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Preface 

We present in this volume the collection of finally accepted papers of the eighth 
edition of the “IWANN” conference (“International Work-Conference on Artificial 
Neural Networks”). This biennial meeting focuses on the foundations, theory, models 
and applications of systems inspired by nature (neural networks, fuzzy logic and 
evolutionary systems). 

Since the first edition of IWANN in Granada (LNCS 540, 1991), the Artificial 
Neural Network (ANN) community, and the domain itself, have matured and evolved. 
Under the ANN banner we find a very heterogeneous scenario with a main interest 
and objective: to better understand nature and beings for the correct elaboration of 
theories, models and new algorithms. For scientists, engineers and professionals 
working in the area, this is a very good way to get solid and competitive applications.  

We are facing a real revolution with the emergence of embedded intelligence in 
many artificial systems (systems covering diverse fields: industry, domotics, leisure, 
healthcare, … ). So we are convinced that an enormous amount of work must be, and 
should be, still done. Many pieces of the puzzle must be built and placed into their 
proper positions, offering us new and solid theories and models (necessary tools) for 
the application and praxis of these current paradigms. 

The above-mentioned concepts were the main reason for the subtitle of the 
IWANN 2005 edition: “Computational Intelligence and Bioinspired Systems.” The 
call for papers was launched several months ago, addressing the following topics: 

1. Mathematical and theoretical methods in computational intelligence. 
Complex and social systems; evolutionary and genetic algorithms; fuzzy logic; 
mathematics for neural networks; RBF structures; self-organizing networks and 
methods; support vector machines. 

2. Neurocomputational formulations. Single-neuron modeling; perceptual 
modeling; system-level neural modeling; spiking neurons; models of biological 
learning. 

3. Learning and adaptation. Adaptive systems; imitation learning; reconfigurable 
systems; supervised, non-supervised, reinforcement and statistical algorithms. 

4. Emulation of cognitive functions. Decision making; multi-agent systems; multi-
sensory integration;  natural languages; pattern recognition; perceptual and motor 
functions (visual, auditory, tactile, etc.); robotics; planning motor control. 

5. Bioinspired systems and neuroengineering. Embedded neural networks and 
fuzzy systems; evolvable computing; evolving hardware; microelectronics for 
neural, fuzzy and bioinspired systems; neural prostheses; retinomorphic systems. 

6. Applications. Biomimetic applications; data analysis and preprocessing; data 
mining; economics and financial engineering; fuzzy systems for control; the 
internet; neural networks for control; power systems; signal processing; 
telecommunication applications; time series and prediction. 



 Preface VI 

After a careful review process of the more than 240 submissions, 150 papers were 
accepted for publication including the contribution of three invited speakers. In this 
edition a special emphasis was put on the organization of special sessions. A total of 
10 sessions containing 46 papers were accepted for presentation, covering specific 
aspects like the modelling of neurons, design of neural topologies, applications, etc. 
This review and selection process was done with the help and cooperation of the 
members of our International Program Committee. 

The organization of this book does not follow the scheme and the order of the main 
mentioned topics, but is organized in a rational way according to the contents of the 
accepted papers, going from the more abstract concepts to the concrete and applicable 
questions and considerations. The result is a 20-chapter volume with the following 
main parts: 
 
1. Mathematical and Theoretical Methods 
2. Evolutionary Computation 
3. Neurocomputation-Inspired Models  
4. Learning and Adaptation 
5. Radial Basis Function Structures 
6. Self-organizing Networks and Methods 
7. Support Vector Machines 
8. Cellular Neural Networks 
9. Hybrid Systems 
10. Neuroengineering and Hardware Implementations 
11. Pattern Recognition 
12. Perception and Robotics 
13. Applications on Data analysis and Preprocessing 
14. Applications on Data Mining 
15. Applications on Signal Processing 
16. Applications on Image Processing 
17. Applications on Forecasting 
18. Applications on Independent Component Analysis and Blind Source Separation 
19. Applications on Power Systems 
20. Other Applications 
 

IWANN 2005 was organized by the Universitat Politècnica de Catalunya, UPC, 
with the strong cooperation of the Universidad de Granada and the Universidad de 
Málaga. Sponsorship was obtained from the organizing university, UPC, the Spanish 
Ministerio de Educación y Ciencia, the AGAUR agency of the Generalitat de 
Catalunya, and the City Council of Vilanova i la Geltrú. 

We would like to express our gratitude to the members of the IWANN Organizing 
Committee, and to all the people who participated in the event (delegates, invited 
speakers, special session organizers). The editors would like to address a special 
mention to the people who helped in the review process as special or additional 
reviewers. 



Preface   VII 

Finally, we would like to thank Springer, and especially Alfred Hofmann and Anna 
Kramer, for their continuous support and cooperative work from the very beginning 
of the IWANN conferences.  

 
 
 
June 2005  Joan Cabestany, Universitat Politècnica de Catalunya 

Alberto Prieto, Universidad de Granada 
Francisco Sandoval, Universidad de Málaga 
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Leonardo Franco1,2, José M. Jerez2, and José M. Bravo2

1 Dept. of Experimental Psychology, University of Oxford,
South Parks Road, Oxford OX1 3UD, UK

Leonardo.Franco@psy.ox.ac.uk
2 Departamento de Lenguajes y Ciencias de la Computación,

University of Málaga, 29071 Málaga, Spain

Abstract. The generalization ability of different sizes architectures with
one and two hidden layers trained with backpropagation combined with
early stopping have been analyzed. The dependence of the generalization
process on the complexity of the function being implemented is stud-
ied using a recently introduced measure for the complexity of Boolean
functions. For a whole set of Boolean symmetric functions it is found
that large neural networks have a better generalization ability on a large
complexity range of the functions in comparison to smaller ones and also
that the introduction of a small second hidden layer of neurons further
improves the generalization ability for very complex functions. Quasi-
random generated Boolean functions were also analyzed and we found
that in this case the generalization ability shows small variability across
different network sizes both with one and two hidden layer network ar-
chitectures.

1 Introduction

Neural networks are nowadays widely use in different applications in pattern
recognition and classification tasks due to their ability to learn from examples
and to generalize. There exists some general theoretical results about the size of
the network needed to implement a desired function [1, 2, 3] but at the time of
the implementation the theory is not always accurate. In practice, the problem
of selecting a network architecture for a determined application is mainly based
on the “trial-and-error” method as no theoretical formula gives clear insight into
this problem. Answers to general questions as: Are two hidden layer networks
better than one ? or Does larger networks generalize better than smaller ones?
are still controversial. A simple and general idea about what network size utilize
comes from Occam’s razor: the simpler the solution the better, but it has been
shown that very large networks perform sometimes better than smaller ones
[3, 4]. The reasons for the previous findings are still unclear and it seems that they
arise from properties of the backpropagation algorithm combined with validation
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procedures that avoid overfitting [1, 4, 5, 6, 7]. Another results [8] state that what
matters to obtain valid generalization is the value of the weights and not the size
of the network but this does not solve completely the size dilemma. Moreover,
most of the practical results based on simulations concentrate on the use of
very few functions, even the most complete studies use less than 30 different
functions [6, 7], and also in general the complexity of the analyzed functions is
ignored [3, 9].

The complexity of Boolean functions has been studied for a long time, the
aim of that being to have a criterion for deciding if a problem is easier to solve
or implement than another [10]. Within the area of circuit complexity the com-
plexity of a Boolean function has been defined as the minimum size of a circuit
that could implement it, while the size of the circuit is measured as the number
of nodes that composed the circuit. Many results have been derived for certain
classes of functions, as for symmetric and arithmetic ones, where in general,
bounds on the size of the circuits to compute the functions are obtained [10, 11],
but all these measures are quite complicate to compute in most cases. In [3],
functions were generated with different complexity by selecting a parameter K
that controlled the size of the maximum weight in the network. They showed
that functions with higher K were more complex, and expected the generaliza-
tion to be worse as K increases. In this paper, we use a recently introduced
measure for the complexity of Boolean functions [9, 12] to analyze how the net-
work architecture affects the generalization ability obtained for different classes
of functions grouped according to their complexity.

2 A Measure for the Complexity of Boolean Functions

The measure proposed in [9] is based on the results obtained in [13, 14], where
a close relationship between the number of examples needed to obtain valid
generalization and the number of neighbouring examples with different outputs
was found. The complexity measure C[f ] is obtained from the number of pairs of
neighbouring examples having different outputs. The complexity measure used
in this paper is defined as:

C[f ] = C1[f ] + C2[f ], (1)

where Ci[f ], i = 1, 2 are the terms taking into account pairs of examples at a
Hamming distance one and two. The first term can be written as:

C1[f ] =
1

Nex * Nneigh

Nex∑
j=1

⎛
⎝ ∑

{l|Hamming(ej ,el)=1}
(|f(ej) − f(el)|)

⎞
⎠ , (2)

where the first factor, 1

Nex * Nneigh
, is a normalization one, counting for the total

number of pairs considered, Nex is the total number of examples equals to 2N ,
and Nneigh stands for the number of neighbour examples at a Hamming distance

Bravo
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of 1. The second term C2[f ] is constructed in an analogous way. The complexity
of the Boolean functions using the measure of Eq. 1 ranges from 0 to 1.5 [9].

3 Simulations Results

To analyze the generalization ability of different architectures and to study how
this property change with network size we carried intensive numerical simu-
lations for symmetric and quasi-random generated Boolean functions. All the
networks were trained with Backpropagation with momentum. An early stop-
ping procedure was implemented with the aim of avoid overtraining and improve
generalization. The validation error was monitored during training and at the
end of the maximum number of epochs permitted, the generalization error was
taken at the point where the validation error was minimum. A important use of
the complexity measure is that permit to analyzed the complexity of the output
functions and compared it to the complexity of the target functions, to analyze
what functions the networks generalize to. The number of examples available
for training was 256 as in all cases we consider input functions of size N=8. We
divided the examples in a training set containing 128 examples, and into valida-
tion and generalization test sets containing 64 examples each one. The learning
rate constant was fixed during training and equal to 0.05 and the momentum
term was set to 0.3. The maximum number of epochs allowed for training was
selected after some initial tests and was selected to be approximated 4 to 5
times larger than the optimal training time (typical values were 600 to 1000).
Two sets of functions symmetric and quasi-random functions generated starting
from the parity function were considered and the results are described in the
subsections below. To analyze the dependence of the generalization ability with
the complexity of the functions the functions were grouped in ten different levels
of complexity from 0 to 1.0.

3.1 Symmetric Functions

An important class of Boolean functions are the symmetric ones, those with
values independent of the order of the input, i.e., the output of the examples
depends only on the total number of input bits ON (the number of 1’s). The
class of symmetric functions contains many fundamental functions like sorting
and all types of counting ones, including also the well known parity function
[9, 10, 11]. They have been extensively studied and many lower bounds have
been obtained for circuits computing them. A general result states that a circuit
of size O(

√
N) gates and depth 3 with polynomial weights is enough to compute

all the symmetric functions [11].
We performed simulations using all 512 existing symmetric functions for the

case N = 8, using neural networks with one and two hidden layers. The number
of neurons for the analyzed cases in which the networks have only one hidden
layer was NH1=5, 10, 25, 50, 250, 500. The best result, in terms of the general-
ization ability obtained, was by using the architecture with NH1=250. In Fig. 1
the generalization ability as a function of the function complexity is shown for
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the different networks utilized. The results were computed from five averages
taken for every symmetric function. Standard deviations were also computed
for every complexity group and it showed that the differences obtained for dif-
ferent architectures (for example between the network with NH1=250 NH2=0
and the architecture with NH1=250 NH2=10) were statistically significant for
groups of functions with the same complexity. We also computed the average
absolute value of the weights in the different layers and the result was that the
size of the weights was proportional to the training time, that was also found
to be proportional to the function complexity (In [3, 8] similar findings were
obtained).

The complexity of the functions to which the networks generalize to was also
investigated (i.e. the functions that the trained networks compute at the point
of minimum validation error). We found that in almost all cases the output
functions were more complex than the target ones.
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Fig. 1. Generalization ability vs function complexity for all Symmetric Boolean func-
tions with N=8 inputs implemented on single hidden layer networks with a number of
hidden neurons NH1= 5,10,25,100,250 and 500

We also analyzed the generalization ability for cases of architectures having
two hidden layers of neurons, first by restricting our study to networks with
NH1=250, that was the optimal value found for one hidden layer networks. The
number of second hidden neurons analyzed were NH2=5, 10, 25, 50, 250, 500. The
best results were obtained with an architecture 8-250-10-1, that outperformed
the architecture 8-250-1. In Fig. 2 the results are shown only for some two-layer
architectures (for clarity) in comparison to the best one hidden layer architec-
ture. A further enlargement of the second layer of neurons did not improve the
generalization ability. Other cases with a different number of neurons in the
first and second layer were considered but the results were worse than the cases
already mentioned.

L. Franco, J.M. Jerez, and J.M. Bravo
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Fig. 2. Generalization ability vs function complexity for all Symmetric Boolean func-
tions with N=8 inputs for the cases of two two hidden layer architectures with 250 in
the first hidden layer and NH2=5,10 in the second hidden layer. For comparison the
results for the case of having a single layer with NH1=250 is also shown

Table 1. Average generalization ability, training time (epochs) and final training er-
ror obtained for different size architectures with one or two hidden layers of neurons
constructed to compute all Boolean symmetric functions with N=8 inputs

Neurons in Neurons in Generalization Train. time Final train.

1st hidden layer 2nd hidden layer ability (epochs) error

5 – 0.761 256 0.111
50 – 0.781 167 0.019
250 – 0.803 132 0.060
500 – 0.780 291 0.187
250 5 0.839 192 0.150
250 10 0.852 186 0.136
250 25 0.846 159 0.142

It is possible to observe from Fig. 1 that for networks with a single layer of
neurons the use of a large number of neurons up to 250 increases the generaliza-
tion ability for the whole ranges of complexities. When a second layer of weights
is included, the main effect was that the network improved the generalization
ability on functions with a complexity larger than 0.6 (See Fig. 2). In table 1,
the average generalization ability obtained for some of the architectures used is
shown together with the training time (in epochs) until the point in which the
minimum validation error was found and also is shown the training error at the
end of the training procedure to give an idea of the computational capacity of
the network. In a previous study [9], in which the architecture sizes were much
restricted, up to 30 neurons in a single hidden layer, we found only a slightly im-
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Fig. 3. Random functions implemented on a one hidden layer architecture

Table 2. Average generalization ability, training time (epochs) and final training er-
ror obtained for different size architectures with one or two hidden layers of neurons
constructed to compute quasi-random Boolean functions generated by modifications of
the parity function for N=8 inputs

Neurons in Neurons in Generalization Train. time Final train.

1st hidden layer 2nd hidden layer ability (epochs) error

5 – 0.789 79 0.063
50 – 0.787 58 0.004
250 – 0.785 132 0.060
5 5 0.798 19 0.165
5 10 0.795 44 0.136
5 50 0.792 83 0.129

provement in the generalization ability for the case of very low complex functions
and thought that the effect could be explained on the basis that larger networks
have more configurations implementing trivial functions. Whether the previous
assertion is true is worth but difficult to elucidate and in terms of the general-
ization ability that can be obtained using Backpropagation combined with early
stopping it does not seem to be the case at least for symmetric functions.

3.2 Random Functions

There exists 22N

Boolean functions of N inputs, making their general study very
complicated except for very simple and small cases. Totally random functions
are very complex with an average complexity around 1.0 [9].

To analyze a large set of different functions we generate functions with dif-
ferent complexity by modifying with a certain probability the outputs equal to
1 of the parity function, to obtain functions that are asymmetric in the number

L. Franco, J.M. Jerez, and J.M. Bravo
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of outputs and with a complexity in the range 1.0 to 0. One hundred functions
were analyzed for each of 10 levels of complexities in which the functions where
grouped, with average complexity from 0.1 to 1.0 in steps of 0.1. We run simula-
tions using networks with a single hidden layer and a number of hidden neurons
NH1 equal to NH1=5,10,25,50,100,250,500 and obtained that the generalization
ability for the different complexity groups of functions did not change much with
the size of the hidden layer, as can be appreciated from Fig. 3. On average the
best one hidden layer architecture was the one with only NH1=5 neurons. It was
also obtained as in the previous section that the introduction of a second hidden
layer of neurons improve the overall generalization ability and the optimal values
found were NH1=5 and NH2=5. In table 2 average results are shown for some
of the architectures used. Note from the results in table 2 that the final train-
ing error was higher for the optimal architectures, and this might indicate that
larger architectures has a major propensity to overfitting for these quasi-random
functions while two hidden layer networks seems to suffer less of this problem
that the one hidden layer ones.

4 Discussion

We have analyzed the generalization ability of different network architectures
studying how the generalization ability is affected by the complexity of the func-
tions being implemented and by the size of the architecture. It is generally as-
sumed that the generalization ability depends on the complexity of the target
function but we do not know of previous studies addressing this point except
from [3], and we think that this is mainly due to the lack of a simple measure
for the complexity of the functions. The use of a recently introduced complexity
measure permit us to have a clearer picture about how different architectures
perform by permitting the functions under analysis to be grouped according to
their complexity [9].

We obtained that large neural networks do not overfit much if trained with
the Backpropagation algorithm combined with an early stopping procedure as it
was observed in previous studies [3, 4]. For the case of network architectures with
a single layer of hidden neurons, the optimum value for the number of neurons
was obtained with NH1=250 when the set of symmetric Boolean functions was
considered. It was further shown that generalization ability improved if a second
layer of hidden neurons was used where the optimal number of neurons found
was NH2=10. In particular, it was observed that the introduction of the second
layer of neurons improves the generalization ability of very complex symmetric
functions with a complexity between 0.6 and 0.9.

For the case where quasi-random functions were analyzed it was found that
the optimal network with a single hidden layer was very small NH1=5, but when
using larger networks of up to NH1=500 the average generalization values were
quite similar (See table 2). It was also observed in this case that the introduction
of a second layer of hidden neurons further improved the average generalization
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ability, but no significant changes were observed in terms of the functions with
different complexity.

We are currently extending the measure of complexity to continuous input
functions to be able to carry out similar studies with real problems.
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Abstract. In this paper, the behavior of the Sanger hebbian artificial
neural networks [6] is analyzed. Hebbian neural networks are employed
in communications and signal processing applications, among others, due
to their capability to implement Principal Component Analysis (PCA).
Different improvements over the original model due to Oja have been
developed in the last two decades. Among them, Sanger model was de-
signed to directly provide the eigenvectors of the correlation matrix [8].
The behavior of these models has been traditionally considered on a
continuous-time formulation whose validity is justified via some ana-
lytical procedures that presume, among other hypotheses, an specific
asymptotic behavior of the learning gain. In practical applications, these
assumptions cannot be guaranteed. This paper addresses the study of
a deterministic discrete-time (DDT) formulation that characterizes the
average evolution of the net, preserving the discrete-time form of the
original network and gathering a more realistic behavior of the learning
gain [13]. The dynamics behavior Sanger model is analyzed in this more
realistic context. The results thoroughly characterize the relationship be-
tween the learning gain and the eigenvalue structure of the correlation
matrix.

1 Introduction

Hebbian architectures, as a tool for on-line data processing, are mainly em-
ployed in communications, signal processing and fault diagnosis. They compute
the Principal Components of the correlation matrix associated with a given
stochastic vector which can represent, for instance, the input data to a channel.
At the same time, hebbian networks also perform the Karhunen-Loève trans-
form of input data, very suitable for optimal coding and compression purposes.
Among the hebbian architectures, Sanger’s neural network is the simplest one
directly providing the eigenvector structure in an ordered manner. The dynamics
of Sanger net has been analyzed on the basis of a fundamental theorem for the
study of stochastic approximation algorithms, relating the discrete-time stochas-
tic model with a deterministic continuous-time (DCT) system [7]. Hence, several
studies can be found in the literature employing such deterministic continuous-
time formulations in order to indirectly interpret Sanger’s net dynamics in the
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context of average behavior. All these studies of DCT formulations are grounded
on restrictive hypotheses so that the fundamental theorem of stochastic approx-
imation can be applied.

On the other hand, few work has been done so far on the study of the origi-
nal stochastic discrete formulation when some of such hypotheses cannot be as-
sumed [13]. That new perspective leads to a related deterministic discrete time
(DDT) formulation providing information on the relationships between the orig-
inal stochastic discrete system and the DCT formulation. This paper develops
in that direction for Sanger net.

First, the DCT associated system is explicitly solved to provide a global
analysis. Secondly, the related DDT formulation is derived and its dynamics
are analyzed. This DDT system preserves the discrete-time form of the original
network and allows a study of the influence of learning gain evolution. It will be
shown that, although both DCT and DDT are derived from the same original
system, DDT may be interpreted as a numerical discretization of DCT, and it
displays a drastically different behavior.

The paper is structured as follows. Section 2 presents the Sanger hebbian
neural net original model. Subsection 2.1 shows the main stochastic approxi-
mation result that relates the original stochastic formulation of the net with a
continuous-time formulation. The alternative deterministic discrete-time version
is presented in Subsection 2.2 where the main results concerning its dynamic
global behavior are also demonstrated. Subsection 2.3 analyzes the implications
of the time scale hypothesis. Concluding remarks are presented in Section 3.

2 Sanger Neural Network

Sanger Neural Network is defined by the linear input-output relationship and
the following learning law:

yi =
N∑

j1=1

wij1xj1 , wil,n+1 = wil,n + ηiyi

⎛
⎝xl −

i∑
j2=1

yj2wj2l,n

⎞
⎠ ,

1 ≤ i ≤ M, 1 ≤ M ≤ N, 1 ≤ l ≤ N, ηi > 0 (1)

where y i , x l , w il , w il,n and ηi are the output, the inputs, the weights, the weight
values at n-th iteration, and the learning rate, respectively, for neuron i in the
net and N is the number of inputs to each neuron and M the number of net
neurons (see Figure 1).

2.1 Continuous-Time Formulation

The usual stability analysis follows stochastic approximation techniques and it
is based on several hypothesis: statistical independence between inputs x and
weights wi , time step tends to zero, etc.
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Fig. 1. Functional scheme of NN Sanger neuron and his location in the net with N
inputs and M neurons or outputs (1≤M≤N)

This approach provides an ODE governing the weights time evolution during
the learning phase. For the case of Oja net a Riccati equation is obtained. Here,
we present the equation associated with Sanger net:

dwi

dt
= Cwi −

i∑
j1=1

(wT
j1Cwi)wj1 , C = E[xxt] (2)

Expressing the weights of each neuron on a base of eigenvectors of the input

data autocorrelation matrix wi(t) =
N∑

j=1

αij(t)ej leads to

N∑
j1=1

dαij1

dt
ej1 =

N∑
j2=1

λj2αij2ej2−
i∑

j3=1

⎛
⎝ N∑

j4=1

αj3j4e
T
j4

N∑
j5=1

λj5αij5ej5

⎞
⎠ N∑

j6=1

αj3j6ej6

(3)
which can be decomposed as

dαip

dt
= λpαip −

i∑
j1=1

⎛
⎝ N∑

j2=1

αj1j2αij2λj2

⎞
⎠ αj1p 1 ≤ p ≤ N. (4)

The computation of d
dt

(
α1p

α11

)
leads to a Bernoulli equation which can be solved

providing for the first neuron:

α1p =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

±
√

1+cN e−2λ1t+
N∑

j=2
c2

j−1e2(λj−λ1)t

, p = 1;

cl−1e(λp−λ1)t

±
√

1+cN e−2λ1t+
N∑

j=2
c2

j−1e2(λj−λ1)t

, 2 ≤ p ≤ N.
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Keeping in mind that λj −λ1 < 0, we can always determine cj ∈ R (1 ≤ j ≤ N)
for any initial conditions. This implies the asymptotic behavior

lim
t→∞α1p =

{
±1, p = 1;
0, 2 ≤ p ≤ N.

which means that
lim

t→∞w1 = ±e1.

For the following neurons a time scale hypothesis is considered (when analyzing
ith neuron, smaller index neurons are considered already in steady state regime).
Computing d

dt

(
αip

αii

)
we also get a Bernoulli equation providing

αip =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cipe−λit

±
√√√√1+

(
2

i−1∑
j1=1

c2
ij1

λj1 t+ciN

)
e−2λit+

N∑
j2=i+1

c2
ij2−1e

2(λj2
−λi)t

, 1 ≤ p < i;

1

±
√√√√1+

(
2

i−1∑
j1=1

c2
ij1

λj1 t+ciN

)
e−2λit+

N∑
j2=i+1

c2
ij2−1e

2(λj2
−λi)t

, p = i;

cip−1e(λp−λi)t

±
√√√√1+

(
2

i−1∑
j1=1

c2
ij1

λij1 t+ciN

)
e−2λit+

N∑
j2=i+1

c2
ij2−1e

2(λj2
−λi)t

, i + 1 ≤ p ≤ N.

Since λj2 − λi < 0, we can also determine cij ∈ R (1 ≤ j ≤ N) for any initial
conditions, implying

lim
t→∞αip =

⎧⎨
⎩

0, 1 ≤ p ≤ i − 1;
±1, p = i;
0, i + 1 ≤ p ≤ N.

which means that
lim

t→∞wi = ±ei.

Hence, weights wi converge to the eigenvectors of the autocorrelation ma-
trix associated with input x respectively, and the speed of convergence is only
determined by the eigenvalue structure of such matrix.

2.2 Discrete-Time Formulation

Following [13] the associated discrete-time formulation is

wi,n+1 = wi,n + ηi

⎛
⎝Cwi,n −

i∑
j1=1

(wT
j1,nCwi,n)wj1,n

⎞
⎠ (5)

A qualitative analysis may be carried out following Lyapunov theory. The fixed
points are ±ek (i≤k≤N ), where ek is an eigenvector of C with associated eigen-
value λk (≥λk+1). Applying Lyapunov indirect method and considering also the
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hypothesis of different time scales between the neurons (when studying stability
of ith neuron, neurons with smaller index are assumed to be already in equilib-
rium), we get

∇wi,n
wi,n+1

∣∣
wi,n=±ek

= I + ηi

⎛
⎝C −

i−1∑
j1=1

ej1e
T
j1C − 2ekeT

k C − I(eT
k Cek)

⎞
⎠(6)

whose eigenvectors are the same of matrix C (ek ) with associated eigenvalues:

λikm =

⎧⎨
⎩

(1 − ηiλk) 1 ≤ m < i, i �= 1.
(1 − 2ηiλk) i ≤ m ≤ N,m = k.
(1 + ηi(λm − λk)) i ≤ m ≤ N,m �= k.

i ≤ k ≤ N. (7)

The following table shows the eigenvalues of matrix ∇wi,n
wi,n+1

∣∣
wi,n=±ek

for the ith neuron in its fixed points ±ek (i ≤ k ≤ N). Analyzing if |λikm| < 1
we conclude that only the pair ±ei is asymptotically stable.

The λikm marked with a ‘*’ have modulus larger than 1, for any learning rate
ηi, since λm − λk > 0.

From the table we conclude the asymptotically stable points conditions as
follows:

1. For eigenvalues with index m < i (i �= 1), where λikm = 1−ηiλk, the stability
condition is
– ηi < 2/λk, and
– λk > 0 (always true).

2. For eigenvalues with index i ≤ m ≤ N and m = k, where λikm = 1 − 2ηiλk

we require
– ηi < 1/λk, and
– λk > 0 (always true).

3. For eigenvalues with index i ≤ m ≤ N and m �= k where λikm = 1+ηi(λm−
λk) we require
– ηi < 2/(λk − λm), and
– (λk − λm) > 0 (i.e, k > m, if eigenvalues of C are ordered).
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Hence, fixed points ±ek such that k ≥ i + 1 are unstable (marked with ‘*’
in the Table).

Therefore, we conclude that the only asymptotically stable fixed points for neu-
ron i are ±ei (k=i) under the hypotheses that ηi satisfies

0 < ηi < min

⎧⎨
⎩

2
λi

1 ≤ m ≤ i − 1, i �= 1.
1
λi

i ≤ m ≤ N,m = i
2

λi−λm
i ≤ m ≤ N,m �= i.

.

⎫⎬
⎭ =

1
λi

, 1 ≤ i ≤ M. (8)

The maximum value for ηi (<1/λi) implies for each neuron a maximum learning
rate (see equation (8)); this value limits the speed of convergence. The opti-
mum value for the learning rate ηi is such that minimizes the absolute value
of eigenvalues λikm (see equation (7)) within the stability range for the fixed
points.

The learning rate η is usually established with a unique value for the whole
network such that the stability of every neuron is guaranteed. (η satisfies (8) for
all neurons):

0 < η ≤ min {ηi} < 1/λ1, 1 ≤ i ≤ M.

Obviously this way we do not have an optimum convergence rate for each neuron
since they have different associated optimal rates.

2.3 Time Scales Hypothesis

In order to apply the time scales hypothesis, some conditions can be imposed to
the eigenvalues associated with the different neurons. For instance, the relation-
ship

max {|λiim|} < min {|λi+1i+1m|} (9)

would determine different time scales between the local dynamics of i-th neuron
and i + 1-th neuron around their respective asymptotically stable equilibrium
points. Hence, equation (9) provides additional restrictions for the allowed ranges
of ηi and ηi+1.

The computation of the maximum and minimum values

max {|λiim|} =

{
1 − ηi (λi − λi+1) , 0 < ηi < 2

3λi−λi+1
,

−1 + 2ηiλi,
2

3λi−λi+1
≤ ηi < 1

λi
.

(10)

min {|λi+1i+1m|} =

⎧⎨
⎩

1 − 2ηi+1λi+1, 0 < ηi+1 < 1
2λi

,

−1 + 2ηi+1λi+1,
1

2λi
≤ ηi+1 < 2

3λi
,

1 − ηi+1λi+1,
2

3λi
≤ ηi+1 < 1

λi
.

(11)

And recursively applying equation (9), we get the more restrictive conditions

0 < ηi <

{
1
λi

i = 1.
1
2

(
λi−1
λi

− 1
)

ηi−1 2 ≤ i ≤ M.
(12)
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For each neuron we can select and optimal rate ηio to maximize the speed of
convergence, minimizing the maximum of |λiim|

ηio =
2

3λi − λi+1
, (13)

but this condition may not be compatible with (9). In fact, we could select an
optimal rate for the first neuron (i = 1), the rest of the rates being imposed
by (9).

In case that we want to use a unique learning rate η, the time scale condition
with be satisfied if the eigenvalues of matrix C satisfy:

ηi = η < 1/λ1 ⇔ λi

λi+1
≥ 3, 1 ≤ i ≤ M. (14)

Hence, if the eigenvalues of C are close to each other (λi/λi+1 << 3), we have
to gradually decrease the learning rate as the index of the neuron increases
following equation (12). On the other hand, if the eigenvalues are far apart, we
can even increase such learning rate.

3 Concluding Remarks

Hebbian neural networks have been proven to be very useful for the real time
implementation of Principal Component Analysis in an adaptive manner. Among
them, Sanger Neural Network is the simplest one providing the eigenvalues of
the autocorrelation matrix in an ordered way. So far, only a rigourous analysis
of the first neuron had been considered. Here, the analysis of all the neurons has
been addressed.

The application of the standard approach for the analysis of Sanger Neural
Network leads to a Continuous-Time system which can be globally solved under
some time scale asymptotic hypotheses. The solutions of this system conclude
the existence of a pair of (almost globally) asymptotically stable equilibria. This
optimistic result would guarantee the convergence of the net from any initial
condition. Nevertheless, it does not take into account real aspects such as the
existence of a lower bound in the learning rate.

The Discrete-Time system proposed here, preserving real conditions and re-
laxing some of the usual hypothesis, provides a more realistic analysis of Sanger
Neural Network. The influence of the learning rate in the convergence of the
weights is clearly delineated via a local analysis, based also on a time scale hy-
pothesis. The results show that the size of the learning rate is strongly related
to the spectrum of the input covariance matrix in order to preserve stability and
good convergence properties. Different design alternatives are evaluated and an
upper bound for such learning rate is provided, which is very useful for imple-
mentation purposes.
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Abstract. This paper proposes a neural network structure as well as an 
adaptation of the backpropagation algorithm for its training that provides a way 
to consider multidimensional information directly in its original space. 
Traditionally, when inputting multidimensional information to artificial neural 
networks, its components are fed individually through different inputs and 
basically processed separately throughout the network. In the present structure, 
the multidimensional information, in the form of vectors is processed as such in 
the network, thus preserving in a simple way all the multidimensional 
neighbourhood relationships. The projection into the dimensionality of the 
output space is also carried out within the network. This procedure allows for a 
simpler processing of multidimensional signals such as multi or hyperspectral 
cubes as used in remote sensing or colour signals in images, which is the 
example we present as a test for the algorithm. 

1   Introduction 

Most artificial network structures are well suited for the processing of scalar values at 
their inputs. In fact, even though feature vectors are often introduced at the inputs of 
the network for many classification tasks, the internal processing is actually carried 
out on the components of the vector, that is, without taking any notice of the fact that 
they are vectors that determine a point in multidimensional space. This makes the 
tasks of establishing boundaries between categories the more difficult as the networks 
must establish boundaries for each one of the components individually. To facilitate 
this task several structures have been proposed from different points of view, 
depending on the network element on which the authors concentrated. For example, 
in the case of RBFs [1], the activation function shape is chosen for its properties to 
best fit data. A good review of different activation functions designed for solving 
particular problems can be found in [6]. In the case of Gaussian Synapse Multi Layer 
Perceptron (GSMLP) [2], the network element over which the authors act is the 
synapse, obtaining a synapse that plays the role of an active filter, this results in a 
network that can solve certain types of hard signal processing problems. 

In this article we will introduce another type of network where a new topological 
variation is applied in order to make the information processing more natural when 
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considering multidimensional classification tasks. This is a type of problem that 
presents some peculiarities arising when high dimensionalities of the input space are 
considered, as commented in [7]. The network is called the Vectorial Input Higher 
Order Network (VIHON). The main modification with respect to other networks 
occurs in the input stage: Every point at the input can be a multidimensional element -
vector- and the information processing is carried out in such a way that its preserves 
its vectorial identity, without dispersing its components throughout the network as in 
other topologies. In other words, we want to process the vectors as vectors and not 
their components as scalars. 

We could find some similarities between this network and some approaches that 
consider the use of vectorial information within the networks. But the approaches are 
different, we have found that the main efforts in this field are focused on the 
development of non Euclidean input space networks, like hyperboloid [3], or complex 
numbers [4][5]. These projects are aimed at solving certain types of problems where 
Euclidean norms and definitions are not valid or are very inadequate. In our case we 
will reconsider problems where the Euclidean norm is appropriate but where 
neighbourhood information in the dimensionality of the original space is important in 
order to establish the different categories. 

2   Network Description  

The following figure displays a graphic diagram of the feed forward structure of the 
network proposed here, the VIHON network.  

 

Fig. 1. Structure of the network 

The elements we must consider are: 

• Inputs: Every input of this network is composed of a certain number of 
elements (that constitute the network window) and every one of these 
elements is a vector. It is very important to emphasize the fact that this is not 
only a 2-D generalization of the input of a multilayer network, because in 
VIHON networks the vectorial character of every input is preserved until a 
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certain amount of processing has been carried out. The vector data are 
considered as an entity. 

• In the first synapse and processing layer we still have a set of Gaussian 
synapses, where every component of the vector is processed using a d-
dimensional extension of a gaussian function.  

• Second synapse and processing layer: It is made up of synapses that are 
constant deviation d-dimensional gaussian functions –where the constant 
deviation is necessary in order to allow the projection onto the decision 
space-, being d the dimension of the input space. This is a very important 
stage because it is in this layer where the projection task necessary for the 
information in the dimensionality of the input space to be transformed into 
the dimensionality of the output space is carried out. In this projection lies 
the main differential fact of this type of network and it will be discussed 
later. 

• Third synapse layer and output stage: From this point until the end, the  
network structure is similar to that of the GSMLP, with 1-D Gaussian 
synapses acting as adaptive filters for scalar inputs, once the projection has 
been made. The output is controlled by means of a sigmoid neuron. 

The operation of the VIHON is similar to a typical GSMLP, except for a number of 
aspects. First, synapses and activation functions in the first layer are the 
multidimensional extension for a Gaussian shape and multidimensional extension of a 
sigmoid activation function. Second, there is a point in the information path across the 
network in which the projection of the information is carried out. The projection is a 
critical stage in this network in the sense that this is the differential fact in its 
operation: we will reduce the dimensionality of the data only after a first processing 
stage has been carried out in the original space, so that the initial neighbourhood 
information is preserved, the data in the feature vector are not cut into independently 
processed pieces. This permits the information carried by the data associated with 
feature characteristics of the problem to be jointly considered. 

3   Training Algorithm of VIHON Network 

A training algorithm for this type of network has been developed. It is a variation of 
classical backpropagation taking into account the multidimensional Gaussian 
synapses and the fact that the information being processed are vectors. We have 
chosen the BP algorithm as starting point not only because it is easy to implement, 
but also because it has a smooth behavior in relation to the error surfaces. A more 
detailed description of the algorithm can be found elsewhere [8], here we are just 
going to provide a summary of the main points considering a generic d-dimensional 
input space.  

The three feed forward equations of the network, corresponding to the output, 
hidden layer and input layers can be written as follows: 
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If we consider a standard expression for the total error when presenting an input to the 
network and comparing the output obtained to the desired one: 

 
Then, following a similar approach to traditional backpropagation and taking into 
account that the vectorial character of the first layer and that the synapses contain 
Gaussians with three parameters, center, variance and amplitude (C, B and A) , the 
gradients for the output layer functions, which are one dimensional can be expressed as: 

 
For the hidden layer we have 
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And finally, for the input layer terms can be expressed as matrices of the form. 

Thus, training a VIHON network is similar to training a multilayer perceptron using 
backpropagation. The only difference is that now the gradient equations are those 
stated in this section. 

In the following section we introduce an example to test the behaviour of VIHONS 
and compare them to other types of networks. 

4   Application Example: Detection of Spatial and Associated Color 
Information Patterns over Various Backgrounds 

When seeking an example to test VIHON networks in terms of their multidimensional 
behaviour, certain requirements had to be taken into account. First, the input set must 
have an intrinsic vectorial character, in the sense that the feature space and problem 
we are working with requires the preservation of vectorial neighbourhood 
relationships. Secondly, we require a problem that presents a level of difficulty that 
allowed us to exclude the use of simple gaussian synapse based networks in order to 
solve it. Additionally, we sought a multidimensional example where the 
dimensionality allowed for the intuitive understanding of the operation of the 
network. Consequently, we chose a problem that involved the detection of spatial 
patterns with colour information: Traffic sign recognition. In fact, to appropriately 
classify traffic signs one must take into account neighbourhoods in terms of the colors 
and neighbourhoods in terms of the spatial patterns involved.  

The test and training sets were built out of stripes of traffic sign images that 
presented variations on the shapes  -round shapes, square, rhomboidal...- edge color -
red, blue, white, green...- and main color of the sign -white, green, red...etc.- and also 
the inner region of the sign contained certain types of color and shape information. 
The examples were sorted randomly on the stripe. The final stripes are swept from left 
to right both in the training and test phase. In figure 1 we present examples of training 
and test sets. 

Our objective in the experiments was to obtain a network that could detect a given 
category and the definition of the categories involved several aspects in order to 
ensure that the network could solve multi criterium recognition problem types. For 
example, sign shape associated with edge color. 

( )

( ) ( )

( ) ( )

2

2

2

2

2

d d d
ml m mll

d d d
ml m mll

d d d
ml m mll

d
B I CNet d

md
ml

d
B I CNet d d d d

m ml m mld
ml

d
B I CNet d d d d d

m ml m ml mld
ml

T
I e

A

T
I A I C e

B

T
I A I C B e

C

−

−

−

∂
=

∂

∂
= −

∂

∂
= − −

∂



22 J.L. Crespo and R.J. Duro 

 

 

Fig. 2. Examples of part of the stripes used in the experiments 

The number of samples in one stripe was between 60 and 120, every sample is a 25 
x 25 pixel square image. The stripes were swept in one pixel steps from left to right. 
Three different experiments were carried out: discrimination between red edge - 
round shape signs and the rest, discrimination of green as main color - square shape 
and discrimination of yellow inner region - romboidal shape. 

The first attempt we made at obtaining the classification or identification of spatial 
and colour patterns was to use a standard Gaussian Synapse based ANN and its 
training algorithm [2], but we did not obtain any positive result. As a second 
approach, we made use of a set of 3 GSMLP networks working in parallel and 
processing each one of the three color channels separately. The results were again 
very poor, as shown in figure 2. Taking a look at what was happening, we noticed that 
neighbourhood relationships in the RGB space, that is, 3D neighbourhood relations 
had to be taken into account in order to obtain the appropriate classification and that 
was very difficult for networks working over the three dimensions separately. That is, 
we required some type of structure that preserved vectorial neighborhood relations 
until some degree of processing has been carried out, and this was accomplished 
through the use of VIHON networks. 

 

Fig. 3. The graph displays the desired output as triangles and the output obtained as circles for 
the best results obtained in the experiments in which we considered the three colour channels 
separately 

When we addressed the problem using VIHON networks and the algorithm 
presented above the results were much better. The resulting networks consisted of 625 
input vectors (corresponding to the 25 x 25 pixel window size), each vector was 3 
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dimensional (RGB), two hidden layers with 20 neurons and one output corresponding 
to the probability of the input pattern being part of the class. For every one of the 
training runs, a number of training steps of around 50 were necessary. The results 
were very encouraging, having obtained a percentage of good detections between 89.5 
and 93.5 % and a percentage of false positives with a minimum of 0.9 and a 
maximum of 6 % depending on the stripes. Some detection results for this case are 
presented in figure 3. We show the output value of the network as a circle and the 
desired value as a triangle. It is clear that in this case all of the targets are detected if 
we consider a 0.5 discrimination level. There seem to be, however, some false 
positives. But this is not really so, we have to remember that the image is being swept 
at 1 pixel intervals and thus a few frames have very similar information as shown in 
the right part of the figure. 

 

Fig. 4. (left) Results obtained for a portion of the test set in one of the experiments. We have 
marked as triangles the desired output and the obtained output as circles. We can see that for 
every desired detected pattern we obtain a positive answer by the network. (Right) the MSE for 
the training process 

The experiments show how the detections were quite appropriate. As indicated 
before, when a GSBP network was applied to the same problem the results obtained 
were quite deficient. The problem in this second case had to do with the difficulty of 
the boundaries that had to be established over all the dimensions of the problem as 
there was no association during processing of the components of the vectors involved. 
In the case of the VIHON networks this problem did not exist, as the color 
information for each pixel was treated as a single vector with 3 components and, 
consequently, all the neighbourhood relations obtainable on this type of color space 
could be used to the best advantage during processing. This was carried out in the first 
layers and after them the projection into 1-d space was carried out in order to obtain 
the classification value.  

5   Conclusions 

In this article we present and apply a new type of neural network and training 
algorithm that is based on the direct consideration of vectorial information in order to 
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make good use of the neighborhood information from the input space to obtain better 
and easier classification decisions. This is achieved by means of the introduction of 
synapses and nodes in the network that directly work with the information in the input 
space dimension and only after this layer is the information projected into the 
classification space dimension. The results presented are very encouraging as they 
provide a way to easily use neighbourhood information in highly dimensional spaces 
such as those found in remote sensing applications when considering multi or 
hyperspectral signals. 
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Abstract. Research efforts in metaheuristics have shown that an intel-
ligent incorporation of more classical optimization techniques in meta-
heuristics can be very beneficial. In this paper, we combine the meta-
heuristic ant colony optimization with dynamic programming for the ap-
plication to the NP-hard k-cardinality tree problem. Given an undirected
graph G with node and/or edge weights, the problem consists of finding
a tree in G with exactly k edges such that the sum of the weights is min-
imal. In a standard ant colony optimization algorithm, ants construct
trees with exactly k edges. In our algorithm, ants may construct trees
that have more than k edges, in which case we use a recent dynamic pro-
gramming algorithm to find—in polynomial time—the best k-cardinality
tree embedded in the bigger tree constructed by the ants. We show that
our hybrid algorithm improves over the standard ant colony optimiza-
tion algorithm and, for node-weighted grid graph instances, is a current
state-of-the-art method.

1 Introduction

The k-cardinality tree (KCT) problem—also referred to as the k-minimum span-
ning tree (k-MST) problem, or just the k-tree problem—is an NP-hard [13]
combinatorial optimization problem which generalizes the well-known minimum
weight spanning tree problem. In this paper we deal with a generalized problem
version in which the given graph G can have both node and edge weights. More
formally, let G = (V,E) be a graph with a weight function w

E
: E → IN on the

edges and a weight function w
V

: V → IN on the nodes. We denote by Tk the
set of all k-cardinality trees (i.e., trees with exactly k edges) in G. Then, the
problem consists of finding a k-cardinality tree Tk ∈ Tk that minimizes

� This work was supported by the Spanish CICYT project no. TIC-2002-04498-C05-
03 (TRACER), and by the “Juan de la Cierva” program of the Spanish Ministry of
Science and Technology of which Christian Blum is a post-doctoral research fellow.

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 25–33, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



26 C. Blum and M. Blesa

f(Tk) =

( ∑
e∈E(Tk)

w
E
(e)

)
+

( ∑
v∈V (Tk)

w
V
(v)

)
, (1)

where E(T ) and V (T ) denote the edges of the tree T and its nodes, respectively.
The edge-weighted version of the KCT problem was first tackled by exact

approaches [14, 8, 17] and heuristics [12, 11, 8]. Soon, the research focused on
the development of more appealing metaheuristics: two evolutionary computa-
tion approaches [1, 4], three tabu search methods [2, 15, 4], different variations of
variable neighborhood search (VNS) [18] and two ant colony optimization (ACO)
approaches [7, 4]. Two sets of benchmark instances exist: one was introduced for
the empirical evaluation of the VNS-based approaches in [18], and the other one
for the metaheuristics proposed in [4]. The variable neighborhood decomposition
search (VNDS) algorithm proposed in [18] is the state-of-the-art method for the
first set, and the ACO algorithm proposed in [7] is so for the second set.

Less results are known for the node-weighted KCT problem. Greedy-based
heuristics were proposed in [12], and the first metaheuristic approaches were
presented in [5]. The only existing benchmark set for the node-weighted KCT,
together with the currently best metaheuristic (a VNDS), are introduced in [6].

Our contribution. A polynomial-time dynamic programming (DP) algorithm for
finding optimal k-cardinality trees in bigger edge-weighted trees was proposed
in [16]. This algorithm was used in well-working heuristics for the edge-weighted
KCT problem [12]. Recently, we extended this algorithm to be applied to the
general (edge and/or node-weighted) KCT problem [3]. We show how a standard
ACO algorithm (see [4]) can be improved by applying the DP algorithm in [3] in
the following way: Instead of producing k-cardinality trees, the ants produce trees
with more than k edges. To these trees we then apply the dynamic programming
algorithm in order to obtain the best k-cardinality trees embedded in them. Our
experimental results show that our algorithm improves over the standard ACO
algorithm for the KCT problem. Moreover, our algorithm is able to improve
current state-of-the-art results for node-weighted grid graph instances.

The remainder of the paper is organized as follows. In Section, 2 we describe
our hybrid algorithm. In Section 3, we present the experimental evaluation,
before we conclude this work in Section 4.

2 The ACO-DP Algorithm

ACO [9, 10] emerged in the early 90’s as a novel nature-inspired metaheuristic
for the solution of combinatorial optimization problems. The inspiring source
of ACO is the foraging behaviour of real ants. When searching for food, ants
initially explore the area surrounding their nest in a random manner. As soon as
an ant finds a food source, it carries some of the food found to the nest. During
the return trip, the ant deposits a chemical pheromone trail on the ground. The
quantity of pheromone deposited, which may depend on the quantity and quality
of the food, will guide other ants to the food source. The indirect communica-
tion established via the pheromone trails allows the ants to find shortest paths
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Algorithm 1 ACO-DP for the KCT problem
input: a node and/or edge-weighted graph G, a cardinality k < |V | − 1, and
a tree size l with k ≤ l ≤ |V | − 1
T bs

k ← null, T rb
k ← null

cf ← 0, bs update ← false
forall e ∈ E do τe ← 0.5 end forall
while termination conditions not satisfied do

for j = 1 to na do
Tl

j ← ConstructTree(T ,l)
if (l > k) then Tk

j ← DynamicTree(Tl
j) end if

end for
T ib

k ← argmin{f(Tk
1), . . . , f(Tk

na)}
Update(T ib

k ,T rb
k ,T bs

k )
ApplyPheromoneValueUpdate(cf ,bs update,T ,T ib

k ,T rb
k ,T bs

k )
cf ← ComputeConvergenceFactor(T , T rb

k )
if cf ≥ 0.99 then

if bs update = true then
forall e ∈ E do τe ← 0.5 end forall
T rb

k ← null
bs update ← false

else
bs update ← true

end if
end if

end while
output: T bs

k

between their nest and food sources. This behaviour of real ants in nature is ex-
ploited in ACO in order to solve discrete optimization problems using artificial
ant colonies.

We combine a standard ACO algorithm [4] with the dynamic programming
algorithm in [3], and denote the resulting algorithm as ACO-DP. Algorithm 1
captures the framework of this new hybrid approach. In the pheromone model
used, the set of pheromone trail parameters T contains a parameter Te (with
pheromone value τe) for each e ∈ E. After the initialization of the variables
T bs

k (i.e., the best-so-far solution), T rb
k (i.e., the restart-best solution), and cf

(i.e., the convergence factor), all the pheromone values are set to 0.5. At every
iteration, each of the na ants construct probabilistically an l-cardinality tree. If
l > k, the dynamic programming algorithm from [3] is applied to extract the best
k-cardinality tree embedded in the l-cardinality tree. Finally, before the next it-
eration starts, some of the solutions are used for updating the pheromone values.
The details of the methods in this framework are explained in the following.

– ConstructTree(T ,l): Henceforth, we denote the two nodes that are con-
nected by an edge e with ve,1 and ve,2. To build an l-cardinality tree, an ant
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starts from an edge e that is chosen probabilistically in proportion to the values
τe/(w

E
(e) + w

V
(ve,1) + w

V
(ve,2)). At each construction step an ant extends its

current tree by adding a node and an edge such that the result is again a tree.
Let, at an arbitrary construction step, N be the set of nodes that fulfill the
above condition. For each v ∈ N let Nv be the set of edges that have v as an
end-point, ant that have their other end-point—denoted by ve,o—in the current
tree. If an ant chooses v ∈ N to be added to the current tree, edge emin ∈ Nv

that minimizes w
E
(e) + w

V
(ve,o) is also added to the current tree. It remains

to be specified how an ant chooses a node v ∈ N : In det % of the cases, an ant
chooses the node v that minimizes w

E
(emin)+w

V
(v). In 100−det % of the cases,

v is chosen probabilistically in proportion to w
E
(emin) + w

V
(v).

– DynamicTree(Tl
j): This procedure applies the dynamic programming al-

gorithm for node and/or edge-weighted trees in [3] to an l-cardinality tree Tl
j

(where j denotes the tree constructed by the jth ant). The algorithm returns
the best k-cardinality tree Tk

j embedded in Tl
j .

– Update(T ib
k ,T rb

k ,T bs
k ): In this procedure T rb

k and T bs
k are set to T ib

k (i.e., the
iteration-best solution), if f(T ib

k ) < f(T rb
k ) and f(T ib

k ) < f(T bs
k ), respectively.

– ApplyPheromoneUpdate(cf ,bs update,T ,T ib
k ,T rb

k ,T bs
k ): In the same way as

described in [4], our ACO-DP algorithm may use three different solutions for up-
dating the pheromone values: (i) the iteration-best solution T ib

k , (ii) the restart-
best solution T rb

k and, (iii) the best-so-far solution T bs
k . Their influence depends

on the convergence factor cf , which provides an estimate about the state of
convergence of the system. To perform the update, first an update value ξe for
every pheromone trail parameter Te ∈ T is computed:

ξe ← κib · δ(T ib
k , e) + κrb · δ(T rb

k , e) + κbs · δ(T bs
k , e) ,

where κib is the weight of T ib
k , κrb the weight of T rb

k , and κbs the weight of T bs
k

such that κib + κrb + κbs = 1.0. The δ-function is the characteristic function of
the set of edges in the tree, i.e., for each k-cardinality tree Tk,

δ(Tk, e) =
{

1 : e ∈ E(Tk)
0 : otherwise

Then, the following update rule is applied to all pheromone values τe :

τe ← min {max{τmin, τe + ρ · (ξe − τe)}, τmax} ,

where ρ ∈ (0, 1] is the evaporation (or learning) rate. The upper and lower
bounds τmax = 0.99 and τmin = 0.01 keep the pheromone values always in the
range (τmin, τmax), thus preventing the algorithm from converging to a solution.
After tuning, the values for ρ, κib, κrb and κbs are chosen as shown in Table 1.

– ComputeConvergenceFactor(T , T rb
k ): This function computes, at each itera-

tion, the convergence factor as

cf ←
∑

e∈E(T rb
k

) τe

k · τmax
,
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Table 1. The schedule used for values ρ, κib, κrb and κbs depending on cf (the con-

vergence factor) and the Boolean control variable bs update

bs update = false bs update = true
cf < 0.7 cf ∈ [0.7, 0.9) cf ≥ 0.9

ρ 0.05 0.1 0.15 0.15
κib 2/3 1/3 0 0
κrb 1/3 2/3 1 0
κbs 0 0 0 1

(a) Tuning results for 20x20 random node-weighted grid graphs. From left
to right, the results for cardinalities 40, 80, 120, 160, and 200 are shown

(b) Tuning results for edge-weighted graphs with 500 nodes. From left to
right, the results for cardinalities 50, 100, 150, 200, and 250 are shown

Fig. 1. Tuning results. In each of the five matrices in (a) and (b), the columns corre-

spond to the 6 values of det, and the rows to the 5 values of l (e.g., the matrix position

(2, 2) corresponds to the gray value of the tuple (det = 80, l = k + s))

where τmax is again the upper limit for the pheromone values. The convergence
factor cf can therefore only assume values between 0 and 1. The closer cf is to
1, the higher is the probability to produce the solution T rb

k .

3 Experimental Results

We implemented ACO-DP in C++, and run experiments on a PC with a 3 GHz
Intel Pentium IV processor and 1 Gb memory. In the previous section we specified
the values of all parameters of ACO-DP except for two crucial ones: det, the per-
centage of deterministic steps during the tree construction, and l, the size of the
trees constructed by the ants. For their determination, we conducted a parameter
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tuning by running ACO-DP for all combinations of det ∈ {75, 80, 85, 90, 95, 99}
and l ∈ {k, k + s, k + 2s, k + 3s, k + 4s}, where s = (|V | − 1 − k)/4.

To obtain instances for tuning, we randomly generated 10 20x20-grid node-
weighted graph instances, and applied ACO-DP exactly once for each (det, l)
combination and for each cardinality k ∈ {40, 80, 120, 160, 200}. This gives a
value averaged over the 10 graphs for each (det, l, k) triple. For each k, we then
ranked the resulting 30 values and translated them into gray scale: the best of the
30 values received gray value 1.0 (i.e., black), and the worst received gray value
0.0 (i.e., white). These results, expressed in gray values, are shown in Figure 1(a).
We did the same for the 10 edge-weighted graphs with 500 nodes from the
benchmark set proposed in [18] (for cardinalities k ∈ {50, 100, 150, 200, 250}).
The results are shown in Figure 1(b).

Both for node-weighted grid graphs and for edge-weighted graphs, the tuning
results show that a setting l > k is always better, which means that ACO-DP
always improves on the standard ACO algorithm. With respect to the tuning
results, we chose the setting (det = 85, l=k+2s) for the application of ACO-
DP to node-weighted grid graphs, and the setting (det = 95, l = k + 2s) for
the application to edge-weighted graphs. With these settings, we applied our
algorithm to some of the existing benchmarks.1

Results for the node-weighted benchmark. We applied ACO-DP to all node-
weighted grid graph instances from [6], i.e., 10 30x30 instances, another 10 of
40x40, and another 10 with 50x50 nodes. The results are shown in Table 2.
The first table column indicates the graph type, and the second one indicates
the tested cardinality. We compared our results to the state-of-the-art algorithm
VNDS in [6] and to the heuristic DynamicTree (Prim) in [3]; the latter constructs
a spanning tree of the given graph, and applies the dynamic programming al-
gorithm to it. For these approaches, together with our ACO-DP approach, the
table shows the average value obtained for each (n, k) combination (note that
each algorithm was applied exactly once to each of the 10 instances of a graph
type). The best value for each (n, k) combination is given in bold font. For ACO-
DP we additionally provide the relative deviations (in %) from VNDS (headed
by dvnds/%), and from DynamicTree (Prim) (headed by ddtp/%). The last table
row provides the averages over these relative deviations. The machine used for
running VNDS is about 7 times slower than our machine. Therefore, we used as
time limits for ACO-DP one seventh of the time limits of VNDS in [6].

The results show that ACO-DP is on average 1.28% better than VNDS, and
2.51% better than DynamicTree (Prim). They also show that ACO-DP seems in
general to have advantages for smaller cardinalities, and that ACO-DP seems to
become better—in comparison to VNDS—with growing problem instance size.

1 Concerning the computational overhead, note that with l = k + 2s the time needed
for constructing a solution for our smallest cardinality takes about 6 times longer
than with l = k. While for our biggest cardinality the time needed for constructing
a solution is only about 0.3 times longer than with l = k.
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Table 2. Results for node-weighted grid graphs in [6]. As time limits for ACO-DP we

used one seventh of the time limits of VNDS as given in [6]

n k VNDS DynamicTree (Prim) ACO-DP
qvnds qdtp qaco dvnds/% ddtp/%

30x30 100 8571.9 8612.2 8203.7 -4.2954 -4.7432
200 17994.4 18491.6 17850.1 -0.8019 -3.4691
300 28770.9 29488.6 28883.9 0.3927 -2.0506
400 42114 42618.6 42331.9 0.5174 -0.6727
500 59266.4 59662 59541.7 0.4645 -0.2016

40x40 150 18029.9 18495.3 17527.1 -2.7887 -5.2348
300 38965.9 39220.4 37623.8 -3.4442 -4.0708
450 61290.1 62118.3 60417 -1.4245 -2.7388
600 86422.3 87935.4 86594.7 0.1994 -1.5246
750 117654 119303 118570 0.7785 -0.6140

50x50 250 37004 38007.1 35995.2 -2.7261 -5.2934
500 81065.8 80247.9 77309.9 -4.6331 -3.6611
750 128200 128224 125415 -2.1723 -2.1908

1000 182220 184103 181983 -0.1300 -1.1516
1250 250962 253116 253059 0.8355 -0.0224

d/% -1.2818 -2.5093

Table 3. Results for edge-weighted graphs in [18]. As time limits for ACO-DP we used

one tenth of the time limits of VNDS as given in [18]

n k VNDS DynamicTree (Prim) ACO-DP
qvnds qdtp qaco dvnds/% ddtp/%

1000 100 5828 5841.9 5827.2 -0.0137 -0.2516
200 11893.7 11927.5 11910.1 0.1378 -0.1458
300 18196.6 18225.6 18217.4 0.1143 -0.0449
400 24734 24766.4 24757.8 0.0962 -0.0347
500 31561.8 31593.3 31613.8 0.1647 0.0648

2000 200 23538.3 23543.6 23479 -0.2519 -0.2743
400 48027.3 48086.2 48030.4 0.0064 -0.1160
600 73277.8 73394.2 73392.9 0.1570 -0.0017
800 99491.2 99623.2 99801.4 0.3117 0.1788

1000 126485 126916 127325 0.6639 0.3222
3000 300 35186.1 35203.5 35160.3 -0.0733 -0.1227

600 71634.7 71729.2 71862.8 0.3184 0.1862
900 109463 109631 110094 0.5764 0.4223

1200 148826 148997 149839 0.6803 0.5649
1500 189943 190080 191627 0.8867 0.8141

d/% 0.2516 0.1041
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Results for the edge-weighted benchmark. We also applied ACO-DP to some of
the edge-weighted graph instances from [18], i.e., 10 instances with 1000, 2000
and 3000 nodes, respectively. The results are shown in Table 3 in the same way
as outlined for Table 2. Note that also a VNDS (a different one) is the current
state-of-the-art algorithm for these instances. The machine that was used to run
VNDS is about 10 times slower than our machine. Therefore, we used as time
limits for ACO-DP one tenth of the time limits of VNDS in [18].

The results show that in contrast to the node-weighted grid graph case, ACO-
DP seems not to reach the state-of-the-art results; ACO-DP can improve them
only for small cardinalities. This might be due to the much higher density of the
edge-weighted graph instances (w.r.t. the node-weighted grid graph instances).
Note that the difference in quality is minimal; on average ACO-DP is only 0.25%
worse than VNDS, and 0.1 % worse than DynamicTree (Prim).

4 Conclusions

A successful combination of ACO and dynamic programming has been proposed
for solving a general (edge and/or node-weighted) version of the NP-hard k-
cardinality tree problem. The results obtained indicate that the hybrid algorithm
outperforms the standard ACO algorithm. Furthermore, for node-weighted grid
graphs, the hybrid algorithm outperforms the current state-of-the-art VNDS
method. Further experiments have shown that the results obtained depend on
topological properties of the graphs (e.g., density, d-regularity, etc.) rather than
the tackled problem version (i.e., edge or node weighted).
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Abstract. There are many papers in the literature that deal with the
problem of the design of a fuzzy system from a set of given training ex-
amples. Those who get the best approximation accuracy are based on
TSK fuzzy rules, which have the problem of not being as interpretable
as Mamdany-type Fuzzy Systems. A question now is posed: How can
the interpretability of the generated fuzzy rule-table base be increased?
A possible response is to try to reduce the rule-base size by generaliz-
ing fuzzy-rules consequents which are symbolic functions instead of fixed
scalar values or polynomials, and apply symbolic interpolations tech-
niques in fuzzy system generation. A first approximation to this idea is
presented in this paper for 1-D functions.

1 Introduction

The problem of estimating an unknown function f from samples of the form
(−→x k, zk); k=1,2,..,K; with zk = f(−→x k)∈ R and −→x ∈ R

N (i.e. function approxi-
mation from a finite number of data points), has been and is still a fundamental
issue in a variety of scientific and engineering fields. Inputs and outputs can
be continuous and/or categorical variables. This paper is concerned with con-
tinuous output variables, thus considering regression or function approximation
problems [4].

Generally, there are three ways to solve the function approximation problem
from a set of numerical data:

1. by building a mathematical model for the function to be learned
2. by building a model-free system
3. by seeking human experts’ advice

One limitation of the first method is that accurate mathematical models for
complex non-linear systems either do not exist or can only be derived with great
difficulty. Therefore, the theory of traditional equation-based approaches is well
developed and successful in practice only for linear and simple cases [4].

Recently, model-free systems, such as artificial neural networks or fuzzy sys-
tems, have been proposed to avoid the knowledge-acquisition bottleneck [1], [2].
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Fuzzy systems provide an attractive alternative to the “black boxes” character-
istic of neural network models, because their behavior can be easily explained
by a human being.

Many fuzzy systems that automatically derive fuzzy IF-THEN rules from
numerical data have been proposed in the bibliography to overcome the problem
of knowledge acquisition [2], [6]. An important study in this context was carried
out in [8].

The approaches presented in [3],[7],[6] need a fixed structure for the rules.
However, the distribution of the membership functions (shape and location)
has a strong influence on the performance of the systems. It is usually difficult
to define and tune the membership functions and rules. These limitations have
justified and encouraged the creation of intelligent hybrid systems that overcome
the limitations of individual techniques. Genetic algorithms (GA’s) and artificial
neural networks (ANN’s) offer a possibility to solve this problem [2], [1], [5].

This paper proposes a generalization based on the learning method proposed
in [4] to automatically obtain the optimum structure of a fuzzy system and derive
fuzzy rules and membership functions from a given set of training data, using a
hybridization between fuzzy systems and traditional equation-based approaches
using symbolic interpolation. We will propose and study a basic application of
the idea for one dimensional (1-D) continuous functions. Our aim is to obtain
an analytical partitioned description of a 1-D function domain, using symbolic
interpolation to determine some possible analytical equations for each partition
while, at the same time, the number and definition of each partition is optimized.
Each partition of the input domain is associated with a trapezoidal membership
function that can be intuitively interpreted without effort.

2 Statement of the Problem

We consider the problem of approximating a continuous single-input single-
output function to clarify the basic ideas of our approach, since the extension
of the method to a multiple-input is straightforward. Let us consider a set D
of desired input-output data pairs, derived from an unknown 1-D function or
system F. Each vector datum can be expressed as (x, y)k and k=1,2,...,K. Our
fuzzy system comprises a set of n IF-THEN fuzzy rules having the following
form:

IF x is Xi THEN y = fi(x) (1)

where i=1..n with n being the number of membership functions of the input
variable and fi(x), j=1..n, is a analytical equation associated to rule (partition
of x domain). Using the above notation, the output of our fuzzy system can be
expressed as follows:

F̃ (xk;R,C) =
∑

n

i=1 fi(x) · Ui(x)∑
n

i=1 Ui(x)
(2)

where an explicit statement is made of the dependency of the fuzzy output,
not only on the input vector, but also on the matrix of rules R and on all the
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parameters that describe the membership functions C. The problem considered
in this paper may be stated in a precise way as that of finding a configuration
C and generating a set of fuzzy rules from a data set D of K input-output pairs,
such that the fuzzy system correctly approximates the unknown function F. The
function to be minimized is the sum of squared errors:

J(R,C) =
∑
k∈D

(F (xk)− F̃ (xk;R,C))2. (3)

The index selected to determine the degree of accuracy of the obtained fuzzy
approximation is the Normalized Root-Mean-Square Error (NRMSE) defined as:

NRMSE =

√
e2

σ2
y

(4)

where σ2
y is the mean-square value of the output data, and e2 is the mean-square

error between the obtained and the desired output. This index is independent
of scale factors or number of data.

3 Proposed Approach

In this section we present the basics of the algorithm we have implemented and
studied. Figure 1 shows a flowchart describing the structure of the algorithm.

Fig. 1. Algorithm’s flowchart

Before starting the algorithm, we must find an upper bound to the number
of partitions for the input variable. For this purpose, we compute the number of
local maxima and minima of the underlying function, with the idea that in the
worst case, linear functions can be use to approximate the segments in between.
Throughout the algorithm, the number of partitions will be optimized starting
from this maximal value. As can be seen from Fig. 1, the algorithm performs a
search for the best system in a top-down fashion, i.e. starting from the biggest
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number of partitions, it tries to optimize both the location of each partition
and the function used in the consequent of each fuzzy rule. After generating
every system, it is analyzed to try to share equations between rules in order to
reduce the number of rules. The procedure is to try to apply for each rule, the
consequents (equations) of rules of adjacent partitions and use the best one. The
procedure iterates until no new change can be performed. Finally, we optimize
the membership functions parameters (see subsection 3.2) using the Levenberg-
Marquardt algorithm and calculate the NRMSE for the final system.

For a given number of partitions, the algorithm in charge of making such
optimization is presented in figure 2.

Fig. 2. Local search algorithm for optimization of equation structure

Figure 2 represents the sub-algorithm that is the core of our method. It
considers each one of the i partitions at a time. For each partition, an equation
F is generated and its constants optimized as explained in subsection 3.1; then
iteratively we generate mutated forms of F, optimizing its constants and we
accept or reject it if it is better than the actual F. The algorithm iterates until
a minimum value of NRMSE or a maximum number of iterations performed are
not reached.

3.1 Representation of Rules Consequents: Symbolic Equations

In order to have the least limited possible set of usable functions as consequents
and use symbolic integration techniques, we have represented them as a vector
of elements that represent a equation in Reverse Polish Notation (RPN) with a
set of possible nodes:

1. Variable: x.
2. Constant: a real value.
3. Binary operators: +, -, *, ‘safe /’ . We have defined ‘a safe b’ as a

1+b2 , the
reason is to prevent divisions by zero.
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4. Unary operators: - (negation), cos, sin, tanh, atan, ‘safe ln(a)’, ‘limited ea’.
We have defined ‘safe ln (a)’ as ln(1 + a2), the reason is to prevent ∞
values; and ‘limited ea’ as e−a2

, the reason is to prevent strong function
value variations.

Nodes that are ‘variable’ or ‘operator’ have associated 2 implicit constants: 1
multiplicative and another additive. Note that these constants are distinct than
the ‘constant’ node type. This large number of constants by equation gives a lot
of flexibility to the procedure and helps in the optimization stage (for example,
the input and output domains can be implicitly normalized in an automatic
way).

To limit the complexity of the results we have quoted the size of the equations
to 10 elements in the executions.

With this representation, we can apply “mutation” operators that make pos-
sible to use local search algorithms to equations in order to optimize their struc-
ture itself. A mutation consist in 75% of probability of choosing one of the nodes
in the equation tree and substitute all the subtree beyond by another one of the
same length; and 25% of probability of substituting the equation by a new one.

3.2 Membership Functions of the System

Intuitively, the results of the algorithm should be an indication of the kind of
functions that seem to follow the output of the function to model, in some in-
tervals of the input variable; but we should not forget the “transitions” between
them. For these, trapezoidal membership functions can be of much help to im-
plement that idea.

As is well known, we can define a trapezoidal membership function over
the interval [0,1] using 4 parameters, 0 ≤ z1 ≤ c1 ≤ c2 ≤ z2 ≤ 1. In our
approach, we have also restricted the membership functions making them share
some parameters in order to insure a soft union of functions parts, in the form
determined by their indexes. For example, for t+ 1 partitions, we have:

U0(x) =

⎧⎨
⎩

1 0 ≤ x < c0,2
c1,1−x

c1,1−c0,2
c0,2 ≤ x < c1,1

0 otherwise
...

Ui(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x−ci−1,2
ci,1−ci−1,2

ci−1,2 ≤ x < ci,1
1 ci,1 ≤ x < ci,2

ci+1,1−x
ci+1,1−ci,2

ci,2 ≤ x < ci+1,1

0 otherwise
...

Ut(x) =

⎧⎨
⎩

x−ct−1,2
ct,1−ct−1,2

ct−1,2 ≤ x < ct,1
1 ct,1 ≤ x < 1
0 otherwise

(5)
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4 Simulation Results

To see how the proposed approach works and to facilitate its understanding, in
this Section we use an artificial example generated combining the following three
functions (see Fig. 3)

f1(x) = e−5x · sin(2πx)
f2(x) = ln(1 + x2) + 0.2

f3(x) = 0.25 ∗ sin(5πx+ π/2) + 0.6
(6)

using trapezoidal membership functions as

f(x) = f1(x)U(x, 0, 0, 0.13, 0.33) +
f2(x)U(x, 0.13, 0.33, 0.47, 0.67) + f3(x)U(x, 0.47, 0.57, 1, 1). (7)
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Fig. 3. Membership functions, original functions and the combination of them used in

the example

We decided to parse the function with 1000 homogenously distributed points,
without noise, and applied the proposed algorithm with the results given by
Tables 1 and 2:

Table 1. Statistical results obtained by the proposed methodology for the example

N of Partitions Best NRMSE MEAN NRMSE VAR NRMSE AVG of final N of rules

5 0.060 0.066 0.000 5.000

4 0.064 0.078 0.000 3.000

3 0.094 0.134 0.000 3.000

2 0.129 0.178 0.034 2.000

1 0.034 0.113 0.008 1.000
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Table 2. Best result obtained by the algorithm

Nodes x x cos * x tanh x ‘safe ln’ * +

constants

Multiplicative -2.002 -7.362 0.601 -0.481 -6.830 0.055 9.027 -0.078 1.809 -4.968

Additive 0.722 1.302 -0.398 -1.094 1.933 1.149 -5.939 1.801 -1.761 2.640
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Fig. 4. Output (dotted line) of the best solution found by the algorithm

Table 3. Number of fuzzy rules needed to get an NRMSE similar to the one obtained

by the proposed algorithm

N of Rules NRMSE

40 0.061

35 0.062

30 0.063

25 0.065

20 0.071

15 0.088

10 0.149

It is interesting to note that the solution with just one partition (therefore
with a single expression) has been the one with the best performance result. The
coded equation generated for this case was the one presented in Table 2.

In order to compare with other works, we have applied an adaptation of the
method presented in [4] to obtain fuzzy systems with NRMSE similar to the one
generated by our method. Table 3 shows these results, where we can see that
very complex (grid-based) fuzzy systems are needed for this case in order to have
an accuracy which is still worse than that obtained by the proposed approach.

Thus, applying symbolic integration to obtain structured fuzzy rules can
reduce the complexity of the fuzzy system, in the sense that less number of rules
are needed (in some cases, in a very dramatic proportion). But the consequents
themselves are a bit complicated to interpret; it’s a part that needs further
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research but we thing that this is a very interesting approach to the reduction
of the fuzzy rule base.

5 Conclusions

This paper has dealt with the problem of reducing the size of the rule base in the
design of a fuzzy system from a set of given training examples. For that purpose,
we have generalized the fuzzy-rules consequents allowing them to be symbolic
functions instead of fixed scalar values or polynomials, and applying symbolic
interpolations technics in the fuzzy system generation. The results indicate that
this is a possible good application of symbolic interpolation to reduce the fuzzy
rules base complexity, but it’s a little far from being effective to increase the
interpretability of the whole system. In future works, the method will be extend
to multiple-input, single-input functions, using Gaussian membership functions,
more practical for n-D problems. We will also try to define a theory about
symbolic equation creation and operation for human understandability, with
the idea to endow the equations generated with as much relevant meaning as
possible.
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Abstract. This paper presents a study based on the empirical results of
the average first hitting time of Estimation of Distribution Algorithms.
The algorithms are applied to one example of linear, pseudo-modular,
and unimax functions. By means of this study, the paper also addresses
recent issues in Estimation of Distribution Algorithms: (i) the relation-
ship between the complexity of the probabilistic model used by the al-
gorithm and its efficiency, and (ii) the matching between this model and
the relationship among the variables of the objective function. After an-
alyzing the results, we conclude that the order of convergence is not
related to the complexity of the probabilistic model, and that an algo-
rithm whose probabilistic model mimics the structure of the objective
function does not guarantee a low order of convergence.

