly different results. For the combined classifiers, the inverted
integral pairwise coincidence J5 from [34] was employed on the answers concerning
the winning class, with no different outcome if the normalised variance was chosen
instead. The rejection thresholds were raised from 0 to 1 with a step width of 0.01,
for the DS combined fruits data the threshold range was 1e-18 to 1e-10.
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trum Akademischer Verlag (1999)

19. Smets, P.: The nature of the unnormalized beliefs encountered in the transferable
belief model. In: Proceedings of the 8th Conference on Uncertainty in Artificial
Intelligence, San Mateo, California, Morgan Kaufmann (1992) 292–297
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Abstract. We detail an exploratory experiment aimed at determin-
ing the performance of stochastic vector quantisation as a purely fu-
sion methodology, in contrast to its performance as a composite classi-
fication/fusion mechanism. To achieve this we obtain an initial pattern
space for which a simulated PDF is generated: a well-factored SVQ clas-
sifier then acts as a composite classifier/classifier fusion system in order
to provide an overall representation rate. This performance is then con-
trasted with that of the individual classifiers (constituted by the factored
code-vectors) acting in combination via conventional combination mech-
anisms. In this way, we isolate the performance of networked-SVQs as a
purely combinatory mechanism for the base classifiers.

1 Introduction

1.1 The Networked SVQ Methodology

We explore a variant on the stochastic vector-quantisation (SVQ) technique [1-3]
that acts to integrate aspects of independent component analysis within stan-
dard vector-quantisation [5]. It achieves this by maximising the error resilience of
bandwidth-limited transmissions of pattern-vector information sampled stochas-
tically from a code-book, thereby providing a natural mechanism for imposing an
appropriate coordinatization and topology on the training vectors. This contrasts
with the a priori impositions that must be made within a conventional topo-
graphic feature-mapping environment [4] (to which behaviour networked-SVQs
essentially default in the presence of unambiguously non-manifold pattern-data).

In more specific terms, stochastic vector-quantisation utilises a ’folded’ Markov
chain topology to statistically relate input and output vectors conceived as occu-
pying the same vector space via the minimisation of a positional reconstruction
error measure.

Hence, for an input vector denoted x, we minimise the aggregate Euclidean
reconstruction distance:

D ≡
∫

dx Pr(x)
M∑

y1=1

M∑
y1=2

. . .

M∑
yn=1

Pr(y|x)
∫

dx′Pr(x′|y)||x − x′||2 (1)

N.C. Oza et al. (Eds.): MCS 2005, LNCS 3541, pp. 128–135, 2005.
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where x′ is the output vector, and y = (y1, y2, . . . yn) : 1 ≤ y ≤ M the code-
index vector encoding of x.

This is soluble non-parametrically for certain theoretical cases. However, in
practise, a number of constraints are required to achieve this minimisation [3],
the most significant of which for the present purposes being the limitation of
Pr(y|x) to a sigmoid form:

Pr(y|x) =
Q(y|x)∑M

y′=1 Q(y′|x)
(2)

where
Q(y|x) ≡ 1

1 + exp(−ω(y).x − b(y))
(3)

b here represents a bias offset in the input space; ω represents a weight vector with
behaviour characteristics familiar from the study of artificial neural networks
(although the normalisation factor can considerably modify the intrinsic sigmoid
morphology).

It is also possible, within the SVQ theoretical framework, to concatenate
chains of individual SVQs together to form a multistage network with the previ-
ous code-vector space becoming the input space of the sub sequent SVQ, in which
case the objective function defaults to a weighted sum of the reconstruction er-
rors of each stage in the chain. Networked SVQs can thus act in a supervised,
as well as an unsupervised manner.

What makes stochastic vector quantisers interesting from the classifier fusion
perspective, however, is their capacity to spontaneously factor code-vector poste-
rior PDFs in relation to the input data, thereby achieving a maximally compact
representation of strongly manifold-like pattern-data. Bundles of orthonormal
code-vectors can therefore act as individually independent classifiers, with the
folded Markov chain topology serving to combine classifier outputs in order to
provide an overall estimate of the reconstruction vector (which has associated
with it a unique probability density value).

1.2 Objective

We shall, in this paper, set out an exploratory experiment aimed at determin-
ing the performance of the networked stochastic vector quantisation technique
as a purely fusion methodology, in relation to its performance as a composite
classification/fusion system.

Achieving this will require that we generate a simulated PDF such that a
well-factored two-stage SVQ classifier may act as a composite classifier/classifier
fusion system, providing an overall representation rate.

This performance is then contrasted with that of the individually factored
classifiers (formed by the collinear code-vector bundles) acting in isolation, with
outputs combined via a pair of a conventional combination mechanisms.

In this way we aim to isolate the performance of the SVQ methodology as a
purely combinatory mechanism for the base classifiers, with respect to the two
benchmark fusion mechanisms.
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2 Testing the Networked-SVQ Methodology’s Abilities
as a Classifier Combiner

We have argued that the behavioural qualities of the networked SVQ methodol-
ogy as a factorising classifier bear many comparisons to classical multiple classier
fusion. A strongly factorised SVQ essentially divides the input space into orthog-
onal manifolds with stochastic outputs that are independent to the degree that
they represent true independence within the training data (it is here tacitly as-
sumed that factorisation will only take place when so indicated by the data).
The folded aspect of the Markov-chain topology that defines the SVQ archi-
tecture then combines these outputs to derive a (probabilistically distributed)
vector in the input space. This comes about because both the final vector and
the individual reconstruction vectors are associated with the orthogonal sigmoid
bundles correlated with a particular probabilistic output for the original ground-
truth training-vector distribution. There is hence a strong sense in which the
orthogonal weight-vector bundles may be regarded as individual classifiers with
a corresponding probability output, and the final reconstruction vector regarded
as a combined classifier output.

Without specific constraints (such as partitioning) on the SVQ, this combi-
nation is of an inherently complex and non-linear type. However, it is broadly
expected to equate to a vector summation of the individual weight reconstruction
vectors. Were this analogy with classifier combination exact, we would anticipate
the output of the SVQ to be, rather than a combination of component vectors
associated with probability values, instead of a combination of probability values
associated with the vectors. Thus we see, by virtue of the explicit co-ordination
of vector components, that SVQs have an intrinsic advantage over convectional
classifier/classifier combiner systems.

It therefore seems appropriate, in assessing the performance of the networked
SVQ methodology as a classifier combiner (that is to say, as distinct from a
classifier), to benchmark it against other combination systems which utilise as
common base classifiers those sub-classifiers formed by the orthogonal sigmoid
bundles.

To do this we need an appropriate simulated ground truth distribution, with
an absolute probability value associated with each vector of the input space: we
therefore opt, in the following, for variants on the toroid distribution.

The most appropriate combining schemes against which to benchmark the
networked-SVQ systems are the Sum and Product Rules, since they collectively
represent opposing poles in the gamut of possibilities (Kittler et al [6] have
demonstrated all other combining systems to be reducible to one or other of
them in terms of broad functionality).

In the following experiment, we shall thus seek to benchmark the accu-
racy (mean-square deviation) of the final probability values arising from the
networked-SVQ reconstruction of test vectors sampled from the simulated toroid
PDF. That is, we shall seek to compare the ground-truth PDF value at a range
of randomly-sampled test vectors with those defined by:



Multiple Classifier Fusion Performance in Networked SVQs 131

– 1. The networked-SVQ reconstruction vector.
– 2. The sum of the probabilities associated with the reconstruction vectors of

the orthogonal spaces defined by collinear sigmoid bundles.
– 3. The product of the probabilities associated with the reconstruction vectors

of the orthogonal spaces defined by collinear sigmoid bundles.

Hence, we compare the the probabilistic output errors of the SVQ, sum rule
and product rule combination mechanisms, respectively.

Specifically, we set about this as follows:

2.1 Experimental Approach

First, a set of training data is prepared that derives from a specific and defined
probability density function (see below). This is then presented to a networked-
SVQ classifier for training using simulated annealing to try to force the classifier
to form a factorial set of codes. These codes are then split into the collinear sets
(as specified via an angular-deviation threshold) to form a set of new classifiers.

A new set of training data conforming to the original probability density
function is created, and the reconstruction vectors for all of the code-bundles in
the factorially-separated classifiers are found.

The probability density function function is then evaluated at these points via
the simulated PDF function, as well at the points specified by the original data.
The probabilities that result from the networked-SVQ classifier directly, and
from the sum and product of the probabilities associated with the multiple sub-
classifiers are then compared to that of the simulated PDF in order to evaluate
how well the differing mechanisms (SVQ, Sum Rule and Product Rule) combine.

As pseudocode, the experimental approach may thus be written;

1. Initialisation
i) Generate prospective polynomial ground truth PDF.
ii) Generate training set from prospective ground truth PDF.
iii) Create SVQ from training data.
iv) Test for factorial SVQ behaviour via angular collinearity criterion.

GOTO 1. until test satisfied

2. Evaluate Sum, Product Rule Performances
2a. (Generation of Sub-Classifier Outputs)

i) Separate SVQ code vectors into N factorised subsets.
ii) Generate training set from ground truth PDF.
iii) Generate N reconstruction vectors from training set.
iv) Associate probabilities with reconstruction vectors via ground truth

PDF.

2b. (Compute Linear Combiner Performance)
i) Combine probabilities via Sum and Product Rules.
ii) Calculate RMS deviations from ground truth PDF.
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3. Evaluate SVQ Performance
3a. (Generate SVQ Classifier Output)

i) Generate reconstruction vectors from training set for full set of SVQ
code-vectors.

ii) Associate probabilities with reconstruction vectors via ground truth
PDF.

3b. (Compute Composite SVQ Classifier/Combiner Performance)
i) Calculate RMS deviation of SVQ probabilities from ground truth PDF.

2.2 Experimental Findings

A two-toroid embedded in four-dimensional space with random Gaussian-sampled
radial perturbations was selected as the ground truth probability density func-
tion most appropriate to the problem. With a mean inner radius of 1.0 and
a standard deviation of 3.0 this provides a reasonably diffuse object, but with
a definite manifold aspect. Two distinct toroids displaced by 1.5 × the inner
radius are employed to represent a two-class classification scenario. Hence, al-
though we require stochastic vector quantisation to provide independent factori-
sations of the distinct classifiers (each with an independent reference PDF), we
do not explicitly determine classification rates at any stage; we are primarily
interested in the deviation of the combined classifier output from that of the
model.

After sparse (50 vector) sampling and presentation to the networked-SVQ
for training, this pattern-data factorised effectively, producing the set of codes
depicted in figures 1 and 2. Processing the factorised classifier outputs via
the various combinatory mechanisms (SVQ, Sum-rule and Product-rule), and
computing the RMS deviation of the combined output probability from that of
the reference two-toroidal PDF, provides the following aggregate results:

Fig. 1. Individual code posterior PDFs for the perturbed toroid manifold, classifier
1 (depicted in 2-dimensional internal manifold coordinates, wrapping around on the
horizontal and vertical axes)
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Fig. 2. Individual code posterior PDFs for the perturbed toroid manifold, classifier
2 (depicted in 2-dimensional internal manifold coordinates, wrapping around on the
horizontal and vertical axes)

SVQ Sum rule Product rule
RMS error 0.218559 0.188461 0.2724854

This result, giving second placing to the networked-SVQ, is perhaps counter-
intuitive since the mechanism has inherently more free-parameters to deploy
in the combination. A possible explanation, however, is presented by the ar-
bitrary symmetry of the training data, and the associated possibility of over-
parameterisation. A second toroid probability density function was hence cre-
ated in which a relative deviation component of 1.2 in dimensions 3 and 4 with
respect to dimensions 1 and 2 was permitted.

This does not factorise into orthonormality to the degree that the previous
data set does, but still forms a factorial classifier within our angular-threshold-
based definition of the term (and as can be seen in figures 3 and 4), the threshold
being set to within ±5◦ of collinearity. Processing these classifiers in the previous
manner provided the following results:

SVQ Sum rule Product rule
RMS error 0.203262 0.181961 0.317731

These are substantially the same as those of the previous case, and we would
therefore tend to the view that they represent a real trend with respect to
the experimental assumptions. If this is so, we then have a respective hierar-
chy of classifier-combinatory abilities of, from best to worst; Sum Rule, SVQ,
Product Rule, with the networked-SVQ and the Sum Rule having relatively
similar combinatory abilities.

This would tend to correlate with the view that the Sum Rule is the most
robust mechanism for error-cancellation available. However, the Product Rule is
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Fig. 3. Individual code posterior PDFs for the elliptically-deviated toroid, classifier
1 (depicted in 2-dimensional internal manifold coordinates, wrapping around on the
horizontal and vertical axes)

Fig. 4. Individual code posterior PDFs for the elliptically-deviated toroid, classifier
2 (depicted in 2-dimensional internal manifold coordinates, wrapping around on the
horizontal and vertical axes)

the most geometrically conservative linear mechanism for calculating underly-
ing composite PDFs from marginal distributions, despite its tendency for mul-
tiplication of error magnitudes. Stochastic vector quantisation, being in effect
a complex non-linear combination mechanism for factorial components, has a
still greater capacity for geometric information conservation. We may therefore
expect that more complex morphologies will tend to bring out this aspect of
networked-SVQs more fully. For the present, the near Sum-Rule levels of error-
robustness are a promising indication that networked-SVQs represents a stable
platform for both classification and classifier combination (particularly when the
latter arises as a spontaneous consequence of the former).
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3 Conclusions

We have sought to provide an exploratory quantification of the networked stochas-
tic vector quantiser’s ability to act a purely combinatorialmechanism for factorised
classifiers via an experimental benchmarking against existing linear methods.

It was determined that, for the chosen test data set, stochastic vector quanti-
sation combines near Sum-rule levels of error-robustness with an adaptable non-
linear mechanism for geometric combination of factorial components. Further
testing on simulated and empirical data is required to establish this conclusion
fully convincingly; this shall be the endeavour of future research. However, this
preliminary result is suggestive in its own right.

Beyond the performance issues, we have found that the method potentially
represents a stable and useful classification platform for general pattern classi-
fication, the unique strength of SVQs being to spontaneously characterise the
dimensionality of an input manifold, forming classifiers and combination mecha-
nisms as the data demands, without any inherent necessity for external param-
eter fixing.
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Abstract. Unlike fixed combining rules, the trainable combiner is appli-
cable to ensembles of diverse base classifier architectures with incompa-
rable outputs. The trainable combiner, however, requires the additional
step of deriving a second-stage training dataset from the base classifier
outputs. Although several strategies have been devised, it is thus far un-
clear which is superior for a given situation. In this paper we investigate
three principal training techniques, namely the re-use of the training
dataset for both stages, an independent validation set, and the stacked
generalization. On experiments with several datasets we have observed
that the stacked generalization outperforms the other techniques in most
situations, with the exception of very small sample sizes, in which the
re-using strategy behaves better. We illustrate that the stacked general-
ization introduces additional noise to the second-stage training dataset,
and should therefore be bundled with simple combiners that are insensi-
tive to the noise. We propose an extension of the stacked generalization
approach which significantly improves the combiner robustness.

1 Introduction

When designing pattern recognitions systems, it is often the case that multiple
types of data representation and classifiers may be exploited. Instead of selecting
the best single algorithm for a given problem, multiple classification systems
combine a number of base algorithms to provide (in some cases) more accurate
and robust solutions [6]. A second stage combiner is used to assimilate and
process the outputs of the base classifier. Two types of combination strategies are
typically considered - fixed and trainable combiners. While the fixed combiners
operate directly on the outputs of the base classifiers, the trainable ones use the
outputs of base classifier as a new feature representation.

Fixed combining rules assume that the responses of the base classifiers are
comparable. This assumption does not necessarily hold if different classifier ar-
chitectures are combined, such as Fisher Linear Discriminant (FLD), Support
vector machines or neural networks. The trainable combiners are capable of over-
coming this problem by learning the pattern in the outcomes of base classifiers.

N.C. Oza et al. (Eds.): MCS 2005, LNCS 3541, pp. 136–146, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Although benefits of trainable combiners have been demonstrated in number
of studies [4, 2, 11, 5, 1, 9], it is still unclear which training strategy results in
the best performance to suit a particular situation. Thus far, several strategies
have been utilized. The first uses the same training set for both training of
the base classifiers and (after processing by the trained base classifiers) also for
the training of the combiner. Using the same set of examples for both stages,
however, inevitably leads to a biased combiner. In order to remedy this situation,
Raudys proposed to estimate the bias of the base classifier and correct for it
[8]. This solution is, however, applicable only in the special case of linear base
classifiers. A practical general recommendation, given by Duin in [2], is to train
the base classifiers in a weak fashion. The combiner may then still have the
flexibility to correct for their weakness as the bias is almost avoided.

Another training strategy avoids the biased dataset for training of the com-
biner by the use of a validation set. The available training data is split into two
independent subsets. The first is utilized for training of the base classifiers. The
second set, processed by the trained base classifiers, serves to train the combiner.
The shortcoming of this approach is that the data available for training of each of
the stages is typically severely limited, and thus leading to poorer overall perfor-
mance. A compromise solution may be the construction of partially overlapping
training and validation sets [1]. This observation might suggest that trainable
combining rules are applicable only for large datasets [11, 9].

In this paper, we focus on an alternative approach which has a potential to
improve the applicability of trainable combiners to smaller sample size prob-
lems, called stacked generalization, first introduced by Wolpert [13]. This is a
general technique for construction of multi-level learning systems. In the con-
text of classifier combination, it yields unbiased, full-size training sets for the
trainable combiner in the following way:

– For each base classifier, an internal rotation-based cross-validation is per-
formed such that all the fold test sets constitute the full original dataset.

– A classifier, trained in one of the internal folds, is applied to the respective
fold test set and its outputs (such as class posteriori probability estimates
or confidences) are stored.

– By collating the outputs of all the classifiers produced by the internal cross-
validation, a full-size dataset consisting of the classifier outputs is con-
structed to be used for the second-stage training. Since each of these training
examples was processed by the base classifier trained on an independent data
set, the base classifier outputs in the resulting dataset are unbiased.

Stacked generalization therefore alleviates both of the aforementioned prob-
lems by providing the unbiased training set for the combiner, without sacrificing
any of the available training examples.

Stacked generalization was discussed in a classifier combining context by Ting
and Witten [12]. In their study, it outperformed both the model selection based
on cross-validation, and the majority voting combiner. From a regression view-
point, LeBlanc and Tibshirani [7] investigated the stacked generalizing combiner
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in a small artificial example using a linear classifier and the nearest neighbor
rule. The existing studies on trainable combining using the stacked generaliza-
tion focus on the selection of base classifiers and their outputs or viable combiner
models. To our knowledge, the analysis of the relation between the performance
of stacked combiners and training sizes has not been performed.

In this paper we investigate the behaviour of trainable combiners based on
stacked generalization in comparison to two other primary approaches, namely
re-using of the full training set (denoted the re-use method) by both stages, and
the strategy based on the validation set (the validation method). We compare the
behaviour of the three strategies across varying training set sizes in an attempt
to understand their strengths and weaknesses.

In Section 2, the derivation of the combiner training set for the different ap-
proaches is formally introduced. We also discuss derivation of the base classifiers
used in the stacked system and propose an alternative method increasing their
robustness. In Section 3, we describe a set of experiments on several datasets
and discuss our main findings. The final conclusions are given in Section 4.

2 Derivation of Training Set for the Trainable Combiner

We assume a training dataset X, with N examples xi ∈ RD, i = 1, ..., N each
assigned into one of C classes and a set of B untrained base classifiers Ab,
b = 1, ..., B. The base classifiers are trained according to the fusion strategy
used. Note, that if independent feature representations are available, the base
classifier Ab will be trained on the corresponding dataset Xb. In the following, we
denote such a trained classifier by Âb(Xb). By reapplying the trained classifier
Âb(Xb) to the input set Xb, a dataset Yb with C classifier outputs is created.
The procedure, repeated for each of the base classifiers, yields a set Y , with N
examples and BC features. The combiner Acomb is trained on this second-stage
dataset Y . This procedure coincides with the re-use method for both the base
classifiers and the combiner.

A new incoming observation z ∈ RD is assigned into one of the C classes using
the trained combiner Âcomb(Y ) in the following way: First, the observation is
subjected to each of B trained base classifiers Âb(Xb) using appropriate feature
representations. The resulting outputs of the base classifiers are concatenated to
form a feature vector in BC-dimensional space, and then finally the trainable
combiner Âcomb(Y ) is applied.

The second approach (the validation method), investigated in this paper uses
an independent validation set, in order to reduce the bias of the trainable com-
biner. The input dataset X is split into the training part Tr, and the mutually
exclusive validation set V . The output dataset Y is composed of outputs of
the trained classifiers Âb(Trb), obtained on the respective validation sets Vb,
b = 1, ..., B. Note that both, base classifiers and and combiner, are trained on
subsets of the original input datasets.

The application of the stacked generalization technique is illustrated in Fig-
ure 1, focusing on a single base classifier Ab. The dataset Xb is split into F
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Fig. 1. Construction of a training set for the trainable combiner using stacked gener-

alization, shown for the base classifier Ab

mutually exclusive parts Xf
b , f = 1, ..., F of almost equal sizes. In an internal

F -fold cross-validation procedure, trained classifiers Âf
b (Trb) are constructed us-

ing the per-fold training subsets Trf
b = ∪F

j=1,j �=fXj
b . Each of the F trained fold

classifiers are applied to the independent validation subset V f
b ≡ Xf

b , yielding
an output set Y f

b . The full output set, specific to b-th base classifier is then con-
structed by concatenation Yb = ∪F

f=1Y
f
b . The process is concluded by re-training

the base classifier on the full set Xb, i.e. by producing Âb(Xb) [12, 1].
Because the internal cross-validation derived F versions Âf

b (Trf
b ), f = 1, ..., F

for each base classifier Ab, we propose to use their fixed combination Â∗
b(Trb)

as the final base classifier, instead of a single re-trained one. Our motivation is
to leverage the slight variations in the existing per-fold classifiers for the sake of
increasing the robustness of the whole classification system. Because we assume
a similar distribution of noise in the cross-validated training subsets, we propose
to use the mean combiner [2].

3 Experiments

3.1 Experimental Setup

In this section the results of a number of experiments are shown, comparing the
different approaches to deriving the training dataset for trainable combiners.
The experiments were performed on the following datasets:
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Handwritten Digits. The handwritten digits dataset (UCI repository1) con-
tains 2000 objects from ten digit classes (200 objects per class). The dataset is
composed of four different feature representations using the Fourier descriptors
(76 features), Karhunen-Loeve coefficients (64 features), Zernike moments (47
features) and raw pixel values (240 features).

Spectra. A set of 988 measurements of fluorescent spectra in oral cavity labeled
into two classes (856 healthy and 132 diseased tissue examples) [10]. Each mea-
surement consists of six independent spectra measured in different locations in
the oral cavity. Each spectrum is represented by of 199 wavelengths.

Waveform. An artificial dataset with three classes of waves each derived as a
combination of two of three “base” waves (UCI repository). The dataset has in
total 5000 examples and 21 features.

Sonar. A two-class real-world dataset with 208 data samples (111 examples
of metal, and 97 examples of rock) and 60 continuous features (UCI
repository).

The handwritten digits and spectra datasets contain different feature rep-
resentations for each measurement. Therefore, we use a single type of a base
classifier which is applied in different feature spaces. The waveform and sonar
datasets are examples of problems with a single feature representation. Hence,
we combine different base models in a single feature space.

In order to understand the behaviour of combiners utilizing different strate-
gies for the construction of the second-stage training set, we estimate the learning
curves in the following way. A training set of a desired size and an independent
test set are drawn from the input dataset. On the training set, the base classifiers
are trained and the second-stage dataset is constructed by the procedures de-
scribed in Section 2. This dataset is then used for training of the combiner. The
trained combiner is executed on the test set, and the mean classification error
over the test examples is estimated. Note that all steps required for building the
combiner, including the internal cross-validation of the stacked generalization,
are performed on the training set only. For a given training set size, this pro-
cedure is repeated 10 times and the results are averaged. For the handwritten
digits, spectra and waveform datasets the training set sizes vary from 5 to 100

Table 1. Experimental configurations

dataset base classifiers test set size (per class)

handwritten digits FLD 50

spectra FLD 30

waveform FLD,Parzen,1-NN 500

sonar FLD,Parzen,1-NN,NMC 40

1 http://www.ics.uci.edu/˜mlearn/MLRepository.html
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examples per class, for the sonar dataset from 5 to 50 examples per class. The
base algorithms and test set sizes used are summarized in Table 1.

The outputs of the Parzen base classifier consists of posterior probability es-
timates. The outputs of the non-density based classifiers (distances to a decision
boundary or a distance to the closest prototype) were normalized to a < 0; 1 >
range by a sigmoid function [3]. We have considered three different types of
trainable combiners, ranging from simple to complex models, namely the deci-
sion templates (DT) [5] (effectively the nearest mean classifier), the Fisher linear
discriminant (FLD), and the 1st nearest neighbor rule (1-NN). Note that while
the FLD internally scales its inputs, the DT and 1-NN combiners require the
proper scaling as explained above.

The experiments compare the three combiner training strategies, namely the
re-use method, validation method (50/50% split), and stacked generalization us-
ing 10-fold internal cross-validation. For stacked generalization, we distinguish
two approaches for construction of the trained base classifiers, as described in
Section 2. We refer to the case when base classifiers are re-trained on the complete
training dataset as “method I” [12, 1]. The second method, denoted “method II”,
uses a mean combiner over the set of 10 classifiers, trained during stacked gen-
eralization process.

3.2 Results and Discussion
The handwritten digit results are presented in Figure 2, subfigures (a),(c), and
(e). This subfigures (b), (d), and (f) correspond to the spectral dataset. The rows
of the Figure 2 refer to FLD, DT, and 1-NN training combiners, respectively.

In the subfigure 2 (a), we can observe that the combiner re-using the training
set (thin solid line) exhibits a drastic error increase between 10 and 50 examples
per class. This is caused by superimposing the error peaks of the base FLD clas-
sifiers occurring when the sample size matches the feature space dimensionality.
The combiner using the validation set (thin dashed line, circular markers) de-
livers significantly better results. The stacked generalizer using method I (thick
dash-dotted line) significantly improves over these two traditional techniques for
more than 10 examples per class. For the smallest training sample size, it is
surprisingly outperformed by the re-use method. The proposed stacked general-
izer using method II is the best of all remaining combiners even for the smallest
training sample size. The dotted line represents a learning curve of a single FLD
classifier directly applied to the full dataset. It illustrates that combining of dif-
ferent feature representation is beneficial. Employing the Parzen base classifier
instead of FLD lead to analogous results (experiments not shown here).

For large sample sizes, the methods become comparable. This is understand-
able because a large training set diminishes the effects of bias when the training
dataset is re-used and, at the same time, is sufficiently large for splitting into
training and validation subsets.

The results obtained on the spectral dataset depict the significant perfor-
mance deterioration occurring for larger sample sizes. It is the result of a peaking
effect where for 200 training examples a linear classifier is built in a 199 dimen-
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(a) digits, combiner: FLD
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(b) spectra, combiner: FLD
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(c) digits, combiner: DT
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(d) spectra, combiner: DT
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(e) digits, combiner: 1-NN
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Fig. 2. Handwritten digit datasets (left column) and spectral dataset (right column).

In all cases the FLD was used a base classifier
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(a) waveform, combiner: FLD
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(b) sonar, combiner: FLD
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(c) waveform, combiner: DT
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(d) sonar, combiner: DT
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(e) waveform, combiner: 1-NN
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(f) sonar, combiner: 1-NN

Fig. 3. Experiments with waveform and sonar datasets. The base classifiers are indi-

cated in Table 1
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sional feature space. Both the combiner re-using the training set and stacked
generalizer with method I suffer from the peaking. The stacked generalizer using
the method II benefits from a more robust base classifiers. Even better results are
reached by the validation method. Its base classifiers are trained in a space with
higher dimensionality then the number of training examples, using the pseudo-
inverse. The dotted line denoting the single FLD classifier applied to the full
dataset. It again illustrates that combining is beneficial for smaller sample sizes.

Similar trends may be also observed in Figure 3 depicting the experiments
with Waveform and Sonar datasets and in additional experiments with other
base classifiers such as nearest mean or Parzen we omit for the sake of brevity.

While FLD and DT combiners exhibit similar learning curve trends, the
1-NN combiner yields very different results. The most profound difference is
apparent in subfigures 2 (f), 3 (e) and 3 (f), where the re-use method significantly
outperforms all other strategies. Because the base classifiers are identical to those
in experiments where FLD and DT combiners were used, we conclude that the
inferior results are related to the 1st nearest neighbor combiner. This behaviour is
understandable for the combiner using the validation set because already small
amount of training examples is still cut in half. However, this cannot explain
the failure of the stacked generalizers employing the second-stage datasets of
identical size to the well-performing re-using approach.

We hypothesize that it is the presence of noise in the second-stage training
set generated by the stacked generalization and the subsequent failure of the
noise-sensitive 1-NN rule. We have performed an additional experiment with a
combiner based on the 5-th nearest neighbor rule. The results are presented in
Figure 4. The less noise-sensitive 5-NN combiner (triangular markers) results in
a significant improvement eventually reaching the performance comparable with
the 1-NN combiner trained on a re-used dataset. We conclude that the stacked
generalization introduces additional level of noise in the second-stage dataset. It
should be, therefore, used together with simple and robust combiners that are
capable of averaging out this noise.
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Fig. 4. The effect of less noise sensitive 5-NN combiners on the stacked generalizers
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4 Conclusions

In this paper, we have compared three principal methodologies for the con-
struction of the second-stage training sets for trainable combiners. Apart of the
commonly employed re-using of the available training set by both stages and the
validation set, we also investigate the stacked generalization technique which
yields full-size unbiased second-stage training sets. However, the stacked gener-
alization, inevitably introduces additional noise into the second-stage datasets.

Our experiments demonstrate that trainable combiners, derived using the
stacked generalization exhibit significant performance improvements over the
other two currently used methods for moderate training set sizes. For very small
sample sizes, the best strategy is the re-use of a complete training set for both
stages. Any split strategy sacrifices the scarce training data and should be, there-
fore, avoided. For a large number of training samples, the studied approaches to
derivation of the second-stage training set do not differ and the re-using strategy
may be again recommended as the simplest solution.

For the moderate training set sizes, the stacked generalization appears to
significantly outperform the other two approaches. Commonly used combiners
based on stacked generalization train the final base classifiers on the full training
set. We have proposed to construct the base classifier from the available fold
classifiers by a fixed mean combiner. This solution appears to bring additional
robustness and should be preferred in applications where evaluation of all the
fold classifiers for each new example does not pose a excessive speed burden.

We have noticed the performance drop of the stacked generalizers using the
1-NN combiner. We have shown that the stacked generalization introduces addi-
tional noise into the second-stage training dataset and therefore requires simple
and robust combiners such as FLD or DT for a good performance. We conclude
our study noting that the stack generalization provides a combiner training strat-
egy superior to the validation set approach and for larger than very small sample
sizes systematically outperforms the re-using approach.
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Abstract. There is an increased interest in the combination of biomet-
ric matchers for person verification. Matchers of different modalities can
be considered as independent 2-class classifiers. This work tries to answer
the question of whether assumption of the classifier independence could
be used to improve the combination method. The combination added
error was introduced and used to evaluate performance of various com-
bination methods. The results show that using independence assumption
for score density estimation indeed improves combination performance.
At the same time it is likely that a generic classifier like SVM will still
perform better. The magnitudes of experimentally evaluated combina-
tion added errors are relatively small, which means that choice of the
combination method is not really important.

1 Introduction

Use of multiple biometric identification devices requires robust combination algo-
rithms to increase their effectiveness. Though a plethora of possible combination
algorithms are described in scientific literature, there seems to be no consensus
on which is the best. Hence a practitioner is forced to try different combination
strategies in order to see which algorithm works best for the task at hand.

In this paper we shall deal with the combination of independent classifiers.
We assume that classifiers output a set of scores reflecting the confidences of
input belonging to corresponding class. It is safe to assume that matching scores
for biometrics of different modalities (e.g. fingerprint and face) are indepen-
dent random variables. The matchers or classifiers possessing this property are
independent classifiers. This assumption is fairly restrictive for the field of clas-
sifier combination since combined classifiers usually operate on the same input.
Though frequently using completely different features for different classifiers still
results in dependent scores. For example, features can be dependent, image qual-
ity characteristic can influence scores of combined classifiers, and input may have
an inherent low match to stored class templates giving low scores for all match-
ers. In certain situation even classifiers operating on different inputs will have
dependent scores, as in the case of using two fingers for identification (fingers
will likely be both moist, both dirty or both applying same pressure to the sen-
sor). In the case of multimodal biometrics the inputs to different sensors are
independent (for example, no connection of fingerprint features to face features
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have been noticed so far). Hence matching scores will also be independent. We
will use this property in our work.

Much of the effort in the classifier combination field has been devoted to
dependent classifiers and most of the algorithms do not make any assumptions
about classifier independence. The main purpose of this work is to see if inde-
pendence assumption can be effectively used to improve the combination results.
We will use the property that the joint density of the classifiers’ scores is the
product of the densities of the scores of individual classifiers.

We choose the magnitude of added error as a measure of combination good-
ness. It is the difference between an error of optimal Bayesian combination and
current combination algorithm. In order to calculate this error we make a hy-
pothesis on the true score distribution, and produce training and testing samples
using these hypothesized distributions. This technique could be used to estimate
added error in real-world classifier combinations. The main purpose of using this
technique is to provide some confidence in combination results. This would en-
able us to say: ”‘The total combination error in this particular combination is
5% and added error due to combination algorithm is likely to be less than 1%”’.

2 Previous Work

The added error introduced by Tumer and Ghosh[1] was under much consid-
eration lately [2, 3, 4, 5]. The definition of this added error requires assumption
that combined classifiers operate in the same feature space and class samples
are random points in this space with some fixed distributions. The Bayes error
is determined by the distributions in the feature space and added error is the
difference of the combination error of trained classifiers and Bayes error.

This framework does not work for combinations of biometric classifiers since
these classifiers do not have the same feature space. For our task we will be
treating classifiers as black boxes outputting matching scores. Scores are random
variables in the score space defined by some fixed score distributions and the com-
bination algorithm is a classifier operating in the score space. The Baeys error,
or rather minimum Bayes cost, of the combination is determined by the score
distributions. And we define combination added error, or combination added
cost, as a difference between total error(cost) and this Bayes error(cost). The
difference with the previous definition is that we use distributions of scores in
score space and not distributions of feature vectors in feature vector space for
definition of Bayes error. Thus our combination added error in contrast to pre-
viously defined added error[1] will not depend on the added errors of individual
classifiers but will depend only on the combination algorithm. See section 3.2
for formal definition of combination added error.

To further explain the difference between two types of added error, let us
have an example of few imperfect classifiers operating in the same feature space.
Suppose that we have optimal combination based on Bayesian classifier operating
on scores in score space (assuming the score distribution are known). In this case
added error in Tumer and Ghosh’s framework will be some non-zero number
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reflecting the errors made by classifiers. In our setting the added error is 0,
since the combination algorithm is perfect and did not add any errors to the
classification results.

Another assumption made in Tumer and Ghosh’s added error framework
is that the outputs of the classifiers approximate posterior class probabilities
si = P (ci|x). Since in that framework all classifiers use same feature vector
x, this implies that output scores of classifiers are very strongly correlated. If
we think about score space s1, . . . , sn, the outputs of these classifiers would be
near the diagonal s1 = · · · = sn. Decision boundary of combination algorithm
can be represented as a hypersurface in score space and combination decision is
roughly equivalent to hypersurface intersecting diagonal at same place. So this
added error is mostly concerned with what happens locally near diagonal of the
score space and how combination algorithm hypersurfaces intersect it. In this
situation, any fixed combination rule will produce approximately the same total
recognition error, since their hypersurfaces will be able to intersect the diagonal
in some optimal place.

In our case we consider a more general case of output scores not approximat-
ing posterior class probabilities and present anywhere in the score space. This is
a frequent situation with biometric scores which usually represent some internal
matching distance. In this situation, the total error would greatly depend on the
used combination rule and score densities. So any combination method which
has limited number of trainable parameters will be considered suboptimal in
this situation. For example, weighted sum rule will have hyperplanes as decision
boundaries and would fail to properly separate classes with normally distributed
scores and with hyperquadric decision surface.

It would make little sense to define combination added error for such meth-
ods and perform its analysis. Indeed, if optimal decision surface is of the form
supported by such combination, the added error will be very close to 0 (limited
number of parameters, large number of training samples), and its comparison to
any other method will be unfair. On the other hand, if optimal decision surface
is different from the ones supported by combination algorithm, there will always
be some fixed minimum added error, which this combination method would not
be able to improve no matter how many training samples we have.

For these reasons we consider only combination algorithms able to approx-
imate any decision functions given a sufficient number of training samples. In
particular, we consider combination methods based on non-parametric density
estimation, neural networks and support vector machines. We are interested in
seeing what magnitude of combination added error they make with respect to
different parameters of combination: number of training samples, total error,
number of combined classifiers.

3 Combination Methods

In this work we shall deal with 2-class classifiers. As we mentioned earlier, the
main motivation for this work is the combination of biometric matchers. The
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combination problem in this area is usually split into two tasks: verification and
identification. The verification problem asks if a person’s identity coincides with
the claimed one, and the identification problem asks to which person among k
enrolled persons the given biometric readings belong. We investigate the veri-
fication problem and assume that there are two classes of events: the claimed
identity coincides with the person’s identity and claimed identity is different
from the person’s identity.

Though two classes are considered, only one score for each matcher is usually
available - matching score between input biometric and stored biometric of the
claimed identity. Consequently, we will assume that the output of the 2-class
classifiers is 1-dimensional. For example, samples of one class might produce
output scores close to 0, and samples of the other class produce scores close to
1. The set of output scores originating from n classifiers can be represented by
a point in n-dimensional score space. Assuming that for all classifiers samples
of class 1 have scores close to 0, and scores of class 2 are close to 1, the score
vectors in combined n-dimensional space for two classes will be close to points
{0, ..., 0} and {1, ..., 1}. Any generic pattern classification algorithm can be used
in this n-dimensional space as a combination algorithm.

Note that this is somewhat different from the usual framework of k-class clas-
sifier combination, where k-dimensional score vectors are used and, for example,
samples of class i are close to vector {0, ..., 1, ..., 0} with only 1 at ith place. In
this case the scores for n classifiers will be located in nk-dimensional space and
the classification problem will be more difficult. This framework will be suitable
for a biometric identification problem, and should be addressed in the future
work.

Since we assume that we combine independent classifiers, is it possible to use
this information to design better combination than generic 2-class n-dimensional
classifier? The idea is that it might be possible to better estimate joint score
density of n classifiers as a product of n separately estimated score densities of
each classifier. Effectively, an n-dimensional (for 2 classes) combination problem
will be reduced to n 1-dimensional density estimation problems. The question
is will this combination based on density products perform better than generic
pattern classifiers?

3.1 Combination Using Products of Density Functions

Consider a combination problem with n independent 2-class classifiers. Denote
the density function of scores produced by j-th classifier for elements of class
i as pij(xj), the joint density of scores of all classifiers for elements of class
i as pi(x), and the prior probability of class i as Pi. Denote the region of n-
dimensional score space being classified by combination algorithm as elements
of class i as Ri, and the cost associated with misclassifying elements of class
i as λi. Then the total cost of misclassification in this problem is defined as
c = λ1P1

∫
R2

p1(x)dx + λ2P2

∫
R1

p2(x)dx.
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Since R1 and R2 cover whole score space,
∫

R1
p1(x)dx +

∫
R2

p1(x)dx = 1.
Thus

c = λ1P1

(
1 −
∫

R1

p1(x)dx
)

+ λ2P2

∫
R1

p2(x)dx

= λ1P1 +
∫

R1

(λ2P2p2(x) − λ1P1p1(x)) dx

To minimize cost c the region R1 should be exactly the set of points x for which
λ2P2p2(x) − λ1P1p1(x) < 0. Since we have independent classifiers,
pi(x) =

∏
j pij(xj) and decision surfaces are described by the equation

f(λ1, λ2,x) = λ2P2p2(x) − λ1P1p1(x)

= λ2P2

n∏
j=1

p2j(xj) − λ1P1

n∏
j=1

p1j(xj) = 0 (1)

To use equation 1 for combining classifiers we need to learn 2n 1-dimensional
probability density functions pij(xj) from training samples.

3.2 Combination Added Error

Learning 1-dimensional probability density function pij(xj) from training sam-
ples will result in their approximations p′ij(xj). Using equation 1 with these ap-
proximations will result in decision regions R′

i which ordinarily will not coincide
with optimal Bayesian decision regions Ri. The combination added cost(AC) will
be defined as a difference between cost of using trained regions R′

i and optimal
regions Ri for combination:

AC = λ1P1

∫
R′

2

p1(x)dx + λ2P2

∫
R′

1

p2(x)dx

− λ1P1

∫
R2

p1(x)dx − λ2P2

∫
R1

p2(x)dx (2)

Using set properties such as R′
1 = (R′

1 ∩ R1) ∪ (R′
1 ∩ R2), we get

AC =
∫

R′
2∩R1

(λ1P1p1(x) − λ2P2p2(x)) dx

+
∫

R′
1∩R2

(λ2P2p2(x) − λ1P1p1(x)) dx (3)

For generic classifiers we define R′
i as the region in which samples are classified

as belonging to class i. The combination added error is defined in the same way.
In the following experiments we will assume that prior costs and probabilities

of classes are equal, and use term ’error’ instead of ’cost’. We also will be us-
ing relative combination added error, which will be defined as combination added
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error divided by the Bayesian error, and this number will be used in tables.
For example, number 0.1 will indicate that combination added error is 10 times
smaller than Bayesian error.

4 Experiments

The experiments were performed for two normally distributed classes with means
at (0,0) and (1,1) and different variance values (same for both classes). It was
also assumed that costs and prior probabilities of both classes are equal. The
Bayesian decision boundary in this situation is a straight line x + y = 1. Note
that both sum and product combination rules have this line as a decision surface,
and combinations using these rules would give no combination added error. This
is the situation where specific distributions would favor particular fixed combi-
nation rules, and this is why we eliminated these rules from our experiments.

The product of densities method described in previous section is denoted here
as DP. The kernel density estimation method with normal kernel densities [6]
was used for estimating one-dimensional score densities. We chose least-square
cross-validation method for finding a smoothing parameter. Arguably, the choice
of normal kernel would favor this combination method given underlying normal
distributions. We employed kernel density estimation Matlab toolbox [7] for
implementation of this method.

For comparison we used generic classifiers provided in PRTools[8] toolbox.
SVM is a support vector machine with second order polynomial kernels, Parzen
is is a density estimation Parzen classifier, and NN is back-propagation trained
feed-forward neural net classifier with one hidden layer of 3 nodes.

Each experiment would simulate sampling score distributions to get training
data, training classifiers with this training data and evaluating classifier perfor-
mance. Since score distributions are available, it is possible to generate arbitrarily
large testing set, but instead we simply used formula 3 to numerically get added
error. For each setting we average results of 100 simulation runs and take it as
average added error. These average added errors are reported in the tables.

In the first experiment (table 1) we tried to see what added errors different
methods of classifier combination have relative to the properties of score distri-
butions. Thus we varied the standard deviation of the score distributions (STD)
which varied the minimum Bayesian error of classifiers. All classifiers in this
experiment were trained on 300 training samples.

Table 1. Dependence of combination added error on the variance of score distributions

STD Bayesian error DP SVM Parzen NN

0.2 0.0002 1.0933 0.2019 1.2554 3.1569

0.3 0.0092 0.1399 0.0513 0.1743 0.1415

0.4 0.0385 0.0642 0.0294 0.0794 0.0648

0.5 0.0786 0.0200 0.0213 0.0515 0.0967
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Table 2. Dependence of combination added error on the training size

Number of training samples DP SVM Parzen NN

30 0.2158 0.1203 0.2053 0.1971

100 0.0621 0.0486 0.0788 0.0548

300 0.0200 0.0213 0.0515 0.0967

Table 3. Dependence of combination added error on the number of classifiers

Number of classifiers Bayes error DP SVM Parzen NN

2 0.0385 0.2812 0.1645 0.2842 0.2669

3 0.0004 0.8544 0.7882 0.6684 0.8747

The first observation is that smaller standard deviations result in larger rela-
tive added errors. This is expected in the case of density based classifiers because
of the inherent difficulty of estimating density in the tails of distributions. Small
standard deviation means that optimal decision boundary will be at the ends
of both class distributions, and a density based method will work poorly there.
Interestingly, SVM and NN classifiers also showed similar behavior. Another
observation is that SVM showed better performance than all other methods,
especially for low Bayesian error cases. Only for STD = .5 DP method was able
to get similar performance.

In the second experiment (table 1) we wanted to see the dependency of com-
bination added error on the size of the training data. We fixed the standard
deviation to be 0.5 and performed training/error evaluating simulations for 30,
100 and 300 training samples.

As expected, the added error diminishes with increased training data size. It
seems that the DP method gets better faster with increased training data size,
but it is not certain. Interestingly, the magnitude of added error is relatively
small for all methods. Note that we did not experiment with the number of
hidden units of neural network, which might explain why its performance did
not improve much with the increased number of training samples.

For the third experiment (table 3) we attempted to see how added error
changes if we combine 3 classifiers instead of 2. We take normally distributed
scores with standard deviations of .4 and the size of the training data as 30.
Though additional classifier makes relative combination added error bigger, the
dramatic decrease of Bayesian error would be much more important for total
error. Also note that result for 3 classifiers and results of first two rows of table
1 have comparable Bayesian errors, with SVM method not performing as well
as for two classifiers.

5 Conclusion

In this paper we presented the results of evaluating combination added error.
We experimentally showed that this error is relatively small for all combination
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methods. So it does not really matter which combination method is used to
combine results of classifiers. By using a larger number of training samples an
inferior combinator will easily outperform superior combinator. Thus it is more
important what minimum Bayesian error combination has, which is determined
by classifiers’ performances and their interdependence (assuming that trainable
generic classifier is used as combinator and not fixed combination rules, like sum
or product rule). The choice of combination algorithm becomes more important
when classifiers have small Bayesian errors.

The presented method for combining independent classifiers by means of
multiplying one-dimensional densities showed slightly better performance than
comparable Parzen classifier. Thus using independence information can be ben-
eficial for density based classifiers. At the same time DP method was still not
as good as SVM. It seems that if more training samples were used and more
classifiers are combined, DP might be better than SVM.

Though only one type of density functions was used in our experiments, the
technique can be easily expanded to other density functions. Clearly, perfor-
mance of presented methods can be different if other density functions are used.
In real-life applications it would make sense to set a hypotheses on available
biometric score densities, and perform similar type of experiments in order to
find the best combination method.

Still, even if such experiments are performed, and best combination method
is found, it is not guaranteed that the combination method will be the best for
a particular available training sample. Note that figures in presented tables are
averages of added errors over different training sets. In fact there were many
simulation cases, where inferior combination algorithm outperformed all other
algorithms for a particular training set.

The main motivation of this paper was to find a possibly best combination
method for multimodal biometric matchers. Though presented techniques will
help to choose a reasonably well performing combination method, other factors
should also be taken into consideration. For example, if costs of incorrect clas-
sification or prior probabilities of classes change, the SVM or neural network
method will require retraining. Also, if output of combination confidence is re-
quired for system operation, these methods might be a bad choice. The ability
of density based methods to output posterior class probability can be a decisive
factor for their adoption.
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Abstract. A Half-Against-Half (HAH) multi-class SVM is proposed in this pa-
per. Unlike the commonly used One-Against-All (OVA) and One-Against-One
(OVO) implementation methods, HAH is built via recursively dividing the train-
ing dataset of K classes into two subsets of classes. The structure of HAH is same
as a decision tree with each node as a binary SVM classifier that tells a testing
sample belongs to one group of classes or the other. The trained HAH classifier
model consists of at most K binary SVMs. For each classification testing, HAH
requires at most K binary SVM evaluations. Both theoretical estimation and ex-
perimental results show that HAH has advantages over OVA and OVO based
methods in the evaluation speed as well as the size of the classifier model while
maintaining comparable accuracy.

1 Introduction

Support Vector Machine (SVM) has been proved to be a fruitful learning machine, es-
pecially for classification. Since it was originally designed for binary classification [1],
it is not a straightforward issue to extend binary SVM to multi-class problem. Con-
structing K-class SVMs (K � 2) is an on-going research issue [2].

Basically, there are two types of approaches for multi-class SVM. One is consider-
ing all data in one optimization [3]. The other is decomposing multi-class into a series
of binary SVMs, such as ”One-Against-All” (OVA) [4], ”One-Against-One” (OVO) [5],
and DAG [6]. Although more sophisticated approaches for multi-class SVM exist, ex-
tensive experiments have shown that OVA, OVO and DAG are among the most suitable
methods for practical use [7, 8].

OVA is probably the earliest approach for multi-class SVM. For K-class problem,
it constructs K binary SVMs. The ith SVM is trained with all the samples from the
ith class against all the samples from the rest classes. Given a sample x to classify, all
the K SVMs are evaluated and the label of the class that has the largest value of the
decision function is chosen:

class of x = argmaxi=1,2,...,K(wi · x + bi), (1)

where wi and bi depict the hyperplane of the ith SVM.
OVO is constructed by training binary SVMs between pairwise classes. Thus, OVO

model consists of K(K−1)
2 binary SVMs for K-class problem. Each of the K(K−1)

2
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SVMs casts one vote for its favored class, and finally the class with most votes wins
[5]. DAG does the same training as OVO. During testing, DAG uses a Directed Acyclic
Graph (DAG) architecture to make a decision. The idea of DAG is easy to implement.
Create a list of class labels L = (1, 2, · · · ,K) (the order of the labels actually does
not matter). When a testing sample is given for testing, DAG first evaluates this sample
with the binary SVM that corresponds to the first and last element in list L. If the
classifier prefers one of the two classes, the other one is eliminated from the list. Each
time, a class label is excluded. Thus, after K −1 binary SVM evaluations, the last label
remaining in the list is the answer.

None of the three implementation methods above, OVA, OVO or DAG, significantly
outperforms the others in term of classification accuracy [7, 8]. The difference mainly
lies in the training time, evaluation speed and the size of the trained classifier model.
Although OVA only requires K binary SVM, its training is most computationally ex-
pensive because each binary SVM is optimized on all the N training samples (suppose
the training dataset has N samples altogether). OVO or DAG has K(K−1)

2 binary SVMs
to train, which sounds much more than what OVA needs. However, each SVM is trained
on 2N

K samples. The overall training speed is significantly faster than OVA. For testing,
DAG is fastest in that it needs only K − 1 binary SVM evaluation and every SVM is
much smaller than those trained by OVA. As for the total size of classifier model, OVO
is the most compact one since it has much less total number of support vectors than
OVA has. DAG needs extra data structure to index the binary SVMs, thus, it is a little
bit larger than OVO.

Our motivation here is whether there potentially lurks different but competitive
multi-class SVM implementation method? Fortunately, OVA, OVO and DAG are not the
end of the story. In this paper, we propose a Half-Against-Half (HAH) multi-class SVM
method. We compare it with OVA, OVO and DAG in several aspects, especially evalu-
ation speed, the compactness of the classifier model and the accuracy of classification.

The rest of this paper is organized as follows. In section 2, we describe the imple-
mentation of HAH. In section 3, we discuss related works and compare HAH with OVA,
OVO and DAG via theoretical analysis and empirical estimation. Then, experiments are
designed and discussed in section 4. Finally, conclusion is drawn in section 5.

2 Half-Against-Half Multi-class SVM

Our motivation came from when we dealt with the classification problem of the Syn-
thetic Control Chart (Scc) sequences [9]. Scc was synthetically generated to test the
accuracy of time series classification algorithms. It has six different classes of control
charts with 100 instances each class. Fig.1 shows examples of the Scc sequences.

The existing multi-class SVMs all try to match one class against one another. This
leads to OVA, OVO or DAG implementation method. Now, since the sequences in the
last three classes are some kind of similar to each other, as shown in Fig.1 D-F, can we
group them together as a bigger category {D,E,F} and match it against {A,B,C}? After
a test sample is decided to lie in {D,E,F}, we can go further to see which class it should
be labeled exactly. In this way, we have a recursive binary classification problem, which
of course can be implemented by regular SVM. The structure of the classifier is same as
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A. Normal B. Cyclic C. Increasing trend

E. Upward shiftD. Decreasing trend F. Downward shift

Fig. 1. Examples of the Scc sequences. There all 6 classes together. Class D,E and F have some
kind similarity to each other
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Fig. 2. A possible decision tree for classifying the Scc samples. 1) Each node is a binary SVM
that evaluates one group of classes against another group. 2) Half-Against-Half divisions of the
six classes

a decision tree with each node as binary SVM. The classification procedure goes from
root to the leaf guided by the binary SVMs, same as traveling a decision tree. Fig. 2
shows a possible SVM decision tree for the Scc data and the intuitive divisions of the 6
classes by Half-Against-Half. In the input space, two groups of classes might be non-
separable, but in the feature space, SVM can achieve good separation by kernel tricks.

For datasets with small number of classes, we can divide them into groups from
coarse to fine manually with prior knowledge. Similar or close classes can be grouped
together. Given a large K-class problem, its preferred to define groups automatically.
Straightforwardly, we can recursively divide the K classes into two groups by random.
The problem here is the separability between the arbitrary two groups might be not high,
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ABDF vs CE

AB vs DF C vs E

A vs B
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D vs F

F
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1st level

2nd level

3rd level

Fig. 3. The decision tree of HAH can follows the structure of the hierarchy clustering of the
classes. 1) The hierarchy structure of the Scc dataset based on the mean distance between classes.
2)The corresponding decision tree of HAH

thus, the accuracy of classification is not reliable. The most desirable choice is to find
the optimum two groups that lead to minimum expected error. With binary SVM, the
expected error is E(error) = nSV

N , where nSV is the number of support vectors (SV)
and N is the number of training samples. Thus, the problem is equivalent to dividing
classes into two halves with which the trained SVM has the minimum number of SVs.
For K classes, there are (�K/2�

K ) possible divisions. Training a binary SVM on each
possible division and choosing the one with minimum nSV is not feasible.

Unlike ”One-Against-One” and ”One-Against-All”, the dividing method is actu-
ally ”Half-Against-Half”. The biggest challenge is to determine the optimum divisions.
While keeping the optimal division as an open problem, we found hierarchy clustering
of classes is a suboptimal choice. Each class is considered as an element. The distance
between two elements is defined as the mean distance between the training samples
from the two classes. In this way, a hierarchy clustering structure for the K classes can
be built. Then, the HAH model can be trained accordingly. Fig. 3 shows an example on
the Scc dataset. The hierarchy of the 6 classes has �log2(6)� = 3 levels. Therefore, the
corresponding decision tree of HAH has 3 levels.

3 Related Works and Discussion

A multistage SVM (MSVM) for multi-class problem was proposed in [10]. It uses Sup-
port Vector Clustering (SVC) [11] to divide the training data into two parts and then a
binary SVM is trained. For each part, the same procedure recursively takes place until
the binary SVM gives a exact label of class. The unsolved problem for MSVM is how to
control the SVC to divide the training dataset into exact two parts. The two parameters,
q (the scale of the Gaussian kernel) and C (the soft margin constant) could be adjusted
to achieve this goal. However, this procedure is painful and unfeasible, especially for
large datasets. The training set from one class could lie in both clusters. Moreover, there
is no guarantee that exact two clusters can be found by varying p or C.
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HAH is an feasible solution for multi-class SVM. Compared with the OVA, OVO
and DAG, HAH as its advantages. Table 1 summarizes the properties of the four meth-
ods. The structure of HAH is a decision tree with each node as a binary SVMs. The
depth of the tree is �log2(K)�, therefore, the total number of nodes is 2�log2(K) − 1.
The training of DAG is same as OVO and both need to train K(K−1)

2 binary SVMs.
OVA has a binary SVMs for each class, thus, it has K SVMs in total. The training
time is estimated empirically by a power law [12]: T ≈ αN2, where N is the num-
ber of training samples and α is some proportionality constant. Following this law, the
estimated training time for OVA is:

TOV A ≈ KαN2 (2)

Without loss of generality, let’s assume the each of the K classes has the same number
of training samples. Thus, each binary SVM of OVO only requires 2N

K samples. The
training time for OVO is:

TOV O ≈ α
K(K − 1)

2
(
2N

K
)2 ≈ 2αN2 (3)

The training time for DAG is same as OVO.
As for HAH, the training time is summed over all the nodes in the �log2(K)� levels

. In the ith level, there are 2i−1 nodes and each node uses N
2i−1 training samples. Hence,

the total training time is:

THAH ≈
�log2(K)∑

i=1

α2i−1(
N

2i−1
)2 ≈

�log2(K)∑
i=1

α
N2

2i−1
≈ 2αN2 (4)

Here, we have to notice that THAH does not include the time to build the hierarchy
structure of the K classes, since doing so won’t consume much time and the quadratic
optimization time dominates the total SVM training time.

According the empirical estimation above, we can see that the training speed of
HAH is comparable with OVA, OVO and DAG. In testing, DAG is faster than OVO
and OVA, since it requires only K − 1 binary SVM evaluations. HAH is even faster
than DAG because the depth of the HAH decision tree is �log2(K)� at most, which is
superior to K − 1 especially when K � 2. Although the total number of SVs that do
inner product with the testing sample contribute a major part of the evaluation time,
the number of binary SVMs also counts. Our experiments also show that HAH has less
kernel evaluations than DAG.

The size of the trained classifier model is also an important concern in practical
applications. The classifier model usually stay in the memory. Large model consumes a
great portion of computing resources. The fifth column in Table 1 is a coarse estimation
of the size of model. Assume for each binary SVM, a portion of β of the training
samples will become SVs. Since the number of SVs dominates the size, we can estimate
the size of HAH is:

SHAH ≈
�log2(K)∑

i=1

2i−1(β
N

2i−1
) ≈

�log2(K)∑
i=1

βN = �log2(K)�βN (5)
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Table 1. The properties of HAH, OVO, DAG and OVA in training and testing

Method Training Testing
# of SVMs Estimated Time # of SVMs Size of Model

HAH K − 1 2αN2 �log2(K) �log2(K)βN

DAG K(K − 1)/2 2αN2 K − 1 (K − 1)βN

OVO K(K − 1)/2 2αN2 K(K − 1)/2 (K − 1)βN

OVA K KαN2 K KβN

The size of OVO is:

SOV O ≈ K(K − 1)
2

β
2N

K
= (K − 1)βN (6)

The size of DAG is similar as OVO besides some extra data structure for easy indexing.
Similarly, the size of OVA is estimated as KβN .

According to the estimation above, HAH has the minimum size of classifier model
among the four methods. Of course, real experiments are needed to testify the
estimation.

4 Experiments

According to the empirical estimation, HAH is superior to OVO, DAG and OVA in
testing time and the size of classifier model. Experiments were conducted to firm this.
Another very important concern is the classification accuracy. HAH was evaluated on
multi-class datasets to compare its accuracy with that of OVO, DAG and OVA. The
four datasets we used in experiments are: the Iris, the Scc,the PenDigits and the Isolet,
all of which are from the UCI machine learning repository [9]. The description of the
datasets are summarized in Table 2. The Iris is one of the most classical datasets for
testing classification. It has 150 instances (50 in each of three classes). The Scc dataset
has 600 instances together (100 in each class). For both Iris and Scc, 70% were used as
training samples, and the left 30% for testing. The PenDigits and Isolet were originally
divided into training and testing subsets by the data donators. So, no change was made.

On each dataset, we trained HAH, OVO, DAG and OVA based on the software
LIBSVM [13] with some modification and adjustment. The kernel we chose was the
RBF kernel. The regularizing parameters C and σ were determined via cross validation

Table 2. Description of the multi-class datasets used in the experiments

Name # of # of # of # of
Training Samples Testing Samples Classes Attributes

Iris 105 35 3 4
Scc 420 180 6 60

PenDigits 7493 3497 10 16
Isolet 6238 1559 26 617
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Table 3. Experimental results by C-SVM

# of Kernel Size of Classifier Classification
σ C Evaluations Model (KByte) Accuracy

Iris
HAH 200 500 12 2.2 100%
OVO 200 500 17 2.7 100%
DAG 200 500 13 2.7 100%
OVA 200 500 45 3.4 100%

Scc
HAH 104 5 66 78.1 99.44%
OVO 104 10 168 87.7 99.44%
DAG 104 10 85 93.8 99.44%
OVA 104 5 493 98.5 99.44%

PenDigits
HAH 2 10 399 183.9 98.37%
OVO 2 5 913 300.0 98.48%
DAG 2 5 439 305.0 98.43%
OVA 2 5 1927 223.1 97.74%

Isolet
HAH 200 5 935 14,027 95.64%
OVO 200 10 3359 17,254 96.60%
DAG 200 10 1413 17,607 96.73%
OVA 200 5 6370 21,508 94.23%

on the training set. The validation performance was measured by training on 70% of
the training set and testing on the left 30%. The C and σ that lead to best accuracy were
selected. We also tried the ν-SVM for each method [14]. Similarly, a pair of ν and σ
were chosen according to the best validation performance. We did not scale the original
samples to range [-1,1], because we found that doing so did not help much.

HAH was trained according to the hierarchy structure of the classes. Each class
was considered as whole and the mean distance between two classes was used to build
the hierarchy structure. OVO was implemented by the LIBSVM directly and thus we
did not do any change. The DAG and OVA were also quite simple in implementation
by modifying the LIBSVM source codes. The experimental results are summarized in
Table 3 and 4 by C-SVM and ν-SVM respectively.

To compare HAH with OVO, DAG and OVA, three measures were recorded:
i)Number of kernel evaluations, ii)Size of trained classifier model and iii)Classification
accuracy. The number of kernel evaluations is the total number of support vectors that
do kernel dot product with a single test sample. For OVO and OVA, all the support vec-
tors need to do kernel evaluations with a given test sample. For HAH and DAG, different
test samples may travel different pathes through the decision tree. So, we averaged the
number of kernel evaluations over all testing samples. The number of kernel evalua-
tions indicates the total testing CPU time. We used the kernel evaluations instead of
the real testing CPU time because of implementation bias, i.e., the source codes on the
same algorithm vary across different programmers. The size of trained classifier model
is a good measure how the classifier machine consumes computing resources. In real
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Table 4. Experimental results by ν-SVM

# of Kernel Size of Classifier Classification
σ ν Evaluations Model (KByte) Accuracy

Iris
HAH 200 0.05 9 1.9 100%
OVO 200 0.05 8 2.3 100%
DAG 200 0.05 7 2.3 100%
OVA 200 0.10 35 3.0 100%

Scc
HAH 103 0.015 103 75.9 99.44%
OVO 103 0.05 254 132.4 99.44%
DAG 103 0.05 204 146.0 99.44%
OVA 103 0.015 1270 184.2 98.33%

PenDigits
HAH 2 0.01 311 152.5 98.17%
OVO 2 0.05 1464 480.8 97.91%
DAG 2 0.01 353 489.7 97.31%
OVA 2 0.015 2631 300.6 97.37%

Isolet
HAH 200 0.01 658 9,997 95.25%
OVO 200 0.10 3520 18,082 96.54%
DAG 200 0.01 760 18,591 92.69%
OVA 200 0.01 5075 25,105 93.97%

application with limited memory, such as online handwriting recognition in Personal
Digital Assistants (PDAs), compact classifier model is desired. Accuracy, of course, is
also very important for a classifier.

Experimental results in both Table 3 and 4 show that HAH has much less number of
kernel evaluations than OVO and OVA. Since kernel evaluations dominates the testing
time, HAH is much faster than OVO and OVA. As indicated by the number of kernel
evaluations in both Table 3 and 4, HAH is between a factor of 2 to 5.3 times faster than
OVO on the datasets PenDigits and Isolet, and 4 to 7.7 times faster than OVA. HAH is
also faster than DAG, though not that significantly. HAH also has advantages over other
methods in the compactness of the classifier model. The size of trained HAH model is
around 1.7 to 3 times smaller than OVO and DAG, and about 2 to 2.7 times smaller
than OVA. The datasets Iris and Scc are too small to show the advantages of HAH in
both the testing speed and the compactness of model. However, they show that HAH
can reach the same accuracy as OVO, DAG and OVA do. The accuracies on all the four
datasets show that HAH is competitive with OVO, DAG and OVA. On dataset Isolet, the
accuracy of HAH is about 1% lower than OVO but over 1% higher than DAG and OVA,
as indicated by Table 4. Considering HAH is 5.3 (3520/658) times faster than OVO in
testing speed and 1.8 (18,082/9,997) times smaller in the size of model, the sacrifice
of 1% accuracy is worthy. The reason why HAH is about 1% lower in accuracy over
datasets with large number of categories like Isolet deserve further exploratory research.
Dividing the classes into two groups optimally remains as an open problem.
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5 Conclusions

A Half-Against-Half multi-class SVM is proposed and studied in this paper. HAH has
its advantages over commonly-used methods like OVO, DAG and OVA in the testing
speed and the compactness of classifier model. The accuracy of HAH is also comparable
with OVO, DAG and OVA. Further research on recursively dividing the classes into two
groups optimally might improve the accuracy.
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Abstract. In feature selection, a part of the features is chosen as a new feature 
subset, while the rest of the features is ignored. The neglected features still, 
however, may contain useful information for discriminating the data classes. To 
make use of this information, the combined classifier approach can be used. In 
our paper we study the efficiency of combining applied on top of feature 
selection/extraction. As well, we analyze conditions when combining classifiers 
on multiple feature subsets is more beneficial than exploiting a single selected 
feature set.  

1   Introduction 

In many medical applications it is very difficult to collect a large number of 
observations (for instance, patients with a certain disease). Usually the number of 
measurements is limited. On the other hand, such measurements can have a large 
number of attributes (features). By this, we face the small sample size problem: the 
number of measurements is smaller than or comparable with the data dimensionality. In 
such conditions, it is difficult (or even impossible) to construct a good classification 
rule [1]. One has to reduce the data dimensionality. This can be done by applying 
feature selection or extraction procedures to the dataset. 

When using feature extraction techniques (for instance, PCA [2]), all features 
contribute in new extracted features. So, one may expect that all (or the most) 
information useful for discrimination between data classes is taken into account and 
reflected in an extracted feature set. However, when the feature selection approach (like 
forward or backward feature selection, for instance) is used, only a subset of features is 
chosen as a new feature set. While the rest of features (that may still be discriminative) 
is ignored. Useful information hidden in these features is not taken into consideration. 
This may result in a poor performance on the selected feature subset.  

To benefit from the information presented in the neglected features in feature 
selection, we suggest to use the combining approach. Instead of constructing a single 
classifier on one selected feature set, we propose to use the combined decision of 
classifiers constructed on sequentially selected sets of features. First, an optimal feature 
set (subspace) is selected. Then on the rest of features, we select the second best feature 
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set etc., until all features are included in a particular feature set. By this, we have a 
number of optimal feature subsets and may construct a classifier on each of them. By 
combining decisions of these classifiers, we use all information represented in the 
original feature space that may improve the performance achieved on a single subset of 
features. 

In order to demonstrate the advantage of combining multiple feature subsets and to 
study conditions when combining applied on top of feature selection is beneficial, we 
have selected four real datasets: autofluorescence spectra measured in the oral cavity, 
images of handwritten digits, sonar and ionosphere datasets. All datasets introduce a 
2-class problem. The data are described in section 2. The description of our combined 
approach applied to feature selection/extraction and the results of our simulation study 
are presented in section 3. Conclusions can be found in section 4.  

2   Data

We perform our study on the following four examples. 
The first dataset represents autofluorescence spectra measured in the oral cavity. The 

data consist of the autofluorescence spectra acquired from healthy and diseased mucosa 
in the oral cavity. The measurements were performed at the Department of Oral and 
Maxillofacial Surgery of the University Hospital of Groningen [3]. The measurements 
were taken at 11 different anatomical locations with excitation wavelength equal to 365 
nm. Autofluorescence spectra were collected from 70 volunteers with no clinically 
observable lesions of the oral mucosa and 155 patients having lesions in the oral cavity. 
Some patients suffered from multiple lesions, so that a total of 172 unique lesions could 
be measured. However, a number of measurement sessions had to be left out of the 
analysis for different reasons: 1) because an accurate diagnosis was not available for the 
lesion at the time of measurement, 2) because it was not insured that the probe had been 
located at the correct position because the lesion was hardly visible or very small, 3) 
because the patient had already been receiving therapy, or 4) because the diagnosis for 
some benign lesions was overly clear. In total, 581 spectra representing healthy tissue 
and 123 spectra representing diseased tissue (of which 95 were benign, 11 dysplastic 
and 17 cancerous) were obtained. After preprocessing [3], each spectrum consists o f 
199 bins (pixels/ wavelengths).

