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Preface

The spread of the Internet, mobile communications and the proliferation of new
market models, such as e-commerce, has resulted in the whole information in-
frastructure operating as a global dynamic system. The complexity and the
inherent dynamism of the resulting global system require software capable of
autonomously changing its structure and functionality to meet dynamic changes
in the requirements and the environment without immediate human interven-
tion. In particular, contemporary software applications must provide highly cus-
tomised services to a huge user population by dynamically adapting to personal
requirements. Furthermore, new maintenance approaches need to be followed,
for example continuously running software should evolve on run-time to meet
ever-changing user requirements. Finally, new ways for handling exceptions and
component failure and replacement, as well as changes in the environment are
required, for example as is the case in networks including large numbers of smart
computing entities, such as ad hoc sensors and MEMs devices. In large intercon-
nected software systems such tasks cannot be achieved by approaches involving
direct supervision and centralised management.

A way to meet requirements of this kind is to utilise the emergent properties
of distributed interacting software referring to concepts such as self-organisation,
self-regulation, self-repair and self-maintenance. However, in artificial systems,
environmental pressures and local interactions and control may lead to unpre-
dicted or undesirable behaviour. Understanding how to engineer the correct self-
organising behaviour is thus an issue of major concern.

Self-organising applications (SOAs) are able to dynamically change their
functionality and structure without direct user intervention to meet changes in
requirements and their environment. The overall functionality delivered by SOAs
typically changes progressively, mainly in a nonlinear fashion, until it reaches
(emerges to) a state where it satisfies the system requirements at the time, and
therefore it is termed self-organising or emergent behaviour. Self-organising be-
haviour is often the result of the execution of a number of individual application
components that locally interact with each other aiming to achieve their local
goals, for example systems that are based on agents or distributed objects. The
main characteristic of such systems is their ability to achieve complex collective
tasks with relatively simple individual behaviours, without central or hierarchical
control.

A major open issue is therefore how to engineer desirable self-organising be-
haviour in SOAs and how to avoid undesirable ones, given the requirements
and the application environment. To address this issue, approaches originating
from diverse areas such as nonlinear optimisation, knowledge-based program-
ming and constraint problem solving are currently being explored. Furthermore,
SOA engineers often take inspiration from the real world, for example from biol-
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ogy, chemistry, sociology and the physical world. Typical examples of SOAs are
systems that reproduce socially based insect behaviour, such as ant-based sys-
tems, artificial life, or robots. Although the results achieved so far are promising,
further work is required until the problem is sufficiently addressed.

This book is complementary to a sister volume published in 2003, which
aimed at establishing the field of Engineering Self-organising Systems and it
focused on the foundations of self-organising systems. This year the emphasis
is on methodological aspects and on applications of self-organising approaches.
The book comprises revised versions of papers presented at the Engineering Self-
organising Applications (ESOA 2004) workshop, held during the Autonomous
Agents and Multi-agent Systems conference (AAMAS 2004) in New York in
July 2004, and selected invited papers from leading contributors in the self-
organisation field.

Part I contains three papers related to state of the art of self-organising sys-
tems. Wolf and Holvoet review historical definitions of the terms self-organisation
and emergence and provide new aggregated definitions of each term supported by
examples. Subsequently, Bar Yam demonstrates the limitations of decomposition-
based engineering for the development of highly complex systems using multi-
scale analysis. Ulieru then discusses the characteristics of adaptive information
infrastructures and their role in human/machine and hardware/software inte-
gration.

In Part II approaches to designing self-organising systems are presented.
d’Inverno and Saunders provide a mathematical formalisation and discuss the
advantages of using an agent-based approach to develop biologically plausible
models of stem cell systems in the context of a case study. Subsequently, Bour et
al. address the issue of the creation of visual ambiences based on the coordinated
activity of tiny computing entities distributed randomly on a 2D canvas that can
only change their own color and perceive their immediate neighbors. Edmonds ar-
gues on the use of adaptive approaches producing reliable self-organised software
systems. The argument is supported by defining a class of simple multi-agent sys-
tems and showing that it can be evolved to perform simple tasks. Nowostawski
et al. then propose an evolutionary computation model based on the theory of
hypercycles and autopoiesis. Subsequently, Hales discusses the use of tag dy-
namics to realize adaptive node behaviour in P2P systems (selfish vs. altruistic)
based on results of P2P simulations.

Part III describes applications of self-organisation in self-assembly and robotic
systems. Mamei et al. present self-organising spatial shapes in mobile particles
with minimal capabilities. Poulton et al. discuss a method for directed self-
assembly of 2-dimensional mesoblocks using top-down/bottom-up design. Sub-
sequently, Galstyan et al. present a stochastic model for adaptive task allocation
in robots. Finally, White and Helferty discuss the application of division-of-labor
principles to achieve emergent team formation in robot soccer.

In Part IV self-organisation models based on the use of stigmergy are dis-
cussed. Parunak and Brueckner discuss stigmergic learning for self-organising
mobile ad hoc networks (MANETs). Karuna et al. propose a stigmergy-based
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approach for emergent forecasting in manufacturing coordination and control.
Subsequently, Foukia takes inspiration from natural systems and proposes a
self-organising approach for intrusion detction and response in networks. Along
a similar line, Armetta et al. describe a self-organising model for managing dy-
namic flow in production chains.

Part V concludes the book with industrial applications of self-organising sys-
tems. Lauterbach et al. describe self-organisation and fault-tolerance issues in a
wired peer-to-peer sensor network for textile applications. Subsequently, Brueck-
ner and Gerth discuss the application of distributed adaptive optimisation tech-
niques to digital car-body development. Finally, Graupner et al. propose adaptive
service placement algorithms for autonomous service networks.

We are grateful to the Programme Committee of the ESOA 2004 workshop
for their timely reviews, and their useful suggestions on improving the workshop.
All papers submitted to the workshop were reviewed by three members of the
Programme Committee.

December 2004 Sven Brueckner, Giovanna Di Marzo Serugendo
Anthony Karageorgos, Radhika Nagpal
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Emergence Versus Self- rganisation:
Different Concepts but Promising When

Combined

Tom De Wolf and Tom Holvoet

Department of Computer Science, Kuleuven,
Celestijnenlaan 200A, 3001 Leuven, Belgium

{Tom.DeWolf, Tom.Holvoet}@cs.kuleuven.ac.be

Abstract. A clear terminology is essential in every research discipline.
In the context of ESOA, a lot of confusion exists about the meaning
of the terms emergence and self-organisation. One of the sources of the
confusion comes from the fact that a combination of both phenomena
often occurs in dynamical systems. In this paper a historic overview of the
use of each concept as well as a working definition, that is compatible
with the historic and current meaning of the concepts, is given. Each
definition is explained by supporting it with important characteristics
found in the literature. We show that emergence and self-organisation
each emphasise different properties of a system. Both phenomena can
exist in isolation. The paper also outlines some examples of such systems
and considers the combination of emergence and self-organisation as a
promising approach in complex multi-agent systems.

1 Introduction

In the context of engineering self-organising applications there are two very im-
portant concepts to consider: emergence and self-organisation. In many multi-
agent systems and complex adaptive systems in general, a combination of the two
concepts is often used. As a consequence, much literature describes emergence
and self-organisation incorrectly as synonyms and this results in misconception
about their meaning. When engineering such applications, using a clear ter-
minology is very important. To clarify the distinction between emergence and
self-organisation, this paper’s goal is to propose a working definition of both
concepts. This definition is supported by characteristics that most literature
describes as essential for emergence or self-organisation.

Emergence and self-organisation each emphasise very different characteristics
of a system’s behaviour. Both phenomena can exist in isolation and they can
co-exist in a dynamical system. The first two sections of this paper describe each
phenomenon separately by giving a historic overview of the use of each concept,
proposing a working definition, and outlining their important characteristics to
explain and support the definition given. The third section relates emergence and
self-organisation to each other by discussing their similarities and differences.

S. Brueckner et al. (Eds.): ESOA 2004, 3464, pp. 1–15, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 T. De Wolf and T. Holvoet

This is illustrated with examples where each phenomenon occurs separately.
After that, a section is devoted to the combination of both phenomena in a
single system. Finally we conclude this paper.

2 Emergence

Typically, people describe ‘emergence’ as the phenomenon where global be-
haviour arises from the interactions between de local parts of the system. In
most literature there is nothing more than this vague description. Examples of
emergence around us are: global pheromone paths that arise from local path-
following and pheromone-dropping ants, the swarming movement of a flock of
birds, a traffic jam from the interactions of cars, etc.

The goal of this section is to develop a more detailed working definition for
‘emergence’. First, a historic overview of the early use of the concept is given.
The second part proposes a definition of emergence that is consistent with the
given history and outlines the important characteristics found in literature.

2.1 Historic Overview

Emergence is not a new topic [1]1. Conceptual constructs such as ‘whole before
its parts’ (i.e. to consider an explanation in terms of the global behaviour more
important than explaining how the system works in terms of local behaviour) and
‘Gestalt’ (i.e. a configuration or pattern of elements so unified as a whole that
it cannot be described merely as a sum of its parts), which resemble emergence,
can be found in western thought since the time of ancient Greeks.

However, ‘whole before its parts’ and ‘Gestalt’ refer to a pre-given coherent
entity, whereas emergence is not pre-given but a dynamical construct arising
over time. In the context of a dynamical system, the meaning of emergence is
not new either. It was used over 100 years ago by the English philosopher G.H.
Lewes in 1875. Lewes distinguished between ‘resultant’ and ‘emergent’ chemical
compounds coming about from a chemical reaction [2]:

(...) although each effect is the resultant of its components, we cannot
always trace the steps of the process, so as to see in the product the mode
of operation of each factor. In the latter case, I propose to call the effect
an emergent. It arises out of the combined agencies, but in a form which
does not display the agents in action (...). (italics added)

Lewes’ term was borrowed during the 1920s to form the backbone of a loosely
joined movement in the sciences, philosophy and theology known as emergent
evolutionism or proto-emergentism [1]. The concept of emergence was hotly de-
bated and mainly used against reductionism, which stated that a system can
be reduced to the sum of its parts. Proto-emergentism had few answers when it
came to understanding how emergence itself was possible, i.e. how the lower-level
inputs are transformed to the higher-level outputs during emergence.

1 The historic overview of emergence is based on [1].
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A second movement, called neo-emergence or complexity theory [1], tries
to address the lack of understanding emergence. The concept of emergence in
complex systems has very diverse scientific and mathematical roots: cybernetics,
solid state/ condensed matter physics, evolutionary biology, artificial intelligence,
artificial life, etc. There are actually four central schools of research that each
influences the way emergence in complex systems is studied:

– Complex adaptive systems theory, which became famous at the Santa
Fe Institute and which explicitly uses the term ‘emergence’ to refer to the
macro-level patterns arising from interacting agents (see [3], [4], and [5]);

– Nonlinear dynamical systems theory and Chaos theory, which pro-
mulgates the central concept of attractors, i.e. a specific behaviour to which
the system evolves. One kind of attractor is the so called strange attrac-
tor that the philosopher of science David Newman (1996)[6] classifies as an
authentically emergent phenomenon.

– The synergetics school, which initiated, among others, the study of emer-
gence in physical systems. They describe the idea of an order parameter that
influences which macro-level coherent phenomena a system exhibits [7].

– Far-from-equilibrium thermodynamics, which was introduced by Ilya
Prigogine and which refers to emergent phenomena as dissipative structures
arising at far-from-equilibrium conditions[8].

In short, the uses of the concept of emergence refer to two important charac-
teristics: a global behaviour that arises from the interactions of the local parts,
and that global behaviour cannot be traced back to the individual parts.

2.2 A Working Definition

It is important that the concept of emergence is used consistently in literature.
In the first place we need to be consistent with the historic use of the concept, as
outlined above. In current literature, this is not such a big problem w.r.t. emer-
gence. There is a larger misconception about the meaning of self-organisation,
which is discussed later. The definition that we propose as a working definition
for emergence is:

A system exhibits emergence when there are coherent emergents at
the macro-level that dynamically arise from the interactions between the
parts at the micro-level. Such emergents are novel w.r.t. the individual
parts of the system.

The definition above uses the concept of an ‘emergent’ as a general term to
denote the result of the process of emergence: properties, behaviour, structure,
patterns, etc. The ‘level’ mentioned refers to certain points of view. The macro-
level considers the system as a whole and the micro-level considers the system
from the point of view of the individual entities that make up the system.

This definition resulted from an extensive literature study, which identified
the most important characteristics found in literature. The remainder of this
part outlines these characteristics in order to explain the different aspects of the
proposed definition in more detail.

o
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Micro-Macro effect [3, 9, 10, 1, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21].
This is the most important characteristic and is mentioned explicitly in most lit-
erature. A micro-macro effect refers to properties, behaviours, structures, or pat-
terns that are situated at a higher macro-level and arise from the (inter)actions
at the lower micro-level of the system. We call such properties ‘emergents’. In
other words, the global behaviour of the system (i.e. the emergent) is a result
from the interactions between the individual entities of the system.

Radical Novelty [9, 11, 1, 22, 17, 19, 10, 20, 21, 13]. The global behaviour is
novel w.r.t. the individual behaviours at the micro-level, i.e. the individuals at
the micro-level have no explicit representation of the global behaviour. In terms
of reductionism this is formulated as: the macro-level emergents are not reducible
to the micro-level parts of the system (= non-reductionism). In literature there
are various formulations: ‘not directly described by’ [9, 10], ‘can not be reduced
to’ [11], ‘neither predictable nor deducible from’ [1], ‘without reference to the
global pattern’ [17], ‘the whole is greater than the sum of its parts’ [13].

From [22] we learn that we must pay attention. Stating that emergents are not
captured by the behaviour of the parts is a serious misunderstanding. Radical
novelty arises because the collective behaviour is not readily understood from the
behaviour of the parts. The collective behaviour is, however, implicitly contained
in the behaviour of the parts if they are studied in the context in which they
are found. Emergent properties cannot be studied by physically taking a system
apart and looking at the parts (=reductionism). They can, however, be studied
by looking at each of the parts in the context of the system as a whole.

Coherence [1, 14, 13, 12, 22, 16]. Coherence refers to a logical and consistent
correlation of parts. Emergents appear as integrated wholes that tend to main-
tain some sense of identity over time (i.e. a persistent pattern). Coherence spans
and correlates the separate lower level components into a higher level unity, i.e.
correlations between components are needed to reach a coherent whole [22]. This
coherence is also called ’organisational closure’ [12].

Interacting Parts [13, 17, 18, 14, 12]. The parts need to interact - parallelism
is not enough. Without interactions, interesting macro-level behaviours will never
arise. The emergents arise from the interactions between the parts.

Dynamical [1, 12, 3, 13, 17, 10, 20]. In systems with emergence, emergents
arise as the system evolves in time. Such an emergent is a new kind of behaviour
that becomes possible at a certain point in time. Therefore, as a dynamical
construct we can relate the appearance of emergents to the appearance of new
attractors in dynamical systems, i.e. bifurcations [1, 12].

Decentralised Control [13, 12, 16]. Decentralised control is using only local
mechanisms to influence the global behaviour. There is no central control, i.e. no
single part of the system directs the macro-level behaviour. The actions of the
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parts are controllable. The whole is not directly controllable. This characteristic
is a direct consequence of the radical novelty that is required for emergence.
Centralised control is only possible if that central part of the system has a
representation of the global behaviour (e.g. a plan).

Two-Way Link [13, 20, 21]. In emergent systems there is a bidirectional link
between the macro-level and the micro-level. From the micro-level to the macro-
level, the parts give rise to an emergent structure (see ‘micro-macro effect’
above). In the other direction, the emergent structure influences its parts. Higher
level properties have causal effects on the lower level, i.e. downward causation.
For example, path-formation with ants: the emergent path influences the move-
ment of the micro-level ants because they follow the pheromones.

Robustness and Flexibility [13, 12]. The need for decentralised control and
the fact that no single entity can have a representation of the global emergent,
implies that such a single entity cannot be a single point of failure. Emergents are
relatively insensitive to perturbations or errors. Increasing damage will decrease
performance, but degradation will be ’graceful’: the quality of the output will
decrease gradually, without sudden loss of function. The failure or replacement
of a single entity will not cause a complete failure of the emergent. This flexibility
makes that the individual entities can be replaced, yet the emergent structure
can remain. For example, birds in a flock or cars in a traffic jam can be replaced
by other birds or cars, yet the flock and traffic jam phenomena remain.

3 Self- rganisation

An intuitive and linguistic definition of self-organisation given byDempster in 1998
[23] is: “Self-organisation refers to exactly what is suggested: systems that appear
to organise themselves without external direction, manipulation, or control.” The
‘organisation’ is related to an increase in the structure or order of the system be-
haviour. Like the section about emergence, this section develops a more detailed
working definition. An example of self-organisation is: ad-hoc networks that au-
tonomously built their structure as network devices detect each other’s presence.

3.1 Historic Overview

[Consider] what would happen in a new world, if God were now to
create somewhere in the imaginary spaces matter sufficient to compose
one, and were to agitate variously and confusedly the different parts of
this matter, so that there resulted a chaos as disordered as the poets ever
feigned, and after that did nothing more than lend his ordinary
concurrence to nature, and allow her to act in accordance with
the laws which He had established ... . I showed how the greatest part
of matter of this chaos must, in accordance with these laws, dispose and
arrange itself in such a way as to present the appearance of heavens;
how in the meantime some of its parts must compose an earth and some
planets and comets, and others a sun and fixed stars.(René Descartes,
1637 [24], part 5)

Emergence Versus Self- rganisationo

o
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The notion of spontaneous, dynamically-produced organisation is very old 2.
This is illustrated in the quotation above from [24], which captures the essence
of self-organisation. The phenomenon is only called “self-organisation” in the
years after the Second World War, in communities connected with cybernetics
and computing machinery [26, 27]. The first appearance of the term seems to be
in a 1947 paper by W. Ross Ashby [28].

Remarkably, Ashby gave a pretty clear explanation of what he meant by
‘organisation’: the organisation of a system is the functional dependence of its
future state on its present state and its external inputs, if any. Ashby understood
a system to be self-organising if the system changed its own organisation, rather
than being changed by an external entity. Ashby’s description closely matches
what we will define as self-organisation later.

The main research domains, where self-organisation was studied after its in-
troduction, were physics, computer science, and systems theory. In the physical
sciences self-organisation was extensively applied, from the 1970s onwards, to
pattern formation[29] and spontaneous symmetry breaking [30] and to cooper-
ative phenomena [31]. There has been confusion about what self-organisation
actually is. For example, [32] claimed that the transition from lamellar to tur-
bulent flow is an instance of self-organisation. Others have just as vigorously
denied this. There has been no resolution of the controversy, and no means to
resolve it [33]. In any case, just like with emergence there is confusion about the
meaning of “self-organisation”.

Within computer science, the primary applications have been to learning [34,
26]; to adaptation [35]; and to “emergent” or distributed computation [36, 37].
Also in economics [38, 39], and in ecology [40, 17], self-organisation has begun
to feature, complete with the now-expected disputes about whether certain pro-
cesses are self-organising.

In the 1980s, self-organisation became one of the ideas, models and tech-
niques bundled together as the “sciences of complexity” [41]. This bundle has
been successful at getting itself adopted by some researchers in essentially every
science, so the idea of self-organisation is now used in a huge range of disciplines.

One of those disciplines is multi-agent systems. Multi-agent systems are used
to model self-organising systems. Cooperation [42] and group formation [43]
in multi-agent systems make the system more organised, which is done au-
tonomously by the agents. A number of self-organising applications are realised
[44], such as in networks [45], in robotics, and the self-organisation of a vocabu-
lary between agents [46].

3.2 A Working Definition

It is important that the concept of self-organisation is used consistently in lit-
erature. In the first place we need to be consistent with the historic use of the
concept, as outlined above. Therefore ‘autonomy’ and ‘increase in structure’
should be included. In current literature, there is a often misconception about

2 The historic overview of self-organisation is based on the Ph.D. of C.R.Shalizi [25].
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the meaning of self-organisation. For example, in [17, 16] the authors define self-
organisation when they actually define emergence according to our definition.
The definition that we propose as a working definition for self-organisation is:

Self-organisation is a dynamical and adaptive process where systems
acquire and maintain structure themselves, without external control.

The ‘structure’ can be a spatial, temporal or functional structure. ‘No exter-
nal control’ refers to the absence of direction, manipulation, interference, pres-
sures or involvement from outside the system. This does not exclude data inputs
from outside the system as long as these inputs are not control instructions.
Note, the identification of the ‘boundary’ of the system is extremely important
when deciding if a system is self-organising or not. It is important to specify
what we consider as an external control and what not.

An extensive literature study identified the characteristics, considered impor-
tant in literature. Below we outline these characteristics in order to explain the
different aspects of the proposed definition in more detail.

Increase in Order [25, 47, 20, 12, 11, 45, 15, 19, 44]. One important charac-
teristic of self-organisation is the ‘organisation’ part of the concept. [20] describes
organisation as the arrangement of selected parts so as to promote a specific func-
tion. This restricts the behaviour of the system in such a way as to confine it to
a smaller volume of its state space. This smaller region of state space is called an
attractor. In essence, organisation can be looked at as an increase in the order of
the system behaviour which enables the system to acquire a spatial, temporal,
or functional structure. Note that not every system that has an increase in order
needs to be self-organising. Complete autonomy of the behaviour is also needed
(see below).

In [25], a more formal approach is used to define self-organisation. The author
uses the notion of statistical complexity to denote the order mentioned in this
paper. An increase in statistical complexity is considered a necessary condition
for self-organisation. Statistical complexity measures the average amount of his-
torical memory stored in the process. This formulation covers a number of other
definitions found in literature. For example, ‘the arrangement of selected parts’
implies that the arrangement is a kind of historic memory of the process that
becomes bigger when more and more parts are arranged.

An increase in order implies that such systems start from semi-organised
or completely random initial conditions [44] (i.e. no historical memory). What
is also possible is that a system behaviour becomes less ordered (i.e. looses
historical memory) as a result from a change. Both situations leave room for an
increase in order through the process of self-organisation.

The formulation ‘as to promote a specific function’ in [20] is important. A
system with no order can not exhibit useful behaviour. But also a system with
too much order can have this problem. It is possible that processes organise
themselves into conditions so complex that no usable functionality can result
from it. In other words, there can be too much historical memory. The systems

Emergence Versus Self- rganisationo
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in between, i.e. at the edge of order and chaos [48, 49], can exhibit a more flexible
and organised behaviour. Therefore, self-organisation needs to find a balance
between no order and too much order.

Autonomy [25, 47, 20, 12, 11, 45, 17, 19, 44]. Not every increase in order is
self-organising. The second important characteristic of self-organisation is the
absence of external control (‘self’). A system needs to organise without inter-
ference from the outside. Other formulations are: ‘without an external agent
imposing it’, ‘spontaneous, i.e. not steered by an external system’, ‘the con-
straints on form (i.e. organisation) of interest to us are internal to the system’,
etc.

Does the lack of external control and autonomy mean that such a system
can have no input at all? Of course not, in general, input is still possible as
long as the inputs are no control instructions from outside the system. In other
words, normal data input flows are allowed but the decision on what to do next
should be made completely inside the system, i.e. the system is autonomous. For
example, plugging in a PnP device in a computer can be considered as normal
data input. A self-organising behaviour could be the autonomous configuration
of drivers by the computer system. If a user has to install the drivers himself
then there is no self-organisation.

The notion of ‘boundary of a system’ becomes very important here. To be
able to say if a certain system is self-organising, we must first clearly define the
boundary of the system. We need to separate the inside from the outside.

Adaptability or Robustness w.r.t. changes [1, 45, 12, 44]: In self-
organising systems, robustness is used in terms of adaptability in the presence
of perturbations and change. A self-organising system is expected to cope with
that change and to maintain its organisation autonomously. In other words, a
self-generated, adaptable behaviour is needed [1], and taking into account past
experiences can be helpful [45]. [44] formulates this adaptability as: “a change
in the environment may influence the same system to generate a different task,
without any change in the behavioural characteristics of its constituents”.

This adaptability implies the need for the system to be able to exhibit a
large variety of behaviours. Self-organisation requires the evolution towards a
certain attractor in state space (i.e. towards a certain organised behaviour).
There are different kinds of attractors, from a point attractor that allows only
one behaviour, a limit cycle that allows periodic behaviour, towards a chaotic
attractor that allows a very large variety of behaviours. To be adaptable, the sys-
tem needs to make a selection between behaviours and at the same time consider
a variety of behaviours [12]. Too much variety, like the chaotic attractor, makes
the system uncontrollable. Too much selection, like the point attractor, results
in a system that is not flexible enough. This is related to balancing the system
on the edge of order and chaos [48, 49] in order to be able to promote a specific
function (see ‘Increase in order’). For example, a system’s initial conditions may
support many functions (i.e. chaotic attractor), but there need to be selective
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pressures to focus the outcome [19]. For example, a system that has a chaotic
attractor can balance its behaviour on a specific part of that attractor.

Dynamical, i.e. far-from-equilibrium [25, 1, 11, 12, 50]: An essential prop-
erty of self-organisation is that it is a process. Over time, there is an increase in
order, i.e. a dynamic towards more order.

Related to the required adaptability in a rapidly changing context, self-
organising behaviour needs to be dynamic. Changes influence the organised
structure. In order to maintain that structure, there needs to be a constant
dynamic that handles these changes. In other words, the system needs to be
far-from-equilibrium in order to maintain the structure. Prigogine [50] consid-
ers far-from-equilibrium as one of the mathematically deduced requirements.
A far-from-equilibrium system is more fragile and sensitive to changes in the
environment, but also more dynamic and capable to react.

4 Comparing Emergence and Self- rganisation

To summarise, the essence of emergence is the existence of a global behaviour
that is novel w.r.t. the constituent parts of the system. The essence of self-
organisation is an adaptable behaviour that autonomously acquires and main-
tains an increased order (i.e. statistical complexity, structure, ...). In this section
we describe the similarities and the differences between both concepts.

4.1 Similarities

Because emergence and self-organisation each emphasise very different aspects
of the system behaviour there are few similarities. The main similarity is that
emergence and self-organisation are both dynamic processes arising over time.
Both are also robust. However, emergence is robust w.r.t. the flexibility in the
specific parts that cause the emergent properties (i.e. the failure of one single part
will not result in a complete failure of the emergent property). Self-organisation is
robust w.r.t. the adaptability to change and its ability to maintain the increased
order. Having few similarities does not exclude that both concepts are related
to each other. They complement each other when combined (see below).

4.2 Differences

The sections above show that emergence and self-organisation each emphasise
different characteristics of a system. Both concepts can exist in isolation, which is
discussed here. First we consider self-organisation without emergence, and then
emergence without self-organisation is described and illustrated with examples.

Self- rganisation without Emergence. Figure 1(a) schematically illustrates
a system with self-organisation, but no micro-macro effect. There are no con-
trols that come from outside the boundary of the system. The curved arrow

Emergence Versus Self- rganisationo
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SYSTEM

(a)

MACRO-LEVEL

MICRO-LEVEL

(b)

SYSTEM

MACRO-LEVEL

MICRO-LEVEL

(c)

SYSTEM

Fig. 1. (a) self-organisation without emergence; (b) emergence without self-
organisation; (c) Combining Emergence and Self-Organisation

represents the internal organising process. The properties that are specific for
emergence, but not needed for self-organisation, are radical novelty, micro-macro
effect, flexibility w.r.t. the entities, and decentralised control. When one of these
properties is not present we have no emergence.

Consider certain kinds of multi-agent systems, called a ‘classical’ multi-agent
system in [19]. Such a system is autonomous and increases its order through
interactions. However, there is no need for the system to exhibit emergent prop-
erties, i.e. properties that are novel w.r.t. the agents in the system. When, for
example, every agent has a model of the global behaviour that has to be achieved,
this behaviour is explicitly present in the parts of the system and thus not novel.

A system where there is a single controlling agent that directs the global
behaviour (i.e. no decentralised control), needs an explicit plan in that controlling
agent. Of course, a self-organising process can re-elect a controlling agent when
other agents become more appropriate for the job, but there is no radical novelty.

Another important property of emergent systems is ‘graceful degradation’
because of the flexibility w.r.t. the entities. A single entity is not essential for
the functioning of the whole system. A self-organising system where each entity
is essential does not conform with the needed characteristics of emergence.

Emergence without Self- rganisation. Figure 1(b) schematically illustrates
the other situation. The system has a micro-macro effect, but it is not self-
organising. The essential properties here are the increase in order, no external
control and adaptability.

Emergence without self-organisation is definitely possible. For example in
physics, thermodynamics can emerge from statistical mechanics in a stationary
(and so non-self-organising) system [25]. A stationary process is a process where
the order is time-translation invariant, i.e. no increase in order. Consider a gas
material that has a certain volume in space. This volume is an emergent property
that results form the interactions (i.e. attraction and repulsion) between the
individual particles. However, such a gas is in a stationary state. The statistical

o
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complexity remains the same over time, i.e. the particles can change place but
the amount of structure remains the same. In this case, we have a system whose
initial conditions are enough to exhibit emergent properties.

Adaptability refers to the need to reach a balance between selection of a
specific behaviour and the consideration of a large variety of behaviours. [45]
formulates this in terms of a balance between exploration and exploitation. A
system can exhibits chaos (i.e. considering a large variety of behaviours and also
constantly switching between these) that emerged from the interactions between
the micro-level parts. But, such a system is not self-organising because it does
not organise itself to promote a specific function.

5 Combining Emergence and Self- rganisation

In most systems that are considered in literature, emergence and self-organisation
occur together. Research in the multi-agent community and the complex adap-
tive systems community focuses on such systems. In very complex (multi-agent)
systems, i.e. distributed, open, large, situated in a dynamic context, etc., the
combination of emergence and self-organisation is recommended. In a complex
(multi-agent) system there is often a need to keep the individual entities rela-
tively simple (e.g. for scalability). Self-organisation requires an increase in order
that promotes a certain function or property. Simple individuals cannot direct
such a complex system, so the global coherent behaviour should emerge from the
interactions between the individuals. The other way around, a complex (multi-
agent) systems can be required to exhibit emergent behaviour. Because of the
complexity, it is impossible to impose an initial structure on such a system that
results in an emergent property. The only possibility to get a coherent behaviour
at the macro-level is to let that behaviour arise and organise autonomously, i.e.
self-organisation. Thus, combining both phenomena is a promising approach to
engineer a coherent behaviour for complex (multi-agent) systems.

Combining self-organisation and emergence in one system imposes the ques-
tion on how both phenomena should be linked to each other. To answer this,
there are multiple point-of-views possible. A first point of view considers self-
organisation as a cause, i.e. emergent properties in complex systems are the
result of a self-organising process[11, 17, 51], possibly combined with selective
pressures towards a certain emergent behaviour[49]. Thus, the interactions be-
tween the individual entities are the self-organisation. Self-organisation is situ-
ated at the micro-level of the emergent process. A second point of view considers
self-organisation as an effect, i.e. emergence results in self-organisation. Thus,
self-organisation is an emergent property. Figure 1(c) schematically illustrates
what is stated in [15]: “... self-organising behaviour occurs at the macro-level”.
This point-of-view is explained as a result of a characteristic of self-organisation,
i.e. the need for an increase in order. In an emergent system, at the micro-level
the dynamics are often very complicated and disordered. This means an increase
in order can only occur within the global level [19], i.e. the emergents become
more and more organised. The author of [19] also states that the system as a
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whole is decreasing its order. The reason for this is that at the micro-level of
emergent systems the dynamics are often very complicated and disordered. Also
in [25] the author states: “... self-organisation increases [statistical] complexity,
while emergence, generally speaking, reduces it ...”. Thus, this need for increased
order seems to conform with self-organisation as an effect at the macro-level of
emergence.

Because emergence and self-organisation are often described in combination
with each other, a characteristic, that some authors ascribe to one of both phe-
nomena, is probably more specific for the combination of the phenomena. This
characteristic is Nonlinearity [1, 12, 50, 17]: A system, without a priori order
and where the emergence has to be self-organised, requires the “small cause,
large effect” principle and should have an intense focus on nonlinear interactiv-
ity. Nonlinearity enables those secondary effects at the macro-level that we call
emergents. This nonlinearity is often achieved through positive feedback that
amplifies an initial change. The result of the first amplification again triggers
positive feedback that amplifies the effect of the change. After a while, a number
of components have ‘aligned’ themselves with the configuration created by the
initial change and the configuration stops growing: the system has ‘exhausted’
the available resources. This alignment is often the emergent property of the
system. This way, an emergent can self-organise.

Nonlinear mechanisms are related to one of the properties of self-organisation,
mathematically deduced by Prigogine [50]. He states that at least one of the
components in the system must exhibit auto-catalysis. A system exhibits auto-
catalysis if one of its components is causally influenced by another component,
resulting in its own increase. Actually, auto-catalysis is a kind of positive feed-
back (e.g. pheromone reinforcements by ants) that can cause a nonlinear effect.

In a self-organising system, the emergence should be adaptive in order to have
a system that self-organises in the presence of a changing situation. When there
has been a nonlinear ‘alignment’ with positive feedback, the only possibility
to escape that alignment, and end up in a new alignment that is adapted to
the new situation, is to use negative feedback. In more complex self-organising
systems, there will be several interlocking positive and negative feedback loops,
so that changes in some directions are amplified while changes in other directions
are suppressed. In [17] the presence of positive and negative feedback is also
considered important for adaptive behaviour.

6 Conclusion

The starting point of this paper was that it is important to use a clear terminol-
ogy when engineering self-organising applications. The discussion showed that
the important concepts of emergence and self-organisation refer to two distinct
phenomena. They each emphasise different characteristics of a system. Confusion
in literature should be avoided by using each concept correctly and certainly not
as synonyms. Emergence emphasises the presence of a novel coherent macro-level
emergent (property, behaviour, structure, ...) as a result from the interactions
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between micro-level parts. Self-organisation emphasises the dynamical and adap-
tive increase in order or structure without external control.

Both phenomena can exist in isolation, yet a combination of both phenomena
is often present in complex dynamical systems. In such systems, the complexity
is huge, which makes it infeasible to impose a structure a priori: the system needs
to self-organise. Also, the huge number of individual entities imposes a need for
emergence. For scalability we can not put an entire plan for the global structure
in a single entity; we need to keep the individuals rather simple and let the
complex behaviour self-organise as an emergent behaviour from the interactions
between these simple entities. A combination of emergence and self-organisation,
which is already applied in literature [19, 44, 52], is a promising approach to
engineer large-scale multi-agent systems.

This paper presents results from research sponsored by the research council
of the K.U.Leuven. The results have been obtained in the Concerted Research
Action on Agents for Coordination and Control - AgCo2 project.
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Abstract. We describe an analytic approach, multiscale analysis, that can dem-
onstrate the fundamental limitations of decomposition based engineering for the 
development of highly complex systems. The planning based process is limited 
by the interdependence of components and communication between design 
teams. Thus, the construction of many highly complex systems should be pur-
sued by strategies modeled after biological evolution, or market economies, 
where extensive planning is forsaken and multiple parallel design efforts com-
pete for adoption through testing in actual use. 

1   Introduction 

The recognition that highly complex system design and engineering requires new in-
sights and tools has become a topic of increasing interest and importance as the num-
ber of active elements in systems and the real time demands on a system increase [1-5]. 

One of the central realizations about highly complex systems is that analysis and 
synthesis do not follow the same process. This is dramatically different from the case 
with conventional engineering analysis and design. When a system is sufficiently 
simple, analysis and synthesis occur by decomposition. Each part is understood, and 
the function of the entire system can be recognized through a composition process of 
the parts. When a system is highly complex this approach is not possible [1-3]. 

We have developed an analytic approach to the study of complex systems called 
Multiscale Analysis [1,6-13] that directly addresses the complexity of the system and 
its relationship to structure and function. This approach provides basic insight into de-
sign trade-offs.  However, it also enables us to demonstrate quantitatively that design 
by decomposition strategies is unable to create systems beyond a certain level of 
complexity. This level is limited by the ability of a single agent (i.e. a human being) 
to understand the interdependencies between the components.  When higher levels of 
complexity are necessary in order to design systems it is necessary to transition to an 
alternative synthesis strategy. This is the strategy of evolutionary engineering.  

Evolutionary engineering abandons many of the highly valued conventional sys-
tems engineering strategies of well planned and fully understood system. It replaces 
these with the creation of a planned environment that fosters learning by doing and 
enables unanticipated advances. This approach is the natural strategy for developing 
highly complex systems because their behavior is ultimately untestable, discovery is a 
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key part of ongoing improvement, and the necessary time scale for use and improve-
ment is far shorter than what can be achieved by traditional cycles of planning and 
implementation. The false sense of security in planning is inferior to the recognition 
that the right environment is a better guarantee of rapid improvement and innovation. 

Aspects of the evolutionary approach we describe [1-3] can be found in various 
more traditional and recent approaches. Incremental engineering [14] and experience 
based learning [15,16] are very traditional approaches in certain contexts. Recent ex-
tensions include spiral development and evolutionary acquisition [17] and adaptive 
programming [18]. A discussion of various engineering approaches in relation to a 
conventional understanding of evolution is provided in Ref. [19]. There are key dif-
ferences between the evolutionary approach we describe and other strategies. These 
include an emphasis on parallel competitive development teams and the importance of 
creating an ongoing fielded implementation strategy where coexistence of multiple 
types of components are possible. This evolutionary process is most commonly asso-
ciated with the formation of complex biological organisms. A free market system is 
also an example of an evolutionary system with particular features that are not present 
in all evolutionary contexts. 

In this paper we will describe briefly key concepts from multiscale analysis. We 
will focus on their implications (1) for design decisions and (2) that limit the possibil-
ity of decomposition based design. Then we will describe historical experience with 
large engineering projects, and some of the steps we have taken toward defining an 
enlightened evolutionary engineering strategy. 

2   Multiscale Analysis 

Multiscale analysis [1,10] builds on the twin recognitions that scale and variety / 
complexity are both necessary for effective performance of systems:  

• Scale: A task requires a system to have sufficient “scale” of action. Here scale re-
fers to the number of elementary components that are coordinated in order to per-
form a task.  

• Variety: A task requires a system to have sufficiently many distinct actions it can 
take. Variety is measured as the logarithm of the number of distinct actions that 
can be taken in a specified interval of time. 

To explain these two issues in an intuitive way: it is possible to be effective at 
some tasks by brute force, and at others by carefully choosing the right action to take. 
When designing a system for its tasks, recognizing the degree to which scale and 
complexity play a role in the design of the system is also directly relevant to the proc-
ess of design. 

To understand the design implications of this analysis conceptually we note that 
when components are acting in a coordinated way, they cannot act independently. 
When high variety is required then components must be able to act independently. 
When scale is required then components must act coherently. Thus there are various 
degrees of tradeoff that are possible to achieve a particular amount of variety at each 
scale of action. 
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The key to multiscale analysis of the variety of any system is that each of the com-
ponents has a limit on its variety—the logarithm of the number of distinguishable 
states. Components can be individuals that act in performing tasks, or individuals that 
manage or coordinate tasks or serve as communication channels. We do not assume 
anything a priori about the specific tasks or actions of the components. They can be 
the same or different from one another. The key is that each of them has a bound on 
its variety. If we have a system that is formed of many components, and some of these 
components are responsible for coordinating other components, then we can establish 
limits on what particular organizational structures can do. It may be that the variety 
associated with the coordination exceeds the variety of the components. This is true 
even if the components that must be coordinated are relatively simple. It is also true if 
the components have a high variety. The key is that quite generally, for a system of N 
components, the coordination may require of order N times the variety of the individ-
ual components, even in a fixed configuration of coordination. This means we may 
need N coordinating entities. 

To understand the organizational limitations that are established by such an analy-
sis consider a hierarchical system. We can consider as a hierarchical structure either a 
human organization with hierarchical chains of communication, or a hierarchically 
decomposed engineering system with hierarchical specification. Indeed, these two 
representations are synergistic, in that hierarchical organizations are generally the 
mechanism by which hierarchically decomposed systems are generated. The difficulty 
with this architecture is that there is a bandwidth limitation in the communication 
channels. The channels of communication pass through individual components. If we 
assume that each component has a limit on its variety, then we see that the communi-
cation channels are limited by the variety of their components.  

This is a severe limitation on the variety of the system behavior, because in a more 
networked structure it is possible for the components at the bottom of the hierarchy to 
coordinate with each other directly in a way that would dramatically increase the vari-
ety of possible pairwise actions well above what can be coordinated through the hier-
archy. This illustrates the well known phenomenon in engineering of the explosion of 
interface specification, and the dramatic efforts that are devoted to coordination of 
components. Indeed, the point is that while in the conventional decomposition strat-
egy it is the components that are presumed to be the entities that require engineering, 
when systems become highly complex it is the coordination that requires the effort of 
engineering. Then the conventional strategy breaks down and other mechanisms are 
necessary. The formal proof of this statement requires one subtlety, which is quantify-
ing the coordination above the level of behavior of an individual. The variety that is 
most limiting for a hierarchical organization is variety on a scale that requires more 
than one individual to perform a task, but is significantly below the number of indi-
viduals that form the system. It is the existence of large varieties at these intermediate 
scales that is not possible for hierarchical organizations. Either a completely inde-
pendent or a completely dependent organizational behavior can be readily achieved. 
We describe this formalism in several steps. 

Quantitatively, the understanding of the requirements of variety was articulated in 
Ashby’s Law of Requisite Variety. Recently this law has been generalized to consider 
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the issue of scale as well as variety. In the generalization it is assumed that the system 
is composed of a number of components, and that these components can be combined 
to perform specific tasks that might require more than a single component to perform.  

More specifically, we assume that the responding system is composed of a number 
of subsystems, N, that are variously coordinated to respond to external contexts. The 
number of possible actions that the system can take, M, is not more than mN, the prod-
uct of the possible actions of each part, m. We could directly apply the Law of Requi-
site Variety for that case, but we further constrain the problem of effective function by 
assuming that effective actions require a sufficient variety at each scale of action cor-
responding to the requirements for action at that scale. At every scale, the variety of 
the system must be larger than the variety necessary for the task. It is conventional to 
measure variety, like information, in logarithmic units so that the total variety of a set 
of independent components V = log(M) is the sum of the variety of the compo-
nents, V = Nv , where v = log(m) . If we assume a simple coordination mechanism 
so that the system is partitioned into groups that are fully coordinated and that differ-
ent groups are independent of each other, then the variety of actions of each group is 
the same as the variety of actions of any individual of that group, and the scale of ac-
tion is just the number of individuals in that group. For the entire system the variety at 
scale k is D(k) = vn(k)  where n(k) is the number of different k-member fully coor-
dinated groups needed to perform the entire task, which therefore at a minimum re-

quires N = kn(k)  components to perform. The total variety of the task is propor-

tional to the total number of subsets of any scale V = D(k) .  

With these assumptions, given a predetermined number of components N, the sys-
tem can, in the extreme, perform a task of scale N, with variety equal to that of one 
component, or a task of scale one with variety N times as great. More generally the 

equation (obtained from N = kn(k) ) 

Nv = kD(k)  (1) 

can be considered a constraint on the possible behavior patterns (sum rule) of a sys-
tem due to different mechanisms of organization. It is often convenient to think about 
the variety of a system, V(k), that has a scale k or larger, as this is the set of possible 
actions that can have at least that scale, 

V(k) = D( ′ k )
′ k =k

N

  
(2) 

Then the total variety of the system is V(1), and the sum rule can be written as: 

V (k)
k=1

N

 = Nv  
(3) 

The sum rule given by equation (1) or (3) describes the existence of a tradeoff be-
tween variety at different scales. Increasing the variety at one scale by changing the 
organizational form must come at the expense of variety at other scales. Our generali-
zation of the Law of Requisite Variety is directly relevant to the analysis of coordina-
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tion mechanisms of a biological or social organization. Specifically, it tells us how 
such coordination mechanisms are well or ill suited to the tasks being performed. 
Given the constraint imposed by the number of components, a successful organization 
has a coordination mechanism that ensures that the groups are coordinated at the rele-
vant scale of tasks to be performed. This simple and intuitive statement is captured by 
the multiscale version of the Law of Requisite Variety. 

A key issue is the concept of a hierarchical organization, of systems we build or of 
human organizations that build them. In considering the requirements of multiscale 
variety, we can state that in order for a system to be effective, it must be able to coor-
dinate the right number of components to serve each task, while allowing the inde-
pendence of other sets of components to perform their respective tasks without bind-
ing the actions of one such set to another. This now serves as a key characterization of 
system organization. Specifically, the Multiscale Law of Requisite Variety implies 
that in order for a system to be successful its coordination mechanisms must allow in-
dependence and dependence between components so as to allow the right number of 
sets of components at each scale. 

How do we describe a coordinator / manager? A manager specifies the state of the 
subordinates and a coordination mechanism. We assume that at any particular time 
the manager can only coordinate a particular subset, indexed by w, of the subordi-
nates, and at that time these subordinates are fully coordinated, while the others act 
independently (one cannot be in two places at the same time). q(w) is the number of 
subordinates that are being coordinated, which, for values of zero or one corresponds 
to no coordination. A specification of the manager at a particular time thus can be 
written (sm,w), where the state of sm specifies the states of all the coordinated subordi-
nates, while w specifies which subordinates are coordinated. For simplicity we do not 
count the redundancy provided by the manager (who we assume does not do the ac-
tion only specifies it) and therefore sm is not needed in the description of the system 
since it is redundant to the actions of the subordinates. We also neglect the informa-
tion in specifying w by treating the information as conditional on the coordination 
mechanism. These assumptions can be relaxed without changing the conclusions. 
Then we have the multiscale variety for a particular coordination state given by: 

D(k | w) = v(N - q(w))δ k,1 + vδk ,q(w)  (4) 

Combining coordination states, each with a probability P(w) we have: 

D(k) = P(w)
w
 δq(w ),kv +δ k ,1 P(w)

w

(N − q(w))v  (5) 

This gives the expected bound on the total coordination:  

V(2) = D(k) =
k= 2

N

 P(w)δ q(w), kv
w
 

k=2

N

 ≤ v  
(6) 

The inequality is the quite reasonable statement that the variety of the system for 
scales larger than one individual cannot be greater than the variety of the manager. 
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This coordination limitation is recursively applied to each level of managers for the 
set of individuals under their supervision so that the mutual information between in-
dividuals (workers or managers) at one level of organization is limited by the manager 
that supervises them. This implies, for example, that the combined mutual informa-
tion between all workers is no more than the variety of the first level supervisors. As-
suming that the variety of a manager is typically no more than the variety of a worker, 
we would expect that the limit of mutual information to be N / B  where B is the 
branching ratio, i.e. the number of workers supervised by a single manager. Higher 
level managers are similarly restricted in their ability to coordinate the managers at 
the lower level. We note that in a conventional hierarchy when an upper level man-
ager coordinates parts of the organization, this information must be communicated 
through the lower level managers. This also reduces the degree to which their own in-
ter-worker coordination can be performed (i.e. to the extent that the higher level man-
ager performs coordination, this reduces the capacity of the lower level managers to 
coordinate). 

We can make a more direct connection to multiscale variety if we consider a 
somewhat generalized version of hierarchical control. In the generalized version of 
the hierarchy managers exist at a certain level of authority, supervising a certain frac-
tion of the organization, but do not have a particular set of subordinates that they su-
pervise (the “matrix organization” [20] is an intermediate case). By not including the 
constraint of a strict hierarchy that a manager has a particular subset of the individuals 
and cannot coordinate others outside of this subset we obtain an upper bound on the 
coordination of a more conventional hierarchy. If we include this additional con-
straint, then the coordination of the system is further limited since even only two indi-
viduals that are in different divisions of the organization require coordination by the 
CEO. For the generalized hierarchical model, we can generalize the equations above 
and reach a conclusion that 

V(2) = D(k)
k= 2

N

 ≤ Cv  
(7) 

Where C is the number of managers. This states quite reasonably that the total variety 
of actions greater than the scale of one individual is not greater than the total variety 
of the managers. For managers having a certain limit on how many subordinates they 

can control, so that managers at level l can coordinate up to Bl
 subordinates, we fur-

ther limit the number of those coordinated at larger scales by  

V(Bl −1 +1) = D(k)
k = B l −1 +1

N

 ≤ C ′ l v
′ l ≥l
  

(8) 

which reasonably states that the variety of behaviors associated with a number of in-
dividuals is only as great as the variety of the managers that can coordinate that num-
ber of individuals.  

For example, we consider the role of the CEO and assign him/her the obligation of 
determining those issues that are of relevance to the actions of a large proportion of 
individuals that are part of the organization. If we consider 10% to be the threshold 
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fraction, then all decisions involving 10% of the individuals of the organization are 
coordinated by the CEO. The maximal possible variety of such portions (at this scale 
of action) is ten times the variety of a single individual. However, this cannot be done 
when coordinated by a single individual, as the maximum is the CEO’s variety. More 
generally, we can categorically state that, to the extent that a single individual is coor-
dinating the behavior of an organization, to that extent the coordination defined by 
mutual information cannot have a higher variety than an individual. 

We see that for a hierarchically coordinated system the combined conditional mutual 
information of subunits of a manager cannot be greater than the variety of that manager. 
This is not a problem for either of two cases (dictated by environmental conditions): if 
the system has a simple coherent behavior, or if the manager exercises very little control 
so that the workers are almost totally independent of each other. It is a problem, how-
ever when the behaviors of subunits themselves have a high variety (greater than that of 
an individual) and must be coordinated. Thus, a hierarchical control system is well de-
signed for relatively simple large scale behaviors, or for systems with very distributed 
control, but not for highly coordinated behaviors, i.e. when the coordination of these be-
haviors is more complex than a human being can communicate.  

The recognition that hierarchical control is limited in its ability to coordinate was 
articulated for free market systems sixty years ago.[21] This limitation has also been 
recognized as relevant to the management of individual corporations based upon an 
understanding of human information processing rather than communication.[22,23] 
However, to our knowledge this is the first time that the limitations of hierarchical 
control have been formally demonstrated.[10] The demonstration required the repre-
sentation of mutual information between multiple components described by multis-
cale variety.[1,10-13] This approach also demonstrates the limitations on capabilities 
of systems that rely upon individuals as liaisons between corporate divisions. [20]  

There is one form of hierarchical control that is not ruled out by our discussions. 
When the set of possibilities is only a few, even if they are radically different from 
each other (involving changes in the action of many individuals), then the coordina-
tion/decision can be made by a single individual. This implies that that aspect of the 
organization is coherent, i.e., large scale and not of high variety. For example, the 
choice of whether or not to go to war can be made by an individual with only two 
possible decision states. However, this reflects the assumption that all aspects of the 
internal coordination necessary for the two states are made by others. Although this 
aspect of central control is not limited by our discussion, it is important to recognize 
the applicability of limitations by other arguments: the availability of the necessary 
information [21] and information processing to make the decision [22]. This informa-
tion is related to the structure of the decision making process. The process must be 
able to contain prototypes of conditions and pair them with actions (or conditions and 
actions with effects). 

We can consider these concepts from a phenomenological point of view. Central-
ized coordination of components was characteristic of scientific management as ap-
plied to the economy of the USSR that specified the coordination of industrial enter-
prises. Failures of this system in providing agricultural products of appropriate 
quantity but possibly more importantly of sufficient variety [1,24] led Gorbachev, 
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First Deputy Prime Minster in charge of agriculture before becoming General Secre-
tary of the Central Committee of the Communist Party, to institute reforms that pre-
ceded the collapse of the Soviet Union.  

In summary, a generalization of the Law of Requisite Variety suggests that the ef-
fectiveness of a system organization can be evaluated by its variety at each scale of 
tasks to be performed. In its simplest form, when a system has a high degree of coor-
dination then it is large scale. When it is not coordinated, allowing for independent 
component action, then it has high variety. The tradeoff of large scale action, as com-
pared to the variety possible when actions of components are independent provides a 
direct analysis of system organization. While it does not specify that a particular sys-
tem is capable of performing a task, it can provide a necessary condition for such ef-
fectiveness. In considering biological and social systems, such analysis provides a 
way of classifying their behavior and considering the functional role they play in sur-
vival and societal function. [1,5-10] 

3   Enlightened Evolutionary Engineering 

In the conventional systems engineering approach the project is recursively broken 
into subparts. The parts are then put together, with the task of selecting and coordinat-
ing the subprojects the domain of the systems engineer. The failure rate of such engi-
neering projects in recent years has been remarkably high, costing many billions of 
dollars. [1-4] 

The traditional approach to large engineering projects follows the paradigm estab-
lished by the Manhattan project and the Space program. There are several assump-
tions inherent to this paradigm. First, that substantially new technology will be used. 
Second, the new technology to be used is based upon a clear understanding of the ba-
sic principles or equations that govern the system (i.e. the relationship between energy 
and mass, E=mc2, for the Manhattan project, or Newton's laws of mechanics and 
gravitation F=-GMm/r2 for the space program). Third, that the goal of the project and 
its more specific objectives and specifications are clearly understood. Fourth, that 
based upon these specifications, a design will be created essentially from scratch and 
this design will be implemented and, consequently the mission will be accomplished. 

Large engineering projects today generally continue to follow this paradigm. Projects 
are driven by a need to replace old "obsolete" systems with new systems, and particu-
larly to use new technology. The time line of the project involves a sequence of stages: a 
planning stage at the beginning, giving way to a specification stage, a design stage, and 
an implementation stage. The various stages of the process all assume that managers 
know what needs to be done and that this information can be included in a specification. 
Managers are deemed successful or unsuccessful depending on whether this specifica-
tion is achieved. On the technical side, modern large engineering projects generally in-
volve the integration of systems to create larger systems. Their goals include adding 
multiple functions that have not been possible before, and they are expected to satisfy 
additional constraints, especially constraints of reliability, safety and security. 
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The images of success in the Manhattan and Space Projects remain with us. What 
really happens with most large engineering projects is much less satisfactory. Many 
projects end up as failed and abandoned. This is true despite the tremendous invest-
ments that are made. The largest documented financial cost for a single project, the 
Federal Aviation Administration (FAA) Advanced Automation System was the gov-
ernment effort to improve air traffic control in the United States. Many of the major 
difficulties with air traffic delays and other limitations are blamed on the antiquated / 
obsolete air traffic control system. This system, originally built in the 1950s, used re-
markably obsolete technology, including 1960s mainframe computers and equipment 
based upon vacuum tubes [25], with functional limitations that would compel any 
modern engineer into laughter. Still, an effort that cost $3-6 billion between 1982 and 
1994 was abandoned without improving the system. While the failure of government 
projects are frequently blamed on specific issues related to government acquisition, a 
general survey of large software engineering projects in 1995 by the Standish Group 
International [14] showed that such failures were widespread in both private and pub-
lic sector projects. This study classified projects according to whether they met the 
stated goals of the project, the time table, and cost estimates. They found that under 
20% of the projects were on-time, on-budget and on-function (projects at large com-
panies had a lower rate of under 10% success), over 50% of the projects were "chal-
lenged" which meant they were over budget, typically by a factor of two, they were 
over schedule by a factor of two, and did not meet about two-thirds of the original 
functional specifications. The remaining 30% of the projects were called "impaired" 
which meant that they were abandoned. When considering the major investments of 
time and money these projects represent, the numbers are staggering, easily reaching 
$100 billion each year in direct costs. The high percentage of failures and the remark-
able percentage of challenged projects suggest that there is a systematic reason for the 
difficulty involved in large engineering projects beyond the specific reasons for fail-
ure that one might identify in any one case.  

Indeed, despite various efforts to improve acquisition of large systems, successors 
of the Advanced Automation System that are being worked on today are finding the 
going slow and progress limited [26]. From 1995 until today, major achievements in-
clude replacing mainframe computers, replacing communications switching system, 
and the en-route controller radar stations. The replacement of the Automated Radar 
Terminal System at Terminal Radar Facilities responsible for air traffic control near 
airports (the Standard Terminal Automation Replacement System (STARS) program), 
faced many of the problems that affected the Advanced Automation System: cost 
overruns, delays, and safety vetoes of implementation, and was implemented in 2002 
by FAA emergency decree. Still, the new equipment continues to be used in a manner 
that follows original protocols used for the old equipment. 

A fundamental reason for the difficulties with modern large engineering projects is 
their inherent complexity. Complexity is generally a characteristic of large engineer-
ing projects today. Complexity implies that different parts of the system are interde-
pendent so that changes in one part may have effects on other parts of the system. 
Complexity may cause unanticipated effects that lead to failures of the system. These 
“indirect” effects can be discussed in terms of multiple feedback loops among por-
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tions of the system, and in terms of emergent collective behaviors of the system as a 
whole [1,5]. Such behaviors are generally difficult to anticipate and understand. De-
spite the superficial complexity of the Manhattan and Space Projects, the tasks that 
they were striving to achieve were relatively simple compared to the problem of air 
traffic control. To understand complexity of air traffic control it is necessary to con-
sider the problem of 3-dimensional trajectory separation --- ensuring the paths of any 
two planes do not intersect at the same time; the many airplanes taking off and land-
ing in a short period of time; and the remarkably low probability of failure that safety 
constraints impose. Failure in any one case may appear to have a specific cause, but 
the common inability to implement high cost systems can be attributed to their intrin-
sic complexity. 

While the complexity of engineering projects has been increasing, it is important to 
recognize that complexity is not new. Indeed, engineers and managers are generally 
aware of the complexity of these projects and have developed systematic techniques 
to address them. There are several strategies that are commonly used including modu-
larity, abstraction, hierarchy and layering. These methods are useful, but at some de-
gree of interdependence they become ineffective. Modularity is a well recognized 
way to separate a large system into parts that can be individually designed and modi-
fied. However, modularity incorrectly assumes that a complex system behavior can be 
reduced to the sum of its parts. As systems become more complex the design of inter-
faces between parts occupies increasing attention and eventually the process breaks 
down. Abstraction simplifies the description or specification of the system. However 
abstraction assumes that the details to be provided to one part of the system (module) 
can be designed independently of details in other parts. Modularity and abstraction are 
generalized by various forms of hierarchical and layered specification, whether 
through the structure of the system, or through the attributes of parts of a system (e.g. 
in object oriented programming). Again, these two approaches either incorrectly por-
tray performance or behavioral relationships between the system parts or assume de-
tails can be provided at a later stage. Similarly, management has developed ways to 
coordinate teams of people working on the same project through various carefully 
specified coordination mechanisms. 

One way to address the difficulty of complex projects is to simplify what is at-
tempted. However, simplifying the function of an engineered system is not always 
possible because the necessary or desired core function is itself highly complex. 
When the inherent nature of a complex task is too large to deal with using conven-
tional large engineering processes, a better solution is to use an evolutionary process 
[1-3] to create an environment in which continuous innovation can occur. 

Evolutionary processes, commonly understood to be analogous to free market 
competition, are based on incremental iterative change. However, there are basic dif-
ferences between evolution and the notion of incremental engineering. Among these 
is that evolution assumes that many different systems exist at the same time, and that 
changes occur to these systems in parallel. The parallel testing of many different 
changes that can be combined later is distinctly different from conventional incre-
mental engineering. The use of parallel initial exploration has been advocated in engi-
neering [27]. However, this approach is also unlike evolution, because it leads to the 
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selection of a single option rather than multiple parallel implementation. Multiple 
parallel implementation is more similar to the parallel and largely independent explo-
ration of product improvements by different companies in a market economy, espe-
cially when there are many small companies. Another basic idea of evolution is that 
much testing is done "in the field"; the process of learning about effective solutions 
occurs through direct feedback from the environment. There are many more aspects 
of evolution that should be understood in order to make effective use of this process 
in complex large engineering projects. Even the conventional concepts of evolution as 
they are currently taught in basic biology courses are not sufficient to capture the 
richness of modern ideas about evolution [5 (ch. 6),28-30].  

Many of the more recent programming strategies, e.g. spiral development, extreme 
programming, and the open source movement, embody features of evolutionary proc-
esses. Still, a better understanding is necessary in order to realize the promise of evo-
lutionary methods. The objective revolves around mimicry of the processes that pro-
mote rapid innovation through competition. The creation of an effective artificial 
ecology" or artificial economy" requires design. In and of itself, a competitive sys-
tem is not self-sustaining as it tends to become stuck through monopolization or self-
destructive behavior.  

To introduce the concepts of evolution it is helpful to start from the conventional 
perspective, then augment it with some of the modern modifications. Evolution is 
about the change in a population of organisms over time. This population changes not 
because the members of the population change directly, but because of a process of 
generational replacement by offspring that differ from their parents. The qualities of 
offspring are different from their parents, in part, because some parents have more off-
spring than others. The process by which the number of offspring are determined, 
termed selection, is considered a measure of organism effectiveness / fitness. Offspring 
tend to inherit traits of parents. Traits are modified by sexual reproduction and muta-
tions that introduce novelty / variation. This novelty allows progressive changes over 
many generations. Thus, in the conventional perspective evolution is a process of rep-
lication with variation followed by selection based upon competition. In contrast with 
an engineering view where the process of innovation occurs through concept, design, 
specification, implementation and large scale manufacture, the evolutionary perspec-
tive would suggest that we consider the population of functioning products that are in 
use at a particular time as the changing population that will be replaced by new prod-
ucts over time. The change in this population occurs through the selection of which 
products increase their proportion in the population. This process of evolution involves 
the decisions of people as well as the changes that occur in the equipment itself.  

It may be helpful to point out that this approach (the treatment of the population of 
engineered products as evolving) is quite different than the approach previously used 
to introduce evolution in an engineering context through genetic algorithms or evolu-
tionary programming (GA/EA) [31,32]. The GA/EA approach has considered auto-
mating the process of design by transferring the entire problem into a computer. Ac-
cording to this strategy, we develop a representation of possible systems, specify the 
utility function, implement selection and replication and subsequently create the sys-
tem design in the computer. While the GA/EA approach can help in specific cases, it 
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is well known that evolution from scratch is slow. Thus it is helpful to take advantage 
of the capability of human beings to contribute to the design of systems. The objective 
of the use of evolutionary process described here is to avoid relying upon an individ-
ual human being to design systems that can perform highly complex tasks. A com-
puter by itself cannot solve such problems either. Our objective here is to embed the 
process of design into that of many human beings (using computers) coordinated 
through an evolutionary process. 

The basic concept of designing an evolutionary process is to create an environment 
in which a process of innovation and creative change takes place. To do this we de-
velop the perspective that tasks to be performed are analogous to resources in biology. 
Individual parts of the system, whether they are hardware, software or people in-
volved in executing the tasks are analogous to various organisms that are involved in 
an evolutionary process. Changes in the individual parts take place through introduc-
ing alternate components (equipment, software, training or by moving people to dif-
ferent tasks). All of these changes are part of the dynamics of the system. Within this 
environment it is possible for conventional engineering of equipment or software 
components to occur. The focus of such engineering efforts is on change to small 
parts of the system rather than on change to the system as a whole. This concept of 
incremental replacement of components (equipment, software, training, tasks) in-
volves changes in one part of the system, not in every part of the system. Even when 
the same component exists in many parts of the system, changes are not imposed on 
all of these parts at the same time. Multiple small teams are involved in design and 
implementation of these changes. It is important to note that this is the opposite of 
standardization—it is the explicit imposition of variety. The development environ-
ment should be constructed so that exploration of possibilities can be accomplished in 
a rapid (efficient) manner. Wider adoption of a particular change, corresponding to 
reproduction in biology, occurs when experience with a component indicates im-
proved performance. Wider adoption occurs through informed selection by individu-
als involved. This process of "selection" explicitly entails feedback about aggregate 
system performance in the context of real world tasks.  

Thus the process of innovation involves multiple variants of equipment, software, 
training or human roles that perform similar tasks in parallel. The appearance of re-
dundancy and parallelism is counter to the conventional engineering approach which 
assumes specific function assignments rather than parallel ones. This is the primary 
difference between evolutionary processes and incremental approaches to engineer-
ing. The process of overall change consisting of an innovation that, for example, re-
places one version of a particular type of equipment with another, occurs in several 
stages. In the first stage a new variant of the equipment (or other component) is intro-
duced. Locally, this variant may perform better or worse than others. However, over-
all, the first introduction of the equipment does not significantly affect the perform-
ance of the entire system because other equipment is operating in parallel. The second 
stage occurs if the new variant is more effective: others may adopt it in other parts of 
the system. As adoption occurs there is a load transfer from older versions to the new 
version in the context of competition, both in the local context and in the larger con-
text of the entire system. The third stage involves keeping older systems around for 
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longer than they are needed, using them for a smaller and smaller part of the load until 
eventually they are discarded 'naturally'. Following a single process of innovation, is, 
however, not really the point of the evolutionary engineering process. Instead, the key 
is recognizing the variety of possibilities and subsystems that exist at any one time 
and how they act together in the process of innovation. 

The conventional development process currently used in large engineering projects 
is not entirely abandoned in the evolutionary context. Instead, it is placed within a 
larger context of an evolutionary process. This means that individuals or teams that 
are developing parts of the system can still use well known and tested strategies for 
planning, specification, design, implementation and testing. The important caveat to 
be made here is that these tools are limited to parts of the system whose complexity is 
appropriate to the tool in use. Also, the time scale of the conventional development 
process is matched to the time scale of the larger evolutionary process so that field 
testing can provide direct feedback on effectiveness. This is similar to various propos-
als suggested for incremental iterative engineering. What is different is the impor-
tance of parallel execution of components in a context designed for redundancy and 
robustness, so that the implementation of alternatives can be done in parallel and ef-
fective improvements can be combined. At the same time, the ongoing variety pro-
vides robustness to changes in the function of the system. Specifically, if the function 
of the system is changed because of external changes, the system can adapt rapidly 
because there are many possible variants of subsystems that can be employed. 

Understanding a complex system approach to design and implementation involves 
recognizing the many differences between the natural evolutionary process and tradi-
tional engineering practices. Enlightened Evolutionary Engineering (E3) employs, 
among others, the following key concepts, that may be contrasted to traditional engi-
neering practices. 

Focus on Creating an Environment and Process Rather han a Product 

Ongoing change in a system is the underlying mechanism of creation, not the formu-
lation and execution of plans. Encouraging and safeguarding this ongoing change and 
monitoring its outcomes are the absolute essentials of an evolutionary-based process. 

Continually Build on What Already Exists 

Off-line engineering of complex systems is impractical because the complexities of 
their environment and true functional requirements do not permit practical specifica-
tion or testing prior to implementation. In complex systems, correct expectations and 
testing both depend on the immediate consequences of current operations. 

Individual Components Must e Modifiable in itu 

The interdependencies between system components must be such that individual 
components can be modified in situ. In practice this requires the following point. 
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Operational Systems Include Multiple Versions of Functional Components 

Complex systems should be understood as populations rather than as rigid assemblies 
of unique components. Individual components can overlap substantially in terms of 
both functionality and interaction. Evolutionary processes impact both populations 
and individuals. Redundancies are not always unwanted inefficiencies. 

Utilize Multiple Parallel Development Processes 

The existence of populations of components allows multiple parallel efforts to explore 
modifications that might (but that are not guaranteed) to improve system components 
and/or total system capability.  

Evaluate Experimentally In-situ 

Testing and experimentation increasingly overlap. Off-line qualification testing be-
comes a prelude to active field testing for components in a large variety of operational 
environments. Results (including unexpected results) are ratified or rejected as they 
occur based on then-current overall system capability. 

Increase Utilization of More Effective Components, Gradually 

The replacement of components cannot be abrupt as testing is never complete and op-
eration is continuous. Augmentation and parallel operation is the preferred approach. 

Effective Solutions to Specific Problems Cannot Be Anticipated 

Specification efforts cannot assume that the most efficient or effective solutions can 
be anticipated in advance of an exploration and discovery process involving multiple 
parallel development efforts. Such an assumption is invalid, and is increasingly seen 
to be so the more complex any solution must be to even marginally succeed. More-
over, this assumption remains false no matter how long a problem is worked and pro-
gressively better solutions are found. 

The “Integration” of Complex Systems 

In order to operate a E3 process, the concept of integration must be radically re-
thought. A systematic and effective application of the ideas in this paper involves a 
“paradigm shift” from “complete system specification” to the creation of environ-
ments that are conducive to ongoing change in components of systems while support-
ing the more or less constant evaluation of their overall effectiveness through virtual 
as well as real world testing.  

4   Conclusions 

It is important to appreciate that there are fundamental reasons that highly trained sys-
tems engineers have been unable to successfully complete highly complex engineer-
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ing projects in recent years. Extending the existing decomposition based approach 
will not solve these problems. The application of multiscale analysis reveals that the 
coordination between components that is required to develop such systems is incom-
patible with decomposition. This can be most easily understood as an underlying 
bandwidth limitation in the hierarchical structure in which the decomposition of the 
design is performed.  

The solution to this problem is to develop an environment for parallel design teams 
to develop components that can be field tested and compete for wider adoption. This 
approach underlies both the creation of complex biological systems and many com-
plex social system through the process of market competition.  
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Abstract. Positioned at the confluence between human/machine and hard-
ware/software integration and backed by a solid proof of concept realized through 
several scenarios encompassing e-Securities, e-Health, and e-Logistics for global 
manufacturing and emergency response management, this work exploits latest  
advances in information and networking technologies to set a systematic frame-
work for the design of the information infrastructures (coined as AIIs - Adaptive 
Information Infrastructures) destined to fuel tomorrow’s e-Society. Designed 
following the natural laws of evolution, which merge self-organization and natural 
selection [1], these socially embedded information infrastructures can adapt to  
fulfill various needs as their environment demands. Computational intelligence 
techniques endow the AIIs with learning and discovery capabilities, emulating  
social and biological behavior. AIIs are destined to become an integral part of our 
life by supporting, rather than disturbing, a framework that facilitates strategic 
partnerships while providing greater user-friendliness, more efficient services 
support, user-empowerment, and support for human interactions. 

