

Lecture Notes in Artificial Intelligence 3464
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Sven A. Brueckner
Giovanna Di Marzo Serugendo
Anthony Karageorgos
Radhika Nagpal (Eds.)

Engineering
Self-Organising Systems

Methodologies and Applications

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Sven A. Brueckner
Altarum Institute
3520 Green Court, Suite 300, Ann Arbor, MI 48105-1579, USA
E-mail: sven.brueckner@altarum.org

Giovanna Di Marzo Serugendo
University of Geneva, Centre Universitaire d’Informatique
24 rue Général-Dufour, 1211 Geneva 4, Switzerland
E-mail: Giovanna.Dimarzo@cui.unige.ch

Anthony Karageorgos
University of Thessaly, Department of Computer and Communication Engineering
37 Glavani - 28th October Str., Deligiorgi Building, 4th floor, room D3/4
382 21 Volos, Greece
E-mail: karageorgos@computer.org

Radhika Nagpal
Harvard University, Division of Engineering and Applied Sciences
Computer Science Dept., 235 Maxwell Dworkin, 33 Oxford Street, Cambridge
MA 02138, USA
E-mail: rad@eecs.harvard.edu

Library of Congress Control Number: 2005926500

CR Subject Classification (1998): D.2.11, C.2.4, C.2, D.2.12, D.1.3, D.4.3-4, H.3,
H.4, K.4.4

ISSN 0302-9743
ISBN-10 3-540-26180-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26180-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11494676 06/3142 5 4 3 2 1 0

Preface

The spread of the Internet, mobile communications and the proliferation of new
market models, such as e-commerce, has resulted in the whole information in-
frastructure operating as a global dynamic system. The complexity and the
inherent dynamism of the resulting global system require software capable of
autonomously changing its structure and functionality to meet dynamic changes
in the requirements and the environment without immediate human interven-
tion. In particular, contemporary software applications must provide highly cus-
tomised services to a huge user population by dynamically adapting to personal
requirements. Furthermore, new maintenance approaches need to be followed,
for example continuously running software should evolve on run-time to meet
ever-changing user requirements. Finally, new ways for handling exceptions and
component failure and replacement, as well as changes in the environment are
required, for example as is the case in networks including large numbers of smart
computing entities, such as ad hoc sensors and MEMs devices. In large intercon-
nected software systems such tasks cannot be achieved by approaches involving
direct supervision and centralised management.

A way to meet requirements of this kind is to utilise the emergent properties
of distributed interacting software referring to concepts such as self-organisation,
self-regulation, self-repair and self-maintenance. However, in artificial systems,
environmental pressures and local interactions and control may lead to unpre-
dicted or undesirable behaviour. Understanding how to engineer the correct self-
organising behaviour is thus an issue of major concern.

Self-organising applications (SOAs) are able to dynamically change their
functionality and structure without direct user intervention to meet changes in
requirements and their environment. The overall functionality delivered by SOAs
typically changes progressively, mainly in a nonlinear fashion, until it reaches
(emerges to) a state where it satisfies the system requirements at the time, and
therefore it is termed self-organising or emergent behaviour. Self-organising be-
haviour is often the result of the execution of a number of individual application
components that locally interact with each other aiming to achieve their local
goals, for example systems that are based on agents or distributed objects. The
main characteristic of such systems is their ability to achieve complex collective
tasks with relatively simple individual behaviours, without central or hierarchical
control.

A major open issue is therefore how to engineer desirable self-organising be-
haviour in SOAs and how to avoid undesirable ones, given the requirements
and the application environment. To address this issue, approaches originating
from diverse areas such as nonlinear optimisation, knowledge-based program-
ming and constraint problem solving are currently being explored. Furthermore,
SOA engineers often take inspiration from the real world, for example from biol-

VI Preface

ogy, chemistry, sociology and the physical world. Typical examples of SOAs are
systems that reproduce socially based insect behaviour, such as ant-based sys-
tems, artificial life, or robots. Although the results achieved so far are promising,
further work is required until the problem is sufficiently addressed.

This book is complementary to a sister volume published in 2003, which
aimed at establishing the field of Engineering Self-organising Systems and it
focused on the foundations of self-organising systems. This year the emphasis
is on methodological aspects and on applications of self-organising approaches.
The book comprises revised versions of papers presented at the Engineering Self-
organising Applications (ESOA 2004) workshop, held during the Autonomous
Agents and Multi-agent Systems conference (AAMAS 2004) in New York in
July 2004, and selected invited papers from leading contributors in the self-
organisation field.

Part I contains three papers related to state of the art of self-organising sys-
tems. Wolf and Holvoet review historical definitions of the terms self-organisation
and emergence and provide new aggregated definitions of each term supported by
examples. Subsequently, Bar Yam demonstrates the limitations of decomposition-
based engineering for the development of highly complex systems using multi-
scale analysis. Ulieru then discusses the characteristics of adaptive information
infrastructures and their role in human/machine and hardware/software inte-
gration.

In Part II approaches to designing self-organising systems are presented.
d’Inverno and Saunders provide a mathematical formalisation and discuss the
advantages of using an agent-based approach to develop biologically plausible
models of stem cell systems in the context of a case study. Subsequently, Bour et
al. address the issue of the creation of visual ambiences based on the coordinated
activity of tiny computing entities distributed randomly on a 2D canvas that can
only change their own color and perceive their immediate neighbors. Edmonds ar-
gues on the use of adaptive approaches producing reliable self-organised software
systems. The argument is supported by defining a class of simple multi-agent sys-
tems and showing that it can be evolved to perform simple tasks. Nowostawski
et al. then propose an evolutionary computation model based on the theory of
hypercycles and autopoiesis. Subsequently, Hales discusses the use of tag dy-
namics to realize adaptive node behaviour in P2P systems (selfish vs. altruistic)
based on results of P2P simulations.

Part III describes applications of self-organisation in self-assembly and robotic
systems. Mamei et al. present self-organising spatial shapes in mobile particles
with minimal capabilities. Poulton et al. discuss a method for directed self-
assembly of 2-dimensional mesoblocks using top-down/bottom-up design. Sub-
sequently, Galstyan et al. present a stochastic model for adaptive task allocation
in robots. Finally, White and Helferty discuss the application of division-of-labor
principles to achieve emergent team formation in robot soccer.

In Part IV self-organisation models based on the use of stigmergy are dis-
cussed. Parunak and Brueckner discuss stigmergic learning for self-organising
mobile ad hoc networks (MANETs). Karuna et al. propose a stigmergy-based

Preface VII

approach for emergent forecasting in manufacturing coordination and control.
Subsequently, Foukia takes inspiration from natural systems and proposes a
self-organising approach for intrusion detction and response in networks. Along
a similar line, Armetta et al. describe a self-organising model for managing dy-
namic flow in production chains.

Part V concludes the book with industrial applications of self-organising sys-
tems. Lauterbach et al. describe self-organisation and fault-tolerance issues in a
wired peer-to-peer sensor network for textile applications. Subsequently, Brueck-
ner and Gerth discuss the application of distributed adaptive optimisation tech-
niques to digital car-body development. Finally, Graupner et al. propose adaptive
service placement algorithms for autonomous service networks.

We are grateful to the Programme Committee of the ESOA 2004 workshop
for their timely reviews, and their useful suggestions on improving the workshop.
All papers submitted to the workshop were reviewed by three members of the
Programme Committee.

December 2004 Sven Brueckner, Giovanna Di Marzo Serugendo
Anthony Karageorgos, Radhika Nagpal

Programme Committee

Marco Dorigo, IRIDIA, Université Libre de Bruxelles, Belgium
Noria Foukia, University of Geneva, Switzerland
Nigel Gilbert, University of Surrey, UK
Maria Gini, University of Minnesota, USA
David Hales, University of Bologna, Italy
Salima Hassas, University of Lyon, France
Manfred Hauswirth, Swiss Federal Institute of Technology, Switzerland
Margaret Jefferies, University of Waikato, New Zealand
Manolis Koubarakis, Technical University of Crete, Greece
Mark Klein, MIT Sloan School of Management, USA
Ghita Kouadri Mostefaoui, LIP6 Université Paris 6, France
Soraya Kouadri Mostefaoui, University of Fribourg, Switzerland
Marco Mamei, University of Modena and Reggio Emilia, Italy
Paul Marrow, BT Exact Technologies, UK
Philippe Massonet, CETIC, Belgium
Jean-Pierre Mueller, CIRAD, France
N.C. Narendra, Hewlett-Packard, India
Andrea Omicini, University of Bologna, Italy
Van Dyke Parunak, Altarum Technologies, USA
Daniel Polani, University of Hertfordshire, UK
Martin Purvis, University of Otago, New Zealand
Vitorino Ramos, Istituto Superior Tecnico, Lisbon, Portugal
Omer F. Rana, University of Cardiff, UK
Simon Thompson, BT Exact Technologies, UK
Mihaela Ulieru, University of Calgary, Canada
Paul Valckenaers, Katholieke Universiteit Leuven, Belgium
Chris Van Aart, University of Amsterdam, Netherlands
Tom Wagner, DARPA, USA
Franco Zambonelli, Universit di Modena e Reggio Emilia, Italyà

Table of Contents

Part I: State of the Art

Emergence Versus Self- rganisation: Different Concepts but Promising
When Combined

Tom De Wolf, Tom Holvoet . 1

About Engineering Complex Systems: Multiscale Analysis and
Evolutionary Engineering

Yaneer Bar-Yam . 16

Adaptive Information Infrastructures for the e-Society
Mihaela Ulieru . 32

Part II: Synthesis and Design Methods

Agent-Based Modelling of Stem Cell Self- rganisation in a Niche
Mark d’Inverno, Rob Saunders . 52

Ambient Cognitive Environments and the Distributed Synthesis of
Visual Ambiences

Guillaume Bour, Guillaume Hutzler, Bernard Gortais 69

Using the Experimental Method to Produce Reliable Self- rganised
Systems

Bruce Edmonds . 84

An Architecture for Self- rganising Evolvable Virtual Machines
Mariusz Nowostawski, Martin Purvis, Stephen Cranefield 100

Self- rganising, Open and Cooperative P2P Societies From Tags to
Networks

David Hales . 123

Part III: Self- ssembly and Robots

Spatial Shapes in Mobile Particles: The TOTA
Approach

Marco Mamei, Matteo Vasirani, Franco Zambonelli 138

–

o

o

o

o

o

a

Self- rganisingo

XII Table of Contents

Directed Self- ssembly of 2-Dimensional Mesoblocks Using
Top-Down/Bottom-Up Design

Geoff Poulton, Ying Guo, Geoff James, Phil Valencia,
Vadim Gerasimov, Jiaming Li . 154

Analysis of a Stochastic Model of Adaptive Task Allocation in Robots
Aram Galstyan, Kristina Lerman . 167

Emergent Team Formation: Applying Division of Labour Principles to
Robot Soccer

Tony White, James Helferty . 180

Part IV: Stigmergy and Related

Analyzing Stigmergic Learning for Mobile Ad-Hoc
Networks (MANET’s)

H. Van Dyke Parunak, Sven A. Brueckner . 195

Emergent Forecasting Using a Stigmergy Approach in Manufacturing
Coordination and Control

Hadeli Karuna, Paul Valckenaers, Bart Saint-Germain,
Paul Verstraete, Constantin Bala Zamfirescu,
Hendrik Van Brussel . 210

IDReAM: Intru ion Detection and Response Exe ed with Agent
Mobility – The Conceptual Model Based on Self- rganizing Natural
Systems

Noria Foukia . 227

Managing Dynamic Flow in Production Chains Through
Self- rganization

Frederic Armetta, Salima Hassas, Simone Pimont,
Emanuel Gonon . 240

Part V: Industrial Applications

A Self- rganizing and Fault-Tolerant Wired Peer-to-Peer Sensor
Network for Textile Applications

Christl Lauterbach, Rupert Glaser, Domnic Savio, Markus Schnell,
Werner Weber, Susanne Kornely, Annelie Stöhr 256

Applying Distributed Adaptive Optimization to Digital Car Body
Development

Sven A. Brueckner, Richard Gerth . 267

Self- rganisingo

s cut
o

o

o

s

a

Topics

Table of Contents XIII

Adaptive Service Placement Algorithms for Autonomous Service
Networks

Sven Graupner, Artur Andrzejak, Vadim Kotov, Holger Trinks 280

Author Index . 299

Emergence Versus Self- rganisation:
Different Concepts but Promising When

Combined

Tom De Wolf and Tom Holvoet

Department of Computer Science, Kuleuven,
Celestijnenlaan 200A, 3001 Leuven, Belgium

{Tom.DeWolf, Tom.Holvoet}@cs.kuleuven.ac.be

Abstract. A clear terminology is essential in every research discipline.
In the context of ESOA, a lot of confusion exists about the meaning
of the terms emergence and self-organisation. One of the sources of the
confusion comes from the fact that a combination of both phenomena
often occurs in dynamical systems. In this paper a historic overview of the
use of each concept as well as a working definition, that is compatible
with the historic and current meaning of the concepts, is given. Each
definition is explained by supporting it with important characteristics
found in the literature. We show that emergence and self-organisation
each emphasise different properties of a system. Both phenomena can
exist in isolation. The paper also outlines some examples of such systems
and considers the combination of emergence and self-organisation as a
promising approach in complex multi-agent systems.

1 Introduction

In the context of engineering self-organising applications there are two very im-
portant concepts to consider: emergence and self-organisation. In many multi-
agent systems and complex adaptive systems in general, a combination of the two
concepts is often used. As a consequence, much literature describes emergence
and self-organisation incorrectly as synonyms and this results in misconception
about their meaning. When engineering such applications, using a clear ter-
minology is very important. To clarify the distinction between emergence and
self-organisation, this paper’s goal is to propose a working definition of both
concepts. This definition is supported by characteristics that most literature
describes as essential for emergence or self-organisation.

Emergence and self-organisation each emphasise very different characteristics
of a system’s behaviour. Both phenomena can exist in isolation and they can
co-exist in a dynamical system. The first two sections of this paper describe each
phenomenon separately by giving a historic overview of the use of each concept,
proposing a working definition, and outlining their important characteristics to
explain and support the definition given. The third section relates emergence and
self-organisation to each other by discussing their similarities and differences.

S. Brueckner et al. (Eds.): ESOA 2004, 3464, pp. 1–15, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

o

2 T. De Wolf and T. Holvoet

This is illustrated with examples where each phenomenon occurs separately.
After that, a section is devoted to the combination of both phenomena in a
single system. Finally we conclude this paper.

2 Emergence

Typically, people describe ‘emergence’ as the phenomenon where global be-
haviour arises from the interactions between de local parts of the system. In
most literature there is nothing more than this vague description. Examples of
emergence around us are: global pheromone paths that arise from local path-
following and pheromone-dropping ants, the swarming movement of a flock of
birds, a traffic jam from the interactions of cars, etc.

The goal of this section is to develop a more detailed working definition for
‘emergence’. First, a historic overview of the early use of the concept is given.
The second part proposes a definition of emergence that is consistent with the
given history and outlines the important characteristics found in literature.

2.1 Historic Overview

Emergence is not a new topic [1]1. Conceptual constructs such as ‘whole before
its parts’ (i.e. to consider an explanation in terms of the global behaviour more
important than explaining how the system works in terms of local behaviour) and
‘Gestalt’ (i.e. a configuration or pattern of elements so unified as a whole that
it cannot be described merely as a sum of its parts), which resemble emergence,
can be found in western thought since the time of ancient Greeks.

However, ‘whole before its parts’ and ‘Gestalt’ refer to a pre-given coherent
entity, whereas emergence is not pre-given but a dynamical construct arising
over time. In the context of a dynamical system, the meaning of emergence is
not new either. It was used over 100 years ago by the English philosopher G.H.
Lewes in 1875. Lewes distinguished between ‘resultant’ and ‘emergent’ chemical
compounds coming about from a chemical reaction [2]:

(...) although each effect is the resultant of its components, we cannot
always trace the steps of the process, so as to see in the product the mode
of operation of each factor. In the latter case, I propose to call the effect
an emergent. It arises out of the combined agencies, but in a form which
does not display the agents in action (...). (italics added)

Lewes’ term was borrowed during the 1920s to form the backbone of a loosely
joined movement in the sciences, philosophy and theology known as emergent
evolutionism or proto-emergentism [1]. The concept of emergence was hotly de-
bated and mainly used against reductionism, which stated that a system can
be reduced to the sum of its parts. Proto-emergentism had few answers when it
came to understanding how emergence itself was possible, i.e. how the lower-level
inputs are transformed to the higher-level outputs during emergence.

1 The historic overview of emergence is based on [1].

Emergence Versus Self- rganisation 3

A second movement, called neo-emergence or complexity theory [1], tries
to address the lack of understanding emergence. The concept of emergence in
complex systems has very diverse scientific and mathematical roots: cybernetics,
solid state/ condensed matter physics, evolutionary biology, artificial intelligence,
artificial life, etc. There are actually four central schools of research that each
influences the way emergence in complex systems is studied:

– Complex adaptive systems theory, which became famous at the Santa
Fe Institute and which explicitly uses the term ‘emergence’ to refer to the
macro-level patterns arising from interacting agents (see [3], [4], and [5]);

– Nonlinear dynamical systems theory and Chaos theory, which pro-
mulgates the central concept of attractors, i.e. a specific behaviour to which
the system evolves. One kind of attractor is the so called strange attrac-
tor that the philosopher of science David Newman (1996)[6] classifies as an
authentically emergent phenomenon.

– The synergetics school, which initiated, among others, the study of emer-
gence in physical systems. They describe the idea of an order parameter that
influences which macro-level coherent phenomena a system exhibits [7].

– Far-from-equilibrium thermodynamics, which was introduced by Ilya
Prigogine and which refers to emergent phenomena as dissipative structures
arising at far-from-equilibrium conditions[8].

In short, the uses of the concept of emergence refer to two important charac-
teristics: a global behaviour that arises from the interactions of the local parts,
and that global behaviour cannot be traced back to the individual parts.

2.2 A Working Definition

It is important that the concept of emergence is used consistently in literature.
In the first place we need to be consistent with the historic use of the concept, as
outlined above. In current literature, this is not such a big problem w.r.t. emer-
gence. There is a larger misconception about the meaning of self-organisation,
which is discussed later. The definition that we propose as a working definition
for emergence is:

A system exhibits emergence when there are coherent emergents at
the macro-level that dynamically arise from the interactions between the
parts at the micro-level. Such emergents are novel w.r.t. the individual
parts of the system.

The definition above uses the concept of an ‘emergent’ as a general term to
denote the result of the process of emergence: properties, behaviour, structure,
patterns, etc. The ‘level’ mentioned refers to certain points of view. The macro-
level considers the system as a whole and the micro-level considers the system
from the point of view of the individual entities that make up the system.

This definition resulted from an extensive literature study, which identified
the most important characteristics found in literature. The remainder of this
part outlines these characteristics in order to explain the different aspects of the
proposed definition in more detail.

o

4 T. De Wolf and T. Holvoet

Micro-Macro effect [3, 9, 10, 1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21].
This is the most important characteristic and is mentioned explicitly in most lit-
erature. A micro-macro effect refers to properties, behaviours, structures, or pat-
terns that are situated at a higher macro-level and arise from the (inter)actions
at the lower micro-level of the system. We call such properties ‘emergents’. In
other words, the global behaviour of the system (i.e. the emergent) is a result
from the interactions between the individual entities of the system.

Radical Novelty [9, 11, 1, 22, 17, 19, 10, 20, 21, 13]. The global behaviour is
novel w.r.t. the individual behaviours at the micro-level, i.e. the individuals at
the micro-level have no explicit representation of the global behaviour. In terms
of reductionism this is formulated as: the macro-level emergents are not reducible
to the micro-level parts of the system (= non-reductionism). In literature there
are various formulations: ‘not directly described by’ [9, 10], ‘can not be reduced
to’ [11], ‘neither predictable nor deducible from’ [1], ‘without reference to the
global pattern’ [17], ‘the whole is greater than the sum of its parts’ [13].

From [22] we learn that we must pay attention. Stating that emergents are not
captured by the behaviour of the parts is a serious misunderstanding. Radical
novelty arises because the collective behaviour is not readily understood from the
behaviour of the parts. The collective behaviour is, however, implicitly contained
in the behaviour of the parts if they are studied in the context in which they
are found. Emergent properties cannot be studied by physically taking a system
apart and looking at the parts (=reductionism). They can, however, be studied
by looking at each of the parts in the context of the system as a whole.

Coherence [1, 14, 13, 12, 22, 16]. Coherence refers to a logical and consistent
correlation of parts. Emergents appear as integrated wholes that tend to main-
tain some sense of identity over time (i.e. a persistent pattern). Coherence spans
and correlates the separate lower level components into a higher level unity, i.e.
correlations between components are needed to reach a coherent whole [22]. This
coherence is also called ’organisational closure’ [12].

Interacting Parts [13, 17, 18, 14, 12]. The parts need to interact - parallelism
is not enough. Without interactions, interesting macro-level behaviours will never
arise. The emergents arise from the interactions between the parts.

Dynamical [1, 12, 3, 13, 17, 10, 20]. In systems with emergence, emergents
arise as the system evolves in time. Such an emergent is a new kind of behaviour
that becomes possible at a certain point in time. Therefore, as a dynamical
construct we can relate the appearance of emergents to the appearance of new
attractors in dynamical systems, i.e. bifurcations [1, 12].

Decentralised Control [13, 12, 16]. Decentralised control is using only local
mechanisms to influence the global behaviour. There is no central control, i.e. no
single part of the system directs the macro-level behaviour. The actions of the

5

parts are controllable. The whole is not directly controllable. This characteristic
is a direct consequence of the radical novelty that is required for emergence.
Centralised control is only possible if that central part of the system has a
representation of the global behaviour (e.g. a plan).

Two-Way Link [13, 20, 21]. In emergent systems there is a bidirectional link
between the macro-level and the micro-level. From the micro-level to the macro-
level, the parts give rise to an emergent structure (see ‘micro-macro effect’
above). In the other direction, the emergent structure influences its parts. Higher
level properties have causal effects on the lower level, i.e. downward causation.
For example, path-formation with ants: the emergent path influences the move-
ment of the micro-level ants because they follow the pheromones.

Robustness and Flexibility [13, 12]. The need for decentralised control and
the fact that no single entity can have a representation of the global emergent,
implies that such a single entity cannot be a single point of failure. Emergents are
relatively insensitive to perturbations or errors. Increasing damage will decrease
performance, but degradation will be ’graceful’: the quality of the output will
decrease gradually, without sudden loss of function. The failure or replacement
of a single entity will not cause a complete failure of the emergent. This flexibility
makes that the individual entities can be replaced, yet the emergent structure
can remain. For example, birds in a flock or cars in a traffic jam can be replaced
by other birds or cars, yet the flock and traffic jam phenomena remain.

3 Self- rganisation

An intuitive and linguistic definition of self-organisation given byDempster in 1998
[23] is: “Self-organisation refers to exactly what is suggested: systems that appear
to organise themselves without external direction, manipulation, or control.” The
‘organisation’ is related to an increase in the structure or order of the system be-
haviour. Like the section about emergence, this section develops a more detailed
working definition. An example of self-organisation is: ad-hoc networks that au-
tonomously built their structure as network devices detect each other’s presence.

3.1 Historic Overview

[Consider] what would happen in a new world, if God were now to
create somewhere in the imaginary spaces matter sufficient to compose
one, and were to agitate variously and confusedly the different parts of
this matter, so that there resulted a chaos as disordered as the poets ever
feigned, and after that did nothing more than lend his ordinary
concurrence to nature, and allow her to act in accordance with
the laws which He had established I showed how the greatest part
of matter of this chaos must, in accordance with these laws, dispose and
arrange itself in such a way as to present the appearance of heavens;
how in the meantime some of its parts must compose an earth and some
planets and comets, and others a sun and fixed stars.(René Descartes,
1637 [24], part 5)

Emergence Versus Self- rganisationo

o

6 T. De Wolf and T. Holvoet

The notion of spontaneous, dynamically-produced organisation is very old 2.
This is illustrated in the quotation above from [24], which captures the essence
of self-organisation. The phenomenon is only called “self-organisation” in the
years after the Second World War, in communities connected with cybernetics
and computing machinery [26, 27]. The first appearance of the term seems to be
in a 1947 paper by W. Ross Ashby [28].

Remarkably, Ashby gave a pretty clear explanation of what he meant by
‘organisation’: the organisation of a system is the functional dependence of its
future state on its present state and its external inputs, if any. Ashby understood
a system to be self-organising if the system changed its own organisation, rather
than being changed by an external entity. Ashby’s description closely matches
what we will define as self-organisation later.

The main research domains, where self-organisation was studied after its in-
troduction, were physics, computer science, and systems theory. In the physical
sciences self-organisation was extensively applied, from the 1970s onwards, to
pattern formation[29] and spontaneous symmetry breaking [30] and to cooper-
ative phenomena [31]. There has been confusion about what self-organisation
actually is. For example, [32] claimed that the transition from lamellar to tur-
bulent flow is an instance of self-organisation. Others have just as vigorously
denied this. There has been no resolution of the controversy, and no means to
resolve it [33]. In any case, just like with emergence there is confusion about the
meaning of “self-organisation”.

Within computer science, the primary applications have been to learning [34,
26]; to adaptation [35]; and to “emergent” or distributed computation [36, 37].
Also in economics [38, 39], and in ecology [40, 17], self-organisation has begun
to feature, complete with the now-expected disputes about whether certain pro-
cesses are self-organising.

In the 1980s, self-organisation became one of the ideas, models and tech-
niques bundled together as the “sciences of complexity” [41]. This bundle has
been successful at getting itself adopted by some researchers in essentially every
science, so the idea of self-organisation is now used in a huge range of disciplines.

One of those disciplines is multi-agent systems. Multi-agent systems are used
to model self-organising systems. Cooperation [42] and group formation [43]
in multi-agent systems make the system more organised, which is done au-
tonomously by the agents. A number of self-organising applications are realised
[44], such as in networks [45], in robotics, and the self-organisation of a vocabu-
lary between agents [46].

3.2 A Working Definition

It is important that the concept of self-organisation is used consistently in lit-
erature. In the first place we need to be consistent with the historic use of the
concept, as outlined above. Therefore ‘autonomy’ and ‘increase in structure’
should be included. In current literature, there is a often misconception about

2 The historic overview of self-organisation is based on the Ph.D. of C.R.Shalizi [25].

7

the meaning of self-organisation. For example, in [17, 16] the authors define self-
organisation when they actually define emergence according to our definition.
The definition that we propose as a working definition for self-organisation is:

Self-organisation is a dynamical and adaptive process where systems
acquire and maintain structure themselves, without external control.

The ‘structure’ can be a spatial, temporal or functional structure. ‘No exter-
nal control’ refers to the absence of direction, manipulation, interference, pres-
sures or involvement from outside the system. This does not exclude data inputs
from outside the system as long as these inputs are not control instructions.
Note, the identification of the ‘boundary’ of the system is extremely important
when deciding if a system is self-organising or not. It is important to specify
what we consider as an external control and what not.

An extensive literature study identified the characteristics, considered impor-
tant in literature. Below we outline these characteristics in order to explain the
different aspects of the proposed definition in more detail.

Increase in Order [25, 47, 20, 12, 11, 45, 15, 19, 44]. One important charac-
teristic of self-organisation is the ‘organisation’ part of the concept. [20] describes
organisation as the arrangement of selected parts so as to promote a specific func-
tion. This restricts the behaviour of the system in such a way as to confine it to
a smaller volume of its state space. This smaller region of state space is called an
attractor. In essence, organisation can be looked at as an increase in the order of
the system behaviour which enables the system to acquire a spatial, temporal,
or functional structure. Note that not every system that has an increase in order
needs to be self-organising. Complete autonomy of the behaviour is also needed
(see below).

In [25], a more formal approach is used to define self-organisation. The author
uses the notion of statistical complexity to denote the order mentioned in this
paper. An increase in statistical complexity is considered a necessary condition
for self-organisation. Statistical complexity measures the average amount of his-
torical memory stored in the process. This formulation covers a number of other
definitions found in literature. For example, ‘the arrangement of selected parts’
implies that the arrangement is a kind of historic memory of the process that
becomes bigger when more and more parts are arranged.

An increase in order implies that such systems start from semi-organised
or completely random initial conditions [44] (i.e. no historical memory). What
is also possible is that a system behaviour becomes less ordered (i.e. looses
historical memory) as a result from a change. Both situations leave room for an
increase in order through the process of self-organisation.

The formulation ‘as to promote a specific function’ in [20] is important. A
system with no order can not exhibit useful behaviour. But also a system with
too much order can have this problem. It is possible that processes organise
themselves into conditions so complex that no usable functionality can result
from it. In other words, there can be too much historical memory. The systems

Emergence Versus Self- rganisationo

8 T. De Wolf and T. Holvoet

in between, i.e. at the edge of order and chaos [48, 49], can exhibit a more flexible
and organised behaviour. Therefore, self-organisation needs to find a balance
between no order and too much order.

Autonomy [25, 47, 20, 12, 11, 45, 17, 19, 44]. Not every increase in order is
self-organising. The second important characteristic of self-organisation is the
absence of external control (‘self’). A system needs to organise without inter-
ference from the outside. Other formulations are: ‘without an external agent
imposing it’, ‘spontaneous, i.e. not steered by an external system’, ‘the con-
straints on form (i.e. organisation) of interest to us are internal to the system’,
etc.

Does the lack of external control and autonomy mean that such a system
can have no input at all? Of course not, in general, input is still possible as
long as the inputs are no control instructions from outside the system. In other
words, normal data input flows are allowed but the decision on what to do next
should be made completely inside the system, i.e. the system is autonomous. For
example, plugging in a PnP device in a computer can be considered as normal
data input. A self-organising behaviour could be the autonomous configuration
of drivers by the computer system. If a user has to install the drivers himself
then there is no self-organisation.

The notion of ‘boundary of a system’ becomes very important here. To be
able to say if a certain system is self-organising, we must first clearly define the
boundary of the system. We need to separate the inside from the outside.

Adaptability or Robustness w.r.t. changes [1, 45, 12, 44]: In self-
organising systems, robustness is used in terms of adaptability in the presence
of perturbations and change. A self-organising system is expected to cope with
that change and to maintain its organisation autonomously. In other words, a
self-generated, adaptable behaviour is needed [1], and taking into account past
experiences can be helpful [45]. [44] formulates this adaptability as: “a change
in the environment may influence the same system to generate a different task,
without any change in the behavioural characteristics of its constituents”.

This adaptability implies the need for the system to be able to exhibit a
large variety of behaviours. Self-organisation requires the evolution towards a
certain attractor in state space (i.e. towards a certain organised behaviour).
There are different kinds of attractors, from a point attractor that allows only
one behaviour, a limit cycle that allows periodic behaviour, towards a chaotic
attractor that allows a very large variety of behaviours. To be adaptable, the sys-
tem needs to make a selection between behaviours and at the same time consider
a variety of behaviours [12]. Too much variety, like the chaotic attractor, makes
the system uncontrollable. Too much selection, like the point attractor, results
in a system that is not flexible enough. This is related to balancing the system
on the edge of order and chaos [48, 49] in order to be able to promote a specific
function (see ‘Increase in order’). For example, a system’s initial conditions may
support many functions (i.e. chaotic attractor), but there need to be selective

9

pressures to focus the outcome [19]. For example, a system that has a chaotic
attractor can balance its behaviour on a specific part of that attractor.

Dynamical, i.e. far-from-equilibrium [25, 1, 11, 12, 50]: An essential prop-
erty of self-organisation is that it is a process. Over time, there is an increase in
order, i.e. a dynamic towards more order.

Related to the required adaptability in a rapidly changing context, self-
organising behaviour needs to be dynamic. Changes influence the organised
structure. In order to maintain that structure, there needs to be a constant
dynamic that handles these changes. In other words, the system needs to be
far-from-equilibrium in order to maintain the structure. Prigogine [50] consid-
ers far-from-equilibrium as one of the mathematically deduced requirements.
A far-from-equilibrium system is more fragile and sensitive to changes in the
environment, but also more dynamic and capable to react.

4 Comparing Emergence and Self- rganisation

To summarise, the essence of emergence is the existence of a global behaviour
that is novel w.r.t. the constituent parts of the system. The essence of self-
organisation is an adaptable behaviour that autonomously acquires and main-
tains an increased order (i.e. statistical complexity, structure, ...). In this section
we describe the similarities and the differences between both concepts.

4.1 Similarities

Because emergence and self-organisation each emphasise very different aspects
of the system behaviour there are few similarities. The main similarity is that
emergence and self-organisation are both dynamic processes arising over time.
Both are also robust. However, emergence is robust w.r.t. the flexibility in the
specific parts that cause the emergent properties (i.e. the failure of one single part
will not result in a complete failure of the emergent property). Self-organisation is
robust w.r.t. the adaptability to change and its ability to maintain the increased
order. Having few similarities does not exclude that both concepts are related
to each other. They complement each other when combined (see below).

4.2 Differences

The sections above show that emergence and self-organisation each emphasise
different characteristics of a system. Both concepts can exist in isolation, which is
discussed here. First we consider self-organisation without emergence, and then
emergence without self-organisation is described and illustrated with examples.

Self- rganisation without Emergence. Figure 1(a) schematically illustrates
a system with self-organisation, but no micro-macro effect. There are no con-
trols that come from outside the boundary of the system. The curved arrow

Emergence Versus Self- rganisationo

o

o

10 T. De Wolf and T. Holvoet

SYSTEM

(a)

MACRO-LEVEL

MICRO-LEVEL

(b)

SYSTEM

MACRO-LEVEL

MICRO-LEVEL

(c)

SYSTEM

Fig. 1. (a) self-organisation without emergence; (b) emergence without self-
organisation; (c) Combining Emergence and Self-Organisation

represents the internal organising process. The properties that are specific for
emergence, but not needed for self-organisation, are radical novelty, micro-macro
effect, flexibility w.r.t. the entities, and decentralised control. When one of these
properties is not present we have no emergence.

Consider certain kinds of multi-agent systems, called a ‘classical’ multi-agent
system in [19]. Such a system is autonomous and increases its order through
interactions. However, there is no need for the system to exhibit emergent prop-
erties, i.e. properties that are novel w.r.t. the agents in the system. When, for
example, every agent has a model of the global behaviour that has to be achieved,
this behaviour is explicitly present in the parts of the system and thus not novel.

A system where there is a single controlling agent that directs the global
behaviour (i.e. no decentralised control), needs an explicit plan in that controlling
agent. Of course, a self-organising process can re-elect a controlling agent when
other agents become more appropriate for the job, but there is no radical novelty.

Another important property of emergent systems is ‘graceful degradation’
because of the flexibility w.r.t. the entities. A single entity is not essential for
the functioning of the whole system. A self-organising system where each entity
is essential does not conform with the needed characteristics of emergence.

Emergence without Self- rganisation. Figure 1(b) schematically illustrates
the other situation. The system has a micro-macro effect, but it is not self-
organising. The essential properties here are the increase in order, no external
control and adaptability.

Emergence without self-organisation is definitely possible. For example in
physics, thermodynamics can emerge from statistical mechanics in a stationary
(and so non-self-organising) system [25]. A stationary process is a process where
the order is time-translation invariant, i.e. no increase in order. Consider a gas
material that has a certain volume in space. This volume is an emergent property
that results form the interactions (i.e. attraction and repulsion) between the
individual particles. However, such a gas is in a stationary state. The statistical

o

11

complexity remains the same over time, i.e. the particles can change place but
the amount of structure remains the same. In this case, we have a system whose
initial conditions are enough to exhibit emergent properties.

Adaptability refers to the need to reach a balance between selection of a
specific behaviour and the consideration of a large variety of behaviours. [45]
formulates this in terms of a balance between exploration and exploitation. A
system can exhibits chaos (i.e. considering a large variety of behaviours and also
constantly switching between these) that emerged from the interactions between
the micro-level parts. But, such a system is not self-organising because it does
not organise itself to promote a specific function.

5 Combining Emergence and Self- rganisation

In most systems that are considered in literature, emergence and self-organisation
occur together. Research in the multi-agent community and the complex adap-
tive systems community focuses on such systems. In very complex (multi-agent)
systems, i.e. distributed, open, large, situated in a dynamic context, etc., the
combination of emergence and self-organisation is recommended. In a complex
(multi-agent) system there is often a need to keep the individual entities rela-
tively simple (e.g. for scalability). Self-organisation requires an increase in order
that promotes a certain function or property. Simple individuals cannot direct
such a complex system, so the global coherent behaviour should emerge from the
interactions between the individuals. The other way around, a complex (multi-
agent) systems can be required to exhibit emergent behaviour. Because of the
complexity, it is impossible to impose an initial structure on such a system that
results in an emergent property. The only possibility to get a coherent behaviour
at the macro-level is to let that behaviour arise and organise autonomously, i.e.
self-organisation. Thus, combining both phenomena is a promising approach to
engineer a coherent behaviour for complex (multi-agent) systems.

Combining self-organisation and emergence in one system imposes the ques-
tion on how both phenomena should be linked to each other. To answer this,
there are multiple point-of-views possible. A first point of view considers self-
organisation as a cause, i.e. emergent properties in complex systems are the
result of a self-organising process[11, 17, 51], possibly combined with selective
pressures towards a certain emergent behaviour[49]. Thus, the interactions be-
tween the individual entities are the self-organisation. Self-organisation is situ-
ated at the micro-level of the emergent process. A second point of view considers
self-organisation as an effect, i.e. emergence results in self-organisation. Thus,
self-organisation is an emergent property. Figure 1(c) schematically illustrates
what is stated in [15]: “... self-organising behaviour occurs at the macro-level”.
This point-of-view is explained as a result of a characteristic of self-organisation,
i.e. the need for an increase in order. In an emergent system, at the micro-level
the dynamics are often very complicated and disordered. This means an increase
in order can only occur within the global level [19], i.e. the emergents become
more and more organised. The author of [19] also states that the system as a

Emergence Versus Self- rganisationo

o

12 T. De Wolf and T. Holvoet

whole is decreasing its order. The reason for this is that at the micro-level of
emergent systems the dynamics are often very complicated and disordered. Also
in [25] the author states: “... self-organisation increases [statistical] complexity,
while emergence, generally speaking, reduces it ...”. Thus, this need for increased
order seems to conform with self-organisation as an effect at the macro-level of
emergence.

Because emergence and self-organisation are often described in combination
with each other, a characteristic, that some authors ascribe to one of both phe-
nomena, is probably more specific for the combination of the phenomena. This
characteristic is Nonlinearity [1, 12, 50, 17]: A system, without a priori order
and where the emergence has to be self-organised, requires the “small cause,
large effect” principle and should have an intense focus on nonlinear interactiv-
ity. Nonlinearity enables those secondary effects at the macro-level that we call
emergents. This nonlinearity is often achieved through positive feedback that
amplifies an initial change. The result of the first amplification again triggers
positive feedback that amplifies the effect of the change. After a while, a number
of components have ‘aligned’ themselves with the configuration created by the
initial change and the configuration stops growing: the system has ‘exhausted’
the available resources. This alignment is often the emergent property of the
system. This way, an emergent can self-organise.

Nonlinear mechanisms are related to one of the properties of self-organisation,
mathematically deduced by Prigogine [50]. He states that at least one of the
components in the system must exhibit auto-catalysis. A system exhibits auto-
catalysis if one of its components is causally influenced by another component,
resulting in its own increase. Actually, auto-catalysis is a kind of positive feed-
back (e.g. pheromone reinforcements by ants) that can cause a nonlinear effect.

In a self-organising system, the emergence should be adaptive in order to have
a system that self-organises in the presence of a changing situation. When there
has been a nonlinear ‘alignment’ with positive feedback, the only possibility
to escape that alignment, and end up in a new alignment that is adapted to
the new situation, is to use negative feedback. In more complex self-organising
systems, there will be several interlocking positive and negative feedback loops,
so that changes in some directions are amplified while changes in other directions
are suppressed. In [17] the presence of positive and negative feedback is also
considered important for adaptive behaviour.

6 Conclusion

The starting point of this paper was that it is important to use a clear terminol-
ogy when engineering self-organising applications. The discussion showed that
the important concepts of emergence and self-organisation refer to two distinct
phenomena. They each emphasise different characteristics of a system. Confusion
in literature should be avoided by using each concept correctly and certainly not
as synonyms. Emergence emphasises the presence of a novel coherent macro-level
emergent (property, behaviour, structure, ...) as a result from the interactions

13

between micro-level parts. Self-organisation emphasises the dynamical and adap-
tive increase in order or structure without external control.

Both phenomena can exist in isolation, yet a combination of both phenomena
is often present in complex dynamical systems. In such systems, the complexity
is huge, which makes it infeasible to impose a structure a priori: the system needs
to self-organise. Also, the huge number of individual entities imposes a need for
emergence. For scalability we can not put an entire plan for the global structure
in a single entity; we need to keep the individuals rather simple and let the
complex behaviour self-organise as an emergent behaviour from the interactions
between these simple entities. A combination of emergence and self-organisation,
which is already applied in literature [19, 44, 52], is a promising approach to
engineer large-scale multi-agent systems.

This paper presents results from research sponsored by the research council
of the K.U.Leuven. The results have been obtained in the Concerted Research
Action on Agents for Coordination and Control - AgCo2 project.

References

1. Goldstein, J.: Emergence as a construct: History and issues. Emergence 1 (1999)
2. Lewes, G.: Problems of Life and Mind. Volume 2. Kegan Paul, Trench, Turbner,

London (1875)
3. Holland, J.: Emergence: from Chaos to Order. Addison-Wesley (1998)
4. Kauffman, S.: At Home in the Universe: the Search for the Laws of Self-

Organization and Complexity. Oxford University Press (1995)
5. Langton, C.: Studying artificial life with cellular automata. In Farmer, D., Lapedes,

A., Packard, N., Wendroff, B., eds.: Evolution, Games, and Learning: Models for
Adaptation in Machines and Nature, Proceedings of the Fifth Annual Conference
of the Center for Nonlinear Studies. (1986)

6. Newman, D.: Emergence and strange attractors. Philisophy of Science 36 (1996)
7. Haken, H.: The Science of Structure: Synergetics. Van Nostrand Reinhold, NY

(1981)
8. Nicolis, G.: Physics of far-from-equilibrium systems and self-organization. In

Davies, P., ed.: The New Physics. Cambridge University Press (1989)
9. Crutchfield, J.: Is anything ever new? considering emergence. Working Paper

94-03-011, Santa Fe Institute (1994)
10. Crutchfield, J.: The calculi of emergence: Computation, dynamics, and induction.

Working Paper 94-03-016, Santa Fe Institute (1993)
11. Heyligen, F.: Self-organization, emergence and the architecture of complexity. In:

Proceedings of the 1st European Conference on System Science, Paris (1989)
12. Heyligen, F.: The science of self-organisation and adaptivity. In: The Encyclopedia

of Life Support Systems. UNESCO Publishing-Eolss Publishers (2002)
13. Odell, J.: Agents and complex systems. JOT 1 (2002) 35–45
14. Odell, J.: Objects and agents compared. JOT 1 (2002) 41–53
15. Parunak, H.V.D., Brueckner, S.: Entropy and self-organization in multi-agent

systems. In: Proceedings of the Fifth International Conference on Autonomous
Agents, ACM Press (2001) 124–130

Emergence Versus Self- rganisationo

14 T. De Wolf and T. Holvoet

16. Engineering self-organizing applications workgroup - mission statement
(2003) (preliminary version available at http://cui.unige.ch/˜dimarzo/
esoawg/mission.pdf).

17. Camazine, S.: Self-Organization in biological systems. Princeton Studies in Com-
plexity. Princeton Univ Press (2001)

18. Parunak, H., Brueckner, S., Sauter, J.: ERIM’s Approach to Fine-Grained
Agents. In: In Proceedings of NASA/JPL Workshop on Radical Agent Concepts
(WRAC’02). (2002) (available at http://www.erim.org/˜vparunak/.

19. Parunak, H.D., Brueckner, S.A.: Engineering Swarming Systems. In Bergenti,
F., Gleizes, M.P., Zambonelli, F., eds.: Methodologies and Software Engi-
neering for Agent Systems. Kluwer (2004) (to appear, available online at
http://www.erim.org/˜vparunak/).

20. Self-organizing systems faq. online (2003) available at http : //www.calresco.org/
sos/sosfaq.htm.

21. Lucas, C.: Emergence and evolution - constraints on form. online (2003) (available
at http : //www.calresco.org/emerge.htm).

22. Bar-Yam, Y.: 0, Overview: The Dynamics of Complex Systems - examples, ques-
tions, methods and concepts. Studies in Nonlinearity. In: Dynamics of Complex
Systems. Westview Press (1997)

23. Dempster, M.B.L.: A Self-Organising Systems Perspective on Planning for Sus-
tainability. Master’s thesis, University of Waterloo, School of Urban and Regional
Planning (1998) (online at http : //www.fes.uwaterloo.ca/u/mbldemps/pubs/).

24. Descartes, R.: Discours de la méthode pour bien conduire sa raison, et chercher la
vérité dans les sciences. In: The Philosophical Writings of Descartes, 1985, Cam-
bridge University Press. Volume I., Leiden (1637) 111–151 translated in Discours
on the Method of rightly conducting one’s reason and seeking truth in the sciences.

25. Shalizi, C.R.: Causal Architecture, Complexity and Self-Organization in Time
Series and Cellular Automata. PhD thesis, University of Wisconsin at Madison
(2001) available at http://cscs.umich.edu/˜crshalizi/thesis/.

26. Yovits, M.C., Cameron, S., eds.: Self-Organising Systems: Proceedings of an In-
terdisciplinary Conference, Oxford, Pergamon Press (1960) vol. 2 of International
Tracts in Computer Science and Technology and Their Application.

27. Von Foerester, H., Jr., G.Z.Z., eds.: Principles of Self-Organization: Transactions of
the University of Illinois Symposium on Self-Organization, June 1959, New York,
Information Systems Branch, U.S. Office of Naval Research, Pergamon Press (1962)

28. Ashby, W.R.: Principles of self-organizing dynamic systems. Journal of General
Psychology 37 (1947) 125–128

29. Ball, P.: The Self-Made Tapestry: Pattern Formation in Nature. Oxford University
Press (1999)

30. Nicolis, G., Prigogine, I.: Self-Organization in Nonequilibrium Systems: From Dis-
sipative Structures to Order through Fluctuations. Wiley, New York (1977)

31. Haken, H.: Synergetics: An introduction: Nonequilibrium Phase Transitions and
Self-Organization in Physics, Chemistry, and Biology. Springer Verlag (1977)

32. Klimontovich, Y.L.: Turbulent Motion and the Structure of Chaos: A New ap-
proach to the Statistical Theory of Open Systems. Kluwer Academic (1990/1991)

33. Frisch, U.: Turbulence: The Legacy of A.N. Kolmogorov. Cambridge University
Press, Cambridge, England (1995)

34. Selfridge, O.G.: Pandemonium: A paradigm for learning. In Blake, D., Uttley, A.,
eds.: The Mechanisation of Thought Processes. Volume 10 of National Physical
Laboratory Symposia. Her Majesty’s Stationary Office, London (1959) 511–529

15

35. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. 2 edn.
MIT Press, Cambridge, Massachusetts (1992) First edition in 1975.

36. Forrest, S., ed.: Emergent Computation: Self-Organizing, Collective, and Cooper-
ative Phenomena in Natural and Artificial Computing Networks: Proceedings of
the Ninth Annual International Conference of the Center of Nonlinear Studies, Los
Alamos, New Mexico, 1989, Amsterdam, North Holland (1990)

37. Crutchfield, J.P., Mitchell, M., eds.: The Evolution of Emergent Computation,
Proceedings of the National Academy of Sciences. Volume 92. (1995)

38. Krugman, P.R.: The Self-Organizing Economy. Blackwell, Oxford (1996)
39. Shalizi, C.R.: Review of krugman, p.r. (1996) ‘the self-organizing econ-

omy’. In: The Bactra Review. Volume 11. (1996) available at
www.santafe.edu/˜shalizi/reviews/self-organizing-economy/.

40. Arthur, W.: The Green Machine: Ecology and the Balance of Nature. Basil Black-
well, Oxford (1990)

41. Pagels, H.R.: The Dreams of Reason: The Computer and the Rise of the Sciences
of Complexity. Simon and Schuster, New York (1988)

42. Steels, L.: Cooperation between distributed agents through self-organisation. In:
Proceedings of the First European Workshop on Modelling Autonomous Agents in
a Multi-Agent World, Elsevier Science Publishers Holland (1990) 175–196

43. Ghanea-Hercock, R.: Spontaneous group formation in multi-agent systems. In:
Proceedings of Workshop on Self-Organisation in Multi-Agent Systems. (2000)

44. Mostefaoui, S.K., Rana, O.F., Foukia, N., Hassas, S., Marzo, G.D., Aart, C.V.,
Karageorgos, A.: Self-Organising Applications: A Survey. In: Proceedings of the
International Workshop on Engineering Self-Organising Applications 2003. (2003)
(extended version in ’Engineering Self-Organising Systems - Nature-Inspired Ap-
proaches to Software Engineering’, ISBN: 3-540-21201-9, Springer Verlag).

45. Foukia, N., Hassas, S.: Towards self-organizing computer networks: A complex
system perspective. In: Proceedings of the International Workshop on Engineering
Self-Organizaing Applications 2003, Melbourne, Austrialia (2003)

46. Oudeyer, P.Y.: Self-organisation of a lexicon in a structured society of agents. In
Floreano, D., Nicoud, J.D., Mondada, F., eds.: Advances in Artificial Life (ECAL
99). LNAI 1674, Berlin, Springer-Verlag (1999) 726–729

47. Haken, H.: Information and Self-Organisation: A Macroscopic Approach to Com-
plex Systems. Springer Verlag, germany (1998)

48. Langton, C.G.: Computation at the edge of chaos: Phase transitions and emergent
computation. Physica D 42 (1990) 12–37

49. Kauffman, S.: The Origins of Order: Self-Organization and Selection in Evolution.
Oxford University Press (1993)

50. Glansdorff, P., Prigogine, I.: Thermodynamic study of structure, stability and
fluctuations. Wiley, New York (1978)

51. Mamei, M., Zambonelli, F.: Self-organisation in multi-agent systems: a middleware
approach. In: Proceedings of the International Workshop on Engineering Self-
Organising Applications 2003. (2003)

52. Hadeli, Valckenaers, P., Zamfirescu, C.B., Brussel, H.V., Germain, B.S., Holvoet,
T., Steegmans, E.: Self-organising in multi-agent coordination and control using
stigmergy. In: Proceedings of the International Workshop on Engineering Self-
Organising Applications 2003. (2003)

Emergence Versus Self- rganisationo

S. Brueckner et al. (Eds.): ESOA 2004, 3464, pp. 16 – 31, 2005.
© Springer-Verlag Berlin Heidelberg 2005

About Engineering Complex Systems: Multiscale
Analysis and Evolutionary Engineering

Yaneer Bar-Yam

New England Complex Systems Institute,
Cambridge, MA 02138

Abstract. We describe an analytic approach, multiscale analysis, that can dem-
onstrate the fundamental limitations of decomposition based engineering for the
development of highly complex systems. The planning based process is limited
by the interdependence of components and communication between design
teams. Thus, the construction of many highly complex systems should be pur-
sued by strategies modeled after biological evolution, or market economies,
where extensive planning is forsaken and multiple parallel design efforts com-
pete for adoption through testing in actual use.

1 Introduction

The recognition that highly complex system design and engineering requires new in-
sights and tools has become a topic of increasing interest and importance as the num-
ber of active elements in systems and the real time demands on a system increase [1-5].

One of the central realizations about highly complex systems is that analysis and
synthesis do not follow the same process. This is dramatically different from the case
with conventional engineering analysis and design. When a system is sufficiently
simple, analysis and synthesis occur by decomposition. Each part is understood, and
the function of the entire system can be recognized through a composition process of
the parts. When a system is highly complex this approach is not possible [1-3].

We have developed an analytic approach to the study of complex systems called
Multiscale Analysis [1,6-13] that directly addresses the complexity of the system and
its relationship to structure and function. This approach provides basic insight into de-
sign trade-offs. However, it also enables us to demonstrate quantitatively that design
by decomposition strategies is unable to create systems beyond a certain level of
complexity. This level is limited by the ability of a single agent (i.e. a human being)
to understand the interdependencies between the components. When higher levels of
complexity are necessary in order to design systems it is necessary to transition to an
alternative synthesis strategy. This is the strategy of evolutionary engineering.

Evolutionary engineering abandons many of the highly valued conventional sys-
tems engineering strategies of well planned and fully understood system. It replaces
these with the creation of a planned environment that fosters learning by doing and
enables unanticipated advances. This approach is the natural strategy for developing
highly complex systems because their behavior is ultimately untestable, discovery is a

LNAI

About Engineering Complex Systems: Multiscale Analysis and Evolutionary Engineering 17

key part of ongoing improvement, and the necessary time scale for use and improve-
ment is far shorter than what can be achieved by traditional cycles of planning and
implementation. The false sense of security in planning is inferior to the recognition
that the right environment is a better guarantee of rapid improvement and innovation.

Aspects of the evolutionary approach we describe [1-3] can be found in various
more traditional and recent approaches. Incremental engineering [14] and experience
based learning [15,16] are very traditional approaches in certain contexts. Recent ex-
tensions include spiral development and evolutionary acquisition [17] and adaptive
programming [18]. A discussion of various engineering approaches in relation to a
conventional understanding of evolution is provided in Ref. [19]. There are key dif-
ferences between the evolutionary approach we describe and other strategies. These
include an emphasis on parallel competitive development teams and the importance of
creating an ongoing fielded implementation strategy where coexistence of multiple
types of components are possible. This evolutionary process is most commonly asso-
ciated with the formation of complex biological organisms. A free market system is
also an example of an evolutionary system with particular features that are not present
in all evolutionary contexts.

In this paper we will describe briefly key concepts from multiscale analysis. We
will focus on their implications (1) for design decisions and (2) that limit the possibil-
ity of decomposition based design. Then we will describe historical experience with
large engineering projects, and some of the steps we have taken toward defining an
enlightened evolutionary engineering strategy.

2 Multiscale Analysis

Multiscale analysis [1,10] builds on the twin recognitions that scale and variety /
complexity are both necessary for effective performance of systems:

• Scale: A task requires a system to have sufficient “scale” of action. Here scale re-
fers to the number of elementary components that are coordinated in order to per-
form a task.

• Variety: A task requires a system to have sufficiently many distinct actions it can
take. Variety is measured as the logarithm of the number of distinct actions that
can be taken in a specified interval of time.

To explain these two issues in an intuitive way: it is possible to be effective at
some tasks by brute force, and at others by carefully choosing the right action to take.
When designing a system for its tasks, recognizing the degree to which scale and
complexity play a role in the design of the system is also directly relevant to the proc-
ess of design.

To understand the design implications of this analysis conceptually we note that
when components are acting in a coordinated way, they cannot act independently.
When high variety is required then components must be able to act independently.
When scale is required then components must act coherently. Thus there are various
degrees of tradeoff that are possible to achieve a particular amount of variety at each
scale of action.

18

The key to multiscale analysis of the variety of any system is that each of the com-
ponents has a limit on its variety—the logarithm of the number of distinguishable
states. Components can be individuals that act in performing tasks, or individuals that
manage or coordinate tasks or serve as communication channels. We do not assume
anything a priori about the specific tasks or actions of the components. They can be
the same or different from one another. The key is that each of them has a bound on
its variety. If we have a system that is formed of many components, and some of these
components are responsible for coordinating other components, then we can establish
limits on what particular organizational structures can do. It may be that the variety
associated with the coordination exceeds the variety of the components. This is true
even if the components that must be coordinated are relatively simple. It is also true if
the components have a high variety. The key is that quite generally, for a system of N
components, the coordination may require of order N times the variety of the individ-
ual components, even in a fixed configuration of coordination. This means we may
need N coordinating entities.

To understand the organizational limitations that are established by such an analy-
sis consider a hierarchical system. We can consider as a hierarchical structure either a
human organization with hierarchical chains of communication, or a hierarchically
decomposed engineering system with hierarchical specification. Indeed, these two
representations are synergistic, in that hierarchical organizations are generally the
mechanism by which hierarchically decomposed systems are generated. The difficulty
with this architecture is that there is a bandwidth limitation in the communication
channels. The channels of communication pass through individual components. If we
assume that each component has a limit on its variety, then we see that the communi-
cation channels are limited by the variety of their components.

This is a severe limitation on the variety of the system behavior, because in a more
networked structure it is possible for the components at the bottom of the hierarchy to
coordinate with each other directly in a way that would dramatically increase the vari-
ety of possible pairwise actions well above what can be coordinated through the hier-
archy. This illustrates the well known phenomenon in engineering of the explosion of
interface specification, and the dramatic efforts that are devoted to coordination of
components. Indeed, the point is that while in the conventional decomposition strat-
egy it is the components that are presumed to be the entities that require engineering,
when systems become highly complex it is the coordination that requires the effort of
engineering. Then the conventional strategy breaks down and other mechanisms are
necessary. The formal proof of this statement requires one subtlety, which is quantify-
ing the coordination above the level of behavior of an individual. The variety that is
most limiting for a hierarchical organization is variety on a scale that requires more
than one individual to perform a task, but is significantly below the number of indi-
viduals that form the system. It is the existence of large varieties at these intermediate
scales that is not possible for hierarchical organizations. Either a completely inde-
pendent or a completely dependent organizational behavior can be readily achieved.
We describe this formalism in several steps.

Quantitatively, the understanding of the requirements of variety was articulated in
Ashby’s Law of Requisite Variety. Recently this law has been generalized to consider

 Y. Bar-Yam

About Engineering Complex Systems: Multiscale Analysis and Evolutionary Engineering 19

the issue of scale as well as variety. In the generalization it is assumed that the system
is composed of a number of components, and that these components can be combined
to perform specific tasks that might require more than a single component to perform.

More specifically, we assume that the responding system is composed of a number
of subsystems, N, that are variously coordinated to respond to external contexts. The
number of possible actions that the system can take, M, is not more than mN, the prod-
uct of the possible actions of each part, m. We could directly apply the Law of Requi-
site Variety for that case, but we further constrain the problem of effective function by
assuming that effective actions require a sufficient variety at each scale of action cor-
responding to the requirements for action at that scale. At every scale, the variety of
the system must be larger than the variety necessary for the task. It is conventional to
measure variety, like information, in logarithmic units so that the total variety of a set
of independent components V = log(M) is the sum of the variety of the compo-
nents, V = Nv , where v = log(m) . If we assume a simple coordination mechanism
so that the system is partitioned into groups that are fully coordinated and that differ-
ent groups are independent of each other, then the variety of actions of each group is
the same as the variety of actions of any individual of that group, and the scale of ac-
tion is just the number of individuals in that group. For the entire system the variety at
scale k is D(k) = vn(k) where n(k) is the number of different k-member fully coor-
dinated groups needed to perform the entire task, which therefore at a minimum re-

quires N = kn(k) components to perform. The total variety of the task is propor-

tional to the total number of subsets of any scale V = D(k) .

With these assumptions, given a predetermined number of components N, the sys-
tem can, in the extreme, perform a task of scale N, with variety equal to that of one
component, or a task of scale one with variety N times as great. More generally the

equation (obtained from N = kn(k))

Nv = kD(k) (1)

can be considered a constraint on the possible behavior patterns (sum rule) of a sys-
tem due to different mechanisms of organization. It is often convenient to think about
the variety of a system, V(k), that has a scale k or larger, as this is the set of possible
actions that can have at least that scale,

V(k) = D(′ k)
′ k =k

N

(2)

Then the total variety of the system is V(1), and the sum rule can be written as:

V (k)
k=1

N

 = Nv
(3)

The sum rule given by equation (1) or (3) describes the existence of a tradeoff be-
tween variety at different scales. Increasing the variety at one scale by changing the
organizational form must come at the expense of variety at other scales. Our generali-
zation of the Law of Requisite Variety is directly relevant to the analysis of coordina-

20

tion mechanisms of a biological or social organization. Specifically, it tells us how
such coordination mechanisms are well or ill suited to the tasks being performed.
Given the constraint imposed by the number of components, a successful organization
has a coordination mechanism that ensures that the groups are coordinated at the rele-
vant scale of tasks to be performed. This simple and intuitive statement is captured by
the multiscale version of the Law of Requisite Variety.

A key issue is the concept of a hierarchical organization, of systems we build or of
human organizations that build them. In considering the requirements of multiscale
variety, we can state that in order for a system to be effective, it must be able to coor-
dinate the right number of components to serve each task, while allowing the inde-
pendence of other sets of components to perform their respective tasks without bind-
ing the actions of one such set to another. This now serves as a key characterization of
system organization. Specifically, the Multiscale Law of Requisite Variety implies
that in order for a system to be successful its coordination mechanisms must allow in-
dependence and dependence between components so as to allow the right number of
sets of components at each scale.

How do we describe a coordinator / manager? A manager specifies the state of the
subordinates and a coordination mechanism. We assume that at any particular time
the manager can only coordinate a particular subset, indexed by w, of the subordi-
nates, and at that time these subordinates are fully coordinated, while the others act
independently (one cannot be in two places at the same time). q(w) is the number of
subordinates that are being coordinated, which, for values of zero or one corresponds
to no coordination. A specification of the manager at a particular time thus can be
written (sm,w), where the state of sm specifies the states of all the coordinated subordi-
nates, while w specifies which subordinates are coordinated. For simplicity we do not
count the redundancy provided by the manager (who we assume does not do the ac-
tion only specifies it) and therefore sm is not needed in the description of the system
since it is redundant to the actions of the subordinates. We also neglect the informa-
tion in specifying w by treating the information as conditional on the coordination
mechanism. These assumptions can be relaxed without changing the conclusions.
Then we have the multiscale variety for a particular coordination state given by:

D(k | w) = v(N - q(w))δ k,1 + vδk ,q(w) (4)

Combining coordination states, each with a probability P(w) we have:

D(k) = P(w)
w
 δq(w),kv +δ k ,1 P(w)

w

(N − q(w))v (5)

This gives the expected bound on the total coordination:

V(2) = D(k) =
k= 2

N

 P(w)δ q(w), kv
w

k=2

N

 ≤ v
(6)

The inequality is the quite reasonable statement that the variety of the system for
scales larger than one individual cannot be greater than the variety of the manager.

 Y. Bar-Yam

About Engineering Complex Systems: Multiscale Analysis and Evolutionary Engineering 21

This coordination limitation is recursively applied to each level of managers for the
set of individuals under their supervision so that the mutual information between in-
dividuals (workers or managers) at one level of organization is limited by the manager
that supervises them. This implies, for example, that the combined mutual informa-
tion between all workers is no more than the variety of the first level supervisors. As-
suming that the variety of a manager is typically no more than the variety of a worker,
we would expect that the limit of mutual information to be N / B where B is the
branching ratio, i.e. the number of workers supervised by a single manager. Higher
level managers are similarly restricted in their ability to coordinate the managers at
the lower level. We note that in a conventional hierarchy when an upper level man-
ager coordinates parts of the organization, this information must be communicated
through the lower level managers. This also reduces the degree to which their own in-
ter-worker coordination can be performed (i.e. to the extent that the higher level man-
ager performs coordination, this reduces the capacity of the lower level managers to
coordinate).

We can make a more direct connection to multiscale variety if we consider a
somewhat generalized version of hierarchical control. In the generalized version of
the hierarchy managers exist at a certain level of authority, supervising a certain frac-
tion of the organization, but do not have a particular set of subordinates that they su-
pervise (the “matrix organization” [20] is an intermediate case). By not including the
constraint of a strict hierarchy that a manager has a particular subset of the individuals
and cannot coordinate others outside of this subset we obtain an upper bound on the
coordination of a more conventional hierarchy. If we include this additional con-
straint, then the coordination of the system is further limited since even only two indi-
viduals that are in different divisions of the organization require coordination by the
CEO. For the generalized hierarchical model, we can generalize the equations above
and reach a conclusion that

V(2) = D(k)
k= 2

N

 ≤ Cv
(7)

Where C is the number of managers. This states quite reasonably that the total variety
of actions greater than the scale of one individual is not greater than the total variety
of the managers. For managers having a certain limit on how many subordinates they

can control, so that managers at level l can coordinate up to Bl
 subordinates, we fur-

ther limit the number of those coordinated at larger scales by

V(Bl −1 +1) = D(k)
k = B l −1 +1

N

 ≤ C ′ l v
′ l ≥l

(8)

which reasonably states that the variety of behaviors associated with a number of in-
dividuals is only as great as the variety of the managers that can coordinate that num-
ber of individuals.

For example, we consider the role of the CEO and assign him/her the obligation of
determining those issues that are of relevance to the actions of a large proportion of
individuals that are part of the organization. If we consider 10% to be the threshold

22

fraction, then all decisions involving 10% of the individuals of the organization are
coordinated by the CEO. The maximal possible variety of such portions (at this scale
of action) is ten times the variety of a single individual. However, this cannot be done
when coordinated by a single individual, as the maximum is the CEO’s variety. More
generally, we can categorically state that, to the extent that a single individual is coor-
dinating the behavior of an organization, to that extent the coordination defined by
mutual information cannot have a higher variety than an individual.

We see that for a hierarchically coordinated system the combined conditional mutual
information of subunits of a manager cannot be greater than the variety of that manager.
This is not a problem for either of two cases (dictated by environmental conditions): if
the system has a simple coherent behavior, or if the manager exercises very little control
so that the workers are almost totally independent of each other. It is a problem, how-
ever when the behaviors of subunits themselves have a high variety (greater than that of
an individual) and must be coordinated. Thus, a hierarchical control system is well de-
signed for relatively simple large scale behaviors, or for systems with very distributed
control, but not for highly coordinated behaviors, i.e. when the coordination of these be-
haviors is more complex than a human being can communicate.

The recognition that hierarchical control is limited in its ability to coordinate was
articulated for free market systems sixty years ago.[21] This limitation has also been
recognized as relevant to the management of individual corporations based upon an
understanding of human information processing rather than communication.[22,23]
However, to our knowledge this is the first time that the limitations of hierarchical
control have been formally demonstrated.[10] The demonstration required the repre-
sentation of mutual information between multiple components described by multis-
cale variety.[1,10-13] This approach also demonstrates the limitations on capabilities
of systems that rely upon individuals as liaisons between corporate divisions. [20]

There is one form of hierarchical control that is not ruled out by our discussions.
When the set of possibilities is only a few, even if they are radically different from
each other (involving changes in the action of many individuals), then the coordina-
tion/decision can be made by a single individual. This implies that that aspect of the
organization is coherent, i.e., large scale and not of high variety. For example, the
choice of whether or not to go to war can be made by an individual with only two
possible decision states. However, this reflects the assumption that all aspects of the
internal coordination necessary for the two states are made by others. Although this
aspect of central control is not limited by our discussion, it is important to recognize
the applicability of limitations by other arguments: the availability of the necessary
information [21] and information processing to make the decision [22]. This informa-
tion is related to the structure of the decision making process. The process must be
able to contain prototypes of conditions and pair them with actions (or conditions and
actions with effects).

We can consider these concepts from a phenomenological point of view. Central-
ized coordination of components was characteristic of scientific management as ap-
plied to the economy of the USSR that specified the coordination of industrial enter-
prises. Failures of this system in providing agricultural products of appropriate
quantity but possibly more importantly of sufficient variety [1,24] led Gorbachev,

 Y. Bar-Yam

About Engineering Complex Systems: Multiscale Analysis and Evolutionary Engineering 23

First Deputy Prime Minster in charge of agriculture before becoming General Secre-
tary of the Central Committee of the Communist Party, to institute reforms that pre-
ceded the collapse of the Soviet Union.

In summary, a generalization of the Law of Requisite Variety suggests that the ef-
fectiveness of a system organization can be evaluated by its variety at each scale of
tasks to be performed. In its simplest form, when a system has a high degree of coor-
dination then it is large scale. When it is not coordinated, allowing for independent
component action, then it has high variety. The tradeoff of large scale action, as com-
pared to the variety possible when actions of components are independent provides a
direct analysis of system organization. While it does not specify that a particular sys-
tem is capable of performing a task, it can provide a necessary condition for such ef-
fectiveness. In considering biological and social systems, such analysis provides a
way of classifying their behavior and considering the functional role they play in sur-
vival and societal function. [1,5-10]

3 Enlightened Evolutionary Engineering

In the conventional systems engineering approach the project is recursively broken
into subparts. The parts are then put together, with the task of selecting and coordinat-
ing the subprojects the domain of the systems engineer. The failure rate of such engi-
neering projects in recent years has been remarkably high, costing many billions of
dollars. [1-4]

The traditional approach to large engineering projects follows the paradigm estab-
lished by the Manhattan project and the Space program. There are several assump-
tions inherent to this paradigm. First, that substantially new technology will be used.
Second, the new technology to be used is based upon a clear understanding of the ba-
sic principles or equations that govern the system (i.e. the relationship between energy
and mass, E=mc2, for the Manhattan project, or Newton's laws of mechanics and
gravitation F=-GMm/r2 for the space program). Third, that the goal of the project and
its more specific objectives and specifications are clearly understood. Fourth, that
based upon these specifications, a design will be created essentially from scratch and
this design will be implemented and, consequently the mission will be accomplished.

Large engineering projects today generally continue to follow this paradigm. Projects
are driven by a need to replace old "obsolete" systems with new systems, and particu-
larly to use new technology. The time line of the project involves a sequence of stages: a
planning stage at the beginning, giving way to a specification stage, a design stage, and
an implementation stage. The various stages of the process all assume that managers
know what needs to be done and that this information can be included in a specification.
Managers are deemed successful or unsuccessful depending on whether this specifica-
tion is achieved. On the technical side, modern large engineering projects generally in-
volve the integration of systems to create larger systems. Their goals include adding
multiple functions that have not been possible before, and they are expected to satisfy
additional constraints, especially constraints of reliability, safety and security.

24

The images of success in the Manhattan and Space Projects remain with us. What
really happens with most large engineering projects is much less satisfactory. Many
projects end up as failed and abandoned. This is true despite the tremendous invest-
ments that are made. The largest documented financial cost for a single project, the
Federal Aviation Administration (FAA) Advanced Automation System was the gov-
ernment effort to improve air traffic control in the United States. Many of the major
difficulties with air traffic delays and other limitations are blamed on the antiquated /
obsolete air traffic control system. This system, originally built in the 1950s, used re-
markably obsolete technology, including 1960s mainframe computers and equipment
based upon vacuum tubes [25], with functional limitations that would compel any
modern engineer into laughter. Still, an effort that cost $3-6 billion between 1982 and
1994 was abandoned without improving the system. While the failure of government
projects are frequently blamed on specific issues related to government acquisition, a
general survey of large software engineering projects in 1995 by the Standish Group
International [14] showed that such failures were widespread in both private and pub-
lic sector projects. This study classified projects according to whether they met the
stated goals of the project, the time table, and cost estimates. They found that under
20% of the projects were on-time, on-budget and on-function (projects at large com-
panies had a lower rate of under 10% success), over 50% of the projects were "chal-
lenged" which meant they were over budget, typically by a factor of two, they were
over schedule by a factor of two, and did not meet about two-thirds of the original
functional specifications. The remaining 30% of the projects were called "impaired"
which meant that they were abandoned. When considering the major investments of
time and money these projects represent, the numbers are staggering, easily reaching
$100 billion each year in direct costs. The high percentage of failures and the remark-
able percentage of challenged projects suggest that there is a systematic reason for the
difficulty involved in large engineering projects beyond the specific reasons for fail-
ure that one might identify in any one case.

Indeed, despite various efforts to improve acquisition of large systems, successors
of the Advanced Automation System that are being worked on today are finding the
going slow and progress limited [26]. From 1995 until today, major achievements in-
clude replacing mainframe computers, replacing communications switching system,
and the en-route controller radar stations. The replacement of the Automated Radar
Terminal System at Terminal Radar Facilities responsible for air traffic control near
airports (the Standard Terminal Automation Replacement System (STARS) program),
faced many of the problems that affected the Advanced Automation System: cost
overruns, delays, and safety vetoes of implementation, and was implemented in 2002
by FAA emergency decree. Still, the new equipment continues to be used in a manner
that follows original protocols used for the old equipment.

A fundamental reason for the difficulties with modern large engineering projects is
their inherent complexity. Complexity is generally a characteristic of large engineer-
ing projects today. Complexity implies that different parts of the system are interde-
pendent so that changes in one part may have effects on other parts of the system.
Complexity may cause unanticipated effects that lead to failures of the system. These
“indirect” effects can be discussed in terms of multiple feedback loops among por-

 Y. Bar-Yam

About Engineering Complex Systems: Multiscale Analysis and Evolutionary Engineering 25

tions of the system, and in terms of emergent collective behaviors of the system as a
whole [1,5]. Such behaviors are generally difficult to anticipate and understand. De-
spite the superficial complexity of the Manhattan and Space Projects, the tasks that
they were striving to achieve were relatively simple compared to the problem of air
traffic control. To understand complexity of air traffic control it is necessary to con-
sider the problem of 3-dimensional trajectory separation --- ensuring the paths of any
two planes do not intersect at the same time; the many airplanes taking off and land-
ing in a short period of time; and the remarkably low probability of failure that safety
constraints impose. Failure in any one case may appear to have a specific cause, but
the common inability to implement high cost systems can be attributed to their intrin-
sic complexity.

While the complexity of engineering projects has been increasing, it is important to
recognize that complexity is not new. Indeed, engineers and managers are generally
aware of the complexity of these projects and have developed systematic techniques
to address them. There are several strategies that are commonly used including modu-
larity, abstraction, hierarchy and layering. These methods are useful, but at some de-
gree of interdependence they become ineffective. Modularity is a well recognized
way to separate a large system into parts that can be individually designed and modi-
fied. However, modularity incorrectly assumes that a complex system behavior can be
reduced to the sum of its parts. As systems become more complex the design of inter-
faces between parts occupies increasing attention and eventually the process breaks
down. Abstraction simplifies the description or specification of the system. However
abstraction assumes that the details to be provided to one part of the system (module)
can be designed independently of details in other parts. Modularity and abstraction are
generalized by various forms of hierarchical and layered specification, whether
through the structure of the system, or through the attributes of parts of a system (e.g.
in object oriented programming). Again, these two approaches either incorrectly por-
tray performance or behavioral relationships between the system parts or assume de-
tails can be provided at a later stage. Similarly, management has developed ways to
coordinate teams of people working on the same project through various carefully
specified coordination mechanisms.

One way to address the difficulty of complex projects is to simplify what is at-
tempted. However, simplifying the function of an engineered system is not always
possible because the necessary or desired core function is itself highly complex.
When the inherent nature of a complex task is too large to deal with using conven-
tional large engineering processes, a better solution is to use an evolutionary process
[1-3] to create an environment in which continuous innovation can occur.

Evolutionary processes, commonly understood to be analogous to free market
competition, are based on incremental iterative change. However, there are basic dif-
ferences between evolution and the notion of incremental engineering. Among these
is that evolution assumes that many different systems exist at the same time, and that
changes occur to these systems in parallel. The parallel testing of many different
changes that can be combined later is distinctly different from conventional incre-
mental engineering. The use of parallel initial exploration has been advocated in engi-
neering [27]. However, this approach is also unlike evolution, because it leads to the

26

selection of a single option rather than multiple parallel implementation. Multiple
parallel implementation is more similar to the parallel and largely independent explo-
ration of product improvements by different companies in a market economy, espe-
cially when there are many small companies. Another basic idea of evolution is that
much testing is done "in the field"; the process of learning about effective solutions
occurs through direct feedback from the environment. There are many more aspects
of evolution that should be understood in order to make effective use of this process
in complex large engineering projects. Even the conventional concepts of evolution as
they are currently taught in basic biology courses are not sufficient to capture the
richness of modern ideas about evolution [5 (ch. 6),28-30].

Many of the more recent programming strategies, e.g. spiral development, extreme
programming, and the open source movement, embody features of evolutionary proc-
esses. Still, a better understanding is necessary in order to realize the promise of evo-
lutionary methods. The objective revolves around mimicry of the processes that pro-
mote rapid innovation through competition. The creation of an effective artificial
ecology" or artificial economy" requires design. In and of itself, a competitive sys-
tem is not self-sustaining as it tends to become stuck through monopolization or self-
destructive behavior.

To introduce the concepts of evolution it is helpful to start from the conventional
perspective, then augment it with some of the modern modifications. Evolution is
about the change in a population of organisms over time. This population changes not
because the members of the population change directly, but because of a process of
generational replacement by offspring that differ from their parents. The qualities of
offspring are different from their parents, in part, because some parents have more off-
spring than others. The process by which the number of offspring are determined,
termed selection, is considered a measure of organism effectiveness / fitness. Offspring
tend to inherit traits of parents. Traits are modified by sexual reproduction and muta-
tions that introduce novelty / variation. This novelty allows progressive changes over
many generations. Thus, in the conventional perspective evolution is a process of rep-
lication with variation followed by selection based upon competition. In contrast with
an engineering view where the process of innovation occurs through concept, design,
specification, implementation and large scale manufacture, the evolutionary perspec-
tive would suggest that we consider the population of functioning products that are in
use at a particular time as the changing population that will be replaced by new prod-
ucts over time. The change in this population occurs through the selection of which
products increase their proportion in the population. This process of evolution involves
the decisions of people as well as the changes that occur in the equipment itself.

It may be helpful to point out that this approach (the treatment of the population of
engineered products as evolving) is quite different than the approach previously used
to introduce evolution in an engineering context through genetic algorithms or evolu-
tionary programming (GA/EA) [31,32]. The GA/EA approach has considered auto-
mating the process of design by transferring the entire problem into a computer. Ac-
cording to this strategy, we develop a representation of possible systems, specify the
utility function, implement selection and replication and subsequently create the sys-
tem design in the computer. While the GA/EA approach can help in specific cases, it

 Y. Bar-Yam

"
"

About Engineering Complex Systems: Multiscale Analysis and Evolutionary Engineering 27

is well known that evolution from scratch is slow. Thus it is helpful to take advantage
of the capability of human beings to contribute to the design of systems. The objective
of the use of evolutionary process described here is to avoid relying upon an individ-
ual human being to design systems that can perform highly complex tasks. A com-
puter by itself cannot solve such problems either. Our objective here is to embed the
process of design into that of many human beings (using computers) coordinated
through an evolutionary process.

The basic concept of designing an evolutionary process is to create an environment
in which a process of innovation and creative change takes place. To do this we de-
velop the perspective that tasks to be performed are analogous to resources in biology.
Individual parts of the system, whether they are hardware, software or people in-
volved in executing the tasks are analogous to various organisms that are involved in
an evolutionary process. Changes in the individual parts take place through introduc-
ing alternate components (equipment, software, training or by moving people to dif-
ferent tasks). All of these changes are part of the dynamics of the system. Within this
environment it is possible for conventional engineering of equipment or software
components to occur. The focus of such engineering efforts is on change to small
parts of the system rather than on change to the system as a whole. This concept of
incremental replacement of components (equipment, software, training, tasks) in-
volves changes in one part of the system, not in every part of the system. Even when
the same component exists in many parts of the system, changes are not imposed on
all of these parts at the same time. Multiple small teams are involved in design and
implementation of these changes. It is important to note that this is the opposite of
standardization—it is the explicit imposition of variety. The development environ-
ment should be constructed so that exploration of possibilities can be accomplished in
a rapid (efficient) manner. Wider adoption of a particular change, corresponding to
reproduction in biology, occurs when experience with a component indicates im-
proved performance. Wider adoption occurs through informed selection by individu-
als involved. This process of "selection" explicitly entails feedback about aggregate
system performance in the context of real world tasks.

Thus the process of innovation involves multiple variants of equipment, software,
training or human roles that perform similar tasks in parallel. The appearance of re-
dundancy and parallelism is counter to the conventional engineering approach which
assumes specific function assignments rather than parallel ones. This is the primary
difference between evolutionary processes and incremental approaches to engineer-
ing. The process of overall change consisting of an innovation that, for example, re-
places one version of a particular type of equipment with another, occurs in several
stages. In the first stage a new variant of the equipment (or other component) is intro-
duced. Locally, this variant may perform better or worse than others. However, over-
all, the first introduction of the equipment does not significantly affect the perform-
ance of the entire system because other equipment is operating in parallel. The second
stage occurs if the new variant is more effective: others may adopt it in other parts of
the system. As adoption occurs there is a load transfer from older versions to the new
version in the context of competition, both in the local context and in the larger con-
text of the entire system. The third stage involves keeping older systems around for

28

longer than they are needed, using them for a smaller and smaller part of the load until
eventually they are discarded 'naturally'. Following a single process of innovation, is,
however, not really the point of the evolutionary engineering process. Instead, the key
is recognizing the variety of possibilities and subsystems that exist at any one time
and how they act together in the process of innovation.

The conventional development process currently used in large engineering projects
is not entirely abandoned in the evolutionary context. Instead, it is placed within a
larger context of an evolutionary process. This means that individuals or teams that
are developing parts of the system can still use well known and tested strategies for
planning, specification, design, implementation and testing. The important caveat to
be made here is that these tools are limited to parts of the system whose complexity is
appropriate to the tool in use. Also, the time scale of the conventional development
process is matched to the time scale of the larger evolutionary process so that field
testing can provide direct feedback on effectiveness. This is similar to various propos-
als suggested for incremental iterative engineering. What is different is the impor-
tance of parallel execution of components in a context designed for redundancy and
robustness, so that the implementation of alternatives can be done in parallel and ef-
fective improvements can be combined. At the same time, the ongoing variety pro-
vides robustness to changes in the function of the system. Specifically, if the function
of the system is changed because of external changes, the system can adapt rapidly
because there are many possible variants of subsystems that can be employed.

Understanding a complex system approach to design and implementation involves
recognizing the many differences between the natural evolutionary process and tradi-
tional engineering practices. Enlightened Evolutionary Engineering (E3) employs,
among others, the following key concepts, that may be contrasted to traditional engi-
neering practices.

Focus on Creating an Environment and Process Rather han a Product

Ongoing change in a system is the underlying mechanism of creation, not the formu-
lation and execution of plans. Encouraging and safeguarding this ongoing change and
monitoring its outcomes are the absolute essentials of an evolutionary-based process.

Continually Build on What Already Exists

Off-line engineering of complex systems is impractical because the complexities of
their environment and true functional requirements do not permit practical specifica-
tion or testing prior to implementation. In complex systems, correct expectations and
testing both depend on the immediate consequences of current operations.

Individual Components Must e Modifiable in itu

The interdependencies between system components must be such that individual
components can be modified in situ. In practice this requires the following point.

 Y. Bar-Yam

T

 B s

About Engineering Complex Systems: Multiscale Analysis and Evolutionary Engineering 29

Operational Systems Include Multiple Versions of Functional Components

Complex systems should be understood as populations rather than as rigid assemblies
of unique components. Individual components can overlap substantially in terms of
both functionality and interaction. Evolutionary processes impact both populations
and individuals. Redundancies are not always unwanted inefficiencies.