Fig. 1. Normalized autofluorescence spectra for healthy and diseased mucosa in oral cavity 
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In order to get rid of a large deviation in the spectral intensity within each data class, 
we normalized spectra by the Unit Area (UA) 

  
(1) 

where ai is an intensity of a spectrum A={a1, ...., a199} at bin i, i=1,...,199. Normalized 
autofluorescence spectra representing healthy and diseased tissues and their median 
spectra are illustrated in Fig. 1.  

The second dataset is handwritten digit “mfeat” dataset from [4]. Originally the 
data contain 10 digit classes with 200 samples per class and six different feature sets. 
For our study we have chosen the feature set of pixel averages consisting of 240 
attributes (features). As well, we restricted ourselves to two-class problem selecting 
classes which represent digits 3 and 8. The example of these data classes are presented 
in Fig. 2.  

Fig. 2. The example of handwritten digits “3” and “8” 

The third dataset is “sonar” dataset from UCI Repository [4]. The task of the sonar 
dataset is to discriminate between sonar signals bounced off a metal cylinder and those 
bounced off a roughly cylindrical rock. Thus the dataset consists of two data classes. 
The first data class contains 111 objects obtained by bouncing sonar signals off a metal 
cylinder at various angles and under various conditions. The second class contains 97 
objects obtained from rocks under similar conditions. Each object is a set of 60 
numbers in the range 0.0 to 1.0. Thus, the data are 60-dimensional. Each number 
(feature) represents the energy within a particular frequency band, integrated over a 
certain period of time. 

The last dataset is also taken from the UCI Repository [4]. It is the “ionosphere” 
dataset. These radar data were collected by a system consisted of 16 high-frequency 
antennas with a total transmitted power of about 6.4kW in Goose Bay, Labrador. The 
targets were free electrons in the ionosphere. “Good” radar returns are those showing 
evidence of structure in the ionosphere. “Bad” returns are those that do not return 
anything: Their signals pass through the ionosphere. The data are described by 34 
features that introduce two attributes for 17 pulse numbers corresponding to the 
complex values returned by the function resulting from the complex electromagnetic 
signal. This dataset consists of 351 objects in total, belonging to two data classes: 225 
objects belong to “good” class and 126 objects belong to “bad” class. 
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For our simulation study, training datasets with 20 (for handwritten digits dataset), 
50 (for spectral dataset), 15 (for sonar dataset) and 10 (for ionosphere dataset) samples 
per class are chosen randomly from the total set. The remaining data are used for 
testing. The prior class probabilities are set to be equal. To evaluate the classification 
performance when the combined approach applied to feature selection and standard 
feature selection/extraction methods are used, we have chosen for Linear Discriminant 
Analysis (LDA) [2] which was the best performing classifier for these applications at 
the given sample size. In particular, we apply the linear classifier which constructs a 
linear discriminant function assuming normal class distributions and using a joint class 
covariance matrix for both data classes. All experiments are repeated 50 times on 
independent training sample sets for forward feature selection, random feature 
selection and PCA. Additionally, for the random feature selection we repeat the random 
permutation and split of the feature set into the subsets 10 times. In all figures the 
averaged results over 50 trials (500 trials for the random feature selection) are presented 
and we do not mention that anymore. The standard deviation of the reported mean 
generalization errors (the mean per two data classes) is approximately 0.01 for each 
considered case. 

3    Combining Feature Subsets in Forward and Random Feature 
Selection and in PCA

When the number of available observations is limited and smaller than the data 
dimensionality, one is forced to apply feature selection/extraction techniques in order 
to construct a reliable classifier to solve the problem. One of the main differences 
between feature selection and feature extraction approaches is in the amount of useful 
information they are capable to retrieve from the data representation in the feature 
space. In general, feature extraction techniques make use of all original data features 
when creating new features. The new extracted features are a combination of the 
original ones. By this, the new extracted feature set may contain all (or almost all, we 
believe) useful information for classifying the data stored in a multidimensional data 
representation. However, feature extraction is an operation in the high dimensional 
space and for small sample sizes (which may be the reason to perform feature 
reduction) it may suffer from overtraining. As well, it may happen that feature 
extraction fails due to very complex class distributions in the high dimensional feature 
space. In this case, feature selection may be an alternative. 

Feature selection is a special case of feature extraction. In feature selection, only a 
part of the original features is chosen as a new feature subset. The rest of features is 
ignored. Sometimes (depending on data representation in the feature space), this 
approach works good when a few features provide a good separation between data 
classes and the rest of features introduces noise. However, in the case when all data 
features are informative without a clear preference to each other, feature selection 
approach may be harmful. Useful information stored in neglected features is not taken 
into account. The selected feature subset is not optimal. That may cause a poor 
performance of the classifier on this feature subset. As well, some feature selection 
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procedures (for instance, the forward or backward feature selection) have another 
drawback: the selection of features is performed sequentially one by one. The union of 
the first best feature selected with the second best one does not necessarily represent the 
best discriminative pair of features. By this, the selected feature subset might be not the 
most advantageous one. In addition, the efficiency of feature selection may suffer from 
the curse of dimensionality. When selecting features, the performance is judged by the 
class separability provided by these features. The separability of data classes is 
evaluated by some criterion. Such a criterion can be the performance of a particular 
classifier. However, the performance of almost all classifiers depends on the relation 
between the training sample size and the data dimensionality. For a finite size of the 
training set and an increasing feature space dimensionality, one observes that first the 
generalization error of a classifier decreases to its minimum and then starts to increase 
(see Fig. 3). The latter increase of the classification error is caused by the growing 
complexity of the classification rule that cannot be properly trained due to a lack of 
training data. In feature selection, a feature subset corresponding to a minimum 
classification error is chosen as the best one. It is indeed optimal by the feature size 
related to the available training sample size. But it is not necessary the optimal one in 
general. The rest of features can be still informative to discriminate the data classes. But 
they are not taken into consideration due to a shortage of data to construct a reliable 
classifier in the feature subspace of a higher dimensionality. 

Fig. 3. The behaviour of generalization error for finite training sample size and increasing data 
dimensionality 

To overcome the drawbacks of a standard feature selection technique (say, the 
forward feature selection) and to make use of all information present in the original 
feature space when performing feature selection, we suggest to apply the classifiers 
combining approach on top of feature selection. Previously it has been demonstrated 
that combining performs well when it is applied to the data described by the different 
types of representations [5] or when the random subspaces of the data feature set are 
used [6]. Therefore, we expect that combining classifiers in selected feature spaces (on 
the selected subsets of features) will be also beneficial. 

In our study we consider two examples of feature selection: the forward feature 
selection and the random feature selection. We choose the forward feature selection for 
our study because it is a standard well-known and relatively fast approach. On the other 
hand, forward selection has a number of drawbacks mentioned above. Due to them, the 
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selected feature subsets may be far from optimal. So, the random feature subsets may 
be as good as the specially selected subsets and they (the random subsets) do not 
require extensive calculations to be obtained. By this reason, we decided to consider 
random feature selection as well and compare its performance with the forward 
technique when single and sequential multiple trials of feature selection are performed. 
The performance of both considered feature selection techniques is also compared with 
the performance of the most popular feature extraction technique - Principal 
Component Analysis. 

In the forward feature selection, we sequentially select a number of optimal
feature subsets having the same size s. First, we perform feature selection on the entire
feature set (which consists of p features) obtaining the first feature subset. Then, on the
rest of features  (excluding already selected features) we find the next optimalp s–( )
feature subset. We again omit the selected features from consideration and apply the
forward feature selection to the remaining  features getting the third optimal
feature subset and so on, until all features are assigned to one of the selected feature
subsets. All obtained feature subsets have the same dimensionality s with an exception
of the last one, which consists of the remaining  features after 
previously performed feature selection trials. On each of the  selected feature
subsets, the linear classifier is constructed. The decisions of these are aggregated by
three different combining rules: the weighted majority voting [7], the mean rule and
the decision templates (DT) [8]. 

For random feature selection we first randomly permute features in the original
feature set and then we split the feature set into  subsets (so, each feature is
included only in one feature subset and does not appear in other subsets). By this, all
obtained random feature subspaces (subsets) have the same dimensionality s besides
the last one with dimensionality equal to . On each of the selected random
subspaces, we construct a linear classifier. Then obtained classifiers are
combined by the weighted majority rule, the mean rule and the DT combining rule. Let
us note that the random feature selection performed by us is different from the Random
Subspace Method (RSM) [6]. In both, in random feature selection and in the RSM,
features are selected randomly. However, the drawback of the RSM is that it is not
guarantied that all features (and therefore all useful information) are taken into
consideration at the end (each time one selects a random feature subset from the total
set of features but not from the rest after previous selections). Hence, some features
may be multiply represented in feature subsets and some may not be taken into
consideration at all (especially when a limited number of small random subspaces is
used). In our study it is important that all features are used once when we apply
combining on top of feature selection. The RSM does not satisfy this requirement. For
this reason, we do not include this technique in our study.

p 2s–

p t s– t p s=
t 1+

t 1+

p t s–
t 1+

When applying the combining technique on top of PCA, we split the set of
principal components into subspaces as following. The first feature subset consists of
the first  principal components, the second one contains the next  principal
components and so on. Similar to the previous cases, the weighted majority, the mean
rule and the DT combining rule are used to aggregate classifiers constructed on the
subsets of principal components.

s s
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The performance of the linear classifier on a single selected feature subset and the 
combined decision of linear classifiers on multiply selected feature subsets for forward 
and random feature selection are illustrated in Fig. 4 on the examples of the spectral and 
digit datasets and in Fig. 5 for the sonar and ionosphere datasets. We see that the benefit 
of the combining approach applied on top of feature selection depends on the data 
distribution, on the type of feature selection and on the size of feature subsets used. In 
the majority of cases, the better performance is achieved by combining feature subsets 
than by exploiting a single selected/extracted feature subset. Combining is more 
effective when it is applied on top of a “weak” feature selection technique (random and 
forward feature selection) than on top of a “strong”  feature  selection/ extraction 
technique (in our case PCA). The most improvement in performance is gained on the 
feature subset sizes that are approximately more than twice smaller than the training 
sample size. 

However, no large difference is noticed between random and forward feature 
selection when combining is applied to multiple feature subsets. It might be explained 
by the fact that in both cases all original features participate in the combined decision. 
The random selection approach seems to be more attractive than the forward feature 
selection technique by two reasons. First, it might be more successful in selecting 
independent feature subsets than the forward feature selection, for instance for 
datasets with many correlated features like spectral data. Then, we may obtain 
independent classifiers on the feature subsets, which for combining are more 
beneficial than combining correlated classifiers [9]. Secondly, the random feature 
selection is very fast and does not need any sophisticated algorithm for finding an 
optimal feature subset.  

In our examples, the feature extraction approach (PCA) performs better (with 
exception of very small sizes of exploited feature subsets) than a single trial of forward 
or random feature selection (see Fig. 4 and 5), because the extracted features contain 
more information for discrimination between data classes than a single selected feature 
set. What concerns the combining approach applied on top of PCA, its’ success merely 
depends on the data distribution and on the size of feature subsets used. Exercising the 
classifiers combining on principal components may be advantageous only for small 
feature subset sizes (that are approximately twice smaller than the training sample size) 
when the subset of the first few extracted principal components is too small and does 
not preserve enough useful information to discriminate between data classes. For some 
datasets (for instance, for the spectral and digit data, see Fig. 4) PCA succeeds in 
extracting good features. In these cases, the combining approach is useless: a single 
classifier constructed on a sufficient number of the first principal components performs 
better than combining of sequential subsets of principal components. However, for 
other datasets (e.g., the sonar and ionosphere data, see Fig. 5) combining applied on top 
of PCA and performed on small feature subsets is very effective: it improves the best 
performance achieved by PCA using a single feature subset. Interestingly, for datasets 
like sonar and ionosphere (see Fig. 5), using combining on top of random feature 
selection is even more beneficial than PCA (with or without applying the combining 
approach to subsets of principal components) when small feature subspaces are 
considered. 
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Fig. 4. The mean generalization error (GE) of a single and combined LDA for the forward
feature selection (top plots), the random feature selection (middle plots) and PCA (bottom
plots) for the spectral (50+50 training objects) and digit (20+20 training objects) datasets.
*)For PCA, 100 and 40 principal components are possible to retrieve, because training
sample size equals to 100 and 40 objects for spectral and digit dataset, respectively. Hence,
the classifiers combining on principal components is performed only up to the feature set
size is equal to 50 for spectral dataset and to 20 for digit dataset
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Fig. 5. The mean generalization error (GE) of a single and combined LDA for the forward feature 
selection (top plots), the random feature selection (middle plots) and PCA (bottom plots) for the 
sonar (15+15 training objects) and ionosphere (10+10 training objects) datasets. For PCA, 30 and 
20 principal components are possible to retrieve, because training sample size equals to 30 and 20 
objects for sonar and ionosphere dataset, respectively. Hence, the classifiers combining is 
performed only up to the feature set size is equal to 30 for sonar dataset and to 20 for ionosphere 
dataset 
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4    Conclusions

In order to construct reliable classifiers for high dimensional datasets with a limited 
number of observations, it is needed to reduce the data dimensionality. Feature 
selection or feature extraction can be considered. In feature selection only a part of the 
features is taken into consideration, while the remaining features (that may be still 
informative) are neglected. To benefit from this information we have suggested to 
apply the classifier combining approach on top of feature selection/extraction. We have 
found that the success of combining feature subsets depends on the data distribution, on 
the type of feature selection/extraction and on the size of feature subsets used.  

The combining approach applied on top of feature selection/extraction is the most 
effective when using small feature subsets. Combining feature subspaces is more 
beneficial for weak feature selection techniques (like forward or random feature 
selection) than for strong feature extraction techniques (like PCA).  

We have found that exercising the classifiers combining on the subsets of features 
results in a similar performance for both forward and random feature selection 
techniques. Forward feature selection does not seem to be the optimal approach to 
select the best possible feature subsets especially for datasets with small sample sizes. 
By this, when combining multiple feature subsets, random feature selection may be 
preferred to the forward feature selection as it is fast and might be more successful in 
obtaining independent feature subsets (that may result in a more beneficial ensemble of 
independent classifiers). 

When the feature extraction approach is used, all original features contribute in a 
new extracted feature set. By this, feature extraction technique like PCA is more 
advantageous than weak feature selection techniques (like forward or random 
selection). Depending on the data distribution, one may need quite many principal 
components in order to obtain a good performing classification rule. In the case of 
small sample sizes, it is not always possible. In such a case, it might be useful to apply 
combining on top of feature extraction. However, the combining approach on top of 
PCA is not always useful. It is beneficial only when small feature subsets are exploited 
and for datasets where the first principal components fail in good discrimination 
between data classes. 
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Abstract. Most machine learning algorithms assume stationary envi-
ronments, require a large number of training examples in advance, and
begin the learning from scratch. In contrast, humans learn in chang-
ing environments with sequential training examples and leverage prior
knowledge in new situations. To deal with real-world problems in chang-
ing environments, the ability to make human-like quick responses must
be developed in machines.

Many researchers have presented learning systems that assume the
presence of hidden context and concept drift. In particular, several sys-
tems have been proposed that use ensembles of classifiers on sequen-
tial chunks of training examples. These systems can respond to gradual
changes in large-scale data streams but have problems responding to
sudden changes and leveraging prior knowledge of recurring contexts.
Moreover, these are not pure online learning systems.

We propose an online learning system that uses an ensemble of clas-
sifiers suited to recent training examples. We use experiments to show
that this system can leverage prior knowledge of recurring contexts and
is robust against various noise levels and types of drift.

1 Introduction

Many real-world problems have a hidden context, which is not given explicitly
in input variables and makes the problems very difficult. Changes in the hidden
context often cause changes in the target concept, and this is generally known
as concept drift [14, 15, 12]. Effective methods for handling concept drift are re-
quired in many fields, and studies that assume the presence of a hidden context
and concept drift are growing in number. Early systems capable of handling
concept drift are STAGGER [10], IB3 [1], and FLORA [15]. Many systems have
been proposed to handle a large variety of data (e.g., data on flight simulators [5],
Web page access [7], credit card fraud [13], spam mail filtering [2, 4], etc.).

Generally, distinguishing between real concept drift and noise in sequential
training examples is very difficult. An effective classifier must be able to respond
to both sudden and gradual changes and recognize recurring contexts for lossless
learning; however, good strategies for building such an effective classifier depend

N.C. Oza et al. (Eds.): MCS 2005, LNCS 3541, pp. 176–185, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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on the types of the changes, so creating an ideal classifier in various concept-
drifting environments is difficult [8, 12].

Several systems have been proposed that use ensembles of classifiers on se-
quential chunks of training examples for large-scale data streams. The stream-
ing ensemble algorithm (SEA) proposed by Street and Kim [11] uses a simple
majority vote of classifiers on sequential chunks and responds to concept drift
by replacing an unnecessary classifier with a new classifier. However, if sudden
changes occur, the classifiers for old concepts remain voting members for a while
after the changes, so their incorrect outputs affect the performance of the sys-
tem for new concepts. Wang et al. proposed a system similar to SEA for mining
concept-drifting data streams [13]. This system uses a weighted average to com-
bine the outputs of classifiers, and the weight of each classifier is a value that is
inversely proportional to the mean square error of the classifier on the current
chunk. Therefore, the weights of old classifiers often reduce their contributions to
the system output; however, we cannot reduce the interference that arises from
sudden changes unless we set a small chunk size. The small chunks, however,
worsen the performance of each classifier and whole system. Moreover, this ap-
proach uses the same weights until the next chunk is given, so a large chunk size
extends the period that system cannot respond to new concepts. Furthermore,
these two systems replace temporarily unnecessary classifiers with new classi-
fiers, so they often cannot respond to recurring contexts quickly even if they
have learned the contexts already.

Toovercome thesedrawbacks,wepropose anonline learning systemthatuses an
ensemble of classifiers suited to recent training examples. The system includes one
onlinelearnerandadriftdetectionmechanismforquickresponsestosuddenchanges,
uses the suitability of classifiers in aweightedmajority vote to avoid the interference
of classifiers for old concepts, and leverages prior knowledge in recurring contexts.

The rest of this paper is organized as follows. In Section 2, we outline the
proposed adaptive classifiers-ensemble system, ACE. Experimental results are
given in Section 3, followed by the conclusion in Section 4. Finally, we append
the ACE algorithm in Section A.

2 ACE System

First, we outline the adaptive classifiers-ensemble system, ACE. Then, we de-
scribe the system components: one online learner, many batch learners, and a
drift detection mechanism. Finally, we show how the final hypothesis of ACE
comes from the outputs of classifiers suited to recent training examples.

2.1 Outline

The basic concept of ACE is shown in Figure 1. This system consists of one online
learner, many batch learners, and a drift detection mechanism. The outputs of
hypotheses from the online learner and the batch learners are integrated by
a weighted majority vote using a suitability measure. The system behaves as
follows:
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Classifier 0

Classifier 1

Classifier 2

Classifier J

Classifier J+1

(e) ACE combines the output
of hypoetheses by using 
a weighted majority vote.

Long-Term
Buffer

Drift Detection
Mechanism

Input

(c) ACE forms the new hypothesis
by using the new batch learner (Classifier J+1)
when concept drift is detected.

(b) A long-term buffer
stores the new example.

(d) ACE initializes the hypo-
thesis of the online learner. (a) ACE learns the new example

by using the online learner
      (Classifier 0).

(d) ACE initializes
the long-term buffer.

Fig. 1. Basic concept of ACE

1. Let (xn ∈ X, yn ∈ Y ) be a new training example at time n. (a) The system
learns (xn, yn) and updates the hypothesis H0 : X → Y by using the online
learner. (b) A long-term buffer, Bl, stores (xn, yn).

2. When concept drift is detected (or the number of examples in Bl exceeds
the chunk size, Sc), (c) Using the new batch learner, the system forms the
new hypothesis HJ+1 : X → Y from stored training examples in Bl, where
J + 1 is the current number of hypotheses (including H0). Then, (d) the
system initializes H0 and clears Bl to prepare the online learner for the next
training examples.

3. (e) The system forms a final hypothesis by using a weighted majority vote
of hypotheses {Hj}J

j=0. The suitability of the jth hypothesis Hj at time n
for the most recent Sa examples, Aj,n, is used to detect drift and make the
final hypothesis.

2.2 Online Learner

If sudden changes occur, systems that use only ensembles of classifiers on sequen-
tial chunks of training examples delay the response to the changes until the next
chunk is given. This interferes with flexible learning, so we include the online
learner in the system. We can use any learning algorithm as the online learner of
ACE. Some representative algorithms are neural networks, Naive Bayes, and k-
Nearest Neighbor [3]. Using window, forgetting, and retraining mechanisms with
the online learner proved very effective.

We used the simple k-Nearest Neighbor in the experiments described below.
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2.3 Batch Learners

ACE forms a new hypothesis by using the new batch learner from stored training
examples in the long-term buffer when concept drift is detected (or when the
number of examples in the long-term buffer exceeds the chunk size). We can use
any learning algorithm as each batch learner of the system as long as it has high
performance. However, ACE does not stop growing and does not use a pruning
method to deal with recurring contexts, so simple learning algorithms are better.

Retraining a classifier from scratch to combat concept drift has an effect on
sudden changes, but it is not effective for gradual changes. ACE does not retrain
the batch learners.

We used C4.5 [9] in the experiments described below.

2.4 Drift Detection Mechanism

The suitability of the jth hypothesis at time n for the most recent Sa examples is

Aj,n =
∑n

s=n−Sa+1 CRj,s/Sa, (1)

where CRj,n = [[Hj(xn) = yn]] is the classification result of the jth hypothesis
at time n, and [[·]] is 1 if the predicate is true and 0 otherwise. That is, the
magnitude of the suitability of each hypothesis can be interpreted as a measure
of its accuracy for recent examples. Here, the classification result of the online
learner, CR0,n, is the result before the online learner learns the newest example,
(xn, yn).

We attempted to detect concept drift by using confidence intervals for pro-
portions. First, the upper endpoint, Au

j,n, and the lower endpoint, Al
j,n, of

100(1 − α)% confidence intervals for the suitability, Aj,n (sample proportion),
are given by

Al
j,n =

Sa

Sa + z2
α/2

⎛
⎝Aj,n +

z2
α/2

2Sa
− zα/2

√
Aj,n(1 − Aj,n)

Sa
+

z2
α/2

4S2
a

⎞
⎠ , (2)

Au
j,n =

Sa

Sa + z2
α/2

⎛
⎝Aj,n +

z2
α/2

2Sa
+ zα/2

√
Aj,n(1 − Aj,n)

Sa
+

z2
α/2

4S2
a

⎞
⎠ , (3)

where Sa is the number of samples and zα/2 is the upper (100α/2)th percentile
of the standard normal distribution [6].

Here, {Hj}J
j=1 is not updated after the creation of each hypothesis, so if Aj,n

is greater than Au
j,n−Sa

or less than Al
j,n−Sa

, concept drift is suspected; however,
the online learner continues learning at all times, so we cannot use this method
for A0,n and [Al

0,n−Sa
, Au

0,n−Sa
].

The index of the best suitable hypothesis at time n for the most recent Sa

examples is

j′ = arg max
j:1∼J

∑n
s=n−Sa+1 Aj,s, (4)

and if
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Aj′,n < Al
j′,n−Sa

or Aj′,n > Au
j′,n−Sa

(5)

is satisfied1, the system assumes that concept drift occurred, and it forms the
new hypothesis HJ+1 : X → Y by using the new batch learner.

Furthermore, when the number of examples in Bl exceeds Sc, the system
forms the new hypothesis using the new batch learner to enhance the effect of
the classifiers ensemble even if there is no suspicion of concept drift.

2.5 Final Hypothesis

The system forms the final hypothesis by using a weighted majority vote of
hypotheses {Hj}J

j=0. The final hypothesis of the system is

Hf (xn) = arg max
y∈Y

J∑
j=0

(
1

1 − Aj,n

)μ

[[Hj(xn) = y]] , (6)

where μ is an adjustment factor of the ensemble. The weight of each hypothesis is
proportional to its suitability, and it grows exponentially as suitability increases.

By using the suitability of each hypothesis in this weighted majority vote,
the system avoids interference from old classifiers and leverages prior knowledge
of recurring contexts. Here, a larger μ improves the degree of selection of the
hypothesis best suited to recent examples, whereas a smaller μ improves the de-
gree of the ensemble. We think that μ should be chosen based on the complexity
of the problem and noise level.

The details of the ACE algorithm are given in Appendix A.

3 Experimental Results: Recurring Context Data

We used recurring context data, which was showed in FLORA [15], and checked
the robustness of ACE against various noise levels and types of drift.

1 − β(n)β(n)
1

0

ΔNN ΔNN

Fig. 2. Function β(n)

In a universe defined by six boolean at-
tributes, {a1, ..., a6}, we defined concepts A ⇔
y = a1 ∧ a2 and B ⇔ y = (a3 ∧ a4) ∨ (a5 ∧ a6),
and the two concepts changed by turns. Figure 2
shows β(n), the probability that the current con-
text belonged to concept A. Concept A was fully
in effect when β(n) = 1, and concept B had com-
pletely taken over when β(n) = 0. The number
of training examples during stable periods, when β(n) = 1 or β(n) = 0, and
during unstable periods, when β(n) �= 1 and β(n) �= 0, was given by N and ΔN .

1 Strictly speaking, the j′th hypothesis must be given more than 2Sa examples from
created time, and the number of examples in Bl must exceeds Sa in addition to
Eq. (5) being satisfied.
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The total number of training examples was 10 × 2 × (N + ΔN), and noise was
introduced by switching the labels of 100η% of the examples, where η was the
noise level.

The systems compared with ACE were 9-Nearest Neighbor (200) and Naive
Bayes (200), which use windows of size 200; a streaming ensemble algorithm
(SEA) proposed by Street and Kim [11]; Wang et al.’s classifier ensemble ap-
proach (WCEA) [13]; BCS, which is a version of ACE that uses the best classifier
selection; and Ideal Machine, which knows β(n) in advance and assumes concept
A if β(n) ≥ 0.5 and concept B otherwise. Here, BCS only differs from ACE in
the final hypothesis (Eq. (6)), and the final hypothesis of BCS is

Hf (xn) = Harg maxj Aj,n
(xn). (7)

Note that FLORA also uses the best candidate for the current description to
deal with recurring contexts [15]. We used BCS instead of FLORA to see the
effect of the best classifier selection.

Table 1. Error counts in recurring context data

N ΔN η period 9-NN NB SEA WCEA BCS ACE IM

first 1000 74.7 110.0 87.2 47.8 46.3 46.8 0
500 0 0 last 1000 104.2 141.5 97.1 39.3 20.8 14.8 0

entire 10000 1018.7 1390.7 953.6 324.6 230.6 179.2 0

first 1000 116.0 145.0 137.2 96.9 90.6 90.6 47.0
300 200 0 last 1000 113.0 144.4 118.7 72.4 62.4 51.7 46.8

entire 10000 1126.9 1461.1 1195.6 662.1 646.9 560.5 469.4

first 1000 178.6 194.1 201.5 177.6 174.4 173.4 118.5
0 500 0 last 1000 166.7 187.7 178.5 156.0 153.5 129.5 116.5

entire 10000 1685.9 1878.9 1812.6 1484.1 1540.3 1352.7 1177.7

first 1000 175.3 195.4 187.9 164.1 157.4 160.5 101.6
500 0 0.1 last 1000 197.1 220.0 192.7 141.4 140.7 111.6 98.6

entire 10000 1967.2 2189.3 1925.7 1346.4 1392.2 1180.3 999.0

first 1000 207.7 224.6 224.7 203.7 195.2 194.5 137.2
300 200 0.1 last 1000 205.4 222.6 211.5 170.8 175.9 142.9 136.3

entire 10000 2063.8 2239.6 2130.1 1659.2 1744.1 1502.5 1374.1

first 1000 259.9 265.0 274.9 275.1 264.8 258.3 193.5
0 500 0.1 last 1000 246.5 255.4 257.0 231.4 244.8 207.9 191.5

entire 10000 2494.3 2568.8 2586.1 2335.8 2475.0 2172.6 1932.8

Notes: 9-NN and NB are 9-Nearest Neighbor and Naive Bayes which uses
windows of size 200, and IM is Ideal Machine. All results are averaged over
100 trials.

The parameters for ACE and BCS were Sa = 30, Sc = 200, α = 0.01, and
μ = 3.0. The online learner was simple 9-Nearest Neighbor, which does not use a
window, and each batch learner was C4.5 [9]. Each classifier of SEA and WCEA
also used C4.5. The chunk size and the capacity of classifiers of SEA were 20
and 5, and those of WCEA were 30 and 100. We tuned the parameters of SEA
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Fig. 3. Accuracy of last 20 classifications of SEA, WCEA, and ACE in last 1000 re-

curring context data. The upper figure is the case that (N, ΔN, η) = (500, 0, 0), and

the lower figure is the case that (N, ΔN, η) = (300, 200, 0.1)

and WCEA to respond to sudden changes. SEA and WCEA classify input data
randomly when the number of classifiers is 0.

The error counts of each system at various types of drift ((N,ΔN) = (500, 0),
(300, 200), and (0, 500)) and noise levels (η = 0 and 0.1) are shown in Table 1.
All results are averaged over 100 trials. The standard errors in each period are
omitted because of space limitations; but the standard errors in the first 1000 and
last 1000 examples did not exceed 2.0, and those in the entire 10,000 examples
did not exceed 6.5.

9-Nearest Neighbor (200) was worked relatively well when (N,ΔN) = (0, 500),
but it worked poorly when (N,ΔN) = (500, 0), as shown in Table 1, because sys-
tems that use windows cannot easily respond sudden changes. The performance
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of 9-Nearest Neighbor (200) was not improved even when we used a smaller
window, especially in noisy environments. SEA outperformed 9-Nearest Neigh-
bor (200) when (N,ΔN) = (500, 0) because we tuned the parameters of SEA to
respond to sudden changes; in contrast, SEA worked poorly in conditions other
than 9-Nearest Neighbor (200), especially when (N,ΔN) = (0, 500). SEA’s per-
formance was not improved even when we enlarged the chunk size or the capacity
of classifiers because of the interference of classifiers for old concepts. That is,
systems that use a simple majority vote cannot easily deal with various types
of concept drift. WCEA worked fairly well in all conditions because it uses a
weighted average to combine the outputs of classifiers. However, WCEA cannot
perform well unless we set its chunk size small. The small chunk size worsens
the performance of each classifier, so the system performance was slightly poor
during periods when the current context belonged to concept B because the
complexity of concept B was higher than that of concept A (Fig. 3). Moreover,
replacing temporarily unnecessary classifiers with new classifiers worsens the
performance in recurring contexts.

ACE was more robust against various noise levels and types of drift than
WCEA. We can see that ACE achieved about the same high accuracy as Ideal
Machine in the final phase of the learning. Furthermore, using ACE, the chunk
size need not be small to respond to sudden changes because the drift detection
mechanism and the online learner deal with sudden changes. As a result, each
classifier’s performance in ACE is better than those of WCEA. Because of this
property, we believe that ACE can respond to more difficult problems than
WCEA can. Finally, BCS worked reasonably well, but it did not work as well
as ACE, especially in noisy conditions. We think that systems that use the best
classifier selection, such as FLORA, are very simple and reasonable methods for
noiseless and uncomplicated problems; however, classifiers ensemble methods are
necessary for noisy and complex problems.

4 Conclusion

We proposed a new online learning system, ACE, and checked that it was robust
against various noise levels and types of drift in the recurring context data. ACE
performed better than other systems that use only ensemble of classifiers on
sequential chunks of training examples in all conditions by using a drift detection
mechanism and one online learner.

Our future work will be automating the choices of short-term memory size,
chunk size, and the adjustment factor of ensemble during learning. The parame-
ter tuning of ACE is not so difficult, but we would like to achieve more human-
like learning. Furthermore, we have not implemented a pruning method because
conventional methods of pruning classifiers usually worsen performances for re-
curring contexts; however, we plan to implement a lossless pruning method in the
future. Finally, we will investigate applications of ACE to real-world problems.
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A Algorithm of ACE System

The algorithm of ACE is given in Figure 4.

Algorithm ACE
Parameters:
short-term memory size Sa, chunk size Sc (> Sa)
confidence level 100(1 − α)%, adjustment factor of ensemble μ
Initialize J = 0, Bl = {}, N0 = 0.
for each (xn, yn) where xn ∈ X, yn ∈ Y , n : 1 ∼

Output the final hypothesis Hf (xn) = arg max
y∈Y

J∑
j=0

(
1

1 − Aj,n−1

)μ

[[Hj(xn) = y]].

for each j : 0 ∼ J
Set CRj,n = [[Hj(xn) = yn]],

Aj,n =

{∑n
s=max[n−Sa+1,N0+1] CRj,s/ min[n − N0 + 1, Sa] if j = 0∑n
s=n−Sa+1 CRj,s/Sa otherwise

.

Compute 100(1 − α)% confidence intervals for proportions [Al
j,n, Au

j,n].
endfor

Call Online Learner (xn, yn); Update hypothesis H0 : X → Y .
Add (xn, yn) to Bl.

Set AcqFlag = false, j′ = arg maxj:1∼J

∑n
s=n−Sa+1 Aj,s.

if {Aj′,n < Al
j′,n−Sa

or Aj′,n > Au
j′,n−Sa

} and n − N0 ≥ Sa and n − Nj′ ≥ 2Sa then
Set AcqFlag = true.
endif
if n − N0 ≥ Sc then Set AcqFlag = true. endif

if AcqFlag = true then

Call Batch Learer (Bl);Get hypothesis HJ+1 : X → Y with error

EJ+1 =

∑
(xi,yi)∈Bl

[[HJ+1(xi) �= yi]]

|Bl| .

if EJ+1 ≥ 1/|Y | then Discard HJ+1.
else
for each m : (n − Sa + 1) ∼ n
Set CRJ+1,m = CR0,m,

AJ+1,m = A0,m, Al
J+1,m = Al

0,m, Au
J+1,m = Au

0,m.
endfor

Set NJ+1 = n, J = J + 1.
endif
Initialize H0; Set Bl = {}, N0 = n.

endif
endfor

Fig. 4. ACE algorithm
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Abstract. This paper describes a contingency-based approach to ensemble clas-
sification.  Motivated by a business marketing problem, we explore the use of 
decision tree models, along with diversity measures and other elements of the 
task domain, to identify highly-performing ensemble classification models.  
Working from generated data sets, we found that 1) decision tree models can 
significantly improve the identification of highly-performing ensembles, and 2) 
the input parameters for a decision tree are dependent on the characteristics and 
demands of the decision problem, as well as the objectives of the decision 
maker.  

1   Introduction 

With the rise of personal video recorders (PVRs) and the corresponding ability of 
television viewers to minimize or eliminate traditional in-stream television advertis-
ing, businesses are increasingly motivated to discover new methods for delivering 
advertising to viewers.  Toward that end, our research seeks to use the data-collection 
capabilities of the PVR along with statistical modeling techniques to identify the 
demographic characteristics of viewers based on their viewing patterns: i.e., the pro-
grams they watch and when they tend to watch them.  While we have found that tele-
vision viewing data can be used to profile viewers, we also have found that different 
data segments (e.g., weekend vs. weekday viewing) and different data mining algo-
rithms (e.g., neural networks, logistic regression and linear discriminant analysis) 
generate different sets of predictions. [8]  The sense that no single model in this appli-
cation would clearly prevail, as well as the general notion that combining classifiers 
can provide better predictions than individual models [5], lead us to believe that en-
semble classifiers should be more effective than individual approaches. 

This paper describes a process for choosing better-performing ensembles from a 
collection of candidates assembled from individual models.  The objective is to build 
a classification model that can distinguish between highly-performing and poorly-
performing ensembles, identify the ensembles that are more likely to be highly-
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performing ones, and produce a consensus result that is better than any individual 
classification model.  The clear implication is that not all ensembles will perform 
better than individual models.  Some ensembles will perform no better than an indi-
vidual model, and some will even perform worse.   

Our goal is to identify which specific groups of models will perform better based a 
priori on a specific set of identifiable characteristics of the models and the domain.  
Our study produced decision tree models that can identify better-performing ensem-
bles based on certain situational characteristics, including the measured diversity of 
the ensembles as well as the performance of the ensembles’ constituent models and 
the prevalence of the target group in the population at large.  Starting from the as-
sumption that ensemble performance is explained in part by the compensatory diver-
sity of the ensemble’s constituent models, the decision tree models identify which of 
the various diversity measures are most closely related to ensemble performance, and 
indicate specifically how the numerical values of those measures are indicative of 
either highly- or poorly-performing ensembles.  

This application is representative of a more generic problem – i.e., a marketing 
problem that entails identifying a target audience and delivering customized advertis-
ing to that audience.  The generic problem domain is characterized by two essential 
characteristics: 1) the target audience is a relatively small percentage of the overall 
population, and 2) the cost of incorrectly classifying a non-member of the target audi-
ence as a member (i.e., labeling a ‘0’ as a ‘1’) is much more costly than classifying a 
member as a non-member (i.e., labeling a ‘1’ as a ‘0’).  This is in turn distinguishes 
the underlying data set from the various candidate data sets in the public domain. 

2   Measuring Performance 

A classifier or ensemble might be considered to perform ‘well’ if it simply produces 
better predictions than random guessing [5].  Similarly, an ensemble might be consid-
ered accurate if it produces predictions that, overall, are better than the predictions of 
its constituents.  Evidence suggests that ensembles indeed can be more accurate than 
individual models [6, 13] – but only when their predictions reflect some level of di-
versity – i.e., when they tend to disagree [1, 3, 4, 6].  Bagging and boosting methods, 
for example, improve performance because they produce diverse classifiers [2].  
While the conceptual meaning of diversity is agreed upon – e.g., Dietterich defines 
diversity as the tendency of constituent models to produce different errors on new 
data points [5] – multiple ways have been proposed to measure it.   

The way in which we choose to measure performance impacts significantly on the 
process of choosing an ensemble classifier for decision support.  Because a number of 
criteria can be used to assess the performance of a classifier – either individual  
or ensemble – a decision maker has to determine which of those criteria are most 
important given the situation at hand.   

Classification of television viewers is characterized by two measures of  
performance: 
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• accuracy:  measures the percentage of observations predicted by a model to 
be members of a target group (i.e., predicted 1s) which actually are members 
of the group (i.e., actual 1s).  Alternatively stated, it is the probability that an 
observation is a 1 given that it is predicted as a 1; i.e., P(actual=1 | predic-
tion=1).   

• sensitivity:  measures the percentage of actual members of the group that are 
predicted to be members of the group.  In this case, it is the conditional prob-
ability of predicting that an observation is a 1 given that it is a 1; i.e., 
P(prediction=1 | actual=1).   

It is important to note that the accuracy and sensitivity performance are dependent 
measures, in that accuracy can be improved at the expense of sensitivity, and vice 
versa.  For example, if a model is configured so that only the more likely group mem-
bers are considered, the accuracy will improve – i.e., those predicted to be a member 
are more likely actually to be a member.  However, constraining the number of obser-
vations under consideration by the model also means that the model will miss more of 
the actual members of the group, thereby degrading sensitivity (see [7] for a more 
detailed discussion of this issue). 

When individual classifiers are collected into an ensemble, the consensus predic-
tion of the ensemble decision problem involves three possible ensemble outcomes: 1) 
the ensemble performs better on all performance measures (i.e., on both accuracy and 
sensitivity), 2) the ensemble performs worse on all performance measures, or 3) the 
ensemble performs better on one performance measure but not on the other.  The 
choice of ensemble, particularly in case 3, depends on the relative importance of the 
performance measures and the goals of the decision maker.  For example, if an adver-
tiser places more importance on identifying as many potential consumers as possible, 
then he or she might choose an ensemble that is better in sensitivity than in accuracy.  
Conversely, considering that a PVR is limited in the number of ads it can store physi-
cally, it becomes important to limit the ads delivered to the PVR only to those that are 
deemed potentially relevant to the viewer.  In that case, accuracy is more important.  
The ideal solution of course is to find ensembles that are better than their constituents 
on both measures.  That is the goal of this study.   

3   Methodology and Experimental Design1 

Our initial investigation of ensemble classification utilized generated data in an ex-
perimental context, which provided greater control over the large number of situ-
ational variables inherent in the actual viewing data.  The process included the follow-
ing steps: 1) identification of controllable experimental parameters, identified from 
the original (real world) data set, 2) generation of individual model and ensemble 
vectors, which simulate the output of multiple classifiers, and 3) generation of diver-
                                                           
1 The current study is an extension of our previous work.  Because the methodology used in 

this study is similar, we provide an overview of the methodology and experimental design 
here, and refer the reader to the original study [8] for a more detailed explanation.  
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sity measures and decision tree models, to identify heuristics for identifying better 
performing ensembles.  Each step is described below. 

3.1 Experimental Parameters 

Because we are using generated data, we were able to identify specific characteristics 
of the real world viewer data set and then manipulate those values in the context of 29 
controlled experiments, each representing different values of selected parameters.  
The parameters and values used include: 

Number of items classified (N): the number of individuals to be classified by each 
method.  We used N=600, because this was the smallest number allowing for whole 
numbers in each cell of the individual classifiers’ common confusion matrix. 

Percent in the population (p):  the fraction of the general population that belongs to 
the target group.  In this experiment, we set p = 10, 20 and 30%, because in a 
television viewing application, those are typical values for a target audience.  

Total number of models (c) from which an ensemble can be created.  This and L 
determine the number of replications for each set of parameters, because we generate 
all cCL ensembles of L items chosen from the c possible. We used c=20. 

Number of models (L) that participate in the ensemble. We set L=3, because it 
avoids tie votes while also keeping the number of replications manageable. Thus there 
are 20C3 = 1140 replications for each set of parameters.  

Designed accuracy (ac) and sensitivity (se) of each individual model:  We set the 
values of ac and se to 20, 30, 40 and 50%, depending on the value of p.  As shown in 
Table 1, ac and se are set strictly better than p, based on the assumption that 
individual model accuracy and sensitivity should exceed that of random choice.  

Voting policy:  Currently, the consensus prediction of an ensemble is achieved 
through a simple majority (democratic) voting procedure, which is facilitated by 
having an odd number of voting models in each ensemble.  While democratic voting 
is an effective and popular approach [12], other more complex voting schemes are 
potentially effective and could be employed based on a variety of criteria [9].  

Table 1. Parameter values for the generation of individual classifiers 

Experiment Number p ac se 

1-16 10 20, 30, 40, 50 20, 30, 40, 50 

17-25 20 30, 40, 50 30, 40, 50 

26-29 30 40, 50 40, 50 

3.2 Individual and Ensemble Model Vectors 

The data initialization phase of the experiment then generated performance and diver-
sity measures in the context of the situational parameters defined for each of the ex-
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periments described above.  This phase began with the generation of the actual group 
assignment vector, against which an ensemble’s performance is assessed.  In a real 
data set, this vector would indicate whether or not an individual belongs to the target 
class (i.e., either 1 or 0).  In the experimental approach, the vector is populated with 
1s and 0s depending on the value of the percent in the population (p) parameter. For 
example, if the value of p is 20 (percent) and the number of individuals (N) is 600, 
then 120 of the values in the vector would be ‘1’, with the rest being ‘0’. 

The next step is to generate the model prediction vectors that will represent the 
predictions of c different hypothetical models.  The number and content of the vectors 
are based on the value of c defined in the database, along with the accuracy and sensi-
tivity rates specified for each of the prediction vectors.  Subsets of the (c=20) predic-
tion vectors are then assembled into ensembles of (L=3) voting vectors, resulting in 
the generation of (cCL = 1140) ensemble predictions for each individual – achieved by 
tallying the votes of each of the participating voting vectors within each ensemble.   
The accuracy and sensitivity rates of each ensemble are calculated by comparing the 
consensus predictions of the ensemble with the actual values in the group assignment 
vector.  The ensemble’s performance is then determined by comparing it to the rates 
of the individual vectors/models within the ensemble. 

3.3 Diversity Measures and Decision Tree Models 

The use of diversity measures in this study builds on the work of Kuncheva and her 
colleagues [10, 11, 15, 16], as well as on our earlier explorations of diversity meas-
ures using neural networks [8].  Consistent with that approach, in this study we used 
twenty-two diversity measures for each ensemble, consisting of fifteen pairwise and 
seven non-pairwise measures. Each of these measures were used to calculate diversity 
between and among pairs and groups of the models in each ensemble across all  
observations. 

The five pairwise measures are (1) Yule’s Q-statistic (Q), (2) the correlation coef-
ficient ( ), (3) the disagreement measure (D), (4) the double-fault measure (DF), and 
(5) the chi-square ( 2) value for deviation from independence for the two-way table 
induced by two models.  Because each ensemble includes three models, each ensem-
ble produces three pairwise values.  Each of the five pairwise measures in turn con-
sists of three separate measures – the average across the three values, as well as the 
minimum and the maximum – thus resulting in 15 pairwise measures.  The minimum, 
maximum, and average are denoted by subscripts, i.e., Yule’s-Q average is Qavg and 
its minimum is Qmin. 

The remaining seven diversity measures are derived from all of the models in the 
ensemble.  The seven non-pairwise measures are:  (1) the Kohavi-Wolpert variance 
(KW), (2) the interrater agreement ( ), (3) the entropy measure (E), (4) the measure of 
difficulty ( ), (5) the generalized diversity2 (GD), (6) the coincident failure diversity 
(CFD), and (7) the chi-square value ( 2) for deviation from independence for the table 
induced by all the models. 

                                                           
2 This term is from Kuncheva, but also is referenced as Distinct Failure Diversity (DFD) [14]. 
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The decision tree models in turn were generated using the diversity measures as 
independent variables – and in certain cases, the values of p, ac and se (described 
below) – and a binary measure of an ensemble’s performance relative to its constitu-
ent models as the dependent variable.  The value of the DV is 1 if the ensemble per-
formed better on both accuracy and sensitivity; else, it is 0. Thus, the tree model at-
tempts to predict an ensemble’s relative performance (0 or 1) based on the values of 
the diversity measures. 

The models were constructed using both the CART and C5 techniques available 
within Clementine version 8.5.  We constructed decision tree models using two basic 
sets of input parameters: 1) the diversity measures and the fixed values of p, ac and se 
used to generate the individual classification models, and 2) the diversity measures 
only, based on the assumption that in many cases a priori knowledge of p, ac and/or 
se will not be available.  Furthermore, for the C5 models, we varied the minimum 
number of items in a child node, setting the values to 125, 250, 375 and 500.  For the 
CART models, we set both the child node size minimum and the parent node size 
minimum in the stopping criteria (again 125/250/375/500), and set the pruning option 
to ‘off’.  Other than these variations, we used the default options available for both the 
C5 and CART implementations within Clementine3.  The result of these manipula-
tions was 16 decision tree models: 8 using C5 and 8 using CART.  The 8 trees from 
C5 and CART were each comprised of 2 sets of 4 trees (involving the 4 values of 
node size).  In the first set, p, ac and se are included as additional situational parame-
ters along with the diversity results; in the second set they are not included. 

We should note that because this is a retrospective study, we did not either define a 
fixed test set or do cross-validation.  In a purely retrospective study, there is an advan-
tage in building a model using all of the data, because the resulting model may best 
represent the structure inherent in the data set.  If the purpose of the model were to 
predict new observations, then proper validation methodology would have required 
either a fixed test set or cross-validation sufficient to verify the generalizability of the 
model to such new situations. 

4   Results 

The experimental results shed light on two essential questions.  First, at a fundamental 
level, does a decision tree model assist a decision maker in choosing better-
performing ensembles – i.e., is the decision tree approach viable?  Second, assuming 
the approach is viable, how should decision trees be constructed – i.e., what situ-
ational parameters should be considered in the construction of decision tree models 
and what techniques should be used to build them?  Answering the first question 
requires an assessment of the accuracy and sensitivity of each ensemble relative to its 

                                                           
3 The default parameter values used in Clementine were as follows: symbolics not grouped, no 

boosting,  no cross-validation,  model favors accuracy over generality,  0% expected noise,  
pruning severity of 75,  minimum of 2 cases in a child node,  global pruning used,  attributes 
are not winnowed, and equal misclassification costs. 
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constituent models, and a determination of whether the ensemble performs better on 
one or both of those measures.  Notably, each of the generated ensembles produced an 
accuracy greater than any of its constituent models (i.e., 50%), which means that in 
the context of our experiments, sensitivity becomes the basis for assessing ensemble 
performance.  A ‘better’ ensemble in the Pareto sense is one with a sensitivity greater 
than the a priori sensitivity value established for the constituent models, because that 
ensemble is at least as good in both measures and is strictly better in at least one.   

A decision tree model in turn is judged based on how well it performs relative to a 
naïve model that simply predicts that all ensembles will perform better than their 
constituents.  In that regard, 20% of the generated ensembles have a higher sensitivity 
value than their constituents, and thus are considered ‘better’.  Because the naïve 
model in these experiments will be correct in 20% of its predictions, the accuracy of 
any decision tree model should exceed that level to be considered viable. 

Regarding the basic viability of the decision tree approach, the accuracy of both of 
the decision methods in identifying better-performing ensembles easily exceeded the 
actual number of better-performers (i.e., 20%).  As shown in Table 2, the accuracy of 
the C5 models varied from 61.4% (min child nodes=500; p, ac and se unknown) to 
69.55% (min. child nodes = 250; p, ac and se known). CART accuracy varied from 
57.95% (all values of child/parent nodes; p, ac and se not available to the model) to 
67.78% (min child nodes = 125; p, ac and se available to the model).   

Table 2. Error and Accuracy Rates for CART and C5 

  p, ac, and se not available p, ac, and se available 

  CART 
min child 
nodes 125 250 375 500 125 250 375 500 
Accuracy  0.6778 0.6468 0.6186 0.6125 0.5795 0.5795 0.5795 0.5795 

  C5 
min child 
nodes 

125 250 375 500 125 250 375 500 

Accuracy  0.6740 0.6641 0.6439 0.6140 0.6821 0.6955 0.6736 0.6620 

The answer to the second question – i.e., the structure and composition of the deci-
sion tree models – is somewhat more complex.  Overall, C5 and CART perform dif-
ferently depending on the parameters included in the model and the decision criteria 
being used.  As suggested above, the overall accuracy of C5 was somewhat better 
than that of CART.  When p, ac and se are available to the model, C5 is much more 
accurate: 67.83% vs. 57.95% on average across all values of min. child nodes.  When 
p, ac and se are not known, C5 is marginally better:  64.89% vs. 63.89%.  However, 
when a decision maker considers the sensitivity of the model – i.e., its ability to  
discover the better-performing ensembles – the performance of CART improves dra-
matically, particularly when p, ac and se are known.  When p, ac and se are included 
in the model, CART’s error rate in predicting actual 1s (i.e., better-performing  
ensembles) is much lower than C5 – for CART, P (predicted 0 | actual 1)  = 10.28% 
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(avg); for C5, the average error is 31.71%.  When p, ac and se are not available, the 
respective error rates are almost identical – CART = 36.64%, C5 = 36.62%. 

The composition of the respective decision tree models is described in terms of the 
parameters included within the models (i.e., diversity measures, and p, ac and se), and 
the structure of the generated trees.  Table 3 shows the parameters included within the 
16 decision tree models described above.   The table is partitioned into whether the 
models had access to p, ac and se, and then for each of those, whether the models 
came from C5 or CART.  Thus, each cell in the table shows which of the diversity 
measures were included in the models across the four values of child node size.  We 
considered the extent to which a parameters was included in the four models to be an 
indication of its contribution to the overall predictive power of the model.  Thus, in 
the table, each cell lists the parameters that appeared in a) all four decision trees, b) a 
subset of the decision trees (i.e., [1], [2] or [3]), or c) none of the decision trees. 

Several of the results are noteworthy.  For example, Table 3 indicates that when 
model sensitivity is available, both C5 and CART include it in all models.  CART 
also includes percent in population when that parameter is known.  The CART mod-
els in particular rely on p and se to the extent that most of the diversity measures are 
not included at all.  While C5 considers relatively more diversity measures, only 4 of 
those measures are included in all 4 of the C5 models.  Only one of the measures – 
CFD – appears across all models for both C5 and CART, although chi-square appears 
in CART as a pairwise measure ( 2(avg)) and in C5 as a non-pairwise measure.  
When p, ac and se are not available in the model construction, many more of the 
diversity measures are included by both C5 and CART.  As shown, C5 includes 7 
diversity measures in all 4 models; CART includes 8 measures.  The double fault 
(average and minimum), correlation coefficient (average and minimum), and CFD 
measures appear in all 8 models.  CFD is the only diversity measure included in all 16 
decision tree models; i.e., regardless of whether p, ac and se are known. 

5   Conclusions 

This study suggests, in part, a contingency-based approach to the construction of 
decision tree models for predicting better-performing ensembles – based on a priori 
characteristics of the domain and preferences of the decision maker.  When accuracy 
in identifying ensembles is most important, a decision maker would choose models 
constructed from C5, which clearly performed better than CART.  However, when 
sensitivity of the decision tree model is most important, meaning that the objective is 
to find as many of the better-performing ensembles as possible, CART becomes the 
preferred technique.  Its error rate in predicting actual 1s is at least as low as C5, and 
in some circumstances is much lower. 

The differential performance of CART indicates the important role of situational 
characteristics such as percent of the target group in the population (p), as well as the 
accuracy (ac) and sensitivity (se) of the constituent models.   As hinted above, when 
those parameters are available and when sensitivity is the main decision criterion, 
CART performs better than C5.  Furthermore, the overall model construction process 
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also is governed by the availability of p, ac and se.  With access to those parameters, 
the decision tree techniques are much less dependent on the diversity measures, and 
thus the potential need to calculate many of those measures is reduced.  This is par-
ticularly true for CART, which consistently requires only two other diversity meas-
ures in order to build a model.  Conversely, the diversity measures become much 
more important to the models when p, ac and se are not available.  In that case, the 
results of this research provide a basis for identifying which of the diversity measures 
should be considered by a decision maker. 

This research is an on-going activity, and in that respect it raises a number of ques-
tions for further investigation.  First, our experimental design is set to either include 
or exclude p, ac and se as a group.  In this and other domains, a decision maker might 
have knowledge of the percent in population of the target group, but not be able to 
ascertain the a priori accuracy and sensitivity of the individual decision models.  
Thus, a logical next step would be to allow the decision trees to include or exclude 
only the values for p.  Second, the results do not shed light on the specific relationship 

Table 3. Parameters included in the decision tree models (‘*’ = p, ac and se are available) 

between diversity and performance. We have shown that knowledge of diversity 
measure values is useful to a decision tree model in identifying higher-performing 
ensembles, but further research is needed into the specific question of how diversity 
measures relate to diversity.  For example, given that the value of CFD is highly in-

 C5* CART* C5 CART 

Parameters 
included in 
all trees 

se E  2 
Davg  CFD 
 

% in pop se 
2avg CFD 

 

avg, min, 
max 

DFavg DFmin 
CFD 
GD 

avg min 
DFavg DFmin 
2 2avg 

E 
CFD 

Parameters 
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a subset of 
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from all 
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DFmax 
Davg 
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Dmax 
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2min 2max

Qmax 2max
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Qmin Qmax 
Dmax DFmax 
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      KW 
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dicative of ensemble performance, what are the specific elements of diversity meas-
ured by CFD that make it better at predicting performance?  In other words, why is 
CFD a superior method?  Answering this question requires a more detailed examina-
tion of the functionality of diversity measures in the context of this decision problem. 
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Abstract. We describe an ensemble learning approach that accurately learns 
from data that has been partitioned according to the arbitrary spatial 
requirements of a large-scale simulation wherein classifiers may be trained only 
on the data local to a given partition.  As a result, the class statistics can vary 
from partition to partition; some classes may even be missing from some 
partitions. In order to learn from such data, we combine a fast ensemble 
learning algorithm with Bayesian decision theory to generate an accurate 
predictive model of the simulation data. Results from a simulation of an 
impactor bar crushing a storage canister and from region recognition in face 
images show that regions of interest are successfully identified. 

1   Introduction 

We consider the problem of dealing with an amount of data too large to fit in the 
memory of any one computer node and too bandwidth-intensive to move around to 
neighboring nodes, a problem which has far-reaching implications [1].   Since the data 
cannot be moved around between nodes, there may exist no logical grouping other 
than that in which it was originally stored.  Such a problem exists for the United 
States Department of Energy’s Advanced Simulation and Computing program [2], 
wherein a supercomputer simulates a hypothetical real-world event.  Data is stored on 
disks attached to compute nodes according to its spatial location within the 3D 
simulation.  The concern is that the storage allocation for the simulation optimizes for 
balanced and efficient computation, without regard to conditions that might make it 
easy or difficult for a machine learning algorithm to use the resulting data. 

In analyzing these simulations, developers and users want to spot anomalies which 
may take days to find in a massive simulation, especially if it is important to spot 
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every anomaly.  So, marking some areas of interest and finding others in the same or 
similar types of simulations can greatly reduce the time to debug and analyze a 
simulation.  Generally, experts will manually designate salient areas in the simulation 
as “interesting” according to personal, subjective criteria.  This process would be 
markedly sped up by analyzing those points (examples) and suggesting new points 
across each compute node.   

In this paper, we show examples from a simulation of a storage canister being 
crushed by an impactor bar from above at approximately 300 miles per hour.  In order 
to illustrate how the complete simulation appears, a visualization of the partitions is 
provided below in Figure 1.  The different shades of grey represent the partitioning of 
the simulation in a distributed environment.  Note that pieces of the impactor bar 
crushing the canister are also broken up spatially according to the partition. 

 

Fig. 1. A visualization of the data as distributed across compute nodes. There are four partitions 
shown in different gray levels as the storage canister is crushed 

As a result of the partitioning, areas of saliency may be limited to only a few 
nodes.  Salient points, being few in number, exhibit a pathological minority-class 
classification problem.  In the case of a partition having zero salient points, a single-
class “classifier” will be learned.  Furthermore, a prominent event on one node is not 
necessarily indicative of saliency on another node experiencing a similar event. 

We show that it is possible to obtain an accurate prediction of salient points even 
when the data is broken up arbitrarily in 3D space with no particular relation to 
feature space.  Results on this data set indicate that experts working with much larger 
simulations can benefit from the predictive guidance obtained from only a small 
amount of relevant data. 
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2   Data Description 

In this paper, we look at experiments in which a canister is rapidly crushed much like 
a person might crush a soda can.  The walls of the canister buckle under the pressure 
and the top of the canister accelerates downward until it meets the bottom.  In our 
experiments we observe 44 slices of time in which the above event was simulated and 
recorded. 

2.1   Physical and Spatial Characteristics 

Nine physical variables were stored for each of 10,088 nodes within each of 44 time 
steps.  They are the displacement on the X, Y, and Z axes; velocity on the X, Y, and Z 
axes; and acceleration on the X, Y, and Z axes.  The total number of data samples was 
44•10088=443,872. 

The data for each of the time steps was divided spatially according to the 
compute node to which it is assigned.  The partitioning was performed vertically 
along the Y axis of the canister, dividing the canister into four disjoint spatial 
partitions of roughly equal size.  Each compute node can see only one of these 
partitions, and we assume that it is too expensive in time or storage space to move 
data to another compute node.   

2.2   Train and Test Sets 

For every time step, those pieces of the canister that have buckled and been crushed 
were marked as salient.  To assist in labeling, the “Equivalent Plastic Strain” (EQPS), 
a measure for the stress on the surface of the canister [3], has been calculated and was 
used as a general template in choosing salient points.  At the beginning of the 
simulation, before the impactor bar has made contact, there were no salient nodes 
within the mesh.  As time progresses and the canister collapses, more and more nodes 
were marked salient.   

The process of marking salient nodes within the mesh can be as precise as the 
expert demands.  However, a high level of precision requires a correspondingly 
high level of effort marking the data.  In order to model a practical scenario where 
an expert is more interested in saving time than catering to the nuances of machine 
learning, we have allowed a fair amount of noise in the class labels by using tools 
that mark areas as salient rather than individual points—there are over 10,000 
points per time step.  Since the impactor bar and the canister are so close in 
proximity, it is quite reasonable to assume the bar will often have areas incorrectly 
marked as salient.   

In each time step and in each partition, saliency was designated in the above 
fashion.  For each partition, data present in the time steps was collapsed into two 
segments, a training set and a test set, according to the time step number: even time 
steps were combined into a training set, odd time steps were combined into a test set.  
Therefore our experiments used four partitions each having two data sets. 
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3   Classification System 

For each training set developed on each compute node, we used Breiman’s random 
forest algorithm to rapidly generate an ensemble of 25 classifiers.  The motivation for 
using this ensemble technique stems from the inherent speed benefit of analyzing only 
a few possible attributes from which a test is selected at an internal tree node. A 
complete description of the random forest algorithm can be found in [4].  Its accuracy 
was evaluated in [5] and shown to be comparable with or better than other ensemble-
generation techniques. 

Classification of a test point within the simulation involves prediction by each 
partition’s random forest. Because our algorithm was designed to work when only a 
few compute nodes have salient examples, a simple majority vote algorithm may fail 
to classify any salient points if the number of compute nodes trained with salient 
examples is less than half the number of compute nodes.  In a large-scale simulation it 
is likely that there will be nodes which have no salient examples in training.  
Therefore we must consider the priors:  the probability that any given node contained 
salient examples during training and so is capable of predicting an example as salient.  
A breakdown of our algorithm follows.   

p(w1|x) = number of ensembles voting for class w1 for example x, 
P(w1)   =  number of ensembles capable of predicting class w1 

Classify as w1 if:  p(w1|x)/P(w1) > p(w2|x)/P(w2) 
Classify as w2 if:  p(w1|x)/P(w1) < p(w2|x)/P(w2) 

A tie, p(w1|x)/P(w1) = p(w2|x)/P(w2), is broken randomly 

Of course, this is nothing more than Bayesian decision theory applied to the 
majority vote for a two-class problem.  Moving to an n-class problem is trivial: 

Classify as wn:  argmaxn (p(wn|x)/P(wn)) . (1) 

4   Experiments 

The random forest of 25 trees for each partition returns a single prediction for a 
class.  Those classifier predictions are combined into a single ensemble prediction 
for the example as outlined above, using the Bayesian majority vote with priors.  
Training is performed on the data contained in the even time steps.  Predictions on 
odd time steps are compared to the marked saliency in the odd time steps on a 
point-by-point basis to obtain an estimate of the true error. We also obtain 
predictions on even time steps to evaluate the re-substitution error. Our results are 
compared with those of using a single classifier within each partition and a single 
classifier for the entire simulation. 

5   Results 

The goal of the prediction stage is to direct experts towards additional salient  
regions. Unfortunately, a suitable metric for the algorithm’s usefulness in finding  and 
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classifying regions is non-trivial.  For this reason, we provide figures to help illustrate 
the accuracy of our approach.  Figures 2, 3, and 4 show the algorithm’s predictive 
power while the canister is being crushed.  In Figures 5, 6, and 7  we  observe  the  re- 

 

Fig. 2.   Left:  Ground truth as labeled in time step 3.  Right:  Predicted class labels 

 

Fig. 3.  Left:  Ground truth as labeled in time step 19.  Right:  Predicted class labels 

 

Fig. 4.  Left:  Ground truth as labeled in time step 37.  Right:  Predicted class labels 
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substitution error on the training data.  Darker areas indicate regions that have been 
classified as salient.  Ensemble predictions are provided to the right of the labeled 
data in each of the figures. 

 

Fig. 5.  Left:  Training data as labeled in time step 4.  Right:  Predicted class labels 

 

Fig. 6.  Left:  Training data as labeled in time step 20.  Right:  Predicted class labels 

 

Fig. 7.  Left:  Training data as labeled in time step 38.  Right:  Predicted class labels 
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Table 1. Error percentage and m-estimates obtained in our experiments 

Algorithm Used Error 
Percentage 

m-Estimate 

Single Classifier 24.3% 0.59 
Single Classifier in each Partition 26.7% 0.54 
Random Forest in each Partition 25.9% 0.55 

In Table 1, we provide an estimate of the true error for our experiments.  Because 
this error is based on a point-to-point comparison between our labeled test set and the 
predictions upon the test set, and because we know “regions” are salient rather than 
“points,” we could potentially lower the error by utilizing image processing 
techniques such as erosion and dilation.   The error rate for a single classifier trained 
on each partition is 26.7%.  The ensemble error rate of 25.9% was not reduced by 
using 250 classifiers per partition instead of 25.   

As a way of calculating how accurate the algorithm was for the minority class we 
used the m-estimate [6] shown below: 

Pm=(TP+mb)/(TP+FP+m) . (2) 

In this equation b is the prior for the minority class, m is the parameter for controlling 
the shift towards b, and TP and FP represent number of True Positives and False 
Positives.  The prior for the minority class in our problem is 0.30.  As suggested in [7], 
we have chosen m such that bm=10.  An evaluation of this method as it corresponds to 
decision trees is shown in [8].  In the preceding experiments, the forest of trees 
produced a slightly higher m-estimate, 0.55, than the single tree per partition, 0.54.   

Partitioning the data spatially, while necessary for our large simulation, negatively 
affects the accuracy of the results.  In a comparison with the performance of a single 
pruned decision tree, our multiple classifier spatially partitioned result is 1.6% less 
accurate.  The m-estimate of the single pruned decision tree was 0.59. While such 
losses in accuracy are unfortunate, this result shows that the problem of having a 
spatially partitioned data set is non-trivial; even an ensemble created from a random 
disjoint partitioning often provides an increase in accuracy over a single classifier, 
especially so in the case of a large dataset [9]. 

6   Previous Work Revisited 

In revisiting our previous work [1], we saw definite improvements in the 
classification accuracy of face images obtained from the FERET database [10] using 
the approach discussed here.  In those experiments we employed a k-nearest centroid 
algorithm which lacked adequate speed for terascale data sets but achieved reasonable 
results given our assumption of spatially disjoint subsets.  An example from the 
database is shown in Figure 8. 

In previous experimentation with a k-nearest centroid algorithm we were able to 
identify salient regions though regions of noise were also labeled.  These experiments 
did not use the Bayesian majority vote.  We compare those results with a forest of 
1,000 random forest trees trained on each of the eight partitions in combination with 
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Bayesian majority voting using priors.  Many fewer pixels are labeled incorrectly 
using this later method.  A comparison of the k-nearest centroid algorithm using 
eleven centroids to eight random forests of 1,000 decision trees is shown  in  Figure 9.   

  

Fig. 8. Image from the FERET database showing marked saliency for both “Interesting” and 
“Somewhat Interesting” classes for eight partitions delineated by white lines.  The “Interesting” 
class contains the eyes and mouth. The “Somewhat Interesting” class contains the eyebrows 

  

Fig. 9. Left:  Saliency predictions using KNC with 11 centroids.  Right:  Bayesian majority vote 
with priors using 1,000 random forest trees per partition 

Though the random forest results are 5.2% more accurate than the KNC results for this 
image, neither provides for significant differentiation between the “interesting” and 
“somewhat interesting” classes, due to the weakness of the derived feature attributes.  
The random forest image contains fewer false positive regions than the one created with 
KNC, especially in the regions to the left and right of the mouth.  Fewer false positives 
would guide researchers examining the data to fewer unimportant regions. 

7   Summary and Discussion 

Some simulations must be broken up across multiple processors in order to obtain 
results in a reasonable amount of time.  The method of breaking data into pieces is not 
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necessarily valuable, and possibly even harmful, to machine learning algorithms, as it 
violates the usual assumption that class statistics will be the same across all the 
training data and the test data.  In this paper we have shown how large simulation data 
broken up non-intuitively (according to a machine learning perspective) into spatial 
regions may be classified using a combination of fast ensemble techniques and 
Bayesian decision theory.   

Preliminary results on a relatively small problem indicate that our approach has 
merit.  In our simulation of the crushing of the storage canister, the resultant 
predictions appear more accurately classified than the training data which has been 
labeled haphazardly in accordance with time constraints placed upon experts.  This 
may signify that the algorithm is learning the underlying EQPS function that was 
generally used to label salient points.  A comparison with our previous work using 
facial images also showed improvement.   

In preparation for larger simulations with greater minority class problems, we 
conjecture that we might assign a bias, or risk (Rn(wn|x)), to a particular class utilizing 
the same sound Bayesian theories upon which we based our algorithm: 

Classify as wn:  argmaxn (Rn(wn|x)/P(wn)) . (3) 

It may also be possible to assign dynamic weights to the classifiers as shown in [11]. 
Of particular interest is the ability to classify regions rather than points since 

researchers examining these simulations will be looking at areas of interest within the 
simulation.  An algorithm to perform such a task is currently being developed. 