Keywords: Distributed artificial intelligence, information infrastructures, 
emergency response management, e-Health, Cybersecurities, emergence, self-
organization, evolution. 

1   Rationale 

Today’s electronic information technologies are linking our world, enabling partner-
ships otherwise impossible in all areas of our life. From e-Commerce and e-Business 
to e-Learning and e-Health the economic strategies as well as the routine professional 
practices have been irreversibly contaminated with the spice of electronic connec-
tivity. Supported by this technological leverage, new paradigms have emerged with 
models that are dynamic, autonomous, self-organizing and proactive, generically 
coined as ‘intelligent’. In particular Multi-Agent Systems (MAS) have changed the 
software world, and with it the world of information technologies. With the reasoning 
encapsulated in societies of software agents, having a life of their own in Cyberspace, 
the Internet becomes a dynamic environment through which agents move from place 
to place to deliver their services and eventually to compose them with the ones of 
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other agents, just like people cooperate, by exchanging services and/or putting  
together their competencies in a larger, more complex service.  

In today’s dramatic context there is an acute need for such new techniques capable 
to deal with critical aspects such as emergency response management, network, in-
formation and national security enhancement, population health and quality of life 
improvement, etc. To meet this need we propose a systematic approach to the design 
and implementation of such dynamic environments supporting coalition formation, 
which we refer to as adaptive information infrastructures (AII). AIIs could glue to-
gether the best organizations capable to cooperate in the timely solving of a crisis, and 
support the coordination of activities across such an extended cooperative organiza-
tion, getting clarity to emerge from the fog of information and help make the best  
decisions out of the crisis chaos. 

To influence the development of this technology in a human-friendly way our ap-
proach builds on the natural laws/patterns of self-organization according to which 
adaptive / intelligent systems emerged in the process of universes’ evolution [7]. Our 
approach [8] addresses this by enabling information infrastructures for various appli-
cations. For example, for global production integration [9], we developed a method-
ology for dynamic resource management and allocation across distributed (manufac-
turing) organizations [10], [11]. The approach integrates multi-agent technology with 
the holonic paradigm proposed by A. Koestler in his attempt to create a model for 
self-organization in biological systems [12]. 

2   Holonics  

Koestler postulated a set of underlying principles to explain the self-organizing  
tendencies of social and biological systems. He proposed the term holon to describe 
the elements of these systems. This term is a combination of the Greek word holos, 
meaning "whole", with the suffix -on meaning "part", as in proton or neuron. This 
term reflects the tendencies of holons to act as autonomous entities, yet cooperating  
to form apparently self-organizing hierarchies of subsystems, such as the 
cell/tissue/organ/system hierarchy in biology. 

Starting from the empirical observation that, from the Solar System to the Atom 
the Universe is organized into self-replicating structures of nested hierarchies intrinsi-
cally embedded in the functionality of natural systems, in his attempt to creating a 
model for self-organization in biological systems, Koestler has identified structural 
patterns of self-replicating structures, named holarchies. Holarchies have been envi-
sioned as models for the Universe’s self-organizing structure in which holons at sev-
eral levels of resolution in the nested hierarchy [13] (Fig. 1) behave as autonomous 
wholes and yet as cooperative parts for achieving the goal of the holarchy.  

In such a nested hierarchy each holon is a sub-system retaining the characteristic 
attributes of the whole system. What actually defines a holarchy is a purpose around 
which holons are clustered and subdivided in sub-holons at several levels of resolu-
tion according to the organizational dissectibility required. A Confederation is a  
political holarchy, for example having Canada at the highest level of resolution then 
the provinces at the immediate lower level, and finally the cities at the lowest levels in 
the hierarchy. Each individual person is regarded as a primitive holon  within this  social 
holarchy. Other examples are: a global enterprise is  a  collaborative  purpose- driven/ 
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Fig. 1. Generic Model of a Holarchy 

market-driven holarchy; a distributed manufacturing system is a production-driven 
holarchy, the organism is a survival-driven holarchy. The Universe is an  
evolution-driven holarchy.  

3   A Mathematics of Emergence  

In his seminal book [1] Stuart Kaufmann postulates that life emerged in the Universe 
through collective autocatalytic processes fueled by self-organization and natural se-
lection. As result of the process of evolution driven by power laws and autocatalicity, 
emergence endows the dynamics of composite systems with properties unidentifiable 
in their individual parts. The phenomenon of emergence involves on one side self-
organization of the dynamical systems such that the synergetic effects can occur and 
on the other side interaction with other systems from which the synergetic properties 
can evolve in a new context. 

The flow of information and matter across a holonic organization defines several 
levels of granularity (Fig. 1) across which we emulate the mechanism of emergence to 
enable the dynamic creation, refinement and optimization of flexible ad-hoc AIIs as 
coordination backbones for the distributed organization, capable to bring together the 
best resources available (within reach) depending on the needs of the particular crisis 
to be addressed.  

As such, the phenomenon of emergence involves two distinct steps, namely: 

 Self-organization of the dynamical systems such that the synergetic effects can 
occur  

 Interaction with other systems from which the synergetic properties can evolve  

We integrate emergence into the holonic paradigm [15] to create, refine and optimize 
AIIs. Self-organization is achieved by minimizing the entropy measuring the fuzzy in-
formation spread across the multi-agent system [10]. This will cluster the resources 
(agents), ensuring interaction between the system’s parts to reach its objectives timely, 
efficiently and effectively. Evolution is enabled by interaction with external systems 
(agents); for example, via a genetic search in cyberspace that mimics mating with most 
fit partners in natural evolution [16] or by means of dynamic discovery services [17]. In 
the sequel we present the essence of our formalism. 
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3.1   Self-Organization 

A multi-agent system (MAS) is regarded as a dynamical system in which agents ex-
change information organized through reasoning into knowledge about the assigned 
goal [10]. Optimal knowledge corresponds to an optimal level of information organi-
zation and distribution among the agents. It seems natural to consider the entropy as a 
measure of the degree of order in the information spread across the multi-agent sys-
tem [2]. This information is usually uncertain, requiring several ways of modeling to 
cope with the different aspects of the uncertainty. Fuzzy set theory offers an adequate 
framework that requires the use of generalized fuzzy entropy [3].  

One can envision the agents in the MAS as being under the influence of an infor-
mation “field” which drives the inter-agent interactions towards achieving “equilib-
rium” with other agents with respect to this entropy [10]. The generalized fuzzy  
entropy is the measure of the “potential” of this field and equilibrium for the agents 
under this influence corresponds to an optimal organization of the information across 
the MAS with respect to the assigned goal’s achievement. When the goal of the MAS 
changes (due to unexpected events, such as need to change a peer, machine break-
down, etc.) the equilibrium point changes as well inducing new re-distribution of  
information among the agents with new emerging agent interactions. This mechanism 
enabling dynamic system re-configuration with re-distribution of priorities is the  
essence of the emergent dynamic holonic structure. In this section, we will prove that 
when the agents are clustering into a holonic structure the MAS reaches equilibrium, 
which ensures optimal accomplishment of the assigned goal (task).  

A. Vagueness Modeling in MAS – The Problem 

It is already well known that among the other uncertainty facets, vagueness deals with 
information that is inconsistent [4]. In the context of MAS, this means that the clear 
distinction between a possible plan reaching the imposed goal and a plan leading, on 
the contrary, to a very different goal is hardly distinguishable. We call partition the 
clustering configuration in which the union of all clusters is identical to the agent set 
when clusters are not overlapping. If the clusters overlap (i.e. some agents are simul-
taneously in two different clusters) the clustering configuration is called a cover. We 
define a plan as being the succession of all states through which the MAS transitions 
until it reaches its goal. Each state of the MAS is described by a certain clustering 
configuration covering the agents set. Starting from this uncertain information, 
the problem is to provide fuzzy models of MAS, useful in selecting the least 
uncertain (the least vague) source-plan. 

B. Mathematical Formulation of the Problem 

Denote by 
NnnN a

,1
}{

∈
=A  the set of 1≥N  agents that belong to the MAS. Based 

only on the initial uncertain information, one can build a family 
Kkk ,1

}{ ∈= PP , con-

taining 1≥K  collections of clustering configurations, for a preset global goal. Each 

kP  ( Kk ,1∈ ) can be referred to as a source-plan in the sense that it can be a source of 

partitions for a MAS plan. Thus, a source-plan is expressed as a collection of 
1≥kM  different clustering configurations covering NA , possible to occur during 
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the MAS evolution towards its goal: 
kMmmkk P

,1, }{ ∈=P . The only available informa-

tion about kP  is the degree of occurrence associated to each of its configurations, 

mkP , , which can be assigned as a number ]1,0[, ∈mkα . Thus, the corresponding de-

grees of occurrence are members of a two-dimension family 
kMmKkmk ,1;,1, }{ ∈∈α , which, 

as previously stated, quantifies all the available information about MAS.  
 In this framework, we aim to construct a measure of uncertainty, V  (from 

“vagueness”), fuzzy-type, real-valued, defined on the set of all source-plans of NA  

and optimize it in order to select the least vague source-plan from the family 

Kkk ,1
}{ ∈= PP : 

 )(optarg
,1

0 k
Kk

k V PP
∈

= , where Kko ,1∈ .  (1) 

The cost function V  required in problem (1) will be constructed by using a measure 
of fuzziness [4]. We present hereafter the steps of this construction. 

C. Constructing Fuzzy Relations Between Agents 
We model agent interactions through fuzzy relations considering that two agents are 
in relation if they exchange information. As two agents exchanging information are 
as well in the same cluster one can describe the clustering configurations using these 
fuzzy relations. The family of fuzzy relations, 

Kkk ,1
}{ ∈R , between the agents of 

MAS ( NA ) is built using the numbers 
kMmKkmk ,1;,1, }{ ∈∈α  and the family of source-

plans 
Kkk ,1

}{ ∈P . Consider Kk ,1∈  and kMm ,1∈  arbitrarily fixed. In construction 

of the fuzzy relation kR , one starts from the observation that associating agents in 

clusters is very similar to grouping them into compatibility or equivalence classes, 
given a (binary) crisp relation between them. The compatibility properties of reflexiv-
ity and symmetry are fulfilled for covers (overlapped clusters), whereas the equiva-
lence conditions of compatibility and transitivity stand for partitions. The correspond-
ing crisp relation denoted by mkR , , can be described by the statement: two agents are 

related if they belong to the same cluster. The facts that a  and b  are, respectively 

are not in the relation mkR ,  (where Na,b A∈ ) are expressed by “ baR mk , ” and 

“ bRa mk ,¬ ”. The relation mkR ,  can also be described by means of a NN ×  matrix 
NN

mkH ×ℜ∈, - the characteristic matrix - with elements ( ],[, jiH mk ) being only 0 

or 1, depending on whether the agents are or not in the same cluster. (Here, ℜ  is the 
real numbers set.) Thus:  

 
¬

=
jmki

jmkidef

mk aRa

aRa
jiH

,

,
, ,0

,1
],[ , Nji ,1, ∈∀ .       (2) 
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This matrix is symmetric (obviously, if baR mk , , then abR mk , ) and with unitary 

diagonal (since every agent is in the same cluster with itself). It allows us to com-
pletely specify only the configuration mkP , (for the proof see [10].) 

As such, the relation mkR ,  defined by the agents’ inclusion in the same cluster is 

uniquely assigned to the clustering configuration mkP ,  (no other configuration can be 

described by mkR , ). Thus, each crisp relation mkR ,  can be uniquely associated to the 

degree of occurrence assigned to its configuration: mk ,α . Together, they can define a 

so-called α -sharp-cut of the fuzzy relation kR , by using the equality ( = ) instead of 

inequality ( ≥ ) in the classical definition of α - cut. Therefore, the crisp relation 

mkR , is a α -sharp-cut of kR , defined for mk ,α .  

Consequently, we can construct an elementary fuzzy (binary) relation mk ,R  whose 

membership matrix is expressed as the product between the characteristic matrix 

mkH ,  ,defined by (2), and the degree of occurrence mk ,α , that is: mkmk H ,,α . This 

fuzzy set of NN AA ×  is also uniquely associated to mkP , .  

 If Kk ,1∈  is kept fixed, but m  varies in the range kM,1 , then a family of fuzzy 

elementary relations is generated: 
kMmmk ,1, }{ ∈R . Naturally, kR  is then defined as 

the fuzzy union:  

kM

m
k,m

def

k
1=

= RR .                                                          (3) 

 { } NN
mkmk

Mm

def

k H
k

×

∈
ℜ∈•= ,,

,1
max αM ,                                        (4) 

where “ •max ”acts on matrix elements and not globally, on matrices. The equations 

(3) and (4) are very similar to the resolution form of kR , as defined in [16]. Here 

however, some mk ,α  (in general, with small values) can disappear from the member-

ship grades of kR . 

Obviously, since all matrices mkmk H ,,α  are symmetric, kM  from (4) is symmet-

ric as well, which means that kR  is a fuzzy symmetric relation. The fuzzy reflexivity 

is obvious (non-zero elements of main diagonal). Thus, kR  is at least a proximity  

relation. The manner in which the degrees of occurrence are assigned to partitions 
greatly affects the quality of the fuzzy relation. Although all its α -sharp-cuts could 
be equivalence relations, it is not necessary that the resulting fuzzy relation be a simi-
larity one (i.e. fuzzy reflexive, symmetric and transitive). But it is at least a proximity 
relation, as explained above.  
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The fuzzy transitivity, expressed as follows: 

 ( )kkk MMM •≥ ,                                                  (5) 

is the most difficult to ensure. Here “ •≥ ” acts on matrix elements, and “ ” denotes 

composition of the corresponding fuzzy relations. In case of max-min transitivity, this is 

expressed analogously to classical matrix multiplication, where the max operator is used 

instead of summation and min instead of product: 

 ( ) { }],[],,[minmax],[],[
,1

jnnijiji kk
Nn

kkk MMMMM
∈

=≥ ,                     (6) 

Nji ,1, ∈ ],[ jiM M

The equations (5) or (6) suggest an interesting procedure to construct similarity  
relations starting from proximity ones, by using the notion of transitive closure. A 
transitive closure of a fuzzy relation R  is, by definition, the minimal transitive fuzzy 
relation that includes R . (Here, “minimal” is considered with respect to inclusion on 
fuzzy sets.)  

So far, a bijective map (according to Theorem 1) between 
Kkk ,1

}{ ∈= PP  and 

Kkk ,1
}{ ∈= RR , say T , was constructed:  

 kkT RP =)(  , Kk ,1∈∀ . (7) 

D. The Measure of Fuzziness 
The next step aims to construct a measure of fuzziness over the fuzzy relations on 

NN AA × , that will be used to select the “minimally fuzzy” relation within the set 

Kkk ,1
}{ ∈= RR .  

One important class consists of measures that evaluate “the fuzziness” of a fuzzy 
set by taking into consideration both the set and its (fuzzy) complement. From this 
large class, we have selected the Shannon measure, derived from the generalized 
Shannon’s function:  
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This function has a unique maximum (equal by M , for 2/1=mx , Mm ,1∈∀ ) and 
M2  null minims (in apexes of hyper-cube M]1,0[ ). For example, if 2=M , the sur-

face depicted in below is generated. In general, S  generates a hyper-surface  

inside the Euclidean space Mℜ , but all its minima are null. 
 If the argument of this function is a probability distribution, it is referred to as 

Shannon entropy. If the argument is a membership function defining a fuzzy set, it is 
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refereed to as (Shannon) fuzzy entropy. Denote the fuzzy entropy by μS . Then,  

according to equation (8), μS  is expressed for all Kk ,1∈  by:  
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    (9) 

Obviously, this function also has a unique maximum and all minima null, with  

respect to variables ],[ jikM , its dimension being 2NM = . 

Two main reasons motivate this choice. First, μS  helps us make a direct connec-

tion between “how fuzzy” is a set and “how much uncertainty” it contains. Thus, 
since μS  computes the quantity of information of an informational entity, say a 

fuzzy set, as the estimated uncertainty that the entity contains, the minimally fuzzy 
sets will subsequently contain the minimally uncertain information1. Secondly, the 
“total ignorance” (or uncertain) information is expressed by the unique maximum of 

μS , whereas multiple minimum points (actually, the apexes of the hyper-cube)  

belong to a “perfect knowledge zone” (as less uncertain information as possible).  
Between “total ignorance” (which, interestingly, is unique) and “perfect knowledge 
zone” (which is always multiple) there are many intermediate points associated to 
different degrees of uncertainty in knowledge about the entity.  

Moreover, a force driving towards knowledge can be determined [10], by  
computing the gradient of Shannon fuzzy entropy. It is interesting to remark that the 
amplitude of this force (its norm), expressed as:  
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increases very rapidly in the vicinity of any “perfect knowledge” point (see Fig. 6(b) 
above).  

E. The Uncertainty Measure 
Although a unique maximum of Shannon fuzzy entropy (9) exists, as proven by (10), 
we are searching for one of its minima. The required measure of uncertainty, V , is 

obtained by composing μS  in (9) with T in (7), that is: TSV μ= . Notice that V  

is not a measure of fuzziness, because its definition domain is the set of source-plans 
(crisp sets) and not the set of fuzzy relations between agents (fuzzy sets). But, since 
T is a bijection, the optimization problem (1) is equivalent with:  

 ))(minarg(
,1

1
0 k

Kk
k ST PP μ

∈

−=  , where Kko ,1∈ . (11) 

The new problem (11) does not require a special optimization algorithm, since K  is a 
finite number and all minima, although multiple, are null and localized in apexes of 

hyper-cube 
2

]1,0[ N . Problems could appear only if K  is very large. In this case,  

                                                           
1  Notice, however, that only the vagueness facet of the uncertainty is measured here. Ambigu-

ity requires more sophisticated measures [7]. 
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genetic algorithms [5] or annealing algorithms [6] can be used to find the minimum. 
According to the previous interpretations, 

0kP  is the least fuzzy (minimally fuzzy), 

i.e. the least uncertain source-plan from the family and the most attracted by the 
knowledge zone. Its corresponding optimum fuzzy relation 

0kR  might be useful in 

the construction of a least uncertain plan of MAS. 

F. Emergence of Holonic Clusters 

Once one pair (
0kP ,

0kR ) has been selected by solving the problem (11) (multiple 

choices could be possible, since multiple minima are available), a corresponding 
source-plan should be identified. Two choices are possible:   

• List all the configurations of 
0kP  (by extracting, eventually, those configura-

tions for which the occurrence degree vanished in 
0kR ):  

},,,{
00000 ,2,1, kMkkkk PPP=P .  

• Construct other source-plans by using not 
0kP , but 

0kR .  

The α -cuts of 
0kR  are the crisp relations α,0kR , for degrees of membership 

]1,0[∈α . The characteristic matrix elements of α,0kR  are defined by:  
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Each matrix α,0kH  in (12) generates a unique clustering configuration of agents over 

NA . Thus, two categories of source-plans emerge: equivalence or holonic source-

plans (when 
0kR  is a similarity relation) and compatibility source-plans (when 

0kR  

is only a proximity relation).  

• When the associated fuzzy relation 
0kR  is a similarity one, then an interesting 

property of the MAS is revealed: clusters are associated in order to form new 
clusters, as in a “clusters within clusters” holonic-like paradigm.  

3.2   Evolution  

In the open environment created by the dynamic Web opportunities for improvement of 
an existing virtual organization arise continuously. New partners and customers alike 
come into the virtual game bidding their capabilities and money to get the best deal. 
Staying competitive in this high dynamics requires openness and ability to  
accommodate chance rapidly through a flexible strategy enabling re-configuration of 
the organization to be able to respond to new market demands as well as to opportuni-
ties (e.g. in playing with a better partner when needed.)  In response to this need we 
have designed an evolutionary search strategy that enables the virtual organization 
to continuously find better partners fitting the dynamics of its goals as they change  
according to the market dynamics. 
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A. Selection Pressure in Cyberspace 

 We regard ‘the living Web’ as a genetic evolutionary system. Our construction is 
based on the observation that the search process on an agent domain containing  
information about a set of agents that ‘live’ in the Web is analogous to the genetic  
selection of the most suitable ones in a population of agents meant to ‘fit’ the virtual 
organization goals. The mutation and crossover operators (pm and pc) represent  
probabilities of finding ‘keywords’ (describing the attributes required from the new 
partners searched for) inside the search domain considered.  

The main idea is to express the fitness function (measuring how well the new 
agent fits the holarchy’s goal) in terms of the fuzzy entropy (9): 

F = μS                                                                                      (13) 

With this, minimizing the entropy across the extended MAS (which includes the 
agents from the search domain) according to HE goal-reach optimization equates op-
timizing the fitness function which naturally selects the best agents fitting the optimal 
organizational structure of the HE. In the sequel we present the mathematical formal-
ism for this evolutionary search. 

4   Applications of AIIs 

4.1   AIIs for Global Manufacturing 

Our work with the Holonic Manufacturing Systems (HMS) consortium demonstrated 
that this methodology is very useful for global supply chain management systems that 
integrate collaborative workflow techniques [18]. Within this context AIIs can be 
viewed as information ecosystems composed of collaborative but autonomous holons 
Fig. 4 working e.g. to create a new product by merging several specialized companies 
and coordinating their efforts, Fig. 5 (from [18]).  

Multi Enterprise Layer 

Enterprise Layer 

Shop Floor Layer 

Supplier 2 Company 2 Customer 2

Factory 3 Sales 3

Factory 1 Sales 1
Factory 2 Sales 2

Work area 1

Supplier 1 Company 1 Customer 1

Supplier 3 Company 3 Customer 3

Work area 2 Work area 3

Atomic Holon Level  

Fig. 5. Layers in Holonic Manufacturing 

 

Fig. 4. Global Manufacturing Holarchy 
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Boards Plant 
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Multi-Enterprise Level 

Enterprise (Plant) Level 

     Logistics 

Power Adapters
Plant 

Bank 

 
Fig. 6. The Supply Chain Holarchy 

The interaction between distributed enterprises, with their suppliers and customers is 
modeled at the multi-enterprise level. The enterprise level hosts co-operation between 
entities belonging to one organization, the sales offices and the production sites. The 
distributed manufacturing control within a production site or shop floor is handled by 
the shop floor level. Here the entities are distributed work areas working together and in 
co-operation, in order to fulfill all orders allocated to them. The basic level (the Cell) 
models the interactions between equipments and humans. In [18] we focused on a sup-
ply chain scenario from the phone manufacturing industry. This approach can easily be 
expanded to any goods distribution networks (e.g. the Wal-Mart supply chain). Figure 6 
presents the overall holarchy integrating both inter and intra- enterprise levels. 

Customer
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Order Manager
Agent Logistics
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Fig. 7. Conceptual Model of Supply Chain Agents 
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Fig. 8. Class Structure of Customer Agent 

Having defined the entities involved in the overall holarchy and established the roles 
and their interactions within the supply chain application, we can create a network of 
agents (Fig. 7) based on the responsibilities that come from these roles and the resources 
that need to be produced or consumed. 

Figure 8 shows the agent class structure of the Customer agent class, that extends the 
core agent of the JADE platform (www.fipa.org) thus inheriting all the functionalities 
that it needs to setup, register, shut down, communicate, and so on. 

More details about the ontology (Fig. 9) and our system’s implementation can be 
found in [18]. 

4.2   AIIs for Emergency Response Management 

More recently, we successfully took the holonic concept out of the factory environ-
ment by designing a holonic framework suitable for emergency response applications 
[19]. For this testbed (Fig. 10 – from [28]) the actors are either a policeman with a 
PDA, a firefighter with a cell phone or even a helicopter sending real-time informa-
tion about the traffic jams to our planner holon. For example, it can indicate an opti-
mal or improved route for emergency vehicles to follow or even more, it will be able 
to instruct the policemen to clear a road so the firefighters will be able to arrive to the 
building faster. In case of a bigger disaster our system will be able to contact the  
hospitals in the zone and start distributing the patients according to bed availability. 
The emergency AII is depicted in Fig. 11. 

During an AII-enabled rescue operation (Fig. 10), novel e-Health technologies can 
be used, e.g. for patient are authentication by a wireless fingerprint sensor that ac-
cesses their profile from a remote database [36]. Depending on indicators such as 
blood pressure and the health history of the patient, a first diagnosis will be compiled 
using automated decision support systems [27]. Electronic logistics support will pro-
vide information about the next available and suitable hospital, initiate staff assembly 
and emergency room preparation, and provide on-the-fly patient check-in. Planning 
and scheduling of resources on all levels of the emergency holarchy (Fig. 11) will  
enable reconfiguration and flexibility by selecting functional units, assigning their  
locations, and defining their interconnections (e.g. reallocating hospital beds to cope 
with the victims, rerouting around a fire crew or changing the assignments of a multi-
functional defense unit).Once a crisis arises an AII emerges clustering available  
resources (modeled as software agents) to deal with the situation optimally [29]. 
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Fig. 9. Dependency relationships in the supply chain domain ontology 

 

Fig. 10. Fire Emergency Scenario 
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Fig. 11. Emergency Response Holarchy (AII) 

4.3   Scalable Secure Web Based Services for e-Health 

We propose a holonic framework suitable for e-health applications. In [20] we de-
fined the concept of medical holarchy as an open evolutionary health system that is 
highly self-organized and self-adaptive. The collaborative medical entities (patients, 
physicians, medical devices, etc.) that work together to provide a needed medical  
service for the benefit of the patient form a medical holarchy [26]. The levels of a 
medical AII are (Fig. 12): 

• Inter-Enterprise: Hospitals, Pharmacies, Medical Clinics/Laboratories 
• Intra-Enterprise: Sections/Units/ Departments of each medical enterprise 
• Resource Level: Machines for medical tests, medical monitoring devices,  

information processing resources  

 

Fig. 12. Medical Holarchy 
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In this system of collaborative medical entities new devices and services (Fig. 12) 
can integrate themselves, offer their functionality to others and share data on a secure 
level. The complex interaction of diagnosis, treatment and monitoring is made possi-
ble through task planners and schedulers that are distributed, automatic and self-
configuring.  

A major issue in e-Health technology adoption is reconciliation of the various 
standards of care across the continents. As well the security and privacy of electronic 
medical records is of major significance and has proven to be the major brake that 
slowed down the adoption of e-Health by major clinics around the world but espe-
cially in the North Americas. Therefore our goal is to develop a reusable framework 
for secure high-performance web-services in e-health. As a testbed for the secure AII 
to be developed we will use it to connect a network of medical experts that will col-
laborate via the AII to develop standards of care for glaucoma [24]. To enable the col-
laboration of highly specialized glaucoma surgeons located across the country we 
have developed a telehealth approach [21] that involves a consensus analyzer synthe-
sizing expert opinions into standards of care [22]. 

Recently we successfully applied this concept to improve glaucoma monitoring 
[23] with a security layer. This has encouraged us to expand the holonic concept to 
other e-Health areas that require the dynamic creation of organizational structures and 
workflow coordination, such as rescuing people after an accident or disaster. This is a 
time critical operation that requires quick diagnosis, identification of the closest avail-
able hospital and knowledge of traffic conditions.  

4.4   Holonic Cybersecurity System 

Information infrastructures are critical to the functioning of society; however, they are 
vulnerable because of threats and complex interdependencies [31]. New research in this 
field needs to account for these security issues, which are crucial to future information 
systems and services. In this context, AIIs provide new dimensions to security:  

• Reliability of critical infrastructure with survival capabilities, such as power and 
water distribution. 

• Resilience based on an anticipative environment that enables operation under 
continuous threats and attacks. 

The issue of Cybersecurity is very difficult to tackle, given that nobody owns the 
Internet and there is no single ‘command post’ to control its security. The status quo 
regarding intrusion detection raises many challenges: 

• Post attack information accumulates through many different organizations; 
therefore ID tools are unable to interact, making correlation of results difficult. 

• Incident responses are local. There is no unified mechanism for analyzing such 
informational alerts and determine their implications/risk factor. 

This places on the ‘wish list’ for security systems the following demands:  

• ‘On-the-fly’ system configuration, requested by the continuous network changes 
• Timely detection of all kinds of attacks 
• Prevention (and counter-attack) in any network place 
• Universal installation and maintenance 



 Adaptive Information Infrastructures for the e-Society 47 

 

To cope with these needs, we propose a holonic cybersecurity model that emulates 
biological behavior by inducing immunity into the network or system under attack. 
Much like Noria et.al. realize network immunity in [37], our system is organized as a 
holarchy distributed throughout the network, Fig. 13. The AII will anticipate attacks 
by activating specialized agents seeking the presence of intruders into the network, 
similar to how antibodies fight viruses in biological systems. 

- Inter-Enterprise Level 
At the highest level, the “Command Post” embeds the generic security policy for an 
organization, which takes care of the following tasks: 

• Crisis Management 
• Coordinating with other organizations/government agencies 
• Lower level systems management 
• Shared information with trusted organizations 
• Specifies which sets of network parameters should be analyzed by each entity in 

the holarchy3 

In case of an unexpected attack, every command post in the security holarchy is 
alerted, triggering fighter agents that specialize in eliminating attackers. 

Intranet Holarchy (Atomic Autonomous Systems)

Security Holarchy (Inter-Enterprise Level) 

Manager Layer (Intra-Enterprise Level) 

Learning Policy Managers Trust Policy

Command Post (Security Policy)
Information Sharing Coordination Policy

Decision Support Intranet Manager Knowledge Base

Coordination Manager Security Policy Manager
Personal Net Manager Extranet Manager

Coordination Agent Policy Conversion Agent

Monitoring Agent Detection Agent
Analysis Agent Knowledge Base Agent

 

Fig. 13 Cybersecurity Holarchy 

- Intra-enterprise Level 
At this level managers control specified agents to analyze and correlate data collected 
by them, whereas at the lowest level, local agents monitor specified activities. Their 
main functions are: 

• Understand network topology 
• Analyze information given by Agents 
• Make decisions depending on network topology and information given by other 

managers and their agents 



48 M. Ulieru 

 

• Coordinate the ‘atomic’ agents (e.g. scheduling their operations) 
• Manage the ‘atomic agents’ knowledge base updates and mediate information 

exchange with the ‘command post’ (Fig. 13). 

Manager agents interact with the ‘atomic’ agents by (Fig. 13): 

• sending goals, derived from security policies; 
• delegating specific functions of monitoring/detection and specifying the various 

domains to monitor; 
• gathering particular information, such as: the suspicion level of a particular user, 

the list of events generated by a user, etc.; 
• gathering relevant reports or analyses, and alarms. 

- Atomic Agents Level 
The basic agents have the ‘mission’ to determine an initial attack by analyzing low-
level network events (‘local sniffers’). For this they carry on the following functions: 

• Real-time monitoring of network packets; 
• Full IP de-fragmentation and upper protocol data reassembly; 
• Provide immediate information analysis in original environment, at that very in-

stant and catching additional local data that might be required; 
• Delay / block network traffic/ isolate segment suspected of ‘attack’ 
• Content inspection for security behavior violations 
• Delete, modify suspicious/malicious content 

The holonic approach enables also a topology-oriented approach in which critical 
points of action are identified where agents ‘migrate’ as needed. This enables in addi-
tion to the automatic detection of an attack, also attack localization as close as possi-
ble to its source. Agents must be able to isolate a specific network’s segments. Man-
agers coordinate the activity of basic agents by moving the basic agents across differ-
ent network points in order to investigate what is the really “relevant” information and 
how to extract quality from quantity. For implementation details see [30].  

5   Conclusions 

We propose a theoretical foundation for the design of adaptive information infrastruc-
tures (AIIs) enabling and sustaining tomorrow’s e-Society, as well as envision various 
areas of industrial application for such AIIs, that would improve human life.  The re-
cent theoretical results obtained by us in modeling the property of emergence in self-
organizing systems were refined and expanded with other recent results to create a 
model of emergence in Cyberspace, by this setting a foundation for engineering self-
organizing applications mirroring biological behavior. 

The principal merit of the proposed holonic AII architecture is that it provides an 
environment that can react appropriately to highly unpredictable situations. By using 
natural models of emergence, much in the same manner as DNA is controlled in ge-
netic engineering, we will be able to control the emergence of AIIs as crises arise. 
AIIs will address the emergency quickly, efficiently and most appropriately. Once a 
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goal is set (where a certain need has to be fulfilled), the AII self-organizes to accom-
plish this goal optimally. 
     Some of the difficult questions posed by this research are: 

• Can pathological emergent behavior of the total system, arising from the interac-
tions between people, agents, objects, and their various policies, be avoided? 

• How do we translate the interaction of agents in different contexts and environ-
ments into machine understandable language? 

• How do we express and code sufficient real world semantics when the scope of 
interaction between agents is too broad or not predefined [35]?  
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Abstract. It is our belief that modelling the behaviour of stem cells in the adult
human body as an agent-based system is the most appropriate way of under-
standing the process of self-organisation. We have undertaken several case stud-
ies where formal and/or computational models of stem cell systems, have been
re-developed using an agent-based approach. This paper presents details of one of
these case studies where we have used an agent-based approach as opposed to a
cellular automata approach. A formalisation of the non-agent and agent-based ap-
proach is given, and from the results of this investigation, we aim to demonstrate
the advantages of the agent-based approach for developing biologically plausi-
ble models with emergent self-organising dynamics. The aim of this paper first to
discuss the importance of modelling and simulating stem cells, because of certain
experimental limitations, but also to demonstrate that the multi-agent approach to
modelling is the most appropriate.

1 Introduction

In recent years there has been a growing debate about how stem cells behave in the
human body; whether the fate of stem cells is pre-determined [11] or stochastic [13, 19],
and whether the fate of cells relies on their internal state [12], or on extra-cellular micro-
environmental factors [21]. There have been several attempts to build formal models of
these theories, so that predictions can be made about how and why stem cells behave
either individually or collectively. An excellent review of these formal approaches can
be found in a recent publication [22].

Recent experimental evidence has suggested that stem cells development may be
more complicated than was originally thought. The standard model of stem cell devel-
opment is that a stem cell becomes increasingly differentiated over time along a well-
defined cell lineage and eventually becomes a fully functional cell. This model has been
challenged by many researchers including one of our collaborators, Neil Theise [7, 18,
16]. Several years ago, new theories were proposed by our collaborator and others that
challenged the prevailing view because new experimental data suggested that stem cell
fate is both reversible, i.e. cells can become less differentiated or behave more like stem
cells, and plastic, i.e. cells can migrate from one cell lineage to another.

Whilst working on Cell, with an interdisciplinary team including Theise and the
artist Jane Prophet, it became clear to us that the most appropriate way to model stem
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cells in the adult human body was as a dynamic system of self-organising agents. Our
work to date has used our existing, well-established techniques for specifying and mod-
elling agent-based systems in general [4, 6, 9, 10] and progressed along two parallel
strands. The first strand of our work has been an attempt to develop an agent-based
model of Theise’s theory of stem cell behaviour and organisation [17, 5]. The second
strand has been to use the same agent-based approach to analyse and re-develop ex-
isting models to ensure that our framework is sufficiently flexible to model more than
one theory and to understand how other work differs from our own. In other words, we
have been working on re-implementing agent-based versions of cellular automata and
equational models of stem cells in order to support our claim that the agent approach is
more suitable than other current modelling approaches.

In this paper we consider one of the latest models of stem cell systems and show
what can be gained from evaluating them using our agent framework. The aim of this
paper is to show why we need simulations of stem cell behaviour in general, to demon-
strate the role of formal modelling in developing these simulations, and to show the
benefits of a multi-agent approach over other possible modelling approaches. We also
aim to substantiate our belief that stem cell self-organisation and behaviour is an emer-
gent of the individual interactions of individual stem cells with each other and with the
environment in which they are situated.

Before we consider this work in detail, we first consider the reasons why we might
want to build models of stem cell systems in general.

1.1 Formal Modelling of Stem Cells

The mathematical modelling, conceptualisation and simulation of stem cell behaviour is
beginning to receive a substantial amount of interest from a number of researchers [14,
1, 8]. As has been pointed out by others, predictive models of stem cell systems, could
provide important new understandings of the self-regulating mechanisms that result in
well known global properties of stem cells. These include the following qualities of a
healthy human adult.

1. There are always a sufficient number of stem cells.
2. Fully determined cells are sufficiently replenished as they die.
3. The system of stem cells can recover after serious injury or disease.

As has been discussed by a number of authors [22, 14] there are several reasons why
formal predictive models of stem cells will receive an increasing amount of attention in
the near future. Though the first model we know of was published in 1964 ([20]) there
has been surprisingly little work in this field until the last couple of years. Indeed over
the last few years, there has been a noticeable climate change in this respect, and there
is now a growing awareness of the need to use mathematical modelling and computer
simulation to understand the processes and behaviours of stem cells in the body. An
excellent review of existing models has been recently published [22].

We summarize what we see are the key reasons for the systematic development of
formal models and simulations to consider hypothesis about the nature and behaviour
of stem cells.
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1. It is not possible to investigate how stem cells react by looking at dead tissue, and
much stem cell research is based on observation of dead, 2-D slides. Building sim-
ulations allows researchers to test possible cell behaviours that can then be related
back to observable laboratory results.

2. In the adult body, stem cells cannot be distinguished morphologically from other
primitive non-determined cell types. It is therefore hard, if not impossible, to ob-
serve their behaviour in the dynamic system of which they are a part.

3. The size and complexity of stem cell systems mean that without simulation, it is
not possible to consider the whole system. Simulations provide an important tool
for understanding the global behaviour of complex systems reacting agents.

4. Clearly any formal model, and resulting simulation, of stem cells will necessarily
incur massive simplifications and abstractions about the machinations of the hu-
man body. It is our belief, however, that theoretical simplifications are often key to
understanding fundamental properties of natural systems.

5. It is the potential of cells to behave in lots of different ways which makes them more
or less stem like. It may be that stem cell is a notion rather than an artifact and refers
to the wide-ranging set of potential behaviours that it might have that are influenced
by internal, environmental, and stochastic processes. Simulations provide a way of
determining which behaviours are essential to stem cells and which are incidental
in systems that have been studied in the laboratory.

6. When you consider experimental evidence you have seen only one behaviour. This
behaviour may have been one of many, and it is the potential for cells to behave
in certain ways that might be key to defining them. Modelling and simulation is a
much more effective device for understanding “behavioural potential” than looking
at completed chains of events in the lab.

7. Though our work has been explicitly concerned with modelling the adult human
body, it is clear that simulation does not involve any ethical difficulties such as
extracting stem cells from an embryo in such a way that it is sacrificed.

8. And of course, simulation is cheap.

This should give the reader an indication of why we believe this will become a grow-
ing field in the next few years. In our approach we have used an agent-based approach
to the formal modelling and simulation of stem cells, and we make the following claims
which we will attempt to substantiate in this paper.

1. An agent-based approach provides more flexibility than other more limited ap-
proaches and so delivers greater potential for modelling more sophisticated, glob-
ally emergent, behaviour.

2. An agent-based approach can also provide more biological plausibility than exist-
ing approaches such as cellular automata and other mathematical approaches. One
of the main reasons that biological plausibility is important is to attract biologists
to use and work with any models and simulations that are created.

3. Stem cells are a prime example of a self-organising system where individual cells
react to their local physical, chemical and biological environment. The system
should therefore be most suitably modelled as a system of interacting reactive
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agents, where the reaction at the micro level gives rise to the emergent behaviour at
the system level.

4. Even though we are simulating cells and environment, the Brooksian idea of an
agent being something which is both situated and embodied ([2]), is a fundamen-
tal driving force of our use of agents as the appropriate modelling paradigm. Cells
modelled as agents have a physical, chemical and biological presence and are sit-
uated in a physical, chemical and biological environment in which they react. The
way in which they react will then influence the way other cells react in the future
and so on. This then, becomes a complex system, as we have claimed before, that
stem cell systems should be modelled as complex adaptive systems.

5. By situating our simulation work in a wider formal framework we can compare
and evaluate different models. We believe that this is necessary for this new field to
develop in a systematic manner.

6. Moreover, the formal framework allows us to “agentify” existing models, making it
very clear what the relationship between the existing version and the agent version
is.

7. By building a formal model using a specification language from software engineer-
ing, there are techniques to ensure that the simulation correctly implements the
model.

In this paper we go some way to justifying our claims above by looking at one case
study in detail. We consider the work of Agur et .al who have developed a cellular
automata model of stem cells, and show that by re-caging this work in terms of an
agent model, we can highlight difficulties of the cellular automata approach in general,
but also increase the biological plausibility of the model.

In what follows below we will provide formal specifications of the original model
and the agent-based reformulation using the language Z [15]. We have a history of using
Z to build specifications of agent and non-agent computational systems that allows us
to compare and evaluate different models and approaches [6].

2 A Cellular Automata Approach to Modelling Stem Cells

In recent work, Agur et al. [1] built a cellular automata model to show how the number
of stem cells in the bone marrow could be maintained and how they could produce a
continuous output of determined cells. The bone marrow is considered to be a stem
cell niche where most biologists believe that the human body’s supply of hematopoietic
stem cells are situated and maintained.

This work is important because it is one of the few examples where a mathematical
model has been used to show what properties of stem cells might be required to enable
the maintenance of the system’s homeostasis. The model demonstrates a possible mech-
anism that allows a niche to maintain a reasonably fixed number of stem cells, produce
supply of mature (determined) cells, and to be capable of returning to this state even
after very large perturbations that might occur through injury or disease. The behaviour
of a cell is determined (equally differentiated) by both internal (intrinsic) factors, e.g. a
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local counter, and external (extrinsic) factors, e.g. the prevalence of stem cells nearby,
as stated by the authors as follows.

1. Cell behaviour is determined by the number of its stem cell neighbours. This as-
sumption is aimed at simply describing the fact that cytokines, secreted by cells
into the micro-environment are capable of activating quiescent stem cells into pro-
liferation and determination.

2. Each cell has internal counters that determine stem cell proliferation and stem cell
transition into determination as well as the transit time of a differentiated cell before
migrating to the peripheral blood.

In the cellular automata model, the niche is modelled as a connected, locally finite,
undirected graph.

[Node]

[X ]
connected : P(P(X × X ))

This can be represented as a symmetric relation on the set of nodes, such that no
node relates to itself. We also assume that a graph is connected.

graph : Node ↔ Node
neighbours : Node → (P Node)

∀n : Node • (n,n) �∈ graph
graph∼ = graph
∀n : Node • neighbours n = ran({n} � graph)
connected graph

Any Node is either empty, or it is occupied by either a stem cell or a determined
cell. Here we introduce a naming convention that we shall use throughout where we
add a two letter suffix to all names specific to a model, in the case of the Agur model
we add the suffix “Ag”.

TypeAg ::= EmptyAg | StemAg | DeterminedAg

The state of any node is given by the node location, the state, and an internal clock.

NodeStateAg
node : Node
type : TypeAg
counter : N

The set of all such nodes is then given below, and defines the system state. We also
define a function that returns the neighbouring node states for any given node state.
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SystemStateAg
nodes : P NodeStateAg
neighboursAg : NodeStateAg → P NodeStateAg

{n : nodes • n.node} = Node
#nodes = #Node
∀n,m : NodeStateAg •

m ∈ (neighboursAg n) ⇔
m.node ∈ (neighbours n.node)

There are three constant values, we will call them LeaveNicheAg , CyclingPhaseAg
and NeighbourEmptyAg in our specification, that are used to reflect experimental ob-
servation. LeaveNicheAg represents the time taken for a determined cell to leave the
niche. CyclingPhaseAg represents the cycling phase of a stem cell; a certain number
of ticks of the counter are needed before the cell is ready to consider dividing. Finally,
NeighbourEmptyAg represents the amount of time it takes for an empty space that is
continuously neighboured by a stem cell, to be populated by a descendent from the
neighbouring stem cell.

LeaveNicheAg ,CyclingPhaseAg ,NeighbourEmptyAg : N

We now specify how the system changes over time. Whenever there is a change
of state in the system, we identify the node that we are considering as node . As a
consequence of each change node is removed and replaced with a new node, newnode ,
that represents the updated state. All locations are updated simultaneously.

ΔSystemStateAg
SystemStateAg
SystemStateAg ′

node,newnode : NodeStateAg

nodes ′ = (nodes \ {node}) ∪ {newnode}

The rules of this model, which determine what happens at a node based on internal
and external factors are described and specified below.

1. Determined cell nodes
(a) If the internal counter of a node representing a determined cell has reached

LeaveNicheAg then the cell leaves the niche; the internal counter of the node
is reset to 0, and the new state at the node becomes empty.

DeterminedLeaveNicheAg
ΔSystemStateAg

node.type = DeterminedAg
node.counter = LeaveNicheAg
newnode.type = EmptyAg
newnode.counter = 0
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(b) If the internal counter has not yet reached LeaveNicheAg then the internal
conter is incremented.

DeterminedStayNicheAg
ΔSystemStateAg

node.type = DeterminedAg
node.counter < LeaveNicheAg
newnode.type = node.type
newnode.counter = node.counter + 1

2. Stem cells nodes
(a) If the internal counter of a node representing a stem cell has reached the con-

stant CyclingPhaseAg , and all of the nodes neighbours are stem cells, then the
state of the node becomes a determined cell and the internal counter is reset to
0.

StemToDeterminedNodeAg
ΔSystemStateAg

node.type = StemAg
node.counter = CyclingPhaseAg
∀n : (neighboursAg node) • n.type = StemAg
newnode.type = DeterminedAg
newnode.counter = 0

(b) If the internal counter of a node representing a stem cell is equal to Cycling
PhaseAg but not all the node’s neighbours are stem cells then do nothing; leave
the internal counter unchanged.

RemainAsStem1Ag
ΔSystemStateAg

node.type = StemAg
node.counter = CyclingPhaseAg
¬ (∀n : (neighboursAg node) • n.type = StemAg)
newnode.type = node.type
newnode.counter = node.counter

(c) If the counter has not reached CyclingPhaseAg then do nothing except incre-
ment counter by 1.

RemainAsStem2Ag
ΔSystemStateAg

node.type = StemAg
node.counter < CyclingPhaseAg
newnode.type = node.type
newnode.counter = node.counter + 1
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3. Empty nodes
(a) If the internal counter at an empty node has reached NeighbourEmptyAg and

there is a stem cell neighbour then introduce, i.e. give birth to, a stem cell in
that location. The internal counter of the node is reset to 0.

BecomeStemAg
ΔSystemStateAg

node.type = EmptyAg
node.counter = NeighbourEmptyAg
∃n : (neighboursAg node) • n.type = StemAg
newnode.type = StemAg
newnode.counter = 0

(b) If the counter at an empty grid has not reached NeighbourEmptyAg and there
is exists a stem cell neighbour then increment the counter by 1.

RemainEmpty1Ag
ΔSystemStateAg

node.type = EmptyAg
node.counter < NeighbourEmptyAg
∃n : (neighboursAg node) • n.type = StemAg
newnode.type = EmptyAg
newnode.counter = node.counter + 1

(c) If there are no stem cell neighbours at all then reset the internal counter to 0.

RemainEmpty2Ag
ΔSystemStateAg

node.type = EmptyAg
¬ (∃n : (neighboursAg node) • n.type = StemAg)
newnode.type = EmptyAg
newnode.counter = 0

2.1 Discussion About the Cellular Automata Approach

We now have provided a specification of this system, and this formal model immedi-
ately identifies a number of issues with this cellular automata work.

1. The specification clearly reveals that niche spaces, i.e. empty nodes, must have
counters for this model to work. In a sense, empty space is having to do some
computational work. Clearly this lacks biological feasibility and is against what the
authors state about modelling cells, rather than empty locations, having counters.

2. Stem cell division is not explicitly represented, instead stem cells are brought into
being by empty space.
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3. More subtly, these stem cells appear when empty nodes have been surrounded by
at least one stem cell for a particular period of time. However, the location of the
neighbouring stem cell can vary at each step. Even though the model details the
fact that if a stem cell is next to an empty space long enough then it will divide so
that it’s descendent occupies this space. However, the rule does not state that the
neighbouring stem cell must be the same stem cell for every tick of the counter.
It states something much weaker; that there must be a neighbouring cell, possibly
different each time, for each tick of the counter from 1 to NeighbourEmptyAg .
Biologically, it would seem more intuitive that the same stem cell should be next
to an empty niche space for this length of time in order for “division” to occur into
the space but the model lacks a “directional component”.

4. The state of a stem cell after division is not defined. Let us for a moment assume that
the neighbouring stem cell (S) is fixed for all counts from 1 to NeighbourEmptyAg
from some specific location (N). Nothing is said about what happens to S after a
new stem cell appears in N. For example, should the counter of S be reset after
division? Neither does it give any preconditions on S. For example, does S’s local
counter need to have reached an appropriate point in its cycling phase for this to
happen?

So the basic problem is that this model relies on allowing both unfilled niche lo-
cations as well as stem and determined cells to have counters. Moreover, it does not
investigate or model the nature of a stem cell before and after division. We now attempt
to re-interpret these rules using an agent-based approach that still retains the overall
qualities of the model.

2.2 Re-formulation Using an Agent-Based Approach

One of the biggest differences between the original cellular automata model and our
re-formulation is the change in the role of graph nodes. In the cellular automata model
each node represents either a cell or an empty space. In our re-formulation, each node
represents a space that may or may not contain an agent that represents a cell. This
difference in the two models is illustrated in Figure 1.

(a) Agur (b) Agent-Based Agur

Fig. 1. A comparison of the original Agur cellular automata model and our reformulation as a
grid-based agent model. In the original model the nodes maintain the state of the cells, whereas
in our re-formulation the nodes contain agents and it is the agents that maintain the state of the
cells
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With the agent approach we also provide each cell with a unique identifier. We
model all cells as having one internal counter as before. In addition there is a counter
associated with each of the neighbouring nodes. The counters associated with neigh-
bouring nodes record how long the neighbouring location has been empty. Moreover,
cells can sense the type of cell at each of its neighbours, although this perception abil-
ity is only used by stem cells. If an agent represents a stem cell then it can potentially
divide into any location where the counter has reached NeighbourEmptyAg .

[AgentId ]

AgentCellAg
id : AgentId
type : TypeAg
counter : N

nscounter : Node 
→ N

nstype : Node 
→ TypeAg

type = StemAg ∨ type = DeterminedAg
dom nscounter = dom nstype
∀n : Node | nstype n �= EmptyAg • nscounter n = 0

A stem cell agent is defined as follows.

AgentStemCellAg
AgentCellAg

type = StemAg

A determined cell agent is defined as follows.

AgentDeterminedCellAg
AgentCellAg

type = DeterminedAg

The initial state of an stem cell agent is defined as follows.

InitAgentStemCellAg
AgentCellAg

counter = 0
ran nscounter = {0}

The initial state of a determined cell agent is defined as follows.

InitAgentDeterminedCellAg
AgentDeterminedCellAg

counter = 0
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We define a mature stem cell as one which is ready to divide.

MatureAgentStemCellAg
AgentStemCellAg

counter = CyclingPhaseAg

The system state consists of the niche where some nodes are filled with cells. The
first predicate simply states that the empty nodes are those nodes which do not contain
a cell. The second predicate states that the neighbours are defined by the graph to which
the cells are attached.

AgentSystemStateAg
cells : Node → AgentCellAg
emptynodes : P Node

emptynodes = Node \ (dom cells)
∀n : Node; c : AgentCellAg | (n, c) ∈ cells ∧ c.type = StemAg •

dom c.nscounter = ran({n} � graph)

2.3 Operation

Space does not permit us giving a full treatment, and of course many of the operations
would be identical to that which we have specified before, but we outline the basic
operations here.

1. Cells set/update counters.
2. Mature stem cells that are surrounded by empty neighbours and have neighbour

counters have reached NeighbourEmptyAg will make a request to the environment
to divide into two daughter stem cells.

3. The environment resolves any conflicts where several cells wish to divide into the
same node and informs those mature stem cells that can divide and those that are
not able to.

4. Mature stem cells that are able to divide do so. Mature stem cells that are sur-
rounded by stem cells become new determined cells. Mature determined cells which
are ready to leave the niche do so.

We consider each of these four stages in turn.

Updating Counters. We use the auxiliary function which increments all the counters
of a cell up to the maximum value.

incrementcounters : (Node 
→ N) → (Node 
→ N)

∀ f : Node → N; max : N • incrementcounters f =
{node : Node; n : N | (node,n) ∈ f •

(node,min{n + 1,NeighbourEmptyAg})}
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The reset for all determined cells is straightforward.

UpdateCounterDeterminedAg
ΔAgentCellAg

type = DeterminedAg
counter = counter ′ + 1

The reset for stem cells depends on whether the cell is mature. In all cases the
counters for the empty niche are updated.

UpdateCounterStemAg
ΔAgentCellAg

type = StemAg
counter < CyclingPhaseAg ⇒ counter = counter ′ + 1
counter = CyclingPhaseAg ⇒ counter ′ = CyclingPhaseAg
nscounter ′ =

(incrementcounters nscounter)⊕
({n : Node | nstype n �= EmptyAg • (n, 0)})

Request Division. Our agent-based approach to modelling forces us to consider what
happens when two stem cells attempt to divide into the same location. In our model,
we specify that when the internal counter reaches CyclingPhaseAg , it signals to the
environment the niche spaces that it is prepared to divide into.

Notice, that this approach is also agent-based in nature. Namely, the agent attempts
to do something but the environment is a dynamic and uncertain one. From the perspec-
tive of a single cell with its limited sensory abilities the world is no longer deterministic
like, it was in the cellular automata model, and not all attempts at action will be suc-
cessful.

The agent-based model not only considers the nature of acting in a dynamic envi-
ronment but also addresses issues such as the basic physical limitations of the stem cell
niche in general. Once again, it’s difficult to see how such issues can be considered, at
least explicitly, with the cellular automata approach.

A stem cell agent that is ready to divide, signals to the environment those neighbours
that have been empty for long enough, and so are able to receive the new cell. Of course
the output may be empty.

RequestDivision
AgentCellAg
possnodes ! : (AgentId × P Node)

counter = CyclingPhaseAg
possnodes ! = (id , {n : Node | nscounter n = NeighbourEmptyAg • n})

The Environment Allocates Nodes for Division. The environment receives requests
from cells to divide, and non-deterministically assigns those cells that can divide and
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those that have insufficient space around them. There are several safety properties that
we can specify here:

1. all agents get a reply (first predicate)
2. no agent can be told to divide and not divide (second predicate)
3. no node ever has more than one agent dividing into it (third predicate)
4. cells only get to divide into a node they have requested (fourth predicate)
5. there is no remaining empty node that has been requested by any of the agents

not-granted division (fifth predicate).

DetermineDivision
ΞAgentSystemStateAg
requests? : AgentId → (P Node)
divide! : AgentId 
� (Node × AgentId)
nodivide! : P AgentId

Let cellsdividing == dom divide! •
Let cellsnotdividing == nodivide! •
Let cellsrequesting == dom requests? •
Let nodesreceiving ==

{n : Node; id : AgentId | (n, id) ∈ (ran divide!) • n} •
cellsdividing ∪ cellsnotdividing = cellsrequesting ∧
cellsdividing ∩ cellsnotdividing = {} ∧
#cellsdividing = #nodesreceiving

2.4 Division and Determination

Cells that divide get told where they should divide into. We have two alternatives with
the assignment of identifiers to the daughter cells. We can either give both daughters
new identifiers, which is useful for tracking where they cells from, or the daughter cell
which remains in the node of the previous cell keeps the id of its parent. We specify the
first of these alternatives here.

AgentDivideAg
ΔAgentSystemStateAg
parent? : AgentId
to? : Node
daughter1Id?, daughter2Id? : AgentId

Let cell == (μ a : AgentCellAg | a.id = parent?) •
Let currentnode == cells∼cell •
Let daughter1 ==

(μ ag : InitAgentStemCellAg | ag .id = daughter1Id?) •
Let daughter2 ==

(μ ag : InitAgentStemCellAg | ag .id = daughter2Id?) •
cells ′ = cells ⊕ {(currentnode, daughter1)} ∪ {(to?, daughter2)}
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If the cell is not allowed to divide then id does nothing.

AgenNoDivideAg
ΞAgentSystemStateAg
id? : AgentId

Stem cells which have reached their cycle phase and which are surrounded by stem
cells become determined.

AgentDeterminationAg
ΔAgentSystemStateAg
cell ,newcell : AgentCellAg
node : Node

node = cells∼cell
cell .type = StemAg
cell .counter = CyclingPhaseAg
ran cell .nstype = {StemAg}
newcell .type = DeterminedAg
newcell .counter = 0
cells ′ = cells ⊕ {(node,newcell)}

3 Discussion

We have run hundreds of simulations of both the original CA model and of our agent
recapitulation to check that the behaviours of our agent model has the same properties
of the CA model. As we explained above, the agent model has allowed us to do is
address the issues of biological implausibility.

It is interesting to note that allowing cells to split into all available spaces, i.e. up
to four daughters, gives us the closest possible agent-based simulation match to the
original CA models, however, any biologically plausibility we may have introduced
would be negated by this. By limiting cell division to result in a maximum of at most two
daughter cells we still maintain the integrity of the original cellular automata version.

In the next section we now explore how we have used and agent-based approach to
extend one of the most sophisticated models of the stem cell niche that we have seen in
the literature that proposes an innovative way of understanding how stem cell properties
are maintained by the niche.

From a biological viewpoint the model of Agur et al. does not allow any reversibility
or plasticity in the basic properties of cells. For example, once a cell has differentiated
it cannot become a stem cell again. Moreover, once a cell has left the niche, it cannot
return.

A recent example of an approach that uses a more sophisticated model and addresses
these issues, is that of Markus Loeffer and Ingo Roeder at the University of Leipzig,
who model hematopoietic stem cells using various, but limited, parameters including
representing both the growth environment within the marrow, one particular stem cell
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niche, and the cycling status of the cell [8]. The ability of cells to both escape and
re-enter the niche and to move between high and low niche affinities, referred to as
within-tissue plasticity, is stochastically determined.

The validity of their model is demonstrated by the fact that it produces results in
global behaviour of the system that match experimental laboratory observations. The
point is that the larger patterns of system organization emerge from these few simple
rules governing variations in niche-affinity and coordinated changes in cell cycle.

There is no doubt that Roeder’s model is one of the most sophisticated ones that we
have seen in the literature; it is formal, there is a simulation, it addresses key issues of
self-organisation and much of the modelling has an agent-like quality to it. There are,
however, a number of issues regarding this model that we have addressed by extending
it using our agent framework. Most significantly, they use of a probability function to
control the movement of cells between environments, and in the agent-view this is prob-
lematic. This probability is calculated from global information relating to the numbers
of various cells in the system. Although it useful to assume access to this global infor-
mation when developing the model of stem cell behaviour, no mechanism is known for
how stem cells could have access to this information in real biological systems.

Space presents us to show our work here, but to summarise we have extended the
Roeder model to produce an agent-based simulation that increases the biological intu-
ition and plausibility of the model, and allows us to investigate emergence due to the
subtle changes in micro-environmental effects for each cell. Modelling cells as agents
responding autonomously to their local environment is much more fine grained than the
previous model using equations to model cell transitions and allows for a much greater
degree of sophistication in the possibilities of understanding how self-organisation ac-
tually takes place in the adult human body.

The main point is that an agent does not rely on getting information about the system
state, in keeping with the reactive multi-agent systems approach, and we believe that
this gives a more biologically plausible handle on how things might be working at the
micro-environmental level.

We have extended the Roeder model to incorporate a model of space, albeit only
in 2 dimensions so far, so that we can consider cell movement in more detail. We are
particularly interested in experimenting with different shapes of niche to discover how
these might affect the production or maintenance of stem cells and determined cells.

4 Concluding Remarks

It is perhaps worth noting that Roeder’s model is similar in notion to Carriani’s view of
thermodynamic emergence [3]. It assumes that simple rules, i.e. the transition probabil-
ity functions, can model complex behaviours of stem cells as they make their transition
between niche and non-niche. The assumption is that complex behaviour can be un-
derstood by building models with simple behavioural rules that hide the complexities
of the underlying interactions between many components, i.e. a top down approach to
modelling.

By contrast, our model is more akin to Carriani’s ideas of computational emergence.
In this view, a series of simple rules gives rise to complex global behaviour, a bottom
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up approach if you like, we build simple models of agents and chemical diffusion the
lead to the emergence complex system-wide behaviours.

We are currently extending our work by analysing other models and simulations
using our formal methods and developing new implementations of these models using
agents. We are also continuing to work with Theise to specify new models of his theories
using our experiences of analysing and implementing other models of stem cell systems.

We are investigating ways of comparing outputs from our simulation runs, and look-
ing at metrics for determining when one simulation can said to be similar or share the
same emergent properties as another simulations. Formal methods have been very use-
ful in that they are re-usable, directly relate to the implementation, and enable us to
readily extend and agentify existing work.

From these case studies we can start to produce a kind of generic agent-based frame-
work and simulation environment for modelling and simulating natural biological sys-
tems in 2 or 3 dimensions using an agent-based perspective. We believe modelling
complex biological systems using an agent-based framework helps to ensure that mod-
els have biological plausibility and we also believe they are the most appropriate way
of beginning to understand how complex self-organising behaviours occur in natural
systems.

In this paper we have had several aims. First, we believe that recent medical evi-
dence suggests that the way to understand how stem cells organise themselves in the
body is as a self-organising system, whose global behaviour is an emergent quality of
the massive number of interactions of cells with each other and of the environment of
which they are a part. We claim. therefore, that the multi-agent system approach to
modelling is the most suitable one for exploring means to simulate the behaviour of
stem cells and from resulting simulations, suggest how tiny changes in individual stem
cell behaviour might lead to disease at the global, and hence observable from an ex-
perimental perspective, system level. We have outlined the benefits of this approach by
comparing it to a cellular automata approach in detail. Furthermore, we have aimed to
demonstrate the pivotal role of formality not only in precision and clarity with mod-
elling and in developing correct and consistent simulations, but as the foundation for a
common conceptual framework in a multi-disciplinary project.
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Abstract. One of the current trends in computer science leads to the design of 
computing organizations based on the activity of a multitude of tiny cheap 
decentralized computing entities. Whether these chips are integrated into 
paintings or disseminated in open environments like dust, the fundamental 
problem lies in their cooperative operation so that global functions are obtained 
collectively. In this paper, we address the issue of the creation of visual 
ambiences based on the coordinated activity of computing entities. These 
entities are distributed randomly on a 2D canvas and can only change their own 
color and perceive their immediate neighbors. 

1   Introduction 

It is a fact that research on ubiquitous computing, since Mark Weiser coined the term 
in 1988, has developed very rapidly  [2],  [3]. It is especially true for the last two or 
three years with the explosion of mobile telephony, PDAs, wireless networks, etc. 
Ubiquitous computing is associated to the disappearance of computers, not because 
they’re not there anymore, but because they become invisible. But it’s not because we 
can’t see them anymore that we can’t interact with them. The question of interaction 
with ubiquitous systems has not really been raised as such. What is studied is the 
interaction with mobile devices such as PDAs but what about the interaction with the 
“societies” of computing entities that will “live” and develop in our walls, objects, 
clothes, etc.? This is an almost sociological question and we argue, with others  [14], 
that it could be studied efficiently using the computerized concepts and tools that are 
interested in the sociological aspects of computing, namely multi-agent systems. 

Our approach consists in considering this interaction as a multimodal dialogue 
between a human user and his(her) physical environment. We develop this approach 
in a project called DanCE with (MA)2CHInE1, in which we consider the environment 
as being populated with dozens of physical communicating objects. Each of these 
communicating objects is characterized by limited capabilities for the treatment of 
information, the communication with others, and the interaction with their physical 
environment. The problem can then be reformulated as a problem of building 

                                                           
1 Dynamic Ambient Cognitive Environments with Multi-Agent Multimodal and Adaptive             

Computer-Human Interaction Engine. 

decentralized cognitive systems, which we call Ambient Cognitive Environments 
(ACEs). To build such cognitive environments, one has to address the three main 

LNAI 
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processes that are typical of any situated cognitive system: perception, decision, 
action. However, each of these processes has to be handled in a decentralized way: we 
treat perception as a sensor fusion problem, decision as a distributed consensus 
reaching problem and action as a distributed coordination problem. 

In this paper, we develop only the latter problem of action and we focus more 
precisely on the production of visual ambiences. In the meantime, we explain the 
abstractions that will allow us to extend the model to other kinds of expression such 
as music, choreography, etc. This model is based on an analytical approach to 
different artistic domains. In each of these domains, the analysis must lead to a 
description of the corresponding expression (visual, musical, choreographic, etc.) in 
terms of qualitative pairs such as cold/warm, quiet/loud, slow/fast, etc. These pairs 
form together an ontology that the multimedia production system should know and 
that it should be able to manipulate so as to express chosen emotions.  

The aim is to be able to give instructions to the system using this ontology. The 
difficulty is then for the system to translate a given order into a coordinated activation 
of distributed colored cells. These cells are distributed randomly on a 2D canvas in a 
way which is similar as in the works on amorphous computing  [1],  [9],  [10]. 
Individual cells can change their color and perceive other cells in their immediate 
vicinity but they can also move. Specific algorithms have therefore to be proposed so 
that all the cells in the canvas can collectively express specific colored contrasts or 
spatial structures. Such graphical composition primitives have finally to be composed 
in a way that preserves the individual properties of each. 

The paper is organized as follows: in the next section, we elaborate some more on 
Ambient Cognitive Environments. We show in section 3 how the analysis of visual 
expression allows to propose a grid relating emotions with structural properties of 
pictures. We then show in section 4 how this can be expressed in a decentralized way 
by elementary colored cells. 

2   Ambient Cognitive Environments 

The work presented in this paper is part of a larger project in which the objective is to 
identify the right concepts and develop the corresponding technical tools to 
dynamically organize distributed sets of computing entities as cognitive systems. This 
is what we call Ambient Cognitive Environments (ACEs). The aim is that these high-
tech environments become sensible to the people that live in them. The aim is not to 
be intrusive and spy the movements of these people, but to become aware of their 
emotional dispositions and adapt accordingly. The environment adapt by producing 
visual and sonorous ambiences that are calm when people are calm, or that become 
calm when children get too excited, or that become suddenly “flashy” and buzzing 
when people are too calm, etc. But not only the ambience may be adapted: specific 
actions may be done using motorized objects; specific displays could be produced on 
the walls, on clothes, either to establish a contact or to convey some information; 
finally, electronic devices such as mobile phones, PDAs, MP3 players, etc. could be 
used to send focalized audio or visual messages to one person. 

Four important aspects, we believe, characterize these ACEs: first, people 
interacting with ACEs shouldn’t have any technical job to do to make them run, hence 
the automatic configuration of such environments depending on available sensors, 
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effectors, computing resources, etc.; secondly, people shouldn’t wear specific 
equipment to interact with ACEs, hence the focus on body capture techniques that 
rely or low-cost cameras, without any constraints on the body of the person; thirdly 
the interaction should be multimodal, using interaction modalities that people are used 
to, hence the focus on multimodal languages to analyze the performance of a dancer 
and the response of the system; finally, ACEs should be able to learn to adapt their 
responses to specific people, with specific ways of expressing emotions, and with 
specific sensibilities to visual and sonorous environments, hence the central 
importance of machine learning techniques in the project. 

We may summarize all of this as the fact that the interface should not be more 
visible than the computers themselves. If computers are disappearing, the interface 
should also become as discrete and as natural to use as possible. We could finally 
imagine that these kind of environments may adapt to people with either perceptive or 
motor disabilities, by choosing dynamically the right modalities to establish a 
communication with them. 

In order to be able to combine multiple modalities, we need to use a level of 
representation such that these different modalities can be described in a homogeneous 
way and compared with one another. We distinguish four levels of abstraction in the 
characterization of the behavior of the user: raw data are acquired directly by the 
various sensors; primitives correspond to quantitative measures, obtained by the 
processing of raw data (e.g. position, speed, etc.) ; qualities correspond to a subjective 
characterization of behavior by a set of pairs of terms (e.g. slow/fast, warm/cold, etc.); 
emotions finally correspond to more general terms used to characterize the global 
ambience of a situation (e.g. sadness, calm, liveliness, etc.). Although ill-defined, the 
latter notion of emotions correspond to the intuitive concept, based both on cognitive 
and physical reactions to some situations  [11]. By defining these levels, the objective 
is twofold: first, to maintain a multilevel representation in order to allow an 
incremental analysis of the behavior; second, to be able to compare the various 
methods of capture, and therefore the expressions of the interlocutor, by using a 
representation that is abstract enough (qualities or emotions). 