1 Introduction

The most important questions concerning Evolutionary Algorithms (EAs) are
how efficiently an EA will optimize a given objective function and which classes
of objective functions can be optimized efficiently. Time complexity is a key
issue in the analysis of EAs. It shows how efficiently an algorithm can face a
large problem.

Recently, a new kind of EAs called Estimation of Distribution Algorithms
(EDAs) [1] has appeared. In recent research on EDAs [2, 3], important ques-
tions related to the first hitting time have been raised. Does the first hitting
time decrease when the complexity of the probabilistic model used by the algo-
rithm increases? Is the algorithm’s capability of detecting and exploiting the
(in)dependencies of the objective function related to efficiency? In order to
deepen our knowledge on these questions, we offer empirical results of the aver-
age first hitting time for some instances of EDAs: UMDA, TREE and EBNABIC

(see Section 2) applied to one example of linear, pseudo-modular and unimax
functions. Our aim is to compare them.

The rest of this paper is organized as follows. Section 2 introduces EDAs and
the instances that will be used in this work. The functions studied are introduced
in Section 3. Section 4 explains the experiments carried out and presents the
results. Finally, we draw conclusions in Section 5.
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2 Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDAs) [1, 4] are based on GAs and con-
stitute an example of stochastic heuristics based on populations of individuals,
each of which encodes a possible solution to the optimization problem. These
populations evolve in successive generations as the search progresses, organized
the same way most EA heuristics are. To generate new individuals EDAs esti-
mate and sample the joint probability distribution of the individuals selected. In
Figure 1 a pseudocode for a general EDA can be seen. Unfortunately, the bottle-
neck of EDAs lies in estimating this joint probability distribution. To avoid this
problem, several authors have proposed different algorithms where simplified as-
sumptions concerning the conditional (in)dependencies between the variables of
the joint probability distribution are made. The particular algorithms used in
this paper have been chosen to provide one instance of each level of complexity
of the probabilistic model.

EDA
D0 ← Generate M individuals (the initial population) randomly
Repeat for l = 1, 2, . . . until the stopping criterion is met

DSe
l−1 ← Select N ≤ M individuals from Dl−1 according to

the selection method
pl(x) = p(x|DSe

l−1) ← Estimate the joint probability distribution
for an individual to be one of the individuals selected

Dl ← Sample M individuals (the new population) from pl(x)

Fig. 1. Pseudocode for the EDA approach

UMDA. The Univariate Marginal Distribution Algorithm (UMDA) was pro-
posed by Mühlenbein [4]. UMDA uses the simplest model to estimate the joint
probability distribution of the selected individuals at each generation, pl(x). This
joint probability distribution is factorized as a product of independent univari-
ate marginal distributions, which are usually calculated by maximum likelihood
estimation.

TREE. Baluja and Davies [5] proposed an algorithm called COMIT. This al-
gorithm uses a probabilistic model that considers second-order statistics. The
dependency structure between the variables forms a tree. The tree structure of
the probability distribution of the individuals selected at each generation is es-
timated using the algorithm proposed by Chow and Liu. The parameters, given
the structure, are calculated by maximum likelihood estimation. In the original
work, COMIT applied a local optimizer to each individual generated. We have
eliminated this step in order to carry out a fair comparison. In other words, this
paper refers to TREE as an algorithm that does not apply a local optimizer.

EBNA. The Estimation of Bayesian Networks Algorithm (EBNA) was intro-
duced by Larrañaga et al. [6]. This algorithm allows statistics of unrestricted
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order in the factorization of the joint probability distribution. This distribution
is encoded by a Bayesian network that is learned from the database containing
the individuals selected at each generation. Formally, a Bayesian network is a
pair, (S,θ), representing a graphical factorization of a probability distribution.
The structure, S, is a directed acyclic graph which reflects the set of conditional
(in)dependencies among the variables, while θ is a set of parameters for the local
probability distributions associated with each variable.

In EBNA learning the probabilistic model at each generation of the algorithm
means learning a Bayesian network from the individuals selected. There are
different strategies to learn the structure of a Bayesian network. Here the ‘score +
search’ method is used. In this method, given a database, D, and a Bayesian
network whose structure is denoted by S, a value which evaluates how well
the Bayesian network represents the probability distribution of D is assigned.
Different EBNA algorithms can be obtained by using different scores. In this
work we have used the BIC score (based on penalized maximum likelihood).

After defining the score, we have to set a search process to find the Bayesian
network that maximizes the score given the set of individuals selected. As we need
to find an adequate model structure as quickly as possible, a simple algorithm
which returns a good structure, even if not optimal, is preferred. An interesting
algorithm with these characteristics is Algorithm B. Algorithm B is a greedy
search which starts with an arc-less structure and, at each step, adds the arc
with the maximum score improvement. The algorithm finishes when there is no
arc whose addition improves the score. The parameters of the Bayesian network
are calculated by maximum likelihood.

3 The Functions Used

We optimize particular cases of three problem classes of pseudo-Boolean func-
tions: linear, pseudo-modular and unimax functions. To briefly analyze each
objective function we set a neighborhood structure: the neighbor solutions N(x)
of a given solution x ∈ {0, 1}n are composed of x and all points at Hamming
distance 1.

The particular linear function analyzed in this work is f(x) =
∑n

i=1 i · xi,
xi ∈ {0, 1}. Clearly (1, . . . , 1) is the only global maximum for this function, and
the value of f(x) at this point is n(n+1)

2 . It should be stressed that this function
can be optimized variable by variable. Taking this fact into account, a suitable
probabilistic model that corresponds to the relationship between the variables of
this function assumes that all the variables are independent. Therefore, UMDA
seems to be a good candidate to optimize it.

The pseudo-modular function that we have used is f(x) =
∑n

i=1

∏i
j=1 xj ,

with xj ∈ {0, 1}. For this fitness function the only optimal solution is (1, . . . , 1),
and the value of f(x) at this point is n. The variables of this function present a
chain of pairwise dependencies, where xi depends on xi−1, i = 1, . . . , n− 1. This
fact suggests that TREE is a suitable model to optimize it.
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In the experiments carried out, we have used a well-known unimax func-
tion: the long path function [7]. It is important to stress that it only makes sense
if n is odd. The optimal point in the long path problem is (1, 1, 0, . . . , 0) and the
function value is 0. In long path problems, the relationship between the variables
of the problem are not evident, and the EBNABIC algorithm, therefore, seems
to be the most adequate one to optimize these functions.

4 Experimental Results

In order to find the average first hitting time of the EDAs introduced in Sec-
tion 2, we have carried out experiments using those algorithms to maximize the
different functions in Section 3. The empirical results for each algorithm and
each objective function have been fitted to curves (in the least squares sense)
in terms of problem size, using “Mathematica” program. We have measure the
“goodness” of each fit with the coefficient of determination and the mean squared
error. After comparing those quantities for various fits we have chosen the fit
with greater coefficient of determination and lower mean squared error. Finally,
all this information has been graphically presented.

The population size, M , was fixed to avoid dependency of the first hitting
time on this parameter (as done in previously published works [8]), thus we
fixed M to the individual size n. The stopping condition is the same for each
algorithm: they stop when they find the optimum for the first time. The best
individuals are selected (truncation selection).

Next, in order to set up the number of individuals selected and the type of
elitism used, we illustrate how a new population is created. Once the population
Dl−1 is created, the n/2 best individuals of Dl−1 are used to estimate the joint
probability distribution pl(x). After that, n − 1 individuals are sampled from
pl(x), obtaining D∗

l . Finally the new population Dl is created by selecting the n
best individuals from Dl−1∪D∗

l . This way, we make sure that the best individual
in population Dl−1 will not get lost. To ensure that the algorithm goes through
the optimum, the maximum likelihood estimation of parameters is modified via

EDA
D0 ← Generate M = n, individuals (initial population) randomly

Define: fmax = max {f(x) : x ∈ {0, 1}n}
Repeat for l = 1, 2, . . . until fDl = fmax

DSe
l−1 ← Select the n/2 best individuals from Dl−1

pl(x) = p(x|DSe
l−1) ← Estimate the joint probability distribution for

an individual to be one of the individuals selected, using
Laplace correction when estimating the the parameters

D∗
l ← Sample n − 1 individuals from pl(x)

Dl ← Select the n best individuals from Dl−1 ∪ D∗
l

Define fDl = max {f(x) : x ∈ Dl}

Fig. 2. Pseudocode for the EDA approach used in the experiments
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Fitting Curve Order

UMDA 1.2964·n0.60888 O(nε) 0.6<ε<1

TREE −57.928+55.91 log(n) O(log n)

EBNABIC −32.943+38.763 log n O(log n)

Fig. 6. Fitting curves for the different

EDAs in the optimization of the linear

function and their order

Laplace correction. A pseudocode for a general algorithm used in the experiments
can be seen in Figure 2.

We run each algorithm 1,000 times for each objective function and each
problem dimension, each time recording the generation in which the optimum
was reached for the first time. Due to the computational cost associated with the
learning of a Bayesian network at each iteration, the problem dimension of the
EBNA algorithm is lower than in the rest. The problem dimensions used for the
UMDA and TREE algorithms ranged from 5 to 300 in the linear function, from 5
to 150 in the pseudo-modular function, and from 5 to 65 in the unimax function.
For EBNABIC they ranged from 5 to 150 in the linear and pseudo-modular
functions and from 5 to 65 in the unimax function.

4.1 Summarizing the Results

After obtaining the results for each algorithm and each objective function, we
have found a simple formula that approximates these numerical results, fitting a
curve through the data obtained. Furthermore, we can offer a general idea con-
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cerning the expected time complexity for each algorithm. We show four figures
for each function, the last of them being a table. The first three figures show the
results obtained for an EDA when optimizing the objective function. The table
entries are: (i) the curve that fits the results obtained for each EDA and (ii) the
order of the fitting curve.

Linear Function. The results in the linear function can be seen in Figures 3
to 6. They show that UMDA has the best behavior (O(nε), 0.6 < ε < 1). In
this case, the probabilistic model of UMDA, that seemed to be the one that
best corresponded with the relationship between the variables of the problem,
obtains the best average first hitting time.

Pseudo-Modular Function. The results for the pseudo-modular function can
be seen in Figures 7 to 10. As can be seen in Figure 10, all the algorithms have the
same linear (O(n)) behavior. If we take into account the fitting curves, UMDA’s
results appear slightly better than the others. Here the correspondence between
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function

the probabilistic model used by the algorithm and the relationship between the
variables of the problem does not imply a better average first hitting time.

Unimax Function. The results for the unimax function are given in Figures 11
to 14. As can be seen in Figure 14 all the algorithms have the same quadratic
behavior (O(n2)). Taking into account the fitting curves, TREE seems to have
better behavior than the others. Again, the correspondence between the proba-
bilistic model used by the algorithm and the relationship between the variables
of the problem does not imply a better average first hitting time.

5 Conclusion

Based on empirical results, this work offers new information on the first hitting
time of some EDAs applied to a number of objective functions. Two main con-
clusions have been reached. On one hand, the average optimization time in the
experiments is not related to the complexity of the probabilistic model used by



Average Time Complexity of Estimation of Distribution Algorithms 49

the algorithm. A greater complexity of the probabilistic model of the EDA does
not imply a greater efficiency or a low order of the first hitting time. On the
other hand, EDAs whose probabilistic models reflect the relationship between
the variables of the problem do not obtain a better order of the first hitting time.

In order to improve the statistical analysis carried out, in future research
we will (i) run the algorithm more than 1,000 times, (ii) record at each genera-
tion the standard deviation and (iii) enlarge the range of n (to provide a more
sensible fit).
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Abstract. The Shortest Common Supersequence problem is a hard
combinatorial optimization problem with numerous practical applica-
tions. Several evolutionary approaches are proposed for this problem,
considering the utilization of penalty functions, GRASP-based decoders,
or repairing mechanisms. An empirical comparison is conducted, using
an extensive benchmark comprising problem instances of different size
and structure. The empirical results indicate that there is no single best
approach, and that the size of the alphabet, and the structure of strings
are crucial factors for determining performance. Nevertheless, the repair-
based EA seems to provide the best performance tradeoff.

1 Introduction

The Shortest Common Supersequence (SCS) problem is a classical problem from
the realm of string analysis. Roughly speaking, the SCS problem amounts to find-
ing a minimal-length sequence S of symbols such that every string in a certain
set L can be generated from S by removing some symbols of the latter. The re-
sulting combinatorial problem is enormously interesting, not only from the point
of view of Theoretical Computer Science, but also from an applied perspective.
Indeed, it has applications in planning, data compression, and bioinformatics
among other fields [1, 2, 3].

Unfortunately, the SCS problem has been shown to be hard under various
formulation and restrictions [4, 5, 6] (a summary of these hardness results is
provided in Sect. 2). This way, although exact approaches have been proposed
to tackle this problem (see e.g., [7]), these are impractical for even moderate-
size problem instances. Hence, heuristic approaches are in order. In this sense,
greedy approaches have been popular. For example, one can cite the Majority
Merge (MM) algorithm, and related variants [8]. However, these heuristics are
not the ultimate solvers for this problem due to their myopic functioning. More
sophisticated techniques such as evolutionary algorithms (EAs) can be used to
overcome the limitations of greedy techniques.

This work will analyze and compare four different evolutionary approaches to
the SCS problem, involving either a direct search in the space of supersequences,
or using auxiliary search spaces and more complex decoding mechanisms for
obtaining high-quality solutions.
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2 The Shortest Common Supersequence Problem

Let us start by formally defining the SCS problem in its decisional version:

Shortest Common Supersequence Problem
Instance: A set L ofm strings {s1, · · · , sm} or arbitrary length over an alphabet
Σ (i.e., si ∈ Σ∗, for 1 � i � m), and a positive integer k.
Question: Does there exist a string s ∈ Σ∗, |s| � k, such that s is a superse-
quence1 of every si ∈ L?

Having defined the problem, let us now consider its computational
complexity.

2.1 Complexity Results for the SCS Problem
The SCS problem can be shown to be NP-hard, even if strong constraints are
posed on L, or on Σ. For example, it is NP-hard in general when all si have
length two [2], or when the alphabet size |Σ| is two [5]. It must be noted that
–despite being important– NP-hard results are usually over-stressed; in fact,
there are many problems that can be efficiently solved in practice, yet they are
NP-hard.

Parameterized complexity [9] tries to deal with this issue, providing a more
sensible characterization of hardness. The key idea is to isolate hardness (i.e.,
non-polynomial behavior) within a certain set of parameters. This way, if these
parameters are kept fixed, the problem can be efficiently2 solved for large prob-
lem sizes. Vertex Cover is a good example of this situation: it is NP-hard,
but it can be solved in linear time in the number of vertices, when the size of the
vertex cover sought is kept fixed. Problems such as Vertex Cover for which
this hardness-isolation is possible are termed fixed-parameter tractable (FPT).
Non-FPT problem will fall under some class in the W−hierarchy. Hardness for
the parameterized class W [1] is the current measure of intractability.

Several parameterizations are possible for the SCS problem. Firstly, the max-
imum length k of the supersequence sought can be taken as a parameter. If the
alphabet size is constant, or another parameter, then the problem turns in this
case to be FPT, since there are at most |Σ|k supersequences. However, this is
not very useful in practice because k � max |si|. If the number of strings m is
used as parameter, then SCS is W [1]−hard, and remains so even if |Σ| is taken
as another parameter [3], or is constant [6]. Failure of finding FPT results in this
latter scenario is particularly relevant since the alphabet size in biological prob-
lems is fixed (e.g., there are just four nucleotides in DNA). Furthermore, notice
that absence of FPT algorithms implies the non-existence of fully polynomial
time approximation schemes (FPTAS) for the corresponding problem.

1 s is a supersequence of r if r = ε (where ε is the empty string) or if s = αs′, r = α′r′

and s′ is a supersequence of r′ (α = α′) or s′ is a supersequence of r (α �= α′).
2 In time O(f(k)nc), where k is the parameter, n is the problem size, f is an arbitrary

function of k only, and c is a constant independent of k and n.
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2.2 Heuristics for the SCS Problem

The hardness results mentioned in the previous subsection motivate the utiliza-
tion of heuristic approaches for tackling the SCSP. One of the most popular
algorithms for this purpose is Majority Merge (MM). This is a greedy algorithm
that constructs a supersequence incrementally by adding the symbol most fre-
quently found at the front of strings in L, and removing these symbols from the
corresponding strings. More precisely:

Heuristic MM (L = {s1 · · · , sm})
1. let s← ε
2. do

(a) for α ∈ Σ do let ν(α) ←
∑

si=αs′
i
1

(b) let β ← max−1{ν(α) | α ∈ Σ}
(c) for si ∈ L, si = βs′i do let si ← s′i
(d) let s← sβ

until
∑

si∈L |si| = 0

The myopic functioning of MM makes it incapable of grasping the global
structure of strings in L though. In particular, MM misses the fact that the
strings can have different lengths [8]. This implies that symbols at the front
of short strings will have more chances to be removed, since the algorithm has
still to scan the longer strings. For this reason, it is less urgent to remove those
symbols. In other words, it is better to concentrate in shortening longer strings
first. This can be done by assigning a weight to each symbol, depending of the
length of the string in whose front is located. Branke et al. [8] propose to use
precisely this string length as weight, i.e., step 2a in the previous pseudocode
would be modified to have ν(α) ←

∑
si=αs′

i
|s′i|. This modified heuristic will be

termed weighted MM (WMM).
Several other heuristics were also defined in [8] on the basis of WMM. For

example, one of them has ν(α) ← |WMM({s1|α, · · · , sm|α})| (to be minimized),
where s|α is the string obtained by removing α from the front of s; ties are
broken by maximizing |WMM ({si | si = αs′i})|. A more interesting heuristic
results from the combination of EAs and WMM. In this heuristic, the EA is
used to evolve weights for each character of every string. These weights are
utilized within step 2a, modifying the influence of symbols in each string. This
is done by multiplying the WMM weight with the evolved weight, i.e., ν(α) ←∑

si=αs′
i
wpαi,i|s′i|, where pαi is the position of the current front symbol α in the

original string si. In a further refinement, the EA is used also to evolve a basic
value to be added to each weight before evaluation.

This EA approach is similar to the EA used in [10] for the multidimensional
knapsack problem, in which a greedy heuristic was used to generate solutions,
and weights were evolved in order to modify the value of objects (thus making
the underlying heuristic take different decisions). Next section will explore alter-
native EA definitions in which the search is conducted in search spaces different
to this weight space.
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3 Evolutionary Approaches to the SCS Problem

Clearly, one of the difficulties faced by an EA when applied to the SCS problem
is the existence of feasibility constraints, i.e., an arbitrary string s ∈ Σ∗, no
matter its length, is not necessarily a supersequence of strings in L. Typically,
these situations can be solved in three ways: (i) allowing the generation of infea-
sible solutions and penalizing accordingly, (ii) using a repairing mechanism for
mapping infeasible solutions to feasible solutions, and (iii) defining appropriate
operators and/or problem representation to avoid the generation of infeasible
solutions. These three possibilities will be explored below.

Let us firstly consider the simplest version, namely the use of a penalty func-
tion. The idea is to have an EA evolving strings in Σ∗, using the supersequence
length as the quality measure for feasible solutions, and adding an extra penalty
term for infeasible solutions. This has been implemented as follows: let s be the
tentative solution provided by the EA, and let L = {s1, · · · sm} be the target
strings; then, the fitness (to be minimized) is

fitness (s, L) =

⎧⎨
⎩

0 if ∀i : si = ε
1 + fitness(s′, L|α) if ∃i : si 
= ε and s = αs′

|MM(L)| if ∃i : si 
= ε and s = ε
(1)

This algorithm will be termed Penalty EA, and relies in MM for providing a
heuristic assessment on how much longer a string should be to account for un-
covered string suffixes in L. An obvious variant consists of injecting the actual
sequence returned by MM back to the candidate solution. Thus, the sequence is
repaired, resulting in a feasible solution. More precisely, the repairing function
ρ : Σ∗ × (Σ∗)m → Σ∗ can be described as follows:

ρ (s, L) =

⎧⎪⎪⎨
⎪⎪⎩
s if ∀i : si = ε
ρ(s′, L) if ∃i : si 
= ε and �i : si = αs′i and s = αs′

αρ(s′, L|α) if ∃i : si = αs′i and s = αs′

MM(L) if ∃i : si 
= ε and s = ε

(2)

As it can be seen, this repairing function not only completes s in order to have a
valid supersequence, but also removes intermediate symbols that are not present
at the front of any string at a certain step. Thus, it also serves the purpose of
local improver. This algorithm is termed Repair EA.

The third approach is to have the EA handling uniquely feasible solutions. In
this case, we have considered the utilization of an auxiliary space, and a smart
decoder in order to perform the mapping to the sequence space. This decoder
can be based on either MM or WMM, and borrows some ideas from greedy
randomized adaptive search procedures (GRASP). This latter metaheuristic also
relies on an underlying greedy heuristic, and proceeds iteratively by selecting at
each step an attribute of the solution from a candidate list [11]. This selection can
be typically done by using a qualitative criterion (i.e., a candidate is selected
among the best k elements in the candidate list, k being a parameter), or a
quantitative criterion (i.e., a candidate is selected among the elements whose
quality is within a certain range).
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One of the potential problems of the basic GRASP procedure described before
relies on the selection of the parameter for selecting an attribute value from the
candidate list. As shown in [12], using a single fixed value for this parameter may
hinder finding high-quality solutions. Several options are possible to solve this
problem. On one hand, a learning-based strategy termed reactive GRASP was
proposed [13]. On the other hand, the utilization of EAs to evolve the sequence
of selection decisions was presented in [14]. This latter approach is precisely
considered here. To be precise, the EA is used to evolve a sequence of integers
〈δ1, · · · , δn), δi ∈ [1..|Σ|], where n =

∑m
i=1 |si|. At each step of the decoding

process, a ranked list of the potential symbols to be added to the supersequence
is constructed using either the MM or the WMM criterion; the value δi indicates
that the δi-th best symbol is chosen at the i-th step. Notice that the construction
of the supersequence will in general be accomplished in many less steps than n.

4 Experimental Validation

The experiments have been done with a steady-state EA (popsize = 100, pX =
.9, pm = 1/n, maxevals = 100, 000), using binary tournament selection, uniform
crossover, and random-substitution mutation. Three different sets of problem
instances have been considered in the experimentation. The first one is composed
of random strings with different lengths. To be precise, each instance is composed
of eight strings, four of them with 40 symbols, and the remaining four with 80
symbols. Each of these strings is randomly built, using an alphabet Σ. Four
subsets of instances have been defined using different alphabet sizes, namely
|Σ| =2, 4, 8, and 16. For each alphabet size, five different instances have been
generated.

The second set of instances comprises strings whose structure is deceptive for
greedy heuristics such as MM or WMM. These are the following (cf. [8]):

– L1 = {9× a40, 4× ba39, 2× bba38, 1× bbba37}. The optimal solution for this
instance is to firstly remove the three b’s, and then remove the forty a’s. It
thus has length 43.

– L2 = {9 × a40, 4 × b13a27, 2 × b26a14, 1 × b39a}. This instance is similar to
L1, and again the optimal solution is to firstly remove the b’s, i.e., b39a40, a
solution of length 79.

– L3 = {8× a20b20, 8× b20c20}. The optimal solution in this case is a20b20c20.

Finally, a more realistic benchmark consisting of strings with a common origin
has been considered. A DNA sequence from a SARS coronavirus strain has been
retrieved from a genomic database3, and has been taken as supersequence; then,
different sequences are obtained from this supersequence by scanning it from
left to right, and skipping nucleotides with a certain fixed probability. In these
experiments, the length of the supersequence is 158, the gap probability is 10%,
15%, or 20% and the number of so-generated sequences is 10.

3 http://gel.ym.edu.tw/sars/genomes.html, accession AY271716.
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Table 1. Results of the different heuristics on 8 random strings (4 of length 40, and

4 of length 80), for different alphabet sizes |Σ|. The results of MM and WMM are

averaged over 150 executions, and the results of the EAs are averaged over 30 runs. In

all cases, the results are further averaged over five different problem instances

MM WMM Penalty EA
|Σ| best mean ± std.dev. best mean ± std.dev. best mean ± std.dev.

2 115.0 120.46 ± 2.16 114.8 116.13 ± 0.89 119.0 123.61 ± 2.52
4 164.2 175.47 ± 5.02 157.8 161.85 ± 2.81 200.2 223.31 ± 12.18
8 227.0 249.33 ± 6.92 210.4 219.61 ± 4.90 366.8 445.94 ± 23.48
16 309.2 333.57 ± 9.08 282.8 296.07 ± 5.31 538.2 569.74 ± 11.73

Repair EA GRASP-EA(MM) GRASP-EA(WMM)
|Σ| best mean ± std.dev. best mean ± std.dev. best mean ± std.dev.

2 111.2 112.58 ± 0.75 113.0 116.95 ± 1.97 110.8 113.31 ± 1.49
4 151.6 155.17 ± 1.85 160.6 167.47 ± 3.11 151.6 157.81 ± 2.98
8 205.4 213.47 ± 3.97 217.6 228.18 ± 4.22 204.0 211.01 ± 3.05
16 267.0 281.81 ± 5.88 286.2 297.53 ± 4.94 271.2 278.15 ± 2.97

Table 2. Results of the different heuristics on the deceptive problem instances. The

results of MM and WMM are averaged over 150 executions, and the results of the EAs

are averaged over 30 runs

MM WMM Penalty EA
best mean ± std.dev. best mean ± std.dev. best mean ± std.dev.

L1 157 157.00 ± 0.00 92 92.00 ± 0.00 43 43.00 ± 0.00
L2 121 121.00 ± 0.00 91 91.00 ± 0.00 79 79.00 ± 0.00
L3 68 77.73 ± 2.98 79 79.46 ± 0.50 60 60.07 ± 6.42

Repair EA GRASP-EA(MM) GRASP-EA(WMM)
best mean ± std.dev. best mean ± std.dev. best mean ± std.dev.

L1 43 43.00 ± 0.00 43 43.00 ± 0.00 43 43.00 ± 0.00
L2 79 79.00 ± 0.00 79 79.00 ± 0.00 79 79.00 ± 0.00
L3 60 60.00 ± 0.00 60 60.00 ± 0.00 60 60.00 ± 0.00

First of all, the results for random strings are shown in Table 1. WMM per-
forms better than MM, and both the repair-based EA and the WMM-based EA
outperform the remaining algorithms. The MM-based EA is capable of beating
MM, and produce similar results to those of WMM; however, it cannot compete
with the repair-based EA or the WMM-based EA. Notice also the poor results
of the plain Direct EA (it cannot even produce a feasible solution for |Σ| = 16).

It is interesting to note the U-shaped behavioral pattern of the EAs with
respect to the basic heuristics. This is illustrated in Fig. 1, that shows the ratio
between the percentage of improvement of the EAs (with respect to MM), and
the percentage of improvement of WMM (also with respect to MM). The pattern
for the MM-based EA and the WMM-based EA is the same (save for the scale
factor) with a minimum at |Σ| = 4; however, this pattern is shifted for the
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Table 3. Results of the different heuristics on the strings from the SARS DNA sequence

for different gap probabilities. The results of MM and WMM are averaged over 150

executions, and the results of the EAs are averaged over 30 runs

MM WMM Penalty EA
gap% best mean ± std.dev. best mean ± std.dev. best mean ± std.dev.

10% 158 158.00 ± 0.00 158 158.00 ± 0.00 350 428.00 ± 26.83
15% 158 158.00 ± 0.00 158 158.00 ± 0.00 358 397.87 ± 20.86
20% 160 227.77 ± 25.75 231 234.41 ± 1.88 339 377.30 ± 18.87

Repair EA GRASP-EA(MM) GRASP-EA(WMM)
gap% best mean ± std.dev. best mean ± std.dev. best mean ± std.dev.

10% 158 158.00 ± 0.00 163 181.60 ± 14.55 163 171.97 ± 8.42
15% 158 158.00 ± 0.00 199 218.70 ± 8.83 191 212.60 ± 9.04
20% 165 180.80 ± 15.73 205 222.47 ± 8.88 212 222.27 ± 5.37

Fig. 1. Improvement ratios of the different EAs with respect to WWM for different

alphabet sizes

repair-based EA that has its minimum at |Σ| = 8. At any rate, the performance
of the repair-based EA is here very similar to that of the WMM-based EA.

The results for the deceptive problem instances are shown in Table 2. As
expected, both MM and WMM are fooled by the problem structure. However,
the EAs are capable of finding consistently the optimal solutions without major
difficulties. This emphasizes the important role played by the evolutionary search
in this problem.

Finally, the results for the strings from the SARS DNA sequence are shown in
Table 3. The basic heuristics perform quite well for low gap probability (i.e., for
larger strings). However, neither the MM-based EA nor the WMM-based EA can
match this performance (recall that |Σ| = 4, that is, the lower performance point
for these EAs). For the larger gap probability there is a remarkable performance
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drop of the basic heuristics, and GRASP-based EAs can catch up with these. The
repair-based EA offers the best results throughout the three problem instances,
performing significantly better than the remaining algorithms.

5 Conclusions

Four different EAs have been proposed and compared for the SCS problem.
The main goal has been to determine which of the typical constraint-handling
procedures is more appropriate for this problem. The experimental results seem
to indicate that the best performance tradeoff is provided by the repair-based
EA: it behaves much better than the other EAs in some problem instances, and
similarly to these in the remaining ones. The GRASP-based EAs are located
at the next performance level, the WMM-based EA performing better than the
MM-based EA. Future work will be directed to test other underlying heuristics
for decoding solutions. The repair-based EA seems to be the adversary with
which such new EAs should be confronted.
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Abstract. Artificial Neural Networks (ANNs) are important Data Min-
ing (DM) techniques. Yet, the search for the optimal ANN is a challeng-
ing task: the architecture should learn the input-output mapping without
overfitting the data and training algorithms tend to get trapped into lo-
cal minima. Under this scenario, the use of Evolutionary Computation
(EC) is a promising alternative for ANN design and training. Moreover,
since EC methods keep a pool of solutions, an ensemble can be build
by combining the best ANNs. This work presents a novel algorithm for
the optimization of ANNs, using a direct representation, a structural
mutation operator and Lamarckian evolution. Sixteen real-world classi-
fication/regression tasks were used to test this strategy with single and
ensemble based versions. Competitive results were achieved when com-
pared with a heuristic model selection and other DM algorithms.

Keywords: Supervised Learning, Multilayer Perceptrons, Evolutionary
Algorithms, Ensembles.

1 Introduction

Artificial Neural Networks (ANNs) denote a set of connectionist models inspired
in the behavior of the human brain. In particular, the Multilayer Perceptron
(MLP) is the most popular ANN architecture, where neurons are grouped in
layers and only forward connections exist [3]. This provides a powerful base-
learner, with advantages such as nonlinear mapping and noise tolerance, in-
creasingly used in the Data Mining (DM) and Machine Learning (ML) fields
due to its good behavior in terms of predictive knowledge [8].

The interest in MLPs was stimulated by the advent of the Backpropagation
algorithm in 1986 and since then, several fast variants have been proposed (e.g.,
RPROP) [9]. Yet, these training algorithms minimize an error function by tun-
ing the modifiable parameters of a fixed architecture, which needs to be set a
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priori. The MLP performance will be sensitive to this choice: a small network
will provide limited learning capabilities, while a large one will induce general-
ization loss (i.e., overfitting). Thus, the correct design of the MLP topology is
a complex and crucial task, commonly addressed by trial-and-error procedures
(e.g. exploring different number of hidden nodes), in a blind search strategy,
which only goes through a small set of possible configurations. More elaborated
methods have also been proposed, such as pruning [14] and constructive [5] al-
gorithms, although these perform hill-climbing, being prone to local minima. In
addition, the gradient-based procedures used for the MLP training are not free
from getting trapped into local minima when the error surface is rugged, being
also sensitive to parameter settings and to the network initial weights.

An alternative is to optimize both the structure and weights by using Evo-
lutionary Computation (EC), which performs a global multi-point (or beam)
search, quickly locating areas of high quality, even when the search space is
very complex. The combination of EC and ANNs, called Evolutionary Neural
Networks (ENNs), is a suitable candidate for topology design, due to the er-
ror surface features [16]: the number of nodes/connections is unbounded; the
mapping from the structure to its performance is indirect; changes are discrete;
and similar topologies may present different performances. Moreover, since EC
performs a global search, it is expected to overcome local minima and reach
the optimal set of weights. Ensembles are another promising DM/ML research
field, where several models are combined to produce an answer [2]. Often, it is
possible to build ensembles that are better than individual learners. One interest-
ing way to build ANN ensembles is based on the use of heterogeneous topologies,
where a family of MLPs with distinct structures (and therefore complexities) are
combined [11]. Since ENNs use a population of different neural structures, this
strategy can be easily adapted to ENNs with no computational effort increase.

In this work, a novel ENN is presented for the simultaneous optimization
of MLPs, where a direct representation is used. New topologies are achieved by
applying a structural mutation, which adds or deletes connections or weights. On
the other hand, connection weights are optimized through Lamarckian evolution
that uses a random mutation and a local learning algorithm (RPROP). This
technique will be tested in classification and regression problems, using both
single ANN and ensemble based models. Then, the results will be compared
with a heuristic ANN selection procedure, as well with other DM/ML methods.

The paper is organized as follows. First, a description is given on the datasets
used (Section 2.1). Then, the neural and evolutionary models are presented (Sec-
tions 2.2 and 2.3). In Section 3 the experiments performed are described and the
results analyzed. Finally, closing conclusions are drawn in Section 4.

2 Materials and Methods

2.1 Classification and Regression Datasets

This work endorses two important DM/ML problems: classification and regres-
sion tasks. The former requires a correct association between input attributes
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Table 1. A summary of the data sets used

Task Inputs Examples Classes
Num. Bin. Nom.

Balance 4 0 0 625 3
Bupa 6 0 0 345 2
Car 0 0 6 1728 4
Cmc 5 3 1 1473 3
Dermatology 34 0 0 366 6
Ionosphere 34 0 0 351 2
Sonar 60 0 0 104 2
Yeast 7 1 0 1484 10

Abalone 7 0 1 4177 �
Auto-mpg 5 0 2 398 �
Autos 17 3 5 205 �
Breast-cancer 1 4 4 286 �
Heart-disease 6 3 4 303 �
Housing 12 1 0 506 �
Servo 2 0 2 167 �
WPBC 32 0 0 194 �

and a class label (e.g., classifying cells for cancer diagnosis). The latter deals
with a functional approximation between n-dimensional input vectors and m-
dimensional output ones (e.g., stock market prediction).

Eight classification and eight regression datasets were selected from the UCI
ML repository [13]. The main features are listed in Table 1, namely: the number
of numeric (Num.), binary (Bin.) and nominal (Nom., i.e. discrete with 3 or
more labels) input attributes, as well as the number of examples and classes.
The regression tasks are identified by the symbol � (last eight rows).

2.2 Neural Networks

The MLPs used in this study make use of biases, sigmoid activation functions
and one hidden layer with a variable number of nodes. A different approach was
followed for the regression tasks, since outputs may lie out of the logistic output
range ([0, 1]). Hence, shortcut connections and linear functions were applied on
the output neuron(s), to scale the range of the outputs (Fig. 1).

Before feeding the MLPs, the data was preprocessed with a 1-of-C encoding,
one binary variable per class, applied to the nominal attributes and all inputs
were rescaled within the range [−1, 1]. For example, the safety attribute from
the task car was encoded as: low → (1 -1 -1), med → (-1 1 -1) and high→ (-1
-1 1). Regarding the outputs, the discrete variables were normalized within the
range [0, 1] (using also a 1-of-C encoding for the nominal attributes). Therefore,
the predicted class is given by the nearest class value to the node’s output, if one
single node is used (binary variable), otherwise the node with the highest output
value is considered. On the other hand, regression problems will be modeled by
one real-valued output, which directly represents the dependent target variable.
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Fig. 1. A fully connected Multilayer Perceptron with one output neuron, bias and

shortcuts

Two distinct accuracy measures were adopted: the Percentage of Correctly
Classified Examples (PCCE), used in classification tasks; and the Normalized
Root Mean Squared Error (NRMSE), applied in the regression ones. These mea-
sures are given by the equations:

PCCE =
∑E

i=1 1 , if(Ti = Pi)/E × 100 (%)

RMSE =
√∑E

i=1 (Ti − Pi)2/E
NRMSE = RMSE∑E

i=1
Ti/E

× 100 (%)
(1)

where E denotes the number of examples; Pi, Ti the predicted and target values
for the i-th example.

In order to provide a basis for comparison with the ENN, an Heuristic ap-
proach (HNN) to model selection was defined by a simple trial-and-error proce-
dure, where fully connected MLPs, with a number of hidden nodes ranging from
0 to 20, are trained. For each MLP, the initial weights were randomly set within
the range [−1, 1]. Next, the RPROP algorithm [9] was selected for training, due
to its faster convergence and stability, being stopped after a maximum of 500
epochs or when the error slope was approaching zero. Then, the topology with
the lowest validation error (computed over non training data) is selected. The
trained MLPs will also be used to build an Ensemble (HNNE), where the output
is given by the average over all 21 MLPs.

2.3 Evolutionary Neural Network

In the past, evolutionary approaches have been proposed for training connec-
tion weights, optimizing neural topologies and evolving both architectures and
weights [16]. Yet, in order to train an ANN, an a priori architecture needs to be
set. On the other hand, evolving neural structures without weight information
will make harder the fitness evaluation due to the noisy fitness evaluation prob-
lem: different random initial weights may produce distinct performances. Hence,
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it seems natural to use the global search advantages of the EC to simultaneous
evolve topologies and weights [17].

In the present work, a Simultaneous Evolutionary Neural Network (SENN)
algorithm with a direct representation is embraced, where the genotype is the
whole MLP. The population size contains P individuals and the initial popula-
tion is created by choosing structures with a random number of hidden nodes
(between 0 and H). Then, each possible connection is set with a probability
of 50%. Next, the connection weights are randomly initialized within the range
[−1.0; 1.0]. Regarding the genetic recombination, the crossover operator was dis-
carded since previous experiments [10] revealed no gain in its use, probably due
to the permutation problem; i.e., several genomes may encode the same ANN.
Thus, the evolutionary algorithm uses two different mutation operators (Fig.
2) with equal probabilities (50%): a structural mutation [12], which works by
adding/deleting a random number (from 1 to M) of nodes or connections; and
a macro mutation, which replaces a random number of weights (from 1 to M)
by a new randomly generated value within the range [−1.0, 1.0].
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Fig. 2. Example of the application of the mutation operators

This algorithm will also be combined with a local optimization procedure,
under a Lamarckian evolution setting [1]. In each generation, L epochs of the
RPROP learning algorithm are applied to each individual (MLP) in the popula-
tion, using the examples in the training set. In past work [10], this Lamarckian
approach (with macro mutation) to training outperformed eight evolutionary
algorithms (using different crossovers and mutations) and gradient-based algo-
rithms (e.g. Backpropagation and RPROP).

The fitness function is based in the RMSE (Eq. 1) computed over a valida-
tion set. The selection procedure is done by converting the fitness value into its
ranking. Then, a roulette wheel scheme is applied, being used a substitution rate
of 50%. Finally, the algorithm is stopped after G generations. The SENN En-
semble (SENNE) will be built using the best G individuals obtained during the
evolutionary process, being the output computed as the average of the MLPs.
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3 Results and Discussion

The ANN/EC experiments were conducted using a software package developed
in JAVA by the authors. The other DM/ML techniques were computed using
the WEKA software package with its default parameters [15]:

– J48 – a classification decision tree based on the C4.5 algorithm;
– M5P – a regression decision tree (M5 algorithm);
– IB5 – a 5-Nearest Neighbor;
– KStar – an instance based algorithm; and
– SVM – a Support Vector Machine.

For each model, 10 runs of a 5-fold cross-validation process [4] (stratified in
the classification tasks) were executed. This means that in each of these 50
experiments, 80% of the data is used for learning and 20% for testing.

With the pure ANN approaches, the learning data was divided into training
(50% of the original dataset) and validation sets (30%). A different strategy was
used for the SENN, since the simultaneous evolution of weights and topologies
is very sensitive to overfitting. Thus, the validation set is divided into: a fitness
set (15%), used for the fitness evaluation, and a model selection set (15%), used
to select the best individual (or individuals when building an ensemble). The
SENN parameters were set to P = 20, H = 10, L = 50, M = 5 and G = 20.
Tables 2 and 3 show the average errors of the 10 runs for each model and task.
The last row of each table averages the global performance of each learning
strategy.

When comparing the classification results, the ANN learning models (last
four columns) are competitive, outperforming the other ML algorithms. In effect,
the few exceptions are the dermatology and sonar tasks where the SVM and
KStar get the best results. Regarding the neural approaches, the SENN excels the
HNN with a 1.1% difference in the average performance. Moreover, the ensemble
approaches (HNNE and SENNE) obtain better results when compared with the
single based versions, with improvements of 1.4% and 1.2%. Overall, the SENNE
obtains the best predictive accuracy, being the best choice in 5 tasks.

Table 2. The classification results (PCCE values, in %)

Task J48 IB5 KStar SVM HNN SENN HNNE SENNE

Balance 78.1 87.6 88.3 87.7 94.8 96.1 95.7 96.7
Bupa 64.8 60.7 65.9 58.0 68.4 68.8 68.5 69.0
Car 91.3 92.3 87.1 93.5 97.4 98.5 98.3 98.8
Cmc 51.2 47.2 49.6 48.4 50.6 53.8 52.1 54.5
Dermatology 95.7 96.6 94.5 97.4 95.1 95.5 95.9 96.5
Ionosphere 89.4 84.6 84.0 87.9 88.9 89.9 92.3 91.9
Sonar 72.5 80.5 85.2 76.7 79.9 79.3 80.9 83.6
Yeast 56.0 57.1 53.1 56.6 58.2 59.9 59.9 60.0

Mean 74.9 75.8 76.0 75.8 79.1 80.2 80.5 81.4
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Table 3. The regression results (NRMSE values, in %)

Task M5P IB5 KStar SVM HNN SENN HNNE SENNE

Abalone 24.3 25.3 24.8 25.0 23.2 23.2 23.2 22.9
Auto-mpg 11.8 15.1 14.6 13.5 14.2 12.8 12.2 12.2
Autos 13.3 21.4 21.6 13.8 14.6 15.2 14.2 13.6
Breast-cancer 40.8 40.8 43.6 44.0 42.6 42.4 47.4 40.6
Heart-disease 21.2 21.0 25.5 21.5 21.9 23.3 22.2 21.7
Housing 18.4 22.2 18.0 22.6 18.4 17.1 16.6 15.8
Servo 50.4 60.4 67.6 70.5 60.8 43.4 49.6 38.3
Wpbc 73.2 73.6 98.2 71.7 75.4 75.7 80.3 71.7

Mean 33.0 35.0 39.2 35.3 33.9 31.6 33.2 29.6

For the regression tasks, the decision tree (M5P) is quite competitive, outper-
forming all non evolutionary approaches. As before, the SENN excels the HNN
(2.3% improvement) and the ensembles behave better, with enhancements of
0.7% and 2.0%. Thus, the best alternative is the evolutionary ensemble (SENNE),
followed by its single based version (SENN).

Similar work has been reported in the literature, namely the EPNet system
[6], which obtained interesting results. However, this approach was only applied
to five UCI datasets where the best results are obtained by low complexity MLPs
(in some cases linear models). It is not surprising that, since EPNet heavily
promotes simple models, good results were obtained for these cases. In this work,
the majority of the problems demanded MLPs with a much higher number of
hidden nodes, where is it believed that the EPNet system would not excel.

4 Conclusions

In this work, a Simultaneous Evolutionary Neural Network (SENN) algorithm
is proposed, aiming at the optimization of the neural structure and weights.
This approach was enhanced by considering ensembles, which combine the best
ANNs obtained by the SENN approach. The results obtained in several real-
world classification and regression tasks confirm the competitive SENN perfor-
mances, when compared with a heuristic trial-and-error design procedure (HNN)
and with other DM/ML algorithms.

Another advantage presented by the SENN is the reduced computational
effort, when compared to an evolutionary algorithm that performs only topol-
ogy optimization [12]. Indeed, with the current setup, the computational burden
is similar to the one required by the HNN. Overall, the hybrid EC/ANN en-
semble (SENNE) presents the best predictive accuracy while requiring no extra
computation, thus being the advised choice. In future work, it is intended to
test similar techniques with other ANNs (e.g., Recurrent Neural Networks). Fur-
thermore, more elaborated ensembles could be considered, by designing fitness
functions which reward specialization [7].
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Abstract. Neural networks (NNs) and genetic algorithms (GAs) are the
two most popular bio-inspired techniques. Criticism of these approaches
includes the tendency of recurrent neural networks to produce infeasible
solutions, the lack of generalize of the self-organizing approaches, and the
requirement of tuning many internal parameters and operators of genetic
algorithms. This paper proposes a new technique which enables feasible
solutions, removes the tuning phase, and improves solutions quality of
typical combinatorial optimization problems as the p-median problem.
Moreover, several biology inspired approaches are analyzed for solving
traditional benchmarks.

1 Introduction

Solving NP-hard combinatorial optimization problems has been a core area in
research for many communities in engineering, operations research and computer
science. The interdisciplinary features of most NP-hard optimization problems
have caused a large amount of papers from many researches that have proposed
numerous and different algorithms to overcome the many difficulties of such
problems. Several researches used algorithms based on the model of organic
evolution as an attempt to solve hard optimization problems [1]. Due to their
representation scheme for search points, genetic algorithms [2] are one of the
most easily applicable representatives of evolutionary algorithms.

The idea of using neural networks to provide solutions to NP-hard optimiza-
tion problems have been pursued for over decades. Hopfield and Tank [3] showed
that the travelling salesman problem (TSP) could be solved using a Hopfield
neural network. This technique requires minimization of an energy function con-
taining several terms and parameters. Due to this technique was shown to often
yield infeasible solutions, researchers tried to either modify the energy function
or optimally tune the numerous parameters involved so that the neural network
would converge to a feasible solution.

Both GAs and NNs are addressed in this work as competed paradigm for solv-
ing combinatorial optimization problems. There exist many NP-hard combina-
torial optimization problems, although in this paper we selected the well-known
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p-median problem as a preliminary study of the two bio-inspired techniques for
solving NP-hard combinatorial optimization problems.

The outline of the paper is organized as follows: Section 2 presents the prob-
lem and a primarily integer programming formulation. In section 3 the analyzed
bio-inspired techniques are described. The experimental results are showed in
section 4, and the paper concludes summarizing our findings in section 5.

2 Problem Formulation

The p-median problem has been studied during decades and it is one of the
most popular and well-known facility location problems. The first reference to
this problem is found in the work of Hakimi (1964) [4] who proposed such op-
timization problem. The p-median problem concerns the location of p facilities
(medians) in order to minimize the total weighted distances from each point
(population center or customer) to its nearest facility. Kariv and Hakimi (1979)
[5] showed that the p-median problem on a general network is NP-hard. Rev-
elle and Swain [6] provided an integer programming formulation for the discrete
p-median problem, which is given below

Minimize
n∑

i=1

n∑
j=1

dijxij (1)

Subject to :
n∑

j=1

xij = 1 i = 1, ...n (2)

n∑
j=1

xjj = p (3)

xij ≤ xjj i = 1, ..n; j = 1, ..n (4)

where
n is the number of demand points
p is the number of facilities or medians
dij is the distance (cost) between the point i and the facility j

xij =
{

1 if the point i is assigned to the facility j
0 otherwise

xjj =
{

1 if the point j is a facility
0 otherwise

The restrictions (2) prevent that all demand points are assigned to a facility.
The constraints (3) establish the number of facilities (medians) to locate, and the
last conditions (4) assure that a demand point is assigned to an opened facility.

A number of heuristic solution techniques have been developed in an effort to
solve large-scale instances to near-optimality with a reasonable computational
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effort. Initially, these proposed procedures were based on mathematical pro-
gramming relaxation [7], dual problem [8] and branch-and-bound techniques [9].
Although one of the oldest algorithms presented by Teitz and Bart (1968) [10]
is the most popular and practical heuristic for this problem due to simplicity
and easy implementation. While these algorithms were used for solving small-
scale instances of the p-median problem, modern heuristic solutions are required
for solving large-scale instances, since these instances are intractable due to the
necessary computational effort. Thus, some modern heuristics as tabu search
[11], dynamic programming [12], heuristic concentration [13], variable neighbor-
hood search [14], neural networks [15, 16], and genetic algorithms [17] have been
applied to solve the p-median problem.

3 Bio-inspired Techniques for the p-Median Problem

In this section we present the bio-inspired techniques analyzed in this paper. We
present a first subsection on GAs, and a second one on NNs. In order to de-
sign a suitable and efficient algorithm, appropriate formulations of the p-median
problem were used to implement the algorithms. A discussion of different for-
mulations of the p-median problem can be found in [18].

3.1 Genetic Algorithms

Genetic algorithms (GAs) were initially developed by Holland in the sixties. They
are guided random search algorithms based on the model of biological evolution.
The encoding is a critical decision since a poor choice may result a poor algorithm
regardless its other features. Other important decisions include the population
size, the selection of parents to produce new solutions, the crossover operator,
the method and frequency of the mutations, and the number of generations.

Hosage and Goodchild [19] are one of the first to apply a GA for solving the
p-median problem. In their study, the solutions of the problem were encoded as a
binary string of n digits (genes). This encoding does not guarantee the feasibility
of solutions, that is the selection of exactly p facilities in each solution, and the
authors use a penalty function to impose this constraint. This is a inefficient
encoding scheme, not only does it waste memory, but also it requires unnecessary
operations for the crossover operator and for the computation of the fitness
function.

The constructive genetic algorithm (cGA) proposed by Nogueira and Furtado
[20] is other alternative to the traditional GA approach, particulary in that cGA
evaluates directly schemata. This algorithm works with a dynamic population
size which is enlarged after the use of recombination operators, or made smaller
as evolution proceeds, guided by an evolution parameter. Other different is that
the problem to be solved with a cGA are formulated as bi-objective optimization
problems; thus, two fitness functions are defined.

In other more recent work Bozkaya, Zhang, and Erkut [21] describe a fairly
complex GA and report the results comparing with the traditional exchange
algorithm proposed by Teitz and Bart [10]. Although the GA produce better
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solutions than the exchange algorithm, the converge of GA is very slow and
spend a lot of computational time.

In contrast with the GA discussed above, a goal of this study is to construct
an algorithm much simpler and very quickly that produces good solutions. In
this sense, the genetic algorithm proposed in this work is described below.

Genetic Algorithm for the p-Median Problem. The encoding used is
based on one of the models proposed by Dominguez and Muñoz [18] for solving
the p-median problem. Each solution is encoded as an integer string of length
p, where each gene of the chromosome indicate the index of facility selected as
median. For instance, the string <2, 7, 9> represents a candidate solution for
the 3-median problem where facilities 2, 7, and 9 are selected as medians.

The fitness function is directly related to the previously discussed objective
function (1). More specifically, the fitness of an individual (c) is given by the
expression (5), where n is the number of demand points, and d is the distance
function between two points.

f(c) =
n∑

i=1

(
min

1≤j≤p
{d(i, cj)}

)
(5)

Bit-flip mutation and a uniform recombination is used with a given probabil-
ity (0.2 and 0.6, respectively). Also, a roulette wheel selection is proposed in the
evolution process. Further comments on the operators are given at the beginning
of the forthcoming experimental section.

3.2 Neural Networks

Almost every type of combinatorial optimization problem has been tackled by
neural networks as Hopfield and Tank [3] showed using a Hopfield network to
solve the TSP. Researchers have been trying for over decades to make neural
networks competitive with meta-heuristics such as simulated annealing, tabu
search, or genetic algorithms. While it is well known neural networks are a very
powerful for solving problems of prediction, classification and pattern recogni-
tion, they does not appear to be as successful when applied to optimization
problems [22]. This reputation of neural networks is perhaps the cause that they
are usually missed in many optimization works.

Particulary, the p-median problem is one of the combinatorial optimization
problems with a relatively scarcity of references on neural networks. One of the
most recent works is proposed by Dominguez and Muñoz [16]. In this paper,
authors provide a recurrent neural network (RNN) similar to Hopfield network
for solving the treated problem. Additionally, a reduced formulation for the p-
median problem is proposed. This formulation allows to design a RNN with two
types of process units (allocation and location units). Although the proposed
neural network is very simple and easy to implement, the solution quality found
using this technique raises some doubts for solving small-scale instances.

In this paper, we propose an improved RNN based on the previous work. The
main purpose was to increase the solution quality. The comparative analysis show
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that the solution quality using the improved neural network is better than the
previous RNN.

Stochastic Neural Network for the p-Median Problem. Recurrent neural
networks involves the execution of a gradient descent procedure many times, and
selecting the best results obtained in these attempts. That is, the only acceptable
transitions are made from higher energy to lower energy. But in the p-median
problem that has many local minima it may not be going down the right descent.
In this paper, we suggest an alternative approach that captures essential features
of the metallurgical process of annealing.

The proposed stochastic neural network (SNN) is based on the RNN provided
by Dominguez and Muñoz [16]. Also, the proposed model by the authors is used
to design the SNN. Notation used in this paper is defined as follows

n is the number of demand points
p is the number of facilities or medians
dij is the distance (cost) between the point i and the facility j

xiq =
{

1 if the demand point i is assigned to the cluster q
0 otherwise

yjq =
{

1 if the point j is the facility of the cluster q
0 otherwise

hxiq
and hyjq

are the activation potential of the above decision variables
Tk is the temperature at the kth iteration

The dynamics of the proposed SNN is defined according to the following
expressions

xiq =

{
1 with probability P (xiq)
0 with probability 1− P (xiq)

yjq =

{
1 with probability P (yjq)
0 with probability 1− P (yjq)

(6)

where

P (xiq) =
ehxiq

/T∑n
j=1 e

hxjq
/T

P (yjq) =
ehyjq

/T∑n
r=1 e

hyjr
/T

(7)

and T is the temperature of network. The decrement function of temperature is
defined by Tk+1 = 0.999Tk.
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Table 1. Comparative results of bio-inspired techniques

pmed (n, p) Best GA RNN SNN

1 (100, 5) 5819 5819 5868 5891
2 (100,10) 4093 4093 4300 4300
3 (100,10) 4250 4250 4359 4250
4 (100,20) 3034 3181 3173 3079
5 (100,33) 1355 1663 1743 1474
6 (200, 5) 7824 7824 7867 7867
7 (200,10) 5631 5631 5881 6038
8 (200,20) 4445 4681 4835 4897
9 (200,40) 2734 3260 3202 3029
10 (200,67) 1255 1809 1887 1463
11 (300, 5) 7696 7696 7762 7892
12 (300,10) 6634 6640 6810 6781
13 (300,30) 4374 4802 4852 4843
14 (300,60) 2968 3722 3568 3309
15 (300,100) 1729 2517 2492 2033
16 (400, 5) 8162 8162 8244 8209
17 (400,10) 6999 6999 7254 7392
18 (400,40) 4809 5456 5274 5199
19 (400,80) 2845 3662 3436 3180
20 (400,133) 1789 2813 2633 2128
21 (500, 5) 9138 9138 9294 9229
22 (500,10) 8579 8579 8794 8809
23 (500,50) 4619 5335 5056 5092
24 (500,100) 2961 3903 3573 3345
25 (500,167) 1828 2912 2774 2295
26 (600, 5) 9917 9917 10158 10160
27 (600,10) 8307 8310 8713 8761
28 (600,60) 4498 5322 4996 5018
29 (600,120) 3033 4052 3672 3479
30 (600,200) 1989 3193 2915 2414
31 (700, 5) 10086 10086 10141 10086
32 (700,10) 9297 9301 9771 9941
33 (700,70) 4700 5585 5294 5221
34 (700,140) 3013 4171 3760 3507
35 (800, 5) 10400 10400 10400 10467
36 (800,10) 9934 9934 10189 10336
37 (800,80) 5057 6178 5574 5584
38 (900, 5) 11060 11060 11304 11567
39 (900,10) 9423 9429 9742 9899
40 (900,90) 5128 6197 5772 5823

4 Experimental Results

The goal of the computational analysis is to evaluate the performance of the
bio-inspired algorithms for solving the p-median problem. Initially, it is common
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sense to expect some advantage of traditional customized solvers. In this case
we are interested in analyzing the efficiency of the bio-inspired techniques in
relation to the effort of algorithm construction and the computational time. In
this sense, all analyzed algorithms are very simple and easily implementable.
Moreover, we are interested in the final accuracy of the solutions of the provided
methods.

For the experiments, we have performed 50 independent runs of each algo-
rithm in order to provide meaningful average values in the tables. We explicitly
show the error of the best solution as a percentage of its distance to the known
optimum value for each instance. Benchmarks are provided by OR-Library which
is available in http://www.brunel.ac.uk/depts/ma/research/jeb/info.html

In table 1 is shown the results obtained by the three bio-inspired techniques
analyzed. The results show that the best method depends of the ratio n/p. For
example, in small-scale instances (n/p < 10) GA is quite accurate. However,
in medium-scale instances (n/p > 10) neural networks outperform genetic al-
gorithms. Moreover, the accuracy of SNN is better than RNN, although the
computational time needed to simulate SNN is greater than RNN. We must
point out that these instances are in the range of 100 to 900 demand points,
which represents a considerable step up in size.

5 Conclusions

In this work we are analyzed a genetic algorithm, a recurrent neural network,
and a stochastic network for solving the p-median problem. The experimental
results have shown that the genetic algorithms is simple and accurate for solv-
ing small-scale problem. We think that applying GA is a good first step for
solving problems with a poor knowledge. A disadvantage of GA is the numer-
ous parameters to tune for obtaining good results. In medium-scale instances
we have shown that neural networks outperform genetic algorithms. Moreover,
the stochastic version has been more accurate than the recurrent neural net-
work.

We have considered problems with a large number of points and medians
in the aim of providing a wide set of results and analyzing the performance
of the bio-inspired algorithms. While local search or parallelism are impor-
tant issues that have leaded to accurate algorithms, in this paper we intend
to analyze simple and fast bio-inspired techniques for solving NP-hard
problems.

The fact that a simple algorithm is able of computing that accurate solutions
along with its simplicity can be a step towards making the research community
of the potential inside bio-inspired techniques. This is an important point of
view, since most authors research on new and complex algorithms reporting high
accuracy results, but that are never actually used, because they are difficult to
implement or understand.
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Abstract. The problem of optimal strategies of resource allocation for 
companies competing in the shopping malls in a metropolis is investigated in 
the context of two-dimensional three state Potts model in statistical physics. 
The aim of each company is to find the best strategy of initial distribution of 
resource to achieve market dominance in the shortest time. Evolutionary 
Algorithm is used to encode the ensemble of initial patterns of three states Potts 
model and the fitness of the configuration is measured by the market share of a 
chosen company after a fixed number of Monte Carlo steps of evolution. 
Numerical simulation indicates that initial patterns with certain topological 
properties do evolve faster to market dominance. The description of these 
topological properties is measured by the degree distribution of each company.  
Insight on the initial patterns that entail fast dominance is discussed.  

1   Introduction 

Resource allocation in a competitive world of supermarket chains in a metropolis is 
an interesting problem in econophyiscs [1-3]. The objective for a company is to find a 
strategy of allocating finite resource, which is initially insufficient to dominate the 
market, so that over time it will defeat its competitors, with maximum market share. 
Since initially each company has limited resource, and there can be many companies 
competing, an approach based on a multi-agent model seems reasonable [2]. However, 
the necessity of obtaining general insights into this complex problem requires us to 
model the multi-agent system by simple interaction among the agents: agents of the 
same company will cooperate, while agents belonging to different companies will 
compete. This leads naturally to usage of standard models in Statistical physics where 
localized spins interact with their nearest neighbors [4]. The above scenario of 
cooperation among agents of same company and competition for agents of different 
companies implies that the ferromagnetic interaction among agents is the right choice 
of model. While previous works [1-3] address only two companies, this paper 
addresses the generalization to more than two companies. For two companies, the 
simplest model that incorporates the above interaction of agents is the ferromagnetic 
Ising model. The natural spin model in Physic for the introduction of more than two 
companies is the Potts model. Here we generalize our framework for optimal strategy 
selection in the Ising model of two supermarket chains in a metropolis [2] to the Potts 
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model.The resource of each company is not sufficient to open shops in all the malls 
and each mall can accommodate only one shop. The problem for each company is to 
allocate the resource for shops so as to maximize the market share in the future, 
taking into consideration of shops changing hands and/or relocation by the 
management of each company [3]. The basic tools used in our analysis are techniques 
in statistical mechanics and Monte Carlo simulation [5] and our primitive approach of 
solving this problem consists of two steps: (1) generate all the possible configurations 
with no violation of the resources constraint, (2) perform Monte Carlo simulation of 
the model based on statistical mechanics and observe the evolution of the pattern of 
the market shares of these three companies. Note that during the Monte Carlo 
evolution, the resource constraint is not imposed, so that some companies will gain at 
the expense of others. This approach however does not satisfactorily solve the 
problem of finding a good initial configuration of resource allocation as the number of 
possible initial configurations increases exponentially with the number of shopping 
malls. A better way to address the selection of initial configuration of shops allocation 
is to reformulate our problem as an optimization problem. We first fix the time scale 
of Monte Carlo simulation by fixing the number of Monte Carlo steps.  We then 
inspect the initial patterns for those that lead to market dominance of a chosen 
company. Thus, the problem becomes a search of the set of good (or fit) initial 
configurations of resource allocation in the space of all possible configurations. By 
good configuration, we define a measure of fitness, corresponding to the market share 
of a chosen company. A natural technique for this search problem is Genetic 
Algorithm [6]. In this paper, we first introduce the model based on statistical 
mechanics, with well defined constraints on resources and the associated switching 
dynamics. We then describe the implementation of the evolutionary algorithm and 
Monte Carlo simulation. Finally, we make use of the topological analysis to analyze 
the optimal configuration.  

2   The Model and Resources Constraints 

The ferromagnetic Potts model in statistical physics is employed to study agent-based 
interacting companies. This model has been extensively studied in physics of 
magnetism [4]. It considers three spin states, which in our present context of 
econophysics becomes three competing companies, A (Black) and B (Grey) and C 
(White) on the lattice, and describes the interaction between two nearest neighbor 
spins on the lattice (with site labeled by (i,j) with energy (E), 
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vector represents the occupancy of company u on the shopping mall located at site i.  
We assume in this paper the three companies are setting up their shops in a hexagonal 
lattice represent shopping malls. Only one shop is available for each mall. The 
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analogy of market competition is shown in Figure 1. The resources constraint of the 
initial configuration is the same for each company, 1/3 of the total number of 
shopping malls. The total number of shopping malls available is 225. Each company 
must use up all the resources available.  Each hexagon can be assigned one of the 
three colors (Black, Grey or White).  

 

Fig. 1. Spin Model and Company Model 

3   Switching Dynamics in Monte Carlo Simulation  

We consider the One-shop switching process in our Monte Carlo simulation [5] for 
the evolution of pattern. Let’s assume that the energy change resulted from a switch 

of a given hexagon to color X be X
iE∆ . If C

i
B
i

A
i EEE ∆∆∆ ,,  are all non negative at 

mall i, the transition probability will be calculated by partition of unity and the 
transition probability of switching for company to X is 
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Otherwise, the company will switch to X when X
iE∆ is the most negative value 

among C
i

B
i

A
i EEE ∆∆∆ ,, . The T in the factor 1/( )kTβ =  is temperature and it 

represents the thermal noise and the Boltzmann constant k is set to 1. Discussion of 
the interpretation of this model in economics can be found in [2]. 

4   Evolutionary Algorithm: Encoding of the Initial Pattern 

The strategy of shops allocation can be represented by a triple chromosome. In this 
paper, we have 225 malls in our city so that the length of the chromosome is 225. We 
use “1”, “2”, and “3” to represent shop occupancy of company A, B, and C 
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respectively. To generate a population of initial configurations, we first prepare a 
chromosome with 1/3 “1”, 1/3 “2” and 1/3 “3”, and then randomly swap the position 
of loci. We repeat this procedure until sufficient chromosomes are generated and that 
form the initial population of our genetic algorithm. Monte Carlo simulation is then 
performed to evolve the pattern according to the switching dynamics. In each MC 
step, only one shop is switched. This MC switching mechanism is shown in Figure 2.  

 

Fig. 2. Monte Carlo Simulation of Market Competition Model 

One should note that the switching dynamics depends on temperature. In the 
context of econophysics, the switching process represents the change of loyalty of a 
particular agent from one company to another. Temperature, or the effect of thermal 
noise, corresponds for example to the effects of promotion to an agent in the process 
of competing for customers to switch their loyalty in a noisy environment. With only 
2000 MC steps, we already observe the emergence of a dominant company.  

 

Fig. 3. The Swapping Operation from an old chromosome to a new one 

The market share of a chosen company (here C) is computed after 2000 MC steps 
and it is defined as the fitness function of the chromosome in the population pool of 
initial configurations. (Note that a given initial configuration corresponds to a given 
strategy of resource allocation of the company on the hexagonal network.) After the 
fitness is computed for each chromosome of the population, selection based on fitness 
is performed. Regeneration of the pool of chromosomes for the non-survivors is 
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required. Previous study of Cheung and Szeto [3] employs mutation and repairing 
operators to implement this regeneration with resources constraint. However, this 
implementation is not efficient in the computational point of view. In most cases, 
repairing operator has to be activated to correct the target chromosome so that the 
initial configuration has equal occupancy for each of the three companies. Here we 
introduce a new swapping operation by assigning a swapping rate on each locus. If 
the swapping rate at a given locus K is larger than some given value called the global 
swapping rate, then another locus L is chosen at random and K and L will be swapped. 
This operation guarantees that each new configuration satisfies the constraint on 
resources if the old configuration also satisfies the resource constraint. Figure 3 
demonstrates the swapping mechanism. By repeating the whole process, we can 
determine the optimal initial configuration that will evolve to the highest market 
share.The optimal configuration is analyzed for its topological properties, which is a 
common technique in high dimensional network analysis [7]. Here we use the 
connectivity distribution, which is the distribution of number of edges connected to 
the neighboring shops from a mall, as the quantitative measurement of topological 
properties. The pseudo-code below shows the implementation of our algorithm 

The pseudo-code of our Genetic Algorithm for Resource Allocation  

(1) Prepare a set of initial configuration (first generation) 
Do { 

(2A)Perform Monte Carlo Simulation to evolve the pattern 
(2B)Compute the fitness function (Market Share) 
(2C)Compute Survival of Fitness 
(2D)Apply Swapping Operator 
(2E)New Generation is made 

} until 100 generations are made 
(3) Determine the optimal configuration 

(4) Analysis of this optimal configuration by topological analysis 

5   Result and Discussion 

The parameters of our model are shown in Table 1.  

Table 1. The parameters in genetic algorithm and Monte Carlo Simulation 

  Genetic Algorithm  
Parameter 

Value 
Monte Carlo  
Parameter 

Value 

Population Size 50 Temperature 0.5, 1, 1.5, 2 

Probability of swapping 0.03 

Number of generation 100 

 

MC Step 2000 
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Since the interesting case concerns market dominance, which only occurs at low 
noise level (temperature), we only discuss the result for the low T case. At 
temperature higher than a critical value, no company will dominate the market. We 
will leave the discussion of the critical temperature in another paper. Figure 4 shows 
the market share as a function of temperature.  

 

Fig. 4. Two Distinct Phases: Cluster phase and Random phase 

For the low noise level simulation, the final cluster state strongly depends on the 
initial configuration of shops. Thus our question of finding a good initial 
configuration is very meaningful and economically important. On the other hand, at 
high noise level, the final state evolved from any initial state is a randomized pattern, 
so that the discussion of what is the optimal initial configuration will be meaningless. 
This is the reason why we only analyse the low noise (T) case for the dependence of 
market share on initial configuration. The optimal strategies for “white” company at 
noise level = 0.5, 1, 1.5, 2 are extracted. They are shown in Figure 5.  

We observe that all optimal configurations for “White” company can gain more 
than 85% average market share after Monte Carlo simulation. Qualitatively, all the 
“White” shops tend to form links among themselves so as to dominate the market. We 
further investigate the configuration by computing the connectivity distribution 
function. It is shown in Figure 6.  We observe that a common feature among the 
winners, which are the white hexagons that evolve to dominate the market. We see 
that the connectivity distributions for the white company are all wider than the others. 
This observation is confirmed by fitting the connectivity distribution by a Gaussian 
and extract for the width. One of the cases is shown in Table 2. We find that the width 
of the connectivity distribution for the winner is higher than the loser in all the noise 
level tested and the peak of the Gaussian fitting is located around two. This latter fact 
is indicative of link formation.  

W. K  Cheung and K.Y. Szeto eung 
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Fig. 5. The Optimal Shops Allocation and Final Market Share at Noise Level = 0.5, 1, 1.5, 2 

      
 

    

Fig. 6. The Connectivity function with Gaussian Fitting at Noise Level = 0.5, 1, 1.5, 2 



82 

 

Table 2. The Gaussian Fitting for the Connectivity Function at Noise Level = 0.5 

Gaussian Fitting Function Center Width 
Company A 1.705 1.782 
Company B 1.768 1.603 
Company C 1.967 2.14 

Another interesting observation is that one of the opponents (Grey) has a similar 
connectivity function to the winner (White). This is indicative of the alliance of White 
and Grey to defeat the loser, which is Black. In this sense, the Potts model of three 
companies will evolve towards a model with only two companies, (Ising like), 
consisting of only the White and Grey color. Further evolution eliminates the weaker 
company, which is Grey. This gradual change in the competition among three 
companies to two companies and eventual dominance of one company has been 
clearly observed from our simulation. The topological reason for the White company 
becoming the final winner is its possessing more links than the other two companies. 
It will be interesting to investigate if this conclusion on topological property carries 
over to more general point patterns of shopping malls [8], and the relevance of 
damage spreading [9] in a competitive world.  
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Abstract. In this paper we present a new method for hybrid evolutionary 
algorithms where only a few best individuals are subject to local optimization. 
Moreover, the optimization algorithm is only applied at specific stages of the 
evolutionary process. The key aspect of our work is the use of a clustering 
algorithm to select the individuals to be optimized. The underlying idea is that 
we can achieve a very good performance if, instead of optimizing many very 
similar individuals, we optimize just a few different individuals. This approach 
is less computationally expensive. Our results show a very interesting 
performance when this model is compared to other standard algorithms. The 
proposed model is evaluated in the optimization of the structure and weights of 
product-unit based neural networks.  

1   Introduction 

Evolutionary algorithms (EAs) are efficient at exploring the entire search space; 
however, they are relatively poor at finding the precise optimum solution in the region 
where the algorithm converges to [1]. During the last few years new methods have 
been developed in order to improve the lack of precision of the EAs using local 
optimization algorithms [2]. These new methodologies are based on the combination 
of local optimization procedures, which are good at finding local optima (local 
exploiters), and evolutionary algorithms (global explorers). These are commonly  
known as hybrid algorithms. 

In this paper, we propose an alternative approach to hybrid algorithms using local 
optimization procedures. The methodology is based on the combination of an 
evolutionary algorithm, a clustering process and a local improvement procedure. If we 
want to efficiently use the hybrid algorithm, we have to reduce the computation time 
spent by the local search. So, our approach is to select a subset of the best individuals, 
perform a cluster analysis to group them, and optimize only the best individual of 
every group. 
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The main advantage of this method is that the computational cost of applying the 
optimization algorithm to just a few individuals hardly affects the total time spent by 
the algorithm. On the other hand, the use of a clustering algorithm allows the 
selection of individuals representing different regions in the search space. In this way, 
the optimized individuals are more likely to converge towards different local optima. 
The model developed is applied to the evolution of the structure and weights of 
evolutionary product-unit based neural networks. These kinds of networks are a very 
interesting alternative to sigmoid-based neural networks, but their  major drawback is 
that the optimization algorithms usually used for training a network are quite 
inefficient for training product-unit networks. So, an effective algorithm for training 
these networks is of great practical interest. In order to test the performance of the 
proposed algorithms, the networks are applied to benchmark regression problems. 

This paper is organized as follows: Section 2 describes our model in depth; Section 
3 is dedicated to a short description of product-unit based networks; Section 4 states 
the most relevant aspects of the evolution of product-unit neural networks using the 
proposed approach; Section 5 explains the experiments carried out; and finally 
Section 6 summarizes the conclusions of our work. 