Utilize Multiple Parallel Development Processes

The existence of populations of components allows multiple parallel efforts to explore
modifications that might (but that are not guaranteed) to improve system components
and/or total system capability.

Evaluate Experimentally In-situ

Testing and experimentation increasingly overlap. Off-line qualification testing be-
comes a prelude to active field testing for components in a large variety of operational
environments. Results (including unexpected results) are ratified or rejected as they
occur based on then-current overall system capability.

Increase Utilization of More Effective Components, Gradually

The replacement of components cannot be abrupt as testing is never complete and op-
eration is continuous. Augmentation and parallel operation is the preferred approach.

Effective Solutions to Specific Problems Cannot Be Anticipated

Specification efforts cannot assume that the most efficient or effective solutions can
be anticipated in advance of an exploration and discovery process involving multiple
parallel development efforts. Such an assumption is invalid, and is increasingly seen
to be so the more complex any solution must be to even marginally succeed. More-
over, this assumption remains false no matter how long a problem is worked and pro-
gressively better solutions are found.

The “Integration” of Complex Systems

In order to operate a E3 process, the concept of integration must be radically re-
thought. A systematic and effective application of the ideas in this paper involves a
“paradigm shift” from “complete system specification” to the creation of environ-
ments that are conducive to ongoing change in components of systems while support-
ing the more or less constant evaluation of their overall effectiveness through virtual
as well as real world testing.

4 Conclusions

It is important to appreciate that there are fundamental reasons that highly trained sys-
tems engineers have been unable to successfully complete highly complex engineer-

30

ing projects in recent years. Extending the existing decomposition based approach
will not solve these problems. The application of multiscale analysis reveals that the
coordination between components that is required to develop such systems is incom-
patible with decomposition. This can be most easily understood as an underlying
bandwidth limitation in the hierarchical structure in which the decomposition of the
design is performed.

The solution to this problem is to develop an environment for parallel design teams
to develop components that can be field tested and compete for wider adoption. This
approach underlies both the creation of complex biological systems and many com-
plex social system through the process of market competition.

References

1. Y. Bar-Yam, Making Things Work; Solving complex problems in a complex world,
(NECSI Knowledge Press, 2004).

2. D. Braha, A. Minai, and Y. Bar-Yam, eds. Engineered Complex Systems, NECSI Knowl-
edge Press, 2004.

3. Y. Bar-Yam, Enlightened Evolutionary Engineering / Implementation of Innovation in
FORCEnet, Report to Chief of Naval Operations Strategic Studies Group, 2002 (Brief
2000).

4. Y. Bar-Yam, When Systems Engineering Fails --- Toward Complex Systems Engineering,
International Conference on Systems, Man & Cybernetics, 2003, Vol. 2, 2021- 2028, IEEE
Press, Piscataway, NJ, 2003.

5. D. Braha and O. Maimon, A Mathematical Theory of Design: Foundations, Algorithms
and Applications, Kluwer, Boston, 1998.

6. Y. Bar-Yam, Dynamics of Complex Systems, (Perseus, Reading, MA, 1997).
7. Y. Bar-Yam: General Features of Complex Systems, in Encyclopedia of Life Support Sys-

tems (EOLSS), UNESCO, EOLSS Publishers, Oxford ,UK, 2002
8. Y. Bar-Yam: Complexity rising: From human beings to human civilization, a complexity

profile, in Encyclopedia of Life Support Systems (EOLSS), UNESCO, EOLSS Publishers,
Oxford ,UK, 2002

9. Y. Bar-Yam, “Unifying Principles in Complex Systems” in Converging Technology
(NBIC) for Improving Human Performance, M. C. Roco and W. S. Bainbridge, Dds.,
Kluwer, 2003.

10. Y. Bar-Yam, Multiscale Variety in Complex Systems, Complexity 9:4, pp. 37-45, 2004.
11. Y. Bar-Yam, A Mathematical Theory of Strong Emergence using Multiscale Variety,

Complexity 9:6, pp. 15-24, 2004.
12. Y. Bar-Yam: Multiscale Complexity / Entropy, Advances in Complex Systems 7, pp. 47-

63, 2004.
13. S. Gheorghiu-Svirschevski and Y. Bar-Yam, Multiscale analysis of information correla-

tions in an infinite-range, ferromagnetic Ising system, Phys.Rev. E 70, 066115 (2004)
14. Standish Group International, The CHAOS Report, 1994.
15. G. S. Lynn, J. G. Morone and A. S. Paulson, “Marketing and discontinuous innovation:

The probe-and-learn process,” California Management Rev., Vol. 38, No. 3, pp. 8–36,
1996.

16. R. W. Veryzer, “Discontinuous innovation and the new product development process,” J.
Product Innovation Management, Vol. 15, pp. 304–321, 1998

 Y. Bar-Yam

About Engineering Complex Systems: Multiscale Analysis and Evolutionary Engineering 31

17. DoD Directive 5000.1, “The Defense Acquisition System,” May 12, 2003.
18. See e.g. Agile Software Development, CrossTalk, Vol. 15, No. 10, Oct. 2002.
19. M. T. Pich, C. H. Loch and A. De Meyer, “On Uncertainty, Ambiguity and Complexity in

Project Management” Management Science 48, 1008-1023, 2002.
20. J. Galbraith, Designing Complex Organizations, (Addison-Wesley, 1973)
21. F. A. Hayek, The Road to Serfdom, (Routledge, 1944)
22. J. G. March and H. A. Simon, Organizations; 2nd Ed., (John Wiley & Sons: New York,

1958)
23. H. Mintzberg, The Structuring of Organizations (Prentice-Hall, 1979)
24. I. Birman, Personal Consumption in the USSR and the USA (Palgrave Macmillan, 1989).
25. Committee on Transportation and Infrastructure Computer Outages at the Federal Aviation

Administration's Air Traffic Control Center in Aurora, Illinois [Field Hearing in Aurora,
Illinois] hpw104-32.000 HEARING DATE: 09/26/1995.

26. U.S. House Committee on Transportation and Infra-structure, FAA Criticized For Contin-
ued Delays In Modernization Of Air Traffic Control System, Mar. 14, 2001.

27. D. K. Sobek, A. C. Ward and J. K. Liker, “Toyota’s principles of set-based concurrent en-
gineering,” Sloan Management Rev., Vol. 40, pp. 67–83, 1999.

28. E. Rauch, H. Sayama and Y. Bar-Yam, “The role of time scale in fitness,” Phys. Rev. Lett.
88, 228101-4 (2002).

29. J. K. Werfel and Y. Bar-Yam, The evolution of reproductive restraint through social com-
munication, PNAS 101, 11019-11024 (2004).

30. Y. Bar-Yam: Formalizing the gene centered view of evolution, Advances in Complex Sys-
tems 2, 277-281 (1999).

31. L. J. Fogel, A. J. Owens and M. J. Walsh, Artificial Intelligence through Simulated Evolu-
tion, Wiley, New York, 1966

32. J. H. Holland, Adaptation in Natural and Artificial Systems, 2d ed. MIT Press, Cambridge,
1992.

S. Brueckner et al. (Eds.): ESOA 2004, LNAI 3464, pp. 32 - 51, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Adaptive Information Infrastructures for the e-Society

Mihaela Ulieru

Electrical and Computer Engineering Department,
The University of Calgary,
2500 University Dr. NW,

Calgary, Alberta, T1N 1N4 Canada
ulieru@ucalgary.ca

http://www.enel.ucalgary.ca/People/Ulieru/

Abstract. Positioned at the confluence between human/machine and hard-
ware/software integration and backed by a solid proof of concept realized through
several scenarios encompassing e-Securities, e-Health, and e-Logistics for global
manufacturing and emergency response management, this work exploits latest
advances in information and networking technologies to set a systematic frame-
work for the design of the information infrastructures (coined as AIIs - Adaptive
Information Infrastructures) destined to fuel tomorrow’s e-Society. Designed
following the natural laws of evolution, which merge self-organization and natural
selection [1], these socially embedded information infrastructures can adapt to
fulfill various needs as their environment demands. Computational intelligence
techniques endow the AIIs with learning and discovery capabilities, emulating
social and biological behavior. AIIs are destined to become an integral part of our
life by supporting, rather than disturbing, a framework that facilitates strategic
partnerships while providing greater user-friendliness, more efficient services
support, user-empowerment, and support for human interactions.

Keywords: Distributed artificial intelligence, information infrastructures,
emergency response management, e-Health, Cybersecurities, emergence, self-
organization, evolution.

1 Rationale

Today’s electronic information technologies are linking our world, enabling partner-
ships otherwise impossible in all areas of our life. From e-Commerce and e-Business
to e-Learning and e-Health the economic strategies as well as the routine professional
practices have been irreversibly contaminated with the spice of electronic connec-
tivity. Supported by this technological leverage, new paradigms have emerged with
models that are dynamic, autonomous, self-organizing and proactive, generically
coined as ‘intelligent’. In particular Multi-Agent Systems (MAS) have changed the
software world, and with it the world of information technologies. With the reasoning
encapsulated in societies of software agents, having a life of their own in Cyberspace,
the Internet becomes a dynamic environment through which agents move from place
to place to deliver their services and eventually to compose them with the ones of

 Adaptive Information Infrastructures for the e-Society 33

other agents, just like people cooperate, by exchanging services and/or putting
together their competencies in a larger, more complex service.

In today’s dramatic context there is an acute need for such new techniques capable
to deal with critical aspects such as emergency response management, network, in-
formation and national security enhancement, population health and quality of life
improvement, etc. To meet this need we propose a systematic approach to the design
and implementation of such dynamic environments supporting coalition formation,
which we refer to as adaptive information infrastructures (AII). AIIs could glue to-
gether the best organizations capable to cooperate in the timely solving of a crisis, and
support the coordination of activities across such an extended cooperative organiza-
tion, getting clarity to emerge from the fog of information and help make the best
decisions out of the crisis chaos.

To influence the development of this technology in a human-friendly way our ap-
proach builds on the natural laws/patterns of self-organization according to which
adaptive / intelligent systems emerged in the process of universes’ evolution [7]. Our
approach [8] addresses this by enabling information infrastructures for various appli-
cations. For example, for global production integration [9], we developed a method-
ology for dynamic resource management and allocation across distributed (manufac-
turing) organizations [10], [11]. The approach integrates multi-agent technology with
the holonic paradigm proposed by A. Koestler in his attempt to create a model for
self-organization in biological systems [12].

2 Holonics

Koestler postulated a set of underlying principles to explain the self-organizing
tendencies of social and biological systems. He proposed the term holon to describe
the elements of these systems. This term is a combination of the Greek word holos,
meaning "whole", with the suffix -on meaning "part", as in proton or neuron. This
term reflects the tendencies of holons to act as autonomous entities, yet cooperating
to form apparently self-organizing hierarchies of subsystems, such as the
cell/tissue/organ/system hierarchy in biology.

Starting from the empirical observation that, from the Solar System to the Atom
the Universe is organized into self-replicating structures of nested hierarchies intrinsi-
cally embedded in the functionality of natural systems, in his attempt to creating a
model for self-organization in biological systems, Koestler has identified structural
patterns of self-replicating structures, named holarchies. Holarchies have been envi-
sioned as models for the Universe’s self-organizing structure in which holons at sev-
eral levels of resolution in the nested hierarchy [13] (Fig. 1) behave as autonomous
wholes and yet as cooperative parts for achieving the goal of the holarchy.

In such a nested hierarchy each holon is a sub-system retaining the characteristic
attributes of the whole system. What actually defines a holarchy is a purpose around
which holons are clustered and subdivided in sub-holons at several levels of resolu-
tion according to the organizational dissectibility required. A Confederation is a
political holarchy, for example having Canada at the highest level of resolution then
the provinces at the immediate lower level, and finally the cities at the lowest levels in
the hierarchy. Each individual person is regarded as a primitive holon within this social
holarchy. Other examples are: a global enterprise is a collaborative purpose- driven/

34 M. Ulieru

Fig. 1. Generic Model of a Holarchy

market-driven holarchy; a distributed manufacturing system is a production-driven
holarchy, the organism is a survival-driven holarchy. The Universe is an
evolution-driven holarchy.

3 A Mathematics of Emergence

In his seminal book [1] Stuart Kaufmann postulates that life emerged in the Universe
through collective autocatalytic processes fueled by self-organization and natural se-
lection. As result of the process of evolution driven by power laws and autocatalicity,
emergence endows the dynamics of composite systems with properties unidentifiable
in their individual parts. The phenomenon of emergence involves on one side self-
organization of the dynamical systems such that the synergetic effects can occur and
on the other side interaction with other systems from which the synergetic properties
can evolve in a new context.

The flow of information and matter across a holonic organization defines several
levels of granularity (Fig. 1) across which we emulate the mechanism of emergence to
enable the dynamic creation, refinement and optimization of flexible ad-hoc AIIs as
coordination backbones for the distributed organization, capable to bring together the
best resources available (within reach) depending on the needs of the particular crisis
to be addressed.

As such, the phenomenon of emergence involves two distinct steps, namely:

 Self-organization of the dynamical systems such that the synergetic effects can
occur

 Interaction with other systems from which the synergetic properties can evolve

We integrate emergence into the holonic paradigm [15] to create, refine and optimize
AIIs. Self-organization is achieved by minimizing the entropy measuring the fuzzy in-
formation spread across the multi-agent system [10]. This will cluster the resources
(agents), ensuring interaction between the system’s parts to reach its objectives timely,
efficiently and effectively. Evolution is enabled by interaction with external systems
(agents); for example, via a genetic search in cyberspace that mimics mating with most
fit partners in natural evolution [16] or by means of dynamic discovery services [17]. In
the sequel we present the essence of our formalism.

 Adaptive Information Infrastructures for the e-Society 35

3.1 Self-Organization

A multi-agent system (MAS) is regarded as a dynamical system in which agents ex-
change information organized through reasoning into knowledge about the assigned
goal [10]. Optimal knowledge corresponds to an optimal level of information organi-
zation and distribution among the agents. It seems natural to consider the entropy as a
measure of the degree of order in the information spread across the multi-agent sys-
tem [2]. This information is usually uncertain, requiring several ways of modeling to
cope with the different aspects of the uncertainty. Fuzzy set theory offers an adequate
framework that requires the use of generalized fuzzy entropy [3].

One can envision the agents in the MAS as being under the influence of an infor-
mation “field” which drives the inter-agent interactions towards achieving “equilib-
rium” with other agents with respect to this entropy [10]. The generalized fuzzy
entropy is the measure of the “potential” of this field and equilibrium for the agents
under this influence corresponds to an optimal organization of the information across
the MAS with respect to the assigned goal’s achievement. When the goal of the MAS
changes (due to unexpected events, such as need to change a peer, machine break-
down, etc.) the equilibrium point changes as well inducing new re-distribution of
information among the agents with new emerging agent interactions. This mechanism
enabling dynamic system re-configuration with re-distribution of priorities is the
essence of the emergent dynamic holonic structure. In this section, we will prove that
when the agents are clustering into a holonic structure the MAS reaches equilibrium,
which ensures optimal accomplishment of the assigned goal (task).

A. Vagueness Modeling in MAS – The Problem

It is already well known that among the other uncertainty facets, vagueness deals with
information that is inconsistent [4]. In the context of MAS, this means that the clear
distinction between a possible plan reaching the imposed goal and a plan leading, on
the contrary, to a very different goal is hardly distinguishable. We call partition the
clustering configuration in which the union of all clusters is identical to the agent set
when clusters are not overlapping. If the clusters overlap (i.e. some agents are simul-
taneously in two different clusters) the clustering configuration is called a cover. We
define a plan as being the succession of all states through which the MAS transitions
until it reaches its goal. Each state of the MAS is described by a certain clustering
configuration covering the agents set. Starting from this uncertain information,
the problem is to provide fuzzy models of MAS, useful in selecting the least
uncertain (the least vague) source-plan.

B. Mathematical Formulation of the Problem

Denote by
NnnN a

,1
}{

∈
=A the set of 1≥N agents that belong to the MAS. Based

only on the initial uncertain information, one can build a family
Kkk ,1

}{ ∈= PP , con-

taining 1≥K collections of clustering configurations, for a preset global goal. Each

kP (Kk ,1∈) can be referred to as a source-plan in the sense that it can be a source of

partitions for a MAS plan. Thus, a source-plan is expressed as a collection of
1≥kM different clustering configurations covering NA , possible to occur during

36 M. Ulieru

the MAS evolution towards its goal:
kMmmkk P

,1, }{ ∈=P . The only available informa-

tion about kP is the degree of occurrence associated to each of its configurations,

mkP , , which can be assigned as a number]1,0[, ∈mkα . Thus, the corresponding de-

grees of occurrence are members of a two-dimension family
kMmKkmk ,1;,1, }{ ∈∈α , which,

as previously stated, quantifies all the available information about MAS.
 In this framework, we aim to construct a measure of uncertainty, V (from

“vagueness”), fuzzy-type, real-valued, defined on the set of all source-plans of NA

and optimize it in order to select the least vague source-plan from the family

Kkk ,1
}{ ∈= PP :

)(optarg
,1

0 k
Kk

k V PP
∈

= , where Kko ,1∈ . (1)

The cost function V required in problem (1) will be constructed by using a measure
of fuzziness [4]. We present hereafter the steps of this construction.

C. Constructing Fuzzy Relations Between Agents
We model agent interactions through fuzzy relations considering that two agents are
in relation if they exchange information. As two agents exchanging information are
as well in the same cluster one can describe the clustering configurations using these
fuzzy relations. The family of fuzzy relations,

Kkk ,1
}{ ∈R , between the agents of

MAS (NA) is built using the numbers
kMmKkmk ,1;,1, }{ ∈∈α and the family of source-

plans
Kkk ,1

}{ ∈P . Consider Kk ,1∈ and kMm ,1∈ arbitrarily fixed. In construction

of the fuzzy relation kR , one starts from the observation that associating agents in

clusters is very similar to grouping them into compatibility or equivalence classes,
given a (binary) crisp relation between them. The compatibility properties of reflexiv-
ity and symmetry are fulfilled for covers (overlapped clusters), whereas the equiva-
lence conditions of compatibility and transitivity stand for partitions. The correspond-
ing crisp relation denoted by mkR , , can be described by the statement: two agents are

related if they belong to the same cluster. The facts that a and b are, respectively

are not in the relation mkR , (where Na,b A∈) are expressed by “ baR mk , ” and

“ bRa mk ,¬ ”. The relation mkR , can also be described by means of a NN × matrix
NN

mkH ×ℜ∈, - the characteristic matrix - with elements (],[, jiH mk) being only 0

or 1, depending on whether the agents are or not in the same cluster. (Here, ℜ is the
real numbers set.) Thus:

¬

=
jmki

jmkidef

mk aRa

aRa
jiH

,

,
, ,0

,1
],[, Nji ,1, ∈∀ . (2)

 Adaptive Information Infrastructures for the e-Society 37

This matrix is symmetric (obviously, if baR mk , , then abR mk ,) and with unitary

diagonal (since every agent is in the same cluster with itself). It allows us to com-
pletely specify only the configuration mkP , (for the proof see [10].)

As such, the relation mkR , defined by the agents’ inclusion in the same cluster is

uniquely assigned to the clustering configuration mkP , (no other configuration can be

described by mkR ,). Thus, each crisp relation mkR , can be uniquely associated to the

degree of occurrence assigned to its configuration: mk ,α . Together, they can define a

so-called α -sharp-cut of the fuzzy relation kR , by using the equality (=) instead of

inequality (≥) in the classical definition of α - cut. Therefore, the crisp relation

mkR , is a α -sharp-cut of kR , defined for mk ,α .

Consequently, we can construct an elementary fuzzy (binary) relation mk ,R whose

membership matrix is expressed as the product between the characteristic matrix

mkH , ,defined by (2), and the degree of occurrence mk ,α , that is: mkmk H ,,α . This

fuzzy set of NN AA × is also uniquely associated to mkP , .

 If Kk ,1∈ is kept fixed, but m varies in the range kM,1 , then a family of fuzzy

elementary relations is generated:
kMmmk ,1, }{ ∈R . Naturally, kR is then defined as

the fuzzy union:

kM

m
k,m

def

k
1=

= RR . (3)

 { } NN
mkmk

Mm

def

k H
k

×

∈
ℜ∈•= ,,

,1
max αM , (4)

where “ •max ”acts on matrix elements and not globally, on matrices. The equations

(3) and (4) are very similar to the resolution form of kR , as defined in [16]. Here

however, some mk ,α (in general, with small values) can disappear from the member-

ship grades of kR .

Obviously, since all matrices mkmk H ,,α are symmetric, kM from (4) is symmet-

ric as well, which means that kR is a fuzzy symmetric relation. The fuzzy reflexivity

is obvious (non-zero elements of main diagonal). Thus, kR is at least a proximity

relation. The manner in which the degrees of occurrence are assigned to partitions
greatly affects the quality of the fuzzy relation. Although all its α -sharp-cuts could
be equivalence relations, it is not necessary that the resulting fuzzy relation be a simi-
larity one (i.e. fuzzy reflexive, symmetric and transitive). But it is at least a proximity
relation, as explained above.

38 M. Ulieru

The fuzzy transitivity, expressed as follows:

 ()kkk MMM •≥ , (5)

is the most difficult to ensure. Here “ •≥ ” acts on matrix elements, and “ ” denotes

composition of the corresponding fuzzy relations. In case of max-min transitivity, this is

expressed analogously to classical matrix multiplication, where the max operator is used

instead of summation and min instead of product:

 () { }],[],,[minmax],[],[
,1

jnnijiji kk
Nn

kkk MMMMM
∈

=≥ , (6)

Nji ,1, ∈],[jiM M

The equations (5) or (6) suggest an interesting procedure to construct similarity
relations starting from proximity ones, by using the notion of transitive closure. A
transitive closure of a fuzzy relation R is, by definition, the minimal transitive fuzzy
relation that includes R . (Here, “minimal” is considered with respect to inclusion on
fuzzy sets.)

So far, a bijective map (according to Theorem 1) between
Kkk ,1

}{ ∈= PP and

Kkk ,1
}{ ∈= RR , say T , was constructed:

 kkT RP =)(, Kk ,1∈∀ . (7)

D. The Measure of Fuzziness
The next step aims to construct a measure of fuzziness over the fuzzy relations on

NN AA × , that will be used to select the “minimally fuzzy” relation within the set

Kkk ,1
}{ ∈= RR .

One important class consists of measures that evaluate “the fuzziness” of a fuzzy
set by taking into consideration both the set and its (fuzzy) complement. From this
large class, we have selected the Shannon measure, derived from the generalized
Shannon’s function:

[]−−+−=

+ℜ→

=

M

m
mmmm

def

M

M

xxxxxSxx

S

1
221 .)1(log)1(log)(),...,(

]1,0[:

 (8)

This function has a unique maximum (equal by M , for 2/1=mx , Mm ,1∈∀) and
M2 null minims (in apexes of hyper-cube M]1,0[). For example, if 2=M , the sur-

face depicted in below is generated. In general, S generates a hyper-surface

inside the Euclidean space Mℜ , but all its minima are null.
 If the argument of this function is a probability distribution, it is referred to as

Shannon entropy. If the argument is a membership function defining a fuzzy set, it is

 Adaptive Information Infrastructures for the e-Society 39

refereed to as (Shannon) fuzzy entropy. Denote the fuzzy entropy by μS . Then,

according to equation (8), μS is expressed for all Kk ,1∈ by:

[] [].],[1log],[1],[log],[)(
1 1

2
1 1

2
= == =

−−−−=
N

i

N

j
kk

N

i

N

j
kkk jijijijiS MMMMRμ

 (9)

Obviously, this function also has a unique maximum and all minima null, with

respect to variables],[jikM , its dimension being 2NM = .

Two main reasons motivate this choice. First, μS helps us make a direct connec-

tion between “how fuzzy” is a set and “how much uncertainty” it contains. Thus,
since μS computes the quantity of information of an informational entity, say a

fuzzy set, as the estimated uncertainty that the entity contains, the minimally fuzzy
sets will subsequently contain the minimally uncertain information1. Secondly, the
“total ignorance” (or uncertain) information is expressed by the unique maximum of

μS , whereas multiple minimum points (actually, the apexes of the hyper-cube)

belong to a “perfect knowledge zone” (as less uncertain information as possible).
Between “total ignorance” (which, interestingly, is unique) and “perfect knowledge
zone” (which is always multiple) there are many intermediate points associated to
different degrees of uncertainty in knowledge about the entity.

Moreover, a force driving towards knowledge can be determined [10], by
computing the gradient of Shannon fuzzy entropy. It is interesting to remark that the
amplitude of this force (its norm), expressed as:

= =

−
=∇

N

i

N

j k

k
k ji

ji
S

1 1

2

2],[

],[1
log)(

M
M

Rμ
, (10)

increases very rapidly in the vicinity of any “perfect knowledge” point (see Fig. 6(b)
above).

E. The Uncertainty Measure
Although a unique maximum of Shannon fuzzy entropy (9) exists, as proven by (10),
we are searching for one of its minima. The required measure of uncertainty, V , is

obtained by composing μS in (9) with T in (7), that is: TSV μ= . Notice that V

is not a measure of fuzziness, because its definition domain is the set of source-plans
(crisp sets) and not the set of fuzzy relations between agents (fuzzy sets). But, since
T is a bijection, the optimization problem (1) is equivalent with:

))(minarg(
,1

1
0 k

Kk
k ST PP μ

∈

−= , where Kko ,1∈ . (11)

The new problem (11) does not require a special optimization algorithm, since K is a
finite number and all minima, although multiple, are null and localized in apexes of

hyper-cube
2

]1,0[N . Problems could appear only if K is very large. In this case,

1 Notice, however, that only the vagueness facet of the uncertainty is measured here. Ambigu-

ity requires more sophisticated measures [7].

40 M. Ulieru

genetic algorithms [5] or annealing algorithms [6] can be used to find the minimum.
According to the previous interpretations,

0kP is the least fuzzy (minimally fuzzy),

i.e. the least uncertain source-plan from the family and the most attracted by the
knowledge zone. Its corresponding optimum fuzzy relation

0kR might be useful in

the construction of a least uncertain plan of MAS.

F. Emergence of Holonic Clusters

Once one pair (
0kP ,

0kR) has been selected by solving the problem (11) (multiple

choices could be possible, since multiple minima are available), a corresponding
source-plan should be identified. Two choices are possible:

• List all the configurations of
0kP (by extracting, eventually, those configura-

tions for which the occurrence degree vanished in
0kR):

},,,{
00000 ,2,1, kMkkkk PPP=P .

• Construct other source-plans by using not
0kP , but

0kR .

The α -cuts of
0kR are the crisp relations α,0kR , for degrees of membership

]1,0[∈α . The characteristic matrix elements of α,0kR are defined by:

≥

=
otherwise,0

],[if,1
],[0

0 ,

α
α

jiM
jiH

k
def

k , Nji ,1, ∈∀ . (12)

Each matrix α,0kH in (12) generates a unique clustering configuration of agents over

NA . Thus, two categories of source-plans emerge: equivalence or holonic source-

plans (when
0kR is a similarity relation) and compatibility source-plans (when

0kR

is only a proximity relation).

• When the associated fuzzy relation
0kR is a similarity one, then an interesting

property of the MAS is revealed: clusters are associated in order to form new
clusters, as in a “clusters within clusters” holonic-like paradigm.

3.2 Evolution

In the open environment created by the dynamic Web opportunities for improvement of
an existing virtual organization arise continuously. New partners and customers alike
come into the virtual game bidding their capabilities and money to get the best deal.
Staying competitive in this high dynamics requires openness and ability to
accommodate chance rapidly through a flexible strategy enabling re-configuration of
the organization to be able to respond to new market demands as well as to opportuni-
ties (e.g. in playing with a better partner when needed.) In response to this need we
have designed an evolutionary search strategy that enables the virtual organization
to continuously find better partners fitting the dynamics of its goals as they change
according to the market dynamics.

 Adaptive Information Infrastructures for the e-Society 41

A. Selection Pressure in Cyberspace

 We regard ‘the living Web’ as a genetic evolutionary system. Our construction is
based on the observation that the search process on an agent domain containing
information about a set of agents that ‘live’ in the Web is analogous to the genetic
selection of the most suitable ones in a population of agents meant to ‘fit’ the virtual
organization goals. The mutation and crossover operators (pm and pc) represent
probabilities of finding ‘keywords’ (describing the attributes required from the new
partners searched for) inside the search domain considered.

The main idea is to express the fitness function (measuring how well the new
agent fits the holarchy’s goal) in terms of the fuzzy entropy (9):

F = μS (13)

With this, minimizing the entropy across the extended MAS (which includes the
agents from the search domain) according to HE goal-reach optimization equates op-
timizing the fitness function which naturally selects the best agents fitting the optimal
organizational structure of the HE. In the sequel we present the mathematical formal-
ism for this evolutionary search.

4 Applications of AIIs

4.1 AIIs for Global Manufacturing

Our work with the Holonic Manufacturing Systems (HMS) consortium demonstrated
that this methodology is very useful for global supply chain management systems that
integrate collaborative workflow techniques [18]. Within this context AIIs can be
viewed as information ecosystems composed of collaborative but autonomous holons
Fig. 4 working e.g. to create a new product by merging several specialized companies
and coordinating their efforts, Fig. 5 (from [18]).

Multi Enterprise Layer

Enterprise Layer

Shop Floor Layer

Supplier 2 Company 2 Customer 2

Factory 3 Sales 3

Factory 1 Sales 1
Factory 2 Sales 2

Work area 1

Supplier 1 Company 1 Customer 1

Supplier 3 Company 3 Customer 3

Work area 2 Work area 3

Atomic Holon Level

Fig. 5. Layers in Holonic Manufacturing

Fig. 4. Global Manufacturing Holarchy

42 M. Ulieru

Customer Order Manager

Transport Unit

Assembly Plant

Transmitter & Receiver
Equipment Plant

Molded Cases
Supplier

Printed Circuit
Boards Plant

Electronic Parts
Supplier

Cables Supplier

Multi-Enterprise Level

Enterprise (Plant) Level

 Logistics

Power Adapters
Plant

Bank

Fig. 6. The Supply Chain Holarchy

The interaction between distributed enterprises, with their suppliers and customers is
modeled at the multi-enterprise level. The enterprise level hosts co-operation between
entities belonging to one organization, the sales offices and the production sites. The
distributed manufacturing control within a production site or shop floor is handled by
the shop floor level. Here the entities are distributed work areas working together and in
co-operation, in order to fulfill all orders allocated to them. The basic level (the Cell)
models the interactions between equipments and humans. In [18] we focused on a sup-
ply chain scenario from the phone manufacturing industry. This approach can easily be
expanded to any goods distribution networks (e.g. the Wal-Mart supply chain). Figure 6
presents the overall holarchy integrating both inter and intra- enterprise levels.

Customer
Agent

Order Manager
Agent Logistics

Agent

Assembly Plant
Agent

Transmitter Receiver
Plant Agent

Power Adapter
Plant Agent Printed Circuit Board

Plant Agent

Transport
Agent

Bank
Agent

Cables
Supplier Agent

Electronic Parts
Supplier Agent

Molded Cases
Supplier Agent

Supplies cables Supplies electronic partsSupplies molded cases

Manufactures TR equipment Manufactures Power Adapters Manufactures Printed
Circuit Boards

Buys components and parts from manufacturers and suppliers

Holds
accounts

Receives
order from

Assembles telephones
and answering machines

Transfer
orders to

Manage shipmentActs on behalf of

Manage transactions

Fig. 7. Conceptual Model of Supply Chain Agents

 Adaptive Information Infrastructures for the e-Society 43

C usto m er A g ent

JA D E A gen t

content : C ontentM anager

C onten tM an ag er

P red icate

C oncep t

A gentA ction

content_ langu age : C odec
scm _ onto log y : O nto log y
in ter face : C ustom er_G U I

setup(addB ehav iour())

concep ts : C oncep t

R eq u est_ B eha v ior

C od ec O nto log y

JA D E C onten t C lasses

pred ica tes : P red icate
ac t ions : A gen tA ct ion
ac t ion()

Fig. 8. Class Structure of Customer Agent

Having defined the entities involved in the overall holarchy and established the roles
and their interactions within the supply chain application, we can create a network of
agents (Fig. 7) based on the responsibilities that come from these roles and the resources
that need to be produced or consumed.

Figure 8 shows the agent class structure of the Customer agent class, that extends the
core agent of the JADE platform (www.fipa.org) thus inheriting all the functionalities
that it needs to setup, register, shut down, communicate, and so on.

More details about the ontology (Fig. 9) and our system’s implementation can be
found in [18].

4.2 AIIs for Emergency Response Management

More recently, we successfully took the holonic concept out of the factory environ-
ment by designing a holonic framework suitable for emergency response applications
[19]. For this testbed (Fig. 10 – from [28]) the actors are either a policeman with a
PDA, a firefighter with a cell phone or even a helicopter sending real-time informa-
tion about the traffic jams to our planner holon. For example, it can indicate an opti-
mal or improved route for emergency vehicles to follow or even more, it will be able
to instruct the policemen to clear a road so the firefighters will be able to arrive to the
building faster. In case of a bigger disaster our system will be able to contact the
hospitals in the zone and start distributing the patients according to bed availability.
The emergency AII is depicted in Fig. 11.

During an AII-enabled rescue operation (Fig. 10), novel e-Health technologies can
be used, e.g. for patient are authentication by a wireless fingerprint sensor that ac-
cesses their profile from a remote database [36]. Depending on indicators such as
blood pressure and the health history of the patient, a first diagnosis will be compiled
using automated decision support systems [27]. Electronic logistics support will pro-
vide information about the next available and suitable hospital, initiate staff assembly
and emergency room preparation, and provide on-the-fly patient check-in. Planning
and scheduling of resources on all levels of the emergency holarchy (Fig. 11) will
enable reconfiguration and flexibility by selecting functional units, assigning their
locations, and defining their interconnections (e.g. reallocating hospital beds to cope
with the victims, rerouting around a fire crew or changing the assignments of a multi-
functional defense unit).Once a crisis arises an AII emerges clustering available
resources (modeled as software agents) to deal with the situation optimally [29].

44 M. Ulieru

<<Interface>>
Concept

<<Interface>>
Predicate

<<Interface>>
AgentAction

Order

Products

attributes (slots)
access methods

attributes (slots)

Components
attributes (slots)
access methods

access methods

Parts
attributes (slots)
access methods

Price
attributes (slots)
access methods

Account
attributes (slots)
access methods

Costs
attributes (slots)
access methods

Assembles

Manufactures

Supplies

Deliver
attributes (slots)

attributes (slots)

attributes (slots)

attributes (slots)
access methods

access methods

access methods

access methods

---Implements--------

Telephones

attributes (slots)

attributes (slots)

access methods

access methods

Answ_Machines
attributes (slots)
access methods

Instance of
Instance of

TR_Equipment
attributes (slots)attributes (slots)
access methodsaccess methods

Circuit_Board Power_Adapter
attributes (slots)

Molded_Case Electronic_PartsCables
attributes (slots)attributes (slots)

access methodsaccess methodsaccess methods

--Implements-----------

Instance of

Instance of

Instance ofInstance of

Instance of Instance of

Buy

Sell

Transfer_Funds

Transport

attributes (slots)

attributes (slots)

attributes (slots)

attributes (slots)

access methods

access methods

access methods

access methods

-----Implements-----

Supplier
(String) location

JADE Agent
(AID) identifier

Instance of

Supplies

Fig. 9. Dependency relationships in the supply chain domain ontology

Fig. 10. Fire Emergency Scenario

 Adaptive Information Infrastructures for the e-Society 45

Fire Station Holarchy (Atomic Autonomous Systems)

Fire Department Holarchy (Intra-Enterprise Level)

Emergency Response Holarchy (Inter-Enterprise
Electricity Comp. Fire Department Telephone Comp.

Government Agencies Police Department
Gas Company Non Profit Org. Hospital

Emergency Head Fire Station Equipment Dep.

Emergency Headquarters Bio Hazard Department
Explosives Dep. GPS Systems Repair Service

Doctor Fire Fighter Interactive PDA

Incident Commander Officer-in-charge
Crane truck Fire truck Ambulance

Fig. 11. Emergency Response Holarchy (AII)

4.3 Scalable Secure Web Based Services for e-Health

We propose a holonic framework suitable for e-health applications. In [20] we de-
fined the concept of medical holarchy as an open evolutionary health system that is
highly self-organized and self-adaptive. The collaborative medical entities (patients,
physicians, medical devices, etc.) that work together to provide a needed medical
service for the benefit of the patient form a medical holarchy [26]. The levels of a
medical AII are (Fig. 12):

• Inter-Enterprise: Hospitals, Pharmacies, Medical Clinics/Laboratories
• Intra-Enterprise: Sections/Units/ Departments of each medical enterprise
• Resource Level: Machines for medical tests, medical monitoring devices,

information processing resources

Fig. 12. Medical Holarchy

Medical Holarchy (Inter-Enterprise Level)
Patients Clinic Medical

Hospital Medical Specialist
Family Pharmacy Ambu-

Clinic Holarchy (Intra-Enterprise Level)
Patient Da- Testing Ma- Pharmacy

Patient Schedul- Prediction Expert
Nurses Medical Medical As-

Testing Machine Holarchy (Basic System
Heart Beat Interactive PDA

X-ray Automatic |Decision
EKG Blood pres-

46 M. Ulieru

In this system of collaborative medical entities new devices and services (Fig. 12)
can integrate themselves, offer their functionality to others and share data on a secure
level. The complex interaction of diagnosis, treatment and monitoring is made possi-
ble through task planners and schedulers that are distributed, automatic and self-
configuring.

A major issue in e-Health technology adoption is reconciliation of the various
standards of care across the continents. As well the security and privacy of electronic
medical records is of major significance and has proven to be the major brake that
slowed down the adoption of e-Health by major clinics around the world but espe-
cially in the North Americas. Therefore our goal is to develop a reusable framework
for secure high-performance web-services in e-health. As a testbed for the secure AII
to be developed we will use it to connect a network of medical experts that will col-
laborate via the AII to develop standards of care for glaucoma [24]. To enable the col-
laboration of highly specialized glaucoma surgeons located across the country we
have developed a telehealth approach [21] that involves a consensus analyzer synthe-
sizing expert opinions into standards of care [22].

Recently we successfully applied this concept to improve glaucoma monitoring
[23] with a security layer. This has encouraged us to expand the holonic concept to
other e-Health areas that require the dynamic creation of organizational structures and
workflow coordination, such as rescuing people after an accident or disaster. This is a
time critical operation that requires quick diagnosis, identification of the closest avail-
able hospital and knowledge of traffic conditions.

4.4 Holonic Cybersecurity System

Information infrastructures are critical to the functioning of society; however, they are
vulnerable because of threats and complex interdependencies [31]. New research in this
field needs to account for these security issues, which are crucial to future information
systems and services. In this context, AIIs provide new dimensions to security:

• Reliability of critical infrastructure with survival capabilities, such as power and
water distribution.

• Resilience based on an anticipative environment that enables operation under
continuous threats and attacks.

The issue of Cybersecurity is very difficult to tackle, given that nobody owns the
Internet and there is no single ‘command post’ to control its security. The status quo
regarding intrusion detection raises many challenges:

• Post attack information accumulates through many different organizations;
therefore ID tools are unable to interact, making correlation of results difficult.

• Incident responses are local. There is no unified mechanism for analyzing such
informational alerts and determine their implications/risk factor.

This places on the ‘wish list’ for security systems the following demands:

• ‘On-the-fly’ system configuration, requested by the continuous network changes
• Timely detection of all kinds of attacks
• Prevention (and counter-attack) in any network place
• Universal installation and maintenance

 Adaptive Information Infrastructures for the e-Society 47

To cope with these needs, we propose a holonic cybersecurity model that emulates
biological behavior by inducing immunity into the network or system under attack.
Much like Noria et.al. realize network immunity in [37], our system is organized as a
holarchy distributed throughout the network, Fig. 13. The AII will anticipate attacks
by activating specialized agents seeking the presence of intruders into the network,
similar to how antibodies fight viruses in biological systems.

- Inter-Enterprise Level
At the highest level, the “Command Post” embeds the generic security policy for an
organization, which takes care of the following tasks:

• Crisis Management
• Coordinating with other organizations/government agencies
• Lower level systems management
• Shared information with trusted organizations
• Specifies which sets of network parameters should be analyzed by each entity in

the holarchy3

In case of an unexpected attack, every command post in the security holarchy is
alerted, triggering fighter agents that specialize in eliminating attackers.

Intranet Holarchy (Atomic Autonomous Systems)

Security Holarchy (Inter-Enterprise Level)

Manager Layer (Intra-Enterprise Level)

Learning Policy Managers Trust Policy

Command Post (Security Policy)
Information Sharing Coordination Policy

Decision Support Intranet Manager Knowledge Base

Coordination Manager Security Policy Manager
Personal Net Manager Extranet Manager

Coordination Agent Policy Conversion Agent

Monitoring Agent Detection Agent
Analysis Agent Knowledge Base Agent

Fig. 13 Cybersecurity Holarchy

- Intra-enterprise Level
At this level managers control specified agents to analyze and correlate data collected
by them, whereas at the lowest level, local agents monitor specified activities. Their
main functions are:

• Understand network topology
• Analyze information given by Agents
• Make decisions depending on network topology and information given by other

managers and their agents

48 M. Ulieru

• Coordinate the ‘atomic’ agents (e.g. scheduling their operations)
• Manage the ‘atomic agents’ knowledge base updates and mediate information

exchange with the ‘command post’ (Fig. 13).

Manager agents interact with the ‘atomic’ agents by (Fig. 13):

• sending goals, derived from security policies;
• delegating specific functions of monitoring/detection and specifying the various

domains to monitor;
• gathering particular information, such as: the suspicion level of a particular user,

the list of events generated by a user, etc.;
• gathering relevant reports or analyses, and alarms.

- Atomic Agents Level
The basic agents have the ‘mission’ to determine an initial attack by analyzing low-
level network events (‘local sniffers’). For this they carry on the following functions:

• Real-time monitoring of network packets;
• Full IP de-fragmentation and upper protocol data reassembly;
• Provide immediate information analysis in original environment, at that very in-

stant and catching additional local data that might be required;
• Delay / block network traffic/ isolate segment suspected of ‘attack’
• Content inspection for security behavior violations
• Delete, modify suspicious/malicious content

The holonic approach enables also a topology-oriented approach in which critical
points of action are identified where agents ‘migrate’ as needed. This enables in addi-
tion to the automatic detection of an attack, also attack localization as close as possi-
ble to its source. Agents must be able to isolate a specific network’s segments. Man-
agers coordinate the activity of basic agents by moving the basic agents across differ-
ent network points in order to investigate what is the really “relevant” information and
how to extract quality from quantity. For implementation details see [30].

5 Conclusions

We propose a theoretical foundation for the design of adaptive information infrastruc-
tures (AIIs) enabling and sustaining tomorrow’s e-Society, as well as envision various
areas of industrial application for such AIIs, that would improve human life. The re-
cent theoretical results obtained by us in modeling the property of emergence in self-
organizing systems were refined and expanded with other recent results to create a
model of emergence in Cyberspace, by this setting a foundation for engineering self-
organizing applications mirroring biological behavior.

The principal merit of the proposed holonic AII architecture is that it provides an
environment that can react appropriately to highly unpredictable situations. By using
natural models of emergence, much in the same manner as DNA is controlled in ge-
netic engineering, we will be able to control the emergence of AIIs as crises arise.
AIIs will address the emergency quickly, efficiently and most appropriately. Once a

 Adaptive Information Infrastructures for the e-Society 49

goal is set (where a certain need has to be fulfilled), the AII self-organizes to accom-
plish this goal optimally.
 Some of the difficult questions posed by this research are:

• Can pathological emergent behavior of the total system, arising from the interac-
tions between people, agents, objects, and their various policies, be avoided?

• How do we translate the interaction of agents in different contexts and environ-
ments into machine understandable language?

• How do we express and code sufficient real world semantics when the scope of
interaction between agents is too broad or not predefined [35]?

References

[1] Stuart Kaufmann, At Home in The Universe: The search for the laws of self organization
and complexity, New York: Oxford University Press, 1995

[2] Werner E (1996); ‘Logical Foundations of Distributed Artificial Intelligence’ in Founda-
tions of Distributed Artificial Intelligence (eds. O’Hare G.M.P. and Jennings N.R.)
(1996) John Wiley & Sons Interscience.

[3] Zimmermann, H-J, – Fuzzy Set Theory And Its Applications, Kluwer Academic (1991).
[4] Klir, G. and Folger, Tina, Fuzzy sets, Uncertainty, and Information, Prentice Hall,

(1988).
[5] Goldberg, D.E., Simple Genetic Algorithms, University of Michigan, Dept. of Civil En-

gineering, Ann Arbor, MI (1982)
[6] S. Kirkpatric, C.D. Gelatt, M.P. Vecchi, Optimization by Simulating Annealing, Science,

220:671-680 (1983)
[7] Stuart Kaufmann, Investigations, Oxford University Press, ISBN 0-19-512104-X
[8] Mihaela Ulieru, “Emergence of Holonic Enterprises from Multi-Agent Systems: A

Fuzzy-Evolutionary Approach”, Invited Chapter in Soft Computing Agents: A New Per-
spective on Dynamic Information Systems, (V. Loia – Editor), IOS Press -Frontiers in AI
and Applications Series 2002, ISBN 1 58603 292 5, pp. 187-215.

[9] Mihaela Ulieru, “Modeling Holarchies as Multi-Agent Systems to Enable Global Col-
laboration”, Proceedings of the IEEE Computer Society Press – 13th International Con-
ference and Workshop on Database and Expert Systems Applications (DEXA 2002),
September 2-6, 2002, Aix-en-Provence, France, pp. 603-608, ISBN 0-7695-1668-8, Or-
der # PRO1668.

[10] Mihaela Ulieru, Dan Stefanoiu and Douglas Norrie, “Holonic Metamorphic Architec-
tures for Manufacturing: Identifying Holonic Structures in Multi-Agent Systems by
Fuzzy Modeling”, Invited Chapter in Handbook of Computational Intelligence in Design
and Manufacturing (Jun Wang & Andrew Kussiak – Editors), CRC Press 2000, ISBN
No 0-8493-0592-6, pp. 3-1 – 3-36.

[11] Mihaela Ulieru and Dan Stefanoiu, “Holonic Self-Organization of Multi-Agent Systems
by Fuzzy Modeling with Application to Intelligent Manufacturing”, IEEE-SMC 2000,
Nashville, USA, October, pp. pp. 1661-1666 – with Dan Stefanoiu – postdoctoral fellow
and Douglas Norrie.

[12] Arthur Koestler, The Ghost in the Machine, MacMillan, 1968.
[13] Christensen, James H., Holonic Manufacturing Systems: Initial Architecture and Stan-

dards Directions, in Proceedings of the First European conference on Holonic Manufac-
turing systems, European HMS Consortium, Hanover, Germany, 1994.

50 M. Ulieru

[14] Mihaela Ulieru, Scott Walker and Robert Brennan, “Holonic Enterprise as a Collabora-
tive Information Ecosystem”, Workshop on “Holons: Autonomous and Cooperative
Agents for the Industry”, Autonomous Agents 2001, Montreal, May 29, 2001, pp. 1-13.

[15] Mihaela Ulieru, “A Fuzzy Mathematics Approach to Modeling Emergent Holonic Struc-
tures”, Invited Chapter in Geometry, Continua and Microstructures, pp. 241-255, Aca-
demic Press, 2002 – ISBN 973-27-0880-8.

[16] Mihaela Ulieru and Silviu Ionita, “Soft Computing Techniques for the Holonic Enter-
prise”, FLINT 2001, M. Nikravesh and B. Azvine (Eds.), New Directions in Enhancing
the Power of the Internet, UC Berkeley Electronics Research Laboratory, Memorandum
No. UCB/ERL M01/28, August 2001. pp 182-187.

[17] LARKS: Dynamic Matchmaking Among Heterogeneous Software Agents in Cyber-
space, K. Sycara, S. Widoff, M. Klusch and J. Lu, Autonomous Agents and Multi-Agent
Systems, Volume 5, No. 2, June 2002, Kluwer ISSN 1387-2532.

[18] Mihaela Ulieru and Mircea Cobzaru, “Building Holonic Supply Chain Management Sys-
tems: An e-Logistics Application for the Telephone Manufacturing Industry”, IEEE
Transactions on Industrial Electronics, December 2004 (accepted).

[19] Mihaela Ulieru and Rainer Unland, “Emergent e-Logistics Infrastructure for Timely
Emergency Response Management by Collaborative Problem-Solving with Optimized
Resource (Re)Allocation”, invited chapter in Engineering Self-Organising Systems - Na-
ture-Inspired Approaches to Software Engineering, Di Marzo Serugendo, G.; Karageor-
gos, A.; Rana, O.F.; Zambonelli, F. (Editors), Springer Verlag, 2004, X, 299 ISBN: 3-
540-21201-9, pp. 139-156.

[20] Mihaela Ulieru, “Internet-Enabled Soft Computing Holarchies for e-Health Applica-
tions”, in New Directions in Enhancing the Power of the Internet, (L.A. Zadeh and M.
Nikravesh – Editors), pp. 131-166, Springer Verlag, Berlin, 2003.

[21] Mihaela Ulieru and Alexander Grabelkovsky, “Telehealth Approach to Glaucoma Pro-
gression Monitoring”, International Journal of Information Theories and Applications
10(3), 2003, ISSN 1310-0513, pp. 326-330.

[22] Mihaela Ulieru and Marcelo Rizzi A Cooperative Approach to the Development of Ex-
pert Knowledge Bases Applied to Define Standard of Care in Glaucoma, Proceedings of
CoopIS 2003, Catania, Sicily, Nov. 3-7, 2003, pp. 235-243, Springer Verlag Lecture
Notes in Computer Science LNCS 2888.

[23] Mihaela Ulieru, Soft Computing Agents for e-Health, NAFIPS 2004 (North-American
Fuzzy Information Processing Society) International Conference, Banff, Canada, June
27-30 (accepted).

[24] Mihaela Ulieru and Adam Geras, “Emergent Holarchies for e-Health Applications – A
Case in Glaucoma Diagnosis”, Proceedings of IECON 2002 – 28th Annual Conference of
the IEEE Industrial Electronics Society, November 5-8, 2002, Seville, Spain, ISBN 0-
7803-7475-4, pp. 2957-2962, (proceedings on CD-Rom, IEEE Catalog Number
02CH37363.)

[25] Maja Hajdec, Elizabeth Chang and Mihaela Ulieru, Ontology-Based Holonic Medical
Diagnostic System, IASTED International Conference on Biomedical Engineering, Inns-
bruk, Austria, February 15-18, 2005 (submitted).

[26] Mora, T. and Ulieru, M., Agent-Based Decision Support Systems for the Industry, Pro-
ceedings of INDIN 2004, Second International Conference on Industrial Informatics,
Berlin, Germany, June 24-26, 2004, pp. 391-396.

[27] Mentrup, C. and Fuhrer, O., e-Motion: e-Mobile Testbed for Interoperability of Net-
works in e-Logistics, Proceedings of the 1st International Conference on Mobile Busi-
ness, July 8-9, 2002 Athens, Greece.

 Adaptive Information Infrastructures for the e-Society 51

[28] Mihaela Ulieru and Paul Worthington, Adaptive Risk Management System for Critical
Infrastructure Protection, International Journal of Integrated Computer Systems Engi-
neering, Special Issue on Autonomic Computing (accepted) 2005.

[29] Mihaela Ulieru, Emergent Computing for the Industry: Agents, Self-Organization and
Holonic Systems, Proceedings of IEEE-IECON 2004, November, Busan, Corea.

[30] Tom Berson, Sun Tzu in Cyberspace: The Art of Information Warfare, Keynote Address
at the Cybersecurity 2003 Conference, May 20, Foster City, CA, USA.

[31] Tim Kindberg and Armando Fox, Systems Software for Ubiquitous Computing, IEEE on
Pervasive Computing, Jan-Mar 2002, pp. 70-81.

[32] http://www.biometrics.org
[33] Noria Foukia and Salima Hassas and Serge Fenet and Paul Albuquerque, "Combining

Immune Systems and Social Insect Metaphors: A Paradigm for Distributed Intrusion
Detection and Response System" in Proceedings of Mobile Agents for Telecommunica-
tion Applications, 5th International Workshop, MATA 2003, Marakech, Morocco, Oc-
tober 8-10, 2003

Agent-Based Modelling of Stem Cell Self- rganisation
in a Niche

Mark d’Inverno and Rob Saunders

Cavendish School of Computer Science,
University of Westminster, 115 New Cavendish Street,

London W1M 8JS
{dinverm, saunders}@wmin.ac.uk

Abstract. It is our belief that modelling the behaviour of stem cells in the adult
human body as an agent-based system is the most appropriate way of under-
standing the process of self-organisation. We have undertaken several case stud-
ies where formal and/or computational models of stem cell systems, have been
re-developed using an agent-based approach. This paper presents details of one of
these case studies where we have used an agent-based approach as opposed to a
cellular automata approach. A formalisation of the non-agent and agent-based ap-
proach is given, and from the results of this investigation, we aim to demonstrate
the advantages of the agent-based approach for developing biologically plausi-
ble models with emergent self-organising dynamics. The aim of this paper first to
discuss the importance of modelling and simulating stem cells, because of certain
experimental limitations, but also to demonstrate that the multi-agent approach to
modelling is the most appropriate.

1 Introduction

In recent years there has been a growing debate about how stem cells behave in the
human body; whether the fate of stem cells is pre-determined [11] or stochastic [13, 19],
and whether the fate of cells relies on their internal state [12], or on extra-cellular micro-
environmental factors [21]. There have been several attempts to build formal models of
these theories, so that predictions can be made about how and why stem cells behave
either individually or collectively. An excellent review of these formal approaches can
be found in a recent publication [22].

Recent experimental evidence has suggested that stem cells development may be
more complicated than was originally thought. The standard model of stem cell devel-
opment is that a stem cell becomes increasingly differentiated over time along a well-
defined cell lineage and eventually becomes a fully functional cell. This model has been
challenged by many researchers including one of our collaborators, Neil Theise [7, 18,
16]. Several years ago, new theories were proposed by our collaborator and others that
challenged the prevailing view because new experimental data suggested that stem cell
fate is both reversible, i.e. cells can become less differentiated or behave more like stem
cells, and plastic, i.e. cells can migrate from one cell lineage to another.

Whilst working on Cell, with an interdisciplinary team including Theise and the
artist Jane Prophet, it became clear to us that the most appropriate way to model stem

S. Brueckner et al. (Eds.): ESOA 2004, 3464, pp. 52–68, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

LNAI

o

Agent-Based Modelling of Stem Cell Self-organisation in a Niche 53

cells in the adult human body was as a dynamic system of self-organising agents. Our
work to date has used our existing, well-established techniques for specifying and mod-
elling agent-based systems in general [4, 6, 9, 10] and progressed along two parallel
strands. The first strand of our work has been an attempt to develop an agent-based
model of Theise’s theory of stem cell behaviour and organisation [17, 5]. The second
strand has been to use the same agent-based approach to analyse and re-develop ex-
isting models to ensure that our framework is sufficiently flexible to model more than
one theory and to understand how other work differs from our own. In other words, we
have been working on re-implementing agent-based versions of cellular automata and
equational models of stem cells in order to support our claim that the agent approach is
more suitable than other current modelling approaches.

In this paper we consider one of the latest models of stem cell systems and show
what can be gained from evaluating them using our agent framework. The aim of this
paper is to show why we need simulations of stem cell behaviour in general, to demon-
strate the role of formal modelling in developing these simulations, and to show the
benefits of a multi-agent approach over other possible modelling approaches. We also
aim to substantiate our belief that stem cell self-organisation and behaviour is an emer-
gent of the individual interactions of individual stem cells with each other and with the
environment in which they are situated.

Before we consider this work in detail, we first consider the reasons why we might
want to build models of stem cell systems in general.

1.1 Formal Modelling of Stem Cells

The mathematical modelling, conceptualisation and simulation of stem cell behaviour is
beginning to receive a substantial amount of interest from a number of researchers [14,
1, 8]. As has been pointed out by others, predictive models of stem cell systems, could
provide important new understandings of the self-regulating mechanisms that result in
well known global properties of stem cells. These include the following qualities of a
healthy human adult.

1. There are always a sufficient number of stem cells.
2. Fully determined cells are sufficiently replenished as they die.
3. The system of stem cells can recover after serious injury or disease.

As has been discussed by a number of authors [22, 14] there are several reasons why
formal predictive models of stem cells will receive an increasing amount of attention in
the near future. Though the first model we know of was published in 1964 ([20]) there
has been surprisingly little work in this field until the last couple of years. Indeed over
the last few years, there has been a noticeable climate change in this respect, and there
is now a growing awareness of the need to use mathematical modelling and computer
simulation to understand the processes and behaviours of stem cells in the body. An
excellent review of existing models has been recently published [22].

We summarize what we see are the key reasons for the systematic development of
formal models and simulations to consider hypothesis about the nature and behaviour
of stem cells.

54 M. d’Inverno and R. Saunders

1. It is not possible to investigate how stem cells react by looking at dead tissue, and
much stem cell research is based on observation of dead, 2-D slides. Building sim-
ulations allows researchers to test possible cell behaviours that can then be related
back to observable laboratory results.

2. In the adult body, stem cells cannot be distinguished morphologically from other
primitive non-determined cell types. It is therefore hard, if not impossible, to ob-
serve their behaviour in the dynamic system of which they are a part.

3. The size and complexity of stem cell systems mean that without simulation, it is
not possible to consider the whole system. Simulations provide an important tool
for understanding the global behaviour of complex systems reacting agents.

4. Clearly any formal model, and resulting simulation, of stem cells will necessarily
incur massive simplifications and abstractions about the machinations of the hu-
man body. It is our belief, however, that theoretical simplifications are often key to
understanding fundamental properties of natural systems.

5. It is the potential of cells to behave in lots of different ways which makes them more
or less stem like. It may be that stem cell is a notion rather than an artifact and refers
to the wide-ranging set of potential behaviours that it might have that are influenced
by internal, environmental, and stochastic processes. Simulations provide a way of
determining which behaviours are essential to stem cells and which are incidental
in systems that have been studied in the laboratory.

6. When you consider experimental evidence you have seen only one behaviour. This
behaviour may have been one of many, and it is the potential for cells to behave
in certain ways that might be key to defining them. Modelling and simulation is a
much more effective device for understanding “behavioural potential” than looking
at completed chains of events in the lab.

7. Though our work has been explicitly concerned with modelling the adult human
body, it is clear that simulation does not involve any ethical difficulties such as
extracting stem cells from an embryo in such a way that it is sacrificed.

8. And of course, simulation is cheap.

This should give the reader an indication of why we believe this will become a grow-
ing field in the next few years. In our approach we have used an agent-based approach
to the formal modelling and simulation of stem cells, and we make the following claims
which we will attempt to substantiate in this paper.

1. An agent-based approach provides more flexibility than other more limited ap-
proaches and so delivers greater potential for modelling more sophisticated, glob-
ally emergent, behaviour.

2. An agent-based approach can also provide more biological plausibility than exist-
ing approaches such as cellular automata and other mathematical approaches. One
of the main reasons that biological plausibility is important is to attract biologists
to use and work with any models and simulations that are created.

3. Stem cells are a prime example of a self-organising system where individual cells
react to their local physical, chemical and biological environment. The system
should therefore be most suitably modelled as a system of interacting reactive

Agent-Based Modelling of Stem Cell Self-organisation in a Niche 55

agents, where the reaction at the micro level gives rise to the emergent behaviour at
the system level.

4. Even though we are simulating cells and environment, the Brooksian idea of an
agent being something which is both situated and embodied ([2]), is a fundamen-
tal driving force of our use of agents as the appropriate modelling paradigm. Cells
modelled as agents have a physical, chemical and biological presence and are sit-
uated in a physical, chemical and biological environment in which they react. The
way in which they react will then influence the way other cells react in the future
and so on. This then, becomes a complex system, as we have claimed before, that
stem cell systems should be modelled as complex adaptive systems.

5. By situating our simulation work in a wider formal framework we can compare
and evaluate different models. We believe that this is necessary for this new field to
develop in a systematic manner.

6. Moreover, the formal framework allows us to “agentify” existing models, making it
very clear what the relationship between the existing version and the agent version
is.

7. By building a formal model using a specification language from software engineer-
ing, there are techniques to ensure that the simulation correctly implements the
model.

In this paper we go some way to justifying our claims above by looking at one case
study in detail. We consider the work of Agur et .al who have developed a cellular
automata model of stem cells, and show that by re-caging this work in terms of an
agent model, we can highlight difficulties of the cellular automata approach in general,
but also increase the biological plausibility of the model.

In what follows below we will provide formal specifications of the original model
and the agent-based reformulation using the language Z [15]. We have a history of using
Z to build specifications of agent and non-agent computational systems that allows us
to compare and evaluate different models and approaches [6].

2 A Cellular Automata Approach to Modelling Stem Cells

In recent work, Agur et al. [1] built a cellular automata model to show how the number
of stem cells in the bone marrow could be maintained and how they could produce a
continuous output of determined cells. The bone marrow is considered to be a stem
cell niche where most biologists believe that the human body’s supply of hematopoietic
stem cells are situated and maintained.

This work is important because it is one of the few examples where a mathematical
model has been used to show what properties of stem cells might be required to enable
the maintenance of the system’s homeostasis. The model demonstrates a possible mech-
anism that allows a niche to maintain a reasonably fixed number of stem cells, produce
supply of mature (determined) cells, and to be capable of returning to this state even
after very large perturbations that might occur through injury or disease. The behaviour
of a cell is determined (equally differentiated) by both internal (intrinsic) factors, e.g. a

56 M. d’Inverno and R. Saunders

local counter, and external (extrinsic) factors, e.g. the prevalence of stem cells nearby,
as stated by the authors as follows.

1. Cell behaviour is determined by the number of its stem cell neighbours. This as-
sumption is aimed at simply describing the fact that cytokines, secreted by cells
into the micro-environment are capable of activating quiescent stem cells into pro-
liferation and determination.

2. Each cell has internal counters that determine stem cell proliferation and stem cell
transition into determination as well as the transit time of a differentiated cell before
migrating to the peripheral blood.

In the cellular automata model, the niche is modelled as a connected, locally finite,
undirected graph.

[Node]

[X]
connected : P(P(X × X))

This can be represented as a symmetric relation on the set of nodes, such that no
node relates to itself. We also assume that a graph is connected.

graph : Node ↔ Node
neighbours : Node → (P Node)

∀n : Node • (n,n) �∈ graph
graph∼ = graph
∀n : Node • neighbours n = ran({n} � graph)
connected graph

Any Node is either empty, or it is occupied by either a stem cell or a determined
cell. Here we introduce a naming convention that we shall use throughout where we
add a two letter suffix to all names specific to a model, in the case of the Agur model
we add the suffix “Ag”.

TypeAg ::= EmptyAg | StemAg | DeterminedAg

The state of any node is given by the node location, the state, and an internal clock.

NodeStateAg
node : Node
type : TypeAg
counter : N

The set of all such nodes is then given below, and defines the system state. We also
define a function that returns the neighbouring node states for any given node state.

Agent-Based Modelling of Stem Cell Self-organisation in a Niche 57

SystemStateAg
nodes : P NodeStateAg
neighboursAg : NodeStateAg → P NodeStateAg

{n : nodes • n.node} = Node
#nodes = #Node
∀n,m : NodeStateAg •

m ∈ (neighboursAg n) ⇔
m.node ∈ (neighbours n.node)

There are three constant values, we will call them LeaveNicheAg , CyclingPhaseAg
and NeighbourEmptyAg in our specification, that are used to reflect experimental ob-
servation. LeaveNicheAg represents the time taken for a determined cell to leave the
niche. CyclingPhaseAg represents the cycling phase of a stem cell; a certain number
of ticks of the counter are needed before the cell is ready to consider dividing. Finally,
NeighbourEmptyAg represents the amount of time it takes for an empty space that is
continuously neighboured by a stem cell, to be populated by a descendent from the
neighbouring stem cell.

LeaveNicheAg ,CyclingPhaseAg ,NeighbourEmptyAg : N

We now specify how the system changes over time. Whenever there is a change
of state in the system, we identify the node that we are considering as node . As a
consequence of each change node is removed and replaced with a new node, newnode ,
that represents the updated state. All locations are updated simultaneously.

ΔSystemStateAg
SystemStateAg
SystemStateAg ′

node,newnode : NodeStateAg

nodes ′ = (nodes \ {node}) ∪ {newnode}

The rules of this model, which determine what happens at a node based on internal
and external factors are described and specified below.

1. Determined cell nodes
(a) If the internal counter of a node representing a determined cell has reached

LeaveNicheAg then the cell leaves the niche; the internal counter of the node
is reset to 0, and the new state at the node becomes empty.

DeterminedLeaveNicheAg
ΔSystemStateAg

node.type = DeterminedAg
node.counter = LeaveNicheAg
newnode.type = EmptyAg
newnode.counter = 0

58 M. d’Inverno and R. Saunders

(b) If the internal counter has not yet reached LeaveNicheAg then the internal
conter is incremented.

DeterminedStayNicheAg
ΔSystemStateAg

node.type = DeterminedAg
node.counter < LeaveNicheAg
newnode.type = node.type
newnode.counter = node.counter + 1

2. Stem cells nodes
(a) If the internal counter of a node representing a stem cell has reached the con-

stant CyclingPhaseAg , and all of the nodes neighbours are stem cells, then the
state of the node becomes a determined cell and the internal counter is reset to
0.

StemToDeterminedNodeAg
ΔSystemStateAg

node.type = StemAg
node.counter = CyclingPhaseAg
∀n : (neighboursAg node) • n.type = StemAg
newnode.type = DeterminedAg
newnode.counter = 0

(b) If the internal counter of a node representing a stem cell is equal to Cycling
PhaseAg but not all the node’s neighbours are stem cells then do nothing; leave
the internal counter unchanged.

RemainAsStem1Ag
ΔSystemStateAg

node.type = StemAg
node.counter = CyclingPhaseAg
¬ (∀n : (neighboursAg node) • n.type = StemAg)
newnode.type = node.type
newnode.counter = node.counter

(c) If the counter has not reached CyclingPhaseAg then do nothing except incre-
ment counter by 1.

RemainAsStem2Ag
ΔSystemStateAg

node.type = StemAg
node.counter < CyclingPhaseAg
newnode.type = node.type
newnode.counter = node.counter + 1

Agent-Based Modelling of Stem Cell Self-organisation in a Niche 59

3. Empty nodes
(a) If the internal counter at an empty node has reached NeighbourEmptyAg and

there is a stem cell neighbour then introduce, i.e. give birth to, a stem cell in
that location. The internal counter of the node is reset to 0.

BecomeStemAg
ΔSystemStateAg

node.type = EmptyAg
node.counter = NeighbourEmptyAg
∃n : (neighboursAg node) • n.type = StemAg
newnode.type = StemAg
newnode.counter = 0

(b) If the counter at an empty grid has not reached NeighbourEmptyAg and there
is exists a stem cell neighbour then increment the counter by 1.

RemainEmpty1Ag
ΔSystemStateAg

node.type = EmptyAg
node.counter < NeighbourEmptyAg
∃n : (neighboursAg node) • n.type = StemAg
newnode.type = EmptyAg
newnode.counter = node.counter + 1

(c) If there are no stem cell neighbours at all then reset the internal counter to 0.

RemainEmpty2Ag
ΔSystemStateAg

node.type = EmptyAg
¬ (∃n : (neighboursAg node) • n.type = StemAg)
newnode.type = EmptyAg
newnode.counter = 0

2.1 Discussion About the Cellular Automata Approach

We now have provided a specification of this system, and this formal model immedi-
ately identifies a number of issues with this cellular automata work.

1. The specification clearly reveals that niche spaces, i.e. empty nodes, must have
counters for this model to work. In a sense, empty space is having to do some
computational work. Clearly this lacks biological feasibility and is against what the
authors state about modelling cells, rather than empty locations, having counters.

2. Stem cell division is not explicitly represented, instead stem cells are brought into
being by empty space.

60 M. d’Inverno and R. Saunders

3. More subtly, these stem cells appear when empty nodes have been surrounded by
at least one stem cell for a particular period of time. However, the location of the
neighbouring stem cell can vary at each step. Even though the model details the
fact that if a stem cell is next to an empty space long enough then it will divide so
that it’s descendent occupies this space. However, the rule does not state that the
neighbouring stem cell must be the same stem cell for every tick of the counter.
It states something much weaker; that there must be a neighbouring cell, possibly
different each time, for each tick of the counter from 1 to NeighbourEmptyAg .
Biologically, it would seem more intuitive that the same stem cell should be next
to an empty niche space for this length of time in order for “division” to occur into
the space but the model lacks a “directional component”.

4. The state of a stem cell after division is not defined. Let us for a moment assume that
the neighbouring stem cell (S) is fixed for all counts from 1 to NeighbourEmptyAg
from some specific location (N). Nothing is said about what happens to S after a
new stem cell appears in N. For example, should the counter of S be reset after
division? Neither does it give any preconditions on S. For example, does S’s local
counter need to have reached an appropriate point in its cycling phase for this to
happen?

So the basic problem is that this model relies on allowing both unfilled niche lo-
cations as well as stem and determined cells to have counters. Moreover, it does not
investigate or model the nature of a stem cell before and after division. We now attempt
to re-interpret these rules using an agent-based approach that still retains the overall
qualities of the model.

2.2 Re-formulation Using an Agent-Based Approach

One of the biggest differences between the original cellular automata model and our
re-formulation is the change in the role of graph nodes. In the cellular automata model
each node represents either a cell or an empty space. In our re-formulation, each node
represents a space that may or may not contain an agent that represents a cell. This
difference in the two models is illustrated in Figure 1.

(a) Agur (b) Agent-Based Agur

Fig. 1. A comparison of the original Agur cellular automata model and our reformulation as a
grid-based agent model. In the original model the nodes maintain the state of the cells, whereas
in our re-formulation the nodes contain agents and it is the agents that maintain the state of the
cells

Agent-Based Modelling of Stem Cell Self-organisation in a Niche 61

With the agent approach we also provide each cell with a unique identifier. We
model all cells as having one internal counter as before. In addition there is a counter
associated with each of the neighbouring nodes. The counters associated with neigh-
bouring nodes record how long the neighbouring location has been empty. Moreover,
cells can sense the type of cell at each of its neighbours, although this perception abil-
ity is only used by stem cells. If an agent represents a stem cell then it can potentially
divide into any location where the counter has reached NeighbourEmptyAg .

[AgentId]

AgentCellAg
id : AgentId
type : TypeAg
counter : N

nscounter : Node
→ N

nstype : Node
→ TypeAg

type = StemAg ∨ type = DeterminedAg
dom nscounter = dom nstype
∀n : Node | nstype n �= EmptyAg • nscounter n = 0

A stem cell agent is defined as follows.

AgentStemCellAg
AgentCellAg

type = StemAg

A determined cell agent is defined as follows.

AgentDeterminedCellAg
AgentCellAg

type = DeterminedAg

The initial state of an stem cell agent is defined as follows.

InitAgentStemCellAg
AgentCellAg

counter = 0
ran nscounter = {0}

The initial state of a determined cell agent is defined as follows.

InitAgentDeterminedCellAg
AgentDeterminedCellAg

counter = 0

62 M. d’Inverno and R. Saunders

We define a mature stem cell as one which is ready to divide.

MatureAgentStemCellAg
AgentStemCellAg

counter = CyclingPhaseAg

The system state consists of the niche where some nodes are filled with cells. The
first predicate simply states that the empty nodes are those nodes which do not contain
a cell. The second predicate states that the neighbours are defined by the graph to which
the cells are attached.

AgentSystemStateAg
cells : Node → AgentCellAg
emptynodes : P Node

emptynodes = Node \ (dom cells)
∀n : Node; c : AgentCellAg | (n, c) ∈ cells ∧ c.type = StemAg •

dom c.nscounter = ran({n} � graph)

2.3 Operation

Space does not permit us giving a full treatment, and of course many of the operations
would be identical to that which we have specified before, but we outline the basic
operations here.

1. Cells set/update counters.
2. Mature stem cells that are surrounded by empty neighbours and have neighbour

counters have reached NeighbourEmptyAg will make a request to the environment
to divide into two daughter stem cells.

3. The environment resolves any conflicts where several cells wish to divide into the
same node and informs those mature stem cells that can divide and those that are
not able to.

4. Mature stem cells that are able to divide do so. Mature stem cells that are sur-
rounded by stem cells become new determined cells. Mature determined cells which
are ready to leave the niche do so.

We consider each of these four stages in turn.

Updating Counters. We use the auxiliary function which increments all the counters
of a cell up to the maximum value.

incrementcounters : (Node
→ N) → (Node
→ N)

∀ f : Node → N; max : N • incrementcounters f =
{node : Node; n : N | (node,n) ∈ f •

(node,min{n + 1,NeighbourEmptyAg})}

Agent-Based Modelling of Stem Cell Self-organisation in a Niche 63

The reset for all determined cells is straightforward.

UpdateCounterDeterminedAg
ΔAgentCellAg

type = DeterminedAg
counter = counter ′ + 1

The reset for stem cells depends on whether the cell is mature. In all cases the
counters for the empty niche are updated.

UpdateCounterStemAg
ΔAgentCellAg

type = StemAg
counter < CyclingPhaseAg ⇒ counter = counter ′ + 1
counter = CyclingPhaseAg ⇒ counter ′ = CyclingPhaseAg
nscounter ′ =

(incrementcounters nscounter)⊕
({n : Node | nstype n �= EmptyAg • (n, 0)})

Request Division. Our agent-based approach to modelling forces us to consider what
happens when two stem cells attempt to divide into the same location. In our model,
we specify that when the internal counter reaches CyclingPhaseAg , it signals to the
environment the niche spaces that it is prepared to divide into.

Notice, that this approach is also agent-based in nature. Namely, the agent attempts
to do something but the environment is a dynamic and uncertain one. From the perspec-
tive of a single cell with its limited sensory abilities the world is no longer deterministic
like, it was in the cellular automata model, and not all attempts at action will be suc-
cessful.

The agent-based model not only considers the nature of acting in a dynamic envi-
ronment but also addresses issues such as the basic physical limitations of the stem cell
niche in general. Once again, it’s difficult to see how such issues can be considered, at
least explicitly, with the cellular automata approach.

A stem cell agent that is ready to divide, signals to the environment those neighbours
that have been empty for long enough, and so are able to receive the new cell. Of course
the output may be empty.

RequestDivision
AgentCellAg
possnodes ! : (AgentId × P Node)

counter = CyclingPhaseAg
possnodes ! = (id , {n : Node | nscounter n = NeighbourEmptyAg • n})

The Environment Allocates Nodes for Division. The environment receives requests
from cells to divide, and non-deterministically assigns those cells that can divide and

64 M. d’Inverno and R. Saunders

those that have insufficient space around them. There are several safety properties that
we can specify here:

1. all agents get a reply (first predicate)
2. no agent can be told to divide and not divide (second predicate)
3. no node ever has more than one agent dividing into it (third predicate)
4. cells only get to divide into a node they have requested (fourth predicate)
5. there is no remaining empty node that has been requested by any of the agents

not-granted division (fifth predicate).

DetermineDivision
ΞAgentSystemStateAg
requests? : AgentId → (P Node)
divide! : AgentId
� (Node × AgentId)
nodivide! : P AgentId

Let cellsdividing == dom divide! •
Let cellsnotdividing == nodivide! •
Let cellsrequesting == dom requests? •
Let nodesreceiving ==

{n : Node; id : AgentId | (n, id) ∈ (ran divide!) • n} •
cellsdividing ∪ cellsnotdividing = cellsrequesting ∧
cellsdividing ∩ cellsnotdividing = {} ∧
#cellsdividing = #nodesreceiving

2.4 Division and Determination

Cells that divide get told where they should divide into. We have two alternatives with
the assignment of identifiers to the daughter cells. We can either give both daughters
new identifiers, which is useful for tracking where they cells from, or the daughter cell
which remains in the node of the previous cell keeps the id of its parent. We specify the
first of these alternatives here.

AgentDivideAg
ΔAgentSystemStateAg
parent? : AgentId
to? : Node
daughter1Id?, daughter2Id? : AgentId

Let cell == (μ a : AgentCellAg | a.id = parent?) •
Let currentnode == cells∼cell •
Let daughter1 ==

(μ ag : InitAgentStemCellAg | ag .id = daughter1Id?) •
Let daughter2 ==

(μ ag : InitAgentStemCellAg | ag .id = daughter2Id?) •
cells ′ = cells ⊕ {(currentnode, daughter1)} ∪ {(to?, daughter2)}

Agent-Based Modelling of Stem Cell Self-organisation in a Niche 65

If the cell is not allowed to divide then id does nothing.

AgenNoDivideAg
ΞAgentSystemStateAg
id? : AgentId

Stem cells which have reached their cycle phase and which are surrounded by stem
cells become determined.

AgentDeterminationAg
ΔAgentSystemStateAg
cell ,newcell : AgentCellAg
node : Node

node = cells∼cell
cell .type = StemAg
cell .counter = CyclingPhaseAg
ran cell .nstype = {StemAg}
newcell .type = DeterminedAg
newcell .counter = 0
cells ′ = cells ⊕ {(node,newcell)}

3 Discussion

We have run hundreds of simulations of both the original CA model and of our agent
recapitulation to check that the behaviours of our agent model has the same properties
of the CA model. As we explained above, the agent model has allowed us to do is
address the issues of biological implausibility.

It is interesting to note that allowing cells to split into all available spaces, i.e. up
to four daughters, gives us the closest possible agent-based simulation match to the
original CA models, however, any biologically plausibility we may have introduced
would be negated by this. By limiting cell division to result in a maximum of at most two
daughter cells we still maintain the integrity of the original cellular automata version.

In the next section we now explore how we have used and agent-based approach to
extend one of the most sophisticated models of the stem cell niche that we have seen in
the literature that proposes an innovative way of understanding how stem cell properties
are maintained by the niche.

From a biological viewpoint the model of Agur et al. does not allow any reversibility
or plasticity in the basic properties of cells. For example, once a cell has differentiated
it cannot become a stem cell again. Moreover, once a cell has left the niche, it cannot
return.

A recent example of an approach that uses a more sophisticated model and addresses
these issues, is that of Markus Loeffer and Ingo Roeder at the University of Leipzig,
who model hematopoietic stem cells using various, but limited, parameters including
representing both the growth environment within the marrow, one particular stem cell

66 M. d’Inverno and R. Saunders

niche, and the cycling status of the cell [8]. The ability of cells to both escape and
re-enter the niche and to move between high and low niche affinities, referred to as
within-tissue plasticity, is stochastically determined.

The validity of their model is demonstrated by the fact that it produces results in
global behaviour of the system that match experimental laboratory observations. The
point is that the larger patterns of system organization emerge from these few simple
rules governing variations in niche-affinity and coordinated changes in cell cycle.

There is no doubt that Roeder’s model is one of the most sophisticated ones that we
have seen in the literature; it is formal, there is a simulation, it addresses key issues of
self-organisation and much of the modelling has an agent-like quality to it. There are,
however, a number of issues regarding this model that we have addressed by extending
it using our agent framework. Most significantly, they use of a probability function to
control the movement of cells between environments, and in the agent-view this is prob-
lematic. This probability is calculated from global information relating to the numbers
of various cells in the system. Although it useful to assume access to this global infor-
mation when developing the model of stem cell behaviour, no mechanism is known for
how stem cells could have access to this information in real biological systems.

Space presents us to show our work here, but to summarise we have extended the
Roeder model to produce an agent-based simulation that increases the biological intu-
ition and plausibility of the model, and allows us to investigate emergence due to the
subtle changes in micro-environmental effects for each cell. Modelling cells as agents
responding autonomously to their local environment is much more fine grained than the
previous model using equations to model cell transitions and allows for a much greater
degree of sophistication in the possibilities of understanding how self-organisation ac-
tually takes place in the adult human body.

The main point is that an agent does not rely on getting information about the system
state, in keeping with the reactive multi-agent systems approach, and we believe that
this gives a more biologically plausible handle on how things might be working at the
micro-environmental level.

We have extended the Roeder model to incorporate a model of space, albeit only
in 2 dimensions so far, so that we can consider cell movement in more detail. We are
particularly interested in experimenting with different shapes of niche to discover how
these might affect the production or maintenance of stem cells and determined cells.

4 Concluding Remarks

It is perhaps worth noting that Roeder’s model is similar in notion to Carriani’s view of
thermodynamic emergence [3]. It assumes that simple rules, i.e. the transition probabil-
ity functions, can model complex behaviours of stem cells as they make their transition
between niche and non-niche. The assumption is that complex behaviour can be un-
derstood by building models with simple behavioural rules that hide the complexities
of the underlying interactions between many components, i.e. a top down approach to
modelling.

By contrast, our model is more akin to Carriani’s ideas of computational emergence.
In this view, a series of simple rules gives rise to complex global behaviour, a bottom

Agent-Based Modelling of Stem Cell Self-organisation in a Niche 67

up approach if you like, we build simple models of agents and chemical diffusion the
lead to the emergence complex system-wide behaviours.

We are currently extending our work by analysing other models and simulations
using our formal methods and developing new implementations of these models using
agents. We are also continuing to work with Theise to specify new models of his theories
using our experiences of analysing and implementing other models of stem cell systems.

We are investigating ways of comparing outputs from our simulation runs, and look-
ing at metrics for determining when one simulation can said to be similar or share the
same emergent properties as another simulations. Formal methods have been very use-
ful in that they are re-usable, directly relate to the implementation, and enable us to
readily extend and agentify existing work.

From these case studies we can start to produce a kind of generic agent-based frame-
work and simulation environment for modelling and simulating natural biological sys-
tems in 2 or 3 dimensions using an agent-based perspective. We believe modelling
complex biological systems using an agent-based framework helps to ensure that mod-
els have biological plausibility and we also believe they are the most appropriate way
of beginning to understand how complex self-organising behaviours occur in natural
systems.

In this paper we have had several aims. First, we believe that recent medical evi-
dence suggests that the way to understand how stem cells organise themselves in the
body is as a self-organising system, whose global behaviour is an emergent quality of
the massive number of interactions of cells with each other and of the environment of
which they are a part. We claim. therefore, that the multi-agent system approach to
modelling is the most suitable one for exploring means to simulate the behaviour of
stem cells and from resulting simulations, suggest how tiny changes in individual stem
cell behaviour might lead to disease at the global, and hence observable from an ex-
perimental perspective, system level. We have outlined the benefits of this approach by
comparing it to a cellular automata approach in detail. Furthermore, we have aimed to
demonstrate the pivotal role of formality not only in precision and clarity with mod-
elling and in developing correct and consistent simulations, but as the foundation for a
common conceptual framework in a multi-disciplinary project.

Acknowledgements

The team of collaborators in this project, entitled CELL, included the stem cell re-
searcher Neil Theise, the artist but also the curator Peter Ride and the artist Jane Prophet
both from the University of Westminster.