We believe the speed associated with the rapid generation of ensemble classifiers 
will enable the tractable prediction of saliency in much larger data sets.  The general 
problem of creating an ensemble from data that was partitioned without regard to the 
simplicity of the machine learning algorithm is an important practical problem that 
merits additional attention. 
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Abstract. A typical recognition system consists of a sequential combi-
nation of two experts, called a detector and classifier respectively. The
two stages are usually designed independently, but we show that this may
be suboptimal due to interaction between the stages. In this paper we
consider the two stages holistically, as components of a multiple classifier
system. This allows for an optimal design that accounts for such inter-
action. An ROC-based analysis is developed that facilitates the study
of the inter-stage interaction, and an analytic example is then used to
compare independently designing each stage to a holistically optimised
system, based on cost. The benefit of the proposed analysis is demon-
strated practically via a number of experiments. The extension to any
number of classes is discussed, highlighting the computational challenges,
as well as its application in an imprecise environment.

1 Introduction

In this paper we view the sequential combination of two classifiers as a Multiple
Classifier System (MCS). We illustrate that the independent design of individual
classifiers in such sequential systems results in sub-optimal performance, since
it ignores the interaction between stages. In this paper we demonstrate that op-
timality can be obtained by viewing such an MCS in a holistic manner. This
research is targeted specifically at two-stage recognition systems, in which the
first stage classifier attempts to detect target object distributed among a typ-
ically poorly sampled, or widely distributed outlier class. The second classifier
then operates on objects selected by the first, and discriminates between sub-
target classes. An example is image-based road-sign recognition [9], in which the
first stage involves detecting road-signs that are distributed among an arbitrary
background, and the second stage consists of a classifier to distinguish between
different sign classes. Another application is fault diagnosis, such as [7], in which
the first stage classifier is designed to detect a fault from normal operation, and
the second stage to characterise the type of fault.

Considering the detector, since the outlier class is poorly defined, a two-class
discrimination scheme is inappropriate, and other methods that are trained/
designed only on the target class are typically used, such as correlation. Re-
cently One Class Classification (OCC) was introduced [12], consisting of a for-
mal framework to train models in situations in which data from only a single
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class is available. This allows a statistical pattern recognition methodology to
be taken in designing the detector1. Thus we consider these recognition systems
as a mixture of one-class and multi-class classifiers.

Evaluating the recognition system involves analysing the classification accu-
racy, and the rate of outlier false acceptances. Importantly, a poor detector that
does not detect a large fraction of target objects results in poor classification
performance. In the opposite case, a very sensitive detector may pass an unac-
ceptably large fraction of outlier objects to the classifier, which may for example
result in high manual processing costs or computational overload.

The paper is structured as follows: Section 2 presents an analytic example to
demonstrate how the two classifiers interact. A cost-based approach using ROC
analysis demonstrates how system optimisation can be performed in evaluating
the entire system. In Section 3 the multiple-class extension is discussed briefly,
highlighting some problems that exist in extending the analysis to a large num-
ber of target classes. In Section 4, some experiments on real data are performed,
consisting of a simple problem with 2 target classes, and a 4-class problem in-
volving hand-written digit recognition. In Section 5 we briefly consider the case
in which priors or costs cannot be defined precisely, discussing how different sys-
tem configurations can be chosen in these situations. Conclusions are given in
Section 6.

2 The Dependence Between Classifiers

2.1 Two-Stage Recognition Systems

Consider a recognition task in which there are a number (n) target classes
ωt1, ωt2, . . . , ωtn, and an outlier class ωo. A recognition system, as illustrated
in Figure 1, has to classify these objects. A detector DDET classifies incoming
objects as either target (ωt), or outlier via a detection threshold θd:

DDET (x) :

{
target if fDET (x) > θd

outlier otherwise
(1)

The detector selects objects from x such that the input to DCLF is x̃.

x̃ = {x|fDET (x) > θd} (2)

The classifier DCLF then classifies incoming objects (according to x̃) to any of the
n target classes via the classification thresholds2 θt1

c , θt2
c , . . . , θtn

c . The classifier

1 Note that the MCS view on such a multi-stage system also holds for two-stage
recognition systems that are constructed for computational reasons. In this case the
first stage is typically designed for fast rejection of very abundant outlier objects,
with a more complex second stage to discriminate between target classes.

2 In an n-class situation, the classification thresholds can be considered to be the
weighting applied to the output posterior density estimates together with priors.
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Fig. 1. Illustrating a typical recognition system on a synthetic example. The scatter

plots show a 2-dimensional synthetic example with two target classes, illustrating the

detector in the left plot, and the classifier in the right

outputs are weighted by classification thresholds and priors p(ωt1), p(ωt2), . . . ,
p(ωtn). The classifier outputs fCLF (x̃) can then be written as:

[θt1
c p(ωt1)fCLF (ωt1|x̃), θt2

c p(ωt2)fCLF (ωt2|x̃), . . . , θtn
c p(ωtn)fCLF (ωtn|x̃)] (3)

Here
∑n

i=1 θti
c = 1. The final decision rule is then:

DCLF (x̃) = argmaxn
i=1 θti

c p(ωti)fCLF (ωti|x̃) (4)

The primary distinction between this two-stage system and a multi-class single-
stage recognition system is that the input to the classification stage in the two-
stage case is a subset of the system input, whereas in the single-stage case all
data is processed. We are considering the dependence (in terms of overall system
performance) of the 2 stages, and how the system should be optimised.

2.2 One-Dimensional Example

In this section a simple 1-dimensional analytical example is studied in order to
illustrate how the detection and classification stages are related. Two Gaussian-
distributed target classes ωt1 and ωt2 are to be detected from a uniformly-
distributed outlier class ωo, and subsequently discriminated. The target classes
have means of −1.50 and 1.50 respectively, and variances of 1.50. The ωo class
has a density of 0.05 across the domain x. The class conditional densities for
ωt1, ωt2 and ωo are denoted p(x|ωt1), p(x|ωt2), and p(x|ωo) respectively, with
priors p(ωt1), p(ωt2), and p(ωo), which are assumed equal here. For the total
probability distribution of x therefore holds:

p(x) = p(ωt1)p(x|ωt1) + p(ωt2)p(x|ωt2) + p(ωo)p(x|ωo) (5)
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For this 1-dimensional data, the classifier is defined consisting of only a single
threshold, denoted θc. The position of θc determines the classification perfor-
mance, and can be used to set an operating point to achieve a specified false-
negative rate FNr (with respect to ωt1) or false-positive rate (FPr). These two
errors are known as the Error of Type I and II respectively (εI and εII). As θc

varies, so do the respective εI and εII , resulting in the ROC (receiver-operator
curve [8]) between ωt1 and ωt2. In a typical discrimination problem (ignoring the
detector) across domain x, we can define εI and εII in terms of θc as:

εI = 1 − ∫∞−∞ p(x|ωt1)I1(x|θc)dx, εII = 1 − ∫∞−∞ p(x|ωt2)I2(x|θc)dx (6)

The indicator functions I1(x|θ) and I2(x|θ) specify the relevant domain:

I1(x|θc) = 1 if p(ωt1)p(x|ωt1) − p(ωt2)p(x|ωt2) < θc, 0 otherwise
I2(x|θc) = 1 if p(ωt1)p(x|ωt1) − p(ωt2)p(x|ωt2) ≥ θc, 0 otherwise (7)

A two-stage recognition system consists of two sets of thresholds, namely a clas-
sification threshold θc (of which there are a number of thresholds according to
the number of classes), and a detection threshold θd. Evaluating the recognition
system involves estimating both classification performance (εI and εII), and the
fraction of outlier objects incorrectly classified as target, denoted FP o

r . Thus
one axis of the evaluation is concerned with how well the system performs at
detecting and discriminating target classes, and the other is concerned with the
amount of false alarms that the system must deal with. Therefore the system
must be evaluated with respect to εI , εII , and FP o

r . In this simple example, we
can write these as:

εI = 1 − ∫∞−∞ p(x|ωt1)I1(x|θc)IR(x|θd, ωt1)dx

εII = 1 − ∫∞−∞ p(x|ωt2)I2(x|θc)IR(x|θd, ωt2)dx

FP o
r =
∫∞
−∞ p(x|ωo)I1(x|θc)IR(x|θd, ωt1) + p(x|ωo)I2(x|θc)IR(x|θd, ωt2)dx

(8)

IR(x|θd, ω) = 1 if p(x|ω) > θd, 0 otherwise (9)

Equation 8 yields the full operating characteristics of the system, shown in Fig-
ures 2 and 3 for the example. Referring first to Figure 2, this shows how the
system operating characteristics vary for a number of fixed detection thresholds.
The top row illustrates the position of the detection threshold, and the bottom
row shows εI , εII , and FP o

r for all classification thresholds (similar to standard
ROC analysis, except an additional dimension is introduced to account for the
detection threshold). In these plots, it is desirable for εI , εII , and FP o

r to be
minimal, indicating good classification and detection.

In Figure 2, as θd is increased, the plots show how FP o
r progressively de-

creases. In the left-column, a very sensitive detector is used, with θd placed in
the tails of the target distribution. It is clear that the classification performance
is almost maximal for this threshold, but FP o

r is very high i.e. the system will ac-
cept a very high percentage of outlier objects. The centre column plots show the
case for which a higher detection threshold has been used (θd = 0.05), resulting



210 T. Landgrebe et al.

θd = 0.01

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

Unconditional density
P
ro

b
a
b
il
it
y

0

0.5

1
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

εI
εII

F
P

o r

θd = 0.05

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

0

0.5

1
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

εI
εII

F
P

o r

θd = 0.13

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

0

0.5

1
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

εI
εII

F
P

o r

Fig. 2. Operating characteristics for a fixed θd, and varying θc. The left column is

where θd = 0.01, followed by θd = 0.05 in the middle column, and θd = 0.13 in

the right column. The top row plots illustrate the distribution, with two Gaussian

target classes, and a uniformly distributed outlier class. The position of the detection

threshold is shown via the dotted line. The full operating characteristics for all possible

θc are shown in the bottom row
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Fig. 3. Results of analytic experiment. The left plot shows the full operating charac-

teristics, with εI plotted against εII , and FP o
r . The right plot shows the loss difference

between an independent and holistic design approach for all combinations of ct2, and

co over a {0, 1} range, where ct1 is fixed to 0.55

in a substantially lower FP o
r , for a small sacrifice in classification performance.

The third column shows a situation in which θd is again increased, resulting in
a further decrease in classification performance. In this case the detector only
accepts very probable target objects, reducing the volume of the target class
decision space, at the expense of all target objects appearing outside the de-
cision boundary. The left plot of Figure 3 shows the operating characteristics
for all combinations of θc and θd. Next we show how using the full operating
characteristic can be advantageous in system design.



Optimising Two-Stage Recognition Systems 211

2.3 Cost-Based Analysis

From the system perspective, the cost of misclassifying a ωt object (as outlier)
is ct, and the cost of misclassifying a ωo object (as target) is co. The individual
target class misclassification costs can be written as ct1, ct2, . . . ctn

, which must
sum to ct together with the priors (note that we do not consider the entire loss
matrix as defined in [2], but only consider the loss incurred due to misclassi-
fication, irrespective of the class to which it is assigned). The expected overall
system loss L can be written as:

L = ctp(ωt)FNr +cop(ωo)FP o
r , =

n∑
i=1

cti
p(ωti

)FN ti
r +cop(ωo)FP o

r ,

n∑
i=1

cti
= ct

(10)
The priors are denoted p(ωt) and p(ωo), and the false negative rate of ωt is
denoted FNr. The target class misclassification costs are denoted cti

for target
class ωti

. Cost-based classifier design involves minimising of L for the given costs,
resulting in the optimal threshold values. The ROC is a tool that can be used
to facilitate this minimisation, since it consists of performances for all possible
threshold values (all FNr and FPr results). In a 2-class problem, the costs (and
priors) specify the gradient of the cost line (also known as an iso-performance line
as defined in [10]), and the intersection of the normal of this line with the ROC
(plotting FNr against FPr) results in the optimal operating point3. We now
demonstrate a cost-analysis for the example in order to emphasise the impor-
tance of designing the entire system holistically. Two different design approaches
are compared, the first of which we refer to as the independent approach, and
the second as the holistic approach. In the first case, we optimise the recognition
and classification stages independently, and compare the expected system loss to
the second case, in which the entire system is optimised holistically. We assume
that the cost specification for the recognition system is such that misclassifying
a ωt object has a cost of 5, and the cost of classifying a ωo object as target
is 10. Among the two target classes ωt1 and ωt2, these have misclassification
costs of 2 and 3 respectively (summing to 5), i.e. ωt2 is favoured. From Equation
10, we can write the system loss (assuming equal priors) for the chosen θc and
θd as L(θc, θd) = 2εI(θc, θd) + 3εII(θc, θd) + 10FP o

r (θc, θd). In the independent
approach, the detector is optimised using ωt and ωo data only (with operating
characteristics generated for these classes only). The classifier is then optimised
on ωt1 and ωt2. The corresponding thresholds are indicated by the point marked
N in the left plot of Figure 3. In the holistic approach, ωt1, ωt2, and ωo are
analysed simultaneously in the optimisation, resulting in the point marked H.
The two points N and H are significantly apart on the operating characteristic.
In the independent approach, the overall expected loss is thus 4.18, and in the

3 We deal with multi-dimensional ROC plots in this paper. Cost-based optimisation
involves intersecting a plane (the gradient based on the cost associated with misclas-
sifying each class) with the multi-dimensional ROC surface, resulting in optimised
thresholds.
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holistic approach, the loss is 4.02. Thus independent approach is sub-optimal
here. Depending on the problem and the costs, the independent approach may
vary in the degree of sub-optimality. To assess how the holistic approach will im-
prove performance in general, refer to the right plot of Figure 3. This plot shows
the difference between the independent and holistic loss performances (where a
positive score indicates superiority of the holistic approach) for all combinations
of costs over a range. The cost ct1 is fixed to 0.55, and ct2 and co are varied for all
combinations over the {0, 1} range. It can be seen that for this artificial example,
only imbalanced costs result in significant improvements. In the experiments, it
will be shown models that do not fit the data well in real problems can benefit
even more from this approach, including balanced cases.

3 Multiple Class Extension

The analytic example involved a recognition system with 2 target classes, result-
ing in a 3-dimensional ROC surface. As the number of target classes increase,
the dimensionality of the ROC increases. The analysis extends to any number of
classes [11]. However, as the number of dimensions increase, the computational
burden becomes infeasible [5]. In this paper, experiments involved up to 3 target
classes. In this case, the processing costs were already very high. and only a very
sparsely sampled ROC could be generated. Extending this analysis to N classes
would be infeasible. This is the topic of future work, exploring approaches that
can be used to either approximate the full ROC, or to use search techniques in
optimising the thresholds. Attention is drawn to [6], in which an initial set of
thresholds is used, and a hill-climbing greedy-search is used.

4 Experiments

In this section a number of experiments are conducted on real data in order
to demonstrate the holistic system design approach practically, and how model
(or system configuration) selection can be performed. Two datasets are used,
described as follows:

– Banana: A simple 2 dimensional problem with 2 target classes distributed
non-linearly (the banana distribution [4]), in which there are 600 examples
each of ωt1 and ωt2, and 2400 outlier examples. The distribution is shown in
Figure 1.

– Mfeat : This is a dataset consisting of examples of ten handwritten digits,
originating from Dutch utility maps4. In this dataset, Fourier components
have been extracted from the original images, resulting in a 76-dimensional
representation of each digit. 200 examples of each digit are available. In
these experiments, digits 3, 4 and 8 are to be distinguished (i.e. 3 target
classes ωt1, ωt2, and ωt3), distributed among all other digit classes, which
are considered to be outlier.

4 Available at ftp://ftp.ics.uci.edu/pub/machine-learning-databases/mfeat/
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We follow the same analysis approach as in Section 2. Classification and de-
tection thresholds are generated across the full range. In the Banana case, 200
evenly sampled classification thresholds are used, and similarly 100 detection
thresholds are used. For computational reasons, the Mfeat experiments only
uses 10 detection thresholds, and 12 samples per classification threshold. Each
experiment involves a 10-fold randomised hold-out procedure, with 80% of the
data used in training, and the remainder for testing. The evaluation consists of
evaluating the loss incurred for a number of chosen misclassification costs, using
the ROC to find an optimal set of thresholds. In this evaluation it is assumed
that the costs (and priors) are known beforehand, and as in Section 2, we only
consider misclassification costs, applying Equation 10.

In the Banana experiments, 3 different system configurations are imple-
mented, comparing the independent and holistic approaches for each case. The
same detector is used for all 3 configurations, consisting of a Gaussian one class
classifier (OCC) [12]. Three different classifier models are used, consisting of a
Bayes linear, quadratic, and mixture of Gaussians classifier (with two mixtures
per class), denoted LDC, QDC, and MOG respectively. In Table 1 the Banana
experimental results are shown for 4 different system costs. These are shown in
the four right-most columns, with the costs denoted [ct1, ct2, co]. For all 3 system
configurations, the holistic design approach results in a lower overall expected
loss than the independent approach. In some cases the difference in performance
is not significant (see the MOG results for the case in which ct1 = 3.0, ct2 = 1.0,
and co = 4.0). These experiments show that the benefit of an overall design
approach can in many cases result in significant improvements in performance.

A similar set of experiments are conducted for the Mfeat problem, with costs
denoted [ct1, ct2, ct3, co]. Results are shown for four different cost specifications
in the right-most columns of Table 1. Three different system configurations are
considered, and in each case the independent and holistic design approaches
are compared. The first configuration consists of a principal component analy-
sis (PCA) mapping with 3 components and a Gaussian OCC as the detector,
followed by a Fisher mapping and LDC as the classifier. The second configu-
ration uses a 3-component PCA mapping Gaussian OCC for the detector, and
a 3-component PCA LDC for the classifier. Finally the third system consists
of a 5-component PCA with Gaussian OCC detector, and a 2-component PCA
MOG classifier with 2 mixtures for the classifier. As before, the holistic ap-
proach consistently results in either a similar or lower overall loss compared to
the independent approach. Once again, the improvement is dependent on the
cost specification. For costs [1, 8, 1, 10] (favouring ωt2) and [1, 1, 1, 12] (favouring
ωo), there is no significant improvement in using the holistic approach for all
3 systems. However, when the costs are in favour of ωt1, the holistic approach
leads to a significantly lower system loss. This suggests that the ωt1 threshold has
more effect over the detection performance. In this case θd should be adjusted
accordingly for optimal performance. The same observation is made for balanced
costs [1, 1, 1, 3]. An interesting observation made in these experiments is models
that do not fit the data well (e.g. the LDC in the Banana experiments, compared
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Table 1. Results of cost-based analysis for the Banana and Mfeat datasets, comparing

an independent (I) and holistic (H) design approach for a number of different system

configurations (low scores are favourable). Standard deviations are shown

Detector Classifier Cost 1 Cost 2 Cost 3 Cost 4

Banana [5, 5, 10] [3, 1, 4] [1, 3, 4] [1, 1, 4]

Gauss LDC I 0.081 ± 0.009 0.370 ± 0.049 0.233 ± 0.056 0.244 ± 0.046
Gauss LDC H 0.067 ± 0.008 0.326 ± 0.039 0.171 ± 0.015 0.189 ± 0.027

Gauss QDC I 0.089 ± 0.017 0.418 ± 0.051 0.260 ± 0.060 0.265 ± 0.053
Gauss QDC H 0.072 ± 0.010 0.354 ± 0.036 0.179 ± 0.025 0.182 ± 0.030

Gauss MOG I 0.059 ± 0.008 0.252 ± 0.033 0.206 ± 0.032 0.205 ± 0.030
Gauss MOG H 0.049 ± 0.007 0.230 ± 0.035 0.170 ± 0.019 0.169 ± 0.021

Mfeat [1, 1, 1, 3] [8, 1, 1, 10] [1, 8, 1, 10] [1, 1, 1, 12]

PCA3 Gauss Fisher LDC I 0.648 ± 0.050 0.212 ± 0.018 0.225 ± 0.017 1.385 ± 0.316
PCA3 Gauss Fisher LDC H 0.547 ± 0.110 0.146 ± 0.014 0.223 ± 0.017 1.317 ± 0.435

PCA3 Gauss PCA3 LDC I 0.654 ± 0.053 0.214 ± 0.018 0.225 ± 0.017 1.389 ± 0.316
PCA3 Gauss PCA3 LDC H 0.551 ± 0.110 0.146 ± 0.015 0.224 ± 0.017 1.305 ± 0.432

PCA5 Gauss PCA2 MOG2 I 0.442 ± 0.029 0.146 ± 0.011 0.154 ± 0.011 0.929 ± 0.202
PCA5 Gauss PCA2 MOG2 H 0.380 ± 0.079 0.112 ± 0.024 0.148 ± 0.018 0.847 ± 0.124

to MOG), tend to benefit more from the holistic optimisation, suggesting that
the interaction is more prominent for all costs.

5 Imprecise Environments

The approach taken thus far showed that, given both misclassification costs and
priors, the optimal set of thresholds can be found. In many practical situations
the costs or priors cannot be obtained or specified precisely [10]. In these situa-
tions we may still wish to choose the best system configuration, and have some
idea of a good set of system thresholds that may, for example, be suitable for a
range of operating conditions or costs (see [1] and [3]). We do not go into more
detail here due to space constraints, but emphasise the fact that real problems
are often within an imprecise setting, requiring an alternative evaluation to the
cost-based approach. One strategy for this situation is to compute the AUC
(Area Under the ROC curve) for a range operating points. An integrated error
results that is useful for model selection. The next step is to choose thresholds,
which may for example be specified by considering operating regions that are
relatively insensitive to changes in cost or priors.

6 Conclusion

A two-stage recognition system was considered as an MCS, consisting of a de-
tection and classification stage, with the objective of optimising the overall sys-
tem. An analysis of a simple analytic problem was performed, in which the full
operating characteristics were computed for all combinations of detection and
classification thresholds. The holistic design approach was compared to the case
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in which the two stages are designed independently, showing that the holistic ap-
proach may result in a lower expected loss. The N-class extension was discussed,
highlighting the computational difficulties in scaling the analysis to any number
of classes. Some experiments with real data were then undertaken for a number
of system configurations to demonstrate practical application of the analysis,
consistently demonstrating the advantage of the holistic design approach. It was
observed that the performance improvements vary according to the cost spec-
ification, and the respective degree of interference a class may impose on the
detection stage. Models that fit the data well only seem to benefit for imbal-
anced costs/priors, whereas ill-fitting models can result in improvements for any
costs. Finally, a short discussion on application of the methodology to impre-
cise environments was given. Future work includes exploring efficient multi-class
ROC analysis, and application to an imprecise environment.

Acknowledgements. This research is/was supported by the Technology Foun-
dation STW, applied science division of NWO and the technology programme
of the Ministry of Economic Affairs.

References

[1] N.M. Adams and D.J. Hand. Comparing classifiers when misallocation costs are
uncertain. Pattern Recognition, 32(7):1139–1147, 1999.

[2] C.M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press
Inc., New York, first edition, 1995.

[3] A.P. Bradley. The use of the area under the ROC curve in the evaluation of
machine learning algorithms. Pattern Recognition, 30(7):1145–1159, 1997.

[4] R.P.W. Duin, P. Juszcak, P. Paclik, E. Pekalska, D. de Ridder, and D.M.J. Tax.
Prtools, a matlab toolbox for pattern recognition, January 2004. version 4.0.

[5] C. Ferri, J. Hernndez-Orallo, and M.A. Salido. Volume under the roc surface for
multi-class problems. Proc. of 14th European Conference on Machine Learning,
pages 108–120, 2003.

[6] N. Lachiche and P. Flach. Improving accuracy and cost of two-class and multi-class
probabilistic classifiers using ROC curves. Proc. 20th International Conference on
Machine Learning (ICML-2003), Washington DC, pages 416–423, 2003.

[7] A. Lipnickas, J.S. da Costa, and C.D. Bocaniala. FDI based on two stage classifiers
for fault diagnosis of valve actuators. 11th Int. Power Electronics and Motion
Control Conference, pages 3,147–153, September 2004.

[8] C. Metz. Basic principles of roc analysis. Seminars in Nuclear Medicine, 3(4),
1978.
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Abstract. In previous work, we showed that the use of Multiple Input Repre-
sentation(MIR) for the classification of time series data provides complemen-
tary information that leads to better accuracy. [4]. In this paper, we introduce
the Static Minimization-Maximization approach to build Multiple Classifier Sys-
tems(MCSs) using MIR. SMM consists of two steps. In the minimization step, a
greedy algorithm is employed to iteratively select the classifiers from the knowl-
edge space to minimize the training error of MCSs. In the maximization step,
a modified version of Behavior Knowledge Space(BKS), Balanced Behavior
Knowledge Space(BBKS), is used to maximize the expected accuracy of the
whole system given that the training error is minimized. Several popular tech-
niques including AdaBoost, Bagging and Random Subspace are used as the
benchmark to evaluate the proposed approach on four time series data sets. The
results obtained from our experiments show that the performance of the proposed
approach is effective as well as robust for the classification of time series data.
In addition, this approach could be further extended to other applications in our
future research.

1 Introduction

Many real applications are interested in the knowledge varying over time. Currently,
the temporal classification has been widely adopted in areas such as climate control
research, medical diagnosis, economic forecast, sound recognition etc. However, while
the classification of the non-temporal information has great achievement in recent years,
temporal classification techniques are scarce. Temporal patterns contain dynamic infor-
mation and are difficult to be represented by traditional approaches. Classifiers such as
neural network, decision trees don’t function well when applied to temporal data di-
rectly. Other solutions which employ temporal models are normally domain-dependent
and could not be applied to general problems. In the current directions of the machine
learning research, Multiple Classifier Systems(MCSs) have been proved to be an effec-
tive way to improve the classification performance and are widely used to achieve high
pattern-recognition performances [11]. Currently, they have become one of the major
focuses in this area. In this paper, we introduce the Static Minimization-Maximization
approach to build MCSs. This approach is called static since we assume that the pool
of classifiers available are explicitly specified in advance. In particular, for time series

N.C. Oza et al. (Eds.): MCS 2005, LNCS 3541, pp. 216–225, 2005.
c©Springer-Verlag Berlin Heidelberg 2005
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data, the pool of classifiers is generated by MIR and other temporal information repre-
sentation techniques [4].

This paper is organized as follows: Section 2 reviews the related work. In section
3, we model MCSs from the data mapping point of view. Section 4 presents the pro-
posed approach. The experiments and discussions are presented in section 5. Section 6
concludes the work of this paper.

2 Related Works

In this section, we review several approaches for the classification of time series data.
Bagging and boosting [5, 14] are two of the most popular classification techniques. In
some situations, bagging could improve the pattern recognition for the unstable classi-
fiers effectively. The boosting technique has been reported as the “best-off-shelf clas-
sifier in the world” [2]. Other techniques such as the random subspace, random forest
and randomized C4.5[3, 7, 15] are also widely used. While these approaches focus on
the general property of the data, they neglect some important information in time series
data. Therefore, they may not be the best design for time series data. In [4], several de-
signs of MCSs which focus on time series data have been reviewed. Sanchos et. al.[17]
employ an ensemble of five base classifiers which are either Self-Organizing Map-
ping(SOM) or Multiple Layer Perceptron(MLP) for the classification of the time series
data. Ghosh et. al.[8, 10] employ an ensemble of Artificial Neural Networks(ANNs)
with the weighted average fusion technique to identify and classify the underwater
acoustic signals. González et.al. [9] and Diez et.al. [6] propose interval based classi-
fication systems for time series data, in which the AdaBoost technique is adopted. Hsu
et.al. [12] propose a hierarchical mixture model called specialist-moderator network for
the time series classification. It combines recurrent ANN classifiers in a bottom-up ar-
chitecture. Although these approaches give consideration to the property of time series
data, their performances on time series data in general are not well demonstrated. In
the following section, we introduce the SMM approach to design MCSs which can be
effectively applied to general time series data.

3 Modelling Multiple Classifier Systems

We model MCSs from a data mapping point of view, in which the classification process
with MCS is composed of two steps of data mappings. First, the input data X is mapped
to the decision of the base classifiers, represented by the random variable D. In this
situation, the input preprocessors and base classifiers are defined as a function which
corresponds to a many-to-one mapping from X to D:

φ : X → D

Then, the decisions, D, are mapped to the label of the data, L. The combination
approach of MCSs is thus defined as a function which corresponds to a many-to-one
mapping from D toL:

ϕ : D → L
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Before we proceed further, we first provide the definitions of the error functions Θφ

and Θϕ for φ and ϕ respectively.
Suppose Xi represents the subset of X which has the same decision subsets for

the base classifiers, Di. Since the data in Xi may come from different categories, Xi

could be further decomposed into a series of disjoint subsets {Xj
i } (j = 1..n) such

that for any x ∈ Xj
i , the category of x is Lj . Since each Di is finally mapped to a

unique category, it is impossible for all of the data in Xi to be correctly mapped to their
corresponding categories if they are in different categories and mapped to the same
Di. For each Xi, only a certain subset Xj

i is finally mapped to the correct category.
Therefore, the maximum likelihood estimation is adopted in which Xi is approximated
by the subset set Xj

i with the most frequent occurrence. In this situation, the potential
loss θφ(Xi) in mapping from Xi to Di is the sum of the probability of other subsets
{Xk

i }(k �= j). Based on the above discussion, the error function Θφ is given as follows:

Θφ =
∑

i

θφ(Xi)P (Xi) (1)

Similarly, the loss function for ϕ(D) is defined as follows:

θϕ(Di) =

{
0 ϕ(Di) = Li;
1 Otherwise.

(2)

where Li represents the actual label which is associated with Di. Similarly, the
function for ϕD is given as follows:

Θϕ =
∑

i

θϕ(Di)P (Di) (3)

Since the classification process of MCSs is composed of two independent steps of
data mapping, the error function of MCSs Θ is decided by Θφ and Θϕ. That is

Θ = 1 − (1 − Θφ)(1 − Θϕ) (4)

4 The Static Minimization-Maximization Approach

In this section, we introduce the proposed Static Minimization-Maximization(SMM)
approach (Fig. 1) for the design of MCSs. First, we define the pool of classifiers avail-
able as the knowledge base Ω. In Static Minimization-Maximization(SMM), we assume
that Ω is explicitly specified. Specially, for time series data, Ω is generated by MIR or
other techniques which could effectively extract the temporal information.

The objective of SMM is to adaptively build an ensemble C (C ⊆ Ω) such that
the performance of C is effective and robust. In this paper, we find that SMM can be
effectively applied to general time series data when Ω is built with MIR and other
temporal information representation techniques. There are two steps in SMM. In the
first step, SMM focuses on minimizing the training error. In the second step, SMM
focuses on maximizing the expected testing accuracy given that the training error is
minimized. In the following section, we discuss each step in detail.
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Fig. 1. Static Minimization-Maximization Approach

4.1 Minimization of Training Error

The underlying models vary for different data sets. Sometimes, the structure of the in-
dividual classifier in Ω is complex enough to represent the data while several classifiers
need to be aggregated to achieve a satisfying performance in other situations. There-
fore, one of the fundamental issues in the design of MCSs is how to build the ensemble
adaptively. In SMM, the training error of MCSs is used to guide the generation of the
ensemble. From Eq. 4,

Θtrain = 1 − (1 − Θtrain
φ )(1 − Θtrain

ϕ ) (5)

In the second data mapping from D to L in the training process, SMM builds up a
lookup table which describes the relation between each Di and Li. In this situation,

Θtrain
ϕ = 0

From Eq.5, we get

Θtrain = Θtrain
φ

Then, the objective in this step changes to minimizing Θtrain
φ . There are many ways to

generate the ensemble to minimize Θtrain
φ . In this paper, we propose a greedy search

method given the consideration of both the performance and time complexity.
In each round, the greedy search algorithm selects one classifier from the knowledge

base Ω into the ensemble C by minimizing the training error of the current ensemble.
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There are two stopping criteria: (1) the training error is minimized to zero (2) The train-
ing error could not be further minimized by selecting additional classifiers from the
knowledge base Ω. In addition, we also record the set of classifiers generated in each
round by a collection F which provides information to maximize the expected test ac-
curacy in the second step.

Algorithm 1. Greedy Search
———————————————————————————
Ω = {c1, ....cn}
C(0) = NULL
Θtrain

φ (0) = 10000
F = NULL
k = 0
do

k = k + 1
Cj

k = Ck−1 ∪ cj (cj ∈ Ω)
find Ci

k such that Θtrain
φ (Ci

k) is minimized
Ck = Ci

k

F = F ∪ Ck

Θtrain
φ (k) = Θtrain

φ (Ci
k)

while (Θtrain
φ (k) > 0 and Θtrain

φ (k) < Θtrain
φ (k − 1))

———————————————————————————

4.2 Maximization of Expected Test Accuracy

In the first step, a greedy search algorithm is employed to generate the ensemble which
is complex enough to represent the data. In this step, SMM focuses on how to maximize
the expected test accuracy given the training error is minimized.

Since the ensemble has been decided in the first step, Θtest
φ is also determined.

Therefore, the key issue for the maximization of Θtest is to maximize Θtest
ϕ . We first

consider one extreme condition: the data which is used to train the aggregation rules is
sufficiently large. In this situation, we can always build a lookup table and record each
mapping between D and L. Since the size of the validation data set is large enough, the
estimated decision distribution converges to the real distribution. In this situation,

Θtest
ϕ = 0

It is easy to show that
Θtest = Θtest

φ

Obviously, Behavior Knowledge Space(BKS) [13] is the best choice for the decision
aggregation in this situation. However, this assumption is not always valid in real world.
Therefore, the estimated distribution of the decision distribution may deviate from the
real one significantly. The consequence is that the performance of MCSs tends to be
ad hoc and significantly depends on various data sets, the classifiers generated etc.
In order to overcome this difficulty, we propose the Balanced Behavior Knowledge
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Space(BBKS) for the decision aggregation, which is a modification of the original BKS.
Let A represents the event that the estimated probability is reliable. Then, the objective
function for BBKS is given as follows:

max
j

P (ϕ(Di) = Lj , A|Di) j = 1..n (6)

Here, we use the frequency as the probability measure. According to the Bayesian
function, there is

P (ϕ(Di) = Lj , A|Di) = P (ϕ(Di) = Lj |A,Di)P (A|Di)

= P (A|Di)
n(ϕ(Di) = Lj)

n(Di)

where n(Di) and n(ϕ(Di) = Lj) represent the number of data in Xi and Xj
i respec-

tively. P (ϕ(Di) = Lj |A,Di) could be approximated by the frequency that the decision
Di is assigned to the category Lj . Clearly, one of the key issues in BBKS is to decide
P (A|Di). Let D represents the decisions of the classifiers and Uij represents the event
that decision Di is assigned to the category Lj . Set Ik(Uij) is the indicator function of
Uij on the kth trial.

Ik(Uij) =

{
1 ϕ(Di) = Lj ,;
0 Otherwise.

(7)

Let Zn
ij represents average value of I(Uij) in n independent and identical trials.

Zn
ij =

∑n
k=1 Ik(Uij)

n

Suppose the data with the decision Di is categorized to Lj . For any other category
Lk, we want to find the probability P (Zn

ij > Zn
ik) and use it to approximate P (A|Di).

For the root of the maximum likelihood estimation, θ̂n , there is θ̂n − θ → W ∼
N(0, 1

J(θ̂n)
). Where J(θ̂n) is the fisher information Therefore, we could approximately

assume that Zn
ij − E(Zn

ij) and Zn
ik − E(Zn

ik) are independent when the number of
categories is more than 2. Suppose d = E(Zn

ij) − E(Zn
ik), then

P (Zn
ij > Zn

ik)
= P (Zn

ij − E(Zn
ij) > Zn

ik − E(Zn
ik) − d)

≥ P (
⋃

0<x<d

(Zn
ij − E(Zn

ij) + d > x,Zn
ik − E(Zn

ik) < x))

≥ P (Zn
ij − E(Zn

ij) + d >
d

2
, Zn

ik − E(Zn
ik) <

d

2
)
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= P (Zn
ij − E(Zn

ij) + d >
d

2
)P (Zn

ik − E(Zn
ik) <

d

2
)

= P (E(Zn
ij) − Zn

ij <
d

2
)P (Zn

ik − E(Zn
ik) <

d

2
)

≥ (1 − V ar(Zn
ij)

V ar(Zn
ij) + d2

4

)(1 − V ar(Zn
ik)

V ar(Zn
ik) + d2

4

)

≥ (1 − 1
1 + nid2

)2

The value of d is estimated as follows:

d = P̂ij − P̂ik

=
n(ϕ(Di) = Lj)

ni
− n(ϕ(Di) = Lk)

ni

Where n(ϕ(Di) = Lj) and n(ϕ(Di) = Lk) is the number of data which has the
decision Di and belongs to the category Li and Lk respectively. ni is the number of
data with the decision Di. Lj and Lk are the categories such that P̂ij and P̂ik are the
largest and second largest respectively. Let H = (1− 1

1+nid2 )2. P (Zn
ij > Zn

ik) is in the
range [H,1]. Suppose the value of P (Zn

ij > Zn
ik) is uniformly distributed in this range.

Then, we can approximate P (Zn
ij > Zn

ik) by 1+H
2 . Therefore, there is

P (A|Di) =
1 + H

2
The algorithm for BBKS is summarized as follows

Algorithm 2. BBKS
—————————————————————————-
F = {C(1), ....C(k)}(Generated in the first step)
Lmax = -1;
Temp = -1;
For i =1 to k

Obtain the decision Di based on the ensemble C(i) for the input data
Find Lj such that P (ϕ(Di) = Lj , A|Di) is maximized over different categories
if P (ϕ(Di) = Lj , A|Di) > Temp

Temp = P (ϕ(Di) = Lj , A|Di)
Lmax = Lj

end
end
Label the input data with Lmax

—————————————————————————-

5 Experimental Results and Discussion

In this section, we use several popular time series data sets to demonstrate the feasi-
bility of the proposed approach. These data sets are used by previous researchers and
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Table 1. Characteristics of the Data Sets

Data Set Source Classes Instances Frames
CBF [16] 3 600 200
Control Chart(CC) UCI repository 6 600 60
Waveform(WF) [1] 3 600 21
WF+Data Noise(WF+Data Noise) [9] 3 600 40

available from the UCI repository or related references. The characteristics of the data
are summarized in table 1.

We use Adaboost, Bagging, Random Subspace and single classifier as the bench-
mark for comparison. The Probabilistic Neural Network (PNNs) is employed as the
base learner for all approaches, in which the gaussian width is set to 0.1. We use the clas-
sification toolbox version 2.0 of Matlab [5]. In all of the experiments, the data sets are
randomly separated into 60% training and 40% testing. For the Bagging approach, we
resample the data 12 times. For the Random Subspace approach, we conduct 12 rounds
of selection, in each of which 50% of features are randomly chosen. For the Adaboost,
we set the iteration times to 200. For the SMM approach, 66.7% of the training data
are used to train the base classifiers and the remaining 33.3% used as a validation set to
estimate the decision distribution of the base classifiers. In order to examine the effect
of the knowledge base on SMM, we compare the performance of SMM under three dif-
ferent Ω. Let Raw, DFT, DES+DG and RFS represent those in which the base classifier
takes the raw time series data, the data with the Discrete Fourier Transformation(DT),
the data processed with the Double Exponential Smoothing and Differentiation Gener-
ation(DG) and the data with Random Feature Selection(RFS), respectively[4, 15]. Ω1 is
composed of 6 classifiers which take the 1 Raw, 1 DFT and 4 DES+DG as the input. Ω2

contains 12 classifiers which is composed of the union of Ω1 and 6 additional DES+DG.
Ω3 contains 18 classifiers which consist of the union of Ω2 and 6 additional RFS. We
use SMM i to represent SMM which is build on Ωi. The test results are shown in table
2, which summarizes the Mean of Correct Ratio(MCR) and Varaiance of Correct Ra-
tio(VCR) of the different approaches from 10 continuous experiments. The entry is in
the format of MCR%(VCR×10−3).

From the test results in table 2, it is clear that the performance of the single PNN
significantly depends on the data type. Bagging(Raw) doesn’t improve the performance
of individual classifiers significantly. Random subspace(Raw) outperforms the single
classifier in CBF, WF and WF+DN data. In particular, its accuracy on WF is 96.6%
which is the best over all methods. This indicates that RFS is an effective technique
on Waveform Data. However, its performance on CC data is not impressive. Further-
more, although its improvement on CBF data is significant, which is around 7% more
than the single classifier, its performance is still not very satisfying. AdaBoost(Raw)
is similar with single classifier and Bagging(Raw) in WF and WF+DN. However, it
is significantly better than the previous three approaches in CBF and CC data. In ad-
dition, the variation of its performance over various data sets is small. Therefore,
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Table 2. Experimental Results: MCR(VCR×10−3)

Methods Data Sets
CBF CC WF WF+DN

Single(Raw) 72.5(1.0) 81.0(1.8) 93.7(0.3) 90.5(0.2)
Bagging(Raw) 71.6(0.3) 79.5(1.5) 93.7(0.3) 90.3(0.1)
Random Subspace(Raw) 79.3(1.3) 78.0(1.9) 96.6(0.1) 92.5(0.1)
AdaBoost(Raw) 90.6(0.3) 90.5(0.3) 92.4(0.1) 92.6(0.3)
AdaBoost(DFT) 93.4(0.3) 80.3(0.7) 85.3(0.2) 85.4(0.3)
AdaBoost(DES+DG) 79.3(0.7) 84.0(6.3) 93.1(0.3) 90.4(0.5)
SMM1 90.2(1.5) 89.5(2.2) 92.6(0.5) 90.8(0.8)
SMM2 92.7(0.9) 89.4(0.7) 92.5(0.3) 90.4(0.4)
SMM3 92.8(0.5) 90.5(0.9) 94.4(0.3) 91.9(0.7)

AdaBoost(Raw) is a reliable technique, which could be applied to time series data in
general. The performance of SMM is also reliable to various data sets. If we compare
SMM1, SMM2 and SMM3, we can find that the knowledge space has some impact
on the performance of SMM. The SMM with larger Ω tends to perform better. For
example, SMM3 outperforms SMM1 by 2.6% in CBF data. Furthermore SMM3 also
slightly outperforms SMM1 in other data sets. Finally, we also compare the accuracy
of SMM3 and AdaBoost(Raw) statistically to show the possible advantage of SMM in
the classification of time series data. We apply the t-test on the test accuracy with the
confidence level of 95%. While the difference of their performances is not significant
in CC and WF+DN data sets, SMM3 significantly outperforms AdaBoost(Raw) in
CBF and WF data sets. The possible reason may be that SMM allows the classifiers
to be generated in various ways and it may have captured some important information
in time series data while AdaBoost generates the classifiers only by changing the data
distribution.

6 Conclusion and Future Work

In this paper, we proposed the SMM approach for classification of time series data in
general. The basic idea of SMM is to first build an ensemble of classifiers which is
complex enough to represent the data. Then, BBKS approach is applied to maximize
the expected test accuracy. The experimental results show that SMM approach is a
robust technique for time series data in general and it could be further extended to other
applications. We also observed that SMM with large knowledge space tends to perform
better. However, the time cost should also be taken into consideration when designing
a specific MCS with the SMM approach since large knowledge space requires more
searching time. In addition, the assumption that the knowledge space is given may not
be practical for some applications in the real world.
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Abstract. We propose a novel ensemble learning algorithm called Triskel, which
has two interesting features. First, Triskel learns an ensemble of classifiers that
are biased to have high precision (as opposed to, for example, boosting, where the
ensemble members are biased to ignore portions of the instance space). Second,
Triskel uses weighted voting like most ensemble methods, but the weights are
assigned so that certain pairs of biased classifiers outweigh the rest of the ensem-
ble, if their predictions agree. Our experiments on a variety of real-world tasks
demonstrate that Triskel often outperforms boosting, in terms of both accuracy
and training time.

1 Introduction

Ensemble techniques have been demonstrated to be an effective way to reduce the error
a base learner across a wide variety of tasks. The basic idea is to vote together the
predictions of a set of classifiers that have been trained slightly differently for the same
task. There is a strong body of theory explaining why ensemble techniques work.

Nevertheless, it is straightforward to construct learning tasks that confound existing
ensemble techniques. For example, consider a synthetic“layer cake” binary learning
task shown in Fig. 1. SVM with a linear kernel learns a decision surface with a large
error. Boosting SVM does not help: at each iteration, the classifier is unable to stop
making mistakes on the middle two regions; these regions then get even more weight
on the next iteration, and eventually boosting gives up because it can not find a classifier
with error less than 0.5.

However, Fig. 1(b) shows that ensemble methods are in principle well suited to this
task: when combined with a simple unweighted vote, the set of three linear decision
surfaces yields an ensemble that has zero error.

Motivated by this sort of learning task, we propose a novel ensemble learning al-
gorithm called Triskel, which has two interesting features. First, Triskel learns an en-
semble of classifiers that are biased to have high precision for one particular class. For
example, in Fig. 1(b), one of the “outer” classifiers is biased to (i.e. has high precision,
albeit mediocre recall, for) the positive class, and the other classifier is biased for the
negative class. In contrast, most existing ensemble techniques feature ensemble mem-
bers that are biased to focus on various regions of the instance space. For example,
at each round, boosting focuses on instances that were classified incorrectly in previ-
ous rounds; and bagging simply involves hiding some of the training data from each
ensemble member.

N.C. Oza et al. (Eds.): MCS 2005, LNCS 3541, pp. 226–235, 2005.
c©Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. The “layer cake” task: a) decision surface learned by a single SVM with linear kernel
(circled instances are classified incorrectly); b) an ensemble of three linear SVMs that as zero
training error when combined with a simple majority vote

The second interesting feature is the manner in which Triskel assigns weights to
the ensemble members. Triskel uses weighted voting like most ensemble methods, but
the weights are assigned so that certain pairs of biased classifiers outweigh the rest
of the ensemble, if their predictions agree. For example, in Fig. 1(b), the two “outer”
classifiers dominate the vote if they agree, but if they disagree then the “inner” classifier
casts the deciding vote. Our algorithm is named Triskel after a Celtic spiral design with
three branches. In its simplest incarnation, Triskel uses an ensemble of three classifiers:
one classifier biased for the positive class, one classifier biased for the negative class,
and one unbiased classifier to make predictions when the others disagree.

We make the following contributions. First, we motivate and describe Triskel, our
novel approach to ensemble learning, and describe various ways to construct the biased
classifiers on which Triskel relies. Second, we discuss how Triskel represents a middle
ground between covering and ensemble techniques such as boosting. Finally, we eval-
uate Triskel on a variety of real-world tasks, and demonstrate that our method often
outperforms boosting, in terms of both accuracy and training time.

2 Related Work

Various explanations for the success of ensemble methods have been proposed. For ex-
ample, [1] presents two necessary and sufficient conditions for an ensemble to be more
accurate than any of its member classifiers: the classifiers should be accurate (better than
guessing randomly) and diverse (they make different—ideally, independent—mistakes
on new data). A simple probabilistic argument shows that if the classifiers’ errors are
independent and their error rates are less than that of guessing randomly, then the prob-
ability that the majority of classifiers is wrong on a new instance is less than the error of
any individual. Thus, combining the decisions using a majority vote always has lower
error than any of the members.

Of course, these assumptions may not hold in practice, but [2] discusses three fun-
damental ways in which an ensemble can achieve better performance: statistical, com-
putational and representational. The statistical analysis starts with the observation that
any learning algorithm tries to find a hypothesis that has a good accuracy on the training
data. When the amount of the training data is small, there may be many different hy-
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potheses that all give the same accuracy on the training data. However, not all of these
hypotheses may be correct for a given new data instance. Constructing an ensemble out
of all these accurate classifiers can allow the algorithm to reduce the risk of choosing
the wrong hypothesis.

The computational argument is that many learning algorithms perform some sort of
local search in the hypotheses space that may get stuck in a local optimum. Examples
include gradient-based search in neural networks and greedy search in decision trees.
An ensemble constructed by running the local search from multiple different starting
points may result in a better approximation to the true hypothesis. Finally, the repre-
sentational analysis follows from the fact that a learning algorithm may not be capable
of representing the true function either because it is outside of its hypothesis space or
because it does not have sufficient training data to explore all of its hypothesis space
to find it (e.g. the classifier would stop searching once it finds a hypothesis that fits the
training data). By combining several different hypotheses (e.g. using a weighted sum)
it may be possible to expand the space of representable functions.

Perhaps the best-known ensemble methods are bagging [3], and boosting [4, 5], in
particular AdaBoost [6]. Bagging generates different training sets by drawing randomly
with replacement from the original data set. The classifiers’ decisions are combined
using the majority vote. AdaBoost performs several learning iterations on the same
training set. However, in each iteration it adjusts the weights of the training instances
to emphasize the examples that were misclassified by the last learned classifier. The
decisions of the classifiers in the ensemble are combined using weighted voting, where
the weights depend on the error of the classifier on the training set.

Since bagging constructs its training sets (and, hence, its ensemble members) inde-
pendently from the others, it mainly addresses the statistical and, to a lesser extent, com-
putational problems. AdaBoost constructs each new hypothesis to eliminate remaining
errors and, thus, is directly trying to address the representational problem. It has been
shown that by focusing on incorrectly classified instances AdaBoost minimises a partic-
ular error function of the ensemble on the training data called the negative exponential
of the margin [6, 2].

3 The Triskel Algorithm

Motivation. One of the problems with AdaBoost is that in each subsequent iteration
the base learner is presented with more and more difficult problems. The redistribution
of instance weights is based on the errors of the last learned hypothesis on the training
data. Over multiple iterations, this can result in weight distributions that are too complex
for the base learner to handle. For example, suppose we would like to boost a Support
Vector Machine [7] with a linear kernel on a synthetic data set shown in Figure 1a.
The Figure shows the decision surface that an SVM would learn on this data in the
first iteration. We can see that the distribution of errors is such that a linear decision
surface will do a poor job on such task. Specifically, the weight distribution will switch
in this case between inner and outer instances after each boosting iteration without
improvements to the resulting ensemble accuracy.
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Nonetheless, the example in Figure 1a can be handled perfectly by an ensemble of
three linear separators shown in Figure 1b combined using a majority vote. One classi-
fier separates a part of the positive instances from the rest of positives and negatives, one
classifier separates a part of the negative instances, and the remaining classifier handles
the instances where the first two classifiers disagree.

An analogy between this approach and set covering can be drawn. Essentially, one
classifiers covers the data instances that can be confidently classified as positive (“easy”
positives), one classifier covers the data that can be confidently classified as negatives
(“easy” negatives), and the last classifier is used to handle the remaining “hard” in-
stances. Our Triskel algorithm is inspired by this idea of exploring a middle ground
between ensemble and set covering methods.

In order to identify instances that can be confidently classified as positive or neg-
ative, we make use of biased classifiers. A classifier that is biased towards predicting
positives will usually have a high precision on negative instances and vice versa. We
train a biased classifier for each class. All instances where the biased classifiers agree
are considered “easy”, all other instances are “hard”. The third classifier, the arbiter,
is then trained only on those “hard” instances. The intuition is that the feature patterns
among the “hard” instances may be different from those among the “easy” training ex-
amples. By separating away the “easy” instances and training the arbiter only on the
“hard” ones, we make the learning problem for the arbiter easier since it only has to
deal with a supposedly more regular subset of the data.

Like AdaBoost, we are trying to improve (boost) the classification accuracy of the
base classifier on the training set by increasing the representational power using the
ensemble. However, the expectation is that we can achieve better results by splitting
one hard classification problem into a series of easier ones instead of progressively
constructing more difficult problems as in AdaBoost.

The Algorithm. Consider first the Triskel algorithm for a binary classification problem.
Assume that a classifier is a function mapping data instances onto a binary set of classes:
h : X → {−1,+1}. Similarly to AdaBoost, Triskel is an iterative algorithm. In each
iteration, we train a pair of biased classifiers: one classifier biased towards the positive
class, and one classifier biased towards the negative class. For a discussion of different
ways of biasing classifiers, see section 3. Next, we evaluate the biased classifiers on
the training data and obtain two sets of instances: “easy” examples, where the biased
classifiers agree; and “hard” ones, where the biased classifiers disagree. To obtain the
training set for the next iteration, the weights of the “easy” instances are reduced and
the weights of the “hard” instances are increased. The training set obtained after the last
iteration is used to train the arbiter classifier. Algorithm 1 shows the details.

To combine the decisions of the learned classifiers, we use a conventional weighted
voting scheme, with the weights set in such a way that some ensemble members’ votes
can dominate the others. Specifically, we use a sequence of exponentially decreasing
weights such that if two biased classifiers from a given iteration agree on the label of
a new instance, then their combined vote outweighs the votes of the classifiers from
all subsequent rounds. Essentially, in each iteration we classify and separate the “easy”
instances and then use the ensemble members from subsequent iterations to handle the
remaining “hard” instances in a recursive way.
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Algorithm 1 Triskel
/* To train on {. . . , (xi, yi), . . .} (yi = ±1) */
Choose the method of weight adjustment:
Weasy = 0; Whard = 1, or /* “separation” */
Weasy = 1/2; Whard = 2 /* “soft covering” */
D0(i) = 1/N for each instance i
for t = 1, 2, . . . , K do

h+
t = Learn with weights Dt−1, biased for class +1

h−
t = Learn with weights Dt−1, biased for class -1

αt = 2K−t

for each instance i do

Δt,i =

{
Weasy , if h+

t (xi) = h−
t (xi) = yi

Whard , otherwise

Dt(i) = Dt−1(i) · Δt,i and normalise
end for

end for
hK+1 = Learn with weights DK , unbiased
αK+1 = 1
/* To classify instance x */

return y = sign
[∑K+1

t=1
αth

∗
t (x)
]
, where h∗

t (x) = h+
t (x) + h−

t (x) for t ≤ K, and h∗
t (x) =

hK+1(x) for t = K + 1.

There are two principle ways in which the instance weights can be adjusted dur-
ing training. One way is to set the weights of the “easy” instances to zero, leaving the
weights of the “hard” instances unchanged. In this case, the classifiers in each subse-
quent iteration are trained on a shrinking subset of the training data. This method is
more similar to the set covering idea, since after each iteration (the covered) part of
the training instances is completely removed from consideration. The problem with this
method is that it may quickly “run out of instances”. That is, the number of instances
left in consideration may quickly become too small to train a sensible classifier.

Therefore, the second way to adjust the instance weights is more similar to boosting,
when the weights of “easy” instances are reduced, while the weights of “hard” instances
are increased. In our experiments, we increase or reduce the weights by the factor of 2
(see Algorithm 1).

Generating Biased Classifiers. Biasing techniques have been previously used for im-
proving performance of neural net classifiers on imbalanced datasets [8] and for adap-
tive voting in the ensembles of classifiers for incremental learning [9].

Some machine learning algorithms have an inherent way of setting a bias. Bayesian
classifiers, for example, output a probability distribution. The class with the highest pos-
terior probability as calculated by the classifier is predicted. It is easy to bias a Bayesian
classifier by either modifying the prior probabilities or to impose biased thresholds on the
posterior probabilities. Support Vector Machines also use a confidence value threshold.

There are, however, more generic ways to bias classifiers. Resampling techniques
have been used in literature to address the problem of imbalance in the training set. But
resampling can of course also be used to create an imbalance, which is what we need
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for Triskel. Akbani et al. found in [10] that for imbalanced datasets undersampling the
majority class to eliminate the bias leads to good performance, although some of the
training examples are discarded.

In preliminary experiments, we tried over- and undersampling to create biased clas-
sifiers. We found that creating the bias through undersampling does not hurt the overall
performance of Triskel, even if as little as 10% of the training instances of one class
are kept. For some datasets, the performance was even slightly better than the approach
with oversampling. Additionally, because we drop 90% of the instances for one class,
training becomes faster. Therefore we decided to use undersampling with a 10% under-
sampling rate for our final experiments.

Relation to Covering. There is a loose relationship between Triskel and rule covering
algorithms (e.g. [11]). A covering algorithm tries to identify rules with high precision
that cover a large number of (ideally uniformly positive or negative) training examples.
These training examples are then removed from the training set, as they are covered by
the rule, and rule learning continues until all examples are covered. In Triskel, identify-
ing easy instances using biased classifiers could be seen as covering positive and nega-
tive instances, as these instances are then removed from the training set from which the
arbiter is learned.

Comparison with Boosting. Shapire’s original boosting algorithm [4] uses three clas-
sifiers: The first one is trained on the original dataset, the training set for the second
classifier consists equally of instances that were classified correctly by the first classifier
and instances that were incorrectly classified. A third classifier is trained on instances
where the first two classifiers disagree. The predictions are combined by voting. In our
algorithm we follow up on this idea, however the way we create the first two classi-
fiers is fundamentally different. Also unlike the original boosting, we can use multiple
iterations. This results in an ensemble containing more than three classifiers similar to
AdaBoost.

Both AdaBoost [6] and Triskel try to enhance the decision surface of the ensem-
ble by focusing on hard instances. The main difference between the two algorithms
is, however, how the hard instances are defined. In AdaBoost, the hard instances are
defined as the instances where the base classifier makes mistakes. In Triskel, the hard
instances are defined as the instances that cannot be classified “confidently”, where we
assume that we can classify an instance “confidently”, if the biased classifiers agree on
its label.

4 Experimental Results

We evaluated Triskel on several multi-class datasets from the well-known UCI reposi-
tory. Because of its very good accuracy, we chose AdaBoost as the benchmark ensemble
algorithm for our experiments. We used SMO [12] as a base classifier, again because
of its good performance. However, when comparing ensemble methods, accuracy is not
the only important factor. The reduced error of ensemble algorithms comes at the price
of a greater computational effort. Therefore, time and memory consumption has to be
compared as well. Both are usually related to the ensemble size.
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Algorithm 2 Comparison of Triskel (left) to AdaBoost (right)
/* To train on {. . . , (xi, yi), . . .} */
D0(i) = 1/N for each instance i
for t = 1, 2, . . . , K do

h+
t = Learn(weights Dt−1, biased +1)

h−
t = Learn(weights Dt−1, biased -1)

αt = 2K−t

for each instance i do
Δt,i =

=

{
Weasy if h+

t (xi) = h−
t (xi) = yi

Whard otherwise

Dt(i) = Dt−1(i) · Δt,i and normalise
end for

end for
hK+1 = Learn(weights DK , unbiased)
αK+1 = 1
/* To classify instance x */

return y = sign
[∑K+1

t=1
αth

∗
t (x)
]
,

/* To train on {. . . , (xi, yi), . . .} */
D0(i) = 1/N for each instance i
for t = 1, 2, . . . , K do

ht = Learn(weights Dt−1, unbiased)

αt = 1
2

log 1−εt
εt

,
where εt =

∑
i
Dt−1(i)[[yi �= ht(xi)]]

for each instance i do
Δt,i =

=

{
εt/(1 − εt) if ht(xi) = yi

1 otherwise

Dt(i) = Dt−1(i) · Δt,i and normalise
end for

end for

/* To classify instance x */

return y = sign
[∑K

t=1
αtht(x)

]

Because SMO can only handle binary problems, we had to choose a mode of split-
ting the multi-class problems into binary classification tasks. In all but one configura-
tions we decided to use a one-against-one scheme: A binary classifier is contructed for
all pairwise combinations of two classes. This means that for a dataset with k classes it
is necessary to train k(k−1)

2 classifiers. Note that on datasets with more than 3 classes,
this setup is computationally more expensive than a one-against-all scheme, but gener-
ally leads to a much better performance.

In conjunction with Triskel it is possible to use a compromise between one-vs-all
and one-vs-one methods. We call this extension Triskel-M. For each class, a binary
problem is created in order to separate this class (‘positive instances’) from all others
(‘negative instances’). These classifiers are biased towards high precision on the posi-
tive class and used similar as in binary Triskel: If exactly one of the biased classifiers
predicts positive, this prediction is returned. If more than one or none of the biased clas-
sifiers predict positive, the prediction of the arbiter is returned. The arbiter is trained in
one-vs-one mode to achieve a better accuracy. In our experiments, we used Triskel-M
with Weasy = 0 and 1 round (denoted as Triskel-M1).

For AdaBoost, boosting the binary classifiers individually yielded a better perfor-
mance than using AdaBoost-M1 [6].

We used a standard SMO as baseline. We used three different AdaBoost-ensembles
with 3, 10 and 50 rounds. We compared these against standard Triskel with 1 round and
discarding easy instances for the arbiter (Weasy = 0) (Triskel-1) and against Triskel
with weighting (Weasy = 1/2;Whard = 2) with 2 and 4 rounds (denoted as Triskel-
W2 and Triskel-W4). Note that for a (binary) Triskel the actual ensemble size is twice
the number of rounds plus one.

We used the Weka framework [13] to conduct our experiments. We evaluated all
algorithms using 10-fold cross-validation with 10 randomized repetitions for statistical
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Fig. 2. Accuracy and training time for SMO, Triskel-M1, Triskel-1, -W2, -W4, AdaBoost-3, -10
and -50 on the (from left to right and top to bottom) “autos”, “balance-scale”, “glass”, “hypothy-
roid”, “segment” and “vehicle” datasets

significance testing, using a corrected resampled t-test as implemented in the Weka
experimenter. 1

The experiments show that AdaBoost with 50 rounds does not improve the accu-
racy over AdaBoost with 10 rounds when using SMO as a base classifier. Triskel-W4
outperforms AdaBoost with 3 significant wins out of the 15 datasets used. This quality
improvement comes at the price of higher training cost when compared to AdaBoost-
10. However, it is still faster than AdaBoost-50. Triskel-W2 (i.e. with an ensemble size
of 5 classifiers) achieves a performance that is comparable to AdaBoost-10 (2 wins, 2
losses), but is significantly faster.

As expected, the M1 setup for Triskel is both the least accurate but also the fastest
ensemble method. Although the biased classifiers are only trained in a one-against-

1 Due to space restrictions we cannot present all our experimental results in this paper. Our
WEKA-based implementation of Triskel and more experimental results are available from our
website http://moguntia.ucd.ie/projects/triskel/
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all mode, the ensemble can still sigificantly outperform the base SMO in one-against-
one mode on the anneal.ORIG, hypothyroid and segment datasets. Because of its one-
against-all nature, this setup of Triskel can even be faster than one-against-one SMO,
especially on large datasets (here on the audiology, hypothyroid and soybean datasets),
while not hurting accuracy.

Figure 2 illustrates the relation between training time and accuracy for the algo-
rithms on four typical datasets. The data points on the Triskel line correspond to (from
fastest to slowest) Triskel-M1, -1, -W2 and -W4, while the data points for AdaBoost
show the setup for 3, 10 and 50 rounds. Note that in most cases the line for Triskel is
above the AdaBoost line, indicating that Triskel offers a better trade-off between ac-
curacy and speed. Triskel achieves greater accuracy in the same time, and the same
accuracy can be reached faster. Furthermore, note that the highest accuracy for Triskel
is usually above the highest accuracy for AdaBoost, indicating that, given enough time,
Triskel can typically outperform any setting of AdaBoost.

5 Conclusion

Current and Future Work. We are currently researching many aspects of Triskel that
we could only sketch shortly in this paper. For example, note that for the experiments
presented in this paper, we have used undersampling as the only method of generating
the biased classifiers. In future work we would like to explore the space of possible
methods for generating bias, such as setting the bias of the classifier directly by means
of thresholding, or to use oversampling with artificially created instances as used in the
SMOTE algorithm [14].

We are currently working on a covering-inspired way of generating the biased clas-
sifiers. To train a classifier that is biased towards high precision on positive instances,
we train multiple versions of a base classifier while iteratively removing instances from
the training set that the base classifier predicts as negative (i.e. instances that are cov-

D0(i) = 1/N for each instance i
for t = 1, 2, . . . , K do

ht = learn(instances weights Dt−1)
for each instance i do

Dt(i) =

{
1 if ht(xi) = 1
0 otherwise

end for
end for
/* To classify instance x */
for t = 1, 2, . . . , K do

if ht(x) = −1 then
halt and return −1

end if
end for
return 1

Fig. 3. Cover Negatives Algorithm
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Fig. 4. “Slanted checkerboard” data set
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ered). On classification time, an instance is predicted as positive only if all ensemble
members classify it as positive. Achieving high precision on negative examples is sym-
metric, and the generalisation towards multi-class datasets is straightforward. Fig. 3
shows the covering-based biased classifier in pseudo-code.

This covering-like approach to biasing classifiers is more expressive than simple re-
sampling approaches, because it is an ensemble itself. A Triskel classifier with covering-
based biased classifiers is able to learn the correct hypothesis for a “slanted checker-
board” dataset (see Fig. 4), which is another example of a dataset that confounds many
other algorithms. In preliminary experiments on real-world datasets, covering-like bi-
asing improved classification accuracy slightly. On the other hand, this expressiveness
is bought with the need for more ensemble members.

Summary. We have presented a novel ensemble learning algorithm called Triskel that
makes use of biased classifiers to separate “easy” and “hard” instances. In its iterative
nature, it is similar in style to Boosting methods, while the way Triskel separates easy
and hard instances is loosely related to covering algorithms.

Empirical results suggest that, compared to AdaBoost, Triskel offers a better trade-
off between accuracy and speed. Furthermore, the experiments show the maximum ac-
curacy that can be achieved with Triskel is higher than the accuracy of AdaBoost.
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Abstract. In this paper, we propose a cluster-based cumulative rep-
resentation for cluster ensembles. Cluster labels are mapped to incre-
mentally accumulated clusters, and a matching criterion based on maxi-
mum similarity is used. The ensemble method is investigated with boot-
strap re-sampling, where the k-means algorithm is used to generate high
granularity clusterings. For combining, group average hierarchical meta-
clustering is applied and the Jaccard measure is used for cluster similarity
computation. Patterns are assigned to combined meta-clusters based on
estimated cluster assignment probabilities. The cluster-based cumula-
tive ensembles are more compact than co-association-based ensembles.
Experimental results on artificial and real data show reduction of the
error rate across varying ensemble parameters and cluster structures.

1 Introduction

Motivated by the advances in classifier ensembles, which combine the predictions
of multiple classifiers; cluster ensembles that combine multiple data partitionings
have started to gain an increasing interest [1, 2, 3, 4, 5, 6, 7, 8].

Cluster ensembles can be illustrated by the schematic model in Figure 1. The
model includes two main elements, the ensemble generation and the combina-
tion scheme. The ensemble generation takes as input a dataset of d-dimensional
pattern vectors represented by an N × d matrix X = {x(i)}N

i=1, where N is
the number of patterns and the row vector x(i) represents the ith pattern. The
ensemble generation generates multiple clusterings, represented here by cluster
label vectors {y(b)}B

b=1. The combining scheme (or the consensus function [1]),
can be thought of as comprising two sub-elements. The first is the ensemble map-
ping which defines a representation Z of the ensemble outputs and an associated
mapping method. The lack of direct correspondence between the labels gener-
ated by the individual clusterings leads to the need for this mapping component.
For instance, the co-association (or co-occurrence) matrix [2] is an example of a
representation generated by an ensemble mapping that side-steps the label corre-
spondence problem, at a computational cost of O(N2). The maximum likelihood
mapping [8] is another example of ensemble mapping in which the re-labelling
problem is formulated as a weighted bipartite matching problem and is solved

N.C. Oza et al. (Eds.): MCS 2005, LNCS 3541, pp. 236–245, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Schematic model of cluster ensembles

using the Hungarian method [9] with a computational cost of O(k3) where k is
the number of clusters.

The second sub-element of a combining scheme is the combining algorithm
which uses Z to generate the combined clustering ŷ. A potential derivative of the
cluster ensemble is the estimation of the probabilities p̂ with which data points
belong to the combined clusters. The combining algorithm often lends itself to
a clustering problem, where the data is given by the new representation Z. It
is noted that if the label correspondence problem is resolved and the number of
clusters c in the base clusterings {y(i)}B

i=1 is the same as the number of clus-
ters k in the combined clustering ŷ, majority voting [6] or maximum likelihood
classification [8] can be readily applied. However, if c �= k, co-association-based
consensus functions are often applied [2, 3, 4]. While allowing arbitrary cluster
structures to be discovered, co-association-based consensus functions are com-
putationally expensive and hence not practical for large datasets.

Re-sampling methods are well established approaches for estimating im-
proved data statistics [10]. In particular, bagging [11] has been introduced in
regression and classification. In bagging, the training dataset of size N is per-
turbed using bootstrap re-sampling to generate learning datasets by randomly
sampling N patterns with replacement. This yields duplicate patterns in a boot-
strap dataset. The bootstrap re-sampling process is independently repeated B
times and the B datasets are treated as independent learning sets.