3   Analytical Study of Visual Expression 

In this paper, we focus more specifically on the automatic generation of visual 
ambiences. This ambience is not meant to reflect the emotional state of the user  [12] 
but rather to inspire chosen feelings to the spectator. Our approach is based on the 
hypothesis that these feelings rely, for some part, on the composition of contrasts and 
graphical structures. To do this, we first need to present some general considerations 
about the analytical study of visual expression. Any picture, either a photography or a 
painting, has an emotional content. Depending on the cultural and historical context, 
we perceive pictures with different codes, that make us feel various emotions such as 
happiness, sadness, calm, serenity, etc. This also depends on the receptiveness of each 
individual person but we can consider that the interpretation code is largely shared 
inside a given culture. A sunset over the sea for example (see figure 1) generally 
produces a tragic effect and inspires feelings of calm and serenity. This common 
emotional answer to pictures has been analyzed and codified at the beginning of the 
XXth century by artists such as W. Kandinsky  [6] [7] and P. Klee  [8]. Kandinsky, in 
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particular, tried to identify the role of shapes, colors, contrasts in the production of 
emotions. However, he hardly said anything about the interactions between these 
elementary components because of the complexity of this study. 

3.1   Spatial Structures and Contrasts 

A picture can be decomposed into several zones, each of which can be associated to 
distinct “tensions”. While the top of a picture symbolizes lightness, ascension, 
freedom, the bottom symbolizes heaviness and constraint. In addition, objects in the 
picture are organized along abstract structuring lines that express the dynamics. While 
horizontal and vertical lines symbolize calm and rest, diagonals express movements.  

Finally, contrasts express oppositions between graphical objects that make them 
reinforce each other. Each individual characteristics of the objects, such as color, shape, 
size, etc., may give rise to a corresponding contrast. For color only, there are seven 
identified contrasts, which are based on the properties of colors: contrast of pure hue, 
value contrast, intensity contrast, complementary contrast, temperature contrast, size 
contrast and finally simultaneous contrasts. Properties of the shapes can also be used to 
produce size contrasts (small objects vs. large objects) or shape contrasts (symmetrical 
vs. unsymmetrical objects). Finally, if pictures are animated, contrasts can be built using 
the properties of movement such as direction, speed or rhythm. 

3.2   Composition of Elementary Properties 

Only through the composition of chosen elementary spatial structures and contrasts 
can more complex emotions be expressed. Table 1 is an attempt to summarize basic 
correspondences that we may establish, in western culture, between the composition 
of pictures, expressed in terms of graphical structural and contrasts, and the emotional 
content of the picture. 

Table 1. Correspondences between the composition of pictures (in terms of spatial structure 
and contrasts) and their emotional content 
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• the picture shows an horizontal structure, separating the clouds, the sky, the sea; 
• several contrasts can be identified 

- a value contrast between the dark sea and lighter clouds and sky 
- a temperature contrast between the sun and surrounding sky, which are very 

warm (yellow orange), and other regions of the picture, with colder colors 
- a size contrast between the small sun and the large regions around (sea, clouds) 
- an intensity contrast centered on the sun. 

 

 

Fig. 1. Sunset over the sea. The picture can be analyzed in terms of contrasts and a graphical 
structure 

 
Consultation of table 1 thus tells us that the emotional qualities of this picture are 

the following: 

Fig. 2. Correspondence between structural properties, contrasts and emotional qualities for the 
picture shown in figure 1 

 

3.3   Generic Modeling of Contrasts 

Although contrasts can produce very different visual results, most of them are based 
on the same principles. This is why we propose a generic model of the way a contrast 
can be built by the association of graphical objects. 
 
1. a given contrast is built upon an opposition of graphical objects with respect to a 

specific graphical property (color, shape, size, etc.); 
2. objects in the picture are divided into distinct groups (generally two); each of them 

has its own value for the considered property: in a value contrast for example, 
some of the objects are characterized by a light value, others by a dark value; 

3. there’s a quantitative imbalance between the groups: the objects of one group are 
more numerous than the others; 

Structure/Contrasts Emotional qualities 
Static 

Intensity Calm 

Serenity Temperature 

Size 

Value 

Tragic 
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4. for some contrasts, there’s also a spatial imbalance between the groups: objects of 
the preponderant group are distributed on the whole surface while the objects of 
other groups are distributed along the main structuring lines of the picture. 

4   A Multi-agent Composition 

We have defined the theoretical background of the work from a graphical point of 
view. We can now explain how it can be implemented as a multi-agent system in 
which emotional qualities of pictures will be obtained by the coordinated activation of 
elementary autonomous colored cells. By choosing such a decentralized approach, the 
aim is to provide methods and algorithms that may be used on decentralized displays. 
Today’s displays rely on LCD or plasma technology. Tomorrow’s ones may perfectly 
well rely on tiny processors integrated in paintings that may change the color of the 
painting in their vicinity, thus composing together displays as big as entire walls  [1]. 
In addition, the proposed approach can be seen more generally as a way of spatially 
structuring entire networks of processors, which may be very valuable in contexts 
such as smart dust or sensor networks. 

Our objective is definitely not to reproduce specific pictures or patterns, but to 
provide the cells with the capability to manipulate contrasts and spatial structuring as 
a mean to produce chosen emotional qualities. We based our work on the following 
assumptions: 

- algorithms should function with irregular 2D distribution of computing cells, 
either static or dynamical (somewhat similar to the distribution that is used in 
the works on amorphous computing); 

- convergence of the algorithms should be fast so that the generation of pictures 
is also fast; 

- since the very notion of contrast is very general and can be instantiated in 
different ways, the generation of contrasts by the system should be as generic 
as possible (see paragraph 3.3 above) 

- finally, although the perception of emotional qualities is quite general inside a 
given culture, individual variations evidently exist and the algorithms must 
allow the integration of machine learning techniques. 

4.1   Composition of Elementary Behaviors 

The challenge is now to implement the model presented in paragraph 3.3. with a 
multi-agent approach. To do this, we chose to rely on a modular approach, 
decomposing the overall problem into separate concerns. Step 2 in the model 
(allocation into groups) can be realized quite easily since it doesn’t involve any 
coordination between the agents. The agents will thus realize it independently of each 
other. Step 3 (quantitative imbalance), on the contrary will need the coordination of 
all the agents in the picture, with no possible centralization. This will require the 
following sub-steps: 

3.1. collective choice of the dominant group; 
3.2. collective count of each group’s population; 
3.3. migrations of agents between the groups so as to obtain a given ratio; 



 ACEs and the Distributed Synthesis of Visual Ambiences 75 

 

Similarly, step 4 (spatial imbalance) will require the following sub-steps: 

4.1. collective choice of the dominant group; 
4.2. homogeneous distribution of agents of the dominant group across the picture 

and distribution of agents of the other groups along the structuring lines of 
the picture. 

Steps 3.1 and 4.1 are identical, which finally produces the composition schema shown 
in figure 3. 

Fig. 3. Composition schema of sub-steps for the construction of contrasts: arrows correspond to 
functional dependences between the modules 

4.2   Step 2: Concentration into Value Intervals 

For a given contrast, the opposition between the graphical objects is based on 
different values for a specific graphical property, for example hue. For a temperature 
contrast, some of the agents will adopt a warm hue (yellow, orange, red) while others 
will adopt a colder hue (blue, green). This doesn’t mean that all the agents of a group 
will adopt a given value and that all the agents of the other group will have another 
fixed value. This rather mean that the agents of one group will have their hue 
distributed in a given interval of values (340-20 in the chromatic circle) and that the 
agents of the other group will choose their hue in another interval (210-260 in the 
chromatic circle). We made the choice to represent all possible properties as intervals 
of numerical values, inside which we can choose 2 opposing intervals and have the 
agents distribute themselves into these intervals. The intervals of values can be in 
direct correlation with the modeled properties (as it is the case with hue) but they can 
also be abstract descriptions of some properties (as it is the case with a symmetry 
parameter, which is not directly quantifiable but which can be measured and 
associated to an abstract scale ranging from 0 to 100). Some of the intervals can also 
be cyclic as is shown in figure 4. 

Fig. 4. Value intervals representation, compatible with circular or linear scales 
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Each of the agents being initially in a random state with respect to the property 
chosen for the contrast, the agents must evolve to come closer to the specified 
intervals. They do so at each simulation step with the algorithm shown below. 

# Activation 
∀ interval i, compute di = distance to i 
choose interval j so that dj = Mini di 
change property x towards interval j 

Figure 5 shows the result of the concentration algorithm for the temperature contrast. 
Each colored square corresponds to an agent. At the beginning of the simulation, each 
agent is in an undetermined state. Agents rapidly change their hue towards the two 
intervals (340-20 and 210-260). 

 

  

Fig. 5. Concentration into separate intervals of hue for temperature contrast 

4.3   Step 3.1: Choice of the Dominant Group 

This step is meant to choose the group that will become dominant. This collective 
choice has to be random and equiprobable. The problem of the choice, or voting, has 
been studied by D. Schreiber  [13] and G. Weiss  [15]. In the model of Schreiber, 
agents spatially organize according to affinities and move to form coalitions. Since 
the position of the agents is taken into account in some of the contrasts that we want 
to realize, this was not satisfactory. In the protocols proposed by Weiss, agents order 
possible solutions depending on their individual preferences. However, this implies a 
lot of communications since individual votes have to be collected, compared, and 
diffused back to all the agents. 

In our problem, the final choice isn’t important as such. We don’t care about 
satisfying the initial choices of agents, we only care about obtaining a single final 
choice. The solution that we propose consists in aggregating incrementally the votes 
of closest neighbors. After making a random initial choice, the behavior for each 
agent at each simulation step is the following: 

# Initialization 
choice = random (1..groups_nb) 
weight = 1 
 
# Activation 
for c = 1 to groups_nb do 
  neighbors_weight[c] = sum neighbors with (choice = c) 
done 
choice = i so that neighbors_weight[i] == maxi(neighbors_weight[i]) 
weight = neighbors_weight[choice] 
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Evaluation 
This evaluation is not a formal proof of convergence of the algorithm but gives 
indications about its quality. The two criteria were the quality of the random 
distribution and the speed of convergence. To this end, agents were ask to make their 
choice between four different colors (red, blue, green, yellow). The simulation has 
been done with 100 moving agents in a 550x550 pixels space with a 100 pixels 
perception distance. 100 runs of the simulation have been done. 

Table 2 shows the distribution of the 4 possible choices. We can see that the 
number of occurrences for each choice is very close to the mean value.  

Table 2. Distribution of choices for 100 runs 
 

 

Figure 6 below shows, for each convergence time expressed in number of 
simulation cycles, the number of runs that have converged in that time. One can see 
that for all the runs, the convergence time is comprised between 2 and 17 cycles, with 
a mean of 9,1 cycles. 

Fig. 6. Number of runs vs. convergence time 

4.4   Step 3.2: Count of Groups Population 

Quantitative imbalance requires that we assess the relative size of the different 
groups. To this end, we chose to count the number of agents in each group. 

Our solution is inspired by the BFS algorithm that computes the diameter of a 
network (the distance between the most distant nodes) by building a covering tree. 
The difference is that we don’t have any predetermined topology (the connectivity 
between the agents isn’t static because they can move across the environment). The 
solution is also adaptive because the count is updated when agents change from one 
group to another. The algorithm is shown next page. 

 
 

Choice Red Blue Green Yellow Total Mean Mean deviation

Results 22 30 26 22 100 25 3
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# Initialization 
each agent gets a token 
each agent propagates a “presence” stimulus 
 

# Activation 
1. Aggregation of agents into associations; the “leader” gets all the 

tokens of the other agents in the association 
2. Fusion of associations with one another 
3. Diffusion of the result (total number of tokens) to all the agents 
 
The algorithm proceeds in three steps: 

1. The agents form associations, each of which has got a “leader”. The latter 
centralizes all the tokens of the association. This step is inspired by the Clubs 
algorithm described in  [9]. 

2. Once the associations are formed, they try to merge: 
 agents at the border between two associations propagate a gradient 

towards the leader. The gradient contains the information of the distance 
to the border, incremented at each agent jump. The gradient diffusion 
method is described in  [10]. 

 when the leader perceives the gradient, it transfers its tokens to its 
neighbors that is closest to the border (the one that diffused the gradient 
with the smallest distance). This agent becomes the new leader of the 
association. The tokens and the leadership thus move from agent to agent 
towards one of the border of the association. 

 when two leaders are close enough, they can merge. One of them collects 
the tokens of both and the corresponding associations become merged. 

3. When all the associations have merged, only one leader remains that has 
collected all the tokens of all the agents of the simulation. He can then diffuse 
the result to the other agents using gradient diffusion. 

Figure 7 shows successive steps in the merging of associations. The first picture 
corresponds to the state of the system after the constitution of associations. Each 
subsequent picture corresponds to the fusion of two associations. 

 

       

Fig. 7. Steps in the merging of associations: black agents corresponds to borders; leaders are 
lighter 

 
Since the leader of the last association has collected the tokens of all the agents, 

he’s got as many tokens as the number of agents in the simulation. The algorithm thus 
counts the agents. When constructing contrasts, we can thus evaluate the number of 
agents inside each of the different groups. When agents are distributed inside several 
groups (two for a temperature contrast), the algorithm has to be executed in each 
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group. Furthermore, we will explain in the next paragraph that agents will be able to 
change group. When this arrives, the count must be dynamically updated. To this end, 
the migrating agent gets a negative token (-1) for the group that it leaves, and a 
positive token (+1) for the group it joins. As the algorithm is continuously executed, it 
converges very rapidly towards a new result. 

 
Evaluation 
We evaluated the algorithm in the same conditions as the choice algorithm in order to 
assess the time necessary to converge towards a global results. Each run is stopped 
when all the agents have received the correct count. 
 

Table 3. Time to converge towards a global count, diffused to all the agents of the simulation 

Although adaptive, the algorithm still presents some weaknesses: 

- if a leader fails, the tokens that it was responsible for are lost. This may be a 
problem for amorphous computing in which agents correspond to chips and are 
thus exposed to potential failures; 

- convergence is slower when agents move (associations are less stable) or when 
they frequently change groups. 

4.5   Step 3.3: Quantitative Imbalance 

Once the agents have chosen the group that will be dominant and they have evaluated 
the respective size of all the groups, we can adjust the ratio between the groups. This 
is done by having agents migrate from one group to the other. It is necessary to 
specify beforehand the desired ratio between the different groups (e.g. 10%-90%). 
The algorithm, for each agent at each simulation cycle is the following: 

 
# Activation 
if total[my_group]/sum(total[]) > percentage[my_group] 
  token[my_group] -= 1; 
  my_group = another_group 
  token[my_group] += 1; 
end_if 

 
Figure 8 shows the quantitative imbalance for the temperature contrast. The desired 

ratio is 20% for warm-colored agents and 80% for cold-colored agents. 

 

  

Fig. 8. Quantitative imbalance for temperature contrast. Desired ratio of 20%-80% 

Duration Arithmetic mean Min Max Standard deviation
Results 18,8 14 27 3,08
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4.6   Step 4.2: Qualitative Imbalance 

The role of this final step is to organize the graphical elements spatially. Our approach 
consists in positioning attracting agents that propagate gradients in their vicinity. 
These gradients are meant to structure the distribution of agents from the non-
dominant groups. If we have only one attracting agent, the result is a spot of agents 
that contrast with a homogeneous background (see figure 9). 

 

  

Fig. 9. Single attractive agent 
 
To obtain more complex structures, the approach is inspired by composition rules 

used by painters. Each Border of the picture is divided into three thirds of four 
quarters. The points so defined can be joined together, which creates structuring lines. 
These structuring lines can either be static (horizontals and verticals) or dynamic 
(diagonals). Such lines will be generated by placing “anchor” agents along the borders 
at the dividing points and to make them propagate linear gradients. The gradients are 
characterized by the angle ϕ that they make with the horizontal. Whether we wish to 
obtain static or dynamic structures, the probability to generate anchor agents with ϕ 
equals to 0° (horizontal line) or 90° (vertical lines) will be more or less high (see 
figure 10).  

 

      

Fig. 10. Static (left) and dynamic (right) structuring of the picture using either horizontals and 
verticals or diagonals 

 
Anchor agents can then be distributed along these structuring lines. When they 

activate, they propagate gradients that attract agents from the non-dominant groups 
and make them group in localized spots around them. In turn, the spots restitute for 
the viewer the feeling of “virtual” lines that organize the composition. Figure 11 
shows a first attempt to organize the picture according to such principles. In this 
example, the agents did actually move but the same can be obtained if agents are in a 
fixed position: a virtual movement can be obtained by exchanging the properties of 
two neighboring agents. 
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Fig. 11. Dynamical structuring of the picture along composition lines 

4.7   Exceptions to the Generic Model 

Two specific color contrasts (simultaneous and intensity contrasts) did not fit well 
into our generic model. The simultaneous contrast corresponds to the association of a 
given color to its gray component (i.e. the color we would obtain by changing the 
picture into grayscale). When viewing such a contrast, we tend to see the 
complementary color at the boundary between the color and the gray. The intensity 
contrast corresponds to the association of saturated and unsaturated colors (the latter 
must prevail) in the picture. 

For these two contrasts, the solution we propose relies on the use of a gradient that 
is propagated around the center of the contrast. This gradient is provided with a 
distance information that is propagated and incremented from one agent to the next. 
The distance is equal to 0 at the center and is incremented as we move away from it. 
The distance is then put into correspondence with the characteristics that is involved 
in the contrast: for the simultaneous contrast, the color of the agents is unsaturated 
until a given distance from the center; for the intensity contrast, the saturation of the 
color of the agents decreases as a function of the distance from the center (see 
figure 12). 

 

      

Fig. 12. Intensity contrast (left) and simultaneous contrast (right) 

4.8   Composition of Several Contrasts 

Once isolated contrasts can be obtained, we have to address the issue of composing 
distinct contrasts with one another. When contrasts are orthogonal (they rely on 
distinct properties), they can be combined either by aligning the two contrasts or by 
generating them in a disjoint way.  
    In the case of aligned contrasts, the first contrast (we call it the “master” contrast) is 
built by using the technique that we described in this paper. The second one (we call it 
the “slave” contrast) is then built by executing only step 2 (see paragraph 4.2) on a 
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different characteristics of the agents. For example, after building a temperature 
contrast, we can simply superimpose a value contrast by making warm colors brighter 
and cold colors darker (see figure 13). In the case of disjoint contrasts, the whole 
algorithm has to be run twice, once for each contrast (see figure 13). 
 

      

Fig. 13. Aligned contrasts (left) and disjoint contrasts (right) 

4.9   Parameterization of the Model 

In order to be interesting, the result has to be variable and changing, and it has to be 
adapted to the user. This can be done using several strategies: 

- in step 2, the intervals that we choose to define the contrast will greatly influence the 
result that we obtain. Indeed, the contrast will be stronger when the distance between 
the intervals is bigger (see for example figure 14); 
- a stronger contrast will also be obtained by using a bigger ratio between the different 
groups; 
- finally, a user may change the correspondence shown in table 1 between emotions 
and pictural means needed to express them. 

 

           
 
 
 

Fig. 14. Different value contrasts obtained by varying the intervals of the 2 groups 

5   Conclusion 

We presented in this paper a global and coherent approach to the creation of visual 
ambiences, based on the use of contrasts and spatial structuring of pictures. Inspired 
on the one hand by the analytical works of painters like Kandinsky and Klee, and on 
the other hand by researches on amorphous computing, our work demonstrates the 
feasibility of a decentralized approach. In particular, we presented a generic and 
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modular model for the creation of contrasts. This model relies on decentralized 
algorithms that implement collective choices and counts, which allows to distribute 
agents in separate groups and to control the relative abundance of the groups. We 
showed that these algorithms converged fast towards global solutions, which may 
lead to new applications for amorphous computing. In particular, we showed how a 
spatial structuring of processor networks may be obtained by using contrasts and 
composition structuring rules. In addition, this model can easily be adapted to 
different users by changing some parameters, either by hand or by using machine 
learning techniques. 

Future research directions will explore this parameterization problem in a more 
detailed and systematic way. We will use genetic algorithms on the one hand to 
produce various system behaviors; we will define validation protocols on the other 
hand in order to be able to assess the efficiency of the system, not in terms of speed of 
convergence but in terms of emotional qualities expressed by the system. 
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Abstract. The ‘engineering’ and ‘adaptive’ approaches to system production 
are distinguished. It is argued that producing reliable self-organised software 
systems (SOSS) will necessarily involve considerable use of adaptive 
approaches.  A class of apparently simple multi-agent systems is defined, which 
however has all the power of a Turing machine, and hence is beyond formal 
specification and design methods (in general).  It is then shown that such 
systems can be evolved to perform simple tasks.  This highlights how we may 
be faced with systems whose workings we have not wholly designed and hence 
that we will have to treat them more as natural science treat the systems it 
encounters, namely using the classic experimental method.  An example is 
briefly discussed. A system for annotating such systems with hypotheses, and 
conditions of application is proposed that would be a natural extension of 
current methods of open source code development. 

1   Introduction 

Zambonelli and Van Parunak (in parallel with others) have pointed out that, 
increasingly, a different kind of computer system will be required if we are to meet 
many of society’s needs [ 21] and these are starting to be developed.  In this paper I go 
further1 and argue that in parallel with different kinds of system we will need a 
different kind of approach to producing such systems – an approach which places 
more emphasis on natural scientific approaches than has been usual in multi-agent 
systems.  In other words, that design and engineering (in a sense I will make clear) 
must make more room for adaptation and experiment.  As should become evident, I 
am not advocating the abandonment of design – far from it – but am suggesting a 
better balance. 

I start by distinguishing what I call the ‘engineering’ and ‘adaptation’ approaches 
and their how they are applied (both separately and together).  I then discuss some of 
the limitations of the engineering method by considering an apparently simple class of 
MAS that nonetheless is, in general, intractable to methodical and effective design 
methods (the limitations of the adaptation method being fairly obvious).  In contrast I 

                                                           
1 To be clear, it is not that Zambonelli and van Dyke in [21] don’t see a need for a change in 

method as well as the change in system type, but that they do not see such a need to depart 
from the engineering approach to the extent I am suggesting. 
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show that these systems can be adapted to serve defined (albeit simple), purposes 
using an evolutionary algorithm.  These two sections lead on to the conclusion that we 
will necessarily have to develop and deploy systems for which there is no complete 
understanding inferrable from its design.  Such systems (and many others) will have 
to be understood using the same techniques that we use with other ‘ready-made’ 
systems in the natural world: by hypothesis and experiment.  I then sketch how such a 
natural science of self-organised systems might be used to achieve fallible but high 
levels of reliability and (relatively) safe system reuse.  I end by giving a short 
example to illustrate this before I conclude. 

2   Two Approaches for Obtaining Useful Systems 

There are two basic ways of getting a useful system: by designing and then 
implementing it, i.e. to construct it (what I will call the “engineering approach”); or 
by taking some existing system and then manipulating it until it is good enough (what 
I will call the “adaptive approach”).  I briefly explain these approaches which are then 
illustrated in figure 1, before considering their combination. 

2.1   The Engineering Approach 

The engineering approach seeks to develop a series of methods so that the resulting 
construction is as useful as possible when the construction is finished.  For example 
the processes by which a steel girder is made is such that, probably, it will have 
certain physical characteristics when made (torsion strength etc.).  This approach 
focuses on what can be done before the system has been constructed, thus it 
concentrates upon developing methodologies and practices to do this.  These methods 
may be based to some extent upon an underlying theory of systems and system 
construction, but on the whole they are systemisations of what has been found to work 
in the past.  Thus essentially one: relates what one wants to methods that have been 
found in the past to produce this; makes a plan;  and then implements it.   

2.2   The Adaptive Approach 

The adaptive approach takes an existing system and seeks to interact with the system, 
going through a cycle of testing its current properties and changing it, until it is 
acceptable.  For example, one may train a dog so that it acquires the behaviours and 
habits that you need to guard your house (barking at strangers etc.). As with the 
engineering approach, this may be based upon some theory of the system or it may 
just be a matter of trial and error.  This approach focuses on what can be done with a 
system after it is constructed and is achieved by comparing current properties against 
the desired properties and deciding what changes might move it from having the 
former to achieving the later. 

2.3   Combining the Two Approaches 

Of course, the two approaches are usually used together, and this is shown in figure 1 
below.  Thus however carefully a steel girder is constructed using established 
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methods, it is tested for flaws before being used.  Similarly one often has to make an 
initial system in order to be able to start adapting it and one often employs the 
engineering approach when one wants to structurally adapt parts of an existing 
system.  Furthermore these approaches are often combined at different levels: 
engineering a bridge uses basic design forms which have been developed by a process 
of adaptation; and adapting the design of a car uses pre-engineered parts. 

 Specification 
and/or Goals 
for System 

Construction 
Plan 

the construction 
process 

test & 
compare 

Adaption 
Plan 

change system 

Engineering  Adaption  

cycle 1 cycle 2  

Point of system 
creation  

Fig. 1. An illustration of the engineering and adaptation phases before and after system creation 

In the production of software systems, one typically first applies the engineering 
approach and then follow this with the adaptation approach – “10% implementation 
and 90% debugging”, as the adage goes.  However, this is not always the case for 
sometimes these occur in different combinations.  For example, one might be faced 
with a legacy system, in which case one might be limited to the adaptation approach 
plus engineering additional wrappers, interfaces etc.  If the adaptation process fails to 
get the system up-to-scratch one might be forced to re-engineer substantial sections of 
the system.  Also these approaches might be used at different levels: thus one might 
engineer a mechanism to adapt some software; or train a human to engineer a 
compiler; or construct code in a high-level language to adapt lower-level code etc. 

2.4   Using the Approaches Separately 

Despite the fact that these two approaches are most effectively used together, there 
are large sections of computer science dedicated to eliminating the need for one or 
other of them.  Thus genetic programming and other techniques in Machine Learning 
minimises the engineering phases at the object level, starting with randomised 
systems and adapting them from there.  Similarly the formal methods community 
seems to wish to eliminate the adaptation phase and reduce system production to 
purely the engineering phase – attempt to make the production of software more akin 
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to maths or logic.  This unfortunate trend has been exacerbated by the split between 
the AI and ML communities with their different conferences, journals, approaches, 
traditions etc.   

3   The Insufficiency of Engineering for SOSS 

Elsewhere [8], Joanna Bryson and I criticise an over-reliance on formal design 
methods, where the engineering approach is focused on to the exclusion of adaptation.  
There I show a number of formal results, which are basically simple corollaries of 
Gödel [10] and Turing [20].  These can be summarised as follows: for a huge range of 
specification languages (e.g. those that essentially include arithmetic): 

1. There is no general systematic or effective method that can generate or find a 
program to meet a given specification. 

2. There is no general systematic or effective method that, given a formal 
specification and a program, can check whether the program meets that 
specification. 

Where “general systematic of effective method” means one that could be 
implemented with a Turing Machine. These results hold for the overwhelming 
majority of classes of systems, including all those which include integer arithmetic 
(i.e. the vast majority of MAS).  This illustrates the ‘gap’ between formal 
specifications and programs – a gap that will not be bridged by automation.   

To illustrate how simple such systems can be, I defined a particular class of 
particularly simple MAS, called GASP systems (Giving Agent System with Plans).  
These are defined as follows.  There are n agents, labelled: 1, 2, 3, etc., each of which 
has an integer store which can change and a finite number of plans (which do not 
change).  Each time interval the store of each agent is incremented by one.  Each plan 
is composed of: a (possibly empty) sequence of ‘give instructions’ and finishes with a 
single ‘test instruction’.  Each ‘give instruction’, Ga, has the effect of giving 1 unit to 
agent a (if the store is non-zero).  The ‘test instruction’ is of the form JZa,p,q, which 
has the effect of jumping (i.e. designating the plan that will be executed next time 
period) to plan p if the store of agent a is zero and plan q otherwise.  Thus ‘all’ that 
happens in this class of GASP systems is the giving of tokens with value 1 and the 
testing of other agents’ stores to see if they are zero to determine the next plan.  This 
is illustrated in figure 2. 

However GASP systems have the same power as Turing machines, and hence can 
perform any formal computation at all (a proof outline of this can be found in [8]).  
Since GASP systems are this powerful, many questions about them are not amenable 
to any systematic decision procedure.  In particular, the above two results hold.  Thus 
formal design methods can not provide a complete solution for system construction, 
and may only be effective for relatively simple systems (which accords with 
experience).  
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Fig. 2. An illustration of the working of GASP MAS: Each agent has a single store and a fixed 
number of very simple plans composed of a list of “give one” instructions and a final one of “if 
agent x’s store is zero the go to plan a next, else plan b” 

Part of the problem seems to be the illusion that computational systems are 
predictable, simply because at the micro-level, each step of a computation is 
predictable.  However, as the example of GASP systems shows, this is not the case.  
For even though working out what may happen next at any given stage is simple, it is 
impossible to compute many general aspects of their behaviour, from whether two 
machines will have the same effect in terms of their stores to whether a given machine 
will ever stop [5].  Thus we must give up the over-ambitious aim of complete reliance 
on the engineering approach when we consider MAS of even minimal complexity, 
and certainly for self-organised systems. 

4   Producing Self- rganised Software Systems (SOSS) 

Since we can not totally rely on engineering self-organised MAS we need to consider 
also using adaptation as a principle method of useful system production, and not just 
as an after-thought to “fine tune” and “debug” systems we have already engineered.  
To illustrate this possibility I have evolved GASP systems to perform some simple 
tasks.  These use a simple and untuned evolutionary algorithm with small populations 
of simple GASP systems over relatively short time runs, but nonetheless develop the 

o
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desired properties.  Of course, people have been evolving computational systems for 
about 40 years.  The purpose of this section is to show: (1) that this can be done in 
very simple but effective ways with systems that are Turing-complete2; and (2) that 
this can be done with a MAS. 

The evolutionary algorithm was extremely simple.  A population of GASP systems 
were evolved. Each generation 1/3rd of the GASPs with the best fitness were 
preserved unchanged, the 1/3rd with worst fitness were culled, and the best 2/3rds 
mutated (with a 10% chance of any number in any plan being replaced by a new 
random number of the appropriate range) and entered into the population.  This is 
called “Evolutionary Programming” [9] it can be seen as sort-of stochastic hill-
climbing algorithm on a population.  The algorithm is illustrated in figure 3. 

 

 

Last 
Generation 

Next 
Generation 

election 

mutation 

cull 

 

Fig. 3. The simple evolutionary algorithm applied to evolve GASPs: each generation the 
GASPs are ranked; the top 1/3 elected; the top 2/3 mutated; and the bottom 1/3 culled 

This does not produce “open-ended” evolution, as can occur in Genetic 
Programming [13, 14], since the length of plans, the number of plans and agents is 
fixed.  This could be fixed by including an operator to possibly increase these – this 
would probably result in the discovery of more sophisticated solutions [17]. 

4.1   Task 1: Long Periodic Pattern Development 

To show that GASP systems producing outputs of increasing complexity can be 
evolved, I defined the fitness function as the period that the GASP system settled 
down into (if it did, the maximum otherwise) in terms of changes in the agents’ stores.  
Thus each generation I ran each of 24 GASP systems for 500 time periods and at the 
end determined the period of repetition of the system.  That is how far back one has to 
go to reach the same pattern as the last one.  If there was no evidence of any such 
pattern (i.e. if the GASP does settle down to any repetitive behaviour so the time of 
the onset of this behaviour + the period of the repetition is > 500) it was accorded the 
maximum fitness and the evolution was halted. 
                                                           
2 An interesting approach to evolving Turing Complete machines is [18, 19]. 
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Fig. 4. The evolution of a GASP with a resulting repetitive period of over 500 time periods in 
366 generations, with a population of 24 GASPs, each with 10 agents, each with 5 plans, each 
of which have ‘give lists’ of up to 3 instructions long (plus a “test for next” instruction) 

The ease with which a GASP may be evolved to exhibit long periodic behaviour is 
strongly related to the number of agents and plans.  A similar population of 24 GASPs 
of 10 agents, each with 10 plans achieved a periodic behaviour of greater than 1000 
iterations in only 24 generations.  In similar experiments I was able to evolve GASPs 
with periodic behaviour with high prime factors (there is an example in the appendix). 

All that this shows is that it is feasible to evolve GASPs of increasing complexity.  
The next task is more difficult and more suited to the distributed nature of GASPs. 

4.2   Task 2: Anti-avalanche Defence 

The next task chosen is better suited to the nature of GASP systems, that is the 
distribution of their stores.  The task here is to distribute its stores among its agents so 
that half of them have stores that are greater than those accumulated by a set of 
resevoirs to which shifting avalanches contributed to.  One can think of the agents 
piling up the defences to keep out increasing piles of snow resulting from the 
avalanches.  These avalanches are generated by a self-organised critical system and is 
known to produce avalanches whose distribution follows a power-law, and which is 
very difficult to predict [1].  The task of the GASP is to redistribute the units that are 
fed evenly (one to each agent) to the correct places to counteract the accumulating 
results of the avalanches.  This is a continual race – the GASP is evaluated over its 
success at maintaining this over 25 cycles, but each time there may be a different 
pattern of inputs to the avalanche and a different pattern of avalanches.  The overall 
set-up is illustrated in figure 4. 
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Fig. 5. An illustration of the target problem – the job of the agents in the GASP is to have more 
in their store that the corresponding accumulators receiving the results of the avalanches 

The avalanche generator is a version of the basic ‘sand-pile model’ investigated by 
Per Bak and others [1].  It comprises of a set of piles, such that when a pile gets above 
a critical height it topples over onto adjoining piles, possibly causing them to topple 
etc.  Units are constantly added, in this case to a pile along the ‘top’ edge.  In this 
version when piles topple the units ‘fall’ randomly onto the three piles in the next row 
down in the adjoining columns (as illustrated in figure 4).  The result is that the 
avalanche generator outputs, on average, the same number of units as was input but in 
irregular avalanches of various sizes.  This makes it a difficult task to learn because 
the best GASPs in the long term will be those that ignore the particularities that give 
selective advantage in a single generation, but rather learns a more general strategy. 

To show the advantage of the adaptive approach (and also to make the problem 
even more difficult) I set up the evolution so that the problem it is trying to solve 
changes during the evolution.  The two versions of the problem are the ‘variable 
input’ and the ‘fixed input’ problem.  In the variable input problem the input to the 
avalanche generator remains at a certain column position for a random number of 
iterations (in the range [1,10]) and then relocates to another randomly chosen 
position.  This means that the avalanches will result with more being accumulated in 
the columns adjoining to the input position wherever it is, so in the variable problem 
this will change every now and then.  In the fixed input problem the input is always at 
the first column, so there will be more long-term bias to the same output 
accumulators. Thus the variable input problem is more difficult to solve.  

The GASPs were evolved against the variable input problem for the first 100 
generations, then against the fixed input problem for 100 generations and back again 
to the variable input problem for the last 100 generations.  In each generation the 
GASP is evaluated against 30 iterations of the GASP and avalanche generator. Each 
generation the avalanche generator is differently initialised with piles of random 
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height below the critical height so the exact avalanche patters will be different every 
time – thus this is far from a static problem!  Figure 6 show the success of this 
evolution over 31 runs. 
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Fig. 6. Statistics showing the extent that the evolved GASPs covered the incoming avalanches 
(max=150).  These are over 31 runs of the evolutionary algorithm, each with a population of 12 
GASPs where each GASP is evaluated over 30 iterations.  Bottom line shows the average over 
the 31 runs of the average coverages, next line the average of the maximum coverages and the 
top line the maximum of maximum coverages 

As you can see, the GASPs evolve over the first 100 generations until they have 
learned to cover the avalanches to a certain extent.  Then when the problem 
unexpectantly changes at generation 100 and becomes easier they quickly adapt to 
this.  Finally when the problem is switched back to the variable input problem at 
generation 200 they have to relearn to cope with this (although this is much quicker 
than for the first time).  This illustrates how an adaptive system (involving continual 
evolution) may be able cope with the unexpected better than an ‘one-off’ solution 
(however constructed).  Simply taking the current best GASP is a crude way of using 
the learning achieved by the whole system, there are better ways (e.g. [17]). 

One can imagine this style of system being applied to combat fraud where the type 
of fraud is being continually innovated.  Beating a system that continually evolves is 
much more difficult than beating a static target.  If the fraudsters (or virus writers!) 
invent systems to continually evolve their agents this might be the only effective 
defence.  This is being investigated in the sub-field of artificial immune systems [3]. 

5   Putting the Production of SOSS onto a Sound Basis 

If I am right that many SOSS will be evolved to a considerable extent rather than just 
designed, and that formal methods will not be able to ensure that such systems meet 
their specification, then we are left with a problem.   
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This problem is: how are we to ensure that the systems we produce will perform 
satisfactorily when they are deployed in their operating context?   

The answer I suggest is this: by systematically applying the classic experimental 
method used in the natural sciences. 

In other words, that we should make explicit testable hypotheses about the 
important characteristics of the systems we produce (by whichever means) and test 
these experimentally to determine: (1) their reliability and (2) their scope (i.e. the 
conditions under which they hold.  These hypotheses should accompany the systems’ 
publication, and be used by those who are considering using that system. 

In addition to the hypotheses there should be sets of conditions under which it has 
been tested.  Thus if a system has been run repeatedly under certain conditions (e.g. 
certain settings and parameter ranges) and it was found that in these circumstances the 
hypotheses held, them these circumstances should be appended to the hypotheses.  As 
the system is tested in more circumstances this set should grow.  When someone who 
wants to use the system for the properties listed in the hypotheses they should check 
that the circumstances it will be deployed under are covered by one of those that are 
listed as having been tested.  If they are not, the person has the choice of either testing 
it themselves (and adding to the list if successful) or choosing another system.  In this 
way there will be a slow co-evolution of the code, the hypotheses and the list of 
conditions as a result of the interaction of those using the system.   

One can imagine an extension to the open-source method of code development so 
as to include some sort of open-access database for such systems, hypotheses and 
conditions of application.  Programmers (or system growers!) would place their 
systems in the repository along with the normal documentation and some hypotheses 
and tested conditions of application. Others would test it under new conditions as they 
needed to and add this information to the database.  Useful systems that were found to 
be reliable under sufficiently wide conditions would get to be used and tested a lot – 
systems whose scope was found to be narrow would be passed over.  Eventually new 
variations of these systems would be created and the process continue.    

The information might be as follows for each system (or major variation):   

• S, a description and/or method of production is described in sufficient detail to 
enable it to be made (at least with high probability).  Each such S might have 
attached a sequence of: 

o Hi, the hypotheses about S that encode the useful properties.  Each Hi 
may have a list of {Ci,j, S i,j}, constituted thus: 

 Ci,j, the conditions under which each of Hi has been found to 
hold; 

 S i,j is additional information accompanying each of the Ci,j, 
for example: frequency of significance statistics concerning 
the occurrence of Hi under Ci,j. 

For SOSS that turn out to be useful, the Hi, and {Ci,j, S i,j} need to be added and the 
continually refined in the light of experience.  This makes the particular system, S, 
much more useful to a potential user.  Thus a ‘meta-evolutionary’ process will take 
place with the useful systems becoming selected and tested, and the unreliable and 
brittle systems being passed over.   
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It should be now clear how this is simply an application of the ‘classic’ scientific 
experimental method.  In particular how it is directly analogous to the scientific 
process as conceptualised by Popper [16]. The world of software systems is one about 
which hypotheses are made, tested and developed.  The crucial test of a system is not 
its relation (if any) to a designer’s intentions for it but its proven performance in terms 
of the hypotheses about it. This marks a shift of emphasis away from verification to 
validation.   

Now, of course, the method of construction and/or the process of adaptation are 
good sources for these hypotheses about system behaviour, but they are neither 
necessary (the only sources) nor sufficient (they can’t be relied upon to be correct).  
Other hypotheses might come about solely from observing their behaviour (and 
maybe internal workings).  Some others might be special cases of more general 
hypotheses concerning identified classes of system.  A broad and important source for 
such hypotheses originate from other fields such as biology (e.g. Evolutionary 
Computation) or sociology (e.g. reputation-based mechanisms [4]). 
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Fig. 7. An illustration of the relation of theory to the engineering and adaptation approaches 

Thus there is a loose relation between: the plan of construction; the theory about 
the system; and any adaptation plan.  For example: the system theory may be 
suggested by the construction plan; the adaptation plan may be informed by the 
system theory; the success of an adaptation plan may suggest a system theory; or a 
construction plan may be informed by the system theory.  This set of relations is 
shown in figure 7. 
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Of course, as in science, once a theory has become established (by being 
extensively and independently tested), it can then be used to deduce things about the 
systems concerned.  Formal deduction has a role with respect to whole complex and 
self-organised systems, but one that comes into its own only after a system theory has 
been experimentally established. 

6   Example Cases 

6.1   Hypothesising About Systems in Evolutionary Computation 

There are areas of computing where something like an experimental method is widely 
applied, e.g. the field of Evolutionary Computation (EC).  For example [15] proposes 
several hypotheses about the causes of bloat in GP populations and then tests them 
experimentally.   This is indicative of the field.  Whilst there are a few formal results 
and models (mostly of fairly simple cases and systems), the majority of the work 
could be described as experimental.  Furthermore, in the sense that types of system 
are produced whose properties are broadly know and which are successfully applied 
in other systems and combined with other systems, it is successful. 

However, more generally the hypothesising in evolutionary computation is usually: 
(1) specific to performance on a particular set of problems and (2) does not include 
the scope under which the hypotheses are found to hold.  This makes it very difficult 
for a person considering applying such a system to come to a judgement upon its use 
for a different but similar problem.  The hypotheses about the system are specific to 
particular problems, so one has to guess whether it is likely to be applicable to the 
new problem; and you do not know whether the system performance will extend to a 
new scope.  Thus the reuse of such systems requires much individual 
experimentation, which deters many potential users. 

6.2   Hypothesising About Tag-Based SOSS 

‘Tags’ are features that are initially arbitrary but identifiable features of an agent – 
they have no effect upon the individual abilities of that agent but are observable to 
other agents.  They can act as a (fallible) indication of cooperative group membership, 
when part of a suitably evolutionary process.  They allow a dynamic but persistent 
maintenance of cooperation across a whole population even when defection is 
possible, without complex mechanisms such as: contracts, reputation or kin-
recognition.  This can occur because cooperative groups with similar tags are 
continually forming and persisting for a period before being invaded by a defector 
(which quickly destroys the group).  Tag systems, and their possible relevance to 
SOSS are discussed in [12]. 

In common with many SOSS, tag-based systems are stochastic and fallible.  That 
is, there is always a probability that cooperative groups will not occur.  Thus one 
could never prove from its specification that the system would work as intended. 
However this effect seems robust over a range of settings and implementation 
variations.  Thus its seems a viable hypothesis that such systems will result in 
significant amounts of cooperation over a reasonably wide range of settings. 
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David Hales has been working on such tag-based systems, work in which I have 
played a small part.  As a result of inspecting the results of such systems, several 
hypotheses about the working of such systems (and hence the conditions under which 
cooperative groups might occur) have suggested themselves.  One such condition that 
has been recently identified [11] is that the rate of tag mutation must be greater than 
the rate of defection in (or into) a cooperative group.  This seems to be because it 
allows for new cooperative groups to form sufficiently often that there is always a 
significant ‘population’ of pure cooperative groups before the defection occurs in 
them.  Thus although each group will inevitably be overrun with defectors, there are 
always enough cooperative groups in the total population to maintain the overall 
levels of cooperation.  Thus, we not only have a hypothesis about a class of systems 
which has been observed, some of the conditions under which it is thought to occur, 
but also a mechanism by which it is though to occur.   

The information published under the suggestion described in section 15 might be:   

• S may be a description of one of the tag-based systems described as in [11]; 
• H1 might be that “the percentage of co-operators in the overall population is at 

least 30%”; 
• C1,1 might be the conditions under which each of H1 has been found to hold, 

for example:  “the mutation probability of the tag > mutation probability of 
defection”; 

• S1,1 might be the frequency statistics concerning the occurrence of H1 under 
C1,1, in this case that “this occurred in 50 out of 50 trial runs over 30,000 
generations”. 

7   Conclusion 

‘Engineering’ and ‘self-organisation’ do not sit well with each other.  The extent to 
which a system is engineered will constrain (as well as enable) what kind of self-
organisation can occur.  Likewise the extent to which self-organisation occurs will 
limit the scope for engineering since outcomes will be correspondingly undeducable.  
In other words, self-organisation will result in some outcomes that are not, and can 
not be, foreseen by any designer.  An unwelcome surprise is always possible with 
self-organised systems.  These surprises will often have to be dealt with by adapting 
the system after its creation.  If we are to do better than trial and error in such 
adaptation we will need to develop explicit hypotheses about our systems and these 
can only become something we can rely on, via replicated experiment.  This paper 
can be seen as a tentative step towards such an experimental method. 
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Appendix – An Example GASP 

An example of a simple GASP evolved to have a repetitative period of 89.  Figure 8 
shows the set-up of the GASP and figure 9 a graph illustrating the cycle. 

1, 1, [], 5, 3, 2
1, 2, [], 4, 2, 1 
1, 3, [], 5, 2, 4 
1, 4, [1], 3, 2, 4 
1, 5, [3 4], 2, 1, 5 
2, 1, [], 5, 4, 3 
2, 2, [], 4, 2, 4 
2, 3, [3 6 6], 1, 5, 1 
2, 4, [6 5 4], 2, 2, 3 
2, 5, [6 3 3], 3, 3, 2 
3, 1, [], 4, 3, 1 
3, 2, [6], 5, 3, 4 
3, 3, [3 4 2], 3, 3, 4 
3, 4, [4 4 5], 1, 3, 5 
3, 5, [3 6], 1, 2, 1 
4, 1, [], 1, 3, 3 
4, 2, [], 1, 5, 5 
4, 3, [3 3], 3, 3, 5 
4, 4, [2], 1, 3, 1 
4, 5, [3 2], 5, 5, 4 
5, 1, [3 2 2], 5, 3, 5 
5, 2, [1 6], 2, 3, 1 
5, 3, [3 1 5], 2, 2, 4 
5, 4, [1 2 1], 5, 1, 4 
5, 5, [4 4], 4, 4, 4 

 

Fig. 8. The plans of the agents in this evolved GASP system (agent number, plan number, give 
list, test agent, then plan, else plan)  
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Fig. 9. A graph showing the 89-iteration cycle in 3 of the stores which results from this GASP 
executing 
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Abstract. Contemporary software systems are exposed to demanding, dynamic,
and unpredictable environments where the traditional adaptability mechanisms
may not be sufficient. To imitate and fully benefit from life-like adaptability in
software systems that might come closer to the complexity levels of biological or-
ganisms, we seek a formal mathematical model of certain fundamental concepts
such as: life, organism, evolvability and adaptation. In this work we concentrate
on the concept of software evolvability. Our work proposes an evolutionary com-
putation model, based on the theory of hypercycles and autopoiesis. The intrinsic
properties of hypercycles allow them to evolve into higher levels of complexity,
analogous to multi-level, or hierarchical evolutionary processes. We aim to obtain
structures of self-maintaining ensembles, that are hierarchically organised, and
our primary focus is on such open-ended hierarchically organised evolution.

1 Introduction

The rapid growth of complexity in different areas of technology stimulates research in
the field of engineering of self-organising and adaptive computation systems. Adaptive
software models refer to generic concepts such as adaptability and evolution. This, on
the other hand, inherently leads to fundamental questions about the nature of open-ended
uniform evolutionary processes: their essential properties, minimal requirements, archi-
tectures, models, and evolution of evolvability. Answers to some of these fundamental
questions will lead to progress in automatic evolutionary design of computational ma-
chines and in engineering techniques for self-organising and self-adaptable software
systems.

1.1 Traditional Methods

In common English usage adaptation means the act of changing something to make
it suitable for a new purpose or situation. In software systems, the term adaptation is
being used mostly, if not exclusively, with a second semantic meaning. What is usually
meant by software adaptation is that the system will continue to fulfil its original purpose
in new or changing circumstances, situations or environments. The adaptability in such
software systems may be achieved by a feedback loops between the system, the controller
monitoring and changing and adapting the system, and the environment itself. The system

S. Brueckner et al. (Eds.): ESOA 2004, 3464, pp. 100–122, 2005.
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purpose is pre-defined in advance as a set of specifications, which are kept within the
controller. The behaviour of the system is automatically altered if the expected outputs are
outside of these pre-defined specifications. Such models operate analogously to the way
automatic control systems work [15]. Most of them are based on top-down design and
work well in limited environments, where changes in the environment can be predicted
and constrained in advance [21]. Such adaptive systems are tuned to particular kinds and
specific levels of change in the environment.

Most of the adaptability in traditional software systems is achieved via control mech-
anisms like in automatics. There is a central system, with a set of sensors and actuators, a
controller, and an environment. Sensors sense an environment, the system and controller
are tied via a set of feedback loops, and the controller tries to keep the system within
pre-defined boundaries. This model can be implemented in a straightforward fashion,
however it is static and must be applied in situations where it is possible to predict in
advance all the changes and variations of the environment. To make things more robust
and flexible, it is possible to implement into the controller an ability to learn, so the rules
for changing the system become more dynamic, thereby enabling the entire ensemble to
follow changes in more dynamic environments. Yet such systems still suffer from draw-
backs associated with the simple control model. Even though the system shows some
adaptability on another scale of complexity, there are limits of environmental change
with which the system can cope. And these limits are pre-established with the structure
of the learning mechanism itself.

1.2 New Requirements

Contemporary software systems, especially open multi-agent distributed systems, eg.
[26], that may potentially be spread around the globe and interact with various changing
web-services andweb-technologies, are exposed to demanding,dynamic,and unpredict
ableenvironments where the traditional adaptability mechanisms may not be sufficient.

To imitate and fully benefit from life-like adaptability in software systems, that (at
least in theory) might come closer to the complexity levels of biological organisms,
we seek a formal mathematical model of certain fundamental concepts such as: life,
organism, evolvability and adaptation. In this work we will concentrate on the concept
of software evolvability.

The landmark step in understanding the evolutionary process of living organisms in
natural life was done by Darwin [4], who proposed mechanisms by which purposeful
adaptive changes take place via processes of random mutation and natural selection.
Darwinian mechanisms postulate reproduction, the statistical character of change pro-
cesses, and the process of elimination (after elimination the organism ceases to exist,
i.e. is not alive anymore).

1.3 Computation and Biological Inspirations

In this work we use a theory of evolvable virtual machines, which exhibits adaptability
and self-organisation. The model has been inspired by ideas that have been developed
over the last decades. The roots of the proposed model can be traced back to the work
of John von Neumann [38, 39], who submitted that a precise mathematical definition

-
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should be given to basic biological theories. This has been most prominently continued
and extended by Gregory Chaitin [2, 3].

Some current research in evolutionary computation (EC) is emphasising information-
centric methods that mirror Darwinian theory of random mutations and natural selection.
This is visible in well-established computational optimisation methods, such as Genetic
Algorithms (GA), Genetic Programming (GP), and their variations, such as assortedArti-
ficial Life systems. Despite some successes, the typical simple single-layer evolutionary
systems based on random mutation and selection have been shown to be insufficient (in
principle) to produce an open-ended evolutionary process with potential multiple levels
of genetic material translation, see e.g. [5, 41].

Our work proposes an alternative path, based on the theory of hypercycles [5] and
autopoiesis [20]. The intrinsic properties of hypercycles allow them to evolve into higher
levels of complexity, analogous to multi-level, or hierarchical evolutionary processes. We
aim to obtain structures of self-maintaining ensembles, that are hierarchically organised,
and our primary focus is on such open-ended hierarchically organised evolution.

2 Computational Evolution

2.1 Information-Centric Approach

It is believed by some that the information-centric approach is a correct, if not the only
possible, path to pursue the research and make progress in the field of theoretical and
computational biology [23, 3]. In our work, we use some of the basic concepts of the
information-centric approach, and throughout this work we will use two basic notions
of information as introduced by Shannon [33] and in Kolmogorov-Solomonoff-Chaitin
algorithmic information theory [18]. We will refer to the Shannon notion as information
and to the Kolmogorov-Solomonoff-Chaitin notion as algorithmic information.

There have been many more or less formal attempts to define life, complexity, or-
ganism, organism boundaries, and information content [32, 25, 19]. Some authors have
attempted to give rigorous quantitative definitions of these concepts, in a formal deduc-
tive form [39, 3, 10]. Interestingly, authors coming independently from different sets of
basic definitions and assumptions reached the same or very similar conclusions (e.g. [3]
and [10]). According to theoretical and experimental work of most authors, the process
of improvement in individuals and ensemble growth are best accomplished by carry-
ing along all, or almost all, of the previously developed structures while new pieces of
an ensemble structure are being added [34]. Simulations and statistical analysis in the
fields of Artificial Life experimentally confirm the efficiency of this approach. Recent
work in incremental reinforcement learning methods also advocate retention of learned
structures (or learned information) (e.g. [30]). The sub-structures developed or acquired
during the history of the program self-improvement process are kept in the program
data-structures. It therefore comes as a bit of surprise that this general procedure is not
being exhibited by any of (standard) evolutionary programming models [7] such as:
Genetic Programming (GP) [16]) or Genetic Algorithms (GA) [40]. Although these evo-
lutionary programming models are inspired by biological evolution, they do not share
some significant aspects that are recognised in current evolutionary biology, neither can
they be used (directly) in incremental self-improvement fashion.
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We are seeking a new, robust, and flexible evolutionary model, that can accommodate
meta-learning and incremental self-improvement, as well as hierarchically organised
evolutionary processes.

2.2 Information Measure

Information is a measure based on a selection from a set of available choices. Algorithmic
information is a uniform measurement of encoding information relative to the given
computing machine (virtual machine).

The amount of information is based on the ability to make a correct selection from a
given set. Let us consider a unique code k ⊂ X×Y , i.e. y = k(x), where x ∈ X, y ∈ Y ,
x represents a given condition, and y represents the correct selection. X and Y can be
any sets, but in the context of finite state machines and discrete computation, one can
treat them as sets of program blocks. Let us use index g to indicate a particular selection
of x for a given y (goal). This model can be expressed now as xg = k−1(yg). Selection
of a single unique condition xg gives us all necessary information to obtain the output
yg: I(xg) = −log p(xg), where p(xg) is the probability of picking a correct condition
x, and I is the information content of a particular xg [33, 1].

One of the possible ways to refer to the probability distribution p(x) is to compare
it with the reference distribution of the system. We can take as a reference a system that
makes all possible choices with equal probability. Such a system would have maximum
entropy (equivalent to the thermodynamical state of equilibrium). By entropy we mean an
information theory measure which, when applied to an information source, determines
the maximum channel capacity to transmit the source encoded according to a particular
signal alphabet. The state of maximum information entropy we will refer to as a system
in abiotic equilibrium. In such a state the probability of a correct selection of a given
condition for a given output is uniformly distributed across all the possible conditions,
and therefore all selections are equally probable. By calculating the difference between
the actual p(x) and this uniform abiotic distribution, one can calculate the information
content needed to make a correct selection. (This is the difference between the given
channel and one with maximum information capacity.)

In the context of incremental search methods through program search-space, as in the
case of [31], p(x) can be interpreted as the probability of executing a particular instruction
during the course of program execution. The program itself can accumulate information
about its environment and requirements by adjusting these probability distributions. A
program can modify the probability distributions for different instructions at runtime.
The difference between abiotic probability distributions (the initial uniform distribution)
and the given probability distribution of a given system will be the measure of acquired
information.

2.3 Darwinian Systems

Darwin’s principle of natural selection is widely used in current computational models
of evolutionary systems for optimisation or simulation purposes (in fact in Evolutionary
Computation in general). Some authors regard natural selection as axiomatic, but this
assumption is not necessary. Natural selection is simply a consequence of the properties
of population dynamics subjected to specified external constraints. The main objective of
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the work of Darwin and Wallace [4] was to provide some basic insights into the process
of evolution and the phylogenetic interrelations among species.

There are some inherent properties of conventional computational Darwinian systems
which are sometimes overlooked. Darwinian systems rely on the concept of an environ-
ment with embedded self-replicating entities competing for resources and reproduction.
For the model to be consistent, one has to postulate a stable species which competes
for selective preferences and a stable reproduction of the best adapted species. In other
words the model postulates that the selection operates purely on the individuals, hence
there is only a flat single level of individuals which the evolutionary processes operate
on. In such a model, there is a limit to the amount of the information content a stable
species can have. Therefore the evolution of such a system is limited to a certain level
of complexity defined by the threshold for maximum information content for a given
setup/configuration of species. To overcome this threshold, further levels of selection
and evolutionary information translation would need to be introduced into the system.

A second important aspect concerns random mutations. In real biological systems,
due to overly complex and dynamic environments, the mutations can simply be a func-
tion of the environment. There is no need to postulate an external, god-like source of
randomness. However, in computational models, the environments are highly regular
and fixed, and the only way to introduce the necessary noise to the search process is
by introducing an external source of randomness. This, as with certain random-search
optimisation methods, can be useful, and in fact works quite well for some classes of
problems (with the main computational techniques employed being Genetic Algorithms,
Genetic Programming, and other evolutionary computation optimisation methods).

However in the context of adaptable, self-organising and open-ended evolutionary
software system that exist in dynamic environments, it makes little sense to introduce
additional external sources of randomness. By definition, the environment should supply
all the randomness for the adaptable software system. If the environment stabilizes, the
system should stabilize as well. It is a simple result of maximisation of the system
aptness to the given environment. On the other hand, the learning mechanism involved
in adapting the system to the given environment, or to the changes in the environment,
may internally need to use some sort of probability distribution (that is represented
internally, or externally via the environment itself). This is, however, a different matter to
an artificially introduced external source of randomness, as in evolutionary computation.

One possible way of dealing with that is via bias-optimal search methods [17, 29],
or via incremental search methods [31]. To narrow the search, one can combine several
methods, for example it is possible to construct a generator of problem solver generators,
and employ multiple meta-learning strategies. We will discuss some of the details further
in the following sections.

3 Autopoietic Hypercycles

3.1 Hypercycle

Lets consider a sequence of reactions in which products with or without the help of
additional reactants undergo further transformations. The reaction cycle or cycle is such a
sequence of reactions in which some of the products are identical with the reactant of any
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previous step of the sequence. The most basic is a three-membered cycle, with a substrate,
enzyme, and a product. The enzyme transforms a substrate into enzyme-substrate and
then enzyme-product complexes, which in turn is transformed into a product and free
enzyme. See Figure 1.

ES

E

EP

S

P

Fig. 1. An example of three-membered catalytic cycle: the free enzyme (E), the enzyme-substrate
(ES) and the enzyme-product (EP) complexes all demonstrate a catalytic cyclic restoration of the
intermediates in the turnover of the substrate (S) to the product (P)

The cycle as a whole works as a catalyst. Unidirectional cyclic restoration of the
intermediates presumes a system far from energy equilibrium. This can be associated
with a dissipation of energy into the environment. Equilibration occurring in a closed
system would cause each individual step to be in balance: catalytic action in such a
closed system would not be microscopically irreversible.

Lets now consider a reaction cycle in which at least one of the intermediates them-
selves is a catalyst (see work of Kaufmann on autocatalytic nets [14]). The simplest
representative of this category is a single autocatalyst (or a self-replicative unit).

A system which connects autocatalytic or self-replicative units though a cyclic linkage
iscalledahypercycle.Comparedwithasimpleautocatalystoraself-replicativeunit(which
we can consider here to be a “flat” structure) a hypercycle is self-reproductive to a higher
degree. This is because each of the intermediaries can itself be an autocatalytic cycle.

3.2 Autopoiesis

Following Maturana and Varela terminology [20], machines are unities which are made
out of components. All components are characterized by certain properties. Machine
components must operate according to certain relationships among their interactions
and transformations that define the operation of the machine. The details of properties
other than those participating in the interactions and transformations which constitute
the machine are not relevant.

The organisation of the machine is defined as all the relations that define a machine
as a unity and determine the dynamics of interactions and transformations which it may
undergo as such a unity. The organisation of a machine does not specify the properties
of the components which realise a concrete machine. The organisation of a machine
is independent of the properties of its individual components, which can be any, and a
given machine can be realised in many different manners by many different kinds of
components.
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The structure of the machine is defined as the actual relations which hold among
the components which realise a concrete machine in a given space. A given machine
(machine with fixed organisation) can be realised by many different structures. An or-
ganisation may remain constant by being static, by maintaining its components constant,
or by maintaining certain relations between components constant which are otherwise
in continuous flow or change.

An autopoietic machine is defined as a unity by a network of production, transfor-
mation, and destruction of components which: (i) through their interactions and trans-
formations continuously regenerate and realise the network of relations that produced
them, and (ii) constitute the machine as a concrete unity in the space by specifying
the topological domain of its realisation as such a network. An autopoietic machine is
an homeostatic or rather a relations-static system that has its own organisation as the
fundamental variable which it maintains constant.

In contrast, a machine in which organisation is not autopoietic does not produce the
components that constitute it. The products of such a machine are different from the
machine itself. The physical unity of such a machine is determined by processes that
do not enter into its organisation. Such a machine is called allopoietic [20]. Allopoietic
machines have input and output relations as a characteristic of their organization: their
output is the product of their operation, and their input is what they transform to produce
this product. The phenomenology of an allopoietic machine is the phenomenology of its
input-output relations. The realisation of allopoietic machines is determined by processes
which do not enter into the organisation of the machine itself.

Self- rganisation. An autopoietic system is considered to be a unity in the physi-
cal space. It is an entity topologically and operationally separable from the physical
background. It is defined by an organisation that consists of a network of processes of
production and transformation of components, molecular and otherwise, that through
their interactions: a) recursively generate the same network of processes of production
of components that generated them; and b) constitute the system as a physical unity by
determining its boundaries in the physical space.

The important aspect of an autopoietic system is that it remains invariant in its organ-
isation. The system itself can be deformed by external circumstances, but its internal or-
ganisation remains invariant. In other words, the self-organisation and self-maintenance
of defining relations is inherent in the autopoietic model. Any change in the autopoietic
organisation beyond a particular threshold is equivalent to the loss of identity, and the
system disintegration.

Thus, an autopoietic system is defined as a unity by its autopoietic organisation, and
all the transformations that it may undergo without losing its identity are transforma-
tions in which its organisation remains invariant. All autopoietic systems are therefore
homeostatic. They maintain their own organisation constant through their operation. All
the various unitary phenomena of an autopoietic system are constitutively subordinated
to the maintenance of its autopoiesis.

Hierarchies. In conventional Darwinian systems all self-replicative units competing for
selection are non-coupled. In other words, the selection forces operate purely on a single
level: the level of individuals. This simply leads to a conservation of a limited amount of

o
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information, which cannot pass above a specified threshold. In hypercyclic systems, as
distinct from conventional Darwinian systems, we deal with similar selective pressures.
Note however, that in the hypercyclic case we also deal with integrating properties, and
this allows for cooperation of otherwise competing units. Hypercycles are capable of
establishing higher-order linkages. When inter-cyclic coupling is established, individual
hypercycles may form hierarchies. In other words, the basic unit of selection may not
be a single hypercycle, instead a whole chain of interrelated hypercycles. This is an
important aspect of our work — exploiting the hypercyclic integrating properties and
multi-level selective pressures.

If the autopoiesis of the component unities of a composite autopoietic system con-
forms to allopoietic roles that through the production of relations of constitution, speci-
fication, and order define an autopoietic space, the new system becomes in its own right
an autopoietic unity of second order. The most stable condition for coupling appears
if the unity organisation is precisely geared to maintain this organisation — that is if
the unity becomes autopoietic. Therefore there is an ever present selective pressure for
the constitution of higher order autopoietic systems from the coupling of lower order
autopoietic unities.

In the theory of autopoiesis, unlike many other theoretical models of the process of
life, the process of evolution is simply a side-effect, a consequence of limited resources,
not the prerequisite. Whenever we deal with restricted resources, we have the selection
and evolutionary pressures naturally occurring within our computational models. It is
however important to recognize that life (or precisely: autopoietic systems) would still
exist even if the process of evolution were not to occur in a system.

4 Evolvable Machine

4.1 Hierachical Computation

Some scholars believe that all sufficiently complicated systems are modelled best by
hierarchical models [11, 27, 36]. In system sciences and cybernetics any system under
investigation is thought of as a composition of multiple subsystems, each of which can
itself be decomposed into subsystems, and this follows all the way down to a basic, fun-
damental level [34]. Hierarchies help us deal with complex phenomena by decomposing
them into more manageable subsystems and investigating the interactions between these
subsystems, one interaction at a time. The emphasis is placed on investigation of prop-
erties on different levels, mutual dependencies, and interactions between and within the
hierarchy levels. Hierarchical decomposition of the problem space deals with complexity
in a way that is natural and intuitive to humans.

4.2 Virtual Machines

Hierarchically organised virtual machines can be used as a specific computation model.
Such a model is based on the traditional notion of computing machines, but extends
it in certain aspects. The model discussed here provides a flexible and robust platform
for experimentation with self-organisation and self-adaptability. It allows for a detailed
analysis of different aspects of hierarchical complex system decomposition, together
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with the analysis of interactions between and within different hierarchical levels. This
may help to understand a modelled problem or phenomenon better, giving us at the same
time a robust and adaptable computing framework.

Formal Definitions. The following formalism is inspired by typical models of comput-
ing machines. More theoretical foundations for computing models from a programming
perspective can be found in [24, 13].

From the Church-Turing Thesis we expect that all models of discrete computation,
including the one presented here, will have the same properties as any other model of
computation with respect to uncomputability and undecidability. This fact has some
interesting and fascinating implications, see e.g. [6]. All the well known properties from
computational complexity [18] are naturally exhibited by to the computational model
presented here. This includes, for example: undecidability, the halting problem, and the
concept of non-computable functions.

Definition 1. A virtual machine or a computing machine (or just a machine for short)
is a tuple M = (K, Σin, Σout, δ, s) where K is the set of states and s ∈ K is the initial
state. Σin and Σout are sets of input and output symbols, respectively, referred to as
input and output alphabets. δ is a function that maps K ×Σin to K ×Σout, and is called
the program. We say δ (or the program) runs on machine M. Remember that formally
δ is an integral part of the machine itself. The notation M(x) represents the output of
machine M given the input sequence x. M(x, y) represents the output of machine M
given the input sequence x followed by the input sequence y.

Definition 2. Suppose that f is a function from (Σin)∗ to (Σout)∗, and let M be a
machine with input and output alphabets Σin and Σout respectively (the symbol ∗ has
the usual meaning of “set of all possible sequence from a given alphabet”). We say that
M computes f if for any string x ∈ (Σin)∗, M(x) = f(x). If such machine M exists, f
is called a recursive function. We also say that function f is computed by machine M .

Definition 3. If for machine M = (K, Σin, Σout, δ, s) there exists a machine M ′ =
(K ′, Σ′

in, Σ′
out, δ

′, s′) which computes δ, we call machine M a recursive virtual machine
or recursive machine for short. We call program δ′ an interpreter of M , and we say an
M interpreter runs on machine M ′. We have ∀x ∈ (Σin)∗, M(x) = M ′(δ, x).

Definition 4. Suppose we have a machine M = (K, Σin, Σout, δ, s) and there ex-
ists machine Mc = (Kc, Σinc

, Σoutc
, δc, sc), where Σin ⊆ Σinc

and machine M ′ =
(K ′, Σ′

in, Σ′
out, δ

′, s′) where Σoutc
⊆ Σ′

in and Σout ⊆ Σ′
out. If ∀x ∈ (Σin)∗, M(x) =

M ′(Mc(x)) then we say that δc is an M compiler, and we say Mc compiles M into M ′.

The emphasis in the conceptual framework presented above is to treat algorithms
and running programs as machines (recursive virtual machines to be precise). This along
with the notions of compilers and interpreters is discussed at length in [13]. The above
definitions do not make any assumptions about the number of states a given machine
can have, nor about the storage capability. All possible models of computations, and
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different computer/algorithm architectures fit the above definitions. For example one
could use Σ ⊆ Real to perform analog computation on real values. It can be shown that
the proposed conceptual framework is a simple extension of the theoretical models of
computation such as Turing machines and Universal Turing machines [12, 24].

Proposition 1. Let machine M = (K, Σin, Σout, δ, s), with finite input and output
alphabets Σ = Σin = Σout, {�, �} ∈ Σ and {h, y, n} ∈ K. In other words the
alphabet contains two special symbols, the blank and the first symbol, and there are
three extra state symbols, namely: h the halting state, y the accepting state, n the
rejecting state. We define three additional symbols, representing cursor directions: ←
for “left” and → for “right” and − for “stay”. If δ maps K × Σ to K ′ × Σ, where
K ′ = K × {←,→,−} then we say that machine M is a Turing machine.

5 The Architecture

We can model artificial and naturally occurring phenomena as a chain of virtual ma-
chines. One possible perspective on artificial life or evolutionary systems is to focus on
a tower of compilers and/or interpreters. The concepts of chaining and stacking com-
pilers and interpreters is discussed in detail in [13]. The other approach is to use more
traditional functional decomposition. All computing programs, including all evolution-
ary computation models can be represented as a chain of compilers and/or interpreters,
with different functional partitioning on each level. The way this chain is constructed
and how all its elements interact with each other is a principal concern of our hierarchical
computing architectural approach.

5.1 Vertical and Horizontal Decomposition

Following the formal definitions, a machine can be statically represented as a program
string, consisting of a prefix, together with some instructions following this prefix. The
prefix itself can be decomposed into another prefix and another program, and so on. This
is called vertical decomposition, or a vertical hierarchy. Another type of decomposition
is based on dividing a given machine into interacting parts – this is called a horizontal
decomposition. Formally, a vertical hierarchy is based on stacking interpreters and/or
compilers [13], see Figure 1. A horizontal decomposition is based on splitting a single
machine into two or more machines, see Figure 2.