References

1. Z. Agur, Y. Daniel, and Y. Ginosar. The universal properties of stem cells as pinpointed by a
simple discrete model. Mathematical Biology, 44:79–86, 2002.

2. R. A. Brooks. Intelligence without representation. Artificial Intelligence, 47:139–159, 1991.
3. P. Cariani. Emergence and artificial life. In C. Langton, C. Taylor, J. Farmer, and S. Ras-

mussen, editors, Artificial Life II, pages 775–797, 1991.

68 M. d’Inverno and R. Saunders

4. M. d’Inverno and M. Luck. Development and application of a formal agent framework.
In M. G. Hinchey and L. Shaoying, editors, ICFEM’97: Proceedings of the First IEEE In-
ternational Conference on Formal Engineering Methods, pages 222–231. IEEE Computer
Society, 1997.

5. M. d’Inverno and M. Luck. Understanding Agent Systems (Second Edition). Springer, 2004.
6. M. d’Inverno, N. D. Theise, and J. Prophet. Mathematical modelling of stem cells: a com-

plexity primer for the stem cell biologist. In Christopher Potten, Jim Watson, Robert Clarke,
and Andrew Renehan, editors, Tissue Stem Cells: Biology and Applications. Marcel Dekker,
to appear, 2004.

7. D. S. Krause, N. D. Theise, M. I. Collector, O. Henegariu, S. Hwang, R. Gardner, S. Neutzel,
and S. J. Sharkis. Multi-organ, multi-lineage engraftment by a single bone marrow-derived
stem cell. Cell, 105:369–77, 2001.

8. M. Loeffler and I. Roeder. Tissue stem cells: definition, plasticity, heterogeneity, self-
organization and models – a conceptual approach. Cells Tissues Organs, 171:8–26, 2002.

9. M. Luck and M. d’Inverno. A conceptual framework for agent definition and development.
The Computer Journal, 44(1):1–20, 2001.

10. Michael Luck, Ronald Ashri, and Mark d’Inverno. Agent-Based Software Development.
Artech House, 2004.

11. N. Nicola and G. Johnson. The production of committed hemopoietic colony-forming cells
from multipotential precursor cells in vitro. Blood, 60:1019–1029, 1982.

12. J. Novak and C. Stewart. Stochastic versus deterministic in haemopoiesis: what is what? Br
J Haematol, 60:527–529, 1991.

13. M. Ogawa. Stochastic model revisited. International Journal Hematology, 69:2–6, 1999.
14. I. Roeder. Dynamical modelling of hematopoietic stem cell organisation. Ph.D. Dissertation

Leipzig University, 2003.
15. M. Spivey. The Z Notation (second edition). Prentice Hall International: Hemel Hempstead,

England, 1992.
16. N. D. Theise. New principles of cell plasticity. C R Biologies, 325:1039–1043, 2003.
17. N. D. Theise and M. d’Inverno. Understanding cell lineages as complex adaptive systems.

Blood, Cells, Molecules and Diseases, 32:17–20, 2003.
18. N. D. Theise and D. S. Krause. Toward a new paradigm of cell plasticity. Leukemia, 16:542–

548, 2002.
19. I Thornley, R. Sutherland, R. Wynn, R. Nayar, L. Sung, G. Corpus, T. Kiss, J. Lipton,

F. Doyle, J. Saunders, S. Kamel-Reid, M. Freedman, and H. Messner. Early hematopoi-
etic reconstitution after clinical stem cell transplantation: evidence for stochastic stem cell
behavior and limited acceleration in telomere loss. Blood, 99:2837–96, 2003.

20. J. Till, E. Mcculloch, and L. Siminovitch. A stochastic model of stem cell proliferation,
based on the growth of spleen colony-forming cells. Proc Natl Acad Sci USA, 51:29–36,
1964.

21. J. Trentin. Influence of hematopoietic organ stroma (hematopoieticinductive microenviron-
ment) on stem cell differentiation. Gordon, A.S. (editor), Volume 1, Appleton-Century-Crofts,
New York, pages 161–168, 1970.

22. S. Viswanathan and P. Zandstra. Toward predictive models of stem cell fate. Cryotechnology
Review, 41(2):1–31, 2004.

S. Brueckner et al. (Eds.): ESOA 2004, 3464, pp. 69 – 83, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Ambient Cognitive Environments and the
Distributed Synthesis of Visual Ambiences

Guillaume Bour, Guillaume Hutzler, and Bernard Gortais

Computer Science Methods Laboratory, UMR 8042, CNRS / Evry-Val d’Essonne
University, 523 Place des Terrasses, 91000 Evry, France

hutzler@lami.univ-evry.fr, guillaume.bour@free.fr,
bernard.gortais@lip6.fr

Abstract. One of the current trends in computer science leads to the design of
computing organizations based on the activity of a multitude of tiny cheap
decentralized computing entities. Whether these chips are integrated into
paintings or disseminated in open environments like dust, the fundamental
problem lies in their cooperative operation so that global functions are obtained
collectively. In this paper, we address the issue of the creation of visual
ambiences based on the coordinated activity of computing entities. These
entities are distributed randomly on a 2D canvas and can only change their own
color and perceive their immediate neighbors.

1 Introduction

It is a fact that research on ubiquitous computing, since Mark Weiser coined the term
in 1988, has developed very rapidly [2], [3]. It is especially true for the last two or
three years with the explosion of mobile telephony, PDAs, wireless networks, etc.
Ubiquitous computing is associated to the disappearance of computers, not because
they’re not there anymore, but because they become invisible. But it’s not because we
can’t see them anymore that we can’t interact with them. The question of interaction
with ubiquitous systems has not really been raised as such. What is studied is the
interaction with mobile devices such as PDAs but what about the interaction with the
“societies” of computing entities that will “live” and develop in our walls, objects,
clothes, etc.? This is an almost sociological question and we argue, with others [14],
that it could be studied efficiently using the computerized concepts and tools that are
interested in the sociological aspects of computing, namely multi-agent systems.

Our approach consists in considering this interaction as a multimodal dialogue
between a human user and his(her) physical environment. We develop this approach
in a project called DanCE with (MA)2CHInE1, in which we consider the environment
as being populated with dozens of physical communicating objects. Each of these
communicating objects is characterized by limited capabilities for the treatment of
information, the communication with others, and the interaction with their physical
environment. The problem can then be reformulated as a problem of building

1 Dynamic Ambient Cognitive Environments with Multi-Agent Multimodal and Adaptive

Computer-Human Interaction Engine.

decentralized cognitive systems, which we call Ambient Cognitive Environments
(ACEs). To build such cognitive environments, one has to address the three main

LNAI

70 G. Bour, G. Hutzler, and B. Gortais

processes that are typical of any situated cognitive system: perception, decision,
action. However, each of these processes has to be handled in a decentralized way: we
treat perception as a sensor fusion problem, decision as a distributed consensus
reaching problem and action as a distributed coordination problem.

In this paper, we develop only the latter problem of action and we focus more
precisely on the production of visual ambiences. In the meantime, we explain the
abstractions that will allow us to extend the model to other kinds of expression such
as music, choreography, etc. This model is based on an analytical approach to
different artistic domains. In each of these domains, the analysis must lead to a
description of the corresponding expression (visual, musical, choreographic, etc.) in
terms of qualitative pairs such as cold/warm, quiet/loud, slow/fast, etc. These pairs
form together an ontology that the multimedia production system should know and
that it should be able to manipulate so as to express chosen emotions.

The aim is to be able to give instructions to the system using this ontology. The
difficulty is then for the system to translate a given order into a coordinated activation
of distributed colored cells. These cells are distributed randomly on a 2D canvas in a
way which is similar as in the works on amorphous computing [1], [9], [10].
Individual cells can change their color and perceive other cells in their immediate
vicinity but they can also move. Specific algorithms have therefore to be proposed so
that all the cells in the canvas can collectively express specific colored contrasts or
spatial structures. Such graphical composition primitives have finally to be composed
in a way that preserves the individual properties of each.

The paper is organized as follows: in the next section, we elaborate some more on
Ambient Cognitive Environments. We show in section 3 how the analysis of visual
expression allows to propose a grid relating emotions with structural properties of
pictures. We then show in section 4 how this can be expressed in a decentralized way
by elementary colored cells.

2 Ambient Cognitive Environments

The work presented in this paper is part of a larger project in which the objective is to
identify the right concepts and develop the corresponding technical tools to
dynamically organize distributed sets of computing entities as cognitive systems. This
is what we call Ambient Cognitive Environments (ACEs). The aim is that these high-
tech environments become sensible to the people that live in them. The aim is not to
be intrusive and spy the movements of these people, but to become aware of their
emotional dispositions and adapt accordingly. The environment adapt by producing
visual and sonorous ambiences that are calm when people are calm, or that become
calm when children get too excited, or that become suddenly “flashy” and buzzing
when people are too calm, etc. But not only the ambience may be adapted: specific
actions may be done using motorized objects; specific displays could be produced on
the walls, on clothes, either to establish a contact or to convey some information;
finally, electronic devices such as mobile phones, PDAs, MP3 players, etc. could be
used to send focalized audio or visual messages to one person.

Four important aspects, we believe, characterize these ACEs: first, people
interacting with ACEs shouldn’t have any technical job to do to make them run, hence
the automatic configuration of such environments depending on available sensors,

 ACEs and the Distributed Synthesis of Visual Ambiences 71

effectors, computing resources, etc.; secondly, people shouldn’t wear specific
equipment to interact with ACEs, hence the focus on body capture techniques that
rely or low-cost cameras, without any constraints on the body of the person; thirdly
the interaction should be multimodal, using interaction modalities that people are used
to, hence the focus on multimodal languages to analyze the performance of a dancer
and the response of the system; finally, ACEs should be able to learn to adapt their
responses to specific people, with specific ways of expressing emotions, and with
specific sensibilities to visual and sonorous environments, hence the central
importance of machine learning techniques in the project.

We may summarize all of this as the fact that the interface should not be more
visible than the computers themselves. If computers are disappearing, the interface
should also become as discrete and as natural to use as possible. We could finally
imagine that these kind of environments may adapt to people with either perceptive or
motor disabilities, by choosing dynamically the right modalities to establish a
communication with them.

In order to be able to combine multiple modalities, we need to use a level of
representation such that these different modalities can be described in a homogeneous
way and compared with one another. We distinguish four levels of abstraction in the
characterization of the behavior of the user: raw data are acquired directly by the
various sensors; primitives correspond to quantitative measures, obtained by the
processing of raw data (e.g. position, speed, etc.) ; qualities correspond to a subjective
characterization of behavior by a set of pairs of terms (e.g. slow/fast, warm/cold, etc.);
emotions finally correspond to more general terms used to characterize the global
ambience of a situation (e.g. sadness, calm, liveliness, etc.). Although ill-defined, the
latter notion of emotions correspond to the intuitive concept, based both on cognitive
and physical reactions to some situations [11]. By defining these levels, the objective
is twofold: first, to maintain a multilevel representation in order to allow an
incremental analysis of the behavior; second, to be able to compare the various
methods of capture, and therefore the expressions of the interlocutor, by using a
representation that is abstract enough (qualities or emotions).

3 Analytical Study of Visual Expression

In this paper, we focus more specifically on the automatic generation of visual
ambiences. This ambience is not meant to reflect the emotional state of the user [12]
but rather to inspire chosen feelings to the spectator. Our approach is based on the
hypothesis that these feelings rely, for some part, on the composition of contrasts and
graphical structures. To do this, we first need to present some general considerations
about the analytical study of visual expression. Any picture, either a photography or a
painting, has an emotional content. Depending on the cultural and historical context,
we perceive pictures with different codes, that make us feel various emotions such as
happiness, sadness, calm, serenity, etc. This also depends on the receptiveness of each
individual person but we can consider that the interpretation code is largely shared
inside a given culture. A sunset over the sea for example (see figure 1) generally
produces a tragic effect and inspires feelings of calm and serenity. This common
emotional answer to pictures has been analyzed and codified at the beginning of the
XXth century by artists such as W. Kandinsky [6] [7] and P. Klee [8]. Kandinsky, in

72 G. Bour, G. Hutzler, and B. Gortais

particular, tried to identify the role of shapes, colors, contrasts in the production of
emotions. However, he hardly said anything about the interactions between these
elementary components because of the complexity of this study.

3.1 Spatial Structures and Contrasts

A picture can be decomposed into several zones, each of which can be associated to
distinct “tensions”. While the top of a picture symbolizes lightness, ascension,
freedom, the bottom symbolizes heaviness and constraint. In addition, objects in the
picture are organized along abstract structuring lines that express the dynamics. While
horizontal and vertical lines symbolize calm and rest, diagonals express movements.

Finally, contrasts express oppositions between graphical objects that make them
reinforce each other. Each individual characteristics of the objects, such as color, shape,
size, etc., may give rise to a corresponding contrast. For color only, there are seven
identified contrasts, which are based on the properties of colors: contrast of pure hue,
value contrast, intensity contrast, complementary contrast, temperature contrast, size
contrast and finally simultaneous contrasts. Properties of the shapes can also be used to
produce size contrasts (small objects vs. large objects) or shape contrasts (symmetrical
vs. unsymmetrical objects). Finally, if pictures are animated, contrasts can be built using
the properties of movement such as direction, speed or rhythm.

3.2 Composition of Elementary Properties

Only through the composition of chosen elementary spatial structures and contrasts
can more complex emotions be expressed. Table 1 is an attempt to summarize basic
correspondences that we may establish, in western culture, between the composition
of pictures, expressed in terms of graphical structural and contrasts, and the emotional
content of the picture.

Table 1. Correspondences between the composition of pictures (in terms of spatial structure
and contrasts) and their emotional content

If we come back to the example of a sunset over the sea (see figure 1), we can

analyze it in the following way:

 d
yn

am
ic

 s
ta

tic

 v
al

ue

 t
em

pe
ra

tu
re

 c
om

pl
em

en
ta

ry

 p
ur

e
hu

e

 s
ize

 i
nt

en
sit

y

 s
im

ul
ta

ne
ou

s

 happy o o o
 calm o o
 serene o o
 sad o o
 restless o o o o
 tragic o o o o

 s
ha

pe

 s
ize

 t
op

-b
ot

to
m

 p
os

iti
on

 l
ef

t-r
ig

ht
 p

os
iti

on

 ACEs and the Distributed Synthesis of Visual Ambiences 73

• the picture shows an horizontal structure, separating the clouds, the sky, the sea;
• several contrasts can be identified

- a value contrast between the dark sea and lighter clouds and sky
- a temperature contrast between the sun and surrounding sky, which are very

warm (yellow orange), and other regions of the picture, with colder colors
- a size contrast between the small sun and the large regions around (sea, clouds)
- an intensity contrast centered on the sun.

Fig. 1. Sunset over the sea. The picture can be analyzed in terms of contrasts and a graphical
structure

Consultation of table 1 thus tells us that the emotional qualities of this picture are

the following:

Fig. 2. Correspondence between structural properties, contrasts and emotional qualities for the
picture shown in figure 1

3.3 Generic Modeling of Contrasts

Although contrasts can produce very different visual results, most of them are based
on the same principles. This is why we propose a generic model of the way a contrast
can be built by the association of graphical objects.

1. a given contrast is built upon an opposition of graphical objects with respect to a

specific graphical property (color, shape, size, etc.);
2. objects in the picture are divided into distinct groups (generally two); each of them

has its own value for the considered property: in a value contrast for example,
some of the objects are characterized by a light value, others by a dark value;

3. there’s a quantitative imbalance between the groups: the objects of one group are
more numerous than the others;

Structure/Contrasts Emotional qualities
Static

Intensity Calm

Serenity Temperature

Size

Value

Tragic

74 G. Bour, G. Hutzler, and B. Gortais

4. for some contrasts, there’s also a spatial imbalance between the groups: objects of
the preponderant group are distributed on the whole surface while the objects of
other groups are distributed along the main structuring lines of the picture.

4 A Multi-agent Composition

We have defined the theoretical background of the work from a graphical point of
view. We can now explain how it can be implemented as a multi-agent system in
which emotional qualities of pictures will be obtained by the coordinated activation of
elementary autonomous colored cells. By choosing such a decentralized approach, the
aim is to provide methods and algorithms that may be used on decentralized displays.
Today’s displays rely on LCD or plasma technology. Tomorrow’s ones may perfectly
well rely on tiny processors integrated in paintings that may change the color of the
painting in their vicinity, thus composing together displays as big as entire walls [1].
In addition, the proposed approach can be seen more generally as a way of spatially
structuring entire networks of processors, which may be very valuable in contexts
such as smart dust or sensor networks.

Our objective is definitely not to reproduce specific pictures or patterns, but to
provide the cells with the capability to manipulate contrasts and spatial structuring as
a mean to produce chosen emotional qualities. We based our work on the following
assumptions:

- algorithms should function with irregular 2D distribution of computing cells,
either static or dynamical (somewhat similar to the distribution that is used in
the works on amorphous computing);

- convergence of the algorithms should be fast so that the generation of pictures
is also fast;

- since the very notion of contrast is very general and can be instantiated in
different ways, the generation of contrasts by the system should be as generic
as possible (see paragraph 3.3 above)

- finally, although the perception of emotional qualities is quite general inside a
given culture, individual variations evidently exist and the algorithms must
allow the integration of machine learning techniques.

4.1 Composition of Elementary Behaviors

The challenge is now to implement the model presented in paragraph 3.3. with a
multi-agent approach. To do this, we chose to rely on a modular approach,
decomposing the overall problem into separate concerns. Step 2 in the model
(allocation into groups) can be realized quite easily since it doesn’t involve any
coordination between the agents. The agents will thus realize it independently of each
other. Step 3 (quantitative imbalance), on the contrary will need the coordination of
all the agents in the picture, with no possible centralization. This will require the
following sub-steps:

3.1. collective choice of the dominant group;
3.2. collective count of each group’s population;
3.3. migrations of agents between the groups so as to obtain a given ratio;

 ACEs and the Distributed Synthesis of Visual Ambiences 75

Similarly, step 4 (spatial imbalance) will require the following sub-steps:

4.1. collective choice of the dominant group;
4.2. homogeneous distribution of agents of the dominant group across the picture

and distribution of agents of the other groups along the structuring lines of
the picture.

Steps 3.1 and 4.1 are identical, which finally produces the composition schema shown
in figure 3.

Fig. 3. Composition schema of sub-steps for the construction of contrasts: arrows correspond to
functional dependences between the modules

4.2 Step 2: Concentration into Value Intervals

For a given contrast, the opposition between the graphical objects is based on
different values for a specific graphical property, for example hue. For a temperature
contrast, some of the agents will adopt a warm hue (yellow, orange, red) while others
will adopt a colder hue (blue, green). This doesn’t mean that all the agents of a group
will adopt a given value and that all the agents of the other group will have another
fixed value. This rather mean that the agents of one group will have their hue
distributed in a given interval of values (340-20 in the chromatic circle) and that the
agents of the other group will choose their hue in another interval (210-260 in the
chromatic circle). We made the choice to represent all possible properties as intervals
of numerical values, inside which we can choose 2 opposing intervals and have the
agents distribute themselves into these intervals. The intervals of values can be in
direct correlation with the modeled properties (as it is the case with hue) but they can
also be abstract descriptions of some properties (as it is the case with a symmetry
parameter, which is not directly quantifiable but which can be measured and
associated to an abstract scale ranging from 0 to 100). Some of the intervals can also
be cyclic as is shown in figure 4.

Fig. 4. Value intervals representation, compatible with circular or linear scales

Hue
0/360

0

Shape
symmetry 100

2

3.13.2

3.3

4.1

4.2

76 G. Bour, G. Hutzler, and B. Gortais

Each of the agents being initially in a random state with respect to the property
chosen for the contrast, the agents must evolve to come closer to the specified
intervals. They do so at each simulation step with the algorithm shown below.

Activation
∀ interval i, compute di = distance to i
choose interval j so that dj = Mini di
change property x towards interval j

Figure 5 shows the result of the concentration algorithm for the temperature contrast.
Each colored square corresponds to an agent. At the beginning of the simulation, each
agent is in an undetermined state. Agents rapidly change their hue towards the two
intervals (340-20 and 210-260).

Fig. 5. Concentration into separate intervals of hue for temperature contrast

4.3 Step 3.1: Choice of the Dominant Group

This step is meant to choose the group that will become dominant. This collective
choice has to be random and equiprobable. The problem of the choice, or voting, has
been studied by D. Schreiber [13] and G. Weiss [15]. In the model of Schreiber,
agents spatially organize according to affinities and move to form coalitions. Since
the position of the agents is taken into account in some of the contrasts that we want
to realize, this was not satisfactory. In the protocols proposed by Weiss, agents order
possible solutions depending on their individual preferences. However, this implies a
lot of communications since individual votes have to be collected, compared, and
diffused back to all the agents.

In our problem, the final choice isn’t important as such. We don’t care about
satisfying the initial choices of agents, we only care about obtaining a single final
choice. The solution that we propose consists in aggregating incrementally the votes
of closest neighbors. After making a random initial choice, the behavior for each
agent at each simulation step is the following:

Initialization
choice = random (1..groups_nb)
weight = 1

Activation
for c = 1 to groups_nb do
 neighbors_weight[c] = sum neighbors with (choice = c)
done
choice = i so that neighbors_weight[i] == maxi(neighbors_weight[i])
weight = neighbors_weight[choice]

 ACEs and the Distributed Synthesis of Visual Ambiences 77

Evaluation
This evaluation is not a formal proof of convergence of the algorithm but gives
indications about its quality. The two criteria were the quality of the random
distribution and the speed of convergence. To this end, agents were ask to make their
choice between four different colors (red, blue, green, yellow). The simulation has
been done with 100 moving agents in a 550x550 pixels space with a 100 pixels
perception distance. 100 runs of the simulation have been done.

Table 2 shows the distribution of the 4 possible choices. We can see that the
number of occurrences for each choice is very close to the mean value.

Table 2. Distribution of choices for 100 runs

Figure 6 below shows, for each convergence time expressed in number of
simulation cycles, the number of runs that have converged in that time. One can see
that for all the runs, the convergence time is comprised between 2 and 17 cycles, with
a mean of 9,1 cycles.

Fig. 6. Number of runs vs. convergence time

4.4 Step 3.2: Count of Groups Population

Quantitative imbalance requires that we assess the relative size of the different
groups. To this end, we chose to count the number of agents in each group.

Our solution is inspired by the BFS algorithm that computes the diameter of a
network (the distance between the most distant nodes) by building a covering tree.
The difference is that we don’t have any predetermined topology (the connectivity
between the agents isn’t static because they can move across the environment). The
solution is also adaptive because the count is updated when agents change from one
group to another. The algorithm is shown next page.

Choice Red Blue Green Yellow Total Mean Mean deviation

Results 22 30 26 22 100 25 3

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18

Convergence time (in nb of simulation cycles)

N
um

be
r

of
 r

un
s

78 G. Bour, G. Hutzler, and B. Gortais

Initialization
each agent gets a token
each agent propagates a “presence” stimulus

Activation
1. Aggregation of agents into associations; the “leader” gets all the

tokens of the other agents in the association
2. Fusion of associations with one another
3. Diffusion of the result (total number of tokens) to all the agents

The algorithm proceeds in three steps:

1. The agents form associations, each of which has got a “leader”. The latter
centralizes all the tokens of the association. This step is inspired by the Clubs
algorithm described in [9].

2. Once the associations are formed, they try to merge:
 agents at the border between two associations propagate a gradient

towards the leader. The gradient contains the information of the distance
to the border, incremented at each agent jump. The gradient diffusion
method is described in [10].

 when the leader perceives the gradient, it transfers its tokens to its
neighbors that is closest to the border (the one that diffused the gradient
with the smallest distance). This agent becomes the new leader of the
association. The tokens and the leadership thus move from agent to agent
towards one of the border of the association.

 when two leaders are close enough, they can merge. One of them collects
the tokens of both and the corresponding associations become merged.

3. When all the associations have merged, only one leader remains that has
collected all the tokens of all the agents of the simulation. He can then diffuse
the result to the other agents using gradient diffusion.

Figure 7 shows successive steps in the merging of associations. The first picture
corresponds to the state of the system after the constitution of associations. Each
subsequent picture corresponds to the fusion of two associations.

Fig. 7. Steps in the merging of associations: black agents corresponds to borders; leaders are
lighter

Since the leader of the last association has collected the tokens of all the agents,

he’s got as many tokens as the number of agents in the simulation. The algorithm thus
counts the agents. When constructing contrasts, we can thus evaluate the number of
agents inside each of the different groups. When agents are distributed inside several
groups (two for a temperature contrast), the algorithm has to be executed in each

 ACEs and the Distributed Synthesis of Visual Ambiences 79

group. Furthermore, we will explain in the next paragraph that agents will be able to
change group. When this arrives, the count must be dynamically updated. To this end,
the migrating agent gets a negative token (-1) for the group that it leaves, and a
positive token (+1) for the group it joins. As the algorithm is continuously executed, it
converges very rapidly towards a new result.

Evaluation
We evaluated the algorithm in the same conditions as the choice algorithm in order to
assess the time necessary to converge towards a global results. Each run is stopped
when all the agents have received the correct count.

Table 3. Time to converge towards a global count, diffused to all the agents of the simulation

Although adaptive, the algorithm still presents some weaknesses:

- if a leader fails, the tokens that it was responsible for are lost. This may be a
problem for amorphous computing in which agents correspond to chips and are
thus exposed to potential failures;

- convergence is slower when agents move (associations are less stable) or when
they frequently change groups.

4.5 Step 3.3: Quantitative Imbalance

Once the agents have chosen the group that will be dominant and they have evaluated
the respective size of all the groups, we can adjust the ratio between the groups. This
is done by having agents migrate from one group to the other. It is necessary to
specify beforehand the desired ratio between the different groups (e.g. 10%-90%).
The algorithm, for each agent at each simulation cycle is the following:

Activation
if total[my_group]/sum(total[]) > percentage[my_group]
 token[my_group] -= 1;
 my_group = another_group
 token[my_group] += 1;
end_if

Figure 8 shows the quantitative imbalance for the temperature contrast. The desired

ratio is 20% for warm-colored agents and 80% for cold-colored agents.

Fig. 8. Quantitative imbalance for temperature contrast. Desired ratio of 20%-80%

Duration Arithmetic mean Min Max Standard deviation
Results 18,8 14 27 3,08

80 G. Bour, G. Hutzler, and B. Gortais

4.6 Step 4.2: Qualitative Imbalance

The role of this final step is to organize the graphical elements spatially. Our approach
consists in positioning attracting agents that propagate gradients in their vicinity.
These gradients are meant to structure the distribution of agents from the non-
dominant groups. If we have only one attracting agent, the result is a spot of agents
that contrast with a homogeneous background (see figure 9).

Fig. 9. Single attractive agent

To obtain more complex structures, the approach is inspired by composition rules

used by painters. Each Border of the picture is divided into three thirds of four
quarters. The points so defined can be joined together, which creates structuring lines.
These structuring lines can either be static (horizontals and verticals) or dynamic
(diagonals). Such lines will be generated by placing “anchor” agents along the borders
at the dividing points and to make them propagate linear gradients. The gradients are
characterized by the angle ϕ that they make with the horizontal. Whether we wish to
obtain static or dynamic structures, the probability to generate anchor agents with ϕ
equals to 0° (horizontal line) or 90° (vertical lines) will be more or less high (see
figure 10).

Fig. 10. Static (left) and dynamic (right) structuring of the picture using either horizontals and
verticals or diagonals

Anchor agents can then be distributed along these structuring lines. When they

activate, they propagate gradients that attract agents from the non-dominant groups
and make them group in localized spots around them. In turn, the spots restitute for
the viewer the feeling of “virtual” lines that organize the composition. Figure 11
shows a first attempt to organize the picture according to such principles. In this
example, the agents did actually move but the same can be obtained if agents are in a
fixed position: a virtual movement can be obtained by exchanging the properties of
two neighboring agents.

 ACEs and the Distributed Synthesis of Visual Ambiences 81

Fig. 11. Dynamical structuring of the picture along composition lines

4.7 Exceptions to the Generic Model

Two specific color contrasts (simultaneous and intensity contrasts) did not fit well
into our generic model. The simultaneous contrast corresponds to the association of a
given color to its gray component (i.e. the color we would obtain by changing the
picture into grayscale). When viewing such a contrast, we tend to see the
complementary color at the boundary between the color and the gray. The intensity
contrast corresponds to the association of saturated and unsaturated colors (the latter
must prevail) in the picture.

For these two contrasts, the solution we propose relies on the use of a gradient that
is propagated around the center of the contrast. This gradient is provided with a
distance information that is propagated and incremented from one agent to the next.
The distance is equal to 0 at the center and is incremented as we move away from it.
The distance is then put into correspondence with the characteristics that is involved
in the contrast: for the simultaneous contrast, the color of the agents is unsaturated
until a given distance from the center; for the intensity contrast, the saturation of the
color of the agents decreases as a function of the distance from the center (see
figure 12).

Fig. 12. Intensity contrast (left) and simultaneous contrast (right)

4.8 Composition of Several Contrasts

Once isolated contrasts can be obtained, we have to address the issue of composing
distinct contrasts with one another. When contrasts are orthogonal (they rely on
distinct properties), they can be combined either by aligning the two contrasts or by
generating them in a disjoint way.
 In the case of aligned contrasts, the first contrast (we call it the “master” contrast) is
built by using the technique that we described in this paper. The second one (we call it
the “slave” contrast) is then built by executing only step 2 (see paragraph 4.2) on a

82 G. Bour, G. Hutzler, and B. Gortais

different characteristics of the agents. For example, after building a temperature
contrast, we can simply superimpose a value contrast by making warm colors brighter
and cold colors darker (see figure 13). In the case of disjoint contrasts, the whole
algorithm has to be run twice, once for each contrast (see figure 13).

Fig. 13. Aligned contrasts (left) and disjoint contrasts (right)

4.9 Parameterization of the Model

In order to be interesting, the result has to be variable and changing, and it has to be
adapted to the user. This can be done using several strategies:

- in step 2, the intervals that we choose to define the contrast will greatly influence the
result that we obtain. Indeed, the contrast will be stronger when the distance between
the intervals is bigger (see for example figure 14);
- a stronger contrast will also be obtained by using a bigger ratio between the different
groups;
- finally, a user may change the correspondence shown in table 1 between emotions
and pictural means needed to express them.

Fig. 14. Different value contrasts obtained by varying the intervals of the 2 groups

5 Conclusion

We presented in this paper a global and coherent approach to the creation of visual
ambiences, based on the use of contrasts and spatial structuring of pictures. Inspired
on the one hand by the analytical works of painters like Kandinsky and Klee, and on
the other hand by researches on amorphous computing, our work demonstrates the
feasibility of a decentralized approach. In particular, we presented a generic and

0
Value

100 0
Value

100

 ACEs and the Distributed Synthesis of Visual Ambiences 83

modular model for the creation of contrasts. This model relies on decentralized
algorithms that implement collective choices and counts, which allows to distribute
agents in separate groups and to control the relative abundance of the groups. We
showed that these algorithms converged fast towards global solutions, which may
lead to new applications for amorphous computing. In particular, we showed how a
spatial structuring of processor networks may be obtained by using contrasts and
composition structuring rules. In addition, this model can easily be adapted to
different users by changing some parameters, either by hand or by using machine
learning techniques.

Future research directions will explore this parameterization problem in a more
detailed and systematic way. We will use genetic algorithms on the one hand to
produce various system behaviors; we will define validation protocols on the other
hand in order to be able to assess the efficiency of the system, not in terms of speed of
convergence but in terms of emotional qualities expressed by the system.

References

[1] Abelson H., Allen D., Coore D., Hanson C., Homsy G., Knight T., Nagpal R., Rauch E.,
Sussman G., and Weiss R.. “Amorphous computing”, in Communications of the ACM,
43(5), May 2000.

[2] Borriello G. and Holmquist L. E. eds., UbiComp 2002, Springer, Berlin, 202.
[3] Finin T., Maamar Z. eds, Workshop 16 - Ubiquitous agents on embedded, wearable and

mobile devices, AAMAS 2002.
[4] Hutzler G., Gortais B., Drogoul A., “The Garden of Chances: a Visual Ecosystem”, in

Leonardo, Vol. 33, Issue 3, pp. 101-106, April 2000, International Society for the Arts,
Sciences and Technology, MIT Press.

[5] Hutzler G., Gortais B. and Orlarey Y., “Mutations: Plastic and Musical Improvisation by
Distributed Agents”, in World Multiconference on Systemics, Cybernetics and
Informatics 2001, N. Callaos, X. Zong, C. Vergez and J. R. Peleaz eds, pp. 380-385,
Orlando (Florida, USA), 2001

[6] Kandinsky W., Concerning the Spiritual in Art, Dover Publications, 1977.
[7] Kandinsky W., Point and Line to Plane, Dover Publications, 1979.
[8] Klee P., Paul Klee on Modern Art, Faber & Faber, 1985.
[9] Nagpal R. and Coore D., “An Algorithm for Group Formation and Maximal Independent

Set in an Amorphous Computer”, AI Memo 1626, MIT, 1998.
[10] Nagpal R., “Programmable Self-Assembly Using Biologically-Inspired Multiagent

Control”, in AAMAS 2002, pp. 418-425, Bologna (Italy), 2002.
[11] Picard R., Affective Computing, The MIT Press, Cambridge MA, 1997.
[12] Schemat S., “Virtual Emotion”, in Ars Electronica, Artificial Life – Genetic Art, Linz,

1993 (http://www.aec.at/en/archive_files/19931/E1993_230.pdf).
[13] Schreiber D., “The Emergence of Parties: an Agent-Based Simulation”, in Annual

Meeting of Midwestern Political Science Association, Chicago, Illinois, 2000.
[14] Servat D., Drogoul A., “Combining amorphous computing and reactive agent-based

systems: a paradigm for pervasive intelligence?”, in AAMAS 2002, pp. 441-448, Bologna
(Italy), 2002

[15] Weiss G., Multiagent Systems – A Modern Approach to Distributed Artificial
Intelligence, The MIT Press, 1999.

S. Brueckner et al. (Eds.): ESOA 2004, 3464, pp. 84 – 99, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Using the Experimental Method to Produce
Reliable Self- rganised Systems

Bruce Edmonds

Centre for Policy Modelling,
Manchester Metropolitan University

cfpm.org/~bruce

Abstract. The ‘engineering’ and ‘adaptive’ approaches to system production
are distinguished. It is argued that producing reliable self-organised software
systems (SOSS) will necessarily involve considerable use of adaptive
approaches. A class of apparently simple multi-agent systems is defined, which
however has all the power of a Turing machine, and hence is beyond formal
specification and design methods (in general). It is then shown that such
systems can be evolved to perform simple tasks. This highlights how we may
be faced with systems whose workings we have not wholly designed and hence
that we will have to treat them more as natural science treat the systems it
encounters, namely using the classic experimental method. An example is
briefly discussed. A system for annotating such systems with hypotheses, and
conditions of application is proposed that would be a natural extension of
current methods of open source code development.

1 Introduction

Zambonelli and Van Parunak (in parallel with others) have pointed out that,
increasingly, a different kind of computer system will be required if we are to meet
many of society’s needs [21] and these are starting to be developed. In this paper I go
further1 and argue that in parallel with different kinds of system we will need a
different kind of approach to producing such systems – an approach which places
more emphasis on natural scientific approaches than has been usual in multi-agent
systems. In other words, that design and engineering (in a sense I will make clear)
must make more room for adaptation and experiment. As should become evident, I
am not advocating the abandonment of design – far from it – but am suggesting a
better balance.

I start by distinguishing what I call the ‘engineering’ and ‘adaptation’ approaches
and their how they are applied (both separately and together). I then discuss some of
the limitations of the engineering method by considering an apparently simple class of
MAS that nonetheless is, in general, intractable to methodical and effective design
methods (the limitations of the adaptation method being fairly obvious). In contrast I

1 To be clear, it is not that Zambonelli and van Dyke in [21] don’t see a need for a change in

method as well as the change in system type, but that they do not see such a need to depart
from the engineering approach to the extent I am suggesting.

LNAI

o

 Using the Experimental Method to Produce Reliable SOS 85

show that these systems can be adapted to serve defined (albeit simple), purposes
using an evolutionary algorithm. These two sections lead on to the conclusion that we
will necessarily have to develop and deploy systems for which there is no complete
understanding inferrable from its design. Such systems (and many others) will have
to be understood using the same techniques that we use with other ‘ready-made’
systems in the natural world: by hypothesis and experiment. I then sketch how such a
natural science of self-organised systems might be used to achieve fallible but high
levels of reliability and (relatively) safe system reuse. I end by giving a short
example to illustrate this before I conclude.

2 Two Approaches for Obtaining Useful Systems

There are two basic ways of getting a useful system: by designing and then
implementing it, i.e. to construct it (what I will call the “engineering approach”); or
by taking some existing system and then manipulating it until it is good enough (what
I will call the “adaptive approach”). I briefly explain these approaches which are then
illustrated in figure 1, before considering their combination.

2.1 The Engineering Approach

The engineering approach seeks to develop a series of methods so that the resulting
construction is as useful as possible when the construction is finished. For example
the processes by which a steel girder is made is such that, probably, it will have
certain physical characteristics when made (torsion strength etc.). This approach
focuses on what can be done before the system has been constructed, thus it
concentrates upon developing methodologies and practices to do this. These methods
may be based to some extent upon an underlying theory of systems and system
construction, but on the whole they are systemisations of what has been found to work
in the past. Thus essentially one: relates what one wants to methods that have been
found in the past to produce this; makes a plan; and then implements it.

2.2 The Adaptive Approach

The adaptive approach takes an existing system and seeks to interact with the system,
going through a cycle of testing its current properties and changing it, until it is
acceptable. For example, one may train a dog so that it acquires the behaviours and
habits that you need to guard your house (barking at strangers etc.). As with the
engineering approach, this may be based upon some theory of the system or it may
just be a matter of trial and error. This approach focuses on what can be done with a
system after it is constructed and is achieved by comparing current properties against
the desired properties and deciding what changes might move it from having the
former to achieving the later.

2.3 Combining the Two Approaches

Of course, the two approaches are usually used together, and this is shown in figure 1
below. Thus however carefully a steel girder is constructed using established

86 B. Edmonds

methods, it is tested for flaws before being used. Similarly one often has to make an
initial system in order to be able to start adapting it and one often employs the
engineering approach when one wants to structurally adapt parts of an existing
system. Furthermore these approaches are often combined at different levels:
engineering a bridge uses basic design forms which have been developed by a process
of adaptation; and adapting the design of a car uses pre-engineered parts.

 Specification
and/or Goals
for System

Construction
Plan

the construction
process

test &
compare

Adaption
Plan

change system

Engineering Adaption

cycle 1 cycle 2

Point of system
creation

Fig. 1. An illustration of the engineering and adaptation phases before and after system creation

In the production of software systems, one typically first applies the engineering
approach and then follow this with the adaptation approach – “10% implementation
and 90% debugging”, as the adage goes. However, this is not always the case for
sometimes these occur in different combinations. For example, one might be faced
with a legacy system, in which case one might be limited to the adaptation approach
plus engineering additional wrappers, interfaces etc. If the adaptation process fails to
get the system up-to-scratch one might be forced to re-engineer substantial sections of
the system. Also these approaches might be used at different levels: thus one might
engineer a mechanism to adapt some software; or train a human to engineer a
compiler; or construct code in a high-level language to adapt lower-level code etc.

2.4 Using the Approaches Separately

Despite the fact that these two approaches are most effectively used together, there
are large sections of computer science dedicated to eliminating the need for one or
other of them. Thus genetic programming and other techniques in Machine Learning
minimises the engineering phases at the object level, starting with randomised
systems and adapting them from there. Similarly the formal methods community
seems to wish to eliminate the adaptation phase and reduce system production to
purely the engineering phase – attempt to make the production of software more akin

 Using the Experimental Method to Produce Reliable SOS 87

to maths or logic. This unfortunate trend has been exacerbated by the split between
the AI and ML communities with their different conferences, journals, approaches,
traditions etc.

3 The Insufficiency of Engineering for SOSS

Elsewhere [8], Joanna Bryson and I criticise an over-reliance on formal design
methods, where the engineering approach is focused on to the exclusion of adaptation.
There I show a number of formal results, which are basically simple corollaries of
Gödel [10] and Turing [20]. These can be summarised as follows: for a huge range of
specification languages (e.g. those that essentially include arithmetic):

1. There is no general systematic or effective method that can generate or find a
program to meet a given specification.

2. There is no general systematic or effective method that, given a formal
specification and a program, can check whether the program meets that
specification.

Where “general systematic of effective method” means one that could be
implemented with a Turing Machine. These results hold for the overwhelming
majority of classes of systems, including all those which include integer arithmetic
(i.e. the vast majority of MAS). This illustrates the ‘gap’ between formal
specifications and programs – a gap that will not be bridged by automation.

To illustrate how simple such systems can be, I defined a particular class of
particularly simple MAS, called GASP systems (Giving Agent System with Plans).
These are defined as follows. There are n agents, labelled: 1, 2, 3, etc., each of which
has an integer store which can change and a finite number of plans (which do not
change). Each time interval the store of each agent is incremented by one. Each plan
is composed of: a (possibly empty) sequence of ‘give instructions’ and finishes with a
single ‘test instruction’. Each ‘give instruction’, Ga, has the effect of giving 1 unit to
agent a (if the store is non-zero). The ‘test instruction’ is of the form JZa,p,q, which
has the effect of jumping (i.e. designating the plan that will be executed next time
period) to plan p if the store of agent a is zero and plan q otherwise. Thus ‘all’ that
happens in this class of GASP systems is the giving of tokens with value 1 and the
testing of other agents’ stores to see if they are zero to determine the next plan. This
is illustrated in figure 2.

However GASP systems have the same power as Turing machines, and hence can
perform any formal computation at all (a proof outline of this can be found in [8]).
Since GASP systems are this powerful, many questions about them are not amenable
to any systematic decision procedure. In particular, the above two results hold. Thus
formal design methods can not provide a complete solution for system construction,
and may only be effective for relatively simple systems (which accords with
experience).

88 B. Edmonds

Plan 1:

G3

G2

JZ2,1,3

Plan 2:

JZ1,2,3

Plan 3:

G2

G2

G2

JZ2,3,3

Agent 1

1

2

3

Agent 2

1

2

3

Agent 3

Etc.

Check if
zero

4

27 Store:

Fig. 2. An illustration of the working of GASP MAS: Each agent has a single store and a fixed
number of very simple plans composed of a list of “give one” instructions and a final one of “if
agent x’s store is zero the go to plan a next, else plan b”

Part of the problem seems to be the illusion that computational systems are
predictable, simply because at the micro-level, each step of a computation is
predictable. However, as the example of GASP systems shows, this is not the case.
For even though working out what may happen next at any given stage is simple, it is
impossible to compute many general aspects of their behaviour, from whether two
machines will have the same effect in terms of their stores to whether a given machine
will ever stop [5]. Thus we must give up the over-ambitious aim of complete reliance
on the engineering approach when we consider MAS of even minimal complexity,
and certainly for self-organised systems.

4 Producing Self- rganised Software Systems (SOSS)

Since we can not totally rely on engineering self-organised MAS we need to consider
also using adaptation as a principle method of useful system production, and not just
as an after-thought to “fine tune” and “debug” systems we have already engineered.
To illustrate this possibility I have evolved GASP systems to perform some simple
tasks. These use a simple and untuned evolutionary algorithm with small populations
of simple GASP systems over relatively short time runs, but nonetheless develop the

o

 Using the Experimental Method to Produce Reliable SOS 89

desired properties. Of course, people have been evolving computational systems for
about 40 years. The purpose of this section is to show: (1) that this can be done in
very simple but effective ways with systems that are Turing-complete2; and (2) that
this can be done with a MAS.

The evolutionary algorithm was extremely simple. A population of GASP systems
were evolved. Each generation 1/3rd of the GASPs with the best fitness were
preserved unchanged, the 1/3rd with worst fitness were culled, and the best 2/3rds
mutated (with a 10% chance of any number in any plan being replaced by a new
random number of the appropriate range) and entered into the population. This is
called “Evolutionary Programming” [9] it can be seen as sort-of stochastic hill-
climbing algorithm on a population. The algorithm is illustrated in figure 3.

Last
Generation

Next
Generation

election

mutation

cull

Fig. 3. The simple evolutionary algorithm applied to evolve GASPs: each generation the
GASPs are ranked; the top 1/3 elected; the top 2/3 mutated; and the bottom 1/3 culled

This does not produce “open-ended” evolution, as can occur in Genetic
Programming [13, 14], since the length of plans, the number of plans and agents is
fixed. This could be fixed by including an operator to possibly increase these – this
would probably result in the discovery of more sophisticated solutions [17].

4.1 Task 1: Long Periodic Pattern Development

To show that GASP systems producing outputs of increasing complexity can be
evolved, I defined the fitness function as the period that the GASP system settled
down into (if it did, the maximum otherwise) in terms of changes in the agents’ stores.
Thus each generation I ran each of 24 GASP systems for 500 time periods and at the
end determined the period of repetition of the system. That is how far back one has to
go to reach the same pattern as the last one. If there was no evidence of any such
pattern (i.e. if the GASP does settle down to any repetitive behaviour so the time of
the onset of this behaviour + the period of the repetition is > 500) it was accorded the
maximum fitness and the evolution was halted.

2 An interesting approach to evolving Turing Complete machines is [18, 19].

90 B. Edmonds

0

100

200

300

400

500

0 50 100 150 200 250 300 350
Generations

S
to

re
 P

at
te

rn
 R

ep
et

iti
on

 P
er

io
d

max
av

Fig. 4. The evolution of a GASP with a resulting repetitive period of over 500 time periods in
366 generations, with a population of 24 GASPs, each with 10 agents, each with 5 plans, each
of which have ‘give lists’ of up to 3 instructions long (plus a “test for next” instruction)

The ease with which a GASP may be evolved to exhibit long periodic behaviour is
strongly related to the number of agents and plans. A similar population of 24 GASPs
of 10 agents, each with 10 plans achieved a periodic behaviour of greater than 1000
iterations in only 24 generations. In similar experiments I was able to evolve GASPs
with periodic behaviour with high prime factors (there is an example in the appendix).

All that this shows is that it is feasible to evolve GASPs of increasing complexity.
The next task is more difficult and more suited to the distributed nature of GASPs.

4.2 Task 2: Anti-avalanche Defence

The next task chosen is better suited to the nature of GASP systems, that is the
distribution of their stores. The task here is to distribute its stores among its agents so
that half of them have stores that are greater than those accumulated by a set of
resevoirs to which shifting avalanches contributed to. One can think of the agents
piling up the defences to keep out increasing piles of snow resulting from the
avalanches. These avalanches are generated by a self-organised critical system and is
known to produce avalanches whose distribution follows a power-law, and which is
very difficult to predict [1]. The task of the GASP is to redistribute the units that are
fed evenly (one to each agent) to the correct places to counteract the accumulating
results of the avalanches. This is a continual race – the GASP is evaluated over its
success at maintaining this over 25 cycles, but each time there may be a different
pattern of inputs to the avalanche and a different pattern of avalanches. The overall
set-up is illustrated in figure 4.

 Using the Experimental Method to Produce Reliable SOS 91

GASP

Avalanche
Generator

Accumulators

Input
8

1 1 1 1 1 1 1 1

Fig. 5. An illustration of the target problem – the job of the agents in the GASP is to have more
in their store that the corresponding accumulators receiving the results of the avalanches

The avalanche generator is a version of the basic ‘sand-pile model’ investigated by
Per Bak and others [1]. It comprises of a set of piles, such that when a pile gets above
a critical height it topples over onto adjoining piles, possibly causing them to topple
etc. Units are constantly added, in this case to a pile along the ‘top’ edge. In this
version when piles topple the units ‘fall’ randomly onto the three piles in the next row
down in the adjoining columns (as illustrated in figure 4). The result is that the
avalanche generator outputs, on average, the same number of units as was input but in
irregular avalanches of various sizes. This makes it a difficult task to learn because
the best GASPs in the long term will be those that ignore the particularities that give
selective advantage in a single generation, but rather learns a more general strategy.

To show the advantage of the adaptive approach (and also to make the problem
even more difficult) I set up the evolution so that the problem it is trying to solve
changes during the evolution. The two versions of the problem are the ‘variable
input’ and the ‘fixed input’ problem. In the variable input problem the input to the
avalanche generator remains at a certain column position for a random number of
iterations (in the range [1,10]) and then relocates to another randomly chosen
position. This means that the avalanches will result with more being accumulated in
the columns adjoining to the input position wherever it is, so in the variable problem
this will change every now and then. In the fixed input problem the input is always at
the first column, so there will be more long-term bias to the same output
accumulators. Thus the variable input problem is more difficult to solve.

The GASPs were evolved against the variable input problem for the first 100
generations, then against the fixed input problem for 100 generations and back again
to the variable input problem for the last 100 generations. In each generation the
GASP is evaluated against 30 iterations of the GASP and avalanche generator. Each
generation the avalanche generator is differently initialised with piles of random

92 B. Edmonds

height below the critical height so the exact avalanche patters will be different every
time – thus this is far from a static problem! Figure 6 show the success of this
evolution over 31 runs.

0

50

100

150

0 50 100 150 200 250 300

Generation

C
ov

er
ag

e max max

av max

av av

Variable
Input

Variable
Input

Fixed
Input

Fig. 6. Statistics showing the extent that the evolved GASPs covered the incoming avalanches
(max=150). These are over 31 runs of the evolutionary algorithm, each with a population of 12
GASPs where each GASP is evaluated over 30 iterations. Bottom line shows the average over
the 31 runs of the average coverages, next line the average of the maximum coverages and the
top line the maximum of maximum coverages

As you can see, the GASPs evolve over the first 100 generations until they have
learned to cover the avalanches to a certain extent. Then when the problem
unexpectantly changes at generation 100 and becomes easier they quickly adapt to
this. Finally when the problem is switched back to the variable input problem at
generation 200 they have to relearn to cope with this (although this is much quicker
than for the first time). This illustrates how an adaptive system (involving continual
evolution) may be able cope with the unexpected better than an ‘one-off’ solution
(however constructed). Simply taking the current best GASP is a crude way of using
the learning achieved by the whole system, there are better ways (e.g. [17]).

One can imagine this style of system being applied to combat fraud where the type
of fraud is being continually innovated. Beating a system that continually evolves is
much more difficult than beating a static target. If the fraudsters (or virus writers!)
invent systems to continually evolve their agents this might be the only effective
defence. This is being investigated in the sub-field of artificial immune systems [3].

5 Putting the Production of SOSS onto a Sound Basis

If I am right that many SOSS will be evolved to a considerable extent rather than just
designed, and that formal methods will not be able to ensure that such systems meet
their specification, then we are left with a problem.

 Using the Experimental Method to Produce Reliable SOS 93

This problem is: how are we to ensure that the systems we produce will perform
satisfactorily when they are deployed in their operating context?

The answer I suggest is this: by systematically applying the classic experimental
method used in the natural sciences.

In other words, that we should make explicit testable hypotheses about the
important characteristics of the systems we produce (by whichever means) and test
these experimentally to determine: (1) their reliability and (2) their scope (i.e. the
conditions under which they hold. These hypotheses should accompany the systems’
publication, and be used by those who are considering using that system.

In addition to the hypotheses there should be sets of conditions under which it has
been tested. Thus if a system has been run repeatedly under certain conditions (e.g.
certain settings and parameter ranges) and it was found that in these circumstances the
hypotheses held, them these circumstances should be appended to the hypotheses. As
the system is tested in more circumstances this set should grow. When someone who
wants to use the system for the properties listed in the hypotheses they should check
that the circumstances it will be deployed under are covered by one of those that are
listed as having been tested. If they are not, the person has the choice of either testing
it themselves (and adding to the list if successful) or choosing another system. In this
way there will be a slow co-evolution of the code, the hypotheses and the list of
conditions as a result of the interaction of those using the system.

One can imagine an extension to the open-source method of code development so
as to include some sort of open-access database for such systems, hypotheses and
conditions of application. Programmers (or system growers!) would place their
systems in the repository along with the normal documentation and some hypotheses
and tested conditions of application. Others would test it under new conditions as they
needed to and add this information to the database. Useful systems that were found to
be reliable under sufficiently wide conditions would get to be used and tested a lot –
systems whose scope was found to be narrow would be passed over. Eventually new
variations of these systems would be created and the process continue.

The information might be as follows for each system (or major variation):

• S, a description and/or method of production is described in sufficient detail to
enable it to be made (at least with high probability). Each such S might have
attached a sequence of:

o Hi, the hypotheses about S that encode the useful properties. Each Hi
may have a list of {Ci,j, S i,j}, constituted thus:

 Ci,j, the conditions under which each of Hi has been found to
hold;

 S i,j is additional information accompanying each of the Ci,j,
for example: frequency of significance statistics concerning
the occurrence of Hi under Ci,j.

For SOSS that turn out to be useful, the Hi, and {Ci,j, S i,j} need to be added and the
continually refined in the light of experience. This makes the particular system, S,
much more useful to a potential user. Thus a ‘meta-evolutionary’ process will take
place with the useful systems becoming selected and tested, and the unreliable and
brittle systems being passed over.

94 B. Edmonds

It should be now clear how this is simply an application of the ‘classic’ scientific
experimental method. In particular how it is directly analogous to the scientific
process as conceptualised by Popper [16]. The world of software systems is one about
which hypotheses are made, tested and developed. The crucial test of a system is not
its relation (if any) to a designer’s intentions for it but its proven performance in terms
of the hypotheses about it. This marks a shift of emphasis away from verification to
validation.

Now, of course, the method of construction and/or the process of adaptation are
good sources for these hypotheses about system behaviour, but they are neither
necessary (the only sources) nor sufficient (they can’t be relied upon to be correct).
Other hypotheses might come about solely from observing their behaviour (and
maybe internal workings). Some others might be special cases of more general
hypotheses concerning identified classes of system. A broad and important source for
such hypotheses originate from other fields such as biology (e.g. Evolutionary
Computation) or sociology (e.g. reputation-based mechanisms [4]).

Specification
and/or Goals
for System

Construction
Plan

the construction
process

test &
compare

Adaption
Plan

change system

Engineering Adaption

cycle 1 cycle 2

Point of system
creation

Theory of
System

Fig. 7. An illustration of the relation of theory to the engineering and adaptation approaches

Thus there is a loose relation between: the plan of construction; the theory about
the system; and any adaptation plan. For example: the system theory may be
suggested by the construction plan; the adaptation plan may be informed by the
system theory; the success of an adaptation plan may suggest a system theory; or a
construction plan may be informed by the system theory. This set of relations is
shown in figure 7.

 Using the Experimental Method to Produce Reliable SOS 95

Of course, as in science, once a theory has become established (by being
extensively and independently tested), it can then be used to deduce things about the
systems concerned. Formal deduction has a role with respect to whole complex and
self-organised systems, but one that comes into its own only after a system theory has
been experimentally established.

6 Example Cases

6.1 Hypothesising About Systems in Evolutionary Computation

There are areas of computing where something like an experimental method is widely
applied, e.g. the field of Evolutionary Computation (EC). For example [15] proposes
several hypotheses about the causes of bloat in GP populations and then tests them
experimentally. This is indicative of the field. Whilst there are a few formal results
and models (mostly of fairly simple cases and systems), the majority of the work
could be described as experimental. Furthermore, in the sense that types of system
are produced whose properties are broadly know and which are successfully applied
in other systems and combined with other systems, it is successful.

However, more generally the hypothesising in evolutionary computation is usually:
(1) specific to performance on a particular set of problems and (2) does not include
the scope under which the hypotheses are found to hold. This makes it very difficult
for a person considering applying such a system to come to a judgement upon its use
for a different but similar problem. The hypotheses about the system are specific to
particular problems, so one has to guess whether it is likely to be applicable to the
new problem; and you do not know whether the system performance will extend to a
new scope. Thus the reuse of such systems requires much individual
experimentation, which deters many potential users.

6.2 Hypothesising About Tag-Based SOSS

‘Tags’ are features that are initially arbitrary but identifiable features of an agent –
they have no effect upon the individual abilities of that agent but are observable to
other agents. They can act as a (fallible) indication of cooperative group membership,
when part of a suitably evolutionary process. They allow a dynamic but persistent
maintenance of cooperation across a whole population even when defection is
possible, without complex mechanisms such as: contracts, reputation or kin-
recognition. This can occur because cooperative groups with similar tags are
continually forming and persisting for a period before being invaded by a defector
(which quickly destroys the group). Tag systems, and their possible relevance to
SOSS are discussed in [12].

In common with many SOSS, tag-based systems are stochastic and fallible. That
is, there is always a probability that cooperative groups will not occur. Thus one
could never prove from its specification that the system would work as intended.
However this effect seems robust over a range of settings and implementation
variations. Thus its seems a viable hypothesis that such systems will result in
significant amounts of cooperation over a reasonably wide range of settings.

96 B. Edmonds

David Hales has been working on such tag-based systems, work in which I have
played a small part. As a result of inspecting the results of such systems, several
hypotheses about the working of such systems (and hence the conditions under which
cooperative groups might occur) have suggested themselves. One such condition that
has been recently identified [11] is that the rate of tag mutation must be greater than
the rate of defection in (or into) a cooperative group. This seems to be because it
allows for new cooperative groups to form sufficiently often that there is always a
significant ‘population’ of pure cooperative groups before the defection occurs in
them. Thus although each group will inevitably be overrun with defectors, there are
always enough cooperative groups in the total population to maintain the overall
levels of cooperation. Thus, we not only have a hypothesis about a class of systems
which has been observed, some of the conditions under which it is thought to occur,
but also a mechanism by which it is though to occur.

The information published under the suggestion described in section 15 might be:

• S may be a description of one of the tag-based systems described as in [11];
• H1 might be that “the percentage of co-operators in the overall population is at

least 30%”;
• C1,1 might be the conditions under which each of H1 has been found to hold,

for example: “the mutation probability of the tag > mutation probability of
defection”;

• S1,1 might be the frequency statistics concerning the occurrence of H1 under
C1,1, in this case that “this occurred in 50 out of 50 trial runs over 30,000
generations”.

7 Conclusion

‘Engineering’ and ‘self-organisation’ do not sit well with each other. The extent to
which a system is engineered will constrain (as well as enable) what kind of self-
organisation can occur. Likewise the extent to which self-organisation occurs will
limit the scope for engineering since outcomes will be correspondingly undeducable.
In other words, self-organisation will result in some outcomes that are not, and can
not be, foreseen by any designer. An unwelcome surprise is always possible with
self-organised systems. These surprises will often have to be dealt with by adapting
the system after its creation. If we are to do better than trial and error in such
adaptation we will need to develop explicit hypotheses about our systems and these
can only become something we can rely on, via replicated experiment. This paper
can be seen as a tentative step towards such an experimental method.

Acknowledgements

Thanks to the participants of the ABSS SIG of AgentLink II for their comments about
the talk that eventually grew into this paper, especially Joanna Bryson. Thanks also
to Scott Moss and David Hales for discussions on these issues (and everything else).

 Using the Experimental Method to Produce Reliable SOS 97

References

1. Bak, P. (1997) How Nature Works: The Science of Self Organized Criticality. Oxford,
Oxford University Press.

2. Baram, Y., El Yaniv, R. & Luz, K. (2004). Online Choice of Active Learning Algorithms.
Journal of Machine Learning Research, 5:255-291.
http://www.jmlr.org/papers/v5/baram04a.html

3. de Castro, L. N. & Timmis, J. I. (2002), Artificial Immune Systems: A New Computational
Intelligence Approach, Springer-Verlag, London, September, 357 p.

4. Conte, R. and Paolucci, M. (2002) Reputation in Artificial Societies – Social beliefs for
social order. Kluwer.

5. Cutland N.J. (1990). Computability. Cambridge: Cambridge University Press.
6. Edmonds, B. (2002) Simplicity is Not Truth-Indicative. CPM Report 02-99, MMU, 2002.

(http://cfpm.org/cpmrep99.html).
7. Edmonds, B. and Moss, S. (2004) From KISS to KIDS – an ‘anti-simplistic’ modelling

approach. Workshop on Multi-Agent Simulation and Multi-Agent Based Simulation
(MAMABS), at AAMAS, New York, July. To be published in LNAI.
(http://cfpm.org/cpmrep132.html)

8. Edmonds, B. & Bryson, J. (2004) The Insufficiency of Formal Design Methods - the
necessity of an experimental approach for the understanding and control of complex MAS. In
Jennings, N. R. et al. (eds.) Proceedings of the 3rd International Joint Conference on
Autonomous Agents & Multi Agent Systems (AAMAS'04), July 19-23, New York, ACM
Press, 938-945.

9. Fogel, L. J., Owens, A. J. and Walsh, M. J. (1967). Artificial Intelligence Through
Simulated Evolution. John Wiley & Sons.

10. Gödel, K. (1931) Uber formal unentscheidbare Sätze der Principia Mathematica und
verwandter System I. Monatschefte Math. Phys. 38:173-198.

11. Hales, D. (2004) Change Your Tags Fast! - a necessary condition for cooperation?
Workshop on Multi-Agent Simulation and Multi-Agent Based Simulation (MAMABS), at
AAMAS, New York, July. To be published in LNAI. (http://cfpm.org/~david/
papers/mabs2004.pdf)

12. Hales, D. and Edmonds, B. (2003) Evolving Social Rationality for MAS using “Tags”, In
Rosenschein, J. S., et al. (eds.) Proc. of the 2nd Int. Conference on Autonomous Agents and
Multiagent Systems, Melbourne, July 2003 (AAMAS03), ACM Press, 497-503.

13. Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means
of Natural Selection. Cambridge, MA, MIT Press..

14. Koza, J. R. (1994). Genetic Programming II: Automatic Discovery of Reusable
Subprograms. Cambridge: MA, MIT Press.

15. Langdon, W. B. Terry Soule, Riccardo Poli and James A. Foster (1999) The Evolution of
Size and Shape. In Lee Spector, William B. Langdon, Una-May O'Reilly and Peter J.
Angeline (eds.) Advances in Genetic Programming, Volume 3. MIT Press, 163-190.

16. Popper, K. R. (1969) Conjectures and Refutations, London : Routledge & Kegan Paul,
17. Stanley, K.O. and Miikkulainen, R. (2004) Competitive Coevolution through Evolutionary

Complexification, Journal of Artificial Intelligence Research, 21:63-100.
http://www.jair.org/abstracts/stanley04a.html

18. Teller, A. (1994) The Evolution of Mental Models. In Kenneth E. Kinnear, Jr. (ed.)
Advances in Genetic Programming. MIT Press, 199-220.

98 B. Edmonds

19. Teller, A. (1996) Evolving Programmers: The Co-evolution of Intelligent Recombination
Operators. In Peter J. Angeline and Kenneth E. Kinnear, Jr. (eds.) Advances in Genetic
Programming , Volume 2. MIT Press, 45-68.

20. Turing, A.. M. (1936) On computable numbers, with an application to the
Entscheidungsproblem. Proc. Lond. Math. Soc. 42:230-65; 43:544-6.

21. Zambonelli, F., and H.V.D. Parunak (2002) Signs of a Revolution in Computer Science
and Software Engineering. 3rd International Workshop on Engineering Societies in the
Agents World, Madrid, Spain. http://www.ai.univie.ac.at/~paolo/conf/ESAW02/

Appendix – An Example GASP

An example of a simple GASP evolved to have a repetitative period of 89. Figure 8
shows the set-up of the GASP and figure 9 a graph illustrating the cycle.

1, 1, [], 5, 3, 2
1, 2, [], 4, 2, 1
1, 3, [], 5, 2, 4
1, 4, [1], 3, 2, 4
1, 5, [3 4], 2, 1, 5
2, 1, [], 5, 4, 3
2, 2, [], 4, 2, 4
2, 3, [3 6 6], 1, 5, 1
2, 4, [6 5 4], 2, 2, 3
2, 5, [6 3 3], 3, 3, 2
3, 1, [], 4, 3, 1
3, 2, [6], 5, 3, 4
3, 3, [3 4 2], 3, 3, 4
3, 4, [4 4 5], 1, 3, 5
3, 5, [3 6], 1, 2, 1
4, 1, [], 1, 3, 3
4, 2, [], 1, 5, 5
4, 3, [3 3], 3, 3, 5
4, 4, [2], 1, 3, 1
4, 5, [3 2], 5, 5, 4
5, 1, [3 2 2], 5, 3, 5
5, 2, [1 6], 2, 3, 1
5, 3, [3 1 5], 2, 2, 4
5, 4, [1 2 1], 5, 1, 4
5, 5, [4 4], 4, 4, 4

Fig. 8. The plans of the agents in this evolved GASP system (agent number, plan number, give
list, test agent, then plan, else plan)

 Using the Experimental Method to Produce Reliable SOS 99

0

5

10

15

150 160 170 180 190 200 210 220 230 240 250

Iteration

A
ge

nt
's

 S
to

re

Fig. 9. A graph showing the 89-iteration cycle in 3 of the stores which results from this GASP
executing

An Architecture for Self- rganising
Evolvable Virtual Machines

Mariusz Nowostawski, Martin Purvis, and Stephen Cranefield

Information Science Department,
University of Otago, Dunedin, New Zealand

{mnowostawski, mpurvis}@infoscience.otago.ac.nz

Abstract. Contemporary software systems are exposed to demanding, dynamic,
and unpredictable environments where the traditional adaptability mechanisms
may not be sufficient. To imitate and fully benefit from life-like adaptability in
software systems that might come closer to the complexity levels of biological or-
ganisms, we seek a formal mathematical model of certain fundamental concepts
such as: life, organism, evolvability and adaptation. In this work we concentrate
on the concept of software evolvability. Our work proposes an evolutionary com-
putation model, based on the theory of hypercycles and autopoiesis. The intrinsic
properties of hypercycles allow them to evolve into higher levels of complexity,
analogous to multi-level, or hierarchical evolutionary processes. We aim to obtain
structures of self-maintaining ensembles, that are hierarchically organised, and
our primary focus is on such open-ended hierarchically organised evolution.

1 Introduction

The rapid growth of complexity in different areas of technology stimulates research in
the field of engineering of self-organising and adaptive computation systems. Adaptive
software models refer to generic concepts such as adaptability and evolution. This, on
the other hand, inherently leads to fundamental questions about the nature of open-ended
uniform evolutionary processes: their essential properties, minimal requirements, archi-
tectures, models, and evolution of evolvability. Answers to some of these fundamental
questions will lead to progress in automatic evolutionary design of computational ma-
chines and in engineering techniques for self-organising and self-adaptable software
systems.

1.1 Traditional Methods

In common English usage adaptation means the act of changing something to make
it suitable for a new purpose or situation. In software systems, the term adaptation is
being used mostly, if not exclusively, with a second semantic meaning. What is usually
meant by software adaptation is that the system will continue to fulfil its original purpose
in new or changing circumstances, situations or environments. The adaptability in such
software systems may be achieved by a feedback loops between the system, the controller
monitoring and changing and adapting the system, and the environment itself. The system

S. Brueckner et al. (Eds.): ESOA 2004, 3464, pp. 100–122, 2005.
c©Springer-Verlag Berlin Heidelberg 2005

LNAI

o

An Architecture for Self- rganising Evolvable Virtual Machines 101

purpose is pre-defined in advance as a set of specifications, which are kept within the
controller. The behaviour of the system is automatically altered if the expected outputs are
outside of these pre-defined specifications. Such models operate analogously to the way
automatic control systems work [15]. Most of them are based on top-down design and
work well in limited environments, where changes in the environment can be predicted
and constrained in advance [21]. Such adaptive systems are tuned to particular kinds and
specific levels of change in the environment.

Most of the adaptability in traditional software systems is achieved via control mech-
anisms like in automatics. There is a central system, with a set of sensors and actuators, a
controller, and an environment. Sensors sense an environment, the system and controller
are tied via a set of feedback loops, and the controller tries to keep the system within
pre-defined boundaries. This model can be implemented in a straightforward fashion,
however it is static and must be applied in situations where it is possible to predict in
advance all the changes and variations of the environment. To make things more robust
and flexible, it is possible to implement into the controller an ability to learn, so the rules
for changing the system become more dynamic, thereby enabling the entire ensemble to
follow changes in more dynamic environments. Yet such systems still suffer from draw-
backs associated with the simple control model. Even though the system shows some
adaptability on another scale of complexity, there are limits of environmental change
with which the system can cope. And these limits are pre-established with the structure
of the learning mechanism itself.

1.2 New Requirements

Contemporary software systems, especially open multi-agent distributed systems, eg.
[26], that may potentially be spread around the globe and interact with various changing
web-services andweb-technologies, are exposed to demanding,dynamic,and unpredict
ableenvironments where the traditional adaptability mechanisms may not be sufficient.

To imitate and fully benefit from life-like adaptability in software systems, that (at
least in theory) might come closer to the complexity levels of biological organisms,
we seek a formal mathematical model of certain fundamental concepts such as: life,
organism, evolvability and adaptation. In this work we will concentrate on the concept
of software evolvability.

The landmark step in understanding the evolutionary process of living organisms in
natural life was done by Darwin [4], who proposed mechanisms by which purposeful
adaptive changes take place via processes of random mutation and natural selection.
Darwinian mechanisms postulate reproduction, the statistical character of change pro-
cesses, and the process of elimination (after elimination the organism ceases to exist,
i.e. is not alive anymore).

1.3 Computation and Biological Inspirations

In this work we use a theory of evolvable virtual machines, which exhibits adaptability
and self-organisation. The model has been inspired by ideas that have been developed
over the last decades. The roots of the proposed model can be traced back to the work
of John von Neumann [38, 39], who submitted that a precise mathematical definition

-

o

102 M. Nowostawski, M. Purvis, and S. Cranefield

should be given to basic biological theories. This has been most prominently continued
and extended by Gregory Chaitin [2, 3].

Some current research in evolutionary computation (EC) is emphasising information-
centric methods that mirror Darwinian theory of random mutations and natural selection.
This is visible in well-established computational optimisation methods, such as Genetic
Algorithms (GA), Genetic Programming (GP), and their variations, such as assortedArti-
ficial Life systems. Despite some successes, the typical simple single-layer evolutionary
systems based on random mutation and selection have been shown to be insufficient (in
principle) to produce an open-ended evolutionary process with potential multiple levels
of genetic material translation, see e.g. [5, 41].

Our work proposes an alternative path, based on the theory of hypercycles [5] and
autopoiesis [20]. The intrinsic properties of hypercycles allow them to evolve into higher
levels of complexity, analogous to multi-level, or hierarchical evolutionary processes. We
aim to obtain structures of self-maintaining ensembles, that are hierarchically organised,
and our primary focus is on such open-ended hierarchically organised evolution.

2 Computational Evolution

2.1 Information-Centric Approach

It is believed by some that the information-centric approach is a correct, if not the only
possible, path to pursue the research and make progress in the field of theoretical and
computational biology [23, 3]. In our work, we use some of the basic concepts of the
information-centric approach, and throughout this work we will use two basic notions
of information as introduced by Shannon [33] and in Kolmogorov-Solomonoff-Chaitin
algorithmic information theory [18]. We will refer to the Shannon notion as information
and to the Kolmogorov-Solomonoff-Chaitin notion as algorithmic information.

There have been many more or less formal attempts to define life, complexity, or-
ganism, organism boundaries, and information content [32, 25, 19]. Some authors have
attempted to give rigorous quantitative definitions of these concepts, in a formal deduc-
tive form [39, 3, 10]. Interestingly, authors coming independently from different sets of
basic definitions and assumptions reached the same or very similar conclusions (e.g. [3]
and [10]). According to theoretical and experimental work of most authors, the process
of improvement in individuals and ensemble growth are best accomplished by carry-
ing along all, or almost all, of the previously developed structures while new pieces of
an ensemble structure are being added [34]. Simulations and statistical analysis in the
fields of Artificial Life experimentally confirm the efficiency of this approach. Recent
work in incremental reinforcement learning methods also advocate retention of learned
structures (or learned information) (e.g. [30]). The sub-structures developed or acquired
during the history of the program self-improvement process are kept in the program
data-structures. It therefore comes as a bit of surprise that this general procedure is not
being exhibited by any of (standard) evolutionary programming models [7] such as:
Genetic Programming (GP) [16]) or Genetic Algorithms (GA) [40]. Although these evo-
lutionary programming models are inspired by biological evolution, they do not share
some significant aspects that are recognised in current evolutionary biology, neither can
they be used (directly) in incremental self-improvement fashion.

103

We are seeking a new, robust, and flexible evolutionary model, that can accommodate
meta-learning and incremental self-improvement, as well as hierarchically organised
evolutionary processes.

2.2 Information Measure

Information is a measure based on a selection from a set of available choices. Algorithmic
information is a uniform measurement of encoding information relative to the given
computing machine (virtual machine).

The amount of information is based on the ability to make a correct selection from a
given set. Let us consider a unique code k ⊂ X×Y , i.e. y = k(x), where x ∈ X, y ∈ Y ,
x represents a given condition, and y represents the correct selection. X and Y can be
any sets, but in the context of finite state machines and discrete computation, one can
treat them as sets of program blocks. Let us use index g to indicate a particular selection
of x for a given y (goal). This model can be expressed now as xg = k−1(yg). Selection
of a single unique condition xg gives us all necessary information to obtain the output
yg: I(xg) = −log p(xg), where p(xg) is the probability of picking a correct condition
x, and I is the information content of a particular xg [33, 1].

One of the possible ways to refer to the probability distribution p(x) is to compare
it with the reference distribution of the system. We can take as a reference a system that
makes all possible choices with equal probability. Such a system would have maximum
entropy (equivalent to the thermodynamical state of equilibrium). By entropy we mean an
information theory measure which, when applied to an information source, determines
the maximum channel capacity to transmit the source encoded according to a particular
signal alphabet. The state of maximum information entropy we will refer to as a system
in abiotic equilibrium. In such a state the probability of a correct selection of a given
condition for a given output is uniformly distributed across all the possible conditions,
and therefore all selections are equally probable. By calculating the difference between
the actual p(x) and this uniform abiotic distribution, one can calculate the information
content needed to make a correct selection. (This is the difference between the given
channel and one with maximum information capacity.)

In the context of incremental search methods through program search-space, as in the
case of [31], p(x) can be interpreted as the probability of executing a particular instruction
during the course of program execution. The program itself can accumulate information
about its environment and requirements by adjusting these probability distributions. A
program can modify the probability distributions for different instructions at runtime.
The difference between abiotic probability distributions (the initial uniform distribution)
and the given probability distribution of a given system will be the measure of acquired
information.

2.3 Darwinian Systems

Darwin’s principle of natural selection is widely used in current computational models
of evolutionary systems for optimisation or simulation purposes (in fact in Evolutionary
Computation in general). Some authors regard natural selection as axiomatic, but this
assumption is not necessary. Natural selection is simply a consequence of the properties
of population dynamics subjected to specified external constraints. The main objective of

An Architecture for Self- rganising Evolvable Virtual Machineso

104 M. Nowostawski, M. Purvis, and S. Cranefield

the work of Darwin and Wallace [4] was to provide some basic insights into the process
of evolution and the phylogenetic interrelations among species.

There are some inherent properties of conventional computational Darwinian systems
which are sometimes overlooked. Darwinian systems rely on the concept of an environ-
ment with embedded self-replicating entities competing for resources and reproduction.
For the model to be consistent, one has to postulate a stable species which competes
for selective preferences and a stable reproduction of the best adapted species. In other
words the model postulates that the selection operates purely on the individuals, hence
there is only a flat single level of individuals which the evolutionary processes operate
on. In such a model, there is a limit to the amount of the information content a stable
species can have. Therefore the evolution of such a system is limited to a certain level
of complexity defined by the threshold for maximum information content for a given
setup/configuration of species. To overcome this threshold, further levels of selection
and evolutionary information translation would need to be introduced into the system.

A second important aspect concerns random mutations. In real biological systems,
due to overly complex and dynamic environments, the mutations can simply be a func-
tion of the environment. There is no need to postulate an external, god-like source of
randomness. However, in computational models, the environments are highly regular
and fixed, and the only way to introduce the necessary noise to the search process is
by introducing an external source of randomness. This, as with certain random-search
optimisation methods, can be useful, and in fact works quite well for some classes of
problems (with the main computational techniques employed being Genetic Algorithms,
Genetic Programming, and other evolutionary computation optimisation methods).

However in the context of adaptable, self-organising and open-ended evolutionary
software system that exist in dynamic environments, it makes little sense to introduce
additional external sources of randomness. By definition, the environment should supply
all the randomness for the adaptable software system. If the environment stabilizes, the
system should stabilize as well. It is a simple result of maximisation of the system
aptness to the given environment. On the other hand, the learning mechanism involved
in adapting the system to the given environment, or to the changes in the environment,
may internally need to use some sort of probability distribution (that is represented
internally, or externally via the environment itself). This is, however, a different matter to
an artificially introduced external source of randomness, as in evolutionary computation.

One possible way of dealing with that is via bias-optimal search methods [17, 29],
or via incremental search methods [31]. To narrow the search, one can combine several
methods, for example it is possible to construct a generator of problem solver generators,
and employ multiple meta-learning strategies. We will discuss some of the details further
in the following sections.

3 Autopoietic Hypercycles

3.1 Hypercycle

Lets consider a sequence of reactions in which products with or without the help of
additional reactants undergo further transformations. The reaction cycle or cycle is such a
sequence of reactions in which some of the products are identical with the reactant of any

105

previous step of the sequence. The most basic is a three-membered cycle, with a substrate,
enzyme, and a product. The enzyme transforms a substrate into enzyme-substrate and
then enzyme-product complexes, which in turn is transformed into a product and free
enzyme. See Figure 1.

ES

E

EP

S

P

Fig. 1. An example of three-membered catalytic cycle: the free enzyme (E), the enzyme-substrate
(ES) and the enzyme-product (EP) complexes all demonstrate a catalytic cyclic restoration of the
intermediates in the turnover of the substrate (S) to the product (P)

The cycle as a whole works as a catalyst. Unidirectional cyclic restoration of the
intermediates presumes a system far from energy equilibrium. This can be associated
with a dissipation of energy into the environment. Equilibration occurring in a closed
system would cause each individual step to be in balance: catalytic action in such a
closed system would not be microscopically irreversible.

Lets now consider a reaction cycle in which at least one of the intermediates them-
selves is a catalyst (see work of Kaufmann on autocatalytic nets [14]). The simplest
representative of this category is a single autocatalyst (or a self-replicative unit).

A system which connects autocatalytic or self-replicative units though a cyclic linkage
iscalledahypercycle.Comparedwithasimpleautocatalystoraself-replicativeunit(which
we can consider here to be a “flat” structure) a hypercycle is self-reproductive to a higher
degree. This is because each of the intermediaries can itself be an autocatalytic cycle.

3.2 Autopoiesis

Following Maturana and Varela terminology [20], machines are unities which are made
out of components. All components are characterized by certain properties. Machine
components must operate according to certain relationships among their interactions
and transformations that define the operation of the machine. The details of properties
other than those participating in the interactions and transformations which constitute
the machine are not relevant.

The organisation of the machine is defined as all the relations that define a machine
as a unity and determine the dynamics of interactions and transformations which it may
undergo as such a unity. The organisation of a machine does not specify the properties
of the components which realise a concrete machine. The organisation of a machine
is independent of the properties of its individual components, which can be any, and a
given machine can be realised in many different manners by many different kinds of
components.

An Architecture for Self- rganising Evolvable Virtual Machineso

106 M. Nowostawski, M. Purvis, and S. Cranefield

The structure of the machine is defined as the actual relations which hold among
the components which realise a concrete machine in a given space. A given machine
(machine with fixed organisation) can be realised by many different structures. An or-
ganisation may remain constant by being static, by maintaining its components constant,
or by maintaining certain relations between components constant which are otherwise
in continuous flow or change.

An autopoietic machine is defined as a unity by a network of production, transfor-
mation, and destruction of components which: (i) through their interactions and trans-
formations continuously regenerate and realise the network of relations that produced
them, and (ii) constitute the machine as a concrete unity in the space by specifying
the topological domain of its realisation as such a network. An autopoietic machine is
an homeostatic or rather a relations-static system that has its own organisation as the
fundamental variable which it maintains constant.

In contrast, a machine in which organisation is not autopoietic does not produce the
components that constitute it. The products of such a machine are different from the
machine itself. The physical unity of such a machine is determined by processes that
do not enter into its organisation. Such a machine is called allopoietic [20]. Allopoietic
machines have input and output relations as a characteristic of their organization: their
output is the product of their operation, and their input is what they transform to produce
this product. The phenomenology of an allopoietic machine is the phenomenology of its
input-output relations. The realisation of allopoietic machines is determined by processes
which do not enter into the organisation of the machine itself.

Self- rganisation. An autopoietic system is considered to be a unity in the physi-
cal space. It is an entity topologically and operationally separable from the physical
background. It is defined by an organisation that consists of a network of processes of
production and transformation of components, molecular and otherwise, that through
their interactions: a) recursively generate the same network of processes of production
of components that generated them; and b) constitute the system as a physical unity by
determining its boundaries in the physical space.

The important aspect of an autopoietic system is that it remains invariant in its organ-
isation. The system itself can be deformed by external circumstances, but its internal or-
ganisation remains invariant. In other words, the self-organisation and self-maintenance
of defining relations is inherent in the autopoietic model. Any change in the autopoietic
organisation beyond a particular threshold is equivalent to the loss of identity, and the
system disintegration.

Thus, an autopoietic system is defined as a unity by its autopoietic organisation, and
all the transformations that it may undergo without losing its identity are transforma-
tions in which its organisation remains invariant. All autopoietic systems are therefore
homeostatic. They maintain their own organisation constant through their operation. All
the various unitary phenomena of an autopoietic system are constitutively subordinated
to the maintenance of its autopoiesis.

Hierarchies. In conventional Darwinian systems all self-replicative units competing for
selection are non-coupled. In other words, the selection forces operate purely on a single
level: the level of individuals. This simply leads to a conservation of a limited amount of

o

107

information, which cannot pass above a specified threshold. In hypercyclic systems, as
distinct from conventional Darwinian systems, we deal with similar selective pressures.
Note however, that in the hypercyclic case we also deal with integrating properties, and
this allows for cooperation of otherwise competing units. Hypercycles are capable of
establishing higher-order linkages. When inter-cyclic coupling is established, individual
hypercycles may form hierarchies. In other words, the basic unit of selection may not
be a single hypercycle, instead a whole chain of interrelated hypercycles. This is an
important aspect of our work — exploiting the hypercyclic integrating properties and
multi-level selective pressures.

If the autopoiesis of the component unities of a composite autopoietic system con-
forms to allopoietic roles that through the production of relations of constitution, speci-
fication, and order define an autopoietic space, the new system becomes in its own right
an autopoietic unity of second order. The most stable condition for coupling appears
if the unity organisation is precisely geared to maintain this organisation — that is if
the unity becomes autopoietic. Therefore there is an ever present selective pressure for
the constitution of higher order autopoietic systems from the coupling of lower order
autopoietic unities.