Dudoit and Fridlyand [6] used bagging with the Partitioning Around Medoids
(PAM) clustering method to improve the accuracy of clustering. They use two
methods for combining multiple partitions. The first applies voting and the sec-
ond creates a new dissimilarity matrix similar to the co-association matrix used
in [2]. In the voting method, the same number of clusters is used for clustering
and combining, and the input dataset is clustered once to create a reference
clustering. The cluster labels of each bootstrap replication are permuted such
that they fit best to the reference clustering. They reported that the bagged
clustering were generally as accurate and often significantly more accurate than
a single clustering. Fischer and Buhmann [8] applied bagging to improve the
quality of the path-based clustering method. They critiqued the use of a ref-
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erence clustering in the mapping method of Dudoit and Fridlyand [6], arguing
that it imposes undesirable influence. Instead, they selected a re-labelling out
of all k! permutations for a clustering, such that it maximizes the sum over the
empirical cluster assignment probabilities estimated from previous mappings,
over all objects of the new mapping configuration. The problem of finding the
best permutation is formulated as a weighted bipartite matching problem and
the Hungarian method is used to solve a maximum bipartite matching problem.
They reported that bagging increases the reliability of the results and provides
a measure of uncertainty of the cluster assignment. Again, in this method, the
number of clusters used in the ensemble is the same as the number of combined
clusters. Minaei, Topchy and Punch [7] empirically investigated the effectiveness
of bootstrapping with several consensus functions by examining the accuracy
of the combined clustering for varied resolution of partitions (i.e., number of
clusters) and ensemble size. They report that clustering of bootstrapping leads
to improved consensus clustering of the data. They further conclude that the
the best consensus function remains an open question, as different consensus
functions seem to suit different cluster structures.

In this paper, we propose an ensemble mapping representation based on the
generated clusters, as high-level data granules. Re-labelling of clusters is based on
maximizing individual cluster similarity to incrementally-accumulated clusters.
Based on this representation, different combining algorithms can be used such as
hierarchical clustering algorithms, for instance. Here, group average (i.e. average
link) hierarchical meta-clustering is applied. We experimentally investigate the
effectiveness of the proposed consensus function, with bootstrap re-sampling,
and the k-means as the underlying clustering algorithm.

2 Cluster-Based Cumulative Ensemble

2.1 Ensemble Mapping

The ensemble representation consists of a cumulative c×N matrix Z summaris-
ing the ensemble outputs, where c is a given number of clusters that is used in
generating multiple clusterings, such that k ≤ c � N where k is the number of
combined clusters. The data values in Z reflect the frequency of occurrence of
each pattern in each of the accumulated clusters.

The k-means algorithm with the Euclidean distance is used to generate a
clustering y(b) = π(X(b), c) of a bootstrapped learning set in {X(b)}B

b=1, where
B is the size of the ensemble, and y(b) is an N -dimensional labeling vector. That
is, π is a mapping function π : X(b) → {0, · · · , c}, where ‘0’ label is assigned to
patterns that didn’t appear in the bootstrap learning set X(b).

Each instance of the c×N matrix, denoted by Z(b), is incrementally updated
from the ensemble {y(b)}B

b=1 as follows.

1. Z(1) is initialized using y(1), as given below. Re-labelling and accumulation
start by processing clustering y(2).

z
(1)
ij =

{
1 if object j is in cluster i according to clustering y(1)

0 otherwise
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2. Let each cluster in a given clustering y(b+1) be represented by a binary N-
dimensional vector v with 1’s in entries corresponding to the cluster mem-
bers and 0’s otherwise. Let each cluster extracted from the rows z(b)

i of Z(b)

be represented by the binary N-dimensional vector w whose entries are 1’s
for non-zero columns of z(b)

i and 0’s otherwise. Compute the similarity be-
tween each pair of vectors v and w using the Jaccard measure given as
J(v,w) = vw/(‖v‖2 + ‖w‖2 − vw)

3. Map each cluster label i ∈ {1, · · · , c} in clustering y(b+1) to its most similar
cluster labelled j ∈ {1, · · · , c} of the previously accumulated clusters rep-
resented by the rows of Z(b). Hence, increment the entries of row j of Z(b)

corresponding to members of the cluster labelled i in clustering y(b+1).
4. Z(b+1) ← Z(b). The mapping process is repeated until Z(B) is computed.

The cumulative cluster-based mapping of the ensemble culminates in the
matrix Z = Z(B), as a voting structure that summarises the ensemble. While
in the maximum likelihood mapping [8], the best cluster label permutation is
found and c = k is used, in this paper, each cluster is re-labelled to match its
most similar cluster from the accumulated clusters. This is done for the following
reasons. First, since the base clusterings represent high resolution partitions of
non-identical bootstrap learning sets, this leads to highly diverse clusterings,
such that finding the best permutation becomes less meaningful. For quantitative
measures of diversity in cluster ensembles, the reader is referred to [5]. Second,
since the accumulated clusters will be merged in a later stage by the combining
algorithm, we are most concerned at this stage in a mapping which maximizes
the similarities and hence minimizes the variance of the mapped clusters.

We found that this matching method can occasionally result in a cumulative
cluster to become singled out when no subsequently added clusters are mapped
to it. If a hierarchical clustering algorithm is used, this problem can lead to a
degenerate dendrogram and empty cluster(s) in the combined clustering. There-
fore, we detect this condition, and the corresponding solution is discarded. Usu-
ally, a good solution is reached in a few iterations. An alternative remedy is to
match each of the cumulative clusters to its most similar cluster from each sub-
sequently mapped clustering, instead of the reverse way. This ensures that the
above mentioned condition does not occur, but it can introduce influence from
earlier clusterings and less incorporation of the diversity in the ensemble.

An advantage of this representation is that it allows several alternative views
(interpretations) to be considered by the combining algorithm. For instance, Z
may be treated as a pattern matrix. This allows different distance/similarity
measures and combining algorithms to be applied to generate the combined
clustering. Alternatively, Z may be treated as the joint probability distribution
of two discrete random variables indexing the rows and columns of Z. This allows
for information theoretic formulations for finding of the combined clusters.

Furthermore, the size of this representation is c × N versus N2 for the co-
association-based representation, where c � N . While, in the case of the co-
association matrix, the hierarchical clustering algorithm runs on the N × N
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matrix, in the case of the cluster-based cumulative representation, it runs on a
c × c distance matrix computed from the c × N matrix Z.

2.2 Combining Using Hierarchical Group Average Meta-clustering

Motivated by what is believed to be a reasonable discriminating strategy based
on the average of a chosen distance measure between clusters, the proposed al-
gorithm is the group average hierarchical clustering. The combining algorithm
starts by computing the distances between the rows of Z (i.e. the cumulative
clusters). This is a total of

(
c
2

)
distances, and one minus the binary Jaccard mea-

sure, given in Section 2.1, is used to compute the distances. The group-average
hierarchical clustering is used to cluster the clusters, hence the name meta-
clustering. In this algorithm, the distance between a pair of clusters d(C1, C2)
is defined as the average distance between the objects in each cluster, where
the objects in this case are the cumulative clusters. It is computed as follows,
d(C1, C2) = mean(z1,z2)∈C1×C2d(z1, z2), where d(z1, z2) = 1 − J(z1, z2).

The dendrogram is cut to generate k meta-clusters {Mj}k
j=1 representing a

partitioning of the cumulative clusters {zi}c
i=1. The merged clusters are aver-

aged in a k × N matrix M = {mji} for j ∈ {1, · · · , k} and i ∈ {1, · · · , N}. So
far, only the binary version of the cumulative matrix has been used for distance
computations. Now, in determining the final clustering, the frequency values ac-
cumulated in Z are averaged in the meta-cluster matrix M and used to compute
the cluster assignment probabilities. Then, each object is assigned to its most
likely meta-cluster. Let M be a random variable indexing the meta-clusters and
taking values in {1, · · · , k}, let X be a random variable indexing the patterns
and taking values in {1, · · · , N}, and let p̂(M = j|X = i) be the conditional
probability of each of the k meta-clusters, given an object i, which we also write
as p(Mj |xi). Here, we use xi to denote the object index of the pattern x(i),
and we use Mj to denote a meta-cluster represented by the row j in M. The
probability estimates p̂(Mj |xi) are computed as p̂(Mj |xi) = mji∑k

l=1
mli

.

3 Experimental Analysis

Performance is evaluated based on the error rates which are computed by solving
the correspondence problem between the labels of a clustering solution and the
true clustering using the Hungarian method.

3.1 Experiments with Artificial Data

The artificial datasets are shown in Figure 2. The first, called “Elongated-
ellipses” consists of 1000 2D points in 2 equal clusters. The “Crescents” dataset
consists of 1000 2D points in 2 equal clusters. The “Differing-ellipses” consists of
250 2D points in 2 clusters of sizes 50 and 200. The dataset called “8D5K” was
generated and used in [1]. It consists of 1000 points from 8D Gaussian distri-
butions (200 points each). For visualization, the “8D5K” data is projected onto
the first two principal components.
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Fig. 2. Scatter plots of the artificial datasets. The last 8 dimensional dataset is pro-

jected on the first 2 principal components
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For each dataset, we use B = 100, and vary c. We measure the error rate of
the corresponding bagged ensemble at the true number of clusters k and compare
it to the k-means at the same k. The results in Figure 3 show that the proposed
bagging ensemble significantly lowers the error rate for varied cluster structures.
In order to illustrate the cluster-based cumulative ensemble, we show in Figure
4 (a) a plot of the points frequencies in each of the accumulated clusters at c = 4
for the “elongated-ellipses” dataset. The points are ordered such that the first
500 points belong to the first cluster followed by 500 from the second cluster. The
dendrogram corresponding to the hierarchical group average meta-clustering on
the 4 cumulative clusters is shown in Figure 4 (b).
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Fig. 4. (a) Accumulated clusters. (b) Generated dendrogram

3.2 Experiments with Real Data

We use six datasets from the UCI machine learning repository. Since the Eu-
clidean distance is not scale invariant, we standardize the features for those
datasets in which the scales widely vary for the different features. The datasets
used are, (1) the iris plant dataset, (2) the wine recognition dataset, (3) the
Wisconsin breast cancer dataset, (4) the Wisconsin diagnostic breast cancer
(WDBC), (5) a random sample of size 500 from the optical recognition of hand-
written digits dataset, and (6) a random sample of size 500 from the pen-based
recognition of handwritten digits dataset. We standardized the features for the
wine recognition and the WDBC datasets. The mean error rates of the k-means
(over 100 runs), at the true k, for the above datasets are, 0.2007, 0.0378, 0.0395,
0.0923, 0.2808, 0.3298, respectively.

Figure 5 shows a comparison of the cluster-based cumulative ensembles with
hierarchical group average (denoted in Figure 5 by cluster-based alink) to pattern
co-association-based ensembles, when single, complete and average link variants
of the hierarchical clustering are applied (denoted by pattern-based slink, clink,
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Fig. 5. Error rates on the real datasets for the proposed ensemble versus co-

associations-based ensembles using single, complete and average link

and alink, respectively). In the experiments, we use B = 100 and k corresponding
to the true number of clusters. The results show that the cluster-based alink en-
sembles perform competitively well compared to pattern-based alink ensembles.
On the other hand, the co-association-based single and complete link ensembles
showed poor performance.

3.3 Varying the Ensemble Size

We study the effect of the ensemble size B, for values of B ≤ 100. Figure 6
shows the mean error rates on real and artificial datasets for B = 5, 10, 25, 50,
and 100, and for varying number of base clusters c. Each ensemble at a given
c and B is repeated r = 5 times and the mean is computed. There is a general
trend of reduction in error rates as B increases. However, we observe that most
gain in accuracy occurs for B = 25, and 50. We also observe that the differences
between the error rates of ensembles of varying values of c tend to decrease as B
increases, i.e., the variability of the error rates corresponding to different values
of c is reduced when B is increased. However, in some cases, it is noted that
that amount of reduction in the error depends on c. For instance, this can be
observed for c = 4 in the crescents and differing-ellipses datasets.
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4 Conclusion

The proposed cluster-based cumulative representation is more compact than
the co-association matrix. Experimental results on artificial datasets emphasised
the potential of the proposed ensemble method in substantially lowering the er-
ror rate, and in finding arbitrary cluster structures. For the real datasets, the
cluster-based cumulative ensembles, using group average hierarchical clustering,
significantly outperformed co-association-based ensembles, using the single and
complete link algorithms. They showed competitive performance compared to
co-association-based ensembles, using the group average algorithm. In [12], the
group average algorithm is shown to approximately minimize the maximum clus-
ter variance. Such model seems to represent a better fit to the data summarised
in Z. A further potential benefit of this paper is that co-association-based con-
sensus functions other than hierarchical methods, such as [3, 4], can also be
adapted to the cluster-based cumulative representation, rendering them more
efficient. This will be investigated in future work.
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Abstract. Support Vector Machines (SVMs) have been successfully applied to 
solve a large number of classification and regression problems. However, 
SVMs suffer from the catastrophic forgetting phenomenon, which results in 
loss of previously learned information. Learn++ have recently been introduced 
as an incremental learning algorithm. The strength of Learn++ lies in its ability 
to learn new data without forgetting previously acquired knowledge and with-
out requiring access to any of the previously seen data, even when the new data 
introduce new classes. To address the catastrophic forgetting problem and to 
add the incremental learning capability to SVMs, we propose using an ensem-
ble of SVMs trained with Learn++. Simulation results on real-world and bench-
mark datasets suggest that the proposed approach is promising. 

1   Introduction 

Support Vector Machines (SVMs) have enjoyed a remarkable success as effective and 
practical tools for a broad range of classification and regression applications [1-2]. As 
with any type of classifier, the performance and accuracy of SVMs rely on the avail-
ability of a representative set of training dataset. In many practical applications, how-
ever, acquisition of such a representative dataset is expensive and time consuming. 
Consequently, such data often become available in small and separate batches at dif-
ferent times. In such cases, a typical approach is combining new data with all previ-
ous data, and training a new classifier from scratch. In other words, such scenarios 
require a classifier to be trained and incrementally updated, where the classifier needs 
to learn the novel information provided by the new data without forgetting the knowl-
edge previously acquired from the data seen earlier. Learning new information with-
out forgetting previously acquired knowledge, however, raises the stability–plasticity 
dilemma [3]. A completely stable classifier can retain knowledge, but cannot learn 
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new information, whereas a completely plastic classifier can instantly learn new in-
formation, but cannot retain previous knowledge. The approach generally followed 
for learning from new data involves discarding the existing classifier, combining the 
old and the new data and training a new classifier from scratch using the aggregate 
data. This approach, however, results in catastrophic forgetting (also called unlearn-
ing) [4], which can be defined as the inability of the system to learn new patterns 
without forgetting previously learned ones. Methods to adress this problem include 
retraining the classifier on a selection of past or new data points generated from the 
problem space. However, this approach is unfeasible if previous data are no longer 
available.

Such problems can be best addressed through incremental learning, defined as the 
process of extracting new information without losing prior knowledge from an 
additional dataset that later becomes available. Various definitions and interpretations 
of incremental learning can be found in [6] and references within. For the purposes of 
this paper, we define an incremental learning algorithm as one that meets the follow-
ing demanding criteria [5,6]:  

1. be able to learn additional information from new data. 
2. not require access to the original data used to train the existing classifier. 
3. preserve previously acquired knowledge (that is, it should not suffer from 

catastrophic forgetting). 
4. be able to accommodate new classes that may be introduced with new data. 

In this paper we describe an ensemble of classifiers approach: ensemble systems 
have attracted a great deal of attention over the last decade due to their empirical 
success over single classifier systems on a variety of applications. An ensemble of 
classifiers system is a set of classifiers whose individual decisions are combined in 
some way to obtain a meta classifier. One of the most active areas of research in su-
pervised learning has been to study methods for constructing good ensembles of clas-
sifiers. The main discovery is that ensembles are often more accurate than the indi-
vidual classifiers that make them up. A rich collection of algorithms have been devel-
oped using multiple classifiers, such as AdaBoost [7] and its many variations, with the 
general goal of improving the generalization performance of the classification system. 
Using multiple classifiers for incremental learning, however, has been largely  
unexplored. Learn++, in part inspired by AdaBoost, was developed in response to 
recognizing the potential feasibility of ensemble of classifiers in solving the incre-
mental learning problem. Learn++ was initially introduced in [5] as an incremental 
learning algorithm for MLP type networks. A more versatile form of the algorithm 
was presented in [6] for all supervised classifiers. 

Since SVMs are stable classifiers and use the global partitioning (global learning) 
technique, they are also susceptible to the catastrophic forgetting problem [8]. The 
SVMs optimise the positioning of the hyperplanes to achieve maximum distance from 
all data samples on both sides of the hyperplane through learning. Therefore, SVMs 
are unable to learn incrementally from new data. Since training of SVMs is usually 
present as a quadratic programming problem, it is a challenging task for the large data 
sets due to the high memory requirements and slow convergence. To overcome these 
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drawbacks, various methods have been proposed for incremental SVM learning in the 
literature [9-14]. On the other hand, some studies have also been presented to further 
improve classification performance and accuracy of SVMs with ensemble methods, 
such as boosting and bagging [15-18]. In this study, we consider the ensemble based 
incremental SVM approach. The purpose of this study was to investigate whether the 
incremental learning capability can be added to SVM classifiers through the Learn++ 
algorithm, while avoiding the catastrophic forgetting problem.  

2   Learn++ 

The strength of Learn++ as an ensemble of classifiers approach lies in its ability to 
incrementally learn additional information from new data.  Specifically, for each 
dataset that becomes available, Learn++ generates an ensemble of classifiers, whose 
outputs are combined through weighted majority voting to obtain the final classifica-
tion.  Classifiers are trained based on a dynamically updated distribution over the 
training data instances, where the distribution is biased towards those novel instances 
that have not been properly learned or seen by the previous ensemble(s). The pseu-
docode for Learn++ is provided in Figure 1. 

For each dataset Dk, k=1,…,K that is submitted to Learn++, the inputs to the al-
gorithm are (i) Sk ={( xi , yi )|i = 1,...,mk}, a sequence of mk training data instances xi 
along with their correct labels yi, (ii) a classification algorithm BaseClassifier to 
generate hypotheses, and (iii) an integer Tk specifying the number of classifiers (hy-
potheses) to be generated for that dataset. The only requirement on the BaseClassifier 
is that it obtains a 50% correct classification performance on its own training dataset. 
BaseClassifier can be any supervised classifier such as a multilayer perceptron, radial 
basis function, a decision tree, or of course, a SVM.  

Learn++ starts by initializing a set of weights for the training data, w, and a distri-
bution D obtained from w, according to which a training subset TRt and a test subset 
TEt are drawn at the tth iteration of the algorithm. Unless a priori information indicates 
otherwise, this distribution is initially set to be uniform, giving equal probability to 
each instance to be selected into the first training subset. 

At each iteration t, the weights adjusted at iteration t-1 are normalized to ensure 
that a legitimate distribution, Dt, is obtained (step 1). Training and test subsets are 
drawn according to Dt (step 2), and the base classifier is trained with the training 
subset (step 3).  A hypothesis ht is obtained as the tth classifier, whose error εt is com-
puted on the entire (current) dataset Sk = TRt + TEt, simply by adding the distribution 
weights of the misclassified instances (step 4). 

≠
=

iit yxhi
t iD

)(:
t )(ε  (1) 

The error, as defined in Equation (1), is required to be less than ½ to ensure that a 
minimum reasonable performance can be expected from ht. If this is the case, the hy-
pothesis ht is accepted and the error is normalized to obtain the normalized error 

βt = εt 
/(1 −εt), 0 <  βt  

< 1  (2) 
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If εt  ½, then the current hypothesis is discarded, and a new training subset is  
selected by returning to step 2.  All hypotheses generated so far are then combined  
using the weighted majority voting to obtain the composite hypothesis Ht  (step 5).  

( )
=∈

=
yxht
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1logmaxarg β  (3) 

The weighted majority voting scheme allows the algorithm to choose the class  
receiving the highest vote from all hypotheses, where the voting weight for each hy-
pothesis is inversely proportional to its normalized error. Therefore, those hypotheses 
with good performances are awarded a higher voting weight. The error of the com-
posite hypothesis is then computed in a similar fashion as the sum of distribution 
weights of the instances that are misclassified by Ht (step 6): 
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where [|·|] evaluates to 1, if the predicate holds true.  

 
Input: For each dataset drawn from Dk k=1,2,…,K   

• Sequence of m examples Sk={(xi,yi)  i=1,…,mk}. 
• Learning algorithm BaseClassifier.  
• Integer Tk, specifying the number of iterations. 
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2. Choose training TRt and testing TEt subsets from Dt.  
3. Call WeakLearn, providing it with TRt. 
4. Obtain a hypothesis ht : X  Y, and calculate the error of 
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Fig. 1. The Learn++ Algorithm 
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The normalized composite error is then computed  

Bt = Et /(1 − Et ),  0 < Bt <1  (5) 

to be used in the weight update rule (step 7) of Equation (6). This rule reduces the 
weights of those instances that are correctly classified by the composite hypothesis Ht, 
lowering their probability of being selected into the next training subset. 

[ ]|)(|1)(
     ,    1
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)()(1
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ttt
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=
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In effect, the weights of misclassified instances are increased relative to the rest of 
the dataset. We emphasize that, unlike AdaBoost and its variations, the weight update 
rule in Learn++ looks directly at the classification of the composite hypothesis (that is, 
the ensemble), not that of a specific hypothesis. This weight update procedure forces 
the algorithm to focus more and more on instances that have not been properly 
learned by the ensemble. When Learn++ is learning incrementally, the instances intro-
duced by the new dataset (and in particular from new classes, if applicable) are pre-
cisely those not learned by the ensemble, and hence the algorithm quickly focuses on 
these instances. At any point, a final hypothesis Hfinal can be obtained by combining 
all hypotheses that have been generated so far using the weighted majority voting 
rule. 
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Simulation results of Learn++ on incremental learning with MLPs used as base 
classifiers on a variety of datasets as well as comparisons to AdaBoost and other 
methods of incremental learning can be found in [6] and references within.   

3   SVM Classifiers 

Support vector machines (SVMs) have been successfully employed in a number of 
real world problems [1-2]. They directly implement the principle of structural risk 
minimization [1] and work by mapping the training points into a high dimensional 
feature space, where a separating hyperplane (w, b) is found by maximizing the dis-
tance from the closest data points (boundary-optimization). Given a set of training 
samples S={(xi,yi)  i=1,…,m}, where xi∈Rn are input patterns, yi ∈ {+1, −1} are class 
labels for a 2-class problem, SVMs attempt to find a classifier h(x), which minimizes 
the expected misclassification rate. A linear classifier h(x) is a hyperplane, and can be 
represented as h(x) = sign(wTx+b). The optimal SVM classifier can then be found by 
solving a convex quadratic optimization problem: 
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where b is the bias, w is weight vector, and C is the regularization parameter, used to 
balance the classifier’s complexity and classification accuracy on the training set S. 
Simply replacing the involved vector inner-product with a non-linear kernel function 
converts linear SVM into a more flexible non-linear classifier, which is the essence of 
the famous kernel trick. In this case, the quadratic problem is generally solved 
through its dual formulation:  
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where αi are the coefficients that are maximized by Lagrangian. For training samples 
xi, for which the functional margin is one (and hence lie closest to the hyperplane),    
αi > 0. Only these instances are involved in the weight vector, and hence are called the 
support vectors [2]. The non-linear SVM classification function (optimum separating 
hyperplane) is then formulated in terms of these kernels as: 
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As mentioned earlier in Learn++ algorithm, incremental learning of SVMs is based 
on the following intuition: The ensemble is obtained by retraining a single SVM using 
strategically updated distributions of the training dataset, which ensures that examples 
that are misclassified by the current ensemble have a high probability of being resam-
pled. The examples that have a high probability of error are precisely those that are 
unknown or that have not yet been used to train the previous classifiers. Distribution 
update rule is optimized for incremental learning of new data, in particular when the 
new data introduce new classes. After Tk classifiers are generated for each Dk, the 
final ensemble of SVMs is obtained by the weighted majority of all composite SVMs: 
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4   Simulation Results 

Proposed incremental learning approach for SVMs using Learn++ has been tested on 
several datasets. For brevity, we will henceforth use the term SVMLearn++ for the 
proposed approach and present results on one benchmark dataset and one real-world 
application. The benchmark dataset is the Optical Character Recognition dataset from 
UCI machine learning repository, and the real world application is a gas identification 
problem for determining one of five volatile organic compounds based on chemical 
sensor data. 

Two nonlinear SVM kernel functions were used in our experiments:  Polynomial 
and Gaussian kernel functions.  

Polynomial kernel: ( )djiji xxxxK 1,),( +=   (12) 
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RBF kernel :  −−= 22
2/exp),( σjiji xxxxK  (13) 

SVM classifier parameters are the regularization constant C, and the polynomial 
degree d (for the polynomial kernel) or the RBF width σ, (for the RBF kernel func-
tion). The choice of classifier parameters is a form of model selection. Although the 
machine learning community has extensively considered model selection with SVMs, 
optimal model parameters are generally domain-specific [19]. Therefore, kernel and 
regularization parameters were selected jointly to evaluate the best model for each 
dataset. We used the cross-validation technique with 5-folds to assess SVMs with 
given kernel parameter and regularization constants. 

4.1   Optical Character Recognition Dataset 

The Optical Character Recognition (OCR) data has 10 classes with digits 0-9 and 64 
attributes. The dataset was split into four to create three training (DS1, DS2, DS3) 
and a test subsets (Test), whose distribution is given in Table 1. We evaluated the 
performance and the incremental learning ability of SVMs using Learn++ on a fixed 
number of classifiers rather than determining the number of classifiers via a validation 
set. SVMLearn++ was allowed to create seven classifiers with the addition of each 
dataset using both polynomial kernel (PolySVM) and kernel (RBFSVM), for a total of 
classifiers in three training sessions. The data distribution was deliberately made 
rather challenging, specifically designed to test the ability of proposed approach to 
learn multiple new classes at once with each additional dataset while retaining  
the knowledge of previously learned classes. In this incremental learning problem, 
instances from only six of the ten classes are present in each subsequent dataset  
resulting in a rather difficult problem.  

Table 1. OCR data distribution 

Class C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 
DS1 250 250 250 0 0 250 250 250 0 0 
DS2 150 0 150 250 0 150 0 150 250 0 
DS3 0 150 0 150 400 0 150 0 150 400 
Test 110 114 111 114 113 111 111 113 110 112 

Results from this test are shown in Tables 2 and 3 based on an average of 20 trials. 
The last two columns are the average overall generalization performance (Gen.) on 
test data, and the standard deviation (Std.) of the generalization performances. 

Poly SVMLearn++ was able to learn the new classes, 4 and 9, only poorly after they 
were first introduced in DS2 but able to learn them rather well, when further trained 
with these classes in DS3. However, it performs rather well on classes 5 and 10 after 
they are first introduced in DS3. RBF SVMLearn++ was able to learn the classes 4 
and 9, only poorly when they were introduced in DS2 but able to learn them rather 
well, when further trained with these classes in DS3. Similarly, it performs rather 
poorly on classes 5 and 10 after they are first introduced in DS3, though it is reason-
able to expect that it would do well on these classes with additional training. 
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Table 2. SVMLearn++ with polynomial kernel (degree = 3, C = 1) results on OCR dataset  

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Gen. Std. 
DS1 99% 100% 99% - - 100%  100% 99% - -  %60 0.07% 
DS2 99% 100% 99% 17%  - 100%  100% 99% 21%  -  %63 2.37% 
DS3 99% 100% 99% 94% 84% 100% 100% 99% 91% 94% %78 2.32% 

Table 3. SVMLearn++ with RBF kernel (σ = 0.1, C =1) results on OCR dataset  

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Gen. Std. 
DS1 99% 100% 100% - - 98%  100%  99%  - - %60 0.03%  
DS2 99% 73% 100% 44% - 98%  68%  99%  47% -  %63 1.54%  
DS3 99% 100% 100% 93% 14% 97%  100%  99%  90%  13% %80 4.17%  

The generalization performance of Poly and RBF SVMLearn++ is computed on the 
entire test data which included instances from all classes. This is why the generaliza-
tion performance is only around 60% after the first training session, since the  
algorithms had seen only six of the 10 classes by that time. Both Poly and RBF 
SVMLean++ exhibit the ability of learning incrementally with a final overall generali-
zation performance of 78-80% after new datasets are introduced.  

4.2   Volatile Organic Compounds Dataset  

The Volatile Organic Compounds (VOC) dataset is from a real world application that 
consists of 5 classes (toluene, xylene, hectane, octane and ketone) with 6 attributes 
coming from six (quartz crystal microbalance type) chemical gas sensors. The dataset 
was divided into three training and a test dataset. The distribution of the data is given 
in Table 4, where a new class was introduced with each dataset. 

Table 4. VOC data distribution  

Class C1 C2 C3 C4 C5 
DS1 20 0 20 0 40 
DS2 10 25 10 0 10 
DS3 10 15 10 40 10 
Test 24 24 24 40 52 

Again, SVMLearn++ was incrementally trained with three subsequent training data-
sets. In this experiment, Poly and RBF SVMLearn++ was allowed to generate as many 
classifiers as necessary to obtain their maximum performance. The number of classi-
fiers generated were 5, 10, 18 (a total of 33 classifiers to achieve their best perform-
ance) for SVM classifiers with polynomial kernel (PolySVM) and RBF kernel 
(RBFSVM) in three training sessions. Results from this test are shown in Tables 5 and 
6 based on average of 30 trials. 
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Table 5. SVMLearn++ with polynomial kernel (degree = 3, C = 100) results on VOC dataset 

 C1 C2 C3 C4 C5 Gen. Std 
DS1 92% -  88% -  100%  %58 1.21% 
DS2 98% 91% 94% -  97% %72 1.29% 
DS3 96% 96% 98% 78% 76% %85 7.29% 

Table 6. SVMLearn++ with RBF kernel (σ = 3, C =100) results on VOC dataset 

 C1 C2 C3 C4 C5 Gen. Std. 
DS1 91% -  95% - 99%  %58 1.62% 
DS2 97% 91%  81% - 95%  %70 1.84% 
DS3 93% 99%  94% 68% 76%  %83 8.19% 

The generalization performance of Poly and RBF SVMLearn++ on the test dataset 
gradually improved from 58% to 83-85% as new data were introduced, demonstrating 
its incremental learning capability even when instances of new classes are introduced 
in subsequent training sessions. 

5   Conclusions 

In this paper, we have shown that the SVM classifiers can in fact be equipped with the 
incremental learning capability, to address the catastrophic forgetting problem. SVM 
ensembles generated with Learn++ learning rule (SVMLearn++) are capable of learning 
new information provided by subsequent datasets, including new knowledge provided 
by instances of previously unseen classes. Some knowledge is indeed forgotten while 
new information is being learned; however, this appears to be mild, as indicated by 
the steady improvement in the generalization performance. SVMLearn++ with two 
different kernel functions has been tested on one real world dataset and one bench-
mark dataset. The results demonstrate that SVMLearn++ work rather well in a variety 
of applications. 

Learn++ suffers from the inherent “out-voting” problem when asked to learn new 
classes, which causes it to generate an unnecessarily large number of classifiers [20]. 
Therefore, in future work, we will test the modified version of Learn++, called 
Learn++.MT that attempts to reduce the number of classifiers generated. 
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Abstract. Since standard data sets are not capable enough in evaluating classi-
fier combination methods in multiple classifier systems, a new classifier simula-
tor with sufficient diversity is proposed to generate artificial data sets. The 
simulator can generate simulating data for a problem of any number of classes 
and any classifier performance, and can also show pair wise dependency. It is 
achieved via a three-step algorithm: firstly building the confusion matrices of 
the classifiers on the basis of desired behavior, secondly generating the outputs 
of one classifier based on its confusion matrix, and then producing the outputs 
of other classifiers. The detailed generating algorithm is discussed. Experiments 
on majority voting combination method shows that negative correlation could 
improve the accuracy of multiple classifier systems, which indicates the validity 
of the proposed simulator. 

1   Introduction 

In the field of pattern recognition, there has been a recent movement towards multiple 
classifier systems, in which independence between classifiers is usually viewed as an 
asset. However, it is not always possible to guarantee the independency. Kuncheva [1] 
studied the limits on the majority vote accuracy when combining dependent classifi-
ers. The research shows that, although the relationship between dependency and accu-
racy of the pool is ambivalent, better results are obtained indeed when there is nega-
tive dependency. Another problem in designing a multiple classifier system is the 
choice of a suitable combination method among the available set. The standard prac-
tice for evaluation of classifier combination methods is using standard data sets with 
known properties [2][3]. It is difficult to carry out controllable experiments since the 
properties of the standard data sets cannot be specified in advance. In order to amend 
to these cases, there is a new trend to use artificial outputs generated by a classifier 
simulator to provide an underlying evaluation of classifier combination methods [4]. 

Lecce et al. [5] investigated the role of the a-priori knowledge in the process of 
classifier combination. Given its recognition rate, the output of a classifier is simu-
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lated at abstract level and a similarity index is used to measure the agreement among 
classifiers. To generate its data is an enumeration process rather than an automatic 
procedure. Zouari et al. [6] proposed a classifier simulator for evaluating combination 
methods, which firstly built a confusion matrix based on the desired behavior and 
secondly generated the outputs. The simulator did not take the dependency between 
classifiers into account. Then they used distance measure to estimate the dependency 
[10], where the case of two classifiers was investigated and the case of three or more 
ones required further work. Kuncheva et al. [7] derived formulas according to how 
two classifiers can be generated with specified accuracies and dependencies between 
them. She proposed an algorithm for generating multiple dependent classifiers, and 
the outputs are binary vectors. That is, the outputs are not the class label of samples, 
but correct or incorrect classification. To this end, we designed a classifier simulator, 
which can not only show the dependency between classifiers, but also generate the 
class label as the output for the sample. 

This paper is organized as follows. Section 2 describes the general simulation 
process, and the parameters used to define the desired behavior. Detailed algorithms 
for building confusion matrix and generating the outputs are presented in section 3 
and section 4 respectively. Experiments and discussion are given in section 5.  
Conclusion is drawn in section 6. 

2   The Proposed Method 

2.1   Input Parameters 

There exist many measures of dependency between classifiers while Q statistic is one of 
them [8]. Q statistic is a pair wise measure, which is used as the measure of dependency 
in this research due to its easy interpretation for independence,positive/negative depend-
ences, and calculation. We carried out our work based on Q statistic. 

Generally speaking, the output information that various classification algorithms 
supplying can be divided into three levels: the abstract level, the rank level and the 
measurement level [9]. A classifier outputs a unique class label for the sample in the 
abstract level, while it ranks all the labels in a queue with the label at the top being the 
first choice in the rank level. In the measurement level, a classifier attributes each 
label a measurement value to address the degree that the sample has the label. Outputs 
of the classifier simulator presented in this paper are of the abstract level. If other 
types are needed, they could be created from the confusion matrix of an abstract-level 
classifier [2]. An output of the simulator is as following: 

(Original_Class, Simulating_Class) 

where Original_Class denotes the correct classification of a given sample, and  
Simulating_Class denotes the decision of a simulated classifier. 

The input parameters of the simulator, defining the classification problem and the 
desired behavior of the classifier, are: (1) the number of classes M; (2) the sample  
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number of per class N; (3) l classifiers that need to be simulated },,,{ 21 lRRR ⋅⋅⋅  and 

their recognition rates },,,{ 21 lTLTLTL ⋅⋅⋅ ; (4) the desired dependency ijQ  between 

classifiers iR  and jR , },,2,1{, lji ⋅⋅⋅∈ . 

2.2   Simulating Process 

Given the parameters, the classifier simulator is to generate the outputs. For each class 
of each classifier, it generates N outputs with the style (Original_Class, Simulat-
ing_Class). The generation of all outputs is achieved as follows. Firstly, to build con-
fusion matrices for the classifiers ground to the input parameters. Secondly, to gener-
ate the outputs of one classifier from its confusion matrix. Finally, to generate the 
outputs of other classifiers based on the outputs obtained, the dependencies between 
classifiers and the confusion matrices. 

3   Constructing of the Confusion Matrix 

The confusion matrix of a classifier kR  is a MM ×  matrix kCMN , if the rejection 

rate is not taken into account. The actual class under test is represented by the matrix 

row and the classification that kR  assigns to the sample is represented by the column. 

The element ),( jiCMNk  gives the number of times that a class i sample is assigned 

to class j. The diagonal elements indicate correct classifications. If the matrix kCMN  

is normalized, another MM ×  matrix kCM  can be obtained. The element 

),( jiCM k  gives the probability that a sample of class i will be assigned to class j. 

The diagonal elements of kCM  denote the recognition rate and the off-diagonal 

elements denote the confusion rate. For the sake of concision, we assume that all 

classes have the same recognition rate, then kk TLiiCM =),(  holds, },,2,1{ li ⋅⋅⋅∈ . 

When they are different, diagonal elements ( , )kCM i i  will be set to different values 

according to the recognition rate of per class, so long as the constraint is satisfied that 

total recognition rate of all classes is kTL . In the row i of kCM , the sum of all ele-

ments except column i is the confusion rate of class i, which is denoted by i
kTC : 

k

M

ijj

ij
k

i
k TLTCTC −==

≠=

%100
,1

, (1) 

in which ij
kTC  is the confusion probability that a class i sample will be assigned to 

class j ( ji ≠ ). Based on the work above, the confusion matrix kCM  of classifier 

kR  can be constructed. Other l-1 confusion matrices can be built in the same way. 
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4   Generating the Outputs 

4.1   Generating Algorithm for Two Classifiers 

Consider two classifiers, iR  and jR , and their respective recognition rates iTL  and 

jTL . The dependency between them measured by Q statistic is ijQ . The outputs of 

one classifier are generated firstly, and then the other classifier’s outputs are obtained 

based on them. If classifier iR  decides incorrectly for a given sample, the output of 

iR  is alternated with probability ),( jiP TF →  to the proper classification in order to 

obtain the according output of classifier jR . On the other hand, if classifier iR   

decides correctly, the output of iR  is alternated with probability ),( jiP FT →  to the 

confusion class to obtain the output of classifier jR , and the confusion class is  

decided by jCM . ),( jiP TF →  and ),( jiP FT →  can be computed according to the 

input parameters as follows [7]: 

If 0≠ijQ  holds, that is, iR  and jR  is dependent, then 

)1(4

))(21(
),(

iij

jiijij
TF TLQ

TLTLQQ
jiP

−
Δ±−+−−

=→
, (2) 

where )1()1(8))(21( 2 −−−−+−=Δ ijjiijjiijij QTLTLQTLTLQQ . 

i

jTF
TFFT TL

TLP
PjiP

−
+−= →

→→ 1),( . (3) 

If 0=ijQ  holds, that is, iR  and jR  is independent, then 

jTF TLjiP =→ ),( . (4) 

jFT TLjiP −=→ 1),( . (5) 

In detail, the generating algorithm is accomplished in two steps: (1) building 

iCM  and from this confusion matrix, generating N outputs for each class. Thus the 

NM ×  outputs of classifier iR  are obtained; (2) generating the outputs of classifier 

jR  according to the outputs of iR , jCM , ),( jiP TF→  and ),( jiP FT → . 

4.2   Generating Algorithm for Multiple Classifiers 

In the generating algorithm for two classifiers, it is indifferent when different classi-
fier is chosen to be the basic one. But this is not a trivial thing when there are three 
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or more classifiers. For l classifiers },,,{ 21 lRRR ⋅⋅⋅ , if we first generate 1R  and 

use it to obtain 2R  through the generating procedure described above, then use 2R  

to produce 3R  and so on, there is no guarantee that non-adjoining classifiers will 

have the desired dependency. To tackle this problem, we followed the idea in refer-

ence [7]. For each output, a random permutation of },,,{ 21 lRRR ⋅⋅⋅  is generated. 

It is used to pick the order in which the classifiers will be selected as the basic and the 

subsequent ones. For example, when },,,{
21 lwww RRR ⋅⋅⋅  is taken as the permutation 

for one output, 
1wR  is nominated as the basic classifier. 

2wR  is generated based on 

1wR , and so on, until 
lwR  is obtained. If the sample number N is large enough, ran-

dom nominations of l classifiers make every two classifiers have enough chances to 
be adjoining, so that the desired dependency between them is approached. 

The pseudo-code for the generating algorithm of multiple classifiers is as  
follows: 

Step1. Input parameters:{TL1,TL2,…,TLl}; Qij, i,j ∈{1,2,…,l}. 

Step2. Generate iCM , i ∈{1,2,…,l}. 

Step3. Compute ),( jiP TF→  and ),( jiP FT → , },,2,1{, lji ⋅⋅⋅∈ . 

Step4. For ii = 1 to M 

For jj = 1 to N 

(1) Choose a random permutation },,,{
21 lwww RRR ⋅⋅⋅  of 

},,,{ 21 lRRR ⋅⋅⋅ . 

(2) Generate one output of 
1wR  according to 

1wCM . 

(3) For kk = 2 to l  

 Generate one output of 
kkwR  based on the output 

of 
1−kkwR , ),( 1 kkkkTF wwP −→  and ),( 1 kkkkFT wwP −→ . 

 End kk. 

End jj. 

End ii. 

Step5. Return the total lNM ××  outputs. Each one has 
the form (Original Class, Simulating Class). 
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5   Experiments and Discussion 

5.1   Experiments for the Proposed Simulator 

In the following experiments, we assume the number of classes M=10 and the sample 
number of per class N=1000. Each algorithm was run 100 times and the average was 

calculated as the result. X  denotes the simulating value of X . 

Case 1. Two Classifiers 
(1) Recognition rates are equal 

Let there be two classifiers, iR  and jR . They were of the same recognition rate  

and TL∈ {0.5,0.6,0.7,0.8,0.9}. For each value of the recognition rate, a series of  
experiments were carried out with different dependency Qij with 

}1,,1.0,0,1.0,,9.0,1{ −−−∈ijQ . The deviation of simulating results was 

given in Table 1. 

Table 1. The deviation when two classifiers have equal recognition rates 

Recognition rate Outputs 
0.5 0.6 0.7 0.8 0.9 

iTL  +0.0011 +0.0009 +0.0011 +0.0010 +0.0006 

jTL  +0.0011 +0.0012 +0.0007 +0.0009 +0.0008 

ijQ  +0.0058 +0.0029 +0.0025 +0.0037 +0.0135 

(2) Recognition rates are different 

Given two classifiers iR  and jR  with different recognition rates. Let iTL = 0.6 and 

jTL = 0.9. A series of experiments were carried out with different dependency Qij, 

with }1,,1.0,0,1.0,,9.0,1{ −−−∈ijQ . The outputs are given in Table 2. 

Table 2. Simulating results when two classifiers have different recognition rates 

iTL  jTL  ijQ  

0.6+0.0011 0.9+0.0008 
ijQ +0.0075 

The results in Table 1 and Table 2 show that the generating algorithm for two 
classifiers can obtain accurate results in spite of what values the dependency and the 
recognition rate take. 
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Case 2. Multiple Classifiers 
Without lose of generality, the experiments for multiple classifiers were carried out 
with l=3.  

(1) Recognition rates and dependencies are both equal 

Let there be three classifiers iR , jR  and kR , with the same recognition rate 

TL∈ {0.6,0.7,0.8,0.9} and the same dependency Q∈ {-0.8, -0.5, -0.2,0.2,0.5,0.8}. 
Then there are 24 experiments. In each experiment, average simulating results of 

three recognition rates and three dependencies, denoted by TL  and Q , are listed in 

Table 3. 

Table 3. Average simulating results when both desired values are equal 

Recognition rate 
0.6 0.7 0.8 0.9 

D
ep

en
d

en
cy

 

TL  Q  TL  Q  TL  Q  TL  Q  

-0.8 0.600 -0.4665 0.699 -0.4560 0.8002 -0.443 0.8999 -0.4289 
-0.5 0.600 -0.3028 0.699 -0.2984 0.8001 -0.295 0.9001 -0.2913 
-0.2 0.599 -0.1286 0.700 -0.1271 0.8000 -0.125 0.8999 -0.1278 
0.2 0.599 0.1418 0.699 0.1412 0.8001 0.139 0.8998 0.1407 
0.5 0.600 0.3895 0.700 0.3930 0.7999 0.390 0.8999 0.3935 
0.8 0.600 0.7095 0.700 0.7118 0.8001 0.711 0.9001 0.7161 

It is shown in Table 3 that the simulating results of recognition rates are accurate, 
and they are not influenced by the values of recognition rates and dependencies. 
Simulated Q is irrelevant with recognition rate, but the desired dependency has much 
impact on it. 

The plot in Fig. 1 shows the relationship of the error for simulated Q (denoted by 

|| arg etTQQ − ) and the desired Q for the case of the recognition rate being 0.8. From 

Fig. 1, that the error is less toward bigger Q can be indicated when the dependence is 
negative, and it is less toward bigger or smaller Q when the dependence is positive. 
As Q is irrelevant with recognition rate, this observation is common. 

(2) Both of recognition rates and dependencies are different 

Given three classifiers iR , jR  and kR , with different recognition rate and depend-

ency. Let =),,( kji TLTLTL (0.6,0.7,0.8), and ),,( jkikij QQQ ∈ {(0.2,0.3,0.4), 

(0.6,0.7,0.8), (-0.2,-0.3,-0.4), (-0.2,0.3,-0.4)}. The simulating results of recognition 
rates and dependencies are listed in Table 4. 

From data in Table 4, three || arg etTQQ −  values in each of the four dependencies 

groups could be calculated. It is shown that the largest error is obtained in the group 
with all negative dependencies. The error is less toward smaller absolute values of Q 
when dependencies are different in the group. 
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Fig. 1. Relationship between || arg etTQQ −  and the desired Q 

Table 4. Simulated results when both desired values are different 

),,( jkikij QQQ  
iTL  jTL  kTL  ijQ  ikQ  jkQ  

(0.2,0.3,0.4) 0.6007 0.7001 0.8000 0.1506 0.2141 0.2908 
(0.6,0.7,0.8) 0.6002 0.7000 0.8000 0.5099 0.5883 0.6658 
(-0.2, -0.3, -0.4) 0.6002 0.6996 0.7998 -0.1221 -0.1911 -0.2518 
(-0.2,0.3, -0.4) 0.5992 0.7002 0.8001 -0.1476 0.2176 -0.2741 

Experiments in Case 1 and Case 2 demonstrate that desired recognition rates can 
be generated perfectly by simulating algorithms, but simulated dependencies are 
smaller than the targets when there are three or more classifiers. This is due to the 
generating procedure of multiple classifiers. In the generating algorithm for multiple 
classifiers, a random permutation is obtained for each output to determine the generat-
ing sequence of classifiers. Although the desired dependency could be approached 
when the number of samples is large enough, dependencies tend to be small since 
they are guaranteed only in a subset of all samples. A natural option to overcome the 
imperfect generation will be to set the dependency as a larger value.  

5.2   The Effect of Correlation on Majority Voting Combination Method 

In order to investigate the effect of correlation on the accuracy of majority voting 
combination method, experiments on simulated data sets, which were generated ac-
cording to the algorithm proposed in this work, were carried out. The simulating algo-
rithm for multiple classifiers was run with l=3, M=10, N=1000. We focus on using the 
same recognition rate ({0.6,0.7,0.8,0.9}) and correlation ({-0.9,-0.5,-0.2,0.2,0.5,0.9}) 
for classifiers. Thus 24 groups of simulated datasets were obtained. Majority voting 
combination method was run 100 times using the simulated datasets, and results were 
plotted in Figure 2, in which the values were calculated as averages of 100 experi-
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ments. The figure shows that variation of classification performance is obtained by 
varying the correlation in the ensemble. It indicates that there sustains a monotonous 
drop in accuracy when the correlation between classifiers increases, no matter how 
the single classifier performs. So negatively related classifiers are better than inde-
pendent and positively related ones, which is in agreement with the observation in [1]. 

 

Fig. 2. Recognition rate versus Q Statistic in majority voting combination method for three 
classifiers based on the proposed simulator 

6   Conclusion 

In multiple classifier systems, evaluation of combination methods is the precondition 
of selecting a proper method for a given task. The standard practice for evaluation is 
to use standard data sets with known properties, so it is difficult to carry out control-
lable experiments. To solve this problem, it has recently been developed as a new 
trend to use artificial outputs generated by a classifier simulator to undertake the 
evaluation. Flexible control available to the experimenter using the simulation data 
makes it an extremely attractive solution. Research in this paper is dedicated to the 
new trend. We presented a classifier simulator, which could generate artificial data 
indicating dependencies between classifiers. Experimental evaluation of majority 
voting combination method based on the simulated datasets shows that negative cor-
relation benefits the accuracy of multiple classifier systems, which is consistent with 
previous work. This suggests that the proposed algorithm is valid. Although some 
efforts have been done, the design of a classifier simulator is far from completely 
solved. The use of simulated classifiers requires further energy and study. 
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Abstract. Diversity is an important consideration in classifier ensembles, it can
be potentially expolited in order to obtain a higher classification accuracy. There
is no widely accepted formal definition of diversity in classifier ensembles, thus
making an objective evaluation of diversity measures difficult. We propose a set
of properties and a linear program based framework for the analysis of diversity
measures for ensembles of binary classifiers. Although we regard the question
of what exactly defines diversity in a classifier ensemble as open, we show that
the framework can be used effectively to evaluate diversity measures. We explore
whether there is a useful relationship between the selected diversity measures and
the ensemble accuracy. Our results cast doubt on the usefulness of diversity mea-
sures in designing a classifier ensemble, although the motivation for enforcing
diversity in a classifier ensemble is justified.

1 Introduction

Diversity is defined in different ways in various fields [7–Chapter 10]. Rao [11] provides
an axiomatic definition based on a comprehensive study on diversity in life sciences. In
Software Engineering diversity is formulated in terms of coincident failure of differ-
ent program (software) versions on a random input (e.g. Littlewood & Miller [8] and
Partridge & Krzanowski [10]).

In the context of classification, one possible classification of diversity measures is
pairwise and non-pairwise measures. In the case of pairwise measures, for a multi-
ple classifier system (MCS) usually the average value of the measure (averaged over
the number of pairs) is taken as a measure of diversity of the ensemble. Examples of
pairwise diversity measures include the Q-Statistic [15], the Double Fault [3] and the
Disagreement measure [13]. Non-pairwise measures are defined on the ensemble as a
whole, examples of these are the Kohavi-Wolpert measure [5], the Entropy measure [1]
and the measure of difficulty (θ) [4]. Another class of diversity measures arises from
the bias-variance decomposition of the ensemble error. Examples of this class of mea-
sures include the Coincident Failure Diversity(CFD) and the Distinct Failure Diversity
(DFD) due to Partridge & Krzanowski [10].

Kuncheva and Whitaker [6] list measures (both pairwise and non-pairwise) pro-
posed in different contexts and examine how they can be adapted as diversity measures

N.C. Oza et al. (Eds.): MCS 2005, LNCS 3541, pp. 267–277, 2005.
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for classifier ensembles. They also examine the relationship between the diversity mea-
sures and ensemble accuracy. They conclude that the relationship between the diversity
measures and the combination methods is somewhat ambiguous.

Although diversity and complementarity are considered desirable characteristics of
a classifier ensemble, a lack of a widely accepted formal definition of diversity ren-
ders the evaluation of diversity measures difficult. In [9] we show that the theoreti-
cal upper and lower bounds of majority voting performance for a binary classification
problem are solutions of a linear program (LP). In this paper we propose a framework
based on the linear programming formulation for evaluation of diversity measures for
binary classifier ensembles. We also propose a set of properties for a diversity mea-
sure. Although we regard the question of what exactly defines diversity in a classifier
ensemble as open, we show that the framework can be used effectively to evaluate
whether diversity measures proposed in different contexts are suitable for classifier en-
sembles.

This paper is organized as follows. The framework is described in section 2. Di-
versity measures for classifier ensembles are discussed in section 3.1. An important
motivation for enforcing diversity in an ensemble is to obtain an improvement in clas-
sification accuracy. The characterization of the role of ”diversity” in majority voting
(or classifier combination schemes in general) is not straightforward, owing to a lack
of a widely accepted formal definition of classifier diversity. The proposed framework
enables evaluating whether there is a useful correlation between a given ”diversity”
measure and majority voting accuracy. This is discussed in section 3.3. Conclusions are
presented in section 4.

2 Description of the Framework and Proposed Properties

We introduce the notation used in the rest of the paper. Each binary classifier is repre-
sented by a bit (1 or 0) with 1 indicating that the classifier is correct and 0 indicating
incorrect. The joint statistics can be represented by bit combinations. We follow the
convention that if there are K classifiers C1, C2, . . . , CK , C1 is the LSB (least sig-
nificant bit) and CK corresponds to the MSB (most significant bit).

2.1 Notation and Definitions

Definition 1. 1. Let bit(i,K) represent the K bit binary expansion of i (0 ≤ i ≤
2K − 1). and

2. N(b) = Number of 1s in b, where b is a binary string. (in vector form N(b) = 1T b).

Definition 2. Let x=[x0, x1, . . . , x(2K−1)]T be the vector of probabilities of the joint
correct/incorrect classifications (since there are 2K possible combinations for K clas-
sifiers), where xi (0 ≤ i ≤ 2K − 1) is the probability of the correct/incorrect classi-
fication of the K classifiers represented by the bit combination bit(i,K). For example
if K = 3, x = [x0, x1, . . . , x7]T ; then x3 = P(bit(3,3)) = P(C3=0,C2=1,C1=1)=P(C3
incorrect,C2 correct,C1 correct).
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Definition 3. We define a configuration C as a discrete probability distribution over
the set {0, 1, . . . , 2K − 1} where K is a parameter. i.e. C is a set of tuples of the form
< i, xi > where xi is the weight (probability) associated with i, 0 ≤ i ≤ 2K − 1 and
K is a parameter.

Definition 4. Complementary configuration
If C = {< i, xi >} 0 ≤ i ≤ 2K − 1 is a configuration, the complementary configura-
tion C̄ is defined as follows:

C̄ = {< i, x
(C̄)
i >}where x

(C̄)
i = x

(C)

2K−1−i

2.2 Proposed Properties

Property 1. The diversity measure must have a finite value for all configurations.

We strongly recommend that a diversity measure satisfy Property 1. In addition we
propose the following desirable properties. We do not claim that these are the most
useful, rather this is one possible set of intuitive properties.

Property 2. A desirable property would be that the measure have a minimum and a
maximum value.

Property 3. It is preferable that the diversity measure be capable of being expressed
as an easily computable closed form function of the joint probability vector x. The
minimum and maximum values of the measure for a particular ensemble can then be
determined as solutions to the optimization problem in section 2.3.

Diversity measures may either be symmetrical or non-symmetrical with respect to cor-
rect and incorrect classifications (0 and 1) [12]. Although we list the symmetry property
here, not satisfying the symmetry property is not necessarily undesirable or disadvanta-
geous. We state the symmetry property formally below.

Property 4. Symmetry property
A diversity measure satisfies the symmetry property if it is symmetrical with respect
to correct or incorrect decisions for the entire configuration. Mathematically this can
be stated as : ”The diversity measure of a configuration and its complement (defined in
section 2.1) is the same.”

2.3 Problem Formulation

For an ensemble of K binary classifiers with accuracies p1, p2, . . . , pK , if the diver-
sity measure can be expressed as a closed form function g(x) of the joint probability
vector x (Definition 2), the theoretical bounds may be derived as solutions to an op-
timization problem with linear constraints. g(x) is the objective function to be maxi-
mized/minimized subject to the constraints specified by equations (2-4). For the details
the reader may refer [9] where we formulate the optimization problem to determine the
theoretical bounds of majority vote accuracy for a given ensemble of classifiers (since
the constraints are identical).
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max (min) g(x) (1)

s.t. Aeqx = d (2)

0 ≤ xi ≤ 1 0 ≤ i ≤ 2K − 1 (3)

1T x = 1 (4)

where d = [p1, p2, . . . , pK ]T (vector of classifier accuracies) (5)

x = [x0, x1, x2, . . . , x(2K−1)]
T (vector of joint probabilities)

and Aeq = [b1, b2, . . . , bK ]T (K × 2K matrix of equality constraints,

row r corresponds to r th classifier.)

and b1, b2, . . . ,bK are given by equation (6).

b1 = [0 1, . . . , 0 1]T (6)

b2 = [0 0 1 1, . . . , 0 0 1 1]T

...

bK = [

2(K−1)︷ ︸︸ ︷
0 0 . . . 0 0,

2(K−1)︷ ︸︸ ︷
1 1 . . . 1 1]T

Some of the diversity measures discussed in [6] may be expressed as linear functions
of x i.e. g(x) = fT x + c where f = [f0, f1, . . . , f(2K−1)]T . These are listed in Table
3. The derivation is omitted due to space constraints. In these cases, the optimization
problem is a Linear Program (LP).

3 Results and Discussion

In this section we evaluate the measures discussed in [6] based on the framework de-
scribed in section 2. We provide short definitions of some of the measures. For a more
detailed overview the reader may refer [6–Sections 3,4 and Table 2]. We briefly discuss
pairwise measures. Although we conducted similar experiments on pairwise measures,
due to space constraints we only present sample results related to two non-pairwise
measures, Cunningham measure [1] and measure of ”difficulty” [4]. The analysis and
experimental procedure are the same for the other measures and many of the discussions
and conclusions also apply to them.

3.1 Pairwise vs Non-pairwise Diversity Measures

Pairwise classifier diversity measures: Four pairwise measures (for a pair of classi-
fiers) are listed in Table 2. They are defined with respect to the confusion matrix shown
in table 1. For multiple classifiers, the average value of the pairwise diversity measure
(averaged over the total number of pairs) is taken as a measure of diversity of the en-
semble. Kuncheva and Whitaker [6] suggest that pairwise measures may not be useful
in the case of unequal pairwise distributions. We suggest other reasons why they may
not be suitable and thus do not recommend their use for classifier ensembles.
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Table 1. Confusion matrix for a pair of classifiers

Classifier D2 →
Classifier D1 ↓ D2 Incorrect D2 Correct
D1 incorrect N00 N01

D1 correct N10 N11

Table 2. Definitions of 4 selected pairwise diversity measures

Diversity measure Definition

Q Statistic [15] Q = N11N00−N10N01

N11N00+N10N01

Correlation coefficient [14] ρ = N11N00−N01N10√
(N11+N10)(N01+N00)(N11+N01)(N10+N00)

Disagreement measure [13] Dis = N01+N10

N00+N01+N10+N11

Double fault measure [3] DF = N00

N00+N01+N10+N11

– The Q-Statistic and the correlation coefficient do not satisfy the Property 1 listed
in section 2.2. For example if both N00 and N10 are both 0 the Q-Statistic and
correlation coefficient are undefined (0

0 ).
– The Disagreement measure,Q-Statistic and the correlation coefficient are symmet-

rical for a pair of classifiers, however they are not necessarily symmetrical with
respect to the entire configuration i.e. the average Q-statistic (or correlation co-
efficient) for a configuration and its complement (defined in section 2.1) are not
necessarily the same.

– Although the double-fault measure does not violate Properties 1 and 2, it may not
capture the aspects of classifier diversity which may be regarded important. Con-
sider for example configurations A1 and A2 as below.
A1:x0 = 0.5, x1 = 0.3, x2 = 0.2, x3 = 0 ; A2:x0 = 0.5, x1 = 0, x2 = 0, x3 = 0.5
Intuitively, A1 is more diverse than A2 (in A2, there is total agreement with respect
to all classifications), however the double fault value is the same for both cases.

– With pairwise measures, it is usually hard to express the diversity measure of a
given ensemble as a simple closed form function of x. The objective function
g(x) may be complicated, and hence it is difficult to determine the range of val-
ues for a given ensemble. Thus, they may not be amenable for analysis and
evaluation.

Non-pairwise diversity measures:

1. Cunningham (Entropy) measure [1]: In [1] a diversity measure is proposed and
is referred to as the Entropy measure. Since it is quite distinct from the entropy
function in information theory, we refer to it as the Cunningham measure. In [6] it
is defined as follows. Let zj j = 1, . . . , N be examples classified by the classifiers
and l(zj) the number of classifiers that correctly classify zj . Let K be the number
of classifiers. The Cunningham measure may be defined as :
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E =
1
N

N∑
j=1

1
(�K/2�)min{l(zj), L − l(zj)} (7)

In the limiting case the proportion of examples is the probability. With our notation
the Cunningham measure may be defined as:

E =
1

�K/2�
2K−1∑
i=0

min(n,K − n)xi (8)

where n = N(bit(i,K)) i.e. n = Number of 1s in K bit binary expansion of i.
2. Measure of ”difficulty” (θ): Hansen and Salamon [4] propose a measure as fol-

lows. Let the number of classifiers be K and let X be the random variable which
denotes the fraction of classifiers that correctly classify a random input. Thus X
is a discrete random variable which can take on the values { 0

K , 1
K , . . . , K

K }. The
variance of X (θ = Var(X)) is proposed as the measure of diversity.

The Cunningham measure satisfies the symmetry property as defined in section 2.2
while Hansen’s measure of difficulty does not.

3.2 Variation of Selected Diversity Measures with Classifier Accuracy

The results for the Cunningham measure and Hansen’s measure of ”difficulty” (θ) are
shown in Figure 1. The Cunningham measure ranges from 0 (lowest diversity,complete
agreement) to 1 (highest diversity). For the measure of difficulty, higher values corre-
spond to lower diversity and vice versa. The curve in the middle corresponds to the
value of the diversity measure, if the classifiers were statistically independent.

It is interesting to note that for statistically independent classifiers the value is on
the side of higher ”diversity”. For the Cunningham measure it is much closer to the
maximum while for the Hansen’s measure of difficulty it is closer to the theoretical
minimum (again note that for the Cunningham measure, higher values correspond to
high diversity while for the measure of difficulty higher values correspond to lower
diversity and vice versa). Although this seems to indicate that statistical independence
bodes well for the classifier ensemble, it still leaves open the question of how to enforce
statistical independence. For instance, Eckhardt and Lee [2] point out that software
programs developed independently tended to fail on similar inputs, this being related to
the difficulty of the specific inputs.

The absolute value of a diversity measure may have limited use even if the measure
has a theoretical minimum and maximum value, since the range of values it can take
depends on the particlular ensemble. Consider for example, ensembles E1 and E2 each
consisting of three classifiers with the following accuracies:
E1 : p1 = p2 = p3 = 0.9 and E2 : p1 = p2 = p3 = 0.6
Although in general the theoretical minimum and maximum values of the Cunningham
measure are 0 and 1 respectively, we can see from Figure 1(a) that the corresponding
values for ensemble E1 are 0 and 0.3 and for E2 they are 0 and 1 respectively. Let
the actual values of the Cunningham measure for E1 and E2 be 0.25 and 0.5 respec-
tively. E1 is relatively more diverse than E2 even though the absolute value is smaller,
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Fig. 1. Cunningham Measure (E) and Measure of difficulty (θ) vs classifier accuracy (p) :
Lower,upper bounds and independent classifiers for 3 (a),(b) 4 (c),(d) 5 (e),(f) classifiers E vs
p : Figures (a),(c),(e) θ vs p : Figures (b),(d),(f)

since the diversity value is relatively closer to its theoretical maximum. Thus it may be
more useful to consider relative diversity as opposed to the absolute value of the diver-
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sity measure, especially if we wish to compare different ensembles. For a given set of
classifier accuracies, we define the relative diversity (Drel) as: Drel = Dactual−Dmin

Dmax−Dmin
,

where Dmin,Dmax and Dactual are the theoretical minimum,theoretical maximum and
actual value of the given diversity measure, respectively.

3.3 Exploring the Relationship Between Diversity Measures and Majority
Voting Performance

A motivation for designing a ”diverse” ensemble of classifiers is to obtain an improve-
ment in classification accuracy. Since there is no widely accepted formal definition of
”diversity”, the characterization of the relationship between ”diversity” and majority
voting (or classifier combination schemes in general) is not straightforward. Neverthe-
less, the framework formulated in the paper enables evaluating whether there is a useful
correlation.

The main problem encountered in analyzing the relationship between a diversity
measure and majority vote accuracy (pmaj) is to vary a given variable in a systematic
manner over its full range in order to compute the corresponding value of the other
variable. One could use a simulation scheme and an enumeration experiment such as
in [6]. However this does not necessarily provide a means for varying a quantity in a
systematic manner over its full range. The optimization problem framework addresses
this problem. The experimental procedure is outlined below. For simplicity and purpose
of illustration, all classifiers are assumed to have the same accuracy p. Let pmaj denote
the majority vote accuracy.

Experimental procedure

1. Vary p in steps. For each p determine the majority vote theoretical upper and lower
bounds pmax

maj and pmin
maj respectively by solving the linear program (LP) in [9] (con-

straints identical to the optimization problem in section 2.3).
2. Vary pmaj in steps from pmin

maj to pmax
maj . For each pmaj obtain a feasible solution i.e.

a solution which satisfies the constraints given by Equations (2-4). Determine the
value of the diversity measure (D) corresponding to the solution.

3. Find the coefficient of linear correlation between majority vote accuracy (pmaj)
and the value of the diversity measure (D).

It is more useful to look at the overall trend instead of the actual values of the diversity
measures (especially if the classifier accuracies are not the same). For the most part,
the variation of the diversity measures was in line with their basic motivations. For
example, the coefficient of linear correlation between Hansen’s measure of ”difficulty”
(θ) and pmaj was mostly negative and that between the Cunningham measure (E) and
pmaj was positive. However in general the relationship between the diversity measures
and majority vote accuracy (pmaj) is hard to characterize.

We repeated the experiments by varying the Cunningham measure between its theo-
retical minimum and maximum values (which may be determined by solving the linear
program in section 2.3 with g(x) given in table 3) and determining the corresponding
majority vote accuracy (pmaj). The results are shown in Figure 2. As can be seen from
figure 2 there may be no one-to-one correspondence between the diversity measure and
majority vote accuracy. It is entirely possible that there is more than one solution x
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Fig. 2. Variation of Majority vote accuracy (pmaj) vs Cunningham (Entropy) measure (E) and
vice versa : E vs pmaj : Figures (a),(c),(e) pmaj vs E : Figures (b),(d),(f). for 3 Classifiers (a),(b)
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276 A. Narasimhamurthy

Table 3. Diversity measures expressed as functions of x

Diversity measure g(x)=fT x+ c
f = [f0, f1, . . . , f(2K−1)]

T c (constant)

Cunningham measure (E) [1] fi = min(n, K − n)/�K/2� 0
where n = N(bit(i, K))

Measure of difficulty (θ) [4] fi =
(

N(bit(i,K))
K

)2 −p2
mean where pmean=

Avg. classifier accuracy
Kohavi-Wolpert variance (KW) [5] fi = N(bit(i,K))

K
K−N(bit(i,K))

K
0

which satisfies the constraints (2)-(4). For example in Figure 2(a) the values of E vary
linearly with pmaj , the range of values of pmaj corresponding to the range [0.4:0.6] of
E is approximately [0.7:0.85]. In Figure 2(b) there are multiple solutions where pmaj is
very close to 0.85 while values of E range from 0.4 to 0.6. These results raise questions
about the usefulness of diversity measures in designing a classifier ensemble.

4 Conclusions

In this paper we propose a linear program based framework for the analysis of diversity
measures for ensembles of binary classifiers and also a set of properties for such a di-
versity measure. Although we regard the question of what exactly defines diversity in a
classifier ensemble as open, we show that the framework can be used effectively to eval-
uate diversity measures for classifier ensembles. The framework was used for analyzing
the relationship between selected diversity measures and accuracy of the classifier en-
semble. Even though the motivation for enforcing diversity in a classifier ensemble is
justified,the results cast doubt on whether diversity measures are useful in this regard.
Based on our evaluation we suggest that although measures may be useful in the orig-
inal context they were proposed, caution must be exercised in using them as diversity
measures for classifier ensembles.
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Abstract. Multiclass SVMs are usually implemented by combining sev-
eral two-class SVMs. The one-versus-all method using winner-takes-all
strategy and the one-versus-one method implemented by max-wins vot-
ing are popularly used for this purpose. In this paper we give empirical
evidence to show that these methods are inferior to another one-versus-
one method: one that uses Platt’s posterior probabilities together with
the pairwise coupling idea of Hastie and Tibshirani. The evidence is par-
ticularly strong when the training dataset is sparse.

1 Introduction

Binary (two-class) classification using support vector machines (SVMs) is a very
well developed technique [1] [11]. Due to various complexities, a direct solu-
tion of multiclass problems using a single SVM formulation is usually avoided.
The better approach is to use a combination of several binary SVM classi-
fiers to solve a given multiclass problem. Popular methods for doing this are:
one-versus-all method using winner-takes-all strategy (WTA SVM); one-versus-
one method implemented by max-wins voting (MWV SVM); DAGSVM [8]; and
error-correcting codes [2].