2   Hybrid Evolutionary Programming Algorithms 

We propose two methods of hybrid evolutionary algorithms based on the use of a 
clustering algorithm for deciding which individuals are subject to local optimization. 
We have two different versions for the hybrid evolutionary algorithm depending on 
the stage when we carry out the local search and the cluster partitioning. The hybrid 
evolutionary programming with the clustering (HEPC) algorithm applies the 
clustering process on a large enough subset of the best individuals of the final 
population. In this method it is very important to determine the number of best 
individuals to consider as well as the number of clusters. After that, we apply the L-M 
algorithm to the best individual of each cluster. The algorithm named dynamic hybrid 
evolutionary programming with clustering (Dynamic HEPC) carries out both the 
clustering process and the L-M local search dynamically every 0G  generation. The 
final solution is the best individual among the local optima found during the 
evolutionary process. The basic aim of our methodology is the optimization of the 
number of times a local optimization algorithm is applied without reducing the 
efficacy of this algorithm. This is especially important when the algorithm is of a high 
computational cost. On the other hand, removing the local optimization procedure 
usually yields a worse performance. So, our method is a good compromise, as we 
applied the optimization algorithm to a reduced number of individuals. Moreover, the 
clustering process avails us with the possibility of selecting a subset of individuals 
with different features. In this way, the optimization algorithm is more efficient. 

The local optimization algorithm used in our work is the Levenberg- Marquardt (L-
M) optimization method. This algorithm is designed specifically for minimizing a 
sum-of-squares error [3]. In any case, any other local optimization algorithm can be 
used in a particular problem. Another feature of our approach is that the optimized 
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individuals are not included in the new population. Once the optimization algorithm is 
applied, we think that any further modification of the individual would be counter-
productive. So, these individuals are stored in a separate population till the end of the 
evolutionary algorithm. 

3   Product-Unit Neural Networks 

In order to test the validity of our model we have chosen a difficult problem, hard 
enough to justify the use of complex approaches. The problem is the automatic 
determination of the structure and weights of product-unit neural networks [4]. 
Product units enable a neural network to form higher-order combinations of inputs, 
having the advantages of increased information capacity and smaller network 
architectures when we have interaction between the input variables. Neurons with 
multiplicative responses can act as powerful computational elements in real neural 
networks. Product-unit based neural networks have a major drawback, since their 
training is more difficult than the training of standard sigmoid based networks. 
Unfortunately, the error surface for product units can be extremely convoluted, with 
numerous minima that trap backpropagation. This is because small changes in the 
exponents can cause large changes in the total error. Several efforts have been made 
to develop learning methods for product units [5],[6],[7].  Let us consider the family 
of real functions F  defined by: 

1 1
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1,2,..., , 1,2...,i k j m= =  y m ∈ . The domain of the definition of f  is the subset 

A  of k  given by { }1 2 0( , ,..., ) : 0k
n iA x x x x k= ∈ < ≤ . Using the Stone-

Weierstrass Theorem it is straightforward to prove that this family of functions is a 
dense subset of the continuous functions space defined in a compact. On the other 
hand, every function of the family can be represented as a neural network. The 
network must have the following structure: an input layer with a node for every input 
variable, a hidden layer with several nodes, and an output layer with just one node. 
There are no connections between the nodes of a layer and none between the input 
and output layers either. The network has k  inputs that represent the independent 
variables of the model, m  nodes in the hidden layer, and one node in the output layer. 

The activation of j-th node of the hidden layer is given by 
1
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jiw  is the weight of the connection between input node i  and hidden node j . The 

activation of the output node is given by 
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where jβ  is the weight of 

the connection between the hidden node j  and the output node. The transfer function 

of all nodes is the identity function. 
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4   Hybrid Evolutionary Model 

The evolution of product-unit networks uses the operations of replication and two 
types of mutation: structural and parametric. There is no crossover, as this operation is 
usually regarded as harmful [8] for network evolution. In the following paragraphs we 
are going to describe each one of the different aspects of the algorithm in detail.  

Initial population. We generate randomly 10 PN  networks and we select the best PN  

among them. So, we construct the initial population B  whose size is PN . 

Selection plan. The %r  best individuals of the population are selected from the set 

{ }best individual of B B B∗ = −  of cardinality 1PN N∗ = − . With these individuals we 

make up the population B′  of size /100PrN . 

Structural and parametric mutations. Every individual of the population B′  is 
subject to structural mutation, obtaining strucB′ . The parametric mutation is applied 

only to the best (100 ) /100pr N ∗−   individuals of  B′  obtaining paramB′ . We construct 

the population struc paramB B B′′ ′ ′= , where the cardinality of B′′  is 1PN N∗ = − . 

The structural mutation implies a modification in the structure of the function 
performed by the network and allows an exploration of different regions in the search 
space. There are five different structural mutations: node addition, node deletion, 
connection addition, connection deletion and node fusion. Parametric mutation is 
accomplished for each coefficient of the model with Gaussian noise, using a self-
adaptive annealing algorithm. For more details see [9]. 

Updated plan. The new population will be { }Best of B B B′′= . 

4.1   Clustering Partitioning Techniques 

Let { }( , ) : 1, 2,..,l l TD y l n= =x  be the training data set, where the number of samples 

is Tn . We define the following application from the family of functions F  to the 

Euclidean space Tn : 

( ) ( )( )
1,2,...,
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where   is the set of parameters of f . The application assigns to each function of 

the family the vector obtained with the values of the function over the training data 
set. Thus we can define the distance between two functions of the family as the 
Euclidean distance between the associated vectors: 
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With this distance measure, the proximity between two functions is related to their 
performance. So, similar functions using this distance will have a similar performance 
over the same regression problem. Now, considering a set of functions { }1 2, ,..., Mf f f  

of the family F , we can build the set of associated vectors { }
1 2

ˆ ˆ ˆ, ,...,
Mf f fy y y  of  n . 

The minimum sum-of-squares clustering problem is to find a partition 

{ }1 2, ,..., KP C C C=  of  { }
1 2

ˆ ˆ ˆ, ,...,
Mf f fy y y  in K  disjoint subsets (clusters) such that the 

sum of squared distances from each point to the centroid of its cluster is minimum. 
We use k-means clustering [10]. In this algorithm, the cluster centroid is defined as 
the mean data vector averaged over all items in the cluster. The number of clusters 
must be pre-assigned.  

4.2   Hybrid Evolutionary Algorithm 

As stated, we have two different algorithms depending on the stage when the 
clustering and local search algorithms are carried out: 

1. Algorithm HEPC. We apply the clustering process to the best psN  individuals 

of the final population which is divided into K  clusters 1 2, ,..., KC C C . After 

that, we apply the L-M algorithm to the best individual of each cluster. The 
individuals obtained with the local-search algorithm are stored in a local 
optimum set C .  

2. Algorithm Dynamic HEPC. We apply the clustering process and the L-M 
algorithm to the best individual of each cluster every 0G  generation and in the 

final population. The clustering process is applied on each selected generation to 
the best psN  individuals of the current population .The individuals obtained 

with the local-search algorithm are stored in C . 

In cases 1 and 2, the final solution is the best individual among the local optimum 
of set C . 

On the other hand, the parameters used are: the exponents jiw  are initialized in the 

interval [ 5,5]− , the coefficients jβ  are initialized in [ 10,10]− . The size of the 

population is 1000pN = . The maximum number of generations is 4000. The only 

parameter of the L-M algorithm is the tolerance of the error to stop the algorithm, in 
our experiment this parameter has the value 0.01. The k-means algorithm is applied to 
25%  of  the best individuals of the population. The number of clusters K  is 4 in the 
static version of HEPC. In the dynamic version the number of clusters varies from 6, 
at the beginning of the evolution, to a final value of 4 in the last generation. 

5   Experiments 

In order to test the performance of the proposed algorithms, they are applied to two 
benchmark regression problems: Friedman #1 and Sugeno functions. 
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5.1   Friedman#1 Function 

This is a synthetic benchmark dataset proposed in [11]. The function is given by: 

2
1 2 3 4 5( ) 10 sin ( ) 20( 0.5) 10 5f x x x x xπ ε= + − + + +x  

where ε  is a Gaussian random noise N(0;1) and the input variables are uniformly 
distributed in the interval (0;1]. 1000 samples are created randomly, 750 are randomly 
selected for the training set, and the remaining 250 are used as a test set. Table 1 
shows the results for Friedman#1 function. The final solution has 6 nodes in the 
hidden layer. Table 1 shows a comparison of the results of the different algorithms 
proposed, where MSEG is  

[ ] 2

G
1

1
ˆMSE

Gn

i i
iG

y y
n =

= −  

where the ˆiy  are the predicted values. In order to test the soundness of the clustering 

approach, we carried out two additional experiments. First, the same methodology of 
HEPC was applied, removing the cluster analysis. Instead of performing the 
clustering, we applied the L-M algorithm to 4K =  randomly selected individuals 
from the best 25% of the population. The generalization results after 10 runs of the 
algorithm using both methods are shown in Table 2. 

Table 1. Statistics of MSEG for different models in the Friedman#1 problem. Results of 
NeuralBAG (NBAG), Simple and General Regression Neural Networks (GRNNFA) are 
adapted from [12] and [13] 

Algorithms Mean SD Runs 
NBAG 4.502 0.268 20 
Simple 4.948 0.589 20 

GRNNFA  4.563 0.195 20 

HEPC 1.105 0.102 30 

Dynamic HEPC 1.081 0.040 30 

Table 2. Statistics of MSEG for Friedman#1 function for 10 runs of HEPC and randomly 
selecting the individuals to optimize 

Algorithm Mean SD Best Worst Mann-Whitney's U test 
HEPC 1.095 0.114 1.066 1.607  
Random 1.408 0.665 1.068 2.981 p value=0.003 

Table 2 shows that, on average, the results using the clustering are better and have 
less variance. We performed a Mann-Whitney's U test, as the results of HEPC did not 
follow a normal distribution, with a p-value of 0.003. We can conclude that the 
application of the clustering algorithm improves the results for the Friedman function. 
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The second experiment was carried out to confirm the performance of our 
approach. The HEPC method was compared to an evolutionary process, denoted by 
L-M all, where, instead of applying the optimization algorithm to the best individual 
of each cluster, we apply the optimization algorithm to every individual in  the best 
25% of the population. The results in performance and time are shown in Table 3. 

Table 3. Results for Friedman#1 function for 10 runs of HEPC and selecting all the individuals 
to be optimized. The time is measured in average seconds per generation 

 MSEG 
Algorithm Mean SD Best Worst t-test 

HEPC 1.081 0.009 1.064 1.093  
L-M all 1.081 0.010 1.071 1.098 0.993 

 Time 

Algorithm Mean SD Best Worst t-test 

HEPC 5.3 0.67 4 6  
L-M  all 76.9 8.65 64 91 0.000 

5.2   Sugeno Function 

The second benchmark problem concerns an approximation of the Sugeno function 
defined as 0.5 1 1.5 2

1 2 3 1 2 3( , , ) (1 )f x x x x x x− −= + + + . For training, 216 points for [1,6] 

interval and 125 points for testing from [1.5,5.5] interval were randomly created. The 
Average Percentage Error (APE) was used as a measure of approximation error 

1

ˆ1
*100%

n
i i

i i

y y
APE

N y=

−
=  

Final networks had at most 11 nodes in the hidden layer. Results using Dynamic 
HEPC are compared to other results obtained by Kosinski and Hirikawa [14] and 
Jankowski [15] (see Table 4).  

Table 4. Results for the Sugeno function for 30 runs of dynamic HEPC. Results of Fuzzy 
Neural Networks (FNN3), MDelt, FuzzyVINET, Incremental Neural Network (IncNet) and 
Incremental Neural Network with Rotation (Incnet Rot) are adapted from [15] 

 FNN3 MDelt FuzzyIne FuzzyVine IncN
t

IncNetRo
t

Dyn.HEPC

APET 0.63 0.72 0.18 0.076 0.119 0.053 0.065 

APEG 1.25 0.74 0.24 0.18 0.122 0.061 0.060 

 

6   Conclusions 

In this work we have proposed a new method for using local optimization procedures 
in hybrid evolutionary algorithms. This approach is based on the application of a 
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clustering algorithm for the selection of a small number of individuals subject to local 
optimization. The algorithm is applied to the optimization of the structure and weights 
of product-unit based neural networks. The results obtained in two benchmark 
problems of regression show that the hybrid algorithm provides a very good 
compromise between performance and computatioal cost.  
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Abstract. Based on Lamarckism and Immune Clonal Selection Theory, 
Lamarckian Clonal Selection Algorithm (LCSA) is proposed in this paper. In 
the novel algorithm, the idea that Lamarckian evolution described how 
organism can evolve through learning, namely the point of “Gain and Convey” 
is applied, then this kind of learning mechanism is introduced into Standard 
Clonal Selection Algorithm (SCSA). Through the experimental results of 
optimizing complex multimodal functions, compared with SCSA and the 
relevant evolutionary algorithm, LCSA is more robust and has better 
convergence. 

1   Introduction 

Prior to Charles Darwin’s evolution theory of natural selection, Jean Baptiste 
Lamarck proposed that characteristics could be acquired and passed on to their 
offspring during an organism’s life[1][2][3], which means the experiences adapting to 
the environment can be inherited, and it has been known as Lamarckian evolutionary 
theory, namely Lamarckism. Although discredited in biology[4], Lamarckian 
evolution has been proven to be a effective concept for improving artificial 
intelligence algorithms [5]. 

In fact, Lamarckism has shown powerful performance in computing[6]. Bryant A 
Julstrom applied Lamarckian evolution to the 4-cycle problem, and the results showed 
that compared with Darwinian strategy, Lamarckian strategy sometimes had a better 
performance but sometimes earlier local search of Lamarckism would lead to 
premature convergence[7]. Darrell Whitley proposed a method of one iteration of 
steepest ascent used to local search, which is a good example of Lamarckism 
application[8]. Furthermore, some researchers John J. Grefenstette[9]. Evelina 
Lamma [10]. Shinichiro YOSHII[11]applied Lamarckism to some specific problems.  

Learning mechanism is introduced into Standard Clonal Selection Algorithm 
(SCSA)[12], and Lamarckian Clonal Selection Algorithm (LCSA) is presented in this 
paper. Based on the idea “gain and convey”, LCSA makes full use of the experiences 
gained during the learning process to enhance the information communication among 
individuals, and improve the performance of algorithm. Relative function optimi- 
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zation experimental results shows that compared with SCSA and relative evolutionary 
algorithm, such as IGA[13], LCSA have better performance in global search and 
computing efficiency. 

The rest of this paper is organized as follow. Section 2 describes the basic skeleton 
of SCSA as well as some problems in it. Section 3 illustrates LCSA and its 
implementation steps. Section 4 discusses the experimental results of LCSA, SCSA 
and relative evolutionary algorithm on 10 2-dimensional multimodal functions, and 
the impact of parameters on the performance of LCSA is analyzed. Finally, Section 5 
concludes the paper with a short summary and gives a discussion for our future work. 

2   Standard Clonal Selection Algorithm (SCSA) 

Antibody Clonal Selection Theory is a very important concept in the immunology. 
Clone means reproduction or asexual propagation. A group of genetically identical 
cells descended from a single common ancestor, such as a bacterial colony whose 
members arose from a single original cell as a result of binary fission. 

Based on the antibody clonal selection in immunology, we have proposed the 
SCSA [12] in Fig.1. 

Simple Clonal Selection Algorithm (SCSA) 
Step 1 k = 0; Initialize antibody population (0)A at random and set the 

parameters of algorithm, then calculate the affinity of initialized population. 
Step 2 According to the antibody affinity and the clonal size, get a new 

antibody population ( )kA  by Clonal Selection Operator. 

Step 3 k = k + 1; if the halted condition is satisfied, the iteration is terminated, 
otherwise, return to Step2. 

Fig. 1. The skeleton of SCSA 

However, there is no learning mechanism in SCSA. As mutation operator is the 
main evolutionary operator, there is no information communication among 
individuals in population. Moreover, the probabilities of new good solution and bad 
can be generated by mutation operator are equal, thus SCSA couldn’t ensure the 
global search speed and efficiency. By introducing learning mechanism into SCSA, 
evolution and learning are combined well and supplement each other, with the 
unification between the time and space and between the genotype and phenotype, thus 
evolving the population under the guide of learning and making algorithm find the 
global optima fast and efficiently. 

3   The Skeleton of LCSA 

According to the fitness distribution in population, several subpopulations are formed 
in Fig. 2. In general, the whole candidate population is divided into two parts: high-
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fitness subpopulation Heroes and low-fitness subpopulation Non-Heroes. 
Furthermore, Non-Heroes can be divided into Employees evolving by conveying the 
Heroes’ Experiences (HE) and Civilians evolving by themselves. After iterations, 
some individuals in Employees can go into Heroes, which are called Successful 
Employees (SE), while the others are named Unsuccessful Employees (USE). In the 
same naming way, Civilians can be divided into Successful Civilians (SC) and 
Unsuccessful Civilians (USC), and USC can get Successful Civilians Experiences 
(SCE) from SC. 

 

Fig. 2. Several subpopulations are formed according to the fitness distribution in population 

Based on the division of population, the main steps of LCSA in this paper is: 

Step 1. Initialize: Set terminated condition of algorithm, mutation probability pm, 
clonal size nc, population size n, the coding length l and generate an initial binary 
population  randomly, and the generation number k=0. 

Step 2. Calculate the antibody affinity 

Step 3. Check the halted condition of algorithm: If the condition is met, the 
algorithm terminates, otherwise continue. 

Step 4. Divide the population into several parts C
dT : According to the calculated 

affinity in Step2, the population is divided as T[ ( ), ( ), ( )] = ( ( ))C
dH k C k E k T kA , 

where, Heroes is H(k) with the size hn; Civilians is C(k)with the size cn; Employees 
E(k)with the size en, moreover, 

n n nh +c +e n=  (1) 

In practice, the size of Heroes is got by selecting individuals one tenth high fitness 
population, and the others are Civilians and Employees. For example, if n is 50, and 
we can select 5 individuals with highest fitness in the candidate population to 
construct Heroes. 
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Where, E ( ) 1
ir h i nk h h= × ≤ ≤H s H , and sr is a randomly generated binary string 

with the length l:  

1 2{ , , , } {0,1} 1r L ir r r r i l∈ ≤ ≤s =  (2) 

Step 6. Clonal operating C
cT : Define 

C C C C T
c c 1 c 2 c( ) ( ( )) [ ( ( )), ( ( )), , ( ( ))]nk T k T k T k T k= =Y A a a a  (3) 

Where, C
c ( ( )) ( ) , 1,2, ,i i iT k k i n= × =a I a , Ii is a qi dimension row vector with 

element 1, which is called the qi clone of antibody ai. After clone, the population 
becomes: 

1 2( ) { ( ), ( ), , ( )}nk k k k=Y Y Y Y  (4) 

Step 7. Mutation operating C
mT : According to the mutation probability mp , the 

cloned antibody populations are mutated, C
m( ) ( ( ))k T k=Z Y . 

1 ( )C
m( ) { ( )} { ( ( ))} {( ) ( 1) ( )}mrandom p

i ij ij m ijk k T k random p k− ≤= = = ≤ − −Z z y y  (5) 

Step 8. Clonal selection operating C
sT : 1, 2, ,i n∀ = , if there are mutated 

antibodies. 

{ } { }( ) max ( ) ( ) | max ( ( )) 1,2, ,i i ij ij ik k k f k j q= = =b Z Z Z  (6) 

the probability of ( )i kb  replacing ( )i ka' is: 

( )k
s

1 when ( ' ( )) ( ( ))
' ( ) ( )

0 when ( ' ( )) ( ( ))
i i

i i
i i

f k f k
p k k

f k f k

<
= =

≥
a b

a b
a b

 
(7) 

Step 9. Gain the Successful Civilians’ Experience (SCE) C
SCET : C T

SE SCE S= [ ( )]T kC C . 

According to (9) some individuals in C(k) and E(k) can go into Heroes, which are 
called Successful Civilians (SC) S ( )kC  and Successful Employees 

(SE) S ( )kE relatively. Others are named Unsuccessful Civilians (USC) US ( )kC and 

Unsuccessful Employees (USE) US ( )kE , then SE MS ( )r k= ×C s' C , 

and MS S( ) max( ( ( )))k f k=C C . 

Step 10. Conveying HE and SCE C
TT : C T

T'( ) = [ ( )]k T kB A' . Convey HE and SCE 

to US ( )kE and US ( )kC respectively, Ii’ is a row vector with the length l, then there is: 

US US' ( ) ( ) ( )r Ek k= − × +iE I' s E H  (8) 

US US SE' ( ) ( ) ( )rk k= − × +iC I' s' C C  (9) 

From the algorithm steps above, note that Heroes with high fitness dominate the 
whole population and guide the evolution direction of the whole candidate population. 

Step 5. Get Heroes’ Experiences (HE) C
HET : C T

E HE= [ ( )]T kH H . 
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During the process of learning, HE is the most important factor; on the other hand, 
SCE from a small population is a good helper of HE, which also should be noticed. 

4   Validation of LCSA 

4.1   Experimental Results 

In order to prove the effect and efficiency of proposed algorithm, the similar type of 
evolutionary algorithm Immune Genetic Algorithm (IGA)[13] with prior knowledge 
is introduced. We regard the global hits(the percentage of the global maximum found) 
as the primary objective achieved by the algorithm and function evaluations as the 
second objective[14]. For 10 functions[15], the parameters of SCSA, LCSA are set as: 
population size n is 50, the clonal size 5, coding length 40, the maximum number of 
iteration 200, and the required precision 0.01. For comparisons, the parameters of 
IGA are fixed as: population size n is 250, the others are set the same as two 
algorithms above. The statistical results of three algorithms out of 20 runs 
respectively are summarized in Table1. For f3, f4, f5, f6, the evolutionary process of 
three algorithms are shown in Fig.3. 

Table 1. The results of IGA, SCSA and LCSA on f1- f10,. “G.hit” is the global hits. “Eval” is 
the number of average evaluations out of 20 runs 

Prob IGA SCSA LCSA 
 G. hit Eval G. hit Eval G. hit Eval 

f1 16/20 12504 20/20 2315 20/20 1605.8 
f2 20/20 1539.2 20/20 1805 20/20 1700 
f3 20/20 11479 20/20 13385 20/20 10915 
f4 14/20 18756 19/20 12035 20/20 8720.9 
f5 18/20 7044.1 20/20 3335 20/20 2797.8 
f6 20/20 15794 19/20 24050 20/20 19927 
f7 18/20 11180 20/20 8015 20/20 10340 
f8 20/20 2372.9 20/20 6155 20/20 2822.9 
f9 14/20 18022 20/20 4955 20/20 3952.3 
f10 13/20 24624 20/20 10970 20/20 5659.1 

And it is indicated from Table 1 that for all test functions, LCSA can find the 
global optima out 20 runs, namely the on the primary principle “G.hit” is 20/20, 
which shows its good robustness. For f1, f4, f5, f7, f9 and f10, IGA can’t find the global 
solution. For f4, f6, SCSA can’t achieve the global hits 20/20. These indicate LCSA 
outperforms SCSA and IGA with respect of global search. In terms of the second 
objective “Eval”, for functions f2, f6, f7 and f8 LCSA need a little more computer cost 
than SCSA and IGA, but for the others, the computer cost of LCSA outperforms is 
much less that two of them. Those are caused by the loss of diversity in the later 
evolutionary stage in LCSA. Finding better techniques to improve this weakness will 
be our future research. 

4.2   The Analysis of Parameters 

In LCSA, the main parameters are the population size n, the clonal size nc, the coding 
length l , the Civilians size cn, Employees size en and mutation probability pm. To test 
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the impact of each parameter on the global convergence (Global hits) and the number of 
function evaluations (Eval) of our algorithm, 7 parameters are generally fixed as n=50, 
nc=5, l=40, hn=5, pm=0.025, cn and en vary randomly in range [2, n-hn-2] and [2, n-hn-2] 
respectively, and the sum of cn and en is 45. Since cn and en are random numbers, 
actually there are only 5 parameters here. In experiment, we let one of them changeable, 
and set 4 of them as above fixed values. Taking  f3 for example, the the number of 
function evaluations (“Eval”) are acquired out of 20 runs for each value of parameter. 

 (a)     (b) 

 
(c) (d) 

 
     (e) 

Fig. 3. The main parameters population size n, clonal size nc, coding length l, Heroes size hn 
and mutation probability pm’s impacts on the global search and numbers of function evaluations 
of LCSA, which are shown respectively in (a), (b), (c), (d) and (e). The horizontal axis is the 
tested parameter values, and the vertical axis is the average numbers of evaluation function out 
of 20 runs 
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A) Influence of Population Size n 
Sample n by the interval of 10 from 10 to 200. It is shown in Fig.3(a) that in case that 
n=10, “Eval” is the least, and with the increase of n, it increases and the converges 
speed slower, but relevant number of iteration becomes smaller. Those suggest that 
some candidate solutions that contribute less to generating the optimal solutions due to 
the increase of n. 

B) Influence of Clonal Size nc 

Sample nc by the interval of 1 from 2 to 21 and the result shown in Fig.3(b) indicates 
”Eval” is the least when nc=4. While with nc’s increase, the convergence speed is 
slower, and the relative number of iteration becomes smaller. It indicates that after nc 
increases to some level, some candidate solutions contributing less to generating the 
optimal solutions, which is similar to the influence of n in term of this point. 

C) Influence of Coding Length l 
Sample l by interval of 10 from 10 to 100, from the result shown in Fig.3(c), l lying 
between 30 and 200 has a little influence on “Eval”. In addition, it should be note that 
with bigger coding length, the computer cost also gets more during decoding process. 

D) Influence of Heroes Size hn 

Sample hn by interval of 2 from 1 to 45. It is implies from Fig.3(d) that hn between 1 and 
45 influence on “Eval” is not very obvious, and the values are about 10000, which is 
mainly caused by the random value of cn and en, thus making the learning active and 
showing the advantage of learning to avoid the similarity between gaining and 
conveying of experiences. 

E) Influence of Mutation Probability pm 
For the analysis, sample pm by interval 0.01 from 0.01 and 0.3, but not set it as the 
reciprocal of coding length l in algorithm. It is suggested from Fig.3(e) that “Eval” 
doesn’t change a lot in the range of 0.01 and 0.1 which is a reasonable interval. But 
beyond this interval, bigger pm destroys the current population solution, thus making 
the evolution stagnate and “Eval” bigger. 

On the analysis of parameters, the parameters in LCSA only can influence the 
convergence speed, but a little the global convergence, which shows good robustness 
of algorithm. It should be noted that those parameters sets are not the best options, but 
we still get good global performances.  

5   Conclusions 

In this paper, based on immune clonal selection theory and Lamarckism, Lamarckian 
Clonal Selection Algorithm (LCSA) is presented. In detail, according to the fitness 
distribution in population, several subpopulations and experiences are formed and 
LCSA is proposed. The LCSA improves some of the drawbacks of the SCSA. The 
comparisons of the algorithms’ performances are made considering the global hits, the 
function evaluations. The LCSA can provide more efficient performance with better 
reliability on most 2-D multimodal functions in test. However, there are some 
experimental results raising the issue that LCSA may not have enough search diversity 



98 W. He et al. 

 

and influence the convergence speed during the later evolutionary stage. Hence, using 
new techniques to make LCSA better will be included in our future work. 
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Abstract. Once the behaviour of particular brain circuits has been analyzed, we 
have added up some of these patterns to Artificial Neural Networks; thus a new 
hybrid learning method has emerged. In order to find the best solution to a 
given problem, this method combines the use of Genetic Algorithms with 
particular changes to connection weights based in the behaviour observed in the 
brain circuits analyzed. The design and implementation of this combination is 
shown in feed-forward multilayer artificial neural networks, specifically created 
to solve a simple problem. We also illustrate the benefits obtained with these 
new nets from a comparison with previous results achieved by the optimal 
Artificial Neural Networks used so far for solving the same problem. 

1   Introduction 

In order to create Artificial Neural Networks (ANN) which emulate the brain and try 
to take maximum advantage of its functionality, we need a deep knowledge into its 
structure and function. 

Computational models of cells involved in learning and memory processes have 
been analyzed [3] [4] by making use of actual computer capabilities and thanks to the 
efficacy of research into computer modeling, which allows a better understanding of 
the structure and function of certain brain cells. The findings made with the help of 
these models have been used for trying to get advances in Computer Science and, 
more specifically, in Artificial Intelligence. 

Considering the behaviour observed in brain cells, we have decided to create ANN 
which integrate part of this behaviour. The objective was to check if these new ANN, 
which would mainly emulate brain circuits, were more efficient when solving simple 
problems actually solved by means of multilayer ANN trained with Genetic 
Algorithms (GA). A learning hybrid method has been designed. Such method looks 
for optimal ANN connection weights by combining, in a first learning phase, weight 
value changes following rules based in brain circuits behaviour and, in a second 
phase, training by means of GA. Details of such model can be seen further on. 
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The use of GA in the second learning phase has permitted us to incorporate this 
type of brain-observed behaviour in the first phase. Such behaviour has not been 
considered so far because of the difficulty other learning methods have to train ANN 
with more complex information processing elements than those traditionally used. 

In the present work, ANN design has focused on fully connected feed-forward 
multilayer ANN, without backpropagation and without lateral connections. These 
ANN are generally used to solve simple problems of classification and pattern 
recognition [5]. We think it is more adequate to start using the latest research about 
information processing into ANN for classification or recognition, because synaptic 
plasticity in brain connections is imitated. We have decided to apply this method into 
simple ANN; however, in the future, we hope to develop models with increasingly 
complex ANN. Thus, we look for a starting point that stimulates further research. 

2   ANN Development 

ANN development follows the satisfactory steps usually used in the construction and 
use of Connectionist Systems: design, training, test and running. 

2.1   Design 

We decided to develop feed-forward multilayer ANN fully connected without 
backpropagation and without lateral connections. They were simple ANN oriented to 
classification and pattern recognition. 

2.2   Training 

The Hybrid learning method combines a non-supervised learning method, based on 
brain cells behaviour (stage one), with a supervised learning method using GA (stage 
two). The former has already been modelized with NEURON [1] both in D. LeRay 
[3] and in A. Porto [4]. Given that it is necessary to have a population of GA 
individuals, a set of individuals was created in the first phase. Every individual is 
composed of the same values as those representing all the ANN connections weights. 
Every random set of weigths values forms a different GA individual. 

In the first phase, we study the ANN functioning with all the individuals. Every 
individual is modified every time the training pattern is presented to the ANN, 
following rules based on the neuron activity generated by that pattern. For each 
individual, every in-pattern is presented to the ANN during a number of established 
iterations. These iterations allow the application of rules based on cellular behaviour 
and constitute a pattern cycle. During each iteration, connections are modified 
according to rules depending of neural activity. We can establish the number of 
iteration we want. When the pattern cycle has finished, the ANN error for that pattern 
is calculated. It will be the difference between obtained out and expected out. ANN 
error for each pattern is stored. Later on, when all training patterns have been 
presented to the ANN, mean square error (MSE) of that individual is calculated. MSE 



Artificial Neural Networks Based on Brain Circuits Behaviour and Genetic Algorithms 101 

 

gives a measure relative to the amount of patterns supplied to ANN and permits 
comparing the error between different architectures and trial tests. 

This is the process followed for all the individuals. This phase is non supervised 
learning because when the connection weights are modified the error is not taken into 
account. 

The second learning phase (supervised learning) consists of applying GA to the 
individuals according to their MSE, which was stored in the first phase. The GA 
crosses, mutes and selects new individuals until to get it gets the individual with 
minor error. So as to develop this AG training system we will use the AG 
specifications following the J. Holland specifications [2]. 

2.3   Test and Running 

Once the training is finished and the best individual is available it is necessary to test 
ANN generalization capability. If this capability is rigth ANN will be ready for being 
used. 
 
 
 
 

Fig. 1. ANN with CE 

We want to emphasize that at this stage, the brain behaviour introduced in the non-
supervised learning phase will be always applied. Thus, this behaviour that has been 
incorporated to the ANN as control elements (fig. 1) is present during all the ANN 
life stages and participates directly in information processing. 

3   Tests Performed 

3.1   Hardware and Software 

With the purpose of building a design, training and test system for the ANN we have 
created a software tool that allows us to compare training only by means of GA with 
this new ANN, which uses hybrid learning method. This tool is based in an existing 
tool designed by J. Rabuñal [5] and has been modified in order to incorporate the new 
functioning already explained above.  

The implementation was made with Borlan DELPHI and Visual C++. The tests were 
run in an AMD Athlon XP 2000 PC, with 256 MB of RAM and Windows XP OS. 
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3.2   Problem to Solve: MUltipleXor 

We decided to make the test over a known multilayer ANN that solves a classification 
problem: the simulation of an electronic device called MultipleXor (MUX) with four 
inputs and one output (fig. 2).  

This device behaviour is explained in [5] The results obtained with our new nets 
were compared with the results obtained with ANN trained only with GA.  

MUX

Selección Entrada

S
1

S
2

I
1

I
2

I
3

I
4

O
1

 

Fig. 2. MUX device 

Table 1 shows all possible input combinations to the MUX and the desired output. 
It has been denoted with an X the fact that the binary value will be indifferent in some 
cases. The fifty eight first combinations comprise the training set and the last six the 
test set. 

The structure and functioning of MUX device is suitable for implementing a 
multilayer ANN because there is not any factor that depends on time or on other 
values which require the use of other architecture types.  

Table 1. Function MUX values 

I1 I2 I3 I4 S1 S2 O1 

0 X X X 0 0 0 

1 X X X 0 0 1 

X 0 X X 0 1 0 

X 1 X X 0 1 1 

X X 0 X 1 0 0 

X X 1 X 1 0 1 

X X X 0 1 1 0 

X X X 1 1 1 1 

3.3   New ANN Architectures 

Once input and output patterns for training and test were selected, we established the 
ANN parameters which allowed us to define its structure and solve the problem. 
These parameters are: maximum value for the weights (1), neurons activation 
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function (threshold: 0.5), number of layers and number of neurons per layer. In order 
to make an adequate comparison we got this parameters from J. Rabuñal [5]. 

It is a very simple ANN with a three-layer architecture: six neurons in the input 
layer (four I inputs plus two S inputs in fig. 2), four neurons in the shadow layer and 
one neuron in the output layer (O in fig. 2). 

As regards the modifications over the connection weigths, we selected a set from 
all the different possibilities analyzed in computational models [4]. These 
modifications consist of a percentage increment or decrement in the weights 
according to neuronal activity. Moreover, we made distinct trial depending on the 
number of iterations performed with every pattern (pattern cycle). The possibilities 
selected will be detailed in the tests. 

3.4   GA Characteristics 

The tests were carried out by keeping the same populations of individuals (three 
populations) and the same random seed (seed=0) which originates the selection of the 
individuals to crossover and mute. In this way, we guarantee the validity of the 
comparison between the different possibilities for applying the modifications 
following brain phenomena and the comparison between existing ANN and the new 
ANN proposed in this paper. 

The GA parameters selected for all the tests in both ANN were the following: 
population size of 100 individuals; Montecarlo technique in order to select the individuals; 
Darwinian substitution method; crossover rate 90% and mutations rate 10%. 

In all tests we wanted to record the number of the generations every ANN needs 
for being trained, i.e. generations until MSE is zero or near zero. 

The training simulation was the unique process running in the computer during the test. 

4   Results 

We show results per population and the average of the three populations, both in the 
case of existing ANN and in case of the new ANN. Four thousand generations were 
stablished in all the simulations. 

4.1   ANN Training Only with GA 

Table 2 shows results per population. 

Table 2. Simulation results 

Population MSE Seconds Generations 
1 0,0682 210 4000 
2 0,0517 222 4000 

3 0,0517 220 4000 

Average: 0,0571 217,3 4000 
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4.2   ANN Training with Hybrid Method 

The modifications carried out by the control elements (CE) were the following: 
 25% increase in the connection weights from activated neurons in two or three 

consecutive iterations. 
 50% decrease in the connections weights from inactivated neurons during two 

or three consecutive iterations. 

We considered that if a neuron is active during these defined iterations, the CE that 
controls the activated neuron layer also activates and influences (potentiates) the 
connections between this neuron and its postsynaptic neurons. Likewise, if the neuron 
activity is not enough to reach the percentage of activation established, the CE is not 
excited by that neuron and the connections leaving it are weakened. 

These two or three consecutive iterations are aimed at representing great neuronal 
activity (high frequency stimulation) in the real brain. We found that these 
percentages provide satisfactory results after trying tests with several combinations of 
possibilities. The biological observations justified this choice because if the increment 
caused by reinforcement is minor than the decrement when the activity is not 
constant, only those neuron connections with continuous activity will remain 
reinforced. Other percentages will be selected in the future with the purpose of 
improving these results. 

Table 3. Results of ANN with hybrid learning 

Iterations Iterations 
per pattern 

MSE Time simulation 
(s.) 

Generations 

2 0,0517 218 4000 

6 0,0172 578 4000 

8 0,0344 660 4000 

2 

10 0,0862 981 4000 

2 0,0517 191 4000 

6 0,0172 515 4000 

8 0,0172 655 4000 

3 

10 0,0862 873 4000 

The number of iterations per pattern was estimated in four, six and eight. As table 
3 shows, before the design of trial sets we verified that if we considered less than four 
iterations we did not observe differences with regard to training with only one 
iteration per pattern (rows 1 and 5 in table 3). Moreover, if we considered more than 
eight iterations, the results were not better than before and simulation runtime grew a 
lot (rows 4 and 8 in table 3).  

Every neuron can activate more or fewer times depending on its job in the ANN, 
conditioned by its inputs, like it happens in the brain. It is not possible to control how 
many times a neuron is going to activate, but a neuron is allowed to be activated a 
certain number of iterations. 
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Table 4 shows detailed results of tests performed with ANN training by means of 
the hybrid method keeping each population constant. The average results with the 
three populations are presented in table 5. 

Table 4. Results of the three populations in function of neuronal activity 

Population Active 
Iteracions 

Iterations 
per pattern 

MSE 
Seconds 

Generations 

4 0,0172 372 4000 

6 0,0866 578 4000 2 

8 0,0344 660 4000 
4 0,0172 369 4000 

6 0,0172 510 4000 

1 

3 

8 0 343 2094 

4 0,0517 370 4000 

6 0 207 1432 2 

8 0,12 657 4000 
4 0,0517 366 4000 

6 0,0517 515 4000 

2 

3 

8 0 245 1432 

4 0 61 655 

6 0,0172 573 4000 2 

8 0 162 928 
4 0 60 655 

6 0 82 655 

3 

3 

8 0,0172 655 4000 

Table 5. Average results of the three population in function of neuronal activity 

Active 
Iteration Iterations per pattern MSE Seconds Generations 

4 0,0229 266,6 2885 

6 0,0346 452,6 3144 2 

8 0,514 493 2976 

4 0,0229 265 2885 
6 0,0229 369 2885 3 

8 0,0057 414,3 2508 

If we compare these results with results in table 2, we observe that in the case of 
the three populations, results are better. 

Afterwards, the training test phase was run with the new ANN. The best two cases 
of table 4 were selected (second row of second population – 1432 generations and 
first row of third population – 655 generations). ANN training with hybrid method 
with optimum weights gave the adequate outputs. 

5   Discussion 

Given the great amount of possibilities of influence over connection weights based on 
brain circuits, the study of what happens by using random increases and decreases is 
justified by the fact that the way CE act is not known at all. 

In all the tests we observed that only those neurons activated several times did 
potentiate their leaving connections. These conditions are a step forward in the 
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problem studied here, i.e. ANN training. Table 4 indicates that in the case of ANN 
trained with hybrid method the best results were reached when three neuronal activity 
iterations were considered, i.e. when more neuron activity was demanded for exciting 
CE. In some cases, for different combinations, results are the same because the same 
modifications in weights could occur. 

The reason why these satisfactory results were achieved with the new ANN are 
attributed to what was expected when the hybrid method was designed. The 
individuals, once evaluated, are presented to the GA arranged by their MSE. The 
changes made to the weights during the first learning phase cause this resulting order 
to be different from an potential order obtained in case the first phase did not exist. 
This is so because their MSE varies according to this new method. The number of 
generations necessary for reaching zero error is in many cases smaller than in the case 
of the ANN which are only trained with GA. However, the simulation time is higher, 
but not to the extent of becoming critical for training. 

6   Conclusions 

The newly created ANN, trained using a hybrid method that combines brain 
behaviour and GA, manages to the functioning of the multilayer ANN studied. 

We have created ANN that closely reproduce several aspects of the human central 
nervous system. This directly benefits Artificial Intelligence because it can improve 
information processing capabilities which would allow us to deal with another range 
of problems. 

We have indirectly benefited Neuroscience because experiments with computa- 
tional models that simulate brain circuits smooth the way for difficult experiments 
conduced in laboratory as well as provide new ideas for research. 
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Abstract. Neurons communicate through spikes; their arrangement in
different sequences generates the neural code. Spikes are transmitted be-
tween neurons via synapses; the mechanism underlying synaptic trans-
mission involves numerous processes including neurotransmitter release
and diffusion, postsynaptic receptor activation, and intrinsic electrore-
sponsiveness. Based on available experimental data and theoretical con-
siderations, we have developed a realistic model predicting the dynamics
of neurotransmission at the mossy fiber - granule cell synapse of the
cerebellum. The model permits systematic investigation of the multiple
mechanisms regulating synaptic transmission and provides predictions on
the role of the numerous factors driving synaptic plasticity. The model
is also employed to quantify information transfer at the mossy fiber -
granule cell synaptic relay. This work was funded in part by the EU
SpikeForce project (IST-2001-35271 www.spikeforce.org).

1 Introduction

Neurons communicate through sequences of stereotyped pulses, called spikes or
action potentials, which are transmitted between them at the synapses (Fig. 1).
There, the presynaptic spike train is transformed and converted into a post-
synaptic signal. The information content of these spike trains can be assessed
by considering either the precise timing of action potentials or their average
frequency [1, 2]. The former approach tends to be more efficient from the infor-
mative viewpoint because it captures the fine temporal structure of the neural
signal (e.g., the interspike interval distribution). In addition, the temporal pat-
tern of the spike train can affect the dynamics of the synaptic contacts, and
hence the processing. For instance, short-term memory effects (i.e., short-term
facilitation and depression) may regulate postsynaptic temporal summation in
a time-dependent manner [3, 4]. Accordingly, to fully understand information
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processing in neuronal assemblies it is useful to develop detailed models ac-
counting for the main biological features. We also need theoretical tools that
allow us to quantify the ability of the specific model to transmit information at
different levels of resolutions, and to asses the robustness of this process. In this
regard, information theory [5] has proved to be suitable for studying information
processing in different brain areas [1]. Within this framework it is possible to
quantify the amount of information that a given set of neural responses provides
about a specific set of stimuli or a set of upstream neuron activities. Further-
more, Shannon information and similar quantities can be used to investigate the
coding strategies or the contribution of spatial and temporal correlations to the
information transmission [6, 7].

The cerebellum is one part of the brain responsible for the learning and
the automatic execution of coordinated movements, particularly those too rapid
for conscious feedback control. Besides its direct importance in clinical research
(motor coordination diseases), there are several other motivations for focusing
on this system. First, it permits a detailed experimental characterization at dif-
ferent levels: molecular, single cell, and neural population, both in vitro and in
vivo. Second, it represents an excellent test bed to investigate how microscopic
interactions at the single cell level can initiate complex collective behavior (cere-
bellar functions) at the population level. Third, from an application point of
view, implementing biomimetic cerebellar models to control mobile robots or
industrial processes may augment their ability to learn and coordinate their
actions in complex contexts.

The cerebellar input layer is of particular interest: it is characterized by
a huge number (1011) of tiny cells (granule cells) that, according to classical
theories of Marr and Albus [8, 9], are able to encode afferent information into
a sparse representation that facilitates discrimination of very similar inputs. In
this study, we focus on the mossy fiber - granule cell synapse, which is the major
site of plasticity in the cerebellum granular layer. The next section presents the
main characteristics of this synapse. Section 3 introduces a detailed biophysical
model of this system. Section 4 describes an information-theoretic approach for
studying information processing at this site quantitatively.

2 Synaptic Transmission at the Cerebellar Granular
Layer

Mossy fibers (MFs) are the primary afferents to the cerebellar cortex and con-
vey multimodal sensory inputs to the granule cells (GCs). The MF-GC synaptic
transmission constitutes the core of the granular layer computation and has
complex temporal dynamics [10, 11] capable of regulating the input-output rela-
tionship via synaptic gain modulation [9, 12].

Neurophysiological data suggest that long-term potentiation (LTP) can en-
hance the probability of release of neurotransmitters at the MF-GC synapse [13],
and that GCs tend to discharge in bursts in vivo [14]. At a finer scale, several
factors can influence the relationship between neurotransmitter release and GC
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Fig. 1. Synaptic transmission and modeling. (Left) Synaptic processing transforming

an incoming spike into a postsynaptic response. (Right) Schematic representation of

the processes involved in determining the change of postsynaptic conductance (g) and

the generation of excitatory postsynaptic currents (EPSC). X denotes the transmitter

resources available for release, Y is the amount of released transmitter, and Z represents

the amount of recovered transmitter. The time constants of recovery of releasable

transmitter (τR), facilitation (τF ), and inactivation (τI), are indicated together with u,

the probability of release. T denotes the glutamate concentration, while C, O, and D

indicate the postsynaptic receptor state ‘closed’, ‘open’, and ‘desensitize’, respectively

firing. The intense glutamate spillover observed in the cerebellar glomerulus, by
protracting AMPA and NMDA receptor activation [15, 16, 17], generates oppos-
ing processes like receptor desensitization and temporal summation of excitatory
postsynaptic potentials (EPSP) [18]. Moreover, postsynaptic voltage-dependent
currents determine complex regulation of spike discharge [19, 20]. Because these
factors interact in a complex non-linear manner, no firm statement can be given
a priori on burst processing at the MF-GC synapse and its regulation during
LTP. Hence, we developed a model of synaptic transmission at the MF-GC relay
accounting for the interaction of these multiple effects.

3 A Model of the MF-GC Synaptic Transmission

Our aim was to conjugate fundamental aspects of neurotransmission derived
from physiological recordings with a detailed reconstruction of postsynaptic
electroresponsiveness. A model of the GC derived from our previous study [20]
was updated based on recent experimental data. GCs are electrotonically com-
pact [18, 21, 17], hence there is little need to simulate dendrites and a mono-
compartmental structure was employed. The GC model includes four identical
and independent synapses. The NEURON simulator [22] was employed to im-
plement and validate the model.

The simulation of a single excitatory postsynaptic current (EPSC) involves
modeling the neurotransmitter release at the presynaptic site, the diffusion of
the neurotransmitter within the synaptic cleft, and the postsynaptic receptor
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Fig. 2. AMPA current parameters during a voltage-clamp simulation (-70mV). A burst

at 100 Hz stimulates the MF. (A) Evolution of the presynaptic variables X, Y , and u.

The decrease of u determines synaptic depression. (B) Diffusion protracts the glutamate

waveform. (C) Evolution of postsynaptic receptor states. Note the decrease of open

states and accumulation of desensitization. (D) Temporal summation of AMPA EPSCs

dynamics [23]. The situation becomes even more complicated when considering
a multiple release-site synapse; this is due to the stochastic activation of different
receptor clusters and to the diffusion of neurotransmitters between synaptic sites
[24]. In the model, the state of the presynaptic terminal is computed according
to a three-state scheme adapted from [25]. When a presynaptic spike arrives,
a proportion u of the transmitter resource X is transferred into an amount of
released transmitter Y (Fig. 1). Depletion of the resource X causes synaptic
depression (another component of synaptic depression depends on postsynap-
tic receptor desensitization, see below). Synaptic facilitation is governed by the
activity-dependence of the transmitter release u.

GC postsynaptic responses are generated through both direct release from
active zones onto corresponding postsynaptic receptors and spillover of gluta-
mate from neighboring releasing sites [16, 17]. In the model, the glutamate con-
centration T for AMPA receptors, which are located into the cleft, is obtained
by combining a synaptic pulse (Ts) with a diffusion wave (Td), while NMDA
receptors are only activated by the diffusion wave Td. The released glutamate
acting on AMPA receptors is generated with a 1 mM - 0.3 ms squared pulse,
which has been shown to approximate transmitter action in the cleft properly
[23]. Diffusion is simulated with 2D Crank equation [26, 24, 27]. Glutamate bind-
ing to postsynaptic receptors activates kinetic schemes governed by microscopic
first-order transitions, leading to the open state O(T ). The AMPA postsynaptic
current is reproduced with a D = C = O scheme (D and C are the ‘desensitize’
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depends on the precision chosen for time discretization. (B) A GC receives four MF

inputs and generates an output spike train. The GC response is affected by the multiple

voltage- and time-dependent mechanisms of its membrane. Noise is introduced mainly

by stochastic vesicular release, which is explicitly modeled. Appropriate construction
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and ‘closed’ state, respectively) [27], the NMDA current with a more complex
scheme derived from [28]. It follows that we can compute the EPSC composed of
AMPA (Fig. 2) and NMDA currents. Once coupled to the excitable mechanisms
endowed in our previous GC model [20], the present system reproduces the main
aspects of GC synaptic excitation [18].

4 Information Transmission at the MF-GC Synapse

Shannon mutual information (MI) [5] provides a natural mathematical frame-
work to answer the question how much information is transmitted by the neural
patterns. Our aim was to understand how information is transmitted by the GC
through the MF-GC relays, and how it is affected by various factors related to
the intrinsic organization of the circuit. The GC constitutes an ideal system for
MI calculation since the number of possible inputs is very reduced compared
to other brain cells due to the limited number of afferent MFs to each GC (4
on average). To represent the stochasticity of neurotransmission accurately we
developed a stochastic version of the model presented above in which the neu-
rotransmitter release was probabilistic (the release at individual sites was an
all-or-none event determined once a random number between 0 and 1 passed
a release probability threshold). This stochastic model was used for the mutual
information computation.

In a typical simulation all spike trains were digitalized (Fig. 3A), and a con-
trolled set of stimuli S (each stimulus being formed by 4 input spike trains,
Fig. 3B) was chosen. Then, we recorded the elicited neural responses r ∈ R
when one stimulus s ∈ S was repeatedly presented with a known a priori proba-
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bility p(s). Once we collected all the data, we estimated the corresponding joint
probabilities, p(r, s), and the probability distribution of responses averaged over
the stimuli, p(r). The mutual information was computed using:

I(R;S) =
∑
s∈S

∑
r∈R

p(r, s) log2

[
p(r, s)
p(r)p(s)

]
(1)

Shannon MI provides a quantitative measure of the averaged information
transmitted through the synapse by a set of responses given a set of input spike
trains (or vice-versa). We were also interested in identifying those stimuli that
were best encoded by the GC. Thus, we computed the stimulus specific con-
tribution to the MI (namely, the surprise I(s) =

∑
r∈R p(r|s) log2

p(r|s)
p(r) ). This

allowed us to find the most informative set of stimuli, and understand in which
conditions the cell coding capability was optimized.

Previous results [29] indicated that the temporal structure of the spike train
conveyed a large fraction of the total information transmitted. In the simulation
of Fig. 4, the MI measured was only 0.44 bits when the neuron response was
represented only by its spike count (total number of spikes), whereas it was 0.73
bits when the full binary string representation was used (Fig. 3). In other words,
considering the spike train temporal structure resulted in a 75% increase of
information transmitted. Fig. 4A shows the value of the surprise calculated using
spike counts (thin line) and binary strings (thick line). Stimulus surprise analysis
determined that the most informative stimuli were usually characterized by high
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correlation between the MFs (not shown), suggesting a role for GCs as correlation
detectors across their different afferents. In addition, the results suggest that,
when LTP occurs at the MF-GC synapse, the overall information transfer is
enhanced in the system (Fig 4B), whereas stimulus specific information for the
most informative stimuli reaches a maximum at an intermediate value of release
probability (not shown).

5 Conclusions

The development of detailed spiking models was another step towards under-
standing the information transfer and the coding in the cerebellum granular layer
[30]. A simplification of the model currently underway will allow us to construct
large and realistic networks. Their implementation into hybrid software-FPGA
circuits and efficient software [31] will eventually provide the basis for robotic
and industrial implementations.
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Abstract. The Fast Spiking (FS) interneurons are coupled by both electrical and 
inhibitory synapses and experimental findings suggest that they operate as a 
clockwork affecting the processing of neural information. At present, it is not 
known which is the functional role of electrical synapses in a network of inhibi-
tory interneurons. In our contribution, by using a single compartment biophysi-
cal model of an FS cell, we determine the parameter values leading to the emer-
gence of synchronous regimes in a network of FS interneurons coupled by 
chemical and electrical synapses. We also compare our results with those re-
cently obtained for a pair of coupled Integrate & Fire neural models [1].  

1   Introduction 

Experimental findings reveal that networks of GABAergic inhibitory interneurons 
contribute to the generation of γ-rhythms (30-80 Hz) in neocortex by synchronizing 
their own firing and that of the pyramidal cells receiving their inhibitory inputs [2]. 
Both experimental and theoretical results relate the synchronous discharge of a popula-
tion of inhibitory interneurons to some features of their coupling [3-8]. Recently, it was 
found that Fast-Spiking (FS) neocortical inhibitory interneurons are interconnected by 
electrical synapses too [9-10]. At present an open problem is that to understand which is 
the functional role for the coexistence of these two types of coupling, and to determine 
how the network dynamical behavior depends on them.  

This topic was recently addressed for a pair of Leaky Integrate & Fire models in [1] and 
the main results were the followings: 1) synchrony is promoted increasing the amplitude 
of the stimulation current; 2) increasing  electrical coupling fosters in-phase (anti-phase) 
coordination in pairs connected by fast (slow) inhibitory synapses. In this paper we show 
that these results do not hold in general for more realistic biophysical models of  FS in-
terneurons. In particular we found that the increasing of electrical coupling also with slow 
synapses can foster synchrony, whereas only a growing amplitude of the stimulation  



116 A. Di Garbo et al. 

 

current cannot. Finally, we highlight how both the after-hyperpolarization amplitude and 
the rise time constant of the inhibitory postsynaptic current (IPSC) affect the synchroniza-
tion properties of a network of coupled cells. 

2   Methods 

FS interneurons are not capable of generating repetitive firing of arbitrary low fre-
quency when injected with constant currents [11, 12], thereby they have type II excit-
ability property [13].  

Recent experiments carried out on in vitro FS cells reveal that they have high firing 
rates (up to ~ 200 Hz), average resting membrane potential of –72 mV and input resis-
tance ∼ 89 MΩ ; their action potential has a mean half-width ∼ 0.35 ms, average am-
plitude ∼ 61 mV and after-hyperpolarization amplitude ∼ 25 mV [9,10,12].  

2.1   Model Description  

Here we propose a new single compartment biophysical model of a FS interneuron, 
well accounting for the features above, defined as follows: 

CdV/dt = IE - gNa m
3h(V-VNa) – gK n(V-VK) – gL (V-VL)                                     (1a) 

dx/dt = (x∞ - x) / τx, x∞ = αx / (αx + βx), τx = 1 / (αx + βx), (x = m, h, n)            (1b) 

where C = 1µF/cm2 and IE is the external stimulation current. The maximal specific 
conductances and the reversal potentials are respectively: gNa = 85 mS/cm2, gK = 60 
mS/cm2, gL = 0.15 mS/cm2 and VNa = 65 mV, VK = -95 mV, VL = - 72 mV.  

To model the kinetic of the Na+ current we estimated theoretical curves for the 
voltage dependence of the activation and deactivation rate variables αm(V), βm(V). 
This was carried out by using the data obtained on hippocampal FS interneurons, 
concerning the steady-state activation and inactivation and the corresponding activa-
tion/deactivation time constant of the Na+ current, reported in a recent paper [14]. A 
similar work was done for αh(V), βh(V) and the final result is: αm = 3.0 
exp[(V+25.1)/20], βm = 3.0 exp[-(V+25.1)/27], αh = 0.026 exp[-(V+58.3)/15], βh = 
0.026 exp[(V+58.3)/12].  

Voltage-gated K+ channels are assembled from subunits of four major subfamilies, 
designated as Kv1, Kv2, Kv3, Kv4 [15]. FS inhibitory interneurons express Kv3 sub-
units at a very high level and this has been found necessary for their phenotype [16]. 
A model for the gating of Kv3 channels in hippocampal FS interneurons has yet been 
proposed [16]. In this paper we will use this formulation with a different value for the 
parameter vAHP (that shapes the amplitude of the after-hyperpolarization phase of the 
action potential) in order that the simulated action potential has an after-
hyperpolarization amplitude ∼ 25 mV. This leads to the rate variable expressions :  
αn = [-0.019*(V-4.2)]/{exp[-(V-4.2)/6.4]-1}, βn = 0.016*exp(-V/vAHP), with vAHP = 
13 mV.  

In this model the onset of periodic firing occurs through a subcritical Hopf bifurca-
tion for IE ≈ 1.47 µA/cm2 with a well defined frequency (∼ 16 Hz), according to the 
type II excitability property [13]( Fig. 1).  
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Fig. 1. Characterization of the model. Left panel: bifurcation diagram for the onset of periodic 
firing; stable fixed points (black squares), unstable fixed points (gray squares), stable oscilla-
tions (black circles), unstable oscillations (white circles). Right panel: discharge frequency 
against stimulation current 

2.2   Synaptic Coupling Modeling 

The estimated mean conductance of the inhibitory cell-cell coupling for young (old) 
animals was <GGABA> = 1.7 nS (0.8 nS) [9,12]. The IPSC was characterized by a 
reversal potential VRev= –80 mV and a mean decay time constant <τDecay> = 2.6 ms 
[12]. Similarly, for young (old) animals the mean value of the electrical conductance 
between a pair of coupled cells was <GEl> = 0.6 nS (0.2 nS) [9,12]. However, even for 
young animals, values of GEl ranging from 0.4 up to 5.5 nS (<GEl> = 1.6 nS) were also 
found [10]. 

The electrical and chemical synapses are modeled as follows. The postsynaptic 
current for the GABAergic synapse at time t > tN is given by ISy(t) = gSy sT(t) (VPost(t)- 
VRev) = gSy j s(t - tj) (VPost(t) - VRev), where gSy is the specific maximal conductance of 
the inhibitory synapse (in mS/cm2 unit),  s(t) = A[exp(-t/τDecay) - exp(-t/τRise)],  tj  (j =1, 
2,…,N) are the times at which the presynaptic neuron generated spikes, τDecay and τRise 

are the decay and rise time constants of the IPSC. The electrical synapse is modeled 
as IEl = gEl (VPost - VPre) , where gEl is the maximal conductance of the gap junction (in 
mS/cm2 unit). 

2.3   Analysis Method  

The theory of weakly coupled oscillators is used to analyze the pair of coupled FS 
interneuron models. The theory shows that, in the limit of weak coupling (ε << 1), the 
state of each oscillating cell is completely described by its phase. Moreover the time 
evolution of the phase of each oscillator can be described by a well defined equation 
accounting for the coupling with the other units. Thus, this approach will be used here 
to investigate the phase-locked states of a set of coupled oscillators and the corre-
sponding stability [17]. 

Let us consider the case of two coupled oscillators and assume that for ε = 0 each 
oscillator possesses a stable limit cycle Xo(t) of period T. Then, for ε ≠ 0 (ε << 1) the 
state of each oscillator is defined by its phase θi (i = 1, 2) and the corresponding  

A
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dynamical behavior is determined by the following equations: dθ1/dt = 1+ εH1(φ) and 
dθ2/dt = 1+ εH2(-φ), where ε is the intensity of the coupling, φ = θ2 - θ1, H1(φ) and 
H2(-φ)  are T-periodic functions which take into account the effect of coupling. 

For a pair of identical FS cells coupled by inhibitory synapses it is H1,s(φ) = 1/T 0
T 

Y1(t) sT(t+φ)(VRev - Vo(t)) dt  and  H2,s(-φ) = 1/T 0
T Y1(t) sT(t - φ)(VRev - Vo(t)) dt, where 

Y1(t) is the first component of the normalized T-periodic solution of the adjoint equa-
tion dY(t)/dt = - [J(Xo(t))]

T Y(t),  with 0
T Y(t) • Xo(t) dt = 1,  JT is the transpose of the 

Jacobian matrix J = ∂Fi(Xo)/∂Xj, Vo(t) is the membrane voltage of the unperturbed FS 
cell model and sT(t) is the coupling T-periodic function when the membrane voltage 
of the presynaptic cell is given by Vo(t). Similarly for electrical synapses it is H1,e(φ) = 
1/T 0

T Y1(t) (Vo(t+φ) - Vo(t)) dt,  H2,e(-φ) = 1/T 0
T Y1(t) (Vo(t - φ) - Vo(t)) dt [17]. 

The time evolution of φ is determined by dφ/dt = ε[H2(-φ) - H1(φ)]= - εD(φ) (ε = gSy 

for inhibitory coupling, gEl for electrical coupling) and the phase locked states can be 
determined by searching the solutions of the equation D(φ*) = 0. A phase locked state 
is characterized by a constant phase difference φ*  between the two oscillators and it 
will be stable (or unstable) according as dD/dφ > 0 (dD/dφ < 0). For mixed coupling 
εD(φ)  = [ gSyDs(φ) + gElDe(φ)]. 

3   Results 

First of all we studied the phase-locking states of a pair of LIF model as done in [1], 
but using a more realistic time course of the IPSC which fits better the FS experimen-
tal data than the α-function. We shown, according to [1] that, in absence of electrical 
coupling, increasing the amplitude of the stimulation current promotes in-phase firing;  
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Fig. 2. Phase-locking states for two LIF models coupled with realistic IPSC and electrical 
coupling. Left panel: inhibitory coupling alone, with τRise = 0.1 ms, τDecay = 0.25 ms. Middle 
panel: inhibitory coupling alone with  τRise = 0.18 ms, τDecay = 0.25 ms. Right panel: coexistence 
of inhibitory and electrical coupling with τRise = 0.1 ms, τDecay = 0.25 ms, gEl/gSy = 1 
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it must be highlighted that this effect is as great as the parameter τRise → τDecay (Fig. 2, 
left and middle panels). When the electrical coupling is on synchronous regimes are 
promoted too (Fig. 2, right panel). Moreover, our results indicate also that increasing 
the intensity of the electrical coupling promotes synchrony in despite of the speed of 
the inhibitory synapse (data not shown). This result is quite different from that ob-
tained in [1] and is strictly true if we consider a realistic action potential half-width 
(this means β ≈ 0.3 in [1]). 

Let us come to the study of the phase-locking states of a pair of biophysical models 
of FS neural cells. What we found indicates that the results obtained using the LIF 
model with IPSCs described by the α-function do not hold in general for conduc-
tance-based models of FS interneurons with more realistic IPSCs. In fact we shown 
that for τRise , τDecay values within their physiological range, increasing IE does not 
promote synchronization when gEl = 0, gSy≠ 0 (Fig. 3, top left panel). Moreover, two 
facts must be noted: first that increasing τRise (τRise < τDecay) promotes in-phase firing 
as the stimulation current increases and second that decreasing the after-
hyperpolarization amplitude of the action potential (decreasing vAHP) promotes syn-
chronization in a well defined range of IE values alone. In the last case for higher IE 
values only anti-phase firing are stable (Fig. 3, top right panel, bottom panel). Finally, 
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Fig. 3. Phase-locking states for two biophysical models coupled by inhibitory synapses (gEl = 0). 
Top left panel:  τRise = 0.25 ms, τDecay = 2.6 ms, vAHP = 13 mV. Top right panel: τRise = 1.5 ms, 
τDecay = 2.6 ms, vAHP = 13 mV. Bottom panel: τRise = 0.25 ms, τDecay = 2.6 ms, vAHP = 10 mV 
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we show that the electrical coupling plays a crucial role in promoting synchrony. In 
fact in the case gEl ≠ 0, gSy≠ 0 the probability to get synchronous high-frequency 
phase-locking states increases as gEl increases too (Fig. 4). 
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Fig. 4. Phase-locking states for two biophysical models coupled by inhibitory and electrical 
synapses. Left panel: τRise = 0.25 ms, τDecay = 2.6 ms, gEl/gSy = 0.15. Right panel:  τRise = 0.25 
ms, τDecay = 2.6 ms, gEl/gSy = 0.3 

4   Discussion 

In this paper we studied the phase-locking states of a pair of identical FS interneuron 
models to understand how the combination of electrical and inhibitory coupling af-
fects synchronization patterns in networks of FS spiking interneurons. 

At first, we studied a LIF pair as in [1] with a more realistic time course of the 
IPSC (τRise << τDecay). In the case of inhibitory coupling alone, our results agree with 
those obtained in [1], but when we consider the electrical coupling the results are 
contrasting. In fact we found that if we consider a realistic action potential half-width 
(β ≈ 0.3 in [1]), in phase firing is promoted even for slow synapses. 

Later we introduced a new biophysical model of a FS interneuron and we studied 
the phase-locking states of a pair of  cells connected by reciprocal inhibitory and 
electrical coupling. By comparing these results with those obtained with the LIF 
model in [1], we found that some of them are contrasting. In particular the phase-
locking patterns depend critically on some parameters of the biophysical model, as the 
after-hyperpolarization potential and the time constants of the IPSC time course. 

Finally, we found that for our biophysical network model, the electrical coupling 
plays a crucial role in promoting the synchronization of the FS cells, when the rele-
vant parameter values are in the physiological range.  
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Abstract. Many cells in cat and monkey visual cortex (area V1 and area
17) respond to gratings and bar patterns of different orientation between
center and surround [18]. It has been shown that these cells respond on
average 3.3 times stronger to a crossing pattern than to a single bar [16].
In this paper a computational model for a group of neurons that respond
solely to crossing patterns is proposed, and has been implemented in
visual programming environment TiViPE [10]. Simulations show that
the operator responds very accurately to crossing patterns that have
an angular difference between 2 bars of 40 degrees or more, the operator
responds appropriately to bar widths that are bound by 50 to 200 percent
of the preferred bar width and is insensitive to non-uniform illumination
conditions, which appear to be consistent with the experimental results.

1 Introduction

Neurons in the primary visual cortex (V1) respond in well defined ways to stimuli
within their classical receptive field (CRF), but these responses can be modified
by stimuli overlying the surrounding area. This non classical surround provides
input from a larger portion of the visual scene than originally thought, permit-
ting integration of information at early levels in the visual processing stream.
Recent works indicate that neuronal surround modulation at cross-orientation,
an orientation orthogonal to the preferred orientation of the CRF, play a key
role in intermediate-level visual tasks, such as perceptual pop-out [14], contrast
facilitation [3, 20], and contextual modulation [8, 4, 5], and could endow neurons
with a graded specialization for processing angular visual features such as corners
and junctions [18, 4].

Neuronal output activity was enhanced in both cat and macaque primary
visual cortex (V1) when a surrounding field at a significantly different orientation
(30 degrees or more) was added to the preferred orientation of the CRF [18]. The
response of these neurons to line crossings at different angles have been described
more extensively by [15, 17, 16]. They reported that more than 30 percent of the
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neurons studied in the cat striate cortex (area 17) had a significant increase in
response (by 3.3 times on average) under stimulation of two crossing bars of
distinctive preferred orientation as compared to a single bar.

Many of the cells found so far are cross-orientation selective, and respond
vigorously to patterns that contain a different orientation between center (CRF)
and non-classical surround. However, most of these cells also respond to a single
bar or grating pattern of one orientation. Neuronal cells with a graded specializa-
tion for crossing type of junctions, will be modeled in this paper. The constructed
operator will be termed crossing cell operator.

The paper is organized as follows: In Section 2 the crossing cell operator will
be constructed and its properties evaluated. Section 3 the experimental setup
will be presented and results of the operator in a real world environment under
different non-uniform illumination conditions will be demonstrated. The paper
finishes with a discussion.

2 Crossing Cells

Recent reports [18, 16, 3, 7] have demonstrated that the responsiveness of neurons
in V1 is modulated by stimuli placed outside their CRFs. Cells with suppressive
surround influence corresponding to surround orientation of a grating or bar
pattern at the neuron’s preferred orientation were found. The responses of these
cells were roughly sinusoidal to sigmoidal increasing when the surround orienta-
tion was modified, reaching the strongest response when it was perpendicular to
the preferred orientation of the CRF. We believe that crossing cells, which have
a graded specialization for crossing type of junction of neurons, belong to this
group of of neurons.

2.1 Crossing Cell Operator

The complex cell operator responds strongly to a bar or an edge of a preferred
frequency, but its response decreases at line ends, junctions and crossings. Since
its response is weak at crossings, a subunit is modeled with a center-off response
and a surround-on response, as suggested by [1, 18], for a single preferred orien-
tation θ:

Oσ,θ(x, y) = wo (Cσ,θ(x2, y2) + Cσ,θ(x3, y3)− (Cσ,θ(x, y)) , (1)

where x2 = x + dσ sin θ, y2 = y − dσ cos θ, x3 = x − dσ sin θ, y3 = y + dσ cos θ,
d = 8/

√
5, wo = 2, σ represents the scale, and θ the preferred orientation. Details

of complex cell operator Cσ,θ can be found in [9, 11].
A crossing with preferred orientations θ and θ + ϕ is modeled to a com-

putational subunit by taking the minimum of the two units and the amplified
complex cell responses:

X̂σ,θ,ϕ = min (Oσ,θ,Oσ,θ+ϕ, 2woCσ,θ, 2woCσ,θ+ϕ) . (2)

It denotes that such a subunit responds only when there are strong flanked
responses (O) and strong center responses (C). Since the strongest response was
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found at an orientation that is perpendicular to the preferred orientation, ϕ is set
to 90 degrees. This is in analogy with the orientation difference between center
and non-classical surround [7].

The crossing cell model, should respond solely to crossing patterns, hence
every response other than at crossing position (x, y) is a false response and must
be eliminated. In analogy with the model for endstopped cells [19] this is done
by a tangential and a radial inhibition operator, correspondingly:

It
σ(x, y) =

2N−1∑
i=0

[Cσ,θi
(x4, y4)− Cσ,θi

(x, y)]≥0 (3)

and

Ir
σ(x, y) =

2N−1∑
i=0

[
Cσ,θi

(x, y)− wrCσ,θi+N/2(x, y)
]≥0

, (4)

where x4 = x+dσ cos θi, y4 = y+dσ sin θi, [z]≥0 is equal to 0 for negative z and
equal to z elsewhere (half-wave rectification), and constant wr = 4.

The crossing operator at a single scale and a single orientation is:

Xσ,θi
=
[[

X̂σ,θi

]≥0

− g

N
(It

σ + Ir
σ)
]≥0

, (5)

where g is a gain factor. An appropriate value is g = 1, which is used in all
experiments.

Finally, a weighted summation is made to obtain appropriate spatial
properties:

Xσ,θ,ϕ = Xσ,θ,ϕ ∗Gσ , (6)
where Gσ(x, y) = 1/(2πσ2) exp(−(x2+y2)/(2σ2)) is a two-dimensional Gaussian
function, to yield the crossing cell operator.

2.2 Properties of Crossing Cells

Figure 1 demonstrates desired responses to crossings that have a minimum angle
between the two bars of 45 degrees or larger. Due to normalization there appear
to be false responses at Figure 1d and f, but these responses are very small,
and can therefore be neglected. The response strength to different angles is
illustrated in Figure 2a. The response curve shows a relatively strong decrease
in when decreasing the angle between the two bars. A half maximum response
is found at an angle of around 62 degrees. Responses vanishes when the angle is
smaller than 40 degrees. Figure 2a show that at least 32 orientations are needed
to obtain a smooth sigmoidal response curve when changing the angle between
the two bars, while Figure 2b illustrates that this number of orientations yields
little fluctuation in response when rotating the input stimulus.

Figure 2c illustrates that a half-maximum response is at 55 and 180% from the
preferred bar width. The crossing operator responds accurately to crossings at 50
and 200 percent of the preferred bar width, as illustrated in Figure 1i and j, but
shows artefacts to bars that have a width that is more than twice the preferred
bar width (Figure 1k and l).
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a) b) c) d) e) f) g) h) i) j) k) l)

Fig. 1. Responses of the crossing cell operator (6) to crossing patterns of different
orientation, and bar width. First to fourth row represent input images, complex cell
responses, crossing cell responses, and marked crossings, respectively. For better visu-
alization the results of both complex and crossing cell responses have been normalized.
(a-d) are the responses to a crossings with a minimum angle between the two bars of
90, 67.5, 45, and 22.5 degrees. (e-h) are like (a-d), but the overall pattern has been
rotated by 10 degrees. (i-l) are like (a), but the bar widths have been set to 4, 16, 20,
and 24 instead of 8 pixels. In the simulation the following parameters settings have
been used: N = 32 orientations, σ = 5.65 giving the strongest stimulus to a bar width
of 8 pixels, and λ = γ = 1
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Fig. 2. Responses to crossing pattern. (a) Response to different angles (measured in
degrees) between two bars, where one preferred orientation is a vertical bar. (b) Re-
sponse to rotation of the whole pattern with perpendicular bars. (c) Spatial frequency
profiles for different preferred bar widths (BW = 4 and 7 pixels)

3 Crossing Cell Simulation

The crossing cell operator is used in a simulation environment called TiViPE
[10], which is explained in more detail below. In the simulation environment,
the crossing cell operator has been applied to natural images with different illu-
mination conditions, where an object containing a sharp (#) mark is placed at
different distances under different angles. The aim of this simulation is to confirm
the results found for the test stimuli. In addition the robustness against irregular



126 T. Lourens and E. Barakova

Fig. 3. Experimental setup of crossing cells

illumination conditions is evaluated. The latter is essential in a humanoid robot
that operates in a real world environment.

3.1 Experimental Setup

Figure 3 illustrates the experimental setup of the crossing cell operator in TiViPE.
The four top-left icons (green) generate a synthetic image, as illustrated in the
first row of Figure 1. For natural images the “ReadImage” icon followed by the
“RGBtoGrayscale” icon is used instead. The four “Display” icons (yellow) from
top to bottom result in input image (stimulus), complex response, crossing re-
sponse, and marked crossing, respectively, and has been used to generate the
results of Figure 1 and 4.