Existing examples of vertical hierarchies are all sorts of (real-life) interpreters and
compilers. For example given a Pascal interpreter written in Java we would have: program
written in Pascal −→ Pascal virtual machine (written in Java) −→ Java virtual machine
(written for example in C) −→ C virtual machine −→ etc., where the arrow reads as
“runs on” as defined in Definition 3.

An example of horizontal partitioning would be a functional partitioning of a single
individual virtual machine. Let us imagine that we have a machine that can compute two
operations on the natural numbers domain: addition and multiplication. If we perform
functional partitioning, we can end up with two virtual machines, each computing a
single operation, multiplication or addition, respectively. The union of these two gives
us the original single machine.
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Fig. 2. A vertical split of machine M into a tower of machines M0, M1, M2
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Fig. 3. A horizontal split of machine M into machines M0, M1, M2

One can enumerate through all the machine levels, starting from the base (fundamen-
tal) level M0, up to the final highest-level machine, Mn. The actual input (instructions)
are fed to the machine Mn. It is important to remember that, in fact, there is no special
distinction between the program running on a virtual machine and the program emulating
a particular machine itself.

All the interacting virtual machines are connected by their input/output streams. The
hierarchical structure of that composition can have different forms, depending on the
particular phenomena at hand. It can be a simple linear structure, or it can be a tree-like
structure. In general it is a directed graph, with cycles, with self-referencing nodes, and
possibly with complicated interdependencies (see Figure 5.1).
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Fig. 4. The example of possible dependencies between machines after decomposition

5.2 Partial Equivalence

Some machines can be fully or partially equivalent to others; for example a Pascal
virtual machine written in C and a second one written in Java are always perfect and
fully equivalent Pascal virtual machines, even though they use completely different
machines on the lower level. Note that even though these two Pascal virtual machines
have different machines below them, they can have exactly the same virtual machine
one level down, for example a virtual machine for a particular operating system.

One can have a partial Pascal virtual machine that accepts a subset of all possible
programs generated in Pascal. This is referred to as specialisation. On the other hand it is
also possible to have a Pascal virtual machine accepting a subset of expressions from the
C language, in addition to normal Pascal programs. The process of adding features to the
language and enhancing the input language for a given machine is called conservative
extension [13].

Some machines can be recursively executed on themselves, for example a Java virtual
machine interpreter written in Java and executed on a Java virtual machine interpreter.
Some machines can be functionally equivalent even though they use completely different
language syntaxes or alphabets, for example expressions in prefix, postfix or reverse
Polish notations. All these properties are well known in computer science, in which
specific languages, interpreters and compilers flourish.

Suppose the problem at hand is coded in such a way that the solution can be expressed
as a string of symbols from some language, L. For some languages finding a solution
string is easier than for others: coding the problem is the key issue in solving the problem.
In a sense the languageL captures and exploits some of the properties of the problem.This
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is one of the main features of the proposed approach. With recursive virtual machines we
have the necessary framework to model the transformations of a problem representation
from one language to another, and we are able to translate the original problem into a
more easily solvable equivalent.

5.3 Decomposition Limits

A particular level from the hierarchy is treated as a virtual machine that provides some
functionality to the other level immediately above it, and uses the level below to have
the computation performed. In other words a particular machine accepts input from one
level, uses other levels to perform computation, and then returns the results back to yet
another adjacent level. The highest level of the chain of machines accepts some input
(instructions), interacts with the level below it by sending/receiving some input/output,
and returns some outputs (results) back. Similarly to the base level, what we consider the
highest level is also arbitrary. There is always a virtual machine feeding the instructions
and accepting the results (e.g. a computer program or a human operator).

A given machine in a chain is formally equivalent to an interpreter or compiler of
another machine located above it. The first, the base level is the very first interpreter,
which we assume as being executed on some universal virtual machine (UVM). In the
case of digital computers (and for the sake of simplicity) we can without loss of gener-
ality assume that the base level machine is equivalent to the Universal Turing Machine
[12]. Of course, this is an arbitrary choice, and the decomposition could be carried fur-
ther, treating the UVM itself as a virtual machine, running on some software/hardware
platform and so on, all the way down to electrical and/or chemical reactions and some
physical processes1.

6 EVM Implementation

6.1 Yet Another Language?

There exist many programming languages developed within the field of Evolutionary
Computation. Many employ usual higher level programming languages designed for hu-
man programmers (such as Lisp for the original formulation of tree-based Genetic Pro-
gramming [16]); some are developed with an evolutionary process in mind [35, 28], and
others are developed for machine processing and recursive program manipulations [31].
Some of the languages are highly specialized, and provide the evolutionary mechanisms
with a bias towards a particular solution subspace. However, none of these languages
provides mechanisms to manipulate levels – a property needed for our EVM imple-
mentation. There are other features we want our base machine language to possess, that
none of the existing languages have. For example, we want the language to be capable
of redefining itself. That is, the primitive instruction set must allow the evolutionary
process to restructure and redefine itself. Also, we want a programming language that is

1 Actually, according to [9] we have no reason to stop there, and we can decompose the system
further, based on the idea that physical phenomena itself are running on some (digital, in the
case of Fredkin’s theory) virtual machine.
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highly expressive, that is, we want solution programs to typically encountered tasks to
be short. And also, we believe that there are efficiency advantages for a language whose
solution spaces are highly recursive.

A programming language used for search in Evolutionary Computation plays an
important role – some programming languages are particularly suited for some, but not
for all, problems. One of the appealing aspects of a multi-level search process is that, in
principle, it can define a new base level and a completely new programming language
that is specialized for the given task at hand. We want to exploit this property.

Some of the existing languages possess some of these desired properties, but no single
one of them possesses all of them. This is why we have designed our own specialized
programming language. The principal objective of the overall programming language is
to facilitate searches for specialized languages for a given set of problems, and we want
the EVM to facilitate that. Even though there is currently a concrete implementation of
the base machine for the EVM system (the primitive instruction set), we treat it only
as a temporary list. We are working on redesigning the base machine to better suit and
to help with the search of program generators. So far, we have obtained some results
suggesting the need of some of more computationally intensive primitive instructions to
be included into the base machine. On the other hand, some of the existing instructions
are rarely being used, and will be removed in the next iteration of our implementation.

6.2 Computing Model

The hierarchical computing model presented in the previous sections can be implemented
in multiple ways and in many physical programming languages. It should be understood
that the implementation presented below is only one of many possible implementations,
and the choice for this particular implementation as distinct form other computing archi-
tectures, is somewhat arbitrary. On the other hand, we have paid considerable attention
in order to make the implementation as flexible and robust as possible and to facilitate
different configurations and different experiments in order to fine-tune the instruction
set and the overall computing architecture for general-purpose use.

Our initial implementation of the EVM architecture is based on a stack-machine,
such as Forth [22], or Java Virtual Machine (JVM) [37]. In fact, with small differences,
it is exactly the same as an integer-based subset of a JVM.

The main architectural component, similar to the JVM, is the so called execution
frame. The schematic view of the execution frame is presented on Figure 6.2.

The basic data unit for processing in our current implementation is a 32-bit signed
integer. The basic input/output and argument-passing capabilities are provided by the
operand Stack, called here Data Stack, or for short Stack. Data Stack is a normal integer
stack, just as in a JVM for example.All the operands for all the instructions are passed via
the Stack. The only exception is the instruction push, which takes its operand from the
Program List itself. Unlike the JVM, our virtual machine does not provide any operations
for creating and manipulating arrays. Instead, it provides instructions for and facilitates
operations on lists. There is a special stack, called L-stack for storing integer-based lists.
The L-stack is implemented as an a-stack (a-stack is a special way of implementing
stack, such that its top element is stored as a special register/variable). The L-stack top
element is stored in a special list called List. In other words, List contains the “actual”
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Fig. 5. Schema of the execution frame

top element of the L-stack, and the top element that is on the stack of the L-stack is the
second topmost element, and so on. The decision to implement L-stack based on a-stack
is purely for efficiency purposes. However it also makes all the instructions that operate
on a List more natural and more intuitive, as they operate on an actual list, not on the
top element of the L-stack. Both, Data Stack and L-stack (together with the List), are
shared between multiple Execution Frames that share a common thread of execution.

There is a lower-level machine handle attached to each of the execution frames. This
is a list of lists, where each individual list represents an implementation of a single
instruction for the given machine. So, in other words, the machine is a list of lists of
instructions, each of which implements a given machine instruction. Of course, if the
given instruction is not one of the Base Machine units, the sequence must be executed on
another lower-level machine. The Base Machine implements base instructions that are
not reified further into more primitive units. These instructions will be discussed later in
this section.

The program in the Execution Frame is represented as a list of integers. The program
counter (PC) points to the current instruction in the program list. The PC is itself an
integer, and that limits the theoretical length of any single program to 231. This is
however lowered by the maximum length of any list in the system, which is currently
set to 100000. Each instruction in the program list points to the appropriate instruction
in the machine. If the value of a given instruction in the program is bigger than the
number of instructions in the given machine, the index of the instruction is calculated
as index = instruction mod machinesize, where machinesize is the number of
instructions in a given machine.

Each Execution Frame can reference the parent frame.The parent frame is responsible
for creating and initializing the given frame. Base-level frames are those top-level frames
that do not have any parent frame (the reference is null).
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6.3 Execution Model

As described in the previous subsection, the EVM program is represented within the Exe-
cution Frame as a list of integers. Each integer (modulo Machine number-of-instructions)
points to an individual machine instruction, that implements a particular behaviour of a
given program instruction.

There are two possible situations. First, the instruction of a machine may be a prim-
itive instruction, or EVM operation. In that case, the execution of a program instruction
is simple: the behaviour just happens within the current Execution Frame. For example,
if our program contains an integer, that points to add operation on the Base EVM Ma-
chine, this operation will take two arguments from the Stack, will add them together,
and will put the result back on the Stack.

The second situation is when the instruction of the machine is a composite instruc-
tion, i.e. a list of instructions for lower-level machine. In that case, the execution of a
program instruction proceeds as follows. First, a new Execution Frame is created. This
new Execution Frame is initialized with the Stack of the parent Execution Frame (all
Execution Frames in the same thread of execution share the same stack for parameter
and return value passing). The PC of the new Execution Frame is set to zero, and the
Program List is set to the Machine Instruction List. Then, the control is passed to this
new Execution Frame, which executes this “subprogram”. Once done, the control is
switched back to the parent Execution Frame.

The EVM is Turing equivalent, therefore there exist EVM programs that can run
indefinitely. Each thread of execution has an instruction time limit, to constrains the
time of each program in a multi-EVM environment. That is, each execution thread
(single program) has a maximum number of primitive instructions that it can execute.
Once the limit is reached, the program halts.

6.4 Instruction Set

As noted before, the instruction set is modelled after the Forth [22], and Java Virtual
Machine [37] instruction sets.

The instruction set is divided into several categories, which we describe here briefly.
The first category is “Stack and general operations”. This includes pushing constants onto
the Stack, popping, swapping, rolling, duplicating, etc. Some of the example instructions
are: const1, const0, pop, swap, roll, dup.

The second category is L-stack operations. There are operations for appending, re-
moving, and manipulating lists on the L-stack. It also contains operations to transfer lists
between L-stack and Stack. Some of the example instructions are: lpop, lpopn,
lswap, ldup, ldepth.

The third category contains List operations, and includes transferring elements be-
tween List and Stack, and manipulating List elements. Some of the example instructions
are prepend, append, load, store, length, rmf, rml, rm, rmn.

The fourth category contains operations for manipulating the Machine list of lists.
This includes similar operations to L-stack operations, but here they refer to Machine.
Some example instructions are:mappend, mprepend, mload, mstore, mrmf,
mrml, mrm, mins.
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The fifth category comprises the three level-related operations. These are spawn,
up and down. We will discuss them in more detail below.

The sixth category contains all the control instructions. This list is based on the JVM
control operations, and contains the following instructions: ifeq, ifneq, iflt,
ifle, ifgt, ifge, goto, jmp. There are three extra instructions. exec takes
the content of the List, and instantiate new Execution Frame and executes as if List is a
program to be executed. This is equivalent of executing dynamically created subroutine.
The other two instructions are two “search and jump” instruction. They take the element
from the operand stack, and search forward (jmpsf), or backward (jmsb) to find same
element in the program list and jump to the next instruction following that element.

The seventh and eighth categories contain all the Logic and Arithmetic operations.
Logic operations are: shl, shr, ushr, and, or, xor, and not. Arithmetic
operations are: add, inc, sub, dec, mul, div, rem, and neg.

6.5 Multi-level Computation

The key feature of the EVM, apart from its clean and elegant “zero operand architec-
ture” [8], is that it offers multi-level processing. This is like having unrestricted reflection
and reification mechanisms built-in for the virtual machine itself. The computing model
is relatively fixed at the lowest-level, but it does provide the user with multiple com-
puting architectures to choose from. The model allows the programs to reify the very
virtual machine on the lowest level. For example programs are free to modify, add, and
remove instructions from or to the lowest level virtual machine. Also, programs can con-
struct higher-level machines and execute themselves on these newly created levels. Not
only that – a running program can switch the context of the machine, to execute some
commands on the lower-level, or on the higher-level machine. All together it provides
unlimited flexibility and capabilities for reifying EVM execution.

Let us consider a particular example. Imagine, that we are tasked with writing a
program to add a given number N of integers. All N integers are provided on the Data
Stack, and the result is expected to be on the stack. We make it an incremental problem,
by iterating from 1 . . . N . On the base machine we only have arithmetic operations, such
as add. The add operation takes two arguments from the data stack, adds them together,
and puts the result back on the top of the stack. The task of adding two numbers can
be solved by a program with one instruction add. The task of adding three numbers
requires two add instructions, and so on. If we generalise it for N , the simplest program
would look like this:

add add add ... add /* (nth-1 instruction) */

Given that the solution for N would be provided as a prefix for the program that must
solve the task for N + 1, the probability of randomly generating the postfix code for the
N + 1 problem would be 1/|BM |, where |BM | represents number of instructions in
the base level machine.

With the multiple-levels, the prefix however can specialise a higher level machine for
the “adding numbers” problem. This can be easily achieved by creating a higher level
machine, with only one instruction, that adds two numbers. The program would look
like that:
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push add /* pushes code for ADD instruction */
depth /* pushes 1 on the stack */
popn_l /* appends 1 element into the list*/
const_1 /* pushes 1 on the stack */
spawn /* creates a higher level machine */
up /* changes to the higher level */
0 ... 0 /* instruction repeated nth-1 times */

Note, that it takes only 7 instructions to construct and switch to the higher level ma-
chine, whose sole purpose is number addition. The higher level machine is a specialized
machine that can only add numbers. It does not matter what the N − 1 instructions are
that are actually appended to the end of the program. The program will always correctly
add N numbers. In this case, the probability of solving the N + 1 problem becomes 1,
as any of the added instructions would map to the single instruction on the higher level
machine.

Of course, this is an extremely simple case, but it demonstrates the specialization
capabilities of a multi-level computing machine. The governing idea is to create a custom
specialized language and to solve the problem in that language, instead of trying to solve
it in the original language of the base machine.

6.6 EVM and Its Expressiveness

We were inspired by the expressive power of a simple programming language designed by
Schmidthuber [31]. However, we noted, that some of the recursive functional constructs
he introduced in his language could be done more simply (i.e. making them shorter) in
our own language for EVM.

For example, in Schmidhuber’s language a recursive call to define and to calculate
the factorial of N , assuming N is placed on top of the data stack, takes 14 instructions
and has the following form:

c1 c1 def up c1 ex rt0 del up dec topf dof mul ret

In our language it is only 8 instructions, and the program looks like this:

dup halt0 dup dec lpush_p mappend mlcall mul

Note, our dup is equivalent to Schmidhuber’s ex, halt0 is equivalent to rt0,
mdepth to topf, mlcall to topf and dof executed together. lpush p copies the
current program list into the List, and mappend appends the newly defined program
from the List as a new primitive instruction to the base machine. mlcall executes the
last instruction from the current machine instruction list. Our program is shorter, because
(a) we do not need to define the number of arguments and result values, (b) we do not
need to explicitly call ret, and (c) in our language defining a new program based on
the current program in the List takes one instruction, and based on the program in the
Program List, takes only two instructions.

Similarly, in the case of a context free grammar problem described by Schmidhuber
[31], his solution is 5 instructions long, and looks like this:

defnp c1 calltp c2 endnp
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Our code takes only 3 instructions:

c1 rwhile c2

rwhile is a “recursive while” instruction, that works in the following way: it checks
the top of Data Stack; if there is value 0, it halts, otherwise, it forks to a recursive call
back to the original program.

Because the EVM is more expressive, any search method, including Schmidhuber’s
optimal problem solver, should find the appropriate solutions faster.

6.7 Program Ontogeny

Let us view a program input as a sequence of integers on the Data Stack, and consider
a single program loaded into the Program List in the Execution Frame. Both, the input,
and the program, can be divided into two subsequences indexed 1 and n, in such a way,
that the first subsequence of a program, P1 (program with index 1) reads all the data
from the D1 subsequence. P1 will produce some results on the Data Stack, and it can
also manipulate the program list itself. Hence, the remaining subsequence on the Data
Stack is now longer, and the remaining program on the program list may differ from
the original program list. If this process is repeated recursively, the final program, and
the final data that this program reads, will be remapped from whatever was originally
on the Data Stack, and inside the Program List. This process is referred to as Program
Ontogeny. It demonstrates the development of the final (mature) stage of a program from
some initial (larval) stage, through a sequence of transformation steps.

6.8 EVM and Hypercycles

In the current implementation of the EVM architecture, we employ two initial designs
that facilitate the hypercyclic dependencies. One of them is based on the notion of self-
replication of the EVM programs. The other is based on the notion of cyclic data flow.
They each, in a way, complement each other. We will describe them below based on
simple examples.

Self-replication. If a given program produces an output, and this output is identical to
the program that produced it, we have a self-replicating EVM program. In other words,
we have a program that can calculate (produce) itself. If a program P1 produces another
program P2, such that P2 is not equivalent to the original program P1, but in turn, P2
produces a program P1, than we have a a hypercycle. Depending on the complexity of
each of the individual programs, and their ontogeny, it may exhibit interesting autopoietic
dependencies.

Data flow cycles. Each program within a multi-EVM environment fulfills its function in
a narrow spectrum of data inputs, and produces its outputs again, in relatively narrow
spectrum out of all possible outputs. For example a solver for “n-addition problem”
cannot be given different input than it expects, otherwise it will not work as an “n-
addition” problem solver. However, if the output of P1 is connected to the input of P2,
and the output of P2 to the input of P1, then we have a cycle. If the cycle keeps the data
flow within expected and desired ranges of values, we have an autocatalytic hypercycle.
Together with the actual programs they represent an autopoietic system.
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7 Self- rganisation by Means of Evolutionary Computation

7.1 Requirements

There are some inherit properties that the self-adaptive and self-organising software
system may exhibit. These properties facilitate effective processes to help and guide
evolutionary mechanisms. Our current EVM implementation facilitates some of these
properties.

Split and splice. It is desirable that different individual functional units are freely
manipulated. It means that one can put different components together, and then
split them apart, always producing valid functional units within the system. This is
supported by the EVM. Each program can be cut in the middle, and the parts will
always form valid programs. Programs can be joined together, always producing
valid programs. Actually, any sequence of integers is a valid program in a EVM.

Cyclic behaviour.All individual components of the software system must carry out their
activities in a cyclic manner. That means that the functionality is organised in such
a way that tasks are repeated over and over again so that tuning, self-organisation,
and adaptability can take place. If a given task were to be designed to be performed
only once, there would be no room for improvement, since the given component
would only have a single opportunity to perform.

Many agents on many levels. There are benefits from having many independent inter-
active components acting on many different levels. Reflection and recursion among
components can facilitate shorter and more robust solutions to given tasks performed
by components of the system. Some components will just perform tasks, some will
monitor others performing tasks and provide necessary feedback for improvement,
and others will improve the “improvers”, etc.

The system must be open to external signals. This simply means that the system has to
interact with the “outside”. A software system which does not exchange any infor-
mation with the environment “outside” the system itself cannot evolve into a more
complex system than the original one. Without being exposed to new information
the system can only refine itself, and is unable to acquire new capabilities. Such
information must be provided from the outside environment.

7.2 Evolving Recursive Virtual Machines

The field of evolutionary computation is mainly based on experimentation, and so far
it is primarily a trial and error approach. In light of all the advances in theoretical
computer science and given the conceptual framework of recursive virtual machines, it
is now possible to introduce a more systematic approach. Within EVM, each different
evolutionary system is an example of a virtual machine, each language is an example of a
different search space, and each system is an example of the interplay between different
aspects of the hierarchical organisation.

Probably one of the closest existing systems using the concept of a virtual machine
in the form of a hierarchy is the grammatical evolution system [28]. In this system, a
top-level search is performed on strings of integers. A string containing integers is fed
into a particular machine to produce a computer program coded in a particular language
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as output. This code is then fed as input to yet another machine, which in turn returns
a final result. Each of the levels is relative to the level below it; this relativity means
that the same top-level string of integers will produce a completely different result when
used in combination with another machine. The top-level machine accepting the strings
of integers is designed in such a way that it can “plug-in” to any possible second-level
machine, and the model will still work. This is a human designed feature, but it is inspired
by many naturally occurring phenomena. The multiple levels of indirect influences seems
to be the most powerful mechanism at work here.

Instead of designing such machines, and all the indirection levels, by hand, we believe
that with our approach this process can be automated, and the virtual machine suitable
for a particular class of problems can be discovered automatically.

7.3 Seeds and Solution Growing

Let us take a grammatical evolution system [28] as an example of the solution growing
concept. The solution for a problem at hand is effectively a proper hierarchy of machines
(in this case a BNF-encoded language grammar) and a string of integers as a symbolically
encoded solution, which we refer to as a seed. In the case of a grammatical evolution
system, the hierarchy of machines is designed by a human programmer before the search
for the proper seed is started. However, the hierarchy of machines needs to be discovered
as well. sought-after solution itself.

In general, the solution to the problem (finding a computer program) will be a hierar-
chy of machines together with the seed. The actual computer program is then generated
by feeding the seed through the system. In the case of grammatical evolution, speaking
informally, the generation process is (in order): feeding the string of integers, generating
the program listing, running the program for the given input, and then obtaining the final
solution. The given input in this case depends on the “outer-level” virtual machine.

It is, however, possible to change or modify the machine hierarchy just before gen-
erating the computer program. If the hierarchy of machines, their connections and the
initial states are subject to change, we refer to the process of generating a final solu-
tion as solution growing. In the case of searching for code, one can use the term code
growing instead. It is possible, by varying the hierarchy of machines, to grow a valid
solution from the same seed for a certain variation of the original problem. By simple
re-mapping, one can achieve exactly the same result by varying the structure of the seed
itself. This opens a new window of opportunities not yet used by the automatic code
generation techniques. Again, it is a very commonly occurring phenomenon in nature.

Formally the idea of code growing is based on the notions of bootstrapping and self-
application. This is analogous to more traditional compiler/interpreter bootstrapping and
self-application [13].

8 Summary

An architecture of dynamic hierarchically organised virtual machines as a self-organising
computing model has been presented. It builds on Turing-machine-based traditional
models of computation. The model provides some of the necessary facilities for open-
ended evolutionary processes in self-organising software systems. It allows stacking
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machines (vertical decomposition) in addition to more traditional functional hierarchical
decomposition models. It can be used as a more systematic approach to different code
generation techniques and self-adaptable software. Unlike existing models, the emerging
levels of organisation can be either modelled directly as individual machines or can be
indirectly captured for a formal analysis as a state of an individual machine.

Applications using the proposed architecture are possible and are planned as future
work. Also, the formal model presented here allows for the preparation of an opera-
tional definition of a living system. However, further formalization of the framework is
necessary, and is currently under investigation by the authors.
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Abstract. For Peer-2-Peer (P2P) networks to realize their full potential the 
nodes they are composed of need to coordinate and cooperate, to improve the 
performance of the network as a whole. This requires the suppression of selfish 
behavior (free-riding).  Existing P2P systems often assume that nodes will 
behave altruistically, but this has been shown to be far from the case. We 
outline encouraging initial results from a P2P simulation that translates and 
applies the properties of “tag” models (initially developed within social 
simulations) [8, 9] to tackle these issues. We find that a simple node rewiring 
policy, based on the tag dynamics, quickly eliminates free-riding without 
centralized control. The process appears highly scalable and robust. 

1   Introduction 

Open Peer-to-Peer networks (in the form of applications on-top of the internet) have 
become very popular for file sharing applications (e.g. Kazaa1, Gnutella2 etc). 
However, as has been shown [1] in such file sharing scenarios we find that a majority 
of users do not actually share their own files (they act selfishly). However, these 
networks are still popular because it only requires a minority to share high quality 
files for all to benefit - a small amount of altruism appears to be enough to support 
file-sharing applications. But what about P2P applications where high levels of 
altruism and cooperation are required (e.g. load balancing or cooperative routing)? 
How can selfish nodes to be discouraged? One solution is to have a closed system in 
which we can ensure that each node runs a particular peer application that is hard-
coded to be cooperative. But this option precludes the benefits of open systems. In 
open systems the protocols are open so any node that understands the protocol can 
participate. This allows for truly decentralized control and freedom for innovation 
(new nodes with new kinds of behavior may enter the network). A desirable goal 
would be to have a network that could self-organize and adapt to a variety of tasks 
such that each node would benefit from the shared resources (bandwidth, processing, 
storage etc) that other nodes could offer. 
                                                           
*  This work partially supported by the EU within the 6th Framework Programme under 

contract 001907 (DELIS). 
1  The Gnutella home page: http://www.gnutella.com/ 
2  The Kazaa home page: http://www.kazaa.com 
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In order to archive such a desirable goal, don’t we just need some very cleaver 
nodes? Or to put it another way, can we archive this goal “simply” by programming the 
peer nodes appropriately. Unfortunately there are some fundamental contradictions that 
need to be confronted when attempting to formulate how desirable collective action can 
be produced in open systems. We have to deal with the fact that each peer cannot make 
arbitrary a priori assumptions about the behavior of other peers. The assumptions (we 
can’t avoid all assumptions) need to be as general as possible without being useless. 
Historically these issues have been studied and theoretically formulated within the 
social sciences (particularly Sociology, Political Science and Economics) with 
application to human social systems. Of course it would be foolish to believe that a set 
of generally agreed assumptions (concerning human social behavior) that a majority of 
social scientists would subscribe to could ever exist. There are several reasons for this 
including the complexity of human systems, the changing nature of human social 
organizations and behavior, the essentially political status that ideas applied to human 
society tend to acquire (particularly when those ideas are used to justify social action) 
and the fragmented nature of social science methodology. However, in the context of a 
kind of “worst case” set of assumptions, for engineering nodes in a P2P, we argue for 
that nodes should be seen as: 

• In the network for what they can get out of it – selfish not altruistic 
• Modify their behaviors to maximize individual benefit 
• Have no (or limited) knowledge about other peers and the network in general 

These assumptions imply a further one. That peers have some mechanism of 
determining how much they are benefiting from the system. This obviously would 
depend on the task domain e.g. for file sharing it would be some measure of how 
quickly requested files were found and downloaded or for group computing it might 
be a measure of processing resource donated by others3.  

Given these assumptions one fundamental problem is how to ensure that common 
resources (the commons) are utilized unselfishly for the benefit of all [15]. In the 
context of a P2P network we can view each peer as offering a set of commons 
resources. That is, peers through their actions, may offer resources to others or may 
not. Conversely peers make use of the resources offered by others. The fundamental 
problem is that given peers with the above assumptions under what conditions would 
peers converge towards sharing (benefiting all) as opposed to selfishly taking 
resources but offering none.  

There are many possible ways to deal with these problems including the utilization 
of trusted 3rd parties, the generation and sharing of reputation information and 
behavioural strategies based on sanctions in future interactions [2]. However, in 
general such mechanisms demand high overheads in form of storage, processing and 
communication of information concerning on-going interactions and / or do not work 
in highly dynamic contexts where interactions will be predominantly with strangers. 
In its most condensed and abstracted form these kinds of scenario can be captured in 
the two player, single round Prisoners’ Dilemma game where players represent peers 
(see below). 
                                                           
3 It should be noted that in many real word task domains it is by no means clear what these 

measures might be. Certainly one can imagine situations in which no such simple measures 
could be determined. This would be particularly difficult for very delayed rewards. 
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Tags (see below) have recently been applied in these latter kinds of scenarios in the 
form of social simulations (with associated sociological interpretations - see [25]). 
Firstly, we will review relevant findings from the previous Tag simulations. Then we 
describe a simple simulation model of a P2P network and give some encouraging 
initial results. Finally we discuss the limitations of the model and the future direction 
we might take in order to address those limitations. 

Along the way we attempt to present the method by which techniques have been 
imported from one kind of simulation scenario to another. The focus of the previous 
models was not on solving engineering problems; neither did those models deal with 
networks so the translation process was not straightforward.   

2   What Are Tags? 

Tags are markings or social cues that are attached to individuals (agents) and are 
observable by others [17]. They evolve like any other trait in a given evolutionary 
model. The key point is that the tags have no direct behavioral implication for the 
agents that carry them. Through indirect effects (such as biasing of interaction), 
however, they can evolve from initially random values into complex ever changing 
patterns that serve to structure interactions between individuals. 

In the computational models presented here tags are modeled using some number 
(either a binary bit string, a real number or an integer). When agents interact they 
preferentially interact with agents possessing the same (or similar) tag value. One way 
to visualize this is to consider a population of agents partitioned between different 
colors. Each agent carries a single color. In a system with only three different possible 
tag values, we could think of this as each agent carrying a flag of red, green or blue. 
Agents then preferentially interact with agents carrying the same color (forming 
“interaction groups”). When agents evolve (using some form of evolutionary 
algorithm) they may mutate their tag (color). This equates to moving between 
interaction groups. 

In the models presented here, tags take on many possible unique values (by say 
using a real number, there are many possible unique tags rather than just 3 colors) 
however, the basic process is the same – agents with the same tags preferentially 
interact and tags evolve like any other genotypic trait. 

Another way to think of tags is that some portion of the genotype of an agent is 
visible directly in the phenotype but the other agents. In section 5 we give an outline 
algorithm of how tags are applied in a simple evolutionary system, firstly however, 
we introduce the Prisoners Dilemma game and some previous tag work. 

3   The Prisoner’s Dilemma 

The Prisoner's Dilemma (PD) game captures a scenario in which there is a 
contradiction between collective and self-interest. Two players interact by selecting 
one of two choices: Either to "cooperate" (C) or "defect" (D). For the four possible 
outcomes of the game players receive specified payoffs. Both players receive a 
reward payoff (R) and a punishment payoff (P) for mutual cooperation and mutual 
defection respectively. However, when individuals select different moves, differential 
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payoffs of temptation (T) and sucker (S) are awarded to the defector and the 
cooperator respectively. Assuming that neither player can know in advance which 
move the other will make and wishes the maximize her own payoff, the dilemma is 
evident in the ranking of payoffs: T > R > P > S and the constraint that 2R > T + S. 
Although both players would prefer T, only one can attain it. No player wants S. No 
matter what the other player does, by selecting a D move a player ensures she gets 
either a better or equal payoff to her partner. In this sense a D move can't be bettered 
since playing D ensures that the defector cannot be suckered. This is the so-called 
"Nash" equilibrium for the single round game. It is also an evolutionary stable 
strategy for a population of randomly paired individuals playing the game where 
reproduction fitness is based on payoff. So the dilemma is that if both individuals 
selected a cooperative move they would both be better off but both evolutionary 
pressure and game theoretical “rationality” selected defection. 

For a detailed treatment of the PD, its relationship to social and evolutionary 
science and a serious, original and thought provoking analysis of the evolution of 
non-suboptimal behavior from selfish interactions see [16]4. 

4   Previous Tag Models 

There have been a number of tag models implemented previously. All demonstrate 
higher-than-expected levels of cooperation and altruism from seeming selfish 
individuals. All implement evolutionary systems with assumptions along the lines of 
the replicator dynamics (i.e. reproduction into the next generation proportional to 
utility in the current generation, no “genetic-style” cross-over operations but low 
probability mutations on tags and strategies during reproduction). 

Riolo [22] gave results of expansive and detailed studies applying tags in a 
scenario where agents played dyadic (pair wise) Iterated Prisoner’s Dilemma games 
(IPD). Tags (represented as a single real number) allowed agents to bias their partner 
selection to those with similar tags (probabilistically). He found that even small biases 
stimulated high levels of cooperation when there were enough iterations of the game 
with each pairing. 

In Riolo et al [23] a tag model was applied to a resource-sharing scenario in which 
altruistic giving was shown to emerge. Agents were randomly paired (some number 
of times) and decided if to give resources or not. The decision to give was based on 
tag similarity mediated by a “tolerance gene” as well as the “tag gene” (both 
represented as real numbers). The utility to the receiving agent of any given resource 
was greater than to that of the giving agent. It was shown that if each agent was paired 
enough times in each generation and the cost / benefit ratio was low enough then high 
levels of cooperation were found. 

In Hales and Edmonds [12] tags were applied to a simulated robot coordination 
scenario producing high levels of cooperative help giving. 

In Hales [8] a tag model was applied to a single round PD. Again interaction was 
dyadic. Tags were represented as binary strings. Pairing  was  strongly  biased  by  tag  

                                                           
4 Also see information about he PD online at the wonderful “Principia Cybernetica Project 

website: http://pespmc1.vub.ac.be/PRISDIL.html 
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identity (rather than probabilistic similarity). In this model very high levels of 
cooperation were produced between strangers in the one shot game. A refinement of 
this model in [11] showed how the same result could be produce with tags represented 
as real numbers so long as the probability of mutation being applied to the tag is 
higher than that applied to the strategy (by about one order of magnitude). 

For the purposes of this paper we will now outline in a little more detail these latter 
models applied to the PD.  

5   Tags and the PD 

In [8] a model is presented of agents playing the PD in pairs in a population with no 
topological structure (other than tag based biasing of interaction). The mode is 
composed of very simple agents.  Each agent is represented by a small string of bits. 
On-going interaction involves pairs of randomly selected agents playing a single 
round of PD. Agent bits are initialized at random. One bit is designated as the PD 
strategy bit: agents possessing a “1” bit play C but those possessing a “0” bit play D. 
The other bits represent the agents tag.  These bits that have no direct effect on the PD 
strategy selected by the agent but they are observable by all other agents. Below is an 
outline of the simulation algorithm used: 
 
LOOP some number of generations 

LOOP for each agent (a) in the population 
Select a game partner agent (b) with the same tag (if possible) 
Agent (a) and (b) invoke their strategies and get appropriate payoff 

END LOOP 
Reproduce agents in proportion to their average payoff 
With low probability, mutate the tag and strategy of each reproduced agent 

END LOOP 
  

Agents are selected to play a single-round of PD not randomly but based on having 
the same tag string. If an agent can find an individual with the same tag string as its 
own in the system it will play PD against that agent. If it cannot then it plays against 
some randomly chosen partner. Agents are reproduced probabilistically in proportion 
to average payoff they received (using roulette wheel selection).  

Extensive experimentation varying a number of parameters showed that if the 
number of tag bits is high enough5 (in this case we found 32 tag bits for a population 
of 100 agents to be sufficient with a mutation rate of 0.001 and PD payoffs of T=1.9, 

                                                           
5 In a more recent model Hales (forthcoming) we demonstrate that the requirement for many 

tag bits was because this effectively increased the mutation rate applied to the tag as a whole 
(since mutation was applied to each bit with the same probability as mutation was applied to 
the single strategy bit). 

Self- rganising, Open and Cooperative P2P Societies – From Tags to Networkso



128 D. Hales 

 

R=1, P=S=0.00016) then high levels of cooperation quickly predominated in the 
population7. 

More interesting still, if all the agents are initially set to select action D (as opposed 
to randomly set) then the time required to achieve a system where C actions 
predominate is found to monotonically decrease as population size increases. This is 
an inverse scaling phenomena: the more agents, the better. Additionally the fact that 
the system can recover from a state of total D actions to almost total C actions (under 
conditions of constant mutation) demonstrates high robustness. The tag-based model 
produces an efficient, scalable and robust solution – based on very simple individual 
learning methods (modeled as reproduction and mutation).  

5.1   How Tags Work 

We have described this model because it seems to offer up a method for achieving 
three important properties in a simple (PD) task domain: efficiency, scalability and 
robustness. But how do tags produce this seemingly magical result? The key to 
understanding the tag process is to realize that agents with the same tag strings can be 
seen as forming a sort of “interaction group”. This means that the population can be 
considered as a collection of groups. If a group happens to be entirely composed of 
agents selecting action C (a cooperative group) then the agents within the group will 
outperform agents in a group composed entirely of agents selecting action D (a selfish 
group). This means that more agents will copy the behavior of cooperative groups 
than selfish groups. By copying the behavior and the tags of those who perform well, 
agents are essentially joining groups that are cooperative. However, if an agent 
happens to select action D within a cooperative group then it will individually 
outperform any C acting agent in that group and, initially at least, any other C acting 
agent in the population – here the T payoff is 1.9 where as the best a C acting agent 
can do is R = 1. 

However, by others copying such an agent (i.e. the agent reproducing copies of 
itself) the group becomes very quickly dominated by D acting agents and therefore 
the relative advantage of the lone D acting agent is lost – the group snuffs itself out 
due to the interaction being kept within the group. So by selecting the D action an 
agent destroys its group very quickly (remember groups are agents all sharing the 
same tag string). Figure 1 visualizes this group process in a typical single run. Each 
line on the vertical axis represents a unique tag string. Groups composed of all C 
action agents are shown in light gray (Coop), mixed groups of C and D agents are 
dark gray and groups composed of all D are black. 

The tag mechanism, then, precipitates a kind of “group selection” process in which 
those groups which are more cooperative tend to predominate but still die out as they 
are invaded by mutant D acting agents. In a real sense the groups compete for 
resources despite the fact that evolution only occurs at the individual level and the 
agents don’t even know they are in such a group. In this system, the agents don’t die, 
just the particular groupings (based on sharing the same tag string) change. By 
                                                           
6 P and S were set to the same small value for simplicity. If a small value is added to P 

(enforcing T > R > P > S) results are not significantly changed. 
7 If tags are removed from the model and pairing for game playing is completely random then the 

population quickly goes to complete defection (the Nash equilibrium for the single-round PD). 
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constantly changing tag strings (by reproduction of those with higher utility) the 
agents produce a dynamic process that leads to high levels of C actions.  In other 
words, the population as a whole contains a lot of cooperation occurring within a 
constantly changing system of groups, even though each agent is acting without any 
knowledge of the group structure and there is no central coordination of the groups. 
Typically cooperative interactions in the model reach over 90% of all interactions 
(over 100,000 cycles). 

 

 
Fig. 1. Visualization of 200 cycles (generations) from a single simulation run showing 
cooperative groups coming into and going out of existence. See the text for a full explanation 

6   From Tags to Networks 

The underlying mechanism driving cooperation within the tag simulation is the 
formation and dissolution of sharply delineated groups of agents (identified by 
sharing the same tag). Each agent could locate group members from the entire 
population. Each member of the group had an equiprobable chance of interacting with 
any agent in the population sharing the same tag. In this sense each agent could 
determine which agents were in their group. 

If we assume a sparse P2P network in which each node (peer) knows of some small 
number of other nodes (neighbors) and those neighborhoods are highly interconnected 
(clustered) such that most neighbors share a large proportion of other neighbors then we 
have something similar to our tag-like groupings. Instead of a tag (a marker) we have an 
explicit list of neighbors. In a highly clustered network the same list will be shared by 
most of the neighborhood. In this sense you can visualize the table of known peers 
stored in each agent (its neighbors) as the tag.   It is shared by the group and is the key 
by which the group can directly interact with each other. To this extent it defines a 
group boundary. A nice feature of this also is that it is a kind of watertight method of 
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isolating nodes into neighborhoods (for direct interaction) since a node cannot go 
directly interact with another node that it does not know of.  

In our initial model we did not restrict the size of the neighborhood (i.e. networks 
could be non-sparse) but we wired the initial network topology as “small world” (i.e. 
highly clustered regular lattice but with random rewiring with low probability – see 
[27]). Also we set the tag mutation probability (changing the neighborhood to a single 
randomly chosen neighbor) to an order of magnitude higher than the strategy 
mutation probability (flipping the strategy bit). We found later that we did not need to 
wire a small world and that any initial wiring self-organized to high clustering over 
time. Sparse random wiring was finally chosen for simplicity. 

We investigate only direct interactions between neighbors in this model. In a sense 
this is all that can ever happen in P2P systems. Indirect interactions between nodes 
that do not share neighborhoods have to mediate by direct interactions between 
intermediate nodes. Essentially, one can view all interaction as with neighbors (even 
if those neighbors are actually proxies for other more remote nodes). If cooperation 
can be established between the majority of neighborhoods in a network then it follows 
that any pair of nodes in the network that are connected will have a good chance of 
being able to find a path of cooperation through the network. 

In order to capture this kind of neighborhood interaction in the simplest possible 
way we have each node in the network play a single round of PD (see above) with a 
randomly chosen neighbor. No information is stored or communicated about past 
interactions and the topology is not fixed (see below). 

6.1   Neighbor Lists as Tags, Mutation as Movement 

In the tag model change was produced over time by mutation and differential 
reproduction based on average payoff. How can these be translated into the network? 

In our network model we do not view nodes as “reproducing” in a biological sense 
or cultural sense. However, it is consistent with or initial assumptions (see above) that 
nodes may relocate to a new neighborhood in which a node is performing better than 
itself. That is, we assume that periodically nodes make a comparison of their 
performance against another node randomly chosen from the network8. Suppose node 
(i) compares itself to (j). If (j) has a higher average payoff than (i) then (i) disregards 
its neighbor list and copies the strategy and neighbor list of (j) also adding (j) into the 
list.  This process of copying can be visualized as movement of the node into the new 
neighborhood that appears more desirable. 

Mutation in the tag model was applied after reproduction. Each bit of the tag and the 
strategy was mutated (flipped) with low probability. Since we are using the same one bit 
strategy we can apply mutation to the strategy in the same way. We therefore flip the 
strategy bit of a node with low probability immediately after reproduction (the 
movement to a new neighborhood as described above).  Since we treat the list of 
neighbors in each node as the tag a mutation operation implies changing the list is some 
way.  But we can’t simply randomly change the list; we need to change the list in such a 
way as to produce an effect with closely follows what happens when mutation is applied 
in the tag model. In that model, tag mutation tended to give agents unique tags – i.e. tags 
                                                           
8
 Currently we do not model the process of finding this “out-group” node. We assume that the 
network could provide the service – but this might be a problem (see conclusion). 
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not shared by other agents at that time. However, in the model agents could interact with 
a randomly chosen agent with non-matching tags if none existed with identical tags. In 
this way tag mutation lead to the founding of new tag groups. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. An illustration of “replication” and “mutation” as applied in NetWorld. Shading of 
nodes represents strategy. In (a) the arrowed link represents a comparison of utility between A 
and F. Assuming F has higher utility then (b) shows the state of the network after A copies F’s 
links and strategy and links to F. A possible result of applying mutation to A’s links is shown in 
(c) and the strategy is mutated in (d) 

In the network model we don’t want to isolate the node completely from the 
network otherwise it will not be able to interact at all. However, we don’t want to 
move into an existing neighborhood (as with reproduction) but rather to do something 
that may initiate the founding of a new neighborhood. So we pragmatically express 
tag mutation as the replacement of the existing neighbor list with a single neighbor 
drawn at random from the network. 

We now have our analogues of reproduction and mutation for the network model. 
Reproduction involves the nodes copying the neighbor lists and strategies of others 
obtaining higher average scores. Mutation involves flipping the strategy with low 
probability and replacing the neighbor list with a single randomly chosen node with a 
low probability (see figure 2). In the next section we outline out new network model – 
NetWorld9.  

7   The NetWord Model  

The NetWorld model is composed of a set N of nodes (or peers). Each node stores a 
list of other nodes it knows about (we term this the neighbor list). In addition to the 
                                                           
9 There are many other ways tags could be translated into networks. For example, agents could 

move around the network between nodes carrying tags or agents sharing a node could be seen 
as sharing a tag. We hope to explore some of these variations in the future. 

Self- rganising, Open and Cooperative P2P Societies – From Tags to Networkso



132 D. Hales 

 

neighbor list each node stores a single strategy bit indicating if it is to cooperate or 
defect in a single round game of the PD. Neither the strategy bit nor the list is 
normally visible to other nodes. Initially nodes are allocated a small number of 
neighbors randomly from the population. Periodically each node selects a neighbor at 
random from its list and plays a game of PD with it. Each node plays the strategy 
indicated by its strategy bit. After a game the relevant payoffs are distributed to each 
agent. Periodically pairs of randomly chosen nodes (i, j) compare average payoffs. If 
one node has a lower payoff then the strategy and neighbor list from the other node is 
copied (effectively moving the lower scoring node to a new neighborhood).  Mutation 
is applied to both the strategy and the neighbor table with probability m. Mutation of 
the strategy involves flipping the bit. Mutation of the neighbor list involves clearing 
the list and replacing it with a single randomly chosen node from the population. 
Below is an outline of the NetWorld simulation algorithm: 

 
LOOP some number of generations 

LOOP for each node (i) in the population 
Select a game partner node (j) randomly from neighbor list 
Agent (i) and (j) invoke their strategies and get appropriate payoff 

END LOOP 
Select N/2 random pairs of nodes (i, j) 
Copy higher scoring node into lower scoring node 
Apply mutation to tag and strategy of each reproduced node with probability 
m 

END LOOP 
 
The neighbor lists are limited in size to a small number of entries. The entries are 
symmetrical between neighbors (i.e. if node (i) has an entry for node (j) in its list then 
node (j) will have node (i) in its list). If a link is made to a node that has a full 
neighbor list then it discards a randomly chosen neighbor link in order to make space 
for the new link. Also if a node is found to have no neighbors when attempting to play 
a game of PD (this can happen if neighbors have moved away) then a randomly 
chosen node is made a neighbor.  

7.1   Initial Results 

Figure 3 gives some initial results. In these experiments the mutation rate m = 0.001 
and the PD payoffs were as per the previously described tag model (see above). In all 
the results given here we start he population from complete defection and wired the 
initial network topology by given each node a fixed small number of links to 
randomly chosen nodes .  
    We tried increasing the mutation rate applied to the tags (i.e. the neighbor list) by 
an order of magnitude and this reduced the time to cooperation an increased the 
scalability. Over all sensible parameter values so far tried we have found extremely 
encouraging results. Of particular surprise was the speed of convergence to high 
cooperation.  Even when N=105 and all nodes were initially started with D (defect) 
strategies it took only approximately 140 cycles on average to achieve 99% of nodes 
utilizing the C (cooperate) strategy. 
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Fig. 3. Charts show initial results from the model. The top charts show the time taken in cycles 
for the network to reach a state where 99% of nodes are cooperators for different sizes of 
network. Each dot is an individual run. In the right chart mutation on the neighborhood (tag) is 
10 times that on the strategy.  The bottom left chart shows extended results on a log scale. The 
bottom right chart shows a typical single run time series (with a 10,000 node network) 

We hoped to find the reverse scaling cost and differential mutation characteristics 
identified in previous non-network based tag models [8, 11]. The reverse scaling does 
not appear to be present. The application of differential (higher) mutation on tags 
(neighbor tables), appears to bring the upper-bound (of time to cooperation) down to 
log(nodes) improving scalability. As stated previously, we did not find that the initial 
form of the network made much difference to the results. Even starting the network 
fully connected or completely unconnected (all with no links) did not change our results 
significantly. This seems to suggest a high level of robustness – something we are 
interesting in achieving. Again much more experimentation and analysis is needed. 

8   Discussion and Related Work 

Only after our network translation of tags as the dynamical rewiring of the network 
(as nodes seek to improve their neighborhoods) did we realize the wealth of material 
that becomes relevant. Specifically our model now bears a very close comparison 
with that given by Zimmermann et al [28]. Zimmermann et al start with a network 
that is interpreted as representing a social network (it’s a social simulation). Agents 
play PD with all their neighbors at each time step. Defecting agents then selectively 
replace existing links to other defectors with randomly chosen nodes (this is done 
probabilistically). They find steady states (of high cooperation) in which long chains 
of cooperators are formed in which founder “leader” nodes are highly important to 
stability. Prior to steady states there are oscillations in the levels of cooperation. They 
use synchronous updating throughout and do not include noise (in the form of 
spontaneous change of strategy) in most of their analysis. However they do study the 
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effect of a single noise event on significant nodes (they call leaders) and show that in 
their model even a single mutation event (changing the strategy of a single node) can 
completely wipe out cooperation in the entire network for many cycles. This is one of 
the major findings of the model, that the steady states become highly sensitive to 
changes in single key nodes. They also find that their network when in the steady 
state tends to be highly disconnected leading to a number of component sub-networks 
forming. In their model the network was populated with 60% cooperative agents.  
Since they have no spontaneous adaptation or noise on strategies their model would 
never escape from a global minima of all nodes defecting. So although the models are 
very similar theirs has several properties that we would want to avoid in our model10 
such as not being able to recover from total defection and the high sensitivity of the 
network to the behavior of a very small number of “leaders”.  Additionally in their 
model agents needed a little more local information (i.e. the strategies of the other 
agents so they could preferentially break links). 

The fitness related preferential rewiring in our model obviously has linkages with 
the preferential linking ideas expressed by Barabási [3]. In subsequent 
experimentation with our model we hope to characterize the kinds of networks that 
are being formed over time. It will be of interest to compare these to the kinds of 
naturally occurring networks and rewiring methods that have been studied by 
Barabási. We hope that we may be able to utilise these theoretical and empirical 
contributions to increase understanding and efficient of our model with respect to 
tougher task domain. 

It should be mentioned that Watts [27] looked at the results of playing the repeated 
PD game (rather than the single round game) on various fixed network topologies. 
Reproduction of strategies was within the local neighborhood. Various repeated 
strategies were tested. On the whole no the simulation results presented showed that it 
was difficult to get cooperation to dominate the network even with repeated strategies 
like tit-for-tat as popularized by Axelrod  [2]. He found that some kinds of fixed small 
world networks could help sustain cooperation.  

Interestingly Cohen et al [4] examined the results of extensive experimentation 
where both tags and networks (fixed random) were examined for their contribution to 
promoting cooperation in a PD scenario. Again only the repeated game was examined 
(not the single round game). However, they did not combine tags and networks but 
rather compared independent simulations. 

A recent paper of Sun & Garcia-Molina [21] applies “incentives” within a simulated 
P2P file-sharing scenario in order to encourage selfish nodes to share resource. Their 
model relies on repeated interaction with nodes updating weights between on links to 
neighbors.  Although they have not yet tested their system in a evolving environment, 
they don’t require utility comparison between nodes since nodes simply update their 
weights based on service gained and then share out service supplied proportionate to 
weight (a kind of tit-for-tat [2]). This means that a selfish node quickly gets less and less 
service from it’s neighbors. In future work we hope to apply the query scenario given by 
Sun & Garcia-Molina to our more dynamic scenario. 

                                                           
10 However, we found it intriguing to consider if we would have reached a similar model to 

NetWorld if we had started with the Zimmermann et al model and attempted to make it more 
robust.  
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9   Conclusion 

At this early stage our conclusion contains more questions than answers. However, 
the basic result of these initial experiments is that high-levels of cooperation can be 
produced and sustained in very large P2P by following this simple re-wiring and 
mutation scheme inspired by results from previous tag models. It appears we have 
been successful in importing the tag like dynamics into the network. 

As stated previously these are preliminary results from a preliminary model and 
there are a number if outstanding issues before we can refine the model to incorporate 
more realistic P2P-like conditions. For example, we don’t model the maintenance of 
up-to-date neighbour tables in the face of unstable links and nodes. Neither do we 
model the underlying process of finding random nodes in the network. This shortcut 
needs to be modeled using the P2P itself to supply new such nodes for the purposes of 
reproduction and mutation. What would be important here would be to find an 
efficient scalable way (probably therefore non-uniformly random) to supply nodes 
that allowed cooperation to form. We hope to test our results on a simulated version 
of something like NEWSCAST [18] - a highly robust and scalable P2P infrastructure. 

We have yet to properly analyze the dynamics in the model. What kinds of 
networks topologies are being formed? We currently don’t know how average path 
lengths, clustering and other topological features of the network evolve over time. It 
may even be the case the network regularly breaks into a number of disconnected 
components11. This would be serious problem if such breaks persist and are numerous 
since this would limit the possible size of the P2P network. All we currently know is 
that when cooperation is low the average degree of each node (size of the neighbor 
list) is near maximum but is lower when cooperation is high. This does not tell us too 
much. 

The PD task domain although useful is a rather impoverished task domain. As an 
initial proof of concept it shows that at least some kinds of social dilemma can be 
solved. But the behaviors (PD strategies) and coordination required is trivial 
(although the dilemma itself is not trivial). We would therefore like to extend the 
simulation model to include more realistic kinds of task such as those requiring the 
coordination of a number of peers performing specialized functions. 

A more important general issue raised by this kind of work12 (in the context of 
applying models originating in the assumptions of evolutionary theory) is the 
assumption that all nodes behave as bounded optimizers. In our model we do not 
allow for nodes that simply “whitewash” (i.e. never adapt but just defect) or nodes 
that don’t move, or worse nodes that move very fast but never adapt their strategy. 
This assumption does not hold in many situations and we need to explore alternative 
mechanisms to make model robust to these possibilities. 
                                                           
11 Very recent work (since the first review of this paper) does indeed show that the network 

regularly breaks into disconnected components – which raises issues of if this mechanism 
would support long range routing tasks. However, the network is in constant flux (in a 
similar way to the groups in figure 1) with cliques forming and dissolving so this may be 
possible over some temporal window.  

12 And pointed out by a perceptive reviewer of the initial draft of this paper! 
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Abstract. We present a programming approach to let a multitude of simple 
mobile computational “particles” (i.e. sorts of tiny mobile robots) to self-
organize their respective locations to assume a coherent global formation (i.e. 
shape). The problem has a variety of applications in mobile robotics, modular 
robots, sensor networks, and computational self-assembly. Here we show how 
the TOTA ("Tuples On The Air") middleware can be effectively exploited to 
enable self-organization of spatial shapes in mobile particles with minimal 
capabilities. The key idea in TOTA is to rely on spatially distributed tuples, 
spread across the network, to  drive particles’ movements and activities. Several 
experiments are reported showing the effectiveness of the approach.  

1   Introduction 

In the near future, micro-electro-mechanical systems will be embedded in the fabric of 
our everyday life. They will be able to interact with the physical world to provide an 
endless range of activities and services. In this perspective, we envision the possibility 
of exploiting these technologies to build sorts of multi-cellular computational 
organisms, made up of millions of interacting autonomous computational particles, 
capable of assembling and dynamically re-assembling themselves into a variety of 
complex shapes (as the T1000 robot in the Terminator 2 movie).  

Although the hardware technology for these kinds of scenarios is rapidly maturing, 
software engineering practices have remained more or less the same since structured 
design and distributed programming methodologies were introduced: components are 
coupled at design time by fixed interaction patterns. Although simple, this approach 
turned out to be really brittle and fragile, not being able to cope with reconfiguration 
and faults. On the contrary, application components should be able to coordinate their 
activity patterns autonomously at run-time, despite, and possibly taking advantage, of 
environment dynamics and unexpected situations. 

In general, the critical task is to identify appropriate (self)organization principles 
and programming methodologies for controlling the overall behavior of such complex 
systems. In particular, our goal is to study how and to which extent a group of simple 
mobile autonomous particles can be programmed to coordinate their respective 
movements and create variety of global shapes. Apart from futuristic nano-technology 
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scenarios such as computational self-assembly [12] and the T-1000 vision, such a 
problem has more practical short-term applications, e.g. coordinate the movements of 
navigator-equipped cars or that of a PDA-equipped rescue team [10], enforcing self-
deployment of sensor networks [4] and robots in a landscape [1, 5]. 

Biological organisms, achieving coherent, reliable and complex behavior from the 
local cooperation of large numbers of identically “programmed” cells, are of course 
the most natural source of inspiration for all these kinds of problems. In particular, the 
diffusion of chemicals among cells and the possibility for cells to be driven in their 
behavior by the locally sensed gradients of diffused proteins (“morphogen gradients”) 
[3], due to its simplicity, seems suitable for applications to the problem of pattern 
formation in simple computational particles. 

In our research, we developed a general purpose middleware called “Tuples On 
The Air” (TOTA). TOTA is an extremely lightweight middleware suitable for 
resource limited devices. TOTA provides abstractions and mechanism to support the 
creation of distributed overlay data structures spread across a mobile network. Such 
overlay data structures have the property of self-maintaining their intended 
distribution despite network dynamism (due to nodes connections, disconnections and 
movements).   

TOTA tuples can easily resemble morphogen gradients in a network of mobile 
particles and thus the abstractions promoted by TOTA seem very suitable to manage 
the spatial self-organization in an ensemble of mobile particles. 

A large number of papers deal with pattern formation in mobile robots [1, 5, 17, 
19], and some exploit approaches somewhat similar to the one of morphogen 
gradients [12, 16, 18]. The key contribution here is to show how a variety of patterns 
(from regular to non-regular ones, also involving differentiation in particles) can be 
achieved even in the absence of those capabilities (e.g., global perception, distance 
and direction sensing) that are required by most other approaches. 

This paper is organized as follows. Section 2 overviews the key characteristics of 
the TOTA middleware. Section 3 introduces the main steps required to let the robots 
self-organize their activities and arrange in specific global shapes. Section 4 presents 
several examples of global shapes we had been able to achieve. Section 5 discusses 
related works. Finally, Section 6 concludes and outlines future works.  

2  The Tuples on the Air Approach 

TOTA is composed by a dynamic ad-hoc wireless network of possibly mobile nodes, 
each running a local version of the TOTA middleware.  

 Upon the distributed space identified by the dynamic network of TOTA nodes, 
each peer is capable of locally storing tuples [6] and letting them diffuse through the 
network. Tuples are injected in the system from a particular node, and spread hop-by-
hop accordingly to a specified propagation rule. Specifically, in TOTA, overlay data 
structures have been realized by means of distributed tuples T=(C,P), characterized by 
a content C and a propagation rule P. The content C is an ordered set of typed fields 
representing the information carried on by the tuple. The propagation rule P 
determines how the tuple should be distributed and propagated in the network. This 
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includes determining the “scope” of the tuple (i.e. the distance at which such tuple 
should be propagated and possibly the spatial direction of propagation) and how such 
propagation can be affected by the presence or the absence of other tuples in the 
system. In addition, the propagation rules can determine how tuple content should 
change while it is propagated to actually create distributed data structures. 

The spatial structures induced by tuples propagation must be maintained coherent 
despite network dynamism. For instance, when new nodes get in touch with a 
network, TOTA automatically checks the propagation rules of the already stored 
tuples and eventually propagates the tuples to the new nodes. Similarly, when the 
topology changes due to nodes’ movements, the distributed tuple structure changes to 
reflect the new topology (see figure 1).  

Given these features, as it will be better described in the next sections, TOTA 
tuples are particularly suitable in implementing distributed data structures mimicking 
morphogen gradients. 

From the application components’ point of view, executing and interacting 
basically reduces to define and inject tuples in the network (inject method) and to read 
local (read method) and one-hop neighbor (readOneHop method) tuples via a pattern-
matching mechanism. TOTA provides a compact API to perform these operations.  

From an implementation point of view, we developed a first prototype of TOTA 
running on Linux IPAQs equipped with 802.11b WLAN and Java (J2ME, CDC, 
Personal profile). Moreover, we have implemented an emulator to analyze TOTA 
behavior in presence of hundreds of nodes.  

In this paper we used the TOTA emulator to identify and test several algorithms to 
let a group of nodes, mimicking the mobile particles, to self-organize their spatial 
distribution. Further details on the TOTA middleware can be found in [11]. 
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Fig . 1. The general scenario of TOTA: application components live in an environment in 
which they can inject tuples that autonomously propagate and sense tuples present in their local 
neighborhood. The environment is realized by means of a peer-to-peer network where tuples 
propagate by means of a multi-hop mechanism 
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3   Self- rganize Spatial Shapes with TOTA 

In this section, we first describe our model for particles and how they can exploit 
morphogen gradients towards pattern formation. Then we present related approaches 
and possible objections to our model. 

3.1   Mobile Particles  

To be “compliant” with foreseeable future micro and nano computer-based scenarios, 
we focus on particles with minimal capabilities. Specifically: 

1. Particles are autonomous (i.e. have a separate thread of execution and control) 
and are equally programmed (i.e. they run the same code). Differentiation in their 
activities – if needed – must be established run-time on the basis of the data (e.g. 
morphogen gradients) they perceive. 

2. In any case, each particle is provided with a random number generator enabling 
an additional simple form of symmetry breaking and particle identification. 

3. Each particle is provided with the TOTA middleware enabling it to inject tuples 
across the network and to receive tuples sent by other particles. Tuples also 
enable each particle to know how many other particles are in its neighborhood 
(e.g. each periodically broadcasts “I am here” messages) to estimate the local 
density. 

Particles do not have other capabilities other than the ones listed before. In particular: 
4. They do not perceive the location (neither direction nor distance) of other 

particles, they do not have any kind of long range communication mechanism, 
nor a global accessible data space. In other words, although a particle can 
perceive how many particles are in the neighborhood, it can neither perceive in 
which direction and at which distance is a specific particle.  

5. They do not have any notion of time and cannot rely on any global 
synchronization mechanism. 

3.2   Morphogen Gradients 

To let a swarm of mobile particles to self-organize into a global shape we took 
inspiration from biological morphogenesis. Morphogenesis is one of the major 
outstanding problems in the biological sciences. It concerns the fundamental question 
of how biological form and structure is generated starting from an immense number 
of biological cells. A mechanism common throughout embryo development and 
recognized as of primary importance towards morphogenesis is the use of morphogen 
gradients to determine positional information and polarity of cell. For instance, in the 
Drosophilae embryo, cells at one end of the embryo emit a morphogen (protein) that 
diffuses along the length of the embryo. The concentration of this morphogen is used 
by other undifferentiated cells to determine whether they lie in the head, thorax or 
abdominal regions. Different morphogens are used to determine the dorsal-ventral 
axis, wing development, and even leg bristle polarity.  

Self- rganizing Spatial Shapes in Mobile Particles: The TOTA Approacho
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Reproducing morphogen gradients in a network of short-range wirelessly 
interacting particles provided with the TOTA middleware is dramatically simple. A 
“source” particle can inject in the network a TOTA tuple that propagates across the 
network by increasing its content hop-by-hop. In the following, we will use the term 
morphogen gradients or simply gradients for this kind of tuple. The above very 
simple tuple can be used in powerful ways to influence the local activities of particles: 

1. Leader Election  Gradients can be used to elect leaders in the group. Randomly 
elected leaders could propagate ‘leader’ gradients through the network inhibiting 
others to become leaders on their turn [12].  

2. Region Selection: TOTA tuples can also specify in their propagation rule the 
maximum number of hops they are allowed to travel. If a leader particle 
propagates a gradient of this kind, it can create (approximately circular) regions 
of controlled size, and have other cells recognize their being in a specific circular 
region (by reading the gradient value). We outline that if the gradient value is 
incremented by one at each step, it provides an estimate of distance from the 
source: a perceived value of n steps implies a distance nr from the source, where r 
is the wireless communication range of particles. The quality of this estimate 
depends on the density of particles [13].  

3. Coordinate System: Gradients can be used to self-organize coordinate systems. 
Particles, in fact, can recursively evaluate their coordinates by triangulating the 
distances – expressed by means of gradients – from elected beacons [13]. 

4. Communication: Gradient can be used to broadcast messages to other particles 
and, by having these messages follow other gradients previously laid down, 
effective routing mechanism can be enforced [11,14]. 

5. Driving Motion: if a particle can perceive the local slope of any gradient, it can 
also move following gradients uphill, downhill or along equipotential lines [2, 10, 
12]. Moreover, since gradients are automatically update to reflect network 
movements an eventual driving direction will remain consistent despite network 
topology changes. With this regard, it is worth noting that since particles do not 
perceive other particles location, they do not perceive in which direction a 
perceived morphogen gradient decreases. To follow it downhill, a particle has to 
randomly wander until it perceives the gradient is going in the correct direction 
(i.e., the gradient it was following downhill is now perceived with decreased 
value). 

From a methodological viewpoint, particles exploit the TOTA middleware and TOTA 
tuples to self-organize their respective positions in space. In particular, starting from 
any spatial configuration of particles:  

1. particles can inject a TOTA tuple implementing some morphogen gradients; 
2. particles react to locally perceived TOTA tuples by trying to follow gradients 

downhill/uphill (in a random way, as specified in the point 5 above), or by 
changing their activity state possibly depending on the perceived value of the 
tuples; 

3. changes in the activity state of particles can lead to inhibiting the propagation of 
some TOTA tuples and/or to the diffusion of new types of tuples in the system, 

:
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leading back to point 1. One can then apply this process several times, with new 
types of tuples being propagated in different phases, so as to incrementally have 
particles self-organize into the required shape. 

4   Experiments 

Here we present a set of experiments of pattern formation exploiting the morphogen 
gradients approach. The experiments have been performed on the TOTA emulator 
already introduced. In the experiments, we assumed that particles have a certain 
physical size and cannot cross through each other.  

4.1   Barycenter 

In this example, starting from a random distribution of particles, a sort of distributed 
leader election algorithm is executed to identify the particle closest to the barycenter, 
i.e., the “center of gravity”, of the whole system. Specifically, given n particles, the 
barycenter is that particle that minimizes the sum of the distances from the n particles. 
We remark that “leader” means a particle that has differentiated its behavior  on the 
basis of its local properties or its perceived gradients and not because it has particular 
capabilities. 

Detecting the barycenter of the system is very important for pattern formation, in 
that it identifies a reasonable point to refer to start subsequent shape formation 
activities. Morphogen gradients, expressing the approximate distance from their 
respective sources,  enable the definition of a simple algorithm for the identification 
of the barycenter.  

The algorithm:  Each  and  every  particle  propagates  a BARYCENTER gradient 
whose value increases by one at each step. Each particle senses BARYCENTER 
gradients propagated by all the other particles as they arrive, and adds their values 
together, call the resulting value totGradients. totGradients is the sum of distances 
from all the other particles. Therefore, the particle having the minimum totGradients 
is the barycenter. Since totGradients decreases monotonically to the barycenter, each 
particle can understand whether it has totGradients minimum or not, by simply 
comparing its value with the neighbors’ ones. If no neighbors have a lower value of 
totGradients, the particle is the barycenter. 

We emphasize the algorithm does have a well-defined termination point. Simply, 
each particle keeps on waiting for the income of new BARYCENTER gradients, to 
evaluate over and over whether it is the barycenter or not. Eventually, the algorithm 
converges, and particles will no longer receive any new gradient. The evolution of a 
sample simulation of the barycenter election algorithms is reported in Figure 2. In this 
figure (as well as in following simulation figures). It can be noted that, during the 
process, some particles may temporarily recognize themselves as barycenter. 
However, eventually, a single barycenter remains. 

Slight modifications to the algorithm can be defined to elect two particles aligned 
around the barycenter at a specific distance from each other, as well as to identify 
particles on the border of the structure. 

Self- rganizing Spatial Shapes in Mobile Particles: The TOTA Approacho
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a) b)  c)   

Fig. 2. Different stages of the establishment of the barycenter in a cloud of randomly 
distributed particles. As the system evolves, some particles (in black, rounded) may temporarily 
consider themselves the barycenter. Eventually,  a single barycenter is left 

// sum of distance evaluated up to now 
totCount = 0 
// number of gradients received 
totGrad = 0 
// inject tuples to rend variables  
// visible to neighbors 
tota.inject(new Tuple(“count”, totCount)) 
tota.inject(new Tuple(“tot”, totGrad)) 
// inject distance tuple 
tota.inject(new Gradient(uniqueNumber))   
readLabel: 
Vector readV = tota.read(new Gradient()) 
if readV.size() != totGrad  

totGrad = readV.size() 
tota.inject(new Tuple(“tot”, totGrad))  

   goto readLabel; 
else  

// read other totGrad  
Tuple otherTotGrad = new Tuple(“tot”) 
Vector ot = tota.readOneHop(othetTotGrad) 
for every i in ot 
   if totGradient!=ot[i].totGrad 

       goto readLabel; 
     end if 

end for  
end if  
// Have received all the gradients 
totCount = sumOfGradientsValue(readV)  
for every node in neighbor  

if neighborTotCount < totCount  
     return NOT_BARYCENTER  

end if  
end for  

  return BARYCENTER  

Fig. 3. Pseudo-code of the barycenter algorithm 

In the followings, to ground the discussion, we will provide a pseudo-code 
implementation of the discussed algorithms. Pseudo-code has been chosen to avoid 
the verbosity of real code and converting it in java should be straightforward. In the 



  145 

 

pseudo-code we put in boldface the instructions accessing to the TOTA middleware 
to highlight its role (see figure 3).  

4.2   Circle 

In this example particles run a distributed algorithm to assume a circle shape. 