Hastie and Tibshirani [4] proposed a good general strategy called pairwise
coupling for combining posterior probabilities provided by individual binary clas-
sifiers in order to do multiclass classification. Since SVMs do not naturally give
out posterior probabilities, they suggested a particular way of generating these
probabilities from the binary SVM outputs and then used these probabilities
together with pairwise coupling to do muticlass classification. Hastie and Tib-
shirani did a quick empirical evaluation of this method against MWV SVM and
found that the two methods give comparable generalization performances.

Platt [7] criticized Hastie and Tibshirani’s method of generating posterior
class probabilities for a binary SVM, and suggested the use of a properly designed
sigmoid applied to the SVM output to form these probabilities. However, the

N.C. Oza et al. (Eds.): MCS 2005, LNCS 3541, pp. 278–285, 2005.
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use of Platt’s probabilities in combination with Hastie and Tibshirani’s idea of
pairwise coupling has not been carefully investigated thus far in the literature.
The main aim of this paper is to fill this gap. We did an empirical study and
were surprised to find that this method (we call it as PWC PSVM) shows a
clearly superior generalization performance over MWV SVM and WTA SVM;
the superiority is particularly striking when the training dataset is sparse.

We also considered the use of binary kernel logistic regression classifiers1 to-
gether with pairwise coupling. We found that even this method is somewhat
inferior to PWC PSVM, which clearly indicates the goodness of Platt’s prob-
abilities for SVMs. The results of this paper indicate that PWC PSVM is the
best single kernel discriminant method for solving multiclass problems.

The paper is organized as follows. In section 2, we briefly review the various
implementations of one-versus-all and one-versus-one methods that are stud-
ied in this paper. In section 3, we describe the numerical experiments used to
study the performances of these implementations. The results are analyzed and
conclusions are made in section 4. The manuscript of this paper was prepared
previously as a technical report [3].

2 Description of Multiclass Methods

In this section, we briefly review the implementations of the multiclass methods
that will be studied in this paper. For a given multiclass problem, M will denote
the number of classes and ωi, i = 1, . . . , M will denote the M classes. For binary
classification we will refer to the two classes as positive and negative; a binary
classifier will be assumed to produce an output function that gives relatively
large values for examples from the positive class and relatively small values for
examples belonging to the negative class.

2.1 WTA SVM

WTA SVM constructs M binary classifiers. The ith classifier output function
ρi is trained taking the examples from ωi as positive and the examples from all
other classes as negative. For a new example x, WTA SVM strategy assigns it
to the class with the largest value of ρi.

2.2 MWV SVM

This method constructs one binary classifier for every pair of distinct classes
and so, all together M(M − 1)/2 binary classifiers are constructed. The binary
classifier Cij is trained taking the examples from ωi as positive and the examples
from ωj as negative. For a new example x, if classifier Cij says x is in class ωi,
then the vote for class ωi is added by one. Otherwise, the vote for class ωj is
increased by one. After each of the M(M −1)/2 binary classifiers makes its vote,
MWV strategy assigns x to the class with the largest number of votes.

1 These classifiers provide natural posterior probabilities as part of their solution.
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2.3 Pairwise Coupling

If the output of each binary classifier can be interpreted as the posterior proba-
bility of the positive class, Hastie and Tibshirani [4] suggested a pairwise coupling
strategy for combining the probabilistic outputs of all the one-versus-one binary
classifiers to obtain estimates of the posterior probabilities pi = Prob(ωi|x),
i = 1, . . . , M . After these are estimated, the PWC strategy assigns the example
under consideration to the class with the largest pi.

The actual problem formulation and procedure for doing this are as follows.
Let Cij be as in section 2.2. Let us denote the probabilistic output of Cij as
rij = Prob(ωi|ωi or ωj). To estimate the pi’s, M(M − 1)/2 auxiliary variables
μij ’s which relate to the pi’s are introduced: μij = pi/(pi + pj). pi’s are then
determined so that μij ’s are close to rij ’s in some sense. The Kullback-Leibler
distance between rij and μij is chosen as the measurement of closeness:

l(p) =
∑
i<j

nij

(
rij log

rij

μij
+ (1 − rij) log

1 − rij

1 − μij

)
(1)

where nij is the number of examples in ωi∪ωj in the training set.2 The associated
score equations are (see [4] for details):

∑
j �=i

nijμij =
∑
j �=i

nijrij , i = 1, · · · ,M, subject to
M∑

k=1

pk = 1 (2)

The pi’s are computed using the following iterative procedure:

1. Start from an initial guess of pi’s and corresponding μij ’s
2. Repeat (i = 1, . . . , M , 1, . . .) until convergence:

– pi ← pi ·
∑

j �=i
nijrij∑

j �=i
nijμij

– renormalize the pi’s
– recompute μij ’s

Let p̃i = 2
∑

j rij/k(k − 1). Hastie and Tibshirani [4] showed that the multi-
category classification based on p̃i’s is identical to that based on the pi’s obtained
from pairwise coupling. However, p̃i’s are inferior to the pi’s as estimates of
posteriori probabilities. Also, log-likelihood values play an important role in the
tuning of hyperparameters (see section 3). So, it is always better to use the pi’s
as estimates of posteriori probabilities.

A recent paper [12] proposed two new pairwise coupling schemes for estima-
tion of class probabilities. They are good alternatives for the pairwise coupling
method of Hastie and Tibshirani.

2 It is noted in [4] that, the weights nij in (1) can improve the efficiency of the estimates
a little, but do not have much effect unless the class sizes are very different. In
practice, for simplicity, equal weights (nij = 1) can be assumed.
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Kernel logistic regression (KLR) [10] has a direct probabilistic interpretation
built into its model and its output is the positive class posterior probability.
Thus KLR can be directly used as the binary classification method in the PWC
implementation. We will refer to this multiclass method as PWC KLR.

The output of an SVM, however, is not a probabilistic value, but an un-
calibrated distance measurement of an example to the separating hyperplane in
the feature space. Platt [7] proposed a method to map the output of an SVM
into the positive class posterior probability by applying a sigmoid function to
the SVM output:

Prob(ω1|x) =
1

1 + eAf+B
(3)

where f is the output of the SVM associated with example x. The parameters
A and B can be determined by minimizing the negative log-likelihood (NLL)
function of the validation data. A pseudo-code for determining A and B is also
given in [7]; see [6] for an improved pseudo-code. To distinguish from the usual
SVM, we refer to the combination of SVM together with the sigmoid function
mentioned above as PSVM. The multiclass method that uses Platt’s probabilities
together with PWC strategy will be referred to as PWC PSVM.

3 Numerical Experiments

In this section, we numerically study the performance of the four methods dis-
cussed in the previous section, namely, WTA SVM, MWV SVM, PWC PSVM
and PWC KLR. For all these kernel-based classification methods, the Gaussian
kernel, K(xi,xj) = e−‖xi−xj‖2/2σ2

is employed. Each binary classifier, whether it
is SVM, PSVM or KLR, requires the selection of two hyperparameters: a regular-
ization parameter C and a kernel parameter σ2. Every multi-category classifica-
tion method included in our study involves several binary classifiers. In line with
the suggestion made by Hsu and Lin [5], we take the C and σ2 of all the binary
classifiers within a multiclass method to be the same.3 The two hyperparameters
are tuned using 5-fold cross-validation estimation of the multiclass generaliza-
tion performance. We select the optimal hyperparameter pair by a two-step grid
search. First we do a coarse grid search using the following sets of values: C ∈
{1.0e-3, · · ·, 1.0e+3} and σ2 ∈ {1.0e-3, · · ·, 1.0e+3}. Thus 49 combinations of
C and σ2 are tried in this step. An optimal pair (Co, σ

2
o) is selected from this

coarse grid search. In the second step, a fine grid search is conducted around
(Co, σ

2
o), with C ∈ {0.2Co, 0.4Co, 0.6Co, 0.8Co, Co, 2Co, 4Co, 6Co, 8Co} and σ2 ∈

{0.2σ2
o , 0.4σ2

o , 0.6σ2
o , 0.8σ2

o , σ2
o , 2σ2

o , 4σ2
o , 6σ2

o , 8σ2
o}. All together, 81 combinations

of C and σ2 are tried in this step. The final optimal hyperparameter pair
is selected from this fine search. In each grid search, especially in the fine
search step, it is quite often the case that there are several pairs of hyperpa-
rameters that give the same cross validational classification accuracy. In such

3 An alternative is to choose the C and σ2 of each binary classifier to minimize the
generalization error of that binary classification problem.
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Table 1. Basic information and training set sizes of the five datasets

Dataset #Classes #Total Examples
Training Set Sizes

Small Medium Large

ABE 3 2,323 280 560 1,120
DNA 3 3,186 300 500 1,000
SAT 6 6,435 1,000 1,500 2,000
SEG 7 2,310 250 500 1,000
WAV 3 5,000 150 300 600

a situation, we have found it worthwhile to follow some heuristic principles
to select one pair of C and σ2 from these short-listed combinations. For the
methods with posteriori probability estimates, where a cross-validation esti-
mate of error rate (cvErr) as well as a cross-validation estimate of negative
log-likelihood (cvNLL) are available, the following strategies are applied se-
quentially until we find one unique parameter pair: (a) select the pair with
smallest cvErr value; (b) select the pair with smallest cvNLL value; (c) se-
lect the pair with larger σ2 value; (d) select the pair with smaller C value;
(e) select the pair with smallest 8-neighbor average cvErr value; (f ) select the
pair with smallest C value. Usually step (b) yields a unique pair of hyperpa-
rameters. For the methods without posteriori probability estimates, step (b) is
omitted.

The performance of the four methods are evaluated on the following datasets
taken from the UCI collection: ABE, DNA, Satellite Image (SAT), Image Segen-
tation (SEG) and Waveform (WAV). ABE is a dataset that we extracted from
the dataset Letter by using only the classes corresponding to the characters
“A”, “B” and “E”. Each continuous input variable of these datasets is nor-
malized to have zero mean and unit standard deviation. For each dataset, we
divide the whole data into a training set and a test set. When the training set
size is large enough, all the methods perform equally very well. Differences be-
tween various methods can be clearly seen only when the training datasets are
sparse. So, instead of using a single training set size (that is usually chosen to
be reasonably large in most empirical studies), we use three different training
set sizes: small, medium and large. For each dataset, the basic information to-
gether with the values of the three training set sizes are summarized in Table 1.
For each dataset, at each training set size, the whole data is randomly parti-
tioned into a training set and a test set 20 times by stratified sampling. For
each such partition, after each multi-category classifier is designed using solely
the training set, it is tested on the test set. The mean and standard devia-
tion of the test set error rate (in percentage) are computed over the 20 runs.
The results are reported in Table 2. Full details of all runs can be found at:
http://guppy.mpe.nus.edu.sg/˜mpessk/multiclass.shtml
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Table 2. Mean and standard deviation of test set error (in percentage) over 20 divisions
of training and test sets, for the five datasets, at the three training set sizes (small,
medium and large)

Dataset
Training Method

Set Size WTA SVM MWV SVM PWC PSVM PWC KLR

ABE
280 1.92±0.65 1.96±0.65 1.16±0.63 1.85±0.59
560 0.96±0.36 1.06±0.42 0.58±0.29 1.02±0.43

1,120 0.46±0.20 0.50±0.24 0.34±0.17 0.57±0.26

DNA
300 10.15±1.26 9.87±0.90 9.23±1.73 9.73±0.75
500 7.84±0.79 7.67±0.93 7.41±1.14 7.80±0.71

1,000 5.59±0.39 5.72±0.57 5.50±0.69 5.76±0.54

SAT
1,000 11.07±0.58 11.03±0.73 10.27±0.92 11.20±0.55
1,500 10.08±0.49 10.20±0.51 10.05±0.60 10.23±0.42
2,000 9.51±0.31 9.61±0.39 9.47±0.65 9.66±0.37

SEG
250 9.43±0.54 7.97±1.23 6.66±2.24 7.54±1.24
500 6.51±0.99 5.40±1.04 5.19±0.74 4.83±0.68

1,000 4.89±0.71 4.35±0.79 4.08±0.52 3.96±0.68

WAV
150 17.21±1.37 17.75±1.39 13.20±3.70 15.59±1.13
300 15.43±0.97 15.96±0.98 12.97±2.02 14.71±0.72
600 14.09±0.55 14.56±0.80 13.47±1.09 13.81±0.41

4 Results and Conclusions

Let us now analyze the results from our numerical study. From Table 2 we can
see that, PWC PSVM gives the best classification results and has significantly
smaller mean values of test error. For WTA SVM, MWV SVM and PWC KLR,
it is hard to tell which one is better.

To give a more vivid presentation of the results from the numerical study, we
draw, for each dataset and each training set size, a boxplot to show the 20 test
errors of each method, obtained from the 20 partitions of training and test. The
boxplots are shown in Figure 1. These boxplots clearly support the observation
that PWC PSVM is better than the other three methods. On some datasets,
although the variances of PWC PSVM error rates are larger than those of other
methods, the corresponding median values of PWC PSVM are much smaller
than other three methods.

The boxplots also show that, as the training set size gets larger, the classi-
fication performances of all four methods get better and the performance dif-
ferences between them become smaller. This re-emphasizes the need for using
a range of training set sizes when comparing two methods. A good method
should work well, even at small training set size. PWC PSVM has this
property.

We have also done a finer comparison of the methods by pairwise t-test. The
results further consolidate the conclusions drawn from Table 2 and Figure 1. To
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For each dataset,          
at each training set size, 
from left to right,        
the four methods are:      
     WTA_SVM,             
     MWV_SVM,             
     PWC_PSVM and         
     PWC_KLR.             

Note:

Fig. 1. The boxplots of the four methods for the five datasets, at the three training set
sizes (small, medium and large). For easy comparison the boxplots of the four methods
are put side by side

keep the paper short, we are not including the description of the pairwise t-test
comparison and the p-values from the study. Interested readers may refer to our
technical report [3] for details.
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To conclude, we can say the following. WTA SVM, MWV SVM and PWC KLR

are competitive with each other and there is no clear superiority of one method
over another. PWC PSVM consistently outperforms the other three methods.
The fact that the method is better than PWC KLR indicates the goodness of
Platt’s posterior probabilities. PWC PSVM using one of the pairwise coupling
schemes in [4] and [12] is highly recommended as the best kernel discriminant
method for solving multiclass problems.
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Abstract. We have investigated the performance of a generalisation error 
predictor, Gest, in the context of error correcting output coding ensembles based 
on multi-layer perceptrons. An experimental evaluation on benchmark datasets 
with added classification noise shows that over-fitting can be detected and a 
comparison is made with the Q measure of ensemble diversity.  Each 
dichotomy associated with a column of an ECOC code matrix is presented with 
a bootstrap sample of the training set. Gest uses the out-of-bootstrap samples to 
efficiently estimate the mean column error for the independent test set and 
hence the test error. This estimate can then be used select a suitable complexity 
for the base classifiers in the ensemble. 

1   Introduction 

In many real world machine learning applications the available data is in short supply 
and is often corrupted by noise.  Both of these attributes can encourage over-fitting. 
Avoiding this problem involves the selection of appropriately complex hypotheses to 
represent the problem behaviour. A desirable goal is to build learning systems that 
exhibit good generalisation – the ability to work well when presented with unseen 
data – and avoid over-fitting – the unintentional dependence of the learning 
hypothesis upon non representative features in the training sample. 

To achieve good generalisation a strategy for limiting the power of the chosen 
model, in order to control over-fitting, is often employed. This can take a direct form, 
such as in regularisation, where a penalty term is introduced to limit the complexity of 
the solution or an indirect form, as in the case of multi-layer perceptrons ( MLPs ) 
subject to early stopping, weight sharing or network pruning [3]. MLPs provide 
general purpose functional approximators that are unstable. They can produce 
significantly different classifiers for small differences in initial conditions or 
distribution of training data. This diversity is highly desirable in multiple classifier 
systems that seek to reduce the variance of an ensemble by aggregating classifiers, 
such as Bagging or simple majority vote ensembles [11]. It is also relatively easy to 
adjust their complexity by modulating the amount of network training. 

In the literature, tuning of the base classifier for ensemble systems has received 
relatively little attention [15], [16]. Motivated by work on the generalisation error of 
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two class datasets [5],  this paper seeks to characterise the complexity of the base 
classifier and ensemble test error through the means of an out-of-bootstrap estimate of 
training column error within an error correcting output coding context ( ECOC ).  

In an ECOC framework, diversity of base classifiers is not an obviously useful 
attribute as the learning problems are, in general, dissimilar. However, when the 
number of classes is small, the number of dichotomies available to the ECOC coding 
scheme, Table 1, can be significantly less than the desired length of the codeword. 
This leads to repeated instances of the same learning problems. Here the diversity of 
randomly initialised MLPs can help to de-correlate the column errors of replicated 
dichotomies and so utilise more of the error correcting capability available in the 
coding scheme.  

Table 1. The number of supported dichotomies, D, for number of classes, Nk, in an ECOC 
framework, 12 1 −= −kND .  

Classes, Nk 2 3 4 5 6 7 8 9 10 11 
Number of dichotomies, D 1 3 7 15 31 63 127 255 511 1023 

2   Estimating Generalisation Error 

In the case of regression, the generalisation error, EGen , of a given hypothesis h(x), 
which models an underlying process with additive, zero mean, Gaussian noise can be 
decomposed into three terms 

E2
Gen  =  σ2  +  Bias2 (h(x)) + Variance(h(x)) (1) 

in (1) σ2 is the irreducible error attributable to the variance of the underlying noise 
process, the second term is the error due to the bias of the hypothesis and the third 
term is the variance of the hypothesis [10]. In the context of 0/1 loss functions the 
decomposition of error into bias and variance terms is less clear [12]. No completely 
satisfactory definition exists for these quantities and the relationship between them 
and error rate is not clearly defined.  In general, hypotheses with an underspecified 
degree of complexity exhibit high bias – evident as a systematic degree of error over 
all instances of the problem – whereas hypotheses with higher degrees of complexity 
show lower bias, but increased variance – evident as a variable amount of error on 
each instance of the problem. The best generalisation error occurs where the 
combined contributions from the bias and variance terms achieve a minimum.  

Normally the desired power of the final hypotheses is not known beforehand, so 
the degree of regularisation, or complexity, that is appropriate for a given learning 
problem must be investigated empirically. To do this a good method of assessing the 
generalisation error and detecting over-fitting is required.  

The most common estimate of the generalisation error is K-fold cross-validation. 
All the available data is separated into K equally sized folds and a classifier is trained 
on K-1 folds of the data and then tested on the remaining fold. This process is 
repeated for all the folds and the mean value is taken to be the generalisation error. As 
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each fold contains different instances of the data it is necessary to re-train the 
classifier for each new fold requiring K times the number of hypotheses in the 
ensemble to be generated. For an ensemble of size B this requires K*B classifiers.  

Generally K = 10 is considered to be a good compromise between computational 
practicality and accurate error estimation. So computation times for generating all the 
required classifiers – a considerable portion of the whole when using MLPs – are 
multiplied by a factor of K*( 1+((K-1)/K)  compared to an estimate gained using a 
50/50 test/training split.   

The bootstrap is an effective method for estimating any statistical quantity based 
on re-sampling, with replacement, of the available data [6]. It uses the idea that the 
relationship between the underlying distribution and a sample drawn from it is similar 
to the relationship between the empirical distribution and a secondary sample[14]. 
The bootstrap can be applied to estimate the generalisation error of an ensemble of B 
classifiers. However, the method requires that a new ensemble be trained for each 
bootstrap replicate of the data and a suggested practical value for the number of 
replicates to achieve a good estimates ranges from 50 to 200 [7], thus requiring a 
minimum of 50B hypotheses to be generated. 

Both cross-validation and bootstrap estimation are computationally expensive 
procedures for predicting generalisation error. An alternative solution, proposed in 
[4], for bootstrapped ensembles is to take the data not represented in the bootstrap 
sample, approximately 1/e of the instances, and by using the in-sample hypotheses on 
the out-of-sample data to predict the generalisation error. This approach is much more 
efficient, as it avoids creating any new hypotheses.  Unlike cross-validation and 
bootstrap estimation the hypotheses used to generate the estimate all form part of the 
final ensemble classifier and so exactly represent the final classifier performance. We 
propose combining bootstrap sampling within an ECOC framework to introduce a 
degree of beneficial randomness and allow the use of out-of-bootstrap error 
estimation to predict ensemble error via an estimator, Gest. 

3   Error Correcting Output Coding 

Error correcting output coding (ECOC) is a technique inspired by solutions to the 
problem of transmitting communication symbols over noisy channels [8]. In its 
original context symbols are typically represented by maximally separated code 
words in a suitably complex vector space; thus allowing errors in transmission to be 
corrected by exchanging corrupted code words for the closest neighbour from the 
original alphabet.  In its application to machine learning problems the coding structure 
used by ECOC performs not just the task of error correction but also simultaneously 
imposes a binary output space decomposition onto the classes. A benefit of the output 
space decomposition is that it allows binary classifiers to be leveraged to the context 
of multi-class problems and provides a method of controlling individual classifier 
errors in a multi-classifier ensemble. 

In Bagging, the out of bag estimate represents a sub-sampled version of the 
underlying distribution. In an ECOC ensemble employing bootstrapping, each 
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bootstrap is seen by a (potentially unique) binary decomposition of the output space. 
As a result the variance of the out-of-bootstrap estimate may be comprised of a set of 
disparate estimates based on different learning problems and so if treated as a set of 
random variables the variance is the square root of the sum of the individual variances 
and twice the covariance terms [18]. 

To produce the set of dichotomies the classes of the problem domain are 
enunciated as a matrix. This contains rows which represent a codeword for each class. 
The columns of the matrix represent a specific binary decomposition of the learning 
problem. The ones and zeroes in the ith column are used to group the classes into two 
supersets, S0i and S1i.  

ECOC coding schemes have been investigated in [9], [11], [12], [17]. The 
performance of the coding scheme is dependent on the problem and code length.  
Random codes were chosen on the grounds that they can form codes of arbitrary 
length, are easy to generate and generally give good performance. 

4   Experimental Method 

To investigate the behaviour of Gest on real world problems, a selection of datasets 
from the UCI repository was chosen, Table 2. To encourage over-fitting all the 
datasets were subject to 20% injected class noise. The noise was introduced by 
randomly selecting 20% of the samples from each class and flipping their class labels. 
The class distribution of the noise was shaped to be consistent with the original class 
distributions in the training set.  

Table 2. Datasets, features and training and test set sizes 

UCI 
Dataset 

% 
Class 
Noise 

No. 
Training 
Samples 

No. 
Test 

Samples 

Classes 
Nk 

Categorical 
Features 

Numerical 
Features 

Iris 20 75 75 3 0 4 
Glass 20 107 107 7 0 10 
Segment 20 350 350 7 0 19 
Soybean 20 23 24 4 35 0 
Vehicle 20 423 423 4 0 18 
Vowel 20 495 495 11 2 10 

For this paper the following method was applied to each dataset in Table 2 to 
determine the empirical behaviour of the out-of-bootstrap estimator Gest. The method 
was repeated 10 times for each dataset with the complexity parameter, Pt, being varied 
to adjust the classifier complexity. 

1. A code matrix, C, of length I and depth equal to Nk ,  the number of classes in 
the problem, and consisting of unique rows and random columns was generated. 
Where the number of dichotomies, D, supported by the classes was insufficient to 
achieve the codeword length, as is the case with the Iris, Soybean and Vehicle 
datasets, repeat random columns ( dichotomies ) were allowed. 
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2. The available data was divided randomly into equally sized test and training 
sets, Tr  and Ts. For the ith column of the code matrix, C, a bootstrap sample Br was 
taken from the training set, Tr ,  B = { Br1 , Br2 … BrI  }. 

3. The instances from the dataset which were not in each of the bootstrap samples 
were put aside to give the out of bootstrap samples , B* = { Br1

*, Br2
*… BrI

*}. 
4. Each of the datasets in B were then re-labelled into 2 super-classes, S0 and S1 

with labels {0,1} defined by the values in the code matrix, C , to form a dichotomy on 
the problem space 

B`
ri  = S0i ∪  S1i      i = 1..I  

B` = { B`
r1 , B

`
r2…. B`

rI  } 
The same process is applied to the out of bootstrap samples and to the test set, Ts. 

B`* = {  B`*
r1 , B

`*
r2…. B`*

rI } , T`
s = { T`

s1 , T
`
s2…. T`

sI }  
5. For the ith column in the code matrix a hypothesis, hi, was trained from a 

randomly intialised multi-layer perceptron classifier, Mi, with architecture A, for a 
specified number of epochs, Pt on  B‘

ri   
hi =  h(Ci , B

`
ri , Mi , A , Pt) i = 1..I 

6. The hypotheses are then applied to coded versions of the bootstrapped training 
sets, the out of bootstrap samples and the test sets to give the column outputs 

OcB`   = { h1(B
`
r1), h2(B

`
r2)… hI(B

`
rI)}    

OcB`*  = { h1(B
`*

r1), h2(B
`*

r2)… hI(B
`*

rI)}    
OcT`s  = { h1(T

`
s1), h2(T

`
s2)… hI(T

`
sI)}     

7. The column outputs were compared to the original labelled datasets. B` , B`* and  
T`

s , to get the column errors for the hypothesis and these are averaged to get the mean 
column errors,  Ec, for the  bootstrapped training sets, the out of bootstrap samples 
and the test sets.  

}','*,'{;)()(
1

1
siririi
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I
E

i
∈−=

=

χχχχ

 
(2) 

In (2) Label(k) returns the vector of superset class labels , { l1 , l2 , … li }   l ∈ { 0, 
1} , associated with dataset  k . The mean of the out-of-bootstrap column error, EcB`* , 
forms the estimator for the generalisation error, Gest. 

8. The column outputs were then decoded, via the ECOC matrix, to give the final 
classification for the datasets 

OB`   =   L(OcB`  , C) ;  OB`* =   L(OcB`* , C) ;  OT`s =   L(OcT`s  , C) 
where L(.) represents the decoding function, which returns the class represented  
by the closest code word to the column output using the L1 norm as the distance 
metric. 

9. Finally the ensemble errors, Er and Es , for the training set and test sets, Tr  and Ts, 
were calculated from the original labels and the predictions, OB` and OT`s. 

The code length was chosen to be in the range [log2(max(Nk)), max(Nk)
2] and was 

set to be 48. Representing a sufficiently long code to support the number of 
dichotomies and achieve a balance between error gains due to code length and 
acceptable computation times [2],[9]. 
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5   Experimental Evidence 

In figure 1 the out-of-bootstrap estimate, Gest, is plotted against Es and EcTs` for a 
range of values of base classifier complexity, measured in training epochs. Gest is 
clearly an optimistically biased estimator of Es, but it does follow the trend of Es 
closely and its minimum error rate corresponds well with that of the ensemble.  
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Fig. 1. Ensemble Test Error, Es , Mean Column Test Error, EcTs` , and Mean Out-of-bootstrap 
Column error , Gest , against base classifier complexity, measured by log epochs, for five UCI 
datasets. [Nx] specifies the number of neurons in the hidden layer of the MLP 
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To verify the claim that Gest is a usable predictor of over-fitting, it is desirable to 
measure the relationship between the mean out-of-bag column error and the mean test 
column error.  The correlation coefficients calculated for the six datasets shown in 
Table 3 confirm that Gest and EcTs` do indeed correlate well. This would be expected as 
they are essentially different sized random samples from the same distribution. 
Furthermore, Gest also correlates well with the ensemble test error, Es, showing that 
there is a correlation between mean column test error and ensemble error.  

Table 3. Correlation coefficents for the ensemble test error, Es, mean column test error, 
EcTs`,out-of-bootstrap mean column error, Gest , and ensemble Q value for the training set 

 Glass Iris Segment Soybean Vehicle Vowel Average 
Es     /  Gest 0.86 0.92 0.94 0.94 0.89 0.99 0.92 
Gest /   EcTs` 0.84 0.93 0.95 0.97 0.93 0.94 0.93 
Es     /  EcTs` 0.93 0.99 0.99 0.99 0.98 0.94 0.97 
Es     /  Q -0.51 -0.84 -0.85 -0.78 -0.92 -0.43 -0.72 

For comparison with Gest the Q statistic was calculated for training set of each 
ensemble. Q is a pairwise diversity measure between the output of two classifiers, Hi 
and Hk , calculated as in (3),  and produces a value ranging between +1 for agreement 
and -1 for disagreement, with 0 indicating independence.  

The values of Nnm are calculated depending on the two classifier outputs as shown in 
Table 4. 

Table 4. The relationship between two classifiers outputs. N = N00 +N11 +N01 +N10  ,where N 
is the total number of instances classified and Nnm is the number of instances for which the 
outputs are n and m 

 Hk   correct Hk   incorrect  
Hi    correct N11 N10 
Hi  incorrect N01 N00 

For an ensemble of L classifiers the average pair-wise value is calculated as in (4) 
and can be considered as measuring the diversity of the ensemble 
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Q is highlighted in [13] as being the most useful measure of diversity for designing 
classifier committees that minimise error. Figure 2 show that Q achieves a maximum 
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value that corresponds reasonably well with the test error minimum, but interestingly 
it is associated with a minimum in the diversity of the ECOC ensembles.  This can be 
explained if we visualise a continuous vector space spanning base classifier accuracy 
and complexity. If we consider trajectories in this space representing identical 
deterministic base classifiers, such as identically initialised MLPs each of which can 
achieve  Bayes  optimality,  they  will all occupy the same paths. As the complexity of  

0

0.1

0.2

0.3

0.4

0.5

0.6

1 10 100 1000 10000 100000
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
rr

or
 R

at
e

T
ra

in
in

g 
S

et
 Q

Epochs

Glass-20% Noise-MLP[N6]-ECOC[48]-Bootstrapped

Ensemble Test Error
Mean Column Training Error

Training Set Q

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 10 100 1000 10000 100000-
0.

3
-0

.2
-0

.1
0

0.
1

0.
2

0.
3

0.
4

0.
5

E
rr

or
 R

at
e

T
ra

in
in

g 
S

et
 Q

Epochs

iris-20% Noise-MLP[N6]-ECOC[48]-Bootstrapped

Ensemble Test Error
Mean Column Training Error

Training Set Q

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 10 100 1000 10000 100000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
rr

or
 R

at
e

T
ra

in
in

g 
S

et
 Q

Epochs

Segment-20% Noise-MLP[N6]-ECOC[48]-Bootstrapped

Ensemble Test Error
Mean Column Training Error

Training Set Q

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 10 100 1000 10000 100000
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

E
rr

or
 R

at
e

T
ra

in
in

g 
S

et
 Q

Epochs

Soybean small-20% Noise-MLP[N16]-ECOC[48]-Bootstrapped

Ensemble Test Error
Mean Column Training Error

Training Set Q

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 10 100 1000 10000 100000
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
rr

or
 R

at
e

T
ra

in
in

g 
S

et
 Q

Epochs

Vehicle-20% Noise-MLP[N12]-ECOC[48]-Bootstrapped

Ensemble Test Error
Mean Column Training Error

Training Set Q

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 10 100 1000 10000 100000
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
rr

or
 R

at
e

T
ra

in
in

g 
S

et
 Q

Epochs

Vowel-20% Noise-MLP[N12]-ECOC[48]-Bootstrapped

Ensemble Test Error
Mean Column Training Error

Training Set Q

 

Fig. 2. Ensemble Test Error, Es, Mean Column Training Error, EcB`, and the Q measure of 
ensemble diversity, Qr, against base classifier complexity measured by log epochs for five UCI 
datasets. [Nx] specifies the number of neurons in the hidden layer of the MLP 
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each of these classifiers increases they will all arrive at the Bayes optimal point, 
where the classifier achieves the exact Bayes boundary, via the same trajectory. It is 
clear both that diversity will be non existent and the ensemble will also achieve the 
Bayes error rate. As the complexity of the base classifiers is increased further, over-
fitting occurs and the error rate increases. As a result, the classifiers’ paths through 
'accuracy/complexity space' begin to move away from the Bayes optimal point. If the 
classifiers are deterministic, and identical, then their trajectories will also be identical. 

However, if the classifiers are not identical, such as is the case with randomly 
initialised MLPs, then their exact trajectories will depend on their direction of 
approach to the Bayes optimal point and their paths will diverge, leading to a 
measured increase in diversity. For practical cases, the most likely situation is that the 
paths of the classifiers will not converge on the Bayes optimal point. In this situation 
the best ensemble error rate will occur at some complexity represented by a point of 
mean closest approach.  Beyond this point, as complexity rises, the error rate and the 
diversity will increase. For ECOC ensembles both the classifiers and the learning 
problems are, potentially, distinct and so we can expect the diversity to be larger. 

As observed in [1], the Q measure suffers from a problem. As the complexity of the 
base classifiers increases and they become more accurate the training error drops. It is 
then possible for Q to become indeterminate. Pairs of classifiers often agree on the 
correct outputs, N11, but the double errors, N00, drop to zero; requiring only that one of  
N01 or N10  also becomes zero for Q to be undefined. As it is not clear from which 
direction Q is approaching zero, and both the values from [1] and our own suggest that 
Q is positive in the region of interest,  we chose to set  Q = 1 in such cases. 

6   Conclusion 

We have investigated the performance of an efficient generalisation error predictor, 
Gest, in the context of error correcting output coding ensembles based on MLPs. 
Specifically, each hypothesis associated with a column of the ECOC matrix is 
presented with a different bootstrap sample of the training set. The predictor uses the 
out-of-bootstrap samples to estimate the mean column error for the independent test 
set, relying on the fact that they are both representative samples of the underlying 
population distribution. Though the exact relationship between mean column error 
and test error is not known, our empirical evidence suggests there is a good 
correlation between the two quantities. 

The detection of over-fitting does not require an estimator of generalisation error to 
be unbiased, only that it follows the test error trend well. Future work may involve 
improving the quality of the estimator. A correction to the out-of-bag estimates to 
remove some of their measured bias in the two class case is proposed in [5]. It may be 
possible that a similar technique could be applied to improve Gest where the number 
of dichotomies are small – few classes in the learning problem – or in cases where 
additional parallel ensembles are created to allow estimates of the distribution of out-
of-bootstrap voting patterns to be formed. Further investigation is required as to the 
effect of code word length and code choice on the estimator and their relationship to 
the underlying error rate. 
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Since Gest is independent of base classifier type it is our proposition that it shows 
good potential as a practical and efficient method of detecting over-fitting in ECOC 
ensembles regardless of base classifier type. Compared to cross-validation Gest is 
computationally efficient as it requires no additional classifiers to be trained. Our 
thanks to the reviewers of this paper for their helpful suggestions. 
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Abstract. We study how the error of an ensemble regression estimator
can be decomposed into two components: one accounting for the indi-
vidual errors and the other accounting for the correlations within the
ensemble. This is the well known Ambiguity decomposition; we show an
alternative way to decompose the error, and show how both decomposi-
tions have been exploited in a learning scheme. Using a scaling param-
eter in the decomposition we can blend the gradient (and therefore the
learning process) smoothly between two extremes, from concentrating
on individual accuracies and ignoring diversity, up to a full non-linear
optimization of all parameters, treating the ensemble as a single learn-
ing unit. We demonstrate how this also applies to ensembles using a
soft combination of posterior probability estimates, so can be utilised for
classifier ensembles.

1 Introduction

It is well recognised that for best performance, an ensemble of estimators should
exhibit some kind of disagreement on certain datapoints. When estimators pro-
duce class labels and are combined by a majority vote, this is the often cited, but
little understood notion of “diversity”. When in a regression framework, using
estimators combined by a simple averaging operation, the notion of disagreement
between estimators is rigorously defined: with a single estimator, we have the
well known bias-variance trade-off [5], and with an ensemble of estimators, we
have a bias-variance-covariance trade-off [10]. The regression diversity issue can
now be understood quite simply: in a single estimator we have a two way trade-
off, and in a regression ensemble the optimal “diversity” is that which optimally
balances the bias-variance-covariance three way trade-off.

The understanding of regression ensembles is therefore quite mature. The
understanding of classification ensembles, using a majority vote combiner, is

N.C. Oza et al. (Eds.): MCS 2005, LNCS 3541, pp. 296–305, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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substantially less well developed; see [1] for a recent survey of the field. How-
ever, this lack of understanding can be partially side-stepped considering that
a classification problem can be reformulated as a regression problem by ap-
proximating the class posterior probabilities. In this case the theory is more
well developed—Fumera and Roli [4] represent the current state of the art and
Kuncheva [8] provides an excellent overview of the area.

Though the bias-variance-covariance decomposition fully quantifies the re-
gression diversity issue, a more well known result is the Ambiguity decomposition
[7]. This paper will summarise recent work explaining the link between these de-
compositions, and show an alternative new decomposition. We will see how these
decompositions can be exploited in a learning procedure.

The structure of this paper is as follows. in section 2 we show two ways in
which the ensemble error can be decomposed: one that has been seen in the
literature before, and one new to the literature. In section 3 we illustrate how
these can be used in a learning procedure. In section 4 we present a theoretical
analysis of the new decomposition and learning procedure. In section 5 we show
emprical results and finally conclude with observations on possible future work.

2 Decomposing the Ensemble Objective Function

2.1 The Ambiguity Decomposition

Let us assume that the ensemble combination function is a mean of the M
ensemble member outputs, that is f̄ = 1

M

∑
i fi. For convenience of notation

we have omitted dependence on any particular input x; it can be assumed fi is
the output of estimator i for a single arbitary input. The quadratic loss of this
estimator from its target d is:

eens = (f̄ − d)2 (1)

The Ambiguity Decomposition [7], states that the ensemble error is guaranteed
to be lower than the average individual error at an arbitrary datapoint. Formally,
this is:

eens = (f̄ − d)2 =
1
M

∑
i

(fi − d)2 − 1
M

∑
i

(fi − f̄)2 (2)

= e − a

This illustrates that the correlations between the members is a fundamental part
of the quadratic error. If we take the expected value of eq (1) with respect to
all possible training sets of fixed size, then we have the mean squared error. The
bias-variance-covariance decomposition [10] shows that this can be broken down
into three components:

E
{
(f̄ − d)2

}
= bias

2
+

1
M

var +

(
1 − 1

M

)
covar (3)
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The relationship between these two decompositions has been found [2] to be:

E
{ 1

M

∑
i

(fi − d)2
}

= bias
2

+ Ω (4)

E
{ 1

M

∑
i

(fi − f̄)2
}

= Ω − 1
M

var −
(

1 − 1
M

)
covar (5)

where the interaction between the expected average error and the expected Am-
biguity is the Ω term:

Ω =
1
M

∑
i

E
{
(fi − E

{
f̄
}
)2
}

= var +
1
M

∑
i

(E{fi} − E
{
f̄
}
)2 (6)

The Ambiguity decomposition is useful for a number of reasons, the primary
one being that since the Ambiguity is target-independent, it provides a way to
estimate generalisation error of an ensemble from unlabelled data [7].

2.2 An Alternative Decomposition

We note that the ensemble objective can also be decomposed as so:

eens = (f̄ − d)2

= (
1
M

∑
i

fi − d)2

=
1

M2

∑
i

[
(fi − d)

∑
j

(fj − d)
]

=
1

M2

∑
i

(fi − d)2 +
1

M2

∑
i

(fi − d)
∑
j �=i

(fj − d) (7)

Regarding now eq (4), a simple deduction can be made:

E
{ 1

M2

∑
i

(fi − d)2
}

=
1
M

[
bias

2
+ Ω
]

(8)

and therefore:

E
{ 1

M2

∑
i

(fi − d)
∑
j �=i

(fj − d)
}

=
(
1 − 1

M

)[
bias

2
+ Ω
]
− Ω +

1
M

var +

(
1 − 1

M

)
covar (9)

It can be seen that through this new decomposition, part of the bias
2

and
Ω has “moved over” to the second term of the decomposition. This new decom-
poistion obviously does not share the useful target-independence property of the
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Ambiguity decomposition—however, the decompositions do share another prop-
erty which makes them interesting to exploit in a learning scheme. This will be
the focus of the next section.

3 Using the Decompositions for Learning

3.1 A Useful Property of the Decompositions

If we were to train a single estimator, the error and associated gradient are:

ei = (fi − d)2
∂ei

∂fi
= 2(fi − d) (10)

In the previous section we described two ways to decompose the ensemble
error in (1) into two additive components. The decompositions share the property
that the first component is directly proportional to the error gradient of a single
estimator. By this we mean that if we calculate the gradient of the first term on
the right hand side of eq (2), we have:

∂ 1
M

∑
i(fi − d)2

∂fi
=

2
M

(fi − d) =
1
M

∂ei

∂fi
(11)

and the same applies to the new decomposition we have proposed, in eq (7), we
have:

∂ 1
M2

∑
i(fi − d)2

∂fi
=

2
M2

(fi − d) =
1

M2

∂ei

∂fi
(12)

Imagine now that we take one of the decompositions as our error function to
minimise, and place a scaling parameter in front of its second component. So for
the Ambiguity decomposition we would have:

eamb =
1
M

∑
i

(fi − d)2 − γ
1
M

∑
i

(fi − f̄)2 (13)

where the γ is our scaling parameter. If we set γ = 0, the search landscape will
be exactly equivalent (aside of a constant 1

M factor) to that of a single estimator,
meaning all the minima will be in the same locations. If we set γ = 1 such that
the two components are balanced, this will be equivalent to training the ensemble
as a single unit, albeit a very complicated unit. This allows us to test a simple
hypothesis–“on a given dataset, which is better: a single complex machine, or an
ensemble of separately trained simpler machines?”. With γ, we blend between
the extremes—sometimes a simple ensemble will have best performance (γ = 0),
and sometimes a single, complex machine (γ = 1) will prevail. This could also
be interpreted as varying the fit of the model from few up to many degrees of
freedom.
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3.2 An Existing Training Scheme hat Exploits the Property

Negative Correlation (NC) Learning [9] adds penalty terms of a particular form
to the error function of an individual estimator. In the original heuristic formu-
lation of NC, the penalty term existed in several different forms:

e
(1)
i =

1
2
(fi − d)2 + γ(fi − f̄)

∑
j �=i

(fj − f̄) (14)

e
(2)
i =

1
2
(fi − d)2 + γ(fi − d)

∑
j �=i

(fj − d) (15)

e
(3)
i =

1
2
(fi − d)2 + γ(fi − 0.5)

∑
j �=i

(fj − 0.5) (16)

The training scheme is implemented as follows:

1. Let M be the final number of predictors required.
2. Take a training set z = {(x1, d1), ..., (xN , dN )}.
3. For each training pattern in z from n = 1 to N do :

(a) Calculate f̄ = 1
M

∑
i fi(xn)

(b) For each estimator from i = 1 to M ,
perform a single update for each weight w in estimator i according to
one of error functions (14), (15), or (16).

4. Repeat from step 3 for a desired number of epochs. �
After training, for any new testing point the output of the ensemble is given

by the simple average combination. The γ parameter controls a trade-off between
the objective and penalty terms. With γ = 0 we would have an ensemble with
each estimator training with plain gradient descent exactly equivalent to training
a set of estimators independently of one another. If γ is increased, more and more
emphasis would be placed on the correlations by minimising the penalty.

The first form in (14) has been thoroughly investigated in a regresssion set-
ting [2]. This can be summarised by noting that (fi − f̄) = −∑j �=i(fj − f̄), and
therefore:

e
(1)
i =

1
2
(fi − d)2 + γ(fi − f̄)

∑
j �=i

(fj − f̄)

=
1
2
(fi − d)2 − γ(fi − f̄)2 (17)

The similarity to the Ambiguity decomposition can be seen immediately. This
link to the Ambiguity and Bias-Variance-Covariance decompositions allowed a
solid grounding, as well as a proven upper bound on the γ penalty coefficient
entirely independent of all parameters except M , the size of the ensemble [2].
In benchmarks against other ensemble techniques such as Mixtures of Experts,
Adaboost.R1 and Bagging, it was found to be a competitive technique. The

T
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remaining two forms were not as well understood. However, noting our new
decomposition, a slight rearrangement shows:

enew =
1

M2

∑
i

[
(fi − d)2 + (fi − d)

∑
j �=i

(fj − d)
]

(18)

An immediate similarity to (15) can be seen, though the exact relationship is
not yet clear. This form of NC was found [9] to sometimes be more successful on
classification problems, than the original penalty. In the next section we proceed
to analyze the decomposition, in an attempt to identify why this penalty may
have outperformed the original.

4 Gradient Analysis of the New Decomposition

We have seen that the quadratic error of the simple average ensemble estimator
can be decomposed in two ways: the Ambiguity decomposition [7] and our new
decomposition in eq (7). Now that we know the ensemble error can be viewed in
a composite form (1) and two decomposed forms, we can calculate the gradients
either way. The composite form gives a simple result of:

∂eens

∂fi
= (f̄ − d) · 1

M
(19)

Performing this instead starting from our new decomposed form shows more
interesting results. Before we begin the calculation, we first break it into two
components, where the first term concerns estimator i, and the second concerns
all the other estimators k �= i :

eens =
1

M2

⎡
⎣1

2
(fi − d)2 − 1

2
(fi − d)

∑
j �=i

(fj − d)

⎤
⎦

+
1

M2

∑
k �=i

⎡
⎣1

2
(fk − d)2 − 1

2
(fk − d)

∑
j �=k

(fj − d)

⎤
⎦

It should be of course noted that we have multiplied through by a constant 1
2 ,

as is usual in gradient descent training of MLPs, which were the estimator used
in this paper, but the analysis applies in general to any estimator. The partial
derivative of this result with respect to fi is:

∂eens

∂fi
=

1
M2

⎡
⎣(fi − d) +

1
2

∑
j �=i

(fj − d)

⎤
⎦

+
1

M2

∑
k �=i

[
1
2
(fk − d)

]
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Or rearranged:

∂eens

∂fi
=

1
M2

⎡
⎣(fi − d) +

1
2

∑
j �=i

(fj − d) +
1
2

∑
k �=i

(fk − d)

⎤
⎦ (20)

We have omitted details of this calculation for space considerations, though it
is fairly involved and recommended that the reader attempt it to give assurance
of the result and implications described in the remainder of the section. If we
examine the final derivative, ignoring the constant scaling factor of 1

M2 , we see
the ensemble gradient has been broken into three components, which we will
now label and make use of. Gradient component “A” is:

A = (fi − d) (21)

Noting that the second and third components are identical (apart from the
indices j and k we have chosen), we have gradient components “B” and “C”:

B = C =
1
2

∑
j �=i

(fj − d) (22)

Though they are identical, it can be seen from the breakdown we have given
that “B” is contributed by the ith estimator, whereas the “C” component is
contributed by the sum of the other estimators. Remembering the NC error,
using the second penalty term, eq (15), we have:

∂e
(2)
i

∂fi
= (fi − d) + γ

∑
j �=i

(fj − d)

= A + γ(B + C)

Reintroducing the 1
M2 scaling factor, we note that when γ = 1 we have:

∂eens

∂fi
=

1
M2

∂e
(2)
i

∂fi
(23)

or rearranged:
∂e

(2)
i

∂fi
= M2 · ∂eens

∂fi
(24)

The gradient of the ith estimator’s error function when using NC and set-
ting γ = 1.0 is proportional to, but M2 times steeper than the ensemble error
gradient. This means that the minima will all be in the same locations in the
search space, but indicates that a much faster convergence down the landscape
should be observed, with the obvious consequence of possibly overshooting the
minimum. At γ = 0.5, it exactly models the individual estimator’s contribu-
tion to the ensemble error. However, since the estimators’ outputs are com-
bined, the errors cannot be assumed to be independent of one another; with
γ = 1.0, it “simulates” the gradients of the remaining estimators, only possible
because B = C.
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5 Empirical Results

In the original experiments on NC [9], the penalty term in (15) was found to be
more successful on classification problems. With our new knowledge on where
the penalty is derived from, and noting that training was performed over a fixed
number of iterations, we hypothesize that in fact the steepness of the landscape
simply allowed faster convergence. We therefore engage in a short empirical test
to verify this, using a dataset that NC is known to perform well on, the Phoneme
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data [6]. A full empirical benchmarking of the new penalty is outside the scope
of this paper.

We use an ensemble of 20 MLPs each with 6 hidden nodes. We perform a
five-fold cross validation, using 1 fold for training, 1 fold as validation data for
early stopping, and 3 folds as testing data. Training is stopped by monitor-
ing validation data for a rise over a 500 epoch moving window, at this point
weights are reset to the best point within the training period so far. Results
are in figure 1 and 2, also indicating 95% confidence intervals. Results show
statistically significant improvements in comparison to a simple ensemble, in
both cases when γ is set optimally. The correlation between the validation and
testing curves indicate it is possible to use validation error to select this γ for
use on testing data. At optimal γ there is no significant difference between
the penalties. However, if we regard figure 3, we can see the number of iter-
ations required to converge to this minimum error: here we see that the new
penalty does indeed converge much faster, in almost half the number of training
iterations.

6 Conclusions

We examined what happens when we decompose the objective function of the
ensemble into two components, one accounting for individual accuracy, and one
accounting for the effect of correlations between the estimators. It should be
noted the decompositons in this paper applies only to ensembles using the sim-
ple average combination method, and a quadratic loss function. We presented
the Ambiguity decomposition [7], and a new alternative decomposition of the
ensemble error. We showed how these decompositions have been exploited in a
learning scheme, and used analysis of the error gradients to explain why one may
outperform the other in certain situations.

In this work, we stated two assumptions which characterise the ensemble: a
simple average combination function, and a quadratic loss error function. What
happens when we use different assumptions? Are there decompositions when
using other combiners, like the median and mode rules? Or other loss functions
than quadratic? In classification, we are usually not interested in the quadratic
loss from the true posterior probabilities - but more so in the classification error
rate. This uses a zero-one loss function - are there analytic decompositions when
this is the case? Current evidence [3] shows that an additive decomposition does
not exist.

From this perspective, it seems obvious that any formulation of classification
diversity will be intrinsically tied to 1) the loss function, and 2) the combination
function, of the ensemble. Therefore any study citing the utility of “diversity”
has a duty to present observations in this context, and not simply use “diversity”
as if it were a mysterious panacea.
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Abstract. Training data modification has shown to be a successful tech-
nique for the design of classifier ensemble. Current study is concerned
with the analysis of different types of training set distribution and their
impact on the generalization capability of multiple classifier systems. To
provide a comparative study, several probabilistic measures have been
proposed to assess data partitions with different characteristics and dis-
tributions. Based on these measures, a large number of disjoint training
partitions were generated and used to construct classifier ensembles. Em-
pirical assessment of the resulted ensembles and their performances have
provided insights into the selection of appropriate evaluation measures
as well as construction of efficient population of partitions.

1 Introduction

In the traditional pattern classification design strategies, experimental assess-
ment of the performance of several classifiers, with the aim of selecting the best
classifier, used to be considered. In a diversion from the traditional approach,
the use of classifier ensemble has been proposed as an alternative technique to
improve classification accuracy [1, 2]. The design of classifier ensemble can take
place at four levels of data, feature, classifier and aggregation [3]. Most of the
work in MCS has focused on developing new aggregation methods. In addition,
the base classifiers and the architecture of the system have been the center of
attention [4]. An alternative design methodology is based on training base classi-
fiers using overlapped or disjoint feature subsets [5]. Moreover, another popular
ensemble technique is accomplished by modifying input data (e.g. [6],[7]). There
has been a lot of emphasis on this method, since it promotes diversity among
individual classifiers [3].

The focus of this paper is on data level techniques. Data level partitioning
strategies can be discussed from different perspectives. For example, from shar-
ing point of view [8]. Majority of the methods use highly overlapped (shared)
partitions to train the classifiers, while few others [9] apply disjoint subsets of
the data. The latter approach is mostly used when dealing with large datasets.
Another aspect of data level combining techniques is the type of information
applied in the partitioning stage. Some methods, such as boosting and feature-

N.C. Oza et al. (Eds.): MCS 2005, LNCS 3541, pp. 306–315, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Data Partitioning Evaluation Measures for Classifier Ensembles 307

based, use sort of a knowledge provided by the output of the classifiers to op-
timize the partitions. A key issue in this method is the computational effort
required. Alternatively, some other techniques are based on random selection of
data patterns, such as Bagging. Despite the significant number of theoretical
and empirical studies on data partitioning methods, no criteria or guidelines for
the use of different methods exist.

The present work introduces a novel direction in data level combining strate-
gies. We suggest that a thorough understanding of the advantages and disad-
vantages of different data modification techniques will lead to more intelligent
choices when designing MCS architectures. To achieve this goal, we first catego-
rized data level combining techniques from a new perspective. Then, we proposed
several correlation measures for training partitions, which will be discussed in the
following sections. These measures were applied to estimate the degree and type
of information provided by each partition. Through the splitting of the original
training data using different class distributions and distances, we evaluated and
compared the impact of different training partitions on the system performance.
The main focus of this study was on the methods in which partitioning takes
place independent of classifiers, filter approach, without a pass through training
stage (Section 2). The empirical assessment of these measures has provided some
insights into how training patterns are utilized in MCS system.

2 Categorization of Data Level Combining Techniques

Blum and Langley [10] have identified three types of feature selection methods:
Embedded, Filter and Wrapper. We adopt the same terminologies for data and
feature space partitioning in MCS. In this section, partitioning techniques are
categorized into two groups: wrapper and filter approaches.

In the wrapper method, subsets are evaluated and partitioned based on the
output of the base classifiers before making the final decision. Boosting and
feature-based are methods that fall into this category. Boosting, proposed by
Freund and Schapire, [6] is a popular method in which classifiers are built in
sequence. At each step of boosting, training data for the next classifier is selected
by assigning weights to data patterns that have been misclassified by the previous
classifier. Kamel and Wanas [11] proposed an evolving training algorithm where
base classifiers utilize the outcome of an aggregation method to rearrange the
training subsets. Hierarchical Mixtures of Experts [12], and Learn++ [13] fit into
the category of the wrapper approach, since partitioning depends on the output
of the base classifiers. The wrapper approach has three drawbacks: (i) it is time
demanding and expensive since the population of partitions has to be evaluated
and optimized step by step before finalizing the training, (ii) decisions on base
classifier and the MCS architecture have to be made in advance, and (iii) a
powerful architecture and/or base classifiers may be traded off by the weakness
of selected partitions.

In the filter method, however, subsets are partitioned before training. Bag-
ging [7] is a well-recognized combining technique that partitions training data
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before constructing the base classifiers. Bagging presents each classifier with a
set of data points sampled uniformly with replacement from the original data.
The final classification decision is attained by taking the majority vote of the
generated ensemble. K fold-corssvalidation is another example of filter approach.
In this method, the training set is randomly divided into k subsets. Leaving one
subset out, each classifier is presented with k-1 subsets for training. A more
deterministic filter approach has been proposed in [14], where original training
data is partitioned using clustering techniques. Each cluster is then used to train
a new classifier. Filter method is less expensive and selection of the architecture
and base classifiers does not have to be made in advance. However, the difficulty
in this method is defining a cost function, which can estimate efficiency and
capability of the generated partitions.

3 Data Partitioning Evaluation Measures

We developed and implemented several measures to evaluate partitions and their
effects on MCS performance. These measures can be grouped into two main cat-
egories of feature-based and non-feature-based. In the non-feature-based mea-
sures, information provided by the feature space is not considered and only
the class labels of training data are taken into account. While in feature-based
methods, all measures are calculated based on the feature information. Non-
feature-based measures have been previously discussed in [15]. The main focus
of this paper is on feature-based measures. In addition to the mentioned catego-
rization, we can apply the proposed measures at three levels of class, individual
partition, and overall collection of partitions. We developed distance measures
that utilized patterns from one class, intraclass distance, more than one class,
interclass distance, one individual partition, intra-partition distance, and more
than one partition, inter-partition distance. These categorizations are summa-
rized in Table 1.

Table 1. Four Different Conditions for Location of Data Patterns

same partitions different partitions

same classes intra-class intra-partition intra-class inter-partition
different classes inter-class intra-partition inter-class inter-partition

3.1 Feature-Based Measures

Measure of distance can be used as a criterion to evaluate data partitioning
schemes. Distance of the data patterns can be interpreted as density, within one
class, or correlation between two classes or more. To calculate the distance of two
sample points, the use of feature space of the data is inevitable. Therefore, all
proposed measures in this section are addressed as feature-based. We employed
Euclidean, Bhattacharyya, and Mahalanobis distance measures.
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Euclidean Distance: The most popular and simple distance measure is Eu-
clidean distance [16]. Defining a metric space, Euclidean measure is denoted as:

dE =
√

(x − y)T (x − y) (1)

where x and y are feature vectors selected from spcific data populations. Each
vector has n features, representing the dimension of the feature space.

Mahalanobis Distance: One drawback of Euclidean distance is that it does
not consider the correlation between two features. Mahalanobis distance, on the
other hand, takes into account the correlation of the features. The Mahalanobis
distance between two feature vectors x and y are represented as:

dM =
√

(x − y)T Σ−1(x − y) (2)

where Σ is the within-group (pooled) covariance matrix of two samples. Σ is
defined as

Σ =
(nx − 1)Σx + (ny − 1)Σy

nx + ny + 2
(3)

where, nx and ny are the size of x and y samples, Σx and Σy are the covariance
matrices of x and y accordingly.

Bhattacharyya Distance: Similar to Mahalanobis, Bhattacharyya distance
measure is widely used as a measure of class separability, because of its precision
and relation with the Bayes error [16].

dB =
1
8

√
(x − y)T (

Σx + Σy

2
)−1(x − y) +

1
2
ln(

|(Σx + Σy)/2|√|Σx|.|Σy|
). (4)

Applying these distance measures, we can draw an overall evaluation value
for a set of samples or partitions by averaging all pairwise distances in that
population. Each population can belong to one of the following structures; (i)
Ci

j , the jth class in the ith partition, (ii) Pi, the ith partition which consists
of c classes, (iii) Cj , the jth class in the collection which is broken into m
partitions, and (iv) the whole collection divided into m partitions. To calculate
correlation of each of the mentioned structures, there are two options. We can
either consider all patterns in the selected population and their distances from
each other, or consider only center of that population. In the first approach, if a
population consists of N samples, we need to calculate N(N−1)

2 distances. The
second approach is much simpler, since instead of using pairwise measures, the
distances of all samples from their own population center, or another population
center, are calculated. This simplification reduces the number of operations to
N distance measures.

The following notations are used through out the paper: μi
j or νi

j represent
the mean (center) of the jth class in the ith partition and μj or νj the mean of the
jth class. μi or νi is the mean of the ith partition, xi

k,j is considered as the feature
vector of the kth sample of jth class in the ith partition, and d(x, y) represent
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the distance between x and y. In addition, Di
j is the correlation among the jth

class in partition i, Dj is the correlation among class j, and finally, Di is the
correlation of ith partition. The number of partitions and classes are represented
by m and c. nij is the number of samples in the jth class in ith partition, Mi is
the number of samples in partition i and Nj is the size of class j.

Intra-class, Intra-partition Distance: The population, in this category, con-
sists of patterns from a specific type of class. Correlation is calculated as

D =
m∑

i=1

c∑
j=1

pcj

nij∑
k=1

d(xi
k,j , μ

i
j), pcj

=
nij

Mi
. (5)

Inter-class, Intra-partition Distance: Here, correlation among two or more
classes in a partition is considered. We can either consider the actual patterns or
their means. Their distances from the overall mean of partition can be considered
as well.

D =
m∑

i=1

c∑
j=1

pcj
d(μi, μi

j), pcj
=

nij

Mi
. (6)

Intra-class, Inter-partition Distance: Correlation of every class, which is
broken down into m partitions, is the basis for evaluation. It is important to
note that instead of the mean, μ, actual patterns can be used as well.

D =
c∑

j=1

m∑
i=1

ppi
d(μj , μ

i
j), ppi

=
nij

Nj
. (7)

Inter-class, Inter-partition Distance: The overall correlation of a pool of
partitions is calculated by considering the distances of i) centers of all classes in
the partition, or ii) centers of all partitions from the overall mean.

D =
m∑

i=1

c∑
j=1

d(νi
j , μ

i
j) (8)

4 Experimental Setup

We carried out a set of experiments in order to assess the proposed evaluation
measures and the impact of large set of partitions, generated with different dis-
tributions and distances, on generalization ability of the MCS. We considered
all the previously discussed categories, including all three distance measure in
four categories, either pairwise or non-pairwise, population center or actual pat-
terns themselves, as well as all types of inter/intra class/partition measures. This
section highlights a summary of the important observations.

We present the results for two of the benchmark datasets; both of them are
available within the UCI Machine Learning Repository [18]. The first dataset is
Pima Indians Diabetes, which contains 8 attributes and 2 classes. It includes 768
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patterns with no missing values. The second one is again a real-world dataset,
satimage, which contains 36 attributes, 6 classes and 6435 instances. Linear
discriminant classifiers were used in the experiments. The use of stable classifiers
was dictated by the need of obtaining consistent results by eliminating drastic
fluctuation in the system performance caused by classifiers themselves. For the
results presented in this paper, number of classifiers were set to 7 for diabetes
and 9 for Satimage data. These selection of the ensemble sizes was based on the
size and complexity of the data. The use of disjoint training subsets prohibited
us from the use of larger ensembles. The product of the estimated posterior
probabilities by the base classifiers was used as combining rule.

To examine our proposed measures, we considered disjoint subsets for train-
ing. Training subsets were obtained in a deterministic way, by opposing and
controlling bias among partitions. Bias is defined as a fraction of a training data
(%) that belongs to a specific group. In these experiments, bias was obtained
by grouping training data based on the instances distances from the center of
classes or training data itself. The initial set of partitions were obtained through
opposing 100% bias to all partitions. Partitions with 100% bias was obtained
by this procedure. We first sorted out the patterns based on their distance from
center of the class or training data. We distributed the sorted patterns in such
a way that first partition contained the largest distanced patterns, the second
partition contained the second largest distanced patterns, and so on. It is im-
portant to note that the size of partitions has remained balanced through all the
stages, as well as the type of class diversity. This set of partitions has remained
the baseline for producing next sets of partitions by gradually reducing bias from
100% to 0% (Algo. 1).

Algorithm 1 Data Partitioning Evaluation Scheme
b ← 10
for 1 ≤ b,
divide the data into training and test subsets, proportionally half and half
determin the number of partitions, m
initialize the first training partitions by forcing 100% bias (discussed above), p0

bias ← 95%
while “bias is non-zero”
randomly select (100 − bias)% of the data, Tb

construct new partitions based on the initial set of partitions p0

and distribute Tb among these subsets in such a way that there is no overlap
bias ← bias − step ; step is a predefined number

end while
calculate the correlation of all population of partitions using the measures discussed
above train individual classifiers by partitioned training data and combine their
outputs

end for

As discussed, we applied Euclidean, Mahalanobis, and Bhattacharyya dis-
tance measures to estimate correlation among training sets. Among all these
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measures, Euclidean distance has shown to have the largest inconsistency and
fluctuations. The other two were more stable and demonstrated similar trends.
Since feature-vectors do not have the same variance in each dimension, it is nec-
essary to use a normalized distance measure. Mahalanobis, and Bhattacharyya
have this property, as well as the fact that they are a good approximation of
Bayes error.

The test error rates, y-axis, against correlation measures, x-axis, are sum-
marized in Figures 1-3, for Pima and Satimage datasets. The presented results
have been averaged over 10 different population sets. In addition, we evaluated
the performance of generated partitions against bagging; presented as a straight
line in all figures. Bagging was trained and tested with 20 classifiers and the
same training and test sets that were used for the rest of the experiments. The
average of 10 runs has been reported for bagging as well.

The effect of intra-class distance in each partition is depicted in Figures 1(a)
and (b). As it is shown, the smaller the distance of instances get from their

Fig. 1. Intra-class, Intra-partition Measure: a)Pima b)Satimage

Fig. 2. Inter-class, Intra-partition Measure: a)Pima b)Satimage
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Fig. 3. a)Intra-class, Inter-partition Measure (Pima), b)Using Training Data Mean for
Partitioning (Satimage)

mean (larger density), the more improvement can be seen in the accuracy. Simi-
lar investigation has been carried out among partitions, inter-partition measure.
This time the mean of overall class in the training data has been considered,
instead of the mean of the class in the partition (Fig. 3(a)). The error tends to
increase with the increase of sum of the distances. This behaviour was expected
in both cases, as it is well known in classical pattern recognition that larger
class density increases the generalization ability. We also considered inter-class,
intra-partition distance measures (Fig. 2 (a) and (b)). The overall trend in this
case study was that larger inter-class distance resulted in lower error. This is due
to the fact that by larger inter-class distance, the likelihood of having overlaps
among classes decreases, which makes it easier for the system to distinguish dif-
ferent classes. As discussed before, patterns were forced to distribute either based
on their distances from the mean of class or training data. By using the mean

Fig. 4. Inter-partition Measure: a)Pima b) Satimage
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of the training data (Fig. 3(a)), the pattern of change was the same, however,
the range of difference between worst and best performance using class mean
is larger, 2.6% versus 1.5%. Considering inter-partition feature-based measures
(overall collection), we did not know what to expect when examining the distance
between mean of training subsets and the mean of original training data. Re-
sults suggest that larger distances among the means improve MCS classification
capability (Fig. 4(a) and (b)).

As illustrated in the figures, some of the generated disjoint partitions outper-
form bagging up to 2%. An important observation was that by examining each
partition set individually, their distances, and their corresponding ensemble er-
ror, it became clear that initial partition set (generated with 100% bias) had the
lowest error. This suggest that the larger the bias gets, the better generalization
ability multiple classifiers obtain. More detailed investigation needs to be carried
out to be able to make more reliable conclusions. However, the current findings
promise to offer new design criteria for filter type partitioning strategy using
feature-based measures.

5 Conclusion

In this paper, we proposed several feature-based distance measures, with which
correlation among training partitions can be estimated. Using overall distance
measures in different scopes of classes and partitions, large number of partitions
were generated, and their impacts on classification accuracy were evaluated. It
is important to note that we were not aiming at finding the best classifica-
tion results. We were mostly searching for a linkage between data partitioning
strategies, and performance of MCS. As a result, we used the simplest possible
classification and aggregation algorithms to design ensemble members. The use
of more sophisticated methods will be the focus of our future work.

The above observations support the notion that the proposed evaluation mea-
sures are beneficial in obtaining a nearly optimal partitioning solution, consider-
ing that training data partitioning based on these measures is less expensive than
clustering and many other existing techniques. In addition, the results show that
MCS error is a non-linear function of overall distance measure(s). Therefore, it
is expected to be able to find some optimal or sub-optimal points in which MCS
performance is at its best. These observations address an optimization proce-
dure which is our future work. In addition, findings of this study can be used to
optimize existing combining architectures and techniques.
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Abstract. In this paper the performance of bagging in classification
problems is theoretically analysed, using a framework developed in works
by Tumer and Ghosh and extended by the authors. A bias-variance de-
composition is derived, which relates the expected misclassification prob-
ability attained by linearly combining classifiers trained on N bootstrap
replicates of a fixed training set to that attained by a single bootstrap
replicate of the same training set. Theoretical results show that the ex-
pected misclassification probability of bagging has the same bias com-
ponent as a single bootstrap replicate, while the variance component is
reduced by a factor N . Experimental results show that the performance
of bagging as a function of the number of bootstrap replicates follows
quite well our theoretical prediction. It is finally shown that theoretical
results derived for bagging also apply to other methods for constructing
multiple classifiers based on randomisation, such as the random subspace
method and tree randomisation.

1 Introduction

Bagging [3] is the most popular method for constructing multiple classifier sys-
tems based on the “perturbing and combining” approach, which consists in com-
bining multiple instances of the base classifier obtained introducing some ran-
domness in the training phase. These methods seem to be effective in reducing
the variance component of the expected misclassification probability of a classi-
fier, and are thus believed to be effective especially for classifiers characterised by
a high variance and a low bias, qualitatively defined by Breiman as “unstable”,
i.e. classifiers that undergo significant changes in response to small perturba-
tions of the training set (or other training parameters). However it is not yet
clear how exactly bagging affects the bias and variance of individual classifiers,
and for what kind of problems and classifiers it is more effective. Theoretical
investigations like [8, 4] focused only on regression problems, while analytical
models for classification problems turned out to be more difficult to develop, es-
pecially because no additive bias-variance decomposition exists for them. More-
over, although several decompositions have been proposed so far [2, 5, 7, 14, 17],
no general consensus exists about which one is more appropriate to analyse the
behaviour of classification algorithms. Therefore, only experimental analyses of
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bagging have been presented so far for classification problems [14,16,6,10]. Em-
pirical evidences seem to confirm that the main effect of bagging is to reduce
the variance component of the expected misclassification probability, but some
exceptions have been pointed out, for instance in [10]. Moreover, no clear defi-
nition of “instability” has been provided yet, directly related to the amount of
variance reduction or to the performance improvement attainable by bagging,
although some attempts have been made [16,10].