3.2 Crossing Cell Responses to Natural Images

In the simulation color images in VGA format (640x480 pixels) were used as in-
put stimuli. A bucket was placed at distances of 1, 1.5, 2, and 2.5 meters at angles
of -60, -30, 0, 30, and 60 degrees, under 3 different (normal, left side dimmed,
right side dimmed) illumination conditions yielding a total of 60 different images,
which were applied to the crossing operator (6).

All four crossing points of the sharp (#) on the bucket were determined with
high accuracy for all distances and orientations of 0 and ±30 degrees, under all
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a) b) c) d) e)

Fig. 4. Responses of the crossing cell operator (6) to real world images with different
illumination conditions. First row Input stimuli. (a-c) Normal light conditions, (d-e)
Use of light bulbs where lights have been dimmed on the left side, resulting in a shadow
on the left side of the bucket. Second row Normalized crossing responses applied
obtained from the respective input stimuli. Third row Marked crossings overlayed on
the monochrome input image. The threshold to mark local maxima at crossings was
set to 7, where the response of the operator is between 0 and 255. In the simulation
the following parameters settings have been used: N = 8 orientations, σ = 1.77 giving
the strongest stimulus to a bar width of 2.5 pixels, and λ = γ = 1

3 illumination conditions, using a single scale only (σ = 1.77). The operator is
not responding when the bucket is placed under an angle of ±60 degrees. This
result is expected, since the operator failed to respond to the artificial stimuli
with similar angle, see Figure 1d and f.

4 Discussion

Many neurons in primary visual cortex (V1) respond differently to a simple
visual element present in isolation, compared to when it is embedded in a more
complex stimulus. The difference is in the modulation by surrounding elements,
hence it could tune neurons to a graded specialization for processing junctions
[18, 4].

Typically the surround influence was suppressive when the surround grating
was at the neuron’s preferred orientation [3], but when the orientation in the
surround was perpendicular to the preferred orientation facilitation became evi-
dent. Neural responses to crossings were on average more than 3 times stronger
[16], but they also respond to a grating or a single bar of a preferred orienta-
tion [18, 16, 3, 7]. These neurons are therefore not specialized to purely respond
to junctions. In the monkey, the majority of cells showed response suppression
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with increasing grating patch diameter [2, 18], hence it is likely that a group of
these neurons respond solely to junctions, crossings in particular. Another possi-
bility is that neurons in adjacent areas use these responses for further processing
that accounts for responses to crossings only. Tangential and a radial inhibition
operators were used in our model, yielding the proposed “cortical crossing cell”
operator.

The operator is robust to different illumination conditions, and responded
accurately to crossing patterns at a wide (±40 degree) angle and at a wide
range of scales (50 to 200 percent of the preferred bar width). However, the
operator failed at crossings where the smallest angle between a pair of bars was
less than four degrees and showed false responses to crossing patterns where the
bar width is larger than twice the preferred bar width.

Crossing cells are expected to play a complementary role to endstopped cells
which respond to line ends, corners, and junctions, but not to crossings [6, 9].
However, from functional brain modeling perspective, it is desirable to model all
junction types [12]. Junctions strongly reduce the amount of visual information
and likely play an important role in object recognition. These junctions can be
represented as vertices in graphs and be used for symbolic reasoning [13].

The proposed model is developed as part of a larger parallel early vision
system, that includes several early vision operators, grouping, attention, and
learning mechanisms. The TiViPE environment serves as an integration tool for
these operators and mechanisms.
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Abstract. Models of neurons based on iterative maps allows the sim-
ulation of big networks of coupled neurons without loss of biophysical
properties such as spiking, bursting or tonic bursting and with an af-
fordable computational effort. A piecewise linear two dimensional map
with one fast and one slow variable is used to model spiking–bursting
neural behavior. This map shows oscillations similar to other phenomeno-
logical models based on maps that require a much higher computational
effort. The dynamics of coupled neurons is studied for different coupling
strengths.

1 Introduction

Numerical studies of the collective behavior of ensembles of neurons rely on
models of neurons that describe the neuron behavior on the basis of differen-
tial equations. These models require a high computational effort to reproduce
neuronal behavior such as spiking or bursting. Well known differential models
such as the Hodking-Huxley (HH) model [2], or the the Hindmarsh-Rose (HR)
model [3] require a number of floating point operations that range from 1200
operations in the case of the HH model to 70 operations in the HR model to
simulate a single neuron in the network for 1 ms. This means that the simulation
of the behavior of a neural network composed for thousand of neurons for even
not very long periods of time is computationally inviable.

Recently, some models have solved this drawback of the differential models
[4][5]. These new models are built over a phenomenological basis and are im-
plemented by the use of iterative two–dimensional maps that can present sim-
ilar neuro–computational properties that the differential models. These models
present a low computational effort that makes possible the simulation of big
ensembles of coupled neurons during relatively long periods of time. Besides,
some of these models like [4] are biophysically meaningful in such a way that
the parameters of the model can be selected in order to obtain a characteristic
neuron behavior, such as, spiking, tonic spiking, bursting, etc.

In this work a two–dimensional continuous piecewise linear map that models
spiking–bursting neural behavior is presented. The map is constructed under
phenomenological assumptions and mimics the dynamics of oscillations observed
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in real neurons. The model has a computational cost as low as two floating
point operations at worst for each iteration. This computational effort is lower
that the models presented in [4] and [5], that require 8 and 12 floating points
operations respectively for each iteration. The behavior of coupled neurons is
also investigated, in particular the degree of synchronization of a pair of coupled
maps is studied for different coupling strengths.

2 The Neuron Model

The modelling of neuronal behavior by means of two–dimensional maps has been
object of great interest in the last few years [4][1]. These models consider a two–
dimensional system that has both a slow and a fast dynamics. In these models,
fast series of spikes burst over oscillations of the slow variable. However, the
behavior of fast and slow dynamics are clearly correlated and it can be observed
that high values of the slow variable correspond with spikes of the fast variable
and low values of the slow variable correspond with resting periods of the fast
variable.

The previous observation yields us to consider a simplified model imple-
mented as a coupled two–dimensional map (y, s) where the value of function
y represents the membrane potential and is implemented as a continuous piece-
wise linear function where each segment of the function y represent a different
state of the membrane potential (resting or spiking/bursting). The function s is
a bi–valued function taking the discrete values (0, 1) and indicates if the value
of the membrane potential y is de–polariting (s = 1) or re–polariting (s = 0) by
changing the shape of the function y. The value of s is modified as the value of y
reaches some predetermined thresholds when spiking, resting or returning from
spiking.

The map (y, s) is implemented in the following way:

yn+1 =

⎧⎪⎨
⎪⎩

H(sn)
B ∗ yn if 0 ≤ yn < B

(yn −B) ∗ K(sn)−H(sn)
C−B +H(sn) if B ≤ yn < C

(yn − C) ∗ T (sn)−K(sn)
D−C +K(sn) Otherwise

(1)

sn+1 =

⎧⎪⎪⎨
⎪⎪⎩

0 if sn = 1 and yn > D
1 if sn = 0 and yn < L
1 if sn = 0 and yn > C − E and yn < C + E
sn Otherwise

(2)

whereH(s) = H0+s∗(H1+σ),K(s) = K0+s∗(K1+σ) and T (s) = T0+s∗(T1+σ)
and B,C,D,E,L,H1,H0,K1,K0,T1,T0 are non–negative parameters verifying the
following conditions: L < B < C < D, H0 ≤ B , H1 + H0 ≥ B, K0 ≤ C ,
K1 +K0 ≥ C, T0 ≤ D and T1 + T0 ≥ D, σ represents an external total input
to the neuron. The parameter C is the spike threshold. The parameters L, E
and D are thresholds that force the change of value of the slow variable s as the
fast variable y crosses one of these thresholds, where L is the hyper-polarization
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value and D is the depolarization value. The other parameters determine the
length and the step of the segments that compound the function y. A plot of the
map is depicted in figure 1. Note that the values of H(s), K(s) and T (s) can
be computed in advance for both values of the variable s, therefore they need
not to be computed for each step. This means that for a constant value of the
external input σ each step requires at most two floating point operations plus
four comparisons. Note that the descending part of the map (y, s) (s = 0) does
not depend on the external input σ presenting so refractary properties of the
neuron after spiking.
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Fig. 1. Graph of the piecewise linear function y

The temporal behavior of the map 1 for different values of the external input
σ is presented in figures 2 and 3. The map is capable of generating both spiking or
bursting series behavior. The parameters for both figures are: L = .01, B = .15,
C = .3, D = .9, H0 = .14, K0 = .29, T0 = .75, H1 = .01, K1 = .02, T1 = .4.
In order to obtain bursting behavior we establish E = 0.0055, the wave of the
bursting behavior can be observed in figure 3. Spiking behavior is obtained by
simply establishing E = 0. The wave for spiking behavior can be observed in
figure 2. Note that faster spiking/bursting is obtained with higher values of the
external input. This behavior is consistent with the results obtained with other
phenomenological or differential models (e.g. integrators or class 1 models).

In figure 4 the behavior of a spiking wave under a non-constant injection of
external input is depicted. Observe that in the regime of no external input, the
model remains in a quiescent state, with no bursting or spiking activity. Once
the external input is reestablished, the model continues its spiking activity.
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Fig. 2. Spiking behavior generated by map 1 for (a) σ = .01 and (b) σ = .001. Param-

eters are described in the text
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Fig. 3. Bursting behavior generated by map 1 for (a) σ = .01 and (b) σ = .001.

Parameters are described in the text

3 Synchronization in Two Coupled Maps

The previous map can be generalized in order to receive inputs from other neu-
rons in the network. In the generalized model we substitute the input σ in neuron
i by the following total input:

σi = σe
i +

1
Γi

N∑
j=1

gijyi (3)

where σe
i is the external input to neuron i, Γi is the number of neighbors of

neuron i , N is the number of neurons in the network and gij is a coupling
coefficient between neuron i and neuron j.

Real neurobiological experiments [6] show that ensembles of coupled neurons
can present different regimes of synchronization. These regimes are reproduced
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both by differential or iterative models [1]. As a general result, systems with a
higher coupling values between neurons present a greater degree of synchroniza-
tion. When the copling between neurons is small, synchronization is much slower
or can not happen at all. This phenomena can be observed in figures 5 and 6. In
5 the coupling strengths take the values g12 = g21 = .01, in this case we observe
a clear synchronization of the neuron activity. In figure 6 the coupling strengths
take the values g12 = g21 = .001, in this case synchronization is not achieved. For
both experiments the parameters are the same than the ones used in figure 3.

4 Results and Conclusions

The following results and conclusions can be established.

– A piecewise linear two–dimensional map that shows biophysical properties
such as spiking or bursting with a low computational effort is presented.

– The map presents a response to external input similar to real neurons or
differential models.

– The map can be generalized in order to accept input from other neurons in
the network.

– Coupled maps present a regime of synchronization when enough coupling
strength is considered. Low coupling strength yields to no (or slow) synchro-
nization.
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Abstract. A spiking neural network modeling the cerebellum is pre-
sented. The model, consisting of more than 2000 conductance-based neu-
rons and more than 50 000 synapses, runs in real-time on a dual-processor
computer. The model is implemented on an event-driven spiking neural
network simulator with table-based conductance and voltage computa-
tions. The cerebellar model interacts every millisecond with a time-driven
simulation of a simple environment in which adaptation experiments are
setup. Learning is achieved in real-time using spike time dependent plas-
ticity rules, which drive synaptic weight changes depending on the neu-
rons activity and the timing in the spiking representation of an error
signal. The cerebellar model is tested on learning to continuously pre-
dict a target position moving along periodical trajectories. This setup
reproduces experiments with primates learning the smooth pursuit of
visual targets on a screen. The model learns effectively and concurrently
different target trajectories. This is true even though the spiking rate
of the error representation is very low, reproducing physiological con-
ditions. Hence, we present a complete physiologically relevant spiking
cerebellar model that runs and learns in real-time in realistic conditions
reproducing psychophysical experiments. This work was funded in part
by the EC SpikeFORCE project (IST-2001-35271, www.spikeforce.org).

1 Introduction

Recently, an event-driven neural simulator has been devised that permits the
simulation of thousands of conductance-based spiking neurons in real-time. The
speed gain comes from precomputing into large lookup tables the differential
equations governing neuron and synapse dynamics [1]. We demonstrate here how
we used this simulator to run in real-time a realistic model of the cerebellum in a
complete action-perception experimental setup. The model contains thousands
of neurons and features a biologically plausible spike time dependent learning
rule.
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The cerebellar model is tested on learning in real-time to continuously predict
the position of a target moving along periodical trajectories. This setup repro-
duces experiments with primates learning the smooth pursuit of visual targets
on a screen [2]. When the eye is not on target, a retinal error signal is gener-
ated that drives neurons in the inferior olive of the cerebellum. These neurons
activity directs plasticity in the cerebellum, hence modifying the eye movements
to keep it on the visual target. Their low firing rate [3] is puzzling since it does
not provide in one trial an accurate rendering of the retinal error. Nevertheless,
a non-deterministic generation of spikes in these neurons is capable to sample,
over multiple trials, the complete error range [4]. Hence, for the first time, a
reliable performance in smooth pursuit is demonstrated with a complete model
of the cerebellum with such a low firing rate encoding of the error.

The model and the architecture of the real-time simulating platform are pre-
sented in Sec. 2. The supervised learning mechanisms implemented in the net-
work are explicited in Sec. 3. The performance of the model is shown in Sec. 4.
The computational efficiency of the simulation framework allowed us to explore
and demonstrate the stability of the learning mechanisms employed in the model
over long periods of time.

2 Architecture of the Model

2.1 Cerebellar Network and Simulation Setup

The model described hereafter and shown in Fig. 1 reproduces the known anatomy
of the cerebellum (see Ito [3] for a review).

The mossy fibers (MF) are the inputs to the model, carrying sensory in-
formation about the target: its lateral and longitudinal positions and velocities
are encoded by 4 groups of 10 MF each. This information is transformed into
a sparse representation in the large granule cell (GC) layer, in which each cell
receives an excitatory connection from one randomly chosen neuron in each of
the 4 MF groups. The granule cells then form with the Golgi cells (GO) an
excitatory-inhibitory loop that limits the global activity in the granular layer.

The Purkinje cells, divided into 4 arrays of 4 neurons, receive excitatory
inputs from all the GC axons, called parallel fibers (PF), and a connection from
a single inferior olive (IO) neuron. The conductances of the PF-PC synapses are
chosen randomly at the beginning of the simulation, and modified online during
the learning of the task according to the rules defined in Sec. 3.

The output of the model is made of 4 cerebellar nucleus (CN) neurons, whose
activity provides a prediction of future target position (the prediction is ahead
by τpred, set to 200 ms). Two neurons code for the predicted lateral position
of the target Xpred, one for the ‘right’ position (CnX+), and the other for the
‘left’ position (CnX−). Similarly, the other two neurons code for the predicted
longitudinal position Ypred: ‘up’ (CnY+) and ‘down’ (CnY−). If Cni(t) is the
activity of cell i at time t, computed from its spike train, the predicted position
of the target at time t+ τpred is given by:
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Xpred(t+ τpred) = CnX+(t)− CnX−(t) (1)
Ypred(t+ τpred) = CnY+(t)− CnY−(t) (2)

Each CN neuron receives excitatory connections from all the mossy fibers, and
inhibitory afferents from the 4 PCs of the same cluster (the PC-CN-IO subcircuit
is organised in 4 microzones corresponding to the 4 variables coded by CN cells).

The inferior olive neurons carry the error signal that is used for the super-
vised learning of PF-PC synaptic conductances (see Sec. 2.2). Different sites of
plasticity exist in the cerebellum [5], but the present model focuses on PF-PC
plasticity, other synaptic conductances being fixed.

The spiking neurons of the network are simulated with a computationally
efficient table-based event-driven simulator [1]. Such a paradigm is particularly
suited for a cerebellar model in which sparse activity is expected in the nu-
merous neurons of the granular layer [6]. Plasticity mechanisms have also been
implemented in an event-driven scheme to permit online learning.

To close the sensorimotor loop, a time-driven simulation of the experimental
setup was run in parallel (time step: 1 ms). It is used both to emulate the
experimental world and to transform analog signals into spikes and vice-versa:
conversion of sensory (target-related) and error signals into MF and IO spikes,
and extraction of the target position prediction from CN spike trains.

As shown in Fig. 1, the two simulators communicate every millisecond through
TCP/IP sockets that transmit buffered spikes.

MF (40)

GR     (2000)

PC (16)

CN  (4)

GO (4)

SENSORY
INPUTS

SENSORY
PREDICTION

IO (16)

ERROR
SIGNAL

CEREBELLAR SIMULATION

EXPERIMENT SIMULATION

Excitatory connections

Inhibitory connections

Teaching signal Event-driven
computation

Time-driven
computation

Socket for
transmission of spikes

(every 1 ms)

Fig. 1. Simulation set-up. The cerebellar model (top) described in Sec. 2.1 is run

using an event-driven approach. It communicates through sockets with a time-driven

simulator that emulates the experimental setup (movement of the target), generates the

input spikes of the neural network and decodes cerebellar output spike trains. Numbers

in parentheses in the cerebellar model diagram (top) represent the number of neurons

per layer. MF: mossy fibers, GR: granule cells, GO: Golgi cells, PC: Purkinje cells, CN:

cerebellar nucleus neurons, IO: inferior olive neurons
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2.2 Models of Neurons

Mossy fibers are implemented as leaky integrate-and-fire neurons with the mem-
brane potential Um defined by the following equation [7]:

τm
dUm

dt
= −Um(t) +RI(t) (3)

When Um reaches the threshold value Uthresh, the neuron fires and Um is reset to
the value Ureset < Uthresh. The input currents I(t) are computed by applying a
radial basis function (RBF) to the coded sensory variable. The RBF centers are
evenly distributed across the sensory dimensions, and their widths are chosen to
ensure small response overlaps from consecutive mossy fibers.

The inferior olive neurons synapse onto the Purkinje cells and contribute to
direct the plasticity of PF-PC synapses, which is believed to play a critical role
in the learning of smooth and accurate movements [3]. These neurons, however,
fire at very low rates (less than 10 Hz), which appears problematic to capture the
high-frequency information of the error signal related to the task being learned.
This apparent difficulty may be solved by their irregular firing, which can be
exploited to statistically sample the entire range of the error signal over multiple
trials [4]. This irregular firing is reproduced by means of a Poisson model of
spike generation: if an IO neuron receives a normalised current IIO(t) at time
t, it will fire in the following time step if IIO(t) > rand(t), where rand(t) is a
random number between 0 and 0.01 generated for the neuron at each time step
(0.01 was chosen to limit the firing rate to 10 Hz).

Other cells are implemented as one-compartment conductance-based neurons,
whose states are precomputed [1]. Parameters for the granule cells, Purkinje cells
and Golgi cells were taken from electrophysiological recordings [1].

3 Learning

3.1 Plasticity Mechanisms

The main plasticity mechanism observed at the PF-PC synapse is long-term de-
pression (LTD, i.e. a decrease in synaptic conductance) [3]. It is mainly triggered
by the spikes of the IO cell contacting the corresponding PC, and depends upon
past activity of the afferent PF. More precisely, a PF spike will induce more
LTD if it occurs between 200 and 50 ms before the IO spike. To reproduce this,
we implemented an ‘eligibility trace’ [2] for each plastic synapse by means of a
kernel function K(t) applied to the spike train of the PF. The amplitude of LTD
triggered by a IO spike at time tIO is given by:

∫ tIO

−∞K(t − tIO)δi(t)dt, where
δi(t) = 1 if the ith PF fires at time t, δi(t) = 0 otherwise. To fit the event-driven
simulation framework, the kernel function was implemented as the weighted sum
of three exponential functions with different time decays (Fig. 2).

Recent studies [8] have shown that cerebellar LTD can be reversed when PF
spikes are followed neither by IO spikes nor by a strong depression of the PC
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Fig. 2. Kernel used for PF-PC synaptic long-term depression. The kernel is convolved

with the spike train of the afferent PF. This provides a measure of past PF activity

setting the eligibility of the synapse to depression when the IO neuron afferent to the

PC emits a spike (t = 0)

membrane potential. These findings were implemented by a non-associative plas-
ticity rule: each time the presynaptic PF fires, the PF-PC synapse conductance
is increased by a fixed amount δLTP .

3.2 Generating the Error Signal

The input current driving the IO neuron is computed by comparing the predicted
and the actual position of the target (prediction error). The error encoding by
the inferior olive neurons follows the visual target position encoding by the CN
neurons. To describe this error signal, let us consider the IO neuron i connected
to a PC inhibiting the CNX+ neuron (the one coding for prediction of positive
lateral position of the target). Its input current at time t, I(t), is derived from
the activity of CNX+ at time t − τpred, which represents the prediction for the
positive lateral target position at time t (Xpred+(t) = CNX+(t − τpred)), and
from the actual lateral position of the targetXtarget(t), according to the following
equations:

if Xtarget(t) < 0, I(t) = α (0.15− aXpred+(t)) (4)
if Xtarget(t) ≥ 0, I(t) = α (0.15 + b (Xtarget(t)−Xpred+(t))) (5)

where a, b and α are normalisation factors limiting the IO firing rate below 10
Hz (see Sec. 2.2). The value 0.15 was chosen to set the mean IO firing rate at
1.5 Hz for zero error, as observed experimentally.

The subtractive part of Eq. 4 represents formally the inhibition of the IO
by CN neurons, which has been observed experimentally and suggested to be
necessary for the reversal of non-relevant learning [9]. If the IO input current
I(t) is close to 0, then LTP is likely to dominate LTD at the PF-PC synapse;
if it is close to 1, then the contrary holds. The converse equations hold for the
computation of the contralateral error (i.e. regarding CNX−), and the same
system of equations is used to generate the ‘up’ and ‘down’ error signals.
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4 Experimental Task and Results

Psychophysical experiments have shown that monkeys can achieve accurate
smooth pursuit eye tracking of periodically moving targets with hardly no phase
lag, whereas delays in the visual pathway can reach over 100 ms. The flocculus
and paraflocculus cerebellar areas participate to the control of smooth pursuit
eye movements: they learn to produce movement predictions that compensate
for the feedback delays in the eye control loop [2]. The present model is based on
these findings and focuses on the ability of a cerebellar network to build short
term predictions with physiologically constrained spiking learning mechanisms.
A target moves along periodical trajectories and the model learns to build a
continuous short-term prediction of the target position (Fig. 3, top right). At
each time step, the cerebellar model is given the position and velocity of the
target, and the CN neuron activities at time t are interpreted to compute the
prediction of the target absolute position at time t+ τpred (τpred = 200 ms). The
learning rules described in Sec. 3 are applied continuously.

The simulation consists of three consecutive stages of 1000 s. The target first
describes an ‘8-shape’ trajectory with a period of 2π s, then a circle with the

Fig. 3. Cerebellar model results. Top left: Performance of the model during three stages

of 1000 s: ’8-shape’ target trajectory (top), followed by a circle (middle) and finally an

’8-shape’ again (bottom). The left column shows the target trajectories, the center and

right columns represent, respectively, the predictions of the model at the beginning

and the end of each stage. Top right: Screenshot taken at the end of the simulation.

The target to follow is the ball, and the cone represents the delayed cerebellar sensory

prediction. The lines are traces of past cerebellar output. Bottom: Spike trains of two

IO cells coding for the same error signal, at the beginning of the simulation (left) and

at the end of the simulation (right). When learning has stabilised, these cells fire at 1

to 2 Hz, whereas when the error is important frequencies up to 10 Hz can be observed
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same period and finally the ‘8-shape’ trajectory again. This last stage seeks to
test the possible destructive interferences brought by the second learning stage.

The performance of the model in the predictive task of smooth pursuit is
illustrated in Fig. 3. The mean prediction error decreases from η = 0.6 at the
beginning of the simulation to η = 0.1 after 3000 s. The spike trains of two IO
cells related to CNX+ output neurons are also shown for the beginning and the
end of the first stage of the simulation. The model learned to follow the given
trajectory and little interference occurred when changing from one trajectory
to another. Learning occurred mainly during the first 500 s of each stage and
plateaued after this initial period. Indeed, the matrix of PF-PC weights remained
stable afterwards, with only small local variations (not shown).

The simulations were run on a dual-processor computer (Intel(R) Xeon(TM)
CPU 2.80 GHz). There were 2080 neurons in the network and more than 52000
synaptic connections. During one second of simulation, the cerebellar network
received an average of 395 spikes, sent 405 spikes in output, and processed 935
801 events. One stage of the simulation (1000 s) lasted approximately 280 s,
which revealed to be better than real-time. Hence, on this machine, there is
room to scale up the size of the network, the main limiting factor being the
global level of activity in the network.

5 Discussion

To our knowledge, the model presented here is the first to implement a complete
and physiologically relevant spiking cerebellar network running in real-time and
learning online to build sensory predictions in a closed sensorimotor loop. Good
performances were reached despite the physiologically realistic low firing of the
inferior olive (less than 10 Hz). This indeed suggests that one of the process-
ing of the inferior olive is to sample non-deterministically the input signals it
receives in order to provide over time a complete representation of these signals
to the plasticity mechanisms at the Purkinje cells [4, 10]. The model extends
many previous cerebellar models. Kettner et al. modeled the learning of pre-
dictive commands for smooth pursuit eye movements [2]. Their model featured
an eligibility trace to compensate for visual feedback delays, but relied exclu-
sively on analog units. Schweighofer et al. [11] and Spoelstra et al. [12] used the
cerebellum to produce predictive corrections in an arm reaching task. Analog
units were also used there, except for the IO cells modeled as leaky integrate
and fire spiking neurons with low firing rates. However, the IO spikes were de-
terministically drawn from the error signal and the LTP at PF-PC synapse was
modeled as a weights normalisation process. In a similar arm task, Kuroda et
al. [4] showed that the stochastic firing of IO neurons increased performances;
yet they implemented a very simplified cerebellar model and did not take time
delays into account. In all the arm reaching simulations above, the learning took
place per trial and not continuously and was implemented off-line, so that the
output of the cerebellum could not interfere with the motor command during
the learning stage. Medina et al. [13, 9] also implemented a spiking model of
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the cerebellum, but they focused on eyeblink conditioning experiments and used
coincidence-based learning rules.

Whereas with previous simulators hours or days were required to simulate a
spiking cerebellar model learning smooth pursuit, the current event-driven sim-
ulator with online plasticity mechanisms permitted to achieve real-time learning
of the task. This allowed us to show that the biologically plausible learning
mechanisms running continuously over long periods of time were stable and that
few destructive interferences occurred in learning the same task in different sen-
sorimotor contexts (different target trajectories). Future simulation results will
permit a thorough analysis of this evidence with more diverse contexts.

The current simulation framework demonstrates that a realistic spiking cere-
bellar model running in real-time in a complete action-perception sensorimotor
loop is becoming reality. Future robotic experiments will sustain that claim.
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Abstract. Computing in nature as is the case with the human brain is
an emerging research area in theoretical computer science. The present
paper’s aim is to explore biological neural cell processes of interest and
to model them with foundational concepts of computer science. We have
started by discovering and studying certain primitive symbolic neural
operations of neuron functions, and we have formalized them with Lin-
denmayer (L) systems.

1 Introduction

So far, the investigation of computing and learning in neural systems, or neural
computation, with a good number of theoretical contributions, has been dom-
inated by approaches from theoretical physics, information theory, and statis-
tics [5].

Our research interest in biological neural systems is mainly focused on ex-
ploring symbolic models of neural systems through the foundations of computer
science. More precisely, we attempt to explore the architecture of biological neu-
ral systems by modeling and simulating neural processes (as realistic ones as
possible) with existing language-theoretic devices and bio-inspired computing
techniques. We have investigated the modeling of neural processes studying, for
the moment, the behavior of a single neuron concerning both its structure and
some functions, as in [1], [2], [7], [8], etc.

In the present paper, we explore the potentialities of Lindenmayer (L) sys-
tems for the study of neural processes, particularly impulse transmission and
propagation through myelinated axon and axonal terminal tree of the neuron.
We show that PD0L language sequences and length sequences of PD0L languages
are thus generated.

The common features shared by L systems and neural systems, both of them
having distributed architectures and working in a massively parallel manner, are
a good starting point for the designing of symbolic models.
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2 Preliminaries

We briefly mention next some notions, notations, and results from L systems
as well as some biological neural phenomena that will be used throughout the
paper.

2.1 Biological Neural Systems

The basic transmitting unit in the nervous system is brain cells, so called neurons
[3], [6]. The neuron is not one homogeneous integrative unit but is (potentially)
divided in many sub-integrative units, each one with the ability of mediating a
local synaptic output to another cell or a local electro-tonic output to another
part of the same cell.

Neurons are considered to consist of three main parts: a soma, the main
part of the cell where the genetic material is present and life functions take
place; a dendrite tree, the branches of the cell from where the impulses come
in; and an axon, the branch of the neuron over which the impulse (or signal) is
propagated. The branches present at the end of the axons are called terminal
trees. An axon can be provided by a structure composed by special sheaths.
These sheaths are involved in molecular and structural modifications of axons
needed to propagate impulse signals rapidly over long distances. The impulse in
effect jumps from node to node, and this form of propagation is therefore called
saltatory conduction. There is a gap between neighboring myelinated regions
that is known as the node of Ranvier, which contains a high density of voltage-
gated Na+ channels for impulse generation. When the transmitting impulses
reach the node of Ranvier or junction nodes of dendrite and terminal trees, or
the end bulbs of the trees, it causes the change in polarization of the membrane.
The change in potential can be excitatory (moving the potential toward the
threshold) or inhibitory (moving the potential away from the threshold).

The complexity revealed by modern research has widened with several new
concepts. One of them is that the postsynaptic terminal may send retrograde
signals to the presynaptic terminal. Because of this, the synapse can be viewed
as having a bidirectional nature.

More details about neural biology can be found in [11].

2.2 Lindenmayer Systems

In 1968, A. Lindenmayer introduced a formalism for modeling and simulating the
development of multicellular organisms [4], subsequently named L systems. This
formalism was closely related to the theory of automata and formal languages,
and immediately attracted the attention of computer scientists [10]. The devel-
opment of the theory of L systems was followed by its application to the modeling
of plants. After a vigorous initial research period, some of the resulting language
families, notably the families of D0L, 0L, DT0L, E0L and ET0L languages, emerged
as fundamental ones. Indeed, nowadays the fundamental L families constitute a
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testing ground similar to the Chomsky hierarchy when new devices (grammars,
automata, etc.) and new phenomena are investigated in language theory.

We recall here some formal definitions and classes of L systems.

Definition 1. A finite substitution σ over an alphabet Σ is a mapping of Σ∗

into the set of all finite nonempty languages (over an alphabet ∆) defined as
follows. For each letter a ∈ Σ, σ(a) is a finite nonempty language, σ(λ) = λ
and, for all words w1, w2 ∈ Σ∗, σ(w1w2) = σ(w1)σ(w2). If none of the languages
σ(a), a ∈ Σ, contains the empty word, the substitution σ is referred to as λ - free
or nonerasing. If each σ(a) consists of a single word, σ is called a morphism.
We speak also of nonerasing and letter-to-letter morphisms.

Definition 2. A 0L system is a triple G = (Σ, σ,w0), where Σ is an alphabet, σ
is a finite substitution on Σ, and w0 (referred to as the axiom) is a word over Σ.
A 0L system is propagating, or a P0L system, if σ is nonerasing. The 0L system
G generates the languages L(G) = {w0}∪σ(w0)∪σ(σ(w0))∪ · · · =

⋃
i≥0 σ

i(w0).

Definition 3. A 0L system G = (Σ, σ,w0) is deterministic, or a D0L system,
if σ is a morphism.

Definition 4. Let G = (Σ, h,w0) be a D0L system (we use the notation h
to indicate that we are dealing with a morphism). The system G generates its
language L(G) in a specific order, as a sequence: w0, w1 = h(w0), w2 = h(w1) =
h2(w0), w3, · · ·. We denote the sequence by S(G). Thus, in connection with a D0L
system G, we speak of its language L(G) and its sequence S(G). D0L systems
are propagating, that is PD0L systems, if σ is nonerasing.

Definition 5. Given a D0L system G = (Σ, h,w0), the function fG : N → N

defined by
fG(k) = |hk(w0)|, n ≥ 0 (1)

is called the growth function of G, and the sequence

FG,k = |hk(w0)|, k = 0, 1, 2, · · · (2)

is called its growth sequence. Functions of the form (1) are called D0L growth
functions (resp. PD0L growth functions if G is a PD0L system). Number se-
quences of the form (2) are called D0L (resp. PD0L) length sequences.

3 L Systems in Modeling Neural Cell Processes

Traditionally, Lindenmayer systems are grammatical models of the development
of multi-cellular organisms, which consider cells as basic atomic objects. There-
fore, in Lindenmayer systems, the cells are identified by symbols. In the current
section, we try to focus on zooming a neural cell. We are interested in the cell
structure, and in the chemical operations that are present in the cell. We are
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also focused on modeling and simulating processes of the neuron in L systems.
The chemicals inside cells, not “cells” themselves, will be atomic entities in our
model. We consider neural cell processes - impulse transmission and propagation
through myelinated axon and axonal terminal tree of the neuron - as our domain
of interest and show that essential aspects of impulse transmission can be viewed
as parallel rewriting processes.

3.1 Impulse Transmission of Axon and D0L Systems

The neural cell’s axon structure can be mathematically represented by a linear
undirected graph with n nodes labeled injectively by 1, 2, · · · , n from the ancestor
node until the end node in ascending order, as illustrated in Figure 1.

Let us denote an impulse by ai, the subscript i indicating which impulse sends/
reaches from/into i-th node of the axon. The excite impulse a1 is transmitted
from the ancestor node with label 1 into the target node with label 2 while the
impulse evolves to a2, then it replicates into two distinguished impulses a1 and
a3. Those impulses are transmitted to the adjacent nodes 1 and 3, and so on, the
impulses being spreaded through the axon by jumping from node to node.

� ��
�

� ��
�

�
�

1 2 3 4

Fig. 1. Myelinated Axon Illustration

Sending the impulse a1 from node 1 to node 2, and sending back the impulse
an from node n to node n− 1, are described by the morphisms h(a1) = a2 and
h(an) = an−1, respectively. The transmission of impulses from internal nodes is
described as h(ai) = ai−1ai+1, meaning that the impulse ai replicates into ai−1

and ai+1 at the node i, and they are transmitted to the adjacent nodes i−1 and
i+ 1, respectively.

We send a unique exciting impulse a1 from the ancestor node into the axon
with i number of nodes. We are interested in the properties held by the fir-
ing axon as impulse propagation, spread, transmission through long distance
(nodes), paying special attention to sequences of PD0L.

Let us consider a sequence of PD0L systems Gi = (Σi, hi, a1), with Σi =
{a1, · · · , ai}, each of Gi having morphisms hi(a1) = a2, hi(ak) = ak−1ak+1,
hi(ai) = ai−1, 2 ≤ k ≤ i− 1, 1 ≤ i ≤ n, and the same axiom a1. The subscript i
indicates the number of nodes of the axon. Thus, G3 = ({a1a2a3}, h3, a1). The
first few words in the sequence S(G3) are a1, a2, a1a3, a2a2, a1a3a1a3, a2a2a2a2,
a1a3a1a3a1a3a1a3, a2a2a2a2, · · ·. Hence, the length sequence is 1, 1, 2, 2, 4, 4,
8, 8, · · ·. On the other hand, G4 = ({a1a2a3a4}, h4, a1). The sequence S(G4) be-
gins with words a1, a2, a1a3, a2a2a4, a1a3a1a3a3, a2a2a4a2a2a4a2a4, a1a3a1a3a3

a1a3a1a3a3a1a3a3. The length sequence is the well-known Fibonacci sequence
1, 1, 2, 3, 5, 8, 13, · · ·.



Modeling Neural Processes in Lindenmayer Systems 149

Proposition 1. Alphabets of each adjacent words in a sequence S(Gi) are com-
pletely different: alph(wj) ∩ alph(wj+1) = ∅, j ≥ 1.

Proposition 2. Alphabets of words in even positions and in odd positions in a
sequence S(Gi) coincide, respectively: alph(wi+j) = alph(wi+j+2), j ≥ 1.

Between the sequences of PD0L systems Gi, 3 ≤ i ≤ n, the next properties
hold.

Proposition 3. Gi is obtained from previous grammars Gj , j ≤ i, by using the
following iterated morphism relations:

hi(ak) = hi−1(ak), 1 ≤ k ≤ i− 2,
hi(ai−1) = hi−1(ai−1)ai,
hi(ai) = ai−1, 3 ≤ i ≤ n.

(3)

Word length sequences |w0|, |w1|, · · · obtained from a D0L sequence S(G) =
w0, w1, w2, · · · determine in a natural way the function f such that the value
f(n), n ≥ 0, is defined to be the number |wn| in the sequence. This function is
referred to as the growth function of the D0L system G. Thus, when studying
growth functions, we are not interested in the words themselves but only in their
lengths.

Proposition 4. The numbers of occurrences of symbols in each word in the
sequence are presented in the next recurrent formula. If fGn,k(ai) is the number
of occurrences of symbol ai in the k-th word of the sequence S(Gn), then

fGn,1(a1) = 1, fGn,1(ai) = 0, 2 ≤ i ≤ n,
fGn,k(a1) = fGn,k−1(a2),
fGn,k(ai) = fGn,k−1(ai−1) + fGn,k−1(ai+1), 2 ≤ i ≤ n− 1,
fGn,k(an) = fGn,k(an−1), k ≥ 2, n ≥ 3.

(4)

Proposition 5. The sum of occurrences of each symbol in the k-th word of
S(Gn), n ≥ 3, (i.e. the length of that word) is:

FGn,k = fGn,k(a1) + fGn,k(a2) + · · ·+ fGn,k(an). (5)

Proposition 6. The k-th member FGn,k of the length sequence |S(Gn)| is de-
scribed by the previous two members in the general formula

FGn,1 = FGn,2 = 1,
FGn,k = FGn,k−1 + FGn,k−2 +Σn−2

i=3 fGn,k−2(ai),
|wn,k| = |wn,k−1|+ |wn,k−2|+Σn−2

i=3 fGn,k−2(ai), n ≥ 3, k ≥ 3.
(6)

It is easy to claim, by using (4), that

FGn,k = fGn,k(a1) + · · ·+ fGn,k(an) =
fGn,k−1(a1) + 2fGn,k−1(a2) + · · ·+ 2fGn,k−1(an−1) + fGn,k−1(an) =
FGn,k−1 + FGn,k−2 +Σn−2

i=3 fGn,k−2(ai).
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The next simple formulas follow from (6). If the graph (axon) has 4 nodes, the
tail of (6) is always 0, and Σn−2

i=3 fGn,k−2(ai) = 0, then |S(G4)| is the Fibonacci
numbers.

FG4,1 = FG4,2 = 1, FG4,k = FG4,k−1 + FG4,k−2, k ≥ 3 or
|w4,k| = |w4,k−1|+ |w4,k−2|, k ≥ 3.

3.2 Impulse Transmission of the Axonal Terminal Tree and PD0L
Systems

The axonal terminal tree can be mathematically represented by a tree with n
levels. It is possible to specify impulse transmission operations through axonal
terminal trees in L systems by parallel rewriting rules. The internal nodes of
the tree are “hot spots”. A reached impulse at a “hot spot” is replicated and
distributed into adjacent nodes. For instance, by rule 2 → 341, the impulse 2
is replicated into impulses 3, 4 and 1, and distributed to the children nodes 3
and 4, and parent node 1 of the node 2, respectively. In our formalization, from
the root node of the tree, impulses are only replicated and distributed to the
children nodes, however from the leaf nodes impulses are just transmitted back
to the parent nodes without any replication.

Let us now denote an impulse as a number i. Impulses are replicated at a
node and distributed only to the connected nodes as mentioned above. Here, we
consider only a binary tree structure of the axonal trees.

As usual, we send a unique excite impulse 1 from the root node into the tree,
thus we see the process of impulse propagation and spreading through the tree.
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Fig. 2. Axonal Terminal Tree Structures

Consider a PD0L system G = (Σ,µ,H, 1), with alphabet Σ, axonal tree
structure µ, set of rewriting rules H, and axiom 1.

We consider the following examples of impulse transmission in certain types
of a terminal tree.

Axonal terminal binary trees, illustrated in Fig. 2, are described as bracketed
strings:
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- Three-level trees:
µa) 1[ 2[ 44] 3]
µb) 1[ 2[ 33] 2[ 33] ] is a complete binary tree with 3 levels.

- Four-level trees:
µc) 1[ 2[ 4[ 55] 4[ 55] ] 3]
µd) 1[ 2[ 4[ 66] 4[ 66] 3[ 55] ] ] is a complete binary tree with 4 levels.

Corresponding rewriting rules of impulse transmission and propagation
through the terminal tree structures as above are:

ha) 1 → 23, 2→ 144, 3 → 1, 4 → 2
hb) 1 → 22, 2→ 133, 3 → 2
hc) 1 → 23, 2→ 144, 3 → 1, 4 → 255, 5 → 4
hd) 1 → 23, 2→ 144, 3 → 155, 4 → 266, 5→ 3, 6 → 4

Ga = ({1234}, µa, ha, 1). The first few words in the sequence S(Ga) are

1, 23, 1441, 232223, 14411441441441, 23222323222322232223, · · ·

Hence, the length sequence is 1, 2, 4, 6, 14, 20, 48, 68, 164, · · ·
The length sequence |S(Ga)| can be generated by the following formula:

w1 = 1, w2 = 2,

|wn| =
{
|wn−1|+ |wn−2|, if n is even,
|wn−1|+ 2|wn−2|, if n is odd, n ≥ 3.

A case of generating formula for the above integer sequence is found as:
Sequence: 0,1,1,2,4,6,14,20,48,68,164,232,560,792,1912,2704,6528,9232,
22288,31520,76096,107616,259808,367424,887040,1254464,
Name: a(0) = 0; a(1) = 1; a(n) = a(n− 1) + (3 + (−1)n) ∗ a(n− 2)/2
Formula: G.f.: x(1 + x− 2x2)/(1− 4x2 + 2x4).
Example: a(4) = a(3) + 2 ∗ a(2) = 2 + 2 = 4
Author: Olivier Gerard (ogerard(AT)ext.jussieu.fr), Jun 05 2001.

Let us consider a PD0L system Gb = ({123}, µb, hb, 1). The first few words in
the sequence S(Gb) are 1, 22, 133133, 22222222, 133133133133133133133133, · · ·
Hence, the length sequence is 1, 2, 6, 8, 24, 32, 96, · · ·

The language generated by the grammar Gb is

L(Gb) = {1} ∪ {(22)2
2n

, (133)2
2n+1 | n ≥ 0}.

The length sequence |S(Gb)| can be generated by the following formula:

w1 = 1, w2 = 2,

|wn| =
{
|wn−1|+ |wn−2| = 2n−1, if n is even,
3|wn−1| = 3 ∗ 2n−2, if n is odd, n ≥ 3.

Gc = ({12345}, µc, hc, 1). The first few words in the sequence S(Gc) are
1,23,1441,2325525523,144114444144441441,
232552552323255255255255232552552552552325525523,· · ·.
Hence, the length sequence is 1, 2, 4, 10, 18, 48, · · ·.
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4 Final Remarks

We have tried to show that the application of L systems to neural process as
impulse transmission and propagation through an axon with n nodes and ter-
minal trees produce PD0L languages and length sequences of languages. The
growth function for impulse propagation in the axon (5) tells us that the num-
ber of impulses propagated in the axon is growing in an exponential manner,
and this number does not depend on the number of nodes in the axon. We have
seen that, depending on the number of nodes in the axon, impulse transmis-
sion generates different types of sequences of numbers, but all of them share
the common formula (6). Modeling the whole information transmission process
in neurons, receiving impulses in the dendrite tree, transmitting them into the
soma, processing impulses in the soma, transmitting the processed impulses into
the terminal tree, finally releasing the impulses into the connected junctions of
neurons in order to make neural connections, all of this could be simulated with
L systems.

Acknowledgments. The work partially supported by the Asian Research Cen-
ter, National University of Mongolia.
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Abstract. Prior studies showed that stimulus equivalence did not
emerge in nonhuman and it may be what distinguish humans from non-
humans. We think that stimulus equivalence is the origin of humanfs
illogical reasoning.

For applying neural networks to stimulus equivalence, a problem of
missing input features and self-supervised learning must be solved. In
this paper, we propose a neural network model based on the iterative
inversion method which has a potential possibility to explain the stimulus
equivalence and demonstrated the validity of the proposed model by
computer simulations. Furthermore, it was discussed that the proposed
model was an appropriate model of symmetry for human reasoning.

1 Introduction

When solving the problem in the real world, a flexible human inferential ability
corresponding to the situation demonstrates surprising power. Especially, the
great feature that other animals do not have is to have a logical reasoning and the
intuitive, non-logical reasoning by the human. It was requested to pay attention
to the side of a human logical mind in the early artificial intelligence research,
and to be programmed with the computer. However, the example that a man
does not follow the right reasoning result logically is also observed various scenes
in daily life by one side. Then, although the research which focused on the side of
illogical thinking, such as fuzzy reasoning which formulized ambiguous reasoning
of a man, prospers, the elucidation is not yet made.

In this paper, the stimulus equivalence known as a man’s illogical cognitive
bias thinks that it is the factor of illogical reasoning of a man. While stimulus
equivalence considers the role played in a man’s reasoning process and language
acquisition process, the computational model is proposed.
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2 Stimulation Equivalence and Non-logical Reasoning

The stimulation equivalence is a phenomenon of approving the derivative rela-
tions between stimulation it not is in the training case in the conditional dis-
crimination task of the sample matching problem etc. It is acquired without the
four remaining relations shown by the dotted line learning by learning only two
relations expressed with a solid line among six relations shown by the arrow in
Fig.1. The character string ”banana” is presented showing the picture of the
banana. A character string ”banana” is shown and it speaks with ”banana”.

The stimulation equivalence is formulated with three character the symmetry,
equivalence and equivalence (Sidman1982) (Sidman1994). In Fig.1, The picture
of the banana is inferred showing character string ”banana” . When it is made to
hear the ”banana, character string ”banana” is inferred(symmetry). The picture
of a banana is shown and it speaks with ”banana”(transitivity). The picture of
a banana will be reasoned if ”banana” is told (equivalence).

Stimulus equivalence is materialized in human being. It is known that it is
difficult to materialize symmetry in animals other than a man especially in the
composition element of stimulus equivalence.

In this paper, I think that it is the base of the flexible and illogical reasoning
with acquisition of the symmetry containing such a logical mistake peculiar to
a man. The author thinks that the role that the language plays is large though
there are various opinions why a human inferential ability is as flexibly as this
excellent.

There are various opinions of whether a human inferential ability is as flexibly
as this excellent (Harlow1949) (Vaughan1988) (Delis1998) . The author thinks
that the role that the language plays is large. According to the restrictions
theory of meaning-of-a-word study, a man does not search for and examine all

Fig. 1. Stimulus equivalence
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the possibilities as a meaning of the word which met for the first time. It is known,
although it had a belief about a concept suitable as a meaning of a word, the
hypothetical space which should be searched by the belief was restrained and
the meaning of a word is gained efficiently. The whole object principle, ”a word
points not a portion but things whole out” and the mutual exclusivity principle,
”things are allowed only one category name” are known as such restrictions.
Although a logical error is included, a man dared use such meta-knowledge and,
as for each of these principles, has gained language efficiently. On the other
hand, an animal’s has gained stimulus equivalence is being unable to accept the
relation which is logically contradictory. An animal worries in huge hypothetical
space in the scene of meaning-of-a-word acquisition, and is considered to continue
wandering about.

3 Connectionist Model of Stimulus Equivalence

3.1 Symmetry as Ill-Posed Problem

Recently, attention is paid to the research of the connectionist approach by
high compatibility with the structure of the brain and a nonlinear modeling
ability. The connectionist approach has achieved the result as models of the ac-
knowledgment functions of the language acquisition and the pattern recognition
ability, etc.

However, stimulus equivalence can be caught with the ill-posed inverse prob-
lem (Fig.2). It is difficult for the the former type multilayer connectionist model
to achieve the function to presume an unknown part from such truncated data.
When the modeling of a nonlinear system tends to be performed paying atten-
tion to an input and an output and it is generally going to aim at a certain
problem solution, two kinds of approaches can be considered in the modeling.

Fig. 2. Connectionist model approach
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One is approach which pays its attention to the forward model for modeling,
and another is approach which pays its attention to the inverse model for mod-
eling. Especially, when the multilayer connectionist model is used as a modeling
technique, this difference becomes an important point.

In general, the input/output relation of the modeling system becomes a map
of multi vs. 1 as for the problem of acquiring forward model of the system
by using the connectionist model. Therefore, forward model can be acquired
comparatively easily by using the learning ability of neural netwaork.

On the other hand, the connectionist model might be able to be used accord-
ing to the application( no 1 vs. multi ) even by the approach that pays attention
to a inverse model of the system. To be demanded from the model of the stimulus
equivalence discussed by this paper is to solve a reverse problem of a nonlinear
faction. These problems become ill-posed problem to which the solution is not
uniquely decided. Therefore, it is difficult for the multilayer connectionist model
to acquire a inverse model of such a systema map which of multi vs. 1 .

In this paper, we propose a computational model of stimulus equivalence
which solves the ill-posed reverse problem .

3.2 Connectionist Model of Symmetry Reasoning

A stimulus equivalence model which uses a layered neural network is shown in
Fig.3. In Fig.3, the each level of the input layer, the hidden layer, and the output
layer sequentially has two or more units from the left. The picture data is treated
in the input layer and character string data is treated in the output layer.

Operation of a model consists of a learning phase ((1) of Fig.3), and a sym-
metry reasoning phase ((2) of Fig. 3). In the learning phase, forward model of
the system is acquired by comparing the output from the network with standard
signal by error back-propagation method. This process is equivalent to the por-
tion shown by the solid line arrow in Fig.1. The picture of a banana is shown,
and a character sequence called a ”banana” is learned or it learns showing a
character sequence called a ”banana” and speaking with ”banana”.

In the symmetry reasoning phase, Associated reasoning is done by feeding
back the error in the output layer on the network, which trained in the learning

Fig. 3. Connectionist model of acquisition of symmetry reasoning
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phase, directly to the input layer without additional training. Here, the symme-
try reasoning phase has been the ill-posed inverse problem that the state of two
or more input layers corresponds to one certain state in an output layer. Then,
in the model to propose, the ill-posed inverse problem is solved by the Iterative
Inversion method stated in the following section.

3.3 Iterative Inversion Method

We proposed the Iterative inversion method as a connectionist approach that
solved a ill-posed inverse problem (Masumoto1992) (Nagata1988). Iterative in-
version method acquires not a backward neural network model but a forward
neural network model. A ill-posed inverse problem is undone by applying the
iterative algorithm based on the gradient descent method such as the error back-
propagation etc. to this multilayer neural network.

The Iterative Inversion method works in Figure 4 as follows.

Step1: Forward model of the system that is from the input layer to the output
layer is learned by using the error back-propagation method. It is learned
to output character string ”banana” showing the picture of the banana
in Figure 1.

Step2: An initial value of the input data s ( a picture of the banana in Figure
1.) based on a suitable hypothesis is first decided in backward reasoning,

s
is

kH
kh

jF

jf

f(s)

jd

d

U(s, d)

Step1 Training Step2

Step5Step4

Step3

input layer

hidden layer

output layer

jkv

kiw

Fig. 4. Iterative inversion method
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and it gives it to the input layer of the neural network. It corresponds in
Figure 1 to the reasoning of the picture of the banana showing character
string ”banana”.

Step3: Feed-forward calculation is executed and error signal U(s,d) of the out-
put value f(s) and the teaching signal d (It is character string ”banana.”
in Figure 1) from the output layer of the neural network is calculated.

U(s,d) = Σj(fj(s)− dj)2 (1)

Step4: To reduce it when it is larger than the constant ε with U(s,d), input
data is corrected by the gradient descent method according to the next
equation.

si(t+∆t) = si(t)−K
∂U(s,d)
∂si

(2)

where K is a constant.
The second term of the right side of an equation can be developed like
the next expression.

∂U(s,d)
∂si

= 2Σ(fi(s)− d)
∂fj(s)
∂si

(3)

Here, sensitivity the change of the value of one unit in the input layer
of how output data fi(s) changes, that is, the neural network exerts the
influence of which extent on the output value of one unit in the output
layer as for a right partial derivative when sj is changed is shown. This
partial derivative calculates as follows.
Input or output value to/from input layer’s unit i is si .
Connection weights from input layer’s unit i to hidden layer’s unit k is
wki.
Input value to hidden layer’s unit k is Hk = Σiwkisi.
Output value from hidden layer’s unit k is hk = σ(Hk) (σisatransform
functionofunit).
Connection weights from hidden layer’s unit k to output layer’s unit (j)
is vjk.
Input value to output layer’s unit j is Fj = Σkvjkhk.
Output value from output layer’s unit j is fj = σ(Fj).
The next expression is obtained when as mentioned above defining it.

∂fj(s)
∂si

=
dfj

dFj

∂Fj

∂si

= σ‘(Fj)Σkvjk
∂hk

∂si

= σ‘(Fj)Σkvjkσ‘(Hk)
∂Hk

∂si

= σ‘(Fj)Σkvjkσ‘(Hk)wki (4)
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Therefore,

∂U(s,d)
∂si

= 2Σ(fj − dj)σ‘(Fj)Σkvjkσ‘(Hk)wki (5)

Step5: It returns to Step3 in updated S as an initial value.

The picture of the banana can be associated by showing character ”banana”
after character ”banana” is studied showing the picture of the banana by re-
peating the processing of the above-mentioned.

4 Computer Simulation

The computer simulation was performed in order to check the validity of the
proposed model. It is shown that it is realizable by the model which reasoning
that the picture of a banana gives a character sequence ”banana” proposes it
carries out the picture of a banana is shown and a character sequence ”banana”
is learned.

The picture of various bananas (24 pictures that rotated the learning stimu-
lation by 15 degrees were assumed to be study data in the simulation) was pre-
sented in the input layer, and it was studied that the character string ”banana”
was output to the output layer by the error back-propagation method (Fig-
ure3(1) Learning phase). When the error in the study phase decreased enough,
the study phase was ended, and symmetry reasoning was executed. About 50,000
ephoch’s iteration was learned in the learnig phase in this experiment.

Whether the image of the banana was inferable was confirmed from the
character string ”banana” by the Iterative Inversion method by using an initial

Fig. 5. Simulation result
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value (s in Step2 of Figure4) as an initial value of the image given to the input
layer (Figure3(2) Symmetry reasoning phase).

The result of a computer simulation is shown in Fig. 5. In the figure, a learning
stimulus is a standard signals shown by the learnig phase in Figure3. When Fig.
5 (a) was given as an initial value of a network by the symmetry reasoning phase,
the picture of Fig. 5 (d) was able to be reasoned by 1000 iteration trial.

5 Conclusion

In this paper, the stimulus equivalence known as a man’s illogical cognitive bias
thought that it was the factor of illogical reasoning of a man. While stimulus
equivalence considered the role played in a man’s reasoning process and language
acquisition process, the computational model was proposed.

In order to examine the validity of the proposed model, when the computer
simulation was performed, it was checked that a model can aquire symmetry.
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Abstract. We studied auto–associative networks in which synapses are
noisy on a time scale much shorter that the one for the neuron dynam-
ics. In our model a presynaptic noise causes postsynaptic depression as
recently observed in neurobiological systems. This results in a nonequilib-
rium condition in which the network sensitivity to an external stimulus is
enhanced. In particular, the fixed points are qualitatively modified, and
the system may easily scape from the attractors. As a result, in addition
to pattern recognition, the model is useful for class identification and
categorization.

1 Introduction and Model

It is likely that the reported short–time synaptic noise determines the trans-
mission of information in the brain [1, 2, 3, 4]. By means of a modified attractor
neural network, we shall illustrate here that fast synaptic noise may result in a
nonequilibrium condition [6] consistent with short–time depression [5]. We then
show how this in turn induces escaping of the system from the attractor. The
fact that the stability of fixed points is dramatically modified, in practice allows
for complex computational tasks such as class identification and categorization,
in close similarity to the situation reported in neurobiological systems [7, 8, 9].
A more detailed account of this work will be published elsewhere [10].

Consider a set of N binary neurons with configurations S ≡ {si = ±1; i =
1, . . . , N} connected by synapses of intensity

wij = wijxj ∀i, j. (1)

Here, wij is fixed and determined in a previous learning process, and xj is a
stochastic variable. For fixed W ≡{wij}, the network state at time t is deter-
mined by A = (S,X ≡ {xi}). These evolve in time according to

∂Pt(A)
∂t

=
∑
A′

[Pt(A′)c(A′ → A)− Pt(A)c(A→ A′)] (2)

where c(A → A′) = p cX(S → S′) δX,X′ + (1 − p) cS(X → X′) δS,S′ [11]. This
amounts to assume that neurons (S) change stochastically in time competing
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with a noisy dynamics of synapses (X), the latter with an a priory relative
weight of (1− p)/p.

For p = 1, the model reduces to the Hopfield case, in which synapses are
quenched, i.e., xi is constant and independent of i. We are interested here in the
limit p→ 0 for which neurons evolve as in the presence of a steady distribution
for the noise X. If we write P (S,X) = P (X|S)P (S), where P (X|S) stands for
the conditional probability of X given S, one obtains from (2), after rescaling
time tp→ t and summing over X that

∂Pt(S)
∂t

=
∑
S′
{Pt(S′)c̄[S′ → S]− Pt(S)c̄[S→ S′]} . (3)

Here, c̄[S→ S′] ≡
∑

X P st(X|S) cX[S→ S′],and the stationary solution is

P st(X|S) =
∑

X cS[X′ → X]P st(X′|S)∑
X cS[X→ X′]

. (4)

This involves an adiabatic elimination of fast variables; see technical details in
Ref.[6], for instance.

Notice that c̄[S → S′] is a superposition. One may interpret that different
underlying dynamics, each associated to a different realization of the stochas-
ticity X, compete. In the limit p → 0, an effective rate results from combining
cX[S→ S′] with probability P st(X|S) for varying X. Given that each elemen-
tary dynamics tends to drive the system to a different equilibrium state, the
results is, in general, a nonequilibrium steady state [6]. The question is if such a
competition between synaptic noise and neural activity is at the origin of some
of the computational strategies in neurobiological systems.

For simplicity, we shall consider here spin–flip dynamics for the neurons,
namely, stochastic local inversions si → −si as induced by a bath at temperature
T. The elementary rate then reduces cX[S → S′] = Ψ [u X(S, i)], where we
assume Ψ(u) = exp(−u)Ψ(−u), Ψ(0) = 1 and Ψ(∞) = 0 [6]. Here, uX(S, i) ≡
2T−1sih

X
i (S), where hX

i (S) =
∑

j �=i wijxjsj is the net presynaptic current or
local field on the (postsynaptic) neuron i.

Our interest here is in modeling noise consistent with short-term synap-
tic depression [5, 12]. We therefore assume the noise distribution P st(X|S) =∏

j P (xj |S) with

P (xj |S) = ζ (m) δ(xj + Φ) + [1− ζ (m)] δ(xj − 1). (5)

Here, m = m(S) ≡
(
m1(S), . . . ,mM (S)

)
is the M -dimensional overlap vector,

and ζ (m) stands for a function of m to be determined. The depression effect
here, namely, xj = −Φ, depends on the overlap vector which measures the net
current arriving to postsynaptic neurons. Consequently, the non–local choice (5)
introduces non–trivial correlations between synaptic noise and neural activity.

This new case also reduces to the Hopfield model but only in the limit Φ→ −1
for any ζ (m) . In general, however, the competition results in a rather complex
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nonequilibrium behavior. As far as Ψ(u+v) = Ψ(u)Ψ(v) and Pst (X|S) factorizes
as indicated, time evolution proceeds by the effective transition rate

c̄[S→ Si] = exp
(
−sih

eff
i /T

)
, (6)

where
heff

i =
∑
j �=i

weff
ij sj . (7)

Here, weff
ij =

{
1− 1+Φ

2

[
ζ (m) + ζ

(
mi

)]}
wij , are the effective synaptic intensi-

ties as modified by the noise; m = m(S), mi ≡ m(Si) = m − 2siξi/N, and
ξi =

(
ξ1i , ξ

2
i , ..., ξ

M
i

)
, ξν = {ξν

i = ±1, i = 1, . . . , N}, stands for the binary M–
dimensional stored pattern.

In order to obtain the effective fields (7), we linearized the rate c̄[S → S′]
around wij = 0. This is a good approximation for the Hebbian prescription
wij = N−1

∑
ν ξ

ν
i ξ

ν
j as far as this only stores completely uncorrelated, random

patterns and for a sufficiently large system, e.g., in the thermodynamic limit
N → ∞. To proceed further, we need to determine a convenient function ζ in
(5). In order to model activity–dependent mechanisms acting on the synapses, ζ
should be an increasing function of the field. In fact, this simply needs to depend
on the overlaps. Furthermore, ζ (m) is a probability, and it needs to preserve the
±1 symmetry. A simple choice is

ζ (m) =
1

1 + α

∑
ν

[mν (S)]2 , (8)

where α = M/N. We describe next the behavior that ensues from (7)–(8) as
implied by the noise distribution (5).

The effective rate (6) may be used in computer simulations, and it may also
be substituted in the relevant equations. Consider, for instance, the overlaps,
defined as the product of the current state with one of the stored patterns,
mν(S) ≡ 1

N

∑
i siξ

ν
i .After using standard techniques, it follows from (3) that

∂tm
ν = 2N−1

∑
i

ξν
i sinh

(
heff

i /T
)
− si cosh

(
heff

i /T
)
, (9)

which is to be averaged over both thermal noise and pattern realizations.

2 Discussion of Some Main Results

We here illustrate the case of a single stored pattern, M = 1. After using
the simplifying (mean-field) assumption 〈si〉 ≈ si, one obtains from (6)–(9)
the steady overlap mν=1 ≡ m = tanh{T−1m

[
1− (m)2 (1 + Φ)

]
}. This de-

picts a transition from a ferromagnetic–like phase, i.e., solutions m 
= 0, to
a paramagnetic–like phase, m = 0. The transition is continuous or second order
only for Φ > Φc = −4/3, and it then follows a critical temperature Tc = 1 [10].
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It is to be remarked that a discontinuous phase transition allows for a much
better performance of the retrieval process than a continuous one. This is be-
cause the behavior is sharp just below the transition temperature in the former
case. Consequently, the above indicates that our model performs better for large
negative Φ, Φ < −4/3. These results are in full agreement with Monte Carlo sim-
ulations of neural networks with fast presynaptic noise and using asynchronous
sequential updating.

We also investigated the sensitivity of the system under an external stimulus.
A high sensitivity will allow for a rapid adaptation of the response to varying
stimuli from the environment, which is an important feature of neurobiological
systems. A simple external input may be simulated by adding to each local field
a driving term −δξi, ∀i, with 0 < δ � 1 [4]. A negative drive for a single
pattern assures that the network activity may go from the attractor, ξ, to its
“antipattern”, −ξ.
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Fig. 1. (Left) The function F (m, Φ, δ = 0), as defined in the main text, for presynaptic

noise with Φ = 1 (solid line) and in absence of noise, i.e., Φ = −1 (dashed line). Near

the attractor (m ≈ 1), F is positive in the absence of noise, which leads stability of

the memory. However, the noise makes F negative, which induces instability of the

attractor. (Right) A retrieval experiment in a network of N = 3600 neurons under

external stimulation for T = 0.1, δ = 0.3, and the same values of Φ as in the left graph

It follows for M = 1 the stationary overlap m = tanh[T−1F (m,Φ, δ)] with
F (m,Φ, δ) ≡ m[1−(m)2(1+Φ)−δ].The left graph of figure 1 shows this function
for δ = 0 and Φ = 1 (fast noise) and Φ = −1 (Hopfield case). Depending on
the sign of F, there are two different types of behavior, namely, (local)stability
(F > 0) and instability (F < 0) of the attractor, which corresponds to m = 1.
That is, the noise induces intrinsic instability resulting in switching between the
pattern and the antipattern when a small perturbation δ is added.

In general, adding the fast noise destabilizes the fixed point for the interesting
case of small δ far from criticality (T � Tc). This is illustrated by Monte Carlo
simulations of a network of N = 3600 neurons, M = 1, δ = 0.3 and T = 0.1,
as shown in figure 1 right. Starting from an initial condition near the attractor,
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the system jumps to the antipattern when fast noise is present (solid line), and
remains in the attractor for the Hopfield case (dashed line).

The switching property remains as the system stores more patterns. In order
to illustrate this, we simulated a network of N = 400 neurons with M = 5
overlapping patterns such that mν,µ ≡ 1/N

∑
i ξ

ν
i ξ

µ
i = 1/5 for any two of them.

The system in this case begins with the first pattern, and then evolves under
the effect of a repetitive small stimulus +δξσ (δ = 0.3) with σ randomly chosen
from 1 to 5 every 2×104 MCS for each σ. As shown in figure 2, lacking the noise
(Φ = −1), the system remains in the initial pattern. However, in the presence of
some noise (Φ = 0.05 in this simulation), there is continous jumping from one
attractor to the other, every time the new attractor is presented in the stimulus.
This property is robust with respect to the type of patterns stored [10].

52.1x10 5.0x105

P #4 P #1P #2 P #2 P #5 P #3 P #3 P #4 P #3 P #2 P #1 P #4 P #3 P #5 P #2

Time (MCS)

Fig. 2. Sensitivity of the system under repetitive external random stimulus, as dis-

cussed in the main text. The top graph shows the Hopfield case (Φ = −1). Here,

neuron activity is represented at vertical axe and simulation parameters are N = 400,

T = 0.1 and δ = 0.3

Summing up, equations (3)–(4) provide a rather general framework to model
activity–dependent processes. We here briefly reported on some consequences of
adapting this to a specific case. In particular, we studied a case which describes
neurobiologically–motivated fast noise, and study how this affects the synapses
of an auto–associative neural network with a finite number of stored patterns.
Assuming a noise distribution with a global dependence on the activity, (5),
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one obtains non–trivial local fields (7) which lead the system to an intriguing
emergent phenomenology. We studied this case both analytically and by Monte
Carlo simulations using Glauber, spin–flip dynamics [6]. We thus show that a
tricritical point occurs. That is, one has (in the limit α → 0) first and sec-
ond order phase transitions between a ferromagnetic–like, retrieval phase and
a paramagnetic–like, non–retrieval phase. The noise also happens to induce a
nonequilibrium condition which results in an important intensification of the
network sensitivity to external stimulation. We explicitly show that the noise
may turn unstable the attractor or fixed point solution of the retrieval process,
and the system then seeks for another attractor. This behavior improves the
network ability to detect changing stimuli from the environment. One may ar-
gue that the process of categorization in nature might follow a similar strategy.
That is, different attractors may correspond to different objects, and a dynamics
conveniently perturbed by fast noise may keep visiting the attractors belonging
to a class which is characterized by a certain degree of correlation between its
elements. A similar mechanism seems at the basis of early olfactory processing of
insects [9], and instabilities of the same sort have been described in the cortical
activity of monkeys [7] and other cases [8]. We are presently studying further
variations of the model above.
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Abstract. A novel method for efficiently simulating large scale realistic neural 
networks is described. Most information transmission in these networks is ac-
complished by the so called action potentials, events which are considerably 
sparse and well-localized in time. This facilitates a dramatic reduction of the 
computational load through the application of the event-driven simulation 
schemes. However, some complex neuronal models require the simulator to 
calculate large expressions, in order to update the neuronal state variables be-
tween these events. This requirement slows down these neural state updates, 
impeding the simulation of very active large neural populations in real-time. 
Moreover, neurons of some of these complex models produce firings (action 
potentials) some time after the arrival of the presynaptic potentials. The calcula-
tion of this delay involves the computation of expressions that sometimes are 
difficult to solve analytically. To deal with these problems, our method makes 
use of precalculated lookup tables for both, fast update of the neural variables 
and the prediction of the firing delays, allowing efficient simulation of large 
populations with detailed neural models. 

1   Introduction 

Recent research projects are modelling neural networks based on specific brain areas. 
Realistic neural simulators are required in order to evaluate the proposed network 
models. Some of these models (e.g. related with robot control or image processing [1, 
2]) are intended to interface with the real world, requiring real-time neural simula-
tions. This kind of experiments demands efficient software able to simulate large 
neural populations with moderated computational power consumption. 

Traditionally, neural simulations have been based on discrete time step (synchro-
nous) methods [3, 4]. In these simulations, the state variables of each neuron are 
updated every time step, according to the current inputs and the previous values of these 
variables. The differential expressions describing the neural model dynamics are usually 
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computed with numerical integration methods such as Euler or Runge-Kutta. The 
precision of the numerical integration of these variables depends on the time step 
discretization. Short time steps are required in order to achieve acceptable preci-
sion, which means considerable computational power consumption by each neuron. 
Thus, simulating large neural population with adequate precision and detailed  
models using these methods is not feasible in real-time. 

One alternative to avoid this problem is the use of event-driven simulators (also 
known as discrete-event simulators). Most natural network communication is done by 
means of spikes (action potentials) which are short and considerably sparse in time 
(not very frequent) events. If the state evolution of a neuron between these spikes is 
deterministic or the probability of all the target states is known, the number of neural 
state updates could be reduced, accumulating the entire computational load in the 
instants in which the spikes are produced or received by a neuron [5, 6] (see Fig. 1). 

Mattia & Giudice [7] proposed an event-driven scheme that included dynamical 
synapses. Reutimann et al extended this approach to include neuron models with 
stochastic dynamics. 

Makino [8] developed an event-driven simulator which uses efficient numerical 
methods to calculate the neural states evolution from one discrete computed step to 
the next one. More concretely, the main contribution of this work is the development 
of an efficient strategy to calculate the delayed firing times that uses the linear enve-
lopes of the state variable of the neuron to partition the simulated time. Contrary to 
this approach, we avoid this complex calculation by off-line characterization of the 
firing behaviour of the cell. 

Recently, Reutimann et al [9] and Brette [10] proposed the use of pre-calculated 
lookup tables to speed up simulations to avoid on-line numerical calculations. We 
adopt this strategy in our event-driven simulator. In these approaches the pre-
calculated tables are used to store probability density distributions [9] and partial 
mathematical functions on which the neuron characteristic dynamics are based [10]. 
Furthermore, the method proposed by Brette imposes the restriction of equal time 
constants in all the synaptic types while realistic inhibitory synapses exhibit longer 
time constants than the excitatory ones. In our approach, the entire cell model is com-
puted off-line, and its behaviour is compiled into characterization tables. Since the 
cell model is computed off-line, we are able to simulate models of different complexi-
ties (with a constraint on the number of parameters defining cell dynamics). 

The main innovation with respect to previous similar approaches [5, 7], is the use 
of characterization tables to describe the cell dynamics between input spikes. A priori, 
this fact removes the need for many of the simplifying assumptions necessary when 
the neural models are computed following simple expressions to achieve high compu-
tational efficiency. 

Another important aspect, that has been included, is the synaptic temporal dynam-
ics (i.e. the gradual injection/extraction of charge). The synaptic conductance evolu-
tion due to an input spike is not computed as an instantaneous jump, but as a gradual 
function. This is important in the study of neural population synchronization proc-
esses [11, 12]. The inclusion of temporal dynamics forces the implementation of a 
prediction and validation strategy, since the output spikes will not be coincident with 
the input events (variable firing delay). This introduces some more complexity in the 
simulation algorithm. 
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2   Computation Scheme 

The general idea of the event-driven computation scheme is that the neuron states 
need only to be updated when a new event is received. Thus, the simulation time (t) 
can run discontinuously. In our approach, the new neuron state can be obtained using 
tables instead of specific analytical equations. 

Event Reordering. In an event-driven computation scheme, spikes need to be proc-
essed in chronological order. Therefore, a spike re-ordering mechanism is required in 
order to deal with the delayed firing and the propagation delays of the spikes. This data 
structure is used as an interface between the source neuron events and target neurons. 

Complex data structures, such as “balanced trees”, can be used for this purpose, of-
fering O(log(N)) for insertion and deletion of elements. However, to prevent perform-
ance degradation, they require the optimization of their structure after some insertions 
or deletions. This rebalancing process adds more complexity and additional computa-
tional overhead [13]. 

An alternative candidate data structure is the “skip list” [14], but in this case the 
cost of the worst case may not be O(log(N)) because the insertion of an input stream 
can produce an unbalanced structure. This structure offers good performance in 
searching specific elements. However, this is not needed in our computation scheme 
as we only need to extract the first element, i.e., the next spike.  

Finally, the “heap data structure” (priority queue) [15, 16, 17] offers a stable com-
putational cost of O(log(N)) in inserting and deleting elements. This a convenient 
option as it does not require more memory resources than the stored data. This is 
because it can be implemented as an array, while the “balanced trees” and “skip lists” 
need further pointers or additional memory resources. 

Delayed Firing. When a spike reaches a neuron, it affects the membrane potential by 
gradually injecting or extracting charge. The membrane potential evolution after a 
spike follows a function that depends on the synaptic dynamics (as illustrated in Fig. 
1, for the Spike Response Model [18]). 

If we restrict our approach to a one-compartment model and the synaptic dynamics 
are approximated as single exponentials (see Fig. 1), all the excitatory inputs can be 
summed in one term and all the inhibitory inputs in another. The whole contribution 
associated with an input event is not injected (extracted) instantaneously. If a second 
spike reaches the neuron while the membrane potential is evolving due to a previous 
spike, the additional contribution can be computed by updating the charge injection 
(extraction) function. 