The Algorithm :  Each particle  runs the  barycenter  algorithm described in  the 
previous section. The resulting barycenter particle will serve as the circle center. This 
particle propagates a CIRCLE gradient which increases its value by one at each step. 
All the other particles sense the gradient. If they sense a value greater than R 
(intended circle radius) they move along the decreasing propagation direction of the 
CIRCLE gradient. Eventually, all particles outside the intended circle radius will 
collapse toward it. 

We want to remark that, as stated in Section 2, our particles cannot sense in which 
directions a gradient decreases. Therefore, a particle have to randomly chose a 
direction to move and, if the particle senses that the gradient of interest does not 
decrease – wrong guess – it can simple invert its direction. The key drawback of this 
technique is that it makes it possible for some particles to get lost, i.e., get 
disconnected from the network without any further information about where the rest 
of the particles are. However, since these unlucky events are extremely rare, and since 
individual particles are not important, this causes no harm. 

a) b) c)  

Fig. 4. Different stages of the circle formation. As the barycenter starts propagating the circle 
gradient, some particles (in black) already recognize themselves as being at the correct distance 
from the center and do not move; the other particles gradually collapse toward the circle 
circumference 

if particle == BARYCENTER 
    tota.inject(new Gradient(“CIRCLE”))   
end if 
while(1) 
    Vector readV = tota.read(new Gradient(“CIRCLE”)) 
    Tuple circle = readV[0]; 
    if circle.value > R  

          moveDownhill(circle)  
      end if 

end while 

Fig. 5. Pseudo-code of the circle algorithm 

Self- rganizing Spatial Shapes in Mobile Particles: The TOTA Approacho
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The pseudo code of the circle algorithm is in Figure 5. Also in this case, the 
algorithm does not end: simply, the particles that found themselves inside the circle 
will stop moving. The result of a sample simulation is in Figure 4. 

It is important to note that, despite the fact that during the execution of the 
barycenter algorithm some particles may temporarily consider themselves the 
barycenter, this causes not harm to the circle algorithm. Simply, these particles will 
temporarily diffuse a spurious CIRCLE gradient. 

As an additional note, we emphasize that the execution of the circle algorithm in 
the presence of two barycenter enables the forming of elliptic shapes. 

4.3   Ring 

In this example, particles run a distributed algorithm, simply extending the circle one, 
to cooperatively assume a ring shape.  

The Algorithm.  Once the barycenter algorithm has run, and  the  CIRCLE  gradient 
has been propagated, the particles on the circumference (i.e. those perceiving the 
CIRCLE gradient with value R) start propagating a RING gradient which increases its 
value by one at each step. This RING gradient, which also propagates to the inner 
parts of the circles, attracts particles towards the circumference, thus emptying the 
inside of the ring. The thickness of the ring can be tuned by having particles stop 
following the RING gradient when it reaches a value of T, where T will consequently 
be the thickness. 

The pseudo code of the ring algorithm is in Figure 7. The result of a sample 
simulation is in Figure 6. 

As for the case of the circle, we outline that by executing the ring algorithm in the 
presence of two barycenter “8”-like shapes can be obtained. 

a) b) c)  

Fig. 6. Different stages of the ring formation. As the particles at the correct distance from the 
barycenter self-recognize to be there, they start injecting a gradient that attracts inner particles 

4.4   Making Lobes 

In this experiment, we tried to break the circular symmetry of previous experiments 
and let lobes emerge in the global shape. The overall idea is to exploit particles 
density as the source to break the symmetry. For instance, when forming a circle, 
particles start to collapse toward the circle itself. If the number of particles compared 
to the circle size is very high,  then the  perimeter  of the circle  will be  very crowded. 
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  if particle == BARYCENTER 
    tota.inject(new Gradient(“CIRCLE”)) 

  end if 
Vector readV = tota.read(new Gradient(“CIRCLE”)) 
Tuple circle = readV[0]; 
if circle.value == R 
    tota.inject(new Gradient(“RING”)) 
else 

readV = tota.read(new Gradient(“RING”)) 
Tuple ring = readV[0]; 

     while ring.value >= T  
        moveDownhill(ring)  
     end while  

  end if   

Fig. 7. Pseudo-code of the ring algorithm 

Our idea is to force particles in very crowded areas to rearrange their positions so as 
to stay more separate form each other (remember that our particles can sense how 
many other particles are in the neighborhood). This process ends up in a slight 
deformation of the circle (i.e., in the emergence of small “lobes”) in those part of its 
circumference where an excess of particles are accumulating. This small emergent 
lobes can be amplified via an additional mechanism of morphogen gradient inhibition 
that, in turn, makes larger lobes emerge. 

To this end, and with reference to the circle, it is worth noting that the emergence 
of the circle shape directly derives from having the CIRCLE gradient spread in every 
direction uniformly. In this way, all the particles sensing the value R of the CIRCLE 
gradient end up in being almost equidistant form the center or, when the density is 
taken into account, in the circumference of a circle with small lobes  However, if one 
makes the CIRCLE gradient increase its value slower in zones of high density then, in 
these zones, the gradient would reach the value R farther from the source. Particles, 
following that gradient, would not dispose on a circle, but on a circle with a lobe, 
where the lobe would correspond to the place in which the gradient reaches value R 
farther. 

The Algorithm.  Particles  runs the CIRCLE algorithm and,  upon  receiving  the 
CIRCLE gradient, have to re-propagate it. However, before doing that, particles sense 
the number of other particles in their neighborhood. If the number of particles in the 
neighborhood exceeds a specified threshold (criticalDensity1), the particle sets the 
rate at which the field increases to 0. This increasing rate will be reset to the default 
value of one when the density falls below another specified threshold 
(criticalDensity2).  

The pseudo code of this algorithm is in Figure 9. The result of a sample experiment 
is in Figure 8. We outline that the algorithm does not enable to predict where in the 
circle lobes will form, and how may lobes will eventually form. This is an emergent 
characteristic of the system, that critically depends on two non-controllable factors: 
the initial disposition of particles and the outcome of the random movement of 
particles towards the center. 
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a) b) c)  

Fig. 8. Different circles with lobes. The particles in the circle that detect a high density of 
particles, inhibit the propagation of the circle gradient, thus leading to the formation of lobes 

  if particle == BARYCENTER 
    tota.inject(new Gradient(“CIRCLE”)) 
end if  
Vector readV = tota.read(new Gradient(“CIRCLE”)) 
Tuple circle = readV[0]; 
if circle.value > R 
    moveDownhill(circle) 
else if circle.value == R 
    // making particles escape from crowd make 
    // small lobes emerge  
    moveAwayFromCrowd() 
end if 
// the following, makes even large lobes emerge 
if numNeighbors > criticalDensity1 
    // set the gradient increasing rate to 0  
    circle.setAddValue(0) 
end if 
if numNeighbors < criticalDensity2 
    // restore default increasing rate  
    circle.setAddValue(1) 
end if 

Fig. 9. Pseudo-code of the lobes algorithm. To move away from crowd a particle chooses a 
random direction and follows it if it senses that the number of neighbors is decreasing 

4.5   Polygon 

The emergent phenomena of lobes in the previous section is interesting. Still, it would 
be important to have a way of controlling such emergent behaviors. In a further set of 
experiments we tried to enrich the algorithm to control the number of lobes to be 
created so as to obtain regular polygon shapes (e.g. triangles exagons, etc.). 

The idea to control the number of lobes is again rooted in a leader election 
mechanism. We want to design an algorithm to elect n leaders on the circumference 
of the circle. These leaders must be equidistant from one another. Once this has been 
accomplished, the leaders will be in charge of adopting the trick described in the 
previous section, i.e., avoiding to increase the value of the CIRCLE gradient being re-
propagate, so as to force the emergence of n lobes equidistant from one another and, 
consequently,  leading to a nearly regular n-polygon shape.  
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The Algorithm. (i)  each  node runs the circle algorithm, (ii) once a particle on the 
circumference of the forming circle recognize their being in the current position, it starts 
casting random numbers; (iii) each node casting a number greater than a specified 
threshold becomes a leader – the threshold (T) is chosen so that it is very unlikely that 
two nodes become leaders shortly one after another; (iv) the leader starts propagating an 
ELECT gradient, that propagates only in the circle perimeter region (i.e., particles that 
are not on the ring inhibit its propagation); (v) nodes receiving the ELECT gradient, stop 
casting random numbers and if the received gradient value overcomes another specified 
threshold L, they become leaders on their turn; (vi) each leader sets the ELECT gradient 
value to 0 and continues its propagation; (vii) once that ELECT gradient is fully 
propagated there should be almost (circle-length)/L equidistant leaders on the circle. 
Thus L is a parameter controlling which polygon will emerge. 

 

a) b)

  

Fig. 10. Different polygon shapes obtained by multiple lobes: from triangle to pentagon 

4.5   Self- epair 

Whatever the shape being formed, it is of fundamental importance to preserve and 
maintain it despite particles being destroyed or added to the system. Such kind of 
maintenance cannot be performed from the external, particles themselves must be 
able to self-recognize a change  in the configuration and self-repair their 
configuration. One of the key point in our approach is to enable such kind of self-
repairing activities. 

As shown in the previous experiments, the propagation pattern of the gradient is 
responsible of how the particles will dispose around the sources of that gradient. In 
any case, the gradient exerts a continuous attractive force on the particles, which 
perceive this force even when they are packed in the final shape and any movement is 

c)
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if particle == BARYCENTER 
    tota.inject(new Gradient(“CIRCLE”)) 
end if  
Vector readV = tota.read(new Gradient(“CIRCLE”)) 
Tuple circle = readV[0]; 
if circle.value == R 
readV = tota.read(new Gradient(“ELECT”)) 
while readV.size() == 0 

if nextRandom() > T 
     iAmLeader(); 
     tota.inject(new Gradient(“ELECT”)) 
     circle.setAddValue(0) 
end while 
Tuple elect = readV[0]; 
if elct.value > L 
     iAmLeader();        
     tota.inject(new Gradient(“ELECT”)) 
     circle.setAddValue(0) 
end if 
if circle.value > R &&  elect.value == 1 
    circle.setAddValue(0) 

  end if 
while(1) 
    if circle.value > R 
        moveDownhill(circle) 
    else if circle.value == R 
        moveAwatFromCrowd () 
    end if    
end while 

Fig. 11. Pseudo-code of the polygons algorithm 

a) b) c)  

Fig. 12. Self-repair in a polygon shape. In (b) a number of particles is removed from the 
ensemble. After a short-period of time (c) the configuration is reconstructed  

impossible (recall that particles cannot cross each other). The continuous attractive 
force and the fact that particles have a volume make our system able to self-recognize 
a change and self-repairing. For example, suppose that the shape is correctly created 
and in a certain zone some particles get destroyed for an impact, so opening a void 
space. On the one hand, particles are able to estimate their local density, and thus they 
can sense a sudden drop in their neighborhood revealing a change (see figure 12-b). 
On the other hand, all the particles close to the space previously occupied by 
destroyed particles now have the possibility to move, and because they are always 
subjected to the attractive force exerted by the gradient, they find a way to follow 
downhill the force field (see figure 12). 
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5   Related Work 

In the last few years, several approaches targeting control algorithms for multi-robot 
systems have been proposed, which address goals similar to ours.  

Several proposals in the area define distributed algorithms for pattern formation in 
robots exploiting the strong assumption that each robot, via visual observation, can 
determine the positions and movements of all other robots [7, 19]. This hypothesis 
makes it rather trivial to promote the formation of a variety of global patterns but it is 
hardly applicable to micro- or nano-robots/particles. Issues of scalability, battery 
consumption, line-of-sight, cost of global localization, etc. all call for a strictly local 
perception of the environment. 

Other approaches have been proposed requiring robots witch strictly local 
perception, but still requiring them the capability to detect the distance and the 
direction of neighbor robots[1, 5]. The key idea is that robots, by positioning 
themselves at specific distances and directions from other robots, can self-organize in 
a variety of regular shapes. Little is said about the possibility of making more 
complex shapes emerge, e.g., by making information flow from robot to robot (as in 
the case of morphogen gradient).   

A possible way to promote the formation of spatial patterns in the absence of 
distance and direction information is to get inspiration from the way chemicals and 
crystals grow into self-organized regular structures. Approaches of this kind are 
explored, for instance, in [8, 9, 17]. The general idea (with specific differences 
characterizing different proposals) is to exploit stateful particles capable only of 
sensing the internal state and the presence of other particles (either via  proximity 
sensing or via direct contact). Particles are deployed together in an environment and 
there start randomly moving. When particles keep in touch with each other, they 
apply internal transition rules (based on their own state and on the state of close 
particles) to decide whether to “stick” to that position or continue moving. 
Unfortunately, the approach enables the direct programming of transition rules 
leading to very simple and regular patterns only. More complex patterns require 
complex search heuristics to determine a set of transition rules leading to the desired 
global pattern. Also, the process leads to the formation of static non-adaptive patterns. 

Algorithms for the control of shape and motion in modular robot have been 
proposed exploiting an approach strictly related to ours [16, 18]. There,  “hormones” 
(similar to morphogen gradients) are created and propagated through the modules of 
the robot. Robots' modules decide how to move on the basis of a lookup table 
associating their local configuration and the locally perceived hormones with the next 
action. The result is to have the robot modules self-organize into globally coherent 
shapes or into globally coherent motion patterns (i.e. gait). Although some of the 
result of this approach are excellent, one should consider that such representation 
must be locally stored by each robot, which may not be possibly for robot with very 
limited resources.  Moreover, relying on an a priori representation of the shape, robots 
deployed in a constrained environment where the shape does not fit would be left with 
no choices but leaving the shape incomplete, rather than flexibly adapt the shape. 
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The approach proposed in the Amorphous Computing project [12] for the 
formation of origami shapes in a amorphous network of particles is the one that most 
directly relates to our work. Particles, by communicating only with their local 
neighborhood, can self-organize into various patterns of activity by propagating 
morphogen gradients and changing their state according to the perceived morphogen 
gradients. The main difference from our work is that here particles can't move altering 
their respective topologies. Furthermore, some particles (i.e., those at the border) must 
be started in a special initial state, thus requiring an a priori differentiation. 

6   Conclusions and Open Directions 

The TOTA approach enables the effective formation of a variety of complex shapes in 
computational particles with minimal capabilities.  

Despite these promising results, a number of open directions are still to be 
investigated. Currently our group is interested to: experiencing differentiation of 
activities and global coordination based on cellular automata inspired approach; 
trying to define a simple and modular programming model; trying to achieve – other 
than the formation of static patterns – coherent motion gaits in particles; building 
some hardware prototype for particles and validating our approach in the real world.  
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Abstract. In this paper we present a general design methodology suitable for a 
class of complex multi-agent systems which are capable of self-assembly. Our 
methodology is based on a top-down, bottom-up approach, which has the poten-
tial to achieve a range of global design goals whilst retaining emergent behav-
iour somewhere in the system, and thereby allowing access to a richer solution 
space. Our experimental environment is a software system to model 2-
dimensional self-assembly of groups of autonomous agents, where agents are 
defined as square smart blocks. The general design goal for such systems is to 
direct the self-assembly process to produce a specified structure. The potential 
of this design methodology has been realised by demonstrating its application to 
a “toy” problem – the self-assembly of rectangles of different sizes and shapes 
in a two-dimensional mesoblock environment. The design procedure shows dif-
ferent choices available for decomposing a system goal into subsidiary goals, as 
well as the steps needed to ensure a match to what is achievable from the bot-
tom-up process. Encouraging results have been obtained, which allows mesob-
lock rectangles of specified size to be assembled in a directed fashion. Two dif-
ferent approaches to the same problem were presented, showing the flexibility 
of the method.  

1   Introduction 

The study of complex systems is now over two decades old and much has been dis-
covered about such systems, whose best-known characteristic is the emergence of 
self-organised global properties from the aggregate behaviour of its constituent 
components [2].  A good definition of self-organisation is given by Hermann Haken 
[1]: a system is self-organizing if it acquires a spatial, temporal or functional 
structure without specific interference from the outside. By “specific” we mean that 
the structure or functioning is not impressed on the system, but that the system is 
acted upon from the outside in an non-specific fashion. 

Most complex systems research has employed the traditional scientific method of 
hypothesis and test, a “bottom-up” approach which works from fundamental knowl-
edge and experimentation to derive new principles about the world. However, the 
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very property which characterises complex systems also works to make difficult the 
formulation of general theories - the inherent unpredictability of emergent behaviour.  
There is no reason to suppose that this situation will change in the near future. 

In contrast, engineering design is a “top-down” process which starts with a global 
goal and seeks methods to achieve it using available scientific knowledge.  For com-
plex systems this has proven to be difficult for reasons stated above - general 
scientific principles are hard to come by. 

There are two approaches to the design of complex systems.  The first is to use 
evolutionary computation or similar methods to obtain designs for specific instances 
[8,9].  However, such designs rarely generalise to allow generic design principles, 
again because of the unpredictability of the underlying system.  Secondly, the system 
itself may be modified or restricted to remove emergence, allowing traditional design 
methods to apply [10].  The disadvantage is that, even when it is possible, solutions 
will be inferior because of the loss of the rich solution space provided by complexity, 
and which biological systems use to such advantage. 

In this paper we present a design approach which is a compromise between these 
two extremes, by working simultaneously from the top down and the bottom up in an 
attempt to define intermediate “entities” which retain emergence and yet allow the 
possibility of formulating broad design principles.  This concept will be developed in 
the context of multi-agent systems for which the principal self-organising behaviour is 
self-assembly.  The general design goal for such systems is to direct the self-assembly 
process to produce a specified structure. 

More specifically, the agents in our system will be simulated 2-dimensional square 
“mesoblocks”, in analogy to the physical mesoblocks investigated by Whitesides and 
others [5,6], but imbued with a rudimentary intelligence. Large numbers of identical 
blocks, moving randomly in a “sea”, interact according to their internal properties 
whenever two blocks come together [3,4]. The surfaces are polarised as negative (-1), 
positive (+1) or neutral (0), so that opposite polarities will attract and stick together.  
No other combination of polarities will allow blocks to stick [3,4]. While a large 
number of objects can be constructed from these static agents by varying their surface 
properties, a richer variety of self-assembled objects is possible by allowing edge 
polarities to change following an “event”, under the control of an internal state ma-
chine. In this study an event is defined as a block either sticking to or unsticking from 
another block (although other choices are possible).  For simplicity we assume all 
“sea” blocks to have the same fixed physical shape and internal state machine.  

An important concept from our earlier work is the “enzyme”, which allows a more 
flexible and directed method of producing basic building objects [4]. In the real world 
an enzyme is an organic protein which catalyses a specific reaction. Here, we use it to 
characterize an assembly of blocks which is capable of producing another block 
assembly whilst itself remaining unchanged. By introducing an enzyme into the 
multi-agent environment, the structures which self-assemble depend also on the rule 
set and physical structure of the enzyme. Different enzymes will generate different 
final objects from the same “sea” blocks.  Enzymes can also give control over where 
and when structures self-assemble, by appropriate placement and assuming that 
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 and enzymes are fundamental to the directed self-assembly process.  
The remainder of this paper is organized as follows. Section 2 outlines our ap-

proach, Section 3 describes the 2-dimensional self-assembly environment and en-
zymes. In Section 4, we present two examples of the top-down/bottom-up design 
process in a simulation environment.  Finally, conclusions based on these experiments 
are discussed in Section 5.  

2   Top-Down/Bottom-Up (TDBU) Design 

Our approach to creating a general framework for the design of complex multi-agent 
systems is to seek a balance between “top-down” (engineering) and “bottom-up” 
(scientific) processes.  Engineering design starts with a system goal and employs a 
top-down approach to formulate more achievable intermediate goals.  In contrast, the 
scientific method develops new knowledge of what is achievable by working from the   
bottom-up.  Successful design is possible when the two processes can be matched, 
with intermediate engineering goals being capable of being achieved using existing 
scientific understanding.  The particular problem with complex systems in general, 
and multi-agent systems in particular, is the difficulty of formulating general scien-
tific principles describing system behaviour. 

It may often be possible, using a hierarchical design process, to break a range of 
system goals into sub-goals which are within the capacity of scientific knowledge. 
Solving the sub-goals would then allow any system goal within the range to be 
achieved. The danger in doing this is that the emergent behaviour characteristic of 
complex systems may be lost, denying the designer the rich solution space offered by 
such systems. 

 
 

 

Fig. 1. Single-layer system design. The solution is specific for one problem, and it is difficult to 
find generic design rules 

(Complex) Multi-agent System 

Emergent behaviour 

Solution Space 
(Design Goals) 

Specific 

GA 

enzymes can be switched between active and inactive states. The properties of agents 
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Fig. 2. Intermediate entities, capable of achieving a range of goals, are derived by a “top-down” 
process from the design goals. The “bottom-up” process is to evolve the intermediate entities 
from the multi-agent system. This leads to a broader solution space than Fig. 1 

To access this rich space of potential solutions, it is important to preserve emergent be-
haviours that would be lost with a fully hierarchical, engineering design. Our approach, 
involving a minimal hierarchical decomposition, is a means of seeking a balance. 

It is valid to ask whether any such decomposition is necessary, when many exam-
ples exist where complex systems are designed for a specific goal using evolutionary 
computation or similar methods [8,9].  The answer is that we aim to develop methods 
which will allow a range of design goals to be achieved without having to repeat time-
intensive evolutionary computations.  This point is explained in more detail as follows. 

Fig. 1 illustrates a single-layer system where GA is used to achieve a given design 
in the solution space [3,4].  For systems exhibiting emergent behaviour such designs 
are not usually robust in the sense of allowing general rules for a class of designs to 
be formulated. The specific solution found may well be optimal, but may not general-
ise well because of the complex nature of the system, making it difficult to determine 
generic design rules. On the other hand Fig. 2 illustrates a TDBU process where we 
can retain emergence in one (or both) parts, thus broadening the solution space. This 
is possible because, although the “intermediate entities” may result from an emergent 
process, they can be used as generic building blocks to achieve a broader range of 
goals in the solution space.  This will effectively give general design rules, at least 
within the broader area of achievable goals.  Another advantage of the hierarchical 
design is that since the problem has been split, simpler optimization of the constituent 
parts will almost certainly result.  

It should be noted that considerable choice may exist as to the set of intermediate 
entities in a given case.  In part, this will be due to the fact that only a part of the 
whole solution space can be expected to be covered, so there will be some flexibility 
which depends on just which part is considered most important.  Some solutions will 
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be better than others; for example, a good solution would be if only a few entities 
could span a large part of the space. 

2.1   TDBU Design for Mesoblock Self- ssembly 

Previous work by the authors on TDBU design of multi-agent systems has focused on 
bottom-up analysis, investigating the class of substructures that can be directed to 
self-assemble by specifying the internal agent properties [3,4].  The most important 
outcome of this research has been a class of “enzymes”, simple multi-agent configura-
tions capable of producing other simple structures with desired properties whilst 
themselves remaining unchanged.  Significantly, many self-replicating enzymes were 
also found [4], with the interesting property of reproducing themselves in addition to 
creating target structures. 

In this paper, we will focus more on the top-down part of the TDBU design proc-
ess.  After discussing the various choices available for decomposing a system goal 
into subsidiary goals, as well as the steps needed to ensure a match to what is achiev-
able from the bottom-up process, we will illustrate the design procedure by carrying 
out and simulating the entire TDBU procedure for a preliminary “toy” problem. Very 
encouraging results have been obtained for this problem, which allows mesoblock 
rectangles of specified size to be assembled in a directed fashion. Results of the simu-
lations will be given in Section 4.  

To design a self-assembly system, we want to keep the emergent behaviour of the 
system. A number of research groups, including CSIRO, have studied self-assembly 
at the “mesoscale” (in the order of millimetres to centimetres) using physical “mesob-
locks” with a range of shapes and construction and whose edge adhesion properties 
may be varied. Such mesoblocks self-assemble into a wide range of regular lattice-
like arrangements, depending on their properties, and can be regarded as analogues of 
nano- or molecular-scale systems [5-7]. 

In previous work by the authors [3,4] such blocks are regarded as agents that inter-
act due to their edge properties, which are not static, but may change under the influ-
ence of an internal state machine.  The resultant self-assembled object (if one exists) 
is dependant on the agents’ properties including size, edge polarities and strength of 
edge fields as well as the parameters of the internal state machine.  This state machine 
changes the polarity of any number of its sides following the detection of an “event”, 
which is usually the sticking to or unsticking from another block.  In [3], restricting 
the analysis to two-dimensional rectangular blocks, Guo et. al. evolved block parame-
ters and rule sets of the state machine which allow the self-assembly of desired basic 
structures suitable for use as primitive building blocks for the directed assembly of 
more complicated objects. 

3   Building Blocks for Self- ssembly  

As mentioned above, the agents in the self-assembly system are two-dimensional 
rectangular blocks which may combine to form intermediate entities (the most impor-
tant of which are enzymes) in a TDBU design.  Both the agents and intermediate 
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entities become building blocks for the final self-assembly of a desired structure. The 
main properties of agents and enzymes are described in detail in the following  
sections. 

3.1  2D   Mesoblock Agents 

At the nanoscale, self-assembly of nanostructures can be controlled by using the at-
traction and repulsion properties of attached complementary groups. We have 
included similar properties in our agents with the aim of generating insights into the 
self-assembly processes of multi-agent systems of this type, with the hope that these 
insights may then be transferred to real world environments. Of course, it will be 
necessary to find nano- or molecular analogues with rudimentary intelligence. Several 
authors have suggested mechanisms which may allow such properties [11,12].   

With this aim in mind and referring to Figure 3 the properties of our agents may be 
defined as follows: 

(1) Each block has four edges, each of which can have positive (+1), negative (-1), or 
neutral (0) polarity. This is illustrated in Figure 3, where the four edges of the 
block are labeled for easy description. The edge state of an agent will be de-

scribed as a vector of four trinary numbers: ),,,( 4321 aaaaQ = , where 

}0,1,1{ −+∈ia .  For instance, the edge state of the block in Figure 1 can be de-

scribed as )1,0,0,1( −+=Q . 

(2) The internal state machine can change the polarity of each edge as the result of an 
event. 

(3) Events detectable by each block are the acts of “sticking” or “unsticking” at one 
or more of its edges.  

(4) The internal state machine in each block contains rules linking edge polarity 
changes to “sticking” or “unsticking” events.  

(5) The initial state of all the blocks in one environment is identical.  This includes 
the edge polarities as well as any internal states. 

 

 

Fig. 3. Structure of each agent in the multi-agent system. Edge_1 is positive (+1), Edge_4 is 
negative (-1), and Edge_2, Edge_3 are neutral (0) 
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

 

Fig. 4. A simple example of an enzyme. This is an artificially constructed 10-block structure 
sitting in a “sea” of blocks with all negative sides and an identical rule set. This enzyme pro-
duces linear groups of three blocks with all zero polarity except for one end, which is positive  

In the simulation environment the blocks interact in the following manner:  

(1) Edges of opposite polarity stick together and generate a “sticking” event which is 
passed to the internal state machines of both sticking blocks. 

(2) Like polarities repel and will cause connected blocks to unstick. (This may also 
generate an event to be passed to the internal state machines, an option which is 
not used in this paper for reasons of simplicity). 

(3) Neutral polarities will neither attract nor repel any other polarities. If a polarity 
changes to neutral between two connected blocks then they will unstick. 

(4) Blocks move randomly in the 2-D environment under Brownian-like motion by 
steps which are multiples of the block width, with rotation of multiples of 90°. 

(5) For a given situation many different structures may self-assemble.  A block will 
separate from a structure if there is no net “sticking force” to hold it on. For the 

Qth block this may be determined from the separation function
4

1

( ) ,i
i

A p
=

=Q  

where pi is the sticking force due to the ith edge.  pi is +1 if the edge sticks to a 
neighbour, -1 if it is repelled and 0 if there is no neighbouring block or a neutral 
edge.  Block Q  will remain part of the structure if ( ) 0A >Q , or will separate if 

( ) 0A ≤Q .  Note that separation functions really should be defined for all struc-

tures, not just for single blocks.  In general this is a difficult problem which has 
not been addressed in the present study. 
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3.2   Enzymes 

The properties of an enzyme are defined as: 

(1) Each enzyme is a stable structure comprising K blocks. 
(2) Each block in the same enzyme has the same rule set. 
(3) Blocks in the environment (“sea” blocks), whilst identical, can have a differ-

ent rule set from the enzyme blocks. 
(4) An enzyme must remain unchanged after the self-assembly process.  During 

the process it may change in size and shape, but it must return finally to its 
initial state. 

An example of an enzyme enabling a self-assembly process is shown in Figure 4. 
This enzyme may be simply modified to produce linear structures of any length.  

(a)    (b)           

Fig. 5. Two examples of TDBU design. (a) self assembly of mesoblock rectangles. (b) self 
assembly of connecting mesoblock assemblies 

4   TDBU Design of Self- ssembly Systems: Experiments 

In this section a simple example of a complete TDBU process will be selected and 
worked through, to illustrate the method and to bring out concepts and difficulties.  
For the two-dimensional mesoblock environment described above several such exam-
ples are possible.  One which would be of value if it could be transferred to the nano-
scale is self-assembling connectivity - the self assembly of mesoblock structures   
connecting a number of static structures placed randomly in the environment.  This 
would have application to the self-assembly of nanoscale electronic circuits.  Another, 
simpler example is the self assembly of mesoblock rectangles of controllable size and 
shape.  Because this has no apparent nanoscale application it is really a “toy” prob-
lem.  Nevertheless, it is selected for our experiment because of its simplicity.  Fig. 5 
shows a schematic of this experiment and also of self-assembling connectivity. 

(Complex) Multi-agent System 

Intermediate “Entities”, e.g. Class of Enzymes 

Directed Self- ssembly of 2-Dimensional Mesoblocks a
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In what follows the minimal hierarchy TDBU design concept is developed with the 
abovementioned toy problem, whose aim is to design a class of rectangular structures of 
any given size or shape which self-assemble from two-dimensional mesoblocks. To illus-
trate the choices implicit in the design method we have employed two different design 
structures, both using enzymes but with different complexity. This illustrates the flexibility 
in the choice of intermediate entities inherent in the TDBU process. The two methods, 
together with results of simulation experiments, are described in the following sections.   
 

                 
 

Fig. 6. Design process of approach one. The figure at the right shows the performances of 
the components when the control signal is broadcast to the whole environment  

     
 

     

Fig. 7. Four different stages of the self-assembly environment based on a TDBU design. The 
self-assembled rectangles are circled in the last figure 

Control signal

Change Polarities of End 

Break 

Turn off 
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4.1   Achieving the Goal with Fixed Enzymes 

The first design approach is shown in Figure 6, which is a detail of the design process 
of Figure 5 (a).  Two types of fixed enzymes, which produce horizontal and vertical 
strings,   and the sea blocks are the basic building structures. This process of growing 
long chains will be allowed to continue for a while. Then “messages” are sent to the 
whole environment as control signals which impart the essential information about the 
goal --- in this case the length and breadth of the desired rectangles. Following receipt 
of the message all blocks, enzymes and chains in the whole environment will take the 
following actions, depending on their situation:  

• All single blocks become neutral on all sides;  
• All enzymes are deactivated;  
• All long chains are truncated to the lengths given by the message, and the end 

block polarities are changed to allow them to self-assemble into rectangles. 

Then all the chains with active ends (positive or negative) and the correct length will 
start to stick together and generate the rectangles. There are many possible methods of 
achieving this.  One simple way is to include a counter in each block. During assem-
bly by the enzyme the first block in the chain is set to 1, and the following blocks to 2, 
3, etc. as the chain grows. When the global message is received, the blocks break with 
their next neighbours if their counter numbers divided by the given length are inte-
gers. This process also activates the ends of the chain. 

To illustrate the operation of this process an artificial simulation environment was 
set up. Figure 7 shows four different states of this environment: (a) the initial condi-
tion, which includes four enzymes and many sea blocks. (b) the end of the first stage, 
with a number of chains of different lengths which self-assembled after activation by 
an enzyme based on their  internal rule set.  (c) the intermediate stage, following ac-
tions generated by the global control signal.  (d) partway though the final self-
assembly stage, with some rectangles generated (circled).  

4.2   Achieving the Goal by Adjusting Enzymes 

This design approach is shown in Figure 8, which is a detailed design process from 
the idea of Figure 5 (b), where the global goals were achieved by creating a flexible 
enzyme and then adjusting its properties according to the particular goal required. 
There are two large L-shape enzymes in this environment. These enzymes, and the 
rule sets of the sea blocks, are designed to ensure that particular L-shape structures are 
generated with particular polarities (+1 at one end).  When these structures, moving 
freely in the environment, meet at their open ends, the positive (+1) will stick with 
negative (-1) polarity, and they will generate a rectangle whose dimensions are deter-
mined by the L-shaped structures produced by the enzymes.  These dimensions are set 
by the positions of the “terminal” blocks in the enzymes, shown as the one with dot 
and arrow in Figure 8.  Without external intervention only rectangles of a fixed size 
will be produced.  However, as in the first example, external global messages may be 
used to shift the positions of the terminal blocks, and hence the size and shape of the 
rectangles produced.  One way is to provide labels for all blocks in the enzyme allow-

Directed Self- ssembly of 2-Dimensional Mesoblocks a
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ing any of them to be activated by targeted messages, thereby becoming the new ter-
minal blocks. Alternatively, the enzymes may be programmed to change this them-
selves after a fixed number of rectangles have been produced. 

 

 

Fig. 8. Second design process using flexible enzymes 

This design process can also be simulated in the same environment and this is illus-
trated in Figure 9. In the initial state (Figure 9.a), the two large L-shape structures are 
the enzymes in a “sea” of sea blocks. There is a small window in the left of the main 
environment, which shows the enzyme with the highlighted “terminal” blocks. Two 
different classes of rectangles generated by two different terminal block positions are 
shown in Figure 9.b and Figure 9.c. 

5   Conclusions and Further Directions 

The essential idea of this paper is to present a general design methodology suitable for 
a class of complex multi-agent systems which are capable of self-assembly. This 
problem is difficult because such complex multi-agent systems generally exhibit 
 emergent behaviour which makes global performance hard to predict, and hence very 
hard to design for. Our methodology is based on a top-down, bottom-up approach, 
which has the potential to achieve a range of global design goals whilst retaining 
emergent behaviour somewhere in the system, and thereby allowing access to a richer 
solution space. The potential of this design methodology has been realised by 
demonstrating its application to a “toy” problem – the self-assembly of rectangles of  
different sizes and shapes in a two-dimensional mesoblock environment. In fact, two 
different approaches to the same problem were presented, showing the flexibility of 
the method. 

The next steps in this research will be to apply the technique to a wider range of 
problems within the 2-D mesoscale environment, concentrating on applications which 
have useful nanoscale analogues.  Further work will be to change our environment to  
 

MESSAGE 
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(a)       
 

(b)    
 

(c)  
 

Fig. 9. TDBU rectangle design: achieving global goal by adjusting enzymes. (a) The initial 
state of the environment, with the enzyme shown in the small window. (b)The self-assembled 
rectangles of size 4 by 4 are circled. (c) The self-assembled rectangles of size 3 by 4 are circled 
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include a model of physics which is as close to the nanoscale as possible. Once this 
has been done we will be in a position to assess whether our approach for designed 
self-assembly would be feasible at the nanoscale.  
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Abstract. Adaptation is an essential requirement for self–organizing
multi–agent systems functioning in unknown dynamic environments.
Adaptation allows agents to change their actions in response to envi-
ronmental changes or actions of other agents in order to improve overall
system performance, and remain robust even while a sizeable fraction
of agents fails. In this paper we present and study a simple model of
adaptation for task allocation problem in a multi–robot system. In our
model robots have to choose between two types of task, and the goal
is to achieve desired task division without any explicit communication
between robots. Robots estimate the state of the environment from re-
peated local observations and decide what task to choose based on these
observations. We model robots and observations as stochastic processes
and study the dynamics of individual robots and the collective behavior.
We validate our analysis with numerical simulations.

1 Introduction

Adaptation is an essential requirement for multi–agent systems functioning in
dynamic environments that cannot be fully known or characterized in advance.
Adaptation allows agents, whether they are robots, modules in an embedded
system or software components, to change their behavior in response to environ-
mental changes and actions of other agents in order to improve overall system
performance. Additionally, adaptation allows swarms, artificial systems com-
posed of large numbers of agents, to remain robust in face of failure even by
a sizeable fraction of agents. If each agent had instantaneous global knowledge
of the environment and the state of other agents, it could dynamically adapt
to any changes in the environment or behavior of other agents. In most situa-
tions, however, such global knowledge is impractical or infeasible to obtain so
one needs to devise different adaptation mechanisms based on partial, possibly
noisy information about the state of the environment and the agents. Also, one
would prefer a mechanism that would require little or no communication and/or
negotiations between the agents.

Analysis is an important part of designing adaptive, self–organizing systems
since it allows to understand global system properties given the behavior of in-

S. Brueckner et al. (Eds.): ESOA 2004, 3464, pp. 167–179, 2005.
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dividual entities and the rules of interactions between them. There are generally
two options for the analysis of swarm behavior: experiment and simulation. Ex-
periments with real agents, e.g., robots, allow the researcher to observe swarms
under real conditions; however, experiments are very costly and time consuming.
Simulations, such as sensor based simulations for robots, attempt to realistically
model the environment, the robots’ imperfect sensing of and interactions with
it. Though simulations are much faster and less costly than experiments, they
suffer from many of the same limitations, namely, they are still time consuming
to implement, and systematically exploring the parameter space is often te-
dious. Mathematical analysis is an alternative to the time consuming and often
costly experiments and simulations. Using mathematical analysis we can study
dynamics of multi–robot systems, predict long term behavior of even very large
systems, gain insight into system design, for instance what parameters determine
group behavior and how individual robot characteristics affect the swarm. Addi-
tionally, mathematical analysis can be used to choose parameters that optimize
the swarm’s performance, prevent instabilities and so on. Note, however, that
the mathematical analysis usually applies to strongly simplified systems, and it
should be validated by comparing its results with the results of more realistic
simulations (such as sensor based) and/or actual experiments with robots.

In this paper we present and analyze a simple stochastic model for adaptive
task allocation in a team of robots, where robots have to forage for two distinct
types of pucks, Red and Green scattered around the arena [5]. Each robot is
able to collect pucks of a specific type, say Red: when a robot’s foraging state is
set to Red, it is searching for and collecting Red pucks. The goal of adaptive task
allocation mechanism is to achieve a distribution of robots between two states
that, over time, correctly reflect the pucks’ prevalence. The robots have no global
information about the the number of pucks of either color, or the states other
robots. Instead, the robots make repeated local observations of the environment,
store them in the memory, and use them to decide between two states. We
analyze our model thoroughly using stochastic Master equation that describes
the evolution of macroscopic dynamics, and compare it to the the results of
discrete time simulations. We demonstrate that our analytical approach fully
reproduces the results of the numerical simulations, suggesting that it might be
used as an efficient tool for analyzing the global behavior in various behavior–
based large–scale multi–robot systems.

2 Related Work

Mathematical analysis of the behavior of robots is a relatively new field with
approaches and methodologies borrowed from other fields, such as mathematics,
physics and biology. In recent years, a number of studies appeared that at-
tempted to mathematically model and analyze collective behavior of distributed
robot systems. These include analysis of the effect of collaboration in forag-
ing [16, 17] and stick-pulling [9, 12] experiments, the effect of interference in
robot foraging [7], and robot aggregation task [1, 6]. So far this type of analysis
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has been limited to simple reactive or behavior-based robots in which perception
and action are tightly coupled. Such robots take input from sensors or behaviors
and send output to actuators or other behaviors.1 They make no use of memory
or historic state information.

The role of learning in improving the performance of a multi-robot system
has been addressed by several researchers. The RoboCup robot soccer domain
provided a fruitful framework for introducing learning in the context of multi-
agent and multi-robot systems. Several authors examined the use of reinforce-
ment learning to learn basic soccer skills, coordination techniques [14] and game
strategies [15]. Matarić [13] reviews research on learning in behavior-based robot
systems, including learning behavior policies, models of the environment and be-
havior history. Goldberg and Matarić [2] present a framework for learning models
of interaction dynamics in multi-robot systems. These models are learned on-
line and used by robots to detect anomalies in system performance as well as
to recover from these anomalies. Their work shares common foundation with
ours: Markov processes as a model of interactions between robots . However,
adaptation occurs as a result of the changing representation — the model of the
interactions created and updated by robots — not as a result of changes in robot
behaviors. Li et al. [10] introduced learning into collaborative stick pulling robots
and showed in simulation that learning does improve system performance by al-
lowing robots to specialize. No analysis of the collective behavior or performance
of the system have been attempted in any of these studies.

Huberman and Hogg [3] studied collective behavior of a system of adaptive
agents using game dynamics as a mechanism for adaptation. In game dynamical
systems, winning strategies are rewarded, and agents use the best performing
strategies to decide their next move. They constructed a mathematical model of
the dynamics of such systems and studied them under variety of conditions, in-
cluding imperfect knowledge and delayed information. Although the mechanism
for adaptation is different, their approach, which they termed “computational
ecology” is similar in spirit to ours, as it is based on the foundations of stochastic
processes and models of average behavior.

3 Dynamic Task Allocation in Robots

Chris Jones and Maja Matarić presented an embodied simulation study of adap-
tive task allocation in a distributed robot system [5]. In their study, two distinct
types of pucks, Red and Green, were scattered around the arena. Each robot
could be tasked to collect pucks of a specific type, say Red. When a robot’s
foraging state is set to Red, it is searching for and collecting Red pucks. The
robot can also recognize the foraging state of robots it sees. The robots have
no a priori information about the shape of the arena, the number of pucks left
in it or the number of foraging robots. The goal of adaptive task allocation is
to design a robot controller that will allow robots to dynamically adjust their

1 Robots that use timers to trigger actions can also be studied using this approach.
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foraging type, so that the number of robots searching for Red and Green pucks
will, over time, correctly reflect the pucks’ prevalence.

The memory-based mechanism for adaptive behavior suggested by Jones and
Matarić is consistent with the biologically-inspired control paradigm that has
become popular in the field of distributed robotics. In such systems, the goal is
to design local interactions among robots or between robots and the environment
that will lead to desired collective behavior arises. The mechanism works as
follows: As it wanders around the arena, robot counts the number of pucks of
each type in the environment as well as the number of robots in each foraging
state visible to it and adds these counts to memory. Since memory has a finite
size new observations replace the oldest ones. Periodically, the robot uses values
in memory to estimate the density of pucks and robots of each type, and changes
its foraging state according to a certain transition function. The general idea is
that a robot should switch its state to Red if there are fewer than necessary
robots in the Red state and vice versa for Green.

In this paper we propose and study a slightly simplified model for task allo-
cation, where the robots determine whether to make a transition to a new state
based on the number of pucks of either types they encountered. Specifically, let
mr and mg be the number of red and green pucks respectively that a robot has
encountered in some time interval, so that the estimated fraction of red pucks
is μr = mr/(mr + mg). Then, the robot will choose the red and green states
with probability μr and 1 − μr respectively. Clearly, if the robots have global
knowledge about the number of red and green pucks then this simple algorithm
will achieve the desired distribution of the robots between the states. Hence, it is
interesting to see how the incomplete knowledge about the environment affects
this distribution, and in the case of dynamic environment (e.g., changing ratio of
red and green pucks) what is its effect on the adaptive properties of the system.

4 Modelling Robots Observations

As we explained above, the transition rates between the states depend on robots’
observations, or history. In our model, this history comprises of the number of
red and green pucks a robot has encountered during a time interval τ . Let us
assume that the process of encountering a puck is a Poisson process with rate
λ = αM0 where α is a constant characterizing the physical parameters of the
robot such as its speed, view angles, etc., and M0 is the number of pucks in
the arena. This simplification is based on the idea that robot’s interactions with
other robots and the environment is independent of the robot’s actual trajectory,
but are governed by probabilities determined by simple geometric considerations.
This simplification has been shown to produce remarkably good agreements with
experiments [11, 4].

Let Mr and Mg be the number of red and green pucks respectively, that
generally can be time dependent, Mr(t) + Mg(t) = M0. The probability that in
the time interval [t − τ, t] the robot has encountered exactly mr and mg pucks
is the product of two Poisson distributions:
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P (mr, mg) =
λmr

r λmg

g

mr!mg!
e−λr−λg (1)

where λi = α
∫ t

t−τ
dt′Mi(t′) , i = r, g, are the means the of respective distribu-

tions. In the case when the puck distribution does not change in time one has
λi = αMiτ , i = r, g.

5 Individual Dynamics

During a sufficiently short time interval, each robot can be considered to be-
long to a Green or Red foraging state. This is a very high level, coarse-grained
description. In reality, each state is composed of several robot actions and be-
haviors, such as wandering the arena, detecting pucks, avoiding obstacles, etc.
However, since we want the model to capture how the fraction of robots in each
foraging state evolves in time, it is a sufficient level of abstraction to consider
only these states. If we find that additional levels of detail are required to explain
robot behaviors, we can elaborate the model by breaking each of the high level
states into its underlying components.

Let us consider a single robot that forages for red and green pucks in a closed
area and switches its state to red and green according to its observations. As a
designer, we would like to define transition rules so that the fraction of time the
robot spends in the red (green) foraging state be equal to the fraction of red
(green) pucks. Let pr(t) be the probability that the robot is in the Red state.
The equation governing its evolution reads

dpr

dt
= ε(1 − pr)fg→r − εprfr→g (2)

where ε is the rate at which the robot has to make a decision whether to switch it
state, and fg→r and fr→g are the corresponding transitions probabilities between
the states. As we explained above, these probabilities depend on the robot’s
history, e.g., the number of either types of pucks it has encountered during
the time interval τ preceding the transition. Specifically, let mr and mg be the
number of red and green pucks respectively that a robot has encountered in that
time interval. Then we define transition rates as follows:

fg→r =
mr

mr + mg
≡ γ(mr, mg), fr→g = 1 − γ(mr, mg) (3)

Eq.2 is a stochastic differential equation since the coefficients (transition rates)
depend on random variables mr and mg. Moreover, since the robot’s history
changes gradually, then the values of the coefficients at different times are cor-
related, hence making the exact treatment very difficult. Here we propose to
study the it within the annealed approximation. Namely, we neglect the time–
correlation between robot’s histories at different times, assuming instead that at
any time the real history {mr, mg} can be replaced by a random one drawn from
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the Poisson distribution Eq. 1. Then, we can average Eq.2 over the histories to
obtain

dpr

dt
= εγ(1 − pr) − ε(1 − γ)pr (4)

where γ is the history–averaged transition rate

γ =
∞∑

mr=0

∞∑
mg=0

P (mr, mg)
mr

mr + mg
(5)

and P (mr, mg) is the Poisson distribution Eq. 1. Note that if the pucks distribu-
tion changes in time then γ is time–dependent, γ = γ(t). The solution of Eq. 4
subject to the initial condition pr(t = 0) = p0 is readily obtained:

pr(t) = p0e
−εt + ε

∫ t

0
dt′γ̄(t − t′)e−εt′

(6)

To calculate γ(t) we define an auxiliary function

F (x) =
∞∑

mr=0

∞∑
mg=0

xmr+mg
λmr

r λ
mg
g

mr!mg!
e−λre−λg

mr

mr + mg
(7)

so that γ = F (x = 1). Differentiating Eq. 7 with respect to x yields

dF

dx
=

∞∑
mr=1

∞∑
mg=0

xmr+mg−1 λmr
r λ

mg
g

mr!mg!
e−λre−λgmr (8)

Note that the summation over mr starts from mr = 1. Clearly, the sums over mr

and mg are de–coupled thanks to the cancellation of the denominator (mr +mg):

dF

dx
=

(
e−λr

∞∑
mr=1

xmr−1 λmr
r

mr!
mr

)(
e−λg

∞∑
mg=0

(xλg)mg

mg!

)
(9)

The resulting sums are evaluated easily (as the Taylor expansion of correspond-
ing exponential functions), and the results is

dF

dx
= λre

−λ0(1−x) (10)

where λ0 = λr + λg. After elementary integration of Eq. 10 (subject to the
condition F (0) = 1/2), and using the expressions for λr, λ0 we obtain

γ(t) =
1
τ

∫ t

t−τ

dt′μr(t′) + e−ατM0

(
1
2

− 1
τ

∫ t

t−τ

dt′μr(t′)
)

(11)

where μr(t) = Mr(t)/M0 is the fraction of red pucks. Eq. 6 and 11 fully determine
the evolution of the dynamics of a single robot. To analyze its properties, let us
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first consider the case when the puck distribution does not change with time,
μr(t) = μ0. Then the we have

pr(t) = γ + (p0 − γ)e−εt (12)
γ = μ0 + e−ατM0(1/2 − μ0) (13)

Hence, the probability distribution approaches its steady state value ps
r = γ

exponentially. Note that for large enough ατM0 the second term in the expression
for γ can be neglected so that the steady state attains the desired value ps

r ≈ μ0.
For small values of ατM0 (i.e., small density of pucks or short history window),
however, the desired steady state is not reached, and in the limit of very small
ατM0 it attains the value 1/2 regardless of the actual puck distribution (we
elaborate on this more in Section 7).

Now let us consider the case when there is a sudden ”jump” in the puck
distribution at a certain time t0, μr(t) = μ0 + Δμθ(t − t0), where θ(t) is the
step function (without loss of generality we set t0 = 0). Clearly, after some
transient time, the distribution will converge to its new equilibrium value μ0+Δμ
(we assume that ατM0 is sufficiently large so we can neglect the exponential
correction to the steady state value). After some simple algebra, we obtain from
Eq. 6 and 11

pr(t) = μ0 +
Δμ

τ
t − Δμ

ετ
(1 − e−εt), t ≤ τ

pr(t) = μ0 + Δμ − Δμ

ετ
(e−ε(t−τ) − e−εt), t > τ (14)

Eqs. 14 describe how the distribution converges to the new steady state value
after the ”jump”. Clearly, the convergence properties of the solutions depend
on τ and ε. It is easy to see that in the limiting case ετ  1 the new steady
state is nearly attained after time τ , |pr(τ) − (μ0 + Δμ)| ∼ Δμ/(ετ) � 1, so
the convergence time is tconv ∼ τ . In the other limiting case ετ � 1, on the
other hand, the situation is different. Indeed, a simple analysis of Eqs. 14 for
t > τ yields |pr(t)− (μ0 +Δμ)| ∼ Δμe−εt so the convergence is exponential with
characteristic time tconv ∼ 1/ε.

6 Collective Behavior

In this section we consider a collective behavior of a homogenous system con-
sisting of N robots with identical controllers described in the previous section.
Specifically, we are interested in the global system properties, namely, average
number of robots in the given states and the fluctuations around this average.
Note that the average number of robots in the red state is directly related to
Eq. 4. Indeed, since the robots are in either state independent of each other,
then pr(t) is simply fraction of robots in the red state, and consequently Npr(t)
is the average number of robots in that state. Below we consider a more general
problem of finding the probability distribution of having n robots in the red state.
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Let Pn(t) be the probability density that there are exactly n Red robots at
time t. For a sufficiently short time interval Δt we can write [8]

Pn(t + Δt) =
∑
n′

Wn′n(t; Δt)Pn′(t) −
∑
n′

Wnn′(t; Δt)Pn(t) (15)

where Wij(t; Δt) is the transition probability between the states i and j during
the time interval (t, t + Δt). In our multi robot systems, this transitions cor-
respond to robots changing their state from red to green or vice versa. Since
probability of having more than one robot to have a transition during a time in-
terval Δt is o(Δt), then, in the limit Δt → 0 only transition between neighboring
states are allowed in Eq. 15, n → n ± 1. Hence, we obtain

dPn

dt
= rn+1Pn+1(t) + gn−1Pn−1(t) − (rn + gn)Pn(t). (16)

Here rk is the probability density for having one of the k Red robots to changes
its state to Green, and gk is the probability density for having one of the N − k
Green robots to change their state to Red:

rk = k(1 − γ) , gk = (N − k)γ (17)

with r0 = g−1 = 0, rN+1 = gN = 0. Again, we have averaged the transition
probabilities over the histories.

The steady state solution of Eq. 16 is given by [18]

P s
n =

gn−1gn−2...g1g0

rnrn−1...r2r1
P s

0 (18)

where P s
0 is determined by the normalization:

P s
0 =

[
1 +

N∑
n=1

gn−1gn−2...g1g0

rnrn−1...r2r1

]−1

(19)

Using the expression for γ, we obtain after some algebra

P s
n =

N !
(N − n)!n!

γn(1 − γ)N−n (20)

e.g., the steady state is a binomial distribution with parameter γ. Note again that
this is the direct consequence of the independence of robots’ dynamics. Indeed,
since the robots act independently, then in the steady state each of them has
the same probability of being in either state. Moreover, using this argument it
becomes clear that the time–dependent probability distribution Pn(t) is given
by Eq. 20 with γ replaced by pr(t), Eq. 6.
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7 Simulations

To test the accuracy of our analytical formulation, we compared it to the results
of discrete time numerical simulations with 100 robots. We model the arena by
an 100 × 100 rectangular grid, Mr (Mg) cells are occupied by red (green) pucks.
Robots move randomly from cell to cell2, and once they are on a cell with either
type of puck, they record it in their register. At each time step, each robot, with
probability ε decides whether it should consider a transition or not, and then
uses the transition rules described above to determine its new state, using the
last τ entries in its registry. In Fig. 1 we plot the average fraction of red robots
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Fig. 1. Fraction of red robots vs time, τ = 50

as a function of time for puck distribution Mr = 500, Mg = 1500, and for total
number of robots N = 100, for different values of ε. We have averaged the plot
over 100 trials. For comparison, we also plot pr(t) as given by Eq.12. One can
see that the analytical curve fits perfectly with the results of the simulations.
The fraction of robots in both cases converges to the same steady state value
p0 = 0.25, and the convergence time depends on ε as indicated by Eq.12.

The quality of task allocation depends not only on the average number of
robots collecting, say, red pucks, but also the fluctuations around this average.
Hence, we studied the steady state probability distribution. Clearly, the strength
of the fluctuations are characterized by the width of this distribution. To obtain
the steady state probability distribution in the simulations, we used the time
series generated by a single run. To avoid the effects of transient dynamics, we
carried out simulations until the steady state was reached, and then constructed

2 Note that in our simulations we do not aim to reproduce realistic robot trajectories.
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Fig. 2. Steady state distribution P s
n for different fractions of red pucks
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Fig. 3. Adaptation to changing puck distribution for different τ (ε = 0.1)

the histogram of Nr(t)–the number of red robots. The results are shown in Fig. 2
for different values of the fraction of red pucks. In each case, the distribution
is peaked around its average value as one should expect. Again, one can see
that there is an excellent agreement between the analytical curve (Eq. 20) and
simulation results.

In Fig. 3 we plot the fraction of Red robots when the puck distribution under-
goes step–like changes, both for simulations (averaged over 100 trials) and ana-
lytical results (Eqs. 14). One can see that the system adapts to the changes, and
after some transient time the distribution of robots between the states reflects
the puck distribution. Note that in this case also the analytical and simulation
curves are virtually undistinguishable.
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Fig. 4. a)Fraction of red robots vs time for different values of τ b)Fraction of red robots
for modified transition rules. Both plots are the averages over 100 trials

Finally, let us consider the case when ατM0 is sufficiently small so that the
correction to the value of γ can not be neglected. As we mentioned above, in this
case steady state of Eq. 12 does not correspond to the puck distribution, p0

r �= μ0,
and in the limit ατM0 → 0 the steady state converges to 1/2 not depending on
μ0. Note that this happens because for small enough ατM0 the robot’s registry
might not contain any readings at all. Hence, according to our rules,3 each robot
will choose either state with probability close to 1/2. This is illustrated in Fig. 4
(a) where we plot the number of red robots vs time for small overall density of
pucks M0/L2 and different τ . Remarkably, the deviation from the desired steady
state value is again well described by the analytical curve. Note also, that this
undesired behavior can be avoided by modifying the transition rules as follows:
if a robot’s registry does not contain any reading for the last τ time steps, then
the robot stays in its current state instead of choosing states with probability
1/2. This slight modification allows robots to achieve desired task allocation as
shown in Fig. 4 (b).

8 Conclusion

In conclusion, we have presented a simple stochastic model of task allocation
for multi–robot system, and studied it both analytically and in simulations.
Dynamic task allocation model presented here is an adaptive form of foraging
in a multi-robot system, where robots can switch dynamically between Red and
Green foraging states. When a robot is in a Red foraging state, it is searching
for and collecting Red pucks. The goal of dynamic task allocation is for the
distribution of robots in Red and Green foraging states to dynamically adapt to
the distribution of pucks, even when this distribution is not known in advance
or changing in time. In order to accomplish this, robots make local observations
of the foraging states of other robots and colors of pucks, estimate the densities

3 Note that limmr→0 limmg→0
mr

mr+mg
= 1/2.
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of each based on past observations, and switch foraging state according to some
transition function. Transition function specifies the probability of switching
state based on the observed densities of robots and pucks.

We have studied this model analytically using annealed approximation of
stochastic Master equation, where the robot’s actual histories are replaced by
random one drawn from Poisson distribution. Although it is not clear a priori
that such an approximation is valid, we obtained excellent agreement with the
results of numerical simulations. Note also that the model presented here can
be generalized to the situations when there are more than two states for more
general multi–agent settings.

The work presented in this paper does not address the role noise in observa-
tions caused by faulty robot sensors plays in the behavior of the system. Real
robots making observations have crude video systems and may not be able to dis-
tinguish two objects that are overlapping in their visual field, or even their types
(colors). Nor can robots uniquely identify objects or be able to tell whether the
object they are seeing has been observed before. Such limitations will often lead
robots to overestimate or underestimate environmental states, and will require
further elaboration of the analytical techniques described here. Capturing noisy
observations and studying their effect on the collective behavior of an adaptive
system is the focus of our ongoing research.
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5. Chris V. Jones and Maja J Matarić. Adaptive task allocation in large-scale multi-
robot systems. In Proceedings of the 2003 (ICRA’03), Las Vegas, NV. IEEE, 2003.



Analysis of a Stochastic Model of Adaptive Task Allocation in Robots 179

6. Sanza Kazadi, A. Abdul-Khaliq, and Ron Goodman. On the convergence of puck
clustering systems. Robotics and Autonomous Systems, 38(2):93–117, 2002.

7. Kristina Lerman and Aram Galstyan. Mathematical model of foraging in a group
of robots: Effect of interference. Autonomous Robots, 13(2):127–141, 2002.

8. Kristina Lerman and Aram Galstyan. Macroscopic Analysis of Adaptive Task
Allocation in Robots. In Proceedings of the International Conference on Intelligent
Robots and Systems (IROS-2003), Las Vegas, NV, Oct 2003.

9. Kristina Lerman, Aram Galstyan, Alcherio Martinoli, and Auke Ijspeert. A macro-
scopic analytical model of collaboration in distributed robotic systems. Artificial
Life Journal, 7(4):375–393, 2001.

10. Ling Li, Alcherio Martinoli., and Yasser Abu-Mostafa. Emergent Specialization in
Swarm Systems, volume 2412 of Lecture Notes in Computer Science, pages 261–
266. Springer Verlag, New York, NY, 2002.

11. A. Martinoli, A. J. Ijspeert, and L. M. Gambardella. A probabilistic model for
understanding and comparing collective aggregation mechanisms. In Dario Flore-
ano, Jean-Daniel Nicoud, and Francesco Mondada, editors, Proceedings of the 5th
European Conference on Advances in Artificial Life (ECAL-99), volume 1674 of
LNAI, pages 575–584, Berlin, September 13–17 1999. Springer.

12. Alcherio Martinoli and Kjerstin Easton. Modeling swarm robotic systems. In
B. Siciliano and P. Dario, editors, Proc. of the Eight Int. Symp. on Experimen-
tal Robotics ISER-02, Sant’Angelo d’Ischia, Italy, Springer Tracts in Advanced
Robotics 5, pages 297–306, New York, NY, July 2003. Springer Verlag.
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Abstract. Robotic soccer remains an area of active research owing to the diffi-
culties of dynamic team formation and hard real time constraints regarding 
planning. Much of the existing research relies upon a central agency for coordi-
nation. Insect societies distribute work and allocate roles without a need for 
such a central agency and are robust with respect to changing environments and 
available agent resources. This paper explores the use of insect-inspired  
division of labour principles to robot soccer, highlighting the flexibility of the 
approach and ability to adapt to a wide range of soccer playing strategies. 

1 Introduction 

Insect societies are remarkable for their properties of self-organization. Work is as-
signed and roles allocated without a central coordinating agency. Insect societies 
naturally form teams; with individual agents being able to specialize in a particular 
role but being capable of role switching if environmental change demands it. For ex-
ample, Polistes wasps consist of a single morphological caste, thereby providing no 
obvious physical reason for one wasp adopting a particular role or taking on a given 
task when compared to another. In social insects, the work of the colony is divided up 
into tasks. These tasks are then divided up amongst the individual insects in the col-
ony. How they are divided up is a matter of considerable interest to agent researchers. 

In nature, there are three main drivers in the way tasks can be divided up in a  
colony [1]: 

 
1. Temporal polyethism – Individuals born in the colony around the same time  

period tend to perform similar tasks.  It is not known if absolute aging is a factor, 
however, the social and external environment appear to influence behavioural  
development. 

2. Worker polyethism – Individuals in different worker castes have different mor-
phologies.  The tendency is for workers within the same caste to tend towards 
similar types of tasks.  Workers in different morphological castes tend to do  
different types of tasks. 

3. Individual variability – Within a given caste, the individuals can develop hetero-
geneous behaviours, with some individuals tending more to working on one type 
of task than another.  This is also referred to as a behavioural caste. 
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There is a certain level of plasticity in the examples of division of labour that occur 
in nature.  Insect colonies have to be able to deal with factors such as perturbations in 
food availability, weather conditions, war, disease, etc.  In nature, if a particular caste 
is wiped out, or its numbers reduced, the other castes will adapt their behaviour to 
take on the tasks previously performed by the other members.  This is considered to 
be part of the division of labour problem. 

Division of labour is a problem that presents itself naturally in the game of soccer. 
How many midfield and attacking players should I have on the team? Should my de-
fenders ever adopt an attacking stance? Roles are usually allocated prior to the game 
and strategy is determined based upon an analysis of the opposition. Role reassign-
ment occurs during breaks in the game, such as half time and stoppages in play. Role 
reassignment occurs through the substitution of players or movement of one player 
from one position to another. As such it is planned and does not occur in real time. 

This observation motivates the contributions of this paper. Our desire is to make 
team formation a fluid and dynamic process. The team should have a set of possible 
roles for its players but should adopt as many attackers, midfield and defensive players 
as need be to best meet the strategic and tactics of the opposition. Further, should a team 
member get injured or tire, the team should compensate accordingly –all this without 
coordination by a central agency. It is our hypothesis that it should be possible to start 
with player roles unassigned and have them emerge during the game. Naturally, this is 
an ambitious goal and this paper represents first steps towards this goal.  

In order to make significant progress, we have chosen to conduct our research in 
the simulation domain. We have chosen to use the TeamBots environment, which 
supports several different teams (with fixed roles), is written in Java and for which the 
source code was readily available. 

The remainder of this paper consists of 4 sections. The next section briefly reviews 
the TeamBots environment and the teams provided. Following this, the division of la-
bour and task allocation algorithms on which the research is based are described. Ob-
servations on the use of these algorithms in the TeamBots simulator follow. The paper 
ends with conclusions and proposals for future work. 

2 TeamBots 

TeamBots was designed and developed by Tucker Balch at Carnegie Mellon Univer-
sity, as a development and testing environment for studying collaborative robot be-
haviour.  Originally titled JavaBots, due to its being written entirely in Java, the simu-
lator is designed to provide a rapid prototyping environment for multi-robot logic 
development [2]. 

The language Java was chosen for three main reasons; portability, productivity, 
and modularity.  Java interpreters are available on many operating systems, including 
those employed on the testing robots themselves, making it highly portable. Likewise, 
the researchers observed that they produced working code much more quickly in Java 
than they did C or C++, increasing their productivity.  Lastly, the highly OO-nature of 
Java allows them the modularity they desired to be able to reuse the different logic 
and sensor modules they had developed in each of their own projects [2]. 

TeamBots is not the only soccer simulation environment available for use.  The of-
ficial RoboCup Soccer Simulator (RCSS) is, in fact, the more popular and well 
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known, owing to its use in the yearly RoboCup tournaments [3]. However, RCSS 
teams tend to be written in C/C++ and targeted at Linux [4]. Since TeamBots was 
written entirely in Java, and the primary system for development was a Windows ma-
chine, TeamBots proved itself to be the more appealing choice. 

TBSim is the title given to the TeamBots simulator.  TBSim was designed such 
that it would simulate the operations of a variable number of robots on a field of arbi-
trary size.  Obstacles and spherical objects are also simulated in 2D.  A wall, for  
instance, is simulated as a line through which no robot may pass; a ball as an object 
capable of being kicked and pushed around, slowed by a constant decrease in velocity 
as it travels across the simulated ground. 

The configuration of these objects is referred to as a Domain, which is read from a 
text file at the beginning of a run.  Specified in this text file is a list of every object 
and obstacle in the Domain, along with their start positions and any other operating 
parameters necessary for initialization.  Once a Domain is loaded into TBSim, a vis-
ual representation of the field appears, and simulation begins. 

Due to the presence of Java interpreters as operating environments on actual ro-
bots, porting the logic of a TeamBots robot to hardware is, in theory, no more com-
plex than the simple act of copying the file onto the robot.  The interfaces provided 
for the robot logic in the simulator, TBSim, are identical to those offered in hardware, 
TBHard.  There are no modifications that need to be made to the team’s logic code 
whatsoever. 

The interface provided by TeamBots from logic to hardware is completely abstract, 
and, as such, standardized across all supported robot kits; adding basic support for 
simulation of a new robot is as simple as adding logic to four function calls; getHead-
ing, getPosition, setSpeed, and setSteer.  Additional functionality beyond the basics is 
provided in the implementation of abstract Sensor and Actuator interfaces [2]. 

TeamBots supports the Probotics Cye as part of Carnegie Mellon’s Minnow  
project [5]. 

3   Task Allocation and Specialization Algorithms 

The algorithm Bonabeau [1] suggests a model of task specialization based upon a 
model insect division of labour; it is designed to model behavioural castes described 
in the introductory section. From an initially homogenous set of individuals, the  
result of the algorithm is to end up with a heterogeneous set of individuals, each 
member of which is specialized to a specific task. 

In order to model this problem, each individual has a certain threshold for working 
on a task, as well as a stimulus for doing that task.  The threshold lowers when they 
engage in that task (or learn it) and rises when they’re not doing that task (forgetting 
it).  Depending on the threshold value, the individual can have a greater or lessened 
probability of responding to the exact same level of stimulus. 

The idea behind the algorithm is that individuals with more experience, and which 
are thus better equipped to handle a specific task, are more inclined to partake of that 
task than individuals who have less experience with that task. 
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The probability of an individual i undertaking a task j is expressed as: 
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Where ji,θ  is the self-reinforcing threshold for individual i, task j, and jid ,  is the dis-

tance from individual i to where task j is performed.  α  and β  are tuning coeffi-

cients, which we set to 1.  (We are already normalizing, and thus weighting, ji,θ  and 

jid , .)  Whenever individual i is performing task j, the self-reinforcing equation is: 

tjiji Δ−← ξθθ ,,  

Whenever individual i is not performing task j, the self-reinforcing equation is: 
tjiji Δ+← ϕθθ ,,  

The value of ji,θ  is restricted to between 0 and a maximum value.  (We use 1) 

For our implementation, we use values of 00003.0=ξ  and 00002.0=ϕ . 

As the individual performs one task more than others, this causes the threshold for 
that task to drop, while the thresholds for other tasks increase.  Since the probability 
function is based on the threshold, a lower threshold means a greater tendency to per-
form that task, reinforcing the selection of that task, thereby reinforcing the behaviour. 

The use of a distance in the equation allows for us to give a higher probability to 
those individuals that are closer to the task performance location. 

3.1 Implementation 

The implementation consists of three main classes.  The Specialization class provides 
an interface to the implementation, while the SpecializationConfig class provides  
instant access to configuration information.  Internal to the implementation is  
the Task class, which represents a task within the context of the Specialization  
algorithm. 

TeamBots allows one to specify a minimum frequency with which a robot will be 
given new information, and allowed to make decision changes in.  By default, the 
simulator guarantees one of these cycles every 1/10th of a simulated second.  Team-
Bots refers to these occurrences as “TakeStep” intervals. 

Each time the robot is instructed to take a step, we must update the Specialization 
algorithm as to what is going on.  For the algorithm to work, we must keep it  
appraised of the current level of all stimuli. 

In general, we calculate these values as follows: 

 

We restrict the values of the constant weight coefficients, kw , such that 

1=∑
k

kw  

[ ]∑ ⋅=
k
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3.2 Basis Team for Specialization Algorithm 

The team that the specialization algorithm was integrated into was called FemmeBot-
sHeteroG, and was originally written by M. Bernardine Dias of Carnegie Mellon  
University.  This team was selected for its simplicity; the team has one “center,” two 
“attackers,” a “defender” and a “goalkeeper.” While our algorithm retained the behav-
iours (roles) associated with the team, no one player was allocated to a given role. 