In this paper we look at bagging from the perspective of the theoretical frame-
work developed in works by Tumer and Ghosh [19,20], and extended by Fumera
and Roli in [9]. This model allows to evaluate the error reduction attainable by
linearly combining the outputs of individual classifiers, and provides a particular
bias-variance decomposition of the expected misclassification probability. Such
decomposition accounts only for a fraction of the overall misclassification prob-
ability, and holds only under some assumptions. Nevertheless, we show that it
can be exploited to analytically characterise the performance of bagging as a
function of the number of bootstrap replicates N . This problem has not been
considered so far in the literature. Indeed, bagging was proposed by Breiman as
a method to approximate, using a single training set, an ideal “aggregated” pre-
dictor defined as the combination of the (possibly infinite) predictors obtained
using all possible training sets of a fixed size. In practice, since there are mm

different and equiprobable bootstrap replicates of a given training set of size m,
bagging itself is approximated using N � mm replicates. Bagging has been al-
ways analysed “asymptotically”, i.e. for values of N sufficiently high to provide
a good approximation of its theoretical definition. Empirical evidences showed
that “asymptotic” values of N are between 10 and 50, depending on the partic-
ular data set and classifier used [3,1,16], that the performance of bagging tends
to improve for increasing N until the “asymptotic” value is reached [16], and
that such improvement is mainly due to variance reduction [3, 1]. However, the
dynamics with which the performance of bagging reaches its “asymptotic” value
has never been investigated. Under this viewpoint, we show that our theoretical
framework provides a simple analytical relationship between the expected mis-
classification probability of bagging and that of an individual classifier trained on
a single bootstrap replicate of a fixed training set. Such relationship shows that
the performance of bagging improves as N increases, and this is entirely due to
a reduction by a factor N of the variance of a single bootstrap replicate. We also
show that our model theoretically supports the optimality of the simple average
combining rule over the weighted average for classifiers generated by bagging. To
the best of our knowledge, our model is the first to analytically characterise the
dynamics of variance reduction attained by bagging as a function of the number
N of combined classifers. Experiments carried out on the same data sets origi-
nally used in [3] support our theoretical predictions. The practical relevance of
our results is that they provide a well grounded rule for choosing the number
of bootstrap replicates N , which can be useful in applications characterised by
strict requirements on computational complexity at operation time. Moreover,
we show that our theoretical results are not limited to bagging, but hold for any



318 G. Fumera, F. Roli, and A. Serrau

method based on independently generating individual classifiers using the same
randomisation process, like Ho’s random subspace method [12] and Dietterich
and Kong’s tree randomisation [5].

2 Theoretical Analysis of Bagging

2.1 Expected Misclassification Probability of an Individual
Classifier

Our analysis of bagging is based on the theoretical model developed in [19, 20],
and extended in [9], which allows to analytically evaluate the reduction of the
expected misclassification probability attainable by linearly combining the out-
puts of an ensemble of classifiers. This model considers classifiers that provide
approximations P̂k(x) of the class posterior probabilities Pk(x) (where k denotes
the class), and focuses on the expected value of the additional misclassification
probability (from now on, added error) over Bayes error attained on a given
boundary between any two classes i and j, in the case when the effect of us-
ing the approximated a posteriori probabilities is a shift of the ideal boundary.
This situation is depicted in Fig. 1 for the case of a one-dimensional feature
space. In the following we did not consider the case of multi-dimensional fea-
ture spaces, which is discussed in [18]. The approximation P̂k(x) can be written
as Pk(x) + εk(x), where εk(x) denotes the estimation error, which is assumed
to be a random variable. One source of randomness in constructing a classifier
(the one exploited by bagging) is the training set. Therefore, in the following we
shall write the estimation errors by indicating explicitely their dependence on
a training set t, as εi(x, t). However, we point out that all the following deriva-
tions hold also when other sources of randomness are considered (like the ones
exploited by the random subspace method and by tree randomisation, or even
random initial weights in neural networks). Under a first-order approximation
of Pi(x) and Pj(x) around the ideal boundary x∗, and approximating the prob-
ability distribution p(x) around the ideal boundary with p(x∗), the additional
misclassification probability for a given t turns out to be

z[εi(xb, t) − εj(xb, t)]2 , (1)

where xb is the estimated class boundary (see Fig. 1), and z is a constant term
equal to p(x∗)

2[P ′
j(x)−P ′

i (x)] [19, 20, 13, 9]. It easily follows that the added error Eadd,
i.e. the expected value of eq. (1) over t, is

Eadd = z[(βi − βj)2 + σ2
i + σ2

j − 2covij ] , (2)

where βk and σ2
k denote the mean and variance (over t) of εk(x, t), k = i, j, while

covij denotes the covariance between εi(x, t) and εj(x, t), and it is assumed that
such quantities do not depend on x around the considered class boundary.

We point out that eq. (2) can be viewed as a bias-variance decomposition,
since it allows to express the added error as a function of the mean and variance
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Fig. 1. True posterior probabilities around the ideal boundary x∗ between classes i

and j (solid lines), and estimated posteriors, leading to the boundary xb, (dashed lines).

Lightly and darkly shaded areas represent contribution of this class boundary to Bayes

error and to additional misclassification error, respectively

over t of the estimated a posteriori probabilities provided by a classifier. Under
this viewpoint, it is analogous to the decomposition given by Friedman for a fixed
x in [7]. The difference between the decomposition (2) and others proposed in
the literature [5, 2, 7, 17] is that it holds only under the assumptions explained
above. Although these are quite strict assumptions as clearly explained in [13],
they provide an additive decomposition which is not attainable in classification
problems without any simplifying assumption, as shown in [7]. In the following
we show how this decomposition can be exploited to analytically characterise
the performance of bagging as a function of the number of bootstrap replicates.

2.2 Added Error of Linearly Combined Classifiers

Consider a linear combination P̂ ave
k (x) (by simple averaging) of the estimated

a posteriori probabilities provided by N classifiers trained on different training
sets t1, . . . , tN , given by 1

N

∑N
m=1 P̂m

k (x) = Pk(x) + 1
N

∑N
m=1 εk(x, tm). Under

the same assumptions of Sect. 2.1, the additional misclassification probability
on the same class boundary of Fig. 1 turns out to be

z

[
1
N

N∑
m=1

εi(xbave , tm) − εj(xbave , tm)

]2
, (3)

where z is the same as in eq. (1), while xbave is the estimated class boundary
which can differ from that of a single classifier, xb [19, 20,13,9].

We now focus on the case when the estimation errors of individual classi-
fiers, εk(x, tm), m = 1, . . . , N , are i.i.d. random variables. This is the case of
bagging: indeed, if t1, . . . , tN are bootstrap replicates of a fixed training set,
then they are i.i.d. random variables since each one is made up of m sam-
ples drawn independently from the same distribution. This implies that also
εk(x, tm), m = 1, . . . , N are i.i.d. random variables. In this case, eq. (1) (which
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coincides to eq. (3) for N = 1) provides the misclassification probability of a
classifier trained on a single bootstrap replicate t of the considered training set,
and eq. (2) is the expected value over all possible bootstrap replicates, while
the expected value of eq. (3) provides the added error of N bagged classifiers,
over all possible realisations of N bootstrap replicates of the same training set.
Since all the training sets t1, . . . , tN are identically distributed, also the esti-
mation errors εk(x, tm), m = 1, . . . , N in eq. 3 and εk(x, t) in eq. 1 are identi-
cally distributed. Under the assumption of Sect. 2.1 that the mean and variance
of estimation errors are constant values around the ideal boundary x∗, it fol-
lows that each εk(xbave , tm), m = 1, . . . , N has the same mean βk and variance
σ2

k as εk(xb, t), while εi(xbave , tm) and εj(xbave , tm), m = 1, . . . , N , have the
same covariance covij as εi(xb, t) and εj(xb, t), m = 1, . . . , N . Moreover, since
εk(x, tm), m = 1, . . . , N are i.i.d., also εi(xbave , tm)−εj(xbave , tm), m = 1, . . . , N ,
are i.i.d. . It then follows that the added error Eave

add (the expected value of eq. (3))
with respect to the estimation errors is given by

Eave
add = z

[
(βi − βj)2 +

1
N

(σ2
i + σ2

j − 2covij)
]

. (4)

It is worth noting that, according to the theoretical comparison between
the simple and weighted average combining rules given in [9], based on the
same theoretical framework considered here, the simple average is the optimal
combining rule for classifiers generated by bagging, since the estimation errors
of each classifier are i.i.d. .

2.3 Analysis of Bagging

In the previous section we obtained a bias-variance decomposition of the added
error Eave

add of an ensemble of N classifiers trained on bootstrap replicates of a
fixed training set (when the simple average combining rule is used), under the
assumptions of Sect. 2.1. We showed that this decomposition relates the bias and
variance components of N bagged classifiers to the ones of a classifier trained
on a single bootstrap replicate. To the best of our knowledge, this is the first
analytical model of the performance of bagging as a function of the number of
bootstrap replicates N . Equations (2) and (4) show that the added error attained
by N bagged classifiers has the same bias component of a classifier trained on a
single bootstrap replicate, while its variance is reduced by a factor N . In other
words our model states that, for a fixed training set, the expected performance
of bagging always improves as N increases, and this is due only to variance
reduction. This could seem an optimistic conclusion, since it is known that bag-
ging does not always improve the performance of a classifier. However, we point
out that the improvement predicted by our theoretical model does not refer to
an individual classifier trained on the whole training set, but to an individual
classifier trained on a single bootstrap replicate, where the expectation is taken
over all possible bootstrap replicates of a fixed training set. In other words, the
above result does not imply that bagging a given classifier always improves its
performance, but only that, for any fixed training set, the expected performance
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of N bagged classifiers improves for increasing N . This qualitatively agrees with
results like the ones in [16], where the performance of bagging was often found
to improve for increasing N , even when an individual classifier (trained on the
whole training set) outperformed bagging. Moreover, it also quantitatively agrees
with the empirical observation that bagging more than 10 to 50 classifiers does
not lead to significant performance improvements.

The above result can have a great practical relevance since it relates in a very
simple way the performance improvement attainable by bagging to the number of
bootstrap replicates N , and thus suggests a simple guideline to choose the value
of N . Although the amount of the maximum reduction of the expected misclas-
sification probability attainable by bagging is equal to the variance component,
which is unknown in real applications, combining N bagged classifiers always
provides an average reduction by a factor N of such component. This guideline
can be useful in particular for applications characterised by strict requirements
on the computational complexity at operation time, where it is necessary to
find a trade-off between the potential performance improvement attainable by
a combining method like bagging and the value of N . So far, this problem has
been addressed through the development of techniques for selecting a subset of
N classifiers out of an ensemble of M > N classifiers generated by methods like
bagging (see [16, 15, 11]). Selection techniques are aimed to keep the ensemble
size small without worsening its performance [15, 11], or even to improve per-
formance by discarding poor individual classifiers [16]. Under this viewpoint,
our results do not directly allow to understand if selection techniques can be
effective, since they provide only the average performance of an ensemble of N
classifiers randomly generated by bagging. The improvement attainable by se-
lection techniques depends instead on how much the performances of different
ensembles of N classifiers change: the higher this difference, the higher the gain
attainable by selecting a proper ensemble of N classifiers instead of a random
ensemble.

2.4 Other Techniques Based on Randomisation

We point out that all the results discussed above do not apply only to bag-
ging. Indeed, as pointed out in Sect. 2.2, the added error of N combined clas-
sifiers (3) is given by (4) whenever the estimation errors of different classifiers,
εk(x), k = 1, . . . , N are i.i.d. random variables. Besides bagging, this is the case
of any method for constructing classifier ensembles based on some randomisation
process, in which the outputs of individual classifiers depends on i.i.d. random
variables. For instance, this happens in the random subspace method [12], where
each classifier is trained using a randomly selected feature subspace, in tree ran-
domisation [5], where the split at each node is randomly selected among the k
best splits, and even in the simple case of ensembles of neural networks trained
using random initial weights. Therefore, the results of our analysis apply to all
such techniques besides bagging. This opens an interesting perspective towards
a unifying view of techniques for generating multiple classifiers based on ran-
domisation.
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3 Experimental Results

In this section we present an experimental evaluation on real data sets of the
behaviour of bagging as a function of the number of bootstrap replicates N , and
a comparison with the behaviour predicted by the theoretical model of Sect. 2.
The experiments have been carried out on the same well known data sets used
by Breiman in [3], i.e. Wisconsin breast cancer, Diabetes, Glass, Ionosphere,
Soybean disease and Waveform. Decision trees have been used as base classi-
fiers, and the linear combining rule (simple average) has been applied to the
estimates of the a posteriori probabilities provided by individual trees. All data
sets were randomly subdivided into a training and a test set of the same relative
size as in [3]. To repeat the experiments, we constructed ten different training
sets by randomly sampling without replacement a subset of the patterns from
the original training set. Since we were interested in the expected error rate of
bagging as a function of N , with respect to all possible realisations of N boot-
strap replicates of a fixed training set, we estimated such value in each run by
averaging over ten different sequences of N bootstrap replicates of the same
training set, for N = 1, . . . , 50 (where the value for N = 1 refers to a single
bootstrap replicate). The values obtained in the ten runs were then averaged
again.

In Figs. 2 and 3 we report the test set average misclassification rate and the
standard deviation of bagging for N = 1, . . . , 50, and of a single tree trained on
the whole training set. We point out that the average misclassification rate of
bagging as a function of N can not be directly compared to eq. (4), since the
latter refers to a single class boundary, and is valid only under the assumptions
of Sect. 2. However, as suggested by eq. (4), our aim was to investigate if the
observed average overall misclassification rate of bagging as a function of N ,
E(N), can be modeled as

E(N) = EB +
1
N

EV , (5)

i.e. as the sum of a constant term and of a term decreasing as 1/N , where EB+EV

is the average misclassification rate E(1) of a single bootstrap replicate, EB cor-
responds to the sum of the Bayes error and of the bias component, and EV to the
variance component. To verify this hypothesis, we fitted the curve of eq. 5 to the
value of E(1) for N = 1 (since we assume E(1) = EB + EV) and to the value of
E(50) for N = 50 (which should be the most “stable” value of E(N)), obtaining
EV = (1 − 1

50 )[E(1) − E(50)], and thus EB = E(1) − (1 − 1
50 )[E(1) − E(50)].

In Figs. 2 and 3 we report the curve EB + 1
N EV (dashed line), to be com-

pared with the experimentally observed values of E(N) (black circles), for N =
2, . . . , 49.

From Figs. 2 and 3 we can see that, despite its simplicity, expression (5) fits
quite well the average misclassification rate of bagging on five out of the six
data sets considered, with the exception of Waveform for small N . On these five
data sets, for values of N lower than 10, which are of great interest in prac-
tical applications, the deviation between the predicted and observed values of
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Fig. 2. Average test set misclassification rate of N bagged classifiers (black circles) for

N = 1, . . . , 50 (where N = 1 refers to a single bootstrap replicate), and standard devi-

ation (shown as error bars). The dashed line represents the behaviour of the expected

misclassification probability of bagging predicted by eq. 5. Horisontal lines represent

the average misclassification rate (continuous line) and the standard deviation (dotted

lines) of an individual classifier trained on the whole training set
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Fig. 3. See caption of Fig. 2

the misclassification rate is often lower than 0.01. A higher deviation can be
observed for the smallest values of N (between 2 and 4, depending on the data
set). Anyway, on all six data sets it is evident that for N > 10 the residual
improvement attainable by bagging does not exceed 10% of that attained for
N = 10, in agreement with eq. 5. It is also possible to see that for low N (be-
tween 2 and 5, depending on the data set) the average misclassification rate of
bagging can be higher than that of an individual classifier trained on the whole
training set, but becomes lower as N increases. The only exception is the Soy-
bean data set, where the average performance of bagging is very close to that of
the individual classifier even for high values of N . However, in all data sets the
standard deviation of the misclassification rate of bagging is always lower than
that of the individual classifier, for N approximately greater than 5. This means
that, for a fixed training set, bagging N classifiers reduces the risk of obtaining
a higher misclassification rate than using an individual classifier trained on the
whole training set, even if the average misclassification rates are very similar as
in the Soybean data set. In particular, the fact that the standard deviation of
bagging can be quite high even for high values of N (for instance, it is about
0.04 on Glass and Soybean data sets) shows that classifier selection techniques
could give a potential improvement, although no well grounded selection criteria
has been proposed so far. Accordingly, the theoretically grounded guideline de-
rived in this work can be considered as a contribution towards effective selection
criteria.
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Abstract. We have previously introduced the Learn++ algorithm that provides 
surprisingly promising performance for incremental learning as well as data fu-
sion applications. In this contribution we show that the algorithm can also be 
used to estimate the posterior probability, or the confidence of its decision on 
each test instance. On three increasingly difficult tests that are specifically de-
signed to compare posterior probability estimates of the algorithm to that of the 
optimal Bayes classifier, we have observed that estimated posterior probability 
approaches to that of the Bayes classifier as the number of classifiers in the en-
semble increase. This satisfying and intuitively expected outcome shows that 
ensemble systems can also be used to estimate confidence of their output. 

1   Introduction 

Ensemble / multiple classifier systems have enjoyed increasing attention and popular-
ity over the last decade due to their favorable performances and/or other advantages 
over single classifier based systems. In particular, ensemble based systems have been 
shown, among other things, to successfully generate strong classifiers from weak clas-
sifiers, resist over-fitting problems [1, 2], provide an intuitive structure for data fusion 
[2-4], as well as incremental learning problems [5]. One area that has received some-
what less of an attention, however, is the confidence estimation potential of such 
systems. Due to their very character of generating multiple classifiers for a given da-
tabase, ensemble systems provide a natural setting for estimating the confidence of 
the classification system on its generalization performance.  

In this contribution, we show how our previously introduced algorithm Learn++ [5], 
inspired by AdaBoost but specifically modified for incremental learning applications, 
can also be used to determine its own confidence on any given specific test data in-
stance. We estimate the posterior probability of the class chosen by the ensemble us-
ing a weighted softmax approach, and use that estimate as the confidence measure. 
We empirically show on three increasingly difficult datasets that as additional classi-
fiers are added to the ensemble, the posterior probability of the class chosen by the 
ensemble approaches to that of the optimal Bayes classifier. It is important to note 
that the method of ensemble confidence estimation being proposed is not specific to 
Learn++, but can be applied to any ensemble based system. 
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2   Learn++ 

In ensemble approaches using a voting mechanism to combine classifier outputs, the 
individual classifiers vote on the class they predict. The final classification is then de-
termined as the class that receives the highest total vote from all classifiers. Learn++ 
uses weighted majority voting, a rather non-democratic voting scheme, where each 
classifier receives a voting weight based on its training performance.  One novelty of 
the Learn++ algorithm is its ability to incrementally learn from newly introduced data.  
For brevity, this feature of the algorithm is not discussed here and interested readers 
are referred to [4,5]. Instead, we briefly explain the algorithm and discuss how it can 
be used to determine its confidence – as an estimate of the posterior probability – on 
classifying test data. 

For each dataset (Dk) that consecutively becomes available to Learn++, the inputs to 
the algorithm are (i) a sequence of m training data instances xk,i along with their cor-
rect labels yi, (ii) a classification algorithm BaseClassifier, and (iii) an integer Tk 
specifying the maximum number of classifiers to be generated using that database. If 
the algorithm is seeing its first database (k=1), a data distribution (Dt) – from which 
training instances will be drawn - is initialized to be uniform, making the probability 
of any instance being selected equal.  If k>1, then a distribution initialization se-
quence, initializes the data distribution.  The algorithm then adds Tk classifiers to the 
ensemble starting at t=eTk+1 where eTk denotes the number of classifiers that cur-
rently exist in the ensemble. The pseudocode of the algorithm is given in Figure 1. 

For each iteration t, the instance weights, wt, from the previous iteration are first 
normalized (step 1) to create a weight distribution Dt.  A hypothesis, ht, is generated 
using a subset of Dk drawn from Dt (step 2).  The error, t, of ht is calculated: if t > ½, 
the algorithm deems the current classifier ht to be too weak, discards it, and returns to 
step 2; otherwise, calculates the normalized error βt (step 3).  The weighted majority 
voting algorithm is called to obtain the composite hypothesis, Ht, of the ensemble 
(step 4). Ht represents the ensemble decision of the first t hypotheses generated thus 
far. The error Et of Ht is then computed and normalized (step 5). The instance weights 
wt are finally updated according to the performance of Ht (step 6), such that the 
weights of instances correctly classified by Ht are reduced and those that are misclas-
sified are effectively increased. This ensures that the ensemble focus on those regions 
of the feature space that are yet to be learned. We note that Ht allows Learn++ to make 
its distribution update based on the ensemble decision, as opposed to AdaBoost which 
makes its update based on the current hypothesis ht. 

3   Confidence as an Estimate of Posterior Probability 

In applications where the data distribution is known, an optimal Bayes classifier can 
be used for which the posterior probability of the chosen class can be calculated; a 
quantity which can then be interpreted as a measure of confidence [6]. The posterior 
probability of class j given instance x is classically defined using the Bayes rule as: 
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Input: For each dataset Dk  k=1,2,…,K 

• Sequence of i=1,…,mk instances xk,i with labels },...,1{ cYy ki =∈  

• Weak learning algorithm BaseClassifier. 
• Integer Tk, specifying the number of iterations. 

Do for k=1,2,…,K 

If k=1 Initialize 0,/1)( 111 === eTmiDw  for all i. 

Else Go to Step 5 to evaluate the current ensemble on new dataset Dk, 

update weights, and recall current number of classifiers 
−

=
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)(  so that Dt is a distribution. 

2. Call BaseClassifier with a subset of Dk randomly chosen using Dt. 
3. Obtain ht : X  Y, and calculate its error: 
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6. Set Bt=Et/(1-Et), 0<Bt<1, and update the instance weights: 
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 ( )
1  : ( )

arg max log 1
t i i

K

final t
y Y k t h y

H β
∈ = =

=
x

 

Fig. 1. Learn++ Algorithm 
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Since class distributions are rarely known in practice, posterior probabilities must 
be estimated. While there are several techniques for density estimation [7], such  
techniques are difficult to apply for large dimensional problems. A method that can 
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estimate the Bayesian posterior probability would therefore prove to be a most valu-
able tool in evaluating classifier performance. Several methods have been proposed 
for this purpose [6-9]. One example is the softmax model [8], commonly used with 
classifiers whose outputs are binary encoded, as such outputs can be mapped into an 
estimate of the posterior class probability using  

( )

( )
1

( | ) ( )
j

k

A

j j N A
k

e
P C

e
ω

=

≈ =
x

x
x x  (2) 

where Aj(x) represents the output for class j, and N is the number of classes. Cj(x) is 
then the confidence of the classifier in predicting class j for instance x, which is an 
estimate of the posterior probability P( j|x).  The softmax function essentially takes 
the exponential of the output and normalizes it to [0 1] range by summing over  
the exponentials of all outputs. This model is generally believed to provide good es-
timates if the classifier is well trained using sufficiently dense training data. 

In an effort to generate a measure of confidence for an ensemble of classifiers  
in general, and for Learn++ in particular, we expand the softmax concept by using  
the individual classifier weights in place of a single expert’s output.  The ensemble 
confidence, estimating the posterior probability, can therefore be calculated as: 

( )
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( | ) ( )
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where 
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1

log 1 ( )
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0

N
t t j

j
t

h
F

otherwise

β ω

=

=
=

x
x  (4) 

The confidence, Cj(x), associated with class j for instance x is therefore the expo-
nential of the sum of classifier weights that selected class j, divided by the sum of 
the aforementioned exponentials corresponding to each class.  The significance of this 
confidence estimation scheme is in its consideration of the diversity in the classifier 
decisions: in calculating the confidence of class j, the confidence will increase if the 
classifiers that did not choose class j have varying decisions as opposed to having a 
common decision, that is, if the evidence against class j is not strong.  On the other 
hand, the confidence will decrease if the classifiers that did not choose class j have a 
common decision, that is, there is strong evidence against class j. 

4   Simulation Results 

In order to find out if and how well the Learn++ ensemble confidence approximates 
the Bayesian posterior probability, the modified softmax approach was analyzed on 
three increasingly difficult problems. In order to calculate the theoretical Bayesian 
posterior probabilities, and hence compare the Learn++ confidences to those of Bayes-
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ian probabilities, experimental data were generated from Gaussian distribution. For 
training, 100 random instances were selected from each class distribution, using 
which an ensemble of 30 MLP classifiers were generated with Learn++. The data and 
classifier generation process was then repeated and averaged 20 times with randomly 
selected data to ensure generality. For each simulation, we also benchmark the results 
by calculating a mean square error between Learn++ and Bayes confidences over the 
entire grid of the feature space, with each added classifier to the ensemble.   

4.1   Experiment 1 

A two feature, three class problem, where each class has a known Gaussian distribu-
tion is seen in Fig. 2.  In this experiment class 1, 2, and 3 have a variance of 0.5 and 
are centered at [-1, 0], [1, 1], and [1, -1], respectively.  Since the distribution is known 
(and is Gaussian), the actual posterior probability can be calculated from Equation 1, 
given the known likelihood P(x| j) that can be calculated as    

( )

( ) ( )11
2

1/ 2/ 2

1
( | )

2

T
j j j

j d
j

P eω
π

−− − −
=

x x
x  (5) 

where d is the dimensionality, and  j and j are the mean and the covariance matrix 
of the distribution from which jth class data are generated. Each class was equally 
likely, hence P( j)=1/3. For each instance, over the entire grid of the feature space 
shown in Fig.2, we calculated the posterior probability of the class chosen by the 
Bayes classifier, and plotted them as a confidence surface, as shown in Fig.3a. Calcu-
lating the confidences of Learn++ decisions on the same feature space provided the 
plot in Fig 3b, indicating that the ensemble confidence surface closely approximates 
that of the Bayes classifier.  
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Fig. 2. Data distributions used in Experiment 1 
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Fig. 3. (a) Bayesian and (b) Learn++ confidence surface for Experiment 1 

It is interesting to note that the confidences in both cases plummet around the deci-
sion boundaries and approach 1 away from the decision boundary, an outcome that 
makes intuitive sense. To quantitatively determine how closely the Learn++ confi-
dence approximates that of Bayes classifier, and how this approximation changes with 
each additional classifier, the mean squared error (MSE) was calculated between the 
ideal Bayesian confidence surface and the Learn++ confidence – over the entire grid of 
the feature space - for each additional classifier added to the ensemble. As seen in 
Fig.4, MSE between the two decreases as new classifiers are added to the ensemble, 
an expected, but nevertheless immensely satisfying outcome. Furthermore, the  
decrease in the error is exponential and rather monotonic, and does not appear to  
indicate any over-fitting, at least for as many as 30 classifiers added to the ensemble.  

The ensemble confidence was then compared to that of a single MLP classifier, 
where the confidence was calculated using the MLP’s raw output values.  The mean 
squared error was calculated between the resulting confidence and the Bayesian con-
fidence and has been plotted as a dotted line in Fig. 4 in comparison to the Learn++ 
confidence.  The single MLP differs from classifiers generated using the Learn++ algo-
rithm on two accounts.  First, the single MLP is trained using all of the training data 
where each classifier in the Learn++ ensemble is trained on 2/3 of the training data.  
Also, Learn++ confidence is based on the discrete decision of each classifier.  If there 
were only one classifier in the ensemble, “all” classifiers would “agree” resulting in a 
confidence of 1. Therefore, confidence of a single MLP can only be calculated based 
on the (softmax normalized) actual output values unlike Learn++ which uses a 
weighted vote of the discrete output labels. 

4.2   Experiment 2 

To further characterize the behavior of this confidence estimation scheme, Experiment 1 
was repeated by increasing the variances of the class distributions from 0.5 to 0.75, re-
sulting in a more overlapping distribution (Fig. 5) and a tougher classification problem. 

Learn++ was trained with data generated from this distribution, its confidence cal-
culated over the entire grid of the feature space and plotted in comparison to that of 
Bayes classifier in Fig. 6. We note that low confidence valleys around the decision 
boundaries are wider in this case, an expected outcome of the increased variance. 
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Fig. 4. Mean square error as a function of number of classifiers - Experiment 1 
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Fig. 5. Data distributions used in Experiment 2 
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Fig. 6. (a) Bayesian and (b) Learn++ confidence surface for Experiment 2 
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Fig. 7. Mean square error as a function of number of classifiers - Experiment 2 

Fig.7 shows that the MSE between the Bayes and Learn++ confidences is once 
again decreasing as new classifiers are added to the ensemble. Fig. 7 also compares  
Learn++ performance to a single MLP, shown as the dotted line, as described above. 

4.3   Experiment 3 

Finally, an additional class was added to the distribution from Experiment 1 with a 
variance of 0.25 and mean at [0 0] (Fig. 8), making it an even more challenging clas-
sification problem due to additional overlap between classes.  

Similar to the previous two experiments, an ensemble of 30 classifiers was gener-
ated by Learn++, and trained with data drawn from the above distribution. The confi-
dence of the ensemble over the entire feature space was calculated and plotted in 
comparison with the posterior probability based confidence of the Bayes classifier 
over the same feature space. Fig. 9 shows these confidence plots, where the Learn++ 
based ensemble confidence (Fig. 9b) closely approximates that of Bayes (Fig. 9a).  
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Fig. 8. Data distributions used in Experiment 3 
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Fig. 9. (a) Bayesian and (b) Learn++ confidence surface for Experiment 3 

Fig. 9 indicates that Learn++ assigns a larger peak confidence to the middle class 
than the Bayes classifier.  Since the Learn++ confidence is based on the discrete deci-
sion of each classifier, when a test instance is presented from this portion of the space, 
most classifiers agree on the middle class resulting in a high confidence. However, the 
Bayesian confidence is based on the distribution of the particular class and the distri-
bution overlap of the surrounding classes, thus lowering the confidence.   

Finally, the MSE between the Learn++ confidence and the Bayesian confidence, 
plotted in Fig. 10, as a function of ensemble population, shows the now-familiar char-
acteristic of decreasing error with each new classifier added to the ensemble.  For 
comparison, a single MLP was also trained on the same data, and its mean squared er-
ror with respect to the Bayesian confidence is shown by a dotted line. 
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Fig. 10. Mean square error as a function of number of classifiers - Experiment 3 

5   Conclusions and Discussions 

In this contribution we have shown that the confidence of an ensemble based classifi-
cation algorithm in its own decision can easily be calculated as an exponentially nor-
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malized ratio of the weights. Furthermore, we have shown - on three experiments of 
increasingly difficult Gaussian distribution - that the confidence calculated in this way 
approximates the posterior probability of the class chosen by the optimal Bayes clas-
sifier. In each case, we have observed that the confidences calculated by Learn++ ap-
proximated the Bayes posterior probabilities rather well. However, in order to quanti-
tatively assess exactly how close the approximation was, we have also computed the 
mean square error between the two over the entire grid of the feature space on which 
the two classifiers were evaluated. We have plotted this error as a function of the 
number of classifiers in the ensemble, and noticed that the error decreased exponen-
tially and monotonically as the number of classifiers increased; an intuitive, yet quite 
satisfying outcome. No over-fitting effects were observed after as many as 30 classifi-
ers, and the final confidences estimated by Learn++ was typically within 2% of the 
posterior probabilities calculated for the Bayes classifier. While these results were ob-
tained by using Learn++ as the ensemble algorithm, they should generalize well to 
other ensemble and/or boosting based algorithms. 
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Abstract. Spectra intrinsically possess domain knowledge, making possible  
a domain-based feature selection model. The random subspace method, in  
combination with domain-knowledge-based feature sets, leads to improved 
classification accuracies in real-life biomedical problems. Using such feature 
sets allows for an efficient reduction of dimensionality, while preserving  
interpretability of classification outcomes, important for the field expert. We 
demonstrate the utility of domain knowledge-based features for the random 
subspace method for the classification of three real-life high-dimensional  
biomedical magnetic resonance (MR) spectra. 

Keywords: Random Subspace Method, biomedical spectra, feature selection, 
feature extraction, domain knowledge, PCA 

1   Introduction 

For complex classification problems, the use of multiple classifier systems (MCSs) 
usually leads to improved classification performance. An efficient method for build-
ing an MCS is the random subspace method (RSM) [1]. Even better classification ac-
curacies can be achieved by introducing domain knowledge into the RSM, e.g., as 
discussed in a practical study of handwritten word recognition [2]. Recently, in a 
standard application of RSM to gene microarray data, a combination of RSM with 
feature selection was proposed as an area for further investigation [15].  

Motivated by the ideas in [1] and [2], we investigate MCSs for classifying Mag-
netic Resonance (MR) spectra, while introducing domain knowledge into the RSM. 
The study on selection/extraction of informative spectral regions [3] also promotes the 
inclusion of domain knowledge into the spectral feature selection / classification rule. 
Domain knowledge distinguishes spectra from other types of data. A spectrum is a 
collection of peaks and valleys, whose positions and intensities carry discriminatory 
information because the physical / chemical basis of class separation is reflected in 
the peak / valley distribution and peak width. Correlation between adjacent spectral 
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features localizes the discriminatory information into spectral regions. We discover 
these spectral subregions through a Genetic-Algorithm (GA) -guided feature selection 
procedure [4]. The features are averages of spectral subregions. The objective of GA 
is to identify the optimal locations and sizes of these subregions that maximize the 
empirical classification accuracy provided by some classifier, such as Fisher’s Linear 
Discriminant function. We shall call the set of discovered discriminatory patterns, 
comprised of the averaged spectral regions, the domain feature (DF) set.  

The domain features obtained by GA generally exhibit instability because to the 
inherent randomness of initialization of the procedure: different GA runs produce dif-
ferent sets of domain features. These manifest as different discriminatory locations in 
the spectra. These unstable GA solutions are used to generate the input for the RSM. 
Preprocessing spectra by GA and assuming that the classification data model (LDA) 
applies, we expect significant reduction of dimensionality, accompanied by interpret-
able results, and without sacrificing classification accuracy. On three real-world data-
sets, we compare the spectral domain feature space in the RSM with 1) the feature 
space obtained from principal component analysis (PCA) and 2) the original, full-
dimensional feature space. 

The features obtained by PCA and by the genetic algorithm can be interpreted, us-
ing projections onto a lower dimensional linear subspace. For PCA, the subspace is 
spanned by the eigenvectors of the data covariance matrix. These eigenvectors give 
the directions of maximum variance and are obtained in an unsupervised way, i.e., in-
dependently of the class labeling. In the case of GA, for which the extracted features 
are averages of adjacent spectral intensities, the basis functions are boxcar functions. 
The width of the box corresponds to the segment of the spectrum to be averaged. 
Using GA for feature extraction is a realization of a best-basis algorithm for classifi-
cation, utilizing domain knowledge. A similar interpretation of feature extraction was 
used in the related field of multi-spectral imaging [5]. Figure 1 illustrates the domain 
feature sets corresponding to the boxcar basis functions identified by GA. 

Only a few publications discuss the applications of multiple classifier systems to 
the classification of MR spectra [6], [7], [8]. The current study is the first attempt to 
apply the RSM that incorporates spectral domain features for the classification of MR 
spectra. Section 2 introduces the data used in the study, section 3 provides details 
about the components of the MCS, section 4 contains the numerical results, and sec-
tion 5  summarizes the outcomes of the investigation.  

2   Data 

Three real-world, two-class datasets were used. The datasets represent three levels of 
difficulty typically encountered in real-life biomedical data.  D is the dimensionality 
of the data, N1, N2 are the total number of samples in class 1 and class 2, respectively. 
Tr1+Tr2 are the number of samples of class 1 and class 2 in the training set, and 
Te1+Te2 in the test set, respectively.  
Dataset 1 consists of magnetic resonance (MR) spectra of pathogenic fungi (Candida 
albicans vs. Candida tropicalis). Dataset 1 was used in  [9]. The characteristics of the 
dataset are: D=1500, N1=104, N2=75. Tr1+Tr2=50+50, and Te1+Te2=54+25.  
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Dataset 2 comprises MR spectra of biofluids obtained from normal subjects and can-
cer patients. Dataset 2 was used in [7] and [8]. The characteristics of the dataset are: 
D=300, N1=61, N2=79. Tr1+Tr2=31+40, and Te1+Te2=30+39.  
Dataset 3 consists of MR spectra of biofluids obtained from patients with successful 
renal transplant vs. patients whose transplants were rejected. Dataset 3 was used in 
[10]. The characteristics of the dataset are: D=3380, N1=91, N2=65. 
Tr1+Tr2=45+33, and Te1+Te2=46+32. Dataset 3 represents a technically very diffi-
cult real-life problem. 
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Fig. 1. Dataset 2. Representation of the correspondence of domain feature set with spectral lo-
cations. Top panel: The centroids of the spectral classes of Dataset 2 are represented by solid 
and dashed lines, respectively. Middle panel: The domain feature set obtained in one GA run 
is represented by the basis boxcar functions. Bottom panel: Feature sets are shown, obtained in 
10 GA runs. The final feature set is a union of all single feature subsets found. Individual fea-
tures are averages of the spectral attributes over the length of boxcar functions. The dashed line 
represents the combination of the four feature set basis functions of the middle panel 

3   Methods 

Different strategies exist for the design of a multiple classifier system for a particular 
problem. We investigate the Random Subspace method because of its simplicity and 
apparent effectiveness [1], [11].  
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3.1   Settings for the Random Subspace Method 

The essence of the random subspace method is that feature subsets are selected ran-
domly from the entire range of features. Then the base classifiers are trained on these 
randomly selected subsets. The procedure takes advantage of the randomness, thus in-
ducing diversity in the ensemble of experts. The parameters of RSM are: the number of 
features in the subset, the number and type of base classifiers in the ensemble and the 
decision fusion rule. According to [1], increasing the number of experts is not very criti-
cal for the classification accuracies. However, the number of features is an important 
problem-dependent parameter. In our experiments we varied the number of features 
from 2 to 10, keeping the number of classifiers in the ensemble fixed at 31. Majority 
voting remains the most popular and effective among the fusion rules in the literature, 
particularly in a small sample size setting [11]. We used the majority voting fusion rule 
in our experiments. To avoid overoptimistic assessment of the classification methods 
under investigation due to selection bias, we used external crossvalidation [16]. 

3.2   Feature Spaces: PCA Features (FPCA) and Domain Feature (DF) Set  

We considered the following feature spaces for the RSM: 1) the original features 
(full-dimensional data), 2) principal-components-based features, 3) the domain fea-
ture set. 

PCA features are projections of the original feature vectors into the principal com-
ponent space, spanned by the eigenvectors of the data covariance matrix. Feature ex-
traction by PCA is the classical and established preprocessing method for data analy-
sis  [12]. We use as feature space (FPCA) only those projections corresponding to 
principal eigenvalues > 0.01. Total number of FPCA features used: Dataset 1 – 41, 
Dataset 2 – 55, Dataset 3 – 76.  

The domain feature set is obtained by preprocessing the spectra by a genetic algo-
rithm that identifies sets of discriminatory spectral regions. For each run of GA we 
request R discriminatory regions. We save the subset that provides the highest classi-
fication accuracy on the training set. The results of 10 runs are consolidated into a 
feature set containing ≤ 10R averaged spectral regions. This is our domain feature set. 
For the GA runs we used the following parameters: mutation rate 0.001, crossover 
rate 0.66, number of GA iterations 20. 

3.3   Base Classifiers: 1-Nearest-Neighbor (1-NN) and L2-Norm Linear SVM 
Classifier (L2SVM) 

The base classifiers (experts in the ensemble) were 1-nearest-neighbor classifiers and 
the L2-norm linear SVM classifier. Nearest neighbor classifiers are amongst the sim-
plest and yet quite powerful methods for classification problems for which the classes 
are not readily separable [12]. Support Vector Machines are currently considered the 
most successful state-of-the-art classifiers [13]. They use linear functions in the feature 
space. They are trained with a learning algorithm derived from a well-established op-
timization theory. They deal with the overfitting problem by using regularization dur-
ing the training process. Only a small number of support vectors are involved in the 
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classification. We used the SVM Matlab toolbox [14]. The diagram relating the basic 
blocks of the Multiple Classifier System is presented in Figure 2. 

 

Random Subspace  method: training K=31 base classifiers with R features 
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Fig. 2. Flowchart of the basic blocks of the Multiple Classifier System via the RSM. Spectral 
data are input to create three feature spaces: 1) the original features (full-dimensional data) 
FULL, 2) principal-components-based features FPCA, 3) the spectral domain feature set FD. 
These three feature spaces are used in the Random Subspace method for training the ensemble 
of classifiers. The base classifiers are 1-NN and L2-norm linear SVM. Each of the K = 31 clas-
sifiers are trained by randomly selecting R features from the appropriate feature space. Outputs 
from the ensemble are combined using majority voting 

4   Results 

In this section we discuss the classification outcomes of the MCS. External 
crossvalidation was performed by 30 random partitioning of the samples into training 
and test sets. The baseline benchmark classification accuracy of the datasets is that of 
the L2-norm linear SVM classifier on the original full dimensional data. Using 
external crossvalidation, the average benchmark test classification accuracies and 
their standard deviations are: Dataset 1: 94.94% ±  2.21%; Dataset 2: 71.40% ± 
4.25%; Dataset 3: 49.19% ± 5.70%. The average classification accuracies for the 
three test sets, investigated via MCS using the RSM, are collected in Tables 1-3. For 
each R, the best results are in bold; bold italic is best overall.  

Dataset 1 corresponds to two well-separable spectral classes. Increased classifica-
tion accuracies were obtained by using the RSM with L2SVM base classifiers on the 
FPCA and DF sets. When the base classifier is 1-NN, increased accuracies were ob-
tained with the FULL and DF sets. The classification accuracies achieved with MCS 
for Dataset 1 are comparable to the benchmark accuracy of L2SVM without feature se-
lection. For Dataset 1, even the PCA features performed well.  
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Table 1. Average classification accuracies and standard deviations for the test sets of Dataset 1  

Ensemble: Average classification accuracies and standard deviations (%)  
Number of features R Base classifier 

Feature Space 2 3 4 5 6 7 8 9 10 

1-NN 
FULL 

88.31 
2.80 

89.33 
2.25 

90.11 
2.58 

90.66 
2.10 

90.54 
2.18 

91.14 
2.53 

91.38 
2.46 

91.38 
2.42 

91.38 
2.22 

1-NN 
FPCA 

87.64 
2.19 

88.97 
2.86 

89.63 
2.461 

89.75 
2.46 

90.17 
2.50 

90.60 
2.73 

90.72 
2.60 

90.72 
2.72 

90.72 
2.51 

1-NN 
FD 

89.87 
3.69 

92.59 
2.95 

92.28 
3.12 

92.04 
3.23 

91.56 
3.13 

91.62 
3.01 

91.86 
2.61 

91.26 
2.68 

91.98 
2.45 

L2SVM 
FULL 

86.41 
2.42 

86.92 
2.75 

87.43 
2.55 

88.27 
2.80 

89.28 
2.46 

89.62 
2.89 

90.68 
2.67 

91.35 
2.88 

91.90 
2.59 

L2SVM 
FPCA 

87.05 
 2.48 

89.71 
 2.44 

90.51 
 2.27 

91.27 
 2.36 

92.11 
 2.25 

92.53 
 2.16 

92.78 
 2.18 

93.33 
 2.35 

93.59 
 2.23 

L2SVM 
FD 

89.83 
 3.91 

90.46 
 3.32 

90.63 
 2.91 

90.80 
 3.12 

91.31 
 3.01 

91.69 
 2.81 

92.53 
 3.11 

92.74 
 2.86 

93.80 
 2.79 

For Dataset 2, using the RSM with 1-NN and L2SVM base classifiers on the FULL 
and DF sets, led to an increase of 1% to 3% in classification accuracy with respect to 
the benchmark. The L2SVM base classifier performed better. FPCA features did not 
lead to improvement. The best classification accuracies achieved on Dataset 2 in other 
studies (without external crossvalidation) were:  81.2% [7] and 85.7% [8].  

Table 2. Average classification accuracies and standard deviations for the test sets of Dataset 2 

Ensemble: Average classification accuracies and standard deviations (%) 
Number of features R Base classifier 

Feature Space 2 3 4 5 6 7 8 9 10 

1-NN 
FULL 

64.82 
5.73 

69.72 
5.54 

70.02 
4.92 

70.66 
4.11 

71.86 
3.83 

72.81 
4.48 

72.01 
4.24 

70.56 
3.74 

72.71 
3.51 

1-NN 
FPCA 

63.37 
6.17 

66.92 
5.94 

67.87 
5.17 

67.17 
3.86 

68.12 
4.57 

67.92 
5.19 

67.87 
5.35 

68.62 
5.33 

67.87 
5.14 

1-NN 
FD 

67.42 
4.79 

68.22 
5.28 

68.82 
5.73 

69.17 
4.93 

69.72 
4.75 

69.67 
4.58 

70.21 
4.44 

71.26 
5.08 

72.21 
4.05 

L2SVM 
FULL 

71.45 
4.38 

74.01 
3.75 

74.25 
4.61 

74.20 
3.68 

74.20 
3.70 

74.11 
4.25 

73.86 
3.56 

74.40 
4.21 

74.40 
3.87 

L2SVM 
FPCA 

63.91 
6.62 

65.90 
4.91 

68.41 
4.91 

69.61 
4.21 

69.08 
3.74 

70.00 
3.49 

70.39 
3.89 

70.34 
3.40 

70.72 
3.56 

L2SVM 
FD 

70.43 
5.79 

71.88 
5.30 

72.27 
4.86 

71.21 
4.66 

73.48 
4.91 

72.80 
3.86 

73.19 
4.58 

73.43 
4.49 

74.35 
4.08 
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Dataset 3 represents a technically very difficult real-life problem. Using RSM with 1-
NN and L2SVM base classifiers on the FULL and DF sets led to an increase of 2% to 
13% classification accuracy with respect to the benchmark. FPCA features failed 
again to produce an improvement. When using the domain feature set, we consistently 
observed an increase in classification accuracy. RSM with FD features was a clear 
winner in this classification problem, L2SVM performing better for R ≤ 6, 1-NN for R 
> 6. The best overall result was with two features, using L2SVM (FD) 

Table 3. Average classification accuracies and standard deviations for the test sets of  Dataset 3 

Ensemble: Average classification accuracies and standard deviations (%) 
Number of features R Base Classifier 

 Feature Space 2 3 4 5 6 7 8 9 10 

1-NN 
FULL 

51.32 
5.77 

51.67 
5.51 

53.08 
4.98 

50.94 
5.95 

51.84 
4.41 

53.42 
5.53 

50.94 
5.58 

52.74 
6.35 

51.84 
5.74 

1-NN 
FPCA 

47.74 
6.77 

47.39 
6.52 

48.16 
7.39 

49.40 
5.78 

48.25 
5.47 

49.49 
6.37 

47.99 
7.67 

48.38 
5.35 

47.86 
5.58 

1-NN 
FD 

56.71 
5.45 

54.96 
5.77 

57.09 
5.42 

54.91 
4.97 

54.91 
5.83 

55.77 
5.79 

56.07 
5.54 

56.07 
5.27 

55.21 
5.46 

L2SVM 
FULL 

46.07 
9.22 

44.49 
9.28 

46.97 
7.94 

45.68 
8.37 

48.46 
8.01 

49.36 
6.02 

47.39 
6.45 

48.72 
7.29 

50.43 
6.02 

L2SVM 
FPCA 

41.79 
8.47 

41.11 
8.72 

40.85 
7.78 

41.79 
8.62 

41.20 
8.16 

41.88 
7.42 

41.62 
7.87 

42.22 
7.24 

42.27 
7.91 

L2SVM 
FD 

63.21 
8.24 

61.54 
7.77 

57.48 
8.84 

60.60 
6.42 

56.45 
8.89 

54.74 
7.87 

56.97 
9.11 

54.19 
7.82 

52.78 
7.18 

5   Conclusions 

The aim of our study was to investigate the Random Subspace Method for classifying 
MR spectra, taking advantage of domain knowledge for feature selection, and apply-
ing MCS. We demonstrated on three real-world biomedical datasets that using 
domain features in the RSM leads to improved or comparable classification accura-
cies with respect to the benchmark. For difficult problems, features based on PCA are 
not efficient representations for spectral data, in agreement with [3]. We conclude that 
using domain feature sets in the RSM for MR spectra is beneficial because 1) the 
classification accuracies on domain features are as good or better than those obtained 
with the original features, 2) interpretability is preserved, very important for e.g., a 
clinician who is using spectral classification for prognosis/diagnosis, but would want 
to understand the biochemical causes of the disease. Neither principal component fea-
tures nor the full-dimensional original data can provide the interpretable classification 
outputs that the domain features do.  
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We’ve tested the influence of using more classifiers in the ensemble. The results 
(not shown) suggest that there appears to be a positive correlation between the diffi-
culty of classifying a dataset and the number of classifiers needed for improved MCS 
classification. Thus, for the easy Dataset 1 the best results are found with ≤ 35 classi-
fiers, whereas the more difficult Dataset 2 typically requires a larger number of classi-
fiers in the ensemble. This is true for the most difficult Dataset 3 as well (not shown). 
Similarly, increasing the number of features beyond the ten reported for Dataset 1, for 
five of the six feature space choices studied, the average classification accuracy does 
increase (not shown), and for both L2SVM (Full) and L2SVM (FD) even surpass the 
benchmark. In general, both the optimal number of features and the optimal number 
of classifiers in an ensemble are data-dependent, with a tendency towards requiring 
more classifiers for more difficult classification problems. 

In this study, the L2SVM base classifiers generally outperformed the 1-NN base 
classifiers in the ensembles. 
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Appendix: Formal Model for Domain Features and Search 

Let N1 and N2 be the number of samples of class 1 and 2, p: the original dimensional-
ity of spectrum, i: the index of the ith spectrum, yi: the class label of the ith sample, 
yi={+1,-1}, R: the number of components in the domain feature set, xiR: the domain 
feature set, j: the class number. Let the vector xij denote the ith spectrum of the class j : 
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A component of the domain feature set is computed as the average of an interval of 
spectral values: 
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The domain feature set for sample i is: 

211 ,...,1,,],,...,[ NNipRprxxx iriiR +=<<= . (3) 

Our goal is to find xR. We assume that adjacent attributes interact and that the class 
means are different. We model the domain feature set as a multivariate normal distri-
bution. The two classes have a common covariance matrix. This model is known as 
the Gaussian Common Covariance Matrix model (GCCM). The class conditional dis-
tributions are: 

( ) ( ) ),(~2/),,(~1/ 11 Σ=Σ= mNclassxpmNclassxp RR . (4) 

Fix the current domain feature set xR at a particular iteration of the search procedure; 
then the a posteriori probability that sample i belongs to class j is: 
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For a particular domain feature set, the sample means jm̂ and pooled covariance ma-

trix Σ̂ are estimated from the training data. These estimates are used to evaluate the 
class conditional probabilities of the domain features: 

( ) ( ) ( ) ( )( )T
jiRjiRRiR mxmxjclassxp ˆˆˆexpˆdet2)/( 12

11

−Σ−Σ== −−−π . (6) 

Eq. (6) gives the a priori probability estimates for all samples and classes. These are 
used in estimating then a posteriori probabilities in Eq. (5). The objective function to 
be minimized during the search is the sum of squared differences between the a pos-
teriori probability and the desired output: 
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The search procedure finds the optimal xR among K candidates, based of the value of 
the objective function in Eq. (7): 

( ) ],...,1[,minarg* KkxJx k
R

x
R

R

== . (8) 

The number of candidates K and the stopping criterion T are parameters of the search 
procedure. The intervals [r1, r2] of (2) are allowed to vary. 
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Abstract. In this paper, a novel hybrid kernel machine ensemble is
proposed for abnormal ECG beat detection to facilitate long-term mon-
itoring of heart patients. A binary SV M is trained using ECG beats
from different patients to adapt to the reference values based on the
general patient population. A one-class SV M is trained using only nor-
mal ECG beats from a specific patient to adapt to the specific reference
value of the patient. Trained using different data sets, these two SV Ms
usually perform differently in classifying ECG beats of that specific pa-
tient. Therefore, integration of the two types of SV Ms is expected to
perform better than using either of them separately and that improv-
ing the generalization. Experimental results using MIT/BIH arrhythmia
ECG database show good performance of our proposed ensemble and
support its feasibility in practical clinical application.

1 Introduction

Electrocardiographic (ECG) signal is a recording of the cardiac activities, which
is usually used by cardiologists to obtain information about the performance of
heart function. Some typical ECG beats are illustrated in Figure 1. The analysis
of heart beat cycles in ECG signal is very important for long-term monitoring
of patients’ heart conditions at patients’ homes through a telemedicine network.
However, it is very costly for the cardiologists to analyze the ECG recording
beat by beat because the ECG recording may last for hours. Therefore, it is
justified to develop a computer-assisted technique to examine and annotate the
ECG recording, so to facilitate review by doctors. This computer annotation will
assist doctors to select only the abnormal beats for further analysis.

Many algorithms have been applied to ECG beat cycle analysis, such as
Kohonen self-organizing map [1, 2], learning vector quantization [2], multilayer
perceptron [4], neural-fuzzy system [5] and Support Vector Machines (SV Ms) [6,
7]. One of the major challenges faced by these ECG beat recognition algorithms
is the large variation in the morphologies of ECG signals from patient to patient.
The ranges of “normal beat” are different among the patients, which leads to the

N.C. Oza et al. (Eds.): MCS 2005, LNCS 3541, pp. 346–355, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Hybrid Kernel Machine Ensemble-Based ECG Beat Detection 347

A: Normal beat B: Atrial premature beat C: PVC beat D: Nodal premature beat
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Fig. 1. Examples of ECG beats. A is a normal beat. The others are abnormal

so-called poor generalization problem, i.e., an ECG detector finely tuned to the
training data from a large group of people may perform poorly when classifying
the ECG beats of an individual patient. Hu et.al. attempted to solve this problem
using a mixture of expert approach [2]. A mixture of expert structure was formed
by combining the knowledge of a global expert trained using ECG data from a
large database and a local expert trained using 3 to 5 minutes of ECG signals
from a specific patient. The mixture of expert system was then used to classify
the ECG beats from the specific patient, and the classification performance
was improved over the global expert. However, the major drawback of such an
approach is that a local expert has to be constructed for each patient, and the
ECG recording of each patient has to be annotated by a doctor in order to train
the local expert, even with only 5 minutes of a patient’s ECG recording. Such
annotation process is very costly and discourages the practical application of
this approach [2, 3].

In this paper, a hybrid kernel machine ensemble approach is proposed to ad-
dress such generalization problem. One-class Support Vector Classifier (νSV C)
[8] is a one-class classifier whose goal is to find a decision region to include pat-
terns from one class - called targets, and exclude the patterns from the other
classes - called outliers. It is a non-discriminative recognition-based model. A
particular advantage of νSV C is that it can be trained using data from one
class only. In the context of long-term monitoring of some heart patients, the
normal ECG beats usually dominate the ECG recordings, that is, the num-
ber of abnormal ECG beats is far less than that of the normal ones such as
for patients suspected to suffer or suffering from asymptomatic heart failure,
congestive heart failure, cardiac dysfunction etc. Furthermore, there are many
kinds of abnormal ECG beats corresponding to different cardiac diseases, such as
atrial premature beats, ventricular escape beats, fusion of ventricular and normal
beats, supraventricular premature beats and premature ventricular contraction
(PVC) beats, etc. Some of the typical abnormal beats and a normal ECG beat
are illustrated in Figure 1. These abnormal ECG beats appear different in mor-
phology. On the other hand, the normal ECG beats usually appear similar to
each other and show less variation, which implies that the concept “normal”
is more compact compared to that of the concept “abnormal” and thus easier
to be learned using few samples. Since normal ECG beats can be easily ob-
tained from patients, a νSV C can then be trained using only the normal ECG
beats from each specific patient. Incorporated with the local information of the
patient, such a trained νSV C can be used as a specific reference adapted to
that patient. On the other hand, binary Support Vector Machines (2SV C) is
known to be a powerful discriminative model [9]. It can be trained using a large
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database which consists of the ECG beats from a large group of people. Such
a 2SV C incorporate the global information of the group of people, and thus it
can be regarded as the reference values based on the general patient population.
Due to different information learned by these two SV Ms, they usually perform
differently in classifying the ECG beats in the long-term ECG recording of the
specific patient. Furthermore, νSV C is a non-discriminative recognition-based
model and 2SV C is a discriminative model. Due to the complementary nature of
such two types of SV Ms, integration of the two types of kernel machines using
an ensemble is expected to perform better than using either of them separately.
Here Decision Template (DT ) [10] is investigated as the fusion rule to integrate
these two hybrid SV Ms. Experimental results using MIT/BIH arrhythmia ECG
database [11] show that our proposed patient-adaptable hybrid kernel machine
ensemble outperforms both the local νSV C and the global 2SV C. Compared to
[2], such a hybrid kernel machine ensemble approach can relieve the doctors from
annotating the ECG beats from each patient beat by beat and shows better or
at least comparable performance to [2] and [3] in detecting the abnormal ECG
beats of the specific patient without requiring annotated ECG from a specific
patient, thus support its feasibility in practical clinical application.

2 Proposed Methodology

Figure 2 illustrates the flowchart of the proposed framework for ECG beat de-
tection. The details are as follows.

2.1 Global Detector – Binary Support Vector Classifier

SV M is increasingly used in many medical applications and has been shown to
achieve better performance than traditional classifiers [9]. SV M has good gen-
eralization ability by finding an optimal separating hyperplane which minimizes
the classification errors made on the training set while maximize the “margin”
between different classes. Given a two-class (labelled by yi = ±1) training set
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Fig. 2. Flowchart of the proposed framework for abnormal ECG beat detection
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X = {xi ∈ Rd|i = 1, 2, · · · , N} with N samples which are nonlinearly separa-
ble. The data are mapped to another feature space in which the data can be
separated by an optimal separating hyperplane expressed as

f(x) =
N∑

i=1

yiβiK(xi, x) + b (1)

where b is a bias item, βis (i = 1, 2, · · · , N) are the solution of a quadratic
programming problem to find the maximum margin, k(·) is a kernel function,

such as a Gaussian Radial Basis Function (RBF) kernel k(xi, xj) = e
−‖xi−xj‖2

σ .
There are only a few training samples whose βis are non-zero, called the Support
Vectors, which are either on or near to the separating hyperplane. The decision
boundary, i.e. the separating hyperplane is along these support vectors, whose
decision values f(x) in (1) approach zero. Compared with the support vectors,
the decision values of positive samples have larger positive values and those of
negative samples have larger negative values. Therefore, the amplitude of the
decision value can be regarded as the confidence of the SV M classifier. The
larger the amplitude of f(x), the more confident is the classification.

As a powerful discriminative model, 2SV C is very suitable as a global detec-
tor trained using ECG beats from a group of people. Recently, the application of
SV M to ECG beat classification was investigated [6, 7]. These studies show that
SV M can provide better classification performance than the other classifiers. In
[7] only linear support vector machine was investigated. But the different classes
of ECG beats may not be linearly separable. In [6] a multiple classifier network
was introduced in which support vector machine was the basic classifier. But the
selection of the hyperparameters was not investigated fully, which may limit the
performance of SV Ms. Therefore, there is still some scope to further improve
the ECG beat classification using SV Ms.

2.2 Local Detector – ν-Support Vector Classifier

ν–Support Vector Classifier (νSV C) is a kind of support vector machine [8]
which can be used as an one-class classifier. Different from 2SV Cs, only data
from one-class is used in the training of a νSV C, which makes it very suitable
as a local detector to be trained using only “normal” ECG beats in the scenario
of long-term monitoring of heart patients. νSV C is a recognition-based model
rather than a discriminative model because it tries to estimate the support of
the density of the target data [8]. Given a set of target data X = {xi ∈ Rd|i =
1, 2, · · ·N}, the goal of νSV C is to find a decision function f(x) such that most of
the target data will have f(x) ≥ 0 while most of the outliers will have f(x) < 0.
The target data are mapped into a higher-dimensional space called feature space
φ(x) in which the dot product can be computed using some kernel function,
such as a RBF kernel. The mapped target data are separated from the origin
corresponding the outliers with maximum margin using a hyperplane, which can
be found by solving a quadratic programming problem [8]. The decision function
corresponding to the hyperplane is
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f(x) =
N∑

i=1

βiK(xi, x) + b (2)

Similar to 2SV Cs, the amplitude of the decision function of νSV C is propor-
tional to the confidence of the classification.

There are two hyperparameters to be tuned in νSV C and 2SV C using RBF
kernel, the width parameter of the RBF kernel and the regularization parameter
where the latter is used to control the tradeoff of the errors. The hyperparam-
eters of 2SV C can be optimized using cross validation on the training set. The
values of the hyperparameters are chosen so that the error of both target class
and outlier class on the validation set is minimized. As for νSV C, no infor-
mation about the “abnormal” class is available. Such problem can be solved
by generating artificial outliers [12]. Given a set of target samples, some out-
lier samples are generated randomly with the assumption that the outliers are
uniformly distributed in a hypercube or hypersphere. The union of targets and
generated outliers is used as a validation set. Some targets will be excluded by
the decision boundary to make a tighter boundary. Therefore, the νSV C can
be trained properly even if there are some abnormal ECG beats in the training
samples.

2.3 Learning an Ensemble to Integrate Two Hybrid SV Ms

Ensemble is often understood as mixture of experts, classifier fusion and com-
bination of multiple classifiers, etc [10]. It is a mechanism to combine a set of
classifiers so that the resulted ensemble has superior classification performance
over the individual classifiers in the ensemble. The necessary condition to the
success of the ensemble is that the outputs of individual classifiers to the same
inputs must be diverse [13]. The diversity of the two classifiers can be evaluated
using Plain Disagreement Measure (P ) [14]:

– Plain Disagreement Measure (P ): P = Ndis

Nall
, where Ndis is the number of

samples that two classifiers disagree and Nall is the number of all samples in
the validation set. P varies from 0 to 1. The larger the value of P , the higher
the diversity. This measure was recommended for ensemble feature selection
in [14].

The diversity of the classifiers can be obtained by using different training set,
feature subset, classifiers and ensemble rules. Since the νSV C and 2SV C are
trained using local information and global information respectively, the training
sets of such two kernel machines can be considered diverse. Furthermore, the
different nature of the two SV Ms can help to increase the diversity further.
Therefore, the ensemble of such two kernel machines is expected to improve the
classification compared to either of the two SV Ms.

Many fusion rules have been developed. In this study, Decision Template
(DT ) [10] was employed to integrate the two hybrid SV Ms.
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– Decision template: The decision template DTj (j = 1, 2) for class yj ∈
{−1,+1} is the average of the outputs of individual classifiers in the vali-
dation set to class yj . The ensemble DT assigns an input x with the label
given by the individual classifier whose Euclidean distance to the decision
template DTj is the smallest. The “normal” data from the specific patient
and the generated artificial outliers can be used as a validation set so that
the decision template of two SV Ms can be learned.

Oracle (ORA) is the optimal case or an upper bound which an ensemble can
reach rather than a real ensemble. It assigns a correct class label to the pattern
iff at least one individual SV M produces a correct class label [10]. Here it is
used for comparison purpose only.

3 Experiments and Results

3.1 Data Preprocessing and Feature Extraction

The ECG signals come from 44 recordings of the original MIT/BIH ECG ar-
rhythmia database [11]. The original signal consists of two leads sampled at
360Hz. The data from lead 1 were used in this study. The signal was first pro-
cessed using two averaging filters to suppress noises [15]. Then the baseline shift
of the ECG signal can be obtained using two consecutive median filters whose
widths are 200ms and 600ms respectively. The baseline was subtracted from the
original signal and the resulted signal was then baseline-corrected [3]. The R-
peak of the ECG signal can be detected using the first derivative of the ECG
signal as in [15]. A window of 180 samples in length was taken to each ECG beats
such that the window covers most of the information from a particular cardiac
cycle, as shown in Figure 1. The signal in each window was then down-sampled
uniformly to form a feature vector of 38-dimensions. It has been shown that R-R
interval is useful in recognition of some abnormal ECG beats [2]. Therefore, it
was also included in this study by appending it to the 38-dimensional feature
vector. The length of the feature vector to represent the ECG beat is then 39.
In order to deal with the variation of the amplitudes of ECG signals among the
different patients, the feature vectors were divided by the mean value of R peaks
in the training data of each patient, so that the maximum value of the each ECG
window was around 1. The normalized ECG feature vectors were then used in
the classification.

3.2 Training and Test Procedure

MIT/BIH arrhythmia ECG database consists of 48 annotated recordings from
47 subjects and each recording is about 30 minutes in length. The labels in the
annotation file made by expert cardiologists are used as the ground truth in
training and evaluating the classifiers. The ECG beats annotated as “normal”
(NOR) are taken as the target class in the current research. All of the other
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beats are regarded as outlier class or “abnormal” class, including atrial prema-
ture beats, nodal premature beats, premature ventricular contraction beats and
ventricular escape beats etc.

Four recordings (102, 104, 107, and 217) including paced beats of the MIT/BIH
arrhythmia database are excluded from the study. The ECG beats from the other
44 recordings were split into two parts. The training set of the global 2SV C
beat detector consists of 4000 normal beats and 4000 abnormal beats from 22
recordings, which is called TNG. Five-fold cross validation on TNG was used to
select hyperparameters for 2SV C. The ECG beats in each of the remaining 22
recordings were split into two subsets. The training sets of the local νSV C de-
tectors were the normal beats from the first 5 minutes in each recording. Those
ECG beats of the remaining 25 minutes in each recording were used as the
test sets.

3.3 Evaluation Measures

Three measures are used to evaluate the performance of ECG beat classifica-
tion, including sensitivity, specificity and balanced classification rate. Sensitivity
(SEN) is the fraction of abnormal ECG beats that are correctly detected among
all the abnormal ECG beats. Specificity (SPE) is the fraction of normal ECG
beats that are correctly classified among all the normal ECG beats. Balanced
Classification Rate (BCR) is the geometric mean of the SPE and SEN .
BCR =

√
SEN · SPE. Only when both SEN and SPE have large value can

BCR has a large value. Therefore, the use of BCR can have a balanced per-
formance in the evaluation of the classifiers which favors both higher SPE and
higher SEN . It is very suitable to this study since the data sets are imbal-
anced.

3.4 Experimental Results

The classification results of using global 2SV C, local νSV C and the ensembles
are illustrated in Table 1, which are averaged over 22 test sets. The improved
BCRs of the ensembles (DT s and ORAs) over the global 2SV C and local νSV Cs
in the 22 test sets are illustrated in Figure 3. The relations between the improved
BCRs of ensembles (DT s) over the global and local SV Ms and the plain dis-
agreement measure are illustrated in Figure 4.

Table 1. Results (average ± standard deviation) of abnormal ECG beat detection

Classifiers 2SV C νSV C DT ORA

BCR 0.774 ±0.280 0.881 ±0.146 0.912 ±0.132 0.971 ±0.048

SEN 0.808 ±0.287 0.819 ±0.210 0.876 ±0.195 0.964 ±0.075

SPE 0.819 ±0.252 0.972 ±0.051 0.967 ±0.055 0.980 ±0.044
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Fig. 3. The improved BCRs of the ensembles (DT s and ORAs) over the global 2SV C

(A) and local νSV Cs (B) of the 22 ECG recordings
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Fig. 4. The relation between the improved BCR of the ensembles (DT s) over the

global 2SV C (A) and local νSV Cs (B) and the plain disagreement measure

4 Discussions

It can be observed from Table 1 that the patient-adaptable kernel machine en-
sembles outperforms both the global 2SV C trained using large database TNG

after excluding the specific patients to be tested, and using the local νSV Cs
adapted to the specific patients. The improved average BCRs by the ensemble
DT is 13.8% over the global 2SV C and 3.1% over the νSV Cs. Furthermore,
variance of the ensemble is less than either the global 2SV C or the local νSV C.
This supports our claim that the hybrid kernel machine ensemble is superior
than either the global 2SV C or the local νSV C in the abnormal ECG beat
detection of the specific patients.