Since the effect of an input spike extends over a time period, the target neuron 
membrane potential evolves gradually and it may reach the firing threshold some time 
after the input is received (this can be critical for certain winner-take-all processing 
mechanisms [19]). When an input spike reaches a target neuron, the firing time is 
calculated (assuming that no further inputs are received by this cell). This new event 
is inserted into the spike heap as a firing event. All these firing events are predictions; 
they may or may not happen depending on the other cells activity after the prediction. 
If a new spike is received before the neuron fires, a new prediction is made and in-
serted into the spike heap, invalidating the last one, as the firing time label of the 
corresponding neuron will not match the time label of the first predicted firing event 
when it is received. 
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Fig. 1. Single neuron simulation. Excitatory and inhibitory spikes on the upper plots. Excitatory 
and inhibitory conductances transients on the middle plots. The bottom plot is a comparison 
between the neural model simulated with iterative numerical calculation (continuous trace) and 
the event-driven scheme, in which the membrane potential is only updated when an input spike 
is received or generated (marked with an x) 

Large Fan Out Optimization. The algorithm efficiency depends on the size of the 
event heap. Therefore, the computing scheme is optimized for a reduced number of 
events and heap load. However, in some cerebellar circuits [20] and other learning 
areas, huge fan outs can be found in biological neural systems with different delays 
for different connections. There are two options to deal with this problem. In a first 
approach, if one neuron fires and the spike reaches target neurons with different de-
lays, one event is inserted into the spike heap for each target neuron. However, this 
would overload the heap particularly when a set of neurons with large fan outs are 
very active. In a second approach, each time a neuron fires, a process of several stages 
is launched. The output connection list of each neuron (which indicates the target 
cells of each neuron) is sorted by the connection delay. When a source neuron fires, 
only the event corresponding to the shortest delay connection, is inserted into the 
spike heap.  

This event is linked with the other output spikes of this source neuron. When this 
first spike is processed and removed from the heap, the next event in the output con-
nection list is inserted into the spike heap together with the updated delay. This is 
repeated until the last event in the list is processed. In this way, the system can handle 
large connection fan outs without overloading the spike heap structure. 

Simulation Engine. The simulation scheme supports the definition of arbitrary con-
nection delays. This implies that each spike transmitted between two cells is repre-
sented internally by two events. The first one (called the firing event) is marked with 
the time instant when the source neuron fires the spike. The second one (called the 
propagated event) is marked with the time instant when the spike reaches the target 
neuron. 
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The basic computation scheme consists of a processing loop, in which, in each it-
eration, the event with shortest time-to-go is extracted from this spike heap structure, 
the target neuron variables are updated, and, if the affected neurons generate them, 
new events are inserted into the spike heap. 

Simulation algorithm. This pseudo-code describes the simulation engine. It processes all the 
events of the spike heap in chronological order. 

While tsim<tend 
Extract the event with a shortest time-to-go in the 
spike heap 
If it is a firing event 
If it is still a valid event and the neuron is not 
under a refractory period 
Update the neuron state: Vm, gexc, ginh 
Prevent this neuron from firing during the refrac-
tory period, updating the neuron time label to 
tsim+trefrac 
Predict if the source neuron will fire again with 
the current neuron state 
If the neuron will fire: 
Insert a new firing event into the spike heap 

Insert the propagated event with the shortest time-
to-go (looking at the output connection list) 

If it is a propagated event 
Update the target neuron state: Vm, gexc, ginh looking at 
the characterization tables 
Modify the conductances (gexc, ginh) using the connec-
tion weight (Gexc,i, Ginh,i) for the new spike 
Update the neuron time label to tsim 
Predict if the target neuron will fire 
If it fires 
Insert the firing event into the spike heap with 
the predicted time 

Insert only the next propagated event with the next 
shortest time-to-go (looking at the output connection 
delay table) 

One important variable, which is updated when a neuron receives a spike, is the 
time label. This variable indicates the last time this neuron was updated. As described 
in the simulation algorithm, when a neuron is affected by an event, the time label of 
this neuron is updated to tsim if it is an input spike (propagated event) or to tsim+ttrefrac 
if it is an output spike (firing event), to prevent it from firing again during the refrac-
tory period. 

3   Computer Performance 

With the described approach, the simulation time does not depend on the network size 
but on the rate of events per second that need to be processed. More precisely, the 
simulation time depends on the network activity as illustrated in Fig. 2. A more ex-
tended study can be found in [21]. 
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Fig. 2. This figure represents the time taken in a 1 second simulation on a Pentium IV (1.8 
GHz) platform. Global activity represents the total number of spikes per second in the network. 
The network size has not a significant impact on the time required. On the other hand, the 
computation time depends almost linearly on the network activity. The horizontal grid repre-
sents the real-time simulation limit, i.e. one second of simulation requiring one second of com-
putation 

4   Discussion 

To the best of our knowledge, this approach represents the first event-driven simula-
tion scheme entirely based on pre-calculated neural characterization tables. This con-
siderably reduces the a priori assumptions for the cell models. In principle, cell mod-
els of considerable complexity can be simulated. The limitation is given by the table 
dimensions and sizes. 

The aim of the described approach is to enable efficient simulation of neural struc-
tures of reasonable size, based on cells whose characteristics are not described by 
simple analytical expressions. This is achieved by defining the neural dynamics using 
the pre-calculated traces of their internal variables. The proposed scheme efficiently 
splits the computational load in two different stages: 

� Off-line neural model characterization: This preliminary stage requires a mas-
sive numerical calculation of the cell model in different conditions, to scan its 
dynamics. The goal of this stage is to build up the neural characterization tables. 
In principle, this could even be done compiling electro-physiological recordings 
of real cells. 

� On-line event-driven simulation scheme: The computation of the simulation 
process jumps from one event to the next, updating the neuron states according 
to pre-calculated neuron characterization tables and generating new events. 
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The proposed scheme represents a simulation tool that lies between the very de-
tailed simulators (such as NEURON [22] or GENESIS [3]) and the event-driven 
simulation schemes based on simple analytically described cell dynamics [23, 4]. 

The performance (computation speed) of the proposed event-driven simulation 
scheme is determined by the total event rate and not by the network size. The size of 
the characterization tables does not affect the computation performance. Therefore, 
the use of very large characterization tables becomes of interest in order to study the 
significative properties of the cells in the framework of large-scale simulations. This 
prompts the parallelization of the off-line computation stage that builds up the charac-
terization tables, which is one of the future lines of work. 

The described approach has been applied to simulations based on one-
compartmental cell models approximating excitatory AMPA receptor-mediated syn-
aptic dynamics and the GABAergic inhibitory synaptic dynamics (with longer time 
constants), with single exponential functions. The inclusion of new synaptic mecha-
nisms, such as voltage dependent channels is possible, it only requires the inclusion of 
new neural variables, and thus, new table dimensions. Different strategies, such as 
multiple-stage table management, are also being studied to address cell models of 
larger complexity more efficiently. 
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Abstract. We develop a methodology for solving high dimensional dependency
estimation problems between pairs of data types, which is viable in the case where
the output of interest has very high dimension, e.g., thousands of dimensions. This
is achieved by mapping the objects into continuous or discrete spaces, using joint
kernels. Known correlations between input and output can be defined by such
kernels, some of which can maintain linearity in the outputs to provide simple
(closed form) pre-images. We provide examples of such kernels and empirical
results.

1 Introduction

We begin by providing some background in kernel methods.
Suppose we are given empirical data

(x1, y1), . . . , (xm, ym) ∈ X × Y. (1)

Here, the domain X is some nonempty set that the inputs xi are taken from; the yi ∈ Y
are called targets. Here and below, i, j = 1, . . . ,m.

Note that we have not made any assumptions on the domain X other than it being a
set. In order to study the problem of learning, we need additional structure. In learning,
we want to be able to generalize to unseen data points. In the case of pattern recognition,
given some new input x ∈ X , we want to predict the corresponding y ∈ {±1}. Loosely
speaking, we want to choose y such that (x, y) is in some sense similar to the training
examples. To this end, we need similarity measures in X and in {±1}. The latter is
easier, as two target values can only be identical or different. For the former, we require
a similarity measure

k : X × X → , (x, x′) �→ k(x, x′) (2)

with the property that there exists a map Φ into a Hilbert space H such that for all
x, x′ ∈ X ,

k(x, x′) = 〈Φ(x), Φ(x′)〉 . (3)

Such a function k is called a positive definite (pd) kernel [1–3], H is the reproducing
kernel Hilbert space (RKHS) associated with it, and Φ is called its feature map. A
popular example, in the case where X is a normed space, is the Gaussian

k(x, x′) = exp
(
−‖x− x

′‖2
2 σ2

)
, (4)

where σ > 0.
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The advantage of using a pd kernel as a similarity measure is that it allows us to
construct algorithms in Hilbert spaces. For instance, consider the following simple clas-
sification algorithm, where Y = {±1}. The idea is to compute the means of the two
classes in the RKHS, c1 = 1

m1

∑
{i:yi=+1} Φ(xi), and c2 = 1

m2

∑
{i:yi=−1} Φ(xi),

where m1 and m2 are the number of examples with positive and negative target values,
respectively. We then assign a new point Φ(x) to the class whose mean is closer to it.
This leads to

y = sgn (〈Φ(x), c1〉 − 〈Φ(x), c2〉+ b) (5)

with b = 1
2

(
‖c2‖2 − ‖c1‖2

)
. Rewritten in terms of k, this reads

y = sgn

⎛
⎝ 1
m1

∑
{i:yi=+1}

k(x, xi)−
1
m2

∑
{i:yi=−1}

k(x, xi) + b

⎞
⎠ (6)

and b = 1
2

(
1

m2
2

∑
{(i,j):yi=yj=−1} k(xi, xj)− 1

m2
1

∑
{(i,j):yi=yj=+1} k(xi, xj)

)
.

Let us consider one well-known special case of this type of classifier . Assume that
the class means have the same distance to the origin (hence b = 0), and that k can be
viewed as a density, i.e., it is positive and has integral 1,

∫
X
k(x, x′)dx = 1 for all x′ ∈

X . Then (6) corresponds to the Bayes decision boundary separating the two classes,
subject to the assumption that the two classes are equally likely and were generated
from two probability distributions that are correctly estimated by the Parzen windows
estimators of the two classes,

p1(x) :=
1
m1

∑
{i:yi=+1}

k(x, xi), p2(x) :=
1
m2

∑
{i:yi=−1}

k(x, xi). (7)

The classifier (6) is quite close to the Support Vector Machine (SVM) that has re-
cently attracted much attention [3–5]. It is linear in the RKHS (see (5)), while in the
input domain, it is represented by a kernel expansion (6). It is example-based in the
sense that the kernels are centered on the training examples, i.e., one of the two argu-
ments of the kernels is always a training example. This is a general property of kernel
methods, due to the Representer Theorem [5, 6]. The main point where SVMs deviate
from (6) is in the selection of the examples that the kernels are centered on, and in the
weight that is put on the individual kernels in the decision function. The SVM decision
boundary takes the form

y = sgn

(
m∑

i=1

λik(x, xi) + b

)
, (8)

where the coefficients λi and b are computed by solving a convex quadratic program-
ming problem such that the margin of separation of the classes in the RKHS is maxi-
mized. It turns out that for many problems this leads to sparse solutions, i.e., often many
of the λi take the value 0. The xi with nonzero λi are called Support Vectors.

Using methods from statistical learning theory [4], one can bound the generalization
error of SVMs. In a nutshell, statistical learning theory shows that it is imperative that
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one uses a class of functions whose capacity (e.g., measure by the VC dimension) is
matched to the size of the training set. In SVMs, the capacity measure used is the size
of the margin.

The SV algorithm has been generalized to problems such as regression estimation
[4], one-class problems and novelty detection [5], as well as to mappings between gen-
eral sets of objects [7]. The latter uses two kernels, kX and kY , onX andY , respectively,
and learns a linear map between the associated RKHS’s HX and HY . The feature map
of kX analyzes the input by computing its feature representation in HX , while the fea-
ture map of kY synthesizes the output Ψ of the linear map in HY . It can be thought of
as inducing a generative model for the outputs; in the algorithm, it is usually employed
to compute a pre-image of Ψ in Y .

In the present paper, we will generalize this situation to the case where there is a
kernel that jointly compares inputs and outputs.

To this end, first consider the problem of linear regression. Given a training set of
paired objects {(x1,y1), . . . , (xm,ym)} identically and independently sampled from a
distribution P over the product space X × Y , we wish to find a function W that maps
from X into Y such that: ∫

X×Y
‖y −Wx‖2YdP(x,y)

is minimized.
This is a classical learning problem that has been widely studied when Y ⊂ q

has a small dimension. When the output dimension becomes very high, in order to
generalize well one must take into account (i) correlation between output variables (ii)
correlation between input variables X ⊂ p and (iii) correlation between input and
output variables.

If prior knowledge about such correlations exists, it can be encoded into a regular-
izer. For example, a minimization scheme could be adopted that minimizes

1
m

m∑
i=1

‖yi −Wxi‖+
dim(X )∑

i,j=1

dim(Y)∑
s,t=1

WijWstSijst.

Here, Sijst encodes the correlation between inputs i,j with outputs s and t.
For example, suppose one is learning a mapping between two spaces of equal and

large dimension, e.g. pairs of images or spectra. Then the most obvious prior knowledge
one has is that, e.g., pixels in images that are close in the input are also close in the
output. This knowledge can be encoded into S. The challenge is to rewrite such an
optimization problem in the general case so that (i) it can be solved in a dual form to
make it tractable for high dimension and (ii) it can be generalized with kernels to also
solve nonlinear problems.

In this work we will show how to encode such prior knowledge by defining appro-
priate joint kernel functions and subsequent minimization in dual variables, building on
work such as [7] and [8]. The subsequent algorithm will solve much more than linear
regression: it will generalize nonlinear support vector machines for classification and
regression, and will be also be able to deal with structured outputs such as strings, trees
and graphs via kernels [8–10] .
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2 Linear Maps

We start by learning the linear map W such that a prediction on data is

y(x) = argminy∈Y‖Wx− y‖2 = Wx.

Note that if the argmin is taken over a linear space, then y(x) = Wx, but in more
general settings, it will be necessary to compute it using other means. We consider an
ε-insensitive loss approach, as in support vector regression [11]. We choose the W that
minimizes

‖W‖2FRO (9)

using the Frobenius norm, subject to

‖Wxi − y‖2 ≥ ‖Wxi − yi‖2 + ε2/2, (10)

∀i, {∀y ∈ Y : ‖yi − y‖ > ε}.

We note that this generalizes support vector classification and Regression:

– For y ∈ one obtains support vector regression (SVR) [11] without threshold, and
for y ∈ q one obtains vector-valued ε-insensitive SVR [12]. We rewrite (10) as

min
y∈Cε(yi)

‖Wxi − y‖2 ≥ ‖Wxi − yi‖2 + ε2/2

where Cε(yi) is the complement of the ball of radius ε centered at yi. If Wxi is
not in the latter ball, the value of this minimum is zero and the problem does not
have any solution. On the other hand, if Wxi is in the ball, then this minimum is
not zero and can be computed directly. Its value is attained for the following y:

y = yi +
Wxi − yi

‖Wxi − yi‖
ε.

The value of the minimum is then (ε− ‖Wxi − yi‖)2. We then have the constraint

(ε− ‖Wxi − yi‖)2 ≥ ‖Wxi − yi‖2 + ε2/2,

which gives, after some algebra, ‖Wxi − yi‖ ≤ ε/4.
– For y ∈ {±1} and 0 ≤ ε < 2 we obtain two-class SVMs [11] (W is a 1×pmatrix).

Expanding the constraint (10) for each i gives

−2yWxi + 2yiWxi ≥ ε2/2.

For y, yi ∈ {±1}, ‖yi − y‖ > ε only occurs for y = −yi, in which case we have
yiWxi ≥ ε2/8, the usual SVM constraints, disregarding scaling and threshold b.

– Similarly, for y ∈ {0, 1}q, where the cthi entry is 1 when example i is in class
ci, and 0 otherwise, and 0 ≤ ε <

√
2 we can obtain multiclass SVMs [13]. As

‖y‖ = 1 we have the constraints
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y	
i Wxi − y	Wxi ≥ ε2/4,

where the q rows of W =

⎛
⎝w1

. . .
wq

⎞
⎠ correspond to the q hyperplanes of multi-class

SVMs (W is a q × p matrix). Because only one constraint is switched on at one
time due to the zeros in y we have to minimize ‖W‖2FRO =

∑
i ‖wi‖2 subject to

∀i, wci
xi−wjxi ≥ ε2/4, ∀j ∈ {1, . . . , q} \ ci which is the same as in [13], again

disregarding scaling and thresholds.

Generalizing to the non-separable case in the usual manner [8, 11] should be straight-
forward. Note that the constraints can also be written as:

∀i, {∀y ∈ Y : ‖yi − y‖ > ε} : 2(yi − y)Wxi ≥ ε2/2 + ‖yi‖2 − ‖y‖2. (11)

Let us now restrict ourselves slightly to the situation where the outputs are normalized
so ∀y ∈ Y : ‖y‖ = 1. (Obviously this is only useful in the multi-dimensional case.)
Hence, we rewrite our optimization problem as: minimize

‖W‖2FRO (12)

subject to

∀i, {∀y ∈ Y : ‖yi − y‖ > ε} : y	
i Wxi − y	Wxi ≥ ε2/4. (13)

We can regard F (x,y) = y	Wx as a function that returns the degree of fit between
x and y. The output on a test point can now be written

y(x) = argminy∈Y‖Wx− y‖2

= argmaxy∈Yy	Wx =
Wx
‖Wx‖ . (14)

because, by Cauchy-Schwarz, the function argmaxyy
	Wx is maximal if y

‖y‖ is parallel
to Wx∗.

With this optimization problem for the case of discrete Y and ε→ 0, we obtain the
support vector machine for interdependent and structured output spaces (SVM-ISOS) of
[8]. In practice, one could relax the restriction upon the normalization of y during train-
ing because separability could still be obtained. However, if one is dealing with con-
tinuous outputs without this restriction then the preimage given by argmaxy∈Yy	Wx
would not be well defined. This is the reason why in the work of [8] normalization was
not an issue, as only the discrete output case was considered1.

We now show how to develop our method for joint kernels.

1 In practice, in our experiments with joint kernels, we normalize the joint kernel itself, not the
outputs, because the output in this case is not easily accessible.
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3 Joint Kernel Maps

We can rewrite the last optimization problem by considering W as a vector w of dimen-
sion dim(X )dim(Y), and choosing the feature map

ΦXY(x,y) = 〈(xy	)ij〉 i = 1, . . . , dim(Y)
j = 1, . . . , dim(X ).

The optimization problem then consists of minimizing2

‖w‖2 (15)

subject to
〈w, ΦXY(xi,yi)− ΦXY(xi,y)〉 ≥ ε2/2, (16)

∀i, {∀y ∈ Y : ‖yi − y‖ > ε}.

However, we are free to choose another mapping, as we shall see later (indeed, choos-
ing a mapping which incorporates prior knowledge is the whole point of using this
approach).

We call ΦXY the joint kernel map (JKM), and

J((x,y), (x̂, ŷ)) = ΦXY(x,y)	ΦXY(x̂, ŷ)

the joint kernel. This relates our method to the work of [14] and [15].
Constructing the corresponding dual problem we obtain: maximize3

ε2

4

∑
i,y:‖yi−y‖>ε

αiy−
1
2

∑
i, y : ‖yi − y‖ > ε
j, ŷ : ‖yi − ŷ‖ > ε

αiy αjŷ〈ΦXY(xi,yi)−ΦXY(xi,y), ΦXY(xj ,yj)−ΦXY(xj , ŷ)〉

subject to
αij ≥ 0, i = 1, . . . ,m, {∀y ∈ Y : ‖yi − y‖ > ε}.

2 Note that we could also simplify the optimization problem further by splitting the constraints:
i.e. minimize ‖w‖2 subject to

∀i : 〈w, ΦXY(xi,yi)〉 + b ≥ ε2/8

{∀y ∈ Y : ‖yi − y‖ > ε} : 〈w, ΦXY(xi,y)〉 + b ≤ −ε2/8.

If this problem is linearly separable, then its solution w is also a feasible solution of (15)-(16).
3 Note that with infinitely many constraints, standard duality does not apply for our optimization

problem. However, for the purposes of the present paper, we are not concerned with this. For
practical purposes, we may assume that for any ε > 0, our data domain has a fin ite ε-cover
(e.g., our domain could be a compact subset of n). Since on a computer implementation,
a constraint can only be enforced up to machine precision, we can thus imagine choosing
a sufficiently small ε, which reduces our setting to one with a finite number of constraints.
Furthermore, we find experimentally that the number of active constraints is small and scales
sublinearly with the number of examples or output dimension (see Figure 1).
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The objective can be rewritten with kernels:

ε2

4

∑
i,y:‖yi−y‖>ε

αiy − (1/2)
∑

i, y : ‖yi − y‖ > ε
j, ŷ : ‖yi − ŷ‖ > ε

αiyαjŷ[J((xi,yi), (xj ,yj))

−J((xi,yi), (xj , ŷ))− J((xi,y), (xj ,yj))

+J((xi,y), (xj , ŷ))].

The standard linear map therefore requires J((xi,yi), (xj ,yj))=〈xi,xj〉〈yi,yj〉=
K(xi,xj)L(yi,yj), where K(xi,xj) = 〈xi,xj〉 and L(yi,yj) = 〈yi,yj〉 are kernel
maps for input and output respectively.

Now
w =

∑
i,y:‖yi−y‖>ε

αij [ΦXY(xi,yi)− ΦXY(xi,y)].

For certain joint kernels (that are linear in the outputs) we can compute the matrix W
explicitly to calculate the mapping. However, for general nonlinear mappings of the
output (or input) we must solve the pre-image problem (cf. (14)):

y(x∗) = argmax
y∈Y

〈W,ΦXY(x∗,y)〉

= argmax
y∈Y

∑
i,y:‖yi−y‖>ε

αijJ((xi,yi), (x∗,y∗))

− αijJ((xi,y), (x∗,y∗)).

In the next section we discuss joint kernels, and consider several examples that do not
require one to solve the general pre-image problem. First, let us discuss related work,
and practical implementation considerations.

Optimization. Finding a solution to the above equations, which contain an infinite num-
ber of constraints, is feasible because in practice the solution tends to be very sparse. In
fact, the solution can be found in polynomial time if the pre-image can be computed in
polynomial time. An efficie nt method for the SVM for Interdependent and Structured
Output Spaces was developed in [8] and can be analogously implemented for Joint Ker-
nel Maps by using an iterative scheme: add the most violating example to the working
set and reoptimize, repeating until completion. One can then show that on each iteration
the objective function strictly improves and is guaranteed to terminate if the problem
is separable. In practice, in our experiments we also start with ε large, and decrease it
upon separability.

Related Algorithms. The idea of learning maps by embedding both input and output
spaces using kernels was first employed in the Kernel Dependency Estimation algo-
rithm [7], where the kernels were defined separately. This allowed correlations to be
encoded between output features, nonlinear loss functions to be defined, and for out-
puts to be structured objects such as strings and trees [8–10] (however, one must then
solve an often difficult pre-image problem). The method first decorrelates the outputs
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via performing a kernel principal component analysis (kPCA). kPCA yields principal
components vl ∈ q, l = 1 . . . n and corresponding variances λl. Henceforth the out-
put labels {yi}m

i=1 are projected to the column vectors vl to retrieve the m principal
coordinates zi ∈ n. This projection results in the new estimation task

arg min
W∈ n×p

m∑
i=1

‖zi −Wxi‖2.

KDE for example performs a ridge regression on each component zij , 1 ≤ j ≤ n to
overcome overfitting. Predictions for a new point x	 are made via predicting first the
principal coordinates z	 = Wx	, and then using the principal components.

y	 = V z	.

Here V ∈ q×n consists of the n principal components vl. In the case where n = q the
prediction performance will only depend on the basic regression used for estimating z	

since V acts as a basis transformation.
If one assumes that the main variation in the output are according to signal and the

small variances according to noise, then it is reasonable to take the first n principal
components corresponding to the largest variance λl. Alternatively, instead of cutting
off it is also possible to shrink the directions according their variance.

Compared to the current work and work such as SVM-ISOS [8], KDE has the ad-
vantage during training of not requiring the computation of pre-images. On the other
hand, it requires an expensive matrix inversion step, and does not give sparse solutions.
The inability to use Joint Kernels in KDE means that prior knowledge cannot be so
easily encoded into the algorithm. In our experiments (see Section 5) the difference be-
tween using this prior knowledge or not in real applications can be large, at least for
small sample size.

The authors of [16] also provide a method of using kernels to deal with high-
dimensional output regression problems using vector-valued kernel functions. One de-
fines a prediction function as follows:

f(x) =
m∑

i=1

K(xi,x)ci

where K(xi,xj) is a q by q matrix which in position Ks,t encodes the similarity be-
tween training points i and j with respect to outputs s and t. The weights ci are hence
q by 1 vectors. Although at first sight this approach seems very complicated in terms
of defining kernels, there are some natural examples where known correlation across
outputs can be encoded. However, simply minimizing

∑
i ‖yi− f(xi)‖2 yields a large,

non-sparse optimization problem with qm variables.
Considering once again classificat ion problems, the current work also turns out to

have strong relations with the work of [15] who employed a ranking perceptron algo-
rithm and a specific joint kernel on the natural language problem of parsing (outputting
a parse tree). In this case, the difficult pre-image problem was avoided by only se-
lecting among n pre-selected experts (parsing algorithms). The algorithm they used is
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thus similar to the one given in footnote 2, except in their case not all possible nega-
tive constraints are enforced, but only n − 1 per example. Using the multi-class SVM
formulation of [11, 13]:

f(xi,yi) > f(xi,y), ∀{y ∈ Y \ yi} (17)

and considering Y as some large set, e.g. of structured objects, one arrives at the for-
mulation of SVM-ISOS [8]. Essentially, this is a special case of our algorithm, where
the output is structured (discrete Y) and ε = 04. The authors apply the algorithm to
problems of label sequence learning, named entity recognition and others. Our work
complements this last one in helping to understand the role of joint kernels in learn-
ing problems where one can supply prior knowledge by way of the similarity measure.
The authors of [17] also provide a similar formulation to [8] but with a probabilistic
interpretation.

Although in this paper we do not consider structured output problems, the algorithm
we develop could indeed be applied to such problems. Let us consider one such prob-
lem, machine translation: translating a sentence into another language. The relation
between regression and classification in this framework is an interesting one. On the
one hand, one could argue that one desires separability, to return the correct pre-image
(sentence) on the training set. This is the approach of [8]. On the other hand, to classify
one sentence as correct, and all others as wrong as in the constraints of (17) could be
dangerous because it ignores the distance measure in the output space (other sentences
may also be plausible.) Thus even when the embedding is discrete, it may make sense
to treat it as regression if outputs close in output space have the same “label”. Although
the authors of [8] try to fix this problem with an adaptive soft margin approach, the
ε-insensitive approach of the current paper would preserve sparsity.

4 Joint Kernels

A joint kernel is a nonlinear similarity measure between input-output pairs, i.e.,
J((x,y), (x′,y′)) where (x,y) and (x′,y′) are labeled training examples,5

J((x,y), (x′,y′)) = 〈ΦXY(x,y), ΦXY(x′,y′)〉,

where ΦXY is a map into a dot product space. All functions J((x,y), (x′,y′)) that
take this form are positive definite, and all positive definite kernels J((x,y), (x′,y′))
can be written in this form. This follows directly from the corresponding statements for
kernels k(x,x′) (see, for example, [5]). The point of a joint kernel is to describe the
similarity between input-output pairs by mapping pairs into a joint space. A joint ker-
nel can encode more than just information about inputs or outputs independent of each
other: it can also encode known dependencies/correlations between inputs and outputs.

4 Ignoring the normalization conditions on the output which come from our original derivation,
as discussed previously.

5 Note there is nothing stopping us considering not just pairs here but also kernels on n-tuples,
e.g., of the form (x,y, z).
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Joint Kernels have already begun to be studied ([14],[8]); however, so far only discrete
output spaces and structured outputs (such as sequences) were considered. One of the
problems with Joint Kernels is that only for a subset of possible kernels can one com-
pute the pre-image easily. In [8] kernels on sequences are chosen that are amenable to
dynamic programming. Although some methods for speeding up pre-image computa-
tions exist [18, 19], this remains a difficult problem. In the following we describe some
kernels which avoid complex pre-image problems.

Tensor Product Kernels. A kernel that does not encode any correlations can be obtained
by using the product

JLINEAR((x,y), (x′,y′)) = K(x,x′)L(y,y′)

= 〈ΦX (x), ΦX (x′)〉〈ΦY(y), ΦY(y′)〉

where K and L are respectively kernels on the inputs and outputs. If K and L are
positive definite, then J will be, too; moreover, the associated feature space is known
to be the tensor product of the individual feature spaces.

An interesting special case is when L is a linear kernel. In that case

WLINEAR =
∑

i,y:‖yi−y‖>ε

αijΦX (xi)y	
i − αijΦX (xi)y	.

When dim(X ) or dim(Y) are very large it can be more efficient to avoid the calculation
of W and calculate a test prediction directly:

WLINEARx =
∑

i,y:‖yi−y‖>ε

αijK(xi,x)y	
i − αijK(xi,x)y	.

Hence we avoid difficult pre-image problems in this case.

Diagonal Regularization. Consider the case where dim(X ) = dim(Y), and it is known
that one is looking for a linear map where the true matrix W is close to the identity map.
Slightly more generally, one may know that the nth dimension of the input is correlated
with the nth dimension of the output. Instances of such problems include decoding
mass spectrometry (mapping from observed to theoretical spectra) and image mapping
problems (deblurring, morphing, etc.). This correlation can be directly encoded:

JDIAG((x,y), (x′,y′)) =

(1− λ)K(x,x′)〈y,y′〉+ λ
[ q∑

k=1

xkx
′
kyky

′
k

]
(18)

where λ controls the amount of encoded correlation. If λ is large, then the nth dimen-
sion in the input is presumed highly correlated with the nth dimension in the output, and
the similarity measure is dominated by these relationships. Algorithms that minimize
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the Frobenius norm choose these dimensions as relevant. Furthermore, the solution is
still linear (does not require a pre-image) because we can write

WDIAGx = (1− λ)WLINEARx +

λ
∑

i,y:‖yi−y‖>ε

αij [DIAG(xiy	
i )− DIAG(xiy	)]x.

where D = DIAG(M) is a diagonal matrix with Dii = Mii.

Patch-Wise Correlation. The natural generalization of the previous kernel is when you
know that the nth dimension of the output is strongly correlated with a known set of
dimensions in the input; e.g., for mappings between images, one could know that a
region in the output image is strongly correlated with a region in the input image. This
knowledge can be encoded with the kernel

JPATCH((x,y), (x′,y′)) = (1− λ)K(x,x′)〈y,y′〉

+λ
|P|∑
k=1

[ ∑
p∈Pk

xpx′
p

∑
p∈Pk

ypy′
p

]
(19)

where P is the set of known correlated patches. This encodes patch correlation between
dimensions in x, between dimensions in y, and correlation between input and output,
i.e. between x and y.6 The evaluation on a test example can be expressed as:

WPATCHx = (1− λ)WLINEARx

+λ
∑

i,y:‖yi−y‖>ε

αij [
|P|∑
k=1

Pk(xiy	
i )−

|P|∑
k=1

Pk(xiy	)]x

where P = Pk(M) is a matrix such that Pij = Mij if i ∈ Pk or j ∈ Pk (if i or j are in
the kth patch), or Pij = 0, otherwise.

Image Reconstruction. Consider the problem of image reconstruction. For example, in
a problem of digit reconstruction one should predict the bottom half of a digit given its
top half. The authors of [7] solved such a problem with the KDE algorithm. The input
and output kernels, K and L, used by that algorithm are separate and the algorithm
is not given in advance prior knowledge that the two images are related, i.e. that their
concatenation creates a single image. The kernels used were

K(x,x′) = exp(−‖x− x′‖2/(2σ2))

L(y,y′) = exp(−‖y − y′‖2/(2(σ∗)2)) (20)

6 One can introduce a weighting function over the patches, corresponding to the assumption that
the closer the pixels are, the more reliable is their correlation, cf. [5, Eq. (13.21)].
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In that work it was apparent that sometimes in the middle of the digit this approach
can cause some “glitches” when the two halves are connected together. A simple joint
kernel such as

JRBF((x,y), (x′,y′)) = exp(−‖(x,y)− (x′,y′)‖2/(2σ2))

(i.e. concatenating the images together, and then taking the RBF kernel) could capture
more of the problem than taking the product of the kernels in (20). The joint kernel
given here would take into account nonlinearities between pixels of input and output
dimensions. To improve this method further, invariances could also be encoded into the
kernel, e.g. by concatenating the input and output images and then taking into account
rotations, translations, etc. A local polynomial kernel [11] which takes encodes spatial
information within the image would also help to encode the mapping between input and
output; i.e., it would encode that the pixels at the very bottom of the input are highly
correlated with the pixels on the top of the output, as before.

5 Experiments

As said before, JKM reduces to support vector classification and regression for particu-
lar Y . We therefore only test our algorithm on regression problems of multiple outputs,
and show how employing joint kernels can benefit in this case.

5.1 Artificial Problem: The Identity Map

We performed a first experiment on toy data to demonstrate the potential of the ap-
proach. We chose a very simple problem: the input are xi ∈ Rp, each dimension drawn
independently from a normal distribution of mean 0, standard deviation 1. The output
is the same as the input, yi = xi, i.e. the task is to learn the identity map.

Table 1. Mean squared error for different joint kernels encoding the identity map (first three rows)
compared to ridge regression (RR) and k-nearest neighbors. Incorporating prior knowledge in the
joint kernel approach (λ > 0) improves generalization performance

dim(X ) = dim(Y) 20 30 50 75 100
JKMDIAG (λ = 1) 0.00 0.00 0.01 0.02 0.02
JKMDIAG (λ = 0.5) 0.03 0.14 0.34 0.50 0.62
JKMDIAG (λ = 0) 0.06 0.40 0.78 1.00 1.14
RR (best γ) 0.06 0.43 0.82 1.07 1.21
k-NN (best k) 0.92 1.09 1.27 1.40 1.47

We compared k-nearest neighbor and ridge regression with our approach. For the
former (k-NN and RR) we chose the best possible parameters, for the latter (JKM) we
show the results for the identity-map regularizing joint kernel (18) for λ = 0, 1

2 and 1,
with ε = 0.5√

p . For λ = 0 the set of possible linear maps is free; for λ = 1 only linear
maps that are diagonal matrices are considered.

The mean squared error for p = 20, . . . , 100 features are given in Table 1, with 20
examples for training and 100 for testing, averaged over 20 runs. A Wilcoxon signed
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ranked test confirms that the two kernels with γ > 0 outperform the other techniques.
Further experiments adding noise to the dataset (not shown) yielded similar conclu-
sions. Figure 1 shows the number of active constraints (support vectors) for varying
output dimensions with training size 20 (left) and varying training set sizes with output
dimension 20 (right). The solutions are relatively sparse (consider that dual ridge re-
gression [20] uses pm variables for p outputs and m examples). Note that larger values
of λ (where the capacity of the set of functions is lower) have less active constraints.

Fig. 1. Number of Active Constraints (Support Vectors) on Artificial data varying output
dimension (left) and training set size (right)

5.2 Image Mapping: Learning to Smile

We consider the problem of mapping from the image of a face with a plain expression to
an image of the same person smiling using images from the MPI face database [21, 22].
We use 20 examples for training, and 50 for testing. The images are 156×176 = 27456
pixels. We selected a small number of training examples because in this setting the
weakness of existing methods was further exposed.

We applied a joint kernel mapping using the tensor product (linear) kernel (ε =
0.05) and the patch-wise kernel (19) with γ = 0.95, ε = 0.1 and patches of size 10×10
which overlap by 5 pixels. Training took 344 and 525 steps of adding a single violating
example for the linear and patch kernels, resulting in 150 and 162 support vectors,
respectively. Again, we compared with conventional regression techniques, choosing
their best possible hyperparameters. A naive employment of ridge regression on this
task fails, outputting a kind of “a verage” face image, independent of the input, see
Figure 2. The large dimensionality means there are many solutions with low empirical
error, RR (after choosing the optimal regularization constant) selects one that uses many
(irrelevant) inputs due to its regularizer. Similarly, k-NN cannot solve this problem well
for small sample size. See Figure 2 for example images, and Table 2 for mean squared
error rates comparing all these methods. By way of comparison, the baseline of simply
predicting the input image as the output (the plain expression) gives a test error of
0.1823± 0.003.
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Fig. 2. Prediction of smiling face given plain expression by joint kernel maps (patch and linear)
and ridge regression and k-NN. The large dimensionality means there are many solutions with
low empirical error, RR (after choosing the optimal regularization constant) selects one that uses
many (irrelevant) inputs due to its regularizer ‖w‖2 which favors non-sparse solutions. Only the
Patch-Kernel Joint Kernel Map is successful, as the choice of (joint) kernel limits the possible
choice of functions to ones which are close to the identity map

INPUT OUTPUT JKMP JKML RR (best ) -NN (best )
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Table 2. Test error on the smiling problem of the MPI face database

JKM− JKM−
PATCH LINEAR RR k-NN

(ε = 0.1) (ε = 0.05) (best γ) (best k)
Test error 0.142 0.227 0.222 0.244
Test error ±0.002 ±0.006 ±0.006 ±0.006

5.3 Conclusions

In this work we presented a general method of supervised learning via joint kernel
mappings, and showed how such kernels can encode certain regularization properties
which reflect prior knowledge in mappings. While the experiments shown here used
only simple types of joint kernels taking advantage of patch-wise information, these
examples are only an instantiation of our approach, to show its validity and to bring in-
sight into why and how joint kernels are useful. Joint kernels are mainly useful in cases
where their pre-image is easily computable, and are extendable to complex outputs such
as strings, trees and graphs. Indeed, we believe the gain of joint kernel methods is in
employing such complex structured outputs that go beyond standard classification and
regression such as in parsing, machine translation and other applications. In those cases
the difference between coding prior knowledge into a joint kernel and using two sepa-
rate kernels for input and output could potentially be large, at least in the small sample
size case. Although first studies in some of these areas have been completed [8, 15], no
study that we know of has yet directly compared this benefit.

Future work should also address issues of efficienc y (efficienc y of training, pre-
images for more complex nonlinear and structured kernels), and to more deeply explore
applications of these results.
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Abstract. The goal of combining the outputs of multiple models is to form an 
improved meta-model with higher generalization capability than the best single 
model used in isolation. Most popular ensemble methods do specify neither the 
number of component models nor their complexity. However, these parameters 
strongly influence the generalization capability of the meta-model. In this paper 
we propose an ensemble method which generates a meta-model with optimal 
values for these parameters. The proposed method suggests using resampling 
techniques to generate multiple estimations of the generalization error and 
multiple comparison procedures to select the models that will be combined to 
form the meta-model. Experimental results show the performance of the model 
on regression and classification tasks using artificial and real databases. 

1   Introduction 

The aim of machine learning is to make a good model based on a set of examples. 
The goal is not to learn an exact representation of the training data itself, but rather to 
build a statistical model of the process which generates the data [1]. Classic methods 
for model building choose a model from a set of competing alternatives, assigning a 
single measure of generalization error to each candidate. The model which minimizes 
this value is selected and the rest is discarded.  

However, when several models show similar generalization errors, we should not 
conclude that the model having the best performance on the validation set will 
achieve the best performance on new test data, given that we are working with a 
noisy, finite learning dataset. Therefore, any chosen hypothesis will be only an 
estimate of the real target and, like any estimate, will be affected by a bias and a 
variance term. Furthermore, there is another disadvantage with such approach: all the 
effort involved in generating the remaining near-optimal models is wasted. These 
drawbacks can be overcome by combining these models. 

Model combination approach leads to significant improvements of new prediction 
with a little additional computational effort. It is possible to identify two main 
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approaches to combining models: multiexpert and multistage methods. Multiexpert 
methods work in parallel, while multistage methods use a serial approach where the 
next model is trained/consulted only for examples rejected by the previous models. 
Two main groups of meta-machine learning methods which work in parallel exist: 
mixture of experts [7] and ensemble methods. While mixture of experts approach 
divides the input space with a gating network and allocates the subspaces to different 
experts (models), the output of an ensemble is generated by the weighted outputs of 
each model. The performance of an ensemble can be better than the performance of 
the best single model used in isolation when the models are accurate enough and 
fairly independent in the errors they make [6], [9]. The meta-machine learning 
method proposed in this paper is based on the last approach. 

2   The Statistical Ensemble Method 

In general, an ensemble is built in two steps: a) Generation/selection of a number of 
component models. b) Combination of their predictions.  

The most prevailing approaches for generating component models are based on 
varying the topology, the algorithm, the set of initial parameters to be used in the 
iterative learning process (i.e. random weights for MLPs) or the data itself 
(subsampling the training examples, manipulating the input features or the output 
targets and injecting ramdomness) [3],[16]. However, most popular ensemble 
methods specify neither the number of component models nor their complexity, and, 
obviously, these parameters strongly influence the generalization capability of the 
ensemble. In this paper we propose a methodology to generate a meta-model with 
optimal values for these parameters.  

The steps of the proposed methodology may be outlined as follow: 

1. Obtain multiple generalization error measures for each model using resampling 
techniques. The use of a set of estimations instead of a single measure of 
generalization error for model selection was proposed in [14],[5]. 

2. Determine the set of models whose errors are not significantly different from the 
model with minimum estimated generalization error using statistical tests [18] 
for comparing groups of paired samples (multiple comparison procedures). 

3. Combine these near-optimal models using ensemble methods. 

2.1   Multiple Error Measures Using Resampling Techniques 

Resampling methods for estimating the generalization error generate multiple test-
and-train datasets, and estimate the generalization error as the average of the 
validation errors.  

The main approaches to resampling are the following: 

• Random hold-out: many randomly train-and-test sets are generated. The 
examples are selected without replacement. 

• K-fold cross-validation: examples are randomly divided into k mutually exclusive 
partitions of approximately equal size. Each model is trained and tested k times; 
each time tested on a fold and trained on the dataset minus the fold. 
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• Leave-one-out: it is a special case of k-fold cross validation, where k equals the 
sample size.  

• Bootstrapping: instead of repeatedly analyzing subsets of the data, you 
repeatedly analyze subsamples of the data. Each subsample is a random sample 
with replacement from the full dataset and constitutes a training set. Examples 
not found in the training set form the validation set. 

In the above methods, the estimate of generalization error is taken as the average of 
the estimated accuracies (validation errors) from the different train/test sets. In the 
proposed methodology, this estimate will be used to determine the reference model, 
but all validation errors obtained from each train/test pair will be kept in order to be 
able to apply statistical tests to compare groups of related samples, instead of 
comparing a single estimate of the generalization error. The whole process may be 
described in more detail as follows: 

1. Take the whole data set and create m resampled data sets (m train/test pairs) 
using any of the approaches described above.  

2. For each resampled train/test set (m pairs), and for each model (k models), 
obtain a validation error. This allows us to obtain an array of m x k validation 
errors. 

3. Determine the class (Si) with minimum estimated generalization error, that is the 
class with minimum validation error mean.  

2.2   Multiple Model Selection Using Statistical Tests 

The second step in the methodology consists on the selection of a set of models to be 
combined. The best conditions for combining occur when the learned models 
are accurate enough, but fairly independent in the errors they make. The first 
condition will be guaranteed by determining those models not significantly different 
from the model with minimum estimated generalization error using statistical tests for 
comparing k groups of related samples. The second condition is much more difficult 
to ensure, and is approximated considering different architectures, learning 
paradigms, model complexities, etc.  

The proposed methodology determines a subset of models having similar error 
measures that the model with minimum estimated generalization error as follows:  

1. Apply a medium power test (i.e. Nemenyi) to obtain the models which are not 
significantly different from the model with minimum estimated generalization 
error. 

2. Apply an omnibus test for related samples (repeated measures ANOVA test, if 
the assumptions are met or Friedman test in different case). 

2.1. If the global null hypothesis is true (that is, all model classes of this set are 
not significantly different), finish the process. 

2.2. If the global null hypothesis is false, apply more powerful multiple 
comparison procedures (t or Wilcoxon paired tests with Bonferroni method 
for p-values adjustment) and obtain a subset with the model classes which 
are not significantly different from the model class with minimum estimated 
generalization error. 

Yáñez 



 SEM: A New Meta-machine Learning Approach Based on Statistical Techniques 195 

 

Some remarks about the method should be done. When omnibus tests are 
significant, it indicates that at least two of the model classes are significantly 
different, but we don’t know which could be. At this point, multiple comparison 
procedures, which are usually less powerful, are applied.  

Nemenyi test is a medium power multiple comparison procedure. It may even 
accept model classes that should be rejected. It is a good procedure to generate an 
initial but not definitive set of non-significant model classes.  

Finally, the results may improve with a large number of resampled sets: resampling 
methods estimate better the generalization error and parametric tests [4], which are 
more powerful, may be applied on step 2. We suggest m ≥ 30.  

2.3   Model Combination Using Ensemble Methods 

Model combination starts with the determination of a model for each near-optimal 
class as determined in the previous step of the methodology. For each class, we 
should select the member fi(x,w*) whose parameter vector w* minimizes the empirical 
risk for the whole dataset. 

Once a set of component models has been generated, they must be combined. This 
combination consists of a weighted combination of models. For combining the 
outputs of component models, the most prevailing approaches are majority weighted 
voting for classification tasks and weighted averaging for regression tasks [6],[13].  

3   Experimental Results 

In this section we shall describe the experiments carried out with our methodology, 
the obtained results, and a comparative study with other strategies. A number of 
simulations have been conducted to evaluate the efficiency of SEM method using 
Radial Basis Function networks (RBF). In our experiments, we have used several 
databases from the UCI repository [2],  StatLib repository [12], Donoho-Johnstone 
benchmarks [15] and the ELENA Project [8] in order to test the performance of the 
method on regression and classification tasks using artificial and real databases.  

We have repeatedly extracted (100 times) from each database a small number of 
examples (sample size column in tables 2 to 5) for model estimation, while the 
remaining ones were used to get a precise estimation of the expected generalization 
error for each trained model. For the block function, gaussian noise has been added to 
the outputs and the generalization error is estimated with 10000 previously unseen 
examples. 

In order to compare the performance of different networks, we define the observed 
efficiency of model mi as the ratio of the lowest estimated generalization error to that of 
model mi. Thus, observed efficiencies range from 0 to 1. An observed efficiency equal 
to 1.0 would correspond to a model always having the lowest generalization error. 

We have a considered an initial set of RBF models with complexities ranging from 
1 to n (n = 20 or 30, depending on the database) where n is defined as the number of 
kernels. The width of the basis functions has been set to  

nxx ji 2)max( −=σ  
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All statistical tests have been applied using a level of significance α = 5%.  
For SEM, we suggest three methods which require some restrictions on the weights 

(the weights must be greater than zero and sum to one) and fix the weights at the end 
of training. First, an unweighted average is computed (Basic Ensemble Method-
BEM)[13]. Second, the weights are inversely proportional to estimated generalization 
error [11]. Finally, the weights are proportional to the number of times that each 
model has been selected as the model with minimum validation error [17]. A 
comparative of these methods is shown in [17]. In this paper, the simplest method 
(BEM) is applied.  

Table 2 shows observed efficiency values for three regression tasks and for 
different sample sizes: Block function (25 y 50 data) , Abalone data set (50 and 100 
data) and California housing (250 and 500 data). Statistical measures (mean, median 
and standard deviation) of the observed efficiency for the different methodologies are 
shown, as well as methodologies are ranked from the highest mean of the observed 
efficiency to the lowest mean (from 1 to 4 respectively).  We have considered four 
different model building strategies: a) an ensemble using all the models, b) SEM 
using only Nemenyi test, c) SEM using Bonferoni test, and d) the model with the 
lowest estimated error. 

Table 3 shows the number of component networks per meta-model on average for 
the different regression tasks considered. 

Table 2. Observed efficiency for three regression tasks 

Database Sample 
 size 

Statistical 
measures 

All  
models 

SEM using
Nemenyi 

SEM using 
Bonferroni 

Model 
selection 

Mean 0.4019 0.8657 0.8308 0.7793 
Median 0.2156 1.0000 0.9044 0.7670 
Stand. dev. 0.4053 0.2554 0.2214 0.1436 

25 

Rank 3 1 2 4 
Mean 0.7855 0.8955 0.8915 0.7260 
Median 0.9629 0.9728 0.9555 0.7104 
Stand. dev. 0.3110 0.2032 0.1869 0.1606 

Block 
function 

50 

Rank 3 1 2 4 
Mean 0.9220 0.9789 0.9584 0.8638 
Median 0.9290 0.9968 0.9746 0.8661 
Stand. dev. 0.0702 0.0318 0.0486 0.1036 

50 

Rank 3 1 2 4 
Mean 0.9797 0.9826 0.9727 0.9305 
Median 0.9882 0.9882 0.9828 0.9503 
Stand. dev. 0.0234 0.0192 0.0315 0.0703 

Abalone 

100 

Rank 2 1 3 4 
Mean 0.9815 0.9893 0.9804 0.9063 
Median 0.9881 0.9978 0.9958 0.9111 
Stand. dev. 0.0198 0.0167 0.0280 0.0582 

California 
housing 

250 

Rank 2 1 3 4 
Mean 0.9881 0.9970 0.9876 0.9152 
Median 0.9887 1.0000 0.9939 0.9176 
Stand. dev. 0.0086 0.0070 0.0213 0.0430 

 500 

Rank 2 1 3 4 

A.  Escolano et al. Yáñez 
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Table 3. Average of the number of component networks per meta-model 

Database Sample 
size 

All 
models 

SEM 
using 

Nemenyi 

SEM 
using 

Bonferroni 

Model 
Selection 

25 30 7,37 4,08 1 Block 
function 50 30 13,87 8,67 1 

50 20 11,27 6,47 1 
Abalone 

100 20 12,51 6,72 1 

250 20 15,12 8,07 1 

500 20 17,35 11,26 1 
California 
housing 

250 30 29,05 23,69 1 

Table 4 shows results for 3 different classification tasks: Clouds data set with 50 
and 250 experimental data, Gauss 2D with 50 and 100 experimental data and 
Phoneme data set with 100 and 250. Table 5 shows the number of component 
networks per meta-model on average. 

Table 4. Observed efficiencies for three binary classification tasks 

Database 
Sample  

size 
Statistical 
measures 

All 
models 

SEM using 
Nemenyi 

SEM using 
Bonferroni 

Model 
selection 

Mean 0.9193 0.9587 0.9125 0.7475 

Median 1.0000 0.9778 0.9330 0.7416 

Stand. dev. 0.1384 0.0506 0.0871 0.1008 
50 

Rank 2 1 3 4 

Mean 0.9156 0.9827 0.9955 0.9479 

Median 0.9182 0.9857 1.0000 0.9481 

Stand. dev. 0.0340 0.0168 0.0103 0.0393 

Clouds 

250 

Rank 3 2 1 4 

Mean 0.7390 0.9624 0.9782 0.9395 

Median 0.7786 0.9772 1.0000 0.9618 

Stand. dev. 0.1446 0.0535 0.0464 0.0674 
50 

Rank 4 2 1 3 

Mean 0.9155 0.9842 0.9913 0.9681 

Median 0.9265 0.9919 1.0000 0.9771 

Stand. dev. 0.0514 0.0210 0.0164 0.0332 

Gauss 2D 

100 

Rank 4 2 1 3 

Mean 0.9918 0.9935 0.9813 0.9129 

Median 1.0000 1.0000 0.9955 0.9110 

Stand. dev. 0.0149 0.0116 0.0290 0.0460 
100 

Rank 1 2 3 4 

Mean 0.9994 0.9986 0.9903 0.9014 

Median 1.0000 1.0000 0.9977 0.9083 

Stand. dev. 0.0017 0.0031 0.0154 0.0467 

Phoneme 

250 

Rank 1 2 3 4 
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Table 5. Average of the number of component networks per meta-model 

Database 
Sample 
size 

All 
models 

SEM 
using 

Nemenyi 

SEM 
using 

Bonferroni 

Model 
Selection 

50 20 18,34 12,02 1 
Clouds 

250 20 18,91 13,34 1 

50 20 14,03 6,22 1 
Gauss 2D 

100 20 14,83 6,85 1 

100 30 25,96 18,72 1 
Phoneme 

250 30 29,05 23,69 1 

Experimental results from the simulations (tables 2 and 4) suggest that 
generalization capability of SEM is higher (or similar in the worst case) than the 
model with minimum expected generalization error, and better than the ensemble 
obtained combining all component networks. Similar results are obtained applying 
only Nemenyi test or applying Bonferroni correction after it, but the ensembles 
generated after Bonferroni correction are less complex (tables 3 and 5). The SEM 
model selects the optimal cardinality for the ensemble and the appropriate complexity 
for their component networks. 

4   Conclusions 

It is known that combining networks improve the generalization ability. The number 
of component networks and their complexity are free parameters and usually must be 
fixed before the training process begins, but there is no standard procedure to fix these 
parameters. In this paper we have proposed a new ensemble method based on 
statistical techniques (SEM) which fixes these parameters in order to obtain a low 
generalization error with a small set of optimal component networks. Experimental 
results have shown that SEM improves the performance when compared to the 
strategy which selects the model with the lowest estimated generalization error and 
the strategy which combines all the networks.  

Finally, other simulation results obtained applying our method [17] show that: 

1. With other families of models (eg. linear models, polynomials, MLP 
networks,…), SEM always reduced the generalization error. 

2. More powerful multiple comparison procedures based on Bonferroni correction 
[10] are not necessary, because a set of models with similar cardinality is 
selected. 

3. Similar results are obtained applying random hold-out technique, but leave-one-
out or k-fold cross-validation techniques make the results worse, because they 
select set of models with high cardinality. 

A.  Escolano et al. Yáñez 
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Abstract. The aim of the paper is to develop hypothesis testing pro-
cedures both for variable selection and model adequacy to facilitate a
model selection strategy for neural networks. The approach, based on
statical inference tools, uses the subsampling to overcome the analyti-
cal and probabilistic difficulties related to the estimation of the sampling
distribution of the test statistics involved. Some illustrative examples are
also discussed.

1 Background and Motivations

Artificial neural networks are widely accepted as a potentially useful way of
modeling complex non linear and dynamic systems. Their success is due to the
great flexibility and capability of providing a model which fits any kind of data
with an arbitrary degree of accuracy. This universal approximation property,
together with the absence of the curse of dimensionality and the good predictive
performances, has made the neural networks extensively used in a variety of
statistical applications. A crucial point, when using a neural network model, is
the choice of a proper topology which is basically related to the specification
of the type and the number of the input variables and to the selection of the
hidden layer size. The “atheoretical” nature of the tool, employed for the lack
of knowledge about the functional form of the data generating process and the
intrinsic misspecification of the model, make the choice of an adequate neural
network an hard task. The most used approaches to this problem are based on
pruning and regularization, information criteria and cross-validation methods
[10]. Although these techniques may lead to satisfactory results, they lack of
an inferential statistical perspective and usually contain a strong judgemental
component which makes the model building process difficult to reconstruct.

To circumvent these drawbacks, alternative procedures based on hypothesis
testing have been proposed (see [3],[1] inter alia). These techniques are based on
a strong statistical approach but they focus on single weights and this could be
misleading due to the black-box nature of the neural network model. Indeed, they
do not give any information on the most “significant” variables, which is useful
in any model building strategy. Moreover, different topologies can achieve the
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same approximation accuracy. As a consequence, a proper choice of the network
topology cannot be just based on complexity reasons and it should also take into
account model plausibility.

Therefore, a model selection strategy should emphasize the role of the ex-
planatory variables (useful for the identification and interpretation of the model)
and it should treat the hidden layer size as a smoothing parameter, taking into
account the trade-off between estimation bias and variability. The solutions pro-
posed in the statistical literature, following this spirit, for model identification,
diagnostic testing and model adequacy, basically deal with iid case and so they
are not suitable for time series data [11], [13].

The aim of the paper is to develop hypothesis testing procedures, both for
variable selection and model adequacy, to facilitate neural network model selec-
tion strategies based on statical inference tools in the dependent data framework.
The approach uses the subsampling which gives consistent results under quite
general and weak assumptions and allows to overcome the analytical and prob-
abilistic difficulties related to the estimation of the sampling distribution of the
test statistics [9]. Basically the scheme just requires the existence of a limiting
law for the sampling distribution of the statistics involved. It does not require any
knowledge of the specific structures of the time series other than its asymptotic
stationarity and strong mixing properties.

The paper is organized as follows. Section 2 describes the data generating
process and the neural network model employed. Section 3 discusses the use of
hypothesis testing procedures in neural network modeling focusing on the use of
subsampling. Finally, section 4 reports the results of two illustrative examples
along with some concluding remarks.

2 The Data Generating Process and the Neural Network
Model

Let {Yt, t ∈ ZZ} be a process modeled as:

Yt = g (Xt) + εt (1)

where {Yt,X′
t} is a stationary, α-mixing sequence and Xt = (X1t, . . . , Xdt)′ is

a vector of d random variables possibly including explanatory variables, lagged
explanatory variables and lagged values of Yt. The unknown function g(·) is a
continuously differentiable function defined on a compact subset of IRd.

The function g can be approximated by a single hidden layer feed-forward
neural network NN(d, r) defined as

f (xt, θ) =
r∑

k=1

ckφ

⎛
⎝ d∑

j=1

akjxjt + ak

⎞
⎠+ c0 (2)

where x = (x1, . . . , xd) is the vector of the d input variables, akj is the weight
of the connection between the j-th input neuron and the k-th neuron in the
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hidden level; ck, k = 1, ..., r is the weight of the link between the k-th neuron in
the hidden layer and the output; ak0 and c0 are respectively the bias term of the
hidden neurons and of the output; φ(.) is the activation function of the hidden
layer. We define θ = (c0, c1, . . . , cr,a′

1,a
′
2, . . . ,a

′
r)

′ where a′
i = (ai0, ai1, . . . , aid)

with θ ∈ Θ ⊂ IRr(d+2)+1.
A well known result [2] guarantees that, under quite general conditions, there

exists a parameter vector θ∗ such that

‖g (x)− f (x, θ∗)‖ ≤ (2Cg)
2

r
(3)

where Cg > 0 is a proper chosen constant.
Once fixed the network topology, the parameter vector θ∗ can be estimated

by solving

T−1
T∑

t=1

ψ (Zt, θ) = 0. (4)

where the function ψ(.) can generate different classes of estimators such as least
squares, maximum likelihood and generalized method of moments.

The universal approximation property and the wide choice of algorithms
available for the estimation procedure have made the neural networks widely
used in a variety of statistical applications. Unfortunately, this class of models
is not yet supported by the rich collection of specification and diagnostic tests
usually employed in statistical and econometric modeling.

A crucial point, when using a NN(d, r) model, is the choice of a proper
topology which, basically, is related to the specification of the type and the
number of the input variables and to the selection of the hidden layer size.

The problem is not a novel one and a number of different and effective so-
lutions have been proposed in the machine learning framework (see [5]). Here,
we focus on an econometric like approach. In this perspective, a neural network
model selection strategy should emphasize the different role of the input and
the hidden layer neurons. In a regression framework, input neurons are related
to the explanatory variables (useful for identification and interpretation of the
model) while the hidden layer size has no clear interpretation and it should be
considered basically as a smoothing parameter, taking into account the trade-off
between estimation bias and variability.

Therefore, the input selection step should be addressed by referring to statis-
tical test procedures for variable selection in dynamic regression models. While
the hidden layer size could be chosen by considering one of the many results
available in the statistical literature, ranging from the information criteria based
on fitting to the indexes based on prediction accuracy. In this framework, a
model is selected if it has the smallest value of the chosen index within a class
of models. If two models have the same value of the index, the simpler one is
selected. In any case, the criteria based on the traditional maximum likelihood
approach have not been clarified completely (see [4] for a theoretical discussion).

a
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Moreover, often the differences among indexes are not so large and so a test
procedure for the equivalence of two competing models could be useful.

3 Hypothesis Testing in Neural Networks by
Subsampling

To select a proper set of input variables, we focus on a stepwise selection rule
which involves: (i) definition of variable’s relevance to the model; (ii) estimation
of the sampling distribution of the relevance measure; (iii) testing the hypothesis
that the variable is irrelevant [11].

The hypothesis that a set of independent variables X0 = {xi, i ∈ I0} has no
effect on Y can be formulated as [13],

fi (x; θ∗) =
∂f (x; θ∗)
∂xi

= 0,∀x, i ∈ I0. (5)

and tested by referring to the null

H0 : m∗ =
∑
i∈I0

E
[
f2

i (Xt, θ
∗)
]

= 0 (6)

The null H0 can be tested by using the statistic,

m̂T = T−1
∑
i∈I0

T∑
t=1

f2
i

(
Xt, θ̂T

)
(7)

where the parameter vector θ̂T is a consistent estimator of the unknown param-
eter vector θ∗.

The distribution of the test statistic under: (i) stationarity, mixing and mo-
ment condition on the data generating process, (ii) smooth condition on the
function ψ(·) involved in the estimation step, (iii) sigmoidal activation functions,
can be consistently approximated by using the subsampling [6].

The choice of this resampling technique is related to the probabilistic com-
plexity of neural network modeling for dependent data. The subsampling method
estimates the sampling distribution of the test statistic by evaluating it on blocks
of consecutive observations in order to take into account the dependence struc-
ture of the observed time series. This basic resampling scheme does not change
dramatically when moving from iid to dependent data. Moreover, the method
does not require any knowledge of the specific structures of the time series other
than its stationarity and strong mixing property, so it is robust against misspec-
ified models, a key property when dealing with artificial neural network models
which are intrinsically misspecified. Finally, the subsampling is by no means re-
stricted to stationary series but it gives asymptotically correct inference even for
heteroskedastic time series under general minimal assumptions [8]. Basically the
scheme requires that δb

δT
→ 0, b

T → 0 and b → ∞ as T → ∞ and the existence
of a limiting law for the sampling distribution of the test statistic [9].
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The main issue when applying the subsampling procedure lies in choosing
the length of the block, a problem which is common to all blockwise resamplig
techniques. Even if the conditions on b are quite weak, they do not give any
guidelines for its choice and this parameter, which is related to the amount
of dependence assumed in the series, has to be chosen on the data at hand.
Nevertheless, Politis et al. [9] proposed a number of strategies to select b and
theorems that ensure that the asymptotic results are still valid for a broad range
of choices for the subsample size.

A somewhat similar test procedure, based on the comparison of competing
neural network models, can be used to verify if there are any omitted variables
or if a different hidden layer size can improve the performance of the model [13].

Let f1 (x, θ∗1) and f2 (x, θ∗2) be two nested competing neural network models.
The idea is that if the two networks are equivalent f1 is capable of producing an
output identical to that of the network f2. A discrepancy measure between the
outputs of the two competing neural network models can be defined as

m∗ = E
[
(f1 (x, θ∗1)− f2 (x, θ∗2))2

]
(8)

Therefore, the hypothesis that the two models are equivalent can be written
as H0 : m∗ = 0 and tested by using the statistic

m̂T =
1
T

T∑
t=1

(
f1

(
Xt, θ̂T1

)
− f2

(
Xt, θ̂T2

))2

(9)

where θ̂T1 and θ̂T2 are consistent estimators of, respectively, θ∗1 and θ∗2 .
Again, the distribution of the test statistic can be consistently estimated

by using the subsampling, thus extending straightforwardly the procedure to
dependent data.

4 Illustrative Examples and Concluding Remarks

To illustrate how the proposed test procedures work, the results of some illus-
trative examples on simulated data will be reported. The experimental setup is
based on datasets generated by the following models

(M1) Yt = −0.3− 0.5Yt−1(1− G(Yt−1)) + 0.1 + 0.5Yt−1G(Yt−1) + εt

(M2) Yt =
(
0.5 + 0.9 exp

(
−Y 2

t−1

))
Yt−1 +

(
0.8− 1.8 exp

(
−Y 2

t−1

))
Yt−2 + εt

where the innovations εt are distributed as standard normal, G(·) is the lo-
gistic cumulative function. These models, very popular in several applications
in different fields, have been chosen as representing different kind of dynamic
behaviour since their flexibility allows generation of quite different time series
structures. Model (M1) is a Logistic Smooth Transition Model (LSTAR) while
M2 is an Exponential Autoregressive model of order 2 used in several studies on
the bootstrap for its peculiar nonlinear structure.

M. L Rocca and C. Pernaa
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Fig. 1. Plots of the values of the relevance measure for different lags

Table 1. Values of the test statistics and p-values (estimated by subsampling) in
parenthesis for the selection of the relevant input set

Model I0 = {1} I0 = {2} I0 = {3, 4, 5, 6}
LSTAR(1) 64.6314 (0.0009) 0.1982 (0.7702) 0.7466 (0.9589)
EXPAR(2) 212.1005 (0.0000) 359.6342 (0.0000) 0.5749 (0.9378)

The nonlinear dynamical structure of the data can be modeled by approxi-
mating the DGP by a proper chosen neural network model NN(d, r).

To select the set of variables to be tested as irrelevant, we use simple graphical
exploratory tools based on the plots of the relevance measures for each single lag.
Values of a given relevance measure close to zero candidate the corresponding lag
to be in the set of irrelevant ones. In this exercise we start with a tentative model
NN(6, 1). By the plots in Figure 1 we identify, as possible relevant variables lag
1 for the LSTAR model and lags 1 and 2 for the EXPAR model. The results
of the test based identification procedure are reported in Table 1 where the p-
values have been estimated by subsampling with the subseries length b = 180
identified by using the Variance Inflaction Index [9]. Clearly, as expected, we
identify a neural network model with only one input neuron (corresponding to
the first lag) for the M1 model and a neural network model with two input
neurons (corresponding to the first two lags) for the model M2.

Following a common practice and for computational reasons, the hidden layer
size has been selected by using the Akaike (AIC), the Hannan-Quinn (HQIC)
and the Schwartz (SIC) information criteria (see Table 2).
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Table 2. Values of the information criteria to compare networks with different hidden
layer size. In bold the minimum value for each index. Input set chosen according to
Table 1

Model r AIC HQIC SIC

LSTAR(1) 1 -3.6369 -3.6393 -3.6194
2 -3.6825 -3.6828 -3.6482
3 -3.6766 -3.6772 -3.6274
4 -3.6705 -3.6714 -3.6067
5 -3.6645 -3.6656 -3.5860

EXPAR(2) 1 -4.8626 -4.8629 -4.8380
2 -4.9617 -4.9623 -4.9175
3 -5.1006 -5.1014 -5.0367
4 -5.1192 -5.1203 -5.0356
5 -5.1142 -5.1157 -5.0110

Table 3. Values of the test statistics and p-values (estimated by subsampling) in
parenthesis to compare different models. Input set chosen according to Table 1

Model r = 1 ←→ r = 2 r = 2 ←→ r = 3 r = 3 ←→ r = 4 r = 4 ←→ r = 5

LSTAR(1) 1.1736 (0.0000) 0.0017 (0.1221) 0.0051 (0.0888) < 0.0001 (0.1953)
EXPAR(2) 0.1750 (0.0000) 1.9943 (0.0000) 0.0814 (0.0056) 0.0194 (0.1210)

Table 4. Teraesvirta and White neural network tests for neglected nonlinearity, Jar-
que and Bera Test for normality, on the original data and on the residuals from the
“optimal” estimated neural network models

Original data Residuals
Model Test Statistic p-value Statistic p-value

LSTAR(1) Teraesvirta 80.8153 0.0000 0.3757 0.8287
White 80.8030 0.0000 0.2578 0.8790

Jarque-Bera 0.1078 0.9475 0.2623 0.8771

EXPAR(2) Teraesvirta 109.8451 0.0000 4.8964 0.6726
White 14.2297 0.0000 0.7716 0.6799

Jarque-Bera 124.2957 0.0000 2.5579 0.2783

The values of the indexes point towards a network with two hidden neurons
for the LSTAR model and 3 or possibly 4 hidden neurons for the EXPAR model.
In Table 3 we reported the results of the test procedures comparing competing
models with different hidden layer sizes. Again the p-values have been computed
by using the subsampling. The input neurons have been fixed according to the
results of Table 1.

Clearly, for the LSTAR model neural networks with more than two neurons
in the hidden layer seem to be equivalent to the NN(1, 2) model. So, the “opti-
mal” model seems to be the NN(1, 2). For the EXPAR case, the test procedure
suggests that the NN(2, 3) and the NN(2, 4) model cannot be considered equiv-
alent, while there is no improvement in the performances by considering more

M. L Rocca and C. Pernaa
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than four neurons in the hidden layer. So the “optimal” identified model seems
to be NN(2, 4).

The neural network tests for neglected nonlinearity by Teraesvirta [12] and
White [7] on the residuals from the identified optimal models, along with the
Jarque-Bera test for normality, are reported in Table 4. The tests on the residuals
do not refuse the null and so the nonlinear structure of the data seems to be
correctly modeled. Moreover, the residuals can be considered as realization of a
gaussian process.

The proposed test procedures based on the subsampling seem able to detect
correctly the set of input variables and to discriminate among alternative mod-
els. Clearly, joint usage of neural network models and subsampling is usually
quite demanding from a computational point of view. In any case, it is worth-
while to underline that both neural networks and subsampling are suitable to be
implemented on parallel and cluster computers almost without any modification
of the computing algorithms.
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Abstract. Boosting constructs a weighted classifier out of possibly weak
learners by successively concentrating on those patterns harder to clas-
sify. While giving excellent results in many problems, its performance
can deteriorate in the presence of patterns with incorrect labels. In this
work we shall use parallel perceptrons (PP), a novel approach to the
classical committee machines, to detect whether a pattern’s label may
not be correct and also whether it is redundant in the sense of being
well represented in the training sample by many other similar patterns.
Among other things, PP allow to naturally define margins for hidden unit
activations, that we shall use to define the above pattern types. This pat-
tern type classification allows a more nuanced approach to boosting. In
particular, the procedure we shall propose, balanced boosting, uses it to
modify boosting distribution updates. As we shall illustrate numerically,
balanced boosting gives very good results on relatively hard classification
problems, particularly in some that present a marked imbalance between
class sizes.

1 Introduction

As it is well known, boosting constructs a weighted classifier out of possibly
weak learners by successively concentrating on those patterns harder to classify.
More precisely, it keeps on each iteration a distribution dt(X) of the underlying
X patterns, and after a new hypothesis ht has been constructed in the t–th
iteration, dt(X) is updated to

dt+1(X) =
1
Zt
dt(X)e−αtyXht(X), (1)

where yX = ±1 is the class label associated to X, Zt is a probability normal-
ization constant and αt is related to the training error εt of ht (more details in
the third section). Therefore, after each iteration boosting concentrates on the
patterns harder to classify, as we have e−αtyXht(X) > 1 if yXht(X) < 0, i.e., X
has been incorrectly classified; as a consequence, the training error εt will tend
to 0 under mild hypothesis on the weak learner [6]. The final hypothesis is the
average h(X) =

∑
t αtht(X) of the successively built weak hypotheses ht.

Boosting has been used with great success in several applications and over
various data sets [2]. However, its has also been shown that it may not yield

� With partial support of Spain’s CICyT, TIC 01–572.

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 208–216, 2005.
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such good results when applied to noisy datasets. In fact, assume that a given
pattern has label noise, that is, although clearly being a member of one class, its
label corresponds to the alternate class. Such a label noisy pattern is likely to
be repeatedly misclassified by the successive hypotheses which, in turn, would
increase its sampling probability and cause boosting to hopelessly concentrate
on it. Although this fact may be useful in some instances, its most likely conse-
quence is to deteriorate the final hypothesis. The just described situation may
very well happen when dealing with imbalanced data sets, where the number of
patterns from one class (that we term the positive one) is much smaller than
that from others. There are many examples of this situation, as well as a large
literature on this topic, with many techniques having been applied [3, 7]. Most
real world classification problems involve imbalanced samples and for them we
should expect patterns to fall within three categories: redundant (i.e., easy to
classify and likely to be overrepresented in the sample), the just described label
noisy and, finally, borderline patterns, i.e., those whose classification could be
different after small perturbations and upon which classifier construction should
concentrate. To successfully deal with imbalanced data sets it is quite important
to detect and handle these three pattern categories correctly.

In this work we introduce a new technique for redundant, label noisy and
borderline pattern detection that, in turn, will suggest a new new procedure
for boosting’s probability update (1) depending on what pattern cathegory X
is in. The assignment of X to one of these types is based on another concept
of margin that arises naturally in the training of parallel perceptrons (PP), a
type of committee machines introduced by Auer et al. in [1] and that will be
described in section 2. A key part of the PP training procedure is an output
stabilization technique that tries to augment the distance of the activation of a
perceptron to its decision hyperplane, i.e., its activation margin, so that small
random changes on an input pattern do not cause its being assigned to another
class. The activation margins are also learned in some sense during training
and can be used for the above classification of training patterns, as it will be
described in section 3. In turn, knowing which kind of pattern a given one is
can be used to adjust boosting’s probability updates. We will do so here by
changing the exponent in (1) to αtR(X)yXht(X), where the R(X) factor will
reflect the nature of the pattern X. More precisely, R(X) will be 1 for redundant
patterns and −1 for noisy ones. We shall consider in section 3 several options
for choosing R(X) for borderline patterns; as we shall see in section 4, best
results will be obtained by what we shall call balanced boosting, whose results
are comparable to those of boosted multilayer perceptrons (MLPs) but with
much smaller training times. Finally, the paper will close with a brief summary
section and a discussion of further work.