The “center” hangs around the centre of the field, waiting until the ball comes 
within its sphere of influence.  Then it heads straight for the ball.  Once it is the  
closest one to the ball, the centre tries to get it as close as it can to the opponent’s net, 
and potentially score.  If it is no longer the closest one on its team to the ball, it 
returns to its wait position in the centre of the field. 

The “attacker” waits around centre while the ball is in its own end, and attempts to 
score while the ball is in its opponent’s end.  There are two attackers, the north and 
the south.  The only difference between the two is where on the field they wait, the 
north attacker stays just north of centre, while the south stays just south of centre.  
When attempting to score, the two work together to get the ball into the opponent’s 
net.  If they are unable to get it in by kicking, they work together, and use their brute 
strength to push any defender out of the way as they take the ball to the goal. 

The “defender” waits near the goalkeeper for an opponent to enter the two-thirds of 
the field closest to its team’s net.  The defender then rushes to get into position be-
tween the ball and its net.  If the defender is the closest one to the ball, and it has a 
clear shot, it kicks the ball towards the opponent’s goal.  If the ball travels into one of 
the close corners, it is the defender’s job to brace against the goalkeeper so the ball 
can’t be pushed into the net. 

The “goalkeeper” waits at the net for the ball, tracking its movements back and 
forth (north and south) across the field, as far as the net goes.  As the ball draws closer 
to the net, the goalkeeper continues to track the ball, attempting to punt it away from 
the net as it comes within range.  Should the goalkeeper find itself out of the net, 
perhaps as a result of being pushed by an opposing player, it attempts to return to  
position as quickly as possible. 

Since a goalkeeper is deemed necessary regardless of perceived demand, much like 
an insect queen to a nest, the goalkeeper is considered independently of the speciali-
zation algorithm. 

3.3 Team Formation by Stimulus Calculations 

Many previous approaches to team formation have involved a central agency for co-
ordination or high level inter-agent dialogues [6, 7]. The stimulus equations given be-
low require neither inter-agent communication nor a central coordinating agency. The 
equations are not strictly correct; we must ensure that the values of the stimuli stay 
within bounds at all times (0 to 1). Hence, before being subtracted from 1 and multi-

plied by their scaling factor ks , each equation is corrected to maintain bounds; if it is 

less than 0, ks  is set to 0.  If the equation’s result is greater than 1, ks  is set to 1. 
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The stimulus values used in the implementation are as follows: 
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v_ball_to_center is a vector from the ball to the centre of the field.  F_DIAG is a con-
stant specifying the diagonal distance from one corner of the field to the other.  
v_centert is a vector from team mate t to the centre of the field. 
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v_ball_to_goal is a vector from the ball to the opponent’s goal.  v_ball_to_me is a 
vector from the ball to the robot.  This stimulus equation turns 1 whenever the ball 
crosses the line into the opponent’s territory, and gradually fades linearly to 0 as the 
ball travels closer to the home goal. 

Since the north and south attackers are essentially the same, we treat them as one 
role.  When assigning a robot to this role, we randomly switch between which to as-
sign them to.  This has the side effect of causing attackers to never truly settle into a 
position at the centre of the field, instead preferring to jump back and forth from the 
north rest position to the south. 
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v_ball_to_our_goal is a vector from the ball to the team’s home goal.  v_def_zone is a 
vector from the robot to the position where the defenders play.  (In this case, the net.)  
v_netl is a vector from robot l to the team’s home goal. 

The summations of the opponents and teammates are subtracted from each other  
to obtain a value that corresponds to the balance of defenders to the number of our 
opposition’s attackers in the defensive zone.  If there are more opponents in our  
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end than there are teammates, this should spur the creation of more defenders to 
compensate. 

3.4 Task Decisions 

For each step, the stimulus is updated, and the specialization routine is checked to de-
termine which role the player should be engaging in. 

First, the routine checks if it is already engaged in a task.  If it is, the routine 
checks to see if it has exceeded the minimum interval, 1/p, before dropping a task.  If 
it has, the task is dropped. We use a value of p=0.005, thus making the minimum  
interval 2000ms. 

Next, the routine checks again to see if it is engaged in a task.  If it isn’t, then the 
routine goes through the process of selecting a new task.  The process of determining 
a new task is equivalent to taking the probabilities of all of the possible tasks, and  
putting them on a number line.  Then a random number r is rolled, and wherever that 
number falls on the number line is what the new task will be. 

This is implemented as follows: 
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where t is the target value we’ll be looking for, and 

idle
Tθ  is the idle probability con-

stant. Our implementation uses a value of 0. We then loop through the tasks, adding 
up their probabilities, until we reach the task where the value of the thus-summed 
probabilities exceeds t.  This is the task we select. 

If we exceed the list of probabilities, then the target task is obviously the idle task.  
In this eventuality, we select no role for the individual i. 

We repeat this process for as long as the robot is functioning. 

4 Observations 

4.1 The Opponents 

All robot teams were tested using the simulator from the TeamBots 2.0e package.  
The description file used by the simulator was the exact same as the one supplied,  
excepting the portion pertaining to the class files of the robots to be used.  SpFemme-
BotsHeteroG (our specialization implementation of the FemmeBotsHeteroG team) 
was supplied in place of the name of the default team for the west side.  The follow-
ing robot teams were used as opponents on the east side: FemmeBotsHeteroG, Dave-
HeteroG, AIKHomoG, BrianTeam, CDTeamHetero, SchemaDemo, MattiHetero. 

4.2 Interesting Behaviours 

While testing against the various control teams, various trends in behaviour were  
observed.  What follows is a list of these observations, along with examinations of 
their potential causes. 
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4.2.1   Centers 
One of the most effective strategies of the specialization team was made possible 
through the exploitation of a deadlock-preventing feature built into the simulator.  
Whenever the ball’s position is frozen for several seconds, a timer will run down and 
then the ball will be dropped again at the centre of the field.  To exploit this behaviour 
of the simulator, the author of the original team coded the center so it would hover 
around the middle of the field, waiting for these ball drops. Attackers were also coded 
to hover in the same area when not in use, so as to be prepared to run in with the ball 
after a drop. 

Freezing a ball is a relatively simple task. Since all that is required for the ball to be 
considered frozen is for its position to remain constant for a short period of time, there 
are two ways in which this can be made to occur; the ball can either be kicked into a 
position where it takes too long for a player to get to it before it times out, or the ball 
can be trapped between a player and another object on the field. 

An effective strategy for defensive robots then, in removing the ball from their zone, 
is to either kick the ball into the corner, where it is unrecoverable (either through time 
restrictions in a robot travelling to it while it’s at rest, or in its being left flush against 
the wall), or to push back with equal force against an oncoming opponent intent on 
scoring.  If done effectively, the latter will cause the ball to become stuck between the 
two robots, and shortly thereafter, dropped in the centre of the field.  A center is then 
able to quickly gain possession of the ball, and charge towards the opposition’s goal. 

In the specialization team, it was important to maintain the effectiveness of this tac-
tic. By including a center-generating weighting value in the specialization equations in 
the specialization team, we ensure there remains an impetus on the team to leave at least 
one robot in the center role.  As a result, it is relatively rare that the centre of the field 
not have a robot nearby engaging, or prepared to engage, in center role behaviour. 

However, there are still times we can end up with an absence of players near the  
center.  Fig. 1 shows a game against DaveHeteroG where the centre of the field has 
been left unprotected.  The center that had been occupying that area had rushed back to 
take on a defender role temporarily, leaving no robots available to take ball possession 
following the drop.  While in Fig. 2, the defender is able to make it to the ball before the 
others, and keep it inside the opposition’s zone, we have lost field position as the other 
team has the time to get into a better defensive position in the middle of their zone. 

        

Fig. 1. (left) SpFemmeBotsHeteroG (light) 
versus DaveHeteroG (dark). No center; a de-
fender comes forward to fill the void 

Fig. 2. (right) Having kicked the ball for-
ward towards its teammates, the same ro-
bot turns to resume its duties as defender 
near the net 
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This occurs because even when the strength of the defender stimulus is low, if the 
threshold for a defender is low enough, there is still the random possibility that our 
robot will assume the role, regardless of demand.  The defender stimulus drops when-
ever performing defender behaviour, which is sparked by insurgences by the other 
team into our zone.  Hence, the probability of centers spontaneously becoming  
defenders is proportional to the probability of the opposing team having been deep in 
our zone sometime recently. 

As we can see from the threshold graphs (Fig. 3-6), we ended up with no dedicated 
centers this game.  However, from the various dips from all players, we can see that 
performance of this task was split relatively evenly amongst all involved.  The excep-
tion is player two, which was close to becoming a dedicated center at one point.  This 
coincides with a strong offensive by our team; even though player two was an at-
tacker, it was the closest one to the centre of the field, and so it took on the role of 
center.  The following return to previous levels was sparked by the center receiving 
possession of the ball, and bringing it into the opposition’s zone. The attacker stimu-
lus then overrode the center stimulus, and player 2 returned to being an attacker. 

  

  

Figs. 3-6. (top left) Thresholds – Player 1.  Primarily a defender; the downward spikes at the 
end for center indicate performance of the center behaviour, when the defender rushed forward 
to kick the ball to its teammates– (top right) Thresholds – Player 2.  Primarily an attacker– (bot-
tom left) Thresholds – Player 3.  Primarily an attacker– (bottom right) Thresholds – Player 4.  
Primarily an attacker 

 
Curiously, the degree of specialization towards being a center in this case is indica-

tive of the all of the experiments run.  Center specialization with this set of stimulus 
equations is exceptionally rare.  Increasing the stimulus levels for the center relative 
to the others will lead to increased specialization as centers, and better odds of collec-
tion after a ball drop.  However, the trade off is in effectiveness of defense, and the 
commitment of attackers, whose memberships tend to suffer as a result. 
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With more centers, the game becomes more back and forth, with an incursion into 
one zone, immediately followed by an incursion into the other.  Defenders are not nec-
essary with such tactics; for such a team, it becomes a matter of grabbing the ball as 
soon as it appears, rushing to get it close to the net, and then either making a lucky shot, 
or pushing their goalkeeper sideways until the ball falls into the net.  So while a stronger 
center specialization does help the team win more games, it is by relying on the 
strengths of our team’s goalkeeper, and the lack of exploitation of the same brute-force 
scoring techniques by the other team, rather than on the specialization algorithm itself. 

The other flaw of having a more powerful center stimulus is due to the overlap in 
job description between a center and an attacker.  A stronger center stimulus would 
have to be accompanied by a tighter description contributing to the stimulus; simply 
increasing the stimulus amount can lead to confusion on whether to perform a center 
or an attacker role.  This confusion can manifest itself in a lack of commitment on the 
part of an attacker, who will turn away back towards centre while they are still  
relatively close to the ball, and deep and alone in the opposition’s zone. 

By having a weaker center stimulus, we are still able to generate a sufficient mini-
mal number of centers because our attackers loiter in the same position.  Thus, when 
the ball is dropped, they are close enough that the proximity will cause the center 
stimulus to override the attacker. 

4.2.2 Task Changes 
There are five players on each team.  On the specialized team, four of these can be-
come specialized in a particular task, of which we have three. 

 

Fig. 7.  SpFemmeBotsHeteroG versus SchemaDemo; all of the specialization individuals have 
become attackers 

 
In this instance, we have had all four individuals on our team choose the attacker 

role at the same time, in response to the ball being in our opposition’s zone.  Shortly 
thereafter, the ball passes across the line, and moves into our zone, with all four of 
their attackers accompanying the ball. 

Our attacker role does not specify any sort of defensive behaviour, leaving our 
goalkeeper alone to defend against the incursion.  Even if several of our specializing 
players manage to become defenders, it may already be too late, as it would still take 
at least five seconds for the closest one to reach the goal. 

Statistically, it is rare that all of our specialization players will choose to be an  
attacker when we need defenders.  However, there are other more common scenarios 
with similar consequences. 
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Fig. 8. (left) SpFemmeBotsHeteroG (light) 
versus SchemaDemo (dark); two defenders, 
two attackers    

Fig. 9. (right) SchemaDemo preparing to 
score; two defenders, two attackers (two 
have swapped roles) 

 
Fig. 8 illustrates a game between our team and SchemaDemo.  The SchemaDemo 

team has made it into our zone, and the ball is between our goalkeeper and an oppos-
ing player and the net. Of our specialized players, there are currently two defenders, 
and two attackers.  One defender is over halfway to the goal. 

Fig. 9, however, shows what happens shortly thereafter. The closest defender has 
changed roles to an attacker, due to its low attacker threshold. At the same time, one 
of the attackers has changed roles to defender, due to the low ratio of defenders to  
opponents in our zone. While we now still have the same number of attackers and  
defenders, we have lost field position in a critical situation. The other team scores 
shortly hereafter. 

This occurs because all of the players on our team have developed low attacker 
thresholds.  If we spend a substantial amount of time in the other team’s zone, then 
we will tend to have more dedicated attackers than defenders. This will happen be-
cause the stimulus equations are influenced by the amount of time spent performing 
the behaviour. Should the opposing team be able to dip in quickly, and score  
effectively each time they do, our team will be completely unprepared to defend itself 
against these attacks. 

In this instance, even though all of the players on the opposing team are deep 
within our zone, and are preparing to score, our players still have a higher tendency to 
want to assume the attacker role than the defender role, due to their defender thresh-
olds being substantially higher. 

In an insect colony, there can be thousands of individuals available to do the work 
of the colony, while in a robot soccer team there are only four.  Since the proportion 
of individuals to tasks to be performed is substantially lower, it stands to reason that 
indecisive behaviour such as this could be more apparent a detriment to the efficiency 
of this algorithm in a soccer team. 

4.2.3 Goalkeeper Interference 
An effective, and allowed, tactic in the TeamBots simulator is to prevent the goal-
keeper from doing their job, by restricting their movement in front of the net.  There 
are several teams included with the simulator that intentionally exploit this tactic.  
(e.g. Kezche, JunTeamHeteroG, etc.)  Since the basis team was ill equipped to defend 
against these tactics, they were dropped from testing. 
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In practice, however, a goalkeeper interference tactic may end up being uninten-
tionally leveraged by an aggressive opponent. Fig. 10 demonstrates a scene from a 
game between our specialization team and its basis team. In this instance, the goal-
keeper is being prevented from doing its job because a defender is in its way, which is 
in turn being blocked by an opposing player. (This can also happen if we have more 
than one defender, and they are both fighting for the same position.) 

        

Fig. 10. (left); SpFemmeBotsHeteroG (light) 
versus FemmeBotsHeteroG (dark); the goal-
keeper, blocked by defender, blocked by at-
tacker from the other team, as the ball trickles 
into our net 

Fig. 11. (right); SpFemmeBotsHeteroG (light) 
versus MattiHetero (dark); the goalkeeper is 
blocked by a defender which has just turned 
into an attacker 

Unwise specialization decisions in our own team can be just as problematic. Fig. 
11 shows a scenario where the opposing team is about to score because our goal-
keeper is being blocked.  In this instance, it is the fault of the player in front of the 
net, which has just changed to the attacker role.  The attacker makes no attempt at 
avoiding the ball, or at giving way to the goalkeeper as it turns to pursue its new role 
at the centre of the field. 

Also visible in Fig. 11 is an effective tactic used by the MattiHetero team (and also 
by AIKHomoG) in preventing goalkeeper interference tactics from being used against 
its team; the goalkeeper does not remain against the net, but rather stays out from the 
net.  In this way, if an opposing player attempts to push them out of the way, they will 
still have the ability to pull back and around them, and into position. 

4.2.4 Defensive Play Against Aggressive Opponents 
If the team is performing particularly badly, and the other team is in our zone for a 
large part of the game, this can inspire more team members to become defenders.  
Fig. 12-15 show the resultant threshold values of play against AIKHomoG.  This team 
is exceptionally aggressive, and spends most of its time in our zone.  Our team at-
tempts to balance against this configuration. 

As we can see from the graphs, player four becomes a defender almost immedi-
ately, followed by player one and player two.  As the game ends, we can see player 
three becoming a defender as well. 

The key to this opponent’s success is in the two players it leaves just outside the 
corners of our net, whose only purpose is to score. This team is purely an offensive 
team, which makes them a difficult competitor for the specialization team.  On the 
other hand, their defence is relatively weak. The center-heavy configuration men-
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tioned previously put in a better showing against this opponent for just this reason; 
when attacked en masse, AIKHomoG’s lone goalkeeper puts up little resistance. 

 

Figs. 12-15. (upper left)  Thresholds – Player 1;  SpFemmeBotsHeteroG  versus  AIKHomoG. –
 (upper right)  Thresholds – Player 2 – (bottom left) Thresholds – Player 3 –  (bottom right) 
Thresholds – Player 4 

4.2.5 Delay of Game 
The ball drop on ball freeze feature of the simulator can further be exploited for delay 
of game.  Should the  ball ever  be  re-dropped in the middle of three robots  ringed 
around the centre, the ball is essentially frozen permanently, and whomever was  
winning up until that point will win the game. 

While no teams were observed to actively exploit this flaw in the simulator, it is 
conceivable that a team could be designed -- or possibly evolved through a genetic  
algorithm -- to exploit this flaw in the simulator, freezing the ball in the centre of the 
field while they are in the lead and ensuring their victory. 

 

 

Fig. 16. SpFemmeBotsHeteroG (left) versus SchemaDemo (right); the ball is frozen for the rest 
of the games, as the two teams refuse to yield, and allow the other team room to knock the ball 
from the centre after a ball drop 
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5 Conclusions 

The implementation presented demonstrates several fundamental strengths and weak-
nesses in applying the specialization division of labour algorithm to a simulated robot 
soccer team. 

The time spent travelling between roles can be an impediment to the performance 
of the team.  Since the roles in the basis team perform their behaviours in different 
general areas on the field, transit time from one area to another after a role decision 
becomes a factor.  

This problem can be compounded if we accidentally choose a poor role, which 
does happen quite frequently. With this algorithm, position on the field does not mat-
ter to an individual to the same degree as what role the robot was engaged in most re-
cently for the longest period of time.  As such, players may miss good opportunities 
because they are more inclined to perform the roles they’re more comfortable with. 

One possible improvement to fix this problem would be a further refinement of the 
stimuli for the various roles on the field.  For example, a dampening value might be 
subtracted from the defender stimulus when the player is currently in possession of 
the ball, and close to the opposition’s goal.  The challenge of such a refinement would 
be in ensuring a balanced set of dampening values for all roles, so that one role 
doesn’t get dampened more harshly or leniently than the rest. We also believe that 
adding a velocity term into the stimulus equations will influence performance. An-
other potential improvement would be to learn the stimulus equations using Genetic 
Programming. 

The basis team tended to be hardwired for its tasks with a specific number of  
robots (one) per role in mind.  As such, it did not scale well to a varying number of 
individuals in the defender position, for instance, where extra defenders tended to get 
tangled up in each other. 

In this implementation, our tuning coefficients α  and β  for our probability equa-

tions were simplified to 1.  A further refinement of this implementation may be to  
experiment with these values, to see what effect modification of them might have on 
the ranges at which individuals participate in team behaviour. 

Furthermore, a team balancer stimulus might be employed to give the team a more 
aggressive or defensive posture. (This global team reinforcement strategy has been sug-
gested and employed before by Balch [8].) If the team is losing, then it may make sense 
for the defender’s stimulus to be added to a reinforcement value, which would spur the 
creation of defenders even whenever there are no attackers in our half of the field. 

Likewise, if the opposition is spending a large portion of time in our half of the 
field, then perhaps we aren’t being aggressive enough, and we need more centers to 
hold the line when the ball reappears in the middle.  In situations like this, an aggres-
sion stimulus could be calculated and added to the regular center stimulus, to react to 
a perceived need for more centers. 

The key strength of the specialization algorithm is that it is capable of adapting to 
changing conditions on the field.  If we need more defenders, this algorithm remem-
bers that fact on an individual-by-individual basis.  Even if the ball goes into our  
opposition’s zone, an individual will remember, for some time after that, to stay back 
so as to be prepared. In this respect, the specialization team performed its task as  
expected. 
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Abstract. In recent years, mobile ad-hoc networks (MANET’s) have been de-
ployed in various scenarios, but their scalability is severely restricted by the 
human operators’ ability to configure and manage the network in the face of 
rapid change of the network structure and demand patterns. In this paper, we 
present a self-organizing approach to MANET management based on stigmer-
gic agents and demonstrate how to analyze its performance under different de-
ployment assumptions. Our results emphasize the importance of attention to no-
tions from dynamical systems theory in designing and deploying multi-agent 
systems. 

1   Introduction 

The challenges of managing mobile ad-hoc networks (MANET’s) [1] may overwhelm 
traditional network management approaches. Such networks are highly dynamic, se-
verely constrained in their processing and communications resources, distributed and 
decentralized. Thus, centralized management approaches requiring accurate and de-
tailed knowledge about the state of the overall system may fail, while decentralized 
and distributed strategies become competitive. 

We have successfully applied fine-grained agent architecture modeled on algo-
rithms used in biological systems [11] to a range of real-world problems, including 
manufacturing control [2], pattern recognition in sensor networks [4], collaboration 
and task assignment among multiple mobile platforms [13], path planning for un-
manned vehicles [16], and information retrieval in massive data [17]. This paper ex-
plores the applicability of these mechanisms to another domain, mobile ad-hoc com-
munication networks (MANET’s). Like other domains in which swarming is 
effective, MANET’s are distributed, decentralized, and dynamic. Self-organizing sys-
tems of agents with emergent system-level functions offer an approach that is robust, 
flexible, adaptive and scalable. By applying our techniques to a new domain, we gain 
experience with their capabilities and restrictions, and further exercise the develop-
ment methodology that we are developing for such systems [12, 15].  

Section 2 presents a concrete management problem in the MANET domain. Sec-
tion 3 offers a solution based on fine-grained agents dynamically interacting in the 
network environment. Section 4 offers experimental evidence for the effectiveness of 
our solution. Section 5 concludes. 
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2   The MANET Server 
Management Problem 

Figure 1 offers an overview of the 
MANET domain. Assume a network 
of (randomly) moving nodes that 
may communicate within a limited 
range, and may fail temporarily. A 
canonical example of an application 
for a MANET is a fleet of vehicles 
(say, trucks or dismounted troops in 
a military operation, or rovers ex-
ploring a remote planet) equipped 
with line-of-sight radios.  

We focus our attention on con-
figurations in which nodes may host 
distinct client and server processes. 
Every node carries a client and some 
nodes carry a server process. Exam-
ples of services that might be re-
stricted to some vehicles include  

• long-range communications links 
back to a remote commander; 

• wide-range sensors that can pro-
vide an integrating context for more local sensors carried on most vehicles; 

• target recognition databases and data fusion capabilities that can provide interpre-
tive support for platforms with more local access. 

A server provides a stateless and instantaneous service to a client upon request if 
there exists a communications path between the client and the server and if the server 
node is currently active. Servers in our model have no capacity constraints, and may 
serve as many clients at the same time as requests arrive. 

Because the nodes are mobile, weight and space are constrained, limiting the 
power available for communications and processing. Some of the likely services 
(long-range communications or sensing) impose especially high power demands on 
the servers, making it desirable to operate them only when they are needed to support 
the demands from the rest of the fleet. Vehicle movement must satisfy two con-
straints: achieving mission objectives and maintaining communication connectivity. 
In the simple example we describe here, all vehicles share both objectives, but tech-
niques that we have demonstrated elsewhere [13] permit vehicles to specialize for dif-
ferent tasks, so that some vehicles would dedicate themselves to serving as communi-
cation relays, reducing the constraints on the other vehicles imposed by the need to 
maintain connectivity. 

The server management problem requires answering three questions: given the cur-
rent topology of the network determined by node locations, communications ranges 
and node availability, decide 

Motion Box “up” node“down” node

1 client
0 server 1 client

1 serversub-network
 

Fig. 1. Domain Overview 
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1. which server nodes should actually 
expend battery power to execute 
the server process; 

2. to which server node a particular 
client should send its next service 
request; and 

3. where to relocate server nodes to 
meet the current demand by the cli-
ents. 

Thus, the network must be provided 
with mechanisms that self-diagnose the 
current network state (e.g., breaking of 
connections, availability of new connec-
tions, failure of nodes) and provide the 
information in a way that enables it to 
self-configure the ongoing processes 
appropriately. These functions could be 
satisfied if all servers executed con-
stantly and if all clients had global 
knowledge of the overall system (Figure 
2), but such a solution is impractical. 

3   Emergent MANET Management 

A fine-grained, self-organizing agent system can solve the service location problem 
specified in Section 2. Our solution starts with the following initial conditions: 

• Server processes shut down immediately if no requests arrive. 
• A client does not know about the location of servers in the network, unless the cli-

ent is co-located with a server on the same node. 
• Server nodes move randomly (a zeroth order approximation to mission-motivated 

movement). 

Thus, in terms of our design goals, we preserve maximum battery power, but most 
clients’ service needs are not met since they don’t know which server to address. 

We now define a co-evolutionary learning process based on individual reinforce-
ment. This learning process has three components.  

1. The server population learns to maintain an appropriate number of active server 
processes,  

2. and to adjust the position of these processes as they learn about the clients who are 
using them.  

3. The client population learns to direct requests to active servers. 

3.1   Server Activation Learning 

Any server node is aware of the incoming requests from one or more clients. If the 
server process is running, then these requests are served, otherwise they fail, but the 
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node will immediately start up the server process to be available for any new requests 
in the next cycle. While the server process is running, it tracks the number of incom-
ing requests. If there are no requests, it will begin a countdown. It will either abort the 
countdown if new requests arrive (and are served), or shut down if it reaches the end 
of the countdown. 

Initially, the duration of the countdown is zero. Thus, server processes are shut 
down as soon as no new requests come in. We define the following simple reinforce-
ment learning process to adjust the duration of the next countdown: 

(+) If a request from a client arrives and the server process is down, we increase 
the length of the countdown period for subsequent countdowns, since apparently the 
server should have been up and we lost performance (failed to serve a request) while 
the server was down. 

(–) If no request arrives while the countdown proceeds and the server process 
reaches the end of the countdown, then we decrease the length of the countdown pe-
riod for subsequent countdowns, since apparently the server could have been down al-
ready and we wasted resources (battery power) while the server was up. 

Driven by the demand pattern as it is perceived at the particular server node, the 
server process learns to maintain the optimal availability. In effect, the server learns 
the mean time between requests and adjusts its countdown length accordingly to stay 
up long enough. With this learning mechanism in place, the client population will 
now assume the role of the teacher as it generates a demand signal that leads some 
servers to stay down (extremely short countdown) while others stay consistently up 
(extremely long countdowns). 

3.2   Client Preference Learning 

Initially, only clients that are co-located with a server on the same node have any in-
formation about possible server addresses. These clients will become the source of 
knowledge of the client population as they share this information with their neighbors. 

Knowledge Representation— Clients manage their knowledge about and evaluation 
of specific servers in a dynamic set of scorecards, one for each server they know. A 
scorecard carries the address of the server, a score in favor (pro) and a score against 
(con) using this server. The current score of a server is computed as pro - con. 

Decision Process —When a client needs to select a server, it normalizes the current 
scores of all scorecards so that they add up to one and selects a server with a probability 
equal to the normalized score (roulette wheel selection). Thus, servers with a low cur-
rent score compared to others have a lower probability of being chosen by the client. If 
the client currently does not have any scorecards, then it can only contact a server if it 
co-located with one, otherwise its service need will not be met in this decision cycle. 

Information Sharing — If a client selects a server on a node that is currently within 
reach, it sends a request to the server and shares the outcome of this interaction with 
its direct neighbors. If the request is met, the client increases its own pro score of that 
server by one and sends the same suggestion to its direct neighbors. If the request is 
not met, the con scores are increased in the same way. These suggestions to the 
neighbors may lead to the creation of new score cards at those neighbors if they had 
not known about this server before. Thus knowledge about relevant servers spreads 
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through the network driven by the actual use of these servers. Furthermore, the suc-
cess or failure of the interaction with a server reinforces the preferences of the client 
population and thus (with a random component to break symmetries) dynamically fo-
cuses the attention on a few active servers while encouraging de-activation for others 
(see “Server Activation Learning”). 

Truth Maintenance —The constant change of the network topology, driven by the 
node movements and their failures, requires that the client population continuously 
update its knowledge about reachable servers and their evaluation. While the score-
sharing mechanism ensures that the performance of a reachable server is continuously 
re-evaluated, the clients still need a mechanism to forget references to servers that do 
not exist anymore or that are out of reach now. Otherwise, in long-term operation of 
the system, the clients would drown in obsolete addresses. 

A client “evaporates” its scores (pro and con individually) by multiplying them 
with a globally fixed factor between zero and one in each decision cycle. Thus, both 
scores approach zero over time if the client or its neighbors do not use the server 
anymore. If both scores have fallen below a fixed threshold, then the scorecard is re-
moved from the client’s memory – the client forgets about this server. 

A client also chooses to forget about a particular server, if the con score dominates 
the pro score by a globally fixed ratio ( con / ( con + pro ) > threshold > 0.5 ). Thus, 
servers that are trained by the client population to be down are eventually removed 
from the collective memory and are left untouched. They only return into the memory 
of clients if all other servers have also been forgotten and their co-located client is 
forced to use them. 

3.3   Server Node Location Learning 

In a co-evolutionary process, the server and client populations learn which clients 
should focus on which servers. We can stabilize this preference pattern and reduce the 
need for re-learning by decreasing the likelihood that the connection between a client 
and its chosen server is disrupted. Since the risk for a disruption of the path between a 
client and a server generally increases with the distance between their nodes, moving 
the server node towards its current clients will decrease this risk. 

We assume that any client and server processes have means to estimate their re-
spective node’s current spatial location and that the server node may actually control 
its movement within certain constraints if it chooses to. 

As a client sends a request to a server, it includes its current location in the request 
message. The server node computes the vector between the client and the server loca-
tion and adds up all vectors from all requests within a decision cycle. Vectors of re-
quests that failed are negated before they are added to the sum. The resulting com-
bined vector determines the direction of the next move of the server node. If the 
requests failed because the server process was down, then the node moves away from 
the “center of gravity” of the clients that contacted this server. Otherwise, the node 
will move toward these clients. The length of the step for the server node is fixed to a 
global constant, characterizing the physical ability of the node to move. 
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3.4   Stigmergic Coordination 

The coordinated behavior of many simple agents (server, client, node) in the highly 
dynamic and disruptive MANET environment emerges from peer-to-peer interactions 
in a shared environment driven by simple rules and dynamic local knowledge. The 
individual components of the system are not explicitly aware of the overall system 
functions of self-diagnosis and self-reconfiguration. 

The coordination mechanism detailed in this demonstration is an example of stig-
mergy, in which individual agent activity is influenced by the state of the agent and its 
local environment. As agent activity manipulates the environment, subsequent agent 
activity dynamics may change (Figure 3). If this flow of information between the 
agents through the environment establishes a feedback loop that decreases the entropy 
of the options of the individual agents, then coordinated behavior emerges in the 
population. We engineer the agent behavior and the indirect information flow, so that 
the emergent coordinated behavior meets the design goal. 

Three populations of processes (agents) contribute to the emerging system func-
tionality. Because each population operates in the shared network environment, the 
other populations influence its dynamics. For instance, the clients coordinate their 
server choice through the exchange of scores, but their ability to focus on only a few 
servers depends on the server population’s ability to identify the emerging intention 
of the clients and to maintain the server processes on the correct nodes. Figure 4 iden-
tifies the main flow of informa-
tion among the three populations 
driven by their respective dynam-
ics and linked by the occurrence 
of successful or failed utilization 
events – requests from clients to 
servers. 

A common feature of the 
server activation learning and cli-
ent preference learning in our 
scheme is the combined rein-
forcement and decay of a critical 
decision parameter (the count-
down on the server; pro and con 
scores on the server scorecards 
maintained by clients). Elsewhere [14] we describe this sort of process as “pheromone 
learning,” because it combines two of the hallmarks of insect pheromones: periodic 
deposits, and constant background evaporation. Pheromone learning can be viewed as 
reversing the traditional approach to truth maintenance. Rather than maintaining any 
knowledge until it is proven wrong, we begin to remove knowledge as soon as it is no 
longer reinforced. This approach is successfully demonstrated in natural agent sys-
tems, such as ant colonies, where information stored in pheromones begins to evapo-
rate as soon as it is laid down. 
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Dynamics

Environment

Agent
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Fig. 3. Stigmergic Coordination (general schema) 
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4   Performance Analysis 

As engineers, we need not only to conceive innovative architectures to address chal-
lenging real-world problems, but also to analyze these architectures to determine their 
performance as a function of deployment conditions. Such analysis requires three 
elements: a baseline against which to compare the performance of the innovation, a 
set of metrics to make this comparison, and experiments to apply the metrics to the 
new system. 

4.1   Baseline 

Baselines for performance evaluation can be of two kinds. Sometimes we have per-
formance data for a conventional system and wish to show how our system compares 
with it (a relative evaluation). In other cases we have an upper bound on performance, 
a bound that may not be achievable in practice, but that shows how close to the theo-
retically best performance our solution (or any other) comes (an absolute evaluation). 

In the case of MANET’s, we can define a global solution that provides the highest 
possible request-success rate for the clients. We ignore the desire to preserve battery 
power and let all server nodes execute the server process at all times (maximum 
server availability). We use global knowledge (requiring very large bandwidth) to de-
termine for a client that wants to send a request, which available server nodes are cur-
rently in range (path exists), and then we select the recipient of the request randomly 
from this set. 

This solution formally avoids sending requests to servers that are out of reach, 
whose node is currently down, or whose server process is currently not executing. But 
its resource requirements are too large to meet the severe constraints of the applica-
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Fig. 4. Stigmergic Coordination in MANET’s 
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tion domain (ad-hoc mobile wireless network among battery-powered nodes). Also, 
from a more programmatic point of view, this solution does not demonstrate emergent 
cognition, since the complexity of the individual node (client) is as high as the sys-
tem-level complexity. Nevertheless, this solution provides us with a performance and 
resource-usage baseline against which we measure our local approach in the demon-
stration. 

4.2   Metrics 

We focus our attention on two metrics of a system under a particular set of deploy-
ment constraints: resource gain and performance loss. Both are ratios comparing a key 
system-level feature with the baseline.  

Resource gain describes the percentage of servers that our mechanism keeps on 
standby, that would be running and burning power in the baseline. The total number 
of servers is a constant in this scenario, and all of them are running in the baseline. So 
resource gain is directly proportional to the total number of servers on standby. 

Performance loss measures the failure of service events in our mechanism com-
pared with the baseline. Let  

N = total number of service requests 
Nb = total number of requests satisfied by the baseline; 
Nt = total number of requests satisfied by the test system.  
Since the baseline is the best possible in any given circumstance, Nt ≤ Nb ≤ N. Per-

formance loss is defined as (Nb – Nt)/(N - Nb). Unlike resource gain, performance loss 
is compared against a changing baseline, since Nb varies with system configuration, so 
we also track raw performance of our scheme.  

4.3   Comparison with the Global Solution 

With a baseline and metrics in hand, we can explore the performance of our system. 
The following discussion is meant to be exemplary, not exhaustive. We explore the 
variation in metrics as a function of three network characteristics: the degree of con-
nectivity, the dynamics of individual servers, and the overall demand from the clients. 
Error bars in the plots are at ± 1 standard deviation, adjusted to avoid unphysical val-
ues (e.g., probabilities outside of [0,1]). 

4.3.1   Configuration 
Our experiments use a population of 100 nodes, of which 25 can serve as servers. 
They are initially distributed randomly in an arena sized 100 x 100, so the average 
area per node is 100, with radius ~5.6, and a mean internode separation on the order 
of 11. At each time step, several parameters determine the dynamics of the system. 

• Range is a measure of the communications range of the nodes, in the same units 
that define the dimensions of the virtual world within which the nodes are distrib-
uted. The default setting is 15, which is greater than the mean internode separation 
of 11.  

• DownProb (pd) is the probability that a node will go out of service due to failure. 
The default setting is 0.02. 



  203 

 

• UpProb  (pu)  is the  probability 
that a failed node will resume op
eration. The default setting is 0.90. 

• UtilizationRate  is  the probability
 that a given node requests service.
 The default setting is 0.50. 

• NodeMovementPolicy  can  be 
either directed  (in which case 
servers  and clients  implement 
the algorithm outlined in Sec-
tion 3.3) or random (in which 
case the  direction of movement

 is  chosen  randomly,  as a zeroth-
order approximation to  mission

 movement). 
• ClientStepLength  and Server

StepLength define  the  distance 
(in the same units as

 

Range) that
 a node moves in adjusting  its
 location under either movement
 policy. The defaults

 
are 0.5 and 

3.5, respectively. 

4.3.2   Impact of Demand 
Adaptive schemes such as ours re-
quire a steady stream of information 
about the environment, which in our 

case is provided by the success or 
failure of service requests. When 
service requests are at a very low 

level, the system cannot adapt ef-
fectively, reflected in the perform-
ance changes. Figure 5 shows the 

impact of changing utilization. All 

other parameters are fixed at their 

default values.  
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Fig. . Impact of Varying Utilization 
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5

. Performance as Function of Range in Base-
line (solid) and adaptive algorithm (dashed) 

6

The mean value of raw perform-
ance increases with utilization, and 
performance loss decreases, but the 
error bars show that these changes 
are swamped by noise. It is impor-
tant to note that the variance is much 
greater for low utilization (10%) 
than for the higher levels. At low 
utilization, the algorithm does not 
get sufficient information to make 
useful decisions, but at higher utili-
zation levels, its behavior converges. 

 

-

-
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Resource gain drops with increased utilization. The higher message traffic stimu-
lates servers to remain awake that would otherwise go to sleep, lowering the resource 
benefits. The system successfully adapts the number of active servers to changes in 
the overall message load.  

This experiment is the basis for fixing utilization in subsequent experiments at 
50%, a level that provides sufficient information to enable the algorithm to converge, 
while still making it worthwhile for servers to sleep. 

4.3.3   Impact of Network Connectivity 
A critical characteristic of a MANET is the range of the radios that provide the com-
munication links. Figure 6 shows the raw performance of our scheme and of the base-
line, using random node movement. We hold all parameters at their default settings 
and vary NodeRadius. As expected, performance increases monotonically with radio 
range. Importantly, the performance of our adaptive algorithm is indistinguishable 
from the baseline.  

We have found that the directed movement of servers toward selected clients is not 
effective as currently implemented, as shown in Figure 7. More realistic movement 
models, suggested below, might 
yield a different outcome. We do 
not report further results with di-
rected movement. 

While the performance is com-
parable between our mechanism 
and the baseline, resource gain is 
not (Figure 8; by definition, gain 
for the baseline is 0). Clearly, our 
mechanism improves resource 
utilization significantly without 
impacting performance, compared 
with a best-case solution that may 
not be implementable.  

4.3.4   Impact of Network 
Dynamics 

Figure 9 shows how resource gain, 
raw performance, and performance 
loss vary as a function of server dy-
namics. Utilization is set at 0.5 and 
range at 15. For each metric, the 
figure shows four cases. 

pd = 0.1, pu = 0.9 —This con-
figuration reflects highly reliable 
servers that seldom go down and 
are quickly repaired, a “best case” 
scenario from the operational point 
of view. 
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pd = 0.9, pu = 0.1 —This configuration reflects highly unstable servers that take a 
long time to repair, a “worst case” scenario. 

pd = pu = 0.5 —This configuration reflects symmetric mean-time-to-failure 
(MTTF) and mean-time-to-repair (MTTR) with a moderate value. 

pd = pu = 0.1 —This configuration reflects symmetric MTTF and MTTR with a 
low value. 

Consider first performance and per-
formance loss. As might be expected, per-
formance is good in the best case, bad in 
the worst case, and intermediate with 
symmetric MTTF and MTTR. Interest-
ingly, performance is not significantly dif-
ferent between the two symmetric cases. 
The mean values of performance loss fol-
low the same general trend, though wide 
variances make the differences less sig-
nificant. Performance loss is least in the 
best case, when the system can reliably 
learn which servers to employ. 

Our algorithm shows resource gain in 
all configurations, though with high vari-
ances in both worst and best case 
conditions. (It is important to recognize 
that wide variances that reach 0 do not 
mean that the benefit is not statistically 
significant. Resource gain for the base 
case is identically zero by definition. 
Any resource gain produced by the adap-
tive algorithm is a real benefit, since it 
reflects power savings. The high vari-
ance simply means that the variation in 
this savings from one cycle to another is 
subject to wide swings, but the integral 
over these swings, reflecting total power 
saved, is unambiguously positive.) The 
mean resource gain in these two cases is 
almost the same, reflecting the benefits of adaptivity in coping with unstable systems.  

In the case of equal and moderate failure and recover probabilities, there is little re-
source gain over the baseline. This configuration changes so frequently that our learning 
process does not have time to adapt to the changed environment.  

5   Comparison with Previous   Research 

Our system addresses all three aspects of the server management problem: given the 
current topology of the network determined by node locations, communications ranges 
and node availability, decide 
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1. which server nodes should actually expend battery power to execute the server 
process; 

2. to which server node a particular client should send its next service request; and 
3. where to relocate server nodes to meet the current demand by the clients. 

MANET’s are an active area of current research, but  until recently the focus of the 
MANET community has been on issues such as routing [9], access control [6], and 
security [19]. These are important issues, but largely orthogonal to the question of 
server management. 

Recent research considers one aspect of the server management problem in 
MANET’s, the second of our three questions (known as the service discovery prob-
lem). Efforts in this area can be divided into two groups. 

Our approach is most similar to decentralized techniques such as flooding, swamp-
ing, and name-dropping (usefully reviewed in [7]), which all involve sharing knowl-
edge of accessible services among adjacent nodes. The novelty of our approach lies in 
the use and propagation, not only of pointers to servers, but of scorecards to guide in 
selecting the server that will be tried on a given attempt. The probabilistic nature of 
our selection process adds robustness in the face of dynamic change. Conventional 
sharing schemes explore such options as whether to share with all neighbors or only 
with a subset at each cycle, and these options are reasonable enhancements to explore 
with our mechanisms.  

More recent work on service discovery, and that devoted specifically to MANET’s, 
uses service brokers to maintain directories of available servers [5, 8, 10, 18]. Highly 
dynamic environments (such as those encountered in military applications) can frus-
trate directory-based schemes.  

In addition to providing a robust decentralized solution to the widely studied ser-
vice discovery mechanism, our approach offers an integrated solution to the less ex-
plored problems of server activation and location. By addressing all three problems 
with a single set of mechanisms, we reduce the complexity of the overall system and 
facilitate making necessary trade-offs against different operating options, compared 
with approaches that piece together independent solutions to each problem.  

6   Discussion and Conclusion 

Swarming fine-grained agents offer an effective approach to real-time control of  
mobile ad-hoc networks. Our experiments show that we can reduce the resource re-
quirements for servers in a MANET without significantly diminishing the system’s 
performance, relative to an optimistic and probably unachievable baseline. Our  
experiments suggest two guidelines for when such approaches are applicable.  

1. Because we rely on feedback from client attempts to access service as our source 
of information about the environment, the system requires a reasonable level of 
utilization. It is not appropriate for systems that are rarely utilized, but that must 
work appropriately when they are occasionally activated. However, the algorithms 
do adapt appropriately over a wide range of utilization levels. 

2. Our methods work well when either failure probability or repair probability is low, 
since these characteristics lead to fairly stable server populations. When the  
probabilities of server failure and server repair are both high, the world changes too 
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rapidly for our agents’ pheromone learning mechanisms, and system efficiency (as 
measured by resource gain) suffers. 

The system described here is a highly simplified initial model of the MANET do-
main. We hope to explore several extensions of this domain.  

• This model assumes that the movements of all vehicles are equally constrained by 
the same movement policy, either random (to simulate mission movement) or di-
rected (to improve communications effectiveness). Using task allocation mecha-
nisms similar to those we explored in [13], it would be interesting to examine fleets 
in which different platforms follow different movement policies, enabling some 
platforms learn to specialize as communication relays, and leaving other platforms 
more latitude for their mission-oriented tasks. 

• It will also be important to examine the effect of more realistic models of mission-
related movement, instead of the surrogate of random motion used here. For exam-
ple, we might explore space-filling behavior to model exploratory missions, or di-
vergence and reforming of the fleet as it moves in a general geographical direction. 

• The preliminary results reported here do not show any benefit to directed move-
ment of servers with respect to their emerging client populations. This result is 
counter-intuitive, and we wish to do further analysis and experimentation to under-
stand whether and under what circumstances servers can improve system perform-
ance by directed movement. 

• The breakdown of our system at low utilization levels may be mitigated in part if 
we make use of the “heartbeat” signals that communication nodes routinely ex-
change to monitor their connectivity, and we wish to explore ways that these sig-
nals can contribute to the service provider problem. 

• Service provision is only one of many functions that a MANET can provide. We 
believe our mechanisms hold far more general promise, and look forward to ex-
panding them into a general scheme for MANET management. 

Using self-organization and emergence to engineer system-level functionality may 
be advantageous in many application domains, but often it is not obvious how to de-
sign the underlying processes to achieve the desired function. We discuss this aspect 
of the problem elsewhere [3]. 
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Abstract. This paper presents the design of new manufacturing coordination 
and control systems based on multi-agent technology. This design aims to cope 
with a dynamic environment characteristic for manufacturing systems nowa-
days. One important feature to handle these dynamics is having the ability to 
plan ahead, thus avoiding problems before they occur. Therefore, one novel 
characteristic of the system is the ability to perform emergent forecasting. Re-
garding emergent forecasting, an important issue that rises from this design is 
how to ensure that the forecast is reliable, and on the other hand, that the system 
is still fast enough to react against disturbances. This paper elaborates on the 
agents that form the system, and proposes a way to engineer it. Moreover, this 
paper also describes emergent forecasting. In addition to that, the trade off be-
tween responsiveness and forecast reliability (system nervousness issue) is also 
discussed in this paper, altogether with an example on the design of social ac-
ceptable behaviour that aims to handle the nervousness issue. Finally, some im-
plementation and prototyping results are presented.  

1   Introduction 

This paper presents research on emergent forecasting in manufacturing coordination 
and control systems. The research team applies its approach to manufacturing control, 
however the applicability of the approach is broader. Manufacturing systems nowa-
days have to cope with an extremely dynamic environment – new products, short 
product life cycles, resource breakdowns, rush orders, etc. Traditional centralised, 
hierarchical manufacturing control architectures and their top-down development 
cannot cope with this increased rate of changes in manufacturing. Therefore, it is 
desirable to engineer a system that has the ability to self-organise. The concept of a 
multi-agent system offers a promising solution, consisting a set of non-centralized and 
mutually co-operative elements – called agents – that act autonomously, which is 
expected to cope with these system dynamics and uncertainties.  

In this context, the real-time forecasting or prediction of the system behaviour is a 
valuable method to cope with the dynamics and optimise system behaviour. The novel 
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manufacturing coordination and control system, discussed in this paper, is able to 
forecast emergently, thus allowing to foresee the situation on the shop floor in the 
near future. By having this information, the agents are more able to plan ahead. Im-
portantly, these forecasts emerge out of the interactions of the agents. 

A research prototype has been developed to test this new system design [1, 2] and 
it shows that this system is able to perform a load forecast for every resource in the 
system; moreover, for every order that enters the system, the performance of a deci-
sion strategy can be predicted. Furthermore, each order is able to react to disturbances 
and changes in the system, and to adapt its strategy based on the forecasts. Neverthe-
less, there is a trade-off between the ability of the system to react against disturbances 
and the ability to perform and use an accurate forecast. On one hand, when the system 
reacts too eagerly to disturbances, the forecast becomes unreliable and inaccurate; 
moreover, the system is likely to become nervous. On the other hand, being insensi-
tive to disturbances implies that the system fails to adapt to the prevailing situation. 
Hence, a kind of socially acceptable behaviour must be imposed to achieve a proper 
balance between predict-ability and adapt-ability. This paper elaborates on the emer-
gent forecasting and the underlying issues (handling system nervousness). Details on 
the basic design issues can be found in [1, 2, 3, 4].  

The organization of this paper is as follows: the following section briefly intro-
duces self-organisation. Next, the issue of emergent forecasting is elaborated, and the 
following chapter discusses the system engineering aspects. Subsequently, socially 
acceptable behaviour is discussed, along with example of the implementation. Finally, 
a simple prototype implementation is presented together with its result. This paper 
will conclude with a discussion and future works.  

2   Self-Organisation 

Self-organisation is described as [5]: a set of dynamical mechanisms whereby struc-
tures appear at the global level of a system from interactions among its lower-level 
components. The rules specifying the interactions among the system’s constituent 
units are executed on the basis of purely local information, without reference to the 
global pattern, which is an emergent property of the system rather than a property 
imposed upon the system by an external ordering influence. The development of 
multi-agent systems in this research conforms to the above definition. Agents corre-
spond to entities in the system and lack direct specific knowledge about other entities.  

A self-organising application basically is an application running without central 
control in which the different behaviours of the individual entities lead to an emergent 
coherent result [6]. This kind of applications is usually inspired on biology or physical 
world, chemistry, or even social systems. Characteristics of these applications are 
their ability to accomplish complex collective tasks with simple individual behav-
iours, without any central control or hierarchical structure. In this system, the individ-
ual behaviours are kept simple, in the sense that they limit the exposure of the indi-
vidual entities to the overall system properties. However, the generic design for the 
manufacturing control systems allows these entities to become experts and to be very 
intelligent within their own scope. The limited exposure of each entity in the system 
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and indirect interaction between entities enables the system to be easily implemented 
and the size of the system will not become a constraint. It can be implemented either 
in a large scale manufacturing system or small scale manufacturing system.  

3   Emergent Forecasting 

In manufacturing systems, determining what will happen in the future to make good 
decisions is a problem that must be faced quite often. Having forecast information is 
helpful in making a good planning which is supposed to become a good decision [7]. 
Therefore, the design of this new system design is able to provide this type of infor-
mation. This section presents the definition of emergent forecasting and its related 
aspects in the manufacturing systems.  

Forecasting is defined as an action to predict a future event or to estimate some-
thing in advance. Emergent comes from the word “emerge” that means to become 
apparent, come to light; to turn up, present itself, to appear as a result or to emanate. 
A system exhibits emergence when there are coherent emergents at the macro-level 
that dynamically arise from the interactions between the parts at the micro-level. Such 
emergent are novel with respect to the individual parts of the system. [8].  

Hence, emergent forecasting is defined as the ability to foresee what is going to 
happen in the near future whereby the way in which the forecast appears is not prede-
fined, but – emergently – appears as a result of local interaction of the agents in the 
system. Thus, the forecasting in this new system is performed in an emergent manner.  

To enable emergent forecasting in this system, order agents, via their exploring ant 
agents and intention ant agents, have to interact with resource agents (see further). In 
addition, an order agent itself has to interact with its product agent. Exploring ant 
agent is an agent who is responsible to explore the possible route(s) to finish for the 
type of order it represents. The exploring ant agent only has local knowledge on itself; 
it has no idea what the other agents are or do, except for its own concerns. Next, the 
intention propagation ant agent is an agent who is responsible to propagate intention 
of the order agent. It follows the defined route and makes a reservation at the selected 
resources that are likely to be visited by the order along its lifecycle. Likewise, a 
resource agent — the one who receives intentions from order agents — only needs to 
handle its own business. The resource agent does not have to know what the order 
does before and after being served. When seen in isolation, the behaviours and action 
of the individual agents do not explain how a system-wide forecast is constructed; the 
agents only have a local concern and no sign of emergent forecasting can be seen 
when viewing them individually. Nonetheless, when viewing them as a whole, all of 
these interactions enable the forecast to emerge. This emergent forecasting can be 
seen at least from two perspectives, namely: 

1. From the order agent perspective. To the order agent, the forecast provides infor-
mation about the resources it is likely to visit together with the other relevant in-
formation, for instance the operations, processing times, arrival times, etc. Having 
this information enables the order agent to create a good plan to fulfil its goal.  

2. From the resource agent perspective. To the resource agent, emergent forecasting 
provides information on future loads for the resource in the manufacturing system 
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that is represented by this resource agent. Resource agents are unable to accurately 
forecast their future behaviour without the knowledge about their future loading by 
the orders in the factory. To this end, orders that enter the system create order 
agents that express their intentions to the resource(s) that they are likely to visit 
during their lifecycle in the system. The detailed explanation on how the system is 
engineered and operates is explained in the next section.  

4   The Engineering of the System 

This section first describes basic guidelines that are used to design the overall system. 
Next, it describes types of agents in the system. Further on, the control mechanisms of 
this manufacturing system are described. 

As a first step, the agents of the system must be identified and designed. While designing 
the agents, there are guidelines to be followed. Summarizing [9, 10], agents must correspond 
to relevant entities in the underlying system, and the functionality needed to answer the user 
requirements is implemented on top of this reflection of the world of interest.  

Since an agent in this system is designed to have only local expertise, when it 
comes to solve problems, there is a possibility that the agent does not have enough 
knowledge to solve its problems. Hence, contribution of knowledge from other agents 
is needed. Therefore, one agent usually needs to cooperate with the other agents. To 
establish the cooperation between agents, agents need to perform coordination. There 
are two basic ways to perform coordination between agents: coordination by direct 
communication and indirect communication. In this research, coordination between 
agents employs indirect communication that is done by dropping pheromone-like 
information on an information board attached to each resource agent.  

A pheromone is a chemical substance that is dropped by a member of natural spe-
cies in the environment as guidance for other members. It is the way ant colonies 
propagate information while foraging for food. Biologists call it stigmergy [11]. 
Stigmergy describes the use of asynchronous interaction and information exchange 
between agents mediated by an “active” environment. One example of natural species 
utilizing this mechanism is an ant. The interaction of ants is based on the existence of 
a smelling chemical substance called a pheromone. Ants deposit pheromones in their 
environment, which are observed by other ants and this influences their behaviour. 
The pheromone depositing mechanism supports two major operations mediated by the 
environment in which the insects are situated, namely aggregation (accumulation of 
information) and evaporation (disappearing of old and expired information). Attrac-
tive properties of this ant mechanism are: 

1. Evaporation makes the colony forget the information that is no longer valid. Stale 
information automatically disappears with time, as it is no longer refreshed.    

2. Environment is reused in the solution (no maps in the brain of the ants).   

From these examples in nature, the following principles are derived [4]:  

1. Make the environment part of the solution to handle a complex environment with-
out being exposed to the complexity of this environment. Note that this also com-
plies with the essential modelling approach in object-oriented design.  
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2. Deposit relevant information in this environment, ensuring that locally available 
data informs about remote system properties, supporting system-wide coordination. 

3. Limit the lifetime of this information and refresh the information as long as it re-
mains valid. This is a “forget and refresh” mechanism, which is a basic mechanism 
to handle dynamics in systems.  

4.1   The Agents  

In this research, the manufacturing control system implements the PROSA reference 
architecture [12]. According to PROSA, there are three basic agent types needed to 
construct a manufacturing control system: order, resource and product agents.  

An order agent represents a task in a manufacturing system. It has a responsibility 
to ensure that all the assigned work is properly executed. It manages the physical 
product instance being produced. Its knowledge space is limited to the order informa-
tion and state of the workpiece: e.g. due date, order state model, etc. The order agent 
knows nothing about the other orders. An order agent is connected to each workpiece 
(or a group of workpieces) throughout its life cycle.  

A product agent holds the process and product type knowledge. It provides infor-
mation on how to make instances of its product type correctly (mainly to order 
agents). A product agent maintains consistent and up-to-date information on the prod-
uct design, process plans, bill of materials, quality assurance procedures, etc.  

A resource agent reflects a physical entity, namely a production resource of the 
manufacturing system, and an information processing part that controls the entity. It 
offers knowledge about production capacity and functionality to the surrounding 
agents. Its knowledge space is limited to self-monitoring and self-control. It also has a 
list of resources that connect directly to it.  

These three basic agents are structured using object-oriented concepts like aggrega-
tion and specialization. Moreover, these agents are equipped with an information 
board on which other agents can put, observe and modify information. The informa-
tion on a board has a finite lifespan; information disappears after certain amount of 
time. A blackboard is attached directly to an agent. Thus, it is local and only contains 
information that has relation to the corresponding agent (analogous to the clipboard 
attached to the hospital beds in old movies). The evaporation mechanism makes it 
different from normal blackboard implementation [13]. The next section discusses the 
multi-agent coordination mechanisms. 

4.2   Control Mechanisms 

When an order is dispatched to the shop floor, it has to discover a suitable route to get 
itself produced; note that predefined routings intrinsically are unsuited for dynamic 
manufacturing environments. In the control systems in this paper, order agents are 
responsible for this task. Order agents are linked to their physical product instance(s).  

To find a proper route through the system, the order agents create and send out 
mobile agents (called ants in this manuscript) that travel virtually through the network 
of manufacturing resources and find possible solutions. To accomplish this task, there 
are two activities to be carried out, namely an exploration activity and an intention 
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propagation activity. During their lifecycles, the two types of ants corresponding to 
these activities, deposit pheromones in the environment. Based on the observation of 
the pheromone information, order agents decisions are influenced. The following 
section will explore more detail on these two activities.  

4.2.1   Exploration Activity 
Order agents represent the physical orders in the system. An order agent has the re-
sponsibility to ensure that its product instance is produced in time, undergoes all nec-
essary operations, and reaches certain quality level. Hence, the order agent has to 
define the routes (solutions), which its product instances can follow. A solution is 
defined by its routing information together with the resources, operations, starting 
time, queuing time, etc. The shop floor consists of a network of resources. To explore 
the available possibilities, the order agent creates mobile agents called exploring ant 
agents that inherit their problem solving behaviours from their creator. The exploring 
ant agent virtually travels through this network, starting from the position where the 
work piece and order agent reside until the exit. To accomplish its task, the exploring 
ant agent observes the local blackboards attached to the resource agents and uses the 
pheromone information deposited there as a search guideline. The strategy to explore 
the network is a plug-in1 for the control system. Not every exploring ant agent uses 
the same strategy. Some of them look for the promising routes whilst the other will 
look for the route that avoids critical resources. 
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Fig. 1. Exploring ant’s task 

Exploring ants are created when needed. Each exploring ant explores the network, 
travels on different possible route and records necessary information, for instance: the 
resource(s) it has visited, the estimated starting time at every resource(s), waiting 
time, duration of each processing step, the cost of operation. The recorded informa-
tion is useful to predict the travel time and the overall processing time. Moreover, it is 
used to determine the quality of the solution. After performing the task, the exploring 
ants report back their findings (solutions) to the order agents. The result is represented 

                                                           
1 A naturally fitting possibility to implement such a plug-in is a design following [14].  
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as a list of operations together with the resources where it will be processed, starting 
time at the resources and the duration. The mechanism can be seen in Fig 1.  

Exploring ants are created at a suitable frequency along the lifecycle of the order, 
and each of them investigates the expected performance of a single feasible route of 
the product instance through the factory. Note that the resource agents, on which the 
pheromones are deposited are more cooperative and intelligent than the stones, earth 
and foliage on which the real ants deposit their pheromones. The resource agents 
possess a kind of reservations department (like a hotel or airline) that answers queries 
about future availability. This reservations department is able to give accurate an-
swers because intention ants make bookings on behalf of the order allowing the re-
sources to self-schedule their work into the near future (based on self-knowledge).  

4.2.2   Intention Propagation Activity 
To get services from resources, order agents express their intention; this intention is a 
sort of temporary commitment to the set of affected resources. Based on the informa-
tion provided by exploring ants (i.e. solutions collected by these ants), the order agent 
selects one solution, which is considered to be the best, to become its intention. Next, 
the order agent propagates this intention to the resources it intends to visit. To do this, 
the order agent creates and sends out mobile agents called intention ants at a suitable 
frequency. The intention ants virtually execute the remaining routing and processing 
steps of the selected candidate solution, visiting all resources that are listed in the 
selected solution. Figure 2 shows the above-mentioned mechanism. At each resource, 
this ant expresses the intention of its order agent by requesting a time slot to be re-
served in this resource.  

An intention ant informs the resource agent that its workpiece is likely to be proc-
essed on that resource and will arrive at particular point of time. As a response, re-
source agent looks into its diary book, marks a time slot for the particular order, and 
returns the updated performance information, namely possible starting time, duration 
of operation, and waiting time information to the ant. In this case, the intention ants 
enable an emergent forecasting of the resource utilization. During its journey, the 
intention ant collects and updates the time and status information from the resource 
agents it has visited. Therefore, any changes and disturbances – resource breakdown, 
rush orders taking your slot – instantly become visible during refresh. Slot reserva-
tions evaporate and disappear unless refreshed. Therefore, an order agent frequently 
propagates its intention to have its workpiece processed at particular resources – i.e. 
reconfirmation of current reservations.  

When refreshing an intention, the performance of the current intention is re-
evaluated. When the expected performance deteriorates during such refresh or when 
an exploring ant detects a better alternative, the order agent will have a tendency to 
shift to such better alternatives. If an order agent always immediately changes to a 
new intention when it perceives a better alternative, the system is likely to become 
overly nervous and the load predictions, which rely on the intentions to represent 
some level of commitment from the order agents, become inaccurate and the forecast 
information will be useless. If all order agents react immediately on the smallest per-
ceived advantage, the system probably becomes unstable/chaotic. Therefore, this 
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behaviour should be dampened; an order agent must not change its intention too eas-
ily. In the remainder of this paper, this phenomenon is called system nervousness and 
is defined as the frequency of intention changes by the current orders. 
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Fig. 2. Intention ant’s task 

This situation actually is a trade-off situation. If the order agents fail to account for 
their perception of the prevailing situation, the system fails to adapt and suffers from 
poor performance under dynamic conditions. However, if the order agents are ex-
tremely eager to change, then they fail to uphold their commitments and the forecasts 
will be useless; the overall system may become too nervous and instable. This will 
cause confusion on the shop floor; the system will become costly due to frequent 
rescheduling and also fluctuation in capacity utilization [15]. To overcome this prob-
lem, order agents must have a kind of socially acceptable behaviour to balance be-
tween the two extremes (being unaware and being too nervous). The following sec-
tion elaborates one implementation of the socially acceptable behaviour. Remark that 
the described algorithm is only one out of many possible solutions.  

5   Socially Acceptable Behaviour 

To shift from the current intention to a new intention, order agents must ensure that 
the new solution is better than the current intention. The word “better” here indicates 
that the new solution has a better performance relative to the current intention. There 
are several criteria to define a better solution. In this application, implemented on the 
top of the discussed framework, the order lead-time is chosen as a performance meas-
urement. The overall idea of the socially acceptable behaviour is not limited to the use 
of lead-time; it can be extended and customised if necessary.  

Lead-time itself is the length of time needed to deliver a product from ordering till 
acceptance by the customer [16]. In this paper, a more specific definition of lead-time 
is used, called order lead times. Order lead times is a sum of the individual operation 
lead times at all work centres passed by this order [17]. A new solution can be consid-
ered as a “better solution” if it shows a decreasing in its order lead-times. To measure 
changes, a scale from 0 to 1 is used and is called significance level in this paper. The 
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larger the significance level specifies that the new solution is empirically better than 
the current intention. The following explanation will describe how to come up calcu-
late the significance level.  
 Order lead-time can be defined as 

OROC ttOLT −=  (1) 

where: 
:OLT  Order Lead Time 

OCt : order completion time 

ORt : order released time 

 
Order lead-time can also be calculated from the sum of the operation lead times: 

kTLTLTLOLT +++= ...21  or 
=

=
k

i

TLiOLT
1

 
(2) 

where: 
TL : lead time of one operation 
 

Order lead-time of one operation (TL ) is composed of: 
1. Operation time ( ot ) 

2. Waiting time ( wt ) 

More reward points are allocated when the new solution shows a tremendous re-
duction in waiting time. Nonetheless, this is not mandatory. The value of the rewards 
can follow any function (plug-in) that is defined by the order agent. Furthermore, 
changing intentions brings a cost to the whole system. The benefit of changing inten-
tion has to be high enough to justify this cost. By using an exponential function (see 
below), small changes in intention performance have a far less chance of causing an 
intention change of the order agent.  

The function parameters can be used to adjust the function slope. Furthermore, 
they can be changed from time to time. It mostly depends on the way the order agent 
observes the shop floor condition. When the shop floor is very dynamic, the function 
parameters can be set to dampen the system (agents ignore all but major distur-
bances), whereas the parameters can be adjusted to make agents more responsive if 
the overall behaviour remains stable. Through this mechanism, the order agent not 
only can adapt to the disturbances happening on the shop floor, but also can adapt to 
the rate by which these disturbances occur. The function itself can be represented as: 

xnxf =)( ; ∞≤≤ n1  (3) 

where: 
n  : parameter to change the slope of the curve, defined by the order agent.   
x  : deviation of total waiting time or deviation of total operation time.  
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In this function, n  is a tuning parameter. The reward function can vary over differ-
ent implementations. More details concerning this function are out of the scope of this 
paper.  

Depending whether the order agent has propagated an intention or not, it will show 
a different behaviour as described in Table 1. Secondly, an order agent must evaluate 
the quality of the new solution compare to the current intention. Note that an order 
agent always refreshes its last intention before comparing it with the new solutions. 

Table 1. Treatment between has propagate intention or not  

No intention ever propagated 
yet 

 Has propagated any intentions 

1. Wait for several exploring ant 
agents to return and provide 
the exploration result.  

2. Build a set of results.  
3. Select one result with the 

smallest order lead-time and 
set as current intention.   

1. Wait for several exploring ant agents to 
return and provide the exploration result.  

2. Build the competitor set of results. 
3. From this set of result, select the best per-

formance solution, i.e. the one with the 
smallest lead-time.  

4. Compare the new solution with current 
intention. More details are described be-
low.  

In order to measure the quality of the new solution, it is necessary to measure how 
significant is the changes compare to the current intention. The significance level is 
composed of two elements, namely significance level from the waiting time and sig-
nificance level from the operation time. To measure the significance level, the follow-
ing steps are executed.  
1. Calculate the current intention’s waiting time, wt . 

2. Calculate the new solution’s waiting time, 'wt . 

3. Find the differences between those waiting times.  

−=Δ www ttt '  (4) 

4. Calculate the reward points from this difference.  

( ) x
wt ntxfR

w
=Δ==Δ  (5) 

5. The contribution from waiting time to the overall significance level (
wt

S ) is calcu-

lated as follows:  
• Multiply the differences between the waiting times and the reward points. 
• Divide the previous result by the maximum value of this contribution, which re-

flect to the worst result reported back by the exploring ants.  
The maximum value of this contribution is the multiplication between the maxi-
mum differences between the waiting times, which in this paper is defined to be 
equal to the current intention’s waiting time, and the reward points from this 
maximum difference. The following equations are the reflection of this step.  
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6. The same procedures (from step 1 to step 6) are applied also while calculating the 
significance level contributed by the operation time. However, the reward function 
has different parameter values.  

7. Finally, to come up with significance level, firstly sum the contribution from both 
aspects and divide by 2. It can be written as:  

2
totw SS

SL
+=  

(9) 

Significance level mirrors the level of confidence of the order agent to shift to the 
new solution. Thus, when the significance level is below certain threshold, the order 
agent will not take any risk shifting to the new solution. The order agent defines the 
threshold level. Again, the threshold level’s value is floating, It is mostly depends on 
the historical data and can be changed if necessary.  

Social Acceptable Behaviour and propagation intention policy 

Although from the above mechanism, the order agent already has the confidence level 
to shift to the new solution and willing to propagate the new intention, the order agent 
should not change intentions easily. It should behave according to social rules as in 
human society where someone who already engaged in a certain appointment should 
not easily call off without any strong and crucial reason. Without going into a psycho-
logical analysis on this behaviour, this situation can simply be handled by at least two 
types of procedures, namely: 

1. Applying a probabilistic mechanism each time the order agent is willing to change 
intention (see further).  

2. Limit the frequency to change intentions. This procedure is simply sets a maximum 
frequency at which an order agent is allowed to change intentions.  
 

Probabilistic mechanism applied to intention changing procedure  

This mechanism can be explained as follow.  

1. Order agent has its own frequency rate to refresh its intention. If no social accept-
able behaviour is applied, an order agent will change its intention any time it likes.   

2. At every refreshing cycle, every order agent has to draw a random number, ir . 
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3. If ir  is smaller and equal to the confidence level to shift (a value between 0 – 1), 

then the order agent is allowed to change its intention. Otherwise, it has to keep its 
old intention.  

4. Furthermore, no matter how big is the value of the significance level, the system 
should guarantee that if the significance level stays the same all the time, then at 
the end of a finite time horizon, this change should be announced. Consequently, 
when defining whether to change intention or not, the number of repetition in 
which the significance level is the same should be taken into account. Furthermore, 
the strategies to do it can be varying in implementation, for example double with-
draws of random variable at every cycle, or increase the confidence level to shift 
from this cycle onwards.  

5. The visual description is given in Fig. 3. The width and similar height bars indicate 
the confidence level to change at every refreshing cycle. The slim bars indicate the 
random number drawn by the order agent at each refreshing cycle. It is shown in 
the figure that if the slim bars are under the width bar, the order agent will change 
its intention.  

By applying the above-mentioned mechanism, order agents will be able to propagate 
new intentions wisely. As a result, when there is disturbance on the shop floor, e.g. a 
machine breakdown, not all order agents that intend to be processed on that machine 
will switch to the other machine(s) that offer the same capability. As a consequence, 
the other machine(s) will not suddenly become overloaded by these orders. 