The local detector νSV Cs outperform the global detector 2SV C in the ab-
normal ECG beat detection of the specific patients. The average BCR of the
νSV C is 10.7% higher than that of the 2SV C. It indicates that the local infor-
mation is more important in the classification of the ECG beats from specific
patient. Incorporation of such local information can help to deal with the dif-
ference between the distribution of training data and test data, hence help to
improve the generalization.
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The improved performance of the ensembles varies among the 22 test sets. The
DT ensemble outperforms νSV Cs in all of the 22 test sets in Figure 3 (B) and it
outperforms the global 2SV C in 15 of the 22 test sets in Figure 3 (A). An excep-
tion is observed in the eighth recording. Here the BCR of DT is only 42.4% which
is far less than 70.6% of 2SV C, though it is still greater than 36.6% of νSV C.
We observe that the SPE and SEN of νSV C in this recording were 100% and
13.4% respectively, which means that it correctly detected all the abnormal ECG
beats but made a lot of false detection of the normal ECG beats. Since the per-
formance of 2SV C in this recording is also not good, it may imply that there is
a large overlap between the two class which prevents νSV C from discriminating
the two class by modelling the “normal” class only. The low BCR of DT was then
resulted from the low SEN of the local νSV C. Furthermore, there is a 6.0% gap
in terms of BCR between the DT ensemble and the oracle which means there are
still some space for further improvement of the DT ensemble.

It can be observed in Figure 4 that the plain disagreement measure is re-
lated to the improved BCRs. The larger the value of P , usually the more the
improvement. However, there are only 22 test sets and the classification problem
is different in each test set. Further testing is necessary to make the result more
statistically reliable. This observation is roughly in agreement with [14] though
it was used for ensemble feature selection purpose in [14].

Hu et.al. [2] concentrated on the classification between normal beats and ven-
tricular ectopic beats using a mixture of two classifiers. The sensitivity and speci-
ficity achieved are 82.6% and 97.1%, which means it BCR is less than 90%. Philip
et.al. [3] claimed to have achieved comparable performance to [2]. The BCR of
our hybrid kernel machine ensemble is greater than 91% although only some
“normal” ECG beats from each patient are used to train the local νSV Cs. There-
fore, our proposed method shows better or at least comparable performance
compared to [2] and [3]. Another advantage of our method is that it can relieve
the doctors from annotating the ECG beats one by one which is needed in [2].

5 Conclusion

In this paper, a new hybrid kernel machine ensemble is proposed to detect ab-
normal ECG beats for long-term monitoring of heart patients. A νSV C can be
trained using only some “normal” ECG beats from a specific patient to obtain
local information. A 2SV C can be trained using a large database which consists
of ECG beats from many patients to obtain global information. Due to the dif-
ferent nature of two types of kernel machines, the ensemble of these two SV Ms
using decision template is able to outperform either of the two kernel machines
in detecting the abnormal ECG beats from the specific patients. This approach
can relieve the doctors from annotating the training ECG data beat by beat to
train a local classifier and help improve the generalization. Experimental results
using 44 ECG recordings of MIT/BIH arrhythmia database demonstrate the
good performance of our proposed hybrid kernel machine ensemble and suggest
its feasibility in practical clinical application.
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Abstract. In this paper we study the application of user-dependent
score fusion to multilevel speaker recognition. After reviewing related
works in multimodal biometric authentication, a new score fusion tech-
nique is described. The method is based on a form of Bayesian adaptation
to derive the personalized fusion functions from prior user-independent
data. Experimental results are reported using the MIT Lincoln Labora-
tory’s multilevel speaker verification system. It is experimentally shown
that the proposed adapted fusion method outperforms both user-
independent and non-adapted user-dependent fusion approaches.

1 Introduction

The state of the art in speaker recognition has been widely dominated during
the past decade by the Gaussian Mixture Model (GMM) approach working at
the short-time spectral level [1]. Recently, new approaches based on Support
Vector Machines (SVM) [2] are achieving similar performance, working also at
the spectral level. These new techniques provide complementary information
for the verification task, which has been exploited by the use of score fusion
techniques [3].

On the other hand, higher levels of information conveyed in the speech signal
have shown promising discriminative capabilities among speakers, and are a
major goal of present speaker recognition research efforts. Some examples in
this regard are the SuperSID project [4], and the MIT Lincoln Laboratory’s
(MIT-LL) speaker recognition system [5] applied to the 2004 NIST Speaker
Recognition Evaluation (SRE) [6]. Since the inclusion of the extended data task
in the 2002 NIST SRE, major advances have been done in finding, characterizing
and modelling new high-level sources of speaker information. However, once
the similarity scores from each individual system have been computed, little
emphasis has been placed in developing new fusion approaches that take into
account the speaker specificities [7].

Related works combining different sources of information for the person veri-
fication task are found in the multimodal biometric authentication literature [8].

N.C. Oza et al. (Eds.): MCS 2005, LNCS 3541, pp. 356–365, 2005.
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sufficient and representative enough to guarantee good parameter estimation.
To cope with this lack of robustness derived from partial knowledge, general
user-independent information is considered as prior information from which the
user-dependent fusion scheme is built [17].

In the present paper, we describe an efficient adaptation technique based on
Bayesian learning [13], and study its application to multilevel speaker
verification.

3 Bayesian Adaptation for User-Dependent Fusion

Let the similarity scores x ∈ R provided by each one of the R individual systems
be combined into a multilevel score x = [x1, . . . , xR]′. Let the fusion training set
be X = (xi, yi)N

i=1, where N is the number of multilevel scores in the training
set, and yi ∈ {ω0, ω1} = {Impostor,Client}. Impostor and client score distri-
butions are modelled as the multivariate Gaussians p(x|ω0) = N(x|μ0,σ

2
0) and

p(x|ω1) = N(x|μ1,σ
2
1), respectively1. The fused score sT of a multilevel test xT

is defined as follows

sT = f(xT ) = log p(xT |ω1) − log p(xT |ω0) (1)

which is known to be a Quadratic Discriminant function consistent with Bayes
estimate for the case of equal impostor and client prior probabilities [18]. The
score distributions are estimated using the available training data.

In the user-independent case, the global training set XG includes scores from
a pool of users, and the resulting global fusion rule, fG(x), is obtained by us-
ing the standard Maximum Likelihood criterion [18] for estimating {μG,0,σ

2
G,0}

and {μG,1,σ
2
G,1}. In the user-dependent case, a different local fusion function,

fj,L(x), is obtained for each client enrolled in the system by using Maximum
Likelihood estimates, {μj,L,0,σ

2
j,L,0} and {μj,L,1,σ

2
j,L,1}, computed from a set

of development scores Xj of the specific client j.
The proposed adapted fusion function, fj,A(x), trades off the general knowl-

edge provided by XG, and the user specificities provided by Xj , through Maxi-
mum a Posteriori density estimation [19]. This is done by adapting the sufficient
statistics as follows [1]:

μj,A,i = αiμj,L,i + (1 − αi)μG,i

σ2
j,A,i = αi(σ2

j,L,i + μ2
j,L,i) + (1 − αi)(σ2

G,i + μ2
G,i) − μ2

j,A,i
(2)

For each class i = {0 = Impostor, 1 = Client}, a data-dependent adaptation
coefficient

αi =
Ni

Ni + r
(3)

1 We use diagonal covariance matrixes, so σ2 is shorthand for diag(Σ). Similarly, μ2

is shorthand for diag(μμ′).
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is used [1], where Ni is the number of local training scores in class i, and r is a
fixed relevance factor.

4 Experiments

4.1 Baseline Systems

In the present paper, the scores submitted by the MIT-LL [5] for the 2004 NIST
SRE extended data task [6] are used. These scores were computed by using
seven systems with speaker information from spectral level, pitch and duration
prosodic behavior, and phoneme and word usage. These different types of infor-
mation were modelled and classified using Gaussian Mixture Models (GMM),
Support Vector Machines (SVM) and n-gram language models. In the following,
a brief description of the main features of each individual system is presented:

MFCC GMM. The system is based on a likelihood ratio detector with target
and alternative probability distributions modeled by GMMs [1]. A Univer-
sal Background Model GMM is used as the alternative hypothesis model,
and target models are derived using Bayesian adaptation. The techniques of
feature mapping [20] and T-norm [21] are also used.

MFCC SVM. The spectral SVM system uses a novel sequence kernel [2]. The
sequence kernel compares entire utterances using a generalized linear dis-
criminant. It uses the same front-end processing as the MFCC GMM sys-
tem.

PHONE SVM. The SVM phone system uses a kernel for comparing conver-
sation sides based upon methods from information retrieval. Sequences of
phones are converted to a vector of probabilities of occurrences of terms,
and co-occurrences of terms (bag of unigram, and bag of bigrams, respec-
tively). A weighting based upon a linearization of likelihoods is then used to
compare vectors for SVM training.

PHONE NGM. A phone n-gram system was developed using the output of
the MIT-LL phone recognizer. This system used the n-gram approach pro-
posed in [22].

PROSODY SLOPE. To capture prosodic differences in the realization of in-
tonation, rhythm, and stress, the F0 and energy contours are converted
into a sequence of tokens reflecting the joint state of the contours (rising
or falling). A n-gram system is then used to model and classify distinctive
token patterns from token sequences [23].

PROSODY GMM. The aim of this system is to capture the characteristics
of the F0 and short-term energy features distribution. This system is based
on a likelihood ratio detector that uses adapted GMMs for estimating the
likelihoods [24].

WORD NGM. A word n-gram (idiolect) system was developed using the
speech-to-text output from the BBN Byblos real-time system. This system
used the idiolect word n-gram approach proposed in [22].



360 J. Fierrez-Aguilar et al.

4.2 Database and Experimental Protocol

The experiments presented below were conducted on the 8sides-1side set of the
2004 NIST SRE corpus [6]. This database comprises conversational telephone
speech in five different languages (English, Spanish, Russian, Arabic and Man-
darin) over three different channels (cellular, cordless and landline), and four
types of transducers (speaker-phone, head-mounted, ear-bud, and hand-held).
Speaker models were trained with 8 single channel conversation sides of ap-
proximately five minutes total duration. Test segments consist of one side of
the conversations. All trials were performed between two speakers of the same
gender.

In order to provide a development set (DEV) for the experiments, data from
Switchboard II phases 1−5 were used to mimic the conditions in the 8sides-1side
set of the 2004 NIST SRE corpus.

The following subsets of the 8sides-1side set were defined for the experiments:

ALL5. All speaker models with at least 5 genuine and 10 impostor attempts.
In this way, ALL5 consists of 830 genuine and 4614 impostor attempts of
118 different speaker models.

COMMON5. All speaker models with > 75% of English enrollment, and at
least 5 client and 10 impostor attempts. In this way, COMMON5 consists of
136 genuine and 378 impostor attempts of 19 different speaker models.

Three different types of experiments have been conducted:

User-Independent Fusion. Training on DEV data.
User-Dependent Fusion. For each user and each multilevel test score, 4 dif-

ferent genuine and 9 different impostor multilevel scores of the user at hand
are randomly selected (different to the tested one). Local training is per-
formed on the randomly selected multilevel scores. For each multilevel test
score, 5 runs of the random sampling are performed.

Adapted User-Dependent Fusion. For each user and each multilevel test
score, 4 different genuine and 9 different impostor multilevel scores of the
user at hand are randomly selected (different to the tested one). Global
training is performed on DEV data whereas local training is carried out on
the randomly selected multilevel scores. For each multilevel test score, 5 runs
of the random sampling are performed.

4.3 Results

Verification performance of the seven individual systems, along with various
user-independent combinations, are given in Tables 1 and 2 for the ALL5 and
COMMON5 datasets, respectively. Spectral level systems perform remarkably
better than the other systems, and their combination with the high-level system
WORD NGM leads to enhanced performance. Worth noting, not all combina-
tions provide improved performance over the best system, and the relative im-
provement between the best fused system and the best individual system is not
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Table 1. Verification performance on ALL5 dataset with user-independent fusion

based on Quadratic Discriminant. EERs in %

information system individual unilevel multilevel fusion
level label performance fusion levels best/level all/level

MFCC GMM 8.67 12 9.28 8.79
1 MFCC SVM 7.70 7.39 13 7.83 6.98

PHONE SVM 16.90 14 7.46 6.91
2 PHONE NGM 22.16 18.21 123 9.05 8.07

PROSODY SLOPE 20.86 124 8.98 8.25
3 PROSODY GMM 22.51 16.76 134 7.59 6.98

4 WORD NGM 22.70 1234 9.19 7.96

Table 2. Verification performance on COMMON5 dataset with user-independent

fusion based on Quadratic Discriminant. EERs in %

information system individual unilevel multilevel fusion
level label performance fusion levels best/level all/level

MFCC GMM 5.98 12 3.69 3.06
1 MFCC SVM 3.06 3.56 13 4.32 3.56

PHONE SVM 10.31 14 3.56 2.93
2 PHONE NGM 18.32 10.94 123 3.56 3.56

PROSODY SLOPE 22.14 124 4.32 2.93
3 PROSODY GMM 19.08 14.63 134 3.06 2.93

4 WORD NGM 20.61 1234 3.56 3.19

very high (10% and 4% on ALL5 and COMMON5 respectively). Finally, perfor-
mance on COMMON5 is remarkably better than performance on ALL5, specially
for the spectral and phonetic systems (60% and 39% relative improvements in
the best system of each level respectively).

Verification performance using non-adapted user-dependent fusion is given
in Tables 3 and 4 for the ALL5 and COMMON5 datasets, respectively. The
same behavior found in user-independent fusion is also observed here, obtaining
similar performance figures. In particular, relative improvements between the
best fused system and the best individual system are 9% and 12% for ALL5 and
COMMON5 datasets, respectively.

Verification performance using the proposed adapted user-dependent fusion
approach (r = 1) is given in Tables 5 and 6 for the ALL5 and COMMON5
datasets, respectively. In this case, all combinations are better than the best
individual system, which is outperformed significantly by the best combination
(i.e., spectral and lexical systems). In particular, relative improvement between
the best fused system and the best individual system are 31% and 61% for
ALL5 and COMMON5, respectively. Also worth noting, the unilevel combination
of the two spectral level systems gives an interesting combination pair (31%
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Table 3. Verification performance on ALL5 dataset with user-dependent fusion

based on Quadratic Discriminant. EERs in %

information system individual unilevel multilevel fusion
level label performance fusion levels best/level all/level

MFCC GMM 8.67 12 7.86 7.22
1 MFCC SVM 7.70 6.84 13 8.27 8.15

PHONE SVM 16.90 14 8.04 6.98
2 PHONE NGM 22.16 15.74 123 8.08 7.99

PROSODY SLOPE 20.86 124 8.46 7.37
3 PROSODY GMM 22.51 18.46 134 8.57 8.04

4 WORD NGM 22.70 1234 8.44 8.11

Table 4. Verification performance on COMMON5 dataset with user-dependent

fusion based on Quadratic Discriminant. EERs in %

information system individual unilevel multilevel fusion
level label performance fusion levels best/level all/level

MFCC GMM 5.98 12 4.40 2.98
1 MFCC SVM 3.06 2.95 13 5.98 4.99

PHONE SVM 10.31 14 5.42 2.70
2 PHONE NGM 18.32 11.60 123 5.60 4.43

PROSODY SLOPE 22.14 124 5.04 2.77
3 PROSODY GMM 19.08 18.99 134 5.85 3.66

4 WORD NGM 20.61 1234 5.60 3.66

Table 5. Verification performance on ALL5 dataset with adapted user-dependent

fusion based on Quadratic Discriminant (r = 1). EERs in %

information system individual unilevel multilevel fusion
level label performance fusion levels best/level all/level

MFCC GMM 8.67 12 6.25 5.66
1 MFCC SVM 7.70 5.35 13 5.85 5.40

PHONE SVM 16.90 14 6.14 5.36
2 PHONE NGM 22.16 13.61 123 5.92 5.39

PROSODY SLOPE 20.86 124 6.72 5.61
3 PROSODY GMM 22.51 15.08 134 5.95 5.32

4 WORD NGM 22.70 1234 6.16 5.37

and 34% relative improvement over the best system for ALL5 and COMMON5,
respectively). The effect of varying the relevance factor of the adapted fusion
scheme on the verification performance is shown in Fig. 2. A good working point
is found at r = 1.
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Table 6. Verification performance on COMMON5 dataset with adapted user-

dependent fusion based on Quadratic Discriminant (r = 1). EERs in %

information system individual unilevel multilevel fusion
level label performance fusion levels best/level all/level

MFCC GMM 5.98 12 2.80 2.06
1 MFCC SVM 3.06 2.03 13 2.37 2.27

PHONE SVM 10.31 14 2.49 1.20
2 PHONE NGM 18.32 8.70 123 2.77 2.11

PROSODY SLOPE 22.14 124 2.92 1.68
3 PROSODY GMM 19.08 15.65 134 1.91 1.66

4 WORD NGM 20.61 1234 2.42 1.32
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Fig. 2. Verification performance of the adapted fusion scheme on ALL5 (left) and

COMMON5 (right) data sets for varying relevance factor

Verification performance results comparing the individual systems to the
studied fusion strategies are summarized in Fig. 3 as DET plots [25].

5 Discussion and Conclusions

It can be argued against user-dependent fusion that training data scarcity is a
major drawback for its success. In this paper, it has been demonstrated that the
performance of multilevel speaker verification is improved in an standard evalua-
tion scenario by considering user-dependent information at the fusion level. This
has been achieved by using a novel user-dependent fusion technique based on
Bayesian adaptation of the fusion functions and only a few training score sam-
ples from each user. Nevertheless, although we have used an un-biased cross-
validation experimental procedure, it must be emphasized that we have used
post-evaluation results for adapting to the user specificities. The study of the
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Fig. 3. Verification performance of the individual systems and the adapted fusion

scheme on ALL5 (left) and COMMON5 (right) data sets

case of using only the available training data will be addressed in future work.
In this regard, it is our belief that for the case of large training set size (such
as the 8sides-1side or above scenarios defined by NIST), the use of resampling
techniques (e.g., resubstitution, leave-one-out, bootstrap) [26] may result in a
significant improvement. As a preliminary justification for this aim, we point
out the related work [27], where resampling techniques were applied successfully
in the related problem of training user-dependent score normalization techniques
applied to signature verification. As a result, the present work is an encourag-
ing starting and reference point for devising personalized fusion schemes with
application to multilevel speaker recognition.
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Abstract. In this paper, we present biometric person recognition experiments in 
a real-world car environment using speech, face, and driving signals. We have 
performed experiments on a subset of the in-car corpus collected at the Nagoya 
University, Japan. We have used Mel-frequency cepstral coefficients (MFCC) 
for speaker recognition. For face recognition, we have reduced the feature  
dimension of each face image through principal component analysis (PCA). As 
for modeling the driving behavior, we have employed features based on the 
pressure readings of acceleration and brake pedals and their time-derivatives. 
For each modality, we use a Gaussian mixture model (GMM) to model each 
person’s biometric data for classification. GMM is the most appropriate tool for 
audio and driving signals. For face, even though a nearest-neighbor-classifier is 
the preferred choice, we have experimented with a single mixture GMM as 
well. We use background models for each modality and also normalize each 
modality score using an appropriate sigmoid function. At the end, all modality 
scores are combined using a weighted sum rule. The weights are optimized  
using held-out data. Depending on the ultimate application, we consider three 
different recognition scenarios: verification, closed-set identification, and  
open-set identification. We show that each modality has a positive effect on  
improving the recognition performance. 

1   Introduction 

Biometric person identification is a new and exciting research area which finds appli-
cation in many different problems related to authentication, access control, keyless 
entry, and secure communications. Application of person and behavior identification 
in a vehicular environment has also attracted interest recently. This paper presents ex-
periments for recognizing people in moving vehicles. 

Due to competition in automotive industry, it is not too far when we will have 
cameras, microphones and various other sensors inside a vehicle that will gather and 
process multimedia data with the purposes of safer driving, improved comfort of 
driver and the passengers, and secure communications. Recognizing people in a car 
will be important to achieve the following benefits [1]: 
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1. Ensuring safety of the vehicle by requiring authorization before and/or during 
driving a car to make sure the current driver is an authorized driver, 

2. Personalizing the vehicle suiting the driver’s physical and behavioral charac-
teristics, thereby, creating a comfortable, safe and efficient driving environ-
ment which minimizes distractions, and hence avoidance of many accidents 
attributed to driver distraction,  

3. Providing safety to the vehicle, people, and goods in a commercial vehicle, 
via passive and active warning systems, even enabling authorities to disallow 
a driver who should not be or is not in a condition to be behind a wheel, 

4. Opening opportunities to secure mobile transactions within a car, such as mo-
bile banking, using biometric authentication. 

There are serious challenges to person identification inside a car, especially if we 
are to assume no user cooperation. Over the past two decades, many algorithms, sys-
tems, and even technologies for speaker and face identification have been developed 
with varying degree of success (acceptable through excellent). Having been designed 
under idealized and controlled environments, however, both modalities suffer due to 
non-ideal conditions in real-world environments. In face recognition, for instance, 
change of illumination and pose, occlusions, facial expression, facial accessories, fa-
cial hair tend to deteriorate performance. For speaker recognition, external noise and 
channel effects, illnesses affecting the glottis and vocal tract, emotional speech may 
decrease performance. There are many studies to improve the performance of each 
modality within itself, such as to extract more robust features and to use more effi-
cient normalization methods. Unfortunately, most of the methodologies under consid-
eration are fairly mature and major breakthroughs are not forthcoming. Alternately, 
the research focus has shifted to the usage of multiple modalities together, so that 
when one of the modalities is not reliable or fails, other modalities can be relied upon.  

In this paper, we attempt to use three different modalities, namely, speech, face and 
driving signals to recognize drivers of moving vehicles. We use MFCC features for 
speech, PCA features for face and the features extracted from the pressure readings of 
the acceleration and brake pedals and their derivatives. We combine information from 
each modality by computing a weighted sum of normalized modality scores. We de-
termine the best weights by optimizing the verification performance on held-out1 data. 
We consider three different types of person recognition:  (i) verification, (ii) closed 
set identification, and (iii) open set identification, which will be explained in the next 
section. 

We report our experimental results on a twenty people subset of the in-car corpus 
collected by the Center for Integrated Acoustic Information Research (CIAIR) [2]. 
We organize the paper in the following way. After introducing types of person recog-
nition problems in section 2, we briefly introduce speaker and face recognition algo-
rithms in sections 3 and 4. We explain how we used driving signals to recognize peo-
ple in section 5. Next, we give details about our fusion algorithm. The experimental 
results are presented in section 7 and the conclusions are provided in section 8. 
                                                           
1  The held-out data is a portion of available training data that is not used during training or 

testing, but used to adjust certain parameters of the recognition system. Sometimes held-out 
data is called validation data. 



368 H. Erdo an et al. 

 

2   Problem Formulation 

The task of recognizing people in vehicles is difficult for the following reasons: 

•   In vehicles, the subjects, especially the driver, are not expected to pose for 
the camera since their first priority is to operate the vehicle safely. Hence, 
there are large illumination and pose variations. In addition, partial occlu-
sions and disguise are common. 

•   The quality of video is usually low, and due to the acquisition conditions   
and the physical constraints in positioning the camera, the face image sizes 
are smaller (sometimes much smaller) than the assumed sizes in most exist-
ing still image based face recognition systems. 

• Speech acquisition in a car is prone to noise and channel distortions due to 
the engine and mechanical noise and reverberations in the vehicular cham-
ber. For comfort and ease of use, far-talking microphones are employed in-
stead of near-talking or head-set microphones, which decreases signal-to-
noise ratio significantly and makes speaker recognition much more difficult. 

Therefore, the use of multimodal biometrics becomes the most sensible route to 
follow for robust and reliable person identification inside a moving vehicle.  

As in all other applications, the person recognition inside a car can be formulated 
as either a verification problem or an identification task. In the verification problem, a 
person’s claimed identity is verified using her/his model in a known pool of subjects. 
On the other hand, one must be more careful in formulating an identification problem, 
which can be cast as either an open-set or a closed set identification problem. In the 
closed-set case, a reject scenario is not defined and an unknown subject is classified 
as one of the N-registered people. In the open-set case, the goal is to decide whether 
the person is among the registered people in the database or not. The system identifies 
the person if there is a match and otherwise rejects the claimed identity. Hence, the 
problem becomes an N+1-class identification problem, including a reject class. It is 
not difficult to see vehicle safety application can be addressed using an open-set iden-
tification scenario, while in-vehicle secure transactions application may be addressed 
under a verification task.  

3   Speaker Recognition Mode 

Speech signal is the most natural and non-invasive modality to identify a person in a 
vehicle. As in many other parametric speech processing applications, a set of features 
are extracted for each frame of speech over a short overlapping and advancing time 
window. It is worth noting that we preprocess speech signals to detect voice activity 
and extract features only from regions of audio where voice activity is present.  

Features used for speaker recognition differ slightly from the ones used for speech 
recognition. In this study, we have used 12 coefficients of the Mel-frequency cepstral 
coefficients (MFCC) feature vector [3], i.e., in order to avoid dependence on acquired 
voice’s energy, we have not included the energy coefficient. In this work, we did not 
use Δ  and ΔΔ  features, which approximate first and second differences at the cur-



 Multi-modal Person Recognition for Vehicular Applications 369 

 

rent frame respectively, as well, since their inclusion did not show noticeable im-
provement as reported in an earlier study [4].  

MFCC features are obtained using a filterbank of overlapping triangular filters 
placed according to the critical bands of hearing [3]. The logarithms of filter output 
energies are computed. Then a DCT transform of these log-filterbank-energies is 
taken to de-correlate and reduce the dimension of the feature set as follows: 
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where {ck} represent MFCC features and {mj} stand for log-filterbank-energies. 
These speaker features are considered as independent identically distributed random 
vectors drawn from a parametric probability density function (pdf). To model the 
pdf, Gaussian mixture models (GMM) are commonly used in speech processing 
community:  
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Here x represents the feature vector, kγ  are mixture coefficients and N( , , )k kx are 

individual Gaussians for representing a particular speaker Si. For computational rea-
sons, k  are chosen to be diagonal matrices. GMMs have been used in text-

independent speaker recognition with great success [5]. A popular way of using 
GMMs in speaker recognition is to train a large background speaker model (say with 
1024 Gaussians) and adapt this model to each speaker using that particular speaker’s 
data. GMM training is performed via the EM algorithm [6]. 
     In this paper, we train a GMM for each speaker from scratch and we use eight 
mixtures, which nevertheless gives satisfactory performance in this application. We 
had compared the performance of eight and sixteen mixtures in an earlier study [4] 
and obtained a better result using eight mixtures. During the testing phase, the per-
frame log-likelihood value of observed data 
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speaker Si can be computed as: 
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We also train a background model, one more GMM, with twice the number of mix-
tures. Background GMM is required for normalization in likelihood ratio testing for 
speaker verification. The log-likelihood of the observed data under the background 
model, Lg can also be computed in a similar way. For verification task, the Bayesian 
decision amounts to the comparison of the log-likelihood-ratio, Li-Lg to a threshold. 

Robustness against noise can be an important issue in speaker recognition, espe-
cially if the training and testing conditions are mismatched. In our case, we have had 
the training and testing conditions matched. Hence, we did not perform any specific 
robustness algorithm such as feature and score normalization. In our future studies, 
we plan to include algorithms for robustness against noise and channel effects. 
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4   Face Recognition Mode 

Among the plethora of face recognition methods, the paradigm based on face 
appearance data, template-based algorithms and their concomitant subspace 
versions, such as PCA and LDA methods are the most popular (see [7] for a 
comprehensive review). Since number of pixels in a face image can be rather large, 
it is reasonable to reduce feature dimension by projecting to a lower dimensional 
subspace. Thus, subspace projection techniques perform well for face recognition. 
Principal component analysis (PCA) is the most popular subspace projection 
technique used for face recognition [8-10].  

PCA computes a linear transformation that maximizes the total scatter of the face 
images in the projected space. PCA aims to determine a new orthogonal basis vector 
set that best reconstructs the face images in the mean-squared error sense. These or-
thogonal basis vectors, also called eigenfaces, are the eigenvectors of the covariance 
matrix of the face images, associated with the highest eigenvalues. 

In this study, we have trained a single Gaussian model for each person’s face. 
Since we are using video signals, it is feasible to obtain many face images of a single 
person and it is feasible to use a statistical model for recognition. The decision  
making process is identical to the speech case after the statistical model is built. 

5   Person Recognition Using Driving Signals 

Can drivers be identified from their driving behavior? or equivalently, is the driving 
behavior a biometric trait? To answer this question, researchers at CIAIR and the au-
thors of this paper have studied driving signals as measured by different sensors in the 
vehicle. Driving signals that were analyzed include pressure readings from accelerator 
and brake pedals, as well as the vehicle speed variations [11]. After trying Fourier 
analysis and multi-dimensional linear prediction techniques with limited success, both 
groups have employed GMM method to model driving signal characteristics. GMMs 
are successfully used for modeling speech signals in speaker recognition and are well-
suited for application to driving signals as well. We believe this can be attributed to 
the fact that temporal characteristics of driving signals exhibit quasi-stationary behav-
ior like speech. Smoothed and sub-sampled driving signals (acceleration and brake 
pedal pressures) and their first derivatives were used as features for modeling driving 
behavior of the drivers. Driving signals can be obtained by frequent sampling in time, 
thus we can collect ample data from a single person to train a statistical model. After 
feature extraction, the statistical modeling (driver/impostor models) part is just like 
the speech case. Similarly, we construct a GMM to model the driving features of each 
person and also train a background model.  

6   Fusion 

In this work, fusion of information from different modalities is performed at the 
matching score level, which is often called “decision fusion”. We have used the 
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weighted sum rule to combine scores from different modalities. As reported in litera-
ture [12, 13], the weighted sum rule is more robust against noise and other distur-
bances as compared to several other score combination rules, such as product rule, 
max rule and min rule, and often outperforms them. 

An important aspect of classifier combination at the score level is to carefully nor-
malize scores from each modality before the actual combination. Typical likelihood 
ranges for genuine and impostors could differ largely among modalities. Thus, log-
likelihood-ratio scores from different modalities cannot be directly superimposed. 
Therefore, it is logical to normalize scores to make them compatible. One way to 
normalize scores is to use the mean and standard deviation of likelihood scores ob-
tained from held-out validation data. Normalization can be performed using a sigmoid 
function which will map the scores to the (0,1) range.  

( )σμ /)( exp1
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Here Sk denotes the old log-likelihood-ratio score for the kth modality, Sk’ represents 
the new score. Furthermore, μ and  are mean and standard deviation of old scores 
obtained on the validation set using all validation instances and all speaker models. In 
this work, we have used top 3Nt scores for Nt validation instances to compute the 
mean and standard deviation of scores, otherwise the mismatch scores (outnumbering 
genuine scores 19 to 1) would have dominated the statistics.  

After normalization, we compute the weighted sum of new scores for each valida-
tion test case using the following formula: 
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We have chosen fixed weights wk to minimize the verification equal error rate (EER) 2 
on the validation data. The minimization is performed by exhaustively searching the 
weight space. After determining the optimal values for the weights on the validation 
data, we have employed them during testing phase for test data to compute overall  
final scores. 

7   Experiments and Results 

CIAIR at Nagoya University in Japan has been collecting an in-car speech database 
since 1999 with a data collection vehicle they have designed [2]. This vehicle sup-
ports synchronous recording of multi-channel audio data from 12 microphones that 
can be placed in flexible positions, multi-channel video data from 3 cameras and the 
vehicle related data such as the vehicle speed, the engine rpm, the steering wheel  
angle, acceleration and brake pedal pressures, where each channel is sampled at  

                                                           
2  EER for verification is defined as the error rate when the false accept rate (FAR) is equal to 

the false reject rate (FRR) on the receiver operating characteristics curve which plots FRR 
versus FAR for different classification thresholds. 
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1.0 kHz. During the data collection stage, each subject has conversations with three 
types of dialogue systems. One is a human navigator, another is a Wizard of Oz  
system, and the last is a conversational system [2]. 

We have carried out person recognition experiments over a 20 person subset of the 
CIAIR database which consists of 812 drivers with well over a terabyte of data. We 
have used the camera facing the driver and the audio signal from the headset micro-
phone for each person as video and audio sources, respectively. The faces were hand-
cropped to 64x40 pixel size and non-silence audio sections were hand selected. We 
have smoothed and down-sampled the brake and acceleration pedal pressure readings 
by a factor of ten and their first derivatives to be the features for modeling the behav-
ior of the driver. This resulted in four features at 100 Hz. Twelve static MFCC  
features (excluding c0) at 100 Hz were used as audio features. For faces, the PCA 
method was used to reduce the feature dimension to 20 for each image frame. The 
frame rate is 25 frames per second for the video. 

From each driver, 50 image frames, 50 seconds of non-silence audio and around 
600 seconds of driving signals were utilized. We extracted features from this dataset 
and divided all features into 20 equal length parts for each driver and modality and 
number the parts from one to 20. When we have formed the multimodal test-sets, we 
have assumed that each modality part was associated with the parts that have the same 
number in other modalities. 

We have then performed a leave-one-out training procedure, where for each single 
testing part, seventeen parts were used for training and two parts were held-out for 
validation to optimize normalization parameters and fusion weights. This gave us 20 
tests for each person (each time the training data is different although not independ-
ent), leading to 400 (20x20) genuine tests total. GMMs were used with eight, one and 
eight mixture components for speech, face and driving signals, respectively. Back-
ground GMM models were trained for each modality as well [6].  

 

Fig. 1. System block diagram for training the multimodal driver recognition system 
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Fig. 2. System block diagram for testing the multimodal person recognition system 

Block diagram of our training procedure is shown in Figure 1. Person recognition 
system is illustrated in Figure 2. We performed verification, closed set identification 
and open set identification tasks with the data. For verification, we have assumed each 
person’s data as an impostor for the remaining 19 other drivers resulting at 7600 
(19x20x20) impostor tests in total. For open-set identification tests, we leave one 
identity out at a time and perform open-set identification using the remaining 19 as 
genuine identities. We cycle through the set of identities to leave a different identity 
out each time to obtain 20 different testing setups for each test data. This procedure 
gives us 7600 genuine tests and 400 impostor tests. In this paper, we define EER for 
open-set scenario as the error rate when false-accept rate among the impostor attempts 
is equal to the sum of false-reject and false-classify rates among the genuine attempts. 

The modalities were fused by the weighted score summation method mentioned 
earlier in section 6. Our findings from both the unimodal and multimodal perform-
ances are presented in Table 1.  

The results from single-mode identification and verification are encouraging. As 
expected, audio-only yields the best performance since the speech samples were from 
the close-talking headset microphone. In a controlled lab environment face recogni-
tion algorithm has performed very successfully [1]. But in the CIAIR database, driver 
face segments were fairly small in comparison to other studies [4] and hence the  
results are expectedly not as good. We expect to get significantly higher results from 
face modality by using a custom-designed camera built-in to the visor which can be 
focused primarily on the face of the driver. The results based on analog driving  
signals are quite satisfactory and show improvement over an earlier study [11].  
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Table 1. Closed-set person identification, person verification and open-set person identification 
results 

Modality Weights Closed-set ID  
(Accuracy %) 

Verification 
(EER %) 

Open-set ID 
(EER %) 

A Audio only 98.00 2.15 8.05 
F Face only 89.00 6.08 18.56 
D Driving only 88.25 4.00 21.06 
A+D (.62,.38) 99.25  0.83 3.75 
F+D (.43,.57) 98.00 1.62 8.86 
A+F (.63,.37) 99.75 0.50 1.75 
A+F+D (.47,.33,.20) 100.0 0.25 0.25 

Pair-wise fusion scenarios result in significantly better performance over the face-
only or driving-signals-only cases and even an incremental improvement is observed 
over the audio-only case. In many driver verification applications, an error rate of 0.5-
1.62 percent would be satisfactory. For open-set identification, an EER rate of 1.75 
percent, achieved by audio and face modalities, could be quite satisfactory as well.   

As expected, the inclusion of all three modalities increases the performance of the 
person recognition system to an encouraging level. We believe that error rates of ¼ 
percent can bring most of the applications cited at the introduction section to reality 
and commercially viable systems can be built. Using multi-modal person recognition 
in a car is even more important than these results reveal, since any one of these  
modalities may fail or become impractical in certain cases, such as during driving at 
night or when there is presence of radio or other speakers in the vehicle. 

However, we would like to point out that the results reported here are based on a 
relatively small data set and the investigators are experimenting with a much larger 
data set from the CIAIR corpus. We are also putting together a framework for a com-
prehensive and language/region-independent driver-specific data collection setup for 
the purposes of person recognition in a vehicle. 

8   Conclusion 

In this paper, we have introduced a multi-modal person recognition system that uses 
speech, face and driving signals for in-vehicle applications. It is interesting to note 
that, every modality has its own importance and improves the performance of the rec-
ognition system. Especially, it is interesting to see that driving signals are indicative 
of the person and those signals can be considered as a biometric trait which was not 
considered before.  

We have obtained very encouraging results from a 20 person subset of the CIAIR 
database and have observed improvement in every multi-modal combination that we 
tried. These results show that, multimodal person recognition in a car is very promis-
ing. We conjecture that the improvement will be more important for adverse condi-
tions when one of the modalities may become totally unreliable; nevertheless, it will 
still be possible to rely on the remaining modalities.  
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Abstract. After deploying a classifier in production it is essential to support its 
lifecycle. This paper describes the application of an ensemble of classifiers to 
support two stages of the lifecycle of an on-line classifier used to underwrite 
life insurance applications: the monitoring of its decisions quality and the up-
dating of the production classifier over time. All combinations of five classifi-
cation methods and seven fusion methods were assessed from the perspective of 
accuracy and pairwise diversity of the classifiers, and accuracy, precision, and 
coverage of the fused classifiers. The proposed architecture consists of three 
off-line classifiers and a fusion module.  

1   Introduction 

The automation of a decision-making processes requires addressing each step in the 
lifecycle of the underlying decision engine. The development and deployment of such 
engine represent the first stage of its lifecycle.  Once an engine has been placed in 
production, it is equally important to monitor its performance and probe the quality of 
its decisions. In previous papers we have described the design and optimization of 
two decision engines for underwriting insurance applications. Both engines, based on 
fuzzy constraints and fuzzy case-based reasoning [1,4], used an evolutionary algo-
rithm to optimize their underlying parameters and minimize the cost of misclassifica-
tion [6].  The core of this optimization was the generation of a set of Standard Refer-
ence Decisions (SRD). This set represents the ground truth against which every classi-
fier is evaluated.  In [4,18] we discussed the lifecycle of a classifier with an emphasis 
on its validation, verification, and knowledge-base maintenance. In this paper we 
focus on the final design and its validation with production data.  

As discussed in [5], the design of a successful classifier fusion system consists of 
two important parts: design of the individual classifiers, selection of a set of classifi-
ers [13, 21], and design of the classifier fusion mechanism [20]. Key to effective clas-
sifier fusion is the diversity of the individual classifiers. Strategies for boosting diver-
sity include: 1) using different types of classifiers; 2) training individual classifiers 
with different data set (bagging and boosting); and 3) using different subsets of fea-
tures.  In our approach we follow the first and third strategies directly, and capitalize 
indirectly on the second strategy by employing the random forest classification 
method.  
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2   The Underwriting Problem and the Production Classifier 

Insurance underwriting (UW) is a complex decision making task traditionally per-
formed by individuals. UW can be formulated as a classical classification problem, 
consisting in assigning a given insurance application, described by its medical and 
demographic records, to one of a small set of rate classes. We define an insurance 
application as an input vector X  containing discrete, continuous, and nominal (attrib-
ute) variables.  These variables represent the applicant’s medical and demographic 
information that has been identified by actuarial studies to be pertinent to the estima-
tion of the applicant’s claim risk. Similarly, we define the output space Y , e.g. the 
underwriting decision space, as an ordered list of rate classes. Due to the intrinsic 
difficulty of representing risk as a real number on a scale, the output space Y is subdi-
vided into rate classes containing similar risks. The underwriting process can be 
summarized as a discrete classifier that maps an input vector X  into a decision space 
Y , where: TYnX ==   and  .  

The automation of this decision making process has strong accuracy, coverage and 
transparency requirements. The production classifier must satisfy several constraints: 
a) high classification accuracy in spite of highly non-linear boundaries of the rate 
classes; b) consistency in interpretation of actuarial guidelines; c) intrinsic flexibility 
to ensure a balance between risk-tolerance, necessary to maintain price competitive-
ness, and risk-avoidance, necessary to prevent overexposure to risk; d) transparent 
and interpretable decisions, to satisfy legal and compliance regulations. 

Consequently, we face two main design tradeoffs: 1) Accuracy versus coverage - 
requiring low misclassification rates for high volume of applications; 2) Accuracy 
versus interpretability - requiring a transparent, traceable decision-making process. A 
fuzzy logic engine (FLE) was deployed for production.  This classifier uses fuzzy rule 
sets to encode best underwriting standards. Each rule set represents a set of fuzzy 
constraints defining the boundaries between rate classes. These constraints were ini-
tialized from underwriting guidelines, refined through interviews with expert under-
writers, and tuned by evolutionary algorithms. The goal of the FLE is to assign an 
applicant to the most competitive rate class, providing that the applicant’s vital data 
meet all the constraints of that particular rate class to at least a minimum degree of 
satisfaction. The minimum degree of satisfaction of all relevant constraints determines 
the confidence measure in the decision. The FLE is described in [3] and [5]. 

3   Classification Ensembles and Fusion Approach Selection 

The ensemble classification system was developed in three stages. First, five candi-
date classification methods were trained. Second, the diversity of the classifiers was 
assessed. Finally, the decision accuracy of all combinations of candidate classification 
methods under seven fusion methods plus single classifiers were evaluated using a 
leave-one-out approach. Although systems were developed for both smokers and non-
smokers, only the results for non-smokers (for which there are both more cases and 
more rate classes) are presented here.  
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As discussed in [3], we created an indicator to encode the result of applying un-
derwriters’ domain knowledge.  This indicator, referred to as TAG, defines the best 
available rate class for each applicant based on a set of hard-coded rules representing 
insurance standard policies.  The use of this aggregated domain knowledge boosted 
most classifiers’ performance, leading to an accuracy improvement of about 1-2% on 
average [3]. Moreover, it allowed us to drop nine of the 19 features, and use 10 fea-
tures plus the indicator for training (except where noted in the random forest section).  

3.1   Candidate Classification Methods 

Feed-forward Neural Network Classifier Ensemble. An independent 12 input 
nodes, 5 hidden nodes, and 1 output node artificial neural network (NN) was trained 
for each class. For each network, the data was labeled one for the corresponding class, 
or zero for any of the other four classes. To classify an unknown case, each network 
evaluates the case, and the case is assigned the class corresponding to the network 
with the highest value of the activation function. This approach (rather than using a 
single NN with five output nodes) decomposes the complexity of the classification 
problem and reduces the overall training time. Activation functions for both hidden 
and output neurons are logistic sigmoid functions. The range of target values was 
scaled to [0.1 0.9] to prevent saturation during training process.  

Multivariate Adaptive Regression Splines Classifier Ensemble. Multivariate 
Adaptive Regression Splines (MARS) [10] is an adaptive nonparametric regression 
technique, able to capture main and interaction effects in a hierarchical manner. Being 
a piecewise-linear adaptive regression procedure, MARS can approximates very well 
any non-linear structure, if present.  However, global models cannot easily incorpo-
rate jumps in decision boundaries of a large number of variables in an extremely 
small bounded range. Two approaches were used to address this problem. First, the 
use of the TAG variable helps the MARS search algorithm in initializing spline knots 
in the right place. Second, we developed a Parallel Network arrangement of models. 
We created a collection of MARS models, each of which solves a two-class problem, 
and we collated their outputs in a manner similar to the one used for the NN classifiers. 

Support Vector Machines Ensemble. Support Vector Machines (SVM) [22] are 
learning machines that non-linearly map an input feature space into a higher dimen-
sional feature space. A linear classifier is then constructed in the higher dimensional 
feature space. Five SVM models (one for each class) were trained, and their outputs 
were resolved in a manner similar to the one used for the NN classifiers. The shape 
parameter for the radial basis function Kernel Gamma and the parameter for cost of 
constrain violation C were both set to 3. The overall SVM classification was resolved 
in the same as the NN classifiers. 

Random Forests. Random Forests (RF) [8] is a classification method that applies bag-
ging [7] to a variation of classification trees [9]. A standard classification tree is con-
structed by splitting the data on the best feature of all possible features at each node. For 
RF, only a randomly selected subset (chosen always from the full set) of features are 
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eligible to split each node. Moreover, in contrast to standard classification trees, the 
individual RF trees are not pruned; rather they are grown to 100% node purity. Al-
though typically hundreds of trees are developed, RF’s are very quick to train (e.g., 
much faster than neural networks for a given data set and computer). Within our appli-
cation, the performance of RF was superior to that of the other classification algorithms, 
including NN and SVM. While RF’s contained 1000 trees, NN’s and SVM’s were 
much smaller ensembles, containing only five binary classifiers each. 

Two RF classifiers were developed. The first RF was trained on the regular set of 
features (including TAG). The second (referred to as RFA) was trained on a larger set 
of features, comprised of the regular set (excluding TAG) and the features used to 
create the TAG variable. Although the performance of the RFA suffered slightly 
(though much less than any other classification method tried on the RFA dataset), the 
results were not surprisingly quite diverse from the other classifiers (see below). The 
results presented here for both RF and RFA are based on 1000 trees per forest, and six 
variables eligible to be split at each node.  

3.2   Classification Accuracy 

The single classifier classification accuracy was evaluated using five fold cross vali-
dation (using the same folds for each method). Table 1 shows the performance of the 
individual classifiers and the production classifier (FLE) as expressed by the true 
positive rate.  While their accuracies are roughly comparables, their pairwise diversi-
ties are not, as shown in the next subsection. 

Table 1. Five fold cross validation classification accuracy 

Method Accuracy  Method Accuracy 
MARS 92.71%  RF 93.30% 

NN 92.87%  RFA 91.26% 

SVM 92.23%  FLE 93.41% 

3.3   Classifier Diversity 

We assessed pairwise classifier diversity using four measures described in [14], Q, 
rho, disagreement, and double fault.  Results were comparable across all four meas-
ures. Only results for Yule’s Q are presented here because of its more transparent 
interpretation.  

Q ranges from –1 to 1. For statistically independent classifiers, Q is 0. Correlated 
classifiers have positive values of Q, while uncorrelated classifiers (i.e., classifiers 
that make mistakes on different cases) have negative values of Q. Q is only used for 
two classifiers at a time (Table 2) and is calculated 

ad bc
Q

ad bc

−=
+

 . (1) 
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The values of the Q statistic for all five classifiers and the production classifier 
(fuzzy logic engine or FLE) are reported in Table 3, and reveal several interesting 
things about the classifiers for these data. First, all classification methods that use the 
TAG variable are highly correlated (i.e., they tend to misclassify the same cases). 
Both MARS and SVM show a moderate degree of positive correlation with the FLE, 
while the RFA is the only classifier to have a negative correlation with the FLE. 

Table 2. Probabilities for two classifiers, C1 and C2. Note that a + b + c + d = 1 

 C1 correct C1 wrong 
C2 correct a b 
C2 wrong c d 

Table 3. Q statistic for all five classifiers and the PC 

 FLE MARS NN SVM RF RFA 
FLE 1.000 0.412 0.225 0.416 0.383 -0.308 

MARS 0.412 1.000 0.873 0.915 0.925 0.021 

NN 0.225 0.873 1.000 0.937 0.776 -0.142 
SVM 0.416 0.915 0.937 1.000 0.820 -0.059 
RF 0.383 0.925 0.776 0.820 1.000 0.411 

RFA -0.308 0.021 -0.142 -0.059 0.411 1.000 

3.4   Fusion Methods 

Seven fusion methods were evaluated using each of the 26 unique combinations of 
two or more of the five classifiers (excluding the FLE), along with the performance of 
each single classifier method. The fusion methods used are described below.  

Majority Vote. Each classifier has one vote and the case is assigned the winning 
class. Ties are broken randomly.  

Averaging. The normalized output of each classifier is averaged for each class, and 
the case is assigned the class with the highest average. Ties are broken randomly. 

Borda Count. The case is assigned to the class with the maximum sum of the rank of 
the negative class weights (within each classifier). Ties are broken randomly. 

N of All. Under the N of All (NOA) fusion scheme, if the number of classifiers voting 
for a particular class is greater than N (where N is > 1 and ≤  the number of classifi-
ers), a case is assigned that class; otherwise, the case is assigned “no decision”.  

Behavior Knowledge Space (BKS). This fusion method [12] treats every possible 
combination of output from different classifiers as a cell in a lookup table (the BKS 
table). During training, training samples associated with a particular call are parti-
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tioned by actual class and the most representative class (the majority class) is selected 
for each cell. This equates in essence to setting up the classifier output probability 
distribution. For test patterns, the classification is accomplished using the class label 
of the BKS cell indexed by the classifiers output. In our implementation, the BKS 
assigns “no decision” to novel patterns. 

Naïve Bayes. The naïve Bayes (NB) fusion approach makes the assumption that the 
decisions of the individual classifiers are independent. While this assumption is  
almost certainly invalid, this approach works quite well in practice [15]. Using n  
features f (individual classifier decisions) that pick a particular class c of a set of 
classes C, the NB decision rule is 

1
1

( ,..., ) argmax ( ) ( | )
n

n c i i
i

classify f f p C c p F f C c
=

= = = =∏  . (2) 

Meta-SVM. The Meta-SVM (MSVM) uses the normalized output of each classifier 
as a feature space to train a new SVM classifier. The output of the MSVM classifier 
assigns the five classes to some region of one dimension; thus, there is a further prob-
lem of dividing that dimension into five separate regions. To automate this process, a 
classification tree [9] was trained on the MSVM output, and the smallest tree with 
exactly five leaf classes was used to determine the class boundaries. The use of a 
classification tree to automate determining class boundaries is both faster and more 
accurate than hand tuning.  

3.5   Fusion Accuracy 

Of the 1866 cases, there were 188 where the result of at least one combination of 
fusion method and classifier method (FMCM) differed from the ground truth, i.e., the 
standard reference decision (SRD) set. The leave-one-out accuracy (LA) for each 
FMCM is plotted in the lower set of axes in Figure 1 (for the 188 cases). The upper 
set of axes is on a different scale, showing only the best performing combinations, 
and revealing there are three FMCMs that have the same maximum accuracy. FMCM 
details, Precision [TP/(TP+FP)] and Recall [(TP/(TP+FN)] scores (with respect to the 
FLE) of the three most accurate FMCMs are listed in Table 4. 

Across all combinations of classification method, majority vote, averaging, Borda 
count, and NB do better than individual classifiers. However, NOA, BKS and MSVM 
do on average worse than a single classifier. The shortcomings of NOA and  
BKS arise from a common explanation: both methods allow “no decision”. While this  

Table 4. Classification method, fusion method, precision and recall scores of the three most 
accurate FMCMs. One reprenents inclusion of a classification method, zero exclusion 

MARS NN RFA RF SVM Method Precision Recall 

0 1 1 1 0 Borda count 55.8% 71.7% 

0 1 1 1 0 Majority vote 55.6% 75.0% 

1 1 1 1 0 Naïve Bayes 55.6% 75.0% 



382 P. Bonissone, N. Eklund, and K. Goebel 

 

option may be a desirable behavior in many circumstances, nonetheless it does not 
count toward total correct decisions. The failure of MSVM is probably related to the 
size of the feature space: MSVM is the only classifier trained on the raw output of the 
other classifiers. This suggests that some intelligent preprocessing of the data before-
hand might have improved performance. 
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Fig. 1. Fraction of correct calls for each FMCM. Note the upper set of axes is on a different 
scale to highlight detail. Each point represents a unique combination of classification methods 
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Fig. 2. The likelihood that a classifier is employed in a fusion method and classification method 
combination of a given or greater accuracy 

The likelihood that a classifier of a given or greater accuracy is included in a 
FMCM (e.g., out of all of the fusion method and classification method combinations 
with an accuracy ≥ 0.68, about 41% used MARS, 65% used NN, etc.) is plotted in 
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Figure 2. SVM is particularly unlikely to appear in highly accurate classifiers, while 
RF is particularly likely (occurring in all of the 28 most accurate FMCMs).  

We speculate the RF is included in the most accurate FMCMs because it is the  
single most accurate individual classifier. The RFA has the worst single classifier 
accuracy, but it is the least correlated with other classification methods (Table 3) and 
somewhat uncorrelated with the FCM (which is important in catching errors in  
the FCM), so its diversity outweighs its poor performance. Of the remaining three 
classifiers, SVM and MARS are highly correlated with RF (Table 3); NN is both the 
least correlated and most accurate of the three, so is employed at high accuracy.   

4   Quality Assurance Architecture 

Based on the results above, the NN, RFA, RF ensemble using the majority vote fusion 
scheme was adopted to monitor the performance of the FLE and assure the quality of 
the production engine decisions. In addition, this fusion will identify the best cases 
that could be used to tune the production engine in future releases, as well as contro-
versial or unusual cases that should be highlighted for manual audit by senior under-
writers, as part of the Quality Assurance system. Figure 3 is a diagram of the system.  

 

Fig. 3. The Production classifier and QA system 

Initially, each classifier in the system was forced to commit to a particular rate 
class. The results reported in this paper reflect this constraint. If preferred, we can 
modify this specific tradeoff of coverage versus accuracy by implementing post-
processing filters prior to the fusion process. We can treat each classifier’s output as a 
discrete membership distribution over the rate classes considered, and compute four 
features to summarize such memberships: cardinality, entropy, difference and rank 
order separation between the highest and the second highest values of the outputs.  
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Then we can impose a set of thresholds (lower or upper bounds) on these features to 
identify the cases with weak decisions.  For such cases, we change their final conclu-
sions to “unknown”.  In our experiments, the values of the threshold were obtained 
using local search, looking for different tradeoffs with better accuracy at the expense 
of coverage. 

4.1   Validation Results Using Production Data 

The QA system was validated using 3292 cases, of which 393 showed disagreement 
between the FLE and the classifier fusion. Of those cases, 131 were randomly selected 
for evaluation by a human underwriter. Of the 131 cases, the FLE was correct in 77 of 
them, i.e., false positives (in the sense that the QA classifier incorrectly identified them 
as being incorrectly classified by the FLE). The fusion was right in 43 cases, implying a 
correction to the automated FLE. Neither was correct in 11 cases, which is still a good 
call by the QA system insofar as it will entail a correction of the FLE decision by a 
human underwriter. Note that this analysis gives no insight into false negatives (false 
negatives is defined here as both the fusion and the FLE are wrong). 

The precision of the QA system was 44.2%, down over 11 percentage points from 
the training data. However, the distribution of the validation data was substantially 
different from the training data (Figure 4). In light of the dramatic distribution 
changes from training to production, the QA architecture seems quite robust, and 
provides excellent guidance for the auditor (by flagging disagreement with the FLE). 
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Fig. 4. Class distribution of training and validation data 

5   Conclusions 

We applied the fusion to the quality assurance (QA) problem for automated under-
writing. All combinations of five classification methods and seven fusion methods 
(plus single classifier) were assessed from the perspective of accuracy and pairwise 
diversity of the classifiers, and accuracy, precision, and coverage of the fused classifi-
ers. The final classifier ensemble and fusion method performed well, despite consid-
erable differences in the distribution of the training and validation data. This QA 
system can be used to monitor the performance of the automated decision making 
system, identifying cases that might be suspect, and should be examined by a human. 
Moreover, these cases can be incorporated into the standard reference decision set, to 
further tune the performance of both the automated decision maker (the FLE) and the 
QA system.  
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One of the most interesting results is the insight into the tradeoff between accuracy 
and diversity (Figure 2). We intend to exploit this behavior and plan some future 
experiments to further explore this tradeoff. 
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Abstract. The RGB colour space is prominent as a colour representation and 
display scheme, although a number of other colour spaces have been developed 
over the years each with its own advantages and shortcomings with regard to its 
usefulness for colour/texture recognition. However, the recent advent of multi-
ple classifier systems provides the unique opportunity to exploit the diverse in-
formation encapsulated in the different colour representations in a systematic 
fashion. In this paper we propose the use of classifier combination schemes 
which utilise information from different colour domains. We subsequently use 
suitable measures to investigate the diversity of the information infused by the 
different colour spaces. Experiments with two 40-class colour/texture datasets 
show the benefit of our multiple classifier approach, and reveal the existence of 
strong correlations between the accuracy achieved and the diversity measures. 
Finally, we illustrate, using quadratic regression, that there is significant scope 
to build and explore further (potentially causal) models of the observed rela-
tions between ensemble performance and diversity metrics. Our results point 
towards the use of diversity along with other statistical measures as possible 
predictors of the ensemble behaviour. 

1   Introduction 

Colour and texture are basic features used in many visual processing applications, 
including scene analysis, computer vision and image retrieval in databases or video 
sequences. Texture plays an important role in human visual perception and provides 
vital information for recognition and interpretation [1]. Whilst recently researchers 
have started to investigate the combination of colour and texture for various applica-
tions [2, 3], there has been no consensus on the best colour space to use. The advent 
of multiple classifier systems presents us with the unique opportunity to exploit the 
diverse information encapsulated in the different colour representations in a system-
atic fashion.  

The last decade has witnessed extensive research on the problem of combining 
classification data supplied by various experts with the aim of improving the generali-
sation and hence the overall performance of the system [1,4,5]. The approach is based 
on the fundamental assumption that more successful classifiers can be built by com-
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bining a pool of classifiers who make different but complementary decisions.  Em-
pirical observations and specific machine learning applications confirm that a given 
algorithm outperforms all others for a specific problem or for a specific subset of the 
input data, but it is unusual to find a single expert achieving the best results on the 
overall problem domain. This has been the case with methods applied to colour proc-
essing, with researchers advocating for different colour spaces for different applica-
tions [2,3].  

For multiple classifier systems to be efficient, it has been established that mem-
bers should produce uncorrelated errors. Thus the issue of addressing how different 
(or diverse) the pool members are has become important in designing successful 
multiple classifier systems[4,5,6,7]. In this paper, we focus on analysis of the diver-
sity of the information supplied by these colour spaces and how we can use that 
information in the design of multiple classifier systems. Despite the different notions 
that exist on the concept of diversity, there is a consistent approach to the measures 
that are used by various authors to describe it [4,5,6,7]. Here we use some of them to 
show that diversity is an important attribute introduced by using different colour 
spaces for texture classification. The approach adopted in this paper is not based on 
finding the best colour space for texture classification, but on combining the differ-
ent strengths and weaknesses of these colour representations to achieve improved 
results. 

A pixel-based texture classifier based on ensemble methods, which integrates dif-
ferent families of texture feature extraction methods is presented in [1], with reported 
significant improvements over single feature extraction method-based approaches. In 
this paper we focus on extracting the same family of features from a diverse range of 
colour spaces and then use this in an ensemble. We are thus effectively combining 
different colour representation methods to achieve improvements in colour texture 
classification. In this paper, we refer to an expert as a classifier obtained from consid-
ering features obtained using a particular colour space.  

Almost all colour image acquisition devices produce vector valued output images 
in RGB (Red, Green, Blue) space. However, the difficulty of using the RGB space 
has already been well documented [1,2]. In this work we use other colour spaces in 
addition to the RGB and its derivative, the normalised RGB (nrgb), and explore their 
contribution to the classification of 2 sets of different colour texture classes, from two 
different databases.  We use the CIEL*a*b and CIEL*u*v* developed to overcome 
the problem of non-perceptual uniformity of the RGB colour space [8]. Experiments 
in this work are also carried out using the HSV colour model and two other colour 
spaces, YIQ and YUV [8]. These colour spaces are finding their way into the image 
processing community most essentially because of their ability to be broken down 
into their luminance and chromaticity components.  

Various textural feature extraction techniques have been developed and more are 
still emerging. The texture classification experiments carried out in this paper are 
based on second order colour Gaussian Markov Random Fields (GMRFs). The 
GMRFs are a special case of the MRFs [9] and have been shown to provide an accu-
rate compact representation for a range of textures [9,10]. Extensive discussion of 
MRFs can be found in [9]. 
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Colour texture feature extraction methods have mainly followed two approaches; a 
multi-channel approach and a single channel approach. In a multi-channel approach 
two or more channels are handled simultaneously [10]. The single channel approach 
treats each channel separately and has the advantage of being able to utilise well es-
tablished gray-scale texture analysis methods. This approach has been used success-
fully in a number of reported works [2, 3]. We adopt the single channel approach in 
our experiments, extending the grey scale concept of GMRFs to colour textures. 

In the following section descriptions of the feature extraction and classification 
methods are given. In Section 3, we present the diversity measures that we used.  
Section 4 describes the experimental set-up and evaluation of the results obtained. 
The conclusions drawn from our observations are presented in Section 5. 

2   Feature Extraction and Classification 

Markov Random Field (MRF) methods characterise the statistical relationship be-
tween a pixel and its neighbours. The idea of MRF in image processing is to represent 
an image by capturing local characteristics in terms of conditional probability distri-
bution. If the structural form for the local conditional probability distribution is as-
sumed to be Gaussian, the model is called Gaussian Markov Random Field (GMRF) 
[9]. The model parameters can be used as texture features by assuming that parameter 
differences among different textures facilitate texture discrimination. In this paper, we 
obtain six features from each of the colour channels. The experiments described 
henceforth are based on classifications involving a total of 18 variables from each 
colour space. A detailed explanation of the feature extraction method is presented in 
[11]. For classification in the individual colour spaces, we used two classifiers, 
namely, the Fisher linear discriminant (FLD) and the k nearest neighbour classifier 
(knn). For the nearest neighbour classifier, initial investigations showed that the best 
performance is obtained using k = 7 neighbours.  

The accuracy of classification has been shown by recent research to be improved in 
many cases when multiple classifiers are used and the overall decision obtained by 
combining the individual classifier outputs. To this end after training each one of the 
above classifiers separately on the different colour spaces and sub-spaces we attempt 
combinations of their outputs according to a variety of fusion rules. We have imple-
mented the product, mean, median, and majority voting rules [12].  

3   The Diversity Measures 

In our experiments we used 6 diversity measures proposed in various studies. These 
measures which are based on the oracle outputs of the classifiers can be divided into 
pairwise and non-pairwise measures.  Pairwise measures are calculated for the differ-
ent pairings of classifiers in the pool. These estimates are then averaged to give the 
overall measure for the pool of classifiers. We have included 3 such measures in our 
study; the Q statistic [13], the correlation coefficient [14] and the double fault meas-
ure [15]. For pairwise measures C11 as means both classifiers correct, C00 indicates 
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both classifiers wrong and C10 and C01   represent one of the classifiers is correct and 
one is wrong. The total number of decisions (T) is obtained by adding up all four 
conditions; T = C11+C00+C10+C01.  

Three   non-pairwise measures, i.e. the entropy [16], the interrater agreement [17], 
and the coincidence failure diversity [18] were also used. In the table, for the non-
pairwise measures, M represents the total number of classifiers and S is the number of 
cases in labelled dataset zj. m(zj) is the number of classifiers that correctly classify zj. 
If K is random variable expressing the proportion of classifiers from S, that fail on a 
randomly drawn sample x, we can denote by pi the probability K = i/S.  

Table 1. Diversity Measures 
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The success of an ensemble of classifiers has often been judged by how much im-
provement it brings over the performance of the best (Bst ) member or the mean (Mn) 
of the ensemble team. Since the accuracy of the team members is also a factor  
governing the resultant performance of the ensemble, the mean accuracy of the team 
members and the best performance from the team can therefore be incorporated into 
factors that govern its performance. Besides these two performance indicators, the 
influence of the worst (Wst) team member has also been included in the investiga-
tions. We have also included the standard deviation (Std) of all the runs from all team 
members in the classifier team which gives an indication of the stability among the 
members of the ensemble.  

4   Experimental Set- p and Evaluation 

For the classification experiments we used a set of 40 RGB colour images of size 128 
x 128 which are a part of the VisTex database[19] (Dataset 1). The textures consist of 

u
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images, which include grass, water, bricks, buildings, and clouds, etc, obtained under 
various conditions Another set of 40 colour texture images of various sizes, were 
extracted from the Texture Library database (Dataset 2)  and reduced to sizes of 128 x 
128  [20] . The Texture Library database was chosen for use here because of its diver-
sity, as it contains natural textures obtained from various sources. Each texture class 
contained 150 samples. These samples were divided into equal training and test sam-
ples per class (75 samples each). The approach used involved random partitioning of 
the available dataset into training and test sets for a ten-fold cross validation experi-
ment. In each trial therefore, we have different sets of training, validation and test 
data. The recognition performance presented in the tables is averaged across all trials. 

Table 2. Classification results for individual colour spaces (the figures in brackets refer to the 
accuracy rankings) and classification results using a multi-expert approach which combined the 
6 colour spaces features (figures in brackets refer to the % accuracy improvement over the best 
individual colour space results) 

 Dataset 1 
Classification Rate (%) 

Dataset 2 
Classification Rate (%) 

Colour Space knn FLD knn FLD 
Colour. Space 
RGB 
nrgb 
YUV 
YIQ 
lAB 
HSV 

 
55.4    (5) 
52.8    (6) 
63.3    (4) 
72.7    (2) 
72.1    (3) 
76.3    (1) 

 
58.1     (5) 
50.4     (6) 
63.3     (3) 
66.6     (1) 
58.6     (4) 
64.1     (2) 

 
45.3      (6) 
62.2      (4) 
59.4      (5) 
74.8      (2) 
67.6      (3) 
81.8       (1) 

 
60.7   (6) 
61.0   (5) 
70.4    (1) 
69.7    (2) 
69.4    (3) 
66.9    (4) 

All Features   49.5 90.1 49.1 90.3 
Combiner 
Prod 
Mean 
Med 
Maj 

 
97.2 (20.8) 
96.8 (20.4) 
95.8 (19.4) 
89.3 (13.0) 

 
93.8 (27.2) 
87.2 (20.6) 
91.5 (24.9) 
83.0 (16.4) 

 

 
93.4(11.6) 
93.0(11.1) 
92.7(10.9) 
87.2  (5.4) 

 
92.2   (21.9) 
88.1   (17.7) 
91.9   (21.6) 
85.7   (15.4) 

The results for both the knn and the FLD show no classifier producing significant 
overall better results than the other classifier, with the mean classification rate for all 
cases between 60 and 66% (Table2). However the distribution of the individual colour 
space classification rates is different for the two classification methods, for the same 
datasets. Individual colour spaces have different accuracies for the two classification 
methods. The accuracy rankings in brackets clearly show that there is no overall best 
colour space, indicating that accuracy is dependent on both the data and the classifica-
tion method used. However, what is clear from the results in Table 2 is that the over-
all classification results are significantly improved by using the multiple expert  
approach which combines individual colour space results. The gains in accuracy are 
not less than 10% and are as high as 27.2% for the product rule. Similar high gains in 
accuracy are achieved by the mean and median rule.  

The results labelled ‘all features’ are that of classification using all features from 
the six different colour spaces (18 x 6 = 108 features).  This does not only bring com-
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putational increased complexity but also a large deterioration in performance in the 
case of the knn classifier.  

4.1   Diversity Calculation 

The aim of this part of the experiment was to establish whether different colour 
spaces introduce useful diversity for the ensemble methods in colour texture classifi-
cation. Using the diversity measures obtained in the training set, we also aimed at 
observing whether correlation existed between these diversity measures and the test 
set performance of the multi-classifier systems. In doing so, we formed the basis for 
construction of a model, which incorporates the diversity measures and combination 
results as independent and dependant variables respectively (Section 4.2).  

The individual colour space training sets outputs were placed into pools of 3 and 
all possible combinations of pools of 3 were generated, resulting in 20 different pools. 
The 6 diversity measures as well as the test combination results of the corresponding 
groups were calculated. An intermediate table was created incorporating the error 
rates obtained from the combinations in the test sets and diversity measures estimated 
from the training sets. The pools of individually trained colour space classifiers were 
then sampled with replacement into 10 randomly selected groups of 12. The correla-
tion coefficients were calculated for each group, and the results averaged.  

Table 2. The correlation coefficients between the error results from the combination methods 
and the diversity measures for Dataset 1 using the FLD classifier 

 Q CR D F Entr Int GD 

Prod 0.36 0.45 0.86 0.33 0.43 0.79 

Mean 0.37 0.46 0.87 0.32 0.43 0.80 

Med 0.37 0.45 0.86 0.36 0.40 0.80 

Maj 0.61 0.68 0.98 0.22 0.61 0.96 

Table 3. The correlation coefficients between the error results from the combination methods 
and the diversity measures for Dataset 2 using the FLD classifier 

 Q CR D F Entr Int GD 

Prod 0.27 0.12 0.97 0.64 0.14 0.89 

Mean 0.27 0.12 0.97 0.64 0.14 0.89 

Med 0.27 0.12 0.94 0.63 0.14 0.88 

Maj 0.46 0.32 0.97 0.80 0.36 0.75 

A number of observations can be made from these tables. The double fault (DF) 
and the generalised diversity (GD) measures have high correlation values in both 
databases and both types of classifiers. The entropy measure (Entr) also has high 
values in all cases except for Database 1 using the FLD. Besides these three measures, 



 Analysis and Modelling of Diversity Contribution 393 

 

no single measure had low correlations in all cases. High correlations for all measures 
were only obtained in one case (Dataset 1, knn classifier, Table 4). For the same type 
of classifier, the correlation levels are different for each database, and they are also 
different for the same database using different classifiers.  