2 Parallel Perceptron Training

PPs have the same structure of the well known committee machines [5], that is,
they are made up of an odd number of standard perceptrons Pi with ±1 outputs,
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and the machine’s one dimensional output is simply the sign of the sum of these
perceptrons’ outputs (that is, the sign of the overall perceptron vote count).
They are thus well suited for 2–class discrimination problems, but it is shown in
[1] that they can also be used in regression problems. In more detail, assume we
are working with D dimensional patterns X = (x1, . . . , xD)t, where the D–th
entry has a fixed 1 value to include bias effects. If the committee machine (CM)
hasH perceptrons, each with a weight vectorWi, for a given inputX, the output
of perceptron i is then Pi(X) = s(Wi ·X) = s(acti(X)), where s(·) denotes the
sign function and acti(X) = Wi ·X is the activation of perceptron i due to X.
The final output h(X) of the CM is h(X) = s

(∑H
1 Pi(X)

)
where we take H to

be odd to avoid ties. We will assume that each input X has an associated ±1
label yX and take the output h(X) as correct if yXh(X) > 0. If this is not the
case, i.e. whenever yXh(X) = −1, parallel perceptron training applies the well
known Rosenblatt’s rule

Wi := Wi + ηyXX. (2)

to all wrong perceptrons, i.e. those Pi verifying yXPi(X) = −1 (η denotes a
possibly varying learning rate). Moreover, when a pattern X is correctly classi-
fied, PP training also applies a margin–based output stabilization procedure to
those perceptrons for which 0 < yXacti(X) < γ. Notice that for them a small
perturbation could cause a wrong class assignment.

The value of the margin γ is also adjusted dynamically from a starting value.
More precisely, as proposed in [1], after a pattern X is processed correctly, γ
is increased to γ + 0.25η if for all correct perceptrons we have yXacti(X) > γ,
while we decrease γ to γ − 0.75η if 0 < yXacti(X) < γ for at least one correct
perceptron. PPs can be trained either on line or in batch mode; since we will use
then in a boosting framework, we shall use this second procedure. Notice that
for the margin to be meaningful, weights have to be normalized somehow; we
will make its euclidean norm to be 1 after each batch pass. In spite of their very
simple structure, PPs do have a universal approximation property. Moreover, as
shown in [1], PPs provide results in classification and regression problems quite
close to those offered by C4.5 decision trees and only slightly weaker that those of
standard multilayer perceptrons (MLPs). Finally, their training is extremely fast,
specially when compared to that of MLPs, something quite useful in boosting,
where repeated batch trainings will have to be performed.

3 Boosting Parallel Perceptrons

As mentioned in the introduction, boosting constructs after each iteration a
weak hypothesis ht over the current distribution dt, and updates it according
to the rule (1), in which Zt =

∑
X dt+1(X) is a probability normalization, αt =

ln ((1− εt)/εt) /2, and εt is the iteration error with respect to dt, i.e.,

εt =
∑

{X : yXht(X)=−1}
dt(X).
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Table 1. The table gives the R(X) labels for training patterns for negative, positive

and balanced boosting. All tend to avoid label noisy patterns and their main difference

is in the handling of near noisy borderline patters. Standard boosting sets R(X) = 1

in all cases

Pattern set neg. boostPP pos. boostPP bal. boostPP

R 1 1 1

N −1 −1 −1

nB− 1 −1 0

other B 1 1 1

As mentioned in the introduction, boosting may not yield good results when
applied to noisy datasets, as these will be repeatedly misclassified by the succes-
sive hypotheses, increasing their sampling probability and causing boosting to
hopelessly concentrate on them. in it. On the other hand, PP’s activation mar-
gins can be used to detect not only label noisy patterns but also those that are
redundant and borderline. In more detail, PPs adaptively adjust these margins,
making them to converge to a final value γ. If for a pattern X its i–th percep-
tron activation verifies |acti(X)| > γ, s(acti(X)) is likely to remain unchanged
after small perturbations of X. Thus if for all i we have yXacti(X) > γ, X is
likely to be also correctly classified later on. Those patterns are natural choices
to be taken as redundant. Similarly, if for all i we have yXacti(X) < −γ, X is
likely to remain wrongly classified, and we will take such patterns as label noisy.
The remaining X will be the borderline patterns. We shall use the notations Rt,
Nt and Bt for the redundant, noisy and borderline training sets at iteration t.
To take into account this categorization, we may introduce a pattern dependent
factor R(X) in the boosting probability actualization procedure as follows

dt+1(X) =
1
Z ′

t

dt(X)e−αtR(X)yXht(X),

with Z ′
t again a normalization constant. If we set the factor R(X) to be 1, we

just recapture standard boosting, while if we want to diminish the influence of
label noisy patterns X ∈ Nt, we put R(X) = −1; since they are not correctly
classified, then αtR(X)yXht(X) > 0 and hence, dt+1(X) < dt(X). Moreover,
we would like to keep boosting focused on borderline patterns, even if they are
temporarily misclassified. To do so, we have several options. First we can just
proceed as in standard boosting, setting R(X) = 1 when X ∈ B; for borderline
patterns incorrectly classified this will augment their subsequent probability,
while it will diminish it for those well classified. Notice that if the latter are close
to the separating hyperplane, they may not be correctly classified afterwards,
causing boosting to refocus on them.

However, when dealing with unbalanced datasets, accuracy, that is the per-
centage of correctly classified patterns, may not be a relevant criterium, as it
would be fulfilled by the simple procedure of assigning all patterns to the (possi-
bly much larger) negative class. It may thus be convenient to lessen the impact
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Table 2. Accuracies and g values for the standard boosting procedures over 7 UCI

datasets using MLPs and PPs as learning algorithms. The more complex structure of

MLPs gives better accuracies, although those of PPs are quite close in all problems

except two

std. boostMLP std. boostPP

Dataset % positives a a+ a− g a a+ a− g

Ionosphere 35.9 88.40 73.53 96.71 84.3 85.49 68.91 94.85 80.8
(0.32) (1.89) (1.51) (2.02)

Diabetes 34.9 73.80 60.63 80.84 70.0 73.16 57.99 81.42 68.7
(0.25) (1.75) (0.97) (1.06)

Cancer 34.5 95.82 94.19 96.68 95.4 95.64 93.32 96.86 95.1
(0.13) (0.55) (0.25) (0.52)

Vehicle 25.7 83.16 65.35 89.30 76.4 79.04 55.33 87.30 69.5
(0.10) (0.60) (1.15) (1.05)

Glass 13.6 95.82 88.00 97.01 92.4 95.71 86.83 97.13 91.8
(0.22) (1.52) (1.06) (1.84)

Vowel 9.1 99.66 98.22 99.80 99.0 99.46 96.56 99.76 98.1
(0.01) (0.12) (0.28) (0.80)

Thyroid 7.4 98.73 91.30 99.32 95.2 97.33 80.14 98.85 89.0
(0.05) (0.32) (0.19) (1.20)

Table 3. Accuracies for the boosting procedures over 7 UCI datasets (the lower values

give the standard deviations of 10 times 10–fold cross validation); best values in bold

face. While it only gives the best result in the glass problem, the overall accuracy of

balanced boost is quite close to the best one, while giving a good balance between a+

and a−

std. boostPP neg. boostPP pos. boostPP bal. boostPP

Dataset a a+ a− a a+ a− a a+ a− a a+ a−

Ionosphere 85.49 68.91 94.85 85.09 67.45 95.09 65.97 89.85 52.50 84.97 71.44 92.65
(1.51) (1.21) (1.40) (1.20)

Diabetes 73.16 57.99 81.42 73.29 59.07 81.04 57.76 94.85 37.56 72.08 73.18 71.49
(0.97) (0.88) (0.96) (0.88)

Cancer 95.64 93.32 96.86 96.03 94.27 97.02 96.39 99.15 94.91 96.32 96.07 96.50
(0.25) (0.18) (0.22) (0.16)

Vehicle 79.04 55.33 87.30 79.68 55.04 88.27 72.09 95.52 63.93 78.61 72.41 80.78
(1.15) (0.97) (0.46) (0.75)

Glass 95.71 86.83 97.13 96.09 87.33 97.51 94.76 90.17 95.53 96.33 89.33 97.46
(1.06) (0.78) (0.39) (0.88)

Vowel 99.46 96.56 99.76 99.52 97.44 99.73 95.56 99.89 95.12 99.39 98.33 99.50
(0.28) (0.35) (0.13) (0.24)

Thyroid 97.33 80.14 98.85 97.73 83.42 98.88 94.66 99.56 94.27 97.66 96.60 97.74
(0.19) (0.32) (0.21) (0.27)
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in training of the more abundant majority negative class. Redundant pattern
removal partially takes care of this but it is also interesting to avoid mistrain-
ing effects by near noisy label negative patterns, that is, the set nB−

t of those
negative patterns X with a wrong margin yXacti(X) < 0 in all perceptrons in
the t iteration. This can be done by lowering their dt+1(X) probabilities, for
which one option is to set R(X) = −1; we should expect this to augment the
accuracy a+ of the positive class, while lowering the accuracy a− of the nega-
tive class. We shall call the resulting procedure positive boosting. Of course, we
may do the opposite, applying what we may call negative boosting by setting
R(X) = 1 for X ∈ nB−

t , which in turn should increase the accuracy a− of the
negative class. A third, more balanced option is to augment the probability of
positive borderline patterns (i.e., to set R(X) = 1) but to be more “neutral”
on the nB−

t patterns, setting R(X) = 0 for them, which will essentially leave
their previous probabilities unchanged. While a+ would then be smaller than in
positive boosting, the overall classification should be more balanced. We shall
call the resulting procedure balanced boosting. We will measure the balance of
positive and negative accuracies using the g coefficient, i.e., the geometric ratio
g =

√
a+a− of the positive a+ and negative a− accuracies, first proposed in [7].

We shall report next numerical results over seven datasets.

Table 4. g values over 7 UCI datasets for the various boosting procedures (the lower

values give the standard deviations of 10 times 10–fold cross validation). Best values

(in bold face) are given by MLPs and positive boosting in two cases. Balanced boost

gives best values in the other three, and it is the second best in the other 4

Dataset std. boostMLP std. boostPP neg. boostPP pos. boostPP bal. boostPP

Ionosphere 84.3 80.8 80.1 68.7 81.4
(1.89) (2.02) (1.52) (1.85) (2.01)

Diabetes 70.0 68.7 69.2 59.7 72.3
(1.75) (1.06) (0.92) (0.92) (1.15)

Cancer 95.4 95.1 95.6 97.0 96.3
(0.55) (0.52) (0.49) (0.25) (0.38)

Vehicle 76.4 69.5 69.7 78.1 76.5
(0.60) (1.05) (0.99) (0.67) (0.88)

Glass 92.4 91.8 92.3 92.8 93.3
(1.52) (1.84) (1.38) (1.32) (1.96)

Vowel 99.0 98.1 98.1 97.5 98.9
(0.12) (0.80) (0.66) (0.25) (0.48)

Thyroid 95.2 89.0 90.8 96.9 97.2
(0.32) (1.20) (0.50) (0.18) (0.35)

4 Numerical Results

We shall use 7 problem sets from the well known UCI database (listed in table
2) referring to the UCI database documentation [4] for more details on these
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problems. Some of them (glass, vowel, vehicle, thyroid) are multi–class prob-
lems; to reduce them to 2–class problems, we are taking as the minority classes
the class 1 in the vehicle dataset, the class 0 in the vowel data set, and the class
7 in the glass domains (as done in [3]), and merged in a single class both sick
thyroid classes. In general they can be considered relatively hard problems and,
moreover, some of these problems provide well known examples of highly imbal-
anced positive and negative patterns, that make difficult classifier construction,
as discriminants may tend to favor the (much) larger negative patterns over the
less frequently positive ones. This is the case of the glass, vowel, thyroid and, to
a lower extent, vehicle problems. In all problems we will take the minority class
as the positive one.

PP training has been carried out as a batch procedure. In all examples we
have used 3 perceptrons and parameters γ = 0.05 and η = 10−2; for the thyroid
dataset, we have taken η = 10−3. As proposed in [1], the η rate does not change
if the training error diminishes, but is decreased to 0.9η if it augments. Training
epochs have been 250 in all cases; thus the training error evolution has not been
taken into account to stop the training procedure. Anyway, this error has an
overall decreasing behavior. We have performed 10 boosting iterations. In all
cases we have used 10–times 10–fold cross validation. That is, the overall data
set has been randomly split in 10 subsets, 9 of which have been combined to
obtain the initial training set, the size of which has. To ensure an appropriate
representation of positive pattern, stratified sampling has been used. The final
PPs’ behavior has been computed on the remaining, unchanged subset, that we
keep for testing purposes.

As mentioned before, accuracy is a first measure of a classifier’s efficiency.
Table 3 gives overall, positive and negative accuracies for the four construction
procedures (best values are in bold face). It can be seen that negative boosting
gives the best results in 4 cases. Standard and balanced boosting give the best
accuracy on one problem each, but they are quite close in all others anyway. On
the other hand, while positive boosting gives the best accuracy for the cancer
dataset, the accuracy it achieves is the lowest in all the other. As it may be
expected, it also achieves the highest a+ values, while standard and, of course,
negative boosting strongly favor the negative class. In any case, table 3 also shows
that balanced boosting gives the best balance between positive a+ and negative
a− accuracies. The better inter–class performance of balanced boosting can also
be seen in table 4. Balanced boosting achieves the best g values for 5 datasets and
is a close second in the other two. Positive boosting gives the highest g for the
cancer and vehicle datasets and comes second in two other problems. However,
its g performance is quite poor for the diabetes and ionosphere problems. For
their part, the g performance of standard and negative boosting comes behind,
and while closer for other datasets, it is clearly poorer on the diabetes, vehicle
and thyroid cases. The boosting performance of PPs is further compared in
tables 2 and 4 with that of standard multilayer perceptrons (MLPs). As they are
more powerful, boosted MLPs give clearly better accuracies than boosted PPs in



Balanced Boosting with Parallel Perceptrons 215

the ionosphere and vehicle problems, worse in the cancer and glass problems and
similar in the others. When g values are considered in table 4, balanced boosting
gives the best results in 3 problems, while MLP and positive boosting are better
over 2 each; in all these 4 cases, balanced boosting g values are second best.
In other words, balanced boosting gives the best overall performance among PP
boosting methods, and that performance is comparable to that of MLP boosting,
that has a much greater complexity and is considerably costlier to train.

5 Conclusions and Further Work

In this paper we have discussed how the concept of activation margin that arises
very naturally on parallel perceptron training can be used to provide a more nu-
anced approach to boosting. This is done adding an extra factor R(X) to boost-
ing’s exponential probability update, whose values depend on the categorization
of a given pattern X as redundant, label noisy or borderline obtained in terms of
X’s activation margins. We set R(X) = 1 for redundant and R(X) = −1 for la-
bel noisy patterns, which causes boosting to lower their subsequent probabilities.
Within borderline patterns we consider separately the near label noisy negative
patterns. Setting R(X) = 1 for them would increase their subsequent probabil-
ities, augmenting thus the negative accuracy a−, while a+ would increase if we
set R(X) = 1. An equilibrium can be obtained setting R(X) = 0, thus keeping
the probability of X essentially unchanged. The resulting procedure, balanced
boosting, gives better PP classifiers in terms of the equilibrium between positive
and negative accuracies, while achieving absolute accuracies close to the best
achieved by the other methods. This performance is comparable to that of MLP
boosting, while PP complexity is lower and training times much shorter than
those of MLPs. Further work will concentrate on the effectiveness of general joint
PP–boosting approach to malicious noise problems.
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Abstract. When agent chooses some action and does state transition
in present state in reinforcement learning, it is important subject to
decide how will reward for conduct that agent chooses. In this paper, we
suggest multi colony interaction ant reinforcement learning model using
TD-error to original Ant-Q learning. This method is a hybrid of multi
colony interaction by elite strategy and reinforcement learning applying
TD-error to Ant-Q. We could know through an experiment that proposed
reinforcement learning method converges faster to optimal solution than
original ACS and Ant-Q.

1 Introduction

Recently, ant model[1],[2],[3],[4],[5] is introducing by a special of reinforcement
learning[6],[7]. When agent chooses some action and does state transition in
present state in reinforcement learning, it is important subject to decide how will
reward for conduct that agent chooses. In this paper, we suggest multi colony
interaction ant reinforcement learning model using TD-error[8],[9](MCIARLM-
TD) to Ant-Q to solve temporal-credit assignment problems.

The reinforcement learning that use TD-learning without waits final result.
At each learning step, training error uses difference with prediction for output of
present state and prediction for output of next state. The prediction for output
of present state is updated to approximate with prediction for output of next
state in TD-learning.

MCIARLM-TD learning is method that is proposed newly to improve Ant-
Q, this method is a hybrid of multi colony interaction by elite strategy and
reinforcement learning that apply TD-error that is proposed by C.J.C.H.Watkins
to Ant-Q.

2 Apply TD-Error to Ant-Q

TD-learning that use TD-error calculates Q-function value of present state with
Eq.(1) using difference with prediction for output of present state and prediction
for output of next state.
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Q(st, at) ← (1− α) ·Q(st, at) + α · TD error (1)

Here, α is learning rate, TD-error calculates with Eq.(2) as difference with
prediction of present state and prediction of next state.

TD error = rt+1 + γ[ Max
a∈A(st)

Q(st+1, at+1)−Q(st, at)] (2)

rt is reinforcement value and γ is discount rate. The goal of Ant-Q is to learn
AQ-values to find better solution as stochastic. AQ-values are updated by the
following Eq.(3). Appling Eq.(2) to Ant-Q, it is expressed with Eq.(4).

AQ(r, s) ← (1− α) ·AQ(r, s) + α · (∆AQ(r, s) + γ · Max
z∈Jk(s)

AQ(s, z)) (3)

TD error = ∆AQ(r, s) + γ[ Max
z∈J

k
(s)
AQ(s, z)−AQ(r, s)] (4)

Finally, ant reinforcement learning model that apply TD-error in Ant-Q cal-
culates Q-function value for node(r,s) of present state with Eq.(5).

AQ(r, s) ← (1− α) ·AQ(r, s)
+α · (∆AQ(r, s) + γ · [ Max

z∈J
k
(s)
AQ(s, z)−AQ(r, s)])

where ∆AQ(r, s) = 0 , if Local updating
Max

z∈J
k
(s)
AQ(s, z)−AQ(r, s) = 0 , if Global updating

(5)

α(0<α<1) is the pheromone decay parameter, MaxAQ(s,z ) is reinforcement
value that receive from external environment to maximum, global reinforcement
is zero, and γ is discount rate.

3 Multi Colony Ant Reinforcement Learning Using
TD-Error

Multi colony interaction ant reinforcement learning model using TD-error have
some independent ACS colonies, and interaction achieves search according to
elite strategy between the colonies. Elite strategy is divided into intensification
strategy and diversification strategy. Intensification strategy enables to select
of good path to use heuristic information of other agent colony. This makes to
select the high frequency of the visit of a edge by agents through positive interac-
tion of between the colonies. Diversification strategy makes to escape selection
of the high frequency of the visit of a edge by agents achieve negative inter-
action by search information of other agent colony. Network structure by elite
strategy in multi colony interaction ant model is consisted of dual network struc-
ture. In Queen1 group, positive interaction by intensification strategy achieves
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between (C1,C5), (C2,C5), (C3,C5), and (C4,C5) colonies and negative inter-
action by diversification strategy is achieved between other colonies. In Queen2
group, positive interaction achieves between (C6,C10), (C7,C10), (C8,C10), and
(C9,C10) colonies and negative interaction is achieved between other colonies.
Here, C5 and C10 are center agent colony(Queen Colony) and other colony are
ergate colonies. And center colonies(C5, C10) achieve exchange of locally best
solution. This means that achieve different duty between each colonies.

Positive Interaction
(Intensification)

Negative Interaction
(Diversification)

C1 C4

C2 C3

C6 C9

C7 C8

C5

C9C10

Queen1 Group

Queen2 Group

Exchange of locally best solution
in Queen Colony

Fig. 1. Elite strategy interaction in multi colony ant model

All colonies independently achieve search each other in multi colony inter-
action ant model. First, examining the action of ergate colonies, agent(k) in
colony(l) uses following Eq.(6) to move to node(u) at node(r).

s =

⎧⎨
⎩ arg max

u∈Jl
k
(r)

{[
AQl(r, u)

]δ(l) ·
[
HEl(r, u)

]β(l)
}

, if q ≤ q0(exploitation)

S , otherwise(exploration)
(6)

AQl(r,u) is Ant-Q value, be a positive real value associated to the edge(r,u)
in colony(l), It is counterpart of Q-learning Q-values, and is intended to indicate
how useful it is make to move node(u) when in node(r). AQl(r,u) is changed at
run time. HEl(r,u) is a heuristic value associated to edge(r,u) in colony(l) which
allows an heuristic evaluation of which moves are better(in the TSP, the inverse
of the distance). Let k be an agent whose task is to make a tour. J l

k(r) are nodes
still to be visited in colony(l), where r is the current node. Where δ(l) and β(l)
is parameters which weigh the relative importance of the learned AQ-values and
the heuristic values. q is a value chosen randomly with uniform probability in
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[0,1], q0(0≤q0≤1) is a parameter, and S is a random variable selected according
to the distribution given by Eq.(7) which gives the probability with which an
agent in node(r) choose the node(s) to move to.

pk(r, s) =

⎧⎪⎨
⎪⎩

[AQl(r,s)]δ(l)·[HEl(r,s)]β(l)∑
u∈Jl

k
(r)

[AQl(r,u)]δ(l)·[HEl(r,u)]β(l) , if s ∈ J l
k(r)

0 , otherwise

where [AQl(r, s)]δ(l) =

⎧⎪⎪⎨
⎪⎪⎩

M∑
n=1

[AQn(r, s)]δ(l,n) , Positive

l∑
n=l−1

[AQn(r, s)]δ(l,n) , Negative

⎫⎪⎪⎬
⎪⎪⎭

(7)

Where M is the total number of colony, δ(l,n) displays degree of interaction
that colony(l) receives from colony(n). Once, Interaction between the ergate
colonies achieves negative interaction by diversification strategy. In case of neg-
ative interaction, it is influenced by total of the reciprocal value of negative of
the frequency of the visit to relevant edge in previous colony and the recipro-
cal value of negative of the frequency of the visit to relevant edge on present
colony. Through this negative interaction, agents of ergate colonies achieve var-
ious search by new region. And, Interaction between ergate colonies and center
colony achieve positive interaction by intensification strategy. In case of positive
interaction, center colony is influenced by the reciprocal value of positive of the
frequency of the visit of relevant edge from all ergate colonies. Therefore, agents
of center colony select good edge with search result of all ergate colonies, and
intensify relevant edge. This differs with that assign foundation of a degree of
interaction by fixing values[10], we dynamically allocate using the frequency of
the visit.

If apply Ant-Q ant model that using TD-learning to multi colony interaction
ant model, TD-error is expressed with Eq.(8).

TD error = ∆AQl(r, s) + γ · [ Max
z∈Jl

k
(s)
AQl(s, z)−AQl(r, s)] (8)

Finally, ant reinforcement learning model that apply TD-error in Ant-Q cal-
culates Q-function value for node(r,s) of present state with Eq.(9).

AQ l(r, s) ← (1− α) ·AQ l(r, s)
+α · (∆AQ l(r, s) + γ · [ Max

z∈Jl
k
(s)
AQ l(s, z)−AQ l(r, s)])

where ∆AQ l(r, s) = 0 , if Local updating

Max
z∈Jl

k
(s)
AQ l(s, z)−AQ l(r, s) = 0 , if Global updating

(9)

α(0<α<1) is the pheromone decay parameter,MaxAQl(s,z ) is reinforcement
value that receive from external environment to maximum, global reinforcement
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is zero, γ is discount rate. Also, ∆AQl(r,s)is reinforcement value, local rein-
forcement is always zero, while global reinforcemnet, which is given after all the
agents have finished their tour, is computed by the following Eq.(10).

∆AQ l(r, s) =

{
W

L
kl

ib

, if(r, s) ∈ tour done by the agent kl
ib

0 , otherwise
(10)

Where Lkl
ib

is the length of the tour done by the best agent, that is the agent
which did the shortest tour in the current iteration, and W is a parameter, set
to 10.

Also, Interaction between center colony(C5) of Queen1 group and center
colony(C10) of Queen2 group select strategy that global updating about ex-
cellent solution, compares local best solution of two colonies.

4 Experimental Results

To prediction performance of multi colony interaction ant reinforcement learning
model that apply TD-error(MCIARLM-TD) in Ant-Q, we measure performance
through comparison with original ant model(ACS and Ant-Q).

We experimented the proposed model by using TSPLIB[12] which is a famous
TSP example. Basis environment parameter for an experiment was decided as
following, and optimum value decided by an experiment usually are β(l)=2,
α=0.1, q0=0.9, γ=0.3, W =10, δ(l,n)=±(1/the frequency of the visit of a edge)
and the agent number used in each colony M was set to 10.

The initial position of agents assigned one agent in an each node at randomly,
and the termination condition is that a fixed number of cycles or the value known
as the optimum value was found.

Figure(2,3) shows the performance by the learning rate(α) and discount
rate(γ) in MCIARLM-TD ant model. Experiment was achieved increasing the
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learning rate and discount rate by 0.1 step by step and the number of cycles
was 2000.

Figure 2 shows the results by the learning rate(α). We can see that Eil51
and St70 problems display almost similar graph shape according to the learning
rate, and the performance reduced as the learning rate increases. When the
learning rate is 0.1, shown almost similar optimal tour length. But, learning rate
between 0.8 and 1.0 can not achieve learning in proposed model. The reason
is that pheromone amount of each edge makes of negative number according
as the learning rate is increased(more than learning rate 0.8). Therefore, we
experimented in learning rate between 0.0 and 0.7 in proposed model. Here,
so that we express two problems in uniformity graph, Eil51 problem displays
original value that is worked, and St70 problem displays 62% value of result.

In Figure 3, when discount rate(γ) is 0.1 and 0.3 is showing satisfactory
results. Specially, when discount rate is 0.3, satisfactory results is shown. Eil51
problem is original value of creation result, St70 problem is 63%, Rat99 problem
is 35%, and KroA100 problem displays 2% value of result.
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Table 1. Performance evaluation of MCIARLM-TD

ACS[11] Ant-Q[6] MCIARLM-TD
Node Average Best Average Best Average Best

length length length length length length

KroA150 28908.8 27824 28761.12 27231 26576.04 26524

Rat195 2571.63 2461 2514.08 2397 2490.25 2338

Gil262 2636.75 2526 2592.35 2493 2481.68 2389

A280 2892.58 2768 2840.52 2758 2690.61 2585

Pr299 53497.8 51395 52714.41 50278 49143.87 48312

Lin318 46244.4 44837 45318.53 43832 44571.98 43041

Figure 4 shows the convergence speed in case of repeated 2000 cycles to use
Eil51.TSP. The convergence speed of ACS and Ant-Q are faster in beginning.
However, according as search is proceeded, we can see that MCIARLM-TD con-
verges faster.

Table 1 shows best tour length and average tour length that are achieved by
each algorithms(ACS, Ant-Q and MCIARLM-TD) in case of repeated 20000 cy-
cles in 10th trials about TSPLIB problems, the performance of proposed method
is excellent.

5 Conclusion and Future Work

In this paper, we suggested multi colony interaction ant reinforcement learn-
ing model using TD-error(MCIARLM-TD) to original Ant-Q learning to solve
temporal-credit assignment problems.

MCIARLM-TD ant model is method that is proposed newly to improve Ant-
Q, this method is a hybrid of multi colony interaction by elite strategy and
reinforcement learning that apply TD-error to Ant-Q, and converged faster to
optimal solution by solving temporal-credit assignment problems to use TD-error
while agents accomplish tour cycle.

MCIARLM-TD ant model using TD-error uses difference with prediction for
output of present state and prediction for output of next state at each learning
step, and updated to approximate with prediction for output of present state
and prediction for output of next state in present state. And, the balance of ex-
ploration and exploitation that use elite strategy in multi colony interaction ant
model is very important. Intensification strategy in elite strategy is equal with
role of exploitation, and diversification strategy is equal with role of exploration.
That is, exploitation selects continually historically good path, and exploration
extends path search by new region. This enables various searching of new region,
and also intensification role for specification edges.

Forward, we need research about reinforcement learning method that apply
Eligibility factor that is measure that mean how is suitable about node selecting
in present state in MCIARLM-TD ant model.
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Universitat Politècnica de Catalunya

eromero@lsi.upc.edu

Abstract. The selection of the frequencies of the new hidden units
for sequential Feed-forward Neural Networks (FNNs) usually involves
a non-linear optimization problem that cannot be solved analytically.
Most models found in the literature choose the new frequency so that it
matches the previous residue as best as possible. Several exceptions to the
idea of matching the residue perform an (implicit or explicit) orthogonal-
ization of the output vectors of the hidden units. An experimental study
of the aforementioned approaches to select the frequencies in sequential
FNNs is presented. Our experimental results indicate that the orthog-
onalization of the hidden vectors outperforms the strategy of matching
the residue, both for approximation and generalization purposes.

1 Introduction

The selection of a proper number of hidden units for Feed-forward Neural Net-
works (FNNs) is a very important issue in practical applications, and it has been
widely discussed through the literature. In terms of the Bias/Variance decompo-
sition, as far as the number of hidden units of an FNN grows, bias decreases and
variance increases [1]. This happens because the flexibility of the model grows
with the number of hidden units [2]. Sequential approximations (also named
constructive or incremental) with FNNs allow to dynamically construct the net-
work, starting from scratch, without setting a priori the architecture [3]. Hidden
units are sequentially added until a satisfactory solution is found.

The well-known architecture of a fully connected FNN with one output linear
unit and one hidden layer of units computes a function f : R

I → R defined as

f(x) = b0 +
N∑

k=1

λkϕk (ωk, x, bk) ωk∈R
I λk, b0, bk∈R,

where N is the number of units in the hidden layer and ϕk is the activation
functions of the k-th hidden unit. For convenience, we refer to the weights in
the first layer {ωk}N

k=1 (the non-linear weights) as frequencies and to the weights
in the second layer {λk}N

k=1 (the linear weights) as coefficients. Regarding the
biases, {bk}N

k=1 can be considered as part of the frequencies and b0 as a coefficient.

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 225–232, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Sequential algorithms have several shortcomings. First, it is not clear when
to stop the addition of hidden units. Second, obtaining the frequencies of the
new hidden units, although in theory is easier to solve than for a non-sequential
procedure, is still a difficult non-linear optimization problem [4]. The coefficients
can usually be computed analytically.

This work deals with the selection of weights of the new hidden units for
sequential FNNs. In particular, we will focus on sequential approximations that
obtain the new frequencies while keeping the previously selected frequencies
fixed. That is, the previously obtained frequencies in the network are frozen in
order to obtain the new one [5]. Most models found in the literature choose
the new frequency so that it matches the previous residue as best as possible.
Several exceptions to the idea of matching the residue perform an (implicit or
explicit) orthogonalization of the output vectors of the hidden units, so that the
new frequency is selected taking into account the interactions with the previously
selected ones in order to minimize the global error. Theoretical results show that
these two approaches may construct a sequence of output functions convergent
to the target. However, the optimization problems posed at every step cannot
be solved analytically in the general case. The difficulty lies on the selection of
the frequencies, since the coefficients can usually be computed analytically.

An experimental study of the aforementioned approaches to select the fre-
quencies in sequential FNNs is presented. The results in our experiments indi-
cate that the orthogonalization of the hidden vectors outperforms the strategy
of matching the residue, both for approximation and generalization purposes.

The rest of the paper is organized as follows. Several approaches to obtain the
weights in sequential FNNs are discussed in section 2. The experiments can be
found in section 3. Finally, section 4 outlines some directions for further research.

2 Selection of Weights in Sequential FNNs

Most of the sequential FNN models found in the literature keep the previously
selected frequencies fixed and search only for the new frequency and the coef-

Algorithm
repeat

Increase by 1 the number of hidden units N
Pick an activation function for the new hidden unit
Obtain the frequency of the new hidden unit
Fix the frequency in the network
Compute the coefficients

until a certain stopping criterion is satisfied
end Algorithm

Fig. 1. A general algorithm for sequential FNNs
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ficients. Figure 1 shows the general structure of these sequential FNN schemes.
Their output can be defined as (X0 = 0):

XN =
N−1∑
k=1

λN
k hωk

+ λN
NhωN

.

where XN is a vector in R
L, N is the number of hidden units, L is the number

of patterns in a data set D = {x1, · · · , xL}, hωk
is the output vector of the k-th

hidden unit (with frequency ωk) and λN
k is the coefficient of that hidden unit at

step N . Output units are linear. The objective is to minimize the sum-of-squares
error function ‖f −XN‖22, where f is the target vector (f = {f1, · · · , fL}).

The frequencies are obtained by optimizing a certain objective function,
which somehow depends on the previously obtained frequencies:

1. Most of them choose the new frequency ωN so that it matches the previous
residue as best as possible [5]. By inner product properties, it is equivalent
to say that

ωN = arg max
ω
|〈f −XN−1, hω〉|2/‖hω‖22 (1)

where 〈·, ·〉 is the dot product in R
L and hω is the output vector of a hidden

unit with frequency ω. After the selection of every frequency, the coefficients
of the whole network can be either optimized or not. By inner product prop-
erties, the optimal coefficients can be obtained solving a linear equations
system [6]. When the whole set of coefficients are not optimized, the coeffi-
cient of the new hidden unit with frequency ωN is

λN
N = 〈f −XN−1, hωN

〉 /‖hωN
‖22. (2)

Some models sharing these underlying ideas are Projection Pursuit Regres-
sion [7] originally described in the Statistics field, Matching Pursuit [8] in
the context of Signal Processing, or Projection Pursuit Learning Network [9]
in the Neural Networks framework. Sometimes, convex approximations are
constructed, as in the Incremental Linear Quasi-Parallel algorithm [10].

2. Several exceptions to the idea of matching the residue are the Orthogonal
Least Squares Learning algorithm [11], Kernel Matching Pursuit with pre-
fitting [12] or the Sequential Approximation with Optimal Coefficients and
Interacting Frequencies [13], where an (implicit or explicit) orthogonalization
of the output vectors of the hidden units is performed. The frequency ωN is
selected taking into account the interactions of hωN

with hω1 , · · · , hωN−1 in
order to minimize ‖f −XN‖22. There is no explicit intention to match the
residue. In other words, a frequency ω1 is considered better than ω2 if hω1

allows, together with the previously selected frequencies (and after comput-
ing the optimal coefficients of the whole network), a better approximation
of f than hω2 . The coefficients {λN

k }N
k=1 are always optimal.

In the following, we will refer to MPR, OCMPR and SAOCIF as:

– MPR (Matching the Previous Residue): The new frequency ωN is selected
according to (1). The coefficients of the whole network are not optimized.
That is, XN = XN−1 + λN

NhωN
, with λN

N computed according to (2).
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– OCMPR (Optimal Coefficients after Matching the Previous Residue): The
new frequency ωN is selected according to (1). Subsequently, the coefficients
of the whole network are optimized by solving the associated linear equations
system.

– SAOCIF (Sequential Approximation with Optimal Coefficients and Interact-
ing Frequencies): The new frequency ωN is selected taking into account the
interactions of hωN

with hω1 , · · · , hωN−1 in order to minimize ‖f −XN‖22.
The coefficients are always optimal.

As it is well-known, an approximation scheme is said to have the convergence
property if it is able to produce a sequence of output functions convergent to
the target. MPR, OCMPR and SAOCIF have been proved to have the conver-
gence property (see [14, 8] for MPR, [10, 5] for OCMPR or [13] for SAOCIF, for
example). Unfortunately, these theoretical results cannot be directly applied in
practice. The optimization problem posed in the general case cannot be solved
analytically, and a suboptimal solution is searched heuristically. Note that the
difficulty lies on the selection of the frequencies, since the coefficients can always
be analytically computed.

3 Experiments

The experiments were performed on several artificial data sets. The main objec-
tives of these experiments were to compare MPR, OCMPR and SAOCIF (see
section 2). In particular, we studied the effect of their respective criteria of se-
lection of frequencies both for approximation and generalization.

To that end, the algorithms in figure 2 were designed, as particular cases of
that in figure 1. In the proposed algorithms, a number of candidate frequencies

Algorithm
repeat

Increase by 1 the number of hidden units N
Pick an activation function for the new hidden unit
repeat

Assign a candidate frequency ω to the new hidden unit

MPR/OCMPR: Set ωN := ω if |〈f − XN−1, hω〉|2/‖hω‖2
2 is maximized

SAOCIF: Compute the optimal coefficients {λN
k }1�k�N

SAOCIF: Set ωN := ω if ‖f − XN‖2
2 is minimized

until there are no more candidate frequencies
Fix the frequency ωN in the network

MPR: Compute the coefficient λN
N = 〈f − XN−1, hωN 〉 /‖hωN ‖2

2

OCMPR/SAOCIF: Compute the optimal coefficients {λN
k }1�k�N

until a certain stopping criterion is satisfied
end Algorithm

Fig. 2. Algorithms for MPR, OCMPR and SAOCIF
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are selected at every step. The frequency finally chosen depends on the different
objective functions of every algorithm.

5, 000 random frequencies in [−0.5,+0.5]× [−0.5,+0.5] were assigned as can-
didate frequencies for every model, and a maximum of 50 hidden units were
added to the initial architecture. The rest of parameters (activation functions,
gain factor and other internal parameters) were chosen in a preprocessing pro-
cedure (see [15] for details).

3.1 Data Sets

We used the same data sets described in [9], where five non-linear functions
gi : [0, 1]2 → R were defined as follows:

– g1(x1, x2) = 10.391 ((x1 − 0.4)(x2 − 0.6) + 0.36) .
– g2(x1, x2) = 24.234

(
r2(0.75− r2)

)
, where r2 = (x1 − 0.5)2 + (x2 − 0.5)2.

– g3(x1, x2) = 42.659
(
(2 + x1)/20 +Re(z5)

)
, where z = x1 + ix2− 0.5(1 + i).

– g4(x1, x2) = 1.3356(1.5(1− x1) + e2x1−1 sin(3π(x1 − 0.6)2)+
e3(x2−0.5) sin(4π(x2 − 0.9)2) ).

– g5(x1, x2) = 1.9
(
1.35 + ex1 sin(13(x1 − 0.6)2)e−x2 sin(7x2)

)
.

225 pairs (x1, x2) of values were generated from the uniform distribution
in [0, 1]2. These data were used for all five functions in order to generate five
noise-free training sets:

HEAn-NF = {(xi
1, x

i
2, gn(xi

1, x
i
2))}i=1,···,255

where n∈{1, 2, 3, 4, 5}. In addition, another five training data sets were generated
adding independent and identically distributed Gaussian noise:

HEAn-WN = {(xi
1, x

i
2, gn(xi

1, x
i
2) + 0.25εi)}i=1,···,255

where εi ∼ N (0, 1). The test set was built sampling every function on a regu-
larly spaced grid on [0, 1]2 with 10, 000 points. In summary, 10 training sets (5
noise-free and 5 noisy versions) and 5 test sets were generated in [9] for the 5
aforementioned functions. These data sets have been widely used in the literature
(see [5, 16, 17], for example).

In our experiments, we constructed 10 training sets for every function, each
containing 225 points, changing the initial seed of the random function for the
uniform distribution (the noise-free data sets). Similar to [9], 10 noisy training
data sets were generated in the same way. For every function, the test set in
[9] was used as a validation set for the adjustment of the parameters in the
preprocessing procedure. For the final results, a new test set was constructed,
with an offset of 0.0025 with respect to the input points in the original test set.

In summary, 100 training sets (50 noise-free and 50 noisy versions), 5 vali-
dation sets and 5 test sets were generated for the five aforementioned functions.
For every function and version (noise-free and noisy), every model was trained
with every one of the 10 different training sets, and tested on the test set.
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Table 1. HEA data sets: Squared test set error and number of hidden units for MPR,

OCMPR and SAOCIF in the tested data sets

Test Error Num. Hidden Units

Data Set MPR OCMPR SAOCIF MPR OCMPR SAOCIF

HEA1-NF 0.06 (0.1) 0.00 (0.0) 0.00 (0.0) 49.3 20.3 9.6

HEA2-NF 29.81 (2.6) 1.18 (0.5) 0.18 (0.1) 49.1 47.1 44.1

HEA3-NF 694.11 (27.2) 31.41 (6.9) 5.57 (2.2) 49.2 45.0 49.1

HEA4-NF 69.29 (6.9) 24.32 (1.8) 9.80 (3.7) 49.4 45.8 47.3

HEA5-NF 49.22 (7.8) 14.79 (3.4) 7.76 (1.0) 49.8 49.4 46.2

HEA1-WN 14.37 (3.1) 10.70 (1.6) 15.37 (2.9) 39.1 4.5 4.4

HEA2-WN 110.85 (6.8) 99.13 (7.1) 89.47 (6.3) 30.9 19.1 15.4

HEA3-WN 704.35 (50.5) 303.65 (18.9) 256.01 (32.6) 49.9 33.6 31.6

HEA4-WN 213.67 (8.0) 202.91 (14.7) 120.58 (11.5) 47.0 27.5 17.4

HEA5-WN 174.63 (9.0) 211.82 (18.0) 173.35 (5.7) 35.0 23.7 19.4
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Fig. 3. Evolution of the average test error of OCMPR and SAOCIF with respect to

the number of hidden units for the HEA4-NF (left) and HEA4-WN (right) data sets

3.2 Results

Results are shown in table 1 as the average of the minimum squared test set
errors. Figures in boldface indicate the best results. Numbers in brackets are
σ̂n/

√
n, the standard errors1 estimated from the sample standard deviation σ̂n.

The average number of hidden units where these minima are achieved is also
shown. For the HEA1-NF data set, SAOCIF stopped with a fewer number of
hidden units because the training error was less than 0.000001, so that it made
no sense adding new hidden units. As an example, figure 3 shows a comparison
of the evolution of the average test errors of OCMPR and SAOCIF with respect
to the number of hidden units for the HEA4 data sets. The training errors were
similar, although in a different scale, to left plot in figure 3.

1 Under normality assumptions, the confidence interval can be computed from this
value. For example, the deviation of the true value from the observed mean xn will
be less than 1.96σ̂n/

√
n with a probability of 0.95.
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Regarding the overall behavior, SAOCIF obtains better results than OCMPR,
which in turn compares favorably with MPR. This fact can be understood by
looking at the number of hidden units of the obtained results:

1. For noise-free data sets the number of hidden units is around 50, the maxi-
mum number of allowed hidden units. This is due to the fact that overfitting
was not observed during the learning process with these data sets (see left
plot in figure 3). Therefore, the best results are obtained by those models that
are able to fit more accurately the data. The scheme of selection of frequen-
cies of SAOCIF allows to find better approximations with the same number
of hidden units as OCMPR or MPR. The same happens when OCMPR is
compared to MPR.

2. For noisy data sets, there is a high correlation between the number of hidden
units and the goodness of the model: those models that attain their minima
with less hidden units usually obtain better results. SAOCIF obtains simpler
models (in terms of the number of hidden units), with the same training
error, than OCMPR. According to the Bias/Variance trade-off, the minimum
test set error should be smaller for SAOCIF than for OCMPR, as observed.
The same happens with respect to MPR.

Therefore, the interacting frequencies selected by SAOCIF show a better be-
havior than frequencies selected so as to match the previous residue, both for
approximation and generalization purposes. It can be observed that the differ-
ences among methods are greater for noise-free data sets than for noisy ones.

4 Future Work

New experiments can be done by changing the heuristic to select the new fre-
quencies in the tested models. It would be interesting to test if other heuristics
also maintain the observed differences. Some variation of the Breeder Genetic
Algorithm [18], for example, could be useful to that end.

A different point of view can be introduced in sequential FNNs if we recon-
sider the goodness of the previously selected frequencies. Comparing the addition
of hidden units in a sequential FNN with the selection of features in the Sequen-
tial Forward Selection procedure for Feature Selection [19], we can see that they
share the same general ideas, although applied to different objects. Whereas
sequential FNNs applies the forward selection to the hidden units, Sequential
Forward Selection applies it to the features. Therefore, other Feature Selection
search procedures can be applied to the construction of FNNs.
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Abstract. Many problems in pattern recognition are focused to learn
one main task, Single Task Learning (STL). However, most of them
can be formulated from learning several tasks related to the main task at
the same time while using a shared representation, Multitask Learning
(MTL). In this paper1, a new MLT architecture is proposed and its per-
formance is compared with those obtained from other previous schemes
used in MTL. This new MTL scheme makes use of private subnetworks
to induce a bias in the learning process. The results provided from arti-
ficial and real data sets show how the use of this private subnetworks in
MTL produces a better generalization capabilities and a faster learning.

1 Introduction

Human learning frequently involves learning several tasks simultaneously; in par-
ticular, humans compare and contrast similar tasks for solving a problem. For
example, if you want to learn periodic table, its easier learning groups of re-
lated elements than learning the complete table. Nevertheless, most approaches
to machine learning focus on the learning of a single isolated task, Single Task
Learning (STL). This type of framework has been achieved great success, but it
overlooks basic details and advantages of human learning.

In the recent last years, several works have extended the STL adding extra
tasks related to the main one, learning them at same time [1, 2, 3]. The task
which is desired to be learnt better is called the main task and the task whose
training data are used as hints by the main task are called as the extra tasks.
This approach to learning is known as Multitask Learning (MTL) [2].

In this article, we study several MTL schemes and a new proposal is in-
troduced. We analyze its performance on different artificial and real problems.
Results show how the use of this private subnetworks in MTL produces a better

1 This work is partially supported by Ministerio de Educación y Ciencia under grant
TIC2002-03033.
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generalization capabilities and a faster learning. The rest of this article is struc-
tured as follows. In Section 2, we give an overview of multitask learning and
describe several related works. Section 3 shows different MTL schemes used by
Caruana in his thesis [4], and the new scheme is proposed. Section 4 describes
the data problems used in this work to test the architecture we propose. The
section concludes showing the simulation results. Finally, several comments and
conclusions complete this paper.

2 Previous Works

In his work, Hinton analyzes the generalization capabilities in artificial neural
networks [5]. He shows that these capabilities are improved if networks learn to
represent underlying regularities of the domain. Following this idea, Baxter in-
troduced the concept of inductive bias [6]. Inductive bias is anything that causes
an inductive learner to prefer some hypotheses over other hypotheses. A learner
that learns many related tasks at the same time can use these tasks as inductive
bias for each other and thus better learn the regularities of the domain. In this
sense, the union of the main task and all extra related tasks make up the domain.
This can make learning more accurate and may allow hard tasks to be solved in
a better way that when they are learned in isolation [7].

The MTL term was introduced in 1993 by Rich Caruana [2]. Multitask learn-
ing is an approach to inductive transfer (using what is learned for one problem to
help another problem) that emphasizes learning multiple tasks in parallel while
using a shared representation. The simplest way to implement this in neural
network is to add extra outputs (extra tasks) to the net. In his Ph. D. The-
sis [4], R. Caruana analyzed MTL using MultiLayer Perceptrons (MLP) trained
with Backpropagation algorithm [8]. In a MLP network , MTL is implemented
by having extra outputs share a common hidden layer in the network with the
main task output(s). This sharing promotes inductive transfer, i. e., the hidden
layer representations learned for the extra outputs are available to the main task
output(s) and often improve performance on the main task.

3 Exploiting MTL Using Private Subnetworks

In order to make the content of the paper easier, the nomenclature used in the
following sections is showed in Table 1.

In this section, we study the MTL schemes proposed by Caruana and intro-
duce our MTL architecture. Before analyzing MTL, we describe STL approach.
Consider a dataset M, associated to a single task, with its respective input set
Xm and target set Tm. Figure 1(a) shows STL scheme for solving this problem.
This net can be trained to minimize an error function between network outputs
and target values. Therefore, network learns only a single task, in other words,
it learns only targets Tm from Xm.
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Table 1. Nomenclature of mathematical symbol used in this paper

X = {x(1),x(2), . . . ,x(i), . . . ,x(N)} Input set

T = {t(1), t(2), . . . , t(i), . . . , t(N)} Target set
M = {Xm,Tm} Set to learning main task
E = {Xe,Te} Set to learning extra task

x(i) = [x
(i)
1 , x

(i)
2 , . . . , x

(i)
j , . . . , x

(i)
d ] Input vector

t(i) Target or desired value
om, oe Net outputs associated to tasks

Thus, a main task and one or several tasks are learned all together in a MTL
scheme. MTL uses the idea to create extra tasks that get trained on the same net
with the main task. Consider a dataset M, associated to a main task, with its
respective input set Xm and target set Tm and a dataset E , associated to a extra
task, with its respective input set Xe and target set Te. Now, the network can be
trained to minimize an error function between network outputs and target values
for each task. The aim is that network will accurately predict new values to main
task for future inputs not used in the training process (or test set). Often, it is
not cared how well extra tasks are learned because of their only purpose is to
help the main task be learned better. A first approach is to use only one network
with a hidden layer of neurons for learning all tasks. We call this architecture as
standard MTL scheme. Figure 1(b) shows an MTL feedforward neural network
with a hidden layer and an output associated with each task.

(a) STL scheme (b) MTL scheme

Fig. 1. STL vs. MTL in its standard version

The outputs associated with these tasks are fully connected to the hidden
layer. The hidden layer of this net is shared by all tasks. This is the central
idea in MTL: to share the learned information while the tasks are learned in
parallel. Compared to this, when each task is learned in isolation, there is not
sharing of information among the tasks. With respect to weights, those of the
first layer are updated depending on the error of all tasks; while the weights
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that connect each output unit to hidden neurons are only influenced by errors
produced by the associated task. It is possible to improve MTL performance
using network architectures more complicated than standard MTL scheme. One
solution is proposed by Caruana [4], adding a private or specific subnetwork to
learn only the main task. Figure 2(a) shows this scheme. Therefore, there are now
two disjoint hidden layers or two disjoint subnetwork. One of them is a private
subnetwork used only by the main task, while other is the common subnetwork
shared by the main task and the extra task. This common subnetwork supports
MTL transfer. This net architecture is asymmetric because the main task can
see and affect the private subnetwork used by the extra task, but the extra
task can not see or affect the subnetwork reserved for the main task. In other
words, the private subnetwork learn only the regularities of the main task and
the common subnetwork learn the regularities of the domain; therefore, use of
private subnetworks helps to get better the generalization of the main task.

(a) A MTL scheme with a private sub-
network used by the main task

(b) A MTL scheme with a private
subnetwork used by main task and a
extra input

Fig. 2. MTL schemes with a private subnetwork

Up to now, we have supposed that inputs x are equal to all hidden neurons;
using our notation, Xe are the same that Xm. But performance of MTL can be
improved if we introduce the desired values te together with inputs xm to learn
the main task. Figure 2(b) shows this architecture. In other words, we are using
the extra task learned in common subnetwork Xm = [X,Te]; therefore, we are
adding a priori information about domain in private subnetwork aiding to the
main task learning in order to produce a better generalization capability.

Finally, we propose a different MTL scheme that uses the concepts of private
subnetworks and extra inputs. Figure 3 shows this scheme. This architecture has
a private subnetwork for each task, one for main task and other for extra task.
Each private subnetwork is connected to output unit associated to each task,
thus, learning the specific regularities of each one. The common subnetwork is
full-connected with outputs units, then it will learn the complete regularities of
the domain. In other words, private subnetworks play the roll of a STL scheme
for each task, while common subnetwork works as a MTL scheme. Moreover,
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this scheme uses as extra inputs in every private subnetwork the targets cor-
responding to the another task (case of just two tasks, main and extra). This
new MTL network presents several advantages over the previous one, improving
the performance and the generalization capabilities. Next sections show these
aspects.

Fig. 3. A MTL scheme with a private subnetwork and extra input to each task. Com-

mon subnetwork learns the regularities of the domain and private subnetworks learn

specific regularities of each task, using moreover the desired values of the other task as

extra input

4 Experiments

After a short description of each problem, we present the results of our experi-
ments. It will be proved how the use of additional private subnetwork and the
extra inputs on the training process improves the generalization capability of
the trained network.

4.1 Description of Data Sets

We evaluate performance of all MTL schemes presented in the previous section
using two different problems. Both problems have two tasks, a main task and a
extra task. Our aim is improving the learning of main task by means of MTL
schemes.

Binary Problem. This problem is implemented by Caruana for testing his
schemes [4]. Inputs are binary vectors of 8 bits, x = [x1, . . . , x8], so there are 256
samples. We considerer two related task:

Task A: x1 ∨ (2 ·Nbits(x2, . . . , x4) < Nbits(x5, . . . , x8))

Task B: x1 ∧ (2 ·Nbits(x2, . . . , x4) < Nbits(x5, . . . , x8))

where Nbits() returns the number of bits set to 1 in its argument, “∨” denotes
the logical OR relation, and “∧” the logical AND relation. From this definition
of both task, its obvious that they are clearly related. In the experiments, task
A is used as main, and task B as extra. From the 256 cases, 128 cases have
randomly selected as training set and the remaining samples as test set.
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Monk’s Problem. This problem describes an artificial robot domain in which
appearance of robots is described by 6 different categorical attributes [9], x1, . . . ,
x6. The learning task is a binary classification task for three related problem. In
our experiments, we use two problems to test MTL schemes. In particular:

Task A: (x1 = x2) ∨ (x5 has the first categorical value)

Task B: exactly two of the six attributes have the first categorical value

We have run experiments using task A as main and task B as extra. There are
432 cases, where 124 are used as training set and the 432 cases as test set.

4.2 Results

All the activation functions in the network are the hyperbolic tangents. The
cost function to be minimized is the root-mean-squared-error (RMSE) of the
output with respect to the desired values. The gradients are calculated using back
propagation algorithm. Before learning, all weights are initialized randomly with
values from the interval [−0.5, 0.5]. All weights are adapted through gradient
descent method in batch mode with adaptive learning rate and momentum term
(0.5). The test set is used to evaluate the percentage of correct classifications
after training, thus measuring the generalization capability of the network. A
validation set has not been used to stop training because of we have observed
that MTL training is low sensitive to overfitting.
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Fig. 4. Test-percentage of correct classifications on main task of the Binary Problem

In the binary problem, we use 100 hidden neurons both for STL as standard
MTL; 40 neurons in each subnetwork for MTL scheme with one private subnet-
work; and 20 neurons in each subnetwork for the MTL scheme proposed. Figure
4 shows the test-set percentage curves on task A for all schemes. Each curve
in the graph are the average of 25 trials using 10000 training epochs. Table 2
summarizes the final results of binary problem. In the case of percentage correct
on extra task, we get 74.3% for standard MTL and around of 97% for all MTL
schemes with private subnetworks.
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Table 2. Test-set performance on Binary Problem for each scheme

Scheme STL MTL

MTL
+ 1 private

subnet

MTL
+ 1 private subnet

+ extra input

MTL
+ 2 private subnet

+ extra inputs

% Correct 91.97 92.25 95.42 97.1 98.44
Std. Dev. 0.171 0.164 0.017 0.015 0.022
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Table 3. Test-set performance on Monk’s Problem for each scheme

Scheme STL MTL

MTL
+ 1 private

subnet

MTL
+ 1 private subnet

+ extra input

MTL
+ 2 private subnet

+ extra inputs

% Correct 88.81 86.81 92.71 92.35 93.37
Std. Dev. 0.151 0.113 0.075 0.089 0.069

In Monk’s problem, we use 6 hidden neurons both for STL as standard MTL;
3 neurons in each subnetwork for MTL scheme with one private subnetwork; and
2 neurons in each subnetwork for the MTL scheme proposed. Figure 5 shows the
test-set percentage correct curves on task A for all schemes. It shows that adding
private subnetworks speeds up learning. Each curve in the graph are the average
of 25 trials using 1000 training epochs. Table 3 summarizes the final results on
this problem. In the case of percentage correct on extra task, we get 69.9% for
standard MTL; around of 71% for MTL schemes with one private and 78.4% for
the MTL scheme proposed.
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5 Discussion and Conclusion

Results shows that MTL can beneficiate learning of the main task, increasing its
performance and generalization capabilities. By means of using private subnet-
works for each task, the capabilities of the standard MTL are clearly improved.
Private subnetworks learn specifically one task, while a common subnetwork
learns the complete domain. Simulations over two problems show that the new
scheme proposed here obtains better generalization and faster convergence than
the rest of considered alternatives. Moreover, the new MTL architecture not only
improves the learning performance of the main task, but also improves learning
of the extra task. Therefore, proposed scheme is optimum in problems where it’s
necessary to have good learning in all tasks. It is important to note that these
advantages are achieved without increasing the complexity of the network, i.e.,
without increasing the number of neurons used in standard MTL scheme.

This work will stimulate future work in several directions. Some of them are
an extended study to more than two class problems and the use of a separate
learning rate for each task, according to the recent works of Silver [10].

References

[1] Abu-Mostafa, Y. S. Learning from hints in neural networks. Journal of Complexity.
6(2). (1990), 192-198

[2] Caruana, R. Multitask learning: a knowledge-based source of inductive bias. Pro-
ceedings of the 10th International Conference of Cognitive Science. (1993), 41-48

[3] Thrun, S. Is learning the n-thing any easier than learning the first?. Advances in
Neural Information Processing Systems (NIPS). (1996), 640-646

[4] Caruana, R. Multitask learning. Ph. D. Thesis. Carnegie Mellon University. (1997)
[5] Hinton, G.E. Learning distributed representations of concepts. Proceedings of the

8th International Conference of Cognitive Science. (1986), 1-12
[6] Baxter, J. Learning Internal Representations. Ph. D. Thesis. The Flinders Uni-

versity of South Australia. (1994)
[7] Baxter. J. A model of inductive learning bias learning. Journal of Artificial Intel-

ligence Research. (2000), 12:149-98
[8] Rumelhart, D. E., Hinton, G. E., Williams, R. J. Learning Representations by

Back-propagating Errors. Nature,323. (1986), 533-536
[9] Wnek, J., Michalski, R. S. Comparing symbolic and subsymbolic learning: Three

studies. In R.S. Michalski and G. Tecuci, editors, Machine Learning: A Multi-
strategy Approach, volume 4, (1993), 318-362.

[10] Silver, D. Selective transfer of neural network task knowledge. Ph. D. Thesis. Uni-
versity of Western Ontario. (2000)



 

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 241 – 248, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Co-evolutionary Learning in Liquid Architectures 

Igal Raichelgauz1, Karina Odinaev2, and Yehoshua Y. Zeevi1 

1 Department of Electrical Engineering, Technion – Israel Institute of Technology, 
Haifa 32000, Israel 

igal.raichelgauz@intel.com, 
zeevi@ee.technion.ac.il  

2 Department of Bio-Medical Engineering, Technion – Israel Institute of Technology, 
Haifa 32000, Israel 

karinao@tx.technion.ac.il 

Abstract. A large class of problems requires real-time processing of complex 
temporal inputs in real-time. These are difficult tasks for state-of-the-art 
techniques, since they require capturing complex structures and relationships in 
massive quantities of low precision, ambiguous noisy data. A recently-
introduced Liquid-State-Machine (LSM) paradigm provides a computational 
framework for applying a model of cortical neural microcircuit as a core 
computational unit in classification and recognition tasks of real-time temporal 
data. We extend the computational power of this framework by closing the 
loop. This is accomplished by applying, in parallel to the supervised learning of 
the readouts, a biologically-realistic learning within the framework of the 
microcircuit. This approach is inspired by neurobiological findings from ex-
vivo multi-cellular electrical recordings and injection of dopamine to the neural 
culture. We show that by closing the loop we obtain a much more effective 
performance with the new Co-Evolutionary Liquid Architecture. We illustrate 
the added value of the closed-loop approach to liquid architectures by executing 
a speech recognition task.  

1   Introduction 

Of the various alternatives, large, random, vastly connected cortical networks are the 
best candidates for a core of biologically-motivated computational architectures. 
Moreover, even a relatively simple model composed of ~100 leaky-integrate-and-fire 
neurons connected by dynamic synapses with stochastic heterogeneous parameters 
has an interesting computational power in a domain of  parallel processing of 
temporal  noisy data in real-time.  

A new computational paradigm, called Liquid-State-Machine (LSM), recently 
presented by [1], provides a theoretical basis for applying a model of neural 
microcircuit to generic computational tasks. The LSM system is composed of two 
parts: (1) Liquid – a model of neural microcircuit is used as a "reservoir" of complex 
dynamics to transform the input time series u(.) into "liquid states" x(t). (2) Readout – 
memory-less function which maps the liquid state x(t) at time t onto the output v(t). 
Readout may be implemented by a simple one-layer network of perceptron, trained by 
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linear algorithm to build a function mapping liquid-states onto desired outputs. It was 
shown [2] by the means of simulations that such a system is computationally effective 
in executing parallel tasks of recognition and classification of temporal data. LSM is 
identified with properties of anytime computing, by processing spatio-temporal input 
in real time. The computational core of LSM is randomly structured generic filter 
with dynamical properties of fading memory and separation.  

In the framework of computational LSM, a neural microcircuit is used as an 
efficient generic filter transforming different temporal inputs into significantly 
different liquid states. The task-dependent part is executed by the readout after being 
trained by supervised-learning algorithm to map these states onto predefined output. 
Turning back to neurobiological facts, the plasticity and learning ability of real 
cortical networks should not be neglected in the biologically-motivated computational 
framework. A feedback from the environment drives the learning process in 
neurobiological systems and allows the success in tasks varying in time rather than 
being predefined. In this study we extend LSM computational framework to a closed-
loop setup wherein feedback from the environment drives the learning process of the 
computational core liquid unit – Neural Microcircuit (NM). 

However, it is not a straightforward task to define a learning algorithm to such a 
large and randomly constructed network, therefore an inspiration from 
neurobiological findings is required again. We use two neurobiological paradigms for 
implementing the learning of the NM – Reward based learning [3] and Dopamine 
induced learning by dispersion mechanism [4]. The learning process of the NM is 
composed of two stages – the exploration of various states of NM and the recognition 
of the appropriate one. In the proposed closed-loop framework, this biologically-
motivated learning of the NM is done in parallel to the supervised learning of the 
readout, i.e. there is a co-evolutionary learning process of NM and readout until the 
best performance of the overall system is reached.  

2   Neural Microcircuit as a Generic Computational Unit 

The neocortex is characterized by precise structure of columns and layers.  Within 
neocortical layers neurons are mapped into each other, where anatomical and 
physiological properties are unique for each type of pre- and post-synaptic 
combination. However remarkable morphological, electrophysiological and spatial 
stereotypy exists in these networks, in addition to very stereotypical connectivity and 
patterning of synaptic connections between neighboring cells.  This clear stereotypy 
exists across different regions of the brain, suggesting that there is a generic template 
of microcircuit and that all neocortical microcircuits are merely subtle variations of 
that common microcircuit template. Such templates could subserve the apparent 
omnipotent functional capacity of the neocortical microcircuitry [5]. A computational 
model of generic neural microcircuit is inherently endowed with powerful and 
versatile information processing capabilities. We used a similar model to [2], 
composed of a 3-dimentional recurrent network of 135 Leaky-Integrate-and-Fire 
(LIF) neurons with random connectivity, and similarity to generic cortical 
microcircuit, 20% of the neurons are randomly chosen to be inhibitory and, 
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accordingly, 80% excitatory. The probability of connection between two neurons 
depends on the distance between them according to, 

2exp( ( , ) / ) ,C D i j λ⋅ −  (1) 

wherein  and C are  parameters that determine the average number of connections for 
a certain Euclidean distance D between the neuron i and neuron j. This connectivity 
characterization by primary local connections and a few longer connections is 
biologically realistic. Long range connections will be incorporated, and their 
functional effects on the computational properties of the network will be investigated 
within a context of a different study. 

Random, heterogeneous parameters of NM model fit neurobiological data from rat 
somatosensory cortex [2]. Synaptic short-term plasticity of the NM is implemented by 
dynamic synapses in which the amplitude of each post-synaptic-current depends on 
the spike train that is impinging on the synapse [6], and causes facilitation and 
depression processes. The model was implemented using CSIM simulator [7].  

3   Learning by Dispersion  

Learning process drives a neural microcircuit to a desired state defined by 
configuration of sets of associations between stimuli and responses. This dynamical 
process begins with exploration of various network’s states through modification of 
neuronal correlations. Two mechanisms which may be responsible for changing 
neuronal correlations are driving stimuli and neuromodulation by dopamine. 
Experiments on ex-vivo culture have shown [4], [8] that both mechanisms enhance 
changes in neuronal correlations by dispersing existing correlations, i.e. decorrelating 
previously acquired correlated activity. It is assumed that both mechanisms that cause 
decorrelation (dispersion) are mediated by a biophysical jittering of the synaptic 
strengths at polysynaptic level. This has led to the idea of modeling both mechanisms 
by what Eytan and Marom [10] coined as “Dispersing Mechanism”. 

The second phase of learning, the recognition, is responsible for "freezing" the NM 
state by stopping the exploration process. In recent years, a major effort was devoted 
to mapping of the behavioral concept of reward to neural mechanisms that change the 
functionality of a given NM based on its past performance [9]. The regulation of 
exploration process, driven by dopamine neuromodulation, is enabled by reward 
prediction error (RPE) signals. Dopamine neurons appear to emit RPE signal, as they 
are activated by rewards that are better than predicted, uninfluenced by rewards that 
occur exactly as predicted and depressed by rewards that are worse than predicted [9].  

Learning by reward can occur by associating a stimulus or an action with a reward 
[3]. The learning is a function of RPE, defined by Schultz as a scalar difference in 
value (magnitude x probability) between a delivered (DR) and a predicted reward 
(PR):  

( ).RPE DR PR f error in task execution= − =  (2) 

We apply a constant delivered reward, i.e. p(DR)=1, as long as there is any success 
in task execution. The predicted reward is a function of the system’s previous success 
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in executing the task, i.e. PR=f(success in task execution). Since the performance of 
the system at the beginning of learning is lower than 100%; the predicted reward is 
lower than the delivered; dopamine neurons should be activated and emit dopamine to 
the system. We implement a feedback mechanism based on this reward mechanism in 
our Co-Evolutionary Learning of Liquid Architecture. 

According to this "exploration and recognition" paradigm the dopamine jitters 
network’s formed associations and thus enables state transition across the NM states 
space. In other words, the mechanism of jittering the synaptic efficacies, discovered 
by Eytan and Marom, is instrumental in avoiding trapping into a fixed point. When 
the best state dictated by the environment is found, the system reaches the recognition 
phase, and by stopping the dopamine emission, network’s associations are "frozen".  

A mathematical model of this process, in which the synaptic efficacies are 
randomly jittered by regulation of RPE is formulated by: 

0( ) ,W W K RPEψ∆ = ⋅ ⋅  (3) 

wherein  is uniformly distributed between positive and the negative values of the 
argument, W0 is the previous value of the synaptic strength, K is a constant, and W is 
the change in the strength of the synapse. The model illustrates exploration and 
recognition processes, by dispersion of the NM synaptic strengths, regulated by the 
success in achieving the task of the overall system. 

4   Co-evolutionary Learning in a Closed-Loop Framework 

We propose a new closed-loop liquid architecture based on a NM as a core 
computational unit. The components of the system, illustrated in Fig.1, are NM, 
Readout function and a Decorrelator. In the open-loop setup the system is equivalent  
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Fig. 1. Closed-loop liquid architecture implemented in a classification task of time-varying 
inputs. NM is composed of 135 LIF neurons. Time-varying stimuli Pi(t) are transformed by NM 
onto liquid states, Qi(t),  defined as firing patterns of NM at time t0. Readout neurons are trained 
by supervised learning to identify the input applied to the system by transforming NM liquid 
states onto discrete value j. A feedback on system’s performance is sent by the environment in 
form of reward signals to determine the RPE. Decorrelation, regulated by RPE, enables the co-
evolution of the Readout and NM until a desired performance is obtained 
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to recently-proposed general theoretical model, called Liquid-State-Machine [1]. 
LSM presented a convenient framework for neural computations in real time for 
rapidly-time-varying continuous input functions. NM stores information about past 
inputs with high dimensional dynamics in its internal perturbations. Different input 
streams to the microcircuit cause different internal sates (liquid states) of the system 
and enable the inputs to be separated. Liquid states of the NM are read by memoryless 
Readout. Readout is trained by supervised learning algorithms to transform high-
dimensional transient liquid states of the NM onto desired outputs. After the Readout 
learns to define a needed class of equivalence, it can perform the learned task on 
novel inputs. The separation property (SP) requirement of the NM for functionality of 
LSM framework was illustrated in [2]. 

Within LSM framework the learning process is applied to the readout only, while 
the function of the NM as a generic filter is not changed. We propose an extended 
closed loop framework in which we apply to NM a previously-described learning-by-
dispersion, driven by a feedback from the environment.  

The overall framework is described in Fig. 1. Time-varying stimuli from the 
environment excite NM with a continuous input stream (Pi(t)). At any time t0, the 
internal liquid state of the microcircuit (Qi(t0)) holds a substantial amount of 
information about recent inputs Pi(t< t0). Memoryless readout neurons are trained to 
map liquid states Qi(t0) onto discrete predefined values (j).  Discrete value j is a 
decision/action of the system in its environment. If the system succeeds in the task, 
i.e. i=j for classification task, reward signal is sent by the environment to the system. 
Reward signals, injected by the environment, are determined by system’s 
performance and activate the Decorrelator by setting the value of RPE.  Decorrelation 
mechanism modifies the NM synaptic strengths according to previously defined 
algorithm and drives the exploration phase of learning. During the exploration of NM 
states, the Readout is trained by supervised learning to transform the new formed 
liquid states onto system’s output. When system’s performance is sufficient, RPE is 
low, the recognition phase is reached and NM state is “frozen” by stopping the 
dispersion of the synaptic strengths. 

We applied this co-evolutionary learning of the liquid architecture in general 
computational task of classification time varying stimuli. Randomly generated 
Poisson spike trains were injected to the system with a certain noise. Analysis of 
system’s performance in a closed-loop versus an open-loop setup will be described in 
the next section. 

5   Computational Analysis of the Closed-Loop Framework 

The added value of a closed-loop setup is examined in a general computational task of 
classification of a Poisson spike train. The error-in-task of the open-loop setup 
remains almost constant, since the optimal performance of the system is reached after 
the first supervised learning of the Readout is completed. In a closed-loop setup, in 
parallel to the supervised learning of the Readout, we apply a learning-by-dispersion 
of the NM. This co-evolutionary learning, of NM and Readout, generates an 
exploration process until the optimal performance of an overall system is obtained. 
The learning curve of a closed-loop versus an open-loop setup is illustrated in Fig. 2.  
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Fig. 2. Learning curve of a closed-loop (1) versus open-loop (2) setup implemented in 
classification task of time-varying stimuli 

As the computational results depicted in Fig.2 indicate, the curve of co-
evolutionary learning in a closed-loop setup does not converge gradually to the 
optimal point, since there is no a-priori knowledge of such a point. Various states of 
the NM are explored. This type of exploration is manifested by “jumps” characteristic 
of the learning curve. The exploration continues until a sufficient performance is 
obtained, at which time the NM state is “frozen”.    
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Fig. 3. Error-in-task for a closed-loop (bright bars) and open-loop (dark bars) setups versus 
noise in input 

The closed-loop architecture exhibits superior performance, compared with the 
open- loop, insofar as the signal-to-noise ratio (SNR) is concerned. As the data 
depicted in Fig. 3 illustrates, the SNR of the closed-loop setup is by far lower than 
that characteristic of the open-loop setup. Whereas the error increases with noise level 
in the open-loop, as expected, in the closed-loop it even decreases, until at a certain 
noise level this advantage of the closed-loop breaks down. This abrupt shift in 
performance may be due to a network's phase transition to a chaotic state. It is 
likewise possible that at a certain noise level network's performance breaks down due 
to its saturation by the reward.  
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6   Voice Recognition Task 

Co-evolutionary learning of liquid architecture was applied in a well-studied 
computational benchmark task for which data had been made publicly available – a 
speech recognition task [11]. The dataset consists of 500 input files: the words "zero", 
"one", "two", …, "nine" are spoken by 5 different speakers, 10 times by each speaker. 
The task was to construct a network of I&F neurons that could recognize each of the 
spoken words.  

The waveforms of the input sound were preprocessed by performing Fourier 
transform. Each of the frequency bands was composed of one or more of the 
following three events: onset (the start of the phase of significant energy), offset (the 
end of this phase), and peak (the first maximum of energy). The entire waveform is 
normalized to have maximum amplitude of 0.7, the sampling rate used in this case is 
12000 samples/sec. The running average power and its second derivative are 
subsequently used in identification of events in the sound's spectrogram. This sound 
preprocessing converts the sound signal into a spatiotemporal sequence of events, 
suitable for recognition. Monosyllabic words are encoded into such sequences by 
retrieving features in different frequency bands in their spectrogram.  Finally, sound 
waveform is converted into a list of 40 single events that are converted in turn into 
their respective times of occurrence. 

Internet competition was publicized on this dataset for finding a network with the 
best classification performance. The best performance in this competition exhibited an 
error of 0.15, and was accomplished by a network with 800 pools of neurons [12]. 
The same task was solved by Maass, Natchlaeger and Markram in 2002 [2] using 
LSM framework with 145 I&F neurons. The average error in this classification task, 
achieved by this network, was 0.14.  

We tested the co-evolutionary learning of the liquid architecture on the same task and 
the same dataset. A randomly chosen subset of 300 input files was used for training and 
the other 200 for testing. A previously described, randomly generated NM was 
implemented in a co-evolutionary learning of a closed-loop setup. The average error in 
this classification task, achieved by this closed-loop system, was 0.06.  