In the theory of autopoiesis, unlike many other theoretical models of the process of
life, the process of evolution is simply a side-effect, a consequence of limited resources,
not the prerequisite. Whenever we deal with restricted resources, we have the selection
and evolutionary pressures naturally occurring within our computational models. It is
however important to recognize that life (or precisely: autopoietic systems) would still
exist even if the process of evolution were not to occur in a system.

4 Evolvable Machine

4.1 Hierachical Computation

Some scholars believe that all sufficiently complicated systems are modelled best by
hierarchical models [11, 27, 36]. In system sciences and cybernetics any system under
investigation is thought of as a composition of multiple subsystems, each of which can
itself be decomposed into subsystems, and this follows all the way down to a basic, fun-
damental level [34]. Hierarchies help us deal with complex phenomena by decomposing
them into more manageable subsystems and investigating the interactions between these
subsystems, one interaction at a time. The emphasis is placed on investigation of prop-
erties on different levels, mutual dependencies, and interactions between and within the
hierarchy levels. Hierarchical decomposition of the problem space deals with complexity
in a way that is natural and intuitive to humans.

4.2 Virtual Machines

Hierarchically organised virtual machines can be used as a specific computation model.
Such a model is based on the traditional notion of computing machines, but extends
it in certain aspects. The model discussed here provides a flexible and robust platform
for experimentation with self-organisation and self-adaptability. It allows for a detailed
analysis of different aspects of hierarchical complex system decomposition, together

An Architecture for Self- rganising Evolvable Virtual Machineso

108 M. Nowostawski, M. Purvis, and S. Cranefield

with the analysis of interactions between and within different hierarchical levels. This
may help to understand a modelled problem or phenomenon better, giving us at the same
time a robust and adaptable computing framework.

Formal Definitions. The following formalism is inspired by typical models of comput-
ing machines. More theoretical foundations for computing models from a programming
perspective can be found in [24, 13].

From the Church-Turing Thesis we expect that all models of discrete computation,
including the one presented here, will have the same properties as any other model of
computation with respect to uncomputability and undecidability. This fact has some
interesting and fascinating implications, see e.g. [6]. All the well known properties from
computational complexity [18] are naturally exhibited by to the computational model
presented here. This includes, for example: undecidability, the halting problem, and the
concept of non-computable functions.

Definition 1. A virtual machine or a computing machine (or just a machine for short)
is a tuple M = (K, Σin, Σout, δ, s) where K is the set of states and s ∈ K is the initial
state. Σin and Σout are sets of input and output symbols, respectively, referred to as
input and output alphabets. δ is a function that maps K ×Σin to K ×Σout, and is called
the program. We say δ (or the program) runs on machine M. Remember that formally
δ is an integral part of the machine itself. The notation M(x) represents the output of
machine M given the input sequence x. M(x, y) represents the output of machine M
given the input sequence x followed by the input sequence y.

Definition 2. Suppose that f is a function from (Σin)∗ to (Σout)∗, and let M be a
machine with input and output alphabets Σin and Σout respectively (the symbol ∗ has
the usual meaning of “set of all possible sequence from a given alphabet”). We say that
M computes f if for any string x ∈ (Σin)∗, M(x) = f(x). If such machine M exists, f
is called a recursive function. We also say that function f is computed by machine M .

Definition 3. If for machine M = (K, Σin, Σout, δ, s) there exists a machine M ′ =
(K ′, Σ′

in, Σ′
out, δ

′, s′) which computes δ, we call machine M a recursive virtual machine
or recursive machine for short. We call program δ′ an interpreter of M , and we say an
M interpreter runs on machine M ′. We have ∀x ∈ (Σin)∗, M(x) = M ′(δ, x).

Definition 4. Suppose we have a machine M = (K, Σin, Σout, δ, s) and there ex-
ists machine Mc = (Kc, Σinc

, Σoutc
, δc, sc), where Σin ⊆ Σinc

and machine M ′ =
(K ′, Σ′

in, Σ′
out, δ

′, s′) where Σoutc
⊆ Σ′

in and Σout ⊆ Σ′
out. If ∀x ∈ (Σin)∗, M(x) =

M ′(Mc(x)) then we say that δc is an M compiler, and we say Mc compiles M into M ′.

The emphasis in the conceptual framework presented above is to treat algorithms
and running programs as machines (recursive virtual machines to be precise). This along
with the notions of compilers and interpreters is discussed at length in [13]. The above
definitions do not make any assumptions about the number of states a given machine
can have, nor about the storage capability. All possible models of computations, and

109

different computer/algorithm architectures fit the above definitions. For example one
could use Σ ⊆ Real to perform analog computation on real values. It can be shown that
the proposed conceptual framework is a simple extension of the theoretical models of
computation such as Turing machines and Universal Turing machines [12, 24].

Proposition 1. Let machine M = (K, Σin, Σout, δ, s), with finite input and output
alphabets Σ = Σin = Σout, {�, �} ∈ Σ and {h, y, n} ∈ K. In other words the
alphabet contains two special symbols, the blank and the first symbol, and there are
three extra state symbols, namely: h the halting state, y the accepting state, n the
rejecting state. We define three additional symbols, representing cursor directions: ←
for “left” and → for “right” and − for “stay”. If δ maps K × Σ to K ′ × Σ, where
K ′ = K × {←,→,−} then we say that machine M is a Turing machine.

5 The Architecture

We can model artificial and naturally occurring phenomena as a chain of virtual ma-
chines. One possible perspective on artificial life or evolutionary systems is to focus on
a tower of compilers and/or interpreters. The concepts of chaining and stacking com-
pilers and interpreters is discussed in detail in [13]. The other approach is to use more
traditional functional decomposition. All computing programs, including all evolution-
ary computation models can be represented as a chain of compilers and/or interpreters,
with different functional partitioning on each level. The way this chain is constructed
and how all its elements interact with each other is a principal concern of our hierarchical
computing architectural approach.

5.1 Vertical and Horizontal Decomposition

Following the formal definitions, a machine can be statically represented as a program
string, consisting of a prefix, together with some instructions following this prefix. The
prefix itself can be decomposed into another prefix and another program, and so on. This
is called vertical decomposition, or a vertical hierarchy. Another type of decomposition
is based on dividing a given machine into interacting parts – this is called a horizontal
decomposition. Formally, a vertical hierarchy is based on stacking interpreters and/or
compilers [13], see Figure 1. A horizontal decomposition is based on splitting a single
machine into two or more machines, see Figure 2.

Existing examples of vertical hierarchies are all sorts of (real-life) interpreters and
compilers. For example given a Pascal interpreter written in Java we would have: program
written in Pascal −→ Pascal virtual machine (written in Java) −→ Java virtual machine
(written for example in C) −→ C virtual machine −→ etc., where the arrow reads as
“runs on” as defined in Definition 3.

An example of horizontal partitioning would be a functional partitioning of a single
individual virtual machine. Let us imagine that we have a machine that can compute two
operations on the natural numbers domain: addition and multiplication. If we perform
functional partitioning, we can end up with two virtual machines, each computing a
single operation, multiplication or addition, respectively. The union of these two gives
us the original single machine.

An Architecture for Self- rganising Evolvable Virtual Machineso

110 M. Nowostawski, M. Purvis, and S. Cranefield

In Out

In

In

Out

Out

M0

M1

M2

In OutIn Out

In Out

M

Fig. 2. A vertical split of machine M into a tower of machines M0, M1, M2

In Out

M0

In Out

M1

In Out

M2

In Out

In Out

OutIn

M

Fig. 3. A horizontal split of machine M into machines M0, M1, M2

One can enumerate through all the machine levels, starting from the base (fundamen-
tal) level M0, up to the final highest-level machine, Mn. The actual input (instructions)
are fed to the machine Mn. It is important to remember that, in fact, there is no special
distinction between the program running on a virtual machine and the program emulating
a particular machine itself.

All the interacting virtual machines are connected by their input/output streams. The
hierarchical structure of that composition can have different forms, depending on the
particular phenomena at hand. It can be a simple linear structure, or it can be a tree-like
structure. In general it is a directed graph, with cycles, with self-referencing nodes, and
possibly with complicated interdependencies (see Figure 5.1).

111

In Out

M1

In Out

M4

In Out

M5

In Out

M6

In Out

M2

In Out

M3

In Out

In Out

M

OutIn

In Out

M0

Fig. 4. The example of possible dependencies between machines after decomposition

5.2 Partial Equivalence

Some machines can be fully or partially equivalent to others; for example a Pascal
virtual machine written in C and a second one written in Java are always perfect and
fully equivalent Pascal virtual machines, even though they use completely different
machines on the lower level. Note that even though these two Pascal virtual machines
have different machines below them, they can have exactly the same virtual machine
one level down, for example a virtual machine for a particular operating system.

One can have a partial Pascal virtual machine that accepts a subset of all possible
programs generated in Pascal. This is referred to as specialisation. On the other hand it is
also possible to have a Pascal virtual machine accepting a subset of expressions from the
C language, in addition to normal Pascal programs. The process of adding features to the
language and enhancing the input language for a given machine is called conservative
extension [13].

Some machines can be recursively executed on themselves, for example a Java virtual
machine interpreter written in Java and executed on a Java virtual machine interpreter.
Some machines can be functionally equivalent even though they use completely different
language syntaxes or alphabets, for example expressions in prefix, postfix or reverse
Polish notations. All these properties are well known in computer science, in which
specific languages, interpreters and compilers flourish.

Suppose the problem at hand is coded in such a way that the solution can be expressed
as a string of symbols from some language, L. For some languages finding a solution
string is easier than for others: coding the problem is the key issue in solving the problem.
In a sense the languageL captures and exploits some of the properties of the problem.This

An Architecture for Self- rganising Evolvable Virtual Machineso

112 M. Nowostawski, M. Purvis, and S. Cranefield

is one of the main features of the proposed approach. With recursive virtual machines we
have the necessary framework to model the transformations of a problem representation
from one language to another, and we are able to translate the original problem into a
more easily solvable equivalent.

5.3 Decomposition Limits

A particular level from the hierarchy is treated as a virtual machine that provides some
functionality to the other level immediately above it, and uses the level below to have
the computation performed. In other words a particular machine accepts input from one
level, uses other levels to perform computation, and then returns the results back to yet
another adjacent level. The highest level of the chain of machines accepts some input
(instructions), interacts with the level below it by sending/receiving some input/output,
and returns some outputs (results) back. Similarly to the base level, what we consider the
highest level is also arbitrary. There is always a virtual machine feeding the instructions
and accepting the results (e.g. a computer program or a human operator).

A given machine in a chain is formally equivalent to an interpreter or compiler of
another machine located above it. The first, the base level is the very first interpreter,
which we assume as being executed on some universal virtual machine (UVM). In the
case of digital computers (and for the sake of simplicity) we can without loss of gener-
ality assume that the base level machine is equivalent to the Universal Turing Machine
[12]. Of course, this is an arbitrary choice, and the decomposition could be carried fur-
ther, treating the UVM itself as a virtual machine, running on some software/hardware
platform and so on, all the way down to electrical and/or chemical reactions and some
physical processes1.

6 EVM Implementation

6.1 Yet Another Language?

There exist many programming languages developed within the field of Evolutionary
Computation. Many employ usual higher level programming languages designed for hu-
man programmers (such as Lisp for the original formulation of tree-based Genetic Pro-
gramming [16]); some are developed with an evolutionary process in mind [35, 28], and
others are developed for machine processing and recursive program manipulations [31].
Some of the languages are highly specialized, and provide the evolutionary mechanisms
with a bias towards a particular solution subspace. However, none of these languages
provides mechanisms to manipulate levels – a property needed for our EVM imple-
mentation. There are other features we want our base machine language to possess, that
none of the existing languages have. For example, we want the language to be capable
of redefining itself. That is, the primitive instruction set must allow the evolutionary
process to restructure and redefine itself. Also, we want a programming language that is

1 Actually, according to [9] we have no reason to stop there, and we can decompose the system
further, based on the idea that physical phenomena itself are running on some (digital, in the
case of Fredkin’s theory) virtual machine.

113

highly expressive, that is, we want solution programs to typically encountered tasks to
be short. And also, we believe that there are efficiency advantages for a language whose
solution spaces are highly recursive.

A programming language used for search in Evolutionary Computation plays an
important role – some programming languages are particularly suited for some, but not
for all, problems. One of the appealing aspects of a multi-level search process is that, in
principle, it can define a new base level and a completely new programming language
that is specialized for the given task at hand. We want to exploit this property.

Some of the existing languages possess some of these desired properties, but no single
one of them possesses all of them. This is why we have designed our own specialized
programming language. The principal objective of the overall programming language is
to facilitate searches for specialized languages for a given set of problems, and we want
the EVM to facilitate that. Even though there is currently a concrete implementation of
the base machine for the EVM system (the primitive instruction set), we treat it only
as a temporary list. We are working on redesigning the base machine to better suit and
to help with the search of program generators. So far, we have obtained some results
suggesting the need of some of more computationally intensive primitive instructions to
be included into the base machine. On the other hand, some of the existing instructions
are rarely being used, and will be removed in the next iteration of our implementation.

6.2 Computing Model

The hierarchical computing model presented in the previous sections can be implemented
in multiple ways and in many physical programming languages. It should be understood
that the implementation presented below is only one of many possible implementations,
and the choice for this particular implementation as distinct form other computing archi-
tectures, is somewhat arbitrary. On the other hand, we have paid considerable attention
in order to make the implementation as flexible and robust as possible and to facilitate
different configurations and different experiments in order to fine-tune the instruction
set and the overall computing architecture for general-purpose use.

Our initial implementation of the EVM architecture is based on a stack-machine,
such as Forth [22], or Java Virtual Machine (JVM) [37]. In fact, with small differences,
it is exactly the same as an integer-based subset of a JVM.

The main architectural component, similar to the JVM, is the so called execution
frame. The schematic view of the execution frame is presented on Figure 6.2.

The basic data unit for processing in our current implementation is a 32-bit signed
integer. The basic input/output and argument-passing capabilities are provided by the
operand Stack, called here Data Stack, or for short Stack. Data Stack is a normal integer
stack, just as in a JVM for example.All the operands for all the instructions are passed via
the Stack. The only exception is the instruction push, which takes its operand from the
Program List itself. Unlike the JVM, our virtual machine does not provide any operations
for creating and manipulating arrays. Instead, it provides instructions for and facilitates
operations on lists. There is a special stack, called L-stack for storing integer-based lists.
The L-stack is implemented as an a-stack (a-stack is a special way of implementing
stack, such that its top element is stored as a special register/variable). The L-stack top
element is stored in a special list called List. In other words, List contains the “actual”

An Architecture for Self- rganising Evolvable Virtual Machineso

114 M. Nowostawski, M. Purvis, and S. Cranefield

PC

Stack
Data

ProgramExecution Frame

List

L−stack (stack of lists)

Shared data

Parent
Frame

Lower−level
machine

Counter
Program

References

Machine

Fig. 5. Schema of the execution frame

top element of the L-stack, and the top element that is on the stack of the L-stack is the
second topmost element, and so on. The decision to implement L-stack based on a-stack
is purely for efficiency purposes. However it also makes all the instructions that operate
on a List more natural and more intuitive, as they operate on an actual list, not on the
top element of the L-stack. Both, Data Stack and L-stack (together with the List), are
shared between multiple Execution Frames that share a common thread of execution.

There is a lower-level machine handle attached to each of the execution frames. This
is a list of lists, where each individual list represents an implementation of a single
instruction for the given machine. So, in other words, the machine is a list of lists of
instructions, each of which implements a given machine instruction. Of course, if the
given instruction is not one of the Base Machine units, the sequence must be executed on
another lower-level machine. The Base Machine implements base instructions that are
not reified further into more primitive units. These instructions will be discussed later in
this section.

The program in the Execution Frame is represented as a list of integers. The program
counter (PC) points to the current instruction in the program list. The PC is itself an
integer, and that limits the theoretical length of any single program to 231. This is
however lowered by the maximum length of any list in the system, which is currently
set to 100000. Each instruction in the program list points to the appropriate instruction
in the machine. If the value of a given instruction in the program is bigger than the
number of instructions in the given machine, the index of the instruction is calculated
as index = instruction mod machinesize, where machinesize is the number of
instructions in a given machine.

Each Execution Frame can reference the parent frame.The parent frame is responsible
for creating and initializing the given frame. Base-level frames are those top-level frames
that do not have any parent frame (the reference is null).

115

6.3 Execution Model

As described in the previous subsection, the EVM program is represented within the Exe-
cution Frame as a list of integers. Each integer (modulo Machine number-of-instructions)
points to an individual machine instruction, that implements a particular behaviour of a
given program instruction.

There are two possible situations. First, the instruction of a machine may be a prim-
itive instruction, or EVM operation. In that case, the execution of a program instruction
is simple: the behaviour just happens within the current Execution Frame. For example,
if our program contains an integer, that points to add operation on the Base EVM Ma-
chine, this operation will take two arguments from the Stack, will add them together,
and will put the result back on the Stack.

The second situation is when the instruction of the machine is a composite instruc-
tion, i.e. a list of instructions for lower-level machine. In that case, the execution of a
program instruction proceeds as follows. First, a new Execution Frame is created. This
new Execution Frame is initialized with the Stack of the parent Execution Frame (all
Execution Frames in the same thread of execution share the same stack for parameter
and return value passing). The PC of the new Execution Frame is set to zero, and the
Program List is set to the Machine Instruction List. Then, the control is passed to this
new Execution Frame, which executes this “subprogram”. Once done, the control is
switched back to the parent Execution Frame.

The EVM is Turing equivalent, therefore there exist EVM programs that can run
indefinitely. Each thread of execution has an instruction time limit, to constrains the
time of each program in a multi-EVM environment. That is, each execution thread
(single program) has a maximum number of primitive instructions that it can execute.
Once the limit is reached, the program halts.

6.4 Instruction Set

As noted before, the instruction set is modelled after the Forth [22], and Java Virtual
Machine [37] instruction sets.

The instruction set is divided into several categories, which we describe here briefly.
The first category is “Stack and general operations”. This includes pushing constants onto
the Stack, popping, swapping, rolling, duplicating, etc. Some of the example instructions
are: const1, const0, pop, swap, roll, dup.

The second category is L-stack operations. There are operations for appending, re-
moving, and manipulating lists on the L-stack. It also contains operations to transfer lists
between L-stack and Stack. Some of the example instructions are: lpop, lpopn,
lswap, ldup, ldepth.

The third category contains List operations, and includes transferring elements be-
tween List and Stack, and manipulating List elements. Some of the example instructions
are prepend, append, load, store, length, rmf, rml, rm, rmn.

The fourth category contains operations for manipulating the Machine list of lists.
This includes similar operations to L-stack operations, but here they refer to Machine.
Some example instructions are:mappend, mprepend, mload, mstore, mrmf,
mrml, mrm, mins.

An Architecture for Self- rganising Evolvable Virtual Machineso

116 M. Nowostawski, M. Purvis, and S. Cranefield

The fifth category comprises the three level-related operations. These are spawn,
up and down. We will discuss them in more detail below.

The sixth category contains all the control instructions. This list is based on the JVM
control operations, and contains the following instructions: ifeq, ifneq, iflt,
ifle, ifgt, ifge, goto, jmp. There are three extra instructions. exec takes
the content of the List, and instantiate new Execution Frame and executes as if List is a
program to be executed. This is equivalent of executing dynamically created subroutine.
The other two instructions are two “search and jump” instruction. They take the element
from the operand stack, and search forward (jmpsf), or backward (jmsb) to find same
element in the program list and jump to the next instruction following that element.

The seventh and eighth categories contain all the Logic and Arithmetic operations.
Logic operations are: shl, shr, ushr, and, or, xor, and not. Arithmetic
operations are: add, inc, sub, dec, mul, div, rem, and neg.

6.5 Multi-level Computation

The key feature of the EVM, apart from its clean and elegant “zero operand architec-
ture” [8], is that it offers multi-level processing. This is like having unrestricted reflection
and reification mechanisms built-in for the virtual machine itself. The computing model
is relatively fixed at the lowest-level, but it does provide the user with multiple com-
puting architectures to choose from. The model allows the programs to reify the very
virtual machine on the lowest level. For example programs are free to modify, add, and
remove instructions from or to the lowest level virtual machine. Also, programs can con-
struct higher-level machines and execute themselves on these newly created levels. Not
only that – a running program can switch the context of the machine, to execute some
commands on the lower-level, or on the higher-level machine. All together it provides
unlimited flexibility and capabilities for reifying EVM execution.

Let us consider a particular example. Imagine, that we are tasked with writing a
program to add a given number N of integers. All N integers are provided on the Data
Stack, and the result is expected to be on the stack. We make it an incremental problem,
by iterating from 1 . . . N . On the base machine we only have arithmetic operations, such
as add. The add operation takes two arguments from the data stack, adds them together,
and puts the result back on the top of the stack. The task of adding two numbers can
be solved by a program with one instruction add. The task of adding three numbers
requires two add instructions, and so on. If we generalise it for N , the simplest program
would look like this:

add add add ... add /* (nth-1 instruction) */

Given that the solution for N would be provided as a prefix for the program that must
solve the task for N + 1, the probability of randomly generating the postfix code for the
N + 1 problem would be 1/|BM |, where |BM | represents number of instructions in
the base level machine.

With the multiple-levels, the prefix however can specialise a higher level machine for
the “adding numbers” problem. This can be easily achieved by creating a higher level
machine, with only one instruction, that adds two numbers. The program would look
like that:

117

push add /* pushes code for ADD instruction */
depth /* pushes 1 on the stack */
popn_l /* appends 1 element into the list*/
const_1 /* pushes 1 on the stack */
spawn /* creates a higher level machine */
up /* changes to the higher level */
0 ... 0 /* instruction repeated nth-1 times */

Note, that it takes only 7 instructions to construct and switch to the higher level ma-
chine, whose sole purpose is number addition. The higher level machine is a specialized
machine that can only add numbers. It does not matter what the N − 1 instructions are
that are actually appended to the end of the program. The program will always correctly
add N numbers. In this case, the probability of solving the N + 1 problem becomes 1,
as any of the added instructions would map to the single instruction on the higher level
machine.

Of course, this is an extremely simple case, but it demonstrates the specialization
capabilities of a multi-level computing machine. The governing idea is to create a custom
specialized language and to solve the problem in that language, instead of trying to solve
it in the original language of the base machine.

6.6 EVM and Its Expressiveness

We were inspired by the expressive power of a simple programming language designed by
Schmidthuber [31]. However, we noted, that some of the recursive functional constructs
he introduced in his language could be done more simply (i.e. making them shorter) in
our own language for EVM.

For example, in Schmidhuber’s language a recursive call to define and to calculate
the factorial of N , assuming N is placed on top of the data stack, takes 14 instructions
and has the following form:

c1 c1 def up c1 ex rt0 del up dec topf dof mul ret

In our language it is only 8 instructions, and the program looks like this:

dup halt0 dup dec lpush_p mappend mlcall mul

Note, our dup is equivalent to Schmidhuber’s ex, halt0 is equivalent to rt0,
mdepth to topf, mlcall to topf and dof executed together. lpush p copies the
current program list into the List, and mappend appends the newly defined program
from the List as a new primitive instruction to the base machine. mlcall executes the
last instruction from the current machine instruction list. Our program is shorter, because
(a) we do not need to define the number of arguments and result values, (b) we do not
need to explicitly call ret, and (c) in our language defining a new program based on
the current program in the List takes one instruction, and based on the program in the
Program List, takes only two instructions.

Similarly, in the case of a context free grammar problem described by Schmidhuber
[31], his solution is 5 instructions long, and looks like this:

defnp c1 calltp c2 endnp

An Architecture for Self- rganising Evolvable Virtual Machineso

118 M. Nowostawski, M. Purvis, and S. Cranefield

Our code takes only 3 instructions:

c1 rwhile c2

rwhile is a “recursive while” instruction, that works in the following way: it checks
the top of Data Stack; if there is value 0, it halts, otherwise, it forks to a recursive call
back to the original program.

Because the EVM is more expressive, any search method, including Schmidhuber’s
optimal problem solver, should find the appropriate solutions faster.

6.7 Program Ontogeny

Let us view a program input as a sequence of integers on the Data Stack, and consider
a single program loaded into the Program List in the Execution Frame. Both, the input,
and the program, can be divided into two subsequences indexed 1 and n, in such a way,
that the first subsequence of a program, P1 (program with index 1) reads all the data
from the D1 subsequence. P1 will produce some results on the Data Stack, and it can
also manipulate the program list itself. Hence, the remaining subsequence on the Data
Stack is now longer, and the remaining program on the program list may differ from
the original program list. If this process is repeated recursively, the final program, and
the final data that this program reads, will be remapped from whatever was originally
on the Data Stack, and inside the Program List. This process is referred to as Program
Ontogeny. It demonstrates the development of the final (mature) stage of a program from
some initial (larval) stage, through a sequence of transformation steps.

6.8 EVM and Hypercycles

In the current implementation of the EVM architecture, we employ two initial designs
that facilitate the hypercyclic dependencies. One of them is based on the notion of self-
replication of the EVM programs. The other is based on the notion of cyclic data flow.
They each, in a way, complement each other. We will describe them below based on
simple examples.

Self-replication. If a given program produces an output, and this output is identical to
the program that produced it, we have a self-replicating EVM program. In other words,
we have a program that can calculate (produce) itself. If a program P1 produces another
program P2, such that P2 is not equivalent to the original program P1, but in turn, P2
produces a program P1, than we have a a hypercycle. Depending on the complexity of
each of the individual programs, and their ontogeny, it may exhibit interesting autopoietic
dependencies.

Data flow cycles. Each program within a multi-EVM environment fulfills its function in
a narrow spectrum of data inputs, and produces its outputs again, in relatively narrow
spectrum out of all possible outputs. For example a solver for “n-addition problem”
cannot be given different input than it expects, otherwise it will not work as an “n-
addition” problem solver. However, if the output of P1 is connected to the input of P2,
and the output of P2 to the input of P1, then we have a cycle. If the cycle keeps the data
flow within expected and desired ranges of values, we have an autocatalytic hypercycle.
Together with the actual programs they represent an autopoietic system.

119

7 Self- rganisation by Means of Evolutionary Computation

7.1 Requirements

There are some inherit properties that the self-adaptive and self-organising software
system may exhibit. These properties facilitate effective processes to help and guide
evolutionary mechanisms. Our current EVM implementation facilitates some of these
properties.

Split and splice. It is desirable that different individual functional units are freely
manipulated. It means that one can put different components together, and then
split them apart, always producing valid functional units within the system. This is
supported by the EVM. Each program can be cut in the middle, and the parts will
always form valid programs. Programs can be joined together, always producing
valid programs. Actually, any sequence of integers is a valid program in a EVM.

Cyclic behaviour.All individual components of the software system must carry out their
activities in a cyclic manner. That means that the functionality is organised in such
a way that tasks are repeated over and over again so that tuning, self-organisation,
and adaptability can take place. If a given task were to be designed to be performed
only once, there would be no room for improvement, since the given component
would only have a single opportunity to perform.

Many agents on many levels. There are benefits from having many independent inter-
active components acting on many different levels. Reflection and recursion among
components can facilitate shorter and more robust solutions to given tasks performed
by components of the system. Some components will just perform tasks, some will
monitor others performing tasks and provide necessary feedback for improvement,
and others will improve the “improvers”, etc.

The system must be open to external signals. This simply means that the system has to
interact with the “outside”. A software system which does not exchange any infor-
mation with the environment “outside” the system itself cannot evolve into a more
complex system than the original one. Without being exposed to new information
the system can only refine itself, and is unable to acquire new capabilities. Such
information must be provided from the outside environment.

7.2 Evolving Recursive Virtual Machines

The field of evolutionary computation is mainly based on experimentation, and so far
it is primarily a trial and error approach. In light of all the advances in theoretical
computer science and given the conceptual framework of recursive virtual machines, it
is now possible to introduce a more systematic approach. Within EVM, each different
evolutionary system is an example of a virtual machine, each language is an example of a
different search space, and each system is an example of the interplay between different
aspects of the hierarchical organisation.

Probably one of the closest existing systems using the concept of a virtual machine
in the form of a hierarchy is the grammatical evolution system [28]. In this system, a
top-level search is performed on strings of integers. A string containing integers is fed
into a particular machine to produce a computer program coded in a particular language

An Architecture for Self- rganising Evolvable Virtual Machineso

o

120 M. Nowostawski, M. Purvis, and S. Cranefield

as output. This code is then fed as input to yet another machine, which in turn returns
a final result. Each of the levels is relative to the level below it; this relativity means
that the same top-level string of integers will produce a completely different result when
used in combination with another machine. The top-level machine accepting the strings
of integers is designed in such a way that it can “plug-in” to any possible second-level
machine, and the model will still work. This is a human designed feature, but it is inspired
by many naturally occurring phenomena. The multiple levels of indirect influences seems
to be the most powerful mechanism at work here.

Instead of designing such machines, and all the indirection levels, by hand, we believe
that with our approach this process can be automated, and the virtual machine suitable
for a particular class of problems can be discovered automatically.

7.3 Seeds and Solution Growing

Let us take a grammatical evolution system [28] as an example of the solution growing
concept. The solution for a problem at hand is effectively a proper hierarchy of machines
(in this case a BNF-encoded language grammar) and a string of integers as a symbolically
encoded solution, which we refer to as a seed. In the case of a grammatical evolution
system, the hierarchy of machines is designed by a human programmer before the search
for the proper seed is started. However, the hierarchy of machines needs to be discovered
as well. sought-after solution itself.

In general, the solution to the problem (finding a computer program) will be a hierar-
chy of machines together with the seed. The actual computer program is then generated
by feeding the seed through the system. In the case of grammatical evolution, speaking
informally, the generation process is (in order): feeding the string of integers, generating
the program listing, running the program for the given input, and then obtaining the final
solution. The given input in this case depends on the “outer-level” virtual machine.

It is, however, possible to change or modify the machine hierarchy just before gen-
erating the computer program. If the hierarchy of machines, their connections and the
initial states are subject to change, we refer to the process of generating a final solu-
tion as solution growing. In the case of searching for code, one can use the term code
growing instead. It is possible, by varying the hierarchy of machines, to grow a valid
solution from the same seed for a certain variation of the original problem. By simple
re-mapping, one can achieve exactly the same result by varying the structure of the seed
itself. This opens a new window of opportunities not yet used by the automatic code
generation techniques. Again, it is a very commonly occurring phenomenon in nature.

Formally the idea of code growing is based on the notions of bootstrapping and self-
application. This is analogous to more traditional compiler/interpreter bootstrapping and
self-application [13].

8 Summary

An architecture of dynamic hierarchically organised virtual machines as a self-organising
computing model has been presented. It builds on Turing-machine-based traditional
models of computation. The model provides some of the necessary facilities for open-
ended evolutionary processes in self-organising software systems. It allows stacking

121

machines (vertical decomposition) in addition to more traditional functional hierarchical
decomposition models. It can be used as a more systematic approach to different code
generation techniques and self-adaptable software. Unlike existing models, the emerging
levels of organisation can be either modelled directly as individual machines or can be
indirectly captured for a formal analysis as a state of an individual machine.

Applications using the proposed architecture are possible and are planned as future
work. Also, the formal model presented here allows for the preparation of an opera-
tional definition of a living system. However, further formalization of the framework is
necessary, and is currently under investigation by the authors.

References

[1] Leon Brillouin. Science and information theory. Academic Press Inc., 1956.
[2] Gregory J. Chaitin. To a mathematical definition of ’life’. ACM SICACT News 4, pages

12–18, January 1970.
[3] Gregory J. Chaitin. Toward a mathematical definition of “life”. In R. D. Levine and M.Tribus,

editors, The Maximum Entropy Formalism, pages 477–498. MIT Press, 1979.
[4] Charles Darwin. On the Origin of Species by Means of Natural Selection. John Murray,

1859.
[5] Manfred Eigen and Peter Schuster. The Hypercycle: A Principle of Natural Self-

Organization. Springer-Verlag, 1979.
[6] Gary William Flake. The Computational Beauty of Nature: Computer Explorations of

Fractals, Chaos, Complex Systems, and Adaptation. MIT Press, January 31 2000.
[7] David B. Fogel, editor. Evolutionary Computation – The Fossil Record. IEEE Press, New

York, USA, 1998.
[8] Jeff Fox. Multiple Stack Zero Operand Computers Today. Free Software Magazine, (05),

2002.
[9] Edward Fredkin. A new cosmogony: On the origin of the universe. In PhysComp’92:

Proceedings of the Workshop on Physics and Computation. IEEE Press, 1992.
[10] Andrzej Gecow and Antoni Hoffman. Self-improvement in a complex cybernetic system

and its implication for biology. Acta Biotheoretica, 32(1):61–71, 1983.
[11] John H. Holland. Adaptation in Natural and Artificial Systems : An Introductory Analysis

with Applications to Biology, Control, and Artificial Intelligence. MIT Press, reprint edition
edition, April 29 1992.

[12] John E. Hopcroft and Jeffrey D. Ullman. Introduction to automata theory, languages, and
computation. Addison-Wesley Publishing Company, USA, 1979.

[13] Neil D. Jones. Computability and Complexity: From a Programming Perspective. MIT
Press, 1997.

[14] Stuart A. Kauffman. The origins of order: self-organization and selection in evolution.
Oxford Press, New York, USA, 1993.

[15] M. Kokar, K. Baclawski, andA. Eracar. Control theory-based foundations of self-controlling
software. IEEE Intelligent Systems, pages 37–45, May-June 1999.

[16] John R. Koza. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, 1992.

[17] Leonid A. Levin. Universal sequential search problems. Problems of Information Trans-
mission, 9(3):265–266, 1973.

[18] Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity and Its Applications.
Springer-Verlag, New York, second edition, 1997.

[19] Lynn Margulis and Dorion Sagan. What is life? New York, Simon and Schuster, 1995.

An Architecture for Self- rganising Evolvable Virtual Machineso

122 M. Nowostawski, M. Purvis, and S. Cranefield

[20] Humberto R. Maturana and Francisco J. Varela. Autopoiesis: The organization of the liv-
ing. In Robert S. Cohen and Marx W. Wartofsky, editors, Autopoiesis and Cognition: The
Realization of the Living, volume 42 of Boston Studies in the Philosophy of Science. D. Rei-
del Publishing Company, Dordrech, Holland, 1980. With a preface to ’Autopoiesis’ by Sir
Stafford Beer. Originally published in Chile in 1972 under the title De maquinas y Seres
Vivos, by Editorial Univesitaria S.A.

[21] Alex C. Meng. On evaluating self-adaptive software. In Paul Robertson, Howie Shrobe,
and Robert Laddaga, editors, Self-Adaptive Software, number 1936 in LNCS, pages 65–74.
Springer-Verlag, Oxford, UK, April 17–19 2000. IWSAS 2000, Revised Papers.

[22] Charles H. Moore and Leach Goeffrey C. FORTH – A language for interactive computing.
Technical report, Amsterdam NY: Mohasco Industries, Inc., 1970.

[23] L. E. Orgel. The Origins of Life: Molecules and Natural Selection. Wiley, New York, 1973.
[24] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley Publishing Com-

pany, Inc., 1994.
[25] Ilya Prigogine and Isabelle Stengers. From being to becoming. San Francisco, W. H.

Freeman., 1980.
[26] Martin Purvis, Stephen Cranefield, Geoff Bush, Daniel Carter, Bryce McKinlay, Mariusz

Nowostawski, and Roy Ward. The NZDIS Project: an Agent-based Distributed Information
Systems Architecture. In Jr. R.H. Sprague, editor, In CDROM Proceedings of the Hawaii
International Conference on System Sciences (HICSS-33). IEEE Computer Society Press,
2000.

[27] Justinian P. Rosca. Hierarchical learning with procedural abstraction mechanisms. PhD
thesis, University of Rochester, Rochester, NY 14627, USA, 1997.

[28] Conor Ryan, J. J. Collins, and Michael O’Neill. Grammatical evolution: Evolving programs
for an arbitrary language. In Proceedings of EuroGP 1998, pages 83–96. Springer Verlag,
1998.

[29] J. Schmidhuber. The speed prior: a new simplicity measure yielding near-optimal com-
putable predictions, 2002.

[30] Juergen Schmidhuber. A general method for incremental self-improvement and multiagent
learning. In X. Yao, editor, Evolutionary Computation: Theory and Applications, chapter 3,
pages 81–123. Scientific Publishers Co., Singapore, 1999.

[31] Juergen Schmidhuber. Optimal ordered problem solver. Machine Learning, 54:211–254,
2004.

[32] Erwin Schrödinger. What is life? : the physical aspect of the living cell. Cambridge,
University Press, 1945.

[33] Claude E. Shannon and Warren Weaver. The Mathematical Theory of Communication.
University of Illinois Press, 1949.

[34] H. A. Simon. The sciences of the artificial. MIT Press, 1968.
[35] L. Spector and A. Robinson. Genetic programming and autoconstructive evolution with the

Push programming language. Genetic Programming and Evolvable Machines, 3(1):7–40,
2002.

[36] Lee Spector. Hierarchy helps it work that way. Philosophical Psychology, 15(2):109–117,
June 2002.

[37] Bill Venners. Inside the Java Virtual Machine. Mc-Graw Hill, second edition edition, 1999.
[38] John Luis von Neumann. The general and logical theory of automata. In A. H. Taub, editor,

John von Neumann – Collected Works, volume V, pages 288–328. Macmillan, New York,
1963.

[39] John Luis von Neumann and Arthur W. Burks. Theory of self-reproducing automata, 1966.
[40] Michael D. Vose. The Simple Genetic Algorithm: Foundations and Theory. A Bradford

Book, MIT Press, Cambridge, Massachusetts/London, England, 1999.
[41] Sewall Wright. Evolution in mendelian populations. Genetics, 16(3):97–159, March 1931.

S. Brueckner et al. (Eds.): ESOA 2004, 3464, pp. 123 – 137, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Self- rganising, Open and Cooperative
P2P Societies – From Tags to Networks*

David Hales

Department of Computer Science, University of Bologna, Italy
dave@davidhales.com
www.davidhales.com

Abstract. For Peer-2-Peer (P2P) networks to realize their full potential the
nodes they are composed of need to coordinate and cooperate, to improve the
performance of the network as a whole. This requires the suppression of selfish
behavior (free-riding). Existing P2P systems often assume that nodes will
behave altruistically, but this has been shown to be far from the case. We
outline encouraging initial results from a P2P simulation that translates and
applies the properties of “tag” models (initially developed within social
simulations) [8, 9] to tackle these issues. We find that a simple node rewiring
policy, based on the tag dynamics, quickly eliminates free-riding without
centralized control. The process appears highly scalable and robust.

1 Introduction

Open Peer-to-Peer networks (in the form of applications on-top of the internet) have
become very popular for file sharing applications (e.g. Kazaa1, Gnutella2 etc).
However, as has been shown [1] in such file sharing scenarios we find that a majority
of users do not actually share their own files (they act selfishly). However, these
networks are still popular because it only requires a minority to share high quality
files for all to benefit - a small amount of altruism appears to be enough to support
file-sharing applications. But what about P2P applications where high levels of
altruism and cooperation are required (e.g. load balancing or cooperative routing)?
How can selfish nodes to be discouraged? One solution is to have a closed system in
which we can ensure that each node runs a particular peer application that is hard-
coded to be cooperative. But this option precludes the benefits of open systems. In
open systems the protocols are open so any node that understands the protocol can
participate. This allows for truly decentralized control and freedom for innovation
(new nodes with new kinds of behavior may enter the network). A desirable goal
would be to have a network that could self-organize and adapt to a variety of tasks
such that each node would benefit from the shared resources (bandwidth, processing,
storage etc) that other nodes could offer.

* This work partially supported by the EU within the 6th Framework Programme under

contract 001907 (DELIS).
1 The Gnutella home page: http://www.gnutella.com/
2 The Kazaa home page: http://www.kazaa.com

LNAI

o

124 D. Hales

In order to archive such a desirable goal, don’t we just need some very cleaver
nodes? Or to put it another way, can we archive this goal “simply” by programming the
peer nodes appropriately. Unfortunately there are some fundamental contradictions that
need to be confronted when attempting to formulate how desirable collective action can
be produced in open systems. We have to deal with the fact that each peer cannot make
arbitrary a priori assumptions about the behavior of other peers. The assumptions (we
can’t avoid all assumptions) need to be as general as possible without being useless.
Historically these issues have been studied and theoretically formulated within the
social sciences (particularly Sociology, Political Science and Economics) with
application to human social systems. Of course it would be foolish to believe that a set
of generally agreed assumptions (concerning human social behavior) that a majority of
social scientists would subscribe to could ever exist. There are several reasons for this
including the complexity of human systems, the changing nature of human social
organizations and behavior, the essentially political status that ideas applied to human
society tend to acquire (particularly when those ideas are used to justify social action)
and the fragmented nature of social science methodology. However, in the context of a
kind of “worst case” set of assumptions, for engineering nodes in a P2P, we argue for
that nodes should be seen as:

• In the network for what they can get out of it – selfish not altruistic
• Modify their behaviors to maximize individual benefit
• Have no (or limited) knowledge about other peers and the network in general

These assumptions imply a further one. That peers have some mechanism of
determining how much they are benefiting from the system. This obviously would
depend on the task domain e.g. for file sharing it would be some measure of how
quickly requested files were found and downloaded or for group computing it might
be a measure of processing resource donated by others3.

Given these assumptions one fundamental problem is how to ensure that common
resources (the commons) are utilized unselfishly for the benefit of all [15]. In the
context of a P2P network we can view each peer as offering a set of commons
resources. That is, peers through their actions, may offer resources to others or may
not. Conversely peers make use of the resources offered by others. The fundamental
problem is that given peers with the above assumptions under what conditions would
peers converge towards sharing (benefiting all) as opposed to selfishly taking
resources but offering none.

There are many possible ways to deal with these problems including the utilization
of trusted 3rd parties, the generation and sharing of reputation information and
behavioural strategies based on sanctions in future interactions [2]. However, in
general such mechanisms demand high overheads in form of storage, processing and
communication of information concerning on-going interactions and / or do not work
in highly dynamic contexts where interactions will be predominantly with strangers.
In its most condensed and abstracted form these kinds of scenario can be captured in
the two player, single round Prisoners’ Dilemma game where players represent peers
(see below).

3 It should be noted that in many real word task domains it is by no means clear what these

measures might be. Certainly one can imagine situations in which no such simple measures
could be determined. This would be particularly difficult for very delayed rewards.

 Self- rganising, Open and Cooperative P2P Societies – From Tags to Networks 125

Tags (see below) have recently been applied in these latter kinds of scenarios in the
form of social simulations (with associated sociological interpretations - see [25]).
Firstly, we will review relevant findings from the previous Tag simulations. Then we
describe a simple simulation model of a P2P network and give some encouraging
initial results. Finally we discuss the limitations of the model and the future direction
we might take in order to address those limitations.

Along the way we attempt to present the method by which techniques have been
imported from one kind of simulation scenario to another. The focus of the previous
models was not on solving engineering problems; neither did those models deal with
networks so the translation process was not straightforward.

2 What Are Tags?

Tags are markings or social cues that are attached to individuals (agents) and are
observable by others [17]. They evolve like any other trait in a given evolutionary
model. The key point is that the tags have no direct behavioral implication for the
agents that carry them. Through indirect effects (such as biasing of interaction),
however, they can evolve from initially random values into complex ever changing
patterns that serve to structure interactions between individuals.

In the computational models presented here tags are modeled using some number
(either a binary bit string, a real number or an integer). When agents interact they
preferentially interact with agents possessing the same (or similar) tag value. One way
to visualize this is to consider a population of agents partitioned between different
colors. Each agent carries a single color. In a system with only three different possible
tag values, we could think of this as each agent carrying a flag of red, green or blue.
Agents then preferentially interact with agents carrying the same color (forming
“interaction groups”). When agents evolve (using some form of evolutionary
algorithm) they may mutate their tag (color). This equates to moving between
interaction groups.

In the models presented here, tags take on many possible unique values (by say
using a real number, there are many possible unique tags rather than just 3 colors)
however, the basic process is the same – agents with the same tags preferentially
interact and tags evolve like any other genotypic trait.

Another way to think of tags is that some portion of the genotype of an agent is
visible directly in the phenotype but the other agents. In section 5 we give an outline
algorithm of how tags are applied in a simple evolutionary system, firstly however,
we introduce the Prisoners Dilemma game and some previous tag work.

3 The Prisoner’s Dilemma

The Prisoner's Dilemma (PD) game captures a scenario in which there is a
contradiction between collective and self-interest. Two players interact by selecting
one of two choices: Either to "cooperate" (C) or "defect" (D). For the four possible
outcomes of the game players receive specified payoffs. Both players receive a
reward payoff (R) and a punishment payoff (P) for mutual cooperation and mutual
defection respectively. However, when individuals select different moves, differential

o

126 D. Hales

payoffs of temptation (T) and sucker (S) are awarded to the defector and the
cooperator respectively. Assuming that neither player can know in advance which
move the other will make and wishes the maximize her own payoff, the dilemma is
evident in the ranking of payoffs: T > R > P > S and the constraint that 2R > T + S.
Although both players would prefer T, only one can attain it. No player wants S. No
matter what the other player does, by selecting a D move a player ensures she gets
either a better or equal payoff to her partner. In this sense a D move can't be bettered
since playing D ensures that the defector cannot be suckered. This is the so-called
"Nash" equilibrium for the single round game. It is also an evolutionary stable
strategy for a population of randomly paired individuals playing the game where
reproduction fitness is based on payoff. So the dilemma is that if both individuals
selected a cooperative move they would both be better off but both evolutionary
pressure and game theoretical “rationality” selected defection.

For a detailed treatment of the PD, its relationship to social and evolutionary
science and a serious, original and thought provoking analysis of the evolution of
non-suboptimal behavior from selfish interactions see [16]4.

4 Previous Tag Models

There have been a number of tag models implemented previously. All demonstrate
higher-than-expected levels of cooperation and altruism from seeming selfish
individuals. All implement evolutionary systems with assumptions along the lines of
the replicator dynamics (i.e. reproduction into the next generation proportional to
utility in the current generation, no “genetic-style” cross-over operations but low
probability mutations on tags and strategies during reproduction).

Riolo [22] gave results of expansive and detailed studies applying tags in a
scenario where agents played dyadic (pair wise) Iterated Prisoner’s Dilemma games
(IPD). Tags (represented as a single real number) allowed agents to bias their partner
selection to those with similar tags (probabilistically). He found that even small biases
stimulated high levels of cooperation when there were enough iterations of the game
with each pairing.

In Riolo et al [23] a tag model was applied to a resource-sharing scenario in which
altruistic giving was shown to emerge. Agents were randomly paired (some number
of times) and decided if to give resources or not. The decision to give was based on
tag similarity mediated by a “tolerance gene” as well as the “tag gene” (both
represented as real numbers). The utility to the receiving agent of any given resource
was greater than to that of the giving agent. It was shown that if each agent was paired
enough times in each generation and the cost / benefit ratio was low enough then high
levels of cooperation were found.

In Hales and Edmonds [12] tags were applied to a simulated robot coordination
scenario producing high levels of cooperative help giving.

In Hales [8] a tag model was applied to a single round PD. Again interaction was
dyadic. Tags were represented as binary strings. Pairing was strongly biased by tag

4 Also see information about he PD online at the wonderful “Principia Cybernetica Project

website: http://pespmc1.vub.ac.be/PRISDIL.html

 127

identity (rather than probabilistic similarity). In this model very high levels of
cooperation were produced between strangers in the one shot game. A refinement of
this model in [11] showed how the same result could be produce with tags represented
as real numbers so long as the probability of mutation being applied to the tag is
higher than that applied to the strategy (by about one order of magnitude).

For the purposes of this paper we will now outline in a little more detail these latter
models applied to the PD.

5 Tags and the PD

In [8] a model is presented of agents playing the PD in pairs in a population with no
topological structure (other than tag based biasing of interaction). The mode is
composed of very simple agents. Each agent is represented by a small string of bits.
On-going interaction involves pairs of randomly selected agents playing a single
round of PD. Agent bits are initialized at random. One bit is designated as the PD
strategy bit: agents possessing a “1” bit play C but those possessing a “0” bit play D.
The other bits represent the agents tag. These bits that have no direct effect on the PD
strategy selected by the agent but they are observable by all other agents. Below is an
outline of the simulation algorithm used:

LOOP some number of generations

LOOP for each agent (a) in the population
Select a game partner agent (b) with the same tag (if possible)
Agent (a) and (b) invoke their strategies and get appropriate payoff

END LOOP
Reproduce agents in proportion to their average payoff
With low probability, mutate the tag and strategy of each reproduced agent

END LOOP

Agents are selected to play a single-round of PD not randomly but based on having
the same tag string. If an agent can find an individual with the same tag string as its
own in the system it will play PD against that agent. If it cannot then it plays against
some randomly chosen partner. Agents are reproduced probabilistically in proportion
to average payoff they received (using roulette wheel selection).

Extensive experimentation varying a number of parameters showed that if the
number of tag bits is high enough5 (in this case we found 32 tag bits for a population
of 100 agents to be sufficient with a mutation rate of 0.001 and PD payoffs of T=1.9,

5 In a more recent model Hales (forthcoming) we demonstrate that the requirement for many

tag bits was because this effectively increased the mutation rate applied to the tag as a whole
(since mutation was applied to each bit with the same probability as mutation was applied to
the single strategy bit).

Self- rganising, Open and Cooperative P2P Societies – From Tags to Networkso

128 D. Hales

R=1, P=S=0.00016) then high levels of cooperation quickly predominated in the
population7.

More interesting still, if all the agents are initially set to select action D (as opposed
to randomly set) then the time required to achieve a system where C actions
predominate is found to monotonically decrease as population size increases. This is
an inverse scaling phenomena: the more agents, the better. Additionally the fact that
the system can recover from a state of total D actions to almost total C actions (under
conditions of constant mutation) demonstrates high robustness. The tag-based model
produces an efficient, scalable and robust solution – based on very simple individual
learning methods (modeled as reproduction and mutation).

5.1 How Tags Work

We have described this model because it seems to offer up a method for achieving
three important properties in a simple (PD) task domain: efficiency, scalability and
robustness. But how do tags produce this seemingly magical result? The key to
understanding the tag process is to realize that agents with the same tag strings can be
seen as forming a sort of “interaction group”. This means that the population can be
considered as a collection of groups. If a group happens to be entirely composed of
agents selecting action C (a cooperative group) then the agents within the group will
outperform agents in a group composed entirely of agents selecting action D (a selfish
group). This means that more agents will copy the behavior of cooperative groups
than selfish groups. By copying the behavior and the tags of those who perform well,
agents are essentially joining groups that are cooperative. However, if an agent
happens to select action D within a cooperative group then it will individually
outperform any C acting agent in that group and, initially at least, any other C acting
agent in the population – here the T payoff is 1.9 where as the best a C acting agent
can do is R = 1.

However, by others copying such an agent (i.e. the agent reproducing copies of
itself) the group becomes very quickly dominated by D acting agents and therefore
the relative advantage of the lone D acting agent is lost – the group snuffs itself out
due to the interaction being kept within the group. So by selecting the D action an
agent destroys its group very quickly (remember groups are agents all sharing the
same tag string). Figure 1 visualizes this group process in a typical single run. Each
line on the vertical axis represents a unique tag string. Groups composed of all C
action agents are shown in light gray (Coop), mixed groups of C and D agents are
dark gray and groups composed of all D are black.

The tag mechanism, then, precipitates a kind of “group selection” process in which
those groups which are more cooperative tend to predominate but still die out as they
are invaded by mutant D acting agents. In a real sense the groups compete for
resources despite the fact that evolution only occurs at the individual level and the
agents don’t even know they are in such a group. In this system, the agents don’t die,
just the particular groupings (based on sharing the same tag string) change. By

6 P and S were set to the same small value for simplicity. If a small value is added to P

(enforcing T > R > P > S) results are not significantly changed.
7 If tags are removed from the model and pairing for game playing is completely random then the

population quickly goes to complete defection (the Nash equilibrium for the single-round PD).

 129

constantly changing tag strings (by reproduction of those with higher utility) the
agents produce a dynamic process that leads to high levels of C actions. In other
words, the population as a whole contains a lot of cooperation occurring within a
constantly changing system of groups, even though each agent is acting without any
knowledge of the group structure and there is no central coordination of the groups.
Typically cooperative interactions in the model reach over 90% of all interactions
(over 100,000 cycles).

Fig. 1. Visualization of 200 cycles (generations) from a single simulation run showing
cooperative groups coming into and going out of existence. See the text for a full explanation

6 From Tags to Networks

The underlying mechanism driving cooperation within the tag simulation is the
formation and dissolution of sharply delineated groups of agents (identified by
sharing the same tag). Each agent could locate group members from the entire
population. Each member of the group had an equiprobable chance of interacting with
any agent in the population sharing the same tag. In this sense each agent could
determine which agents were in their group.

If we assume a sparse P2P network in which each node (peer) knows of some small
number of other nodes (neighbors) and those neighborhoods are highly interconnected
(clustered) such that most neighbors share a large proportion of other neighbors then we
have something similar to our tag-like groupings. Instead of a tag (a marker) we have an
explicit list of neighbors. In a highly clustered network the same list will be shared by
most of the neighborhood. In this sense you can visualize the table of known peers
stored in each agent (its neighbors) as the tag. It is shared by the group and is the key
by which the group can directly interact with each other. To this extent it defines a
group boundary. A nice feature of this also is that it is a kind of watertight method of

Self- rganising, Open and Cooperative P2P Societies – From Tags to Networkso

130 D. Hales

isolating nodes into neighborhoods (for direct interaction) since a node cannot go
directly interact with another node that it does not know of.

In our initial model we did not restrict the size of the neighborhood (i.e. networks
could be non-sparse) but we wired the initial network topology as “small world” (i.e.
highly clustered regular lattice but with random rewiring with low probability – see
[27]). Also we set the tag mutation probability (changing the neighborhood to a single
randomly chosen neighbor) to an order of magnitude higher than the strategy
mutation probability (flipping the strategy bit). We found later that we did not need to
wire a small world and that any initial wiring self-organized to high clustering over
time. Sparse random wiring was finally chosen for simplicity.

We investigate only direct interactions between neighbors in this model. In a sense
this is all that can ever happen in P2P systems. Indirect interactions between nodes
that do not share neighborhoods have to mediate by direct interactions between
intermediate nodes. Essentially, one can view all interaction as with neighbors (even
if those neighbors are actually proxies for other more remote nodes). If cooperation
can be established between the majority of neighborhoods in a network then it follows
that any pair of nodes in the network that are connected will have a good chance of
being able to find a path of cooperation through the network.

In order to capture this kind of neighborhood interaction in the simplest possible
way we have each node in the network play a single round of PD (see above) with a
randomly chosen neighbor. No information is stored or communicated about past
interactions and the topology is not fixed (see below).

6.1 Neighbor Lists as Tags, Mutation as Movement

In the tag model change was produced over time by mutation and differential
reproduction based on average payoff. How can these be translated into the network?

In our network model we do not view nodes as “reproducing” in a biological sense
or cultural sense. However, it is consistent with or initial assumptions (see above) that
nodes may relocate to a new neighborhood in which a node is performing better than
itself. That is, we assume that periodically nodes make a comparison of their
performance against another node randomly chosen from the network8. Suppose node
(i) compares itself to (j). If (j) has a higher average payoff than (i) then (i) disregards
its neighbor list and copies the strategy and neighbor list of (j) also adding (j) into the
list. This process of copying can be visualized as movement of the node into the new
neighborhood that appears more desirable.

Mutation in the tag model was applied after reproduction. Each bit of the tag and the
strategy was mutated (flipped) with low probability. Since we are using the same one bit
strategy we can apply mutation to the strategy in the same way. We therefore flip the
strategy bit of a node with low probability immediately after reproduction (the
movement to a new neighborhood as described above). Since we treat the list of
neighbors in each node as the tag a mutation operation implies changing the list is some
way. But we can’t simply randomly change the list; we need to change the list in such a
way as to produce an effect with closely follows what happens when mutation is applied
in the tag model. In that model, tag mutation tended to give agents unique tags – i.e. tags

8
 Currently we do not model the process of finding this “out-group” node. We assume that the
network could provide the service – but this might be a problem (see conclusion).

 131

not shared by other agents at that time. However, in the model agents could interact with
a randomly chosen agent with non-matching tags if none existed with identical tags. In
this way tag mutation lead to the founding of new tag groups.

Fig. 2. An illustration of “replication” and “mutation” as applied in NetWorld. Shading of
nodes represents strategy. In (a) the arrowed link represents a comparison of utility between A
and F. Assuming F has higher utility then (b) shows the state of the network after A copies F’s
links and strategy and links to F. A possible result of applying mutation to A’s links is shown in
(c) and the strategy is mutated in (d)

In the network model we don’t want to isolate the node completely from the
network otherwise it will not be able to interact at all. However, we don’t want to
move into an existing neighborhood (as with reproduction) but rather to do something
that may initiate the founding of a new neighborhood. So we pragmatically express
tag mutation as the replacement of the existing neighbor list with a single neighbor
drawn at random from the network.

We now have our analogues of reproduction and mutation for the network model.
Reproduction involves the nodes copying the neighbor lists and strategies of others
obtaining higher average scores. Mutation involves flipping the strategy with low
probability and replacing the neighbor list with a single randomly chosen node with a
low probability (see figure 2). In the next section we outline out new network model –
NetWorld9.

7 The NetWord Model

The NetWorld model is composed of a set N of nodes (or peers). Each node stores a
list of other nodes it knows about (we term this the neighbor list). In addition to the

9 There are many other ways tags could be translated into networks. For example, agents could

move around the network between nodes carrying tags or agents sharing a node could be seen
as sharing a tag. We hope to explore some of these variations in the future.

Self- rganising, Open and Cooperative P2P Societies – From Tags to Networkso

132 D. Hales

neighbor list each node stores a single strategy bit indicating if it is to cooperate or
defect in a single round game of the PD. Neither the strategy bit nor the list is
normally visible to other nodes. Initially nodes are allocated a small number of
neighbors randomly from the population. Periodically each node selects a neighbor at
random from its list and plays a game of PD with it. Each node plays the strategy
indicated by its strategy bit. After a game the relevant payoffs are distributed to each
agent. Periodically pairs of randomly chosen nodes (i, j) compare average payoffs. If
one node has a lower payoff then the strategy and neighbor list from the other node is
copied (effectively moving the lower scoring node to a new neighborhood). Mutation
is applied to both the strategy and the neighbor table with probability m. Mutation of
the strategy involves flipping the bit. Mutation of the neighbor list involves clearing
the list and replacing it with a single randomly chosen node from the population.
Below is an outline of the NetWorld simulation algorithm:

LOOP some number of generations

LOOP for each node (i) in the population
Select a game partner node (j) randomly from neighbor list
Agent (i) and (j) invoke their strategies and get appropriate payoff

END LOOP
Select N/2 random pairs of nodes (i, j)
Copy higher scoring node into lower scoring node
Apply mutation to tag and strategy of each reproduced node with probability
m

END LOOP

The neighbor lists are limited in size to a small number of entries. The entries are
symmetrical between neighbors (i.e. if node (i) has an entry for node (j) in its list then
node (j) will have node (i) in its list). If a link is made to a node that has a full
neighbor list then it discards a randomly chosen neighbor link in order to make space
for the new link. Also if a node is found to have no neighbors when attempting to play
a game of PD (this can happen if neighbors have moved away) then a randomly
chosen node is made a neighbor.

7.1 Initial Results

Figure 3 gives some initial results. In these experiments the mutation rate m = 0.001
and the PD payoffs were as per the previously described tag model (see above). In all
the results given here we start he population from complete defection and wired the
initial network topology by given each node a fixed small number of links to
randomly chosen nodes .
 We tried increasing the mutation rate applied to the tags (i.e. the neighbor list) by
an order of magnitude and this reduced the time to cooperation an increased the
scalability. Over all sensible parameter values so far tried we have found extremely
encouraging results. Of particular surprise was the speed of convergence to high
cooperation. Even when N=105 and all nodes were initially started with D (defect)
strategies it took only approximately 140 cycles on average to achieve 99% of nodes
utilizing the C (cooperate) strategy.

 133

Fig. 3. Charts show initial results from the model. The top charts show the time taken in cycles
for the network to reach a state where 99% of nodes are cooperators for different sizes of
network. Each dot is an individual run. In the right chart mutation on the neighborhood (tag) is
10 times that on the strategy. The bottom left chart shows extended results on a log scale. The
bottom right chart shows a typical single run time series (with a 10,000 node network)

We hoped to find the reverse scaling cost and differential mutation characteristics
identified in previous non-network based tag models [8, 11]. The reverse scaling does
not appear to be present. The application of differential (higher) mutation on tags
(neighbor tables), appears to bring the upper-bound (of time to cooperation) down to
log(nodes) improving scalability. As stated previously, we did not find that the initial
form of the network made much difference to the results. Even starting the network
fully connected or completely unconnected (all with no links) did not change our results
significantly. This seems to suggest a high level of robustness – something we are
interesting in achieving. Again much more experimentation and analysis is needed.

8 Discussion and Related Work

Only after our network translation of tags as the dynamical rewiring of the network
(as nodes seek to improve their neighborhoods) did we realize the wealth of material
that becomes relevant. Specifically our model now bears a very close comparison
with that given by Zimmermann et al [28]. Zimmermann et al start with a network
that is interpreted as representing a social network (it’s a social simulation). Agents
play PD with all their neighbors at each time step. Defecting agents then selectively
replace existing links to other defectors with randomly chosen nodes (this is done
probabilistically). They find steady states (of high cooperation) in which long chains
of cooperators are formed in which founder “leader” nodes are highly important to
stability. Prior to steady states there are oscillations in the levels of cooperation. They
use synchronous updating throughout and do not include noise (in the form of
spontaneous change of strategy) in most of their analysis. However they do study the

Neighbor MF = 1

0

1000

2000

3000

4000

4000 8000 12000 16000 20000

Nodes

C
yc

le
s

to
 9

9%
 C

o
o

p

Neighbor MF = 10

0

100

200

300

400

4000 8000 12000 16000 20000

Nodes

C
yc

le
s

to
 9

9%
 C

o
o

p

Tag MF = 10

50

100

150

200

1000 10000 100000 1000000

Nodes

C
yc

le
s

to
 9

9%
 C

o
o

p

Self- rganising, Open and Cooperative P2P Societies – From Tags to Networkso

134 D. Hales

effect of a single noise event on significant nodes (they call leaders) and show that in
their model even a single mutation event (changing the strategy of a single node) can
completely wipe out cooperation in the entire network for many cycles. This is one of
the major findings of the model, that the steady states become highly sensitive to
changes in single key nodes. They also find that their network when in the steady
state tends to be highly disconnected leading to a number of component sub-networks
forming. In their model the network was populated with 60% cooperative agents.
Since they have no spontaneous adaptation or noise on strategies their model would
never escape from a global minima of all nodes defecting. So although the models are
very similar theirs has several properties that we would want to avoid in our model10
such as not being able to recover from total defection and the high sensitivity of the
network to the behavior of a very small number of “leaders”. Additionally in their
model agents needed a little more local information (i.e. the strategies of the other
agents so they could preferentially break links).

The fitness related preferential rewiring in our model obviously has linkages with
the preferential linking ideas expressed by Barabási [3]. In subsequent
experimentation with our model we hope to characterize the kinds of networks that
are being formed over time. It will be of interest to compare these to the kinds of
naturally occurring networks and rewiring methods that have been studied by
Barabási. We hope that we may be able to utilise these theoretical and empirical
contributions to increase understanding and efficient of our model with respect to
tougher task domain.

It should be mentioned that Watts [27] looked at the results of playing the repeated
PD game (rather than the single round game) on various fixed network topologies.
Reproduction of strategies was within the local neighborhood. Various repeated
strategies were tested. On the whole no the simulation results presented showed that it
was difficult to get cooperation to dominate the network even with repeated strategies
like tit-for-tat as popularized by Axelrod [2]. He found that some kinds of fixed small
world networks could help sustain cooperation.

Interestingly Cohen et al [4] examined the results of extensive experimentation
where both tags and networks (fixed random) were examined for their contribution to
promoting cooperation in a PD scenario. Again only the repeated game was examined
(not the single round game). However, they did not combine tags and networks but
rather compared independent simulations.

A recent paper of Sun & Garcia-Molina [21] applies “incentives” within a simulated
P2P file-sharing scenario in order to encourage selfish nodes to share resource. Their
model relies on repeated interaction with nodes updating weights between on links to
neighbors. Although they have not yet tested their system in a evolving environment,
they don’t require utility comparison between nodes since nodes simply update their
weights based on service gained and then share out service supplied proportionate to
weight (a kind of tit-for-tat [2]). This means that a selfish node quickly gets less and less
service from it’s neighbors. In future work we hope to apply the query scenario given by
Sun & Garcia-Molina to our more dynamic scenario.

10 However, we found it intriguing to consider if we would have reached a similar model to

NetWorld if we had started with the Zimmermann et al model and attempted to make it more
robust.

 135

9 Conclusion

At this early stage our conclusion contains more questions than answers. However,
the basic result of these initial experiments is that high-levels of cooperation can be
produced and sustained in very large P2P by following this simple re-wiring and
mutation scheme inspired by results from previous tag models. It appears we have
been successful in importing the tag like dynamics into the network.

As stated previously these are preliminary results from a preliminary model and
there are a number if outstanding issues before we can refine the model to incorporate
more realistic P2P-like conditions. For example, we don’t model the maintenance of
up-to-date neighbour tables in the face of unstable links and nodes. Neither do we
model the underlying process of finding random nodes in the network. This shortcut
needs to be modeled using the P2P itself to supply new such nodes for the purposes of
reproduction and mutation. What would be important here would be to find an
efficient scalable way (probably therefore non-uniformly random) to supply nodes
that allowed cooperation to form. We hope to test our results on a simulated version
of something like NEWSCAST [18] - a highly robust and scalable P2P infrastructure.

We have yet to properly analyze the dynamics in the model. What kinds of
networks topologies are being formed? We currently don’t know how average path
lengths, clustering and other topological features of the network evolve over time. It
may even be the case the network regularly breaks into a number of disconnected
components11. This would be serious problem if such breaks persist and are numerous
since this would limit the possible size of the P2P network. All we currently know is
that when cooperation is low the average degree of each node (size of the neighbor
list) is near maximum but is lower when cooperation is high. This does not tell us too
much.

The PD task domain although useful is a rather impoverished task domain. As an
initial proof of concept it shows that at least some kinds of social dilemma can be
solved. But the behaviors (PD strategies) and coordination required is trivial
(although the dilemma itself is not trivial). We would therefore like to extend the
simulation model to include more realistic kinds of task such as those requiring the
coordination of a number of peers performing specialized functions.

A more important general issue raised by this kind of work12 (in the context of
applying models originating in the assumptions of evolutionary theory) is the
assumption that all nodes behave as bounded optimizers. In our model we do not
allow for nodes that simply “whitewash” (i.e. never adapt but just defect) or nodes
that don’t move, or worse nodes that move very fast but never adapt their strategy.
This assumption does not hold in many situations and we need to explore alternative
mechanisms to make model robust to these possibilities.

11 Very recent work (since the first review of this paper) does indeed show that the network

regularly breaks into disconnected components – which raises issues of if this mechanism
would support long range routing tasks. However, the network is in constant flux (in a
similar way to the groups in figure 1) with cliques forming and dissolving so this may be
possible over some temporal window.

12 And pointed out by a perceptive reviewer of the initial draft of this paper!

Self- rganising, Open and Cooperative P2P Societies – From Tags to Networkso

136 D. Hales

Acknowledgements

Thanks go to Mark Jelasity for pointing out some of the recent models that bear close
comparison to this one. Also, along with Ozalp Babaoglu and Alberto Montresor, for
writing clear and readable papers about P2P systems that have helped me in beginning
this line of work. Thanks to Bruce Edmonds and Scott Moss at the Centre for Policy
Modelling (CPM) in Manchester where much of the initial tag work was graciously
supported and encouraged. Thanks also to the reviewers of the first draft of this
paper. Their generous comments and encouragement were invaluable.

References

[1] Adar, E. and Huberman, B. A. (2000) Free Riding on Gnutella. First Monday Volume 5,
No. 10, (http://www.firstmonday.dk/issues/issue5_10/adar/index.html).

[2] Axelrod, R. (1984) The Evolution of Cooperation, Basic Books, New York.
[3] Barabási, Albert-Lázló (2002) Linked: The New Science of Networks, Cambridge, MA:

Perseus Publishing
[4] Cohen, M., Riolo, R. and Axelrod, R. (1999) The emergence of social organization in the

prisoner’s dilemma: how context-preservation and other factors promote cooperation.
Santa Fe Institute Working Paper 99-01-002.

[5] Davis, L. (1991) Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York.
[6] Di Marzo Serugendo, G. "Engineering Emergent Behaviour: A Vision", Invited Talk.

Multi-Agent-Based Simulation III. 4th International Workshop, MABS 2003 Melbourne,
Australia, July 2003, D. Hales, B. Edmonds, E. Norling, J. Rouchier (Eds), LNAI 2927,
Springer-Verlag, 2003.

[7] Edmonds, B. and Hales, D. (2003) Replication, Replication and Replication - Some Hard
Lessons from Model Alignment. Journal of Artificial Societies and Social Simulation
6(4).

[8] Hales, D. (2000), Cooperation without Space or Memory: Tags, Groups and the
Prisoner's Dilemma. In Moss, S., Davidsson, P. (Eds.) Multi-Agent-Based Simulation.
Lecture Notes in Artificial Intelligence, 1979:157-166. Berlin: Springer-Verlag.

[9] Hales, D. (2001) Tag Based Cooperation in Artificial Societies. PhD Thesis (Dept. Of
Computer Science, University of Essex, U.K. 2001).

[10] Hales, D. (2002) Evolving Specialisation, Altruism and Group-Level Optimisation Using
Tags. In Sichman, J. S., Bousquet, F. Davidsson, P. (Eds.) Multi-Agent-Based
Simulation II. Lecture Notes in Artificial Intelligence 2581:26-35 Springer Verlag.
Berlin.

[11] Hales, D. (forthcoming), Change Your Tags Fast! - A necessary condition for
cooperation? Submitted to the MAMABS workshop at AAMAS 2004.

[12] Hales, D. and Edmonds, B. (2003) Evolving Social Rationality for MAS using "Tags", In
Rosenschein, J. S., et al. (eds.) Proceedings of the 2nd International Conference on
Autonomous Agents and Multiagent Systems, Melbourne, July 2003 (AAMAS03), ACM
Press, 497-503

[13] Hales, D. and Edmonds, B. (2004) Can Tags Build Working Systems? - From MABS to
ESOA, In Di Marzo Serugendo, G.; Karageorgos, A.; Rana, O.F.; Zambonelli (eds.)
Engineering Self-Organising Systems - Nature-Inspired Approaches to Software
Engineering. Lecture Notes in Artificial Intelligence 2977, Springer, Berlin.

[14] Hamilton, W. D. (1964) The genetical evolution of social behaviours, I and II. J. Theor.
Biol. 7, 1-52.

[15] Hardin, Garrett (1968) "The Tragedy of the Commons,", Science, 162:1243-1248.

 137

[16] Heylighen F. (1992) : "Evolution, Selfishness and Cooperation", Journal of Ideas, Vol 2,
4, pp 70-76.

[17] Holland, J. (1993) The Effect of Lables (Tags) on Social Interactions. Santa Fe Institute
Working Paper 93-10-064. Santa Fe, NM.

[18] Jelasity, M., Montresor,A., and Babaoglu, O. (2004) A modular paradigm for building
self-organizing peer-to-peer applications. , In Di Marzo Serugendo, G.; Karageorgos, A.;
Rana, O.F.; Zambonelli (eds.) Engineering Self-Organising Systems - Nature-Inspired
Approaches to Software Engineering. Lecture Notes in Artificial Intelligence 2977,
Springer, Berlin.

[19] Nowak, M. & May, R. (1992) Evolutionary Games and Spatial Chaos. Nature, 359, 532-
554.

[20] Nowak, M. & Sigmund, K. (1998) Evolution of indirect reciprocity by image scoring.
Nature, 393, 573-557.

[21] Qixiang Sun & Garcia-Molina (2004) SLIC: A Selfish Link-based Incentive Mechanism
for Unstructured Peer-to-Peer Networks. In Proceedings of the 24th IEEE international
Conference on Distributed Systems (March 2004). IEEE computer Society.

[22] Riolo, R. (1997) The Effects of Tag-Mediated Selection of Partners in Evolving
Populations Playing the Iterated Prisoner's Dilemma. Santa Fe Institute Working Paper
97-02-016. Santa Fe, NM.

[23] Riolo, R. L., Cohen, M. D. & Axelrod, R. (2001) Evolution of cooperation without
reciprocity. Nature 414, 441-443

[24] Roberts, G. & Sherratt, T. N. (2002) Nature 418, 449-500
[25] Sigmund, K. and Nowak, A, M. (2001) Tides of Tolerance. Nature 414, 403-405.
[26] Trivers, R. (1971) The evolution of reciprocal altruism. Q. Rev. Biol. 46, 35-57.
[27] Watts, D. (1999) Small Worlds: The Dynamics of Networks between Order and

Randomness. Princeton University Press. Princeton, New Jersey.
[28] Zimmermann, M. G., Victor M. Egufluz and Maxi San Miguel (2001) Cooperation,

adaptation and the emergence of leadership in `Economics with Heterogeneous
Interacting Agents', pp. 73-86, A. Kirman and J.B. Zimmermann (Eds.), Springer, Berlin.

Self- rganising, Open and Cooperative P2P Societies – From Tags to Networkso

S. Brueckner et al. (Eds.): ESOA 2004, 3464, pp. 138 – 153, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Self- rganizing Spatial Shapes in Mobile Particles:
The TOTA Approach

Marco Mamei, Matteo Vasirani, and Franco Zambonelli

Dipartimento di Scienze e Metodi dell’Ingegneria,
Università di Modena e Reggio Emilia – Italy

{mamei.marco, vasirani.matteo, franco.zambonelli}@unimo.it

Abstract. We present a programming approach to let a multitude of simple
mobile computational “particles” (i.e. sorts of tiny mobile robots) to self-
organize their respective locations to assume a coherent global formation (i.e.
shape). The problem has a variety of applications in mobile robotics, modular
robots, sensor networks, and computational self-assembly. Here we show how
the TOTA ("Tuples On The Air") middleware can be effectively exploited to
enable self-organization of spatial shapes in mobile particles with minimal
capabilities. The key idea in TOTA is to rely on spatially distributed tuples,
spread across the network, to drive particles’ movements and activities. Several
experiments are reported showing the effectiveness of the approach.

1 Introduction

In the near future, micro-electro-mechanical systems will be embedded in the fabric of
our everyday life. They will be able to interact with the physical world to provide an
endless range of activities and services. In this perspective, we envision the possibility
of exploiting these technologies to build sorts of multi-cellular computational
organisms, made up of millions of interacting autonomous computational particles,
capable of assembling and dynamically re-assembling themselves into a variety of
complex shapes (as the T1000 robot in the Terminator 2 movie).

Although the hardware technology for these kinds of scenarios is rapidly maturing,
software engineering practices have remained more or less the same since structured
design and distributed programming methodologies were introduced: components are
coupled at design time by fixed interaction patterns. Although simple, this approach
turned out to be really brittle and fragile, not being able to cope with reconfiguration
and faults. On the contrary, application components should be able to coordinate their
activity patterns autonomously at run-time, despite, and possibly taking advantage, of
environment dynamics and unexpected situations.

In general, the critical task is to identify appropriate (self)organization principles
and programming methodologies for controlling the overall behavior of such complex
systems. In particular, our goal is to study how and to which extent a group of simple
mobile autonomous particles can be programmed to coordinate their respective
movements and create variety of global shapes. Apart from futuristic nano-technology

LNAI

o

 Self- rganizing Spatial Shapes in Mobile Particles: The TOTA Approach 139

scenarios such as computational self-assembly [12] and the T-1000 vision, such a
problem has more practical short-term applications, e.g. coordinate the movements of
navigator-equipped cars or that of a PDA-equipped rescue team [10], enforcing self-
deployment of sensor networks [4] and robots in a landscape [1, 5].

Biological organisms, achieving coherent, reliable and complex behavior from the
local cooperation of large numbers of identically “programmed” cells, are of course
the most natural source of inspiration for all these kinds of problems. In particular, the
diffusion of chemicals among cells and the possibility for cells to be driven in their
behavior by the locally sensed gradients of diffused proteins (“morphogen gradients”)
[3], due to its simplicity, seems suitable for applications to the problem of pattern
formation in simple computational particles.

In our research, we developed a general purpose middleware called “Tuples On
The Air” (TOTA). TOTA is an extremely lightweight middleware suitable for
resource limited devices. TOTA provides abstractions and mechanism to support the
creation of distributed overlay data structures spread across a mobile network. Such
overlay data structures have the property of self-maintaining their intended
distribution despite network dynamism (due to nodes connections, disconnections and
movements).

TOTA tuples can easily resemble morphogen gradients in a network of mobile
particles and thus the abstractions promoted by TOTA seem very suitable to manage
the spatial self-organization in an ensemble of mobile particles.

A large number of papers deal with pattern formation in mobile robots [1, 5, 17,
19], and some exploit approaches somewhat similar to the one of morphogen
gradients [12, 16, 18]. The key contribution here is to show how a variety of patterns
(from regular to non-regular ones, also involving differentiation in particles) can be
achieved even in the absence of those capabilities (e.g., global perception, distance
and direction sensing) that are required by most other approaches.

This paper is organized as follows. Section 2 overviews the key characteristics of
the TOTA middleware. Section 3 introduces the main steps required to let the robots
self-organize their activities and arrange in specific global shapes. Section 4 presents
several examples of global shapes we had been able to achieve. Section 5 discusses
related works. Finally, Section 6 concludes and outlines future works.

2 The Tuples on the Air Approach

TOTA is composed by a dynamic ad-hoc wireless network of possibly mobile nodes,
each running a local version of the TOTA middleware.

 Upon the distributed space identified by the dynamic network of TOTA nodes,
each peer is capable of locally storing tuples [6] and letting them diffuse through the
network. Tuples are injected in the system from a particular node, and spread hop-by-
hop accordingly to a specified propagation rule. Specifically, in TOTA, overlay data
structures have been realized by means of distributed tuples T=(C,P), characterized by
a content C and a propagation rule P. The content C is an ordered set of typed fields
representing the information carried on by the tuple. The propagation rule P
determines how the tuple should be distributed and propagated in the network. This

o

140 M. Mamei, M. Vasirani, and F. Zambonelli

includes determining the “scope” of the tuple (i.e. the distance at which such tuple
should be propagated and possibly the spatial direction of propagation) and how such
propagation can be affected by the presence or the absence of other tuples in the
system. In addition, the propagation rules can determine how tuple content should
change while it is propagated to actually create distributed data structures.

The spatial structures induced by tuples propagation must be maintained coherent
despite network dynamism. For instance, when new nodes get in touch with a
network, TOTA automatically checks the propagation rules of the already stored
tuples and eventually propagates the tuples to the new nodes. Similarly, when the
topology changes due to nodes’ movements, the distributed tuple structure changes to
reflect the new topology (see figure 1).

Given these features, as it will be better described in the next sections, TOTA
tuples are particularly suitable in implementing distributed data structures mimicking
morphogen gradients.

From the application components’ point of view, executing and interacting
basically reduces to define and inject tuples in the network (inject method) and to read
local (read method) and one-hop neighbor (readOneHop method) tuples via a pattern-
matching mechanism. TOTA provides a compact API to perform these operations.

From an implementation point of view, we developed a first prototype of TOTA
running on Linux IPAQs equipped with 802.11b WLAN and Java (J2ME, CDC,
Personal profile). Moreover, we have implemented an emulator to analyze TOTA
behavior in presence of hundreds of nodes.

In this paper we used the TOTA emulator to identify and test several algorithms to
let a group of nodes, mimicking the mobile particles, to self-organize their spatial
distribution. Further details on the TOTA middleware can be found in [11].

T O T A
N od e

1

2

2

3

3

4

4

5

6 TO T A
N o de

TO T A
N o de

TO T A
N o de

T O T A
N ode

T O T A
N ode

TO T A
N od e

T O T A
N od e

T O T A
N od e

Fig . 1. The general scenario of TOTA: application components live in an environment in
which they can inject tuples that autonomously propagate and sense tuples present in their local
neighborhood. The environment is realized by means of a peer-to-peer network where tuples
propagate by means of a multi-hop mechanism

 141

3 Self- rganize Spatial Shapes with TOTA

In this section, we first describe our model for particles and how they can exploit
morphogen gradients towards pattern formation. Then we present related approaches
and possible objections to our model.

3.1 Mobile Particles

To be “compliant” with foreseeable future micro and nano computer-based scenarios,
we focus on particles with minimal capabilities. Specifically:

1. Particles are autonomous (i.e. have a separate thread of execution and control)
and are equally programmed (i.e. they run the same code). Differentiation in their
activities – if needed – must be established run-time on the basis of the data (e.g.
morphogen gradients) they perceive.

2. In any case, each particle is provided with a random number generator enabling
an additional simple form of symmetry breaking and particle identification.

3. Each particle is provided with the TOTA middleware enabling it to inject tuples
across the network and to receive tuples sent by other particles. Tuples also
enable each particle to know how many other particles are in its neighborhood
(e.g. each periodically broadcasts “I am here” messages) to estimate the local
density.

Particles do not have other capabilities other than the ones listed before. In particular:
4. They do not perceive the location (neither direction nor distance) of other

particles, they do not have any kind of long range communication mechanism,
nor a global accessible data space. In other words, although a particle can
perceive how many particles are in the neighborhood, it can neither perceive in
which direction and at which distance is a specific particle.

5. They do not have any notion of time and cannot rely on any global
synchronization mechanism.

3.2 Morphogen Gradients

To let a swarm of mobile particles to self-organize into a global shape we took
inspiration from biological morphogenesis. Morphogenesis is one of the major
outstanding problems in the biological sciences. It concerns the fundamental question
of how biological form and structure is generated starting from an immense number
of biological cells. A mechanism common throughout embryo development and
recognized as of primary importance towards morphogenesis is the use of morphogen
gradients to determine positional information and polarity of cell. For instance, in the
Drosophilae embryo, cells at one end of the embryo emit a morphogen (protein) that
diffuses along the length of the embryo. The concentration of this morphogen is used
by other undifferentiated cells to determine whether they lie in the head, thorax or
abdominal regions. Different morphogens are used to determine the dorsal-ventral
axis, wing development, and even leg bristle polarity.

Self- rganizing Spatial Shapes in Mobile Particles: The TOTA Approacho

o

142 M. Mamei, M. Vasirani, and F. Zambonelli

Reproducing morphogen gradients in a network of short-range wirelessly
interacting particles provided with the TOTA middleware is dramatically simple. A
“source” particle can inject in the network a TOTA tuple that propagates across the
network by increasing its content hop-by-hop. In the following, we will use the term
morphogen gradients or simply gradients for this kind of tuple. The above very
simple tuple can be used in powerful ways to influence the local activities of particles:

1. Leader Election Gradients can be used to elect leaders in the group. Randomly
elected leaders could propagate ‘leader’ gradients through the network inhibiting
others to become leaders on their turn [12].