Table 4. The correlation coefficients between the error results from the combination methods 
and the diversity measures for Dataset 1 using the knn classifier 

 Q CR D F Entr Int GD 

Prod 0.67 0.85 0.95 0.76 0.86 0.96 

Mean 0.66 0.85 0.95 0.76 0.86 0.96 

Med 0.64 0.84 0.95 0.77 0.84 0.96 

Maj 0.60 0.81 0.99 0.89 0.78 0.98 

Table 5. The correlation coefficients between the error results from the combination methods 
and the diversity measures for Dataset 2 using the knn classifier 

 Q CR D F Entr Int GD 

Prod 0.01 0.36 0.98 0.71 0.45 0.95 

Mean 0.04 0.28 0.91 0.88 0.15 0.83 

Med 0.07 0.44 0.99 0.71 0.48 0.98 

Maj 0.03 0.35 0.99 0.81 0.37 0.96 

From these observations it can be noted that for a number of measures, there is sig-
nificant correlation between the diversity of the members of the classifier ensembles 
and the performance metric. This is particularly true for the DF and the GD measures, 
and in three out of four cases; the Entr measure. Considering the improvement in 
performance achieved by combining colour spaces, we can conclude that this diver-
sity is useful for the ensemble. The fact that the correlation was calculated between 
the diversity in the training set and the accuracy in the test set lays the basis for form-
ing a predictive model, whereby the performance of an ensemble can be deduced 
from diversity measures estimated from training set results. This formed the basis of 
the modelling experiments. 

4.2   Modelling Experiments 

Having established that there are at least noticeable correlations between achieved 
results and individual diversity measures, we took the next step of investigating 
whether a dependent variable (y), the ensemble gain, is related to more than one inde-
pendent variable (e.g. x1, x2, x3) in our case a number of ensemble characteristics and 
diversity measures. Multiple regression [21] allows the simultaneous testing and 
modelling of multiple independent variables. The model for a multiple regression 
takes the form: εββββ +++++= .....3322110 xxxy ; and we wish to estimate the ß0, ß1, ß2, etc. 
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by obtaining: .....3322110 ++++= xbxbxbby ; where the b's are the regression coeffi-

cients. In this paper we implement the quadratic model based initially on all 10 meas-
ures. We then implemented stepwise regression [20]. For modeling purposes we used 
only results from the training set. 

To investigate ensembles characteristics a variety of ensemble teams have to be 
created. Creation of a diverse range of classifier teams is a difficult task, due to the 
various measures and definitions applied to diversity. Without a standardized proce-
dure for creation of ensemble teams, we have chosen a classifier team size of 5 and 
enumerated all possible teams from the 12 available participant classifiers (2 classifi-
ers, each applied to the six colour spaces) resulting in 792 different ensembles. The 
majority voting combination strategy was applied to each of the groups and the abso-
lute gain obtained by this strategy over the best result of each group was used in the 
modelling experiments as the dependent variable. The table below shows the model 
statistics for the model containing all 10 measures.  
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Fig. 1. Q-Q plot of residuals from a) 10-variable model b) the stepwise regression mode 

Table 6. Statistics +from the training model 

 Std Mn Wst Bst Q CR DF Ent  Int CF 

Pr 
-
0.0003 

-
0.0292 0.0004 0.0099 0.0017 

-
0.0179 0.0172 0.0162 0.0216 

-
0.0320 

Pr^2 0.0177 0.0103 
-
0.0005 

-
0.0007 0.0034 

-
0.0205 

-
0.0173 

-
0.0027 0.0047 0.0255 

mse = 6.70E-06;           R-Sq =0.99660 

Figure 1.a shows a Q-Q plot of the residuals obtained from the training model. De-
spite the existence of a few outliers, the residuals for the models approximate well the 
assumption of normality on which this model is based. The model is improved when 
stepwise regression is used (Figure 1.b). The mse of the model (6.7E-O6) R-Squred 
value (0.9966) indicate an excellent fit. The R-square value from the model indicates 
that this model accounts for almost all the variability with the specified variables. In 
this model the CF variable has the most significant contribution followed by the 
mean, and CF squared measures respectively. It is interesting to note the significant 
contribution of the mean accuracy (M) of the base classifiers. 
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The model was tested by using the beta values obtained from the training set and 
the statistics obtained from the test set. The mean squared error for the residuals (dif-
ference between predicted gains by the model and actual gains in the test set) was 
1.273 and 0.004 for the 10 variable regression model and the model obtained by using 
stepwise regression respectively. The stepwise regression model resulted in 4 inde-
pendent variables being removed (DF, and the squared Best, Q and CR) using a 
minimum p-value1 of 0.1 for a predictor variable to be removed. The predictive power 
of this model is indicated by the low mean square error (0.004) of the residuals  
between the predicted classification gain and the actual gain, in particular for the 
stepwise regression model. 

5   Conclusion 

In this paper we set out to investigate whether different colour space representation 
introduce useful diversity for the ensemble methods in colour texture classification. 
We did this by exploring whether there was any correlation between the diversity and 
the accuracy of ensembles, based on combining information from different colour 
domains. This we did by computing the correlation between the error rates of the 
different ensemble methods and the diversity measures using data from two different 
databases. Our results have supported the use of different colour spaces as a diversity 
inducement method based on the diversity measures investigated. Strong correlation 
was found between the accuracy and the diversity measures in the majority of the 
ensembles cases investigated. 

We have constructed and analyzed a diversity-based predictive model which uses 
multiple regression. Even though the model used was a simple quadratic based one, it 
has shown encouraging predictive qualities and can be used to form the basis of more 
complex and accurate meta-models for ensemble creation, which forms the basis for 
further investigations. 

A novel approach to integration of colour information from different colour spaces, 
have shown that it leads to significant improvements on results from individual colour 
spaces. We deviated from the general concern of most investigators on finding the 
‘best’ colour space, and instead advocated for a colour space combination strategy. 
The accuracy of classification has been shown to improve when multiple classifiers 
utilising the diverse information contained in individual colour spaces are used and 
the overall decision is obtained by combining the individual classifier outputs. Our 
results for the individual classifiers trained on the different colour spaces also indicate 
that the performance is not only dependent on the colour space used but also on the 
classifiers used.  
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Abstract. In this paper we propose an innovative combination strategy for a 
system using video and audio stream of a news video to automatically segment 
it into stories. In our approach, the segmentation is performed in two steps: first, 
shots are classified by combining three different anchor shot detection algo-
rithms using video information only. Then, the shot classification is improved 
by using a novel anchor shot detection method based on features extracted from 
the audio track. 

Experimental results demonstrate that the combined use of audio and video 
allows our system to perform better than approaches based only on video  
information in terms of both shot classification and news story segmentation. 

1   Introduction 

The segmentation of a news video into stories implies, at a first stage, the partition of 
the video into shots, i.e. sequences of frames, obtained by detecting transitions that 
are typically associated to camera changes. Once shots have been individuated, they 
can be classified on the basis of their content. Two different classes are typically  
considered: anchor shots and news-report shots. Successively, the given news video 
can be segmented into stories. This is obtained by linking each anchor shot with all 
successive news report shots until another anchor shot, or the end of the news video, 
occurs. Using this model for the stories, the news boundaries typically correspond to a 
transition from a news report shot to an anchor shot. 

In the following, we address the shot classification problem as the basic step for 
segmenting a news video into stories. Up to now, existing approaches have been 
mainly based on the extraction of information from the video frames by using image 
analysis techniques. Namely, they usually try to classify shots by detecting the pres-
ence or the absence of an anchorperson inside each considered shot. Anchor shot 
detection is typically performed either by defining a model of the anchor and using 
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some sort of template matching technique [1] or by searching shots with similar visual 
content that repeatedly occur during the whole news video [2,3]. 

On the other hand, in the last years the use of audio as an additional source of in-
formation for video segmentation has been rapidly raised up. Most of the presented 
proposals use audio features for directly individuating news boundaries, in order to 
strengthen or to weaken the boundaries provided from the analysis based on video 
techniques. They typically implement a silence detection module [4], assuming that 
the separation between a story and the successive one is given by a significant pause 
of the speaker. 

In this paper, we propose a novel strategy for combining two shot classification 
systems that respectively analyze the video and the audio tracks of a news video. In 
more detail, the proposed approach performs shot classification by means of a two 
steps process: a first classification is obtained by using the Multi-Expert System pre-
sented in [5] that employs just video information. Then, the classification is refined by 
using a novel anchor shot detection method based only on audio data. The aim of this 
second step is that of trying to recover errors made by the video-based approach. 

The system has been tested on a database that is comparable with those reported 
until now in the scientific literature [2]. In order to obtain more robust results from a 
statistical point of view, a k-fold cross validation has been also acted upon the used 
database. Executed tests show that the proposed system improves the performance of 
the multi-expert approach based on the video information only and performs signifi-
cantly better of each single expert. 

The organization of the paper is as follows: in Section 2 the architecture of our 
system is presented. In Section 3 the tests carried out in order to assess the perform-
ance of the proposed system are reported. Finally, some conclusions are drawn in 
Section 4. 

2   System Architecture 

As stated in the introduction, most of the systems that integrate audio and video data 
for news segmentation use audio features for directly individuating news boundaries, 
in order to strengthen or to weaken the boundaries provided from video-based tech-
niques. Our proposal is instead to use two shot classification systems (experts) that 
separately try to classify each shots by respectively using video data (video-based 
expert) and audio data (audio-based expert). As regards the strategy for combining 
these two systems, we propose the use of the audio-based expert for trying to recover 
some of the missed anchor shot detections and/or some of the false alarms produced 
by the video-based expert. In other words, audio information is used after a video-
based expert has furnished its decision and only in a limited number of cases. The 
rationale of this two stages approach lies in the fact that a typical combination of 
experts based on video features and experts based on audio features (by using, for 
example, them in a parallel combination scheme) is rather difficult. In fact, a shot 
classification system based only on audio features typically performs worse than a 
video-based system: hence, a parallel combination of the experts based on video and 
audio data could lead to a poor performance. Moreover, the combination of the out-
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puts of audio and video anchor shot detection systems is not trivial: in a news video 
there are some cases in which the images of a news-report flow on the screen, while 
the voice of the anchorman, not visible on the screen, comments on them. In this case, 
the analysis based only on the visual content should consider the shot as a news-report 
shot. On the contrary, a system that analyzes the audio track should attribute the shot 
to the anchor shot class. So the two systems disagree, but they both take the correct 
decision based on their own information. By limiting the use of audio information in 
the whole classification process to a selected number of cases, the above described 
problem should become much less critical. 

Once the strategy of combining audio and video information has been defined, it 
remains the problem of deciding when audio features should be used for trying to 
improve the performance of a video-based classification system. This could be diffi-
cult, since the output of a typical video-based expert is made only by a label indicat-
ing if the shot under analysis is attributed to the anchor class or to the news-report 
class [6]. However, we have recently proposed a video-based Multi-Expert System 
(MES) for shot classification [5,6]. The obtained results demonstrate the validity of 
this approach in improving the performance of each single video-based expert. On the 
other hand, various papers [7,8] have shown how to measure the classification reli-
ability of a MES. Starting from these considerations, we propose the following crite-
rion for deciding when using audio information: a video-based MES is first used for 
classifying a shot, then if its classification reliability is lower than a suitably fixed 
threshold, audio information is employed. The optimal value of the threshold can be 
computed by following the approach proposed in [8]. 

It is worth noticing that the importance of a video-based MES is twofold: on one 
hand, it permits to achieve a better performance than that obtainable with a single shot 
classification system; on the other hand, it allows us to obtain a reliability measure of 
each video-based shot classification, as required for combining audio and video data 
within our approach. In order to take advantage of a MES approach, the audio-based 
expert can be realized by using a multi-expert approach, too. 

The proposed system architecture is then as follows: a first shot classification is 
performed by a parallel MES composed by video-experts. Each of the video-experts 
receives in input the list of all the shot boundaries of a news video together with the 
video itself and provides its own classification for each shot. Then, the combination 
module of the MES classifies each shot on the basis of the outputs of the video-
experts and of the chosen combining rule. 

The decision of the video-based MES, say CV, together with its associated reliabil-
ity RV is then entered into a decision engine (decisor). If the value of RV is lower than 
a suitably fixed threshold ThV, the decisor activates a second MES composed by ex-
perts based on the audio track, otherwise the final decision of the system is that taken 
by the video-based MES. Note that also the proposed audio-based MES provides the 
reliability RA of the performed classification. 

All summarized, we have the following decisional path: when the audio-based 
MES is activated, if its classification shows a reliability value RA higher than a given 
threshold ThA, the final decision of the system agrees with that of the audio-based 
MES, let us call it CA. Otherwise, the system assumes the decision of the video-based 
MES, i.e. CV. The rational of this choice lies in the fact that when both MES’s provide 



400 M. De Santo et al. 

 

a low reliable classification, it is better to trust the video-based MES, given that its 
absolute performances are typically better than those obtainable by the audio-based 
MES, as it will be confirmed by the tests made in the next Section. 

Let us note that the video-experts are based on three anchor shot detection algo-
rithms presented in the literature, while the audio-based MES is composed by three 
brand new anchor shot detection algorithms based on features extracted from the 
audio track of the news videos. 

In the following, we will first briefly describe the video-based MES, specifying 
how the chosen combining rule can be used within our approach. Then the algorithms 
proposed to perform the audio-based shot classification will be presented. Note that 
they all operate on the same feature vectors extracted from the audio track as de-
scribed in [9]. 

2.1   Video-Based MES 

The experts employed in the video-based MES implement the shot classification algo-
rithms proposed by Bertini et al. in [3], Gao and Tang in [2] and Hanjalic et al. in [1]. 
See [5] for a description of their main features and for details about the rationale in-
spiring their choice. Hereinafter, for the sake of simplicity, we will refer to these ex-
perts with the terms BER, GAO and HAN, according to the first three letters of the 
first author’s name. 

As regards the combining rule, it is important to outline that the output of selected 
experts is made only by a “crisp” label indicating if the shot under analysis is attrib-
uted to the anchor class or to the news-report class. Thus, only three combining rules 
can be suitably used in this case: the majority voting rule [8], the Naïve Bayes Rule 
[10] and the Behavior Knowledge Space (BKS) Rule [7]. Among them, the BKS rule 
was chosen, since it does not explicitly require the classifier independence assump-
tion. This characteristic is important because even if the selected shot classification 
techniques adopt complementary features, they all work on the same input source, i.e. 
a video shot. 

Moreover, it is worth noting that the BKS rule is able to provide a reliability of the 
performed classification (see [7] for details), as required by our system architecture. 

2.2   Audio-Based MES 

The three audio-experts perform classification in an unsupervised way, in the sense 
that no information about the number or the identity of the speakers is required. How-
ever, they use information provided from the video-based MES about the guess class 
of the feature vectors. Since the video-experts are all unsupervised, the whole au-
dio-video system can be seen as unsupervised too. 

Generally speaking, the proposed algorithms try to detect the part of the feature 
space where vectors belonging to the voice of the anchorman lie. In particular, they 
use the Rival Penalized Competitive Learning (RPCL) [11] algorithm, a learning 
algorithm typically used for training competitive neural networks. In a competitive 
neural network, after the training phase, each neural unit (or prototype, hereinafter 
denoted as wk) represents the centroid of one of the regions which the feature space 
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has been partitioned into. In other words, a net with k prototypes partitions the feature 
space into k regions. The RPCL algorithm is able to allocate an appropriate number of 
prototypes for a given input set of data, so overcoming the problem of the correct 
preselection of k. This is an important characteristic, since in our case we cannot a 
priori know the number of different speakers within a news video and then cannot 
establish a suitable value for k. All the audio-experts described below have been 
trained by using 30 prototypes. This number is surely sufficient to model the different 
number of speakers which can appear throughout a single news video edition. In order 
to perform the classification of a whole shot, each audio-expert uses a majority voting 
approach. All the classification results (votes) on the single feature vectors relative to 
the audio frames composing the shot are first collected; then the expert attributes the 
shot to the class which has obtained the higher number of votes. 

We also implemented the computation of a reliability measure of each classifica-
tion. For each sample to be classified, the reliability R is measured as follows: 

R = 1-N2/N1 (1) 

where N1 is the number of feature vectors attributed to the most likely class and N2 is 
the number of feature vectors attributed to the other class. The value of R ranges from 
0 (completely unreliable) to 1 (very reliable). 

In the following some further details are given about the three different classifica-
tion strategies adopted and the rule used for combining them. In particular, for each 
expert, the classification function C: Ai  {Anchor, News-report} used for assigning 
an audio sample Ai to one of the two possible classes will be reported. 

2.2.1   Audio-Expert A 
Among all the feature vectors generated from the audio track, only those belonging to 
audio frames that occur within shots classified as anchor shots by all the experts of the 
video-based MES are selected. These vectors are used to train a competitive network 
with the RPCL algorithm. Once the training phase ends, the network prototypes wk 
should represent the centroids of the regions where the majority of samples describing 
audio frames of the anchorman are concentrated. Therefore, it is possible to assume 
that vectors that are sufficiently far from each prototype should describe audio frames 
belonging to the voice of a speaker different from the anchorman. In order to take into 
account this consideration, the maximum distance (say, MaxDist) among all the dis-
tances of a vector of the training set from its nearest prototype is evaluated and used 
in the classification phase. In this phase an audio sample A is attributed to the anchor 
shot class if its distance from the nearest prototype is smaller than MaxDist*α (where 
α is a suitably chosen threshold greater than one), otherwise it is attributed to the 
news-report shot class. So, the class attributed to each audio sample Ai is: 
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being d(Ai,wk) the distance of Ai from the k-th prototype. 
The value of α can be chosen as the one that maximizes the classification perform-

ance on a suitable set of audio samples. 
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2.2.2   Audio-Expert B 
The training is performed in the same way as the previous expert. The difference is 
that, after the training phase, a different value MaxDist(k) is calculated for each of the 
k prototypes. This value represents the maximum distance between an input sample 
and the k-th prototype evaluated among all the cases in which the k-th prototype re-
sulted to be the nearest one to the input sample. So, in the classification phase, if the j-
th prototype is the nearest to the sample to be classified, the sample A is attributed to 
the anchor shot class if its distance is smaller than MaxDist(j)*β (where β is again a 
suitably chosen threshold greater than one), otherwise it is attributed to the news-
report shot class. In this way, a more accurate estimation of the regions where the 
audio samples of the anchorman are gathered should be obtained. In this case the class 
C attributed to the audio sample A is: 
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being again d(Ai,wj) the distance of Ai from the k-th prototype. 
Also in this case the value of β can be chosen as the one that maximizes the classi-

fication performance on a suitable set of audio samples. 

2.2.3   Audio-Expert C 
Differently from the previous two, this expert is trained by using all the feature vec-
tors computed from the audio track. Indeed, for reducing the computational cost of the 
training, only a part of the available data can be used, by sub-sampling the whole data 
set. Once the training phase ends, some of the training vectors are used to label a 
posteriori the obtained prototypes. As in the previous cases, these vectors belong to 
audio frames occurring within shots classified as anchor shots by the video-based 
MES. Here the basic idea is that of trying to individuate also the region of the feature 
space where samples belonging to other speakers (different from the anchorman) are 
present. The labeling is performed by first associating a counter count(wk) to each 
prototype wk, which evaluates the number of times it results to be the nearest one to 
the vectors selected for the labeling phase. Then, the prototypes whose associated 
counter is greater than a suitable chosen threshold γ are attributed to the anchor class, 
while the others are attributed to the news-report class. In this case, since all the  
prototypes wk are attributed to a class, say C(wk), the classification is performed by 
simply evaluating for each sample to be classified the nearest prototypes and by  
attributing to it the class of that prototype. More concisely: 

 ),(minarg)()( ki
k

ji wAdjwherewCAC ==  (4) 

The value of γ is chosen as in the two previous cases. 

2.2.4   The Combining Rule  
As regards the combining rule, since in this case each expert provides a reliability 
value together with its decision, a different rule with respect to the video-based MES 
is used. In particular, a dynamic selection criterion is adopted. For each shot Si to be 
classified, the class Ck attributed to it by each single expert Ek is collected. The reli-
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ability of each expert Rk is also computed by using eq. (1) and weighted by the prob-
ability Pk

 (C
k(Si)= correct class | Ck(Si) = guess class) that this expert takes the right 

decision when it decides for the class Ck(Si). This probability is estimated by adopting 
the method proposed in [10], which uses the so-called confusion matrix, i.e. the clas-
sification results of the expert on a reference set of samples. Then, the final decision 
of the audio-based MES, together with the associated reliability RA, coincides with 
that supplied by the audio expert that maximizes the value Rk * Pk. 

In formulas, the audio-based MES attributes each shot Si to the class C such that: 

 
k

iSC argmax)( = Pk
 (C

k(Si)= correct class | Ck(Si)= guess class)* Rk (5) 

3   Experimental Results 

Some efforts have been spent in the recent past by other researchers in building video 
databases for benchmarking purposes; in particular in [12] a database was built in 
order to characterize the performance of shot change detection algorithms. This data-
base, however, is not adequate for our aims, since it is made up not only of news 
video but also of sport events and sitcom videos, and the duration of news videos is 
only 20 minutes. A bigger database, composed of about 70 hours of video captured by 
the Linguistic Data Consortium during the last half of 1998 from CNN Headline 
News and ABC World News Tonight, has been made available to the participants to 
the TREC Video Retrieval Evaluation contest in 2004 (TRECVID 2004). Videos are 
in MPEG-1 format and are estimated to take up about 80 gigabytes. Unfortunately, 
these data are not publicly available outside the TRECVID contest. 

So, we have built a new video database. The acquisition was performed by means 
of a digital satellite decoder. We encoded the videos in the MPEG-1 format using the 
TMPGEnc encoder (ver. 2.01). The video is coded at 2 Mbit/s with a 704x576 frame 
size. As regards the audio signal, it has been extracted from the MPEG-1 stream by 
using the TMPGEnc, so obtaining data into the MP2 format. Then, the MP2 files were 
converted into the wave format at 44.1 kHz rate and 16 bits per sample, by using the 
Winamp2 waveOut plug-in. 

The database used in this paper (over six hours) is composed by nineteen news vid-
eos from the main Italian public network (namely, RAI 1). Particular care was taken 
in order to include in the database different news editions from this TV-network. It is 
worth noting that the database used here is part of a bigger one (over nine hours) 
employed for testing the MES proposed in [6]. From that database we removed all the 
editions shorter than seven minutes. In those editions, in fact, almost all the stories 
were commented by the anchorperson himself. Then, the audio information cannot be 
useful employed within our approach, since the hypotheses made by the proposed 
audio-experts are no longer valid. However, all the stories of the short editions are 
typically included (and expanded) within the long editions of the same day, so this 
does not appear as a limitation of our approach in real cases. 

In order to obtain a more realistic estimate of the performance of the proposed sys-
tem, a four-fold cross validation was performed. Therefore, we divided the nineteen 
videos of the database in four subsets. Then, we performed four tests: in each one, 
three subsets of the database were used as training set and one subset for testing. In 
each fold, the training set was used to calculate the Behavior-Knowledge Space ma-
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trix (see [7]) needed by the BKS rule and the threshold ThV on the reliability of the 
video-base MES. Moreover, it was used for choosing the thresholds (α, β and γ) 
needed by the three audio-based experts, for estimating the probabilities Pk needed by 
the dynamic selection rule and for calculating the threshold ThA on the reliability of 
the audio-based MES. The test set was instead used to test the single experts, the 
video-based and the audio-based MES and the proposed system. Hence, all the re-
ported results were obtained as the average of the performance on the four test sets. 

When dealing with unbalanced data sets, the system performance is typically re-
ported in terms of Precision and Recall [12,13]. Moreover, we will characterize the 
system performance by using also a unique figure of merits F [13] that combines 
Precision and Recall as reported in the following equation: 

F= (2 ⋅ Precision ⋅ Recall) / (Precision + Recall) (6) 

As a first step of our tests, we evaluate the performance obtained by the three 
video-experts and by the three audio-based experts. Table 1 reports the global per-
formance of each expert: as it could be expected, the audio-based experts perform 
sensibly worse than the video-based experts. The best audio-expert, in fact, exhibits a 
performance that is only comparable with the worst video-based expert (HAN). This 
poor performance is mainly due to the Precision value exhibited by these experts that 
instead give rise to a quite acceptable Recall. 

Table 1. The performance of the considered video-based and audio-based experts averaged on 
the four test sets. Standard deviations are reported in parenthesis 

Expert Recall  Precision F 

GAO 0.929 (3.645E-02) 0.817 (9.057E-02) 0.867 (4.609E-02) 
BER 0.845 (8.677E-02) 0.988 (8.164E-03) 0.909 (5.009E-02) 
HAN 0.644 (9.320E-02) 0.686 (7.265E-02) 0.664 (8.176E-02) 
Audio-expert A 0.581 (8.949E-02) 0.459 (6.056E-02) 0.507 (3.876E-02)  
Audio-expert B 0.774 (1.182E-01) 0.591 (1.096E-01) 0.669 (1.070E-01) 
Audio-expert C 0.695 (1,960E-01) 0.804 (9.299E-02) 0.736 (1.408E-01) 

When dealing with the evaluation of a MES, it is important to consider the per-
formance of the so-called oracle. The oracle is the theoretic MES that correctly clas-
sifies a shot as anchor shot or as news-report shot if at least one of the employed ex-
perts is able to provide the correct classification. It is evident that for a defined set of 
experts, the performance of the oracle is the upper bound of all the MES’s obtainable 
from the same set of experts by using any combining rule. 

In table 2, the performance of the oracle, of the proposed system and of the video-
based and the audio-based MES is reported. From the table it is possible to notice 
how the proposed video-based MES outperforms the best video-expert (BER) in 
terms of the both Precision and Recall, so giving rise to a better value of F. On the 
other hand, the audio-based MES outperforms the three audio-based experts in terms 
of both Precision and F, but performs considerably worse than the video-based MES. 
As regards the comparison of the audio-based MES with the single video-based ex-
perts, it can be noted that the former is able to outperform the HAN expert. Finally, it 



 Combining Audio-Based and Video-Based Shot Classification Systems 405 

 

is worth noting that the proposed audio-video system is able to further increase the 
Recall of the video-based MES. This is paid by an only slightly worse performance in 
terms of Precision, so giving rise to a better F value. 

Table 2. The performance of the oracle, of the proposed system, and of the video-based and of 
the audio-based MES. Standard deviations are reported in parenthesis 

 Recall Precision F 

Oracle 0.955 (3.972E-02) 1.000 (0.000E+00) 0.977 (2.111E-02) 

Proposed audio-video system 0.914 (2.177E-02) 0.990 (1.923E-02) 0.950 (1.208E-02) 

Video-based MES 0.885 (3.095E-02) 1.000 (0.000E+00) 0.939 (1.731E-02) 

Audio-based MES 0.728 (1.288E-01) 0.750 (3.170E-02) 0.735 (7.271E-02) 

To better understand the reasons of the obtained improvement, it is interesting to 
investigate which type of errors of the video-based MES is recovered by the proposed 
system. As illustrated in Section 2, the audio-based MES is activated when a video-
based MES classification does not reach the reliability threshold ThV. For each fold, 
this occurs when BER and HAN provide the same decision while GAO disagrees with 
them. In particular, it has been verified that the proposed system is able to recover, by 
using audio data, situations in which BER and HAN miss the detection of an anchor-
person, while GAO does not. 

Another very interesting way to examine the obtained results is showed by consid-
ering the data reported in table 3. Here, the performance of the proposed architecture 
is expressed in terms of the relative improvement with respect to the performance of 
the oracle. Such improvement has been calculated as: 

Exporacle

ExpstemproposedSy
par

parpar

parpar
RI

−
−

=  (7) 

being par ∈{Recall, Precision, F} one of the parameters defined for evaluating the 
performance and Exp a single expert or even a MES. 

Table 3. The relative improvement introduced by the proposed audio-video architecture with 
respect to the performance that can be obtained by using the oracle 

 RIRecall RIPrecision RIF 

Video-based MES 41.4% -- 28.9% 

Best video-based expert 62.7% 16.7% 60.3% 

Audio-based MES 81.9% 96.0% 88.8% 

The results reported in table 3 show that the proposed audio-video architecture is 
able to achieve an improvement of the F value obtained by the video-based MES that 
is about the 29% of the maximum possible improvement. 
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4   Conclusions 

Integrating audio and video data for performing story detection in news videos is not 
a trivial task. In this paper, we proposed a novel system for segmenting news videos 
into stories where three shot classification techniques based on audio features  
are combined and specifically used for recovering the errors of a video-based  
Multi-Expert System that occur when it classifies shots with a low reliability. 

Experimental results on six hours of news videos demonstrated that the proposed 
audio-video system performs better than approaches based on video information only. 
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Abstract. Face recognition systems often use different images of a sub-
ject for training and enrollment. Typically, one may use LDA using all the
image samples or train a nearest neighbor classifier for each (separate)
set of images. The latter can require that information about lighting or
expression about each testing point be available. In this paper, we pro-
pose usage of different images in a multiple classifier systems setting.
Our main goals are to see (1) what is the preferred use of different im-
ages? And (2) can the multiple classifiers generalize well enough across
different kinds of images in the testing set, thus mitigating the need of
the meta-information? We show that an ensemble of classifiers outper-
forms the single classifier versions without any tuning, and is as good as
a single classifier trained on all the images and tuned on the test set.

1 Introduction

Face recognition is becoming an increasing popular and relevant area of study.
The Face Recognition Grand Challenge (FRGC) sponsored by various US Gov-
ernment agencies is a prime example of the growing importance of improving
or benchmarking face recognition techniques [1, 2]. In this paper we focus on
2-D face recognition, which has been a subject of significant study [3, 4]. Two
dimensional face images are usually represented as high-dimensional pixel ma-
trices, where in each matrix cell is a gray-level intensity value. These raw fea-
ture vectors can be very large and highly correlated. Moreover, the size of the
training data is usually small. To combat these issues of very high feature cor-
relation, small sample size and computational complexity, the face images are
often transformed into a lower dimensional manifold. One of the most popular
techniques for linear transformation in feature space is Principal Component
Analysis (PCA) [5, 6]. PCA reduces the dimensions by rotating feature vectors
from a large highly correlated feature space (image space) to a smaller feature
space (face space) that has no sample covariance between the features. After
applying PCA to reduce the face space to a lower dimensional manifold, a single
nearest neighbor classifier or a linear discriminant classifier is typically used.

We will now introduce some terms and notation from biometrics that will
be used throughout the paper. Subject: A person or a subject in the training
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set is similar to a class or concept in data. This person can be associated with
multiple images in the training set; Training set: The training set is defined to
be all the images of subjects that are available for constructing the face space;
Gallery set: Gallery is the set of subjects enrolled in the database and can
either be the same as the training set or different. Due to a lack of enough data,
the gallery images are often used as the training set for constructing the face
space. However, gallery images in this paper comprise of the same subjects (but
images captured on a different date) and completely new subjects; Probe set:
Probe set is the “testing” set. The imagesin the probe set are typically of the
same subjects who are in the gallery set, but are taken at a later point in time.
The goal is to project the probe set into the trained face space and correctly
match it with the projected representative in the gallery.

Two dimensional face recognition presents a multitude of challenges when ap-
plied to conditions (including subjects) that weren’t part of the training set. An
example of this is a face space trained on a neutral expression if presented with
a smiling expression face space. Ideally, the face recognition algorithm should
be fairly insensitive to changes in the lighting direction and intensity or facial
expression. In addition, even if we try to control the face space of the train-
ing session and the testing session to have the identical lighting and expression
conditions, there still can be differences between the two caused by errors in
normalization, slight pose changes, illumination variations etc. Even if the same
controlled lighting environment is used, it can still cause illumination variations
if the testing set image is captured on a different day, for example.

One may construct a single classifier by combining possible variations in the
lighting direction and facial expression for constructing a face space. However,
PCA can potentially retain the variation in lighting direction, illumination, and
expression that is not relevant for recognition. The covariance matrix constructed
will capture both inter-class and intra-class variance. To maximize the inter-
class distance (across subjects) and minimize the intra-class distance (within
subjects), Linear Discriminant Analysis [7, 8] (LDA) can be used. But LDA
suffers from the small-sample size problem, and requires “enough” images of a
subject [9, 7]. Typically, researchers have proposed using at least 10 images of
each subject [10]. The goal is to correctly recognize a face, and not essentially
distinguish between different variations of a face. Also another challenge in 2-D
face recognition is that the subjects used in the testing or the probe set may
not be present in the training set. So, essentially, we need a classifier that can
generalize well enough, without overtraining on a specific face space.

We propose to utilize multiple classifier systems or ensembles in the biometric
problem of 2-D face recognition. We randomly sample from the acquired images
of a subject to construct face spaces. We construct 50 such face spaces for an
ensemble. Given 4 images (different expression and lighting conditions) of each
subject, we randomly sample 1, 2 and 3 images 50 times. We explain the data
in the subsequent sections. In the sections that follow, we will compare different
ways of defining the training set for using a classifier or a set of classifiers. We
can formalize the objective of this paper as follows:
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1. What is the best use of available multiple training images of a subject?
2. Can we construct a classifier or a set of classifiers that can be applied across

probe images with different expressions and/or lighting conditions? The goal
is to do as well if not better than the different single classifiers constructed
specifically to represent particular lighting and expression conditions.

2 Classifiers

In this section, we discuss in brief the PCA methodology, the MahCosine distance
metric as implemented in the CSU code [11], and the linear discriminant analysis
classifier or LDA. For both nearest neighbor and LDA, PCA methodology is
applied first. All the images are first normalized such that the pixel values have
a zero mean and unit variance.

2.1 PCA

The raw feature vectors are a concatenation of the gray-level pixel values from
the images. Let us assume there are m images and n pixel values per image. Let
Z be a matrix of (m,n), where m is the number of images and n is the number of
pixels (raw feature vector). The mean image of Z is then subtracted from each of
the images in the training set, ΔZi = Zi−E[Zi]. Let the matrix M represent the
resulting ”centered” images; M = (ΔZ1,ΔZ2, ..ΔZm)T . The covariance matrix
can then be represented as: Ω = M.MT . Ω is symmetric and can be expressed
in terms of the singular value decomposition Ω = U.Λ.UT , where U is an m x m
unitary matrix and Λ = diag(λ1, ..., λm). The vectors U1, ..., Um are a basis for
the m-dimensional subspace. The covariance matrix can now be re-written as

Ω =
m∑

i=1

ζi.Ui

The coordinate ζi, i ∈ 1, 2, ...m, is called the ζth
i principal component. It rep-

resents the projection of ΔZ onto the basis vector U. The basis vectors, Ui , are
the principal components of the training set. Once the subspace is constructed,
recognition is done by projecting a centered probe image into the subspace, and
the closest gallery image to the probe image is selected as the match.

Before applying PCA, the images are normalized and cropped resulting in an
image size of 130x150. Unwrapping the image results in a vector of size 19,500.
PCA reduces this to a basis vector count of m − 1, where m is the number of
images. PCA approaches to face recognition typically drop some vectors to form
the face space. A small number from the beginning and a larger number from
the end.

2.2 Distance Measure

A popular and simple classification technique in 2-D face recognition is the near-
est neighbor classifier. An image in the probe set is assigned the label that is
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closest in the gallery set. Various distance measures have been evaluated in the
realm of face recognition [12, 13]. For our experiments, we utilized the Mah-
Cosine distance metric [11]. Our initial experiments showed that MahCosine
significantly outperformed the other distance measures, such as Euclidean or
Mahalanobis distance measures.

The MahCosine measure is the cosine of the angle between the images af-
ter they have been transformed to the Mahalanobis space [11]. Formally, the
MahCosine measure between the images i and j with projections a and b in the
Mahalanobis space is computed as:

MahCosine(i, j) = cos(θij) =
|a||b|cos(θij)

|a||b|

2.3 Linear Discriminant Analysis (LDA)

LDA tries to achieve a projection that best discriminates between the the dif-
ferent subjects. PCA can be used to reduce the dimensionality before applying
LDA. The Fisherface is constructed by defining a d dimensional subspace in the
first d principal components [14]. Fisher’s method finds the projecting vectors
W, such that the basis vectors in W maximize the ratio of the determinant of
the inter-class scatter matrix Sb and the determinant of the intra-class scatter
matrix Sw.

W = argmax

∣∣WT SbW
∣∣

|WT SwW |
Let us define the number of subjects to be m and the number of images

(samples) per subject available for training to be si, where i is the subject
index. Then Sb and Sw can be defined as:

Sw =
m∑

i=1

∑
xk∈Xi

(xk − μi)(xk − μi)T

Sb =
m∑

i=1

si(μi − μ)(μi − μ)T

and where μi is the mean of vector of samples belonging to the class (or
subject) i, μ is the mean vector of all the samples. Sw may not be well estimated
if the number of samples is too small.

3 Data Collection

The data for this paper was acquired from that available from the University of
Notre Dame1 [2]. The subjects participate in the acquisition at week intervals

1 http://www.cse.nd.edu/∼cvrl
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FA-LF FA-LM FB-LF FB-LM

Fig. 1. Sample images of a subject in the training data

over a period of time. For the experiments in this paper, images were captured
either with two side lights on (LF) or with two side lights and a center light
on (LM). In addition, subjects were asked to have either a neutral expression
(FA) or a smile expression (FB). The nomenclature is as used by FERET [15].
The data was acquired during Spring 2002, Fall 2002, and Spring 2003. Figure 1
shows sample images of a subject captured under the four conditions.

We divided the data into training, gallery, and probe sets. To run multiple
trials, we randomly selected 10 times 121 subjects from an available pool of 484
subjects. For each of the 10 random runs, we utilized the same probe and gallery
sets. We report the mean and standard deviation in the rank-one recognition
rates on the probe and gallery sets. Each selected subject had four images for
FA-LF, FB-LF, FA-LM and FB-LM. The training set images were captured at
the first acquisition session. Then we took all the subjects that had at least three
acqusition sessions. The 2nd session of acquisition became the gallery set and
the last session became the probe set. This gave us 381 subjects for testing. This
ensured that only a small subset of subjects in the probe set was used in the
training set, and moreover there was a time-lapse element introduced in testing.
The probe sets, however, comprised of completely different images (even if of
same subjects) than the training set. There was no overlap whatsoever in the
images between the training and probe sets. We tried to mimic a setting that
may be used in a 2-D face recognition system — the subjects in the gallery may
not always be in the training data. Our probe sets always had different images
than the training set.

4 Multiple Classifier System

The applications of multiple classifier systems are becoming relevant in face
recognition. Beveridge et al. [14] used bagging without replacement; they ran-
domly sampled without replacement from their population of 160 subjects. They
showed that replicates produced by sampling with replacement can cause prob-
lems with the scoring methodology. We also sample without replacement, albeit
from the four different images available for each subject, thus always having at
least one representative of each subject in the training set. Lu and Jain [10]
randomly sampled within each class (or subject) to construct a set of the LDA
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classifiers. However, they had 10 images for each class. Wang and Tang [16]
recently used random subspaces to improve the performance of LDA classifier.
Lemieux and Parizeau [17] utilized a multi-classifier architecture also, but they
used four different classifiers: HMM, DCT, EigenFaces and EigenObjects. We
randomly sample from the set of images for each subject, and construct a set of
one nearest neighbor classifiers using the MahCosine measure. To establish the
generality of the classifiers, we evaluate on a varying set of expressions, lighting
conditions, and subjects.

We included LDA as a comparison benchmark, even though we had a smaller
set of images per subject than is typically used with LDA. We compared four
techniques. Please note that the number of basis vectors after the PCA was
m − 1, where m is the number of images considered as part of each of the
techniques. For example, if there are 121 images in the training set, then the
basis vector count is 120. (1) Single specialized face space: This is the face space
trained on a particular expression and lighting combination. In this type, a
single face space was constructed for each of the FA-LF, FA-LM, FB-LF, and
FB-LM. Thus, it is called specialized as each one is representative of a particular
lighting and expression combination. (2) Complete face space (All-1NN): This
is constructed using a 1-nearest neighbor classifier on a training set of size 484
(121x4), where each subject has four representative images in the training set.
We concatenated all the four images available of a subject and constructed a
single training set. The face-space was then constructed on all the concatenated
484 images. (3) All-LDA classifier using the four images per subject. Again, for
LDA we considered all the available images for each subject, giving us 121 classes
(or subjects) with four images (or examples) each. (4) Ensemble: We randomly
sampled (num =) one, two, and three images (from the four images) per subject
and constructed multiple classifiers. These will be referred to as Ensemble-1,
Ensemble-2, Ensemble-3. While we varied the number of images for each ensem-
ble, we maintained the same size of 50 classifiers. Each of the aforementioned
Ensembles had a different number of (randomly selected) training set images for
each subject. Given 121 subjects, Ensemble-1 had 121 images; Ensemble-2 had
242 images; and Ensemble-3 had 363 images. We can summarize our procedure
as follows:

1. For each k=1,2,..,K (where K is the number of classifiers, set as 50 in our
case.)
(a) Randomly select without replacement num images for each subject.
(b) Construct a face space, Xk. As we mentioned before, the number of

basis vectors after PCA is m − 1. Thus, the number of basis vectors for
Ensemble-1 is 120; for Ensemble-2 is 241; and for Ensemble-3 is 362.

(c) For each probe image, find the closest gallery image with Xk using the
MahCosine measure. Each individual classifier (k) assigns a distance
measure to the probe image.

2. Aggregate the distances assigned to each probe image by each Xk.
3. Rank order the images and compute the rank-one recognition rate. This is

the final rank-one recognition rate of the ensemble.
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5 Experiments

To test the suitability of multiple classifiers in this domain, we compare to classi-
fiers specialized for the lighting and expression condition, and to classifiers that
use all the available training images. In the specialized comparisons, our probe
and gallery sets were used separately for each expression and lighting combi-
nation (FA-LF, FA-LM, FB-LF, and FB-LM). Thus, each classifier was tested
four times and performances are shown in Table 1. The rows are the training
face spaces and the columns are the probe face spaces. Besides each specialized
classifier, we also indicate the performance obtained by All-1NN and All-LDA
in Table 2.

We did not tune the individual classifiers by dropping eigen vectors either
from “front” or “back” of the face space. Typically, the first couple of vectors
are assumed to carry the illumination variation [13]. One can also drop some low
variance eigen vectors from behind to further improve the individual classifiers.
However, to maintain the same performance benchmark across all classifiers we
retained all the eigen vectors. As part of our future work we propose to utlize a
validation set to tune the face spaces before applying them to the testing (probe)
sets. This is similar to the wrapper techniques deployed in feature selection
wherein a validation scheme is introduced for selecting the appropriate subset of
features. If the face space is tuned on the probe set, it can lead to overestimated
accuracies; a bias is introduced in developing the nearest neighbor classifier.

As evident by Table 1, the specialized classifier usually performs better if the
testing set comes from the corresponding set of conditions. However, we notice
that the classifiers trained on the LF lighting condition tend to perform better
on the LM lighting condition (than the corresponding LF lighting condition). It
could be that the LF classifiers are potentially overfitting on their space, thus
leading to a reduced accuracy. In addition, there can be implicit illumination
variations in the probe set that were unaccounted for. Similar results were noted
by Chang et al. [18]. Moreover, making a complete face space of all the avail-
able images performs better than the specialized classifier across the board. It is
perhaps not surprising that All-1NN does better than any Specialized classifier,
across all 4 conditions, since it has more representatives for each subject un-
der varying conditions. It is very much possible that the images captured under
exactly the same controlled environment, still have an implicit element of illu-
mination and pose variation. Having a diverse set of images in the training set
can help in such scenario. However, we expect that as the number of images in
the training set increases, the face-space can be overfit. This can require tuning
to get rid of the low variance vectors, as we are more interested in distinguishing
between subjects than between different variations of a subject. Surprisingly,
LDA does not perform as well as 1-NN with all the images. LDA’s performance
can be hurt by small-sample size in high dimensional spaces [7, 9]. We only have
four samples per class. Not having enough images per subject, we also run into
the curse of dimensionality problem. One may drop eigen vectors to improve the
performance of the LDA classifiers.
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Table 1. The rank-one recognition rates and the standard deviation for the Specialized

classifiers. The columns are the probe and gallery sets, and the rows are the training

sets

FA-LF FA-LM FB-LF FB-LM

FA-LF (Specialized) 0.660 ± 0.025 0.712 ± 0.01 0.649 ± 0.012 0.666 ± 0.017

FA-LM (Specialized) 0.649 ± 0.018 0.716 ± 0.009 0.637 ± 0.017 0.66 ± 0.014

FB-LF (Specialized) 0.603 ± 0.014 0.659 ± 0.014 0.711 ± 0.012 0.725 ± 0.007

FB-LM (Specialized) 0.583 ± 0.017 0.648 ± 0.015 0.699 ± 0.01 0.729 ± 0.015

Table 2. The rank-one recognition rates and the standard deviations of the Ensem-

ble methods, All-1NN, and All-LDA across the probe sets with varying lighting and

expression combinations (columns). The entries in bold indicate the best performances

FA-LF FA-LM FB-LF FB-LM

Ensemble-1 0.653 ± 0.017 0.717 ± 0.012 0.714 ± 0.013 0.738 ± 0.01

Ensemble-2 0.697 ± 0.014 0.739 ± 0.011 0.748 ± 0.011 0.76 ± 0.006

Ensemble-3 0.707 ± 0.009 0.743 ± 0.012 0.756 ± 0.009 0.769 ± 0.01

All-1NN 0.69 ± 0.01 0.73 ± 0.015 0.734 ± 0.0137 0.754 ± 0.01

All-LDA 0.569 ± 0.024 0.615 ± 0.021 0.604 ± 0.026 0.6601 ± 0.022

Table 2 shows the results of different sample sizes on the four different probe
sets. Due to a lack of space, we only include the performance obtained at the iter-
ation where the performance plateaued for the ensemble methods. Typically, that
was by the 10th iteration. We notice a consistent trend in the Table: Ensemble-2
and Ensemble-3 are fairly comparable and outperforming the other classifiers.
Moreover, both Ensemble-2 and Ensemble-3 generalize very well across differ-
ent sets of images, and exceed the accuracy obtained by both the Specialized
and All-1NN classifiers. Ensemble-3 is statistically significantly better at 95%
than All-1NN for FA-LM and FB-LF. And both the Ensemble-2 and Ensemble-
3 methods are statistically significantly better (at 95%) than the Specialized
classifiers tested on their corresponding face spaces. Ensemble power with fewer
images exceeds the single classifier with all the images. This is in agreement with
what is typically observed by the MCS community.

We note that Ensemble-1 is consistently lower than the classifiers with more
images, but (almost) always above the Specialized case. The FA-LF classifier is
slightly better than Ensemble-1. Constructing multiple classifiers of one image for
each subject may not be representative enough for each of the subsequent spaces,
as the training set size will be small. Typically, a learning curve can be plotted
to identify the “critical” amount of data for different domains as applicable for
a classifier. Also, we believe that randomly sampled images for each subject are
adding the “diversity” element in the ensemble. Various studies have shown that
different classifiers follow a learning curve that typically grows with the amount
of data and eventually plateaus [19, 20, 21]. Skurichina et al. show that bagging
with linear classifiers does not work for very small datasets or large datasets [20].
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6 Conclusions

We empirically evaluated various training set sizes by randomly sampling from
the available images for each subject. We showed that the multiple classifier
system of randomly sampled images achieves good performances across the dif-
ferent probe sets. We constructed our training and testing such that the testing
set not only contained images that were captured at a different time than the
training set images but also a set of unique subjects. This maintained the diffi-
culty of testing sets. Moreover, we tested the set of classifiers across four different
expressions and lighting conditions combinations. The changing environment of
the new images is a very important problem. We quote from a recent article from
the Government Security Newsletter: “It turns out that uncooperative subjects,
poor lighting and the difficulty of capturing comparable images often make it
difficult for face recognition systems to achieve the accuracy that government
officials might seek in large-scale anti-terrorism applications. [22]” Hence, we
tried to imitate that setting in our paper. Our results are indeed interesting in
this scenario, as we show that multiple classifier systems generalize better across
different kinds of images, without any explicit assumption, thus mitigating the
need of specialized and tuned classifiers.

As part of future work, we plan to extend our study to include increasing
number of subjects and study the effect of that on the face space as we resample.
We believe that as the number of subjects increase the face space constructed
from all the images might overfit, requiring a tuning by dropping eigen vectors
from the front or back. We also aim to introduce diversity metrics in our system
to understand the behavior of different classifiers in the ensemble. However, we
would like to utilize a separate validation set for any tuning to make the results as
generalizable as possible. We also propose to utilize more images of a subject and
implement a resampling framework for LDA as by Lu and Jain [10]. We believe
that multiple classifier systems will be generally applicable to the recognition
task due to an improved generalization on out-of-time and out-of-sample data.
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Abstract. Obtaining ground truth for hyperspectral data is an expen-
sive task. In addition, a number of factors cause the spectral signatures of
the same class to vary with location and/or time. Therefore, adapting a
classifier designed from available labeled data to classify new hyperspec-
tral images is difficult, but invaluable to the remote sensing community.
In this paper, we use the Binary Hierarchical Classifier to propose a
knowledge transfer framework that leverages the information gathered
from existing labeled data to classify the data obtained from a spatially
separate test area. Experimental results show that in the absence of any
labeled data in the new area, our approach is better than a direct applica-
tion of the old classifier on the new data. Moreover, when small amounts
of labeled data are available from the new area, our framework offers
further improvements through semi-supervised learning mechanisms.

1 Introduction

The deployment of hyperspectral sensors on-board the earth observing satellites
has generated large amounts of remotely sensed data, providing detailed hyper-
spectral images over extensive regions of the earth. A typical application is to
determine the land cover types corresponding to the spectral signatures in the
hyperspectral image, which can then be used, for example, to monitor changes
in the ecosystem over large geographic areas. However, while large quantities of
hyperspectral data are now available, obtaining reliable and accurate class labels
for each ‘pixel’ is a non-trivial task, involving either expensive field campaigns or
time-consuming manual interpretation of the hyperspectral images. Currently,
researchers obtain the class labels for a few pixels in an image (which typically
have 100,000+ pixels) and then attempt to label some other pixels in that same
image. Characterizing a new image is treated as a separate, independent clas-
sification problem. Note that factors such as atmospheric and light conditions,
topographic variations, etc., alter the spectral signatures corresponding to the
same land cover type over images acquired at different times and/or different
regions. Hence, näıve use of a classifier trained on data from one area to either
spatially or temporally different data without accounting for the variability of
the class signatures results in poor classification accuracies [2] [4]. Theoretically,
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an ideal approach would be to pool all images of interest and then extract train-
ing data sampled uniformly at random from this pool to form a classifier that
works on all these images. But a host of real-life issues such as non-availability
of all the data at a given time, ownership, poor performance due to spatial vari-
ability of class signatures, size of data, etc., currently prevent researchers from
being able to follow this path.

In this paper, we study a more feasible middle ground of how to exploit
the knowledge inherent in a classifier trained over one area to help classify the
data obtained (perhaps at a later time) from a spatially separate area. Our
framework exploits additional knowledge from existing classifiers. Specifically,
we use a multi-classifier system called Binary Hierarchical Classifier (BHC) [8]
for this purpose. The BHC automatically derives a hierarchy of the target classes
based on their mutual affinities. This hierarchy, along with the knowledge of
the features extracted at each node of the BHC tree, can be used to facilitate
the unsupervised classification of new data from the spatially separate area.
Besides the unsupervised setting, the framework presented can also be employed
in a semi-supervised scenario when very small quantities of labeled data are
available from the spatially separate area. We present results of experiments
that demonstrate the advantages of our proposed framework over other powerful
multi-classifier systems, such as the ECOC [3], for the purposes of knowledge
transfer for hyperspectral data.

2 Related Work

Given that obtaining labeled data, especially for remote-sensing applications is
difficult and time-consuming especially for remote areas, any scheme that can
leverage existing labeled data even from an area other than the one under con-
sideration, is very desirable. The advantages of using unlabeled data in a semi-
supervised setting to mitigate the sample size problems for hyperspectral data
was first studied in [16]. In this work both the labeled and the unlabeled data
samples came from the same image, i.e. from a common underlying distribution.

A related problem was addressed in the context of temporally varying remote
sensing images in [2]. Given an image t1 of a certain land area with a labeled
training set, the problem was to classify another image t2 of the same land area
obtained at a different time. A maximum likelihood classifier was first trained on
the labeled data from t1, assuming normal distribution of the class-conditional
density functions. The mean vector and the covariance matrix of the classes from
t1 were used as initial approximations to the parameter values of the same classes
from t2. These initial estimates to the classes from t2 were then improved via
EM using the corresponding unlabeled data. Experimental results on a couple of
multispectral images acquired at different times showed that utilizing the labeled
data from t1 yielded comparable classification accuracy with that of a maximum
likelihood classifier trained on the labeled data from t2.

Several online-learning algorithms [1] have also been proposed to deal with
the problem of temporally varying data distributions. Various possibilities of



Exploiting Class Hierarchies for Knowledge Transfer in Hyperspectral Data 419

applying such online techniques in a multi-classifier setting are outlined in [9].
Most approaches to the problem of population drift design the classifier as a
feedback system, in which it is assumed that there is a steady stream of objects
whose true labels are revealed immediately after classification by the existing
classifier. This additional knowledge of the true class labels may then cause
a change in the existing classifier [6]. While hyperspectral data obtained over
extensive regions (or different times) also faces a similar problem of ‘population
drift’, unlike the on-line frameworks, one does not have access to a streaming
set of labeled data samples.

While [2] demonstrates the advantage of using previously acquired knowledge
in classifying a novel image, the amount of knowledge transferred was restricted
by the classifier under consideration, namely the maximum likelihood classifier.
The only knowledge from the training data that was transferred in that frame-
work, were the estimates of the distributions of the class density functions in
the original feature space. Using other classifier systems might enable one to
extract and transfer more information from the available training data. It is in
this context that we propose using the BHC as the classifier in our knowledge
transfer framework.

2.1 Binary Hierarchical Classifier

The BHC [8] is a multi-classifier system that was developed primarily to deal with
multi-class hyperspectral data. The BHC involves recursively decomposing a
multi-class (C-classes) problem into (C-1) binary meta-class problems, resulting
in (C-1) classifiers arranged as a binary tree. The given set of classes is first
partitioned into two disjoint meta-classes, and each meta-class thus obtained
is partitioned recursively until it contains only one of the original classes. The
number of leaf nodes in the tree is, thus, equal to the number of classes in
the output space. The partitioning of a parent set of classes into two-meta-
classes is not arbitrary, but is obtained through a deterministic annealing process,
which encourages similar classes to remain in the same partition. Thus, as a
direct consequence of the BHC algorithm, classes that are similar in the input
feature space are lumped into the same meta-class higher in the tree. Interested
readers are referred to [8] for details of the algorithm. Each internal node of
the BHC utilizes a Fisher discriminant and a Bayesian classifier. To combat the
small sample size problems, the dimensionality of the feature space is reduced
by recursively combining highly, correlated adjacent hyperspectral bands [7].
This best-bases method of feature extraction makes use of class information,
as the correlation between bands varies among the classes, thereby yielding an
interpretable feature space.

Recent empirical evaluations have shown that the BHC offers comparable clas-
sification accuracies with that of other multi-classifier systems such as the ECOC
[15]. Moreover, the BHC also reveals a lot of knowledge inherent in the training
data. The hierarchy of classes, for instance, might be useful as the relationships
between classes in one area might still hold in another new area. Further, since
the best-bases feature extraction method makes use of class-specific information
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in deciding the set of adjacent bands that are to be merged, this information can
also be exploited in the new area. Finally, the Fisher discriminant makes use of
both within-class and between-class covariances, which can also be helpful as we
might expect similar correlations between the classes in the new area.

3 Knowledge Transfer Framework

Let us assume that we have hyperspectral data from two spatially separate areas,
area 1 and 2. Let us also suppose that for area 1, there is an adequate amount
of labeled data to build a supervised classifier. We first consider the situation
where all the data from area 2 is unlabeled (unsupervised case). Subsequently, the
impact on design and performance of the proposed framework is studied when
labels are provided for a small part of the data from area 2 (semi-supervised
case).

3.1 Unsupervised Case

In the absence of any labeled data from area 2, the first step in the knowledge
transfer framework is to use the training data from area 1 to generate the cor-
responding BHC tree. We then attempt to transfer the knowledge in this BHC
to area 2.

The first approach was to use the hierarchy of classes and the best bases
feature extractors of the area 1 solution, but modify the binary classifiers in this
multiclassifier system to account for the changed statistics of the spatially sep-
arate data. This was achieved via the EM framework [14] in which the training
data was used to initialize the EM algorithm and the spatially separate data
from area 2 was treated as the unlabeled data. Mixtures of Gaussians were used
at each node of the BHC tree, with the number of Gaussians corresponding to
the number of classes at each node. Each Gaussian was initialized with the mean
and the covariance of the corresponding class in the training data. The initial
estimates were then used to determine the posterior probabilities of the corre-
sponding classes in the spatially separate area. EM iterations were performed
until the average change in the posteriors between two iterations fell below a
threshold [2] [14]. Thus, an updated Fisher-m feature extractor was computed
at each node based on the statistics of the meta-classes at that iteration.

An analysis of the results showed that, while this approach was somewhat
better than a direct application of the old classifier, the errors were mostly
concentrated in a few classes. A closer inspection revealed that the spectral sig-
natures of these classes had changed sufficiently enough for them to be grouped
differently in the BHC hierarchies if there had been adequate amounts of labeled
data from area 2. This suggested that we should have obtained multiple trees
from area 1 so that some of them would be more suitable for the new area.

Thus our second approach was to introduce different randomizations into
the training data and generate a BHC tree for each such randomization. The
design space for the BHC tree also offers a lot of possibilities for randomizing its
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tree generation process. Some of the factors that were varied are the percentage
of available training data, the number of features available at each node and
also the process of generating meta-classes (top-down versus bottom-up) [8]. To
account for the possibility of changing priors of classes, another set of BHC
trees was generated by randomly altering the priors of the classes in the training
data. Bagging - a popular method for generating classifier ensembles was also
used to generate a set of BHC trees. Finally, in an attempt to account for the
changes in class spectral signatures, a fourth set of classifiers was generated by
randomly switching the labels of a small percentage of the data-points for each
class. Note that in the absence of any labeled data from area 2, there is no way
of evaluating which of the randomly generated BHC trees best suits the spatially
separate data. Hence, we can only generate an ensemble of classifiers using the
training data, hoping that the ensemble contains some classifiers that are better
suited to area 2.

The Q-diversity measure [10], which indicates the degree of correlation be-
tween a pair of classifiers, was used to ensure the diversity of our classifier ensem-
ble. Each tree in the classifier ensemble was made to label the data from area 2
and these labels were then used to obtain the Q- diversity measure between each
pair of classifiers. The classification results of a smaller set of classifiers with the
lowest average pairwise Q-measure (i.e., higher diversity) were then combined
via simple majority voting.

3.2 Semi-supervised Case

If there are adequate amounts of labeled data from area 2, one can just train
a classifier using the available labeled data. But for small amounts of labeled
data, we would expect the two knowledge transfer mechanisms discussed earlier
to be superior especially if they exploit this added information. In this section,
we generalize both knowledge transfer methods in order to leverage the labeled
data, and also determine how much labeled data is required from the spatially
separate area before the advantages of transferring information from the old
solution disappear.

The EM-based method was modified to perform constrained EM instead.
Simply stated, in this technique, the E step only updates the posterior proba-
bilities (memberships) for the unlabeled data, while fixing the memberships of
the labeled instances according to the known class assignments.

The ensemble based approach was modified in two stages. First, after the
set of classifiers was pruned to improve the diversity of the ensemble by using
the Q-diversity measure, we went through another round of pruning to include
only those classifiers with higher classification accuracies on the labeled data.
A scheme similar to the on-line weighted majority algorithm as detailed in [11]
was used to weight the different classifiers. In the weighted majority algorithm,
all classifiers are assigned a weight. Prior to learning, the weights of all the clas-
sifiers are the same, and then as each data sample is presented to the ensemble,
a classifier’s weight is reduced if it misclassifies that example. At the end of
this learning, all those classifiers that have better classification accuracies on the
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incoming data will have higher weights. Then for each new example, the ensem-
ble returns the class that gets the maximum total weighted vote over all the
classifiers. This weighted majority scheme ensures that the performance of the
ensemble is not much worse than that of the best individual predictor, regardless
of the dependence between the members of the ensemble [11].

The labeled data was also used to initialize the mean vectors and the co-
variance matrices of the meta-classes, at the nodes of the binary trees in the
Q-diversity measure pruned ensemble. The labeled and the unlabeled data from
area 2 were then used for constrained EM in each of the binary trees. The classi-
fication results of the resulting ensemble were then combined using the weighted
majority algorithm as detailed above.

4 Experimental Evaluation

In this section, we provide empirical evidence that in the absence of labeled
data from the spatially separate area, using knowledge transfer is better than
the direct application of existing classifiers to this new area. We also present
results showing that with small amounts of labeled data from the new area,
our framework performs better than the current state-of-the-art ECOC multi-
classifier system [3] with SVMs [5] as the binary classifiers.

4.1 Datasets

The knowledge transfer approaches described above were tested on hyperspectral
datasets obtained from two sites: NASA’s John F. Kennedy Space Center (KSC),
Florida [12] and the Okavango Delta, Botswana [4]. In both these datasets, the
labeled data (area 1) was subsampled such that 75% of the data was used for
training and 25% as the test set. For both cases, a second test set was also
acquired from a spatially separate region (area 2). Since the spatially separate
test set comes from a different geographic location, various factors such as the
sun angle, shadow and other temporal factors cause a natural variation of the
hyperspectral signatures. This variation in spectral signatures along with the
changes in the apriori probabilities of the landcover classes offers an ideal setting
to test the knowledge transfer framework. While the numbers of classes in the
two regions vary, we restrict ourselves to those classes that are present in both
regions.

4.2 Experimental Methodology

For our experiments, we used a BHC based on the Fisher-m feature extractor
and the posterior probabilities were obtained by soft combining. Adjacent hy-
perspectral bands that were highly correlated were merged using the best bases
feature extraction technique [7] prior to applying the Fisher feature extractor.
Adjacent bands were merged until the ratio of the training samples to the num-
ber of dimensions was at least five at each node of the classifier tree [13]. For
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Table 1. Average unsupervised classification accuracies for the spatially separate test

sets

Baselines Knowledge Transfer Approaches

Name Old BHC Old ECOC Ensemble BHC Old BHC Ensemble BHC
+SVM +Maj. Vote + EM +EM +Maj. Vote

KSC 61.84 (0.60) 64.27 (0.27) 64.4 (0.10) 65.82 (2.86) 65.12(1.97)

Botswana 73.04 (2.25) 75.22(0.65) 74.82(0.75) 79.13 (1.96) 79.8 (1.8)

both the unsupervised and the semi-supervised cases, the classification accura-
cies were obtained by averaging over 5 different samples of the training data
(from area 1) or the labeled spatially separate data (from area 2) as the case
may be.

The ensemble of BHC trees was generated by varying the percentages of
available training data (5 different rates), the number of features available at
each node (10 different subsets), the top-down and bottom-up generation of the
BHC tree, by randomly altering the priors of the classes in the training data
(40 such randomizations), bagging (40 samplings with replacement) and by ran-
domly switching the labels of a small percentage (10%) of the data-points for
each class (40 such randomizations). Thus, a total of 220 different randomiza-
tions of the BHC were generated from the original training data. The Q-diversity
measure was then used to prune the existing ensemble such that the final en-
semble contained the 10 classifiers with the lowest average pairwise Q-measure.

For the ECOC system, the code matrix was generated using the technique
proposed in [3]. SVMs with Gaussian kernels were trained for each binary prob-
lem induced by the code matrix. The The implementation and the tuning of the
SVM classifiers followed the same method as in [15] with 40% of the available
labeled data as the validation data.

4.3 Results and Discussion

Unsupervised Case: First, the BHC, the ECOC-SVM and the BHC-Ensemble
built on the training data from area 1 were used without any modification to clas-
sify the data from the spatially separate area 2. Table 1 shows the classification
accuracies obtained by the baseline and the knowledge transfer approaches on
the area 2 data. As a frame of reference, the classification accuracies on the area
1 test set for the BHC and the ECOC-SVM are 93.05%(±1.17) and 93%(±1.03)
for the KSC dataset. For the Botswana dataset the corresponding classification
accuracies are and 94.52%(±0.79) and 95.63%(±0.95) respectively.

It can be seen from Table 1 that when the unlabeled data from area 2 is
used via EM to update the statistics of the meta-classes in the BHC tree, the
resulting BHC tree performs better than the old BHC. However, updating the
BHC ensemble via semi-supervised learning does not provide any additional
gains.

The Botswana dataset benefits a lot more from the information in area 1
than the KSC. While the area 1 and area 2 data of the Botswana dataset were
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Fig. 1. Average semi-supervised classification accuracies for the KSC dataset

obtained from the same flightline [4], the area 2 data for the KSC was obtained
from a different subset of the flightline [12]. Therefore, the greater disparity in
the spectral signatures of the classes between the two areas in the KSC dataset
limits the amount of knowledge that can be transferred from one area to another.

Semi-supervised Case: Fig. 1 and Fig. 2 show the learning curves for the KSC
and the Botswana dataset when labeled data is available from area 2. It can
be observed from Fig.1 and Fig.2 that the ensemble with the weighted majority
vote does not offer any advantage over the other classification systems, especially
when there is an adequate amount of labeled data. For both the KSC and the
Botswana datasets, an examination of the weights assigned to the classifiers
of the ensemble showed that when the number of labeled samples per class
(> 10) was high, the classifiers in the ensemble had almost equal weights. Hence,
the accuracy of the ensemble was limited by the classification accuracies of its
constituent classifiers.

Similar to the unsupervised scenario, using the data (labeled and unlabeled)
from area 2 with EM to update the statistics of the classifiers improved the
classification accuracy of the old BHC for the KSC dataset (Fig. 1). For the
Botswana dataset the old BHC with EM showed an improvement only when a
sufficient number of labeled samples per class (> 10) were available from the
spatially separate area. This may be due to the complexity of the classification
problem (14 classes as opposed to 10 in the KSC) or due to a poor choice of the
labeled data samples. The high values of standard deviation seem to hint at the
latter reason.

By adapting the BHC ensemble components via constrained EM some of
them became more effective for the new area. The weighted majority algorithm
was then able to exploit this differentiation to produce a knowledge transfer
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Fig. 2. Average semi-supervised classification accuracies for the Botswana dataset

framework that proved a clear winner for small amounts of labeled data. As
more labeled data becomes available from area 2, classifiers trained on that
data will perform at least as well if not better than the updated classifiers from
area 1. The amount of labeled data from area 2 required for this cross-over is
surprisingly a lot especially for the Botswana dataset where knowledge transfer
is more effective because of the reason mentioned earlier.

5 Summary and Conclusions

We initially thought that the BHC would be particularly well-suited for knowl-
edge transfer since it provides not only a class hierarchy but also the feature
extractors that are suitable for resolving the dichotomies involved at the dif-
ferent stages of the hierarchy. In particular, it would be more effective than
alternative classifiers, including the maximum likelihood based approach investi-
gated earlier. However, in this application the data characteristics change fairly
substantially from area to area, demanding more elaborate adjustments. The
best suited class hierarchies as well as the most appropriate feature extractors
change at least incrementally as one moves to a new area. We were able to cater
to both these needs by (i) using the weighted majority combining approach on
an ensemble of trees so that trees more suitable for the new area get higher
weights, and (ii) using constrained, semi-supervised EM that can adjust the fea-
ture spaces as well as classification boundaries based on both labeled/unlabeled
data acquired from the new area. Against this combination, the alternative of
building a new classifier from scratch using a powerful and suitable method
(ECOC-SVM) was advantageous only when over 30 labeled samples/class were
available from the new area for KSC. For Botswana, where the two areas are
more similar, the composite knowledge transfer approach was superior even when
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80 labeled samples/class were available from the new area. In addition, our ap-
proaches provide computational advantages since fewer iterations are required
for model parameters to converge because of good initialization based on prior
knowledge.
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Eden, İbrahim 366
Ekenel, Hazim K. 366
Eklund, Neil 376
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