7   Discussion 

Liquid architectures embed interesting computational learning features in NM model. 
These emerging architectures are motivated by neurobiological findings obtained in 
experiments with neural culture. The common component of these liquid architectures 
is a core computational unit implemented by a generic heterogeneous model of NM. 
The proposed feedback mechanism adds a significant computational power to liquid 
architectures, illustrated for example in our simulations comparing the performance of 
the open and a closed-loop as a function of a noise level.   

Liquid architecture exhibit a broad spectrum of solutions obtained under the 
condition of an identical task, manifested by its internal parameters. Co-evolutionary 
learning, illustrated in this study, provides a robust mechanism that exploits this 
computational feature, by randomly exploring the states space.  Feedback mechanism 
regulates the exploration process until a sufficient solution is obtained. Converging 
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the ideas of liquid architecture, feedback mechanism and learning by exploration 
reveals a powerful paradigm for real-time, parallel computation in a rapidly varying 
environment. 

References 

1. W. Maass, T. Natschläger, and H. Markram. Real-time computing without stable states: A 
new framework for neural computation based on perturbations. Neural Computation, 
14(11):2531-2560 (2002). 

2. W. Maass, T. Natschläger, and H. Markram. Computational models for generic cortical 
microcircuits. In J. Feng, editor, Computational Neuroscience: A Comprehensive 
Approach, chapter 18, pages 575-605. Chapman & Hall/CRC, Boca Raton, (2004) 

3. Schultz W.: Neural coding of basic reward terms of animal learning theory, game theory, 
microeconomics and behavioural ecology. Curr Opin Neurobiol. Apr;14(2):139-47 (2004) 

4. Danny Eytan, Amir Minerbi, Noam Ziv and Shimon Marom. Dopamine-induced 
Dispersion of Correlations Between Action Potentials in Networks of Cortical Neurons. J. 
Neurophysiol. 92:1817-1824 (2004) 

5. G. Silberberg, A. Gupta and H. Markram: Stereotypy in neocortical microcircuits, Trends 
Neurosci. May;25(5):227-30 (2002) 

6. M Tsodyks, K. Pawelzik, H. Markram , Neural networks with dynamic synapses. Neural 
Computation 10, 821-835 (1998) 

7. T. Natschläger, H. Markram, and W. Maass. Computer models and analysis tools for 
neural microcircuits. In R. Kötter, editor, A Practical Guide to Neuroscience Databases 
and Associated Tools, chapter 9. Kluver Academic Publishers (Boston), 2002. in press. 
(http://www.lsm.tugraz.at)  

8. Goded Shahaf and Shimon Marom. Learning in networks of cortical neurons.  J. of 
Neuroscience [volume 21(22):8782-8788, Nov. 15 (2001)  

9. Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol, 80:1-27 (1998) 
Danny Eytan and Shimon Marom. Learning in Ex-Vivo  

10. Developing Networks of Cortical Neurons Progress in Brain Research,  Volume 147, 
"Development, Dynamics and Pathology of neural Networks",  van Pelt et al, Editors, 
(2004) 

11. J. Hopfield and C. Brody. The mus silicium (sonoran desert sand mouse) web page. Base: 
http://moment.princeton.edu/~mus/Organism  

12. J. Hopfield and C. Brody. What is a moment? Transient synchrony as a collective 
mechanism for spatiotemporal integration. Proc. Natl. Acad. Sci. USA, 98(3):1282-1287, 
2001 

 
 
 



Extended Sparse Nonnegative Matrix
Factorization

Kurt Stadlthanner1, Fabian J. Theis1, Carlos G. Puntonet2,
and Elmar W. Lang1

1 Institute of Biophysics, University of Regensburg,
93040 Regensburg, Germany

2 Dept. Arq. y Téc. de Comp.,
Universidad de Granada, 18071 Granada, Spain

kusta@web.de

Abstract. In sparse nonnegative component analysis (sparse NMF) a
given dataset is decomposed into a mixing matrix and a feature data set,
which are both nonnegative and fulfill certain sparsity constraints. In this
paper, we extend the sparse NMF algorithm to allow for varying sparsity
in each feature and discuss the uniqueness of an involved projection step.
Furthermore, the eligibility of the extended sparse NMF algorithm for
blind source separation is investigated.

1 Matrix Factorization and Blind Source Separation

Often when it comes to analyze recorded observations, a suitable data repre-
sentation is sought. One way of finding such a data representation is matrix
factorization, where the m × T observation matrix X is decomposed into a
m× n matrix W and a n× T matrix H

X = WH. (1)

Here, it is assumed that m observations, consisting of T samples, constitute the
rows of X and that m ≤ n.

One application of matrix factorization is blind source separation (BSS),
where the observations X are known to be weighted sums of n underlying
sources. If the sources form the rows of the n × T matrix S, and the element
aij of the so-called mixing matrix A is the weight with which the j-th source
contributes to the i-th observation, then X can be decomposed as

X = AS. (2)

In BSS now, given only the matrix X, a matrix factorization as in (1) is sought
such that A and S are essentially equal to W and H, i.e. they are identical up
to some scaling and permutation indeterminacies. Obviously, the BSS problem
is highly underdetermined such that it can only be solved uniquely if additional
assumptions on the sources or the mixing matrix are made.

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 249–256, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



250 K. Stadlthanner et al.

1.1 (Sparse) Nonnegative Matrix Factorization

Unlike alternative matrix factorization techniques like principal component anal-
ysis (PCA), independent component analysis (ICA) or sparse component analy-
sis (SCA), in nonnegative matrix factorization (NMF) it is strictly required that
the entries of both matrices H and W are nonnegative, i.e. the data X can be de-
scribed using only additive components. Such a constraint has many physical re-
alizations and applications, for instance in parts-based object decomposition [2].

Usually, the matrices W and H are determined in NMF by minimizing the
least-squares (Euclidean) contrast

E(W ,H) = ‖X −WH‖2, (3)

so (1) is required to hold true only approximately.
Apart from nonnegativity, a sparse representation of the data X is often

desired in matrix factorizations. Hence, Hoyer proposed in [1] a sparse NMF
algorithm, in which the objective (3) is minimized under the constraints that
all columns of W and all rows of H have common sparsenesses σW and σH

respectively. Hereby, the sparseness σ(x) is quantized by the relation between
the Euclidean norm ‖.‖2 and the 1-norm ‖x‖1 :=

∑
i |xi| as follows

σ(x) :=
√
n− ‖x‖1/‖x‖2√

n− 1
(4)

if x ∈ IRn \ {0}. So σ(x) = 1 (maximal) if x contains n− 1 zeros, and it reaches
zero if the absolute value of all coefficients of x coincide.

1.2 Extended Sparse Non-negative Matrix Factorization

While constraining all rows of H to have a common sparseness improves the
results of NMF in image decomposition applications significantly [1], more gen-
eral constraints are needed in BSS, where the sources to be recovered may have
all different sparsenesses. To cope with this problem, we introduce an extended
sparse NMF (esNMF) algorithm (cf. Alg. 1). It represents an extension of Hoyer’s
sparse NMF algorithm [1], in which for each of the n rows of H an individual
sparseness constraint σk, k = 1 . . . n, may be provided while no assumptions
concerning the sparseness of W are made. Note, that the update steps of the
matrices W and H in Alg. 1 (steps 3 and 6) are adopted from the sparse NMF
algorithm such that we refer the reader to [1] and references therein for their
derivations.

Note that the NMF algorithm becomes very dependent on the order in which
differing sparsenesses are presented if the latter are chosen differently for the
different sources. It turns out that the initialization of the matrices W and H
determine the order in which the sources will be recovered. If this order differs
from the order in which the sparsenesses are supplied within the algorithm, poor
results can be expected only. This fact is accounted for in the algorithm by the
special way matrix H is initialized in step 2 as well as the adaptive assignment
of the sparseness constraints of the columns of H in steps 4 and 5.
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Input: observation data matrix X , sparseness constraints σk, k = 1, . . . , n,
(assume σ1 ≤ σ2 · · · ≤ σn for simplicity)

Output: decomposition W H of X such that rows of H fulfill given sparseness
constraints σk, k = 1 . . . n

1 Initialize W to a random non-negative matrix.
2 Initialize H to a random non-negative matrix where all rows have sparseness

0.9.
repeat

3 Set H ← H − µSW T (W H − X).
4 Determine the current sparseness σ̃i, i = 1, ..., n, of each row of H . Find

permutation {j1, . . . , jn} of {1, . . . , n} such that σ̃j1 ≤ σ̃j2 ≤ · · · ≤ σ̃jn .
5 Project the jk-th row of H such that it fulfills the sparseness constraint

σk, k = 1, ..., n (cf. Alg. 2).
6 Set W ← W ⊗ (XHT ) � (W HHT ).

until convergence;
Note: in the last step ⊗ and � symbolize elementwise multiplication and
division respectively.

Algorithm 1: Extended Sparse NMF Algorithm

We try to circumvent this problem by initializing the rows of H such that
they are all of equal sparsity and unbiased towards the original sources. The
latter condition can be met by demanding that the rows of H have a much
higher sparseness than the original sources. In our experiments, we always used
an initial sparseness of 0.9 for the rows of H.

During the first iteration H is updated under the assumption that the ran-
domly initialized matrix W is the actual mixing matrix. This leads to a first
estimate of the original sources of which the sparsenesses can be computed.
Even if this estimate is still very rough a comparison between the original and
the estimated sparsenesses (cf. step 4 in Alg. 1) can already reveal the order in
which the sources will be recovered. Hence, we can now project the estimated
sources such that they fulfill their corresponding sparseness constraints (step 5)
using the projection operator as will be described in Sec. 2, Alg. 2. Finally, in step
6 of esNMF, the estimated mixing matrix W is updated under the assumption
that H contains the actual sources.

2 Sparse Projection

The sparse NMF algorithm uses a projection step as follows: Given x ∈ R
n and

fixed λ1, λ2 > 0, find s such that

s = argmin‖s‖1=λ1,‖s‖2=λ2,s≥0 ‖x− s‖2. (5)
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We want to solve problem (5) by projecting x onto

M := {s|‖s‖1 = λ1} ∩ {s|‖s‖2 = λ2} ∩ {s ≥ 0}. (6)

In order to solve equation (5), x has to be projected onto a point adjacent to it
in M :

Definition 1. A point p ∈ M ⊂ R
n is called adjacent to x ∈ R

n in M , in
symbols p �M x or shorter p � x, if ‖x− p‖2 ≤ ‖x− q‖2 for all q ∈M .

2.1 Indeterminacies

First we will discuss the question of existence of projection points p. Obviously
p cannot exist if x lies in the closure of M (i.e. ‘touches’ it) without being an
element of M . Indeed this is the only obstruction to existence as the following
remark shows. Proofs are not given due to space limitations.

Remark 1 (Existence). IfM is closed and nonempty, then for every x ∈ R
n there

exists p ∈M with p � x.

In order to study uniqueness of the projection, we define an exception set as
follows:

Definition 2. LetX (M) := {x ∈ R
n|there exists more than one point adjacent to

x w.r.t.M} = {x ∈ R
n|#{p ∈M |p � x} > 1} denote the exception set ofM .

So the exception set contains the set of points from which no unique pro-
jection is possible. We want to show that this set vanishes or is at least very
small.

Obviously the exception set of an affine linear hyperspace vanishes. Indeed,
we can prove more generally that the exception set of a convex set is empty. In
general however, we cannot expect X (M) to vanish altogether. However we can
show that in practical applications we can easily neglect it:

Theorem 1 (Uniqueness). vol(X (M)) = 0.

This theorem states that the Lebesgue measure of the exception set is zero
i.e. that it does not contain any open ball. In other words, if x is drawn from
a continuous probability distribution on R

n, then x ∈ X (M) with probability
0. In practice, this proves uniqueness because samples are usually drawn from
continuous distributions.

The theorem follows from the fact that if x is some point of the exception
set of M , any point lying on a line between x and one of its projections does
not again lie in the exception set.

2.2 Projection Algorithm

Now let M be defined by equation 6. Hoyer [1] essentially proposes algorithm 2
to project a given vector x onto p ∈M such that p�x. The algorithm iteratively
detects p by first satisfying the 1-norm condition and then the 2-norm condition.
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Input: vector x ∈ R
n, norm conditions λ1 and λ2

Output: closest non-negative s with ‖s‖i = λi

1 Set r ← x + (‖x‖1 − λ1/n)e with e = (1, . . . , 1)� ∈ R
n.

2 Set m ← (λ1/n)e.
3 Set s ← m + α(r − m) with α > 0 such that ‖s‖2 = λ2.

if exists j with sj < 0 then

4 Fix sj ← 0.
5 Remove j-th coordinate of x.
6 Decrease dimension n ← n − 1.
7 goto 1.

end

Algorithm 2: Sparse projection

It terminates if the constructed vector is already positive; otherwise a negative
coordinate is selected, set to zero and the search is continued in R

n−1.
The algorithm terminates after maximally n − 1 iterations. Indeed, it finds

the correct projections if x 
∈ X (M) as the following theorem shows. It is proved
by showing that in each step the new estimate has p as closest point in M .

Theorem 2 (Sparse projection). Given x ≥ 0 such that x 
∈ X (M) and let
p ∈M , p�x be its projection onto M . If s is constructed by line 3 of algorithm
2, then p � s and s 
∈ X (M). Furthermore, the algorithm terminates at s = p.

3 Simulations

3.1 Adaptive Sparseness Assignment

In this section we show that the initialization of the matrix W actually de-
termines the order in which the sources are estimated, and demonstrate that
the esNMF algorithm may automatically detect this order. Furthermore, it will
be shown that this automatic detection is pivotal for the esNMF algorithm to
find good solutions independent of the order in which the given sparsenesses are
supplied to it.

For this purpose we compared our esNMF algorithm with a second, simplified
version of it, called esNMFfix, in which the matrix H is initialized by a random
nonnegative matrix and in which the given sparseness constraints are applied to
the rows of H in the fixed order in which they were supplied to the algorithm.

We evaluated the performance of both algorithms by applying them to a
toy BSS problem in which three nonnegative sources with different sparsenesses
should be recovered from three observations. The three sources si, i = 1, . . . , 3,
consisted of 3000 data points and had sparsenesses of σ1 = 0.61, σ2 = 0.47 and
σ3 = 0.23 respectively. The observation matrix X was generated by multiplying
the source matrix S by a random nonnegative 3× 3 matrix A as in (2).
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Table 1. Comparison of the esNMFfix and the esNMF algorithm. The Perm column

shows in which order the sparsenesses were provided to the algorithms. The CTEfix

and CTE columns display the average of the 100 CTE’s determined per experiment.

The CCfix and CC columns depict the average of the 300 CCs determined in each

experiment . The numbers in the Fail column show how often the esNMF algorithm

could not recover the sources and the mixing matrix. The columns CTEfix and CCfix

belong to the esNMFfix algorithm, the CTE, the CC and the Fail columns belong to

the esNMF algorithm

Perm CTEfix CCfix CTE CC Fail

123 0.00 1.00 0.05 0.99 4 %
132 7.33 0.74 0.12 0.99 10 %
213 1.21 0.94 0.09 1.00 7 %
231 4.62 0.79 0.06 1.00 5 %
312 7.35 0.75 0.09 1.00 7 %
321 3.17 0.85 0.01 1.00 1 %

In this case, there are 6 possible orders in which the given sparsenesses σi,
i = 1, . . . , 3, can be provided to the algorithms. For each of these orders both
algorithms were used to recover the original sources as well as the mixing matrix
A. As we wanted to show that the initialization of the matrix W determines
the order in which the sources are recovered, we initialized it in both algorithms
by the original mixing matrix A. Furthermore, as both algorithms are known to
be prone to local minima, the algorithms were run 100 times for each sparseness
order, each time with a different initialization of the matrix H.

The results of both algorithms were compared using the crosstalking error
(CTE) between the original and the estimated mixing matrix as well as by the
correlation coefficients (CC) between the original and the recovered sources.

As can be seen in Tab. 1, the esNMFfix algorithm only succeeded in recov-
ering the original sources and the mixing matrix when the sparsenesses were
provided in the same order as the original sources. If we initialized the matrix
W in esNMFfix by a matrix Ã which was equal to A up to a permutation of
two of its columns, then the order of the corresponding sparsenesses had to be
permuted as well in order to obtain satisfying results. Hence, we conclude that
the initialization of the matrix W actually determines the order in which the
sources are recovered.

On the other hand the esNMF algorithm only failed in maximally 10% of its
runs regardless of the order in which the sparsenesses were provided. Apart from
these failures, it always lead to CTEs smaller then 10−7 as well as to CCs higher
than 0.9999. This confirms the eligibility of the proposed adaptive assignment
method.

3.2 Comparison of NMF and esNMF

As NMF has already been used very successfully in other matrix factorization
tasks, we now apply it to BSS with sparseness constraints and compare the
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Fig. 1. The dependence of C (see text) and the CTE on the sparseness presets

results with those obtained by our esNMF algorithm. For our simulations we
have used the multiplicative NMF algorithm from [1].

Our simulations consisted of 100 single experiments. In each experiment three
nonnegative random sources with sparsenesses of σ1 = 0.23, σ2 = 0.47 and
σ3 = 0.62 were generated and then mixed by a nonnegative random 3×3 mixing
matrix A. Then, an observation matrix X was computed as in (2).

In each of the experiments the NMF as well as esNMF algorithm were used
to recover the sources and the results were compared using the CTE between
the estimated and the original mixing matrix as well as the CCs between the
estimated and the original sources.

It turned out that the esNMF algorithm outperformed the NMF algorithm
in most cases. To quantify the results, we defined the threshold τ . If the lowest
CC between a recovered and its corresponding original source was lower than τ
then we classified the experiment as failure, otherwise as success.

If τ was set to 0.95, then NMF succeeded in 11% of the runs while the esNMF
algorithm recovered the sources successfully in 20% of the runs. If τ was increased
to 0.98 then the esNMF algorithm still recovered the sources successfully in
19% of its runs, NMF, however, only in 6%. Finally, only the esNMF algorithm
managed to recover sources with a CC larger than 0.9999 with the original
sources (16% of all runs).

Similar results were obtained for the CTEs between the estimated and the
original mixing matrices. The lowest value of 10−7 was again achieved by the
esNMF algorithm while the NMF algorithm did not lead to CTEs smaller than
0.5. Note, that again CTEs smaller than the latter value were achieved by esNMF
in 18% percent of its runs.

Hence, the esNMF algorithm does not only lead to qualitatively better results
than the NMF algorithm but is also much more robust against its initializations.

3.3 Sparseness Presets and Robustness

In real life experiments it is usually difficult to estimate the sparsenesses of the
sources a priori. Accordingly, we have tested the esNMF algorithm for its robust-
ness against sparseness presets σ̂k which deviated from the actual sparsenesses
σk of the sources.
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For the simulations we used three nonnegative sources with sparsenesses of
σ1 = 0.61, σ2 = 0.47 and σ3 = 0.23 respectively and a nonnegative 3× 3 mixing
matrix A. Both the sources and the mixing matrix could be recovered perfectly
(CC > 0.9999, CTE < 1.8 · 10−7) if the correct sparsenesses were provided to
the esNMF algorithm.

Then, we shifted the sparseness presets σ̂k from their correct values σk by
adding an error δσ (σ̂k = σk + δσ, k = 1, . . . , n), where δσ was varied from
−0.16 to 0.16 in steps of 0.02. For each value of δσ the esNMF algorithm was
run 20 times with different initializations for the matrices W and H. Now, for
each of the 20 runs the minimal correlation coefficient cmin

j (δσ), j = 1, . . . , 20,
between the estimated sources and their original counterparts was determined.
Furthermore, the CTEs between the estimated and the original mixing matrices
were computed. The minimum of these 20 CTEs as well as the maximum value
C of cmin

j (δσ), j = 1, . . . , 20, are depicted in Fig. 1 for each δσ.
While the CTE seemed to be slightly more sensitive to too small presets,

the sources could still be recovered well down to a δσ of about −0.1. Hence, we
would suggest to use rather too low than too high presets for the sparsenesses
in real life applications. Generally, a δσ between −0.5 and 0.5 should still lead
to acceptable results.

4 Conclusion

We have presented an extension of the sparse NMF algorithm [1] and have in-
vestigated its eligibility for BSS. Furthermore, the uniqueness of the projection
operator was shown. One drawback of the presented method is that the sparse-
nesses of the sources must be known a priori. We have shown, however, that an
exact preknowledge of these sparsenesses is not necessary to obtain good results.
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Abstract. Radial Basis Neural Networks (RBNN) can approximate any
regular function and have a faster training phase than other similar neu-
ral networks. However, the activation of each neuron depends on the
euclidean distance between a pattern and the neuron center. Therefore,
the activation function is symmetrical and all attributes are considered
equally relevant. This could be solved by altering the metric used in
the activation function (i.e. using non-symmetrical metrics). The Maha-
lanobis distance is such a metric, that takes into account the variability
of the attributes and their correlations. However, this distance is com-
puted directly from the variance-covariance matrix and does not consider
the accuracy of the learning algorithm. In this paper, we propose to use
a generalized euclidean metric, following the Mahalanobis structure, but
evolved by a Genetic Algorithm (GA). This GA searches for the dis-
tance matrix that minimizes the error produced by a fixed RBNN. Our
approach has been tested on two domains and positive results have been
observed in both cases.

1 Introduction

Radial Basis Neural Networks (RBNN) [1, 2] are originated from the use of radial
basis functions, in the solution of the real multivariate interpolation problem
[3, 4]. As the Multilayer perceptron (MLP) they can approximate any regular
function [5]. Due to its local behavior and to the linear nature of its output
layer, their training is faster than MLP training [5] and this fact makes them
useful for a wide variety of applications. The most used radial basis functions
are Gaussian functions, defined by equation 1.

φm(xk) = e
− ‖cm−xk‖2

2σ2
m (1)

Where φm(xk) represents the activation function for neuronm when an input
pattern xk is presented. The vector cm is the center of the neuron m, and σm is
its deviation or width.

One of the problems of RBNN is the symmetrical nature of their activation
function, making that the activation of a neuron when a pattern is presented,
only depends on the euclidean distance from this pattern to the neuron center
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regardless of the importance of each attribute. This could be solved by altering
the metric used in the activation function.

The Mahalanobis distance is a metric used in Statistics in order to normalize
different attributes and take into account the correlation among them. This
distance is computed according to expression 2.

dij = [(xi − xj)T S−1(xi − xj)]1/2 = [(xi − xj)T MT M(xi − xj)]1/2 (2)

Where dij is the Mahalanobis distance between vectors xi and xj , S is the
variance-covariance matrix of all vectors in the data set and M is the so-called
Mahalanobis matrix[6, 7, 8]. This distance can be used to improve prediction
accuracy in those learning systems that use distances [9]. However, the Maha-
lanobis distance is independent of the learning system used and of the error
produced on the training data, because it is computed from the points in the
data set only (more specifically, it is computed from the variance-covariance
matrix).

In this paper, we propose to use a Mahalanobis-like distance in the activa-
tion function of the RBNN so that different attributes are treated differently
according to their relevance. But instead of computing the distance using the
variance-covariance matrix S, a matrix will be built in order to minimize the
error of the network. This will be achieved by a genetic algorithm [10] whose in-
dividuals are generalized euclidean distance matrices and whose fitness function
depends on the prediction accuracy attained by the network using the matrix.

2 Description of the Method

In this paper we use a standard Genetic Algorithm (GA) [10] to evolve dis-
tance matrices. A genetic algorithm is a kind of heuristic search. The algorithm
maintains a set of candidate solutions (or population of individuals) and ap-
plies the search operators on them (also called genetic operators: mutation and
crossover). The search is guided by a heuristic (or fitness) function. We have
used a generational Genetic Algorithm with elitism and tournament selection.
Matrices in the individuals are coded by representing each of their components
in binary format. The fitness function is computed by training a RBNN on a
set of training data and determining the training error. Thus, the GA tries to
find the distance matrix that minimizes the RBNN training error. The number
of hidden neurons is fixed from the start.

In order to determine the appropriate M matrix by using GA, individuals
must be properly encoded. We have chosen matrix M to be symmetrical, to
ensure that MTM is invertible, although in the future this restriction could be
removed in favor of less restrictive conditions. In that case, only the diagonal
and the upper half of the matrix coefficients must be encoded to a binary rep-
resentation in order to build the chromosome of the individual. Each matrix
element is a real number that must be encoded to a binary representation with
a fixed number of bits, following a fixed-point representation with a single bit
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for the sign. Hence, the chromosome is a string of bits formed by the binary
representation of each matrix element belonging to the diagonal or the upper
half of the matrix. I.e. if the matrix is

M =

⎛
⎜⎜⎜⎝

m11 m12 . . . m1d

m21 m22 . . . m2d

...
...

...
...

md1 md2 . . . mdd

⎞
⎟⎟⎟⎠

The corresponding string chromosome will be:

{B(m11), B(m12), . . . , B(m1d), B(m22), B(m23), . . . , B(mdd)}

where B(mij) is the binary representation of mij .
Each individual represents a matrix M that will determine the distance func-

tion to be used for the neurons activation (see Eq. 2). The goal of this work
consists of improving the accuracy or the RBNN; hence, if the network error
is small it means that the corresponding distance function is good; thus, the
individual representing the M matrix must have a big fitness value. The fitness
function chosen in this work is given in equation 3.

fitness = −log2E (3)

where E is the mean squared error committed by the network on the training
data. It has been chosen so that fitness increases when error decreases. This
function also manages to amplify differences between individuals whose error is
close to zero. This is important to increase evolutionary pressure in the latest
stages of GA-evolution, when all individuals are very good.

In the next the sequential structure of the proposed method is summarized.

1. Create the initial population. A set of random chromosomes is generated. These
chromosomes represent different distance functions to be used in the Radial Basis
Functions of the networks.

2. Evaluate the fitness of each element of the current population. In order to perform
this point, RBNN with a fixed number of hidden neurons are trained using the
distance function determined by each individual of the population. Training errors
of these networks are used to calculate the fitness of each individual.

3. Apply genetic operators to the population in order to create the next generation.
4. If the number of generations is lower than the maximum, go to step 2
5. Return the highest fitness matrix

3 Empirical Evaluation

The purpose of this section is to validate empirically our approach. Two sets
of experiments will be carried out. First, a synthetic domain, where the solu-
tion is known, will be posed to the system. Next, the well-known Mackey-Glass
regression problem will be tested.
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Table 1. Parameters of the Genetic Algorithm for the gaussian domain

Generations 30
Tournament size 2
Population size 20
Elitism 1
Crossover probability 0.6
Mutation probability 0.03

3.1 Synthetic Domain

This domain follows a bi-variate gaussian shape (µ = (0.5, 0.5), σ2 = 0.002).
However, instead of the euclidean distance, a generalized euclidean distance with
matrix M will be used instead (see Eq. 2 and matrix 4). In euclidean space, the
result is a rotated and stretched gaussian (i.e. non-symmetrical). In short, the
goal is to approximate the function given by Eq. 5, where M is given by Eq. 4.

M =
(

0.2 0.75
0.75 1.0

)
(4)

e−
(x−0.5)T MT M(x−0.5)

2∗0.002 (5)

Obviously, a RBNN with a single neuron centered on (0.5, 0.5) will not be able
to correctly learn this function, because the activation function uses a euclidean
distance which is symmetric. But our GA should be able to learn the matrix M
used to generate the domain. In order to get a proof-of-concept using this simple
problem, we trained our system using a single neuron centered on (0.5, 0.5) with
a σ2 = 0.008 (four times the σ2 used to generate the domain). The GA was run
using the parameters shown in Table 1.

In addition, 3 bits were used for the integer part, and 5 bits for the fractionary
part. Only symmetric matrices were allowed. After 30 generations, the following
matrix was obtained (see Eq. 6), which approached very well the function (it
achieved a 5.867x10−5 error).

M =
(

0.46875 1.50000
1.50000 2.00000

)
(6)

Matrix 6 does not match matrix 4 (the one used to generate the domain),
although it can be seen that their components approximately double the ones in
the domain matrix. In any case, it is the activation functions that must be the
same, in order for the 1 neuron RBNN to approximate perfectly the function.
That is, the following equality has to be satisfied (see Eq. 7):

(1/σ2
1)[MT

1 M1] = (1/σ2
2)[MT

2 M2] (7)

where σ2
1 and M1 refer to the parameters used to generate the domain, σ2

2 is the
variance of the neuron, and M2 is the matrix obtained by the genetic algorithm.
This equality is almost satisfied, as Eq. 8 shows.
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(
301.25 450
450 781.25

)
∼
(

283.2 421.8
421.8 757.8

)
(8)

It is interesting to remark that even though the σ2 of the neuron (0.008) was
not the same than the one used to generate the domain (σ2 = 0.002), the GA
managed to fit the domain function by appropriately scalating the components
of the evolved matrix.

3.2 The Mackey-Glass Domain

The Mackey-Glass time series is widely regarded as a benchmark for comparing
the generalization ability of RBNN[11],[12],[13]. The task for the RBNN is to
predict the value of the time series at point x[t + 50] from the earlier points
(x[t], x[t− 6], x[t− 12], x[t− 18]). It is a chaotic time series created by Eq. 9:

dx(t)
dt

= −bx(t) + a
x(t− τ)

1 + x(t− τ)10 (9)

1474 patterns were generated for the Mackey-glass series, and values were
normalized in (0,1). First, we ran some preliminary experiments in order to
determine the number of neurons required. The minimum error was obtained
with about 25 neurons. Also, these preliminary tests showed that 400 learning
cycles and a 0.002 learning rate were reasonable values in this domain.

We tested two configurations of the system: allowing only diagonal matrices,
and allowing general symmetrical matrices. The first case is equivalent to have
a generalized euclidean distance, where every attribute is weighted by a factor.
The most relevant attributes will be weighted by a larger number (see Eq. 10).
The second case (the symmetrical matrix) can also consider correlations between
attributes. Table 2 summarizes the parameters used. Two bits were used for the
integer part, and three for the fractionary part.

d(A,B) =

√√√√(
i=N∑
i=0

Ci ∗ (Ai −Bi)2) (10)

Table 3 displays the results comparing performance of a RBNN using an
euclidean distance and evolved distances. 5-fold crossvalidation results are shown
for both a diagonal matrix and a general symmetric matrix. Improvements of

Table 2. Parameters of the Genetic Algorithm for the Mackey-Glass problem

Generations 50
Tournament size 2
Population size 15
Elitism 1
Crossover probability 0.7
Mutation probability 0.01
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Table 3. Comparison of results between euclidean and evolved distances (5-fold cross-

validation)

Distance used Error Improvement (%)

RBNN euclidean 0.013981
RBNN GA diagonal 0.010337 26%

RBNN euclidean 0.015789
RBNN GA symmetrical 0.014835 6%

26% and 6% (respectively) can be observed. In this domain, using a diagonal
matrix is better than using a symmetrical matrix.

In order to get a better understanding of results in this domain, we observed
the values of the components of the matrices evolved by the GA. As we used
a 5-fold crossvalidation procedure, 5 matrices were evolved. It can be observed
that none of the components outside the diagonal are significantly different than
0 (taking into account the 5 folds, the median for these components is very
close to 0). This means that for this domain, a symmetrical matrix does not
give any advantage and that only a diagonal matrix is required. It can also be
observed in both the diagonal and symmetrical matrices, that attributes 1 and
4 get larger components in the matrix than attributes 2 and 4. This means that
in this domain, variables 1 and 4 are more relevant for the regression problem.

4 Conclusions

One of the problems of RBNN is the symmetrical nature of their activation
function: the activation of a neuron only depends on the euclidean distance
from the input pattern to the neuron center, without taking into account the
importance of different attributes. This problem can be solved by altering the
metric used in the activation function. The learning method presented in this
work uses a Mahalanobis-like distance function: instead of computing the Maha-
lanobis matrix from the variance-covariance matrix of all vectors in the data set,
it is determined in such a way that minimizes the error of the network. This is
achieved by a genetic algorithm whose individuals are generalized distance ma-
trices and whose fitness function depends on the prediction accuracy attained
by the network.

Our GA approach has been tested on two domains: a simple synthetic one
and the Mackey-Glass time series. It has been shown that using both diagonal
and symmetrical evolved matrices improves prediction accuracy over a purely
euclidean distance.

In the future, we would like to test our approach using problems with a larger
dimensionality, to study the effect of evolving large matrices. We would also like
to explore other evolutionary approaches, like evolution strategies, which are
perhaps more suited to evolve structures with real numbers. Finally, it would
be interesting to understand the characteristics of domains where a symmetrical
matrix is better than a purely diagonal one.
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Abstract. Neural networks are intended to be used in future nanoelec-
tronics since these architectures seem to be robust against malfunctioning
elements and noise. In this paper we analyze the robustness of radial ba-
sis function networks and determine upper bounds on the mean square
error under noise contaminated weights and inputs.

1 Introduction

Neural networks are used as function approximators for continuous functions
[1, 2]. Especially, radial basis function networks are utilized to perform a local
approximation of an unknown function specified by a set of test data. The main
reason why neural networks are used for this purpose is the adaptability of the
network due to the learning process. Moreover, the networks seem to be fault
tolerant [2] and robust against malfunctioning neurons [3] modeled as Stuck-At
faults and noise corrupted weights and inputs.

Digital or analog implementations of neural networks have always to face
malfunctioning elements [4] especially in future nanoelectronic realizations [5].
Moreover, when using analog hardware noise is always present due to thermal
or flicker noise [6, 7, 8] and even if digital hardware is used quantization noise
contaminates the weights and inputs [9]. Thus, the neural network structure
should be resistant against these noises.

In this paper we analyze the radial basis function network with respect to
equicontinuity and robustness. In [10] these properties are demonstrated for sig-
moidal feedforward networks. First, a short overview about the analyzed network
is given. Then the equicontinuous property is analyzed and necessary restrictions
are introduced to get an equicontinuous network. Section 4 determines upper
bounds on the mean square error for noise contaminated inputs and weights.

2 Radial Basis Functions

In this section a short overview about the architecture of a radial basis function
network is given. The network consists of an input vector with a dimension
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dimx = n. At a second step m different basis functions which have different
centers are superposed and denoted by a weight to produce the output.

The radial basis function network (RBF) can be used for local function ap-
proximation [11]. Basing on the regularization theory [12] the quadratic error is
minimized with respect to a stabilizing term. Due to this stabilizer the interpo-
lation and approximation quality is controlled in order to achieve a smooth ap-
proximation. Based on this stabilizer different basis functions can be performed
for superposition. As a consequence, the network function can be expressed as

fm(x) =
m∑

i=1

αihi (‖x− xi‖) (1)

where m denotes the number of superposed basis functions.
The function hi(z) can be any function related to a (radial) regularization

stabilizer. Here, the stabilizer leading to a Gaussian function is considered, thus
it follows

hi(z) = exp
(
−z2
2σ2

i

)
(2)

and therefore

fm(x) =
m∑

i=1

αi exp
(
−‖x− xi‖2

2σ2
i

)
(3)

Moreover, the parameters xi are the individual centers of each basis function, σ2
i

resembles the variance of each Gaussian function and αi denotes the weight from
the i-th neuron to the output neuron, which performs a linear superposition of
all basis functions. Thus, the neural network specifies a function set

S =

{
fm(x)

∣∣∣∣fm(x) =
m∑

i=1

αi exp
(
−‖x− xi‖2

2σ2
i

)
,m ∈ , σi, αi ∈ ,xi ∈ n

}

(4)

3 Equicontinuity of Radial Basis Functions

The equicontinuous property of functions is an important feature to produce a
stable approximation. Stable approximation means that two slightly different in-
puts produce also slightly different output behavior meaning that small errors at
the inputs only result in small errors at the output. Therefore, the nonequiconti-
nuity produces an unstable approximation meaning that large discrepancies are
possible while providing nearly identical values at the input.

Consequently, if the property of equicontinuity is fulfilled by a neural network
function the whole network is expected to be fault tolerant and noise immune.
If the inputs or weights are contaminated with noise or faults occur the network
response differs only slightly in contrast to the ideal output behavior.

The equicontinuous property is defined as [10, 13].
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Definition 1. Let χ be a compact metric space with metric d, and let S be a
nonempty subset of C(χ). By definition, if f is a member of S then f is con-
tinuous, that is, for each ε > 0, there exist δ > 0 such that d(x, y) < δ ⇒
|f(x)− f(y)| < ε. S is said to be equicontinuous if for each ε a δ(ε) can be found
that serves at once for all functions f in S.

3.1 Equicontinuity in the Input Space

For the equicontinuous property in the input space it holds

|fm(x)−fm(y)| =
∣∣∣∣∣

m∑
i=1

αi exp
(
−‖x− xi‖2

2σ2
i

)
−

m∑
i=1

αi exp
(
−‖y − xi‖2

2σ2
i

)∣∣∣∣∣ (5)

By using the mean value theorem for some ξ ∈ χ and the triangle inequality
the following can be obtained

|fm(x)− fm(y)| = |∇xf(ξ)|d(x,y) (6)

=
n∑

k=1

∣∣∣∣∣
m∑

i=1

αi exp
(
−‖ξ − xi‖2

2σ2
i

)
· (−2) (ξk − xik)

2σ2
i

∣∣∣∣∣ d(x,y)

≤
n∑

k=1

m∑
i=1

∣∣∣∣αi exp
(
−‖ξ − xi‖2

2σ2
i

)
· − (ξk − xik)

σ2
i

∣∣∣∣ d(x,y)

=
n∑

k=1

m∑
i=1

|αi|
∣∣∣∣exp

(
−‖ξ − xi‖2

2σ2
i

)
· − (ξk − xik)

σ2
i

∣∣∣∣ d(x,y)

For a further analysis the derivation of the Gaussian function has to be evaluated.
First, the values for |xk| → ∞ are obtained by

lim
|xk|→∞

exp
(
−‖x− xi‖2

2σ2
i

)
· xk − xik

σ2
i

= 0 (7)

Consequently, the extrema of the derivation has been found. By setting the
second derivation equal zero this leads to

− exp(·) (xk−xik)2

σ4
i

+ exp(·) 1
σ2

i
= 0 (8)

⇒ (xk − xik)2 = σ2
i (9)

xk = ±σi + xik (10)

Consequently, this leads to a maximum of the first derivation∣∣∣∣exp(·)±σi + xik − xik

σ2
i

∣∣∣∣ = exp(·)±σi

σ2
i

= |exp(·)|︸ ︷︷ ︸
≤1

∣∣∣∣±σi

σ2
i

∣∣∣∣ (11)

≤ 1
σi

(12)
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With the result of equation (11) the result of (6) can be further evaluated as

|∇xf(ξ)| d(x,y) ≤
n∑

k=1

m∑
i=1

|αi|
∣∣∣∣ 1
σi

∣∣∣∣ d(x,y) (13)

= n ·
m∑

i=1

∣∣∣∣αi

σi

∣∣∣∣ d(x,y) = ε (14)

With the result of (14) it follows

δ ≥ ε

n ·
∑m

i=1

∣∣∣αi

σi

∣∣∣ (15)

As a consequence of (15) the equicontinuous property is not valid for the radial
basis function network in the input space, since relation (14) must be consistent
to Definition 1 for all functions of set S defined in (4). As a result of equation
(15) the parameter ε and δ are depending on the weights αi and σi. Again, these
weights are based on the function which should be approximated by the neural
network and, consequently, both parameters (ε, δ) are not independent of the
function. Thus, an RBF has not the equicontinuous property in the input space
like the MLP [10].

But the equicontinuous property can be adapted by the RBF network if the
weights fulfill the following conditions. In order to make both parameters, ε and
δ, independent of the network function, the weights have to be bounded. Thus,
it follows

⇒
m∑

i=1

∣∣∣∣αi

σi

∣∣∣∣must be bounded

⇒ |αi| ≤ B ∧
∣∣∣∣ 1
σi

∣∣∣∣ ≤ T (16)

⇒
m∑

i=1

∣∣∣∣αi

σi

∣∣∣∣ ≤
m∑

i=1

B · T = m ·B · T (17)

Consequently, with the restriction of (16) the RBF network obtains the equicon-
tinuous property in the input space.

3.2 Equicontinuity in the Weight Space

Let assume that the weight space is endowed by a metric and W1 and W2 are
two distinct points in the weight space with d (W1,W2) denoting their distance.
Then the equicontinuous property can be written as

|fm (W1)− fm (W2)| =
∣∣∣∣∣

m∑
i=1

α1
i exp

(
−‖x− x1

i ‖2
2σ2

i1

)

−
m∑

i=1

α2
i exp

(
−‖x− x2

i ‖2
2σ2

i2

)∣∣∣∣∣ (18)
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Applying the mean value theorem to (18) this leads to

|fm (W1)− fm (W2)| ≤ (|∇αf(ξ)|+ |∇xi
f(ξ)|+ |∇σf(ξ)|) d (W1,W2) (19)

For the gradient operators in (19) follow

|∇αf(ξ)| =
m∑

i=1

∣∣∣∣exp
(
−‖x− xi‖2

2σ2
i

)∣∣∣∣ ≤
m∑

i=1

|1| = m (20)

|∇xi
f(ξ)| =

n∑
k=1

∣∣∣∣∣
m∑

i=1

αi exp
(
−‖x− ξi‖2

2σ2
i

)
xk − ξik
σ2

i

∣∣∣∣∣
≤

n∑
k=1

m∑
i=1

∣∣∣∣αi

σi

∣∣∣∣ = n ·
m∑

i=1

∣∣∣∣αi

σi

∣∣∣∣ (21)

|∇σf(ξ)| =
m∑

i=1

∣∣∣∣αi exp
(
−‖x− xi‖2

2ξ2

)
‖x− xi‖2

ξ3

∣∣∣∣
≤

m∑
i=1

|αi|
∣∣∣∣‖x− xi‖2

ξ3

∣∣∣∣ (22)

Equation (21) can be evaluated in the same manner as in (12). The estimation
in (22) is determined by the maximum of each basis function

h(z) = exp
(
−z2
2σ2

)
≤ 1 (23)

Consequently, it follows for the equicontinuous property

|∇Wf(ξ)| d (W1,W2) ≤
(
m+ n ·

m∑
i=1

∣∣∣∣αi

σi

∣∣∣∣+
m∑

i=1

∣∣∣∣αi
‖x− xi‖2

ξ3

∣∣∣∣
)
d (W1,W2)

= ε

⇒ δ ≥ ε

m+ n ·
∑m

i=1

∣∣∣αi

σi

∣∣∣+∑m
i=1

∣∣∣αi
‖x−xi‖2

ξ3

∣∣∣ (24)

As a consequence of (24) the RBF network also has not the equicontinuous
property in the weight space since the parameters ε and δ depend on the weights
αi and σi and the Euclidean distance of the input vector and the RBF centers.
Since these weights are depending on the actual function which has to be ap-
proximated ε and δ also depend on the function. Thus, the RBF network is not
equicontinuous in the weight space.

In order to attain equicontinuity in the weight space the same bounds for
the weights as in section 3.1 can be set (|αi| ≤ B and

∣∣∣ 1
σ1

∣∣∣ ≤ T ). Moreover, the
Euclidean distance ‖x− xi‖ has to be bounded

‖x− xi‖ ≤ C (25)

and it follows
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m∑
i=1

∣∣∣∣αi

σi

∣∣∣∣ ≤
m∑

i=1

B · T = mBT (26)

m∑
i=1

∣∣∣∣αi
‖x− xi‖2

ξ3

∣∣∣∣ ≤
m∑

i=1

B · C2 · T 3 = mBC2T 3 (27)

Since σ has a lower bound inequality (27) holds. Consequently, with the
restrictions of equation (26) and (27) the RBF network has the equicontinuous
property.

4 Robustness of Radial Basis Functions

In this section we analyze the tolerance of an RBF network to noise in the input
and the weight space. For the analysis it is assumed that the inputs are restricted
to the interval [-1:1] and are contaminated with Gaussian noise with zero mean
and finite variance σ2

n. Thus, noise contaminated inputs lead to a mean square
error of

mse ≤ n2

(
m∑

i=1

∣∣∣∣αi

σi

∣∣∣∣
)2

n · σ2
n (28)

Equation (28) implies that the mean square error is not bounded for an unre-
stricted RBF network in the case of Gaussian noise in the inputs. The restriction
(cf. (16)) leads to

mse ≤ n3m2B2T 2σ2
n (29)

Consequently, the mean square error has an upper bound with these restrictions.
For noise in the weight space the same assumption are made. All the weights

are contaminated with Gaussian noise with zero mean and finite variance. For
an RBF network with m basis function m +m · n +m = m(n + 2) parameters
are needed. This leads to an upper bound of the mean square error

mse ≤
(
m+ n ·

m∑
i=1

∣∣∣∣αi

σi

∣∣∣∣+
m∑

i=1

∣∣∣∣αi
‖x− xi‖2

ξ3

∣∣∣∣
)2

m(n+ 2)σ2
n (30)

If no restrictions are made, the mean square error has no upper bound. If the
weights of the RBF network are bounded and the Euclidean distance between
the input vector and the RBF centers is also bounded it follows for the upper
bound

mse ≤
(
m+ nmBT +mBC2T 3

)2
m(n+ 2)σ2

n (31)

4.1 Technical Realisation

Technical neural networks, especially technical RBF networks, are always re-
stricted in their weights, thus the restrictions of (16) holds. Furthermore, due
to the number representation in technical systems the Euclidean distance is also
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bounded, and therefore restriction (25) holds. Consequently, practical realiza-
tions of an RBF network will have the equicontinuous property. In the case of
an implementation of an RBF network in digital or analog hardware the mean
square error is bounded due to a maximum resolution in both realizations.

As (29) and (31) imply the mean square error is depending on the size of the
network (number of basis functions resp. neurons), the input dimension and the
bounds of the weights and of the Euclidean distance. Furthermore, the variance
of the noise is influencing the error. In the case of an analog realization the
variance is closely related to the noise in this system. Thermal and flicker noise
are Gaussian noise processes with zero mean and thus the noise power is identical
to the variance σ2

n

σ2
n = E

(
(X − E(X))2

)
= E

(
X2

)
= N (32)

where E denotes the expected value, X the random variable and N the noise
power.

As a consequence, the mean square error is closely related to the Signal-
Noise-Ratio (SNR) of the system. Thus, this leads to

SNRdB = 10 log
(
Ps

N

)
(33)

In an analog system this relation is bounded by the different architecture and
by the number of transistors which are contributing to the noise power.

In a digital system the variance σ2
n is related to the resolution k of the per-

formed computation. From information theory [14] it is well known that the
resolution is related to the noise power by

k =
1
2

ld
(
Ps

N

)
(34)

As a result of (34) with an increasing resolution k of the computation the noise
power is decreased. Thus, for a low mean square error a high resolution should
be provided. On the contrary, if the resolution is related to the bounds of the
weights the impact of the mean square error can be canceled.

5 Conclusion

We have shown the equicontinuous property of the radial basis function network
under certain restrictions. Moreover, upper bounds on the mean square error are
determined for noise contaminated inputs and weights.

Without these restrictions RBF networks are not equicontinuous and not
noise immune. But restricting the trained weights by an upper resp. lower bound
and the Euclidean distance between input vector and RBF centers this leads
to a noise immune network. Fortunately, practical implementations providing
these bounds naturally due to their limited resolution, memory and number
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representation. But as a result of the limited resolution of digital systems noise
contaminates the inputs and weights. On the contrary, analog systems have
always to face noise in its signals.

The upper bound of the mean square error depends on the dimension of
the input vector, the number of basis functions resp. the number of neurons,
the upper and lower bounds and the noise power of the system. The important
parameter is the noise power which should be decreased by a high resolution in
a digital system and high SNR in an analog system. All the other parameters
are closely correlated with each other while the input dimension is fixed for a
certain problem. By restricting the weights by lower resp. upper bounds the
number of neurons can be increased and thus counteracting the positive impact
of the mean square error. But this has to be analyzed in detail.
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Abstract. Clustering algorithms have been applied in several disciplines
successfully. One of those applications is the initialization of Radial Ba-
sis Functions (RBF) centers composing a Neural Network, designed to
solve functional approximation problems. The Clustering for Function
Approximation (CFA) algorithm was presented as a new clustering tech-
nique that provides better results than other clustering algorithms that
were traditionally used to initialize RBF centers. Even though CFA im-
proves performance against other clustering algorithms, it has some flaws
that can be improved. Within those flaws, it can be mentioned the way
the partition of the input data is done, the complex migration process,
the algorithm’s speed, the existence of some parameters that have to
be set in order to obtain good solutions, and the convergence is not
guaranteed. In this paper, it is proposed an improved version of this al-
gorithm that solves the problems that its predecessor has using fuzzy
logic successfully. In the experiments section, it will be shown how the
new algorithm performs better than its predecessor and how important
is to make a correct initialization of the RBF centers to obtain small
approximation errors.

1 Introduction

Designing an RBF Neural Network (RBFNN) to approximate a function from a
set of input-output data pairs, is a common solution since this kind of networks
are able to approximate any function [4, 9]. Formally, a function approximation
problem can be formulated as, given a set of observations {(xk; yk); k = 1, ..., n}
with yk = F (xk) ∈ IR and xk ∈ IRd, it is desired to obtain a function G so
yk = G (xk) ∈ IR with xk ∈ IRd. Once this function is learned, it will be possible
to generate new outputs from input data that were not specified in the original
data set.

The initialization of the centers of RBFs is the first step to design an RBFNN.
This task has been solved traditionally using clustering algorithms [8] [10]. Clus-
tering techniques have been applied to classification problems [6], where the task
to solve is how to organize observed data into meaningful structures. In classifi-
cation problems, the input data has to be assigned to a pre-defined set of labels,
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thus, if a label is not assigned correctly, the error will be greatly increased. In
the functional approximation problem, a continuous interval of real numbers is
defined to be the output of the input data. Thus, if the generated output value
is near the real output, the error does not increase too much.

In this context, a new clustering algorithm for functional approximation prob-
lems was designed in our research group: Clustering for Functional Approxima-
tion (CFA)[5].The CFA algorithm uses the information provided by the function
output in order to make a better placement of the centers of the RBFs. This
algorithm provides better results in comparison with traditional clustering algo-
rithms but it has several elements that can be improved.

In this paper, a new algorithm is proposed, solving all the problems presented
in the CFA algorithm using fuzzy logic techniques, and improving results, as it
will be shown in the experiments section.

2 RBFNN Description

A RBFNN F with fixed structure to approximate an unknown function F with
n entries and one output starting from a set of values {(xk; yk); k = 1, ..., n}
with yk = F (xk) ∈ IR and xk ∈ IRd, has a set of parameters that have to be
optimized:

F (xk;C,R,Ω) =
m∑

j=1

φ(xk; cj , rj) ·Ωj (1)

where C = {c1, ..., cm} is the set of RBF centers, R = {r1, ..., rm} is the set
of values for each RBF radius, Ω = {Ω1, ..., Ωm} is the set of weights and
φ(xk; c j , rj) represents an RBF. The activation function most commonly used
for classification and regression problems is the Gaussian function because it is
continuous, differentiable, it provides a softer output and improves the inter-
polation capabilities [2, 7]. The procedure to design an RBFNN for functional
approximation problem is shown below:

1. Initialize RBF centers cj

2. Initialize the radius rj for each RBF
3. Calculate the optimum value for the weights Ωj

The first step is accomplished by applying clustering algorithms, the new
algorithm proposed in this paper will initialize the centers, providing better
results than other clustering algorithms used for this task.

3 Clustering for Function Approximation Algorithm:
CFA

This algorithm uses the information provided by the objective function output
in such a way that the algorithm will place more centers where the variability
of the output is higher instead of where there are more input vectors.
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To fulfill this task, the CFA algorithm defines a set O = {o1, ..., om} that
represents a hypothetic output for each center. This value will be obtained as a
weighted mean of the output of the input vectors belonging to a center.

CFA defines an objective function that has to be minimized in order to con-
verge to a solution:

m∑
j=1

∑
xk∈Cj

‖xk − cj‖2ωkj

m∑
j=1

∑
xk∈Cj

ωkj

(2)

where ωkj weights the influence of each input vector in the final position a center.
The bigger the distance between the expected output of a center and the real
output of an input vector is, the bigger the influence in the final result will be.
The calculation of w is obtained by:

ωkj =
|F (xk)− oj |

n
max
i=1

{F (xi)} −
n

min
i=1

{F (xi)}
+ ϑmin, ϑmin > 0. (3)

The first addend in this expression calculates a normalized distance (in the
interval [0,1]) between F (xk) and oj , the second addend is a minimum contri-
bution threshold. The smaller ϑmin becomes, the more the centers are forced to
be in areas where the output is more variable.

The CFA algorithm is structured in three basic steps: Partition of the data,
centers and estimated output updating and a migration step.

The partition is performed as it is done in Hard C-means [3], thus, a Voronoi
partition of the data is obtained. Once the input vectors are partitionated, the
centers and their estimated outputs have to be updated, this process is done
iteratively using the equations shown below:

cj =

∑
xk∈Cj

xkωkj∑
xk∈Cj

ωkj
oj =

∑
xk∈Cj

F (xk)ωkj∑
xk∈Cj

ωkj
. (4)

The algorithm, to update centers and estimated outputs, has an internal
loop that iterates until the total distortion of the partition is not decreased
significantly.

The algorithm has a migration step that moves centers allocated in input
zones where the target function is stable, to zones where the output variability
is higher. The idea of a migration step was introduced in [11] as an extension of
Hard C-means.

CFA tries to find an optimal vector quantization where each center makes
an equal contribution to the total distortion [4]. This means that the migration
step will iterate, moving centers that make a small contribution to the error to
the areas where centers make a bigger contribution.
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3.1 Flaws in CFA

CFA has some flaws that can be improved, making the algorithm more robust
and efficient and providing better results.

The first disadvantage of CFA is the way the partition of the data is made.
CFA makes a hard partition of the data where an input vector can belong
uniquely to a center, this is because it is based on the Hard C-means algo-
rithm. When Fuzzy C-means [1] was developed, it demonstrated how a fuzzy
partition of the data could perform better than a hard partition. For the func-
tional approximation problem, it is more logical to apply a fuzzy partition of the
data because an input vector can activate several neurons with a certain degree
of activation, in the same way an input vector can belong to several centers in a
fuzzy partition.

The second problem is the setting of a parameter which influences critically
the results that can be obtained. The parameter is ϑmin, the minimum contri-
bution threshold. The smaller this parameter becomes, the slower the algorithm
becomes and the convergence becomes less warranted. The need of a human
expert to set this parameter with a right value is crucial when it is desired to
apply the algorithm to different functions, because a wrong value, will make the
algorithm provide bad results.

The third problem of CFA is the iterative process to converge to the solu-
tion. The convergence is not demonstrated because it is presented as a weighted
version of Hard C-means, but the equations proposed do not warrant the con-
vergence of the algorithm. The iterative method is quite inefficient because it
has to iterate many times on each iteration of the main body of the algorithm.

The last problem CFA presents is the migration process. This migration step
is quite complex and makes the algorithm run very slow. It is based on a distor-
tion function that require as many iterations as centers, and adds randomness
to the algorithm making it not too robust.

4 Improved CFA Algorithm: ICFA

Let’s introduce the new elements in comparison with CFA, and let’s see the
reasons why this new elements are introduced.

4.1 Input Data Partition

As it was commented before, for the functional approximation problem, is better
to use a fuzzy partition, but CFA uses a hard partition of the data. In ICFA, in
the same way as it is done in Fuzzy C-means, a fuzzy partition of the data is
used, thus, an input vector belongs to several centers at a time with a certain
membership degree.

4.2 Parameter w

In CFA, the estimated output of a center is calculated using a parameter w (3).
The calculation of w implies the election of a minimum contribution value (ϑmin)
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that will affect in a serious way the performance and the computing time of the
algorithm.

In order to avoid the establishment of a parameter, ICFA removes this thresh-
old, and the difference between the expected output of a center and the real
output of the input data is not normalized. Thus, the calculation of w is done
by:

wkj = |F (xk)− oj | (5)

where F (x) is the function output and oj is the estimated output of cj .

4.3 Objective Function and Iterative Process

In order to make the centers closer to the areas where the target function is
more variable, a change in the similarity criteria used in the clustering process
it is needed. In Fuzzy C-means, the similarity criteria is the euclidean distance.
Proceeding this way, only the coordinates of the input vectors are used, thus,
the membership values uik for the matrix U = [uik] for a given center will be
small for the input vectors that are far from that center, and the values will be
big if the input vector is close to that center. For the functional approximation
problem, this is not always true because, given a center, its associated cluster
can own many input vectors even if they are far from this center but they have
the same output values.

To consider these situations, the parameter w is introduced (5) to modify the
values of the distance between a center and an input vector. w will measure the
difference between the estimated output of a center and the output value of an
input vector. The smaller w is, the more the distance between the center and the
vector will be reduced. This distance is calculated now by modifying the norm
in the euclidean distance:

DkjW = ‖xk − cj‖2 · w2
kj . (6)

where wkj = |Yk − oi|. The objective function to be minimize is redefined as:

Jh(U,C,W ) =
n∑

k=1

m∑
i=1

uh
ikDkjW . (7)

This function is minimized applying the LS method, obtaining the following
equations that will converge to the solution:

uik =

⎛
⎝ m∑

j=1

(
DikW

DjkW

) 2
h−1

⎞
⎠

−1

ci =

n∑
k=1

uh
ikxkw

2
ik

n∑
k=1

uh
ikw

2
ik

oi =

n∑
k=1

uh
ikYkd

2
ik

n∑
k=1

uh
ikd

2
ik

(8)
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where dij is the euclidean distance between ci and xj , and h > 1 is a parameter
that allow us to control how fuzzy will be the partition and usually is equal to 2.

These equations are the equivalence of the ones defined for CFA (4) where
the centers and their expected outputs are updated. These equations are ob-
tained applying Lagrange multipliers and calculating the respect derivatives of
the function, so convergence is warranted, unlike in CFA. ICFA, requires only
one step of updating, being much more efficient than CFA where an internal
loop is required on each iteration of the algorithm to update the centers and the
outputs.

4.4 Migration Step

As in CFA, a migration step is incorporated to the algorithm. CFA’s migration
iterates many times until each center contributes equally to the error of the func-
tion defined to be minimized. On each iteration, all centers are considered to be
migrated, making the algorithm inefficient and, since it adds random decisions,
the migration will affect directly to the robustness of the final results.

ICFA only makes one iteration and instead of considering all centers to be
migrated, it performs a pre-selection of the centers to be migrated. The distortion
of a center is the contribution to the error of the function to be minimized. To
decide what centers will be migrated, it is used a fuzzy rule that selects centers
that have a distortion value above the average.By doing this, centers that do
not add a significant error to the objective function are excluded because their
placement is correct and they do not need help from other center.

There is a fixed criteria to choose the centers to be migrated, in opposite to
CFA where a random component was introduced at this point. The center to
be migrated will be the one that has assigned the smallest value of distortion.
The destination of the migration will be the center that has the biggest value
of distortion. The repartition of the input vectors between those two it is like in
CFA. If the error is smaller than the one before the migration step, the migration
is accepted, otherwise is rejected.

4.5 ICFA General Scheme

Once all the elements that compose the algorithm have been described, the
general scheme that ICFA follows is:

Do
Calculate the weighted distance between Ci and X using w
Calculate the new Ui, Ci using Ui and Oi using Ci

Migrate
While(abs(Ci−1-Ci<threshold)

In ICFA, the start point is not a random initialization of matrix U as in
Fuzzy C-means. In the new algorithm, centers will be distributed uniformly
through the input data space and their estimated outputs will be equal to the
difference between the maximum and the minimum value of the output function.
Proceeding like this, all random elements of the previous algorithm are excluded,
obtaining the maximum robustness.
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5 Experimental Results

To compare the results provided by the different algorithms, it will be used the
normalized root mean squared error (NRMSE)

The radii of the RBFs were calculated using the k-neighbors algorithm with
k=1. The weights were calculated optimally by solving a linear equation system.

Table 1 shows the errors when approximating the function f1 (Fig. 1) us-
ing the ICFA, Fuzzy C-means and CFA algorithms. In Fig. 1 are represented
graphically the results shown in Table 1. Function f1 is defined as:

Y = sin(2piX)e−X − 34sin(piX)e−75/X . (9)

Table 1. Mean and Standard Deviation of the approximation error (NRMSE) for

function f1

Clusters FCM CFA FCFA

6 0.961(0.3E-4) 0.965(0.010) 0.734(0)
7 0.957(0.1E-4) 0.907(0.071) 0.676(0)
8 0.945(0.4E-4) 0.867(0.060) 0.568(0)
9 0.978(0.001) 0.819(0.049) 0.543(0)
10 0.935(0.001) 0.792(0.055) 0.509(0)
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Fig. 1. Target Function (blue line) and training set (red dots). Mean and Standard

Deviation of the approximation error (NRMSE)

The results clearly show the improvement in performance of ICFA in com-
parison with CFA and its predecessors, not improving only the results, but the
robustness.

6 Conclusions

RBFNNs provides good results when they are used for functional approximation
problems. The CFA algorithm was designed in order to make the right initializa-
tion of the centers for the RBFs improving the results provided by the clustering
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algorithms that were used traditionally for this task. CFA had some mistakes and
disadvantages that could be improved. In this paper, a new algorithm which fix
all the problems in CFA is proposed. This new algorithm performs much better
than its predecessor.

From the analysis of the results, the following conclusions are obtained:

– It has been demonstrated how important an initialization step is when de-
signing RBFNN for functional approximation problems.

– All problems in CFA were solved so the new algorithm obtains better results.
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Abstract. In this paper we propose a new technique focused on the search of 
new architectures for modelling complex systems in function approximation 
problems, in order to avoid the exponential increase in the complexity of the 
system that is usual when dealing with many input variables. The new hierar-
chical network proposed, is composed of complete Radial Basis Function Net-
works (RBFNs) that are in charge of a reduced set of input variables. For the 
optimization of the whole net, we propose a new method to select the more im-
portant input variables, thus reducing the dimension of the input variable space for 
each RBFN. We also provide an algorithm which automatically finds the most 
suitable topology of the proposed hierarchical structure and selects the more im-
portant input variables for it. Therefore, our goal is to find the most suitable of the 
proposed families of hierarchical architectures in order to approximate a system 
from which a set of input/output (I/O) data has been extracted. 

1   Introduction 

In many real world practical modelling problems, it is often possible to measure the 
value of many physical signals (variables), but it is not necessarily known which of 
them are relevant and required to solve the problem [1]. An excessively high compu-
tational complexity can occur when developing multivariate models for industrial or 
medical applications when the best set of inputs to use is not known. The main prob-
lems to face here are that when the input dimensionality increases, the computational 
complexity and memory requirements of the model increase (in some cases even 
exponentially); learning is more difficult with unnecessary inputs; and understanding 
complex models are much more difficult than simple models.  

Neural networks can be defined as an architecture comprising massively parallel 
adaptive processing elements interconnected via structured networks. There are many 
network structures. The main weakness of a neural network lies in its totally flat 
structure. A direct consequence of such structural simplicity is often a huge network, 
with an excessively large number of hidden units. One effective solution is to incor-
porate proper hierarchical structure into the network. Hierarchical structures have a 
very rich variety of applications in computing since they provide representations that 
can be composed, modified, and manipulated in a very flexible way [2].  
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For example, in [8], de Souza et al. proposed a new hybrid neuro-fuzzy model, 
named hierarchical neuro-fuzzy quadtree (HNFQ), which was based on a recursive 
partitioning method of the input space named quadtree. Fukumizu, and Amari in [7] 
investigate the hierarchical geometric structure of the parameter space of three-layer 
perceptrons in order to show the existence of local minima and plateaus. In the paper, 
the authors proved that a critical point of the model with h hidden units always gives 
many critical points of the model with h+ 1 hidden unit. Also, in [9] a hierarchical 
radial basis function network is presented. The main characteristic is that it is consti-
tuted of hierarchical layers, each containing a Gaussian grid at a decreasing scale, 
which are inserted only where the local error is over a certain threshold guaranteeing 
a uniform residual error and the allocation of more units with smaller scales where the 
data contain higher frequencies. 

The main problem to solve is that when the number of input variables increases, 
the number of parameters usually increases in a very rapid way, even exponentially. 
This phenomenon named the curse of dimensionality [5] prevents the use of the ma-
jority of conventional modelling techniques and forces us to look for more specific 
solutions. To deal with this problem, input variable selection (IVS) procedures try to 
reduce the dimension of the input variable space, identifying and removing as much 
irrelevant and redundant data as possible, thus reducing the dimensionality of the data 
and allowing learning algorithms to operate faster and more effectively.  

Input variable selection (IVS) has been researched intensively and has been applied 
to various problems such as data mining, knowledge discovery, pattern recognition, 
etc. One of the most popular methods used to select input variables is principal com-
ponent analysis (PCA) which essentially transforms linearly a number of possibly 
correlated variables into a smaller number of uncorrelated variables which account for 
as much of the variability in the data as possible. The main drawback of PCA is that it 
considers only linear relations between variables. Several authors have also worked to 
select the most important input variables in function approximation problems. Po-
mares et al in [3] presented a method to obtain the structure of a complete rule-based 
fuzzy system for a specific approximation accuracy of the training data, deciding 
which input variables should be taken into account how many membership functions 
were needed in every selected input variable in order to reach the approximation tar-
get. The main drawback of that method is that it only could be applied to grid-based 
fuzzy systems with a limited number of input variables. Vehtari and Lampinen in [1] 
proposed to use posterior and marginal posterior probabilities obtained via variable 
dimension Markov chain Monte Carlo methods to find out potentially useful input 
combinations and to do the final model choice and assessment using the expected 
utilities computed by using the cross-validation predictive densities. Also noteworthy 
is the work made by Chen and Wang in [4], who proposed for a given a set of input 
and output variables, a fuzzy partition associating fuzzy sets with each input variable. 

In our particular case, hierarchical structures will be used to provide a suitable con-
struction of Multi-Radial Basis Function Networks (Multi-RBFNs) which improve 
significantly the performance of complex function approximation problems. In this 
paper we will see how our Multi-RBFN is capable of modelling complex systems 
without the above-mentioned problems inherent to the increase of the number of input 
variables. For that purpose, we provide a new method to select the more important 
input variables, thus reducing the dimension of the input variable space for each 
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RBFN, in order to find a model with the smallest number of input variables having 
statistically or practically at least the same expected utility as the full model with all 
the available inputs. We also propose an algorithm which automatically finds the most 
suitable topology of the proposed hierarchical structure and selects the more impor-
tant input variables for it. Therefore, our goal is to find the most suitable of the pro-
posed families of hierarchical architectures in order to approximate a system from 
which a set of input/output (I/O) data has been extracted.  

The paper is organized as follows. Section 2 describes the basic building modules 
and the hierarchical structures of the Multi-RBFN. The differences between several 
Multi-RBFN architectures are also discussed. Section 3 presents the new proposed 
method for input variable selection, for our hierarchical Multi-RBFNs. Finally Section 
4 provides an example of how the proposed methodology is capable of finding the 
most suitable Multi-RBFN architecture.  

2   Architecture of the Multi-RBFN  

Fig. 1 presents the proposed hierarchical Multi-RBFN system. Each one of the nodes 
of the figure is a Radial Basis Functions Network (see Fig. 2). RBFNs can be seen as 
a particular class of Artificial Neural Networks ANNs. They are characterized by a 
transfer function in the hidden unit layer having radial symmetry with respect to a 
centre. The basic architecture of an RBFN is a 3-layer network. The output of the net 
is given by the following expression:  

1

( , , ) ( )
m

i i
i

F x w x wφ
=

Φ = ⋅  (1) 

where { : 1,..., }i i mφΦ = =  are the basis functions set and wi the associate weights for 

every RBF. The basis function φ  can be calculated as a gaussian function using the 

following expression:  
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x c r
r

φ
−

=  (2) 

where c  is the central point of the function φ and r is its radius.  
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Each subset of the input variables {x1,…,xd} can be used as the inputs of each Sub-
RBFN. Each Sub-RBFN receives their specific inputs variables values, and realizes 
the computation given in Eq. (1) to provide the output to the final node which simply 
adds-up the output of every Sub-RBFN. Therefore, the final output can be expressed 
as follows: 

( )
1 1

( , , )
smS

s s
i i

s i

f x w x wφ
= =

Φ = ⋅  (3) 

where s
iφ  are the i-th basis functions of the s-th RBFN, and s

iw  is its weight.  

Several hierarchical structures Multi-RBFN can be obtained for any given problem 
from a set of input variables. For example, for a 4-input problem {x1,…,x4}, many 
possible different architectures can be obtained, the simplest when each input variable 
forms a single set (See Fig. 3a), and the one that implies a bigger number of parame-
ters which corresponds to the case where all input variables are used in the only Sub-
RBFN  (See Fig. 3d). Fig. 3b and c show other possible configurations in between. 

 

 

 

 

a b

c 

 

d  

Fig. 3. Different topologies of hierarchical Multi-RBFNs. a) 4 Sub-RBFNs with one input 
variable for each one b) 3 Sub-RBFNs with one and two input variables for each one. c) 2 Sub-
RBFNs with two input variables for each one. d) 1 sub-RBFN with all the input variable set 

To gain an insight of how the Multi-RBFN configuration affects the number of ac-
tual parameters of the system, let us recall that the total number of parameters in 
every Sub-RBFN is equal to ( 2)s sm d⋅ + , where ms is the number of RBFs in the s-th 

Sub-RBFN, and ds is the number of input variables actually used by this s-th Sub-
RBFN. Table 1 shows the number of parameters used in each one of the architectures 
of Fig. 3 using (for fair comparison) a total number of 24 RBFs for each one. We can 
see how even for this simple example with only 4 input variables to share, the differ-
ences can be notable (the number of parameters can be doubled). The hierarchical 
structure Multi-RBFN is thus capable of decreasing the number of parameters to op-
timize, provided that the selected structure is the most suitable one for the given set of 
I/O data examples.  
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In this paper we are concerned exclusively with the selection of the most suitable 
Multi-RBFN structure. However, some remarks could be made about the optimization 
of the rest of the parameters of the net, i.e. RBF centres, RBF radii and RBF weights. 
To optimize the centres of each RBF of each Sub-RBFN, it is common to use cluster-
ing algorithms such as the one presented in [6]. For the radii, several heuristics have 
been proposed in the literature such as the k-nearest neighbour technique [10]. Once 
the parameters of centres and radii of each Sub-RBFN has been initialized we can use 
a linear optimization method for optimizing the values of the weights that minimize 
the least square errors, since the Multi-RBFN topology preserves the linearity of the 
output functions w.r.t the RBF weights, as in the simpler RBFN. In the next section, 
we will concentrate on the problem of estimating the suitable hierarchical Multi-
RBFN topology from a given I/O data set, i.e. which input variables should we use 
and which of them go together in every Sub-RBFN. 

Table 1. Number of parameters between different architectures Multi-RBFN 

Fig # #Sub-
RBFNs 

#RBF in each 
Sub-RBFN 

#var. in each 
Sub-RBFN 

#parm in each 
Sub-RBFN 

#parm in  
Multi-RBFN 

6 1 18 
6 1 18 
6 1 18 

2a 4 

6 1 18 

72 

6 1 18 
12 2 48 2b 3 
6 1 18 

84 

12 2 48 2c 2 
12 2 48 

96 

2d 1 24 4 144 144 

3   Input Variable Selection for the Multi-RBFNs 

An input variable selection method tries to reduce the dimension of the input variable 
space and creates a new input variable set, thus identifying and removing as much 
irrelevant and redundant data as possible, which reduces the dimensionality of the 
data and allows learning algorithms to operate faster and more effectively.  

In this section we propose a new method for input variables selection for the prob-
lem of function approximation, and more specifically for our Multi-RBFN system. 
This method considers a simple calculation to select the input variables, trying to 
relate each possible input dimension of the data {x1 ,…,xd} with the dependent vari-
able y, dividing the data in every dimension xi in p parts 

( ){ }1    1, , ; 1,..., ; 1,...,j k j
i ii

P x P k K i d j p− ≤ < = = =  (4) 

where K is the number of I/O data and ( )k

i
x  is the i-th component of the k-th input 

vector; and associating the data of each part to his corresponding output data 
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( ){ } ( )1,k k j k j
i ii i

x y P x P− ≤ <  (5) 

The next step is the calculation of the distance j
iD  between the maximum and the 

minimum values of the output in each partition of the input variable xi. Finally, for 
each input variable xi we calculate the mean of those distances iD . The smaller iD , 

the more important the input variable is for the problem, since this implies that the 
other variables affect very little to the output variable for every fixed value (partition 
interval) of xi. Fig. 4 shows, in a schematic way, the general description of the pro-
posed IVS method. 

 

θ>  

 

Fig. 4. General description of the IVS method 

Finally, to select which input variables should be together in each Sub-RBFN of 
the hierarchical Multi-RBFN structure, we can use the mean distances obtained for 
each input dimension, so when two or more input variables have a similar mean dis-
tance values, these variables will be assigned the same Sub-RBFN.  

4   Simulation Examples  

In order to facilitate the understanding of the proposed IVS method, we will take an 
example with 6 possible input variables to choose from. Let us consider a set of 
25000 I/O data pairs randomly taken from the function  

1 2 3 4 5 6 1 2 3 4 5 6( , , , , , ) sin(2 ) 2 .exp( 5 ) 0 0.0001f x x x x x x x x x x x xπ= + − + +  (6) 

where each input variable is defined in the interval [0,1].  
Fig. 5 shows the graphical representation of the output variable w.r.t. every input vari-

able, which we have partitioned into 20 intervals. After the calculation of the mean dis-
tance for each one of the 6 input variables, we obtain the results given in Table 2. 