Note that the above is only one possibility among many and is subject of ongoing 
research. The objective is to balance responsiveness against forecast reliability. 

6   Implementation and Prototyping 

The implementation of the overall system above, especially the part concerning social 
acceptable behaviour’s algorithm is ongoing. Nonetheless, prototypes have been de-
veloped and the basic functions of this system have been validated. The following 
part will present the prototype that addresses a real industrial case. 

This prototype reflects the real manufacturing plant that produces weaving ma-
chines. Some data on the case has been modified for confidentiality reasons. The plant 
can be described as follow: the shop is composed of 13 processing resources and 1 
exit station. An automatic storage and retrieval system (ASRS) is installed in the 
middle of the shop and acts as storage for either finished or work-in-process (WIP) 
parts. Altogether, the resources and the ASRS are connected with a ‘tram’ that trans-
ports parts from one workstation to another workstation or ASRS. From this test bed, 
several results can be shown.  

Emergent forecast in order agent and resource agent 

A set of experiments was carried out on this prototype. Certain numbers of order are 
released to the shop floor. In this case study, orders that arrive on the shop floor have 
no predefined route to finish. Thus, an order agent has to send out exploring ant agent 
to discover the promising route and furthermore, utilises this information to propagate 
intentions to the set of resources it needs to get services from. 
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Fig. 3. The implementation of social acceptable behaviour 

 The result of this implementation is visualized in Fig. 4. Figure 4 shows the cur-
rent intention of one selected order (WR0150 of type Rollen). The black bar indicates 
operations that have already executed, and the light grey bars indicate the remaining 
operations altogether with the possible start time, duration and resources that are 
going to process these operations. This result contains information about the set of 
resources that the order is likely to visit, the starting time and the duration of stay. 
This solution is built from the interactions between order agent (through its exploring 
ants and intention ants) and resource agents.  

The solution presented in this panel is not a definitive solution, because as the shop 
floor changes from time to time, the solution may also alter. For example, take order 
number WR0130 of type Rollen, its early intention was to have its second last opera-
tion processed on resource W3310 at time 2034, however, since there are some dis-
turbances (extension of operation time of current processed order in W3310) the start-
ing time of the operation may be postponed. See Fig. 5.  

At every resource agent, intentions from the order agents are recorded and trans-
lated into a kind of Gantt chart. The Gantt chart reflects the current and future load in 
the resource agents. As mentioned before, order agents express their intention through 
their intention ants. When arriving in a certain resource, the ants book a time slot for 
the order agents. Thus, this information actually shows the information about orders 
that intent to visit and request services (see Fig. 6). 

The accuracy of the forecast 

As mentioned in earlier chapter, order agents are sending out intention ant agents to 
express their intention. The intentions are changing from time to time, and are ex-
pected to be closer to the actual solution as they approach the execution time of the 
operations. Fig. 7 shows the error plot of the data that starts from the propagation of 
intention until the real execution time of the order. 

 



 Emergent Forecasting Using a Stigmergy Approach 223 

 

In te n tio n  o f th e
o rd e r ,
p ro p a g a te  b y
a n t

P ro c e s s
e x e c u te d  b y  th e

o rd e r

 

Fig. 4. Emergent forecast information from order 
agent WR0150 

 

 

Fig. 5. Emergent forecast of order num-
ber WR0130. (i) top figure is the earlier 
intention (ii) bottom figure is the later 
intention 

Fig. 6. Emergent forecast information at resource 
agent – Gantt chart at selected resource 

 

Fig. 7. Error plot of intention data of 
order R04 

 As seen in Fig. 7, when the time is approaching the real execution time, the fore-
cast become more accurate. It can be seen from the decreasing value of error. The big 
slope changes in the middle of the graph are due to the down time of a machine. The 
systematic jump in inaccuracy, when looking further ahead in the future, is caused by 
about-to-be-released orders being unable to propagate their intentions before release.   
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7   Discussion and Future Works 

This paper described how a new manufacturing coordination and control design pro-
duces an emergent forecast. Emergent forecasting is an important feature in current 
and future manufacturing coordination and control systems since it provides the abil-
ity to foresee the future shop floor condition. Having emergent forecasts enables the 
system to avoid problems before they occur and offers the possibility to optimise 
performance. To do so, order agent sends out two types of mobile agents – called 
ants. They are exploring ants and intention ants. Exploring ants are responsible for 
performing a scouting task throughout the network of resources to find an attractive 
route in order to accomplish the task of their order agents, where intention ants are 
responsible for notifying resources that an order agent is likely to visit in the future. 

To order agents, the emergent forecasting provides information about the load of 
resource(s) the order agents are likely to visit in the future. It also provides informa-
tion on their arrival time at each resource, how long they will remain there and some 
other relevant information. This mechanism enables the order agent to forecast its 
finishing time and also calculates its performance before it is executed. Moreover, 
when suddenly the order characteristic is changed, for instance from normal order to 
rush order, and it needs to change its priority, this forecasting information can be used 
as a guidance to find the solutions (routes) that will provide the earliest finishing time.  

Furthermore, if some intelligent algorithm is implemented inside the order agent, 
and it is useful to analyse this information and behave differently at different situa-
tions, for instance when the shop floor is very dynamic, the order agent can sense this 
from the emergent forecast information and reacts accordingly, or the order agent can 
also experiment with the performance achievement by changing its behaviour. 

At the resource agent, the emergent forecast enables it to foresee its near future 
load. This information enables the resource agent to manage its own logistical tasks, 
for instance, to schedule its downtime for maintenance or other non-process related 
activities. By having this information, resource agent can schedule its downtime, and 
ensure that it is not scheduled in a heavy loaded period. For example, in a factory 
where each machine is connected with tram and automatic storage and retrieval sys-
tem, the tram can utilize this information to foresee the time slot where it has low 
load. At this low load time, tram can move the location of container to the position 
near to the destination. By doing this, the transportation time to move this container 
will automatically reduce. Furthermore, the resource agent can also be designed to 
have an intelligent decision taking mechanism, for instance, applying its own dis-
patching rule on the orders that queue for its services. Thus, instead of First In First 
Out, other dispatching rules can be applied. This behaviour enables the increase of the 
performance of the overall system. 

All these routines that perform by these agents automatically create a kind of self-
reinforcement cycle. As seen in Fig. 8, the propagation of intention will provide resource 
agents with the prediction on orders that require their services in the future. Having this 
information, resource agent(s) can do a better self-management. As a result, exploring ant 
agent will receive a better response/forecast while requesting information about services 
from the resource agent. Furthermore, if exploring ant agent can provide a better forecast 
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to its host, then order agent can propagate a better intention. Consequently, better inten-
tion means better prediction for resource agent(s), and if this cycle is continuing on, then 
both order agents and resource agents will have a more accurate result.  

  

Intention 

Resource Agent 
“Self-forecast” its 

Exploring ant 
Forecast 

Selection / Refresh of  
Fig. 8. Self-reinforcement cycle of this emergent forecast mechanism 

The system’s nervousness issue is also an important aspect that comes along with 
the emergent forecast capability. This issue is strongly related to the reliability of the 
forecast created by exploring ants. Due to the unreliable forecast, order agent tends to 
propagate new intention faster and more frequent. As a consequent the system will 
become nervous and the previous forecast will become useless. As expected, any 
forecasts should be reliable and its quality is measured by whether it is capable or not 
to predict the future events accurately. In the real application, this unreliable forecast 
causes the existing schedule in resource agent turn out to be invalid. Consequently, 
resource agent should reschedule all the waiting tasks/operations and its own logistic 
activities, and thus, new adjustment, new set-up, new allocation that come along with 
the operation should be done. As a result, the process will become more costly, and 
this is certainly undesirable. Furthermore, the rescheduling will then affect the per-
formance of the other orders that are waiting to be processed on the resource(s). When 
the forecast is useless and unreliable, the ability to foresee the future events automati-
cally deteriorated. Moreover, the self-reinforcement cycle will break.  

Applying the social acceptable behaviour to the order agent is one way to over-
come this problem. Further observation on the results is needed to verify the above-
mentioned concept. Apart from those algorithms, at the system level, there are also a 
series of tuning parameters that influence the behaviour of the system, for instances 
frequency of ant propagation, evaporation rate. In current prototype, these parameters 
are tuned manually through user-interface. Numerous experiments are still needed in 
order to provide a clear report on how those parameters influence the system’s behav-
iour. Furthermore, in the future, there is a thought to enable an auto-tuning mecha-
nism on these parameters, so that the system can adjust itself in order to attain the 
better performance of the system.  

The overall design seems not complete if there is no evidence on how the perform-
ance of this new system compare to the current available/practice system. Therefore, 
for further work, benchmarking of this idea will be performed. To support this, a 
benchmarking service is under development within the EU Network of Excellence on 
Intelligent Manufacturing Systems (cf. www.ims-noe.org).  
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IDReAM: Intrusion Detection and Response
Executed with Agent Mobility

The Conceptual Model Based on Self- rganizing Natural
Systems

Noria Foukia

University of Geneva, rue Général Dufour 24,
CH-1211 Geneva 4, Switzerland

Abstract. Nowadays, lots of researches in Intrusion Detection and In-
trusion Response try to find new solutions to circumvent new intrusive
behaviors. One of the principal weaknesses of these systems is the lack
of robustness inherent in their centralized nature. Even though most of
the existing Intrusion Detection and Response Systems (IDRSystems)
use distributed data collection (host-based or network-based) many of
them continue to perform data analysis centrally, thereby limiting scal-
ability. Moreover, even if the IDRSystem is distributed in the network,
its deployed elements generally remain static. With the means available
to modern attackers, such as automated intrusion tools, these static and
distributed elements are easily accessible. Often, this does not always
contribute to improving the reliability and resistance to attacks of such
static components.

This paper presents our approach for building an IDRSystem called
Intrusion Detection and Response extended with Agent Mobility or
IDReAM for short. IDReAM combines Mobile Agents (MAs) with self-
organizing paradigms inspired by natural life systems. This approach was
already announced in a preceding paper [4], and the present paper de-
scribes in a more detailed way the conceptual model. All the research
works relating to IDReAM are gathered in a PhD Thesis [3] which also
contains the implementation results of the model and its evaluation. The
present paper is limited only to the model.

Keywords: self-organization, mobile agents, intrusion detection and re-
sponse.

1 Introduction

The collective and complex behavior emerging from simple interacting entities
is frequently illustrated in natural phenomena such as biological systems (body
cells, human brain, etc.) or insect colonies (ants, termites, bees, etc.). These
natural systems appear completely distributed and exhibit efficient character-
istics in term of robustness, and are perfectly adapted to solve complex tasks.
For a few years these complex natural systems have been a source of inspiration

S. Brueckner et al. (Eds.): ESOA 2004, 3464, pp. 227–239, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

LNAI

o



228 N. Foukia

for many research projects in computer science; the scope of influence ranges
from artificial intelligence with the work done by Marco Dorigo in swarm in-
telligence to telecommunication problems such as adaptive routing and optimal
resource allocation [1] in computer networks. Beyond computer science this in-
fluence reaches other research topics such as distributed robotics systems [10]
and economics. And the list is not exhaustive. One interesting point is that the
population of these natural systems consists of simple moving entities or agents
naturally dispatched throughout the environment. In spite of their individual
simplicity, these entities present a highly structured self-organizing capacity to
accomplish complex tasks. This collective and self-organizing capacity emerges
from inter-entity interaction performed through the hosting environment and it
exceeds the capacity of each individual.

The efficiency of natural systems as complex systems completely distributed
and dynamic, was a source of foundation of IDReAM. The Intrusion Detection
System (IDSystem) was designed with the immune system in mind whereas
the Intrusion Response System (IRSystem) was designed with the ant colony
organization in mind. The following points out what was presented in [4]:

The IDSystem borrows mechanisms from the immune system that protect the
human body against external aggressions: special cells of the immune system,
called the T cells, travel around the body to detect possible aggressions by
eliminating the proteins that they do not recognize as safe proteins. These bad
proteins are called non-self proteins in the medical jargon. Intrusion Detection
Agents (IDAs) roam the network to detect bad suspicious behaviors mimicking
the behavior of T cells.

The IRSystem borrows mechanisms from the stigmergic paradigm of a colony
of ants. At the time of foraging, the ants use the environment to diffuse a chemical
substance called the pheromone which traces the route for the other ants from
the nest to the source of food. Intrusion Response Agents (IRAs) roam the
network to respond to the IDAs’ alerts mimicking the behavior of the ants to
trace the route to the alert and give the response.

The two natural systems exhibit a social life by the organization of their enti-
ties (T cells and ants) which is not possible without the functionality of mobility.
Thus, in a natural way, MAs are good candidates to provide this property of mo-
bility. In practice the two populations of MAs, IDAs and IRAs, play the role of
autonomous entities permanently distributed over the network and embody the
self-defending and self-organizing behaviors.

There are different reasons that motivated the choice of two distinctive models
for the IDSystem and IRSystem. The main reasons are:

– The behavior of T cells acting as sentinels of the human body is more adapted
to the detection task. To detect an intrusion, the IDA needs to look for what
happens in the system and to compare the events it encounters with normal
situations. This is what T cells do in the human body.

– The behavior of ants tracing the pheromone to find the source of food is
more adapted to the response task. When the intrusion happens the IRA
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needs to respond at the location of the intrusion. Remotly, it needs a means
to reach the suspicious location. The information of locality (pheromonal
gradient in the IRA’s neighborhood) provided by the pheromone appears to
be a simple and natural way to also trace the route to the alert.

– Moreover, this separation of concerns between IDAs and IRAs is a major
advantage because it makes IDReAM more robust since an attacker needs
to understand and adapt to both populations of agents.

The rest of the paper is structured in the following way: The Section 2 gives
an overview of the immune system. The Section 3 gives an overview of the ant
stigmergic system. The Section 4 details the various elements of the mapping
between IDReAM and the two natural systems described in the Section 2 and 3.
The Section 5 describes the conceptual model of the IDSystem part and the Sec-
tion 6 describes the conceptual model of the IRSystem. The Section 7 discusses
the conceptual model and draws the conclusion.

2 Immune System – An Overview

The structure of the human body defense system is multi-layered with defenses
provided at many levels, from the skin which is the outermost barrier of pro-
tection to the adaptive immune system which can be viewed as a distributed
detection system in the body. This immune system [9] is a complex network of
specialized cells and organs that has evolved to defend the body against diseases
and infections by “foreign” invaders such as bacteria, viruses, fungi, parasites,
and debris. In a first step the immune system attempts to prevent or stop these
external organisms before they enter the body. In a second step it seeks their
presence in the body in order to destroy them. For that, it distinguishes between
molecules and cells of the body called “self ” from foreign ones called “non-self ”.
The body’s immune defenses normally coexist peacefully with cells that carry
distinctive self marker molecules. But when the immune defenders encounter
non-selfs they have to eliminate them quickly. Any substance which is capable
of causing an immune alert is called an antigen. An antigen is recognized by
means of markers called epitopes, which protrude from its surface.

The organs of the adaptive immune system called Lymphoid organs are posi-
tioned throughout the body and lodge the lymphocytes, small white blood cells
that are one of the key defenders in the immune system. Lymphocytes T, or T
cells, are one of the many kinds of specialized lymphocytes in the immune sys-
tem. They mature in the thymus (one Lymphoid organ) and travel throughout
the body, using either the blood vessels or their own system of lymphatic ves-
sels. Their surface is covered by randomly generated receptors that can match
(recognize) specific antigen’s epitopes: each lymphocyte has one kind of receptor
which binds to a specific related epitope. In fact, there is a selection step of the
good T cells that are immature at the beginning and learn which proteins of the
body are non-self proteins. As most of the self proteins circulate through the
thymus, immature T cells that match self proteins in the thymus are destroyed,
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otherwise, the immune system can wrongly identify self as non-self causing a
so-called auto-immune disease. This process is called self-tolerization. Those T
cells that are not destroyed become mature and are released in the rest of the
body. There, they detect non-selfs and ignore selfs.

3 Stigmergy Paradigm – An Overview

Social insects organize themselves to ensure the survival of the colony by means
of a reactive individual behavior and a cooperative collective one. Such behaviors
can be observed from different activities: foraging, building nests, sorting larvae,
etc. Cooperation in these systems is mediated by an efficient communication
mechanism relying on the inscription of task evolution in the environment. This
paradigm named stigmergy , introduced for the first time by P. P. Grassé in [6],
describes the way social insect communities (ants, termites, bees, etc.) interact
through their environment. Schematically, each entity has a local view of its
neighborhood but uses a chemical volatile substance (pheromone) to mark its
environment when achieving a collective task. The pheromone thus deposited
is propagated in the environment and evaporates with time. The deposit of
pheromone creates a gradient field in the environment which tends to attract
other insects, and to enroll them in a self-catalytic behavior. When the task is
finished, no more pheromone is deposited, leading to the disappearance of this
information after a period of time through an evaporation mechanism. In the
particular case of food foraging, each time an ant deposits a pheromone along
the path, it reinforces the probability that other ants will choose the same path to
reach the food. The amount of deposited pheromone is called the pheromonal
gradient , and every ant scanning its neighborhood will have a great probability
to walk up the gradient.

4 How the Agents Reproduce the Natural Behaviors

Both ID and IR mimic the behavior of two distinctive natural systems:

– For the detection, the human natural immune system .
The IDSystem maps some mechanisms borrowed from the immune system.
The goal is to couple the efficiency found in the collective behavior of the
immune system with the agents’ mobility. MAs as T cells, travel around the
network and work cooperatively to detect local and distributed suspicious
patterns.

– For the response, the social insect stigmergy paradigm .
More precisely the inspiration is taken from the collective behavior of for-
aging ants. The present IRSystem maps the collective behavior of a popu-
lation of foraging ants, using MA as ants and an electronic version of the
pheromone.
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There are two populations of MAs:

– The Intrusion Detection Agents (IDAs) incarnate the IDSystem.
The IDAs borrow mechanisms from immune T cells. To detect attacks hap-
pening in the security domain, IDAs responsible for a local domain have to
be able to discriminate between normal and abnormal activity. In the im-
mune system it is done by T cells distinguishing selfs from non-selfs. In the
IDSystem the normal self activity is viewed as a good sequence of events,
whereas the abnormal non-self activity is viewed as a bad sequence of events.

– The Intrusion Response Agents (IRAs) incarnate the IRSystem.
IRAs’ task is to respond to detected intrusions. For that, they must locate the
place where the alarm was given by IDAs and go there. To trace the source
of the alert the same mechanism is used as the mechanism employed by the
ants to trace the source of food. Ants use the chemical pheromone deposited
by the other ants in the environment to trace the source of food. The IRAs
use an electronic version of the pheromone which indicates the route to the
infested node. This pheromone is built by an IDA when it detects an intrusion
and is randomly diffused from the infested node through different nodes of
the network. Thus, the pheromone allows to build a path that the IRAs
follow to trace the source up to the alert. Moreover like in ants’ colonies, an
evaporation process inhibits the electronic pheromone to limit the number
of IRAs following the same pheromonal trails.

Agents’ Mobility for Social Organization

– The immune system consists of different cells distributed throughout the
body. Each category of cells has a specific function and moves in the body
according to its own needs and there is always a co-operation between the
cells simulating a ”social life of the cells of the immune system”. Many
cells which play an important part in the immunizing protection move in
blood, in lymph, and lymphoid organs to coordinate the various immune
reactions. Thus, the concept of a perpetual cellular dynamics is fundamental
and without this dynamics and a great mobility the task of protection could
not take place.

– In ant populations the pheromone acts as a regulator of the insect traffic
outside the nest. Nevertheless, this task of regulation would not be possible
without the mobility of the ants. Suppressing the mobility would result in
preventing the foraging task leading to the unavoidable death of the ants’
colony.

Thus, in each population (immune cells and ants) the mobility is fundamental
for the survival of the population. Therefore without mobility it is not possible
to reproduce the behavior of these two populations. Intuitively, MAs are good
entities to realize the conceptual model.
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5 IDSystem

The detection principle is as follows:
The correct execution of different programs and their deviation compared

to normal activity are supervised. For that, short sequences of events when the
program runs in safe conditions and environment are collected and surveyed,
as was done in [2] with short sequences of system calls. For each local security
domain, we previously built a self profile according to the programs to be su-
pervised. A self profile contains several types of sequences specific to different
programs. At the system start-up, when the system runs in real conditions, IDAs
created from different hosts have to detect deviation of events specific to these
programs. In each domain, different populations of IDAs specific to a program
are able to memorize safe sequences obtained from the normal self profile. Each
program-specific IDA selects randomly a block of n consecutive sequences and
examines in the host they visit, the deviation of the incoming events from the
selected set. If the deviation is too high the IDA launches an alert. Otherwise,
under a certain level of deviation the incoming sequence is accepted. Moreover,
alternatively to normal-abnormal sequence discrimination other populations of
IDAs look for specific attack signatures. In this case, IDAs specific to a well-
known attack pattern travel randomly in the network to detect this pattern.
Here, IDAs refer to signatures previously stored in another non-self profile and
select one of them. A signature-based IDA that detects an anomalous pattern
launches an alert.

Chronologically, an IDA follows the sequence of actions described below:
1. A node houses one self and one non-self profile that have been previously

built off-line and stored in two different protected files. The self profile con-
tains several types of sequences of events to be accepted and the non-self
profile contains several types of the sequences of events to be rejected. The
self profile is built from normal activity executed in machines previously iso-
lated from the rest of the system. These normal events are called self events
or selfs for short. Each sequence of the non-self profile called non-self is
attributed a suspicion value. This suspicion value indicates the propensity
to find such a sequence in the system. In the non-self profile, the different
fields are:
– The identifier of the suspicious activity : Idsa. The IDA identifier IdA

is the same identifier as the identifier Idsa, of the suspicious activity it
supervises.

– The sequence of events:
〈(event(1), value(1)), (event(2), value(2)), ..., (event(n), value(n))〉.

– The suspicion index : SI that gathers the degree of importance of the suspicious
activity. SI expresses the deviation of the incoming events from the events
memorized by the IDA.

– The tolerance threshold : Th, which corresponds to the value of the deviation
between the incoming events and the events memorized by the IDA, that
generates an alarm.

There are three states in the life of an IDA; it is immature at the start-up,
then it becomes a primary IDA and ends its life as mature IDA.
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2. At the start-up of the node, first immature IDAs are created by their gener-
ator host. Each immature IDA memorizes a sequence of the non-self profile
and the corresponding fields. It is also attributed a Time To Live (TTL) to
limit its life duration as immature IDA. The TTL is a positive integer value
and at every hop, it decreases by one unit.

3. These immature IDAs are randomly and temporarily dispatched in the sys-
tem to protect, in order to test their effectiveness: during a short lapse of
time expressed by the TTL, any immature IDA that matches exactly an
identical sequence of events in the system, is destroyed as bad immature
IDA. This step corresponds to a tolerization period and is also present in
other immune models such as [7]. In the same way, during the same short
lapse of time, any immature IDA that matches exactly selfs encountered in
the self profile(s) are eliminated. This corresponds to the so-called negative
selection phenomenon happening in the body. The negative selection avoids
auto-immune reaction in the body. Here, the goal is to anticipate future false
positives.

4. If it is not destroyed as bad IDA, an immature IDA which TTL reaches zero
becomes a primary IDA. As primary IDA, its TTL is re-attributed a non-
null value and continues its random walk. At each hop it collects entering
events and computes the suspicion value. At every hop, its TTL decreases by
one unit. If its suspicion value reaches a certain threshold thm, it becomes a
mature IDA and it is kept in the system as good IDA. If its TTL reaches zero,
it terminates because it is rejected as bad primary IDA. Since it matches no
event, it is considered to be unadapted and thus inefficient.

5. As mature IDA, its TTL is deactivated and its last computed suspicion
value is maintained. It continues to move with the possibility to adapt its
random walk to what happens in its neighborhood. Different strategies are
then possible according to the preferences of the security administrator. In
the present case, the IDA chooses in its neighborhood the node with the
smallest frequency of visit1 by an identical IDA (identified by IdA). Each
time, it detects an entering event the suspicion value is computed. Beyond
the pre-established threshold tha, an alert is launched.

6. Each time a mature IDA revisits its originating host, the corresponding
suspicion value in the non-self profile is updated with the last suspicion
value computed by the mature IDA. The originating host is the host that
has generated the immature IDA leading to the mature IDA. During the
system operation, the number of agents is controlled and they proliferation
is limited. This phenomenon is also present in the body where the number
of cells and their specialization is controlled to avoid notably a metastasis
phenomenon. In this case, the cells escape from any control, multiply in an
anarchistic way and lose their specificity. However, when it is required cells

1 Other stategies are also possible.
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of the body such as macrophages2 proliferate to protect the body. Similarly,
the IDAs’ population proliferate only when it is required. Thus, revisiting
its originating host, a mature IDA is cloned before moving to the next hop,
only if its suspicion value is too high. The two resulting IDAs continue their
walk.

7. As soon as a suspicious event is detected the IDA launches an alert, builds
an artificial pheromonal information that is specific to the suspicious event
which is called electronic pheromone. The IDA evades the infested node as
soon as possible, freeing the place for other agents especially adapted to
perform a response. The IDA, entirely invested in its detection task, changes
its walk’s strategy; looking for another sign of the same suspicious behavior
in its neighborhood, it chooses preferably a neighbor with a pheromone to
correlate.

The electronic pheromone comprises all the essential fields dedicated to this
sequence of actions. The main fields are:

– The identifier of the responsible IDA which built the pheromone after having
detected the attack: IdA.

– The pheromone creation date: t0. This pre-suppose that the machines are
synchronized between each other.

– The intermediate date ti, which corresponds to the date when the pheromone
is deposited on the intermediate node i during the pheromone propagation.

– The number of hops that corresponds to the distance in term of nodes at
which the pheromone is diffused: Hop. The network is represented by a graph
of neighborhood dedicated to the MAs’ displacement. Each MA obtains from
the node it is currently visiting the list of the next neighbor nodes it can
visit. This neighborhood graph is a logical graph built on the top of the
real network topology, for the needs of the conceptual model. It represents
a logical view of the nodes which can see each other, whereas in reality,
in a LAN all the machines can see each other. The neighborhood graph is
also used by the SimplePheromonePropagator for the pheromone’s diffusion
through the network.

– The gradient that decreases hop by hop from the alert source and will be
used by the IRAs to follow back the pheromonal path to the alert source:
Gd.

– The suspicion index : SI, that corresponds to the degree of importance of the
attack. This degree depends on a tolerance threshold fixed at the start-up
and which can be adjusted during the system execution.

The electronic pheromone is diffused in a randomly chosen direction by an-
other agents’ population, namely the SimplePheromonePropagators. Schemat-
ically, the SimplePheromonePropagator is called by the IDA before this latter

2 A macrophage is a type of white blood cell that surrounds the body and kills mi-
croorganism, removes dead cells, and stimulates the action of other immune system
cells.
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evades the infested node. The SimplePheromonePropagator is responsible for se-
lecting randomly a neighbor and moves there to deposit the pheromone. At this
new selected node, the SimplePheromonePropagator repeats the same operation:
it selects randomly another neighbor it never visited, moves there and deposits
the pheromone. The same operation is iterated a number of time corresponding
to the field: Hop, of the pheromone. This dissociation of roles is quite useful
because it allows the different populations of agents to work independently from
each other in an asynchronous way. The pheromone is used by the IRAs, another
category of MAs living in the system that work cooperatively to respond to the
detected attacks.

Overall, the common key points which our model borrows from the immune
system are the following:

– The specificity because each IDA is specialized in one kind of anomaly. An
IDA memorizes new sequences specific to this anomaly or it is specialized in
one specific signature pattern.

– The dynamicity because each IDA continuously circulates through the secu-
rity domain, which increases the global coverage provided by all the IDAs’
population over time.

– The autonomy because each IDA can decide to clone itself only if the level
of suspicion becomes too high.

– The distribution of information among the different nodes, which avoids a
central point of failure and which allows a distribution of the different points
of alert in the system.

6 IRSystem

The response principle is as follows:
At system start-up, another population of agents, the IRAs, is also created at

the different nodes. In parallel to the IDAs’ population each IRA of the IRSys-
tem performs a random walk through the network looking for a pheromonal trail
representing an alert. The roaming IRAs will follow it as soon as they detect
its existence. More precisely, this pheromonal information acts as a communica-
tion medium to alarm the different populations of IRAs because the IRAs are
also specialized in different responses. Therefore, the information carried by the
pheromone is different according to the suspected intrusion as well as its serious-
ness allowing IRAs to perform an adequate response. This is quite advantageous
in term of performance because it avoids having inappropriate agents moving to
a location where they will be useless. Moreover the pheromone will also evapo-
rate after a certain lapse of time avoiding an IRA to migrate to a location where
the alert is obsolete. Finally, as soon as an effective response has been performed
a pheromonal inhibition process is activated. This process consists of accelerat-
ing the pheromone evaporation process, avoiding that several IRAs follow the
same trace.
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Chronologically, an IRA follows the sequence of actions described below:

1. At the start-up, it is created by a host and it is in its normal quiet state.
In this quiet state, it moves randomly and searches for a pheromone in the
network.

2. If it finds a pheromone, it switches to a tracking state and follows the
pheromone to its source.

3. Following the pheromonal trail, it accelerates the pheromone evaporation
process on each node belonging to the current trail. That reduces the time
remaining before the complete pheromone evaporation without preventing
other IRAs from following the same trail. Thus, that increases the chance
that a response is given avoiding that too many IRAs follow a trace already
detected. As soon as it reaches the node where the suspicious behavior was
detected, the IRA performs the response, it destroys the pheromone and it
switches to its normal quiet state.

4. Then it continues its random walk to discover another pheromone.

Evaporation of the Electronic Pheromone

Obviously, the evaporation process of the electronic pheromone has to begin
in the last node reached by the pheromone. Then it will reach the other nodes
of the path in the opposite direction of the diffusion. In this scheme, an IRA
visiting a node with a pheromone can always follow the pheromonal gradient
up to the first node. An evaporation index Δ has been defined as the period of
life, allocated to the electronic pheromone deposited in the last node n, before it
disappears. This lapse of time is adjusted according to the average time needed
by an IRA to perform its task when visiting a node; that is, to read and in-
terpret the pheromonal information. Also to choose the next node to visit. The
pheromonal deposit will disappear first at the last node n after a duration Δ.

Then, the pheromone successively disappears at each intermediate node i,
starting from the last node n until the node responsible for the intrusion’s alert.
The pheromone’s evaporation date Tevap(i) at each intermediate node i has
already been computed in a previous paper [5] according to known parameters
and is given by:

Tevap(i) = ti + 2 × ti − t0
i

× (n − i) + Δ

where:

– ti is the pheromone deposit date at the node i.
– t0 is the pheromone deposit date at the node 0.

Inhibition of the Electronic Pheromone

To avoid too many IRAs converging to the same source, an inhibition index,
α, has been defined, that increases the rate of the pheromone evaporation in
each node already visited by an IRA. This is explained in the following:
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A first IRA entering the node i at tA1(i) should intervene between date ti
and Tevap(i). Thus, after date tA1(i), the time remaining before the pheromone
completely evaporates at node i is:

Tevap(i) − tA1(i)

With the inhibition process, a second IRA should intervene in a period of time
corresponding to a ratio α of this remaining time. This inhibited remaining time
is given by:

α × (Tevap(i) − tA1(i))

Thus, the second IRA has to reach node i at a date tA2(i) such that:

tA1(i) ≤ tA2(i) ≤ tA1(i) + α × (Tevap(i) − tA1(i))

This inhibition process is repeated for every IRA detecting the same pheromone at
the same node i, until the pheromone completely disappears or a response is given.
Like the evaporation process, the inhibition process contributes to limiting the
IRAs’ fruitless activity and movement as well as wasteful resource consumption.

7 Conclusion

The conceptual model presented in this paper is built with two main populations
of MAs that self-organize to protect a computer network in a distributed and
decentralized way. For that, agents have to interact with each other. The goal
of this interaction is the emergence of a collective defensive behavior. It makes
sense to apply the two natural system metaphors to IDReAM because several
characteristics of these two natural systems are present in IDReAM. Notably:

– The natural environment constitutes the communication medium for natural
entities; the network environment constitutes the communication medium for
MAs.

– Like the natural entities (T cells, ants), agents are immersed in the environ-
ment.

– Thanks to the environment, inter-entity interaction leads to a collective com-
munication model that deals with large-scale tasks such as the detection of
a source of food for ant populations or the detection of a source of attack
for MA populations.

– Both types of systems (natural systems and MA systems) behave dynami-
cally and each state influences the environment. In its turn, the environment
influences the system dynamics. Thus, the global system equilibrium is main-
tained by an interaction loop between the environment and its population.

As it was previously mentioned, the present paper details mainly the concep-
tual model of IDReAM. However, IDReAM’s assessment is provided in a PhD
Thesis [3] with respect to the following requirements:
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1. Robustness: The robustness is mainly due to the furtivity of the agents
distributed in the network. There is no point of centralization of all the
information because, according to the conceptual model the majority of the
information is located at different locations of the network environment;
each machine owning its set of profiles (sel, non-self), each pheromonal trace
being deposited temporarily and in a random way in the network. Moreover,
in case of accidental death of the agents (IDAs and IRAs) a mechanism that
controls the population of agent enhances the model; this mechanism ensures
that the visits’ frequencies of the agents (IDAs and IRAs) at each node do
not exceed a certain value (or is not under a certain value): if agents are
missing the hosts create new agents, if there are too many agents the hosts
destroy them. Moreover, all the agents are encrypted when traveling through
the network and they are authenticated by the hosting node before being
executed. This prevents them from being corrupted by an attacker.

2. Extensibility: IDReAM can be easily extensible to detect new intrusions by
adding new sequences in the non-self profiles without disturbing too much
its operation. If the intrusion is extremely suspect it suffices to attribute a
high suspicion value to the corresponding non-self sequence.

3. Scalability: The model ensures the scalability of IDReAM for two reasons:
Even if there is a great number of immature IDAs just a few of them suc-
ceed as mature IDAs. Moreover the number’s effect is reduced because the
moving agents (IDAs and IRAs) are permanently distributed among the
machines. Moreover, the model guarantees that small MAs providing simple
and lightweight detection and response tasks do not undoubtedly lead to the
degradation of the performances.

In the same way, [3] provides the description of IDReAM’s implementation
using a pure Java-based mobile platform named J-Seal2 [8]. The behavior of
the different populations of agents and the corresponding services in accor-
dance with the model have been experimented. The results obtained are rather
promising and convinced us of the feasibility of the conceptual model to build
IDReAM and the reader is invited to refer to [3] for the implementation and
the assessment details. Certain results were already presented in [4]. A re-
cent benchmark has been provided that will make the object of a forthcoming
article.

References

1. G. Di Caro and M. Dorigo. Ant colonies for adaptive routing in packet-switched
communications networks. IRIDIA Universit Libre de Bruxelles Belgium, 1998.

2. S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff. A sense of self for unix
processes. In Proceedinges of the 1996 IEEE Symposium on Research in Securit
and Privacy Context Related, 1996.

3. N. Foukia. IDReAM: Intrusion Detection Executed with Agent Mobility - A Dis-
tributed Approach Inspired from Natural Life Systems. PhD thesis, University of
Geneva, 2004.



IDReAM: Intrusion Detection and Response Executed with Agent Mobility 239

4. N. Foukia and S. Hassas. Managing computer networks security through self-
organization - a complex system perspective. In Proceedings of the First Interna-
tional Workshop on Engineering Self-Organising Applications (ESOA), Melbourne,
Australia, 14-15 July 2003.

5. N. Foukia, S. Hassas, S. Fenet, and J. Hulaas. An intrusion response scheme:
Tracking the alert source using stigmergy paradigm. SEMAS 2002, Bologna -
Italy, July 2002.
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Abstract. In this work, we are interested in modeling a production
chain following the perspective of complex adaptive system. We propose
an approach, allowing a production chain to manage by itself, its own be-
havior, so as to satisfy the constraints imposed upon it by its environment
and reach a set of predefined objectives. We propose self-organization as
a mechanism, to achieve such a goal.
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1 Introduction

In many industrial manufacturing systems, the great number of tasks to achieve
for each product, the great number of products to produce, routing flows of
products in the system, etc , are at the essence of the system complexity. In
addition, the system evolution depends on the variation of many factors such
as : the amount and kind of products, products priorities, the state of resources
(machines breakdowns, operators delays, etc). In this work, we are interested
in modeling a production chain following the perspective of complex adaptive
systems. We propose an approach, allowing a production chain to manage by
itself its own behavior, satisfying the constraints imposed upon it by its envi-
ronment and attempting to reach a set of predefined objectives. We propose
self-organization as a mechanism, to achieve such a goal.

1.1 Context and Objectives of Our Case Study

To manage the manufacturing, we focus on three main elements :

– Tasks : A product manufacturing consists of achieving a sequence of tasks.To
make a product, one must achieve all its tasks.

– resources : represented by machines which achieve the tasks necessary for a
product manufacturing. They have a limited capacity and can break down.

S. Brueckner et al. (Eds.): ESOA 2004, 3464, pp. 240–255, 2005.
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– Flows : A flow is associated with a product type. It is characterized by
a progressing speed (how long does it take to achieve a production stage)
and a size (how many products are realized at the same time) for each of
the production stages. Its evolution depends on all the product dispatching
decisions made by the production management system.

We consider a production chain in the domain of electronics. For this domain,
we can notice the following characteristics :

– a long sequence of operations (more than a hundred) for a manufacturing
product;

– reenterant flows: which means a manufacturing product uses several times
the same resource for its processing;

– the use of evolving technologies;
– the use of expensive resources;
– the use of same resources for both manufacturing products and research and

development products;
– frequent breakdowns;
– evolving commercial needs;

In this context, the production chain needs to satisfy the following (sometimes
opposite) objectives :

– Objective 1 : maximize the resources use, and maintain this maximization
on a long term;

– Objective 2 : make the output of the production system linear ;
– Objective 3 : minimize the mean time of the production cycle (the production

cycle corresponds to the duration of a product manufacturing) ;
– Objective 4 : make the system attribute a high priority for the manufacturing

of research and development products;
– Objective 5 : and at a longer-term, acquire information, from the system

itself, on its own feeding requirement. This allows to provide a kind of system
load profile (composed by new products to make).

1.2 Guidelines and Suggestions

To reach the objectives stated above, we propose the following guidelines, that
will serve as founding concepts for our approach.

– To maximize the resources use (Objective 1), we propose to ensure a sufficient
amount of products available on each resource (queues of products ahead of
resources). This makes the system robust and allows for the absorption of
perturbations that may occur in the system. Even if a resource is not anymore
feeded with products, it can manufacture products in its queue. To do so,
we suggest to make the system behave by anticipation, forecasting its future
needs. The system do so, by acquiring continuously, qualitative information
on its activity.

o
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– to make the system’s output linear (Objective 2), we suggest to control the
progression of the products in the system. To do so, we use a mechanism of
information feedback, based on the requirements in term of system activity
and needs, to obtain an ideal system output. The system attempt to satisfy
a linear output.

– to minimize the mean time of the production cycle (Objective 3), we suggest
to maintain a small number of products in progress in the system. To do so,
we seek to schedule tasks on adequate resources (in a predefined objective
time window), so as to obtain a satisfactory mean number of products in
progress 1 .

– to give a priority to the manufacturing of research and development products
(Objective 4), we suggest to make the system be able to control the progress
of products to be manufactured;

To address these questions, we propose to model the production chain as a
complex adaptive system, which activity is founded on the guidelines described
above. Our complex adaptive system is represented by a situated multi-agents
system. Thus, the production system is represented as a situated multi-agents
system, the objective of which is to find a spatial organization making it possible
to satisfy the environmental constraints, while addressing the flow management
problem. This paper is organized as follows : first we give our motivation for
the use of a situated multi-agents system, we present various approaches that
have been applied to the production management. In section 3, we present our
approach and underlines its founding concepts. In section 4 we present some
experiments and results. We conclude this paper by a discussion and by giving
some perspectives for the ongoing work.

2 Related Works

There is a wide range of works applied to the scheduling management. For this
problem, we distinguish two solving philosophies. For the first one presented in
2.1, we present approaches based on centralized systems to efficiently compute a
schedule to apply. In 2.2, we present approaches which performances come from
empirically correct behavior.

2.1 Optimization Methods

Optimization methods have frequently been applied to the typical job-shop prob-
lem. Different approaches exist such as ”Branch and Bound” methods and the
constraint satisfaction methods [3][13], methods based on mathematical analysis
[9], use of metaheuristics for efficiently covering the search space [1][22], their

1 Average waiting time of products between two production stages (induced by the
predefined objective time window) is related with the amount of products in the
system. Large waiting time = several products in queues = large amount of products
in progress in the system.
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combination to some classical optimization approaches [19], etc. In [14], an hy-
brid approach combines various method types for optimization and produces
good results.

Although giving an optimal schedule that minimizes (or maximazises) a per-
formance measure f (usually a function of job completion times), the above
presented methods lack robustness, when faced to disturbance, and don’t fit
the industrial problem. Computing this kind of optimal schedules is useless if
they can’t be applied because of many real-time disturbances. New methods
are developed in order to accommodate disturbances. The group ‘Robustesse et
Flexibilité’ works on generating robust scheduling with uncertainties using meth-
ods from operational search and artificial intelligence [5]. In [8], authors looks for
super solutions allowing the integration of local disturbances. These integration
attempts are difficult to realize and can not be applied at the present time to all
scheduling management problems.

2.2 Empirically Correct Behavior Methods

The scheduling management can be the result of choices realized in real time
by the system. Thus, empirically correct behavior methods define the waiting
queue product priorities and the route realized by each product, at each prod-
uct’s stage manufacturing. By its intrinsic properties (several kinds of perturba-
tions, several interactions, etc), a production chain exhibits the characteristics
of a complex system, evolving in an uncertain environment. The multi-agents
paradigm (MAS) provides good characteristics (such as adaptation capacities,
decentralized control, autonomy, etc), for representing such a system. In MAS,
the contract-net protocol is a negotiation mechanism that allows products to
compete for resources [21]. Cooperation between products competing for acquir-
ing resources increase system performances [20]. Parunak and Barto discuss in
‘Agent-based Models and Manufacturing Processes’ the significant improvement
realized by agent acting for the electronic components manufacturing in an AMD
factory. In [2], the resource specialization for tasks allows to increase system per-
formances. In [18], authors use a more cognitive approach called Methamorph. In
this case, negotiation is made between hierarchically arranged agents from dif-
ferent types having important deliberating capacities. In [17], authors consider
the learning capacity of such systems.

In order to avoid bottleneck, one must control Work-In-Progress (WIP) level
in the production system [11]. In [4], authors try to maintain an appropriate
WIP level on each resource. Thus, the priority products in queues are defined
according to products usefulness for the system. In such a way, in [15], authors
control upstream and downstream WIP level on each resource. These methods
allow to communicate reception capacity towards upstream production layers,
to maintain good performances for the system.

In [16], authors propose to provide system bottlenecks to a centralized algo-
rithm which dispatch products in order to decrease congestions impact. Putting
up the number of known bottlenecks integrated to compute the dispatching in-
crease the process efficiently.

Managing Dynamic Flows in Production Chains Through Self- rganizationo
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Although the control of the WIP level allows a limited control of the system
trend, presented methods do not anticipate flows products through the system
(MRP2 logic in industrial area). However, we think that we can take advan-
tage of a multi-agents approach realized at a bottom layer (representing each
planning task to realize by an agent). These modeling allows to anticipate con-
gestions and to take advantage of an implicitly decentralized representation of
the system state. Then, it is not necessary to indicate to the system the bottle-
necked resources because they are known by the system itself. [10], presents a
fuzzy anticipating planning which evolves each time a disturbance occurs. This
forecasting technique provides useful information to the decision making process.

3 Our Approach: A Self- rganizing Approach for
Dynamic Flow Management in a Production Chain

In our approach we address the problem of production scheduling, as a spatial
negotiation process between a set of tasks and a set of free scheduling temporal
areas on the available resources. To do so, we use a metaphor of fighting between
competing reactive agents. Our approach is based on the following principles :

3.1 Eco-Resolution

The eco-resolution paradigm has been first introduced by J. Ferber in 1989 [6].
It bases the resolution of a problem on mechanism of a state space search, by
reactive agents guided by a satisfaction fitness function. In our problem, we
represent the product tasks as situated agents, evolving in a shared environment
corresponding to the set of available scheduling temporal areas on the system
resources. In order to build the schedule, agents have a unique goal, which is
to place themselves as soon as possible on suitable scheduling temporal areas
defined on their environment 2. The environment corresponds in fact to a zone
of anticipation of the scheduling, that is gradually realized by the resources in
the course of time. Although environment corresponds to a temporal planning
(each task agent is placed with a begin/end date), we describe it as a spatial
environment.

3.2 Stigmergic Communications and Application

Stigmergy is an indirect mode of communication, mediated by the environment.
This principle has been first introduced by Grassé [7], while studying the behav-
ior of social insects. It provides a spatial distributed coordination mechanism.
In our approach, task agents, are competing agents, which try to find satisfying
places on their environment. The agents placed form different local patterns with
various topologies. The space characteristics of the patterns thus formed influ-
ence the behavior of the agents seeking to improve their situation. Thus, there
is a phenomenon of positive/negative feedback between the patterns structures

2 Agents place themselves earliest in the planning of a resource.

o
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evolution, resulting from past behaviors of agents, and their future behavior.
Thus, let us see a way of putting in competition agents by stigmergic way.

3.3 Self- rganization Through a Fighting Mechanism

To find a satisfying place in the environment, a task agent visits randomly the
set of suitable resources.3 On a selected resource, the task agent tries to get
a scheduling area, by competing with tasks already scheduled on the resource.
This competition between agents is aimed to maximize the resources use. Unused
scheduling areas are thus pushed towards a later scheduling time.

We can see on figure 1, how a spatial negotiation is achieved by agents, at
the level of a resource. On the left part of the figure, we represent the resource
structure, which is composed of a set of scheduled task agents and a set of unused
scheduling areas. A task agent, seeking for a suitable scheduling area creates
different groups composed of sets of placed agents and unused scheduling areas,
fitting its needs. Then, the attacking agent randomly selects a group with which
it could engage in a fighting process.

Fig. 1. Fighting mechanism of tasks agents

If the first component of the selected group is an unused scheduling area, the
attacking agent wins the fighting. This mechanism of fighting allows for efficiently
pushing away unused scheduling areas present on a resource. As the number
of fighting achieved by competing tasks agents is high, the unused scheduling
areas weakening the system’s environment are pushed out of the planning. This
phenomenon tends to maximize the system resources use.

3.4 Considering Information Embodied in the System

A Need to Refine the Generated Solution. The mechanism presented
above responds to the first objective of our problematic (i.e. flow managing to
maximize resources use). However, to respond to the third objective (reducing
the amount of products in progress in the system), one has to reduce the mean

3 A resource is suitable for a task agent, if it is able to achieve the corresponding task.
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length of waiting queues of products. This reduction increases the risk to under-
utilize a resource, for lack of products 4. Thus, we must make a good balancing
between satisfying objective 1 and objective 2. To guarantee that the products
arrive on resources at the appropriate time (avoid congestion), one has to an-
ticipate the flows produced in the system in order to find a solution allowing as
well as possible to satisfy the resources capacities on the long term.

What Kind of Decision has to be Made? When the size of a resource
waiting queue becomes important, a congestion happens, making the resource
capacity insufficient to feed other resources located downstream. One has thus,
to carry out choices of priority between tasks, at the level of the congested
resource. These choices, allow some tasks to place themselves on the resource,
so as to manufacture urgent products quickly, and let less urgent tasks in the
resource waiting queue.

Listening to the System Activity. In order to define efficiently the priori-
ties of agents in queues, we must consider information embodied in the system.
Indeed, it is possible to consider the capacities of the resources on an extended
horizon of production, and be able to feed the system resources with adequate
products at adequate times. Placements carried out by anticipation in the so
described ecosystem, provide us information on needs to fill. Also let us notice
that the mechanism that we will describe could also make it possible to linearize
the products output of the system (objective 2). It is then sufficient to consider
the linear output of the system as a regular capacity to fill, with the finished
products outgoing of the chain of production.

Two Kinds of Information. In order to refine the placement mechanism dur-
ing the fighting process between competing agents, we propose to consider infor-
mation revealing the importance of the different competing agents. On one hand,
already placed agents will be able to benefit from supporting information, which
reveal to the system, the importance of their current placement. On another
hand, agents seeking a potential placement, could benefit from information on
their urgency for the production process, and then on the necessity they have
to be scheduled quickly. This mechanism of recruitment of the useful products
supports the insertion of the not yet placed products.

These two kinds of information, goes up the planning gradually, to inform
agents and guide the different fighting process taking place in the system. Thus,
one collects within a resource, qualitative as well as quantitative information.

Informations About the Utility of Placed Agents. In order to allow al-
ready placed products to maintain their position, we make these agents profit

4 High product in progress level allow to flood the schedule (important queues on
resources). Scheduling with low product in progress level is more difficult and less
robust face to disturbances like resource breakdowns.
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from a kind of information corresponding to their usefullness for the system. This
information is generated by each task agent, placed in the environment. To main-
tain its placement, an agent must also allow to maintain the placement of agents
corresponding to the preceding tasks of the product which it represents (A task
agent can be placed only if the completion date of manufacturing of the preced-
ing stage exists). Thus, with this first kind of information, placed agents inform
precedent agents of theirs associated products, of their usefullness for the system.

Information About the Need of the System to be Filled by not yet
Placed Agents. This mechanism allows resources lacking of products, to in-
form the corresponding tasks, of their urgency for the manufacturing process,
and boost their activity. Information is generated from an unused temporal area
(free area) on the resource schedule. On this resource, some products with var-
ious stages of their manufacturing process, are produced. Information is first of
all characterized by a type of product with one of its manufacture stages on
the resource. It is this combination product-stage which defines the course that
will be carried out by this information in the system. Gradually, information
traverses backward way, stages of products of the same kind as the required
product (a stage is associated with a resource). At each stage of the course, if an
appropriate task is found, the traversing information is transmitted to it, and
the course of traversing information is over. Let us notice, that the traversing
information could move until the stage 0 of the product manufacture, and thus
could represent a desirable loading profile for the system. This information could
thus also be considered to make decisions, to insert new products in the system
(objective 5).

The importance of transmitted information is computed locally. This infor-
mation importance could, for instance, be based on the size of the unused area
on the resource. Indeed, the more an unused area is large, the more it seems
important to attract products on the site of free areas in order to dissolve the
congestions being formed in the system.

As the system evolves, generated information may also evolve. To maintain
collected information significant during the system evolution, we have introduced
a mechanism of evaporation, which makes non reinforced information disappear.

Considering New Information Type During the Fighting Process. The
fighting mechanism has to be refined in order to use effectively this sum of
information, generated by the system, while allowing its stabilization. The basic
fighting mechanism is refined, in order to consider this kind of information. Thus,
the attacking agent carrying out the attack, wins the fighting inevitably if its
‘supposed usefulness’ for the system, is higher than the highest usefulness of
the placed agents, to which a threshold of movement is added. This allows to
reduce the system activity. In case the supposed usefulness of the agent is lower,
one applies then the basic fighting mechanism. When two agents belonging to
the same type of product are engaged in a fighting process, the attacking agent
never wins. Indeed, when applying a policy of management of flows , two agents
belonging to the same flow of product do not find it beneficial to fight each other.

Managing Dynamic Flows in Production Chains Through Self- rganizationo
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4 Experiments and Results

In this section we present some experiments and results obtained through simu-
lations. We have led first, some experiments to test the application of the simple
fighting mechanism, presented in section 4.1. In 4.2, we could see how the use
of traversing stigmergic information through the system provides interesting im-
provements for the system activity. We have focused our experiments only using
one kind of information described in 3.4 : information related to the importance
for the system, of the different placed tasks agents.

4.1 The Basic Fighting Mechanism

We describe here, two characteristics that we have observed, just using the ba-
sic fighting mechanism (without using additional information). The first char-
acteristic concerns the self-organization of product flows through the system
resources, so as to avoid congestions. The second one concerns the ejection of
unused scheduling areas, to a more delayed scheduling time.

Self- rganization of Dynamic Flows of Products

– Experiment
Using the basic fighting mechanism, we try to make the flows of products in
the system to take place, and organize themselves , so as to avoid resources
congestion. Experiments have been led with products, that have various
choices of resources at some stages of their manufacturing. Thus, we can see
on figure 2 , that product P1 can achieve its different stages of manufacturing
on Resource M0 or M5. On the other hand, the product P0 can carry out
some of its stages of manufacturing only on M0.

– Results
We can see on the graph, when there are only products of P1 type in the
system, task agents of different P1 products, are placed equitably on M0
and M5. Indeed, each time an agent seeks a place, it selects randomly a
resource that can satisfy it. This implies that on average we obtain half
of the tasks placed on M0 and the other half on M5. While inserting P0
products in the system, we could notice that task agents, associated with the
different P1 products, have tendency to fix themselves more easily on the
least attacked resource (i.e. on M0). Indeed, on the most attacked resource,
the environment is often evolving because of the many undergone attacks,
and adherence is less important than on resources less prone to attacks.

This mechanism allows M0 to be naturally discharged from P1 products.
It acts as a natural mechanism of production load balancing. Thanks to the
variable horizon of the scheduling space, this mechanism of balancing is
carried out by anticipation. This makes the system stabilize itself towards a
solution that reduce resources congestions.

Ejection of Unused Scheduling Areas. The various experiments carried
out enabled us to notice that the basic fighting mechanism makes it possible

o
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Fig. 2. Natural protection of the bottlenecks

to push back effectively unused scheduling areas present on schedules of the
various resources. Indeed, we support the ejection of these unused areas , thanks
to the rule defining that an attacking agent (wishing to obtain a site), wins the
fighting against a group of preys, if the first element of the attacked group is an
unused scheduling area. The activity of the system evolves naturally to a solution
which minimizes the amount of unused scheduling areas on the various resources.
Indeed, the system is stabilized when no not yet placed agent can be integrated
into a schedule because no unused scheduling area allows insertion. Also, faithful
to the principle of eco-resolution, none of the already placed agents can improve
its position because of lack of unused scheduling areas, in the system.

Rebuilding the Solution Face to Perturbations. In addition of the two
above characteristics, we were interested in the way in which the system supports
the disturbances occurring in real time. Thus, we simulated various breakdowns
of resources. We took for principle that when a failure occurs on a resource, all
the agents placed on this resource are ejected. Thus, we noticed that according
to the principle of eco-resolution, the various agents seek again a new satisfying
placement. This mechanism of search is carried out while again pushing back
effectively the unused scheduling areas, until stabilizing itself towards a satisfying
solution.

4.2 The Refined Fighting Mechanism

In this part, we present various simulations allowing us to study the interest
of the integration of additional information, related to the state of the system,
in the course of the computation. We will thus see, how and why integrating
this information guides the system to a satisfying solution. Various simulations
which we could carry out enabled us to notice that for each one of types of
fighting used, the system reach the stabilization. However, by using additional
information, the setting time of the system is more important. The system indeed
is stabilized, only when the situation obtained supply a place corresponding to
its supposed usefulness for the system to each task agent. We did not met, for
the moment, a cyclic situation preventing the stabilization of the system. We do
not exclude this possibility in some cases. Also, we think of deepening the study
of the system activity as suggested in [12].

Managing Dynamic Flows in Production Chains Through Self- rganizationo
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Context of the Experiments. In the presented results below, we focus on
maximizing the production system use. We think, however, that the described
processes could be integrated in a policy which aims to linearize the production
system output as well as to minimize the products in progress level inside the
system. For now, we have considered the integration of one kind of informa-
tion, concerning usefulness for the system of placed agents. To do so, for each
experimented situation, we have computed some indexes revealing the impor-
tance of the improvement achieved with this information. Theses indexes are
not aimed to give a performance evaluation of the three studied problems. For
our experiments, the workshops have variable capacities of production relating
to the number of machines which they comprise. The products P1 have to be
done in a reentrant manner, while the products P2 can saturate the machines.

Maximizing the Production System Use

– Experiment
For this first simulation, we wished to study the distribution of two flows of
products in the system depending on its capacity (Figure 3). Thus, flows of
products P1 and P2 traverse various workshops which could carry out their
various operations. Workshop 3 has a capacity of 1, whereas other system’s
workshops have a capacity of 3. The flow of products corresponding to P2
thus knows an output of 3 for its first stage and only of 1 for its second
stage. It appears thus logical that the flow of product 1 (P1 flow) moves
more quickly in the system than flow of product 2. In real situations, this
kind of bottleneck appears in an unforeseeable way in the system because
of various disturbances. It is then advisable to reorganize flows in order to
maintain good performances for the system.

With approaches based on ‘contract net’ protocol, one can setup
rules allowing to manufacture in priority, on workshop 2, products
not being blocked with their following stage. We wish to make our
system subject to the same kind of problem as those solved by the use
of ’contract net’ protocol, by using however, a vision by anticipation.

– Results
On the left part of figure 3, we can see the scheduling achieved by our
system, using the basic fighting mechanism. We could note that some P1
products do not manage to be planned on the level of their stage 2 whereas
they can be scheduled on workshop 1 for their stage 3. Conversely, some P2
products are scheduled on workshop 2 for their stage 1 whereas they are
blocked with their stage 2 because the system cannot accommodate them.
These P2 products appear thus less urgent but opportunism resulting from
the basic fighting mechanism allows them to maintain their position. We see
on the right part of the figure that the integration of additional informations
makes it possible to solve this defect. Indeed, while using this information,
all the P1 products manage to be scheduled. Transmission of information
concerning the placement of agents makes it possible to know which agents
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Fig. 3. Distribution [without/with] information : Distance of level 1

are useful for the system. Placed agents, with low usefulness for the system,
loose their positions. Consequently, the overall performance of the production
system is maximized. One notices, on another hand, that each of P2 products
scheduled on workshop 2 are also scheduled with their following stage. These
placed agents are regarded as useful for the system and manage to preserve
their positions.

Flows Crossing on a Wider Horizon

– Experiment
We wished to measure the performance of our system over the same type
of problem of flows crossing, but this time on a wider horizon (Figure 4 5).
Thus, flow 2 corresponding to the P2 product undergoes a bottleneck on its
third stage level. The principle of distribution must remain the same one as
previously. It is useless to place products on workshop 2 if these products
cannot be accommodated by the system for their following stages. Thus,
without any modification of the behaviors used, we subject our system to
this new problem.

5 The various tasks placed on the figure 4 do not take part in the computation of the
various indexes because, taking them into account does not reveal the coherence of
the placement obtained.
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– Results
Information forwarding in the system, once more, allows the system to reach
stabilization on a good quality solution. The system is not disturbed by this
more distant horizon because the system carries out a schedule by antici-
pation which enables him to already anticipate the problem on the level of
workshop 2. Moreover, information evolving in the system does not have a
horizon of limited diffusion. On the contrary, protocols such as ‘contract net’
have more limited vision which does not make it possible to anticipate easily
and dynamically this kind of problems. Thus, on the left part of the figure,
we can see that by using the basic fighting mechanism, one obtains the same
kind of result as presented previously. In the same way, on the right part of
the figure, we notice that the system adapts well to the new problem: only
the awaited products can be placed.

Fig. 4. Distribution [without/with] information : Distance of level 2

Exploring the Solution Space Capacity

– Experiment
At last, we wished to increase the difficulty of the problem in order to have
a better idea of the capacity of the system, in exploring the solution space
(Figure 5). Indeed, for this simulation, the P1 products carries out also some
of its tasks on workshop 4. Thus, the two flows (P1 and P2) are competing
for the workshops 2 and 4.
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Fig. 5. Distribution [with/without] information : Distance of level 2 + difficulties

– Result
On the left part on figure 5, we see the result obtained by using the basic
fighting mechanism. By opportunism and because of a new range for P1
products allowing it, all the tasks of the 10 P1 products inserted in the
system manage to be placed on workshop 1 (10 * 4 stages = 40). However,
these placements are not optimum because on workshop 1, many scheduling
area remain unused. P1 products are placed too late on workshop 2. Places
being once more occupied by P2 products (blocked with their stage 3), and
thus being less urgent. On the right part of the figure, we see that by using
the refined fighting mechanism, the solution is again of good quality. The
activity of the system allows the agents of P1 to have a chance to be placed
on the workshop 4 which is a congested workshop. These products were able
to exploit their chances and thus to stabilize their positions and to improve
it, in order to get a place according to their importance for the system.
One can thus say, that at the system level, there is a feedback between the
attempt of placement and its validation by the system. All this, generating
in addition, an activity in the system, allowing the P1 agents to have an
opportunity to be placed on workshop 2 and 4, so that they can then also
stabilize their situation and improve it. The system is stabilized finally when
each product obtains a position which is suitable for him.

Need for More Boosting Information. In the various tests carried out,
the natural activity of the system allowed each agent to find a suitable place.

Managing Dynamic Flows in Production Chains Through Self- rganizationo



254 F. Armetta et al.

However, we think that in some cases, for lack of activity, information will have to
be brought to the products blocked (not-scheduled) on the different workshops
in order to allow them to have a chance and to prove their importance for
the system. This second type of boosting information corresponds in fact to
information relative to various unused scheduling areas, present in the previously
described system (3.4). In addition, because of the mechanism of information
used, the task agents corresponding to last tasks of their product, have a weak
level of information because they do have no (or not enough) agents located
downstream bringing weight to them. In order to return to the task agents,
situated at an end of manufacturing process, all their importance, one will be
able to use a mechanism allowing, to inform these tasks that they correspond to
awaited finished products, and this following a regularity of output of finished
products for the system. This last point, allows to respond to the objective of
making linear the system outputs (Objective Two).

5 Conclusion

We have presented in this paper, an ongoing work on the dynamic flow man-
agement in a production chain, through mechanisms of stigmergy and self-
organization. Our approach is based on the use of the situated multi-agents
paradigm, reproducing a fighting mechanism between competitive agents. We
have first proposed a basic fighting mechanism to achieve dynamic scheduling of
tasks on a set of resources, in order to avoid congestion of the system resources
and make flow of products more flexible. We have also observed through simu-
lations, robustness of the system face to perturbations. We have proposed at a
second step, a refinement of the basic fighting mechanism, through the integra-
tion of retroactive information inside the system. This last mechanism permits
to counterbalance the opportunist character of the first one. We have presented
some experiments and results. The first obtained results seem interesting. We
are now deepening our study in order to formalize our approach.
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Abstract. Textiles are omnipresent in everyday life. Their combination with 
microelectronics will lead to completely new applications, thus achieving ele-
ments of ambient intelligence. The integration of sensor or actuator networks, 
using fabrics with conductive fibres as a textile motherboard enable the fabrica-
tion of large active areas. In this paper we propose a “smart textile” based on a 
wired peer-to-peer network of simple information processing elements with in-
tegrated sensors or actuators. A self-organizing and fault-tolerant architecture is 
accomplished which detects the physical shape of the network. Routing paths 
are formed for data transmission, automatically circumventing defective or 
missing areas. The network architecture allows the smart textiles to be produced 
by reel-to-reel processes, cut into arbitrary shapes subsequently and imple-
mented in systems at low installation costs. The possible applications are mani-
fold, ranging from alarm systems to intelligent guidance systems, passenger 
recognition in car seats, air conditioning control in interior lining and smart 
wallpaper with software-defined light switches. 

1   Introduction 

Many promising technologies are emerging in the area of intelligent textile materials 
like electrically conductive yarns or pressure sensitive fabrics [1, 2]. State of the art 
feature sizes of integrated circuits allow for powerful and yet small and cost-effective 
microelectronic devices. Many interesting applications in the field of technical textiles 
arise by merging micro-systems and textile fabric structures [3]: pressure sensors in 
floor coverings for alarm systems or motion detection (person tracking), indicator lamps 
in floor or wall coverings for guidance systems in public buildings, distributed sensor 
networks for detection of defects in textile concrete constructions, and many more. 

Approaching the given task of electronics integrated into large areas the following 
questions arise: How can we exploit the functionality of all the integrated microproc-
essors, sensors and light emitting diodes? What happens, if the smart fabric is cut to 
fit as e.g. a functional floor covering of an arbitrarily shaped room? Will a single 
destroyed or defective module or wire lead to a complete failure of the function of the 
smart textile system? To address these problems we decided to use a self-organizing 
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and fault-tolerant architecture for the integrated sensor network. Research on self-
organizing systems is presently pursued extensively, worldwide [4]. Most sensor 
networks are based on wireless data transmission [5, 6, 7, 8 ]. 

Several years ago, we developed ADNOS (algorithmic device network organiza-
tion system) for building a self-organizing and fault-tolerant wired peer-to-peer net-
work for large sensor and actuator areas [9]. Our first demonstrator of this technology 
is the “Thinking Carpet” described below. 

In a previous work Paradiso et al. [10] described a “Magic Carpet”, where an array 
of piezoelectric wires and Doppler radar motion sensors are used to track the motions 
of a performer in musical installations. Orr and Abowd [11] use a single pressure 
sensitive tile within the “Smart Floor” for identification of persons by their character-
istic foot pressure profile during walking. In contrast, by using ADNOS we achieve a 
homogenous touch-sensitive floor, which is capable of self-installation and automati-
cally circumvents defective areas of the sensor network. Moreover, through the local-
ization of the sensor signals, speed and direction of the movement can be analysed 
and trigger software-defined events in the PC application. 

2   Smart Textile Concept 

Figure 1 shows a schematic of the smart textile. Identical modules are connected to 
each of their four neighbours by interwoven conductive filaments in a fabric used as 
data or power supply lines. One of the modules is connected to the PC and used as the 
portal. As depicted, several defects may occur within such a wired peer-to-peer sensor 

 
Fig. 1. Schematic of the wired network within the “smart textile”, showing the automatically 
numbered modules and routed data paths; the indicated possible defects can be handled by 
ADNOS; sensor data are sent to the PC via the portal 
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network during fabrication or use: open lines, destroyed or missing modules and elec-
trical short circuits. For a high yield in a reel-to-reel production and robust 
functionality  fault-tolerance to  all those defects is required. In addition, the demand 
for simple and low-cost installation requires that the smart textile can be cut into ir-
regular shape to fit into any given room 

3   Textile Integration of Microelectronics 

The smart textile (Fig. 2) is based on a polyester fabric with interwoven silver-coated 
copper wires. The diameter of each wire is 70 μm. Three of these wires are spun to one 
cord. For redundancy and low line resistance four cords are used for each line. The 
resulting line resistance is 0.4 /m. The pitch of the woven pattern is 20 cm in weft 
and warp directions, respectively. The width of the textile is six pitches or 120 cm. 
Each ADNOS module is connected to its four neighbours by two supply and two data 
lines. Two additional lines per module are used as sensor lines for the touch sensor. To 
achieve a larger sensitive area of the touch sensor, we embroider a meander-shaped 
wire. The modules are connected at the crossover points of the conductive lines in a 
single step using anisotropic-conductive adhesive. The achieved contact resistance is 
7 m /contact. In contrast to previous work [1], we use non-insulated interwoven wires 
for reducing the number of process steps and therefore cost for the electronic/textile 
interconnect. At the crossover areas the conductive weft and warp fibres are removed 
to eliminate the electrical shorts of the interwoven conductive wires. The modules are 
encapsulated before mounting to reduce mechanical stress of the devices on the PCB. 

 

Fig. 2. Microprocessor module with a capacitive sensor integrated into a fabric with interwoven 
silver-plated copper wires. The embroidered meander-shaped wires form the touch-sensitive 
area for the capacitive sensor 
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4   ADNOS Peer-to-Peer Network 

Figure 3 shows the block diagram of the ADNOS module. Each ADNOS module has 
four UARTs as ports to the connected neighbours and the input of the capacitive 
touch sensor. The power supply of the textile uses a voltage of 12 V in order to de-
crease the distribution losses. It is reduced to 3.3 V at the module by a switched 
power supply. For the demonstrator we use a commercially available 16 Bit micro-
controller.18 KB Flash and 4 kB RAM are sufficient for our system. The modules are 
active during data transfer, only. Their power consumption is approximately 
10 mA/module at 12 V in active and 6 mA/module in standby mode. 

Within the network each module exchanges control messages with its four nearest 
neighbours and controls and drives a specific region. No prior knowledge about their 
position within the grid is used. The control data are fed into the network by a func-
tional block referred to as portal, which is connected to an arbitrary module at the 
edge of the array. 

 

Fig. 3. Block diagram of the ADNOS module 

A set-up phase is started at each module as soon as it is connected to the power-
supply: During this first phase called “power routing”, short circuits within the net-
work are detected and affected branches switched off. The power switches at each 
module are able to switch up to 1.25 A. Their resistance is below 150 m . In larger 
networks we prefer to use several power inputs uniformly distributed along the edges 
of the network.  

Next, the self-organization of the network according to the ADNOS rules is started 
by the PC. Every module computes the positions of its neighbours, using its own 
temporary position set to (0,0) at the beginning. The portal starts this process by feed-
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ing the absolute position to the first module. In the next phase the minimum distance 
to the portal is computed by each module sending its own estimated distance to its 
neighbours. On reception of such messages, each module selects the neighbour with 
the smallest distance d and sets its own distance to d+1. Based on the previously 
computed data, routes are generated, that will later carry the data stream (Fig. 1).  The 

 

Fig. 4. ASCII-based message format used for communication within the network. This example 
shows the sensor frame 

portal then starts an automatic numbering based on the established routes and the 
calculated throughput through each module. This enables the modules to determine a 
unique address number. The generated address number format yields sufficient rout-
ing information for each module. Except for the address numbers of its direct 
neighbours, no additional routing tables are needed inside the network. If new defects 
occur, the self-organizing routine can be repeated and new routing paths emerge in 
the network. The ASCII-based message format used for the communication within the 
network is shown in Figure 4. 