2. Region Selection: TOTA tuples can also specify in their propagation rule the
maximum number of hops they are allowed to travel. If a leader particle
propagates a gradient of this kind, it can create (approximately circular) regions
of controlled size, and have other cells recognize their being in a specific circular
region (by reading the gradient value). We outline that if the gradient value is
incremented by one at each step, it provides an estimate of distance from the
source: a perceived value of n steps implies a distance nr from the source, where r
is the wireless communication range of particles. The quality of this estimate
depends on the density of particles [13].

3. Coordinate System: Gradients can be used to self-organize coordinate systems.
Particles, in fact, can recursively evaluate their coordinates by triangulating the
distances – expressed by means of gradients – from elected beacons [13].

4. Communication: Gradient can be used to broadcast messages to other particles
and, by having these messages follow other gradients previously laid down,
effective routing mechanism can be enforced [11,14].

5. Driving Motion: if a particle can perceive the local slope of any gradient, it can
also move following gradients uphill, downhill or along equipotential lines [2, 10,
12]. Moreover, since gradients are automatically update to reflect network
movements an eventual driving direction will remain consistent despite network
topology changes. With this regard, it is worth noting that since particles do not
perceive other particles location, they do not perceive in which direction a
perceived morphogen gradient decreases. To follow it downhill, a particle has to
randomly wander until it perceives the gradient is going in the correct direction
(i.e., the gradient it was following downhill is now perceived with decreased
value).

From a methodological viewpoint, particles exploit the TOTA middleware and TOTA
tuples to self-organize their respective positions in space. In particular, starting from
any spatial configuration of particles:

1. particles can inject a TOTA tuple implementing some morphogen gradients;
2. particles react to locally perceived TOTA tuples by trying to follow gradients

downhill/uphill (in a random way, as specified in the point 5 above), or by
changing their activity state possibly depending on the perceived value of the
tuples;

3. changes in the activity state of particles can lead to inhibiting the propagation of
some TOTA tuples and/or to the diffusion of new types of tuples in the system,

:

 143

leading back to point 1. One can then apply this process several times, with new
types of tuples being propagated in different phases, so as to incrementally have
particles self-organize into the required shape.

4 Experiments

Here we present a set of experiments of pattern formation exploiting the morphogen
gradients approach. The experiments have been performed on the TOTA emulator
already introduced. In the experiments, we assumed that particles have a certain
physical size and cannot cross through each other.

4.1 Barycenter

In this example, starting from a random distribution of particles, a sort of distributed
leader election algorithm is executed to identify the particle closest to the barycenter,
i.e., the “center of gravity”, of the whole system. Specifically, given n particles, the
barycenter is that particle that minimizes the sum of the distances from the n particles.
We remark that “leader” means a particle that has differentiated its behavior on the
basis of its local properties or its perceived gradients and not because it has particular
capabilities.

Detecting the barycenter of the system is very important for pattern formation, in
that it identifies a reasonable point to refer to start subsequent shape formation
activities. Morphogen gradients, expressing the approximate distance from their
respective sources, enable the definition of a simple algorithm for the identification
of the barycenter.

The algorithm: Each and every particle propagates a BARYCENTER gradient
whose value increases by one at each step. Each particle senses BARYCENTER
gradients propagated by all the other particles as they arrive, and adds their values
together, call the resulting value totGradients. totGradients is the sum of distances
from all the other particles. Therefore, the particle having the minimum totGradients
is the barycenter. Since totGradients decreases monotonically to the barycenter, each
particle can understand whether it has totGradients minimum or not, by simply
comparing its value with the neighbors’ ones. If no neighbors have a lower value of
totGradients, the particle is the barycenter.

We emphasize the algorithm does have a well-defined termination point. Simply,
each particle keeps on waiting for the income of new BARYCENTER gradients, to
evaluate over and over whether it is the barycenter or not. Eventually, the algorithm
converges, and particles will no longer receive any new gradient. The evolution of a
sample simulation of the barycenter election algorithms is reported in Figure 2. In this
figure (as well as in following simulation figures). It can be noted that, during the
process, some particles may temporarily recognize themselves as barycenter.
However, eventually, a single barycenter remains.

Slight modifications to the algorithm can be defined to elect two particles aligned
around the barycenter at a specific distance from each other, as well as to identify
particles on the border of the structure.

Self- rganizing Spatial Shapes in Mobile Particles: The TOTA Approacho

144 M. Mamei, M. Vasirani, and F. Zambonelli

a) b) c)

Fig. 2. Different stages of the establishment of the barycenter in a cloud of randomly
distributed particles. As the system evolves, some particles (in black, rounded) may temporarily
consider themselves the barycenter. Eventually, a single barycenter is left

// sum of distance evaluated up to now
totCount = 0
// number of gradients received
totGrad = 0
// inject tuples to rend variables
// visible to neighbors
tota.inject(new Tuple(“count”, totCount))
tota.inject(new Tuple(“tot”, totGrad))
// inject distance tuple
tota.inject(new Gradient(uniqueNumber))
readLabel:
Vector readV = tota.read(new Gradient())
if readV.size() != totGrad

totGrad = readV.size()
tota.inject(new Tuple(“tot”, totGrad))

 goto readLabel;
else

// read other totGrad
Tuple otherTotGrad = new Tuple(“tot”)
Vector ot = tota.readOneHop(othetTotGrad)
for every i in ot
 if totGradient!=ot[i].totGrad

 goto readLabel;
 end if

end for
end if
// Have received all the gradients
totCount = sumOfGradientsValue(readV)
for every node in neighbor

if neighborTotCount < totCount
 return NOT_BARYCENTER

end if
end for

 return BARYCENTER

Fig. 3. Pseudo-code of the barycenter algorithm

In the followings, to ground the discussion, we will provide a pseudo-code
implementation of the discussed algorithms. Pseudo-code has been chosen to avoid
the verbosity of real code and converting it in java should be straightforward. In the

 145

pseudo-code we put in boldface the instructions accessing to the TOTA middleware
to highlight its role (see figure 3).

4.2 Circle

In this example particles run a distributed algorithm to assume a circle shape.

The Algorithm : Each particle runs the barycenter algorithm described in the
previous section. The resulting barycenter particle will serve as the circle center. This
particle propagates a CIRCLE gradient which increases its value by one at each step.
All the other particles sense the gradient. If they sense a value greater than R
(intended circle radius) they move along the decreasing propagation direction of the
CIRCLE gradient. Eventually, all particles outside the intended circle radius will
collapse toward it.

We want to remark that, as stated in Section 2, our particles cannot sense in which
directions a gradient decreases. Therefore, a particle have to randomly chose a
direction to move and, if the particle senses that the gradient of interest does not
decrease – wrong guess – it can simple invert its direction. The key drawback of this
technique is that it makes it possible for some particles to get lost, i.e., get
disconnected from the network without any further information about where the rest
of the particles are. However, since these unlucky events are extremely rare, and since
individual particles are not important, this causes no harm.

a) b) c)

Fig. 4. Different stages of the circle formation. As the barycenter starts propagating the circle
gradient, some particles (in black) already recognize themselves as being at the correct distance
from the center and do not move; the other particles gradually collapse toward the circle
circumference

if particle == BARYCENTER
 tota.inject(new Gradient(“CIRCLE”))
end if
while(1)
 Vector readV = tota.read(new Gradient(“CIRCLE”))
 Tuple circle = readV[0];
 if circle.value > R

 moveDownhill(circle)
 end if

end while

Fig. 5. Pseudo-code of the circle algorithm

Self- rganizing Spatial Shapes in Mobile Particles: The TOTA Approacho

146 M. Mamei, M. Vasirani, and F. Zambonelli

The pseudo code of the circle algorithm is in Figure 5. Also in this case, the
algorithm does not end: simply, the particles that found themselves inside the circle
will stop moving. The result of a sample simulation is in Figure 4.

It is important to note that, despite the fact that during the execution of the
barycenter algorithm some particles may temporarily consider themselves the
barycenter, this causes not harm to the circle algorithm. Simply, these particles will
temporarily diffuse a spurious CIRCLE gradient.

As an additional note, we emphasize that the execution of the circle algorithm in
the presence of two barycenter enables the forming of elliptic shapes.

4.3 Ring

In this example, particles run a distributed algorithm, simply extending the circle one,
to cooperatively assume a ring shape.

The Algorithm. Once the barycenter algorithm has run, and the CIRCLE gradient
has been propagated, the particles on the circumference (i.e. those perceiving the
CIRCLE gradient with value R) start propagating a RING gradient which increases its
value by one at each step. This RING gradient, which also propagates to the inner
parts of the circles, attracts particles towards the circumference, thus emptying the
inside of the ring. The thickness of the ring can be tuned by having particles stop
following the RING gradient when it reaches a value of T, where T will consequently
be the thickness.

The pseudo code of the ring algorithm is in Figure 7. The result of a sample
simulation is in Figure 6.

As for the case of the circle, we outline that by executing the ring algorithm in the
presence of two barycenter “8”-like shapes can be obtained.

a) b) c)

Fig. 6. Different stages of the ring formation. As the particles at the correct distance from the
barycenter self-recognize to be there, they start injecting a gradient that attracts inner particles

4.4 Making Lobes

In this experiment, we tried to break the circular symmetry of previous experiments
and let lobes emerge in the global shape. The overall idea is to exploit particles
density as the source to break the symmetry. For instance, when forming a circle,
particles start to collapse toward the circle itself. If the number of particles compared
to the circle size is very high, then the perimeter of the circle will be very crowded.

 147

 if particle == BARYCENTER
 tota.inject(new Gradient(“CIRCLE”))

 end if
Vector readV = tota.read(new Gradient(“CIRCLE”))
Tuple circle = readV[0];
if circle.value == R
 tota.inject(new Gradient(“RING”))
else

readV = tota.read(new Gradient(“RING”))
Tuple ring = readV[0];

 while ring.value >= T
 moveDownhill(ring)
 end while

 end if

Fig. 7. Pseudo-code of the ring algorithm

Our idea is to force particles in very crowded areas to rearrange their positions so as
to stay more separate form each other (remember that our particles can sense how
many other particles are in the neighborhood). This process ends up in a slight
deformation of the circle (i.e., in the emergence of small “lobes”) in those part of its
circumference where an excess of particles are accumulating. This small emergent
lobes can be amplified via an additional mechanism of morphogen gradient inhibition
that, in turn, makes larger lobes emerge.

To this end, and with reference to the circle, it is worth noting that the emergence
of the circle shape directly derives from having the CIRCLE gradient spread in every
direction uniformly. In this way, all the particles sensing the value R of the CIRCLE
gradient end up in being almost equidistant form the center or, when the density is
taken into account, in the circumference of a circle with small lobes However, if one
makes the CIRCLE gradient increase its value slower in zones of high density then, in
these zones, the gradient would reach the value R farther from the source. Particles,
following that gradient, would not dispose on a circle, but on a circle with a lobe,
where the lobe would correspond to the place in which the gradient reaches value R
farther.

The Algorithm. Particles runs the CIRCLE algorithm and, upon receiving the
CIRCLE gradient, have to re-propagate it. However, before doing that, particles sense
the number of other particles in their neighborhood. If the number of particles in the
neighborhood exceeds a specified threshold (criticalDensity1), the particle sets the
rate at which the field increases to 0. This increasing rate will be reset to the default
value of one when the density falls below another specified threshold
(criticalDensity2).

The pseudo code of this algorithm is in Figure 9. The result of a sample experiment
is in Figure 8. We outline that the algorithm does not enable to predict where in the
circle lobes will form, and how may lobes will eventually form. This is an emergent
characteristic of the system, that critically depends on two non-controllable factors:
the initial disposition of particles and the outcome of the random movement of
particles towards the center.

Self- rganizing Spatial Shapes in Mobile Particles: The TOTA Approacho

148 M. Mamei, M. Vasirani, and F. Zambonelli

a) b) c)

Fig. 8. Different circles with lobes. The particles in the circle that detect a high density of
particles, inhibit the propagation of the circle gradient, thus leading to the formation of lobes

 if particle == BARYCENTER
 tota.inject(new Gradient(“CIRCLE”))
end if
Vector readV = tota.read(new Gradient(“CIRCLE”))
Tuple circle = readV[0];
if circle.value > R
 moveDownhill(circle)
else if circle.value == R
 // making particles escape from crowd make
 // small lobes emerge
 moveAwayFromCrowd()
end if
// the following, makes even large lobes emerge
if numNeighbors > criticalDensity1
 // set the gradient increasing rate to 0
 circle.setAddValue(0)
end if
if numNeighbors < criticalDensity2
 // restore default increasing rate
 circle.setAddValue(1)
end if

Fig. 9. Pseudo-code of the lobes algorithm. To move away from crowd a particle chooses a
random direction and follows it if it senses that the number of neighbors is decreasing

4.5 Polygon

The emergent phenomena of lobes in the previous section is interesting. Still, it would
be important to have a way of controlling such emergent behaviors. In a further set of
experiments we tried to enrich the algorithm to control the number of lobes to be
created so as to obtain regular polygon shapes (e.g. triangles exagons, etc.).

The idea to control the number of lobes is again rooted in a leader election
mechanism. We want to design an algorithm to elect n leaders on the circumference
of the circle. These leaders must be equidistant from one another. Once this has been
accomplished, the leaders will be in charge of adopting the trick described in the
previous section, i.e., avoiding to increase the value of the CIRCLE gradient being re-
propagate, so as to force the emergence of n lobes equidistant from one another and,
consequently, leading to a nearly regular n-polygon shape.

 149

The Algorithm. (i) each node runs the circle algorithm, (ii) once a particle on the
circumference of the forming circle recognize their being in the current position, it starts
casting random numbers; (iii) each node casting a number greater than a specified
threshold becomes a leader – the threshold (T) is chosen so that it is very unlikely that
two nodes become leaders shortly one after another; (iv) the leader starts propagating an
ELECT gradient, that propagates only in the circle perimeter region (i.e., particles that
are not on the ring inhibit its propagation); (v) nodes receiving the ELECT gradient, stop
casting random numbers and if the received gradient value overcomes another specified
threshold L, they become leaders on their turn; (vi) each leader sets the ELECT gradient
value to 0 and continues its propagation; (vii) once that ELECT gradient is fully
propagated there should be almost (circle-length)/L equidistant leaders on the circle.
Thus L is a parameter controlling which polygon will emerge.

a) b)

Fig. 10. Different polygon shapes obtained by multiple lobes: from triangle to pentagon

4.5 Self- epair

Whatever the shape being formed, it is of fundamental importance to preserve and
maintain it despite particles being destroyed or added to the system. Such kind of
maintenance cannot be performed from the external, particles themselves must be
able to self-recognize a change in the configuration and self-repair their
configuration. One of the key point in our approach is to enable such kind of self-
repairing activities.

As shown in the previous experiments, the propagation pattern of the gradient is
responsible of how the particles will dispose around the sources of that gradient. In
any case, the gradient exerts a continuous attractive force on the particles, which
perceive this force even when they are packed in the final shape and any movement is

c)

Self- rganizing Spatial Shapes in Mobile Particles: The TOTA Approacho

r

150 M. Mamei, M. Vasirani, and F. Zambonelli

if particle == BARYCENTER
 tota.inject(new Gradient(“CIRCLE”))
end if
Vector readV = tota.read(new Gradient(“CIRCLE”))
Tuple circle = readV[0];
if circle.value == R
readV = tota.read(new Gradient(“ELECT”))
while readV.size() == 0

if nextRandom() > T
 iAmLeader();
 tota.inject(new Gradient(“ELECT”))
 circle.setAddValue(0)
end while
Tuple elect = readV[0];
if elct.value > L
 iAmLeader();
 tota.inject(new Gradient(“ELECT”))
 circle.setAddValue(0)
end if
if circle.value > R && elect.value == 1
 circle.setAddValue(0)

 end if
while(1)
 if circle.value > R
 moveDownhill(circle)
 else if circle.value == R
 moveAwatFromCrowd ()
 end if
end while

Fig. 11. Pseudo-code of the polygons algorithm

a) b) c)

Fig. 12. Self-repair in a polygon shape. In (b) a number of particles is removed from the
ensemble. After a short-period of time (c) the configuration is reconstructed

impossible (recall that particles cannot cross each other). The continuous attractive
force and the fact that particles have a volume make our system able to self-recognize
a change and self-repairing. For example, suppose that the shape is correctly created
and in a certain zone some particles get destroyed for an impact, so opening a void
space. On the one hand, particles are able to estimate their local density, and thus they
can sense a sudden drop in their neighborhood revealing a change (see figure 12-b).
On the other hand, all the particles close to the space previously occupied by
destroyed particles now have the possibility to move, and because they are always
subjected to the attractive force exerted by the gradient, they find a way to follow
downhill the force field (see figure 12).

 151

5 Related Work

In the last few years, several approaches targeting control algorithms for multi-robot
systems have been proposed, which address goals similar to ours.

Several proposals in the area define distributed algorithms for pattern formation in
robots exploiting the strong assumption that each robot, via visual observation, can
determine the positions and movements of all other robots [7, 19]. This hypothesis
makes it rather trivial to promote the formation of a variety of global patterns but it is
hardly applicable to micro- or nano-robots/particles. Issues of scalability, battery
consumption, line-of-sight, cost of global localization, etc. all call for a strictly local
perception of the environment.

Other approaches have been proposed requiring robots witch strictly local
perception, but still requiring them the capability to detect the distance and the
direction of neighbor robots[1, 5]. The key idea is that robots, by positioning
themselves at specific distances and directions from other robots, can self-organize in
a variety of regular shapes. Little is said about the possibility of making more
complex shapes emerge, e.g., by making information flow from robot to robot (as in
the case of morphogen gradient).

A possible way to promote the formation of spatial patterns in the absence of
distance and direction information is to get inspiration from the way chemicals and
crystals grow into self-organized regular structures. Approaches of this kind are
explored, for instance, in [8, 9, 17]. The general idea (with specific differences
characterizing different proposals) is to exploit stateful particles capable only of
sensing the internal state and the presence of other particles (either via proximity
sensing or via direct contact). Particles are deployed together in an environment and
there start randomly moving. When particles keep in touch with each other, they
apply internal transition rules (based on their own state and on the state of close
particles) to decide whether to “stick” to that position or continue moving.
Unfortunately, the approach enables the direct programming of transition rules
leading to very simple and regular patterns only. More complex patterns require
complex search heuristics to determine a set of transition rules leading to the desired
global pattern. Also, the process leads to the formation of static non-adaptive patterns.

Algorithms for the control of shape and motion in modular robot have been
proposed exploiting an approach strictly related to ours [16, 18]. There, “hormones”
(similar to morphogen gradients) are created and propagated through the modules of
the robot. Robots' modules decide how to move on the basis of a lookup table
associating their local configuration and the locally perceived hormones with the next
action. The result is to have the robot modules self-organize into globally coherent
shapes or into globally coherent motion patterns (i.e. gait). Although some of the
result of this approach are excellent, one should consider that such representation
must be locally stored by each robot, which may not be possibly for robot with very
limited resources. Moreover, relying on an a priori representation of the shape, robots
deployed in a constrained environment where the shape does not fit would be left with
no choices but leaving the shape incomplete, rather than flexibly adapt the shape.

Self- rganizing Spatial Shapes in Mobile Particles: The TOTA Approacho

152 M. Mamei, M. Vasirani, and F. Zambonelli

The approach proposed in the Amorphous Computing project [12] for the
formation of origami shapes in a amorphous network of particles is the one that most
directly relates to our work. Particles, by communicating only with their local
neighborhood, can self-organize into various patterns of activity by propagating
morphogen gradients and changing their state according to the perceived morphogen
gradients. The main difference from our work is that here particles can't move altering
their respective topologies. Furthermore, some particles (i.e., those at the border) must
be started in a special initial state, thus requiring an a priori differentiation.

6 Conclusions and Open Directions

The TOTA approach enables the effective formation of a variety of complex shapes in
computational particles with minimal capabilities.

Despite these promising results, a number of open directions are still to be
investigated. Currently our group is interested to: experiencing differentiation of
activities and global coordination based on cellular automata inspired approach;
trying to define a simple and modular programming model; trying to achieve – other
than the formation of static patterns – coherent motion gaits in particles; building
some hardware prototype for particles and validating our approach in the real world.

References

[1] J. S. Bay, C. Unsal, “Spatial Self-Organization in Large Populations of Mobile Robots.”,
IEEE Symposium on Intelligent Control, Columbus (OH), 1994.

[2] D. Coore, “Botanical Computing: A Developmental Approach to Generating
Interconnect Topologies on an Amorphous Computer”, PhD Thesis, MIT, 1999.

[3] S.J. Day, P.A. Lawrence, “Morphogens: Measuring Dimensions: the Regulation of Size
and Shape”, Development 127:2977-2987, 2000.

[4] D. Estrin, D. Culler, K. Pister, G. Sukjatme, “Connecting the Physical World with
Pervasive Networks”, IEEE Pervasive Computing, 1(1):59-69, 2002.

[5] J. Fredslund, M. Mataric, “A General Algorithm for Robot Formations Using Local
Sensing and Minimal Communication.”, IEEE Transactions on Robotics and
Automation, 18(5):837-846, 2002.

[6] D. Gelernter, N.Carriero “Coordination Languages and Their Significance”,
Communication of the ACM, Vol. 35, No. 2, pp. 96-107, 1992.

[7] N. Gordon, I.A. Wagner, A.M. Bruckstein, “Bee Dance Algorithm for Pattern Formation
on a Grid.”, IEEE Conference on Intelligents Agents Technologies, Toronto (CA), 2003.

[8] Y. Guo, G. Poulton, P. Valencia and G. James, “Designing Self-Assembly for 2-
Dimensional Building Blocks”, in Engineering Self-Organizing Applications, LNCS No.
1977, Springer Verlag, 2004.

[9] C. Jones, M. Mataric, “From Local to Global Behavior in Intelligent Self-Assembly”,
IEEE Conference on Robotics and Automation, Taipe (TW), 2003.

[10] M. Mamei, F. Zambonelli, L. Leonardi “Co-Fields: a Physically Inspired Approach to
Distributed Motion Coordination”, IEEE Pervasive Computing, 3(2):52-61, 2004.

[11] M. Mamei, F. Zambonelli, “Programming Pervasive and Mobile Computing
Applications with the TOTA Middleware”, IEEE Percom, Orlando (FL), 2004.

 153

[12] R. Nagpal, “Programmable Self-Assembly Using Biologically-Inspired Multirobot
Control”, ACM Joint Conference on Autonomous Agents and Multiagent Systems,
Bologna (I), 2002.

[13] R. Nagpal, H. Shrobe, J. Bachrach, “Organizing a Global Coordinate System from Local
Information on an Ad Hoc Sensor Network”, in Information Processing in Sensor
Networks, LNCS No. 2643, Springer Verlag, 2003.

[14] R. Poor, “Embedded Networks: Pervasive, Low-Power, Wireless Connectivity”, PhD
Thesis, MIT, 2001.

[15] M. Shang, W. Ruml, Y. Zhang, “Localization from Mere Connectivity”, ACM
Conference on Mobile ad-hoc Computing and Networking, Annapolis (MD), 2003.

[16] W.M. Shen, B. Salemi, P. Will, “Hormone-Inspired Adaptive Communication for Self-
Reconfigurable Robots”, IEEE Trans. on Robotics and Automation, 18(5):1-12, 2002.

[17] W.M. Spears, D.F. Gordon, “Using Artificial Physics to Control Robots.”, IEEE
International Conference on Information, Intelligence and Systems, 1999.

[18] K. Stoy, R. Nagpal, “Self-Reconfiguration Using Directed Growth, 7th Int. Symposium
on Distributed Autonomous Robotic Systems”, Toulouse (F), 2004

[19] K. Sugihara, I. Suzuki “Distributed Motion Coordination of Multiple Mobile Robots.”,
IEEE Int'l Symp. on Intelligent Control, Philadelphia (PN), 1990.

Self- rganizing Spatial Shapes in Mobile Particles: The TOTA Approacho

S. Brueckner et al. (Eds.): ESOA 2004, 3464, pp. 154 – 166, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Directed Self- ssembly of 2-Dimensional Mesoblocks
Using Top-Down/Bottom-Up Design

Geoff Poulton, Ying Guo, Geoff James, Phil Valencia,
Vadim Gerasimov, and Jiaming Li

CSIRO ICT Centre,
Marsfield NSW 2122, Australia

{Geoff.Poulton, Ying.Guo, Geoff.James, Phil.Valencia,
Vadim.Gerasimov, Jiaming.Li}@csiro.au

Abstract. In this paper we present a general design methodology suitable for a
class of complex multi-agent systems which are capable of self-assembly. Our
methodology is based on a top-down, bottom-up approach, which has the poten-
tial to achieve a range of global design goals whilst retaining emergent behav-
iour somewhere in the system, and thereby allowing access to a richer solution
space. Our experimental environment is a software system to model 2-
dimensional self-assembly of groups of autonomous agents, where agents are
defined as square smart blocks. The general design goal for such systems is to
direct the self-assembly process to produce a specified structure. The potential
of this design methodology has been realised by demonstrating its application to
a “toy” problem – the self-assembly of rectangles of different sizes and shapes
in a two-dimensional mesoblock environment. The design procedure shows dif-
ferent choices available for decomposing a system goal into subsidiary goals, as
well as the steps needed to ensure a match to what is achievable from the bot-
tom-up process. Encouraging results have been obtained, which allows mesob-
lock rectangles of specified size to be assembled in a directed fashion. Two dif-
ferent approaches to the same problem were presented, showing the flexibility
of the method.

1 Introduction

The study of complex systems is now over two decades old and much has been dis-
covered about such systems, whose best-known characteristic is the emergence of
self-organised global properties from the aggregate behaviour of its constituent
components [2]. A good definition of self-organisation is given by Hermann Haken
[1]: a system is self-organizing if it acquires a spatial, temporal or functional
structure without specific interference from the outside. By “specific” we mean that
the structure or functioning is not impressed on the system, but that the system is
acted upon from the outside in an non-specific fashion.

Most complex systems research has employed the traditional scientific method of
hypothesis and test, a “bottom-up” approach which works from fundamental knowl-
edge and experimentation to derive new principles about the world. However, the

LNAI

a

 Directed Self- ssembly of 2-Dimensional Mesoblocks 155

very property which characterises complex systems also works to make difficult the
formulation of general theories - the inherent unpredictability of emergent behaviour.
There is no reason to suppose that this situation will change in the near future.

In contrast, engineering design is a “top-down” process which starts with a global
goal and seeks methods to achieve it using available scientific knowledge. For com-
plex systems this has proven to be difficult for reasons stated above - general
scientific principles are hard to come by.

There are two approaches to the design of complex systems. The first is to use
evolutionary computation or similar methods to obtain designs for specific instances
[8,9]. However, such designs rarely generalise to allow generic design principles,
again because of the unpredictability of the underlying system. Secondly, the system
itself may be modified or restricted to remove emergence, allowing traditional design
methods to apply [10]. The disadvantage is that, even when it is possible, solutions
will be inferior because of the loss of the rich solution space provided by complexity,
and which biological systems use to such advantage.

In this paper we present a design approach which is a compromise between these
two extremes, by working simultaneously from the top down and the bottom up in an
attempt to define intermediate “entities” which retain emergence and yet allow the
possibility of formulating broad design principles. This concept will be developed in
the context of multi-agent systems for which the principal self-organising behaviour is
self-assembly. The general design goal for such systems is to direct the self-assembly
process to produce a specified structure.

More specifically, the agents in our system will be simulated 2-dimensional square
“mesoblocks”, in analogy to the physical mesoblocks investigated by Whitesides and
others [5,6], but imbued with a rudimentary intelligence. Large numbers of identical
blocks, moving randomly in a “sea”, interact according to their internal properties
whenever two blocks come together [3,4]. The surfaces are polarised as negative (-1),
positive (+1) or neutral (0), so that opposite polarities will attract and stick together.
No other combination of polarities will allow blocks to stick [3,4]. While a large
number of objects can be constructed from these static agents by varying their surface
properties, a richer variety of self-assembled objects is possible by allowing edge
polarities to change following an “event”, under the control of an internal state ma-
chine. In this study an event is defined as a block either sticking to or unsticking from
another block (although other choices are possible). For simplicity we assume all
“sea” blocks to have the same fixed physical shape and internal state machine.

An important concept from our earlier work is the “enzyme”, which allows a more
flexible and directed method of producing basic building objects [4]. In the real world
an enzyme is an organic protein which catalyses a specific reaction. Here, we use it to
characterize an assembly of blocks which is capable of producing another block
assembly whilst itself remaining unchanged. By introducing an enzyme into the
multi-agent environment, the structures which self-assemble depend also on the rule
set and physical structure of the enzyme. Different enzymes will generate different
final objects from the same “sea” blocks. Enzymes can also give control over where
and when structures self-assemble, by appropriate placement and assuming that

a

156 G. Poulton et al.

 and enzymes are fundamental to the directed self-assembly process.
The remainder of this paper is organized as follows. Section 2 outlines our ap-

proach, Section 3 describes the 2-dimensional self-assembly environment and en-
zymes. In Section 4, we present two examples of the top-down/bottom-up design
process in a simulation environment. Finally, conclusions based on these experiments
are discussed in Section 5.

2 Top-Down/Bottom-Up (TDBU) Design

Our approach to creating a general framework for the design of complex multi-agent
systems is to seek a balance between “top-down” (engineering) and “bottom-up”
(scientific) processes. Engineering design starts with a system goal and employs a
top-down approach to formulate more achievable intermediate goals. In contrast, the
scientific method develops new knowledge of what is achievable by working from the
bottom-up. Successful design is possible when the two processes can be matched,
with intermediate engineering goals being capable of being achieved using existing
scientific understanding. The particular problem with complex systems in general,
and multi-agent systems in particular, is the difficulty of formulating general scien-
tific principles describing system behaviour.

It may often be possible, using a hierarchical design process, to break a range of
system goals into sub-goals which are within the capacity of scientific knowledge.
Solving the sub-goals would then allow any system goal within the range to be
achieved. The danger in doing this is that the emergent behaviour characteristic of
complex systems may be lost, denying the designer the rich solution space offered by
such systems.

Fig. 1. Single-layer system design. The solution is specific for one problem, and it is difficult to
find generic design rules

(Complex) Multi-agent System

Emergent behaviour

Solution Space
(Design Goals)

Specific

GA

enzymes can be switched between active and inactive states. The properties of agents

 157

Fig. 2. Intermediate entities, capable of achieving a range of goals, are derived by a “top-down”
process from the design goals. The “bottom-up” process is to evolve the intermediate entities
from the multi-agent system. This leads to a broader solution space than Fig. 1

To access this rich space of potential solutions, it is important to preserve emergent be-
haviours that would be lost with a fully hierarchical, engineering design. Our approach,
involving a minimal hierarchical decomposition, is a means of seeking a balance.

It is valid to ask whether any such decomposition is necessary, when many exam-
ples exist where complex systems are designed for a specific goal using evolutionary
computation or similar methods [8,9]. The answer is that we aim to develop methods
which will allow a range of design goals to be achieved without having to repeat time-
intensive evolutionary computations. This point is explained in more detail as follows.

Fig. 1 illustrates a single-layer system where GA is used to achieve a given design
in the solution space [3,4]. For systems exhibiting emergent behaviour such designs
are not usually robust in the sense of allowing general rules for a class of designs to
be formulated. The specific solution found may well be optimal, but may not general-
ise well because of the complex nature of the system, making it difficult to determine
generic design rules. On the other hand Fig. 2 illustrates a TDBU process where we
can retain emergence in one (or both) parts, thus broadening the solution space. This
is possible because, although the “intermediate entities” may result from an emergent
process, they can be used as generic building blocks to achieve a broader range of
goals in the solution space. This will effectively give general design rules, at least
within the broader area of achievable goals. Another advantage of the hierarchical
design is that since the problem has been split, simpler optimization of the constituent
parts will almost certainly result.

It should be noted that considerable choice may exist as to the set of intermediate
entities in a given case. In part, this will be due to the fact that only a part of the
whole solution space can be expected to be covered, so there will be some flexibility
which depends on just which part is considered most important. Some solutions will

(Complex) Multi-agent System

Emergent behaviour

Solution Space
(Design Goals)

Achievable Design Goals

GA

GA or other

Intermediate “Entities”

“bottom-up” design

“top-down” design

Directed Self- ssembly of 2-Dimensional Mesoblocks a

158 G. Poulton et al.

be better than others; for example, a good solution would be if only a few entities
could span a large part of the space.

2.1 TDBU Design for Mesoblock Self- ssembly

Previous work by the authors on TDBU design of multi-agent systems has focused on
bottom-up analysis, investigating the class of substructures that can be directed to
self-assemble by specifying the internal agent properties [3,4]. The most important
outcome of this research has been a class of “enzymes”, simple multi-agent configura-
tions capable of producing other simple structures with desired properties whilst
themselves remaining unchanged. Significantly, many self-replicating enzymes were
also found [4], with the interesting property of reproducing themselves in addition to
creating target structures.

In this paper, we will focus more on the top-down part of the TDBU design proc-
ess. After discussing the various choices available for decomposing a system goal
into subsidiary goals, as well as the steps needed to ensure a match to what is achiev-
able from the bottom-up process, we will illustrate the design procedure by carrying
out and simulating the entire TDBU procedure for a preliminary “toy” problem. Very
encouraging results have been obtained for this problem, which allows mesoblock
rectangles of specified size to be assembled in a directed fashion. Results of the simu-
lations will be given in Section 4.

To design a self-assembly system, we want to keep the emergent behaviour of the
system. A number of research groups, including CSIRO, have studied self-assembly
at the “mesoscale” (in the order of millimetres to centimetres) using physical “mesob-
locks” with a range of shapes and construction and whose edge adhesion properties
may be varied. Such mesoblocks self-assemble into a wide range of regular lattice-
like arrangements, depending on their properties, and can be regarded as analogues of
nano- or molecular-scale systems [5-7].

In previous work by the authors [3,4] such blocks are regarded as agents that inter-
act due to their edge properties, which are not static, but may change under the influ-
ence of an internal state machine. The resultant self-assembled object (if one exists)
is dependant on the agents’ properties including size, edge polarities and strength of
edge fields as well as the parameters of the internal state machine. This state machine
changes the polarity of any number of its sides following the detection of an “event”,
which is usually the sticking to or unsticking from another block. In [3], restricting
the analysis to two-dimensional rectangular blocks, Guo et. al. evolved block parame-
ters and rule sets of the state machine which allow the self-assembly of desired basic
structures suitable for use as primitive building blocks for the directed assembly of
more complicated objects.

3 Building Blocks for Self- ssembly

As mentioned above, the agents in the self-assembly system are two-dimensional
rectangular blocks which may combine to form intermediate entities (the most impor-
tant of which are enzymes) in a TDBU design. Both the agents and intermediate

a

a

 159

entities become building blocks for the final self-assembly of a desired structure. The
main properties of agents and enzymes are described in detail in the following
sections.

3.1 2D Mesoblock Agents

At the nanoscale, self-assembly of nanostructures can be controlled by using the at-
traction and repulsion properties of attached complementary groups. We have
included similar properties in our agents with the aim of generating insights into the
self-assembly processes of multi-agent systems of this type, with the hope that these
insights may then be transferred to real world environments. Of course, it will be
necessary to find nano- or molecular analogues with rudimentary intelligence. Several
authors have suggested mechanisms which may allow such properties [11,12].

With this aim in mind and referring to Figure 3 the properties of our agents may be
defined as follows:

(1) Each block has four edges, each of which can have positive (+1), negative (-1), or
neutral (0) polarity. This is illustrated in Figure 3, where the four edges of the
block are labeled for easy description. The edge state of an agent will be de-

scribed as a vector of four trinary numbers:),,,(4321 aaaaQ = , where

}0,1,1{ −+∈ia . For instance, the edge state of the block in Figure 1 can be de-

scribed as)1,0,0,1(−+=Q .

(2) The internal state machine can change the polarity of each edge as the result of an
event.

(3) Events detectable by each block are the acts of “sticking” or “unsticking” at one
or more of its edges.

(4) The internal state machine in each block contains rules linking edge polarity
changes to “sticking” or “unsticking” events.

(5) The initial state of all the blocks in one environment is identical. This includes
the edge polarities as well as any internal states.

Fig. 3. Structure of each agent in the multi-agent system. Edge_1 is positive (+1), Edge_4 is
negative (-1), and Edge_2, Edge_3 are neutral (0)

 STATE
MACHINE

Edge_1

E
dge_2

Edge_3

E
dge_4

Sense Change

Directed Self- ssembly of 2-Dimensional Mesoblocks a

160 G. Poulton et al.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. A simple example of an enzyme. This is an artificially constructed 10-block structure
sitting in a “sea” of blocks with all negative sides and an identical rule set. This enzyme pro-
duces linear groups of three blocks with all zero polarity except for one end, which is positive

In the simulation environment the blocks interact in the following manner:

(1) Edges of opposite polarity stick together and generate a “sticking” event which is
passed to the internal state machines of both sticking blocks.

(2) Like polarities repel and will cause connected blocks to unstick. (This may also
generate an event to be passed to the internal state machines, an option which is
not used in this paper for reasons of simplicity).

(3) Neutral polarities will neither attract nor repel any other polarities. If a polarity
changes to neutral between two connected blocks then they will unstick.

(4) Blocks move randomly in the 2-D environment under Brownian-like motion by
steps which are multiples of the block width, with rotation of multiples of 90°.

(5) For a given situation many different structures may self-assemble. A block will
separate from a structure if there is no net “sticking force” to hold it on. For the

Qth block this may be determined from the separation function
4

1

() ,i
i

A p
=

=Q

where pi is the sticking force due to the ith edge. pi is +1 if the edge sticks to a
neighbour, -1 if it is repelled and 0 if there is no neighbouring block or a neutral
edge. Block Q will remain part of the structure if () 0A >Q , or will separate if

() 0A ≤Q . Note that separation functions really should be defined for all struc-

tures, not just for single blocks. In general this is a difficult problem which has
not been addressed in the present study.

 161

3.2 Enzymes

The properties of an enzyme are defined as:

(1) Each enzyme is a stable structure comprising K blocks.
(2) Each block in the same enzyme has the same rule set.
(3) Blocks in the environment (“sea” blocks), whilst identical, can have a differ-

ent rule set from the enzyme blocks.
(4) An enzyme must remain unchanged after the self-assembly process. During

the process it may change in size and shape, but it must return finally to its
initial state.

An example of an enzyme enabling a self-assembly process is shown in Figure 4.
This enzyme may be simply modified to produce linear structures of any length.

(a) (b)

Fig. 5. Two examples of TDBU design. (a) self assembly of mesoblock rectangles. (b) self
assembly of connecting mesoblock assemblies

4 TDBU Design of Self- ssembly Systems: Experiments

In this section a simple example of a complete TDBU process will be selected and
worked through, to illustrate the method and to bring out concepts and difficulties.
For the two-dimensional mesoblock environment described above several such exam-
ples are possible. One which would be of value if it could be transferred to the nano-
scale is self-assembling connectivity - the self assembly of mesoblock structures
connecting a number of static structures placed randomly in the environment. This
would have application to the self-assembly of nanoscale electronic circuits. Another,
simpler example is the self assembly of mesoblock rectangles of controllable size and
shape. Because this has no apparent nanoscale application it is really a “toy” prob-
lem. Nevertheless, it is selected for our experiment because of its simplicity. Fig. 5
shows a schematic of this experiment and also of self-assembling connectivity.

(Complex) Multi-agent System

Intermediate “Entities”, e.g. Class of Enzymes

Directed Self- ssembly of 2-Dimensional Mesoblocks a

a

162 G. Poulton et al.

In what follows the minimal hierarchy TDBU design concept is developed with the
abovementioned toy problem, whose aim is to design a class of rectangular structures of
any given size or shape which self-assemble from two-dimensional mesoblocks. To illus-
trate the choices implicit in the design method we have employed two different design
structures, both using enzymes but with different complexity. This illustrates the flexibility
in the choice of intermediate entities inherent in the TDBU process. The two methods,
together with results of simulation experiments, are described in the following sections.

Fig. 6. Design process of approach one. The figure at the right shows the performances of
the components when the control signal is broadcast to the whole environment

Fig. 7. Four different stages of the self-assembly environment based on a TDBU design. The
self-assembled rectangles are circled in the last figure

Control signal

Change Polarities of End

Break

Turn off

 163

4.1 Achieving the Goal with Fixed Enzymes

The first design approach is shown in Figure 6, which is a detail of the design process
of Figure 5 (a). Two types of fixed enzymes, which produce horizontal and vertical
strings, and the sea blocks are the basic building structures. This process of growing
long chains will be allowed to continue for a while. Then “messages” are sent to the
whole environment as control signals which impart the essential information about the
goal --- in this case the length and breadth of the desired rectangles. Following receipt
of the message all blocks, enzymes and chains in the whole environment will take the
following actions, depending on their situation:

• All single blocks become neutral on all sides;
• All enzymes are deactivated;
• All long chains are truncated to the lengths given by the message, and the end

block polarities are changed to allow them to self-assemble into rectangles.

Then all the chains with active ends (positive or negative) and the correct length will
start to stick together and generate the rectangles. There are many possible methods of
achieving this. One simple way is to include a counter in each block. During assem-
bly by the enzyme the first block in the chain is set to 1, and the following blocks to 2,
3, etc. as the chain grows. When the global message is received, the blocks break with
their next neighbours if their counter numbers divided by the given length are inte-
gers. This process also activates the ends of the chain.

To illustrate the operation of this process an artificial simulation environment was
set up. Figure 7 shows four different states of this environment: (a) the initial condi-
tion, which includes four enzymes and many sea blocks. (b) the end of the first stage,
with a number of chains of different lengths which self-assembled after activation by
an enzyme based on their internal rule set. (c) the intermediate stage, following ac-
tions generated by the global control signal. (d) partway though the final self-
assembly stage, with some rectangles generated (circled).

4.2 Achieving the Goal by Adjusting Enzymes

This design approach is shown in Figure 8, which is a detailed design process from
the idea of Figure 5 (b), where the global goals were achieved by creating a flexible
enzyme and then adjusting its properties according to the particular goal required.
There are two large L-shape enzymes in this environment. These enzymes, and the
rule sets of the sea blocks, are designed to ensure that particular L-shape structures are
generated with particular polarities (+1 at one end). When these structures, moving
freely in the environment, meet at their open ends, the positive (+1) will stick with
negative (-1) polarity, and they will generate a rectangle whose dimensions are deter-
mined by the L-shaped structures produced by the enzymes. These dimensions are set
by the positions of the “terminal” blocks in the enzymes, shown as the one with dot
and arrow in Figure 8. Without external intervention only rectangles of a fixed size
will be produced. However, as in the first example, external global messages may be
used to shift the positions of the terminal blocks, and hence the size and shape of the
rectangles produced. One way is to provide labels for all blocks in the enzyme allow-

Directed Self- ssembly of 2-Dimensional Mesoblocks a

164 G. Poulton et al.

ing any of them to be activated by targeted messages, thereby becoming the new ter-
minal blocks. Alternatively, the enzymes may be programmed to change this them-
selves after a fixed number of rectangles have been produced.

Fig. 8. Second design process using flexible enzymes

This design process can also be simulated in the same environment and this is illus-
trated in Figure 9. In the initial state (Figure 9.a), the two large L-shape structures are
the enzymes in a “sea” of sea blocks. There is a small window in the left of the main
environment, which shows the enzyme with the highlighted “terminal” blocks. Two
different classes of rectangles generated by two different terminal block positions are
shown in Figure 9.b and Figure 9.c.

5 Conclusions and Further Directions

The essential idea of this paper is to present a general design methodology suitable for
a class of complex multi-agent systems which are capable of self-assembly. This
problem is difficult because such complex multi-agent systems generally exhibit
 emergent behaviour which makes global performance hard to predict, and hence very
hard to design for. Our methodology is based on a top-down, bottom-up approach,
which has the potential to achieve a range of global design goals whilst retaining
emergent behaviour somewhere in the system, and thereby allowing access to a richer
solution space. The potential of this design methodology has been realised by
demonstrating its application to a “toy” problem – the self-assembly of rectangles of
different sizes and shapes in a two-dimensional mesoblock environment. In fact, two
different approaches to the same problem were presented, showing the flexibility of
the method.

The next steps in this research will be to apply the technique to a wider range of
problems within the 2-D mesoscale environment, concentrating on applications which
have useful nanoscale analogues. Further work will be to change our environment to

MESSAGE

 165

(a)

(b)

(c)

Fig. 9. TDBU rectangle design: achieving global goal by adjusting enzymes. (a) The initial
state of the environment, with the enzyme shown in the small window. (b)The self-assembled
rectangles of size 4 by 4 are circled. (c) The self-assembled rectangles of size 3 by 4 are circled

Directed Self- ssembly of 2-Dimensional Mesoblocks a

166 G. Poulton et al.

include a model of physics which is as close to the nanoscale as possible. Once this
has been done we will be in a position to assess whether our approach for designed
self-assembly would be feasible at the nanoscale.

References

1. Haken, H., Information and Self-Organization: A Macroscopic Approach to Complex
Systems, Springer-Verlag, 1988.

2. Vemuri, V., Modeling of Complex Systems: an Introduction, New York, 1978.
3. Guo, Y., Poulton P., Valencia P., and James, G., Designing Self-Assembly for

2-Dimensional Building Blocks, ESOA’03, Melbourne, July 2003.
4. Poulton, G., Guo, Y., Valencia, P., James, G., Prokopenko, M., Wang, P., Designing

Enzymes in a Multi-Agent System based on a GA, 8th Conf. Intell. Auton. Sys., 2004.
5. Whitesides, G., et al., Three-Dimensional Mesoscale Self-Assembly, J. Am. Chem. Soc.,

1998, 120, 8267-8268.
6. Whitesides, G., et al., Design and Self-Assembly of Open, Regular, 3D Mesostructures,

Science, 1999, 284, 948-951.
7. Raguse, B., Self-assembly of Hydrogel Mesoblocks, personal communication, CSIRO,

2002.
8. Surmann, H., Kanstein,A., Gosser,K., Self-Organizing and Genetic Algorithms for an

Automatic Design of Fuzzy Control and Decision Systems, EUFIT 93 First European Con-
gress on Fuzzy and Intelligent Technologies, Aachen 1993, Vol. 2, pp 1097-1104.

9. de Garis, H., Growing Arbitrary Shapes with Genetic Programming, Proceedings of the
7th International Conference on Machine Learning, 1990, pp.132-139.

10. Goldman,C., Zilberstein,S., Optimizing Information Exchange in Cooperative Multi-agent
Systems, AAMAS 2003, Melbourne, Australia, 2003.

11. Winfree, E., Yang, X. & Seeman, N. C., Universal computation via self-assembly of
DNA: Some theory and experiments. Proc. 2nd DIMACS Meeting on DNA-Based Com-
puters, June 20–12, 1996.

12. Fennimore, A., Yuzvinsky, T., Wei-Qiang Han, Fuhrer M., Cumings, J., & Zettl, A., Rota-
tional actuators based on carbon nanotubes, Nature, Vol. 424, 24 July, 2003, pp 408-410.

Analysis of a Stochastic Model of Adaptive
Task Allocation in Robots

Aram Galstyan and Kristina Lerman

Information Sciences Institute,
University of Southern California,

Marina del Rey, California
{galstyan, lerman}@isi.edu

Abstract. Adaptation is an essential requirement for self–organizing
multi–agent systems functioning in unknown dynamic environments.
Adaptation allows agents to change their actions in response to envi-
ronmental changes or actions of other agents in order to improve overall
system performance, and remain robust even while a sizeable fraction
of agents fails. In this paper we present and study a simple model of
adaptation for task allocation problem in a multi–robot system. In our
model robots have to choose between two types of task, and the goal
is to achieve desired task division without any explicit communication
between robots. Robots estimate the state of the environment from re-
peated local observations and decide what task to choose based on these
observations. We model robots and observations as stochastic processes
and study the dynamics of individual robots and the collective behavior.
We validate our analysis with numerical simulations.

1 Introduction

Adaptation is an essential requirement for multi–agent systems functioning in
dynamic environments that cannot be fully known or characterized in advance.
Adaptation allows agents, whether they are robots, modules in an embedded
system or software components, to change their behavior in response to environ-
mental changes and actions of other agents in order to improve overall system
performance. Additionally, adaptation allows swarms, artificial systems com-
posed of large numbers of agents, to remain robust in face of failure even by
a sizeable fraction of agents. If each agent had instantaneous global knowledge
of the environment and the state of other agents, it could dynamically adapt
to any changes in the environment or behavior of other agents. In most situa-
tions, however, such global knowledge is impractical or infeasible to obtain so
one needs to devise different adaptation mechanisms based on partial, possibly
noisy information about the state of the environment and the agents. Also, one
would prefer a mechanism that would require little or no communication and/or
negotiations between the agents.

Analysis is an important part of designing adaptive, self–organizing systems
since it allows to understand global system properties given the behavior of in-

S. Brueckner et al. (Eds.): ESOA 2004, 3464, pp. 167–179, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

168 A. Galstyan and K. Lerman

dividual entities and the rules of interactions between them. There are generally
two options for the analysis of swarm behavior: experiment and simulation. Ex-
periments with real agents, e.g., robots, allow the researcher to observe swarms
under real conditions; however, experiments are very costly and time consuming.
Simulations, such as sensor based simulations for robots, attempt to realistically
model the environment, the robots’ imperfect sensing of and interactions with
it. Though simulations are much faster and less costly than experiments, they
suffer from many of the same limitations, namely, they are still time consuming
to implement, and systematically exploring the parameter space is often te-
dious. Mathematical analysis is an alternative to the time consuming and often
costly experiments and simulations. Using mathematical analysis we can study
dynamics of multi–robot systems, predict long term behavior of even very large
systems, gain insight into system design, for instance what parameters determine
group behavior and how individual robot characteristics affect the swarm. Addi-
tionally, mathematical analysis can be used to choose parameters that optimize
the swarm’s performance, prevent instabilities and so on. Note, however, that
the mathematical analysis usually applies to strongly simplified systems, and it
should be validated by comparing its results with the results of more realistic
simulations (such as sensor based) and/or actual experiments with robots.

In this paper we present and analyze a simple stochastic model for adaptive
task allocation in a team of robots, where robots have to forage for two distinct
types of pucks, Red and Green scattered around the arena [5]. Each robot is
able to collect pucks of a specific type, say Red: when a robot’s foraging state is
set to Red, it is searching for and collecting Red pucks. The goal of adaptive task
allocation mechanism is to achieve a distribution of robots between two states
that, over time, correctly reflect the pucks’ prevalence. The robots have no global
information about the the number of pucks of either color, or the states other
robots. Instead, the robots make repeated local observations of the environment,
store them in the memory, and use them to decide between two states. We
analyze our model thoroughly using stochastic Master equation that describes
the evolution of macroscopic dynamics, and compare it to the the results of
discrete time simulations. We demonstrate that our analytical approach fully
reproduces the results of the numerical simulations, suggesting that it might be
used as an efficient tool for analyzing the global behavior in various behavior–
based large–scale multi–robot systems.

2 Related Work

Mathematical analysis of the behavior of robots is a relatively new field with
approaches and methodologies borrowed from other fields, such as mathematics,
physics and biology. In recent years, a number of studies appeared that at-
tempted to mathematically model and analyze collective behavior of distributed
robot systems. These include analysis of the effect of collaboration in forag-
ing [16, 17] and stick-pulling [9, 12] experiments, the effect of interference in
robot foraging [7], and robot aggregation task [1, 6]. So far this type of analysis

Analysis of a Stochastic Model of Adaptive Task Allocation in Robots 169

has been limited to simple reactive or behavior-based robots in which perception
and action are tightly coupled. Such robots take input from sensors or behaviors
and send output to actuators or other behaviors.1 They make no use of memory
or historic state information.

The role of learning in improving the performance of a multi-robot system
has been addressed by several researchers. The RoboCup robot soccer domain
provided a fruitful framework for introducing learning in the context of multi-
agent and multi-robot systems. Several authors examined the use of reinforce-
ment learning to learn basic soccer skills, coordination techniques [14] and game
strategies [15]. Matarić [13] reviews research on learning in behavior-based robot
systems, including learning behavior policies, models of the environment and be-
havior history. Goldberg and Matarić [2] present a framework for learning models
of interaction dynamics in multi-robot systems. These models are learned on-
line and used by robots to detect anomalies in system performance as well as
to recover from these anomalies. Their work shares common foundation with
ours: Markov processes as a model of interactions between robots . However,
adaptation occurs as a result of the changing representation — the model of the
interactions created and updated by robots — not as a result of changes in robot
behaviors. Li et al. [10] introduced learning into collaborative stick pulling robots
and showed in simulation that learning does improve system performance by al-
lowing robots to specialize. No analysis of the collective behavior or performance
of the system have been attempted in any of these studies.

Huberman and Hogg [3] studied collective behavior of a system of adaptive
agents using game dynamics as a mechanism for adaptation. In game dynamical
systems, winning strategies are rewarded, and agents use the best performing
strategies to decide their next move. They constructed a mathematical model of
the dynamics of such systems and studied them under variety of conditions, in-
cluding imperfect knowledge and delayed information. Although the mechanism
for adaptation is different, their approach, which they termed “computational
ecology” is similar in spirit to ours, as it is based on the foundations of stochastic
processes and models of average behavior.

3 Dynamic Task Allocation in Robots

Chris Jones and Maja Matarić presented an embodied simulation study of adap-
tive task allocation in a distributed robot system [5]. In their study, two distinct
types of pucks, Red and Green, were scattered around the arena. Each robot
could be tasked to collect pucks of a specific type, say Red. When a robot’s
foraging state is set to Red, it is searching for and collecting Red pucks. The
robot can also recognize the foraging state of robots it sees. The robots have
no a priori information about the shape of the arena, the number of pucks left
in it or the number of foraging robots. The goal of adaptive task allocation is
to design a robot controller that will allow robots to dynamically adjust their

1 Robots that use timers to trigger actions can also be studied using this approach.

170 A. Galstyan and K. Lerman

foraging type, so that the number of robots searching for Red and Green pucks
will, over time, correctly reflect the pucks’ prevalence.

The memory-based mechanism for adaptive behavior suggested by Jones and
Matarić is consistent with the biologically-inspired control paradigm that has
become popular in the field of distributed robotics. In such systems, the goal is
to design local interactions among robots or between robots and the environment
that will lead to desired collective behavior arises. The mechanism works as
follows: As it wanders around the arena, robot counts the number of pucks of
each type in the environment as well as the number of robots in each foraging
state visible to it and adds these counts to memory. Since memory has a finite
size new observations replace the oldest ones. Periodically, the robot uses values
in memory to estimate the density of pucks and robots of each type, and changes
its foraging state according to a certain transition function. The general idea is
that a robot should switch its state to Red if there are fewer than necessary
robots in the Red state and vice versa for Green.

In this paper we propose and study a slightly simplified model for task allo-
cation, where the robots determine whether to make a transition to a new state
based on the number of pucks of either types they encountered. Specifically, let
mr and mg be the number of red and green pucks respectively that a robot has
encountered in some time interval, so that the estimated fraction of red pucks
is μr = mr/(mr + mg). Then, the robot will choose the red and green states
with probability μr and 1 − μr respectively. Clearly, if the robots have global
knowledge about the number of red and green pucks then this simple algorithm
will achieve the desired distribution of the robots between the states. Hence, it is
interesting to see how the incomplete knowledge about the environment affects
this distribution, and in the case of dynamic environment (e.g., changing ratio of
red and green pucks) what is its effect on the adaptive properties of the system.

4 Modelling Robots Observations

As we explained above, the transition rates between the states depend on robots’
observations, or history. In our model, this history comprises of the number of
red and green pucks a robot has encountered during a time interval τ . Let us
assume that the process of encountering a puck is a Poisson process with rate
λ = αM0 where α is a constant characterizing the physical parameters of the
robot such as its speed, view angles, etc., and M0 is the number of pucks in
the arena. This simplification is based on the idea that robot’s interactions with
other robots and the environment is independent of the robot’s actual trajectory,
but are governed by probabilities determined by simple geometric considerations.
This simplification has been shown to produce remarkably good agreements with
experiments [11, 4].

Let Mr and Mg be the number of red and green pucks respectively, that
generally can be time dependent, Mr(t) + Mg(t) = M0. The probability that in
the time interval [t − τ, t] the robot has encountered exactly mr and mg pucks
is the product of two Poisson distributions:

Analysis of a Stochastic Model of Adaptive Task Allocation in Robots 171

P (mr, mg) =
λmr

r λmg

g

mr!mg!
e−λr−λg (1)

where λi = α
∫ t

t−τ
dt′Mi(t′) , i = r, g, are the means the of respective distribu-

tions. In the case when the puck distribution does not change in time one has
λi = αMiτ , i = r, g.

5 Individual Dynamics

During a sufficiently short time interval, each robot can be considered to be-
long to a Green or Red foraging state. This is a very high level, coarse-grained
description. In reality, each state is composed of several robot actions and be-
haviors, such as wandering the arena, detecting pucks, avoiding obstacles, etc.
However, since we want the model to capture how the fraction of robots in each
foraging state evolves in time, it is a sufficient level of abstraction to consider
only these states. If we find that additional levels of detail are required to explain
robot behaviors, we can elaborate the model by breaking each of the high level
states into its underlying components.

Let us consider a single robot that forages for red and green pucks in a closed
area and switches its state to red and green according to its observations. As a
designer, we would like to define transition rules so that the fraction of time the
robot spends in the red (green) foraging state be equal to the fraction of red
(green) pucks. Let pr(t) be the probability that the robot is in the Red state.
The equation governing its evolution reads

dpr

dt
= ε(1 − pr)fg→r − εprfr→g (2)

where ε is the rate at which the robot has to make a decision whether to switch it
state, and fg→r and fr→g are the corresponding transitions probabilities between
the states. As we explained above, these probabilities depend on the robot’s
history, e.g., the number of either types of pucks it has encountered during
the time interval τ preceding the transition. Specifically, let mr and mg be the
number of red and green pucks respectively that a robot has encountered in that
time interval. Then we define transition rates as follows:

fg→r =
mr

mr + mg
≡ γ(mr, mg), fr→g = 1 − γ(mr, mg) (3)

Eq.2 is a stochastic differential equation since the coefficients (transition rates)
depend on random variables mr and mg. Moreover, since the robot’s history
changes gradually, then the values of the coefficients at different times are cor-
related, hence making the exact treatment very difficult. Here we propose to
study the it within the annealed approximation. Namely, we neglect the time–
correlation between robot’s histories at different times, assuming instead that at
any time the real history {mr, mg} can be replaced by a random one drawn from

172 A. Galstyan and K. Lerman

the Poisson distribution Eq. 1. Then, we can average Eq.2 over the histories to
obtain

dpr

dt
= εγ(1 − pr) − ε(1 − γ)pr (4)

where γ is the history–averaged transition rate

γ =
∞∑

mr=0

∞∑
mg=0

P (mr, mg)
mr

mr + mg
(5)

and P (mr, mg) is the Poisson distribution Eq. 1. Note that if the pucks distribu-
tion changes in time then γ is time–dependent, γ = γ(t). The solution of Eq. 4
subject to the initial condition pr(t = 0) = p0 is readily obtained:

pr(t) = p0e
−εt + ε

∫ t

0
dt′γ̄(t − t′)e−εt′

(6)

To calculate γ(t) we define an auxiliary function

F (x) =
∞∑

mr=0

∞∑
mg=0

xmr+mg
λmr

r λ
mg
g

mr!mg!
e−λre−λg

mr

mr + mg
(7)

so that γ = F (x = 1). Differentiating Eq. 7 with respect to x yields

dF

dx
=

∞∑
mr=1

∞∑
mg=0

xmr+mg−1 λmr
r λ

mg
g

mr!mg!
e−λre−λgmr (8)

Note that the summation over mr starts from mr = 1. Clearly, the sums over mr

and mg are de–coupled thanks to the cancellation of the denominator (mr +mg):

dF

dx
=

(
e−λr

∞∑
mr=1

xmr−1 λmr
r

mr!
mr

)(
e−λg

∞∑
mg=0

(xλg)mg

mg!

)
(9)

The resulting sums are evaluated easily (as the Taylor expansion of correspond-
ing exponential functions), and the results is

dF

dx
= λre

−λ0(1−x) (10)

where λ0 = λr + λg. After elementary integration of Eq. 10 (subject to the
condition F (0) = 1/2), and using the expressions for λr, λ0 we obtain

γ(t) =
1
τ

∫ t

t−τ

dt′μr(t′) + e−ατM0

(
1
2

− 1
τ

∫ t

t−τ

dt′μr(t′)
)

(11)

where μr(t) = Mr(t)/M0 is the fraction of red pucks. Eq. 6 and 11 fully determine
the evolution of the dynamics of a single robot. To analyze its properties, let us

Analysis of a Stochastic Model of Adaptive Task Allocation in Robots 173

first consider the case when the puck distribution does not change with time,
μr(t) = μ0. Then the we have

pr(t) = γ + (p0 − γ)e−εt (12)
γ = μ0 + e−ατM0(1/2 − μ0) (13)

Hence, the probability distribution approaches its steady state value ps
r = γ

exponentially. Note that for large enough ατM0 the second term in the expression
for γ can be neglected so that the steady state attains the desired value ps

r ≈ μ0.
For small values of ατM0 (i.e., small density of pucks or short history window),
however, the desired steady state is not reached, and in the limit of very small
ατM0 it attains the value 1/2 regardless of the actual puck distribution (we
elaborate on this more in Section 7).

Now let us consider the case when there is a sudden ”jump” in the puck
distribution at a certain time t0, μr(t) = μ0 + Δμθ(t − t0), where θ(t) is the
step function (without loss of generality we set t0 = 0). Clearly, after some
transient time, the distribution will converge to its new equilibrium value μ0+Δμ
(we assume that ατM0 is sufficiently large so we can neglect the exponential
correction to the steady state value). After some simple algebra, we obtain from
Eq. 6 and 11

pr(t) = μ0 +
Δμ

τ
t − Δμ

ετ
(1 − e−εt), t ≤ τ

pr(t) = μ0 + Δμ − Δμ

ετ
(e−ε(t−τ) − e−εt), t > τ (14)

Eqs. 14 describe how the distribution converges to the new steady state value
after the ”jump”. Clearly, the convergence properties of the solutions depend
on τ and ε. It is easy to see that in the limiting case ετ 1 the new steady
state is nearly attained after time τ , |pr(τ) − (μ0 + Δμ)| ∼ Δμ/(ετ) � 1, so
the convergence time is tconv ∼ τ . In the other limiting case ετ � 1, on the
other hand, the situation is different. Indeed, a simple analysis of Eqs. 14 for
t > τ yields |pr(t)− (μ0 +Δμ)| ∼ Δμe−εt so the convergence is exponential with
characteristic time tconv ∼ 1/ε.

6 Collective Behavior

In this section we consider a collective behavior of a homogenous system con-
sisting of N robots with identical controllers described in the previous section.
Specifically, we are interested in the global system properties, namely, average
number of robots in the given states and the fluctuations around this average.
Note that the average number of robots in the red state is directly related to
Eq. 4. Indeed, since the robots are in either state independent of each other,
then pr(t) is simply fraction of robots in the red state, and consequently Npr(t)
is the average number of robots in that state. Below we consider a more general
problem of finding the probability distribution of having n robots in the red state.

174 A. Galstyan and K. Lerman

Let Pn(t) be the probability density that there are exactly n Red robots at
time t. For a sufficiently short time interval Δt we can write [8]

Pn(t + Δt) =
∑
n′

Wn′n(t; Δt)Pn′(t) −
∑
n′

Wnn′(t; Δt)Pn(t) (15)

where Wij(t; Δt) is the transition probability between the states i and j during
the time interval (t, t + Δt). In our multi robot systems, this transitions cor-
respond to robots changing their state from red to green or vice versa. Since
probability of having more than one robot to have a transition during a time in-
terval Δt is o(Δt), then, in the limit Δt → 0 only transition between neighboring
states are allowed in Eq. 15, n → n ± 1. Hence, we obtain

dPn

dt
= rn+1Pn+1(t) + gn−1Pn−1(t) − (rn + gn)Pn(t). (16)

Here rk is the probability density for having one of the k Red robots to changes
its state to Green, and gk is the probability density for having one of the N − k
Green robots to change their state to Red:

rk = k(1 − γ) , gk = (N − k)γ (17)

with r0 = g−1 = 0, rN+1 = gN = 0. Again, we have averaged the transition
probabilities over the histories.

The steady state solution of Eq. 16 is given by [18]

P s
n =

gn−1gn−2...g1g0

rnrn−1...r2r1
P s

0 (18)

where P s
0 is determined by the normalization:

P s
0 =

[
1 +

N∑
n=1

gn−1gn−2...g1g0

rnrn−1...r2r1

]−1

(19)

Using the expression for γ, we obtain after some algebra

P s
n =

N !
(N − n)!n!

γn(1 − γ)N−n (20)

e.g., the steady state is a binomial distribution with parameter γ. Note again that
this is the direct consequence of the independence of robots’ dynamics. Indeed,
since the robots act independently, then in the steady state each of them has
the same probability of being in either state. Moreover, using this argument it
becomes clear that the time–dependent probability distribution Pn(t) is given
by Eq. 20 with γ replaced by pr(t), Eq. 6.

Analysis of a Stochastic Model of Adaptive Task Allocation in Robots 175

7 Simulations

To test the accuracy of our analytical formulation, we compared it to the results
of discrete time numerical simulations with 100 robots. We model the arena by
an 100 × 100 rectangular grid, Mr (Mg) cells are occupied by red (green) pucks.
Robots move randomly from cell to cell2, and once they are on a cell with either
type of puck, they record it in their register. At each time step, each robot, with
probability ε decides whether it should consider a transition or not, and then
uses the transition rules described above to determine its new state, using the
last τ entries in its registry. In Fig. 1 we plot the average fraction of red robots

0 200 400 600
Time

0.0

0.25

0.5

0.75

1.0

F
ra

ct
io

n
of

re
d

ro
bo

ts

= 0.01

= 0.1

Fig. 1. Fraction of red robots vs time, τ = 50

as a function of time for puck distribution Mr = 500, Mg = 1500, and for total
number of robots N = 100, for different values of ε. We have averaged the plot
over 100 trials. For comparison, we also plot pr(t) as given by Eq.12. One can
see that the analytical curve fits perfectly with the results of the simulations.
The fraction of robots in both cases converges to the same steady state value
p0 = 0.25, and the convergence time depends on ε as indicated by Eq.12.

The quality of task allocation depends not only on the average number of
robots collecting, say, red pucks, but also the fluctuations around this average.
Hence, we studied the steady state probability distribution. Clearly, the strength
of the fluctuations are characterized by the width of this distribution. To obtain
the steady state probability distribution in the simulations, we used the time
series generated by a single run. To avoid the effects of transient dynamics, we
carried out simulations until the steady state was reached, and then constructed

2 Note that in our simulations we do not aim to reproduce realistic robot trajectories.

176 A. Galstyan and K. Lerman

0 10 20 30 40 50 60 70 80 90 100
n

0.0

0.05

0.1

0.15

P
ns

analytical
simulations

0=0.25

0=0.5

0=0.9

Fig. 2. Steady state distribution P s
n for different fractions of red pucks

500 1000 1500 2000

Time
0.0

0.25

0.5

0.75

1.0

Fr
ac

tio
n

of
re

d
ro

bo
ts

= 50

500 1000 1500 2000

Time
0.0

0.25

0.5

0.75

1.0

Fr
ac

tio
n

of
re

d
ro

bo
ts

= 200

Fig. 3. Adaptation to changing puck distribution for different τ (ε = 0.1)

the histogram of Nr(t)–the number of red robots. The results are shown in Fig. 2
for different values of the fraction of red pucks. In each case, the distribution
is peaked around its average value as one should expect. Again, one can see
that there is an excellent agreement between the analytical curve (Eq. 20) and
simulation results.

In Fig. 3 we plot the fraction of Red robots when the puck distribution under-
goes step–like changes, both for simulations (averaged over 100 trials) and ana-
lytical results (Eqs. 14). One can see that the system adapts to the changes, and
after some transient time the distribution of robots between the states reflects
the puck distribution. Note that in this case also the analytical and simulation
curves are virtually undistinguishable.

Analysis of a Stochastic Model of Adaptive Task Allocation in Robots 177

0 250 500 750 1000

Time
0.0

0.25

0.5

0.75

1.0

Fr
ac

tio
n

of
re

d
ro

bo
ts

= 200
= 50
= 5

a)

0 1000 2000 3000

Time
0.0

0.25

0.5

0.75

1.0

Fr
ac

tio
n

of
re

d
ro

bo
ts

b) = 50
= 5

Fig. 4. a)Fraction of red robots vs time for different values of τ b)Fraction of red robots
for modified transition rules. Both plots are the averages over 100 trials

Finally, let us consider the case when ατM0 is sufficiently small so that the
correction to the value of γ can not be neglected. As we mentioned above, in this
case steady state of Eq. 12 does not correspond to the puck distribution, p0

r �= μ0,
and in the limit ατM0 → 0 the steady state converges to 1/2 not depending on
μ0. Note that this happens because for small enough ατM0 the robot’s registry
might not contain any readings at all. Hence, according to our rules,3 each robot
will choose either state with probability close to 1/2. This is illustrated in Fig. 4
(a) where we plot the number of red robots vs time for small overall density of
pucks M0/L2 and different τ . Remarkably, the deviation from the desired steady
state value is again well described by the analytical curve. Note also, that this
undesired behavior can be avoided by modifying the transition rules as follows:
if a robot’s registry does not contain any reading for the last τ time steps, then
the robot stays in its current state instead of choosing states with probability
1/2. This slight modification allows robots to achieve desired task allocation as
shown in Fig. 4 (b).

8 Conclusion

In conclusion, we have presented a simple stochastic model of task allocation
for multi–robot system, and studied it both analytically and in simulations.
Dynamic task allocation model presented here is an adaptive form of foraging
in a multi-robot system, where robots can switch dynamically between Red and
Green foraging states. When a robot is in a Red foraging state, it is searching
for and collecting Red pucks. The goal of dynamic task allocation is for the
distribution of robots in Red and Green foraging states to dynamically adapt to
the distribution of pucks, even when this distribution is not known in advance
or changing in time. In order to accomplish this, robots make local observations
of the foraging states of other robots and colors of pucks, estimate the densities

3 Note that limmr→0 limmg→0
mr

mr+mg
= 1/2.

178 A. Galstyan and K. Lerman

of each based on past observations, and switch foraging state according to some
transition function. Transition function specifies the probability of switching
state based on the observed densities of robots and pucks.

We have studied this model analytically using annealed approximation of
stochastic Master equation, where the robot’s actual histories are replaced by
random one drawn from Poisson distribution. Although it is not clear a priori
that such an approximation is valid, we obtained excellent agreement with the
results of numerical simulations. Note also that the model presented here can
be generalized to the situations when there are more than two states for more
general multi–agent settings.

The work presented in this paper does not address the role noise in observa-
tions caused by faulty robot sensors plays in the behavior of the system. Real
robots making observations have crude video systems and may not be able to dis-
tinguish two objects that are overlapping in their visual field, or even their types
(colors). Nor can robots uniquely identify objects or be able to tell whether the
object they are seeing has been observed before. Such limitations will often lead
robots to overestimate or underestimate environmental states, and will require
further elaboration of the analytical techniques described here. Capturing noisy
observations and studying their effect on the collective behavior of an adaptive
system is the focus of our ongoing research.

Acknowledgment

The research reported here was supported in part by the Defense Advanced
Research Projects Agency (DARPA) under contract number F30602-00-2-0573.
The authors would like to thank Chris Jones for introducing them to his task
allocation system and useful discussions of the system behavior.

References

1. William Agassounon and Alcherio Martinoli. A macroscopic model of an aggrega-
tion experiment using embodied agents in groups of time-varying sizes. In Proc.
of the IEEE Conf. on System, man and Cybernetics SMC-02, October 2002, Ham-
mamet, Tunisia. IEEE Press, 2002.

2. Dani Goldberg and Maja J. Matarić. Coordinating mobile robot group behavior
using a model of interaction dynamics. In Proceedings of the Third International
Conference on Autonomous Agents (Agents’99), pages 100–107, Seattle, WA, USA,
1999. ACM Press.

3. Bernardo A. Huberman and Tad Hogg. The behavior of computational ecologies. In
B. A. Huberman, editor, The Ecology of Computation, pages 77–115, Amsterdam,
1988. Elsevier (North-Holland).

4. A. J. Ijspeert, A. Martinoli, A. Billard, and L. M. Gambardella. Collaboration
through the exploitation of local interactions in autonomous collective robotics:
The stick pulling experiment. Autonomous Robots, 11(2):149–171, 2001.

5. Chris V. Jones and Maja J Matarić. Adaptive task allocation in large-scale multi-
robot systems. In Proceedings of the 2003 (ICRA’03), Las Vegas, NV. IEEE, 2003.

Analysis of a Stochastic Model of Adaptive Task Allocation in Robots 179

6. Sanza Kazadi, A. Abdul-Khaliq, and Ron Goodman. On the convergence of puck
clustering systems. Robotics and Autonomous Systems, 38(2):93–117, 2002.

7. Kristina Lerman and Aram Galstyan. Mathematical model of foraging in a group
of robots: Effect of interference. Autonomous Robots, 13(2):127–141, 2002.

8. Kristina Lerman and Aram Galstyan. Macroscopic Analysis of Adaptive Task
Allocation in Robots. In Proceedings of the International Conference on Intelligent
Robots and Systems (IROS-2003), Las Vegas, NV, Oct 2003.

9. Kristina Lerman, Aram Galstyan, Alcherio Martinoli, and Auke Ijspeert. A macro-
scopic analytical model of collaboration in distributed robotic systems. Artificial
Life Journal, 7(4):375–393, 2001.

10. Ling Li, Alcherio Martinoli., and Yasser Abu-Mostafa. Emergent Specialization in
Swarm Systems, volume 2412 of Lecture Notes in Computer Science, pages 261–
266. Springer Verlag, New York, NY, 2002.

11. A. Martinoli, A. J. Ijspeert, and L. M. Gambardella. A probabilistic model for
understanding and comparing collective aggregation mechanisms. In Dario Flore-
ano, Jean-Daniel Nicoud, and Francesco Mondada, editors, Proceedings of the 5th
European Conference on Advances in Artificial Life (ECAL-99), volume 1674 of
LNAI, pages 575–584, Berlin, September 13–17 1999. Springer.

12. Alcherio Martinoli and Kjerstin Easton. Modeling swarm robotic systems. In
B. Siciliano and P. Dario, editors, Proc. of the Eight Int. Symp. on Experimen-
tal Robotics ISER-02, Sant’Angelo d’Ischia, Italy, Springer Tracts in Advanced
Robotics 5, pages 297–306, New York, NY, July 2003. Springer Verlag.

13. M. J. Matarić. Learning in behavior-based multi-robot systems: Policies, models,
and other agents. Cognitive Systems Research, 2(1):81–93, Apr 2001.

14. Martin Riedmiller and Arthur Merke. Karlsruhe brainstormers - a reinforcement
learning approach to robotic soccer II. In RoboCup-01: Robot Soccer World Cup
V, LNCS. Springer, 2001.

15. Peter Stone and Richard S. Sutton. Scaling reinforcement learning toward
RoboCup soccer. In Proc. 18th International Conf. on Machine Learning, pages
537–544. Morgan Kaufmann, San Francisco, CA, 2001.

16. Ken Sugawara and Masaki Sano. Cooperative acceleration of task performance:
Foraging behavior of interacting multi-robots system. Physica, D100:343–354, 1997.

17. Ken Sugawara, Masaki Sano, Ikuo Yoshihara, and K. Abe. Cooperative behavior
of interacting robots. Artificial Life and Robotics, 2:62–67, 1998.

18. N. G. Van Kampen. Stochastic Processes in Physics and Chemistry. Elsevier
Science, 1992.

S. Brueckner et al. (Eds.): ESOA 2004, 3464, pp. 180 – 194, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Emergent Team Formation:
Applying Division of Labour Principles to Robot Soccer

Tony White and James Helferty

School of Computer Science, Carleton University,
1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada

arpwhite@scs.carleton.ca, stigmergy@hotmail.com

Abstract. Robotic soccer remains an area of active research owing to the diffi-
culties of dynamic team formation and hard real time constraints regarding
planning. Much of the existing research relies upon a central agency for coordi-
nation. Insect societies distribute work and allocate roles without a need for
such a central agency and are robust with respect to changing environments and
available agent resources. This paper explores the use of insect-inspired
division of labour principles to robot soccer, highlighting the flexibility of the
approach and ability to adapt to a wide range of soccer playing strategies.

1 Introduction

Insect societies are remarkable for their properties of self-organization. Work is as-
signed and roles allocated without a central coordinating agency. Insect societies
naturally form teams; with individual agents being able to specialize in a particular
role but being capable of role switching if environmental change demands it. For ex-
ample, Polistes wasps consist of a single morphological caste, thereby providing no
obvious physical reason for one wasp adopting a particular role or taking on a given
task when compared to another. In social insects, the work of the colony is divided up
into tasks. These tasks are then divided up amongst the individual insects in the col-
ony. How they are divided up is a matter of considerable interest to agent researchers.

In nature, there are three main drivers in the way tasks can be divided up in a
colony [1]:

1. Temporal polyethism – Individuals born in the colony around the same time

period tend to perform similar tasks. It is not known if absolute aging is a factor,
however, the social and external environment appear to influence behavioural
development.

2. Worker polyethism – Individuals in different worker castes have different mor-
phologies. The tendency is for workers within the same caste to tend towards
similar types of tasks. Workers in different morphological castes tend to do
different types of tasks.

3. Individual variability – Within a given caste, the individuals can develop hetero-
geneous behaviours, with some individuals tending more to working on one type
of task than another. This is also referred to as a behavioural caste.

LNAI

 Emergent Team Formation: Applying Division of Labour Principles to Robot Soccer 181

There is a certain level of plasticity in the examples of division of labour that occur
in nature. Insect colonies have to be able to deal with factors such as perturbations in
food availability, weather conditions, war, disease, etc. In nature, if a particular caste
is wiped out, or its numbers reduced, the other castes will adapt their behaviour to
take on the tasks previously performed by the other members. This is considered to
be part of the division of labour problem.

Division of labour is a problem that presents itself naturally in the game of soccer.
How many midfield and attacking players should I have on the team? Should my de-
fenders ever adopt an attacking stance? Roles are usually allocated prior to the game
and strategy is determined based upon an analysis of the opposition. Role reassign-
ment occurs during breaks in the game, such as half time and stoppages in play. Role
reassignment occurs through the substitution of players or movement of one player
from one position to another. As such it is planned and does not occur in real time.

This observation motivates the contributions of this paper. Our desire is to make
team formation a fluid and dynamic process. The team should have a set of possible
roles for its players but should adopt as many attackers, midfield and defensive players
as need be to best meet the strategic and tactics of the opposition. Further, should a team
member get injured or tire, the team should compensate accordingly –all this without
coordination by a central agency. It is our hypothesis that it should be possible to start
with player roles unassigned and have them emerge during the game. Naturally, this is
an ambitious goal and this paper represents first steps towards this goal.

In order to make significant progress, we have chosen to conduct our research in
the simulation domain. We have chosen to use the TeamBots environment, which
supports several different teams (with fixed roles), is written in Java and for which the
source code was readily available.

The remainder of this paper consists of 4 sections. The next section briefly reviews
the TeamBots environment and the teams provided. Following this, the division of la-
bour and task allocation algorithms on which the research is based are described. Ob-
servations on the use of these algorithms in the TeamBots simulator follow. The paper
ends with conclusions and proposals for future work.

2 TeamBots

TeamBots was designed and developed by Tucker Balch at Carnegie Mellon Univer-
sity, as a development and testing environment for studying collaborative robot be-
haviour. Originally titled JavaBots, due to its being written entirely in Java, the simu-
lator is designed to provide a rapid prototyping environment for multi-robot logic
development [2].

The language Java was chosen for three main reasons; portability, productivity,
and modularity. Java interpreters are available on many operating systems, including
those employed on the testing robots themselves, making it highly portable. Likewise,
the researchers observed that they produced working code much more quickly in Java
than they did C or C++, increasing their productivity. Lastly, the highly OO-nature of
Java allows them the modularity they desired to be able to reuse the different logic
and sensor modules they had developed in each of their own projects [2].

TeamBots is not the only soccer simulation environment available for use. The of-
ficial RoboCup Soccer Simulator (RCSS) is, in fact, the more popular and well

182 T. White and J. Helferty

known, owing to its use in the yearly RoboCup tournaments [3]. However, RCSS
teams tend to be written in C/C++ and targeted at Linux [4]. Since TeamBots was
written entirely in Java, and the primary system for development was a Windows ma-
chine, TeamBots proved itself to be the more appealing choice.

TBSim is the title given to the TeamBots simulator. TBSim was designed such
that it would simulate the operations of a variable number of robots on a field of arbi-
trary size. Obstacles and spherical objects are also simulated in 2D. A wall, for
instance, is simulated as a line through which no robot may pass; a ball as an object
capable of being kicked and pushed around, slowed by a constant decrease in velocity
as it travels across the simulated ground.

The configuration of these objects is referred to as a Domain, which is read from a
text file at the beginning of a run. Specified in this text file is a list of every object
and obstacle in the Domain, along with their start positions and any other operating
parameters necessary for initialization. Once a Domain is loaded into TBSim, a vis-
ual representation of the field appears, and simulation begins.

Due to the presence of Java interpreters as operating environments on actual ro-
bots, porting the logic of a TeamBots robot to hardware is, in theory, no more com-
plex than the simple act of copying the file onto the robot. The interfaces provided
for the robot logic in the simulator, TBSim, are identical to those offered in hardware,
TBHard. There are no modifications that need to be made to the team’s logic code
whatsoever.

The interface provided by TeamBots from logic to hardware is completely abstract,
and, as such, standardized across all supported robot kits; adding basic support for
simulation of a new robot is as simple as adding logic to four function calls; getHead-
ing, getPosition, setSpeed, and setSteer. Additional functionality beyond the basics is
provided in the implementation of abstract Sensor and Actuator interfaces [2].

TeamBots supports the Probotics Cye as part of Carnegie Mellon’s Minnow
project [5].

3 Task Allocation and Specialization Algorithms

The algorithm Bonabeau [1] suggests a model of task specialization based upon a
model insect division of labour; it is designed to model behavioural castes described
in the introductory section. From an initially homogenous set of individuals, the
result of the algorithm is to end up with a heterogeneous set of individuals, each
member of which is specialized to a specific task.

In order to model this problem, each individual has a certain threshold for working
on a task, as well as a stimulus for doing that task. The threshold lowers when they
engage in that task (or learn it) and rises when they’re not doing that task (forgetting
it). Depending on the threshold value, the individual can have a greater or lessened
probability of responding to the exact same level of stimulus.

The idea behind the algorithm is that individuals with more experience, and which
are thus better equipped to handle a specific task, are more inclined to partake of that
task than individuals who have less experience with that task.

 Emergent Team Formation: Applying Division of Labour Principles to Robot Soccer 183

The probability of an individual i undertaking a task j is expressed as:

2
,

2
,

2
,

2
,

,)(
jijiji

ji
jji ds

s
sT

βαθθ ++
=

Where ji,θ is the self-reinforcing threshold for individual i, task j, and jid , is the dis-

tance from individual i to where task j is performed. α and β are tuning coeffi-

cients, which we set to 1. (We are already normalizing, and thus weighting, ji,θ and

jid , .) Whenever individual i is performing task j, the self-reinforcing equation is:

tjiji Δ−← ξθθ ,,

Whenever individual i is not performing task j, the self-reinforcing equation is:
tjiji Δ+← ϕθθ ,,

The value of ji,θ is restricted to between 0 and a maximum value. (We use 1)

For our implementation, we use values of 00003.0=ξ and 00002.0=ϕ .

As the individual performs one task more than others, this causes the threshold for
that task to drop, while the thresholds for other tasks increase. Since the probability
function is based on the threshold, a lower threshold means a greater tendency to per-
form that task, reinforcing the selection of that task, thereby reinforcing the behaviour.

The use of a distance in the equation allows for us to give a higher probability to
those individuals that are closer to the task performance location.

3.1 Implementation

The implementation consists of three main classes. The Specialization class provides
an interface to the implementation, while the SpecializationConfig class provides
instant access to configuration information. Internal to the implementation is
the Task class, which represents a task within the context of the Specialization
algorithm.

TeamBots allows one to specify a minimum frequency with which a robot will be
given new information, and allowed to make decision changes in. By default, the
simulator guarantees one of these cycles every 1/10th of a simulated second. Team-
Bots refers to these occurrences as “TakeStep” intervals.

Each time the robot is instructed to take a step, we must update the Specialization
algorithm as to what is going on. For the algorithm to work, we must keep it
appraised of the current level of all stimuli.

In general, we calculate these values as follows:

We restrict the values of the constant weight coefficients, kw , such that

1=∑
k

kw

[]∑ ⋅=
k

kkj sws

184 T. White and J. Helferty

3.2 Basis Team for Specialization Algorithm

The team that the specialization algorithm was integrated into was called FemmeBot-
sHeteroG, and was originally written by M. Bernardine Dias of Carnegie Mellon
University. This team was selected for its simplicity; the team has one “center,” two
“attackers,” a “defender” and a “goalkeeper.” While our algorithm retained the behav-
iours (roles) associated with the team, no one player was allocated to a given role.

The “center” hangs around the centre of the field, waiting until the ball comes
within its sphere of influence. Then it heads straight for the ball. Once it is the
closest one to the ball, the centre tries to get it as close as it can to the opponent’s net,
and potentially score. If it is no longer the closest one on its team to the ball, it
returns to its wait position in the centre of the field.

The “attacker” waits around centre while the ball is in its own end, and attempts to
score while the ball is in its opponent’s end. There are two attackers, the north and
the south. The only difference between the two is where on the field they wait, the
north attacker stays just north of centre, while the south stays just south of centre.
When attempting to score, the two work together to get the ball into the opponent’s
net. If they are unable to get it in by kicking, they work together, and use their brute
strength to push any defender out of the way as they take the ball to the goal.

The “defender” waits near the goalkeeper for an opponent to enter the two-thirds of
the field closest to its team’s net. The defender then rushes to get into position be-
tween the ball and its net. If the defender is the closest one to the ball, and it has a
clear shot, it kicks the ball towards the opponent’s goal. If the ball travels into one of
the close corners, it is the defender’s job to brace against the goalkeeper so the ball
can’t be pushed into the net.

The “goalkeeper” waits at the net for the ball, tracking its movements back and
forth (north and south) across the field, as far as the net goes. As the ball draws closer
to the net, the goalkeeper continues to track the ball, attempting to punt it away from
the net as it comes within range. Should the goalkeeper find itself out of the net,
perhaps as a result of being pushed by an opposing player, it attempts to return to
position as quickly as possible.

Since a goalkeeper is deemed necessary regardless of perceived demand, much like
an insect queen to a nest, the goalkeeper is considered independently of the speciali-
zation algorithm.

3.3 Team Formation by Stimulus Calculations

Many previous approaches to team formation have involved a central agency for co-
ordination or high level inter-agent dialogues [6, 7]. The stimulus equations given be-
low require neither inter-agent communication nor a central coordinating agency. The
equations are not strictly correct; we must ensure that the values of the stimuli stay
within bounds at all times (0 to 1). Hence, before being subtracted from 1 and multi-

plied by their scaling factor ks , each equation is corrected to maintain bounds; if it is

less than 0, ks is set to 0. If the equation’s result is greater than 1, ks is set to 1.

 Emergent Team Formation: Applying Division of Labour Principles to Robot Soccer 185

The stimulus values used in the implementation are as follows:

[]

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅

−⋅
⋅+⎥

⎦

⎤
⎢
⎣

⎡
⋅

−⋅=
∑

5.0_

5.0

5.0
5.0_

15.0

DIAGF

centervDIAGF

DIAGF

centertoballv
s

teammates

l
l

center

5.0_

__

⋅
=

DIAGF

centertov
dcenter

v_ball_to_center is a vector from the ball to the centre of the field. F_DIAG is a con-
stant specifying the diagonal distance from one corner of the field to the other.
v_centert is a vector from team mate t to the centre of the field.

5.0_

2

⋅
−=

DIAGF

goaltoballv
sattack

DIAGF

metoballv
dattack _

=

v_ball_to_goal is a vector from the ball to the opponent’s goal. v_ball_to_me is a
vector from the ball to the robot. This stimulus equation turns 1 whenever the ball
crosses the line into the opponent’s territory, and gradually fades linearly to 0 as the
ball travels closer to the home goal.

Since the north and south attackers are essentially the same, we treat them as one
role. When assigning a robot to this role, we randomly switch between which to as-
sign them to. This has the side effect of causing attackers to never truly settle into a
position at the centre of the field, instead preferring to jump back and forth from the
north rest position to the south.

[]

[]
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
⋅+⎥

⎦

⎤
⎢
⎣

⎡
−⋅=

∑

∑
teammates

l
l

opponents

l
l

defender

netvDIAGF

netvDIAGF

DIAGF

goalourtoballv
s

__

__

5.0
_

15.0

DIAGF

zonedefv
ddefender _

__
=

v_ball_to_our_goal is a vector from the ball to the team’s home goal. v_def_zone is a
vector from the robot to the position where the defenders play. (In this case, the net.)
v_netl is a vector from robot l to the team’s home goal.

The summations of the opponents and teammates are subtracted from each other
to obtain a value that corresponds to the balance of defenders to the number of our
opposition’s attackers in the defensive zone. If there are more opponents in our

186 T. White and J. Helferty

end than there are teammates, this should spur the creation of more defenders to
compensate.

3.4 Task Decisions

For each step, the stimulus is updated, and the specialization routine is checked to de-
termine which role the player should be engaging in.

First, the routine checks if it is already engaged in a task. If it is, the routine
checks to see if it has exceeded the minimum interval, 1/p, before dropping a task. If
it has, the task is dropped. We use a value of p=0.005, thus making the minimum
interval 2000ms.

Next, the routine checks again to see if it is engaged in a task. If it isn’t, then the
routine goes through the process of selecting a new task. The process of determining
a new task is equivalent to taking the probabilities of all of the possible tasks, and
putting them on a number line. Then a random number r is rolled, and wherever that
number falls on the number line is what the new task will be.

This is implemented as follows:

[]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⋅= ∑ idle

TTrt
j

ij θθ

where t is the target value we’ll be looking for, and

idle
Tθ is the idle probability con-

stant. Our implementation uses a value of 0. We then loop through the tasks, adding
up their probabilities, until we reach the task where the value of the thus-summed
probabilities exceeds t. This is the task we select.

If we exceed the list of probabilities, then the target task is obviously the idle task.
In this eventuality, we select no role for the individual i.

We repeat this process for as long as the robot is functioning.

4 Observations

4.1 The Opponents

All robot teams were tested using the simulator from the TeamBots 2.0e package.
The description file used by the simulator was the exact same as the one supplied,
excepting the portion pertaining to the class files of the robots to be used. SpFemme-
BotsHeteroG (our specialization implementation of the FemmeBotsHeteroG team)
was supplied in place of the name of the default team for the west side. The follow-
ing robot teams were used as opponents on the east side: FemmeBotsHeteroG, Dave-
HeteroG, AIKHomoG, BrianTeam, CDTeamHetero, SchemaDemo, MattiHetero.

4.2 Interesting Behaviours

While testing against the various control teams, various trends in behaviour were
observed. What follows is a list of these observations, along with examinations of
their potential causes.

 Emergent Team Formation: Applying Division of Labour Principles to Robot Soccer 187

4.2.1 Centers
One of the most effective strategies of the specialization team was made possible
through the exploitation of a deadlock-preventing feature built into the simulator.
Whenever the ball’s position is frozen for several seconds, a timer will run down and
then the ball will be dropped again at the centre of the field. To exploit this behaviour
of the simulator, the author of the original team coded the center so it would hover
around the middle of the field, waiting for these ball drops. Attackers were also coded
to hover in the same area when not in use, so as to be prepared to run in with the ball
after a drop.

Freezing a ball is a relatively simple task. Since all that is required for the ball to be
considered frozen is for its position to remain constant for a short period of time, there
are two ways in which this can be made to occur; the ball can either be kicked into a
position where it takes too long for a player to get to it before it times out, or the ball
can be trapped between a player and another object on the field.

An effective strategy for defensive robots then, in removing the ball from their zone,
is to either kick the ball into the corner, where it is unrecoverable (either through time
restrictions in a robot travelling to it while it’s at rest, or in its being left flush against
the wall), or to push back with equal force against an oncoming opponent intent on
scoring. If done effectively, the latter will cause the ball to become stuck between the
two robots, and shortly thereafter, dropped in the centre of the field. A center is then
able to quickly gain possession of the ball, and charge towards the opposition’s goal.

In the specialization team, it was important to maintain the effectiveness of this tac-
tic. By including a center-generating weighting value in the specialization equations in
the specialization team, we ensure there remains an impetus on the team to leave at least
one robot in the center role. As a result, it is relatively rare that the centre of the field
not have a robot nearby engaging, or prepared to engage, in center role behaviour.

However, there are still times we can end up with an absence of players near the
center. Fig. 1 shows a game against DaveHeteroG where the centre of the field has
been left unprotected. The center that had been occupying that area had rushed back to
take on a defender role temporarily, leaving no robots available to take ball possession
following the drop. While in Fig. 2, the defender is able to make it to the ball before the
others, and keep it inside the opposition’s zone, we have lost field position as the other
team has the time to get into a better defensive position in the middle of their zone.

Fig. 1. (left) SpFemmeBotsHeteroG (light)
versus DaveHeteroG (dark). No center; a de-
fender comes forward to fill the void

Fig. 2. (right) Having kicked the ball for-
ward towards its teammates, the same ro-
bot turns to resume its duties as defender
near the net

188 T. White and J. Helferty

This occurs because even when the strength of the defender stimulus is low, if the
threshold for a defender is low enough, there is still the random possibility that our
robot will assume the role, regardless of demand. The defender stimulus drops when-
ever performing defender behaviour, which is sparked by insurgences by the other
team into our zone. Hence, the probability of centers spontaneously becoming
defenders is proportional to the probability of the opposing team having been deep in
our zone sometime recently.

As we can see from the threshold graphs (Fig. 3-6), we ended up with no dedicated
centers this game. However, from the various dips from all players, we can see that
performance of this task was split relatively evenly amongst all involved. The excep-
tion is player two, which was close to becoming a dedicated center at one point. This
coincides with a strong offensive by our team; even though player two was an at-
tacker, it was the closest one to the centre of the field, and so it took on the role of
center. The following return to previous levels was sparked by the center receiving
possession of the ball, and bringing it into the opposition’s zone. The attacker stimu-
lus then overrode the center stimulus, and player 2 returned to being an attacker.

Figs. 3-6. (top left) Thresholds – Player 1. Primarily a defender; the downward spikes at the
end for center indicate performance of the center behaviour, when the defender rushed forward
to kick the ball to its teammates– (top right) Thresholds – Player 2. Primarily an attacker– (bot-
tom left) Thresholds – Player 3. Primarily an attacker– (bottom right) Thresholds – Player 4.
Primarily an attacker

Curiously, the degree of specialization towards being a center in this case is indica-

tive of the all of the experiments run. Center specialization with this set of stimulus
equations is exceptionally rare. Increasing the stimulus levels for the center relative
to the others will lead to increased specialization as centers, and better odds of collec-
tion after a ball drop. However, the trade off is in effectiveness of defense, and the
commitment of attackers, whose memberships tend to suffer as a result.

 Emergent Team Formation: Applying Division of Labour Principles to Robot Soccer 189

With more centers, the game becomes more back and forth, with an incursion into
one zone, immediately followed by an incursion into the other. Defenders are not nec-
essary with such tactics; for such a team, it becomes a matter of grabbing the ball as
soon as it appears, rushing to get it close to the net, and then either making a lucky shot,
or pushing their goalkeeper sideways until the ball falls into the net. So while a stronger
center specialization does help the team win more games, it is by relying on the
strengths of our team’s goalkeeper, and the lack of exploitation of the same brute-force
scoring techniques by the other team, rather than on the specialization algorithm itself.

The other flaw of having a more powerful center stimulus is due to the overlap in
job description between a center and an attacker. A stronger center stimulus would
have to be accompanied by a tighter description contributing to the stimulus; simply
increasing the stimulus amount can lead to confusion on whether to perform a center
or an attacker role. This confusion can manifest itself in a lack of commitment on the
part of an attacker, who will turn away back towards centre while they are still
relatively close to the ball, and deep and alone in the opposition’s zone.

By having a weaker center stimulus, we are still able to generate a sufficient mini-
mal number of centers because our attackers loiter in the same position. Thus, when
the ball is dropped, they are close enough that the proximity will cause the center
stimulus to override the attacker.

4.2.2 Task Changes
There are five players on each team. On the specialized team, four of these can be-
come specialized in a particular task, of which we have three.

Fig. 7. SpFemmeBotsHeteroG versus SchemaDemo; all of the specialization individuals have
become attackers

In this instance, we have had all four individuals on our team choose the attacker

role at the same time, in response to the ball being in our opposition’s zone. Shortly
thereafter, the ball passes across the line, and moves into our zone, with all four of
their attackers accompanying the ball.

Our attacker role does not specify any sort of defensive behaviour, leaving our
goalkeeper alone to defend against the incursion. Even if several of our specializing
players manage to become defenders, it may already be too late, as it would still take
at least five seconds for the closest one to reach the goal.

Statistically, it is rare that all of our specialization players will choose to be an
attacker when we need defenders. However, there are other more common scenarios
with similar consequences.

190 T. White and J. Helferty

Fig. 8. (left) SpFemmeBotsHeteroG (light)
versus SchemaDemo (dark); two defenders,
two attackers

Fig. 9. (right) SchemaDemo preparing to
score; two defenders, two attackers (two
have swapped roles)

Fig. 8 illustrates a game between our team and SchemaDemo. The SchemaDemo

team has made it into our zone, and the ball is between our goalkeeper and an oppos-
ing player and the net. Of our specialized players, there are currently two defenders,
and two attackers. One defender is over halfway to the goal.

Fig. 9, however, shows what happens shortly thereafter. The closest defender has
changed roles to an attacker, due to its low attacker threshold. At the same time, one
of the attackers has changed roles to defender, due to the low ratio of defenders to
opponents in our zone. While we now still have the same number of attackers and
defenders, we have lost field position in a critical situation. The other team scores
shortly hereafter.

This occurs because all of the players on our team have developed low attacker
thresholds. If we spend a substantial amount of time in the other team’s zone, then
we will tend to have more dedicated attackers than defenders. This will happen be-
cause the stimulus equations are influenced by the amount of time spent performing
the behaviour. Should the opposing team be able to dip in quickly, and score
effectively each time they do, our team will be completely unprepared to defend itself
against these attacks.

In this instance, even though all of the players on the opposing team are deep
within our zone, and are preparing to score, our players still have a higher tendency to
want to assume the attacker role than the defender role, due to their defender thresh-
olds being substantially higher.

In an insect colony, there can be thousands of individuals available to do the work
of the colony, while in a robot soccer team there are only four. Since the proportion
of individuals to tasks to be performed is substantially lower, it stands to reason that
indecisive behaviour such as this could be more apparent a detriment to the efficiency
of this algorithm in a soccer team.

4.2.3 Goalkeeper Interference
An effective, and allowed, tactic in the TeamBots simulator is to prevent the goal-
keeper from doing their job, by restricting their movement in front of the net. There
are several teams included with the simulator that intentionally exploit this tactic.
(e.g. Kezche, JunTeamHeteroG, etc.) Since the basis team was ill equipped to defend
against these tactics, they were dropped from testing.

 Emergent Team Formation: Applying Division of Labour Principles to Robot Soccer 191

In practice, however, a goalkeeper interference tactic may end up being uninten-
tionally leveraged by an aggressive opponent. Fig. 10 demonstrates a scene from a
game between our specialization team and its basis team. In this instance, the goal-
keeper is being prevented from doing its job because a defender is in its way, which is
in turn being blocked by an opposing player. (This can also happen if we have more
than one defender, and they are both fighting for the same position.)

Fig. 10. (left); SpFemmeBotsHeteroG (light)
versus FemmeBotsHeteroG (dark); the goal-
keeper, blocked by defender, blocked by at-
tacker from the other team, as the ball trickles
into our net

Fig. 11. (right); SpFemmeBotsHeteroG (light)
versus MattiHetero (dark); the goalkeeper is
blocked by a defender which has just turned
into an attacker

Unwise specialization decisions in our own team can be just as problematic. Fig.
11 shows a scenario where the opposing team is about to score because our goal-
keeper is being blocked. In this instance, it is the fault of the player in front of the
net, which has just changed to the attacker role. The attacker makes no attempt at
avoiding the ball, or at giving way to the goalkeeper as it turns to pursue its new role
at the centre of the field.

Also visible in Fig. 11 is an effective tactic used by the MattiHetero team (and also
by AIKHomoG) in preventing goalkeeper interference tactics from being used against
its team; the goalkeeper does not remain against the net, but rather stays out from the
net. In this way, if an opposing player attempts to push them out of the way, they will
still have the ability to pull back and around them, and into position.

4.2.4 Defensive Play Against Aggressive Opponents
If the team is performing particularly badly, and the other team is in our zone for a
large part of the game, this can inspire more team members to become defenders.
Fig. 12-15 show the resultant threshold values of play against AIKHomoG. This team
is exceptionally aggressive, and spends most of its time in our zone. Our team at-
tempts to balance against this configuration.

As we can see from the graphs, player four becomes a defender almost immedi-
ately, followed by player one and player two. As the game ends, we can see player
three becoming a defender as well.

The key to this opponent’s success is in the two players it leaves just outside the
corners of our net, whose only purpose is to score. This team is purely an offensive
team, which makes them a difficult competitor for the specialization team. On the
other hand, their defence is relatively weak. The center-heavy configuration men-

192 T. White and J. Helferty

tioned previously put in a better showing against this opponent for just this reason;
when attacked en masse, AIKHomoG’s lone goalkeeper puts up little resistance.

Figs. 12-15. (upper left) Thresholds – Player 1; SpFemmeBotsHeteroG versus AIKHomoG. –
 (upper right) Thresholds – Player 2 – (bottom left) Thresholds – Player 3 – (bottom right)
Thresholds – Player 4

4.2.5 Delay of Game
The ball drop on ball freeze feature of the simulator can further be exploited for delay
of game. Should the ball ever be re-dropped in the middle of three robots ringed
around the centre, the ball is essentially frozen permanently, and whomever was
winning up until that point will win the game.

While no teams were observed to actively exploit this flaw in the simulator, it is
conceivable that a team could be designed -- or possibly evolved through a genetic
algorithm -- to exploit this flaw in the simulator, freezing the ball in the centre of the
field while they are in the lead and ensuring their victory.

Fig. 16. SpFemmeBotsHeteroG (left) versus SchemaDemo (right); the ball is frozen for the rest
of the games, as the two teams refuse to yield, and allow the other team room to knock the ball
from the centre after a ball drop

 Emergent Team Formation: Applying Division of Labour Principles to Robot Soccer 193

5 Conclusions

The implementation presented demonstrates several fundamental strengths and weak-
nesses in applying the specialization division of labour algorithm to a simulated robot
soccer team.

The time spent travelling between roles can be an impediment to the performance
of the team. Since the roles in the basis team perform their behaviours in different
general areas on the field, transit time from one area to another after a role decision
becomes a factor.

This problem can be compounded if we accidentally choose a poor role, which
does happen quite frequently. With this algorithm, position on the field does not mat-
ter to an individual to the same degree as what role the robot was engaged in most re-
cently for the longest period of time. As such, players may miss good opportunities
because they are more inclined to perform the roles they’re more comfortable with.

One possible improvement to fix this problem would be a further refinement of the
stimuli for the various roles on the field. For example, a dampening value might be
subtracted from the defender stimulus when the player is currently in possession of
the ball, and close to the opposition’s goal. The challenge of such a refinement would
be in ensuring a balanced set of dampening values for all roles, so that one role
doesn’t get dampened more harshly or leniently than the rest. We also believe that
adding a velocity term into the stimulus equations will influence performance. An-
other potential improvement would be to learn the stimulus equations using Genetic
Programming.

The basis team tended to be hardwired for its tasks with a specific number of
robots (one) per role in mind. As such, it did not scale well to a varying number of
individuals in the defender position, for instance, where extra defenders tended to get
tangled up in each other.

In this implementation, our tuning coefficients α and β for our probability equa-

tions were simplified to 1. A further refinement of this implementation may be to
experiment with these values, to see what effect modification of them might have on
the ranges at which individuals participate in team behaviour.

Furthermore, a team balancer stimulus might be employed to give the team a more
aggressive or defensive posture. (This global team reinforcement strategy has been sug-
gested and employed before by Balch [8].) If the team is losing, then it may make sense
for the defender’s stimulus to be added to a reinforcement value, which would spur the
creation of defenders even whenever there are no attackers in our half of the field.

Likewise, if the opposition is spending a large portion of time in our half of the
field, then perhaps we aren’t being aggressive enough, and we need more centers to
hold the line when the ball reappears in the middle. In situations like this, an aggres-
sion stimulus could be calculated and added to the regular center stimulus, to react to
a perceived need for more centers.

The key strength of the specialization algorithm is that it is capable of adapting to
changing conditions on the field. If we need more defenders, this algorithm remem-
bers that fact on an individual-by-individual basis. Even if the ball goes into our
opposition’s zone, an individual will remember, for some time after that, to stay back
so as to be prepared. In this respect, the specialization team performed its task as
expected.

194 T. White and J. Helferty

References

1. Bonabeau, E., Dorigo, M., Theraulaz, G. (1999) Swarm Intelligence, Oxford University
Press, pp. 110-143.

2. Balch, T., Ram, A. (1998) Integrating Robotic Technologies with JavaBots, Working Notes
of the AAAI 1998 Spring Symposium, Georgia Institute of Technology.

3. Anon. (2003) The RoboCup Soccer Simulator, http://sserver.sourceforge.net/
4. Cisternino, A., Heintz, F. (2003) The RoboCup Simulator Team Repository,

http://medialab.di.unipi.it/Project/Robocup/pub/
5. Stancliff, S. (2001) The Minnow Project, http://www-2.cs.cmu.edu/~coral/minnow/
6. Nair, R., Tambe, M., and Marsella, S. (2003) Role Allocation and Reallocation in Multi-

agent Systems, In Proceedings of the 2nd International Joint Conference on Autonomous
Agents and Multi-Agent Systems.

7. Pynadath, D.V. and Tambe, M. (2002) The Communicative Multi-Agent Team Decision
Problem: Analyzing Teamwork Theories and Models. Journal Of Artificial Intelligence Re-
search, Volume 16, pp. 389-423.

8. Balch, T. (1997) Learning Roles: Behavioral Diversity in Robot Teams, GIT-CC-97-12,
Georgia Institute of Technology.

S. Brueckner et al. (Eds.): ESOA 2004, 3464, pp. 195 – 209, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Analyzing Stigmergic Learning for Self- rganizing
Mobile Ad-Hoc Networks (MANET’s)

H. Van Dyke Parunak and Sven A. Brueckner

Altarum Institute,
3520 Green Court, Ann Arbor, MI 48105, USA

{sven.brueckner, van.parunak}@altarum.org

Abstract. In recent years, mobile ad-hoc networks (MANET’s) have been de-
ployed in various scenarios, but their scalability is severely restricted by the
human operators’ ability to configure and manage the network in the face of
rapid change of the network structure and demand patterns. In this paper, we
present a self-organizing approach to MANET management based on stigmer-
gic agents and demonstrate how to analyze its performance under different de-
ployment assumptions. Our results emphasize the importance of attention to no-
tions from dynamical systems theory in designing and deploying multi-agent
systems.

1 Introduction

The challenges of managing mobile ad-hoc networks (MANET’s) [1] may overwhelm
traditional network management approaches. Such networks are highly dynamic, se-
verely constrained in their processing and communications resources, distributed and
decentralized. Thus, centralized management approaches requiring accurate and de-
tailed knowledge about the state of the overall system may fail, while decentralized
and distributed strategies become competitive.

We have successfully applied fine-grained agent architecture modeled on algo-
rithms used in biological systems [11] to a range of real-world problems, including
manufacturing control [2], pattern recognition in sensor networks [4], collaboration
and task assignment among multiple mobile platforms [13], path planning for un-
manned vehicles [16], and information retrieval in massive data [17]. This paper ex-
plores the applicability of these mechanisms to another domain, mobile ad-hoc com-
munication networks (MANET’s). Like other domains in which swarming is
effective, MANET’s are distributed, decentralized, and dynamic. Self-organizing sys-
tems of agents with emergent system-level functions offer an approach that is robust,
flexible, adaptive and scalable. By applying our techniques to a new domain, we gain
experience with their capabilities and restrictions, and further exercise the develop-
ment methodology that we are developing for such systems [12, 15].

Section 2 presents a concrete management problem in the MANET domain. Sec-
tion 3 offers a solution based on fine-grained agents dynamically interacting in the
network environment. Section 4 offers experimental evidence for the effectiveness of
our solution. Section 5 concludes.

LNAI

o

196 H. Van Dyke Parunak and S.A. Brueckner

2 The MANET Server
Management Problem

Figure 1 offers an overview of the
MANET domain. Assume a network
of (randomly) moving nodes that
may communicate within a limited
range, and may fail temporarily. A
canonical example of an application
for a MANET is a fleet of vehicles
(say, trucks or dismounted troops in
a military operation, or rovers ex-
ploring a remote planet) equipped
with line-of-sight radios.

We focus our attention on con-
figurations in which nodes may host
distinct client and server processes.
Every node carries a client and some
nodes carry a server process. Exam-
ples of services that might be re-
stricted to some vehicles include

• long-range communications links
back to a remote commander;

• wide-range sensors that can pro-
vide an integrating context for more local sensors carried on most vehicles;

• target recognition databases and data fusion capabilities that can provide interpre-
tive support for platforms with more local access.

A server provides a stateless and instantaneous service to a client upon request if
there exists a communications path between the client and the server and if the server
node is currently active. Servers in our model have no capacity constraints, and may
serve as many clients at the same time as requests arrive.

Because the nodes are mobile, weight and space are constrained, limiting the
power available for communications and processing. Some of the likely services
(long-range communications or sensing) impose especially high power demands on
the servers, making it desirable to operate them only when they are needed to support
the demands from the rest of the fleet. Vehicle movement must satisfy two con-
straints: achieving mission objectives and maintaining communication connectivity.
In the simple example we describe here, all vehicles share both objectives, but tech-
niques that we have demonstrated elsewhere [13] permit vehicles to specialize for dif-
ferent tasks, so that some vehicles would dedicate themselves to serving as communi-
cation relays, reducing the constraints on the other vehicles imposed by the need to
maintain connectivity.

The server management problem requires answering three questions: given the cur-
rent topology of the network determined by node locations, communications ranges
and node availability, decide

Motion Box “up” node“down” node

1 client
0 server 1 client

1 serversub-network

Fig. 1. Domain Overview

 Analyzing Stigmergic Learning for Self- rganizing Mobile Ad-Hoc Networks 197

1. which server nodes should actually
expend battery power to execute
the server process;

2. to which server node a particular
client should send its next service
request; and

3. where to relocate server nodes to
meet the current demand by the cli-
ents.

Thus, the network must be provided
with mechanisms that self-diagnose the
current network state (e.g., breaking of
connections, availability of new connec-
tions, failure of nodes) and provide the
information in a way that enables it to
self-configure the ongoing processes
appropriately. These functions could be
satisfied if all servers executed con-
stantly and if all clients had global
knowledge of the overall system (Figure
2), but such a solution is impractical.

3 Emergent MANET Management

A fine-grained, self-organizing agent system can solve the service location problem
specified in Section 2. Our solution starts with the following initial conditions:

• Server processes shut down immediately if no requests arrive.
• A client does not know about the location of servers in the network, unless the cli-

ent is co-located with a server on the same node.
• Server nodes move randomly (a zeroth order approximation to mission-motivated

movement).

Thus, in terms of our design goals, we preserve maximum battery power, but most
clients’ service needs are not met since they don’t know which server to address.

We now define a co-evolutionary learning process based on individual reinforce-
ment. This learning process has three components.

1. The server population learns to maintain an appropriate number of active server
processes,

2. and to adjust the position of these processes as they learn about the clients who are
using them.

3. The client population learns to direct requests to active servers.

3.1 Server Activation Learning

Any server node is aware of the incoming requests from one or more clients. If the
server process is running, then these requests are served, otherwise they fail, but the

service “need”
not met

service “need” met server
used

active
server

x

x x x
x

x

service “need”
not met

service “need” met server
used

active
server

x

x x x
x

x

Fig. 2. Global Solution

o

198 H. Van Dyke Parunak and S.A. Brueckner

node will immediately start up the server process to be available for any new requests
in the next cycle. While the server process is running, it tracks the number of incom-
ing requests. If there are no requests, it will begin a countdown. It will either abort the
countdown if new requests arrive (and are served), or shut down if it reaches the end
of the countdown.

Initially, the duration of the countdown is zero. Thus, server processes are shut
down as soon as no new requests come in. We define the following simple reinforce-
ment learning process to adjust the duration of the next countdown:

(+) If a request from a client arrives and the server process is down, we increase
the length of the countdown period for subsequent countdowns, since apparently the
server should have been up and we lost performance (failed to serve a request) while
the server was down.

(–) If no request arrives while the countdown proceeds and the server process
reaches the end of the countdown, then we decrease the length of the countdown pe-
riod for subsequent countdowns, since apparently the server could have been down al-
ready and we wasted resources (battery power) while the server was up.

Driven by the demand pattern as it is perceived at the particular server node, the
server process learns to maintain the optimal availability. In effect, the server learns
the mean time between requests and adjusts its countdown length accordingly to stay
up long enough. With this learning mechanism in place, the client population will
now assume the role of the teacher as it generates a demand signal that leads some
servers to stay down (extremely short countdown) while others stay consistently up
(extremely long countdowns).

3.2 Client Preference Learning

Initially, only clients that are co-located with a server on the same node have any in-
formation about possible server addresses. These clients will become the source of
knowledge of the client population as they share this information with their neighbors.

Knowledge Representation— Clients manage their knowledge about and evaluation
of specific servers in a dynamic set of scorecards, one for each server they know. A
scorecard carries the address of the server, a score in favor (pro) and a score against
(con) using this server. The current score of a server is computed as pro - con.

Decision Process —When a client needs to select a server, it normalizes the current
scores of all scorecards so that they add up to one and selects a server with a probability
equal to the normalized score (roulette wheel selection). Thus, servers with a low cur-
rent score compared to others have a lower probability of being chosen by the client. If
the client currently does not have any scorecards, then it can only contact a server if it
co-located with one, otherwise its service need will not be met in this decision cycle.

Information Sharing — If a client selects a server on a node that is currently within
reach, it sends a request to the server and shares the outcome of this interaction with
its direct neighbors. If the request is met, the client increases its own pro score of that
server by one and sends the same suggestion to its direct neighbors. If the request is
not met, the con scores are increased in the same way. These suggestions to the
neighbors may lead to the creation of new score cards at those neighbors if they had
not known about this server before. Thus knowledge about relevant servers spreads

 199

through the network driven by the actual use of these servers. Furthermore, the suc-
cess or failure of the interaction with a server reinforces the preferences of the client
population and thus (with a random component to break symmetries) dynamically fo-
cuses the attention on a few active servers while encouraging de-activation for others
(see “Server Activation Learning”).

Truth Maintenance —The constant change of the network topology, driven by the
node movements and their failures, requires that the client population continuously
update its knowledge about reachable servers and their evaluation. While the score-
sharing mechanism ensures that the performance of a reachable server is continuously
re-evaluated, the clients still need a mechanism to forget references to servers that do
not exist anymore or that are out of reach now. Otherwise, in long-term operation of
the system, the clients would drown in obsolete addresses.

A client “evaporates” its scores (pro and con individually) by multiplying them
with a globally fixed factor between zero and one in each decision cycle. Thus, both
scores approach zero over time if the client or its neighbors do not use the server
anymore. If both scores have fallen below a fixed threshold, then the scorecard is re-
moved from the client’s memory – the client forgets about this server.

A client also chooses to forget about a particular server, if the con score dominates
the pro score by a globally fixed ratio (con / (con + pro) > threshold > 0.5). Thus,
servers that are trained by the client population to be down are eventually removed
from the collective memory and are left untouched. They only return into the memory
of clients if all other servers have also been forgotten and their co-located client is
forced to use them.

3.3 Server Node Location Learning

In a co-evolutionary process, the server and client populations learn which clients
should focus on which servers. We can stabilize this preference pattern and reduce the
need for re-learning by decreasing the likelihood that the connection between a client
and its chosen server is disrupted. Since the risk for a disruption of the path between a
client and a server generally increases with the distance between their nodes, moving
the server node towards its current clients will decrease this risk.

We assume that any client and server processes have means to estimate their re-
spective node’s current spatial location and that the server node may actually control
its movement within certain constraints if it chooses to.

As a client sends a request to a server, it includes its current location in the request
message. The server node computes the vector between the client and the server loca-
tion and adds up all vectors from all requests within a decision cycle. Vectors of re-
quests that failed are negated before they are added to the sum. The resulting com-
bined vector determines the direction of the next move of the server node. If the
requests failed because the server process was down, then the node moves away from
the “center of gravity” of the clients that contacted this server. Otherwise, the node
will move toward these clients. The length of the step for the server node is fixed to a
global constant, characterizing the physical ability of the node to move.

Analyzing Stigmergic Learning for Self- rganizing Mobile Ad-Hoc Networkso

200 H. Van Dyke Parunak and S.A. Brueckner

3.4 Stigmergic Coordination

The coordinated behavior of many simple agents (server, client, node) in the highly
dynamic and disruptive MANET environment emerges from peer-to-peer interactions
in a shared environment driven by simple rules and dynamic local knowledge. The
individual components of the system are not explicitly aware of the overall system
functions of self-diagnosis and self-reconfiguration.

The coordination mechanism detailed in this demonstration is an example of stig-
mergy, in which individual agent activity is influenced by the state of the agent and its
local environment. As agent activity manipulates the environment, subsequent agent
activity dynamics may change (Figure 3). If this flow of information between the
agents through the environment establishes a feedback loop that decreases the entropy
of the options of the individual agents, then coordinated behavior emerges in the
population. We engineer the agent behavior and the indirect information flow, so that
the emergent coordinated behavior meets the design goal.

Three populations of processes (agents) contribute to the emerging system func-
tionality. Because each population operates in the shared network environment, the
other populations influence its dynamics. For instance, the clients coordinate their
server choice through the exchange of scores, but their ability to focus on only a few
servers depends on the server population’s ability to identify the emerging intention
of the clients and to maintain the server processes on the correct nodes. Figure 4 iden-
tifies the main flow of informa-
tion among the three populations
driven by their respective dynam-
ics and linked by the occurrence
of successful or failed utilization
events – requests from clients to
servers.

A common feature of the
server activation learning and cli-
ent preference learning in our
scheme is the combined rein-
forcement and decay of a critical
decision parameter (the count-
down on the server; pro and con
scores on the server scorecards
maintained by clients). Elsewhere [14] we describe this sort of process as “pheromone
learning,” because it combines two of the hallmarks of insect pheromones: periodic
deposits, and constant background evaporation. Pheromone learning can be viewed as
reversing the traditional approach to truth maintenance. Rather than maintaining any
knowledge until it is proven wrong, we begin to remove knowledge as soon as it is no
longer reinforced. This approach is successfully demonstrated in natural agent sys-
tems, such as ant colonies, where information stored in pheromones begins to evapo-
rate as soon as it is laid down.

Population
Dynamics

Local State

Local State

Dynamics

Environment

Agent
Processes

Dynamic
Environment

Agents
Manipulate

Environment

Fig. 3. Stigmergic Coordination (general schema)

 201

4 Performance Analysis

As engineers, we need not only to conceive innovative architectures to address chal-
lenging real-world problems, but also to analyze these architectures to determine their
performance as a function of deployment conditions. Such analysis requires three
elements: a baseline against which to compare the performance of the innovation, a
set of metrics to make this comparison, and experiments to apply the metrics to the
new system.

4.1 Baseline

Baselines for performance evaluation can be of two kinds. Sometimes we have per-
formance data for a conventional system and wish to show how our system compares
with it (a relative evaluation). In other cases we have an upper bound on performance,
a bound that may not be achievable in practice, but that shows how close to the theo-
retically best performance our solution (or any other) comes (an absolute evaluation).

In the case of MANET’s, we can define a global solution that provides the highest
possible request-success rate for the clients. We ignore the desire to preserve battery
power and let all server nodes execute the server process at all times (maximum
server availability). We use global knowledge (requiring very large bandwidth) to de-
termine for a client that wants to send a request, which available server nodes are cur-
rently in range (path exists), and then we select the recipient of the request randomly
from this set.

This solution formally avoids sending requests to servers that are out of reach,
whose node is currently down, or whose server process is currently not executing. But
its resource requirements are too large to meet the severe constraints of the applica-

Observe
Performance

Adjust Preferences
in Neighborhood

Node Locations &
Comms Range

Node
Movement

Availability
State

Transition btw.
States

Length of
Countdown

Utilize
Server

Local Preferences
in Server-Selection

Node
Reachability

Server
Availability

Utilization Success
or Failure Event

Observe Performance &
Resource Usage

Client
Population

Server
Population

Node
Population

Local State

Dynamics

Server
Utilization

Force

Observe
Performance

Adjust Preferences
in Neighborhood

Node Locations &
Comms Range

Node
Movement

Availability
State

Transition btw.
States

Length of
Countdown

Utilize
Server

Local Preferences
in Server-Selection

Node
Reachability

Server
Availability

Utilization Success
or Failure Event

Node
Reachability

Server
Availability

Utilization Success
or Failure Event

Observe Performance &
Resource Usage

Client
Population

Server
Population

Node
Population

Local State

Dynamics

Server
Utilization

Force

Fig. 4. Stigmergic Coordination in MANET’s

Analyzing Stigmergic Learning for Self- rganizing Mobile Ad-Hoc Networkso

202 H. Van Dyke Parunak and S.A. Brueckner

tion domain (ad-hoc mobile wireless network among battery-powered nodes). Also,
from a more programmatic point of view, this solution does not demonstrate emergent
cognition, since the complexity of the individual node (client) is as high as the sys-
tem-level complexity. Nevertheless, this solution provides us with a performance and
resource-usage baseline against which we measure our local approach in the demon-
stration.

4.2 Metrics

We focus our attention on two metrics of a system under a particular set of deploy-
ment constraints: resource gain and performance loss. Both are ratios comparing a key
system-level feature with the baseline.

Resource gain describes the percentage of servers that our mechanism keeps on
standby, that would be running and burning power in the baseline. The total number
of servers is a constant in this scenario, and all of them are running in the baseline. So
resource gain is directly proportional to the total number of servers on standby.

Performance loss measures the failure of service events in our mechanism com-
pared with the baseline. Let

N = total number of service requests
Nb = total number of requests satisfied by the baseline;
Nt = total number of requests satisfied by the test system.
Since the baseline is the best possible in any given circumstance, Nt ≤ Nb ≤ N. Per-

formance loss is defined as (Nb – Nt)/(N - Nb). Unlike resource gain, performance loss
is compared against a changing baseline, since Nb varies with system configuration, so
we also track raw performance of our scheme.

4.3 Comparison with the Global Solution

With a baseline and metrics in hand, we can explore the performance of our system.
The following discussion is meant to be exemplary, not exhaustive. We explore the
variation in metrics as a function of three network characteristics: the degree of con-
nectivity, the dynamics of individual servers, and the overall demand from the clients.
Error bars in the plots are at ± 1 standard deviation, adjusted to avoid unphysical val-
ues (e.g., probabilities outside of [0,1]).

4.3.1 Configuration
Our experiments use a population of 100 nodes, of which 25 can serve as servers.
They are initially distributed randomly in an arena sized 100 x 100, so the average
area per node is 100, with radius ~5.6, and a mean internode separation on the order
of 11. At each time step, several parameters determine the dynamics of the system.

• Range is a measure of the communications range of the nodes, in the same units
that define the dimensions of the virtual world within which the nodes are distrib-
uted. The default setting is 15, which is greater than the mean internode separation
of 11.

• DownProb (pd) is the probability that a node will go out of service due to failure.
The default setting is 0.02.

 203

• UpProb (pu) is the probability
that a failed node will resume op
eration. The default setting is 0.90.

• UtilizationRate is the probability
 that a given node requests service.
 The default setting is 0.50.

• NodeMovementPolicy can be
either directed (in which case
servers and clients implement
the algorithm outlined in Sec-
tion 3.3) or random (in which
case the direction of movement

 is chosen randomly, as a zeroth-
order approximation to mission

 movement).
• ClientStepLength and Server

StepLength define the distance
(in the same units as

Range) that
 a node moves in adjusting its
 location under either movement
 policy. The defaults

are 0.5 and

3.5, respectively.

4.3.2 Impact of Demand
Adaptive schemes such as ours re-
quire a steady stream of information
about the environment, which in our

case is provided by the success or
failure of service requests. When
service requests are at a very low

level, the system cannot adapt ef-
fectively, reflected in the perform-
ance changes. Figure 5 shows the

impact of changing utilization. All

other parameters are fixed at their

default values.

0 0.2 0.4 0.6 0.8
Utilization

0.2

0.3

0.4

0.5

0.6

0.7

ecr
u

ose
ia

G

0 0.2 0.4 0.6 0.8
Utilization

0.7
0.75

0.8
0.85

0.9
0.95

1

ec
na

mr
ofre

P

0 0.2 0.4 0.6 0.8
Utilization

0

0.2

0.4

0.6

0.8

ec
na

mr
ofre

P
ss

o
L

Fig. . Impact of Varying Utilization

0 5 10 15 20 25
Range

0

0.2

0.4

0.6

0.8

1

ec
na

mr
ofre

P

Fig.

5

. Performance as Function of Range in Base-
line (solid) and adaptive algorithm (dashed)

6

The mean value of raw perform-
ance increases with utilization, and
performance loss decreases, but the
error bars show that these changes
are swamped by noise. It is impor-
tant to note that the variance is much
greater for low utilization (10%)
than for the higher levels. At low
utilization, the algorithm does not
get sufficient information to make
useful decisions, but at higher utili-
zation levels, its behavior converges.

-

-

Analyzing Stigmergic Learning for Self- rganizing Mobile Ad-Hoc Networkso

204 H. Van Dyke Parunak and S.A. Brueckner

Resource gain drops with increased utilization. The higher message traffic stimu-
lates servers to remain awake that would otherwise go to sleep, lowering the resource
benefits. The system successfully adapts the number of active servers to changes in
the overall message load.

This experiment is the basis for fixing utilization in subsequent experiments at
50%, a level that provides sufficient information to enable the algorithm to converge,
while still making it worthwhile for servers to sleep.

4.3.3 Impact of Network Connectivity
A critical characteristic of a MANET is the range of the radios that provide the com-
munication links. Figure 6 shows the raw performance of our scheme and of the base-
line, using random node movement. We hold all parameters at their default settings
and vary NodeRadius. As expected, performance increases monotonically with radio
range. Importantly, the performance of our adaptive algorithm is indistinguishable
from the baseline.

We have found that the directed movement of servers toward selected clients is not
effective as currently implemented, as shown in Figure 7. More realistic movement
models, suggested below, might
yield a different outcome. We do
not report further results with di-
rected movement.

While the performance is com-
parable between our mechanism
and the baseline, resource gain is
not (Figure 8; by definition, gain
for the baseline is 0). Clearly, our
mechanism improves resource
utilization significantly without
impacting performance, compared
with a best-case solution that may
not be implementable.

4.3.4 Impact of Network
Dynamics

Figure 9 shows how resource gain,
raw performance, and performance
loss vary as a function of server dy-
namics. Utilization is set at 0.5 and
range at 15. For each metric, the
figure shows four cases.

pd = 0.1, pu = 0.9 —This con-
figuration reflects highly reliable
servers that seldom go down and
are quickly repaired, a “best case”
scenario from the operational point
of view.

0 5 10 15 20 25
Range

0

0.2

0.4

0.6

0.8

1

ecna
mrofreP

Fig. 7. Performance as Function of Range, with
(solid) and without (dashed) Location Learning

0 5 10 15 20 25
Range

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

ecruose
R

nia
G

Fig. 8. Resource Gain as Function of Range

 205

pd = 0.9, pu = 0.1 —This configuration reflects highly unstable servers that take a
long time to repair, a “worst case” scenario.

pd = pu = 0.5 —This configuration reflects symmetric mean-time-to-failure
(MTTF) and mean-time-to-repair (MTTR) with a moderate value.

pd = pu = 0.1 —This configuration reflects symmetric MTTF and MTTR with a
low value.

Consider first performance and per-
formance loss. As might be expected, per-
formance is good in the best case, bad in
the worst case, and intermediate with
symmetric MTTF and MTTR. Interest-
ingly, performance is not significantly dif-
ferent between the two symmetric cases.
The mean values of performance loss fol-
low the same general trend, though wide
variances make the differences less sig-
nificant. Performance loss is least in the
best case, when the system can reliably
learn which servers to employ.

Our algorithm shows resource gain in
all configurations, though with high vari-
ances in both worst and best case
conditions. (It is important to recognize
that wide variances that reach 0 do not
mean that the benefit is not statistically
significant. Resource gain for the base
case is identically zero by definition.
Any resource gain produced by the adap-
tive algorithm is a real benefit, since it
reflects power savings. The high vari-
ance simply means that the variation in
this savings from one cycle to another is
subject to wide swings, but the integral
over these swings, reflecting total power
saved, is unambiguously positive.) The
mean resource gain in these two cases is
almost the same, reflecting the benefits of adaptivity in coping with unstable systems.

In the case of equal and moderate failure and recover probabilities, there is little re-
source gain over the baseline. This configuration changes so frequently that our learning
process does not have time to adapt to the changed environment.

5 Comparison with Previous Research

Our system addresses all three aspects of the server management problem: given the
current topology of the network determined by node locations, communications ranges
and node availability, decide

0.1, 0.9 0.1, 0.1 0.5, 0.5 0.9, 0.1
pd,pu

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

ecruose
R

nia
G

0.1, 0.9 0.1, 0.1 0.5, 0.5 0.9, 0.1
pd,pu

0

0.2

0.4

0.6

0.8

1

ecna
mrofreP

0.1, 0.9 0.1, 0.1 0.5, 0.5 0.9, 0.1
pd,pu

0

0.2

0.4

0.6

0.8

1

ecna
mrofreP

ssoL

Fig. 9. Impact of Server Dynamics

Analyzing Stigmergic Learning for Self- rganizing Mobile Ad-Hoc Networkso

206 H. Van Dyke Parunak and S.A. Brueckner

1. which server nodes should actually expend battery power to execute the server
process;

2. to which server node a particular client should send its next service request; and
3. where to relocate server nodes to meet the current demand by the clients.

MANET’s are an active area of current research, but until recently the focus of the
MANET community has been on issues such as routing [9], access control [6], and
security [19]. These are important issues, but largely orthogonal to the question of
server management.

Recent research considers one aspect of the server management problem in
MANET’s, the second of our three questions (known as the service discovery prob-
lem). Efforts in this area can be divided into two groups.

Our approach is most similar to decentralized techniques such as flooding, swamp-
ing, and name-dropping (usefully reviewed in [7]), which all involve sharing knowl-
edge of accessible services among adjacent nodes. The novelty of our approach lies in
the use and propagation, not only of pointers to servers, but of scorecards to guide in
selecting the server that will be tried on a given attempt. The probabilistic nature of
our selection process adds robustness in the face of dynamic change. Conventional
sharing schemes explore such options as whether to share with all neighbors or only
with a subset at each cycle, and these options are reasonable enhancements to explore
with our mechanisms.

More recent work on service discovery, and that devoted specifically to MANET’s,
uses service brokers to maintain directories of available servers [5, 8, 10, 18]. Highly
dynamic environments (such as those encountered in military applications) can frus-
trate directory-based schemes.

In addition to providing a robust decentralized solution to the widely studied ser-
vice discovery mechanism, our approach offers an integrated solution to the less ex-
plored problems of server activation and location. By addressing all three problems
with a single set of mechanisms, we reduce the complexity of the overall system and
facilitate making necessary trade-offs against different operating options, compared
with approaches that piece together independent solutions to each problem.

6 Discussion and Conclusion

Swarming fine-grained agents offer an effective approach to real-time control of
mobile ad-hoc networks. Our experiments show that we can reduce the resource re-
quirements for servers in a MANET without significantly diminishing the system’s
performance, relative to an optimistic and probably unachievable baseline. Our
experiments suggest two guidelines for when such approaches are applicable.

1. Because we rely on feedback from client attempts to access service as our source
of information about the environment, the system requires a reasonable level of
utilization. It is not appropriate for systems that are rarely utilized, but that must
work appropriately when they are occasionally activated. However, the algorithms
do adapt appropriately over a wide range of utilization levels.

2. Our methods work well when either failure probability or repair probability is low,
since these characteristics lead to fairly stable server populations. When the
probabilities of server failure and server repair are both high, the world changes too

 207

rapidly for our agents’ pheromone learning mechanisms, and system efficiency (as
measured by resource gain) suffers.

The system described here is a highly simplified initial model of the MANET do-
main. We hope to explore several extensions of this domain.

• This model assumes that the movements of all vehicles are equally constrained by
the same movement policy, either random (to simulate mission movement) or di-
rected (to improve communications effectiveness). Using task allocation mecha-
nisms similar to those we explored in [13], it would be interesting to examine fleets
in which different platforms follow different movement policies, enabling some
platforms learn to specialize as communication relays, and leaving other platforms
more latitude for their mission-oriented tasks.

• It will also be important to examine the effect of more realistic models of mission-
related movement, instead of the surrogate of random motion used here. For exam-
ple, we might explore space-filling behavior to model exploratory missions, or di-
vergence and reforming of the fleet as it moves in a general geographical direction.

• The preliminary results reported here do not show any benefit to directed move-
ment of servers with respect to their emerging client populations. This result is
counter-intuitive, and we wish to do further analysis and experimentation to under-
stand whether and under what circumstances servers can improve system perform-
ance by directed movement.

• The breakdown of our system at low utilization levels may be mitigated in part if
we make use of the “heartbeat” signals that communication nodes routinely ex-
change to monitor their connectivity, and we wish to explore ways that these sig-
nals can contribute to the service provider problem.

• Service provision is only one of many functions that a MANET can provide. We
believe our mechanisms hold far more general promise, and look forward to ex-
panding them into a general scheme for MANET management.

Using self-organization and emergence to engineer system-level functionality may
be advantageous in many application domains, but often it is not obvious how to de-
sign the underlying processes to achieve the desired function. We discuss this aspect
of the problem elsewhere [3].

Acknowledgments

This work is supported in part by the DARPA Knowledge-Plane seedling study, con-
tract N00014-03-M-0252 to Altarum, under DARPA PM Christopher Ramming. The
views and conclusions in this document are those of the authors and should not be in-
terpreted as representing the official policies, either expressed or implied, of the De-
fense Advanced Research Projects Agency or the US Government.

References

[1] G. Aggelou. Mobile Ad Hoc Network (MANET) Papers. vol. 2004, pages Web page,
University of Surrey, Guildford, UK, 1999. Available at http://www.ee.surrey.ac.uk/ Per-
sonal/G.Aggelou/MANET_PUBLICATIONS.html.

Analyzing Stigmergic Learning for Self- rganizing Mobile Ad-Hoc Networkso

208 H. Van Dyke Parunak and S.A. Brueckner

[2] S. Brueckner. Return from the Ant: Synthetic Ecosystems for Manufacturing Control.
Dr.rer.nat. Thesis at Humboldt University Berlin, Department of Computer Science,
2000. Available at http://dochost.rz.hu-berlin.de/dissertationen/brueckner-sven-2000-06-
21/PDF/Brueckner.pdf.

[3] S. Brueckner and H. V. D. Parunak. Self-Organizing MANET Management. In Proceed-
ings of Workshop on Engineering Self-Organising Agents (AAMAS 2003), pages (in
press), Springer, 2003.

[4] S. A. Brueckner and H. V. D. Parunak. Swarming Agents for Distributed Pattern Detec-
tion and Classification. In Proceedings of Workshop on Ubiquitous Computing, AAMAS
2002, 2002. Available at http://www.altarum.net/~vparunak/PatternDetection01.pdf.

[5] L. Cheng. Service Advertisement and Discovery in Mobile Ad hoc Networks. In Pro-
ceedings of Workshop on Ad hoc Communications and Collaboration in Ubiquitous
Computing Environments (ACM CSCW 2002), ACM, 2002. Available at http://www.cs.
uoregon.edu/research/wearables/cscw2002ws/papers/Cheng.pdf.

[6] Z. J. Haas, J. Deng, and S. Tabrizi. Collision-Free Medium Access Control Scheme for
Ad-Hoc Networks. In Proceedings of IEEE MILCOM'99, IEEE, 1999. Available at
http://wnl.ece.cornell.edu/Publications/milcom99_mac.ps.

[7] M. Harchol-Balter, T. Leighton, and D. Lewin. Resource Discovery in Distributed Net-
works. In Proceedings of 18th Annual ACM-SIGACT/SIGOPS Symposium on Principles
of Distributed Computing, pages 229-238, ACM, 1999.

[8] U. C. Kozat and L. Tassiulas. Network Layer Support for Service Discovery in Mobile
Ad Hoc Networks. In Proceedings of IEEE INFOCOM 2003, IEEE, 2003. Available at
http://www.ieee-infocom.org/2003/papers/48_02.PDF.

[9] S. Lee, W. Su, J. Hsu, M. Gerla, and R. Bagrodia. A performance comparison study of ad
hoc wireless multicast protocols. In Proceedings of IEEE Infocom’2000, pages 565–574,
IEEE, 2000.

[10] J. Liu, Q. Zhang, W. Zhu, and B. Li. Service Locating for Large-Scale Mobile Ad Hoc
Network. International Journal of Wireless Information Networks, 10(1 (January)):33-40,
2003. Available at http://research.microsoft.com/asia/dload_files/group/wireless/
2002p/IJWIN.pdf.

[11] H. V. D. Parunak. ’Go to the Ant’: Engineering Principles from Natural Agent Systems.
Annals of Operations Research, 75:69-101, 1997. Available at http://www.altarum.
net/~vparunak/gotoant.pdf.

[12] H. V. D. Parunak. Making Swarming Happen. In Proceedings of Swarming and Network-
Enabled C4ISR, ASD C3I, 2003. Available at http://www.altarum.net/~vparunak/
MSH03.pdf.

[13] H. V. D. Parunak and S. Brueckner. Swarming Coordination of Multiple UAV's for Col-
laborative Sensing. In Proceedings of Second AIAA "Unmanned Unlimited" Systems,
Technologies, and Operations Conference, AIAA, 2003. Available at http://www. alta-
rum.net/~vparunak/AIAA03.pdf.

[14] H. V. D. Parunak, S. Brueckner, R. Matthews, and J. Sauter. How to Calm Hyperactive
Agents. In Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS 2003),
pages 1092-1093, 2003. Available at http://www.altarum.net/~vparunak/
AAMAS03Ritalin.pdf.

[15] H. V. D. Parunak and S. A. Brueckner. Engineering Swarming Systems. In F. Bergenti,
M.-P. Gleizes, and F. Zambonelli, Editors, Methodologies and Software Engineering for
Agent Systems, pages (forthcoming). Kluwer, 2004. Available at http://www.altarum.net/
~vparunak/MSEAS03.pdf.

[16] H. V. D. Parunak, M. Purcell, and R. O'Connell. Digital Pheromones for Autonomous
Coordination of Swarming UAV's. In Proceedings of First AIAA Unmanned Aerospace
Vehicles, Systems,Technologies, and Operations Conference, AIAA, 2002. Available at
www.altarum.net/~vparunak/AIAA02.pdf.

 209

[17] P. Weinstein, H. V. D. Parunak, P. Chiusano, and S. Brueckner. Agents Swarming in
Semantic Spaces to Corroborate Hypotheses. In Proceedings of AAMAS 2004, pages
(forthcoming), 2004. Available at

 http://www.altarum.net/~vparunak/ AAMAS04AntCAFE.pdf.
[18] J. Wu and M. Zitterbart. Service Awareness and its Challenges in Mobile Ad Hoc Net-

works. In Proceedings of Workshop der Informatik 2001: Mobile Communication over
Wireless LAN, 2001. Available at

 http://www.iponair.de/publications/Wu- Informatik01.pdf.
[19] L. Zhou and Z. J. Haas. Securing Ad Hoc Networks. IEEE Network Magazine, 13(6 (No-

vember-December)), 1999. Available at http://wnl.ece.cornell.edu/Publications/
network99.ps.

Analyzing Stigmergic Learning for Self- rganizing Mobile Ad-Hoc Networkso

S. Brueckner et al. (Eds.): ESOA 2004, 3464, pp. 210 – 226, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Emergent Forecasting Using a Stigmergy Approach in
Manufacturing Coordination and Control

Hadeli Karuna, Paul Valckenaers, Bart Saint-Germain, Paul Verstraete,
Constantin Bala Zamfirescu, and Hendrik Van Brussel

PMA Division, Katholieke Universiteit Leuven, Celestijnenlaan 300B,
B-3001 Heverlee-Leuven, Belgium

{Hadeli.Karuna, Paul.Valckenaers, Bart.SaintGermain,
Paul.Verstraete, Hendrik.VanBrussel}@mech.kuleuven.ac.be

zbc@acm.org

Abstract. This paper presents the design of new manufacturing coordination
and control systems based on multi-agent technology. This design aims to cope
with a dynamic environment characteristic for manufacturing systems nowa-
days. One important feature to handle these dynamics is having the ability to
plan ahead, thus avoiding problems before they occur. Therefore, one novel
characteristic of the system is the ability to perform emergent forecasting. Re-
garding emergent forecasting, an important issue that rises from this design is
how to ensure that the forecast is reliable, and on the other hand, that the system
is still fast enough to react against disturbances. This paper elaborates on the
agents that form the system, and proposes a way to engineer it. Moreover, this
paper also describes emergent forecasting. In addition to that, the trade off be-
tween responsiveness and forecast reliability (system nervousness issue) is also
discussed in this paper, altogether with an example on the design of social ac-
ceptable behaviour that aims to handle the nervousness issue. Finally, some im-
plementation and prototyping results are presented.

1 Introduction

This paper presents research on emergent forecasting in manufacturing coordination
and control systems. The research team applies its approach to manufacturing control,
however the applicability of the approach is broader. Manufacturing systems nowa-
days have to cope with an extremely dynamic environment – new products, short
product life cycles, resource breakdowns, rush orders, etc. Traditional centralised,
hierarchical manufacturing control architectures and their top-down development
cannot cope with this increased rate of changes in manufacturing. Therefore, it is
desirable to engineer a system that has the ability to self-organise. The concept of a
multi-agent system offers a promising solution, consisting a set of non-centralized and
mutually co-operative elements – called agents – that act autonomously, which is
expected to cope with these system dynamics and uncertainties.

In this context, the real-time forecasting or prediction of the system behaviour is a
valuable method to cope with the dynamics and optimise system behaviour. The novel

LNAI

 Emergent Forecasting Using a Stigmergy Approach 211

manufacturing coordination and control system, discussed in this paper, is able to
forecast emergently, thus allowing to foresee the situation on the shop floor in the
near future. By having this information, the agents are more able to plan ahead. Im-
portantly, these forecasts emerge out of the interactions of the agents.

A research prototype has been developed to test this new system design [1, 2] and
it shows that this system is able to perform a load forecast for every resource in the
system; moreover, for every order that enters the system, the performance of a deci-
sion strategy can be predicted. Furthermore, each order is able to react to disturbances
and changes in the system, and to adapt its strategy based on the forecasts. Neverthe-
less, there is a trade-off between the ability of the system to react against disturbances
and the ability to perform and use an accurate forecast. On one hand, when the system
reacts too eagerly to disturbances, the forecast becomes unreliable and inaccurate;
moreover, the system is likely to become nervous. On the other hand, being insensi-
tive to disturbances implies that the system fails to adapt to the prevailing situation.
Hence, a kind of socially acceptable behaviour must be imposed to achieve a proper
balance between predict-ability and adapt-ability. This paper elaborates on the emer-
gent forecasting and the underlying issues (handling system nervousness). Details on
the basic design issues can be found in [1, 2, 3, 4].

The organization of this paper is as follows: the following section briefly intro-
duces self-organisation. Next, the issue of emergent forecasting is elaborated, and the
following chapter discusses the system engineering aspects. Subsequently, socially
acceptable behaviour is discussed, along with example of the implementation. Finally,
a simple prototype implementation is presented together with its result. This paper
will conclude with a discussion and future works.

2 Self-Organisation

Self-organisation is described as [5]: a set of dynamical mechanisms whereby struc-
tures appear at the global level of a system from interactions among its lower-level
components. The rules specifying the interactions among the system’s constituent
units are executed on the basis of purely local information, without reference to the
global pattern, which is an emergent property of the system rather than a property
imposed upon the system by an external ordering influence. The development of
multi-agent systems in this research conforms to the above definition. Agents corre-
spond to entities in the system and lack direct specific knowledge about other entities.

A self-organising application basically is an application running without central
control in which the different behaviours of the individual entities lead to an emergent
coherent result [6]. This kind of applications is usually inspired on biology or physical
world, chemistry, or even social systems. Characteristics of these applications are
their ability to accomplish complex collective tasks with simple individual behav-
iours, without any central control or hierarchical structure. In this system, the individ-
ual behaviours are kept simple, in the sense that they limit the exposure of the indi-
vidual entities to the overall system properties. However, the generic design for the
manufacturing control systems allows these entities to become experts and to be very
intelligent within their own scope. The limited exposure of each entity in the system

212 H. Karuna et al.

and indirect interaction between entities enables the system to be easily implemented
and the size of the system will not become a constraint. It can be implemented either
in a large scale manufacturing system or small scale manufacturing system.

3 Emergent Forecasting

In manufacturing systems, determining what will happen in the future to make good
decisions is a problem that must be faced quite often. Having forecast information is
helpful in making a good planning which is supposed to become a good decision [7].
Therefore, the design of this new system design is able to provide this type of infor-
mation. This section presents the definition of emergent forecasting and its related
aspects in the manufacturing systems.

Forecasting is defined as an action to predict a future event or to estimate some-
thing in advance. Emergent comes from the word “emerge” that means to become
apparent, come to light; to turn up, present itself, to appear as a result or to emanate.
A system exhibits emergence when there are coherent emergents at the macro-level
that dynamically arise from the interactions between the parts at the micro-level. Such
emergent are novel with respect to the individual parts of the system. [8].

Hence, emergent forecasting is defined as the ability to foresee what is going to
happen in the near future whereby the way in which the forecast appears is not prede-
fined, but – emergently – appears as a result of local interaction of the agents in the
system. Thus, the forecasting in this new system is performed in an emergent manner.

To enable emergent forecasting in this system, order agents, via their exploring ant
agents and intention ant agents, have to interact with resource agents (see further). In
addition, an order agent itself has to interact with its product agent. Exploring ant
agent is an agent who is responsible to explore the possible route(s) to finish for the
type of order it represents. The exploring ant agent only has local knowledge on itself;
it has no idea what the other agents are or do, except for its own concerns. Next, the
intention propagation ant agent is an agent who is responsible to propagate intention
of the order agent. It follows the defined route and makes a reservation at the selected
resources that are likely to be visited by the order along its lifecycle. Likewise, a
resource agent — the one who receives intentions from order agents — only needs to
handle its own business. The resource agent does not have to know what the order
does before and after being served. When seen in isolation, the behaviours and action
of the individual agents do not explain how a system-wide forecast is constructed; the
agents only have a local concern and no sign of emergent forecasting can be seen
when viewing them individually. Nonetheless, when viewing them as a whole, all of
these interactions enable the forecast to emerge. This emergent forecasting can be
seen at least from two perspectives, namely:

1. From the order agent perspective. To the order agent, the forecast provides infor-
mation about the resources it is likely to visit together with the other relevant in-
formation, for instance the operations, processing times, arrival times, etc. Having
this information enables the order agent to create a good plan to fulfil its goal.

2. From the resource agent perspective. To the resource agent, emergent forecasting
provides information on future loads for the resource in the manufacturing system

 Emergent Forecasting Using a Stigmergy Approach 213

that is represented by this resource agent. Resource agents are unable to accurately
forecast their future behaviour without the knowledge about their future loading by
the orders in the factory. To this end, orders that enter the system create order
agents that express their intentions to the resource(s) that they are likely to visit
during their lifecycle in the system. The detailed explanation on how the system is
engineered and operates is explained in the next section.

4 The Engineering of the System

This section first describes basic guidelines that are used to design the overall system.
Next, it describes types of agents in the system. Further on, the control mechanisms of
this manufacturing system are described.

As a first step, the agents of the system must be identified and designed. While designing
the agents, there are guidelines to be followed. Summarizing [9, 10], agents must correspond
to relevant entities in the underlying system, and the functionality needed to answer the user
requirements is implemented on top of this reflection of the world of interest.

Since an agent in this system is designed to have only local expertise, when it
comes to solve problems, there is a possibility that the agent does not have enough
knowledge to solve its problems. Hence, contribution of knowledge from other agents
is needed. Therefore, one agent usually needs to cooperate with the other agents. To
establish the cooperation between agents, agents need to perform coordination. There
are two basic ways to perform coordination between agents: coordination by direct
communication and indirect communication. In this research, coordination between
agents employs indirect communication that is done by dropping pheromone-like
information on an information board attached to each resource agent.

A pheromone is a chemical substance that is dropped by a member of natural spe-
cies in the environment as guidance for other members. It is the way ant colonies
propagate information while foraging for food. Biologists call it stigmergy [11].
Stigmergy describes the use of asynchronous interaction and information exchange
between agents mediated by an “active” environment. One example of natural species
utilizing this mechanism is an ant. The interaction of ants is based on the existence of
a smelling chemical substance called a pheromone. Ants deposit pheromones in their
environment, which are observed by other ants and this influences their behaviour.
The pheromone depositing mechanism supports two major operations mediated by the
environment in which the insects are situated, namely aggregation (accumulation of
information) and evaporation (disappearing of old and expired information). Attrac-
tive properties of this ant mechanism are:

1. Evaporation makes the colony forget the information that is no longer valid. Stale
information automatically disappears with time, as it is no longer refreshed.

2. Environment is reused in the solution (no maps in the brain of the ants).

From these examples in nature, the following principles are derived [4]:

1. Make the environment part of the solution to handle a complex environment with-
out being exposed to the complexity of this environment. Note that this also com-
plies with the essential modelling approach in object-oriented design.

214 H. Karuna et al.

2. Deposit relevant information in this environment, ensuring that locally available
data informs about remote system properties, supporting system-wide coordination.

3. Limit the lifetime of this information and refresh the information as long as it re-
mains valid. This is a “forget and refresh” mechanism, which is a basic mechanism
to handle dynamics in systems.

4.1 The Agents

In this research, the manufacturing control system implements the PROSA reference
architecture [12]. According to PROSA, there are three basic agent types needed to
construct a manufacturing control system: order, resource and product agents.

An order agent represents a task in a manufacturing system. It has a responsibility
to ensure that all the assigned work is properly executed. It manages the physical
product instance being produced. Its knowledge space is limited to the order informa-
tion and state of the workpiece: e.g. due date, order state model, etc. The order agent
knows nothing about the other orders. An order agent is connected to each workpiece
(or a group of workpieces) throughout its life cycle.

A product agent holds the process and product type knowledge. It provides infor-
mation on how to make instances of its product type correctly (mainly to order
agents). A product agent maintains consistent and up-to-date information on the prod-
uct design, process plans, bill of materials, quality assurance procedures, etc.

A resource agent reflects a physical entity, namely a production resource of the
manufacturing system, and an information processing part that controls the entity. It
offers knowledge about production capacity and functionality to the surrounding
agents. Its knowledge space is limited to self-monitoring and self-control. It also has a
list of resources that connect directly to it.

These three basic agents are structured using object-oriented concepts like aggrega-
tion and specialization. Moreover, these agents are equipped with an information
board on which other agents can put, observe and modify information. The informa-
tion on a board has a finite lifespan; information disappears after certain amount of
time. A blackboard is attached directly to an agent. Thus, it is local and only contains
information that has relation to the corresponding agent (analogous to the clipboard
attached to the hospital beds in old movies). The evaporation mechanism makes it
different from normal blackboard implementation [13]. The next section discusses the
multi-agent coordination mechanisms.

4.2 Control Mechanisms

When an order is dispatched to the shop floor, it has to discover a suitable route to get
itself produced; note that predefined routings intrinsically are unsuited for dynamic
manufacturing environments. In the control systems in this paper, order agents are
responsible for this task. Order agents are linked to their physical product instance(s).

To find a proper route through the system, the order agents create and send out
mobile agents (called ants in this manuscript) that travel virtually through the network
of manufacturing resources and find possible solutions. To accomplish this task, there
are two activities to be carried out, namely an exploration activity and an intention

 Emergent Forecasting Using a Stigmergy Approach 215

propagation activity. During their lifecycles, the two types of ants corresponding to
these activities, deposit pheromones in the environment. Based on the observation of
the pheromone information, order agents decisions are influenced. The following
section will explore more detail on these two activities.

4.2.1 Exploration Activity
Order agents represent the physical orders in the system. An order agent has the re-
sponsibility to ensure that its product instance is produced in time, undergoes all nec-
essary operations, and reaches certain quality level. Hence, the order agent has to
define the routes (solutions), which its product instances can follow. A solution is
defined by its routing information together with the resources, operations, starting
time, queuing time, etc. The shop floor consists of a network of resources. To explore
the available possibilities, the order agent creates mobile agents called exploring ant
agents that inherit their problem solving behaviours from their creator. The exploring
ant agent virtually travels through this network, starting from the position where the
work piece and order agent reside until the exit. To accomplish its task, the exploring
ant agent observes the local blackboards attached to the resource agents and uses the
pheromone information deposited there as a search guideline. The strategy to explore
the network is a plug-in1 for the control system. Not every exploring ant agent uses
the same strategy. Some of them look for the promising routes whilst the other will
look for the route that avoids critical resources.

time

Orders - Agent

Ra

Rb

Rc

Rd

t1

EA1

Ra

Rb

Rc

Rd

t2

EA2

Ra

Rb

Rc

Rd

t3

EA3

time

Orders - AgentOrders - Agent

Ra

Rb

Rc

Rd

t1

EA1

t1

EA1

Ra

Rb

Rc

Rd

t2

EA2

t2

EA2

Ra

Rb

Rc

Rd

t3

EA3

t3

EA3

Fig. 1. Exploring ant’s task

Exploring ants are created when needed. Each exploring ant explores the network,
travels on different possible route and records necessary information, for instance: the
resource(s) it has visited, the estimated starting time at every resource(s), waiting
time, duration of each processing step, the cost of operation. The recorded informa-
tion is useful to predict the travel time and the overall processing time. Moreover, it is
used to determine the quality of the solution. After performing the task, the exploring
ants report back their findings (solutions) to the order agents. The result is represented

1 A naturally fitting possibility to implement such a plug-in is a design following [14].

216 H. Karuna et al.

as a list of operations together with the resources where it will be processed, starting
time at the resources and the duration. The mechanism can be seen in Fig 1.

Exploring ants are created at a suitable frequency along the lifecycle of the order,
and each of them investigates the expected performance of a single feasible route of
the product instance through the factory. Note that the resource agents, on which the
pheromones are deposited are more cooperative and intelligent than the stones, earth
and foliage on which the real ants deposit their pheromones. The resource agents
possess a kind of reservations department (like a hotel or airline) that answers queries
about future availability. This reservations department is able to give accurate an-
swers because intention ants make bookings on behalf of the order allowing the re-
sources to self-schedule their work into the near future (based on self-knowledge).

4.2.2 Intention Propagation Activity
To get services from resources, order agents express their intention; this intention is a
sort of temporary commitment to the set of affected resources. Based on the informa-
tion provided by exploring ants (i.e. solutions collected by these ants), the order agent
selects one solution, which is considered to be the best, to become its intention. Next,
the order agent propagates this intention to the resources it intends to visit. To do this,
the order agent creates and sends out mobile agents called intention ants at a suitable
frequency. The intention ants virtually execute the remaining routing and processing
steps of the selected candidate solution, visiting all resources that are listed in the
selected solution. Figure 2 shows the above-mentioned mechanism. At each resource,
this ant expresses the intention of its order agent by requesting a time slot to be re-
served in this resource.

An intention ant informs the resource agent that its workpiece is likely to be proc-
essed on that resource and will arrive at particular point of time. As a response, re-
source agent looks into its diary book, marks a time slot for the particular order, and
returns the updated performance information, namely possible starting time, duration
of operation, and waiting time information to the ant. In this case, the intention ants
enable an emergent forecasting of the resource utilization. During its journey, the
intention ant collects and updates the time and status information from the resource
agents it has visited. Therefore, any changes and disturbances – resource breakdown,
rush orders taking your slot – instantly become visible during refresh. Slot reserva-
tions evaporate and disappear unless refreshed. Therefore, an order agent frequently
propagates its intention to have its workpiece processed at particular resources – i.e.
reconfirmation of current reservations.

When refreshing an intention, the performance of the current intention is re-
evaluated. When the expected performance deteriorates during such refresh or when
an exploring ant detects a better alternative, the order agent will have a tendency to
shift to such better alternatives. If an order agent always immediately changes to a
new intention when it perceives a better alternative, the system is likely to become
overly nervous and the load predictions, which rely on the intentions to represent
some level of commitment from the order agents, become inaccurate and the forecast
information will be useless. If all order agents react immediately on the smallest per-
ceived advantage, the system probably becomes unstable/chaotic. Therefore, this

 Emergent Forecasting Using a Stigmergy Approach 217

behaviour should be dampened; an order agent must not change its intention too eas-
ily. In the remainder of this paper, this phenomenon is called system nervousness and
is defined as the frequency of intention changes by the current orders.

Orders - Agent

Ra

Rb

Rc

Rd

1st candidate

Ra

Rb

Rc

Rd

3rd candidate

Ra

Rb

Rc

Rd

2nd candidate

time
t2

EA2

t1

EA1

t3

EA3

t4

IA

Orders - AgentOrders - Agent

Ra

Rb

Rc

Rd

1st candidate

Ra

Rb

Rc

Rd

3rd candidate

Ra

Rb

Rc

Rd

2nd candidate

Ra

Rb

Rc

Rd

1st candidate

Ra

Rb

Rc

Rd

3rd candidate

Ra

Rb

Rc

Rd

2nd candidate

time
t2

EA2

t1

EA1

t3

EA3

t4

IA

t4

IA

Fig. 2. Intention ant’s task

This situation actually is a trade-off situation. If the order agents fail to account for
their perception of the prevailing situation, the system fails to adapt and suffers from
poor performance under dynamic conditions. However, if the order agents are ex-
tremely eager to change, then they fail to uphold their commitments and the forecasts
will be useless; the overall system may become too nervous and instable. This will
cause confusion on the shop floor; the system will become costly due to frequent
rescheduling and also fluctuation in capacity utilization [15]. To overcome this prob-
lem, order agents must have a kind of socially acceptable behaviour to balance be-
tween the two extremes (being unaware and being too nervous). The following sec-
tion elaborates one implementation of the socially acceptable behaviour. Remark that
the described algorithm is only one out of many possible solutions.

5 Socially Acceptable Behaviour

To shift from the current intention to a new intention, order agents must ensure that
the new solution is better than the current intention. The word “better” here indicates
that the new solution has a better performance relative to the current intention. There
are several criteria to define a better solution. In this application, implemented on the
top of the discussed framework, the order lead-time is chosen as a performance meas-
urement. The overall idea of the socially acceptable behaviour is not limited to the use
of lead-time; it can be extended and customised if necessary.

Lead-time itself is the length of time needed to deliver a product from ordering till
acceptance by the customer [16]. In this paper, a more specific definition of lead-time
is used, called order lead times. Order lead times is a sum of the individual operation
lead times at all work centres passed by this order [17]. A new solution can be consid-
ered as a “better solution” if it shows a decreasing in its order lead-times. To measure
changes, a scale from 0 to 1 is used and is called significance level in this paper. The

218 H. Karuna et al.

larger the significance level specifies that the new solution is empirically better than
the current intention. The following explanation will describe how to come up calcu-
late the significance level.
 Order lead-time can be defined as

OROC ttOLT −= (1)

where:
:OLT Order Lead Time

OCt : order completion time

ORt : order released time

Order lead-time can also be calculated from the sum of the operation lead times:

kTLTLTLOLT +++= ...21 or
=

=
k

i

TLiOLT
1

(2)

where:
TL : lead time of one operation

Order lead-time of one operation (TL) is composed of:
1. Operation time (ot)

2. Waiting time (wt)

More reward points are allocated when the new solution shows a tremendous re-
duction in waiting time. Nonetheless, this is not mandatory. The value of the rewards
can follow any function (plug-in) that is defined by the order agent. Furthermore,
changing intentions brings a cost to the whole system. The benefit of changing inten-
tion has to be high enough to justify this cost. By using an exponential function (see
below), small changes in intention performance have a far less chance of causing an
intention change of the order agent.

The function parameters can be used to adjust the function slope. Furthermore,
they can be changed from time to time. It mostly depends on the way the order agent
observes the shop floor condition. When the shop floor is very dynamic, the function
parameters can be set to dampen the system (agents ignore all but major distur-
bances), whereas the parameters can be adjusted to make agents more responsive if
the overall behaviour remains stable. Through this mechanism, the order agent not
only can adapt to the disturbances happening on the shop floor, but also can adapt to
the rate by which these disturbances occur. The function itself can be represented as:

xnxf =)(; ∞≤≤ n1 (3)

where:
n : parameter to change the slope of the curve, defined by the order agent.
x : deviation of total waiting time or deviation of total operation time.

 Emergent Forecasting Using a Stigmergy Approach 219

In this function, n is a tuning parameter. The reward function can vary over differ-
ent implementations. More details concerning this function are out of the scope of this
paper.

Depending whether the order agent has propagated an intention or not, it will show
a different behaviour as described in Table 1. Secondly, an order agent must evaluate
the quality of the new solution compare to the current intention. Note that an order
agent always refreshes its last intention before comparing it with the new solutions.

Table 1. Treatment between has propagate intention or not

No intention ever propagated
yet

 Has propagated any intentions

1. Wait for several exploring ant
agents to return and provide
the exploration result.

2. Build a set of results.
3. Select one result with the

smallest order lead-time and
set as current intention.

1. Wait for several exploring ant agents to
return and provide the exploration result.

2. Build the competitor set of results.
3. From this set of result, select the best per-

formance solution, i.e. the one with the
smallest lead-time.

4. Compare the new solution with current
intention. More details are described be-
low.

In order to measure the quality of the new solution, it is necessary to measure how
significant is the changes compare to the current intention. The significance level is
composed of two elements, namely significance level from the waiting time and sig-
nificance level from the operation time. To measure the significance level, the follow-
ing steps are executed.
1. Calculate the current intention’s waiting time, wt .

2. Calculate the new solution’s waiting time, 'wt .

3. Find the differences between those waiting times.

−=Δ www ttt ' (4)

4. Calculate the reward points from this difference.

() x
wt ntxfR

w
=Δ==Δ (5)

5. The contribution from waiting time to the overall significance level (
wt

S) is calcu-

lated as follows:
• Multiply the differences between the waiting times and the reward points.
• Divide the previous result by the maximum value of this contribution, which re-

flect to the worst result reported back by the exploring ants.
The maximum value of this contribution is the multiplication between the maxi-
mum differences between the waiting times, which in this paper is defined to be
equal to the current intention’s waiting time, and the reward points from this
maximum difference. The following equations are the reflection of this step.

220 H. Karuna et al.

=Δ wMAXw tt (6)

() x
wMAXMAXt ntxfR

w
=Δ==Δ (7)

}1,0{; ∈
×Δ
×Δ

=
Δ

Δ
w

w

w

w t
MAXtwMAX

tw
t S

Rt

Rt
S

if 1,1 =>
ww tt SS

(8)

6. The same procedures (from step 1 to step 6) are applied also while calculating the
significance level contributed by the operation time. However, the reward function
has different parameter values.

7. Finally, to come up with significance level, firstly sum the contribution from both
aspects and divide by 2. It can be written as:

2
totw SS

SL
+=

(9)

Significance level mirrors the level of confidence of the order agent to shift to the
new solution. Thus, when the significance level is below certain threshold, the order
agent will not take any risk shifting to the new solution. The order agent defines the
threshold level. Again, the threshold level’s value is floating, It is mostly depends on
the historical data and can be changed if necessary.

Social Acceptable Behaviour and propagation intention policy

Although from the above mechanism, the order agent already has the confidence level
to shift to the new solution and willing to propagate the new intention, the order agent
should not change intentions easily. It should behave according to social rules as in
human society where someone who already engaged in a certain appointment should
not easily call off without any strong and crucial reason. Without going into a psycho-
logical analysis on this behaviour, this situation can simply be handled by at least two
types of procedures, namely:

1. Applying a probabilistic mechanism each time the order agent is willing to change
intention (see further).

2. Limit the frequency to change intentions. This procedure is simply sets a maximum
frequency at which an order agent is allowed to change intentions.

Probabilistic mechanism applied to intention changing procedure

This mechanism can be explained as follow.

1. Order agent has its own frequency rate to refresh its intention. If no social accept-
able behaviour is applied, an order agent will change its intention any time it likes.