The ADNOS algorithms are embedded in one of three layers of software abstrac-
tion (Figure 5). It establishes a peer-to-peer communication scheme, which is used to 
transfer data between the modules and between the network and the “smart textile” 
monitor application on the portal PC, respectively. The four ports of each module 
have different priorities. At simultaneous reception on two ports (messages received 
within 8 μs), the port with highest priority will accept data first. To avoid an unbal-
anced response of the network, the priority of ports is rotated at regular intervals. 
Below the ADNOS layer the protocol layer is responsible for communication between 
neighbouring modules. In case of data collision, reception and transmission is per-
formed in full duplex mode. The board layer takes care of hardware control and 
physical connection between neighbouring modules. 

The sensor data from the network are transmitted to the “smart textile” monitor ap-
plication. We use an RS232 interface at a data rate of 115200 bps. The customized 
features are defined within the monitor application, e.g. processing and evaluation of 
sensed data or control of light-emitting diodes. 

The PC user interface of the “smart textile” monitor is shown in Figure 6. All rec-
ognised modules, the functional connections between the modules and the established 
data paths are depicted in the left area of the screen. Sensor events are shown as high-
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lighted dots at the connected module. The pattern shown in Figure 6 was produced by 
a person walking from the lower left to the upper right of the smart textile. All infor-
mation gained within the network during the self-organization like i.e. coordinates, 
address, throughput, distance to the portal can be depicted on demand on the screen. 

 

 

Fig. 5. Software scheme for the “smart textile” peer-to-peer network and PC 

 

Fig. 6. Screenshot of the ADNOS user interface on the PC featuring a “smart textile” network 
with 120 integrated modules (left side). The white dots indicate the sensor signals produced by 
a person walking from the lower left to the upper right edge of the textile 
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5   Results 

To illustrate the functionality of the ADNOS system we fabricated a demo board with 
twelve modules. Figure 7a) shows a photo of the demo board with pluggable modules 
and three screen shots of the ADNOS user interface on the PC (b-d). The modules are 
depicted as dark squares. The broad lines are established data paths., thin light lines are 
identified connections not used as data paths. Figure 7b) shows the screen shot of the 
network with all modules plugged in. In Figure 7c) one module in the middle of the 
network has been removed as it is shown in Fig. 7a) to simulate a defective module. 
ADNOS has recognized the failure (marked dark) and shows, that all modules con-
nected to the same data paths are not longer contributing to the functionality of the net-
work (the colour changed to light). After initializing the reorganization a new data path 
is found surrounding the missing module (Fig. 7d). All remaining modules are fully 
functional again. 

 

Fig. 7. ADNOS demo board with twelve pluggable modules (a) and three screen shots of the 
ADNOS user interface on the PC (b-d), the dark squares symbolize the modules, the broad grey 
lines are data paths, the thin grey lines are identified connections. b) original network, c) one 
module removed, c) failure (marked dark) recognized by ADNOS, light grey modules con-
nected to the same data paths are non-functional, d) after reorganization 

The maximum size of the network, using a single connection for the power supply 
can be calculated from the measured results derived from our smart textile demonstra-
tor. The cumulated resistances in the network are 0.4 /m for the interwoven copper 
wires and 7 m /contact for the interconnect to the interwoven copper wires. The on-
resistance of the FET switches is 150 m . The standby current of one module is 
6 mA at 12 V. For the supply voltage we use a switched power supply with 85 % 
efficiency at 12 V. The network is fully functional down to 8 V. Figure 8 shows  
the voltage drop of the supply voltage across one row of modules. The pitch of the 
modules is 20 cm and 50 cm, respectively. At the usual width of a carpet of 4 m the 
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voltage drop is 1.1 V at a pitch of 20 cm (20 modules) and 0.25 V at a pitch of 50 cm 
(8 modules). 

 

Fig. 8. Calculated voltage drop of the supply voltage across one row of modules integrated in 
the smart textile versus the length of the row. The pitch of the modules is 20 cm and 50 cm, 
respectively 

Figure 9 shows the measurement of the delay time in a network with 60 members 
(6x10) as a function of the number of hops from a stimulated sensor of a module to 
the portal. We find an average time of 1.5 ms per hop, independent of the distance 
from the PC portal. An additional delay of approx. 1.5 ms will occur only, if data 
collisions occur at one module. The data traffic within a large area is relatively low, 
therefore the probability for simultaneous data reception is very low. 

 

Fig. 9. The measured average delay time of the sensor signals is 1.5 ms and independently from 
the distance to the portal 

A Self- rganizing and Fault-Tolerant Wired Peer-to-Peer Sensor Network o



264 C. Lauterbach et al. 

 

6   “Thinking Carpet” Prototype 

The integration technique of the smart textile in a carpet was developed in coopera-
tion with the carpet manufacturer Vorwerk-Teppich and presented at the Or-
gatech 2004 in Cologne, Germany. 

Using the technology described above, four “thinking carpet” prototypes were fabri-
cated with 60 integrated modules and a size of 120 cm x 220 cm, each. The smart textile 
was cold-laminated between two layers of textile to reduce the mechanical stress and 
equalize the height of the modules (2 mm). The top layer is a tufted carpet combined 
with a 1000 gram fleece as backside. The power consumption of each carpet is 
8.0 Watts. For the Orgatech prototype three carpets were connected to each other, there-
fore forming one single network. Figure 10 shows a photograph of the “thinking carpet” 
taken at the Orgatech. The touch sensitive floor is the darker rectangle in the photo-
graph. The large display at the back plane shows that all 180 integrated modules are 
recognized. At a closer look at Figure 10 one can see, that there are open lines between 
several modules. However, due to the ADNOS self-organization new data paths were 
established surrounding the defects. All modules and sensors are fully functional. The 
light dots shown at the display are sensor signals produced by the dancer. 

 

Fig. 10. “Thinking carpet installation” at the Orgatech 2005 (darker rectangle at the floor), 
featuring 180 ADNOS modules with capacitive sensor areas. The display on the back plane 
shows the recognised modules. The light dots indicate sensor signals produced by the dancer 

The integrated capacitive touch sensor is fully functional through an insulating layer 
up to 30 mm thickness. Therefore a lot of materials like wood, stone, concrete, ceramic 
or glass can be used as flooring or as a protecting layer on top of  the smart textile. 
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7   Application Scenarios 

The integrated capacitive touch sensor remains fully functional even through an insu-
lating layer of up to 30 mm thickness. Therefore a lot of materials like wood, stone, 
concrete, ceramic or glass can be used as flooring or as a protecting layer upon the 
smart textile. 

The PC application software can be adapted to the specific functions the smart tex-
tile should support. The customized features are defined within this application, e.g. 
how the sensed data are processed and evaluated, or how light-emitting diodes are 
controlled. A wide range of new applications is opened up by the smart textiles, fea-
turing the self-organizing and fault-tolerant microelectronic integration technique. 

Convincing examples for applications are smart textiles working as alarm systems 
in the flooring of private or public buildings, in tents or truck tarps. Textile reinforced 
concrete with an integrated ADNOS network could automatically detect cracks after 
an earthquake. 

An interesting application is the smart floor in apartments for elderly or handi-
capped people. Different functions can be triggered, using data mining on the sensed 
data: The light will be switched on automatically if a person enters the room or steps 
out of bed. If a person doesn’t leave the bed for an unusual long period, a nurse will 
be called. Doors will open and close automatically if the person moves towards it. If a 
person falls down on the floor and doesn’t move afterwards an emergency call will be 
activated. Figure 11 (left side) shows the sensor signals derived from the smart textile 
with a person, lying on the floor as depicted on the right picture. Such functionality 
would give elderly or handicapped persons a chance to live a self-determined life, 
without running an intolerably higher risk in case of an emergency. 

 

 

Fig. 11. Screen shot of the sensor signals (left) derived from a person that lies on the smart 
textile prototype like depicted in the right picture 
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Security applications in public or private building are of increasing interest. Statis-
tical evaluation of the sensed data derived from the smart floor will distinguish “nor-
mal” behaviour of airport users from unusual behaviour of possible terrorists. Security 
areas will be defined within the software application. Having information about speed 
and direction of movements, footsteps starting from the window side of a building 
will trigger a burglar alarm. 

In future, the functionality of the ADNOS module will be integrated in a single 
silicon chip with an estimated chip size of approximately 7 mm² using a 180 nm 
CMOS process. A density of four modules per m² seems sufficient for smart floor 
applications, when using larger sensor areas. The range of suitable and available sen-
sors and actuators is wide-spread: sensors are available for various parameters such as 
pressure, temperature, humidity, smoke, gas, and sound. Integrated light-emitting 
diodes will give the possibility to build large-area displays, thus achieving intelligent 
guidance systems or flexible displays. 
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Abstract. Companies in today’s automotive industry are under immense com-
petitive pressure to reduce the length of their product development cycle from 
initial concept to begin of high-volume manufacturing. A very costly and im-
mensely knowledge-intensive step in this process is the creation of tools and 
dies required to manufacture a car body of a specified design. This paper pre-
sents a novel architecture for a decision support system that streamlines the de-
velopment process through the integration of a virtual assembly simulation, 
problem identification, and solution generation and evaluation. Following the 
virtual functional build process, our architecture deploys a number of multi-
agent systems to provide system functionality, such as problem knowledge re-
trieval or solution generation and evaluation. 

1   Introduction 

Today’s fierce competition in the automotive industry pressures companies to find 
ways to drastically reduce time-to-market while increasing the quality of new vehi-
cles. A key element in the launch process is the body development and manufacturing 
validation. This step is often a bottleneck and the most costly and thus limiting aspect 
of the vehicle launch preparation. The high cost in terms of duration and money is due 
to the intense human involvement in the process as current practice relies heavily on 
human knowledge and experience with very limited means of evaluating proposed so-
lutions other than actual physical implementation. 

Two recent technological advances provide essential building blocks that allow us 
to move from experience-based to data-driven body development. First, we now have 
the ability to efficiently create, transfer and store high-resolution digital scans of 3-
dimensional parts; and secondly, the integration of Finite Element Analysis (FEA) 
and dimensional models enables us to predict residual stresses in a functional build 
assembly. Thus, at this point, suppliers can produce parts using prototype tools and 
dies and submit scans of these parts to the OEM. The scans of the parts are then as-
sembled in simulation and the resulting sub-assembly or complete car body may be 
compared with the design intent. 
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To close the loop in the virtual 
functional build process, we develop a 
decision support system (DBDS – 
Digital Body Development System) 
that analyzes the virtual product, iden-
tifies symptoms of underlying prob-
lems in the current design, and pro-
poses and evaluates alternative 
solutions to the human design team 
based on past experience and heuristic 
search. The launch team then has the 
option of proposing additional solu-
tion alternatives or choosing a solution 
for implementation. 

DBDS treats the generation of solutions to problems identified in the current de-
sign as a search problem in the high-dimensional space of modifications to the design 
guided by a fitness function. Any point in this abstract search space is a set of param-
eterized changes to the current design. Computing the fitness of such a set of changes 
requires the application of these changes to the design, and the simulation and analy-
sis of the resulting new design comparing it with the current design. 

In [3] we present an experimental application of our agent-based Adaptive Parame-
ter Search Environment (APSE), which performs a heuristic parallel search across an 
abstract space of input parameters to an arbitrary simulation model guided by a fitness 
function defined over metrics reported during the execution of the model. DBDS is an 
application and extension of APSE in which sets of design changes are treated as in-
put parameters to the virtual assembly of a car body and in which the search is guided 
by the design intent of the functional build process. 

Given the complexity and massiveness of the search space that DBDS must ex-
plore in a given optimization run, we enhance the heuristic of the APSE Search agents 
to include prior experience and domain knowledge accessible in a problem-solution 
case base and we enable the human design team to suggest alternative solutions to the 
search process (Figure 1). We implement a Solver, a multi-agent system that interacts 
indirectly with the APSE Search agents and that seeks to retrieve solution points (sets 
of design changes) from a case base. The retrieval is guided by the problem symptoms 
observed in the execution of the current design and by the fitness of solutions that 
have been evaluated already by the Search agents. 

The remainder of this paper is structured as follows. Section 2 discusses the current 
practice of auto body development in more detail. In Section 3 we present the DBDS 
component architecture, which closes the loop in the virtual functional build. Section 
4 discusses the adaptation of the APSE Search agents to the decision support problem 
and Section 5 outlines our swarming approach to solution retrieval. We conclude in 
Section 6. 
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Fig. 1. DBDS performs a parallel heuristic search 
with human and case-based guidance 
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2   Current Practice in Body Development 

Detailed engineering design of individual parts and components begins after “design 
freeze”. This typically includes a finite element analysis (FEA) of the nominal design 
to examine stresses, vibration, crash testing, etc., as well as a tolerance analysis to de-
termine how the components will fit. This latter analysis often involves identifying 
designs that are sensitive to variation and making the design more robust by changing 
and redesigning parts to reduce geometric effects. Once the individual part design is 
set, it is released for “tooling” (tool release – i.e. the process of constructing the 
stamping dies), and the functional build process begins. 

Functional build is a criti-
cal process in launching a ve-
hicle (see Figure 2), whereby 
individual prototype parts are 
stamped and then sent to a 
central location to be assem-
bled into a prototype vehicle 
body [1]. Since production 
tooling is often not yet avail-
able, the body is fastened with screws and rivets, hence it is called a “screwbody.” 
The screwbody is examined by experienced experts who must decide whether gaps 
and interference conditions between individual parts are sufficient to warrant chang-
ing the dies, the welding tooling, clamp locations, etc. If it is decided that a change is 
warranted, then the dies may have to be returned to the supplier to be changed. If a 
change is not warranted, then the specifications may be changed to match the part 
shape. This usually involves a uni- or bi-directional opening of the part tolerances. 
The process is then repeated after the changes have been implemented. It is not un-
common to have three or more functional build evaluation bodies during a vehicle 
launch, which is costly and time consuming. However, each evaluation is based on a 
different generation of tooling, so very little information is gleaned on the effects of 
process variation to the integrity of the entire body. 

Two technological trends aimed at improving the dimensional integrity and per-
formance (NVH – or noise, vibration and harshness) of the body are 1) the integration 
of Finite Element Analysis (FEA) and dimensional models and 2) the scanning of fab-
ricated parts and assemblies for comparison of actual builds with the design intent. 

The integration of FEA and dimensional models is significant in that it allows the 
prediction of residual stress in a functional build assembly. Conceptually, the parts are 
assembled in the software. Any interference or gap conditions will be accommodated 
by the assumption that sheet metal is a compliant part. Weld points are identified and 
the parts are forced into full contact at those points. These points are held as boundary 
conditions. Then the FEA program minimizes the stress in the assembly by changing 
the shape of the part according to the boundary conditions.  

The recent progress of combining FEA and dimensional models significantly ad-
vances the science for understanding the complex interactions between sheet metal 
parts and the joining processes (usually spot welding). The effects of interference and 
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gap conditions between two mating parts are evaluated based on the amount of part 
“compliance” that can be expected. Compliance (the bending of parts as they are 
joined together) can be predicted using FEA, which is also used to predict residual 
stress in the assembly. The dimensional model can expand that understanding over the 
expected variation of the fabricating and assembly processes. Together, these two 
tools can quantify manufacturing capability (fabrication and assembly) and produce a 
distribution of residual stress as well as dimensional measures in the body. 

3   Simulation-Based Decision Support 

The Digital Body Development System (DBDS) provides continuous support for the 
vehicle launch team along the entire iterative functional build process. A single itera-
tion starts at a base design, which comprises scans for all parts that have been pro-
duced at this point and CAD-nominals for the remaining parts. The base design also 
specifies the assembly process as it is currently planned. 

In a first step, the base design is “executed” by simulating the virtual assembly of 
the parts and pre-defined measurements are taken on the resulting product. The design 
process is completed, if the results meet the design intent. Otherwise, DBDS inter-
prets the output of the measurements as symptoms of underlying problems and gener-
ates and evaluates solution alternatives (changes to the base design). It may also invite 
human engineers to suggest additional solutions. Eventually, the launch team will set-
tle on a solution and implement the corresponding design changes (i.e., change tools 
and dies, make and scan new parts) to arrive at a new base design. 

In today’s practice of body development, a large team of experts with diverse back-
ground and experience analyze the current design as it manifests itself in the screw-
body. Based on their domain knowledge and past experience, individual experts sug-
gest solution alternatives and then discuss their potential merit until the team agrees on 
a solution. The whole solution generation and selection process is dominated by human 
knowledge and experience and solutions are chosen or discarded mainly based on hy-
potheses rather than evidence. Alternatively, DBDS explores the space of possible so-
lutions to the currently observed problems and evaluates each solution alternative by 
simulating the design that results as the changes proposed by the solution are applied to 
the current base design. Thus, solutions that DBDS suggests to the launch team are 
based on evidence provided by the simulation rather than hypotheses. 

The simulation-based improvement of a given base design using a heuristic search 
and evaluation process may be applied to domains other than car body development. 
To facilitate such a transfer later on, we specify a generic module architecture that 
makes the specifics of the domain transparent to the optimization process. 

The DBDS decision support system has seven modules (Figure 3). The User Inter-
face (UI) module manages the interaction of the system with the human design team. 
The Solution Generation and Evaluation (SGE) module proposes alternative solutions 
to solve problems with the base design and evaluates them for their quality and cost. 
The Change Cost Estimation (CCE) module estimates the cost of actually implement-
ing  a particular solution as a change to the base design. The Solution Implementation 
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(SI) module translates a pro-
posed set of changes to the 
base design into a valid modi-
fied design that can be simu-
lated by the VASE. The Vir-
tual Assembly and 
Simulation Engine (VASE) 
simulates the “execution” of 
a given design by virtually 
assembling parts according to 
a process description. The 
Data Preparation and Reposi-
tory Module (DPRM) manages the large amounts of data generated and used by the 
DBDS. The Process Controller (PC) module integrates the other modules and man-
ages the data and process flow among 
them. 

Figure 4 illustrates the high-level 
(black) and low-level (white) process 
loops facilitated by the PC. At the 
high level, the user triggers the im-
provement of a base design, which re-
quires its execution (VASE) and 
analysis and optimization (SGE). The 
optimization process generates alter-
native solutions, which are evaluated 
(lower-level loops) for their perform-
ance (SI, VASE) and cost (CCE). 

4   Heuristic Search for Design Changes 

In [3] we present APSE – a multi-agent system that performs a distributed heuristic 
search through the space of input parameters of a black-box simulation model to find 
a configuration that maximizes a fitness function defined over observed metrics on 
the simulation. The APSE Search agents collaboratively explore the space of potential 
solutions (model parameters) and evaluate them through successive simulation runs. 
Using a Particle Swarm Optimization (PSO) algorithm [6] combined with probabilis-
tic local hill climbing, the agents coordinate their activity so that computing resources 
(simulation runs) are focused on exploring the most promising regions of the search 
space. 

The Solution Generation and Evaluation (SGE) module of the DBDS hosts an 
APSE Search agent population, whose task it is to explore the space of possible 
changes to the base design for improvements that reduce or remove the problems ob-
served in its execution. Thus, we treat changes to the base design as input parameters 

Pr
oc

es
s 

C
on

tr
ol

le
r (

PC
)

Pr
oc

es
s 

C
on

tr
ol

le
r (

PC
)

Data Preparation
and Repository
Module (DPRM)

Data Preparation
and Repository
Module (DPRM)

Change Cost
Estimation (CCE)

Change Cost
Estimation (CCE)

Virtual Assembly
and Simulation
Engine (VASE)

Virtual Assembly
and Simulation
Engine (VASE)

Solution Generation
and Evaluation (SGE)
Solution Generation

and Evaluation (SGE)

Solution
Implementation (SI)

Solution
Implementation (SI)

User Interface (UI)User Interface (UI)

 

Fig. 3. The Generic DBDS Module Architecture 

UI

SGE

VASECCE SI

 

Fig. 4. Inner (white) and Outer (black) DBDS 
Loops 



272 S.A. Brueckner and R. Gerth 

 

DBDS is an enhancement of the APSE architecture. While Search agents in APSE 
are guided only by the fitness of the currently known solution candidates (points in 
the abstract search space), DBDS provides two additional sources of guidance for the 
distributed search (see Figure 1). The first source of solution candidates is the human 
design team. At any point during the search process, human experts may look at the 
problem symptoms and the solutions DBDS has explored so far and suggest another 
solution to the system. Solutions may also be suggested by the Solver, a multi-agent 
system that seeks to match the problem symptoms to the descriptor of solution cases 
recorded in a case base (see Section 5). 

We integrate these two additional 
sources of creativity into the search 
process by enhancing the APSE Search 
agents’ behavior. In APSE, an agent 
explores the search space through a se-
ries of short-range moves that are 
guided by hill-climbing and PSO heu-
ristics. In DBDS, a Search agent moni-
tors the performance of its short-range 
movement heuristic (rate of improve-
ment over time) and may decide to 
abandon its current region in search 
space through a long-range jump be-
yond the local correlation distance of 
the fitness function. The destination of 
the jump is a solution candidate pro-
vided by the human design team or the 
case-based Solver. Figure 5 illustrates 
the emerging agent trajectory in an abstract search space. 

The generic distinction between a local improvement heuristic and global jumps to 
externally suggested solution candidates is open to other solution approaches. Just as 
DBDS currently implements a case-based approach to the solution of problems with 
the base design, other (e.g., rule-based, model-based, etc.) approaches could be im-
plemented independently and feed into the decision process of the Search agents. 

5   Swarming Case Retrieval 

Today’s car body development process heavily depends on human expert knowledge 
and experience. With DBDS we create a decision support system that has the ability 
to discover new solutions on its own through a heuristic search and evaluation in 
simulation, while at the same time utilizing and capturing human creativity and exper-
tise to move from experience-based to data-driven design. 
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Fig. 5.  Agents  move  and  jump  through  the 
search space guided by local heuristic, human 
input, and case knowledge 

 

to a black-box simulation and define a fitness function for the search process that 
measures the degree to which the now modified design meets the design intent. 
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The SGE module of DBDS includes 
a dynamic Solver that analyzes prob-
lems with the base design as they 
manifest themselves in observable 
symptoms during the virtual assembly 
and that suggests solutions to these 
problems drawn from a set of problem-
solution cases. We integrate the Solver 
with the heuristic search process by 
suggesting solution candidates to the 
APSE Search agents for their next 
long-range jumps and by modifying 
the case retrieval process based on the 
fitness of the solutions that have al-
ready been explored (Figure 6). 

The ongoing asynchronous interac-
tion with the Search agents and the 
continuous addition of fitness evaluations of new solution candidates requires a dy-
namic update of the case retrieval. Thus, we chose an agent-based any-time approach 
that continuously integrates changes in the external circumstances without having to 
restart its reasoning process from scratch. 

In the following we discuss details of the operation of the Solver top down. First, 
we present the adaptive any-time process that manipulates the description of the cur-
rent problem symptoms to provide a high-quality retrieval of high-performance solu-
tions. Then, we specify the internal mechanics of the fine-grained agent system that 
drives the adaptive modification of the current problem description. 

5.1   Linking Emergent Clustering and Spreading Activation Case Retrieval 

The virtual assembly of the base design by the VASE module results in a large set of 
uniquely identified measurement points on the assembled car body that are either 
within or outside specified tolerances. Just as a fever, a cough and a runny nose are 
possible symptoms of an underlying viral infection, so are patterns of deviations at 
pre-defined measurement points on a (virtually) assembled car body symptoms of 
specific underlying problems (root causes) with the design. 

Our dynamic Solver seeks to match the currently observed symptomatic patterns to 
those of problems encountered in the past, whose solution is recorded in the case 
base. We organize our case base into a simplified Case Retrieval Network (CRN) [7], 
which represents basic components of the problem description and the associated so-
lution as individual nodes in a spreading activation network. The nodes representing 
problem components are called Information Entity (IE) nodes and a solution is stored 
in a so-called Case node. All IE nodes that describe the problem solved in a specific 
solution case are linked to the respective Case node through weighted relevance 
edges. The retrieval process first places an activation onto individual IE nodes de-
pending on their match to the current problem symptoms and then propagates the  
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Fig. 6. The dynamic Solver modifies the solution 
candidates  that  it suggests  to  the Search agents 
based  on the  progress of the  exploration  of the 
search space 
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activation through the relevance edges to the Case nodes. The relative activation of 
the individual Case nodes provides an ordering of the recorded solutions with respect 
to their relevance to the current problem. 

Our goal is to abstract away from the spe-
cific locations and count of measurement points 
provided by the simulation by identifying 
symptomatic regions on the virtual car body 
that may be expressions of the same underlying 
problem. For instance, if a door is set slightly 
off-center into its frame, we may find several 
disconnected regions along the frame in which 
our pre-defined measurements are out of toler-
ance (e.g., gaps, interferences). To that end, the 
Solver executes a fine-grained multi-agent sys-
tem that continuously rearranges measurement 
points into clusters that form components of the 
problem signature (Figure 7). The currently 
emerging problem signature is matched against past problems’ signatures in the case 
base to provide a relevance measure of the available solutions. This relevance meas-
ure guides the selection of the next solution candidate upon request of an APSE 
Search agent. We select a case probabilistically, based on its current normalized  
relevance. 

The quality of the case retrieval process is high, if there are only one or very few 
cases with a significant probability to be selected. Otherwise, we may as well select a 
case randomly from the entire case base. We measure the current retrieval quality 
with the Case Selection Entropy (CSE) metric, which is the Shannon (Information) 
Entropy [11] of the case selection probabilities. The current CSE, resulting from the 
interaction of the current arrangement of measurement points with the Case Retrieval 
Network, may modify the behavior of the agents in the next clustering cycle. We have 
used similar entropy measures defined over the current preferences of an autonomous 
decision maker (here case selection) in previous projects [4, 9] to estimate the current 
information these preferences actually convey and to subsequently adapt the decision 
process if necessary. 

Figure 8 illustrates the tight feedback loop (black) between the ongoing clustering 
of measurement points and the current case relevance ordering provided by the CRN. 
Through this feedback, the identified problem regions are modified to match past ex-
perience recorded in the case base more closely while maintaining a close tie with the 
actual problems observed in the simulation. 

The clustering process is also influenced on a larger time scale by the observed 
performance of solutions that have been explored by the APSE Search agents (white 
loop in Figure 8). If a solution case is adopted by a Search agent in a long-range jump, 
DBDS evaluates the fitness of the changed car body design in terms of the reduction 
in problems compared to the base design and the estimated cost in implementing these 
changes. The fitness of all solution candidates proposed by the Solver is fed back 
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Fig. 7. Clustering of Measurement 
Points into Signature Components 



 Applying Distributed Adaptive Optimization to Digital Car Body Development 275 

 

through the Case Retrieval Network (activating case nodes and spreading to IE nodes) 
to attract the clustering mechanism away from or towards to specific arrangements. 

5.2   Emergent Clustering 

The output of the simulation is 
a cloud of values for prede-
fined measurement points. 
Each point is associated with 
geometric coordinates on the 
car body, but it also carries ad-
ditional context values, such as 
part features with which it is 
associated, assembly process 
steps that came in contact with 
the part, or the supplier provid-
ing the part. Thus, a measure-
ment point is located in a high-
dimensional space that com-
bines the geometric and con-
text dimensions. Through the 
additional context, we may as-
sociate points that are related 
in the process but not necessar-
ily in geometry to the same signature 
component. 

Starting from the original locations 
of the measurement points, we seek to 
rearrange the points into arbitrary clus-
ters while trying to keep each point 
close to its original location. As Figure 
9 illustrates, there are a number of pos-
sible arrangements that meet these 
qualitative objectives, because we do 
not assume a particular number or size 
of clusters. We design our emergent 
clustering algorithm to potentially visit 
all these arrangements (with varying 
probability) and we use the feedback of 
the Case Selection Entropy metric and 
the currently known solution fitness to 
push the clustering system out of unfa-
vorable configurations. 

Emergent any-time clustering is one of the prime examples of emerging functional-
ity through stigmergic coordination in large-scale fine-grained multi-agent systems. 
Nest sorting [2], is an instance of emergent clustering observed in social insect sys-
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tems. In this case, independent agents (ants) pick up or drop off passive objects with a 
dynamically computed probability. This behavior has been replicated in collective ro-
botics (see for instance [5]). An alternative approach to clustering is to give the initia-
tive to the objects themselves, which then reason about their current local arrange-
ment and move about in space. We successfully applied this approach to create large-
scale, self-organizing document bases [10] and we follow the approach in this appli-
cation too. 

In the emergent adap-
tive clustering algorithm, 
we assign each point an 
agent, which moves 
through the space of 
geometric locations and 
additional context. The 
sum of two dynamic 
force vectors, represent-
ing the two objectives in the rearrangement, determines the trajectory of an agent. The 
first force vector (“Home Force” in Figure 10) attracts the agent back to the original 
location of the measurement point. This force increases with distance. The second 
force vector is the sum of individual component vectors (“Cluster Force” in Figure 
10), which each attract the agent to the location of another nearby agent. The strength 
of this force decreases with distance. The rates in which the forces change for chang-
ing distances are dynamic parameters of the system. 

In each cycle, each agent calculates 
the home force and the cluster force 
vector from the position of the agents in 
the previous cycle. The vector sum of 
these two forces determines the direc-
tion into which the agent relocates in 
this step. The length of the step is the 
length of the combined vector, but lim-
ited to a relatively small step-length 
value (Figure 11). 

If the force calculation algorithm in 
the agent were deterministic and used 
only constant scaling parameters, then 
the system would quickly stabilize on 
one arrangement that minimizes the 
“tension” among the objectives. To 
avoid unstable minima and to explore a 
variety of nearby cluster configurations, we add a small random component to the in-
dividual relocation calculation. 

We achieve qualitatively different cluster configurations through the feedback of 
the current retrieval quality and the solution performance, encoded in the Case Selec-
tion Entropy (CSE) and the fitness of solution cases (see Section 5.1). 
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Fig. 10. Forces represent agent objectives in clustering 
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The CSE metric offers a global evaluation of the value of the current point ar-
rangement for the high-quality (non-random) retrieval of a solution from the case 
base, but it does not provide any guidance on how the arrangement should be changed 
to achieve a higher retrieval quality. Since higher CSE values correspond to low re-
trieval quality, we need to encourage exploration of new configurations over the ex-
ploitation of current clusters by increasing the impact of the random component in the 
agents’ trajectory calculations. 

The fitness of solution cases that have been explored by the APSE Search agents 
can be translated into directional guidance for the clustering agents. Before each cycle 
of the emergent clustering algorithm, we 
propagate the fitness of all cases (zero if not 
yet explored) backwards through the CRN to 
the IE nodes that represent regions of high 
point concentration (clusters) recorded with 
these past cases. Solution cases that led to an 
improvement in the design communicate a 
positive activation to their IE’s while those 
that actually made the problem worse send a 
negative activation. 

The positive or negative activation of IE’s 
in the Case Retrieval Network translates to ad-
ditional attractive or repulsive force compo-
nents that steer points towards or away from 
regions in measurement space. We have used a 
similar back-propagation approach in CRN’s 
to guide the interactive diagnosis of failures in 
computer hardware [8]. 

6   Conclusion 

Car body development is the most costly step in the launch of a new vehicle and even 
small improvements of this process may yield high gains for the automotive industry. 
This paper presents the Digital Body Development System (DBDS) – a decision sup-
port system for the car body development team – which is an extension of the agent-
based Adaptive Parameter Search Environment (APSE) presented in [3]. DBDS is 
based on a modular architecture, which makes the required activities of the evaluation 
of the fitness of solution candidates (simulation, cost estimate) transparent for the 
APSE Search agents exploring the space of changes to the current design of the car 
body. 

The primary extension of APSE, besides its application to a highly complex do-
main, is the integration of external guidance into the local search heuristic of the 
agents. DBDS enhances the decision process of the individual agent, who now tracks 
the performance of the local improvement process (moves) and decides, whether to 

Table 1. DBDS Joint Venture Partners 

Altarum Institute
American Tooling Center
Atlas Tool, Inc.
Autodie International
Center for Automotive Research
CogniTens Inc.
ComauPICO
UGS
Ford Motor Company
General Motors Corporation
Perceptron, Inc.
Riviera Tool Company
Sekely Industries
Thunder Bay Pattern Works  
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abandon its current region (jump) in favor of solution candidates suggested either by 
the human design team or a novel adaptive case-based Solver. 

The case-based Solver is a complex adaptive system that interacts with the APSE 
Search agent population, providing it with solution candidates that may address cur-
rently observed design problems and adjusting its recommendations based on the fit-
ness of the solutions that have been explored already. The Solver links a fine-grained 
agent system that continuously modifies the description of the current problem with a 
Case Retrieval Network that records solutions to past problems. The retrieval of solu-
tions is refined by the agents’ modification of the problem description, driven by the 
currently estimated quality of the case retrieval and the performance of selected cases. 

The DBDS is the focus of an ongoing NIST/ATP-supported Joint Venture of more 
than a dozen automotive, software development and research companies and organi-
zations (see Table 1). The architecture and algorithms reported in this paper are cur-
rently being implemented and tested and quantitative results from our first prototype 
will be forthcoming soon. 
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Abstract. Motivated by trends in the industry towards transforming IT in large 
integrated service networks, this paper describes algorithms for the adaptive 
placement of “services” (as abstractions of collections of applications) in net-
works of “servers” (as abstractions for locations where services can be hosted). 
Networks comprised of interacting services as the foundation is also a vision 
pronounced by the Grid [9]. Manageability and “self-operation” of Grids is 
highly desirable. We analyze the requirements for algorithms one specific prob-
lem: the service placement problem. We discuss algorithms that neither require 
central control nor complete information about the system state. Algorithms are 
performed on a distributed overlay structure which summarizes load conditions 
in the underlying service network. The presented algorithms fulfill tasks of 
making initial placement decisions as well as initiating rearrangements when 
imbalance is detected. Presented algorithms have different characteristics re-
garding the tradeoff between accuracy (or quality) of a placement decision and 
its timeliness within which a decision can be made determining responsiveness. 

Introduction 

In response to growing complexity and, as a result, the potential ineffectiveness and 
insufficient manageability of large-scale systems, new approaches to system design, 
use, and management are emerging:  

- the aggregation and consolidation of system and application components into 
larger building blocks (services),  

- systematic and standard ways of their integration and communication,  
- sharing of distributed resources, and  
- automated system management and operation control.  

Two of the most prominent and practical examples are the concepts of the Utility 
Data Center [14] and the Grid [9]. The Utility Data Center (UDC) consolidates com-
puting resources in order to significantly reduce deployment and operation costs. 
Grids are large networks of computing resources that can be transparently shared and 
utilized for solving complex tasks or providing computing services. 

These two concepts can be combined into a concept of Virtual Data Centers [20] 
that consolidate resources of a federation of distributed Utility Data Centers into vir-
tual resources that are shared using Grid–type mechanisms. 

 
LNAI 
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Grid. Grid computing emerged in scientific supercomputing in the early 1990’s by 
making expensive compute resources available to external users. A software layer in 
form of Grid middleware provides the coordinated, transparent and secure access to 
shared resources across geographically distributed locations. Resource virtualization 
allows transparency and security. The software layer also provides “grid membership” 
of a machine or a device making its resources discoverable and allocatable to other 
entities in the system. Many Grid projects in research and industry are based on the 
Globus Toolkit [11], a widely used public domain software. Commercial Grid prod-
ucts are offered by IBM [15], Platform [26] and Sun [31]. An overview of Grid re-
source management systems can be found in [21]. 

Another source of the “grid trend” is the utility model of resources. Access to re-
sources is aimed to be as simple and efficient as accessing power or other utilities. 
Resource markets are envisioned where resources used in information processing can 
be traded and exchanged as commodities. Resource commoditization also helps to 
overcome the diversity and complexity of IT landscapes making it attractive for both 
IT vendors and customers. So far, most integrated management systems are limited in 
regard to functioning in virtualized environments across organizational boundaries. 
Besides automated fail-over techniques in high-availability systems, management 
systems typically automate monitoring and information collection. Decisions are 
made by human operators interacting with the management system. Major service 
capacity adjustments imply manual involvement in making changes in hardware as 
well as in software. Systems need to be adjusted, re-installed and reconfigured. 

Utility Data Center (UDC). A new type of data center infrastructures provides im-
mediate support for these tasks. HP has developed the Utility Data Center (UDC) 
[14], [28]. Its capabilities allow a whole new approach to automate adjustment proc-
esses and by thus set the foundation for an automated service capacity-demand con-
trol system for a large service networks. This control system is based on a federation 
of geographically distributed data centers with capabilities providing immediate sup-
port for service demand and supply control. 

Service Placement Problem. One of the hard problems in system management is the 
service placement problem, closely related to the (distributed) resource allocation 
problem. We assume that no global information about resource availability and ser-
vice demand can be provided due to the scale and dynamism of large service net-
works. Placement algorithms thus need to deal with partial information, and yet pro-
vide good approximations of localized assignment solutions, and also need to be reac-
tive such that decisions are made in appropriate time for an automated resource de-
mand-supply control system. 

In this paper we analyze the requirements for algorithms for the service placement 
problem in our context, discuss the trade-offs in the design of the algorithms, and 
formalize the objectives of a demand-supply control system. As a central part of our 
contribution, we propose several algorithms for the service placement problem under 
these requirements. Special focus of the presentation is directed on methods ensuring 
adaptability, fault-tolerance, and scalability. 
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It is noteworthy that each of the proposed algorithms assumes an infrastructure for 
actuating automated demand-supply control decisions. This architecture is defined by 
a demand and supply overlay meta-system. The meta-layer connects the various pools 
(data centers or parts of them) and allows algorithms to obtain a local view on condi-
tions in the service or in the server layer. The architecture supports a variety of large-
scale distributed systems including a federation of distributed Utility Data Centers. 

The sequel is organized as follows. The following section is devoted to related 
work. Then we formalize the problem, present solution requirements and their limita-
tions, and propose metrics for evaluation of placements of services. The first algorithm 
is based on the so-called Ant Colony Optimization. This class of algorithms originated 
from behavior studies of real ants and incorporates elements of machine learning by 
recording the best partial solution using a so-called “pheromone”. Another approach is 
adopted from the coordination of mobile robots. It is called the Broadcast of Local 
Eligibility (BLE). We extend this method to provide better scalability than the original 
solution and suggest improvements in terms of communication costs by applying gos-
siping algorithms. The third algorithm combines a notion of intelligent agents which 
represent groups of services with P2P-based overlay networks. 

Related Work 

The basic service placement problem is closely related to the task allocation problem 
widely studied in the fields of parallel algorithms and clusters [7]. However, the addi-
tional solution requirements discussed below (in particular decentralization) make the 
solutions of this research unusable in our setting. Therefore we focus the related work 
discussion on approaches with inherent features of decentralization and adaptability, 
even if they provide different functionality than service placement. 

In the area related of Grid technologies, the closest work to the one presented here 
is Messor [25], a decentralized load-balancing algorithm based on multi-agent sys-
tems. Similarly to the algorithm presented in this paper, it uses so-called Swarm Intel-
ligence paradigm to distribute load in a pool of resources. As the infrastructure it uses 
the Anthill runtime environment [3], which combines a P2P platform and a multi-
agent development environment in a single framework. Our algorithm differs from 
this approach by a more general model of service dependencies and by the mecha-
nisms for disseminating of assignment evaluations.  

The adaptation and self-organization of large distributed systems is also targeted 
by P2P systems research. In most of these systems mechanisms that automatically 
handle joining and leaving nodes (e.g. servers) are inherent parts of the design. This 
also applies to adaptation and fault-tolerance. Examples include Gnutella, Pastry, 
Tapestry, Chord and CAN [27]. Project OceanStore [22] exemplifies an application of 
a P2P-based indexing structure for resource management; another example of this 
kind is given in [2]. Most of the research in this area considers data management, 
while we focus here mainly on computational resources. 

The most prominent project at the edge of self-organization and resource manage-
ment is IBM’s Autonomic Computing [17] aiming to create systems that are self-
configuring, self-healing and self-optimizing. Related to this research is Océano [16]. 
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Further related work concerning particular techniques used in our algorithms is 
discussed in the corresponding sections. 

Problem Analysis and Solution Requirements 

The basic service placement problem is defined as the problem of finding a mapping 
from a set of services to a set of servers. The term “service” is used in this paper as an 
abstraction for collections of program instances implementing applications such as 
customer relationship management systems in the enterprise IT domain or distributed 
applications in scientific computing. The term “server” generalizes the notion of a 
resource to its function of forming a processing platform or environment for services. 

Two aspects need to be distinguished. First, there the (physical) aspect of deploying 
services to servers, which involves installation and configuration of programs and data 
for services on that server. The second aspect addresses the problem of making deci-
sions about identifying locations for services using appropriate decision-making algo-
rithm. We refer to the latter aspect in the following ignoring the (also hard) problem of 
service deployment and redeployment, which includes determining services’ states.  

Identifying a mapping (or making a service placement decision) is dependent on a 
set of policies and objectives to be achieved by a solution. It also depends on the 
“quality” of the algorithm and the “time” the algorithm needs to compute the deci-
sion. The classical tradeoff between quality and time appears to be fundamental in the 
domain of decentralized decision-making algorithyms. 

A common objective is matching of service demand with resource supply (i.e. ca-
pacity of the hosting servers). Resource capacities should also be provided locally to 
demands avoiding cross-network traffic. This objective has been also adapted to func-
tion properly for algorithms which have only partial knowledge of the system state. 

The requirements are dictated by the environment in which the algorithms are ap-
plied.  

Requirements on the Algorithm Design 

The scale and level of adaptability of such service networks dictate the following 
requirements on the algorithms for the resource placement problem. 

Scalability and Decentralization. The design of an automated management system is 
closely related to the scale of the managed system and the rate of system changes. In 
an ideal case, current information about the state of the whole state can be collected in 
a centralized database, and as a consequence an optimal placement is made (if the 
problem is computationally tractable). However, with increasing scale and rate of 
system changes, this control solution becomes inappropriate, since the database is 
likely to become a bottleneck due to consistency updates. In addition, vulnerability to 
failures of a centralized solution results in low fault resilience. 

Instead of a centralized solution, we consider decentralized algorithms which func-
tion under the assumption that each control element has only partial information about 
the global state of the system. While this leads to increased scalability, its drawbacks 
are non-optimal placements and higher complexity of the management infrastructure. 
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Adaptation. Large-scale peer-to-peer (P2P) systems such as file-sharing systems 
exhibit two properties which are cornerstones of automated resource management: 
adaptation and self-organization. We attempt capturing both properties in our algo-
rithms by building on ideas from agent or robot coordination and P2P systems. 

Adaptation is the ability to detect and react to changes in the state of the system, 
such as resource availability and service requirements. In a system comprising thou-
sands of servers, changes such as server failure, overload, or resource revocation 
might occur every few seconds. Similarly, resource demand will fluctuate in short 
time intervals. These effects require adaptation of the system to new conditions on a 
permanent basis, ideally without human intervention. Such an automated service 
control system then transparently regulates service demands and supplies. 

Self-Organization. We understand self-organization as the capability of adding and 
removing system parts without the need for manual reconfiguration or human inter-
vention. This aspect is of particular interest since (non-automated) management of 
systems is an essential cost factor and a dominant source of error in IT environments. 

Decentralization, Responsiveness and Placement Quality 

A primary design goal of a placement algorithm is to let it find a “best” placement 
under the metric such as given in section “Placement Objectives and the Partial Objec-
tive Function (POF)”. However, there are several obstacles to attain such a solution. 
One of them stems from the fact that the placement problems are known to be NP-
complete. This requires heuristic approaches, but even such approaches have different 
running time, which influences the responsiveness of a system. responsiveness is un-
derstood as the time between detection of an abnormality, for instance a sudden peak 
demand, and the final computation of a decision how the situation can be dealt with.  

The second obstacle is dictated by the requirement of the decentralization, which in 
most cases prevents the algorithm (or its parts) to know the current state of the whole 
system. Of course, partial knowledge leads in general to suboptimal placements and 
influences adversely the responsiveness. 

In practice, decentralization and responsiveness of an algorithm must be traded 
against the quality of a solution. Figure 1 classifies four algorithms in regard to solu-
tion quality vs. responsiveness. Three time scales are considered: the “design” stage 
of an initial service placement, in longer periods reiterated as long-term adjustment 
process in the system; a mid-term period for periodic operational adjustments, and a 
shorter-term period for discharging sudden hot spots. One approach we pursued is a 
centralized heuristic algorithm based on integer programming. 

This algorithm yields high-quality solutions but at a cost of longer running time 
and limited scalability, and is therefore not discussed here. The three algorithms de-
scribed in this paper take different places in the trade-off space, and so the choice 
which one to deploy will depend on one of the management goals discussed above. 

General objectives. The optimization goals for service placement might vary in gen-
eral and so the presented algorithms are designed to be generic enough to support new 
objectives without fundamental changes. We focus on only few aspects to be achieved 
by control decisions. These are: 
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Fig. 1. Comparison of algorithms regarding accuracy and responsiveness 

1. Balancing the server load such that the utilization of each server is in a de-
sired range. 

2. Placing services in such a way that communication demand among them 
does not exceed the capacity of the links between the hosting server envi-
ronments. 

3. Minimizing the overall network traffic aiming to place services with high 
traffic close to each other on nearby servers (nearby in the sense of a low 
number of communication hops across nodes). 

The Partial Objective Function. We want to be able to compare different placement 
options in a quantitative way. To this aim we introduce a partial objective function 
(POF) fPOF, which ranges between 0 and 1 and attains higher values for better place-
ments (i.e. should by maximized).  

The function is derived from a balanced sum of two characteristics. The first one, 
cT, is the sum of traffic costs between the services on a pair of servers weighted by the 
distance of these servers. The second number, uT, is the variance of the processing 
capacity usage among the servers. This leads to the POF computed by the formula: 
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where  is the balancing factor between 0 and 1, and  a parameter described below. 
Higher values of  gives cT more weight in the result, while lower values favors uT. 

In our setting, both a lower weighted traffic cost and a lower variance are better. 
This is reflected in the value of the POF, which has a higher “score” for smaller cT or 
uT.  must be chosen according to the maximum possible values of cT and uT in order 
to ensure a relatively uniform distributions of the values of the POF. 

Our POF is evaluated for a set V of servers and a set S of services. It is important 
to note that such a set might not contain all services or all servers in the system. In 
case of services this is motivated by a fact that for larger systems we can frequently 
isolate groups of interdependent services (i.e. services communicating with each 
other). While it makes sense to consider all services in such a service group for a 
particular placement, we do not need to consider services outside the group. 

The rationale for considering only few and not all servers is dictated by scalability 
issues. In large systems, it is simply impossible to take all servers into consideration. 
The algorithms described in the following select an appropriate subset of the servers 
from the system in a heuristic fashion. The subsets are then evaluated in the POF. 
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    In the following, we give formal definitions for the characteristics cT and uT. We 
assume a fixed assignment of services in the set S to the servers in the set V. 
    For two servers v and v’, we designate by cv,v’ the estimated total traffic between all 
services placed on v and all services placed on v’, measured in the number of ex-
changed IP packets. If proxv,v’ is the network distance of servers v and v’ (in terms of 
IP-hops), then the total weighted communication cost cT is given by 
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where M is the total number of exchanged IP packets times the maximum distance 
between two servers in V. If a server v sends k packets to server v’ and the distance 
between both servers is d (IP-hops), this message will contribute (kd)/M to cT. 

For a server v, let uv be the fraction of its processing capacity used by all services 
placed on this server. We assume that uv is a real number in [0, 1]. By rewriting the 
formula for a variance of a random variable, we obtain the variance uT as: 
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Necessary conditions of an assignment. An assignment must fulfill certain neces-
sary conditions; for example, we cannot assign a service to a server with insufficient 
processing capacity. By slightly abusing the notion of an “objective function”, we can 
use fPOF to ensure that such requirements are fulfilled. Specifically, we set the value of 
the POF to 0, if any of the following conditions is violated: 
Each service is placed at exactly one server. 

- For each server v, the total processing demand of all services assigned to v is 
at most the processing capacity of v. 

- For each server v, the total storage demand of all services assigned to v is at 
most the storage capacity of v. 

- For each pair (v, v’) of servers, the total network traffic between the services 
hosted on these servers should not exceed the link capacity between v and v’. 

- The entries of a so-called affinity/repulsion matrix, if present, are respected; 
they indicate that a service must not or must be placed on a certain server. 

Ant-Based Control Algorithm 

Swarm Intelligence [3] is an approach where the collective behavior of simple agents 
with local interaction results in distributed problem solving without central control. 
The main application domains are optimization problems (such as Traveling Sales-
man Problem (TSP)) and telecommunication questions such as routing [30]. 

In a particular approach, the Ant Colony Optimization [6], the path taken by an ant 
on its way between objects (e.g. cities in TSP) represents a possible solution to the 
optimization problem. In our case, the objects would be both servers and services, and 
the alternating path would represent an assignment of services to servers. 
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    However, this approach is centralized and not scalable for the following reasons: 

1. The ant must “remember” the whole path it has taken; this information can 
become very large. 

2. The ant must visit all objects on its tour. In a large and dynamic system, this 
is a serious drawback. 

3. Finally, each solution (path) must be evaluated against others. This requires 
central knowledge. 

 
 
 
 
 
 
 

 

Fig. 2. In each step, the ant assigns one of the services from its service list 

Overview 

We describe another approach not common in the classical Ant Colony Optimization 
yet leading to a better scalability. First we give an informal overview of this algorithm. 
In our system, for each service s we instantiate a “demon” Ms called a service man-
ager of s. If the service s is not yet placed or an overload condition has occurred, Ms 
creates multiple ants (“agents”) and sends them out to the network. Each ant has a 
service list containing s and the services cooperating with s. For each such a service, it 
knows the current resource requirements; also, it knows the current communication 
requirements among the services in the service list. 

The ant travels from one server to another choosing the servers along the path 
based on a probability computed locally. In each step, one of the services from the list 
is assigned to the current server, see Figure 2. The path created in this way represents 
a partial solution to the placement problem as found by this particular ant. When the 
ant has assigned all the services, it reports its path to the service manager Ms of s and 
terminates. The manager compares the reported paths using the POF, where the serv-
ers visited by this ant constitute the set V of the POF, and the set S is the service list 
of s. This assignment is compared with the current placement of those services. Fi-
nally, Ms decides of a possible rearrangement of the placement. 

On each server, the ant evaluates the score of the server in respect to each service 
from its list. For each pair (service, server), this placement score expresses how well 
this server is suitable to host the service. It is computed also using the POF in the way 
described below. Furthermore, the ant causes the pheromone table of the current 
server to be updated. This table contains pheromone scores for certain pairs (service, 
server). Those are essentially weighted sums of placement scores of the ants that 
evaluated this particular (service, server)-pair. The table is used to help an ant to de-
cide which server to visit next. The server managers of neighboring servers periodi-
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cally exchange these tables, thus providing a mechanism to disseminate the local 
information across the system. 

Ants, Service Managers and Server Managers 

In our algorithm we have three entities that store and manipulate data: 
- a service manager Ms of a service s, 
- an ant representing s, 
- a server manager (corresponding to a single server) which executes the ant 

code, and maintains and updates the pheromone table of its server. 

The data held by a service manager comprises the service list of s, the number of 
spawned ants and the currently best assignment reported by an ant. A service manager 
also knows how to evaluate the POF and its value for the current placement of the 
services in the service list.  

An ant is launched with the following data that are “static” during its lifetime: the 
service list together with the current demand profiles of each service in the list, and 
the communication demand profiles between those services. This information is nec-
essary to compute the score via a POF. The dynamic data carried by an ant are the 
scores of the already assigned services from the service list, and data about already 
visited servers, including link capacities.  

Table 1. An example pheromone table 
 

    Finally, a server manager holds the pheromone table of its server. The structure of 
the pheromone table is shown in Table 1. For each pair (serviceId, serverId) existing 
in this table, we record the known pheromone score, the age of this score and the 
number of ants which contributed to establish this score. 

Functionality of the System Components 

In this section we describe in detail the behavior of the entities introduced above. 

Service managers. A service manager constantly watches the performance of “its” 
service and evaluates the current assignment by a POF. On two occasions it spawns 
ants starting a process described below: 

- If the POF value is larger than some critical limit; this corresponds to the 
case of an occurrence of a “hot spot”. 

serviceId serverId pheromone score score age (sec) # ants 

apache-01 15.1.64.5 0.572 95 15 

apache-01 15.1.64.7 0.356 120 9 

oracle-02 15.1.64.1 0.012 62 12 
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- If a certain period of time has passed since the last launch of the ants. The 
purpose of this step is to periodically “rebalance” the whole system towards 
an optimal utilization. 

The process from the decision of launching ants until its termination includes the 
following steps: 

1. Synthesize the ant data described in the section “Ants, Service Manager and 
Server Manager”. 

2. Place cs copies of such an ant on the servers. The placement method and the 
value of cs is described in the section “Initial Placement of Ants”.  

3. Collect the assignments and the corresponding scores sent by the ants which 
terminated. 

4. Once all ants have finished (or a timeout has occurred), compare the reported 
assignments by the POF and choose the one with the best POF value. 

5. If the service s has already been placed, compare the current POF of s and 
the cooperating services with the one found in Step 4. If the new assignment 
is better by a threshold ts (representing the “penalty” for reassigning services 
to servers), continue with the next step; otherwise, terminate this epoch of 
ant launching. 

6. If s is not placed, or the evaluation in Step 5. led to this step, reassign the 
services to servers in a following way. 

a. Contact all servers to be used in the new assignment of services and 
verify that their scores are still (approximately) valid. If this is not 
the case, start a new epoch of ant launching (i.e. begin from Step 1.) 

b. Contact the service managers of all cooperating services and let 
them stop any running ant-based evaluations. 

c. Contact the servers to be used in the new assignment and let them 
reserve the required resource capacities. 

d. Start installing and starting the services on their new locations. 
e. When step d. is finished, shut down services in the old placement. 
f. Finally, start the service managers of the newly installed services. 

Ants. An ant created by a service manager Ms of a service s “travels” from one server 
manager to the next one (usually residing on an another physical entity). Technically, 
it is done by contacting the next server manager, transmitting the ant data to it and 
initiating executing the ant code for this ant instance. The choice of the next server 
manager is done in the way described below. 
    The ant has the following life cycle after it has arrived on a new server manager: 

1. Evaluate for each service in the service list the score in regard to this server. 
This is done via the POF for this server as described in the section “Place-
ment Scores and the Pheromone Trail”. 

2. Update the pheromone table of the current server by passing the computed 
scores to the server manager. 

3. Choose the service with the highest computed score among the not yet  
assigned services and remember this assignment. 
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4. If all services from the internal list have been assigned, report the resulting 
assignment to the “original” service manager Ms, then terminate. 

5. Otherwise, move to the next server manager and continue with 1. 

Server managers. Both entities described above have essentially a fixed order of 
tasks to be executed. By way of contrast, a service manager acts in an asynchronous 
way, providing “services” to the other two entities. Its roles comprise following tasks: 

1. It provides an environment where the ants are executed. Especially, it can 
asynchronously receive messages from other server managers that send the 
ant data. Once this data is received, it executes the locally stored code repre-
senting an ant. 

2. It lets an ant update the pheromone table with the scores computed for the 
services in the service list. 

3. It maintains the pheromone table by updating the age of the pheromone 
scores and pruning the table. The last step is necessary, because in the ex-
treme case, the pheromone table could attain a size proportional to the num-
ber of servers multiplied by the number of services; this would seriously im-
pede scalability. During the pruning, the oldest entries (except for those re-
garding the neighboring servers) are removed, until the desired table length 
is reached. 

4. Finally, a server manager sends periodically its own pheromone table to the 
neighboring servers, keeping the information of the neighbors up to date.  

The last function provides a mechanism for dissemination of the local knowledge 
throughout the system. This reduces the gap between a distributed system where each 
participant has only local knowledge, and a centralized system with the complete, 
global knowledge of the system. The size of the time interval between the updates and 
the size of a pheromone table controls the degree of the “global knowledge” in the 
system. An antagonistic trend is the rate of changes in the system and consequently 
the ageing rate of the pheromone. Also, albeit a high degree of this knowledge is very 
useful for choosing the next server in a correct way, attaining it costs a lot of  
resources, mostly network bandwidth and storage for the pheromone tables. 

Placement Scores and the Pheromone Table 

Recall when an ant reaches a new server manager, it computes placement scores for 
all services from its list in respect to the current server. For such a pair (service s, 
server v), this computation is done via the POF as follows. The current server v and 
servers already visited by an ant become the set V. Furthermore, s and all already 
assigned services from the ant's service list constitute the set S. Then the value of the 
POF is computed for the (partial) assignment of services to servers already chosen by 
this ant, together with the mapping of s to v. We assume that information about link 
capacities between the servers is buffered by the ant or can be obtained from the 
server manager, if necessary.  

Let us describe now how the pheromone tables are updated. Assume that an ant has 
computed a fresh placement score r for the pair (service, server). If such a pair does 
not exist in this server manager's table, it is simply inserted with the pheromone score 
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being equal to the placement score. Otherwise, the new value p' for this pair's phero-
mone score is computed from the current table entry p and the newly computed 
placement score r by the formula .)1(' rpp ⋅−+⋅= γγ   

Here  is a parameter between zero and one which determines the degree of inherit-
ing previous pheromone score value. Note that the contribution of all other scores de-
creases geometrically with the number of iterations: if the very first ant which has vis-
ited the node has set the pheromone score to p, then after k new ants have reached the 
server, the contribution of this first ant to the current score of the pair will only be kp. 

We also want to consider an effect known from the ant colony systems in the na-
ture: evaporation of the pheromone. Due to this effect, old and probably outdated 
information about affinities of services to servers will be removed with time, even if 
no new ants have arrived at this server. To this aim, a server manager scans through 
its pheromone table once every T minutes, and reduces the score p in the pheromone 
table according to the formula ,pp ⋅= δ  where delta is an aging factor between 0 and 

1 (usually close to 1). If the value of the pheromone score decreases below a certain 
limit, pairs are removed from the pheromone table in order to save storage resources. 

Choosing the Next Server 

Pheromone tables are the main decision factor for choosing the next server to be vis-
ited by an ant. Since those tables are exchanged by the neighboring servers and propa-
gated through the system, an ant has a good chance to find a pair (service s, server v) 
in the pheromone table of the current server. Here v is a not too distant server and s is 
a still unassigned service from the service list of this ant. If multiple such pairs have 
been found, the server of a pair with the highest pheromone score is selected. How-
ever, if no such a pair exists, the ant chooses a set of servers from the pheromone 
table with 1. most recently updated pheromone scores, and with 2. highest pheromone 
scores. Then a random server from such a set is selected as the next host. This 
approach targets to identify servers with free computational resources. 

As an alternative to each of the above cases, sometimes we send an ant to a ran-
domly selected not-too-distant server. The decision for this step is taken with a 
(small) probability h. Such an addition of a “noise” is helpful to prevent the blocking 
problem and the shortcut problem [30]. The blocking problem occurs if a “popular” 
path found by many ants can no longer be taken, e.g. due to a server failure. The 
shortcut problem occurs in a situation where a new assignment of services to servers 
suddenly becomes possible, for example due to introduction of new servers to the 
system. In both cases the information stored in the pheromone tables might cause lack 
of adaptation of the ants to the new conditions. A small amount of noise forces the 
ants to exploit the alternative routes on a permanent basis. 

Initial Placement of Ants 

The initial placement of ants is intuitively an important factor for finding good service 
placements. In our case, the service manager Ms places the ants in the system accord-
ing to the following schema. 
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First, it determines Nr “regions” where clusters of ants are placed. The centers of 
these regions are chosen randomly in the known system area in the way that the prob-
ability of choosing a center distant from the service manager is smaller than choosing 
a center close to Ms. To this aim, each service manager maintains a (partial) map of 
the resources in term of their network location. The resources are categorized by their 
IP-distance d to the server manager. When choosing a center of the region, in the fist 
step the service manager selects randomly a class of resources with a distance d to Ms. 
Then it decides to continue with this class with probability 

( )
,

1

1
θd+

 

otherwise it chooses again a random class until success; here  is a parameter greater 
1. If successful, a random resource as the center of a new region is chosen. The above 
formula yields high probability values for resource classes close to Ms (i.e. with small 
d), and rapidly decreasing probability values with growing distance d. According to 
the findings in [19], this approach ensures that very rare resources can be still discov-
ered, but simultaneously supports clustering of services according to the location of 
their inception. 

In each of the regions determined in this way, the service manager spawns Na ants 
on the resources close to the center of the region. Here a similar approach to the one 
described above is taken, yet the distances of the created ants from the center of the 
region are kept smaller by means of increasing . Furthermore, ants “repel” them-
selves: if an ant is placed on a certain resource, then Ms will discard all servers within 
a distance Dr from this resource for further placements. 

BLE-Based Control Algorithm 

We adapt the concept of the Broadcast of Local Eligibility used for coordination of 
robots [32] for the placement of services. This concept can be used to create highly 
fault-tolerant and flexible frameworks for coordination of systems of agents. How-
ever, the originally proposed framework has a drawback of limited scalability. To 
overcome this problem, we use a hierarchical control structure discussed below. 

Decision cycle in a cluster. We consider a cluster of servers with a distinguished 
server called cluster head. Each member of the cluster has the ability to broadcast a 
message to all other members of the cluster. This can be done either directly or via the 
cluster head. The placement of services in this cluster is periodically re-evaluated by 
arbitration between peer servers in so-called decision cycles. The time between two 
cycles is determined by the required responsiveness to fluctuations in server utiliza-
tion and by the induced communication between cluster members. 
    In each decision cycle, the following actions take place: 

1. Each server broadcasts the list of services it hosts with all new arrived ser-
vices and simultaneously updates its list of all services in the cluster. 

2. Each server evaluates its own suitability to host each service and sorts the list 
according to the computed score. The evaluation is done by using the POF from 
the section “Placement Objectives and the Partial Objective Function (POF)”. In 
addition, a service already deployed on a server highly increases the score. 
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Each server broadcasts a list, ordered by scores, of those services the server 
can host simultaneously without exceeding its capacity.  

3. When a server receives a score list from a peer, it compares this score with 
its own score for a service. As a consequence, each server knows whether it 
is the most eligible one for hosting a particular service. 

4. The changes in the service placement are executed. Notice that each server 
knows already whether it has to install new or remove current services. In 
addition, the cluster head compares the initial list of services with those, 
which will be hosted at the end of this decision cycle. The remaining services 
are passed on to the next hierarchy level as explained below. 

An important aspect is that the servers do not forget the list of services in the cluster 
after a decision cycle. In this way we provide fault-tolerance: if a server hosting cer-
tain services fails, other servers in the cluster will automatically install the failed ser-
vices (or the cluster head adds them to the list of unassigned services).  

Gossiping algorithms. Note that steps 1 and 3 require all-to-all communication, i.e. 
each server learns the information from all other servers. This may lead to a problem 
of the communication costs in terms of the number of messages and the time until all 
members of a cluster are informed. In infrastructures like Ethernet or wireless LAN a 
cost of a broadcast is comparable to sending a targeted message, which partially re-
lieves the situation. This problem becomes more serious if members of a cluster are 
geographically distributed or communicate over a switched network.  

These communication costs can be reduced using gossiping algorithms [13]. These 
deterministic and also randomized [18] algorithms achieve optimal bounds for the num-
ber of messages with a low number of communication rounds; for example, the infor-
mation exchange can be completed in approximately 2log2 n steps in the deterministic 
case, and in roughly log n steps in the randomized case, where n is the number of serv-
ers in the cluster. The reader is referred to the literature for more detailed discussion. 

Scalability by a cluster hierarchy. Obviously, the scalability of the above approach 
is limited by the size of the cluster, the communication capacity in the cluster and the 
processing capacity of the cluster head. 

We propose a following hierarchical approach to extend the scalability. Basically, the 
cluster heads of the clusters at level k are treated as “normal” members of a cluster of 
level k+1. However, they compete only for those services, which could not be installed 
in their own cluster (see step 5. above). After a decision round in the cluster of level 
k+1, these pending services are possibly moved to another peer, which is a cluster head 
for a cluster of level k. (The cluster head evaluates the eligibility of the servers in its 
own cluster, not its own eligibility). In the cluster of level k, these services become part 
of the list of services to be installed and participate in the normal decision cycles. 

The cluster size is essential for the balance between the responsiveness of the sys-
tem and flexibility. Identifying a correct hierarchical structure can be done similarly 
to clustering algorithms used in sensor networks [8]. 

Agents in Overlay Networks 

In this section we describe an approach that combines the advantages of agent tech-
nology techniques with the fault-tolerant properties of peer-to-peer (P2P) networks. 
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Service groups and agents. Services frequently build clusters of interdependent 
entities, which do not rely on further services outside the cluster. Such a service 
group, if not too large, can be treated as one (albeit not atomic) entity in the process of 
the optimization. Therefore we assign to such a service group Na instances of group 
agents. Each group agent has the task to walk around in the network and evaluate the 
current server and its neighborhood in regard to placement of the services in the ser-
vice group; however, one agent stays on one of the servers which host members of the 
service group, and evaluates only the current placement. 

The evaluation of potential new placements is initiated by retrieving the capacity 
parameters and utilization data of the current server and its neighboring servers by 
means of a P2P-network described below. This data is then a subject to evaluation by 
the Partial Objective Function from the section “Placement Objectives and the Partial 
Objective Function (POF)”. Periodically, the group agents belonging to the same 
service group exchange their best scores. If the score of one of them is better than the 
real placement (also taking into account a penalty for moving services), this group 
agent initiates a rearrangement of the placement.  

A further assignment of a group agent is to provide the fault-tolerance to the opti-
mization infrastructure: it is done by constantly watching all other Na–1 group agents 
for being alive; the special group agent staying close to actually deployed services 
also watches the health of the services. If one of the group agents fails, it is immedi-
ately re-instantiated by other agents. Also, if one of the services turns out to have 
failed, an appropriate recovery action is initiated.  

It is important to note the difference to the Ant Colony Optimization Algorithm 
presented in the section “Ant-based Control Algorithm”. While both ants and agents 
use a notion of a service group and carry data of services in such a group, agents have 
a different evaluation algorithm compared to ants. While an ant assigns a service to a 
server in each step, an agent evaluates a possible assignment of all services to the 
current server and its neighbors in such a step. Furthermore, agents have more “intel-
ligence” and do not die as opposed to ants. On the other hand, ants use the pheromone 
trails to learn the best assignments. 

P2P-based overlay networks. Since the evaluation of a new agent placement incurs a 
lot of effort, the next jump of an agent must be chosen carefully. To this aim agents are 
guided by information from an overlay network that provides capacity-related attrib-
utes of servers. In the overlay network described in [2] servers are connected in a P2P-
manner to achieve fault-tolerance and self-organizing properties (i.e. servers may join 
and leave without a reconfiguration exercise). The functionality of the network allows 
range queries of attributes; in our case we are mostly interested in server processing 
capacity, server storage capacity and the density values of these attributes. The density 
of an attribute is the averaged attribute value from a group of servers whose center is 
the server which “labels” this density value; thus, a density value is an indicator of the 
attribute (capacity) in the surrounding of a server. Density values are periodically com-
puted on each server by updates received from the surrounding resources. When decid-
ing about the next server to be visited, an agent first collects the current utilization 
data from its service group. This demand value determines the range for which the 
density values are queried. The overlay network responds with a list of servers fulfill-
ing the criteria. An agent sorts them according to their distance, and chooses ran-
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domly the next server to move on, similarly as described in the section “Choosing the 
Next Server”. Once arrived on the new server, it queries directly the surrounding 
servers retrieving their individual attribute values. If ranges of values are necessary, 
the overlay network query capability can be used. This data is then used for the 
evaluation of the POF. 

Conclusion 

The algorithms presented in this paper provide means for distributed placement of 
services on servers in Autonomous Service Networks, for example global IT envi-
ronments, large data centers, or Grids. The assumptions of large scale, lack of global 
knowledge and constantly changing operating conditions result in the design of  
distributed, heuristic algorithms. The algorithms build on techniques from agent 
coordination and P2P systems, trying to capture their properties of adaptability and 
self-organization. 

A qualitative comparison and classification of the algorithms is provided in Table 2 
(a comparison to a centralized integer programming approach not discussed in this 
paper is also provided). Obviously none of the approaches covers all desirable re-
quirements; in particular, the tradeoff between responsiveness and solution quality 
becomes apparent. 

Future work in this are will include refinement of the algorithms (including design 
alternatives) and integration in a Grid management infrastructure. 

Table 2. Comparison of the algorithms 

 
Ap-

proach 
Scalabil-

ity 
Accuracy  re-

sponsive-
ness 

Self-
organization

Fault 
resilience 

Ex-
tensi-bility 

Simplic-
ity 

Integer - + - - - + + 

Ants + - - + + - - 

BLE + - + + +/- - + 

Ovl. 
Agents 

+ - +/- + + + - 
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