2. At every refreshing cycle, every order agent has to draw a random number, ir .

 Emergent Forecasting Using a Stigmergy Approach 221

3. If ir is smaller and equal to the confidence level to shift (a value between 0 – 1),

then the order agent is allowed to change its intention. Otherwise, it has to keep its
old intention.

4. Furthermore, no matter how big is the value of the significance level, the system
should guarantee that if the significance level stays the same all the time, then at
the end of a finite time horizon, this change should be announced. Consequently,
when defining whether to change intention or not, the number of repetition in
which the significance level is the same should be taken into account. Furthermore,
the strategies to do it can be varying in implementation, for example double with-
draws of random variable at every cycle, or increase the confidence level to shift
from this cycle onwards.

5. The visual description is given in Fig. 3. The width and similar height bars indicate
the confidence level to change at every refreshing cycle. The slim bars indicate the
random number drawn by the order agent at each refreshing cycle. It is shown in
the figure that if the slim bars are under the width bar, the order agent will change
its intention.

By applying the above-mentioned mechanism, order agents will be able to propagate
new intentions wisely. As a result, when there is disturbance on the shop floor, e.g. a
machine breakdown, not all order agents that intend to be processed on that machine
will switch to the other machine(s) that offer the same capability. As a consequence,
the other machine(s) will not suddenly become overloaded by these orders.

Note that the above is only one possibility among many and is subject of ongoing
research. The objective is to balance responsiveness against forecast reliability.

6 Implementation and Prototyping

The implementation of the overall system above, especially the part concerning social
acceptable behaviour’s algorithm is ongoing. Nonetheless, prototypes have been de-
veloped and the basic functions of this system have been validated. The following
part will present the prototype that addresses a real industrial case.

This prototype reflects the real manufacturing plant that produces weaving ma-
chines. Some data on the case has been modified for confidentiality reasons. The plant
can be described as follow: the shop is composed of 13 processing resources and 1
exit station. An automatic storage and retrieval system (ASRS) is installed in the
middle of the shop and acts as storage for either finished or work-in-process (WIP)
parts. Altogether, the resources and the ASRS are connected with a ‘tram’ that trans-
ports parts from one workstation to another workstation or ASRS. From this test bed,
several results can be shown.

Emergent forecast in order agent and resource agent

A set of experiments was carried out on this prototype. Certain numbers of order are
released to the shop floor. In this case study, orders that arrive on the shop floor have
no predefined route to finish. Thus, an order agent has to send out exploring ant agent
to discover the promising route and furthermore, utilises this information to propagate
intentions to the set of resources it needs to get services from.

222 H. Karuna et al.

ir
)(propagatep

0

1

T time
span

refreshing cycle

session when order agent
are NOT allowed to

change intention

Fig. 3. The implementation of social acceptable behaviour

 The result of this implementation is visualized in Fig. 4. Figure 4 shows the cur-
rent intention of one selected order (WR0150 of type Rollen). The black bar indicates
operations that have already executed, and the light grey bars indicate the remaining
operations altogether with the possible start time, duration and resources that are
going to process these operations. This result contains information about the set of
resources that the order is likely to visit, the starting time and the duration of stay.
This solution is built from the interactions between order agent (through its exploring
ants and intention ants) and resource agents.

The solution presented in this panel is not a definitive solution, because as the shop
floor changes from time to time, the solution may also alter. For example, take order
number WR0130 of type Rollen, its early intention was to have its second last opera-
tion processed on resource W3310 at time 2034, however, since there are some dis-
turbances (extension of operation time of current processed order in W3310) the start-
ing time of the operation may be postponed. See Fig. 5.

At every resource agent, intentions from the order agents are recorded and trans-
lated into a kind of Gantt chart. The Gantt chart reflects the current and future load in
the resource agents. As mentioned before, order agents express their intention through
their intention ants. When arriving in a certain resource, the ants book a time slot for
the order agents. Thus, this information actually shows the information about orders
that intent to visit and request services (see Fig. 6).

The accuracy of the forecast

As mentioned in earlier chapter, order agents are sending out intention ant agents to
express their intention. The intentions are changing from time to time, and are ex-
pected to be closer to the actual solution as they approach the execution time of the
operations. Fig. 7 shows the error plot of the data that starts from the propagation of
intention until the real execution time of the order.

 Emergent Forecasting Using a Stigmergy Approach 223

In te n tio n o f th e
o rd e r ,
p ro p a g a te b y
a n t

P ro c e s s
e x e c u te d b y th e

o rd e r

Fig. 4. Emergent forecast information from order
agent WR0150

Fig. 5. Emergent forecast of order num-
ber WR0130. (i) top figure is the earlier
intention (ii) bottom figure is the later
intention

Fig. 6. Emergent forecast information at resource
agent – Gantt chart at selected resource

Fig. 7. Error plot of intention data of
order R04

 As seen in Fig. 7, when the time is approaching the real execution time, the fore-
cast become more accurate. It can be seen from the decreasing value of error. The big
slope changes in the middle of the graph are due to the down time of a machine. The
systematic jump in inaccuracy, when looking further ahead in the future, is caused by
about-to-be-released orders being unable to propagate their intentions before release.

224 H. Karuna et al.

7 Discussion and Future Works

This paper described how a new manufacturing coordination and control design pro-
duces an emergent forecast. Emergent forecasting is an important feature in current
and future manufacturing coordination and control systems since it provides the abil-
ity to foresee the future shop floor condition. Having emergent forecasts enables the
system to avoid problems before they occur and offers the possibility to optimise
performance. To do so, order agent sends out two types of mobile agents – called
ants. They are exploring ants and intention ants. Exploring ants are responsible for
performing a scouting task throughout the network of resources to find an attractive
route in order to accomplish the task of their order agents, where intention ants are
responsible for notifying resources that an order agent is likely to visit in the future.

To order agents, the emergent forecasting provides information about the load of
resource(s) the order agents are likely to visit in the future. It also provides informa-
tion on their arrival time at each resource, how long they will remain there and some
other relevant information. This mechanism enables the order agent to forecast its
finishing time and also calculates its performance before it is executed. Moreover,
when suddenly the order characteristic is changed, for instance from normal order to
rush order, and it needs to change its priority, this forecasting information can be used
as a guidance to find the solutions (routes) that will provide the earliest finishing time.

Furthermore, if some intelligent algorithm is implemented inside the order agent,
and it is useful to analyse this information and behave differently at different situa-
tions, for instance when the shop floor is very dynamic, the order agent can sense this
from the emergent forecast information and reacts accordingly, or the order agent can
also experiment with the performance achievement by changing its behaviour.

At the resource agent, the emergent forecast enables it to foresee its near future
load. This information enables the resource agent to manage its own logistical tasks,
for instance, to schedule its downtime for maintenance or other non-process related
activities. By having this information, resource agent can schedule its downtime, and
ensure that it is not scheduled in a heavy loaded period. For example, in a factory
where each machine is connected with tram and automatic storage and retrieval sys-
tem, the tram can utilize this information to foresee the time slot where it has low
load. At this low load time, tram can move the location of container to the position
near to the destination. By doing this, the transportation time to move this container
will automatically reduce. Furthermore, the resource agent can also be designed to
have an intelligent decision taking mechanism, for instance, applying its own dis-
patching rule on the orders that queue for its services. Thus, instead of First In First
Out, other dispatching rules can be applied. This behaviour enables the increase of the
performance of the overall system.

All these routines that perform by these agents automatically create a kind of self-
reinforcement cycle. As seen in Fig. 8, the propagation of intention will provide resource
agents with the prediction on orders that require their services in the future. Having this
information, resource agent(s) can do a better self-management. As a result, exploring ant
agent will receive a better response/forecast while requesting information about services
from the resource agent. Furthermore, if exploring ant agent can provide a better forecast

 Emergent Forecasting Using a Stigmergy Approach 225

to its host, then order agent can propagate a better intention. Consequently, better inten-
tion means better prediction for resource agent(s), and if this cycle is continuing on, then
both order agents and resource agents will have a more accurate result.

Intention

Resource Agent
“Self-forecast” its

Exploring ant
Forecast

Selection / Refresh of
Fig. 8. Self-reinforcement cycle of this emergent forecast mechanism

The system’s nervousness issue is also an important aspect that comes along with
the emergent forecast capability. This issue is strongly related to the reliability of the
forecast created by exploring ants. Due to the unreliable forecast, order agent tends to
propagate new intention faster and more frequent. As a consequent the system will
become nervous and the previous forecast will become useless. As expected, any
forecasts should be reliable and its quality is measured by whether it is capable or not
to predict the future events accurately. In the real application, this unreliable forecast
causes the existing schedule in resource agent turn out to be invalid. Consequently,
resource agent should reschedule all the waiting tasks/operations and its own logistic
activities, and thus, new adjustment, new set-up, new allocation that come along with
the operation should be done. As a result, the process will become more costly, and
this is certainly undesirable. Furthermore, the rescheduling will then affect the per-
formance of the other orders that are waiting to be processed on the resource(s). When
the forecast is useless and unreliable, the ability to foresee the future events automati-
cally deteriorated. Moreover, the self-reinforcement cycle will break.

Applying the social acceptable behaviour to the order agent is one way to over-
come this problem. Further observation on the results is needed to verify the above-
mentioned concept. Apart from those algorithms, at the system level, there are also a
series of tuning parameters that influence the behaviour of the system, for instances
frequency of ant propagation, evaporation rate. In current prototype, these parameters
are tuned manually through user-interface. Numerous experiments are still needed in
order to provide a clear report on how those parameters influence the system’s behav-
iour. Furthermore, in the future, there is a thought to enable an auto-tuning mecha-
nism on these parameters, so that the system can adjust itself in order to attain the
better performance of the system.

The overall design seems not complete if there is no evidence on how the perform-
ance of this new system compare to the current available/practice system. Therefore,
for further work, benchmarking of this idea will be performed. To support this, a
benchmarking service is under development within the EU Network of Excellence on
Intelligent Manufacturing Systems (cf. www.ims-noe.org).

226 H. Karuna et al.

Acknowledgement

This work was supported by the European Commission under GROWTH program
and the K.U.Leuven research council (GOA-AgCo2).

References

1. Hadeli, Valckenaers, P., Kollingbaum, M., Van Brussel, H., Multi-agent coordination and
control using stigmergy, Computers in Industry 53 (2004) 75–96

2. Zamfirescu, C., Valckenaers, P., Hadeli, Van Brussel, H., and Saint Germain, B., A Case
Study for Modular Plant Control, Lecture Notes in Artificial Intelligence, Vol. 2744,
Springer-Verlag, Berlin Heidelberg New York (2004) 268-279

3. Valckenaers, P., Van Brussel, H., Kollingbaum, M., Bochmann, O., Multi-agent coordina-
tion and control using stigmergy applied to manufacturing control. Lecture Notes in Artifi-
cial Intelligence, Vol. 2086, Springer-Verlag, Berlin Heidelberg New York (2001) 317-334

4. Valckenaers, P., Saint Germain, B., Verstraete, P., Hadeli, Zamfirescu, C., Van Brussel,
H.: Ant Colony Engineering in Coordination and Control: How to Engineer an Emergent
Short-Term Forecasting System. Proceedings IWES’2004, Budapest (2004).

5. Parunak, H.V. D., Bruekner, S. A., Engineering Swarming Systems, Forthcoming in F.
Bergenti, M.-P. Gleizes, and F. Zambonelli, eds., Methodologies and Software Engineer-
ing for Agent Systems. Kluwer (2004)

6. ESOA WG – Mission Statement http://cui.unige.ch/~dimarzo/esoawg/mission.doc
7. Hogarth, Robin M., and Makridakis, S., Forecasting and Planning: An Evaluation, Man-

agement Science Vol 27 No. 2 (1981) 115- 138.
8. De Wolf, T, Holvoet, T., Emergence and Self-Organisation: a statement of similarities and

differences. Proceedings of the International workshop on Engineering Self-Organizing
Applications (ESOA) 2004, New York (2004).

9. Valckenaers, P., Van Brussel, H., Hadeli, Bochmann, O., Saint Germain, B., Zamfirescu,
C., On the design of emergent systems: an investigation of integration and interoperability
issues., Engineering Applications of Artificial Intelligence 16 (2003) 377-393

10. Parunak, H. V. D., Sauter, J., Clark, S., Toward the Specification and Design of Industrial
Synthetic Ecosystems, Fourth International Workshop on Agent Theories, Architectures
and Languages (ATAL) (1997)

11. Theraulaz, G., E. Bonabeau, A Brief History of Stigmergy, Artificial Life, 5 (1999) 97-116
12. Van Brussel, H., J. Wyns, P. Valckenaers, L. Bongaerts, P. Peeters, Reference architecture

for holonic manufacturing systems: PROSA. Computers In Industry, 37 (1998)
13. Ciancarini, P., Omicini, A., and Zambonelli, F., Coordination Models for Multi-Agent

Systems. AgentLink News 3, July (1999)
14. Brückner, S., Return from the Ant – Synthetic Ecosystems for Manufacturing Control.

PhD Thesis, Humbold University, Berlin, Deutschland (2000)
15. Campbell, Kenneth L., Scheduling Is Not The Problem, Production and Inventory Man-

agement Vol. 12 No. 2 (1971) pp. 53-60.
16. Sipper, D., Bulfin, Jr, R.L., Production Planning, Control and Integration, McGraw-Hill

International New York (1998)
17. Wiendahl, H.P., Load-Oriented Manufacturing Control, Springer-Verlag, Berlin Heidel-

berg New York (1994)

IDReAM: Intrusion Detection and Response
Executed with Agent Mobility

The Conceptual Model Based on Self- rganizing Natural
Systems

Noria Foukia

University of Geneva, rue Général Dufour 24,
CH-1211 Geneva 4, Switzerland

Abstract. Nowadays, lots of researches in Intrusion Detection and In-
trusion Response try to find new solutions to circumvent new intrusive
behaviors. One of the principal weaknesses of these systems is the lack
of robustness inherent in their centralized nature. Even though most of
the existing Intrusion Detection and Response Systems (IDRSystems)
use distributed data collection (host-based or network-based) many of
them continue to perform data analysis centrally, thereby limiting scal-
ability. Moreover, even if the IDRSystem is distributed in the network,
its deployed elements generally remain static. With the means available
to modern attackers, such as automated intrusion tools, these static and
distributed elements are easily accessible. Often, this does not always
contribute to improving the reliability and resistance to attacks of such
static components.

This paper presents our approach for building an IDRSystem called
Intrusion Detection and Response extended with Agent Mobility or
IDReAM for short. IDReAM combines Mobile Agents (MAs) with self-
organizing paradigms inspired by natural life systems. This approach was
already announced in a preceding paper [4], and the present paper de-
scribes in a more detailed way the conceptual model. All the research
works relating to IDReAM are gathered in a PhD Thesis [3] which also
contains the implementation results of the model and its evaluation. The
present paper is limited only to the model.

Keywords: self-organization, mobile agents, intrusion detection and re-
sponse.

1 Introduction

The collective and complex behavior emerging from simple interacting entities
is frequently illustrated in natural phenomena such as biological systems (body
cells, human brain, etc.) or insect colonies (ants, termites, bees, etc.). These
natural systems appear completely distributed and exhibit efficient character-
istics in term of robustness, and are perfectly adapted to solve complex tasks.
For a few years these complex natural systems have been a source of inspiration

S. Brueckner et al. (Eds.): ESOA 2004, 3464, pp. 227–239, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

o

228 N. Foukia

for many research projects in computer science; the scope of influence ranges
from artificial intelligence with the work done by Marco Dorigo in swarm in-
telligence to telecommunication problems such as adaptive routing and optimal
resource allocation [1] in computer networks. Beyond computer science this in-
fluence reaches other research topics such as distributed robotics systems [10]
and economics. And the list is not exhaustive. One interesting point is that the
population of these natural systems consists of simple moving entities or agents
naturally dispatched throughout the environment. In spite of their individual
simplicity, these entities present a highly structured self-organizing capacity to
accomplish complex tasks. This collective and self-organizing capacity emerges
from inter-entity interaction performed through the hosting environment and it
exceeds the capacity of each individual.

The efficiency of natural systems as complex systems completely distributed
and dynamic, was a source of foundation of IDReAM. The Intrusion Detection
System (IDSystem) was designed with the immune system in mind whereas
the Intrusion Response System (IRSystem) was designed with the ant colony
organization in mind. The following points out what was presented in [4]:

The IDSystem borrows mechanisms from the immune system that protect the
human body against external aggressions: special cells of the immune system,
called the T cells, travel around the body to detect possible aggressions by
eliminating the proteins that they do not recognize as safe proteins. These bad
proteins are called non-self proteins in the medical jargon. Intrusion Detection
Agents (IDAs) roam the network to detect bad suspicious behaviors mimicking
the behavior of T cells.

The IRSystem borrows mechanisms from the stigmergic paradigm of a colony
of ants. At the time of foraging, the ants use the environment to diffuse a chemical
substance called the pheromone which traces the route for the other ants from
the nest to the source of food. Intrusion Response Agents (IRAs) roam the
network to respond to the IDAs’ alerts mimicking the behavior of the ants to
trace the route to the alert and give the response.

The two natural systems exhibit a social life by the organization of their enti-
ties (T cells and ants) which is not possible without the functionality of mobility.
Thus, in a natural way, MAs are good candidates to provide this property of mo-
bility. In practice the two populations of MAs, IDAs and IRAs, play the role of
autonomous entities permanently distributed over the network and embody the
self-defending and self-organizing behaviors.

There are different reasons that motivated the choice of two distinctive models
for the IDSystem and IRSystem. The main reasons are:

– The behavior of T cells acting as sentinels of the human body is more adapted
to the detection task. To detect an intrusion, the IDA needs to look for what
happens in the system and to compare the events it encounters with normal
situations. This is what T cells do in the human body.

– The behavior of ants tracing the pheromone to find the source of food is
more adapted to the response task. When the intrusion happens the IRA

IDReAM: Intrusion Detection and Response Executed with Agent Mobility 229

needs to respond at the location of the intrusion. Remotly, it needs a means
to reach the suspicious location. The information of locality (pheromonal
gradient in the IRA’s neighborhood) provided by the pheromone appears to
be a simple and natural way to also trace the route to the alert.

– Moreover, this separation of concerns between IDAs and IRAs is a major
advantage because it makes IDReAM more robust since an attacker needs
to understand and adapt to both populations of agents.

The rest of the paper is structured in the following way: The Section 2 gives
an overview of the immune system. The Section 3 gives an overview of the ant
stigmergic system. The Section 4 details the various elements of the mapping
between IDReAM and the two natural systems described in the Section 2 and 3.
The Section 5 describes the conceptual model of the IDSystem part and the Sec-
tion 6 describes the conceptual model of the IRSystem. The Section 7 discusses
the conceptual model and draws the conclusion.

2 Immune System – An Overview

The structure of the human body defense system is multi-layered with defenses
provided at many levels, from the skin which is the outermost barrier of pro-
tection to the adaptive immune system which can be viewed as a distributed
detection system in the body. This immune system [9] is a complex network of
specialized cells and organs that has evolved to defend the body against diseases
and infections by “foreign” invaders such as bacteria, viruses, fungi, parasites,
and debris. In a first step the immune system attempts to prevent or stop these
external organisms before they enter the body. In a second step it seeks their
presence in the body in order to destroy them. For that, it distinguishes between
molecules and cells of the body called “self ” from foreign ones called “non-self ”.
The body’s immune defenses normally coexist peacefully with cells that carry
distinctive self marker molecules. But when the immune defenders encounter
non-selfs they have to eliminate them quickly. Any substance which is capable
of causing an immune alert is called an antigen. An antigen is recognized by
means of markers called epitopes, which protrude from its surface.

The organs of the adaptive immune system called Lymphoid organs are posi-
tioned throughout the body and lodge the lymphocytes, small white blood cells
that are one of the key defenders in the immune system. Lymphocytes T, or T
cells, are one of the many kinds of specialized lymphocytes in the immune sys-
tem. They mature in the thymus (one Lymphoid organ) and travel throughout
the body, using either the blood vessels or their own system of lymphatic ves-
sels. Their surface is covered by randomly generated receptors that can match
(recognize) specific antigen’s epitopes: each lymphocyte has one kind of receptor
which binds to a specific related epitope. In fact, there is a selection step of the
good T cells that are immature at the beginning and learn which proteins of the
body are non-self proteins. As most of the self proteins circulate through the
thymus, immature T cells that match self proteins in the thymus are destroyed,

230 N. Foukia

otherwise, the immune system can wrongly identify self as non-self causing a
so-called auto-immune disease. This process is called self-tolerization. Those T
cells that are not destroyed become mature and are released in the rest of the
body. There, they detect non-selfs and ignore selfs.

3 Stigmergy Paradigm – An Overview

Social insects organize themselves to ensure the survival of the colony by means
of a reactive individual behavior and a cooperative collective one. Such behaviors
can be observed from different activities: foraging, building nests, sorting larvae,
etc. Cooperation in these systems is mediated by an efficient communication
mechanism relying on the inscription of task evolution in the environment. This
paradigm named stigmergy , introduced for the first time by P. P. Grassé in [6],
describes the way social insect communities (ants, termites, bees, etc.) interact
through their environment. Schematically, each entity has a local view of its
neighborhood but uses a chemical volatile substance (pheromone) to mark its
environment when achieving a collective task. The pheromone thus deposited
is propagated in the environment and evaporates with time. The deposit of
pheromone creates a gradient field in the environment which tends to attract
other insects, and to enroll them in a self-catalytic behavior. When the task is
finished, no more pheromone is deposited, leading to the disappearance of this
information after a period of time through an evaporation mechanism. In the
particular case of food foraging, each time an ant deposits a pheromone along
the path, it reinforces the probability that other ants will choose the same path to
reach the food. The amount of deposited pheromone is called the pheromonal
gradient , and every ant scanning its neighborhood will have a great probability
to walk up the gradient.

4 How the Agents Reproduce the Natural Behaviors

Both ID and IR mimic the behavior of two distinctive natural systems:

– For the detection, the human natural immune system .
The IDSystem maps some mechanisms borrowed from the immune system.
The goal is to couple the efficiency found in the collective behavior of the
immune system with the agents’ mobility. MAs as T cells, travel around the
network and work cooperatively to detect local and distributed suspicious
patterns.

– For the response, the social insect stigmergy paradigm .
More precisely the inspiration is taken from the collective behavior of for-
aging ants. The present IRSystem maps the collective behavior of a popu-
lation of foraging ants, using MA as ants and an electronic version of the
pheromone.

IDReAM: Intrusion Detection and Response Executed with Agent Mobility 231

There are two populations of MAs:

– The Intrusion Detection Agents (IDAs) incarnate the IDSystem.
The IDAs borrow mechanisms from immune T cells. To detect attacks hap-
pening in the security domain, IDAs responsible for a local domain have to
be able to discriminate between normal and abnormal activity. In the im-
mune system it is done by T cells distinguishing selfs from non-selfs. In the
IDSystem the normal self activity is viewed as a good sequence of events,
whereas the abnormal non-self activity is viewed as a bad sequence of events.

– The Intrusion Response Agents (IRAs) incarnate the IRSystem.
IRAs’ task is to respond to detected intrusions. For that, they must locate the
place where the alarm was given by IDAs and go there. To trace the source
of the alert the same mechanism is used as the mechanism employed by the
ants to trace the source of food. Ants use the chemical pheromone deposited
by the other ants in the environment to trace the source of food. The IRAs
use an electronic version of the pheromone which indicates the route to the
infested node. This pheromone is built by an IDA when it detects an intrusion
and is randomly diffused from the infested node through different nodes of
the network. Thus, the pheromone allows to build a path that the IRAs
follow to trace the source up to the alert. Moreover like in ants’ colonies, an
evaporation process inhibits the electronic pheromone to limit the number
of IRAs following the same pheromonal trails.

Agents’ Mobility for Social Organization

– The immune system consists of different cells distributed throughout the
body. Each category of cells has a specific function and moves in the body
according to its own needs and there is always a co-operation between the
cells simulating a ”social life of the cells of the immune system”. Many
cells which play an important part in the immunizing protection move in
blood, in lymph, and lymphoid organs to coordinate the various immune
reactions. Thus, the concept of a perpetual cellular dynamics is fundamental
and without this dynamics and a great mobility the task of protection could
not take place.

– In ant populations the pheromone acts as a regulator of the insect traffic
outside the nest. Nevertheless, this task of regulation would not be possible
without the mobility of the ants. Suppressing the mobility would result in
preventing the foraging task leading to the unavoidable death of the ants’
colony.

Thus, in each population (immune cells and ants) the mobility is fundamental
for the survival of the population. Therefore without mobility it is not possible
to reproduce the behavior of these two populations. Intuitively, MAs are good
entities to realize the conceptual model.

232 N. Foukia

5 IDSystem

The detection principle is as follows:
The correct execution of different programs and their deviation compared

to normal activity are supervised. For that, short sequences of events when the
program runs in safe conditions and environment are collected and surveyed,
as was done in [2] with short sequences of system calls. For each local security
domain, we previously built a self profile according to the programs to be su-
pervised. A self profile contains several types of sequences specific to different
programs. At the system start-up, when the system runs in real conditions, IDAs
created from different hosts have to detect deviation of events specific to these
programs. In each domain, different populations of IDAs specific to a program
are able to memorize safe sequences obtained from the normal self profile. Each
program-specific IDA selects randomly a block of n consecutive sequences and
examines in the host they visit, the deviation of the incoming events from the
selected set. If the deviation is too high the IDA launches an alert. Otherwise,
under a certain level of deviation the incoming sequence is accepted. Moreover,
alternatively to normal-abnormal sequence discrimination other populations of
IDAs look for specific attack signatures. In this case, IDAs specific to a well-
known attack pattern travel randomly in the network to detect this pattern.
Here, IDAs refer to signatures previously stored in another non-self profile and
select one of them. A signature-based IDA that detects an anomalous pattern
launches an alert.

Chronologically, an IDA follows the sequence of actions described below:
1. A node houses one self and one non-self profile that have been previously

built off-line and stored in two different protected files. The self profile con-
tains several types of sequences of events to be accepted and the non-self
profile contains several types of the sequences of events to be rejected. The
self profile is built from normal activity executed in machines previously iso-
lated from the rest of the system. These normal events are called self events
or selfs for short. Each sequence of the non-self profile called non-self is
attributed a suspicion value. This suspicion value indicates the propensity
to find such a sequence in the system. In the non-self profile, the different
fields are:
– The identifier of the suspicious activity : Idsa. The IDA identifier IdA

is the same identifier as the identifier Idsa, of the suspicious activity it
supervises.

– The sequence of events:
〈(event(1), value(1)), (event(2), value(2)), ..., (event(n), value(n))〉.

– The suspicion index : SI that gathers the degree of importance of the suspicious
activity. SI expresses the deviation of the incoming events from the events
memorized by the IDA.

– The tolerance threshold : Th, which corresponds to the value of the deviation
between the incoming events and the events memorized by the IDA, that
generates an alarm.

There are three states in the life of an IDA; it is immature at the start-up,
then it becomes a primary IDA and ends its life as mature IDA.

IDReAM: Intrusion Detection and Response Executed with Agent Mobility 233

2. At the start-up of the node, first immature IDAs are created by their gener-
ator host. Each immature IDA memorizes a sequence of the non-self profile
and the corresponding fields. It is also attributed a Time To Live (TTL) to
limit its life duration as immature IDA. The TTL is a positive integer value
and at every hop, it decreases by one unit.

3. These immature IDAs are randomly and temporarily dispatched in the sys-
tem to protect, in order to test their effectiveness: during a short lapse of
time expressed by the TTL, any immature IDA that matches exactly an
identical sequence of events in the system, is destroyed as bad immature
IDA. This step corresponds to a tolerization period and is also present in
other immune models such as [7]. In the same way, during the same short
lapse of time, any immature IDA that matches exactly selfs encountered in
the self profile(s) are eliminated. This corresponds to the so-called negative
selection phenomenon happening in the body. The negative selection avoids
auto-immune reaction in the body. Here, the goal is to anticipate future false
positives.

4. If it is not destroyed as bad IDA, an immature IDA which TTL reaches zero
becomes a primary IDA. As primary IDA, its TTL is re-attributed a non-
null value and continues its random walk. At each hop it collects entering
events and computes the suspicion value. At every hop, its TTL decreases by
one unit. If its suspicion value reaches a certain threshold thm, it becomes a
mature IDA and it is kept in the system as good IDA. If its TTL reaches zero,
it terminates because it is rejected as bad primary IDA. Since it matches no
event, it is considered to be unadapted and thus inefficient.

5. As mature IDA, its TTL is deactivated and its last computed suspicion
value is maintained. It continues to move with the possibility to adapt its
random walk to what happens in its neighborhood. Different strategies are
then possible according to the preferences of the security administrator. In
the present case, the IDA chooses in its neighborhood the node with the
smallest frequency of visit1 by an identical IDA (identified by IdA). Each
time, it detects an entering event the suspicion value is computed. Beyond
the pre-established threshold tha, an alert is launched.

6. Each time a mature IDA revisits its originating host, the corresponding
suspicion value in the non-self profile is updated with the last suspicion
value computed by the mature IDA. The originating host is the host that
has generated the immature IDA leading to the mature IDA. During the
system operation, the number of agents is controlled and they proliferation
is limited. This phenomenon is also present in the body where the number
of cells and their specialization is controlled to avoid notably a metastasis
phenomenon. In this case, the cells escape from any control, multiply in an
anarchistic way and lose their specificity. However, when it is required cells

1 Other stategies are also possible.

234 N. Foukia

of the body such as macrophages2 proliferate to protect the body. Similarly,
the IDAs’ population proliferate only when it is required. Thus, revisiting
its originating host, a mature IDA is cloned before moving to the next hop,
only if its suspicion value is too high. The two resulting IDAs continue their
walk.

7. As soon as a suspicious event is detected the IDA launches an alert, builds
an artificial pheromonal information that is specific to the suspicious event
which is called electronic pheromone. The IDA evades the infested node as
soon as possible, freeing the place for other agents especially adapted to
perform a response. The IDA, entirely invested in its detection task, changes
its walk’s strategy; looking for another sign of the same suspicious behavior
in its neighborhood, it chooses preferably a neighbor with a pheromone to
correlate.

The electronic pheromone comprises all the essential fields dedicated to this
sequence of actions. The main fields are:

– The identifier of the responsible IDA which built the pheromone after having
detected the attack: IdA.

– The pheromone creation date: t0. This pre-suppose that the machines are
synchronized between each other.

– The intermediate date ti, which corresponds to the date when the pheromone
is deposited on the intermediate node i during the pheromone propagation.

– The number of hops that corresponds to the distance in term of nodes at
which the pheromone is diffused: Hop. The network is represented by a graph
of neighborhood dedicated to the MAs’ displacement. Each MA obtains from
the node it is currently visiting the list of the next neighbor nodes it can
visit. This neighborhood graph is a logical graph built on the top of the
real network topology, for the needs of the conceptual model. It represents
a logical view of the nodes which can see each other, whereas in reality,
in a LAN all the machines can see each other. The neighborhood graph is
also used by the SimplePheromonePropagator for the pheromone’s diffusion
through the network.

– The gradient that decreases hop by hop from the alert source and will be
used by the IRAs to follow back the pheromonal path to the alert source:
Gd.

– The suspicion index : SI, that corresponds to the degree of importance of the
attack. This degree depends on a tolerance threshold fixed at the start-up
and which can be adjusted during the system execution.

The electronic pheromone is diffused in a randomly chosen direction by an-
other agents’ population, namely the SimplePheromonePropagators. Schemat-
ically, the SimplePheromonePropagator is called by the IDA before this latter

2 A macrophage is a type of white blood cell that surrounds the body and kills mi-
croorganism, removes dead cells, and stimulates the action of other immune system
cells.

IDReAM: Intrusion Detection and Response Executed with Agent Mobility 235

evades the infested node. The SimplePheromonePropagator is responsible for se-
lecting randomly a neighbor and moves there to deposit the pheromone. At this
new selected node, the SimplePheromonePropagator repeats the same operation:
it selects randomly another neighbor it never visited, moves there and deposits
the pheromone. The same operation is iterated a number of time corresponding
to the field: Hop, of the pheromone. This dissociation of roles is quite useful
because it allows the different populations of agents to work independently from
each other in an asynchronous way. The pheromone is used by the IRAs, another
category of MAs living in the system that work cooperatively to respond to the
detected attacks.

Overall, the common key points which our model borrows from the immune
system are the following:

– The specificity because each IDA is specialized in one kind of anomaly. An
IDA memorizes new sequences specific to this anomaly or it is specialized in
one specific signature pattern.

– The dynamicity because each IDA continuously circulates through the secu-
rity domain, which increases the global coverage provided by all the IDAs’
population over time.

– The autonomy because each IDA can decide to clone itself only if the level
of suspicion becomes too high.

– The distribution of information among the different nodes, which avoids a
central point of failure and which allows a distribution of the different points
of alert in the system.

6 IRSystem

The response principle is as follows:
At system start-up, another population of agents, the IRAs, is also created at

the different nodes. In parallel to the IDAs’ population each IRA of the IRSys-
tem performs a random walk through the network looking for a pheromonal trail
representing an alert. The roaming IRAs will follow it as soon as they detect
its existence. More precisely, this pheromonal information acts as a communica-
tion medium to alarm the different populations of IRAs because the IRAs are
also specialized in different responses. Therefore, the information carried by the
pheromone is different according to the suspected intrusion as well as its serious-
ness allowing IRAs to perform an adequate response. This is quite advantageous
in term of performance because it avoids having inappropriate agents moving to
a location where they will be useless. Moreover the pheromone will also evapo-
rate after a certain lapse of time avoiding an IRA to migrate to a location where
the alert is obsolete. Finally, as soon as an effective response has been performed
a pheromonal inhibition process is activated. This process consists of accelerat-
ing the pheromone evaporation process, avoiding that several IRAs follow the
same trace.

236 N. Foukia

Chronologically, an IRA follows the sequence of actions described below:

1. At the start-up, it is created by a host and it is in its normal quiet state.
In this quiet state, it moves randomly and searches for a pheromone in the
network.

2. If it finds a pheromone, it switches to a tracking state and follows the
pheromone to its source.

3. Following the pheromonal trail, it accelerates the pheromone evaporation
process on each node belonging to the current trail. That reduces the time
remaining before the complete pheromone evaporation without preventing
other IRAs from following the same trail. Thus, that increases the chance
that a response is given avoiding that too many IRAs follow a trace already
detected. As soon as it reaches the node where the suspicious behavior was
detected, the IRA performs the response, it destroys the pheromone and it
switches to its normal quiet state.

4. Then it continues its random walk to discover another pheromone.

Evaporation of the Electronic Pheromone

Obviously, the evaporation process of the electronic pheromone has to begin
in the last node reached by the pheromone. Then it will reach the other nodes
of the path in the opposite direction of the diffusion. In this scheme, an IRA
visiting a node with a pheromone can always follow the pheromonal gradient
up to the first node. An evaporation index Δ has been defined as the period of
life, allocated to the electronic pheromone deposited in the last node n, before it
disappears. This lapse of time is adjusted according to the average time needed
by an IRA to perform its task when visiting a node; that is, to read and in-
terpret the pheromonal information. Also to choose the next node to visit. The
pheromonal deposit will disappear first at the last node n after a duration Δ.

Then, the pheromone successively disappears at each intermediate node i,
starting from the last node n until the node responsible for the intrusion’s alert.
The pheromone’s evaporation date Tevap(i) at each intermediate node i has
already been computed in a previous paper [5] according to known parameters
and is given by:

Tevap(i) = ti + 2 × ti − t0
i

× (n − i) + Δ

where:

– ti is the pheromone deposit date at the node i.
– t0 is the pheromone deposit date at the node 0.

Inhibition of the Electronic Pheromone

To avoid too many IRAs converging to the same source, an inhibition index,
α, has been defined, that increases the rate of the pheromone evaporation in
each node already visited by an IRA. This is explained in the following:

IDReAM: Intrusion Detection and Response Executed with Agent Mobility 237

A first IRA entering the node i at tA1(i) should intervene between date ti
and Tevap(i). Thus, after date tA1(i), the time remaining before the pheromone
completely evaporates at node i is:

Tevap(i) − tA1(i)

With the inhibition process, a second IRA should intervene in a period of time
corresponding to a ratio α of this remaining time. This inhibited remaining time
is given by:

α × (Tevap(i) − tA1(i))

Thus, the second IRA has to reach node i at a date tA2(i) such that:

tA1(i) ≤ tA2(i) ≤ tA1(i) + α × (Tevap(i) − tA1(i))

This inhibition process is repeated for every IRA detecting the same pheromone at
the same node i, until the pheromone completely disappears or a response is given.
Like the evaporation process, the inhibition process contributes to limiting the
IRAs’ fruitless activity and movement as well as wasteful resource consumption.

7 Conclusion

The conceptual model presented in this paper is built with two main populations
of MAs that self-organize to protect a computer network in a distributed and
decentralized way. For that, agents have to interact with each other. The goal
of this interaction is the emergence of a collective defensive behavior. It makes
sense to apply the two natural system metaphors to IDReAM because several
characteristics of these two natural systems are present in IDReAM. Notably:

– The natural environment constitutes the communication medium for natural
entities; the network environment constitutes the communication medium for
MAs.

– Like the natural entities (T cells, ants), agents are immersed in the environ-
ment.

– Thanks to the environment, inter-entity interaction leads to a collective com-
munication model that deals with large-scale tasks such as the detection of
a source of food for ant populations or the detection of a source of attack
for MA populations.

– Both types of systems (natural systems and MA systems) behave dynami-
cally and each state influences the environment. In its turn, the environment
influences the system dynamics. Thus, the global system equilibrium is main-
tained by an interaction loop between the environment and its population.

As it was previously mentioned, the present paper details mainly the concep-
tual model of IDReAM. However, IDReAM’s assessment is provided in a PhD
Thesis [3] with respect to the following requirements:

238 N. Foukia

1. Robustness: The robustness is mainly due to the furtivity of the agents
distributed in the network. There is no point of centralization of all the
information because, according to the conceptual model the majority of the
information is located at different locations of the network environment;
each machine owning its set of profiles (sel, non-self), each pheromonal trace
being deposited temporarily and in a random way in the network. Moreover,
in case of accidental death of the agents (IDAs and IRAs) a mechanism that
controls the population of agent enhances the model; this mechanism ensures
that the visits’ frequencies of the agents (IDAs and IRAs) at each node do
not exceed a certain value (or is not under a certain value): if agents are
missing the hosts create new agents, if there are too many agents the hosts
destroy them. Moreover, all the agents are encrypted when traveling through
the network and they are authenticated by the hosting node before being
executed. This prevents them from being corrupted by an attacker.

2. Extensibility: IDReAM can be easily extensible to detect new intrusions by
adding new sequences in the non-self profiles without disturbing too much
its operation. If the intrusion is extremely suspect it suffices to attribute a
high suspicion value to the corresponding non-self sequence.

3. Scalability: The model ensures the scalability of IDReAM for two reasons:
Even if there is a great number of immature IDAs just a few of them suc-
ceed as mature IDAs. Moreover the number’s effect is reduced because the
moving agents (IDAs and IRAs) are permanently distributed among the
machines. Moreover, the model guarantees that small MAs providing simple
and lightweight detection and response tasks do not undoubtedly lead to the
degradation of the performances.

In the same way, [3] provides the description of IDReAM’s implementation
using a pure Java-based mobile platform named J-Seal2 [8]. The behavior of
the different populations of agents and the corresponding services in accor-
dance with the model have been experimented. The results obtained are rather
promising and convinced us of the feasibility of the conceptual model to build
IDReAM and the reader is invited to refer to [3] for the implementation and
the assessment details. Certain results were already presented in [4]. A re-
cent benchmark has been provided that will make the object of a forthcoming
article.

References

1. G. Di Caro and M. Dorigo. Ant colonies for adaptive routing in packet-switched
communications networks. IRIDIA Universit Libre de Bruxelles Belgium, 1998.

2. S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff. A sense of self for unix
processes. In Proceedinges of the 1996 IEEE Symposium on Research in Securit
and Privacy Context Related, 1996.

3. N. Foukia. IDReAM: Intrusion Detection Executed with Agent Mobility - A Dis-
tributed Approach Inspired from Natural Life Systems. PhD thesis, University of
Geneva, 2004.

IDReAM: Intrusion Detection and Response Executed with Agent Mobility 239

4. N. Foukia and S. Hassas. Managing computer networks security through self-
organization - a complex system perspective. In Proceedings of the First Interna-
tional Workshop on Engineering Self-Organising Applications (ESOA), Melbourne,
Australia, 14-15 July 2003.

5. N. Foukia, S. Hassas, S. Fenet, and J. Hulaas. An intrusion response scheme:
Tracking the alert source using stigmergy paradigm. SEMAS 2002, Bologna -
Italy, July 2002.

6. P. P. Grassé. La reconstruction du nid et les interactions inter-individuelles
chez les bellicoitermes natalenis et cubitermes, la thorie de la stigmergie - essai
d’interprtation des termites constructeurs. Insectes Sociaux, no. 6, pages 41–81,
1959.

7. S. A. Hofmeyr and S. Forrest. Immunity by design: An artificial immune system.
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO),
Morgan-Kaufmann, San Francisco, CA, 1999.

8. J-Seal2. http://www.coco.co.at/development/.
9. S. H. Kleinstein and P. E. Seiden. Simulating the immune system. Computing in

Science and Engineering, pages 69–77, July 2000.
10. A. Martinoli. Swarm Intelligence in Autonomous Collective Robotics: From Tools

to the Analysis and Synthesis of Distributed Collective Strategies. PhD thesis,
EPFL, Lausanne, Switzerland, 1999.

Managing Dynamic Flows in Production Chains
Through Self- rganization

Frederic Armetta1,2, Salima Hassas1, Simone Pimont1, and Emanuel Gonon2

1 LIRIS, Nautibus, 8 Bd Niels Bohr,
Université Claude Bernard-Lyon 1,

43 Bd du 11 Novembre F-69622 Villeurbanne
2 OSLO-Lyon, 40 rue Camille ROY,

69007 LYON

Abstract. In this work, we are interested in modeling a production
chain following the perspective of complex adaptive system. We propose
an approach, allowing a production chain to manage by itself, its own be-
havior, so as to satisfy the constraints imposed upon it by its environment
and reach a set of predefined objectives. We propose self-organization as
a mechanism, to achieve such a goal.

Keywords: self-organization, emergent behavior, swarm intelligence,
software engineering.

1 Introduction

In many industrial manufacturing systems, the great number of tasks to achieve
for each product, the great number of products to produce, routing flows of
products in the system, etc , are at the essence of the system complexity. In
addition, the system evolution depends on the variation of many factors such
as : the amount and kind of products, products priorities, the state of resources
(machines breakdowns, operators delays, etc). In this work, we are interested
in modeling a production chain following the perspective of complex adaptive
systems. We propose an approach, allowing a production chain to manage by
itself its own behavior, satisfying the constraints imposed upon it by its envi-
ronment and attempting to reach a set of predefined objectives. We propose
self-organization as a mechanism, to achieve such a goal.

1.1 Context and Objectives of Our Case Study

To manage the manufacturing, we focus on three main elements :

– Tasks : A product manufacturing consists of achieving a sequence of tasks.To
make a product, one must achieve all its tasks.

– resources : represented by machines which achieve the tasks necessary for a
product manufacturing. They have a limited capacity and can break down.

S. Brueckner et al. (Eds.): ESOA 2004, 3464, pp. 240–255, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

o

Managing Dynamic Flows in Production Chains Through Self- rganization 241

– Flows : A flow is associated with a product type. It is characterized by
a progressing speed (how long does it take to achieve a production stage)
and a size (how many products are realized at the same time) for each of
the production stages. Its evolution depends on all the product dispatching
decisions made by the production management system.

We consider a production chain in the domain of electronics. For this domain,
we can notice the following characteristics :

– a long sequence of operations (more than a hundred) for a manufacturing
product;

– reenterant flows: which means a manufacturing product uses several times
the same resource for its processing;

– the use of evolving technologies;
– the use of expensive resources;
– the use of same resources for both manufacturing products and research and

development products;
– frequent breakdowns;
– evolving commercial needs;

In this context, the production chain needs to satisfy the following (sometimes
opposite) objectives :

– Objective 1 : maximize the resources use, and maintain this maximization
on a long term;

– Objective 2 : make the output of the production system linear ;
– Objective 3 : minimize the mean time of the production cycle (the production

cycle corresponds to the duration of a product manufacturing) ;
– Objective 4 : make the system attribute a high priority for the manufacturing

of research and development products;
– Objective 5 : and at a longer-term, acquire information, from the system

itself, on its own feeding requirement. This allows to provide a kind of system
load profile (composed by new products to make).

1.2 Guidelines and Suggestions

To reach the objectives stated above, we propose the following guidelines, that
will serve as founding concepts for our approach.

– To maximize the resources use (Objective 1), we propose to ensure a sufficient
amount of products available on each resource (queues of products ahead of
resources). This makes the system robust and allows for the absorption of
perturbations that may occur in the system. Even if a resource is not anymore
feeded with products, it can manufacture products in its queue. To do so,
we suggest to make the system behave by anticipation, forecasting its future
needs. The system do so, by acquiring continuously, qualitative information
on its activity.

o

242 F. Armetta et al.

– to make the system’s output linear (Objective 2), we suggest to control the
progression of the products in the system. To do so, we use a mechanism of
information feedback, based on the requirements in term of system activity
and needs, to obtain an ideal system output. The system attempt to satisfy
a linear output.

– to minimize the mean time of the production cycle (Objective 3), we suggest
to maintain a small number of products in progress in the system. To do so,
we seek to schedule tasks on adequate resources (in a predefined objective
time window), so as to obtain a satisfactory mean number of products in
progress 1 .

– to give a priority to the manufacturing of research and development products
(Objective 4), we suggest to make the system be able to control the progress
of products to be manufactured;

To address these questions, we propose to model the production chain as a
complex adaptive system, which activity is founded on the guidelines described
above. Our complex adaptive system is represented by a situated multi-agents
system. Thus, the production system is represented as a situated multi-agents
system, the objective of which is to find a spatial organization making it possible
to satisfy the environmental constraints, while addressing the flow management
problem. This paper is organized as follows : first we give our motivation for
the use of a situated multi-agents system, we present various approaches that
have been applied to the production management. In section 3, we present our
approach and underlines its founding concepts. In section 4 we present some
experiments and results. We conclude this paper by a discussion and by giving
some perspectives for the ongoing work.

2 Related Works

There is a wide range of works applied to the scheduling management. For this
problem, we distinguish two solving philosophies. For the first one presented in
2.1, we present approaches based on centralized systems to efficiently compute a
schedule to apply. In 2.2, we present approaches which performances come from
empirically correct behavior.

2.1 Optimization Methods

Optimization methods have frequently been applied to the typical job-shop prob-
lem. Different approaches exist such as ”Branch and Bound” methods and the
constraint satisfaction methods [3][13], methods based on mathematical analysis
[9], use of metaheuristics for efficiently covering the search space [1][22], their

1 Average waiting time of products between two production stages (induced by the
predefined objective time window) is related with the amount of products in the
system. Large waiting time = several products in queues = large amount of products
in progress in the system.

243

combination to some classical optimization approaches [19], etc. In [14], an hy-
brid approach combines various method types for optimization and produces
good results.

Although giving an optimal schedule that minimizes (or maximazises) a per-
formance measure f (usually a function of job completion times), the above
presented methods lack robustness, when faced to disturbance, and don’t fit
the industrial problem. Computing this kind of optimal schedules is useless if
they can’t be applied because of many real-time disturbances. New methods
are developed in order to accommodate disturbances. The group ‘Robustesse et
Flexibilité’ works on generating robust scheduling with uncertainties using meth-
ods from operational search and artificial intelligence [5]. In [8], authors looks for
super solutions allowing the integration of local disturbances. These integration
attempts are difficult to realize and can not be applied at the present time to all
scheduling management problems.

2.2 Empirically Correct Behavior Methods

The scheduling management can be the result of choices realized in real time
by the system. Thus, empirically correct behavior methods define the waiting
queue product priorities and the route realized by each product, at each prod-
uct’s stage manufacturing. By its intrinsic properties (several kinds of perturba-
tions, several interactions, etc), a production chain exhibits the characteristics
of a complex system, evolving in an uncertain environment. The multi-agents
paradigm (MAS) provides good characteristics (such as adaptation capacities,
decentralized control, autonomy, etc), for representing such a system. In MAS,
the contract-net protocol is a negotiation mechanism that allows products to
compete for resources [21]. Cooperation between products competing for acquir-
ing resources increase system performances [20]. Parunak and Barto discuss in
‘Agent-based Models and Manufacturing Processes’ the significant improvement
realized by agent acting for the electronic components manufacturing in an AMD
factory. In [2], the resource specialization for tasks allows to increase system per-
formances. In [18], authors use a more cognitive approach called Methamorph. In
this case, negotiation is made between hierarchically arranged agents from dif-
ferent types having important deliberating capacities. In [17], authors consider
the learning capacity of such systems.

In order to avoid bottleneck, one must control Work-In-Progress (WIP) level
in the production system [11]. In [4], authors try to maintain an appropriate
WIP level on each resource. Thus, the priority products in queues are defined
according to products usefulness for the system. In such a way, in [15], authors
control upstream and downstream WIP level on each resource. These methods
allow to communicate reception capacity towards upstream production layers,
to maintain good performances for the system.

In [16], authors propose to provide system bottlenecks to a centralized algo-
rithm which dispatch products in order to decrease congestions impact. Putting
up the number of known bottlenecks integrated to compute the dispatching in-
crease the process efficiently.

Managing Dynamic Flows in Production Chains Through Self- rganizationo

244 F. Armetta et al.

Although the control of the WIP level allows a limited control of the system
trend, presented methods do not anticipate flows products through the system
(MRP2 logic in industrial area). However, we think that we can take advan-
tage of a multi-agents approach realized at a bottom layer (representing each
planning task to realize by an agent). These modeling allows to anticipate con-
gestions and to take advantage of an implicitly decentralized representation of
the system state. Then, it is not necessary to indicate to the system the bottle-
necked resources because they are known by the system itself. [10], presents a
fuzzy anticipating planning which evolves each time a disturbance occurs. This
forecasting technique provides useful information to the decision making process.

3 Our Approach: A Self- rganizing Approach for
Dynamic Flow Management in a Production Chain

In our approach we address the problem of production scheduling, as a spatial
negotiation process between a set of tasks and a set of free scheduling temporal
areas on the available resources. To do so, we use a metaphor of fighting between
competing reactive agents. Our approach is based on the following principles :

3.1 Eco-Resolution

The eco-resolution paradigm has been first introduced by J. Ferber in 1989 [6].
It bases the resolution of a problem on mechanism of a state space search, by
reactive agents guided by a satisfaction fitness function. In our problem, we
represent the product tasks as situated agents, evolving in a shared environment
corresponding to the set of available scheduling temporal areas on the system
resources. In order to build the schedule, agents have a unique goal, which is
to place themselves as soon as possible on suitable scheduling temporal areas
defined on their environment 2. The environment corresponds in fact to a zone
of anticipation of the scheduling, that is gradually realized by the resources in
the course of time. Although environment corresponds to a temporal planning
(each task agent is placed with a begin/end date), we describe it as a spatial
environment.

3.2 Stigmergic Communications and Application

Stigmergy is an indirect mode of communication, mediated by the environment.
This principle has been first introduced by Grassé [7], while studying the behav-
ior of social insects. It provides a spatial distributed coordination mechanism.
In our approach, task agents, are competing agents, which try to find satisfying
places on their environment. The agents placed form different local patterns with
various topologies. The space characteristics of the patterns thus formed influ-
ence the behavior of the agents seeking to improve their situation. Thus, there
is a phenomenon of positive/negative feedback between the patterns structures

2 Agents place themselves earliest in the planning of a resource.

o

245

evolution, resulting from past behaviors of agents, and their future behavior.
Thus, let us see a way of putting in competition agents by stigmergic way.

3.3 Self- rganization Through a Fighting Mechanism

To find a satisfying place in the environment, a task agent visits randomly the
set of suitable resources.3 On a selected resource, the task agent tries to get
a scheduling area, by competing with tasks already scheduled on the resource.
This competition between agents is aimed to maximize the resources use. Unused
scheduling areas are thus pushed towards a later scheduling time.

We can see on figure 1, how a spatial negotiation is achieved by agents, at
the level of a resource. On the left part of the figure, we represent the resource
structure, which is composed of a set of scheduled task agents and a set of unused
scheduling areas. A task agent, seeking for a suitable scheduling area creates
different groups composed of sets of placed agents and unused scheduling areas,
fitting its needs. Then, the attacking agent randomly selects a group with which
it could engage in a fighting process.

Fig. 1. Fighting mechanism of tasks agents

If the first component of the selected group is an unused scheduling area, the
attacking agent wins the fighting. This mechanism of fighting allows for efficiently
pushing away unused scheduling areas present on a resource. As the number
of fighting achieved by competing tasks agents is high, the unused scheduling
areas weakening the system’s environment are pushed out of the planning. This
phenomenon tends to maximize the system resources use.

3.4 Considering Information Embodied in the System

A Need to Refine the Generated Solution. The mechanism presented
above responds to the first objective of our problematic (i.e. flow managing to
maximize resources use). However, to respond to the third objective (reducing
the amount of products in progress in the system), one has to reduce the mean

3 A resource is suitable for a task agent, if it is able to achieve the corresponding task.

Managing Dynamic Flows in Production Chains Through Self- rganizationo

o

246 F. Armetta et al.

length of waiting queues of products. This reduction increases the risk to under-
utilize a resource, for lack of products 4. Thus, we must make a good balancing
between satisfying objective 1 and objective 2. To guarantee that the products
arrive on resources at the appropriate time (avoid congestion), one has to an-
ticipate the flows produced in the system in order to find a solution allowing as
well as possible to satisfy the resources capacities on the long term.

What Kind of Decision has to be Made? When the size of a resource
waiting queue becomes important, a congestion happens, making the resource
capacity insufficient to feed other resources located downstream. One has thus,
to carry out choices of priority between tasks, at the level of the congested
resource. These choices, allow some tasks to place themselves on the resource,
so as to manufacture urgent products quickly, and let less urgent tasks in the
resource waiting queue.

Listening to the System Activity. In order to define efficiently the priori-
ties of agents in queues, we must consider information embodied in the system.
Indeed, it is possible to consider the capacities of the resources on an extended
horizon of production, and be able to feed the system resources with adequate
products at adequate times. Placements carried out by anticipation in the so
described ecosystem, provide us information on needs to fill. Also let us notice
that the mechanism that we will describe could also make it possible to linearize
the products output of the system (objective 2). It is then sufficient to consider
the linear output of the system as a regular capacity to fill, with the finished
products outgoing of the chain of production.

Two Kinds of Information. In order to refine the placement mechanism dur-
ing the fighting process between competing agents, we propose to consider infor-
mation revealing the importance of the different competing agents. On one hand,
already placed agents will be able to benefit from supporting information, which
reveal to the system, the importance of their current placement. On another
hand, agents seeking a potential placement, could benefit from information on
their urgency for the production process, and then on the necessity they have
to be scheduled quickly. This mechanism of recruitment of the useful products
supports the insertion of the not yet placed products.

These two kinds of information, goes up the planning gradually, to inform
agents and guide the different fighting process taking place in the system. Thus,
one collects within a resource, qualitative as well as quantitative information.

Informations About the Utility of Placed Agents. In order to allow al-
ready placed products to maintain their position, we make these agents profit

4 High product in progress level allow to flood the schedule (important queues on
resources). Scheduling with low product in progress level is more difficult and less
robust face to disturbances like resource breakdowns.

247

from a kind of information corresponding to their usefullness for the system. This
information is generated by each task agent, placed in the environment. To main-
tain its placement, an agent must also allow to maintain the placement of agents
corresponding to the preceding tasks of the product which it represents (A task
agent can be placed only if the completion date of manufacturing of the preced-
ing stage exists). Thus, with this first kind of information, placed agents inform
precedent agents of theirs associated products, of their usefullness for the system.

Information About the Need of the System to be Filled by not yet
Placed Agents. This mechanism allows resources lacking of products, to in-
form the corresponding tasks, of their urgency for the manufacturing process,
and boost their activity. Information is generated from an unused temporal area
(free area) on the resource schedule. On this resource, some products with var-
ious stages of their manufacturing process, are produced. Information is first of
all characterized by a type of product with one of its manufacture stages on
the resource. It is this combination product-stage which defines the course that
will be carried out by this information in the system. Gradually, information
traverses backward way, stages of products of the same kind as the required
product (a stage is associated with a resource). At each stage of the course, if an
appropriate task is found, the traversing information is transmitted to it, and
the course of traversing information is over. Let us notice, that the traversing
information could move until the stage 0 of the product manufacture, and thus
could represent a desirable loading profile for the system. This information could
thus also be considered to make decisions, to insert new products in the system
(objective 5).

The importance of transmitted information is computed locally. This infor-
mation importance could, for instance, be based on the size of the unused area
on the resource. Indeed, the more an unused area is large, the more it seems
important to attract products on the site of free areas in order to dissolve the
congestions being formed in the system.

As the system evolves, generated information may also evolve. To maintain
collected information significant during the system evolution, we have introduced
a mechanism of evaporation, which makes non reinforced information disappear.

Considering New Information Type During the Fighting Process. The
fighting mechanism has to be refined in order to use effectively this sum of
information, generated by the system, while allowing its stabilization. The basic
fighting mechanism is refined, in order to consider this kind of information. Thus,
the attacking agent carrying out the attack, wins the fighting inevitably if its
‘supposed usefulness’ for the system, is higher than the highest usefulness of
the placed agents, to which a threshold of movement is added. This allows to
reduce the system activity. In case the supposed usefulness of the agent is lower,
one applies then the basic fighting mechanism. When two agents belonging to
the same type of product are engaged in a fighting process, the attacking agent
never wins. Indeed, when applying a policy of management of flows , two agents
belonging to the same flow of product do not find it beneficial to fight each other.

Managing Dynamic Flows in Production Chains Through Self- rganizationo

248 F. Armetta et al.

4 Experiments and Results

In this section we present some experiments and results obtained through simu-
lations. We have led first, some experiments to test the application of the simple
fighting mechanism, presented in section 4.1. In 4.2, we could see how the use
of traversing stigmergic information through the system provides interesting im-
provements for the system activity. We have focused our experiments only using
one kind of information described in 3.4 : information related to the importance
for the system, of the different placed tasks agents.

4.1 The Basic Fighting Mechanism

We describe here, two characteristics that we have observed, just using the ba-
sic fighting mechanism (without using additional information). The first char-
acteristic concerns the self-organization of product flows through the system
resources, so as to avoid congestions. The second one concerns the ejection of
unused scheduling areas, to a more delayed scheduling time.

Self- rganization of Dynamic Flows of Products

– Experiment
Using the basic fighting mechanism, we try to make the flows of products in
the system to take place, and organize themselves , so as to avoid resources
congestion. Experiments have been led with products, that have various
choices of resources at some stages of their manufacturing. Thus, we can see
on figure 2 , that product P1 can achieve its different stages of manufacturing
on Resource M0 or M5. On the other hand, the product P0 can carry out
some of its stages of manufacturing only on M0.

– Results
We can see on the graph, when there are only products of P1 type in the
system, task agents of different P1 products, are placed equitably on M0
and M5. Indeed, each time an agent seeks a place, it selects randomly a
resource that can satisfy it. This implies that on average we obtain half
of the tasks placed on M0 and the other half on M5. While inserting P0
products in the system, we could notice that task agents, associated with the
different P1 products, have tendency to fix themselves more easily on the
least attacked resource (i.e. on M0). Indeed, on the most attacked resource,
the environment is often evolving because of the many undergone attacks,
and adherence is less important than on resources less prone to attacks.

This mechanism allows M0 to be naturally discharged from P1 products.
It acts as a natural mechanism of production load balancing. Thanks to the
variable horizon of the scheduling space, this mechanism of balancing is
carried out by anticipation. This makes the system stabilize itself towards a
solution that reduce resources congestions.

Ejection of Unused Scheduling Areas. The various experiments carried
out enabled us to notice that the basic fighting mechanism makes it possible

o

249

Fig. 2. Natural protection of the bottlenecks

to push back effectively unused scheduling areas present on schedules of the
various resources. Indeed, we support the ejection of these unused areas , thanks
to the rule defining that an attacking agent (wishing to obtain a site), wins the
fighting against a group of preys, if the first element of the attacked group is an
unused scheduling area. The activity of the system evolves naturally to a solution
which minimizes the amount of unused scheduling areas on the various resources.
Indeed, the system is stabilized when no not yet placed agent can be integrated
into a schedule because no unused scheduling area allows insertion. Also, faithful
to the principle of eco-resolution, none of the already placed agents can improve
its position because of lack of unused scheduling areas, in the system.

Rebuilding the Solution Face to Perturbations. In addition of the two
above characteristics, we were interested in the way in which the system supports
the disturbances occurring in real time. Thus, we simulated various breakdowns
of resources. We took for principle that when a failure occurs on a resource, all
the agents placed on this resource are ejected. Thus, we noticed that according
to the principle of eco-resolution, the various agents seek again a new satisfying
placement. This mechanism of search is carried out while again pushing back
effectively the unused scheduling areas, until stabilizing itself towards a satisfying
solution.

4.2 The Refined Fighting Mechanism

In this part, we present various simulations allowing us to study the interest
of the integration of additional information, related to the state of the system,
in the course of the computation. We will thus see, how and why integrating
this information guides the system to a satisfying solution. Various simulations
which we could carry out enabled us to notice that for each one of types of
fighting used, the system reach the stabilization. However, by using additional
information, the setting time of the system is more important. The system indeed
is stabilized, only when the situation obtained supply a place corresponding to
its supposed usefulness for the system to each task agent. We did not met, for
the moment, a cyclic situation preventing the stabilization of the system. We do
not exclude this possibility in some cases. Also, we think of deepening the study
of the system activity as suggested in [12].

Managing Dynamic Flows in Production Chains Through Self- rganizationo

250 F. Armetta et al.

Context of the Experiments. In the presented results below, we focus on
maximizing the production system use. We think, however, that the described
processes could be integrated in a policy which aims to linearize the production
system output as well as to minimize the products in progress level inside the
system. For now, we have considered the integration of one kind of informa-
tion, concerning usefulness for the system of placed agents. To do so, for each
experimented situation, we have computed some indexes revealing the impor-
tance of the improvement achieved with this information. Theses indexes are
not aimed to give a performance evaluation of the three studied problems. For
our experiments, the workshops have variable capacities of production relating
to the number of machines which they comprise. The products P1 have to be
done in a reentrant manner, while the products P2 can saturate the machines.

Maximizing the Production System Use

– Experiment
For this first simulation, we wished to study the distribution of two flows of
products in the system depending on its capacity (Figure 3). Thus, flows of
products P1 and P2 traverse various workshops which could carry out their
various operations. Workshop 3 has a capacity of 1, whereas other system’s
workshops have a capacity of 3. The flow of products corresponding to P2
thus knows an output of 3 for its first stage and only of 1 for its second
stage. It appears thus logical that the flow of product 1 (P1 flow) moves
more quickly in the system than flow of product 2. In real situations, this
kind of bottleneck appears in an unforeseeable way in the system because
of various disturbances. It is then advisable to reorganize flows in order to
maintain good performances for the system.

With approaches based on ‘contract net’ protocol, one can setup
rules allowing to manufacture in priority, on workshop 2, products
not being blocked with their following stage. We wish to make our
system subject to the same kind of problem as those solved by the use
of ’contract net’ protocol, by using however, a vision by anticipation.

– Results
On the left part of figure 3, we can see the scheduling achieved by our
system, using the basic fighting mechanism. We could note that some P1
products do not manage to be planned on the level of their stage 2 whereas
they can be scheduled on workshop 1 for their stage 3. Conversely, some P2
products are scheduled on workshop 2 for their stage 1 whereas they are
blocked with their stage 2 because the system cannot accommodate them.
These P2 products appear thus less urgent but opportunism resulting from
the basic fighting mechanism allows them to maintain their position. We see
on the right part of the figure that the integration of additional informations
makes it possible to solve this defect. Indeed, while using this information,
all the P1 products manage to be scheduled. Transmission of information
concerning the placement of agents makes it possible to know which agents

251

Fig. 3. Distribution [without/with] information : Distance of level 1

are useful for the system. Placed agents, with low usefulness for the system,
loose their positions. Consequently, the overall performance of the production
system is maximized. One notices, on another hand, that each of P2 products
scheduled on workshop 2 are also scheduled with their following stage. These
placed agents are regarded as useful for the system and manage to preserve
their positions.

Flows Crossing on a Wider Horizon

– Experiment
We wished to measure the performance of our system over the same type
of problem of flows crossing, but this time on a wider horizon (Figure 4 5).
Thus, flow 2 corresponding to the P2 product undergoes a bottleneck on its
third stage level. The principle of distribution must remain the same one as
previously. It is useless to place products on workshop 2 if these products
cannot be accommodated by the system for their following stages. Thus,
without any modification of the behaviors used, we subject our system to
this new problem.

5 The various tasks placed on the figure 4 do not take part in the computation of the
various indexes because, taking them into account does not reveal the coherence of
the placement obtained.

Managing Dynamic Flows in Production Chains Through Self- rganizationo

252 F. Armetta et al.

– Results
Information forwarding in the system, once more, allows the system to reach
stabilization on a good quality solution. The system is not disturbed by this
more distant horizon because the system carries out a schedule by antici-
pation which enables him to already anticipate the problem on the level of
workshop 2. Moreover, information evolving in the system does not have a
horizon of limited diffusion. On the contrary, protocols such as ‘contract net’
have more limited vision which does not make it possible to anticipate easily
and dynamically this kind of problems. Thus, on the left part of the figure,
we can see that by using the basic fighting mechanism, one obtains the same
kind of result as presented previously. In the same way, on the right part of
the figure, we notice that the system adapts well to the new problem: only
the awaited products can be placed.

Fig. 4. Distribution [without/with] information : Distance of level 2

Exploring the Solution Space Capacity

– Experiment
At last, we wished to increase the difficulty of the problem in order to have
a better idea of the capacity of the system, in exploring the solution space
(Figure 5). Indeed, for this simulation, the P1 products carries out also some
of its tasks on workshop 4. Thus, the two flows (P1 and P2) are competing
for the workshops 2 and 4.

253

Fig. 5. Distribution [with/without] information : Distance of level 2 + difficulties

– Result
On the left part on figure 5, we see the result obtained by using the basic
fighting mechanism. By opportunism and because of a new range for P1
products allowing it, all the tasks of the 10 P1 products inserted in the
system manage to be placed on workshop 1 (10 * 4 stages = 40). However,
these placements are not optimum because on workshop 1, many scheduling
area remain unused. P1 products are placed too late on workshop 2. Places
being once more occupied by P2 products (blocked with their stage 3), and
thus being less urgent. On the right part of the figure, we see that by using
the refined fighting mechanism, the solution is again of good quality. The
activity of the system allows the agents of P1 to have a chance to be placed
on the workshop 4 which is a congested workshop. These products were able
to exploit their chances and thus to stabilize their positions and to improve
it, in order to get a place according to their importance for the system.
One can thus say, that at the system level, there is a feedback between the
attempt of placement and its validation by the system. All this, generating
in addition, an activity in the system, allowing the P1 agents to have an
opportunity to be placed on workshop 2 and 4, so that they can then also
stabilize their situation and improve it. The system is stabilized finally when
each product obtains a position which is suitable for him.

Need for More Boosting Information. In the various tests carried out,
the natural activity of the system allowed each agent to find a suitable place.

Managing Dynamic Flows in Production Chains Through Self- rganizationo

254 F. Armetta et al.

However, we think that in some cases, for lack of activity, information will have to
be brought to the products blocked (not-scheduled) on the different workshops
in order to allow them to have a chance and to prove their importance for
the system. This second type of boosting information corresponds in fact to
information relative to various unused scheduling areas, present in the previously
described system (3.4). In addition, because of the mechanism of information
used, the task agents corresponding to last tasks of their product, have a weak
level of information because they do have no (or not enough) agents located
downstream bringing weight to them. In order to return to the task agents,
situated at an end of manufacturing process, all their importance, one will be
able to use a mechanism allowing, to inform these tasks that they correspond to
awaited finished products, and this following a regularity of output of finished
products for the system. This last point, allows to respond to the objective of
making linear the system outputs (Objective Two).

5 Conclusion

We have presented in this paper, an ongoing work on the dynamic flow man-
agement in a production chain, through mechanisms of stigmergy and self-
organization. Our approach is based on the use of the situated multi-agents
paradigm, reproducing a fighting mechanism between competitive agents. We
have first proposed a basic fighting mechanism to achieve dynamic scheduling of
tasks on a set of resources, in order to avoid congestion of the system resources
and make flow of products more flexible. We have also observed through simu-
lations, robustness of the system face to perturbations. We have proposed at a
second step, a refinement of the basic fighting mechanism, through the integra-
tion of retroactive information inside the system. This last mechanism permits
to counterbalance the opportunist character of the first one. We have presented
some experiments and results. The first obtained results seem interesting. We
are now deepening our study in order to formalize our approach.

References

1. M. Ventresca B. Ombuki. Local search genetic algorithms for the job shop schedul-
ing problem, November 2002.

2. Bonabeau E Theraulaz G & Deneubourg Campos, M. Dynamic scheduling and
division of labor in social insects. Adaptive Behaviour, 8:83–95, 2001.

3. Yves Caseau and Francois Laburthe. Improving branch and bound for jobshop
scheduling with constraint propagation. In Combinatorics and Computer Science,
pages 129–149, 1995.

4. Yun-Min Feng Chih-Hung Tsai and Rong-Kwei Li. A hybrid dispatching rules in
wafer fabrication factories. International journal of the computer, the internet and
management, January 2003.

5. E. Sanlaville et Al. Flexibilité et robustesse en ordonnancement, article du groupe
flexibilité. ROADEF, 2002.

255

6. Jacques Ferber. Objet et Agents : une étude des structures de représentation et de
communication en Intelligence Artificielle. Thèse de doctorat, Université Paris VI
(Jussieu), 1989. In French.

7. P.-P. Grassé. La reconstruction du nid et les coordinations inter-individuelles chez
Bellicositermes natalensis et Cubitermes sp. La théorie de la Stigmergie: Essai
d’interprétation du comportement des Termites Constructeurs. Insectes sociaux,
6:41–80, 1959. In French.

8. E. Hebrard, B. Hnich, and T. Walsh. Super solutions in constraint programming.
In Proceedings CPAIOR’04, Nice, France, 2004.

9. X.. Zhao J. Wang, P. B. Luh and J. Wang. An Optimization-based Algorithm for
Job Shop Scheduling, volume 22, chapter 2, pages 241–256. 1997.

10. H. Van Dyke Parunak John A. Sauter. Ants in the supply chain, 1999.
11. C.G. Panayiotou and C.G. Cassandras. Optimization of kanban-based manufac-

turing systems. Automatica, 35:1521–1533, 1999.
12. H. Van Dyke Parunak, Sven A. Brueckner, Robert Matthews, and John Sauter.

How to calm hyperactive agents. In Proceedings of the second international joint
conference on Autonomous agents and multiagent systems, pages 1092–1093. ACM
Press, 2003.

13. Franois Roubellat & Al. Pierre Lopez. Ordonnancement de la production. Hermes,
2001.

14. Dardilhac D. et Dezalay D. Portmann M-C., Vignier A. Branch and bound crossed
with ga to solve hybrid flowshop. European Journal of Opérational Research,
107:389–400, 1998.

15. K. Schild S. Bussmann. An agent-based approach to the control of flexible pro-
duction systems. In Proc. of the 8th IEEE Int. Conf. on Emergent Technologies
and Factory Automation (ETFA 2001), 2001.

16. Subhash C. Sarin and Sameer T. Shikalgar. Reduction of average cycle time at a
wafer fabrication facility, 2001.

17. Weiming Shen, Francisco Maturana, and Douglas H. Norrie. Learning in agent-
based manufacturing systems. In in Proceedings of AI & Manufacturing Research
Planning Workshop, pages 177–183. The AAAI Press, 1998.

18. Weiming Shen and Douglas H. Norrie. Combining mediation and bidding mecha-
nisms for agent-based manufacturing scheduling. In Katia P. Sycara and Michael
Wooldridge, editors, Proceedings of the 2nd International Conference on Au-
tonomous Agents (Agents’98), pages 469–470, New York, 9–13, 1998. ACM Press.

19. V. T’Kindt, N. Monmarche, D. Laugt, and F. Tercinet. Combining ants colony opti-
mization and simulated annealing to solve a 2-machine flowshop bicriteria schedul-
ing problem. In 13th European Chapter on Combinatorial Optimization (ECCO
XIII), pages 129–130, Mai 2000.

20. John M. Usher and Yi-Chi Wang. Negotiation between intelligent agents for man-
ufacturing control, 2000.

21. Yi-Chi Wang and John M.Usher. An agent-based approach for flexible routing in
dynamic job shop scheduling. In 11th Industrial Enginering Research, 2002.

22. Xiaokun Zhang Yuefei Xu, Robert W. Brennan and Douglas H. Norrie. A genetic
algorithm-based approach to holon virtual clustering. In in Proceedings of World
Multiconference on Systemics, Cybernetics and Informatics (SCI’2000), pages 380–
385, 2000.

Managing Dynamic Flows in Production Chains Through Self- rganizationo

S. Brueckner et al. (Eds.): ESOA 2004, 3464, pp. 256 – 266, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Self- rganizing and Fault-Tolerant Wired
Peer-to-Peer Sensor Network for Textile Applications

Christl Lauterbach1, Rupert Glaser1, Domnic Savio1, Markus Schnell1,
 Werner Weber1, Susanne Kornely2, and Annelie Stöhr2

1 Infineon Technologies AG, Corporate Research, Otto-Hahn-Ring 6

81739 Munich, Germany
christl.lauterbach@infineon.com

2 Siemens AG, Corporate Technology, Otto-Hahn-Ring 6
81739 Munich, Germany

Abstract. Textiles are omnipresent in everyday life. Their combination with
microelectronics will lead to completely new applications, thus achieving ele-
ments of ambient intelligence. The integration of sensor or actuator networks,
using fabrics with conductive fibres as a textile motherboard enable the fabrica-
tion of large active areas. In this paper we propose a “smart textile” based on a
wired peer-to-peer network of simple information processing elements with in-
tegrated sensors or actuators. A self-organizing and fault-tolerant architecture is
accomplished which detects the physical shape of the network. Routing paths
are formed for data transmission, automatically circumventing defective or
missing areas. The network architecture allows the smart textiles to be produced
by reel-to-reel processes, cut into arbitrary shapes subsequently and imple-
mented in systems at low installation costs. The possible applications are mani-
fold, ranging from alarm systems to intelligent guidance systems, passenger
recognition in car seats, air conditioning control in interior lining and smart
wallpaper with software-defined light switches.

1 Introduction

Many promising technologies are emerging in the area of intelligent textile materials
like electrically conductive yarns or pressure sensitive fabrics [1, 2]. State of the art
feature sizes of integrated circuits allow for powerful and yet small and cost-effective
microelectronic devices. Many interesting applications in the field of technical textiles
arise by merging micro-systems and textile fabric structures [3]: pressure sensors in
floor coverings for alarm systems or motion detection (person tracking), indicator lamps
in floor or wall coverings for guidance systems in public buildings, distributed sensor
networks for detection of defects in textile concrete constructions, and many more.

Approaching the given task of electronics integrated into large areas the following
questions arise: How can we exploit the functionality of all the integrated microproc-
essors, sensors and light emitting diodes? What happens, if the smart fabric is cut to
fit as e.g. a functional floor covering of an arbitrarily shaped room? Will a single
destroyed or defective module or wire lead to a complete failure of the function of the
smart textile system? To address these problems we decided to use a self-organizing

LNAI

o

 A Self- rganizing and Fault-Tolerant Wired Peer-to-Peer Sensor Network 257

and fault-tolerant architecture for the integrated sensor network. Research on self-
organizing systems is presently pursued extensively, worldwide [4]. Most sensor
networks are based on wireless data transmission [5, 6, 7, 8].

Several years ago, we developed ADNOS (algorithmic device network organiza-
tion system) for building a self-organizing and fault-tolerant wired peer-to-peer net-
work for large sensor and actuator areas [9]. Our first demonstrator of this technology
is the “Thinking Carpet” described below.

In a previous work Paradiso et al. [10] described a “Magic Carpet”, where an array
of piezoelectric wires and Doppler radar motion sensors are used to track the motions
of a performer in musical installations. Orr and Abowd [11] use a single pressure
sensitive tile within the “Smart Floor” for identification of persons by their character-
istic foot pressure profile during walking. In contrast, by using ADNOS we achieve a
homogenous touch-sensitive floor, which is capable of self-installation and automati-
cally circumvents defective areas of the sensor network. Moreover, through the local-
ization of the sensor signals, speed and direction of the movement can be analysed
and trigger software-defined events in the PC application.

2 Smart Textile Concept

Figure 1 shows a schematic of the smart textile. Identical modules are connected to
each of their four neighbours by interwoven conductive filaments in a fabric used as
data or power supply lines. One of the modules is connected to the PC and used as the
portal. As depicted, several defects may occur within such a wired peer-to-peer sensor

Fig. 1. Schematic of the wired network within the “smart textile”, showing the automatically
numbered modules and routed data paths; the indicated possible defects can be handled by
ADNOS; sensor data are sent to the PC via the portal

o

258 C. Lauterbach et al.

network during fabrication or use: open lines, destroyed or missing modules and elec-
trical short circuits. For a high yield in a reel-to-reel production and robust
functionality fault-tolerance to all those defects is required. In addition, the demand
for simple and low-cost installation requires that the smart textile can be cut into ir-
regular shape to fit into any given room

3 Textile Integration of Microelectronics

The smart textile (Fig. 2) is based on a polyester fabric with interwoven silver-coated
copper wires. The diameter of each wire is 70 μm. Three of these wires are spun to one
cord. For redundancy and low line resistance four cords are used for each line. The
resulting line resistance is 0.4 /m. The pitch of the woven pattern is 20 cm in weft
and warp directions, respectively. The width of the textile is six pitches or 120 cm.
Each ADNOS module is connected to its four neighbours by two supply and two data
lines. Two additional lines per module are used as sensor lines for the touch sensor. To
achieve a larger sensitive area of the touch sensor, we embroider a meander-shaped
wire. The modules are connected at the crossover points of the conductive lines in a
single step using anisotropic-conductive adhesive. The achieved contact resistance is
7 m /contact. In contrast to previous work [1], we use non-insulated interwoven wires
for reducing the number of process steps and therefore cost for the electronic/textile
interconnect. At the crossover areas the conductive weft and warp fibres are removed
to eliminate the electrical shorts of the interwoven conductive wires. The modules are
encapsulated before mounting to reduce mechanical stress of the devices on the PCB.

Fig. 2. Microprocessor module with a capacitive sensor integrated into a fabric with interwoven
silver-plated copper wires. The embroidered meander-shaped wires form the touch-sensitive
area for the capacitive sensor

.

 259

4 ADNOS Peer-to-Peer Network

Figure 3 shows the block diagram of the ADNOS module. Each ADNOS module has
four UARTs as ports to the connected neighbours and the input of the capacitive
touch sensor. The power supply of the textile uses a voltage of 12 V in order to de-
crease the distribution losses. It is reduced to 3.3 V at the module by a switched
power supply. For the demonstrator we use a commercially available 16 Bit micro-
controller.18 KB Flash and 4 kB RAM are sufficient for our system. The modules are
active during data transfer, only. Their power consumption is approximately
10 mA/module at 12 V in active and 6 mA/module in standby mode.

Within the network each module exchanges control messages with its four nearest
neighbours and controls and drives a specific region. No prior knowledge about their
position within the grid is used. The control data are fed into the network by a func-
tional block referred to as portal, which is connected to an arbitrary module at the
edge of the array.

Fig. 3. Block diagram of the ADNOS module

A set-up phase is started at each module as soon as it is connected to the power-
supply: During this first phase called “power routing”, short circuits within the net-
work are detected and affected branches switched off. The power switches at each
module are able to switch up to 1.25 A. Their resistance is below 150 m . In larger
networks we prefer to use several power inputs uniformly distributed along the edges
of the network.

Next, the self-organization of the network according to the ADNOS rules is started
by the PC. Every module computes the positions of its neighbours, using its own
temporary position set to (0,0) at the beginning. The portal starts this process by feed-

A Self- rganizing and Fault-Tolerant Wired Peer-to-Peer Sensor Network o

260 C. Lauterbach et al.

ing the absolute position to the first module. In the next phase the minimum distance
to the portal is computed by each module sending its own estimated distance to its
neighbours. On reception of such messages, each module selects the neighbour with
the smallest distance d and sets its own distance to d+1. Based on the previously
computed data, routes are generated, that will later carry the data stream (Fig. 1). The

Fig. 4. ASCII-based message format used for communication within the network. This example
shows the sensor frame

portal then starts an automatic numbering based on the established routes and the
calculated throughput through each module. This enables the modules to determine a
unique address number. The generated address number format yields sufficient rout-
ing information for each module. Except for the address numbers of its direct
neighbours, no additional routing tables are needed inside the network. If new defects
occur, the self-organizing routine can be repeated and new routing paths emerge in
the network. The ASCII-based message format used for the communication within the
network is shown in Figure 4.

The ADNOS algorithms are embedded in one of three layers of software abstrac-
tion (Figure 5). It establishes a peer-to-peer communication scheme, which is used to
transfer data between the modules and between the network and the “smart textile”
monitor application on the portal PC, respectively. The four ports of each module
have different priorities. At simultaneous reception on two ports (messages received
within 8 μs), the port with highest priority will accept data first. To avoid an unbal-
anced response of the network, the priority of ports is rotated at regular intervals.
Below the ADNOS layer the protocol layer is responsible for communication between
neighbouring modules. In case of data collision, reception and transmission is per-
formed in full duplex mode. The board layer takes care of hardware control and
physical connection between neighbouring modules.

The sensor data from the network are transmitted to the “smart textile” monitor ap-
plication. We use an RS232 interface at a data rate of 115200 bps. The customized
features are defined within the monitor application, e.g. processing and evaluation of
sensed data or control of light-emitting diodes.

The PC user interface of the “smart textile” monitor is shown in Figure 6. All rec-
ognised modules, the functional connections between the modules and the established
data paths are depicted in the left area of the screen. Sensor events are shown as high-

 261

lighted dots at the connected module. The pattern shown in Figure 6 was produced by
a person walking from the lower left to the upper right of the smart textile. All infor-
mation gained within the network during the self-organization like i.e. coordinates,
address, throughput, distance to the portal can be depicted on demand on the screen.

Fig. 5. Software scheme for the “smart textile” peer-to-peer network and PC

Fig. 6. Screenshot of the ADNOS user interface on the PC featuring a “smart textile” network
with 120 integrated modules (left side). The white dots indicate the sensor signals produced by
a person walking from the lower left to the upper right edge of the textile

A Self- rganizing and Fault-Tolerant Wired Peer-to-Peer Sensor Network o

262 C. Lauterbach et al.

5 Results

To illustrate the functionality of the ADNOS system we fabricated a demo board with
twelve modules. Figure 7a) shows a photo of the demo board with pluggable modules
and three screen shots of the ADNOS user interface on the PC (b-d). The modules are
depicted as dark squares. The broad lines are established data paths., thin light lines are
identified connections not used as data paths. Figure 7b) shows the screen shot of the
network with all modules plugged in. In Figure 7c) one module in the middle of the
network has been removed as it is shown in Fig. 7a) to simulate a defective module.
ADNOS has recognized the failure (marked dark) and shows, that all modules con-
nected to the same data paths are not longer contributing to the functionality of the net-
work (the colour changed to light). After initializing the reorganization a new data path
is found surrounding the missing module (Fig. 7d). All remaining modules are fully
functional again.

Fig. 7. ADNOS demo board with twelve pluggable modules (a) and three screen shots of the
ADNOS user interface on the PC (b-d), the dark squares symbolize the modules, the broad grey
lines are data paths, the thin grey lines are identified connections. b) original network, c) one
module removed, c) failure (marked dark) recognized by ADNOS, light grey modules con-
nected to the same data paths are non-functional, d) after reorganization

The maximum size of the network, using a single connection for the power supply
can be calculated from the measured results derived from our smart textile demonstra-
tor. The cumulated resistances in the network are 0.4 /m for the interwoven copper
wires and 7 m /contact for the interconnect to the interwoven copper wires. The on-
resistance of the FET switches is 150 m . The standby current of one module is
6 mA at 12 V. For the supply voltage we use a switched power supply with 85 %
efficiency at 12 V. The network is fully functional down to 8 V. Figure 8 shows
the voltage drop of the supply voltage across one row of modules. The pitch of the
modules is 20 cm and 50 cm, respectively. At the usual width of a carpet of 4 m the

 263

voltage drop is 1.1 V at a pitch of 20 cm (20 modules) and 0.25 V at a pitch of 50 cm
(8 modules).

Fig. 8. Calculated voltage drop of the supply voltage across one row of modules integrated in
the smart textile versus the length of the row. The pitch of the modules is 20 cm and 50 cm,
respectively

Figure 9 shows the measurement of the delay time in a network with 60 members
(6x10) as a function of the number of hops from a stimulated sensor of a module to
the portal. We find an average time of 1.5 ms per hop, independent of the distance
from the PC portal. An additional delay of approx. 1.5 ms will occur only, if data
collisions occur at one module. The data traffic within a large area is relatively low,
therefore the probability for simultaneous data reception is very low.

Fig. 9. The measured average delay time of the sensor signals is 1.5 ms and independently from
the distance to the portal

A Self- rganizing and Fault-Tolerant Wired Peer-to-Peer Sensor Network o

264 C. Lauterbach et al.

6 “Thinking Carpet” Prototype

The integration technique of the smart textile in a carpet was developed in coopera-
tion with the carpet manufacturer Vorwerk-Teppich and presented at the Or-
gatech 2004 in Cologne, Germany.

Using the technology described above, four “thinking carpet” prototypes were fabri-
cated with 60 integrated modules and a size of 120 cm x 220 cm, each. The smart textile
was cold-laminated between two layers of textile to reduce the mechanical stress and
equalize the height of the modules (2 mm). The top layer is a tufted carpet combined
with a 1000 gram fleece as backside. The power consumption of each carpet is
8.0 Watts. For the Orgatech prototype three carpets were connected to each other, there-
fore forming one single network. Figure 10 shows a photograph of the “thinking carpet”
taken at the Orgatech. The touch sensitive floor is the darker rectangle in the photo-
graph. The large display at the back plane shows that all 180 integrated modules are
recognized. At a closer look at Figure 10 one can see, that there are open lines between
several modules. However, due to the ADNOS self-organization new data paths were
established surrounding the defects. All modules and sensors are fully functional. The
light dots shown at the display are sensor signals produced by the dancer.

Fig. 10. “Thinking carpet installation” at the Orgatech 2005 (darker rectangle at the floor),
featuring 180 ADNOS modules with capacitive sensor areas. The display on the back plane
shows the recognised modules. The light dots indicate sensor signals produced by the dancer

The integrated capacitive touch sensor is fully functional through an insulating layer
up to 30 mm thickness. Therefore a lot of materials like wood, stone, concrete, ceramic
or glass can be used as flooring or as a protecting layer on top of the smart textile.

 265

7 Application Scenarios

The integrated capacitive touch sensor remains fully functional even through an insu-
lating layer of up to 30 mm thickness. Therefore a lot of materials like wood, stone,
concrete, ceramic or glass can be used as flooring or as a protecting layer upon the
smart textile.

The PC application software can be adapted to the specific functions the smart tex-
tile should support. The customized features are defined within this application, e.g.
how the sensed data are processed and evaluated, or how light-emitting diodes are
controlled. A wide range of new applications is opened up by the smart textiles, fea-
turing the self-organizing and fault-tolerant microelectronic integration technique.

Convincing examples for applications are smart textiles working as alarm systems
in the flooring of private or public buildings, in tents or truck tarps. Textile reinforced
concrete with an integrated ADNOS network could automatically detect cracks after
an earthquake.

An interesting application is the smart floor in apartments for elderly or handi-
capped people. Different functions can be triggered, using data mining on the sensed
data: The light will be switched on automatically if a person enters the room or steps
out of bed. If a person doesn’t leave the bed for an unusual long period, a nurse will
be called. Doors will open and close automatically if the person moves towards it. If a
person falls down on the floor and doesn’t move afterwards an emergency call will be
activated. Figure 11 (left side) shows the sensor signals derived from the smart textile
with a person, lying on the floor as depicted on the right picture. Such functionality
would give elderly or handicapped persons a chance to live a self-determined life,
without running an intolerably higher risk in case of an emergency.

Fig. 11. Screen shot of the sensor signals (left) derived from a person that lies on the smart
textile prototype like depicted in the right picture

A Self- rganizing and Fault-Tolerant Wired Peer-to-Peer Sensor Network o

266 C. Lauterbach et al.

Security applications in public or private building are of increasing interest. Statis-
tical evaluation of the sensed data derived from the smart floor will distinguish “nor-
mal” behaviour of airport users from unusual behaviour of possible terrorists. Security
areas will be defined within the software application. Having information about speed
and direction of movements, footsteps starting from the window side of a building
will trigger a burglar alarm.

In future, the functionality of the ADNOS module will be integrated in a single
silicon chip with an estimated chip size of approximately 7 mm² using a 180 nm
CMOS process. A density of four modules per m² seems sufficient for smart floor
applications, when using larger sensor areas. The range of suitable and available sen-
sors and actuators is wide-spread: sensors are available for various parameters such as
pressure, temperature, humidity, smoke, gas, and sound. Integrated light-emitting
diodes will give the possibility to build large-area displays, thus achieving intelligent
guidance systems or flexible displays.

References

[1] Jung, S., Lauterbach, C., Strasser, M., Weber, W.: Enabling Technologies for Disappear-
ing Electronics in Smart Textiles, Proceedings of International Solid-State Circuits
Conference, ISSCC, San Francisco, CA, USA, 2003

[2] Post, E. R., Orth, M., Russo, P. R., Gershenfeld, N.: E-broidery Design and fabrication of
textile-based computing, IBM SYSTEMS Journal, Vol. 39, No. 3&4, 2000, pp. 840-860

[3] Marculescu, D., Marculescu, R., Zamora, N. H., Stanley-Marbell, P., Khosla, P. K., Park,
S., Jayaraman, S., Jung, S., Lauterbach, C., Weber, W., Kirstein, T., Cottet, D., Grzyb, J.,
Tröster, G., Jones, M., Martin, T., Nahkad, Z.: Electronic Textiles: A Platform for Perva-
sive Computing, Proceedings of the IEEE, Vol. 91, No. 12, 2003, pp. 1995–2018

[4] Di Marzo Serugendo, G., Karageorgos, A., Rana, O. F., Zambonelli, F.: Engineering
Self-Organising Systems, ISBN 3-540-21201-9, Springer-Verlag Berlin Heidelberg,
2004

[5] Hester, L., Huang, Y., Nadric, O., Allen A., Chen, P.: NeuRon TM netform: a self-
organizing wireless sensor network, Proceedings of Eleventh International Conference
on Computer Communications and networks, Miami, USA, 2002,, pp. 364–369

[6] Basheer, M. R., Rao, V., Derriso, M.: Self organizing wireless sensor networks for struc
tural health monitoring, Proceedings of the SPIE, 2003, pp. 515–525

[7] Clare, L. P., Pottie, G. J., Agre, J. R.: Self-organizing distributed sensor networks,
Proceedings of the SPIE, 1999, pp. 229–237

[8] Guo, Y., Poulton, G., Valencia, P., James, G.: Designing Self-Assembly for
2-Dimensional Building Blocks, Di Marzo Serugendo et al.: AAMAS 2003 Ws ESOA,
LNAI 2977, Springer-Verlag Berlin Heidelberg, 2004,, pp. 75–89

[9] Sturm, T. F., Jung, S., Stromberg, G., Stöhr, A.: A Novel Fault-Tolerant Architecture for
Self-organizing Display and Sensor Arrays, 2002 SID Symposium Digest of Technical
Papers, Volume XXXIII, Number II, 2002,, pp. 1316–1319

[10] Paradiso, J., Abler, C., Hsiao, K., Reynolds, M.: The Magic Carpet: Physical Sensing for
Immersive Environments, Proceedings of the CHI ’97, Conference on Human Factors in
Computing Systems, Extended Abstracts, ACM Press, NY, 1997,, pp. 277–278

[11] Orr, R. J., Abowd, G. D., The Smart Floor: A Mechanism for Natural User Identification
and Tracking, Proceedings of the CHI ’00, Conference on Human Factors in Computing
Systems, The Hague, Netherlands, 2000

[12] Vorwerk-Teppich: “Thinking carpet”, für das Büro von morgen, http://www.vorwerk-
carpet.com/sc/vorwerk/template/thinking_carpet.html

S. Brueckner et al. (Eds.): ESOA 2004, 3464, pp. 267 – 279, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Applying Distributed Adaptive Optimization
to Digital Car Body Development

Sven A. Brueckner1 and Richard Gerth2

1 Altarum Institute,
3520 Green Court, Ann Arbor, MI 48105, USA

sven.brueckner@altarum.org
2 Center for Automotive Research,

1000 Victors Way, Ann Arbor, MI 48104, USA
rgerth@cargroup.org

Abstract. Companies in today’s automotive industry are under immense com-
petitive pressure to reduce the length of their product development cycle from
initial concept to begin of high-volume manufacturing. A very costly and im-
mensely knowledge-intensive step in this process is the creation of tools and
dies required to manufacture a car body of a specified design. This paper pre-
sents a novel architecture for a decision support system that streamlines the de-
velopment process through the integration of a virtual assembly simulation,
problem identification, and solution generation and evaluation. Following the
virtual functional build process, our architecture deploys a number of multi-
agent systems to provide system functionality, such as problem knowledge re-
trieval or solution generation and evaluation.

1 Introduction

Today’s fierce competition in the automotive industry pressures companies to find
ways to drastically reduce time-to-market while increasing the quality of new vehi-
cles. A key element in the launch process is the body development and manufacturing
validation. This step is often a bottleneck and the most costly and thus limiting aspect
of the vehicle launch preparation. The high cost in terms of duration and money is due
to the intense human involvement in the process as current practice relies heavily on
human knowledge and experience with very limited means of evaluating proposed so-
lutions other than actual physical implementation.

Two recent technological advances provide essential building blocks that allow us
to move from experience-based to data-driven body development. First, we now have
the ability to efficiently create, transfer and store high-resolution digital scans of 3-
dimensional parts; and secondly, the integration of Finite Element Analysis (FEA)
and dimensional models enables us to predict residual stresses in a functional build
assembly. Thus, at this point, suppliers can produce parts using prototype tools and
dies and submit scans of these parts to the OEM. The scans of the parts are then as-
sembled in simulation and the resulting sub-assembly or complete car body may be
compared with the design intent.

LNAI

268 S.A. Brueckner and R. Gerth

To close the loop in the virtual
functional build process, we develop a
decision support system (DBDS –
Digital Body Development System)
that analyzes the virtual product, iden-
tifies symptoms of underlying prob-
lems in the current design, and pro-
poses and evaluates alternative
solutions to the human design team
based on past experience and heuristic
search. The launch team then has the
option of proposing additional solu-
tion alternatives or choosing a solution
for implementation.

DBDS treats the generation of solutions to problems identified in the current de-
sign as a search problem in the high-dimensional space of modifications to the design
guided by a fitness function. Any point in this abstract search space is a set of param-
eterized changes to the current design. Computing the fitness of such a set of changes
requires the application of these changes to the design, and the simulation and analy-
sis of the resulting new design comparing it with the current design.

In [3] we present an experimental application of our agent-based Adaptive Parame-
ter Search Environment (APSE), which performs a heuristic parallel search across an
abstract space of input parameters to an arbitrary simulation model guided by a fitness
function defined over metrics reported during the execution of the model. DBDS is an
application and extension of APSE in which sets of design changes are treated as in-
put parameters to the virtual assembly of a car body and in which the search is guided
by the design intent of the functional build process.

Given the complexity and massiveness of the search space that DBDS must ex-
plore in a given optimization run, we enhance the heuristic of the APSE Search agents
to include prior experience and domain knowledge accessible in a problem-solution
case base and we enable the human design team to suggest alternative solutions to the
search process (Figure 1). We implement a Solver, a multi-agent system that interacts
indirectly with the APSE Search agents and that seeks to retrieve solution points (sets
of design changes) from a case base. The retrieval is guided by the problem symptoms
observed in the execution of the current design and by the fitness of solutions that
have been evaluated already by the Search agents.

The remainder of this paper is structured as follows. Section 2 discusses the current
practice of auto body development in more detail. In Section 3 we present the DBDS
component architecture, which closes the loop in the virtual functional build. Section
4 discusses the adaptation of the APSE Search agents to the decision support problem
and Section 5 outlines our swarming approach to solution retrieval. We conclude in
Section 6.

Observations from
Simulation of
Base Design

Human
Interface

Problem-Solution
Case Base

Virtual
Body

Assembly
Fitness

Solver
Agent

System

Solution
Candidate

APSE
Search
Agents

Suggested
Solution

Suggested
Solution

Abstract
Search
Space

Fig. 1. DBDS performs a parallel heuristic search
with human and case-based guidance

 Applying Distributed Adaptive Optimization to Digital Car Body Development 269

2 Current Practice in Body Development

Detailed engineering design of individual parts and components begins after “design
freeze”. This typically includes a finite element analysis (FEA) of the nominal design
to examine stresses, vibration, crash testing, etc., as well as a tolerance analysis to de-
termine how the components will fit. This latter analysis often involves identifying
designs that are sensitive to variation and making the design more robust by changing
and redesigning parts to reduce geometric effects. Once the individual part design is
set, it is released for “tooling” (tool release – i.e. the process of constructing the
stamping dies), and the functional build process begins.

Functional build is a criti-
cal process in launching a ve-
hicle (see Figure 2), whereby
individual prototype parts are
stamped and then sent to a
central location to be assem-
bled into a prototype vehicle
body [1]. Since production
tooling is often not yet avail-
able, the body is fastened with screws and rivets, hence it is called a “screwbody.”
The screwbody is examined by experienced experts who must decide whether gaps
and interference conditions between individual parts are sufficient to warrant chang-
ing the dies, the welding tooling, clamp locations, etc. If it is decided that a change is
warranted, then the dies may have to be returned to the supplier to be changed. If a
change is not warranted, then the specifications may be changed to match the part
shape. This usually involves a uni- or bi-directional opening of the part tolerances.
The process is then repeated after the changes have been implemented. It is not un-
common to have three or more functional build evaluation bodies during a vehicle
launch, which is costly and time consuming. However, each evaluation is based on a
different generation of tooling, so very little information is gleaned on the effects of
process variation to the integrity of the entire body.

Two technological trends aimed at improving the dimensional integrity and per-
formance (NVH – or noise, vibration and harshness) of the body are 1) the integration
of Finite Element Analysis (FEA) and dimensional models and 2) the scanning of fab-
ricated parts and assemblies for comparison of actual builds with the design intent.

The integration of FEA and dimensional models is significant in that it allows the
prediction of residual stress in a functional build assembly. Conceptually, the parts are
assembled in the software. Any interference or gap conditions will be accommodated
by the assumption that sheet metal is a compliant part. Weld points are identified and
the parts are forced into full contact at those points. These points are held as boundary
conditions. Then the FEA program minimizes the stress in the assembly by changing
the shape of the part according to the boundary conditions.

The recent progress of combining FEA and dimensional models significantly ad-
vances the science for understanding the complex interactions between sheet metal
parts and the joining processes (usually spot welding). The effects of interference and

Design and Manufacturing Lead Time

time

Styling

Styling freeze

Engineering Design

Design freeze

Tool release Tryout Validation

Start of Production

Ramp up

Functional Build

Fig. 2. Vehicle Launch Process

270 S.A. Brueckner and R. Gerth

gap conditions between two mating parts are evaluated based on the amount of part
“compliance” that can be expected. Compliance (the bending of parts as they are
joined together) can be predicted using FEA, which is also used to predict residual
stress in the assembly. The dimensional model can expand that understanding over the
expected variation of the fabricating and assembly processes. Together, these two
tools can quantify manufacturing capability (fabrication and assembly) and produce a
distribution of residual stress as well as dimensional measures in the body.

3 Simulation-Based Decision Support

The Digital Body Development System (DBDS) provides continuous support for the
vehicle launch team along the entire iterative functional build process. A single itera-
tion starts at a base design, which comprises scans for all parts that have been pro-
duced at this point and CAD-nominals for the remaining parts. The base design also
specifies the assembly process as it is currently planned.

In a first step, the base design is “executed” by simulating the virtual assembly of
the parts and pre-defined measurements are taken on the resulting product. The design
process is completed, if the results meet the design intent. Otherwise, DBDS inter-
prets the output of the measurements as symptoms of underlying problems and gener-
ates and evaluates solution alternatives (changes to the base design). It may also invite
human engineers to suggest additional solutions. Eventually, the launch team will set-
tle on a solution and implement the corresponding design changes (i.e., change tools
and dies, make and scan new parts) to arrive at a new base design.

In today’s practice of body development, a large team of experts with diverse back-
ground and experience analyze the current design as it manifests itself in the screw-
body. Based on their domain knowledge and past experience, individual experts sug-
gest solution alternatives and then discuss their potential merit until the team agrees on
a solution. The whole solution generation and selection process is dominated by human
knowledge and experience and solutions are chosen or discarded mainly based on hy-
potheses rather than evidence. Alternatively, DBDS explores the space of possible so-
lutions to the currently observed problems and evaluates each solution alternative by
simulating the design that results as the changes proposed by the solution are applied to
the current base design. Thus, solutions that DBDS suggests to the launch team are
based on evidence provided by the simulation rather than hypotheses.

The simulation-based improvement of a given base design using a heuristic search
and evaluation process may be applied to domains other than car body development.
To facilitate such a transfer later on, we specify a generic module architecture that
makes the specifics of the domain transparent to the optimization process.

The DBDS decision support system has seven modules (Figure 3). The User Inter-
face (UI) module manages the interaction of the system with the human design team.
The Solution Generation and Evaluation (SGE) module proposes alternative solutions
to solve problems with the base design and evaluates them for their quality and cost.
The Change Cost Estimation (CCE) module estimates the cost of actually implement-
ing a particular solution as a change to the base design. The Solution Implementation

 Applying Distributed Adaptive Optimization to Digital Car Body Development 271

(SI) module translates a pro-
posed set of changes to the
base design into a valid modi-
fied design that can be simu-
lated by the VASE. The Vir-
tual Assembly and
Simulation Engine (VASE)
simulates the “execution” of
a given design by virtually
assembling parts according to
a process description. The
Data Preparation and Reposi-
tory Module (DPRM) manages the large amounts of data generated and used by the
DBDS. The Process Controller (PC) module integrates the other modules and man-
ages the data and process flow among
them.

Figure 4 illustrates the high-level
(black) and low-level (white) process
loops facilitated by the PC. At the
high level, the user triggers the im-
provement of a base design, which re-
quires its execution (VASE) and
analysis and optimization (SGE). The
optimization process generates alter-
native solutions, which are evaluated
(lower-level loops) for their perform-
ance (SI, VASE) and cost (CCE).

4 Heuristic Search for Design Changes

In [3] we present APSE – a multi-agent system that performs a distributed heuristic
search through the space of input parameters of a black-box simulation model to find
a configuration that maximizes a fitness function defined over observed metrics on
the simulation. The APSE Search agents collaboratively explore the space of potential
solutions (model parameters) and evaluate them through successive simulation runs.
Using a Particle Swarm Optimization (PSO) algorithm [6] combined with probabilis-
tic local hill climbing, the agents coordinate their activity so that computing resources
(simulation runs) are focused on exploring the most promising regions of the search
space.

The Solution Generation and Evaluation (SGE) module of the DBDS hosts an
APSE Search agent population, whose task it is to explore the space of possible
changes to the base design for improvements that reduce or remove the problems ob-
served in its execution. Thus, we treat changes to the base design as input parameters

Pr
oc

es
s

C
on

tr
ol

le
r (

PC
)

Pr
oc

es
s

C
on

tr
ol

le
r (

PC
)

Data Preparation
and Repository
Module (DPRM)

Data Preparation
and Repository
Module (DPRM)

Change Cost
Estimation (CCE)

Change Cost
Estimation (CCE)

Virtual Assembly
and Simulation
Engine (VASE)

Virtual Assembly
and Simulation
Engine (VASE)

Solution Generation
and Evaluation (SGE)
Solution Generation

and Evaluation (SGE)

Solution
Implementation (SI)

Solution
Implementation (SI)

User Interface (UI)User Interface (UI)

Fig. 3. The Generic DBDS Module Architecture

UI

SGE

VASECCE SI

Fig. 4. Inner (white) and Outer (black) DBDS
Loops

272 S.A. Brueckner and R. Gerth

DBDS is an enhancement of the APSE architecture. While Search agents in APSE
are guided only by the fitness of the currently known solution candidates (points in
the abstract search space), DBDS provides two additional sources of guidance for the
distributed search (see Figure 1). The first source of solution candidates is the human
design team. At any point during the search process, human experts may look at the
problem symptoms and the solutions DBDS has explored so far and suggest another
solution to the system. Solutions may also be suggested by the Solver, a multi-agent
system that seeks to match the problem symptoms to the descriptor of solution cases
recorded in a case base (see Section 5).

We integrate these two additional
sources of creativity into the search
process by enhancing the APSE Search
agents’ behavior. In APSE, an agent
explores the search space through a se-
ries of short-range moves that are
guided by hill-climbing and PSO heu-
ristics. In DBDS, a Search agent moni-
tors the performance of its short-range
movement heuristic (rate of improve-
ment over time) and may decide to
abandon its current region in search
space through a long-range jump be-
yond the local correlation distance of
the fitness function. The destination of
the jump is a solution candidate pro-
vided by the human design team or the
case-based Solver. Figure 5 illustrates
the emerging agent trajectory in an abstract search space.

The generic distinction between a local improvement heuristic and global jumps to
externally suggested solution candidates is open to other solution approaches. Just as
DBDS currently implements a case-based approach to the solution of problems with
the base design, other (e.g., rule-based, model-based, etc.) approaches could be im-
plemented independently and feed into the decision process of the Search agents.

5 Swarming Case Retrieval

Today’s car body development process heavily depends on human expert knowledge
and experience. With DBDS we create a decision support system that has the ability
to discover new solutions on its own through a heuristic search and evaluation in
simulation, while at the same time utilizing and capturing human creativity and exper-
tise to move from experience-based to data-driven design.

jump

jump

move-
sequence

move-
sequence

move-
sequence

search
space

solution
suggested
by Solver

solution
suggested by

human

APSE
Search
Agent

moves guided
by local
heuristic

Fig. 5. Agents move and jump through the
search space guided by local heuristic, human
input, and case knowledge

to a black-box simulation and define a fitness function for the search process that
measures the degree to which the now modified design meets the design intent.

 Applying Distributed Adaptive Optimization to Digital Car Body Development 273

The SGE module of DBDS includes
a dynamic Solver that analyzes prob-
lems with the base design as they
manifest themselves in observable
symptoms during the virtual assembly
and that suggests solutions to these
problems drawn from a set of problem-
solution cases. We integrate the Solver
with the heuristic search process by
suggesting solution candidates to the
APSE Search agents for their next
long-range jumps and by modifying
the case retrieval process based on the
fitness of the solutions that have al-
ready been explored (Figure 6).

The ongoing asynchronous interac-
tion with the Search agents and the
continuous addition of fitness evaluations of new solution candidates requires a dy-
namic update of the case retrieval. Thus, we chose an agent-based any-time approach
that continuously integrates changes in the external circumstances without having to
restart its reasoning process from scratch.

In the following we discuss details of the operation of the Solver top down. First,
we present the adaptive any-time process that manipulates the description of the cur-
rent problem symptoms to provide a high-quality retrieval of high-performance solu-
tions. Then, we specify the internal mechanics of the fine-grained agent system that
drives the adaptive modification of the current problem description.

5.1 Linking Emergent Clustering and Spreading Activation Case Retrieval

The virtual assembly of the base design by the VASE module results in a large set of
uniquely identified measurement points on the assembled car body that are either
within or outside specified tolerances. Just as a fever, a cough and a runny nose are
possible symptoms of an underlying viral infection, so are patterns of deviations at
pre-defined measurement points on a (virtually) assembled car body symptoms of
specific underlying problems (root causes) with the design.

Our dynamic Solver seeks to match the currently observed symptomatic patterns to
those of problems encountered in the past, whose solution is recorded in the case
base. We organize our case base into a simplified Case Retrieval Network (CRN) [7],
which represents basic components of the problem description and the associated so-
lution as individual nodes in a spreading activation network. The nodes representing
problem components are called Information Entity (IE) nodes and a solution is stored
in a so-called Case node. All IE nodes that describe the problem solved in a specific
solution case are linked to the respective Case node through weighted relevance
edges. The retrieval process first places an activation onto individual IE nodes de-
pending on their match to the current problem symptoms and then propagates the

Current Set
of Evaluated

Solutions

Base Design
Symptoms

APSE Search
Agents

Case-
Base

Any-time
Retrieval
Process

Current Set
of Evaluated

Solutions

Base Design
Symptoms

APSE Search
Agents

Case-
Base

Any-time
Retrieval
Process

Fig. 6. The dynamic Solver modifies the solution
candidates that it suggests to the Search agents
based on the progress of the exploration of the
search space

274 S.A. Brueckner and R. Gerth

activation through the relevance edges to the Case nodes. The relative activation of
the individual Case nodes provides an ordering of the recorded solutions with respect
to their relevance to the current problem.

Our goal is to abstract away from the spe-
cific locations and count of measurement points
provided by the simulation by identifying
symptomatic regions on the virtual car body
that may be expressions of the same underlying
problem. For instance, if a door is set slightly
off-center into its frame, we may find several
disconnected regions along the frame in which
our pre-defined measurements are out of toler-
ance (e.g., gaps, interferences). To that end, the
Solver executes a fine-grained multi-agent sys-
tem that continuously rearranges measurement
points into clusters that form components of the
problem signature (Figure 7). The currently
emerging problem signature is matched against past problems’ signatures in the case
base to provide a relevance measure of the available solutions. This relevance meas-
ure guides the selection of the next solution candidate upon request of an APSE
Search agent. We select a case probabilistically, based on its current normalized
relevance.

The quality of the case retrieval process is high, if there are only one or very few
cases with a significant probability to be selected. Otherwise, we may as well select a
case randomly from the entire case base. We measure the current retrieval quality
with the Case Selection Entropy (CSE) metric, which is the Shannon (Information)
Entropy [11] of the case selection probabilities. The current CSE, resulting from the
interaction of the current arrangement of measurement points with the Case Retrieval
Network, may modify the behavior of the agents in the next clustering cycle. We have
used similar entropy measures defined over the current preferences of an autonomous
decision maker (here case selection) in previous projects [4, 9] to estimate the current
information these preferences actually convey and to subsequently adapt the decision
process if necessary.

Figure 8 illustrates the tight feedback loop (black) between the ongoing clustering
of measurement points and the current case relevance ordering provided by the CRN.
Through this feedback, the identified problem regions are modified to match past ex-
perience recorded in the case base more closely while maintaining a close tie with the
actual problems observed in the simulation.

The clustering process is also influenced on a larger time scale by the observed
performance of solutions that have been explored by the APSE Search agents (white
loop in Figure 8). If a solution case is adopted by a Search agent in a long-range jump,
DBDS evaluates the fitness of the changed car body design in terms of the reduction
in problems compared to the base design and the estimated cost in implementing these
changes. The fitness of all solution candidates proposed by the Solver is fed back

measurement
spacemeasurement

point

signature
component

Fig. 7. Clustering of Measurement
Points into Signature Components

 Applying Distributed Adaptive Optimization to Digital Car Body Development 275

through the Case Retrieval Network (activating case nodes and spreading to IE nodes)
to attract the clustering mechanism away from or towards to specific arrangements.

5.2 Emergent Clustering

The output of the simulation is
a cloud of values for prede-
fined measurement points.
Each point is associated with
geometric coordinates on the
car body, but it also carries ad-
ditional context values, such as
part features with which it is
associated, assembly process
steps that came in contact with
the part, or the supplier provid-
ing the part. Thus, a measure-
ment point is located in a high-
dimensional space that com-
bines the geometric and con-
text dimensions. Through the
additional context, we may as-
sociate points that are related
in the process but not necessar-
ily in geometry to the same signature
component.

Starting from the original locations
of the measurement points, we seek to
rearrange the points into arbitrary clus-
ters while trying to keep each point
close to its original location. As Figure
9 illustrates, there are a number of pos-
sible arrangements that meet these
qualitative objectives, because we do
not assume a particular number or size
of clusters. We design our emergent
clustering algorithm to potentially visit
all these arrangements (with varying
probability) and we use the feedback of
the Case Selection Entropy metric and
the currently known solution fitness to
push the clustering system out of unfa-
vorable configurations.

Emergent any-time clustering is one of the prime examples of emerging functional-
ity through stigmergic coordination in large-scale fine-grained multi-agent systems.
Nest sorting [2], is an instance of emergent clustering observed in social insect sys-

Retrieval
Quality

Observed Pattern of
Measurements

Solution
Case

Selection

APSE
Search
Agents

Measurement
Point

Clustering

Spreading
Activation

Solution Case
Relevance Ordering

Fitness
Evaluation

Solution
Performance

Fig. 8. Adaptive Case Retrieval Guided by Retrieval Qual-
ity and Solution Performance

Fig. 9. Possible Cluster Arrangements (black) for
the same Original Measurement Points (white)

276 S.A. Brueckner and R. Gerth

tems. In this case, independent agents (ants) pick up or drop off passive objects with a
dynamically computed probability. This behavior has been replicated in collective ro-
botics (see for instance [5]). An alternative approach to clustering is to give the initia-
tive to the objects themselves, which then reason about their current local arrange-
ment and move about in space. We successfully applied this approach to create large-
scale, self-organizing document bases [10] and we follow the approach in this appli-
cation too.

In the emergent adap-
tive clustering algorithm,
we assign each point an
agent, which moves
through the space of
geometric locations and
additional context. The
sum of two dynamic
force vectors, represent-
ing the two objectives in the rearrangement, determines the trajectory of an agent. The
first force vector (“Home Force” in Figure 10) attracts the agent back to the original
location of the measurement point. This force increases with distance. The second
force vector is the sum of individual component vectors (“Cluster Force” in Figure
10), which each attract the agent to the location of another nearby agent. The strength
of this force decreases with distance. The rates in which the forces change for chang-
ing distances are dynamic parameters of the system.

In each cycle, each agent calculates
the home force and the cluster force
vector from the position of the agents in
the previous cycle. The vector sum of
these two forces determines the direc-
tion into which the agent relocates in
this step. The length of the step is the
length of the combined vector, but lim-
ited to a relatively small step-length
value (Figure 11).

If the force calculation algorithm in
the agent were deterministic and used
only constant scaling parameters, then
the system would quickly stabilize on
one arrangement that minimizes the
“tension” among the objectives. To
avoid unstable minima and to explore a
variety of nearby cluster configurations, we add a small random component to the in-
dividual relocation calculation.

We achieve qualitatively different cluster configurations through the feedback of
the current retrieval quality and the solution performance, encoded in the Case Selec-
tion Entropy (CSE) and the fitness of solution cases (see Section 5.1).

0.0 0.2 0.4 0.6 0.8 1.0
Home Distance

0.0

0.2

0.4

0.6

0.8

1.0

h
t
g
n
e
r
t
S

Home Force

0.0 0.2 0.4 0.6 0.8 1.0
Point Distance

0.0

0.2

0.4

0.6

0.8

1.0

h
t
g
n
e
r
t
S

Cluster Force

Fig. 10. Forces represent agent objectives in clustering

home
force

cluster
force

component

next
step

Fig. 11. Iterative Local Force Vector Calculation

 Applying Distributed Adaptive Optimization to Digital Car Body Development 277

The CSE metric offers a global evaluation of the value of the current point ar-
rangement for the high-quality (non-random) retrieval of a solution from the case
base, but it does not provide any guidance on how the arrangement should be changed
to achieve a higher retrieval quality. Since higher CSE values correspond to low re-
trieval quality, we need to encourage exploration of new configurations over the ex-
ploitation of current clusters by increasing the impact of the random component in the
agents’ trajectory calculations.

The fitness of solution cases that have been explored by the APSE Search agents
can be translated into directional guidance for the clustering agents. Before each cycle
of the emergent clustering algorithm, we
propagate the fitness of all cases (zero if not
yet explored) backwards through the CRN to
the IE nodes that represent regions of high
point concentration (clusters) recorded with
these past cases. Solution cases that led to an
improvement in the design communicate a
positive activation to their IE’s while those
that actually made the problem worse send a
negative activation.

The positive or negative activation of IE’s
in the Case Retrieval Network translates to ad-
ditional attractive or repulsive force compo-
nents that steer points towards or away from
regions in measurement space. We have used a
similar back-propagation approach in CRN’s
to guide the interactive diagnosis of failures in
computer hardware [8].

6 Conclusion

Car body development is the most costly step in the launch of a new vehicle and even
small improvements of this process may yield high gains for the automotive industry.
This paper presents the Digital Body Development System (DBDS) – a decision sup-
port system for the car body development team – which is an extension of the agent-
based Adaptive Parameter Search Environment (APSE) presented in [3]. DBDS is
based on a modular architecture, which makes the required activities of the evaluation
of the fitness of solution candidates (simulation, cost estimate) transparent for the
APSE Search agents exploring the space of changes to the current design of the car
body.

The primary extension of APSE, besides its application to a highly complex do-
main, is the integration of external guidance into the local search heuristic of the
agents. DBDS enhances the decision process of the individual agent, who now tracks
the performance of the local improvement process (moves) and decides, whether to

Table 1. DBDS Joint Venture Partners

Altarum Institute
American Tooling Center
Atlas Tool, Inc.
Autodie International
Center for Automotive Research
CogniTens Inc.
ComauPICO
UGS
Ford Motor Company
General Motors Corporation
Perceptron, Inc.
Riviera Tool Company
Sekely Industries
Thunder Bay Pattern Works

278 S.A. Brueckner and R. Gerth

abandon its current region (jump) in favor of solution candidates suggested either by
the human design team or a novel adaptive case-based Solver.

The case-based Solver is a complex adaptive system that interacts with the APSE
Search agent population, providing it with solution candidates that may address cur-
rently observed design problems and adjusting its recommendations based on the fit-
ness of the solutions that have been explored already. The Solver links a fine-grained
agent system that continuously modifies the description of the current problem with a
Case Retrieval Network that records solutions to past problems. The retrieval of solu-
tions is refined by the agents’ modification of the problem description, driven by the
currently estimated quality of the case retrieval and the performance of selected cases.

The DBDS is the focus of an ongoing NIST/ATP-supported Joint Venture of more
than a dozen automotive, software development and research companies and organi-
zations (see Table 1). The architecture and algorithms reported in this paper are cur-
rently being implemented and tested and quantitative results from our first prototype
will be forthcoming soon.

Acknowledgements

This work is supported by the DBDS Research Consortium, sponsored in part by a
NIST/ATP grant (Project Number 00-00-5521). The views and conclusions in this
document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the National Institute of Standards
and Technology or the US Government.

References

[1] Auto/Steel Partnership (2000) Event-Based Functional Build: An Integrated Approach to
Body Development - Complete Version, Auto/Steel Partnership, Southfield, Michigan,
http://www.a-sp.org/publications.htm.

[2] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to Artifi-
cial Systems. New York, Oxford University Press, 1999.

[3] S. Brueckner and H.V.D. Parunak. Resource-Aware Exploration of the Emergent Dynam-
ics of Simulated Systems. In Proceedings of the Second International Joint Conference on
Autonomous Agents and Multi-Agent Systems. Melbourne, Australia, 2003.

[4] S. Brueckner, H.V.D. Parunak. Information-Driven Phase Changes in Multi-Agent
Coordination. In Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS
2003), 950-951. Melbourne, Australia, 2003.

[5] J. L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. Detrain, and L. Chretien.
The Dynamics of Collective Sorting: Robot-Like Ants and Ant-Like Robots. In J. A.
Meyer and S. W. Wilson, Editors, From Animals to Animats: Proceedings of the First In-
ternational Conference on Simulation of Adaptive Behavior, pages 356-365. MIT Press,
Cambridge, MA, 1991.

[6] Kennedy, R. C. Eberhart, and Y. Shi. Swarm Intelligence. San Francisco, Morgan Kauf-
mann, 2001.

 Applying Distributed Adaptive Optimization to Digital Car Body Development 279

[7] Mario Lenz, Hans-Dieter Burkhard: Case Retrieval Nets: Basic Ideas and Extensions. in:
G. Görz, S. Hölldobler (Eds.): KI-96: Advances in Artificial Intelligence, Springer Ver-
lag, LNAI 1137, 1996.

[8] Mario Lenz, Hans-Dieter Burkhard, and Sven Brueckner. Applying Case Retrieval Nets
to Diagnostic Tasks in Technical Domains. I. Smith and B. Faltings (eds.). Advances in
Case-Based Reasoning. Springer Verlag, LNAI 1168. 1996.

[9] H. V. D. Parunak, S. Brueckner, R. Matthews, and J. Sauter. How to Calm Hyperactive
Agents. In Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS
2003), 1092-1093. Melbourne, Australia, 2003.

[10] H. V. D. Parunak, P. Weinstein, S. Brueckner, J. Sauter. Hybrid Stigmergic Mechanisms
for Information Extraction. In Proceedings of the Second International Workshop on
Mathematics and Algorithms of Social Insects (MASI 2003). Atlanta, USA, 2003.

[11] C. E. Shannon and W. Weaver. The Mathematical Theory of Communication. Urbana,
IL, University of Illinois, 1949.

S. Brueckner et al. (Eds.): ESOA 2004, 3464, pp. 280 – 297, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Adaptive Service Placement Algorithms for
Autonomous Service Networks

Sven Graupner, Artur Andrzejak, Vadim Kotov, and Holger Trinks

Hewlett-Packard Laboratories, Palo Alto, CA 94304, USA
{sven.graupner, artur.andrzejak, vadim.kotov,

holger.trinkds}@hp.com

Abstract. Motivated by trends in the industry towards transforming IT in large
integrated service networks, this paper describes algorithms for the adaptive
placement of “services” (as abstractions of collections of applications) in net-
works of “servers” (as abstractions for locations where services can be hosted).
Networks comprised of interacting services as the foundation is also a vision
pronounced by the Grid [9]. Manageability and “self-operation” of Grids is
highly desirable. We analyze the requirements for algorithms one specific prob-
lem: the service placement problem. We discuss algorithms that neither require
central control nor complete information about the system state. Algorithms are
performed on a distributed overlay structure which summarizes load conditions
in the underlying service network. The presented algorithms fulfill tasks of
making initial placement decisions as well as initiating rearrangements when
imbalance is detected. Presented algorithms have different characteristics re-
garding the tradeoff between accuracy (or quality) of a placement decision and
its timeliness within which a decision can be made determining responsiveness.

Introduction

In response to growing complexity and, as a result, the potential ineffectiveness and
insufficient manageability of large-scale systems, new approaches to system design,
use, and management are emerging:

- the aggregation and consolidation of system and application components into
larger building blocks (services),

- systematic and standard ways of their integration and communication,
- sharing of distributed resources, and
- automated system management and operation control.

Two of the most prominent and practical examples are the concepts of the Utility
Data Center [14] and the Grid [9]. The Utility Data Center (UDC) consolidates com-
puting resources in order to significantly reduce deployment and operation costs.
Grids are large networks of computing resources that can be transparently shared and
utilized for solving complex tasks or providing computing services.

These two concepts can be combined into a concept of Virtual Data Centers [20]
that consolidate resources of a federation of distributed Utility Data Centers into vir-
tual resources that are shared using Grid–type mechanisms.

LNAI

 Adaptive Service Placement Algorithms for Autonomous Service Networks 281

Grid. Grid computing emerged in scientific supercomputing in the early 1990’s by
making expensive compute resources available to external users. A software layer in
form of Grid middleware provides the coordinated, transparent and secure access to
shared resources across geographically distributed locations. Resource virtualization
allows transparency and security. The software layer also provides “grid membership”
of a machine or a device making its resources discoverable and allocatable to other
entities in the system. Many Grid projects in research and industry are based on the
Globus Toolkit [11], a widely used public domain software. Commercial Grid prod-
ucts are offered by IBM [15], Platform [26] and Sun [31]. An overview of Grid re-
source management systems can be found in [21].

Another source of the “grid trend” is the utility model of resources. Access to re-
sources is aimed to be as simple and efficient as accessing power or other utilities.
Resource markets are envisioned where resources used in information processing can
be traded and exchanged as commodities. Resource commoditization also helps to
overcome the diversity and complexity of IT landscapes making it attractive for both
IT vendors and customers. So far, most integrated management systems are limited in
regard to functioning in virtualized environments across organizational boundaries.
Besides automated fail-over techniques in high-availability systems, management
systems typically automate monitoring and information collection. Decisions are
made by human operators interacting with the management system. Major service
capacity adjustments imply manual involvement in making changes in hardware as
well as in software. Systems need to be adjusted, re-installed and reconfigured.

Utility Data Center (UDC). A new type of data center infrastructures provides im-
mediate support for these tasks. HP has developed the Utility Data Center (UDC)
[14], [28]. Its capabilities allow a whole new approach to automate adjustment proc-
esses and by thus set the foundation for an automated service capacity-demand con-
trol system for a large service networks. This control system is based on a federation
of geographically distributed data centers with capabilities providing immediate sup-
port for service demand and supply control.

Service Placement Problem. One of the hard problems in system management is the
service placement problem, closely related to the (distributed) resource allocation
problem. We assume that no global information about resource availability and ser-
vice demand can be provided due to the scale and dynamism of large service net-
works. Placement algorithms thus need to deal with partial information, and yet pro-
vide good approximations of localized assignment solutions, and also need to be reac-
tive such that decisions are made in appropriate time for an automated resource de-
mand-supply control system.

In this paper we analyze the requirements for algorithms for the service placement
problem in our context, discuss the trade-offs in the design of the algorithms, and
formalize the objectives of a demand-supply control system. As a central part of our
contribution, we propose several algorithms for the service placement problem under
these requirements. Special focus of the presentation is directed on methods ensuring
adaptability, fault-tolerance, and scalability.

282 S. Graupner et al.

It is noteworthy that each of the proposed algorithms assumes an infrastructure for
actuating automated demand-supply control decisions. This architecture is defined by
a demand and supply overlay meta-system. The meta-layer connects the various pools
(data centers or parts of them) and allows algorithms to obtain a local view on condi-
tions in the service or in the server layer. The architecture supports a variety of large-
scale distributed systems including a federation of distributed Utility Data Centers.

The sequel is organized as follows. The following section is devoted to related
work. Then we formalize the problem, present solution requirements and their limita-
tions, and propose metrics for evaluation of placements of services. The first algorithm
is based on the so-called Ant Colony Optimization. This class of algorithms originated
from behavior studies of real ants and incorporates elements of machine learning by
recording the best partial solution using a so-called “pheromone”. Another approach is
adopted from the coordination of mobile robots. It is called the Broadcast of Local
Eligibility (BLE). We extend this method to provide better scalability than the original
solution and suggest improvements in terms of communication costs by applying gos-
siping algorithms. The third algorithm combines a notion of intelligent agents which
represent groups of services with P2P-based overlay networks.

Related Work

The basic service placement problem is closely related to the task allocation problem
widely studied in the fields of parallel algorithms and clusters [7]. However, the addi-
tional solution requirements discussed below (in particular decentralization) make the
solutions of this research unusable in our setting. Therefore we focus the related work
discussion on approaches with inherent features of decentralization and adaptability,
even if they provide different functionality than service placement.

In the area related of Grid technologies, the closest work to the one presented here
is Messor [25], a decentralized load-balancing algorithm based on multi-agent sys-
tems. Similarly to the algorithm presented in this paper, it uses so-called Swarm Intel-
ligence paradigm to distribute load in a pool of resources. As the infrastructure it uses
the Anthill runtime environment [3], which combines a P2P platform and a multi-
agent development environment in a single framework. Our algorithm differs from
this approach by a more general model of service dependencies and by the mecha-
nisms for disseminating of assignment evaluations.

The adaptation and self-organization of large distributed systems is also targeted
by P2P systems research. In most of these systems mechanisms that automatically
handle joining and leaving nodes (e.g. servers) are inherent parts of the design. This
also applies to adaptation and fault-tolerance. Examples include Gnutella, Pastry,
Tapestry, Chord and CAN [27]. Project OceanStore [22] exemplifies an application of
a P2P-based indexing structure for resource management; another example of this
kind is given in [2]. Most of the research in this area considers data management,
while we focus here mainly on computational resources.

The most prominent project at the edge of self-organization and resource manage-
ment is IBM’s Autonomic Computing [17] aiming to create systems that are self-
configuring, self-healing and self-optimizing. Related to this research is Océano [16].

 Adaptive Service Placement Algorithms for Autonomous Service Networks 283

Further related work concerning particular techniques used in our algorithms is
discussed in the corresponding sections.

Problem Analysis and Solution Requirements

The basic service placement problem is defined as the problem of finding a mapping
from a set of services to a set of servers. The term “service” is used in this paper as an
abstraction for collections of program instances implementing applications such as
customer relationship management systems in the enterprise IT domain or distributed
applications in scientific computing. The term “server” generalizes the notion of a
resource to its function of forming a processing platform or environment for services.

Two aspects need to be distinguished. First, there the (physical) aspect of deploying
services to servers, which involves installation and configuration of programs and data
for services on that server. The second aspect addresses the problem of making deci-
sions about identifying locations for services using appropriate decision-making algo-
rithm. We refer to the latter aspect in the following ignoring the (also hard) problem of
service deployment and redeployment, which includes determining services’ states.

Identifying a mapping (or making a service placement decision) is dependent on a
set of policies and objectives to be achieved by a solution. It also depends on the
“quality” of the algorithm and the “time” the algorithm needs to compute the deci-
sion. The classical tradeoff between quality and time appears to be fundamental in the
domain of decentralized decision-making algorithyms.

A common objective is matching of service demand with resource supply (i.e. ca-
pacity of the hosting servers). Resource capacities should also be provided locally to
demands avoiding cross-network traffic. This objective has been also adapted to func-
tion properly for algorithms which have only partial knowledge of the system state.

The requirements are dictated by the environment in which the algorithms are ap-
plied.

Requirements on the Algorithm Design

The scale and level of adaptability of such service networks dictate the following
requirements on the algorithms for the resource placement problem.

Scalability and Decentralization. The design of an automated management system is
closely related to the scale of the managed system and the rate of system changes. In
an ideal case, current information about the state of the whole state can be collected in
a centralized database, and as a consequence an optimal placement is made (if the
problem is computationally tractable). However, with increasing scale and rate of
system changes, this control solution becomes inappropriate, since the database is
likely to become a bottleneck due to consistency updates. In addition, vulnerability to
failures of a centralized solution results in low fault resilience.

Instead of a centralized solution, we consider decentralized algorithms which func-
tion under the assumption that each control element has only partial information about
the global state of the system. While this leads to increased scalability, its drawbacks
are non-optimal placements and higher complexity of the management infrastructure.

284 S. Graupner et al.

Adaptation. Large-scale peer-to-peer (P2P) systems such as file-sharing systems
exhibit two properties which are cornerstones of automated resource management:
adaptation and self-organization. We attempt capturing both properties in our algo-
rithms by building on ideas from agent or robot coordination and P2P systems.

Adaptation is the ability to detect and react to changes in the state of the system,
such as resource availability and service requirements. In a system comprising thou-
sands of servers, changes such as server failure, overload, or resource revocation
might occur every few seconds. Similarly, resource demand will fluctuate in short
time intervals. These effects require adaptation of the system to new conditions on a
permanent basis, ideally without human intervention. Such an automated service
control system then transparently regulates service demands and supplies.

Self-Organization. We understand self-organization as the capability of adding and
removing system parts without the need for manual reconfiguration or human inter-
vention. This aspect is of particular interest since (non-automated) management of
systems is an essential cost factor and a dominant source of error in IT environments.

Decentralization, Responsiveness and Placement Quality

A primary design goal of a placement algorithm is to let it find a “best” placement
under the metric such as given in section “Placement Objectives and the Partial Objec-
tive Function (POF)”. However, there are several obstacles to attain such a solution.
One of them stems from the fact that the placement problems are known to be NP-
complete. This requires heuristic approaches, but even such approaches have different
running time, which influences the responsiveness of a system. responsiveness is un-
derstood as the time between detection of an abnormality, for instance a sudden peak
demand, and the final computation of a decision how the situation can be dealt with.

The second obstacle is dictated by the requirement of the decentralization, which in
most cases prevents the algorithm (or its parts) to know the current state of the whole
system. Of course, partial knowledge leads in general to suboptimal placements and
influences adversely the responsiveness.

In practice, decentralization and responsiveness of an algorithm must be traded
against the quality of a solution. Figure 1 classifies four algorithms in regard to solu-
tion quality vs. responsiveness. Three time scales are considered: the “design” stage
of an initial service placement, in longer periods reiterated as long-term adjustment
process in the system; a mid-term period for periodic operational adjustments, and a
shorter-term period for discharging sudden hot spots. One approach we pursued is a
centralized heuristic algorithm based on integer programming.

This algorithm yields high-quality solutions but at a cost of longer running time
and limited scalability, and is therefore not discussed here. The three algorithms de-
scribed in this paper take different places in the trade-off space, and so the choice
which one to deploy will depend on one of the management goals discussed above.

General objectives. The optimization goals for service placement might vary in gen-
eral and so the presented algorithms are designed to be generic enough to support new
objectives without fundamental changes. We focus on only few aspects to be achieved
by control decisions. These are:

 Adaptive Service Placement Algorithms for Autonomous Service Networks 285

Fig. 1. Comparison of algorithms regarding accuracy and responsiveness

1. Balancing the server load such that the utilization of each server is in a de-
sired range.

2. Placing services in such a way that communication demand among them
does not exceed the capacity of the links between the hosting server envi-
ronments.

3. Minimizing the overall network traffic aiming to place services with high
traffic close to each other on nearby servers (nearby in the sense of a low
number of communication hops across nodes).

The Partial Objective Function. We want to be able to compare different placement
options in a quantitative way. To this aim we introduce a partial objective function
(POF) fPOF, which ranges between 0 and 1 and attains higher values for better place-
ments (i.e. should by maximized).

The function is derived from a balanced sum of two characteristics. The first one,
cT, is the sum of traffic costs between the services on a pair of servers weighted by the
distance of these servers. The second number, uT, is the variance of the processing
capacity usage among the servers. This leads to the POF computed by the formula:

() ,
)1(TT

POF uc
f

⋅−+⋅+
=

ααβ
β

where is the balancing factor between 0 and 1, and a parameter described below.
Higher values of gives cT more weight in the result, while lower values favors uT.

In our setting, both a lower weighted traffic cost and a lower variance are better.
This is reflected in the value of the POF, which has a higher “score” for smaller cT or
uT. must be chosen according to the maximum possible values of cT and uT in order
to ensure a relatively uniform distributions of the values of the POF.

Our POF is evaluated for a set V of servers and a set S of services. It is important
to note that such a set might not contain all services or all servers in the system. In
case of services this is motivated by a fact that for larger systems we can frequently
isolate groups of interdependent services (i.e. services communicating with each
other). While it makes sense to consider all services in such a service group for a
particular placement, we do not need to consider services outside the group.

The rationale for considering only few and not all servers is dictated by scalability
issues. In large systems, it is simply impossible to take all servers into consideration.
The algorithms described in the following select an appropriate subset of the servers
from the system in a heuristic fashion. The subsets are then evaluated in the POF.

286 S. Graupner et al.

 In the following, we give formal definitions for the characteristics cT and uT. We
assume a fixed assignment of services in the set S to the servers in the set V.
 For two servers v and v’, we designate by cv,v’ the estimated total traffic between all
services placed on v and all services placed on v’, measured in the number of ex-
changed IP packets. If proxv,v’ is the network distance of servers v and v’ (in terms of
IP-hops), then the total weighted communication cost cT is given by

,
1

'
',',∑∑

∈ ∈

⋅=
Vv Vv

vvvvT cprox
M

c

where M is the total number of exchanged IP packets times the maximum distance
between two servers in V. If a server v sends k packets to server v’ and the distance
between both servers is d (IP-hops), this message will contribute (kd)/M to cT.

For a server v, let uv be the fraction of its processing capacity used by all services
placed on this server. We assume that uv is a real number in [0, 1]. By rewriting the
formula for a variance of a random variable, we obtain the variance uT as:

.
||

1
2

2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∑∑

∈∈ Vv
v

Vv
vT u

V
uu

Necessary conditions of an assignment. An assignment must fulfill certain neces-
sary conditions; for example, we cannot assign a service to a server with insufficient
processing capacity. By slightly abusing the notion of an “objective function”, we can
use fPOF to ensure that such requirements are fulfilled. Specifically, we set the value of
the POF to 0, if any of the following conditions is violated:
Each service is placed at exactly one server.

- For each server v, the total processing demand of all services assigned to v is
at most the processing capacity of v.

- For each server v, the total storage demand of all services assigned to v is at
most the storage capacity of v.

- For each pair (v, v’) of servers, the total network traffic between the services
hosted on these servers should not exceed the link capacity between v and v’.

- The entries of a so-called affinity/repulsion matrix, if present, are respected;
they indicate that a service must not or must be placed on a certain server.

Ant-Based Control Algorithm

Swarm Intelligence [3] is an approach where the collective behavior of simple agents
with local interaction results in distributed problem solving without central control.
The main application domains are optimization problems (such as Traveling Sales-
man Problem (TSP)) and telecommunication questions such as routing [30].

In a particular approach, the Ant Colony Optimization [6], the path taken by an ant
on its way between objects (e.g. cities in TSP) represents a possible solution to the
optimization problem. In our case, the objects would be both servers and services, and
the alternating path would represent an assignment of services to servers.

 Adaptive Service Placement Algorithms for Autonomous Service Networks 287

 However, this approach is centralized and not scalable for the following reasons:

1. The ant must “remember” the whole path it has taken; this information can
become very large.

2. The ant must visit all objects on its tour. In a large and dynamic system, this
is a serious drawback.

3. Finally, each solution (path) must be evaluated against others. This requires
central knowledge.

Fig. 2. In each step, the ant assigns one of the services from its service list

Overview

We describe another approach not common in the classical Ant Colony Optimization
yet leading to a better scalability. First we give an informal overview of this algorithm.
In our system, for each service s we instantiate a “demon” Ms called a service man-
ager of s. If the service s is not yet placed or an overload condition has occurred, Ms
creates multiple ants (“agents”) and sends them out to the network. Each ant has a
service list containing s and the services cooperating with s. For each such a service, it
knows the current resource requirements; also, it knows the current communication
requirements among the services in the service list.

The ant travels from one server to another choosing the servers along the path
based on a probability computed locally. In each step, one of the services from the list
is assigned to the current server, see Figure 2. The path created in this way represents
a partial solution to the placement problem as found by this particular ant. When the
ant has assigned all the services, it reports its path to the service manager Ms of s and
terminates. The manager compares the reported paths using the POF, where the serv-
ers visited by this ant constitute the set V of the POF, and the set S is the service list
of s. This assignment is compared with the current placement of those services. Fi-
nally, Ms decides of a possible rearrangement of the placement.

On each server, the ant evaluates the score of the server in respect to each service
from its list. For each pair (service, server), this placement score expresses how well
this server is suitable to host the service. It is computed also using the POF in the way
described below. Furthermore, the ant causes the pheromone table of the current
server to be updated. This table contains pheromone scores for certain pairs (service,
server). Those are essentially weighted sums of placement scores of the ants that
evaluated this particular (service, server)-pair. The table is used to help an ant to de-
cide which server to visit next. The server managers of neighboring servers periodi-

288 S. Graupner et al.

cally exchange these tables, thus providing a mechanism to disseminate the local
information across the system.

Ants, Service Managers and Server Managers

In our algorithm we have three entities that store and manipulate data:
- a service manager Ms of a service s,
- an ant representing s,
- a server manager (corresponding to a single server) which executes the ant

code, and maintains and updates the pheromone table of its server.

The data held by a service manager comprises the service list of s, the number of
spawned ants and the currently best assignment reported by an ant. A service manager
also knows how to evaluate the POF and its value for the current placement of the
services in the service list.

An ant is launched with the following data that are “static” during its lifetime: the
service list together with the current demand profiles of each service in the list, and
the communication demand profiles between those services. This information is nec-
essary to compute the score via a POF. The dynamic data carried by an ant are the
scores of the already assigned services from the service list, and data about already
visited servers, including link capacities.

Table 1. An example pheromone table

 Finally, a server manager holds the pheromone table of its server. The structure of
the pheromone table is shown in Table 1. For each pair (serviceId, serverId) existing
in this table, we record the known pheromone score, the age of this score and the
number of ants which contributed to establish this score.

Functionality of the System Components

In this section we describe in detail the behavior of the entities introduced above.

Service managers. A service manager constantly watches the performance of “its”
service and evaluates the current assignment by a POF. On two occasions it spawns
ants starting a process described below:

- If the POF value is larger than some critical limit; this corresponds to the
case of an occurrence of a “hot spot”.

serviceId serverId pheromone score score age (sec) # ants

apache-01 15.1.64.5 0.572 95 15

apache-01 15.1.64.7 0.356 120 9

oracle-02 15.1.64.1 0.012 62 12

 Adaptive Service Placement Algorithms for Autonomous Service Networks 289

- If a certain period of time has passed since the last launch of the ants. The
purpose of this step is to periodically “rebalance” the whole system towards
an optimal utilization.

The process from the decision of launching ants until its termination includes the
following steps:

1. Synthesize the ant data described in the section “Ants, Service Manager and
Server Manager”.

2. Place cs copies of such an ant on the servers. The placement method and the
value of cs is described in the section “Initial Placement of Ants”.

3. Collect the assignments and the corresponding scores sent by the ants which
terminated.

4. Once all ants have finished (or a timeout has occurred), compare the reported
assignments by the POF and choose the one with the best POF value.

5. If the service s has already been placed, compare the current POF of s and
the cooperating services with the one found in Step 4. If the new assignment
is better by a threshold ts (representing the “penalty” for reassigning services
to servers), continue with the next step; otherwise, terminate this epoch of
ant launching.

6. If s is not placed, or the evaluation in Step 5. led to this step, reassign the
services to servers in a following way.

a. Contact all servers to be used in the new assignment of services and
verify that their scores are still (approximately) valid. If this is not
the case, start a new epoch of ant launching (i.e. begin from Step 1.)

b. Contact the service managers of all cooperating services and let
them stop any running ant-based evaluations.

c. Contact the servers to be used in the new assignment and let them
reserve the required resource capacities.

d. Start installing and starting the services on their new locations.
e. When step d. is finished, shut down services in the old placement.
f. Finally, start the service managers of the newly installed services.

Ants. An ant created by a service manager Ms of a service s “travels” from one server
manager to the next one (usually residing on an another physical entity). Technically,
it is done by contacting the next server manager, transmitting the ant data to it and
initiating executing the ant code for this ant instance. The choice of the next server
manager is done in the way described below.
 The ant has the following life cycle after it has arrived on a new server manager:

1. Evaluate for each service in the service list the score in regard to this server.
This is done via the POF for this server as described in the section “Place-
ment Scores and the Pheromone Trail”.

2. Update the pheromone table of the current server by passing the computed
scores to the server manager.

3. Choose the service with the highest computed score among the not yet
assigned services and remember this assignment.

290 S. Graupner et al.

4. If all services from the internal list have been assigned, report the resulting
assignment to the “original” service manager Ms, then terminate.

5. Otherwise, move to the next server manager and continue with 1.

Server managers. Both entities described above have essentially a fixed order of
tasks to be executed. By way of contrast, a service manager acts in an asynchronous
way, providing “services” to the other two entities. Its roles comprise following tasks:

1. It provides an environment where the ants are executed. Especially, it can
asynchronously receive messages from other server managers that send the
ant data. Once this data is received, it executes the locally stored code repre-
senting an ant.

2. It lets an ant update the pheromone table with the scores computed for the
services in the service list.

3. It maintains the pheromone table by updating the age of the pheromone
scores and pruning the table. The last step is necessary, because in the ex-
treme case, the pheromone table could attain a size proportional to the num-
ber of servers multiplied by the number of services; this would seriously im-
pede scalability. During the pruning, the oldest entries (except for those re-
garding the neighboring servers) are removed, until the desired table length
is reached.

4. Finally, a server manager sends periodically its own pheromone table to the
neighboring servers, keeping the information of the neighbors up to date.

The last function provides a mechanism for dissemination of the local knowledge
throughout the system. This reduces the gap between a distributed system where each
participant has only local knowledge, and a centralized system with the complete,
global knowledge of the system. The size of the time interval between the updates and
the size of a pheromone table controls the degree of the “global knowledge” in the
system. An antagonistic trend is the rate of changes in the system and consequently
the ageing rate of the pheromone. Also, albeit a high degree of this knowledge is very
useful for choosing the next server in a correct way, attaining it costs a lot of
resources, mostly network bandwidth and storage for the pheromone tables.

Placement Scores and the Pheromone Table

Recall when an ant reaches a new server manager, it computes placement scores for
all services from its list in respect to the current server. For such a pair (service s,
server v), this computation is done via the POF as follows. The current server v and
servers already visited by an ant become the set V. Furthermore, s and all already
assigned services from the ant's service list constitute the set S. Then the value of the
POF is computed for the (partial) assignment of services to servers already chosen by
this ant, together with the mapping of s to v. We assume that information about link
capacities between the servers is buffered by the ant or can be obtained from the
server manager, if necessary.

Let us describe now how the pheromone tables are updated. Assume that an ant has
computed a fresh placement score r for the pair (service, server). If such a pair does
not exist in this server manager's table, it is simply inserted with the pheromone score

 Adaptive Service Placement Algorithms for Autonomous Service Networks 291

being equal to the placement score. Otherwise, the new value p' for this pair's phero-
mone score is computed from the current table entry p and the newly computed
placement score r by the formula .)1(' rpp ⋅−+⋅= γγ

Here is a parameter between zero and one which determines the degree of inherit-
ing previous pheromone score value. Note that the contribution of all other scores de-
creases geometrically with the number of iterations: if the very first ant which has vis-
ited the node has set the pheromone score to p, then after k new ants have reached the
server, the contribution of this first ant to the current score of the pair will only be kp.

We also want to consider an effect known from the ant colony systems in the na-
ture: evaporation of the pheromone. Due to this effect, old and probably outdated
information about affinities of services to servers will be removed with time, even if
no new ants have arrived at this server. To this aim, a server manager scans through
its pheromone table once every T minutes, and reduces the score p in the pheromone
table according to the formula ,pp ⋅= δ where delta is an aging factor between 0 and

1 (usually close to 1). If the value of the pheromone score decreases below a certain
limit, pairs are removed from the pheromone table in order to save storage resources.

Choosing the Next Server

Pheromone tables are the main decision factor for choosing the next server to be vis-
ited by an ant. Since those tables are exchanged by the neighboring servers and propa-
gated through the system, an ant has a good chance to find a pair (service s, server v)
in the pheromone table of the current server. Here v is a not too distant server and s is
a still unassigned service from the service list of this ant. If multiple such pairs have
been found, the server of a pair with the highest pheromone score is selected. How-
ever, if no such a pair exists, the ant chooses a set of servers from the pheromone
table with 1. most recently updated pheromone scores, and with 2. highest pheromone
scores. Then a random server from such a set is selected as the next host. This
approach targets to identify servers with free computational resources.

As an alternative to each of the above cases, sometimes we send an ant to a ran-
domly selected not-too-distant server. The decision for this step is taken with a
(small) probability h. Such an addition of a “noise” is helpful to prevent the blocking
problem and the shortcut problem [30]. The blocking problem occurs if a “popular”
path found by many ants can no longer be taken, e.g. due to a server failure. The
shortcut problem occurs in a situation where a new assignment of services to servers
suddenly becomes possible, for example due to introduction of new servers to the
system. In both cases the information stored in the pheromone tables might cause lack
of adaptation of the ants to the new conditions. A small amount of noise forces the
ants to exploit the alternative routes on a permanent basis.

Initial Placement of Ants

The initial placement of ants is intuitively an important factor for finding good service
placements. In our case, the service manager Ms places the ants in the system accord-
ing to the following schema.

292 S. Graupner et al.

First, it determines Nr “regions” where clusters of ants are placed. The centers of
these regions are chosen randomly in the known system area in the way that the prob-
ability of choosing a center distant from the service manager is smaller than choosing
a center close to Ms. To this aim, each service manager maintains a (partial) map of
the resources in term of their network location. The resources are categorized by their
IP-distance d to the server manager. When choosing a center of the region, in the fist
step the service manager selects randomly a class of resources with a distance d to Ms.
Then it decides to continue with this class with probability

()
,

1

1
θd+

otherwise it chooses again a random class until success; here is a parameter greater
1. If successful, a random resource as the center of a new region is chosen. The above
formula yields high probability values for resource classes close to Ms (i.e. with small
d), and rapidly decreasing probability values with growing distance d. According to
the findings in [19], this approach ensures that very rare resources can be still discov-
ered, but simultaneously supports clustering of services according to the location of
their inception.

In each of the regions determined in this way, the service manager spawns Na ants
on the resources close to the center of the region. Here a similar approach to the one
described above is taken, yet the distances of the created ants from the center of the
region are kept smaller by means of increasing . Furthermore, ants “repel” them-
selves: if an ant is placed on a certain resource, then Ms will discard all servers within
a distance Dr from this resource for further placements.

BLE-Based Control Algorithm

We adapt the concept of the Broadcast of Local Eligibility used for coordination of
robots [32] for the placement of services. This concept can be used to create highly
fault-tolerant and flexible frameworks for coordination of systems of agents. How-
ever, the originally proposed framework has a drawback of limited scalability. To
overcome this problem, we use a hierarchical control structure discussed below.

Decision cycle in a cluster. We consider a cluster of servers with a distinguished
server called cluster head. Each member of the cluster has the ability to broadcast a
message to all other members of the cluster. This can be done either directly or via the
cluster head. The placement of services in this cluster is periodically re-evaluated by
arbitration between peer servers in so-called decision cycles. The time between two
cycles is determined by the required responsiveness to fluctuations in server utiliza-
tion and by the induced communication between cluster members.
 In each decision cycle, the following actions take place:

1. Each server broadcasts the list of services it hosts with all new arrived ser-
vices and simultaneously updates its list of all services in the cluster.

2. Each server evaluates its own suitability to host each service and sorts the list
according to the computed score. The evaluation is done by using the POF from
the section “Placement Objectives and the Partial Objective Function (POF)”. In
addition, a service already deployed on a server highly increases the score.

 Adaptive Service Placement Algorithms for Autonomous Service Networks 293

Each server broadcasts a list, ordered by scores, of those services the server
can host simultaneously without exceeding its capacity.

3. When a server receives a score list from a peer, it compares this score with
its own score for a service. As a consequence, each server knows whether it
is the most eligible one for hosting a particular service.

4. The changes in the service placement are executed. Notice that each server
knows already whether it has to install new or remove current services. In
addition, the cluster head compares the initial list of services with those,
which will be hosted at the end of this decision cycle. The remaining services
are passed on to the next hierarchy level as explained below.

An important aspect is that the servers do not forget the list of services in the cluster
after a decision cycle. In this way we provide fault-tolerance: if a server hosting cer-
tain services fails, other servers in the cluster will automatically install the failed ser-
vices (or the cluster head adds them to the list of unassigned services).

Gossiping algorithms. Note that steps 1 and 3 require all-to-all communication, i.e.
each server learns the information from all other servers. This may lead to a problem
of the communication costs in terms of the number of messages and the time until all
members of a cluster are informed. In infrastructures like Ethernet or wireless LAN a
cost of a broadcast is comparable to sending a targeted message, which partially re-
lieves the situation. This problem becomes more serious if members of a cluster are
geographically distributed or communicate over a switched network.

These communication costs can be reduced using gossiping algorithms [13]. These
deterministic and also randomized [18] algorithms achieve optimal bounds for the num-
ber of messages with a low number of communication rounds; for example, the infor-
mation exchange can be completed in approximately 2log2 n steps in the deterministic
case, and in roughly log n steps in the randomized case, where n is the number of serv-
ers in the cluster. The reader is referred to the literature for more detailed discussion.

Scalability by a cluster hierarchy. Obviously, the scalability of the above approach
is limited by the size of the cluster, the communication capacity in the cluster and the
processing capacity of the cluster head.

We propose a following hierarchical approach to extend the scalability. Basically, the
cluster heads of the clusters at level k are treated as “normal” members of a cluster of
level k+1. However, they compete only for those services, which could not be installed
in their own cluster (see step 5. above). After a decision round in the cluster of level
k+1, these pending services are possibly moved to another peer, which is a cluster head
for a cluster of level k. (The cluster head evaluates the eligibility of the servers in its
own cluster, not its own eligibility). In the cluster of level k, these services become part
of the list of services to be installed and participate in the normal decision cycles.

The cluster size is essential for the balance between the responsiveness of the sys-
tem and flexibility. Identifying a correct hierarchical structure can be done similarly
to clustering algorithms used in sensor networks [8].

Agents in Overlay Networks

In this section we describe an approach that combines the advantages of agent tech-
nology techniques with the fault-tolerant properties of peer-to-peer (P2P) networks.

294 S. Graupner et al.

Service groups and agents. Services frequently build clusters of interdependent
entities, which do not rely on further services outside the cluster. Such a service
group, if not too large, can be treated as one (albeit not atomic) entity in the process of
the optimization. Therefore we assign to such a service group Na instances of group
agents. Each group agent has the task to walk around in the network and evaluate the
current server and its neighborhood in regard to placement of the services in the ser-
vice group; however, one agent stays on one of the servers which host members of the
service group, and evaluates only the current placement.

The evaluation of potential new placements is initiated by retrieving the capacity
parameters and utilization data of the current server and its neighboring servers by
means of a P2P-network described below. This data is then a subject to evaluation by
the Partial Objective Function from the section “Placement Objectives and the Partial
Objective Function (POF)”. Periodically, the group agents belonging to the same
service group exchange their best scores. If the score of one of them is better than the
real placement (also taking into account a penalty for moving services), this group
agent initiates a rearrangement of the placement.

A further assignment of a group agent is to provide the fault-tolerance to the opti-
mization infrastructure: it is done by constantly watching all other Na–1 group agents
for being alive; the special group agent staying close to actually deployed services
also watches the health of the services. If one of the group agents fails, it is immedi-
ately re-instantiated by other agents. Also, if one of the services turns out to have
failed, an appropriate recovery action is initiated.

It is important to note the difference to the Ant Colony Optimization Algorithm
presented in the section “Ant-based Control Algorithm”. While both ants and agents
use a notion of a service group and carry data of services in such a group, agents have
a different evaluation algorithm compared to ants. While an ant assigns a service to a
server in each step, an agent evaluates a possible assignment of all services to the
current server and its neighbors in such a step. Furthermore, agents have more “intel-
ligence” and do not die as opposed to ants. On the other hand, ants use the pheromone
trails to learn the best assignments.

P2P-based overlay networks. Since the evaluation of a new agent placement incurs a
lot of effort, the next jump of an agent must be chosen carefully. To this aim agents are
guided by information from an overlay network that provides capacity-related attrib-
utes of servers. In the overlay network described in [2] servers are connected in a P2P-
manner to achieve fault-tolerance and self-organizing properties (i.e. servers may join
and leave without a reconfiguration exercise). The functionality of the network allows
range queries of attributes; in our case we are mostly interested in server processing
capacity, server storage capacity and the density values of these attributes. The density
of an attribute is the averaged attribute value from a group of servers whose center is
the server which “labels” this density value; thus, a density value is an indicator of the
attribute (capacity) in the surrounding of a server. Density values are periodically com-
puted on each server by updates received from the surrounding resources. When decid-
ing about the next server to be visited, an agent first collects the current utilization
data from its service group. This demand value determines the range for which the
density values are queried. The overlay network responds with a list of servers fulfill-
ing the criteria. An agent sorts them according to their distance, and chooses ran-

 Adaptive Service Placement Algorithms for Autonomous Service Networks 295

domly the next server to move on, similarly as described in the section “Choosing the
Next Server”. Once arrived on the new server, it queries directly the surrounding
servers retrieving their individual attribute values. If ranges of values are necessary,
the overlay network query capability can be used. This data is then used for the
evaluation of the POF.

Conclusion

The algorithms presented in this paper provide means for distributed placement of
services on servers in Autonomous Service Networks, for example global IT envi-
ronments, large data centers, or Grids. The assumptions of large scale, lack of global
knowledge and constantly changing operating conditions result in the design of
distributed, heuristic algorithms. The algorithms build on techniques from agent
coordination and P2P systems, trying to capture their properties of adaptability and
self-organization.

A qualitative comparison and classification of the algorithms is provided in Table 2
(a comparison to a centralized integer programming approach not discussed in this
paper is also provided). Obviously none of the approaches covers all desirable re-
quirements; in particular, the tradeoff between responsiveness and solution quality
becomes apparent.

Future work in this are will include refinement of the algorithms (including design
alternatives) and integration in a Grid management infrastructure.

Table 2. Comparison of the algorithms

Ap-

proach
Scalabil-

ity
Accuracy re-

sponsive-
ness

Self-
organization

Fault
resilience

Ex-
tensi-bility

Simplic-
ity

Integer - + - - - + +

Ants + - - + + - -

BLE + - + + +/- - +

Ovl.
Agents

+ - +/- + + + -

References

1. Andrzejak A, Graupner S, Kotov V, Trinks H. Self-Organizing Control in Planetary-Scale
Computing. IEEE International Symposium on Cluster Computing and the Grid (CCGrid),
May 21-24, 2002, Berlin.

2. Andrzejak A, Xu Z. Scalable, Efficient Range Queries for Grid Information Services. Sec-
ond IEEE International Conference on Peer-to-Peer Computing (P2P2002), Linköping,
Sweden, 5-7 September 2002.

3. The Anthill Project. University of Bologna. http://www.cs.unibo.it/projects/anthill/.

296 S. Graupner et al.

4. Bonabeau E, Théraulaz G. Swarm Smarts, Scientific American 2000;72-9.
5. Brewer EA, Katz RH, Amir E, Balakrishnan H, Chawathe Y, et al. A Network Architec-

ture for Heterogeneous Mobile Computing. IEEE Personal Communications Magazine,
Oct. 1998.

6. Dorigo M, Maniezzo V, Colorni A. The Ant System: Optimization by a Colony of
Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B,
1969;26(1):29-41.

7. El-Rewini H, Lewis TG, Ali HH. Task scheduling in parallel and distributed systems. PTR
Prentice Hall; 1994.

8. Estrin D, Govindan R, Heidemann J, Kumar S. Next century challenges: Scalable coordi-
nation in sensor networks. Proc MOBICOM August 1999; 263-270.

9. Foster I, Kesselman C. The Grid: Blueprint for a New Computing Infrastructure. 2nd ed.
Morgan Kaufman; 2003.

10. Foster I, Kesselman C, Nick JM, Tuecke S. The Physiology of the Grid – An Open Grid
Services Architecture for Distributed Systems Integration. May 2002,
http://www.globus.org/research/papers/ogsa.pdf.

11. The Globus Toolkit, http://www.globus.org/toolkit.
12. Graupner S, Kotov V, Andrzejak A, Trinks H. Service-Centric Organization of Globally

Distributed Computing. IEEE Internet Computing, special issue on "Grid Computing";
July/August 2003; 36-43.

13. Hedetniemi ST, Hedetniemi SM, Liestman AL. A survey of broadcasting and gossiping in
communication networks. Networks 1988; 18:319-349.

14. Hewlett-Packard company. Utility Data Center. http://www.hp.com/go/hpudc,
http://www.hp.com/go/always-on.

15. IBM. http://www.ibm.com/grid.
16. IBM, University of Berkeley. Oceano Project. http:/ /www.research.ibm.com/

oceanoproject.
17. IBM. Autonomic Computing Manifesto. http://www.research.ibm.com/autonomic/ mani-

festo
18. Kermarrec AM, Massoulie L, Ganesh AJ. Reliable Probabilistic Communication in Large-

Scale Information Dissemination Systems. Microsoft Research Technical Report MMSR-
TR-2000-105, October 2000.

19. Kleinberg J. The Small-World Phenomenon: An Algorithmic Perspective. Cornell Techni-
cal Report 99-1776, October 1999.

20. Kotov V: On Virtual Data Centers and Their Operating Environments, HP Labs Technical
Report, HPL-2001-44, March 2001.

21. Krauter K, Buyya R, Maheswaran M. A Taxonomy and Survey of Grid resource Manage-
ment Systems. Software-Practice and Experience 2002; 32(2):135-164.

22. Kubiatowicz J, Bindel D, Chen Y, Czerwinski S, Eaton P, et al. OceanStore: An Architec-
ture for Global-Scale Persistent Storage. ASPLOS ’00.

23. Luo QY, Hendry PG, Buchanan JT. Comparison of different approaches for solving dis-
tributed constraint satisfaction problems. Research Report RR-93-74, Department of Com-
puter Science, University of Strathclyde, Glasgow, 1993.

24. Marcus E, Stern H. Blueprints for High Availability: Designing Resilent Distributed Sys-
tems. John Wiley & Sons, 2000.

25. Montresor A, Meling H, Babao lu Ö. Messor: Load-Balancing through a Swarm of
Autonomous Agents. Proc 1st International Workshop on Agents and Peer-to-Peer Com-
puting, Bologna, Italy, July 2002.

26. Platform Inc., http://www.platform.com.

 Adaptive Service Placement Algorithms for Autonomous Service Networks 297

27. asamy S, Francis P, Handley M, Karp R, Shenker S. A Scalable Content-Addressable Net-
work. SIGCOMM 2001.

28. Rolia, J, Singhal S, Friedrich R. Adaptive Data Centers. Proc SSGRR 2000 Computer and
eBusiness Conference, L'Aquila, Italy, August 2000.

29. Royer EM, Toh C-K. A Review of Current Routing Protocols for Ad Hoc Mobile Wireless
Networks. IEEE Personal Communications Magazine April 1999.

30. Schoonderwoerd R, Holland O, Bruten J, Rothkrantz L. Ants for Load Balancing in Tele-
communications Networks. Adaptive Behavior 1996;2:169-207.

31. Sun Microsystems. The Sun Grid Engine. http://wwws.sun.com/gridware.
32. Werger BB, Matari M. From Insect to Internet: Situated Control for Networked Robot

Teams. To appear in Annals of Mathematics and Artificial Intelligence.

Author Index

Andrzejak, Artur 280
Armetta, Frederic 240

Bar-Yam, Yaneer 16
Bour, Guillaume 69
Brueckner, Sven A. 195, 267

Cranefield, Stephen 100

De Wolf, Tom 1
d’Inverno, Mark 52

Edmonds, Bruce 84

Foukia, Noria 227

Galstyan, Aram 167
Gerasimov, Vadim 154
Gerth, Richard 267
Glaser, Rupert 256
Gonon, Emanuel 240
Gortais, Bernard 69
Graupner, Sven 280
Guo, Ying 154

Hales, David 123
Hassas, Salima 240
Helferty, James 180
Holvoet, Tom 1
Hutzler, Guillaume 69

James, Geoff 154

Karuna, Hadeli 210
Kornely, Susanne 256
Kotov, Vadim 280

Lauterbach, Christl 256
Lerman, Kristina 167
Li, Jiaming 154

Mamei, Marco 138

Nowostawski, Mariusz 100

Pimont, Simone 240
Poulton, Geoff 154
Purvis, Martin 100

Saint-Germain, Bart 210
Saunders, Rob 52
Savio, Domnic 256
Schnell, Markus 256
Stöhr, Annelie 256

Trinks, Holger 280

Ulieru, Mihaela 32

Valckenaers, Paul 210
Valencia, Phil 154
Van Brussel, Hendrik 210
Van Dyke Parunak, H. 195
Vasirani, Matteo 138
Verstraete, Paul 210

Weber, Werner 256
White, Tony 180

Zambonelli, Franco 138
Zamfirescu, BalaConstantin 210

	Frontmatter
	State of the Art
	Emergence Versus Self-Organisation: Different Concepts but Promising When Combined
	About Engineering Complex Systems: Multiscale Analysis and Evolutionary Engineering
	Adaptive Information Infrastructures for the e-Society

	Synthesis and Design Methods
	Agent-Based Modelling of Stem Cell Self-organisation in a Niche
	Ambient Cognitive Environments and the Distributed Synthesis of Visual Ambiences
	Using the Experimental Method to Produce Reliable Self-Organised Systems
	An Architecture for Self-Organising Evolvable Virtual Machines
	Self-Organising, Open and Cooperative P2P Societies -- From Tags to Networks

	Self- ssembly and Robots
	Self-Organizing Spatial Shapes in Mobile Particles: The TOTA Approach
	Directed Self-assembly of 2-Dimensional Mesoblocks Using Top-Down/Bottom-Up Design
	Analysis of a Stochastic Model of Adaptive Task Allocation in Robots
	Emergent Team Formation: Applying Division of Labour Principles to Robot Soccer

	Stigmergy and Related Topics
	Analyzing Stigmergic Learning for Self-Organizing Mobile Ad-Hoc Networks (MANET's)
	Emergent Forecasting Using a Stigmergy Approach in Manufacturing Coordination and Control
	IDReAM: Intrusion Detection and Response Executed with Agent Mobility
	Managing Dynamic Flows in Production Chains Through Self-Organization

	Industrial Applications
	A Self-Organizing and Fault-Tolerant Wired Peer-to-Peer Sensor Network for Textile Applications
	Applying Distributed Adaptive Optimization to Digital Car Body Development
	Adaptive Service Placement Algorithms for Autonomous Service Networks

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