Table 2. Mean distance results obtained for the example 

Input Variable x1 x2 x3 x4 x5 x6 
Mean Distance 0.68 0.68 0.79 0.80 0.90 0.91 
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From Fig. 5 we can see that the “spectrum” for x5 and x6 is practically “flat” mean-
ing that they can be considered as noisy variables. This is corroborated by the big 
mean distance value obtained for these two variables by the algorithm. Therefore, the 
algorithm will automatically discard those variables and will choose 1 2 3 4, , ,x x x x  as 

the possible input variables for this problem, which is the correct decision, as can be 
easily verified from Eq. (6).  

 

 

 

Fig. 5. Function output with respect to every input dimension 

 

  

 

Fig. 6. Obtained hierarchical Multi-RBFN structure for the example 
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Now the algorithm evaluates the similarity in the mean distance values, and con-

cludes that the variables { }3 4,x x  should be put together in one Sub-RBFN in the hier-

archical Multi-RBFN structure, and that the variables { }1 2,x x  should also be the in-
puts to a new Sub-RBFN. Thus, the algorithm will select as the most suitable archi-
tecture the one depicted in Fig. 6. Once again, from Eq. (6), it is clear that this is the 
best architecture that we could have chosen for this problem. 

5   Conclusions 

A fundamental limitation in the problem of approximation systems is that when the 
number of input variables increases, the number of parameters usually increases in a 
very rapid way, even exponentially. This phenomenon prevents the use of the major-
ity of conventional modelling techniques and forces us to look for more specific solu-
tions. To deal with this problem, we have searched for new architectures for model-
ling complex systems in function approximation problems. The new hierarchical 
network proposed is composed of complete Radial Basis Function Networks that are 
in charge of a reduced set of input variables. For this architecture, we have proposed a 
new method to select the more important input variables, thus reducing the dimension 
of the input variable space for each RBFN. We have also provided a method which 
automatically finds the most suitable topology of the proposed hierarchical structure 
and selects the more important input variables for it.  
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Abstract. In this paper, we deal with the problem of function approximation 
from a given set of input/output data. This problem consists of analyzing these 
training examples so that we can predict the output of the model given new in-
puts. We present a new method for function approximation of the I/O data using 
radial basis functions (RBFs). This approach is based on a new efficient method 
of clustering of the centres of the RBF Network (RBFN); it uses the objective 
output of the RBFN to move the clusters instead of just the input values of the 
I/O data. This method of clustering, especially designed for function approxi-
mation problems, improves the performance of the approximator system ob-
tained, compared with other models derived from traditional algorithms.  

1   Introduction 

Function approximation is the name given to a computational task that is of interest to 
many sciences and engineering communities [1]. Function Approximation consists of 
synthesizing a complete model from samples of the function and its independent vari-
ables [2]. In supervised learning, the task is that of learning a mapping from one vec-
tor space to another with the learning based on a set of instances of such mappings. 
We assume that a function F does exist and we endeavour to synthesize a computa-
tional model of that function. As a general mathematical problem, function approxi-
mation has been studied for centuries. However, some knowledge of the function to 
be approximated is usually assumed, depending on the specific problem. For example, 
in pattern recognition, a function mapping is made whose objective is to assign each 
pattern in a feature space to a specific label in a class space.  

When one makes no assumptions about a model of the function to be approxi-
mated, mathematical theory can only provide interpolation techniques such as 
Splines, Taylor expansions, Fourier series, etc. Under this assumption, we can also 
make use of the so called model-free systems. These systems include neural networks 
and fuzzy systems, among others.  

Radial Basis Function Networks (RBFNs) can be seen as a particular class of Artifi-
cial Neural Networks ANNs. They are characterized by a transfer function in the hidden 
unit layer having radial symmetry with respect to a centre. The basic architecture of an 
RBFN is a 3-layer network. The output of the net is given by the following expression:  
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every RBF. The basis function φ  can be calculated as a gaussian function using the 

following expression:  
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where c  is the central point of the function φ and r is its radius.  
RBFNs are universal approximators and thus best suited for function approxima-

tion problems. In general an approximator is said to be universal if it can approximate 
any continuous function on a compact set to a desired degree of precision. 

The technique of finding the suitable number of radial functions is very complex 
since we must be careful of not producing excessively large networks which are inef-
ficient and sensitive to over-fitting and exhibit poor performances. 

When the values of c  and r of the basis functions are known it is possible to use a 
linear optimization method for finding the values of wi that minimize the cost function 
computed on the sample set. This method relies on the computation of the pseudo-
inverse matrix.  

Other methods proposed in the literature try to optimize also the centre values of 
the RBFs. For instance, in [3] Chen et al. propose an alternative learning procedure 
based on the orthogonal least-squares method. The procedure chooses radial basis 
function centres one by one in a rational way until an adequate network has been 
constructed; each selected centre maximizes the increment to the explained variance 
or energy of the desired output and does not suffer numerical ill-conditioning prob-
lems. Orr in [4] selects the centres among the samples of the basis functions that most 
contribute to the output variance. Another solution to this problem is to cluster similar 
samples of the input data together. Every cluster has a centroid, which can then be 
chosen as the centre of a new RBF. We can find in the literature some unsupervised 
clustering algorithms such as k-means [5], fuzzy c-means [6], enhanced LBG [7], and 
also some supervised clustering algorithms such as the Clustering for Function Ap-
proximation method (CFA) [8], the Conditional Fuzzy Clustering algorithm (CFC) [9] 
and the Alternating Cluster Estimation method (ACE) [10]. 

In this paper we present a new method for function approximation from a set of I/O 
data using radial basis functions (RBFs). This approach is based on a new efficient method 
of clustering of the centres of the RBF Network; it uses the target output of the RBFN to 
migrate and fine-tune the clusters instead of just the input values of the I/O data. This 
method of clustering, especially designed for function approximation problems, calculates 
the error committed in every cluster using the real output of the RBFN trying to concen-
trate more clusters in those input regions where the approximation error is bigger, thus 
attempting to homogenize the contribution to the error of every cluster. 

After this introduction, the organization of the rest of this paper is as follows. Sec-
tion 2 presents an overview of the proposed algorithm. In Section 3, we present in 
detail the proposed algorithm for the determination of the pseudo-optimal RBF 
parameters. Then, in Section 4 we show some results that confirm the goodness of the 
proposed methodology. Some final conclusions are drawn in Section 5.  
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2   Overview of the Proposed Algorithm 

As mentioned before, the problem of function approximation consists of synthesizing 
a complete model from samples of the function and its independent variables. Con-
sider a function ( )y f x=  where x  is a vector ( 1,..., nx x ) in n-dimensional space from 

which there are available a set of input/output data pairs. The idea is to approximate 
these data with another function ( )F x . The accuracy of the approximation is gener-

ally measured by a cost function which takes into account the error between the out-
put of the RBFN and the target output. In this paper, the cost function we are going to 
use is the so-called Normalized Root Mean Squared Error (NRMSE). This perform-
ance index is defined as: 

2 2

1 1

( ( )) / ( )
P P

i i i
i i

NRMSE y f x y y
= =

= − −  (3) 

where y  is the mean of the target output and p is the data number. 

The objective of our algorithm, which is inspired in the CFA algorithm, is to in-
crease the density of clusters in the input domain areas where the target function is 
less accurately approximated, rather than just in the zones where there are more input 
examples, as most unsupervised clustering algorithms would do, or in zones where 
more variability of the output is found, as it is the case of CFA. 

The RBFN universal approximation property states that an optimal solution to the 
approximation problem can be found, which minimizes the NRMSE. In order to find 
the minimum of the error function, the RBFN is completely specified by choosing the 
following parameters: the number m of radial basis functions, the centres c  of every 
RBF, the radius r, and the weights w. 

The number of RBFs is a critical choice. In our algorithm we have used a simple 
incremental method to determine the number of RBFs. We will stop adding new 
RBFs when the approximation error falls below a certain target error, in our case 
NRMSETARGET=0.1. As to the rest of the parameters of the RBFN, in Section 3 we pre-
sent a new clustering technique especially suited for function approximation problems.  

The basic idea we have developed is to calculate the error committed in every clus-
ter using the real output of the RBFN to compute the error for each training data be-
longing to the cluster, and concentrating more clusters in those input regions where 
the cluster error is bigger. Fig. 1 presents a flow chart with the general description of 
the complete incremental algorithm. 

3   Parameter Adjustment of the RBF Network 

The locality property inherent to the Radial Basis Functions allows us to use a cluster-
ing algorithm to obtain the RBF centres. Clustering algorithms may get stuck in a 
local minimum ignoring a better placement of some of the clusters, i.e., the algorithm 
is trapped in a local minimum which is not the global one. For this reason we need a 
clustering algorithm capable to solve this local minima problem. To avoid this prob-
lem we endow our supervised algorithm with a migration technique. This modifica-
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tion allows the algorithm to escape from local minima and to obtain a prototype allo-
cation independent of the initial configuration.  

To optimize the other parameters of the RBFN (the radius r and the weights w) we 
used well-known heuristics such as the k-nearest neighbour technique (knn) for the 
initialization of the radius of each RBF, and some conventional techniques such as 
singular value decomposition (SVD) to directly optimize the weights. Finally, local 
minimization routines such as the Levenberg-Marquardt algorithm are finally used to 
fine-tune the obtained RBFN.  

Therefore, in this section we will concentrate on the proposed clustering algorithm. 
In Fig. 2, we show a flowchart representing the general description of our clustering 
algorithm. 

Confirm the Structure 

Begin with 1 RBF 

Calculate the RBFNNs parameters: 
- Centers using the proposed clustering algorithm. 
- Radius using K-nearest neighbours  Knn 
- Weights using sigular value descomposition SVD 

No 

Yes

Calculate the Error NRMSEt 

t TARGETNRMSE NRMSE<

Add 1 RBF

Stop 

 

Return the final Clusters Cj 

Perform Migration of the Clusters  

Perform Local Displacement of the Clusters  

Perform Local Displacement of the Clusters  

D ← ∞

Initiate the Clusters using K-means  

DDant ←

Calculate the Distortion D  

/ ?a ntD D D ε− <

No 

Yes

 

Fig. 1. General description of the algorithm 
 

Fig. 2. General description of the proposed 
clustering algorithm 

 
As can be seen from this figure, the initial values of the clusters are calculated us-

ing the k-means clustering algorithm followed by a local displacement process which 
locally minimizes the distortion (D) within each cluster (see Fig. 3), which is defined as: 

2

1

1

i j

i j

m

i j ij
j x C

m

ij
j x C

x c E

D
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= ∈

−
=  (4) 



 Approximating I/O Data Using RBFs: A New Clustering-Based Approach 293 

 

where m is the number of RBFs (clusters), jc  is the centre of cluster Cj and Eij is the 

error committed by the net when the input vector ix  belongs to cluster Cj. 

( , , )E y f x w= − Φ  (5) 

In the Local Displacement of the Cluster Centres, we start by making a hard parti-
tion of the training set, just as in the k-means algorithm. This partition produces a 
Voronoi partition of the training data set. The second step of the process of local dis-
placement is the calculation of the error of the RBFN using the the K-nearest 
neighbours algorithm to initiate the radii and the singular value decomposition to 
calculate the weights of the RBFs.  

After this process we must update the cluster centres in order to minimize the total 
distortion (4). The algorithm stopped when the value of the distortion is less than the 
value of an threshold .  

 

Update the Clusters  

Perform the Partition of the Training set. 

∞←D  

DDant ←

 

Calculate the Error of the RBFN, using (KNN) to initiate the Radius 
and (SVD) to calculate the weight of the RBFN  

Calculate the Distortion D 

/ ?antD D D ε− <  

Return the new Cluster Cj 

No

Yes 

Perform the Partition of the Training set 

Calculate the Error of the RBFN, using (KNN) to initiate the 
Radius and (SVD) to calculate the weight of the RBFN

 

 

Stop the Migration

Select all the Clusters that they have U < 1

Calculate the Distortion Dj and the Utility Uj, 

Yes

No 

No 

Reject the Migration  Confirm the migration

Yes

Select all the Clusters that have (U > 1)

Select one (U<1) using roulette wheel selection 

Calculate the probability of every Cluster that has U>1 

maxU  Has maximum probability. 

Calculate the probability of every Cluster that has U<1
Has maximum probability. 

minU 

Any cluster with U< 1?

Calculate the Distortion Dj 

Perform Local Displacement of the Clusters

Used K-means to repatition the data

Move the selected cluster with (U<1) to the zone of the 
cluster selected with (U>1).

Select one (U>1) using the roulette wheel selection 

Any cluster with U > 1? 

Yes

No

Has the Distotion
improved?

 

Fig. 3. Local Displacement of the Clusters Fig. 4. The Migration Process 
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This is carried out by an iterative process that updates each cluster centres as the 
weighted mean of the training data belonging to that cluster and we repeat this proc-
ess until the total distortion of the net reaches a minimum. 

/
i m i m

m im i im
x C x C

c E x E
∈ ∈

= ⋅  
(6) 

The migration process migrates clusters from the better approximated zones toward 
those zones where the approximation error is worse, thus attempting to make equal 
their contribution to the total distortion. Our main hypothesis is that the best initial 
cluster configuration will be the one that equalizes the approximation error committed 
by every cluster. To avoid local minimums, the migration process uses a pseudo-
random selection of the cluster to migrate, being the probability of choosing a given 
cluster inversely proportional to what we call “the utility” of that cluster, which is 
defined as 

/ 1,... ,j jU D D j m= =  (7) 

In this way, the proposed algorithm selects one cluster that has utility less than one 
and moves this cluster to the zone nearby a new selected cluster having utility more 
than one (see Fig. 4). This migration step is necessary because the local displacement 
of clusters only moves clusters in a local manner. It should be noted that using the k-
means algorithm to divide the data that belonged to the zone that receives the new 
cluster is less complex and need less execution time than others migration algorithms 
such as ELBG and CFA. 

4   Example of the Proposed Procedure 

Let us consider the function [8] 

[ ]1( ) sin(2 ) / 0,10xf x x e xπ= ∈  (8) 

This has been chosen to demonstrate the importance of the equidistribution of the 
approximation errors throughout the clusters. This function (see Fig. 5a), has a very 
variable output when the input x is near to the value zero. 

To test the effects caused by the proposed algorithm on the initialization and avoid 
local minima on the placement of the clusters, a training set of 2000 samples of the 
function was generated by evaluating inputs taken uniformly from the interval [0,10], 
from which we have removed 1000 points for validation.  

The results of the proposed algorithm compared with the CFA algorithm, which re-
sulted to be the best algorithm for this example in [8], with minµ  = 0.001, are repre-
sented in Table 1. In the table, NRMSEC is the NRMSE of the training data after the 
clustering process is concluded. NRMSET is the final error index (for 10000 test data) 
obtained after the application of the Levenberg–Marquardt method. It must be noted, 
that both clustering algorithms were designed to provide an initial RBF configuration 
to be subsequently optimized using a local optimization method in order to find the 
global minimum. Std are the standard deviation of the error indices using 5 executions 
of both algorithms. Finally, TimeC is the clustering process execution time (in sec-



 Approximating I/O Data Using RBFs: A New Clustering-Based Approach 295 

 

onds). As can be seen from the table, the proposed algorithm reaches better approxi-
mations using less time than the CFA algorithm, in all cases. 

 

      

Fig. 5. a) Objective function. b) Approximation with 6 RBFs 

Table 1. Comparison between CFA and the proposed approach 

m NRMSEC Std NRMSET Std TIMEC NRMSEC Std NRMSET Std TIMEC 

2 1.0 0.0 0.77 1E-1 0.27 1.01 2E-3 1.45 2E-8 8.1 
3 0.99 1E-6 0.67 1E-1 0.38 1.00 6E-4 0.70 3E-2      8.2 
4 1.00 1E-4 0.17 6E-2 1.11 1.00 3E-3 0.18 6E-2 13.5 
5 0.90 7E-5 0.15 8E-2 1.17 0.98 1E-2 0.23 5E-3 30.4 
6 0.88 7E-3 0.07 9E-3 1.39 0.96 8E-3 0.09 1E-3 50.2 
 Proposed Approach CFA 

As an example of the learning process, in Fig. 6a we can see the initial distortion 
distribution for the case of 6 equally distributed RBFs, which is the first configuration 
whose approximation error falls under the target error. Fig. 6b represents the same 
information when the clustering process has ended. We can now see the advantage 
that we can expect from the fact of making each cluster to have an equal contribution 
to the total distortion, which is the objective of the proposed clustering algorithm. 
Finally, 5b represents the approximation of the net using 6 RBFs. We can see how the 
net is capable of making practically a perfect approximation.  

            

Fig. 6. a) The distortion before the migration              b) The distortion after the migration 
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5   Conclusions 

In this paper we have proposed an algorithm of clustering especially suited for func-
tion approximation problems. This method calculates the error committed in every 
cluster using the real output of the RBFN, and not just an approximate value of that 
output, trying to concentrate more clusters in those input regions where the approxi-
mation error is bigger, thus attempting to homogenize the contribution to the error of 
every cluster. This algorithm is easy to implement and is superior in both performance 
and computation time to other algorithms such as the CFA method. We have also 
shown how it is possible to use this algorithm to find the minimal number of RBFs 
that satisfy a certain error target for a given function approximation problem. 
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Abstract. In this paper the behaviour of a multiobjective cooperative-
coevolutive hybrid algorithm for the optimization of the parameters defining a 
Radial Basis Function Network developed by our group, is analyzed. In order to 
demonstrate the robustness of the behaviour of the presented methodology 
when the parameters of the algorithm are modified, a statistical analysis has 
been carried out. In the present contribution, the relevance and relative 
importance of the parameters involved in the design of the multiobjective 
cooperative-coevolutive hybrid algorithm presented are investigated by using a 
powerful statistical tool, the ANalysis Of the VAriance (ANOVA). To 
demonstrate the robustness of our algorithm, a functional approximation 
problem is investigated. 

1   Introduction 

Evolutionary Computation (EC) [1] is one of the most important paradigms for the 
design of neural networks. Although this paradigm can be improved for certain types 
of problems, especially when different specialized subcomponents are involved in the 
problem solving strategy, as is the case with neural networks. 

The Cooperative Coevolutionary paradigm [2] uses individuals that represent only 
a part of the solution and evolve in parallel, competing to survive but at the same time 
cooperating to find a common solution. We have proposed [3],[4] a new cooperative 
coevolutionary approach to find the optimal parameters of a Radial Basis Function 
Networks (RBFN). 

A RBFN [5],[6], implements the function f : Rn  R, that can be described, as it is 
shown in Figure 1, by the affined mapping: 

=

=
m

i
ii xwxf

1

)()( φ  (1) 

where the m radiall1y-symmetric basis functions φi, are often taken to be translated 

dilations of a prototype radial basis function φi :R
n  R  i.e. )()( iiii dcxx −= φφ , 
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where ic  ∈ Rn is the center of basis function φi, di ∈ R is a dilation of scaling factor 

for the radius icx − , and  is typically the Euclidean norm on Rn. From all the 

possible choices for φi [7], the Gaussian function φ(r)=exp(-r2), that was first used 
during the 80s [5], is the one used in this paper as Radial Basis Function (RBF). 

Our coevolutionary procedure [3][4] follows the same strategy described in [8] but 
improves the approach with some new contributions like the definition of credit 
apportionement and the use of a rule based system (FRBS) to determine the possiblity 
of applying a given operator over a certain RBF.  

In order to validate the experimental results of the presented algorithm when the 
parameters within its design are modified, a precise understanding of the significance 
of the different alternatives has been carried out by using a statistical tool. The 
ANalysis Of VAriance (commonly referred to as ANOVA) is one of the most widely 
used statistical techniques. The theory and methodology of ANOVA was developed 
mainly by R.A. Fisher during the 1920s [9]. ANOVA belies its name in that it is not 
concerned with analyzing variances but rather with analyzing the variation in means. 
ANOVA examines the effects of one, two or more quantitative or qualitative variables 
(termed factors) on one quantitative response. ANOVA is useful in a range of 
disciplines when it is suspected that one or more factors affect a response. The 
ANOVA is essentially a method of analysing the variance to which a response is 
subject into its various components corresponding to the sources of variation which 
can be identified. 

In this paper the results of our coevolutionary algorithm are tested with ANOVA to 
demostrate its robustness. 

1. Initialize RBFN 
2. Train weights of the RBFN with LMS 
3. Evaluate RBFs 
4. Select the worst RBFs 
5. Apply operators to the worst RBFs 
6. Substitute the RBFs that were eliminated 
7. Train weights of the RBFN with LMS 
8. If the stop-condition is not verified go to 

step 3, else go to 9 
9. Apply Levenberg-Marquardt 

Fig. 1. Detailed algorithm for the design of the RBFNs 

The organization of this paper is as follows. Section II is a brief summary of the 
proposed algorithm In Section III a statistical analysis ANOVA of the main 
parameters that define the algorithm is shown. Finally, the conclusions of the paper 
are discussed in Section IV. 
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2   Proposed Algorithm 

The major step of our algorithm, already presented in [3],[4], are shown in Figure 1. 
In what follows, we provide the main details of these steps. 

2.1   Evaluate RBFs 

Like credit allocation mechanism (value allocated to each individual according to its 
contribution to the final solution), we define three parameters for each RBF φi.  

• ai: measures the contribution of the base function to the output of the network. 
• ei: gives the error in the basis function radius. 
• oi: evaluates the overlapping among RBFs. 

The contribution, ai, of the RBF φi, i=1,...m, is determined by considering its 
weight wi and the number of points of the training set inside its radius, pri. Thus, a 
parameter rai can be defined as: 

)/(·|| prprwra iii =  (2) 

where pr  is the average of the values pri, i=1,..,m; and ai can be expressed as 

daraa ii /=  (3) 

where the parameter da allows the normalization of ai inside the interval [0,1]. This 
normalization is required to assure an adequate level of performance for a FRBS 
(Fuzzy Rule Based System) used in our procedure (as described bellow). To 
determine da, three factors will be taken into account: the average of the rai ( ra ), the 

standard deviation of the current values rai ( )(raS ), and the zone of the interval [0, 1] 

where we want to move the ai values. The aim is to place this new average in the 
upper zone of the interval [0, 1] so that any individual of the population having a 
factor ai near to this average does not suffer much pressure and can maintain the 
evolutionary line. 

Therefore da can be expressed as follows: 

)/·( BfraA

ra
da =  (4) 

where fra = )(raS / ra . A and B set the zone of the interval to move the ai values. 

The error measure, ei, for each RBF φi, is obtained from the normalized root mean 
square error nrmsei of the data points inside the radius of the RBF, as well as the 
standard deviation error, )( ierS , also inside the radius of the RBF. Thus, the error rei 

is defined as: 

))(/)((· erSerSnrmsere iii =  (5) 

 



300 A.J. Rivera, I. Rojas, and J. Ortega 

 

where )(erS  is the average of the values )( ierS . In the same way: 

deree ii /=  (6) 

and the parameter de can be expressed as: 

)//( BfreC

re
de =  (7) 

where re  is the average of the parameters rei, )( ireS  is their standard deviation and 

fre = )( ireS / re . B and C set the zone of the interval to move the ci values. 

Any overlapping among the RBF φi and other RBFs is quantified by using the 
parameter oi. The parameter oi is expressed as: 

=
m

j

iji oo  (8) 

where m is the number of RBFs, and sij measures the overlapping among the RBFs φj, 
j=1,...,m, and φi: 

<−−−=
wiseother

difd
o ijiiji

ij
φφφφ

0

)1(  (9) 

where || · || is the Euclidean distance between the two basis functions, and di is the 
radius of the basis function φi. 

2.2   Applying the Operators to the Set of Worst Basis Functions 

In the present implementation of our procedure only two operators are defined to be 
applied: 

• Operator REMOVE: It simply eliminates the RBF used as operand. 
• Operator ADAPT: This operator adapts the radius and center of the RBF. These 

modifications are based on a simplified version of the LMS algorithm [10]. 

As it has been said, to decide about the application of an operator to a basis 
function, a FRBS [11] is used. This way, the parameters ai, ei and oi are the inputs to 
the fuzzy system. These inputs respectively define the linguistic variables vai, vei and 
voi. Moreover, two outputs are defined. The output vremove gives the probability of 
applying the operator REMOVE, while the output vadapt gives the probability of 
applying the operator ADAPT.  

The set of linguistic labels {Low, Medium, High} is used for each input. These 
three linguistic labels define their own fuzzy sets. With respect to the outputs, the set 
of linguistic labels {Low, Medium-Low, Medium-High, High} is considered. The 
number of linguistic labels has been empirically determined, with centres and bases 
directly related to their meaning.  

 



 Application of ANOVA to a Cooperative-Coevolutionary Optimization of RBFNs 301 

 

With regards to the inference engine, we have used a Mandani Type one [12]. This 
reasoning mechanism is configured considering the Max function as the T-conorm 
and the Min function as the T-norm. 

3   Analysis of the Experimental Results 

To prove the robustness of our algorithm the bidimensional function approximation is 
considered. Concretely function f4, reported in [13] and defined by the following 
equation, had been chosen: 

[ ]2,2,
)sin(5.3

)32sin(1
),( 21

21

21
214 −∈

−+
++= xx

xx

xx
xxf  (10) 

For the ANOVA statistical study, the factors considered are:  

• nrbfs: number of radial basis units in the hidden layer. 
• fda: this factor is taking into account to measure the influence of da, expression 

(4), that allows the normalization of ai inside the interval [0, 1]. The usual value 
of fda, 1.5, is obtained by operating with the constants A and B of the 
expression (4). 

• fde: in the same way, this factor measures the influence of de, expression (7), 
that normalizes ei inside the interval [0, 1]. The usual value of fde is 0,125 and is 
obtained by operating with the constants B and C of the expression (7). 

• sld: is a non numeric factor, that contains the linguistic labels and their 
membership functions of  the inputs variables of the FRBS. Usually sld1 is used. 

The response variable used to perform the statistical analysis is the mean square 
error in the output of the neural network system, when some of the levels of the factor 
considered vary with respect to a reference design. The changes in the response 
variable are produced when a new combination of the parameters fda, fde, sld or nrbfs 
are used. 

To carry out the statistical study, a selection is made from a set of representative 
alternatives for each factor to be considered. By analyzing the different levels of each 
of these factors it is possible to determine their influence on the characteristics of the 
RBFN output.  Table 1 and Figure 2 gives the different levels considered for each 
factor when carrying out multifactorial ANOVA.  

Table 1. Levels of each factor considered in the statistical analysis 

Factor Level 0 Level 1 Level 2 Level 3 Level 4 
Fda 1.05 1.275 1.5 1.725 1.95 
Fde 0.0875 0.10625 0.125 0.14375 0.1625 
Sld sld1 sld2 sld3   
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Fig. 2. Levels of factor sld 

Table 2. ANOVA table of the main factors and iterations 

Source 
Sum of 
Squares 

DF Mean Square F-
Ratio 

Sig. 
Level 

Main Factors  
A: prac 0,00031447 4 0,00007861 0,80 0,5259 
B: prerr 0,00002238 4 0,00000559 0,06 0,9939 
C: sld 0,00007844 2 0,00003922 0,40 0,6712 
D: nrbfs 18,8405 3 6,28016 63913 0,0000 
Significant Interactions  
AB 0,00120626 16 0,00007539 0,77 0,7221 
AC 0,00031363 8 0,00003920 0,40 0,9205 
AD 0,00109188 12 0,00009098 0,93 0,5222 
BC 0,00184766 8 0,00023095 2,35 0,0192 
BD 0,00133659 12 0,00011138 1,13 0,3345 
CD 0,00028219 6 0,00004703 0,48 0,8241 
Residual 0,0220244 224 0,00009832   
Total 18,869 299    

Table 2 gives the four-way variance analysis for the whole set of combinations for 
the cooperative-coevolutionary optimization algorithm of RBFN presented. The 
analysis of the variance table containing the sum of squares, degrees of freedom, 
mean square, test statistics, etc., represents the initial analysis in a compact form. This 
kind of tabular representation is customarily used to set out the results of ANOVA 
calculations. As can be seen from Table 2, only the number of hidden units present 
statistical relevance, being the remaining non statistically significant factor(e.g, the 
selection between the different alternatives for the parameter fda has no influence on 
the behaviour of the neural network). These conclusions are also confirmed by the 
multiple range tables for the different factors (Table 3, Table 4 and Table 5). By  
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analyzing the different levels of each of the main factors, it is possible to determine their 
influence on the response of the network, enabling levels with the same response 
repercussion to be grouped homogeneously. Within the homogeneous groups column, 
each sub-column represents a different group.  

Table 3. Multiple Range Test analysis for the variable fda 

Level of variable fda LS Media Homogeneous Groups 

1,725 0,283842 X 
1,95 0,284155 X 
1,5 0,28541 X 

1,05 0,286191 X 
1,275 0,286331 X 

Limit to establish significant differences: 0.0036 

Table 4. Multiple Range Test analysis for the variable fda 

Labels of variable fde LS Media Homogeneous Groups 
0,0875 0,284689 X 

0,14375 0,285133 X 
0,125 0,285302 X 

0,10625 0,285312 X 
0,1625 0,285493 X 

Limit to establish significant differences:0.0036 

Table 5. Multiple Range Test analysis for the variable sld 

Levels of variable sld LS Media Homogeneous Groups 
sld1 0,284482 X 
sld3 0,285392 X 
sld2 0,285683 X 
Limit to establish significant differences: 0.0028 

Table 6. Multiple Range Test analysis for the variable nrbfs 

Levels of variable nrbfs LS Media Homogeneus Groups 
20 0,0488078 X    
15 0,133404  X   
10 0,259084   X  
5 0,699447    X 

Limit to establish significant differences: 0.0032 
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Table 6 presents the multiple range test for the several levels of factor 
corresponding to the number of radial basis functions (nrbfs). This table applies a 
multiple comparison procedure to determine which of the means are significantly 
different from the others. Four homogeneous groups are identified using columns of 
X. Within each column, the levels containing X form a group of means within which 
there are no statistically significant differences. This indicates that this parameter has 
a knock-on effect on the behaviour of the neural systems, as expected a priori, 
because by increasing the number of hidden neurons the approximation error is 
decreased. 

From Table 3, Table 4 and Table 5, it is clear that there is only one homogeneous 
group. Therefore, the parameters that are involved in the definition of the presented 
algorithm are not statistically significant, which demonstrates that the methodology is 
robust. 

4   Conclusions 

This paper analyzes a cooperative-coevolutive algorithm in which each individual 
represents only a part of the solution, indeed just only one hidden neuron for the 
design of a Radial Basis Function Network. The robustness of our developed 
procedure is demonstrated with the inclusion of an ANOVA statistical test. 
Throughout this analysis, the parameters within the proposed cooperative 
coevolutionary algorithm have been analyzed, demonstrating that even though the 
nominal values of these parameters are varied, the system is robust and the obtained 
optimization results remain practically unaltered. 

Acknowledgements. This paper has been supported by project TIN2004-01419 of the 
Spanish Ministerio de Ciencia y Tecnología. 
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Abstract. Carbon nanotubes are often seen as the only alternative technology
to silicon transistors. While they are the most likely short-term alternative, other
longer-term alternatives should be studied as well, even if their properties are less
familiar to chip designers. While contemplating biological neurons as an alterna-
tive component may seem preposterous at first sight, significant recent progress in
CMOS-neuron interface suggests this direction may not be unrealistic; moreover,
biological neurons are known to self-assemble into very large networks capable
of complex information processing tasks, something that has yet to be achieved
with other emerging technologies.

The first step to designing computing systems on top of biological neurons is
to build an abstract model of self-assembled biological neural networks, much
like computer architects manipulate abstract models of transistors and circuits.
In this article, we propose a first model of the structure of biological neural net-
works. We provide empirical evidence that this model matches the biological
neural networks found in living organisms, and exhibits the small-world graph
structure properties commonly found in many large and self-organized systems,
including biological neural networks. More importantly, we extract the simple
local rules and characteristics governing the growth of such networks, enabling
the development of potentially large but realistic biological neural networks, as
would be needed for complex information processing/computing tasks. Based on
this model, future work will be targeted to understanding the evolution and learn-
ing properties of such networks, and how they can be used to build computing
systems.

1 Introduction

Carbon nanotubes look like a promising alternative technology to silicon chips because
the manufacturing process, possibly based upon self-assembly, will be much cheaper
than current CMOS processes. On the other hand, these individual components may
turn out to be much slower than current transistors, exhibit lots of manufacturing de-
fects, and may be difficult to assemble into complex and irregular structures like to-
day’s custom processors. Current research are focused on building increasingly large
structures of carbon nanotubes and understanding how they can be transformed into
computing devices.

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 306–317, 2005.
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However, carbon nanotubes, though the most promising and short-term, is not the
only possible alternative to silicon chips. Other emerging technologies, even if they
are less familiar to chip designers, should be explored as well. In this article, we focus
our attention on biological neurons. They share some properties with carbon nanotubes:
they have a low design cost, but they will provide even slower components, a significant
percentage of these components will be similarly faulty, and it will be hard to assemble
them into complex, irregular pre-determined structures. On the other hand, they have a
significant asset over carbon nanotubes: we already know it is possible to self-assemble
them into very large structures capable of complex information processing tasks.

While proposing computing structures based on biological neurons may seem pre-
posterous at first sight, G. Zeck and P. Fromherz [12, 30] at the Max Planck Institute for
Biochemistry in Martinsried, Germany, have recently demonstrated they can interface
standard silicon chips with biological neurons, pass electrical signals back and forth
through one or several biological neurons, much like we intend to do with carbon nan-
otubes, i.e., hybrid carbon nanotures/standard CMOS chips [13]. Moreover, based on
this research work, Infineon (one of the main European chip manufacturers) has re-
cently announced it is investigating a prototype of a chip (called ”NeuroChip”) that can
interconnect a grid of transistors with a network of biological neurons [16], based on
Fromherz’s research work. So, while we will not claim this research direction should
be mainstream, it is certainly worth exploring.

Now, computing machines, such as current processor architectures, are designed us-
ing a very abstract model of the physical properties of transistors and circuits. Typically,
what processor architects really use (e.g., at Intel or other chip manufacturers) is how
many logic gates can be traversed in a single clock cycle, and how many logic gates can
be laid out on a single chip. They do not deal with the complex physics occurring at the
transistor level, they rely upon a very abstract and simplified model of the undergoing
physical phenomena. Similarly, if we want to start thinking about computing systems
built upon biological neurons, we must come up with sufficiently abstract models of
biological networks of neurons that will enable the design of large systems without
dealing with the individual behavior of biological neurons.

The vast literature on artificial neural networks provides little indications on the
structures of biological neural networks [14]. To understand what kind of computing
systems can be built upon biological neurons, we must first understand the kind of struc-
tures into which biological neurons can self-assemble. Consequently, we have turned to
biology for that issue, and the current article is a joint work between computer science
and biology research groups. We start with the biological neural network of a small liv-
ing organism, a worm named Caenorhabditis elegans, which has been described in great
details in [1, 29].1 Based on this work, Oshio et al. [23] have recently built a database
which describes this biological neural network and facilitates its manipulation. Using
this map as an oracle, we define a model of network growth in real space and provide

1 This worm has been subject to intense scientific study as one of the most simple living organ-
ism that retains many of the characteristics of complex organisms, such as a brain, learning
capabilities, and other physiological similarities. As a side note, it is the first organism which
genome has been entirely sequenced.
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empirical evidence that the characteristics of networks built upon this model and the
above mentioned biological network closely match. Since this model describes the net-
work growth using simple local rules, it can be used to represent much larger networks,
as would be needed for computing systems. Note that such models had not yet been
derived by and are not directly useful to biologists: there are many studies on biologi-
cal neural networks, but they focus on the identification of regular biological networks
with clear structures, such as the basic circuit of the visual cortex [10], and they do not
account for the seemingly irregular structure of the vast majority of biological neural
networks. We provide a statistical description of these apparently unstructured biologi-
cal networks, that can be used as a building block for computing systems studies. Future
work will focus on analyzing the evolution and learning properties of neural networks
with such structures.

In Section 2, we present the biological neural network of C. elegans and study its
properties. In Section 3, we build a network model with similar properties, provide em-
pirical evidence that it closely emulates the neural network of C. elegans , and provide
a detailed comparison of the model and its biological counterpart.

2 A Biological Neural Network

C. elegans is a small (millimetric) worm with a simple network of 302 neurons. All
the connections between its neurons have been mapped [1, 29] and are believed to be
relatively well conserved between individual worms. To construct a graph model of this
system, we used the electronic database recently published by Oshio et al. [23]. A part
of this system, comprising 20 neurons and referred to as the ”pharyngeal system” is
dedicated to control rhythmic contractions of a muscular pump that sucks food into the
worm body [1]. This system is almost totally disconnected from the rest of the network.
Following Morita et al. [21], we neglected here the pharyngeal system and only deal
with the remaining 282 neurons. We then further neglected those neurons for which

Fig. 1. Visual illustration of the neural network of C. elegans . Neurons are displayed as nodes
and connections between them are symbolized as links. Spatial positions are arbitrary
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no connection had been described, as well as the connections to non specified cells.
At the end, the network thus consisted of 265 neurons. Unlike Morita et al. [21], we
treated each link as directed, i.e., we differentiated links from neuron i to neuron j
and links from j to i; however, we collapsed multiple identical links into a single one.
In opposition to chemical synapses, which are unidirectional connections, some of the
neuron connections, called electrical synapses or gap junctions, are bidirectional. Here
we treated gap junctions as pairs of links with opposite directions. Overall, we obtain
2335 unique links (or 10234 connections if we allow redundant links with the same
orientation between two neurons).

Figure 1 shows a visual illustration of the corresponding neural network. A visual
inspection of this figure, especially the peripheral nodes,2 indicates that the network is
rather heterogeneous: strongly connected nodes coexist with sparsely connected ones.
We further tried to estimate the nature of the probability distribution of the connectivity
(or graph degree), as it plays a fundamental role in characterizing the network type.
The probability distribution of the connectivity in C. elegans neural network has been
controversial. A first study claimed the distribution was compatible with a power-law
(graphs determined by power-law distributions are also called “scale-free” graphs) [3].
Not long after, this result was contradicted by an article from H.E. Stanley’s team that
studied outgoing and incoming connectivity separately (and ignored gap junctions)
and showed that both distributions were exponential, thus excluding scale-free prop-
erties [2]. Finally, Morita et al. put forward correlations among incoming, outgoing and
gap junctions to explain that the total degree (incoming + outgoing + gap junctions) was
neither exponential nor displayed a clear power law decrease [21]. Figure 2 presents the
distribution of the total connectivity for C. elegans neural network (white squares). The
center panel is a replot of the left one, in log-log coordinates. A power law decrease
would yield a straight line in this representation, which is clearly not the case. Fur-
ther, the right panel is another replot of the same data, in log-linear coordinates. Here,
a straight line would indicate an exponential decrease. A clear exponential decrease is
not apparent from this panel. Thus, our results confirm that connectivity distribution for
C. elegans neural network is neither scale-free nor clearly exponential.

We will see in the next section that additional network characteristics are necessary
to emulate this network structure; more importantly, we will extract the simple local
rules governing the network growth, enabling the development of potentially large but
realistic biological networks using the same rules.

3 A Model of Biological Neural Networks

Small-World graphs and neural networks. The global behavior of most large systems
emerges from local interactions between their numerous components. At an abstract
level, these systems can often be viewed as graphs, with each link representing the in-
teraction between two components. Such graph theory approaches have proven success-

2 On paper, the core of the network structure is barely visible, but on a screen, it can be inspected
through zooming and 3D manipulations; however the peripheral structure is the same as the
core structure.
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Fig. 2. Cumulated distributions of the connectivity, P (x > k), where k is the connectivity (i.e.,
the number of links to and from each node), for the C. elegans neural network (white squares);
the black squares curve corresponds to the network model later introduced and commented in
Section 3. The same data are presented as a linear-linear (A), a log-log (B) and log-linear plot (C)

ful in understanding the global properties of several complex systems originating from
highly disparate fields, from the biological to social and technological domain. Hence
the same (or similar) reasonings can be applied to understand cell metabolism [17], the
citation of scientific articles [22], software architecture [27], the Internet [3] or elec-
tronic circuits [5]. A common feature of all these networks is that their physical struc-
ture reflects their assembly and evolution, so that their global features can be understood
on the basis of a small set of simple local rules that control their growth. The most com-
mon statistical structures resulting from these local rules are the so-called small-world
and scale-free networks. Small-world properties characterize networks with both small
average shortest path and a large degree of clustering, while scale-free networks are
defined by a connectivity probability distribution that decreases as a power law (more
formal definitions will be given in the following). At a much coarser grain, graph the-
ory methods have recently been applied to networks of cortical areas [26, 11],3 i.e., not
networks of neurons but networks of neuron areas, with the prospect of understanding
the network functions. Since we target the characterization of networks of biological
neurons, we study the neural network of the millimetric worm C. elegans at the level
of individual neurons, and attempt to derive a network growth model that closely emu-
lates it.

Most complex networks can be categorized into four families [4]. In random net-
works (also known as Erdős-Rényi graphs), two nodes i and j are connected with a
predefined probability independently of all others. These graphs are characterized by
short paths between two nodes (denoted λ) and a low clustering (denoted 〈C〉). On the
opposite, regular graphs (where each node has the same connectivity) are characterized
by a high clustering and a large average shortest path. Between these two extremes,

3 Cortical areas are functionally related zones of the cortex that contain approximately 108

neurons.
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small-world graphs display both small average shortest paths and a high degree of clus-
tering. For most small-world networks, P (k), i.e., the probability distribution of the
connectivity k, decreases very quickly (exponentially) beyond the most probable value
of k, which thus sets the connectivity scale. However, in some graphs (such as the Inter-
net), P (k) decreases as a power-law of k (P (k) ∝ k−γ), i.e., in a much slower way. In
this case, nodes with a very high connectivity (hubs) can also be present with a signif-
icant probability so that the connectivity does not display a clear scale, hence the term
“scale-free” networks.

We now formally introduce the parameters of a network model. Besides the number
of nodes N and number of links K, the structural characteristics of complex networks
are mainly quantified by their link density ρ, average connectivity 〈k〉, connectivity
distribution P (k), average shortest path λ and average clustering coefficient 〈C〉 [25].
The network density ρ is the density of links out of the N(N − 1) possible directed
links4 (recall multiple links between two nodes are considered a unique link and self-
connections are forbidden)

ρ = K/
(
N2 −N

)
(1)

The connectivity (or degree) ki of node number i is the number of links coming from or
directed to node i. P (k) is the probability distribution of the ki’s and 〈k〉 their average
over all the nodes in the network. Let d(i, j) be the shortest path (in number of neurons)
between neuron i and j, then λ is its average over the network

λ = 1/
(
N2 −N

)∑
i,j

d(i, j) (2)

The clustering coefficient of a node iwith ki (incoming plus outgoing) connected neigh-
bors is defined by

Ci = Ei/
(
k2

i − ki

)
(3)

where Ei is the number of connections among the ki neighbors of node i, excluding the
connections between a neighbor and node i itself. The average clustering coefficient
〈C〉 is the average of the Ci’s over all nodes and expresses the probability that two
nodes connected to a third one are also connected together (degree of cliquishness).

The main structural characteristics of the C. elegans neural network are indicated
in Table 1. Compared to a random network with the same density, this neural network
has a similar average shortest path but the clustering has increased almost fivefold. This
means that, in the C. elegans neural network, one neuron can reach any other neuron
in only three connections on average. This is a clear sign of small-world properties.
Considering the network is treated here as a directed graph, these results are coherent
with previously published estimates [28, 9].

In biological neural networks, distance matters. In order to design a network growth
model of the C. elegans neural network that achieves small-world properties, we have
found that taking into account the physical distance between two nodes (neurons) is

4 Each node can have at most N − 1 outgoing links, so the maximum number of links is
N(N − 1).
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Table 1. Structural characteristics of the neural network of C. elegans shown in Figure 1, a compa-
rable random (Erdős-Rényi) network and the network obtained with the proposed growth model.
The data for the random network are averages over 20 network realizations. See text for definition
of the listed properties

Network ρ 〈k〉 λ 〈C〉
C. elegans 0.033 17.62 3.19 0.173

random 0.033 17.62 2.75 0.0352
model 0.030 17.73 3.37 0.175

critical. Most network growth models do not consider this parameter [19]. For instance,
most scale-free networks are obtained through a preferential attachment rule which pos-
tulates that new nodes are linked to the already most connected nodes [3]. Not only
this development rule implies some global control mechanism (i.e., a node must some-
how know which are the most connected nodes) which seems unlikely in the case of a
neuronal system, but it also implies that long connections are just as likely as shorter
ones. Similar arguments can be opposed to the Watts-Strogatz rewiring algorithm that
generates small-world networks through addition of long-range connections to a pre-
existing regular circular network [28]. An improved variation of the Watts-Strogatz
algorithm restricts rewiring to a local spatial neighborhood around each node [9] thus
implicitly introducing the distance factor. However, these last two models are not and
cannot evolve into network growth models and thus do not provide a biologic realistic
metaphor. In opposition to these models, we address in the present work the specific
case of biological neuron network growth in real three dimensional space.

Several observations in biology further support the key notion of physical distance.
Long distance connections are expensive in biological neural networks because they
imply large volumes of metabolically active tissue to be maintained and long transmis-
sion delays [8], just like links between two nodes in Internet or in airport transportation
systems are more costly. Moreover, wiring length optimization seems to be a crucial
factor of cortical circuit development [6, 7]. The network structure itself depends on
the wiring length. For instance, small-world properties (as well as, under some circum-
stances, scale-free connectivity [15]) have been shown to emerge naturally upon mini-
mization of the euclidian distance between nodes [20]. Furthermore, Kaiser et al. [18]
have recently shown that network structure during growth in a metric space is influ-
enced by neuron density (number of neurons per unit volume) when growth occurs in a
spatially constrained domain.

A network growth model for C. elegans. We now propose a network growth model
in a three-dimensional space. Neurons are abstracted as cubical volumes of unit size.
The position of each neuron on the cubic lattice is defined by the integer coordinates
(i, j, k) of its center of mass and spans over the volume comprised between (i−1/2, j−
1/2, k − 1/2) and (i+ 1/2, j + 1/2, k + 1/2). The lattice dimensions are Lx, Ly and
Lz , defining a volume of Lx × Ly × Lz unit sizes. Each step of the growth algorithm
consists of six elementary substeps:

1. choose a neuron n at random among the neurons already connected in the network
(origin neuron). Let (i, j, k) be the spatial coordinates of n on the lattice.
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2. Then choose a destination site (i′, j′, k′) at distance d with probability

P (d) = 1/ξ exp(−d/ξ) (4)

where d is the euclidian distance between (i, j, k) and (i′, j′, k′), and ξ is a pa-
rameter that sets the average connection distance. If the chosen destination site is
located outside the lattice borders, go back to substep 1. Thanks to the exponen-
tial distance distribution, the probability to create a connection of a given length
(at a certain distance) decreases rapidly with the length, which accounts for wiring
minimization. Note that, in biological neural networks, new connections are estab-
lished through cell outgrowths (neurites) from existing neurons; these outgrowths
are guided by gradients of chemical concentration which similarly decay rapidly
with distance. We also tested other probability distributions, such as power-laws,
and obtained similar results.

3. If a neuron n′ of the network already exists at the destination site (i′, j′, k′), a
connection is created between n and n′.

4. If there is no neuron at the destination site, a new neuron n′ is placed at the desti-
nation site (and a connection is created between n and n′) with probability Pnew;
the value of Pnew is discussed below.

5. If a connection has been created during one of the two preceding steps, its direc-
tion (n → n′ or n′ → n) is chosen with probability Pn→n′ = kout

n /
(
kout

n + kin
n

)
where kout

n and kin
n are respectively the outdegree and indegree of neuron n, i.e.,

the number of connections with n as starting node and n as destination node. This
probability distribution reflects the property that, in C. elegans , strongly connected
neurons (hubs) exhibit asymmetric fractions of incoming/outgoing connections: ei-
ther much more incoming or much more outgoing connections. The joint degree
distribution matrix of the C. elegans network shown in Figure 4A highlights this
characteristic: each matrix element mij corresponds to the number (coded using
a gray scale) of neurons with i incoming and j outgoing connections, so that a
scattered plot indicates an asymmetrical repartition of incoming and outgoing con-
nections for many neurons; hubs are the dots located farthest from the origin (lots
of connections). We can observe that several of the hubs are located far from the
diagonal, hence the asymmetry.

6. go back to substep 1.

This algorithm iterates until the network contains a prescribed number of neurons
N . In this study, we set N = 300.

New neurons are unlikely to be created in already cluttered areas. If one sets
Pnew = 1, i.e., a new neuron is certain to be created in a currently empty location,
our algorithm is essentially a three-dimensional extension of the model recently pro-
posed by Kaiser and Hilgetag [18]. As demonstrated by these authors, networks ob-
tained with Pnew = 1 progressively acquire small-world properties when neuron den-
sity approaches 1 (i.e. when N → Lx × Ly × Lz). In this case however, the average
connectivity and the connection density (as well as the joint degree distribution matrix,
see below) remains severely smaller than observed in C. elegans (e.g., we could not
achieve an average connectivity higher than 6-7).
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Fig. 3. Structural characteristics of the networks obtained with the proposed model as a function
of the probability Pnew that a new neuron connects to the network. The dashed line indicates the
corresponding value found for the network of C. elegans . Other parameters were Lx×Ly×Lz =

51 × 51 × 51 (neuron size units), ξ = 10, N = 300

Fig. 4. Joint degree distribution matrices for the neural network of C. elegans (A) and a model
neural network obtained with Pnew = 0.00028 (B). Each element {mij} of the matrices is
color-coded with a grey level proportional to the number of neurons displaying i incoming and j

outgoing links, as shown in the colorbar on the right. The straight line simply aims at highlighting
the symmetry axis denoted by the diagonal. All network parameters are the same as in Figure 3

Decreasing Pnew breeds significantly more realistic results. As seen in Figure 3,
connection density, average connectivity and clustering index increase as Pnew de-
creases while the average shortest path λ decreases. Thus, decreasing Pnew yields net-
works with increasingly strong small-world properties together with increasingly high
average connectivity. Furthermore, Figure 4B indicates that our model indeed yields
hubs with asymmetric connectivity, as observed for C. elegans in Figure 4B. Taken to-
gether, the results of Figure 3 and 4 show that all the studied structural properties of
the networks obtained with our algorithm match that of C. elegans neural network for
Pnew ≈ 3 × 10−4. A biological interpretation of this value is that natural neural net-
works would be very reluctant to admit new neurons in the network (as only 1 contact
out of ≈3000 would be statistically successful). Interestingly, recent results in neuro-
biology suggest that the lack of neural turnover and/or replacement of injured neurons
in the adult brain is not due to the absence of potentially competent cell, but, more
probably, to a strong reluctance of the neurons to accept newcomers into an already
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established neural network [24]. In light of these findings, our results suggest that this
strong reluctance could be one of the factors inducing the high average connectivity
observed in biological neural networks, i.e., if new neurons can hardly emerge in al-
ready cluttered areas, connections are mostly drawn among existing neurons, hence the
high connectivity. Since we made the observation that Pnew must be very small while
fine-tuning the model and before being aware of these recent neurobiological findings,
we interpreted this correlation as additional evidence of the validity of our model.

Finally, we can note that the model network characteristics match the C. elegans net-
work characteristics, as shown in Table 1. And, in spite of some discrepancies due to
the relatively small number of neurons for high connectivity values, the connectivity
distribution of the model network is also fairly close to that of the C. elegans network,
as shown in Figure 2, see the black squares curve. In particular, the model network
distribution is neither a power-law, nor clearly exponential (though it is closer to an
exponential decrease than that of C. elegans ). We can thus conclude that our model
closely emulates the structure of the biological network of C. elegans .

4 Conclusions and Future Work

Based on empirical data of a tiny organism, we have elaborated a model for biological
neural networks. In agreement with previous works [28], we have found that the neu-
ral network of C. elegans has a graph structure with small-world properties, like many
complex systems found in nature. Because the model defines the network growth prop-
erties, we can now use it to characterize the large neural networks needed for achieving
computing tasks. The next step will consist in studying how this network structure af-
fects the learning capabilities and characteristics of neural networks. We then intend to
pursue two research directions.

A further step will consist in improving the model accuracy/realism by integrat-
ing known but abstract characteristics of the behavior of individual neurons. Finally,
through this combined model, we will investigate the application of such biological neu-
ral networks to computing tasks, assuming the experimental setups described in [12].
In this perspective, our aim is to obtain a sufficiently abstract model of biological net-
works of neurons that will enable the design of large systems without dealing with the
individual behavior of biological neurons. We think that the availability of such abstract
models will be a crucial chokepoint that will have to be overcome if we want to build
computing systems using real biological neurons.

In parallel, we intend to use the model developed in this article for biology-oriented
studies, especially to investigate how evolution combined with such network structures
can foster the emergence of new simple functions within a neural network.
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Abstract. Solving a NP-Complete problem precisely is spiny: the combinative 
explosion is the ransom of this accurateness. It is the reason for which we have 
often resort to approached methods assuring the obtaining of a good solution in 
a reasonable time. In this paper we aim to introduce a new intelligent approach 
or meta-heuristic named “Bees Swarm Optimization”, BSO for short, which is 
inspired from the behaviour of real bees. An adaptation to the features of the 
MAX-W-SAT problem is done to contribute to its resolution. We provide an 
overview of the results of empirical tests performed on the hard Johnson 
benchmark. A comparative study with well known procedures for MAX-W-
SAT is done and shows that BSO outperforms the other evolutionary algorithms 
especially AC-SAT, an ant colony algorithm for SAT. 

1   Introduction  

In artificial intelligence, the class of the NP-Complete problems dons a fundamental 
importance. Indeed, it includes a considerable number of eminent problems as well on 
the theoretical plan as on the convenient plan. 

The maximum weighted satisfiability problem or MAX-W-SAT is an NP-
Complete Problem. It is central in both computational complexity theory and artificial 
intelligence discipline. It causes a particular interest in various domains. An efficient 
resolution for this problem permits to solve several other problems in automatic rea-
soning, in mathematical logic, in the theory of the graphs, in VLSI … etc.   

Swarm intelligence is an axis of research that has appeared recently in artificial in-
telligence. Its main concern is the design of intelligent methods based on the behav-
iour of social bugs. In spite of the simplicity of their individual behaviours, bugs such 
as bees achieve, thanks to their cooperation, very complex tasks that an individual 
endowed with a sophisticated intelligence would be enable to accomplish alone. 

This manner to conceive solutions to problems, as being the result of the coopera-
tion of several individuals, give birth to powerful and very efficient meta-heuristics 
such as the Ant Colony Optimization. 

Our work consists in developing a new meta-heuristic that we have called "Bees 
Swarm Optimization" (BSO for short), It is inspired by the behaviour of the real bees. 
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We adapt it thereafter to the MAX-W-SAT problem which is described in the next 
section.   

2   The MAX-SAT Problem  

The problem of Satisfiability, SAT in abbreviation, is the dorsal thorn of the NP-
Completeness discipline. In spite of the considerable number of the studies dedicated 
to it, it remains for many researchers one of their important preoccupations.  SAT is 
defined by the following components : 

 X = {x1, x2, … , xn}, a set of n Boolean variables.  
 C = {c1, c2, … , cm}, a set of m clauses where:   

           - every clause is a severance of literals.   
           - every literal is a variable with or without negation.  

 D, the SAT data is a conjunction of  clauses of C.   

The problem consists in determining if an assignment to the variable xi of X exists 
such that the data D is satisfied (estimated to TRUE).  SAT is a decision problem that 
admits as an answer ‘Yes’ if an assignment to the variables that satisfies all the 
clauses exists or ‘No’ if such an assignment doesn't exist. Nevertheless, if the answer 
is by the negative, an important question arises: What is the maximum number of 
clauses that can be satisfied simultaneously? From this question, comes the definition 
of the problem ‘Maximum Satisfiability’, or in short, MAX-SAT. If besides, we asso-
ciate to every clause ci a weight w(ci), the objective comes back thus to find an as-
signment to the variable xi of X that maximizes the sum of the weights of the clauses 
satisfied simultaneously, from where arises the definition of the problem Weighted 
MAX-SAT or MAX-W-SAT. 

         _ 
c1 =  x1 + x2                w(c1)=10 
       _      _  
c2 = x1 + x3 + x4         w(c2)=20 

                
c3 = x4                         w(c3)=25 
                                                      _ 
The negation of xi is denoted by xi, the Boolean disjunction operator by + and the 

weight of clause ci by  w(ci).   If (x1, x2, x3, x4) = (0, 0, 0, 1) then, the sum of the 
weights of the clauses satisfied simultaneously reaches its maximum.   

3   Swarm Intelligence 

The swarm intelligence domain is about emerged collective intelligence coming from 
simple agents acting together. The source of inspiration is social insects like for in-
stance ants and bees. How can the interaction of a lot of simple ants create compli-
cated nests and social structures? Is it possible to use some of the similar techniques 
in computer algorithms and robotics? 
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The societies of bugs have a remarkable capacity to solve problems in a manner 
which is very supple (the colony adapts to the abrupt changes of environment) and 
robust (the colony continues to function even when some individuals fail to accom-
plish their tasks). The daily problems solved by a colony are numerous and of very 
varied nature: research of food, construction of the nest, distribution of work and 
allowance of the tasks between the individuals,… etc. 

In fact, this collective behaviour, often complex, is the fruit of an aggregation of 
individual behaviours dictated by very simple rules. It presents an auto-organized 
working model, based on a decentralized logic, founded on the cooperation of units 
having only local information. 

This phenomenon, if a long time ago, ethnologists observed it, the programmers 
and the engineers had difficulties to appropriate it. The latter could transform models 
of the collective behaviour of social bugs in powerful methods for the design of algo-
rithms for combinative optimization. A new domain of research appeared. It has for 
goal to transform the knowledge that the ethnologists have about the collective ca-
pacities of resolution of problems by the social bugs, in efficient techniques of prob-
lems solving while offering a high degree of flexibility and hardiness: It is swarm 
intelligence. 

Among the techniques of intelligence in swarm, some of them have arrived to ma-
turity. The algorithms of control and optimization inspired in particular from models 
of collective research of food among the ants, have known an unexpected success.  
These techniques are used in several application domains like the industrial comput-
ing, the robotics, the data analysis, the telecommunication network and the combina-
tive optimization [1]. 

4   The BSO Meta-heuristic 

In 1946 Karl Von Fris has decoded the language of the bees. He has observed that it 
is through the dance, that a bee communicates to its fellows upon its return to the 
hive, the distance, the direction and the wealth of the food source.   

Bees of a same colony visit more than a dozen of potential exploitation areas. But 
the colony concentrates its efforts of harvest on a small number among them, the 
richest and the easiest of access. In addition, numerous observations make appear that 
a colony can displace its exploitation of a source quickly to another one.   

In their experience made in 1991, Seely, Camazine and Sneyd have shown that 
when a colony of bees has the choice between the exploitation of two sources of food 
where the concentration in sugar is very unequal (1M and 2.5 M respectively) and 
situated in a diametrically opposite manner to the hive,  one to the north and the other 
to the south, the colony is going to concentrate its effort of harvest on the richest. We 
explain that by the fact that the bee follows the bee which does the most vigorous 
dance, therefore the one that indicates the place of the richest source of food [2]. 

The meta-heuristic “Bees Swarm optimization” is inspired by the behaviour de-
scribed above. It is based on a behaviour of swarm of artificial bees cooperating to-
gether to solve a problem. 
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First, a bee named BeeInit assigns to find a solution presenting good features that 
we call Sref and from which the other solutions of the research space are determined 
via a certain strategy. The set of these solutions is called SearchArea. Then, every bee 
will consider a solution from SearchArea as its starting point in the search. After 
accomplishing its search, every bee communicates through a table named Dance to its 
fellows the best solution visited. One of the solutions of this table will become the 
new solution of reference for the next iteration of the process. In order to avoid cy-
cles, the solution of reference is stored every time in a taboo list. 

The choice of the reference solution is made, first according to the quality criterion. 
However, if after a period of time, the swarm notes that the solution doesn't progress 
in term of quality, it integrates a second criterion of diversity that will allow it to es-
cape from the region where it is possibly incarcerated to another one. 

 
General algorithm of BSO 

 
      begin  
   Let Sref be the solution found by BeeInit;   
      While    not condition of stop do  

   begin 
     insert Sref in taboo list; 
      determine SearchArea from Sref; 

           affect a solution of SearchArea to each bee;     
      for each Bee K do 
    begin 
         search starting with the solution  

affected to it; 
             store the result in the table Dance; 

    end; 
 Choose the new solution of reference Sref; 
    end; 

    end; 
 

5   BSO for Solving Max-W-SAT 

The adaptation of our meta-heuristic to MAX-W-SAT requires the design of the fol-
lowing components: The artificial world where the bees lives, the fitness function that 
evaluates solutions, the initial solution Sref, the strategies to determine the set of solu-
tions SearchArea from Sref, the search procedure performed by each artificial bee, the 
quality and the diversity strategies and the choice rules of the reference solution Sref 
allowing the iteration of the process. 

The Artificial World or Search Graph.  According to the nature of MAX-W-SAT 
problem, a solution is a chain of n bits written as {0,1}n and corresponding to a truth 
assignment of variables. The search graph is constituted by all such solutions whose 
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total number is equal to 2n. A move from one solution to another one consists in in-
verting a bit from the current solution. The total number of the moves is equal to n2n-1. 

The food sources are represented by the target solutions. The artificial bees are 
supposed to intensify the search in SearchArea  in order to find a solution maximizing 
the fitness function. The artificial agents cooperate in order to emerge the optimal or a 
good quality solution. 

The Initial Solution. Initially, BeeInit builds the solution of reference Sref via a heu-
ristic.  The heuristics that we have used are John1, John2 [5] and the local search. 

The Solution Quality. it is valuated by the fitness function called f and expressed in 
MAX-W-SAT as the sum of the weights of the clauses that are satisfied simultane-
ously by the solution. 

The Degree of Diversity. The degree of diversity offered by a solution S is measured 
by the minimum of the distances between S and the elements in the Taboo list. It is 
given by:   

diversity(S) = Min { d(S,T) / T ∈ Tabou } . 
The distance between two solutions S and T is given by the distance of Hamming, 

that is : 
             n 

       d(S,T) =   Si ⊕ Ti  

                               
i = 1

 

           
0  if a=b 

 
where: a⊕ b =          

 1  otherwise 

 

The Determination of Search Area. The region of exploitation SearchArea is repre-
sented by a set of N solutions (N being the number of bees constituting the swarm). 
Each of these solutions is calculated from Sref while reversing 1/Flip its variables.  
The choice of the parameter Flip is not obvious since it determines the number of 
variables to reverse from Sref. Indeed, a too small value of this number implies that 
Sref is probably the local optimum of the new region of exploitation. Therefore the 
probability of an improvement is very weak. On the other hand, if this value is too 
important, the swarm will move away from the region containing Sref with the risk to 
lose good solutions. To proceed to the inversions, we propose two strategies assuring 
that the gotten solutions are as distinct as possible. If the number of solutions gener-
ated proves to be insufficient, we will call on a random approach.    

In the first strategy, the solution k is generated while flipping the variable xi from 
Sref as:  i =  (k-1)  modulus [Flip]. Whereas, in the second strategy,  we consider sref 
as being a set of contiguous packets of bits. The solution k is generated while revers-
ing the variables xi of the packet k from Sref. 
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Let n=20 (the number of variables) and Flip = 5. If the variables are subscripted 
from 0 to 19, then the first strategy consists in inverting the variables in the following 
positions: (0,5,10,15) , (1,6,11,16),(2,7,12,17),(3,8,13,18) et (4,9,14,19), while in the 
second strategy, the  variables in the following positions are inverted: (0,1,2,3) , 
(4,5,6,7) , (8,9,10,11) , (12,13,14,15) et (16,17,18,19) . 

The Bee Search Process. The bee search process is an iterative process. The number 
of iterations is called nbsearchit and is an empirical parameter. The process consists 
of two phases:   

-A simple local research.   
-A phase that consists in flipping the maximum of variables of the solution found in 

the first phase so that the fitness function of the new solution is superior or equal to it.   

The Choice of the Reference Solution Sref. Let Sref (t) be the chosen reference 
solution at the t iteration, then the choice of Sref (t+1) depends on the quantity   f 
computed as:   

 f  = f (Sbest) – f (Sref(t));   Sbest being the best solution at the iteration t+1;     
          The algorithm is as follows: 
begin 
   if f  > 0  then  
           begin 
         Sref ← the best solution in quality; 
             If  NbChances < MaxChances  then  
            NbChances ← MaxChances ;          
           end                               

     else 
   begin  

           NbChances ← NbChances –1 ; 
         If NbChances > 0 then Sref := the best 

solution in quality 
         else  
           begin 

   Sref ← the best solution in diver-
sity; 

   NbChances ← MaxChances ;          
      end  

        end 
   end 
 

Remarks.  (Sref is better in quality) is equivalent to (f(Sref) = Max f(S))  where S ∈ 
Dance and S∉ Taboo.(Sref is better in diversity) is equivalent to (diversity (Sref) = 
Max diversity (S))   Where S ∈Dance.   

If two solutions S1 and S2 are equal in quality, that is, if they have the same value 
of the function objective then the one that has the largest degree of diversity will be 
considered.   
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In the same way, if two solutions S1 and S2 present the same degree of diversity, it 
is the one that improves the fitness function that will be chosen.  It can happen, al-
though very rarely, that all solutions of Dance exist in the Taboo list. For landing to 
this problem, the solution of reference will be generated  at random. maxchanches is 
an empirical parameter. It designs the maximum number of chances accorded to 
SearchArea. 

6   Numerical  Results 

The algorithm BSO has been implemented in java on a Pentium personal computer 
and numerical tests have been performed on the benchmark instances available on the 
web site http:// www.reserch.att.com/~mgcr/data/index.htm. The weights of the 
clauses have been drawn from 1 to 1000 and assigned at random to clauses, the num-
ber of clauses being ranged from 800 to 950.The Johnson class namely ‘jnh’, has been 
used in many works for testing algorithms performance. It includes three subclasses 
characterized by the variable number, which is equal to 100 for all instances. The 
classes number is  

800 for the subclass 1: Jnh201… Jnh 220. 
850 for the subclass 2 : Jnh 01...Jnh 19. 
900 for the subclass 3 : Jnh301...Jnh310. 
Each subclass contains instances that are satisfied or not. On each instance, 10 exe-

cutions have been undertaken. The solution quality as well as the running time, have 
been considered as performance criteria. 

6.1   Parameters Setting 

Preliminary tests have been carried out in order to fix the key parameters of the BSO 
algorithm for Max-W-SAT. Fig 1 shows an example of the results of the tests done on 
some Johnson problems for setting the parameter flip. Identical tests have been per-
formed on all the other instances and for all the other parameters. Table 1 summaries 
the parameters values obtained after these extensive experiments. 

 

Fig. 1.   The results of tests for setting the parameter Flip 
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Table 1. Empirical parameters values of BSO for MAX-W-SAT 

                                  NBees                                           10 
 
                                 MaxSearchIter                             15 
                                 MaxBsoIter                                  35 
                                 Flip                                                  5 
                                 MaxChances                                  3 
 

6.2   Performances Comparison 

Comparison of BSO with evolutionary algorithms for SAT like GRASP[6], SSAT [3] 
and ACO[4] has been done. GRASP is a parallel greedy algorithm proposed for solv-
ing MAX-W-SAT. It has been considered in the comparison because of its high effi-
ciency. SSAT is a scatter search algorithm recently developed. ACO is another recent 
meta-heuristic inspired by the behaviour of real ants. A schematic view of the results 
is shown through the curve of fig2, showing the performance of BSO. The same ob-
servation can be done on the performance of BSO. 

7  Conclusion 

In this paper, a new meta-heuristic called ‘swarm of bees’ or BSO has been proposed. 
It is inspired by the behaviour of the real bees, whose principle is to harvest the nectar 
of the easiest sources of access while always privileging the richest.  The dance of the 
bees that is the only means of communication they have, is probably the secret of 
their efficiency since it is through it that a bee indicates to its fellows the place of a 
source and its quality. It leads the swarm very quickly to concentrate its efforts of 
research on the richest source.     

In our application we were interested in one of the NP-Complete problems to solve, 
namely MAX-W-SAT.  We have adapted the proposed meta-heuristic BSO to the features 
of the MAX-W-SAT problem and the results that we have gotten are very satisfactory.   
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Abstract. Soft topology-preserving map and its batch version are
proven to be reduced to cortical map and elastic net, respectively. This
verifies numerous results of numerical simulations described in the liter-
ature demonstrating similarities of neural patterns produced by lateral
and elastic synaptic interactions.

1 Introduction

Competitive learning neural nets that utilize lateral interactions to perform a
mapping from the stimulus space to the response space with preserving neigh-
bourhood relations are called topology-preserving maps [1]. Well-known example
of the above is Kohonen’s self-organizing map that became a standard unsuper-
vised learning algorithm [2].

It is known that elastic synaptic interactions can forge a topology as well.
The elastic net was first applied to solve the travelling salesman problem (TSP)
[3]. Another application of elastic synaptic interactions is the preservation of
topology in cortical mappings [4, 5, 6].

We already demonstrated the benefits of using both lateral and elastic inter-
actions for controlling the receptive field patterns [5,6]. In [7], we considered the
model utilizing only lateral interactions, which, unlike elastic ones, are biologi-
cally plausible, and applied it to the problems previously solved only with elastic
interactions. Our current aim consists in the proof of equivalence of both types
of interactions. First, we derive the free energy function for an unsupervised net
of stochastic neurons with lateral interactions. The temperature incorporated in
this function serves as controlling parameter in the annealing schedule. Then, we
consider the incremental and batch modes of learning resulting in corresponding
versions of soft topology-preserving mapping. The mapping utilizes only nearest-
neighbour lateral interactions that, in turn, are chosen to be weak. Considering
the weight vector of a neuron as a “particle” moving in the space-time of im-
posed patterns, decompose this particle trajectory over these patterns. Using
the decomposition for incremental and batch modes of soft topology-preserving
map, we derive cortical map and elastic net respectively.
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Numerical simulations justify the theoretical results: models utilizing lateral
and elastic interactions produce similar patterns for given parameter values.

2 Topology-Preserving Maps

We consider a one-dimensional net of n stochastic neurons trained byN patterns.
The energy of this net, for a given stimulus, is

Ei(µ) =
1
2

n∑
j=1

hij |xµ −wj |2, (1)

where xµ is a given sample pattern,wj are the weight vectors, and h(i, j) is the
neighbourhood function.

Throughout, we consider nearest-neighbour lateral interactions

hij =

⎧⎪⎨
⎪⎩

1, i = j;
γ, |i− j| = 1;
0, |i− j| � 2,

(2)

where 0 < γ � 1.
Instead of the “hard” assignment of Kohonen original algorithm with an

unique winner, we assume a “soft” assignment where every i-th neuron is as-
signed to a given µ-th pattern with a probability pi(µ);

∑
i pi(µ) = 1 [5,6,7,8,9].

The assignment probabilities minimizing free energy of the system (that is a
composite of the averaged energy and thermal noise energy) are found to be

pi(µ) =
e−βEi∑n

k=1 e−βEk
, (3)

which gives the minimal free energy [5, 6, 7, 8, 9]

F (µ) = − 1
β

ln
( n∑

i=1

e−βEi

)
. (4)

Incremental learning strategies are derived through a steepest descent mini-
mization of function (4). The dynamics follows of the free energy gradient, which
result in soft topology-preserving mapping [5, 6, 7]:

∆wj = −η ∂F
∂wj

= η

n∑
i=1

pi(µ)hij(xµ −wj). (5)

Soft mapping is based on soft competition which allows all neurons to adjust
their weights with probabilities proportional to their topographic distortion. This
makes the weights move more gradually to the presented patterns. The strength
of the competition is adjusted by a temperature. The underlying mechanism,



328 V. Tereshko

deterministic annealing, is derived from statistical physics: it mimics an ordering
process during a system’s cooling. At high temperatures, the competition is
weak and the original energy landscape is smoothed by noise, which helps to
eliminate local minima at the beginning of the ordering phase. On reducing the
temperature, the competition becomes stronger, the smoothing effect gradually
disappears, and the free energy landscape resembles the original one.

At low temperatures (β →∞), equation (5) reduces to Kohonen’s map with
only nearest-neighbour interactions:

∆wj = −η ∂F
∂wj

= ηhjj∗(xµ −wj), (6)

where j∗ is the winning unit.
The batch learning mode, when the updating rule is averaged over the set of

training patterns before changing the weights, gives the following free energy:

〈F 〉 = − 1
βN

N∑
µ=1

ln
( n∑

i=1

e−βEi

)
. (7)

Minimization of energy (7) results in the batch version of soft topology-
preserving map:

∆wj = −η ∂〈F 〉
∂wj

=
η

N

N∑
µ=1

n∑
i=1

pi(µ)hij(xµ −wj), (8)

where η is the learning rate.
At low temperatures (β → ∞), (8) reduces to the batch mode of the Koho-

nen map. Goodhill applied the latter model with the special lateral interaction
function to modelling the formation of topography and ocular dominance in the
visual cortex [10].

3 Cortical Maps

The idea of cortex as a dimension-reducing map from high-dimensional stim-
ulus space to its two-dimensional surface has proved to be fruitful [4, 11]. The
backward projection of each position on the cortex sheet to the position in stim-
ulus space is a convenient way to consider cortex self-organization — the way
in which it fills stimulus space defines the receptive field properties. Perform-
ing such a mapping induces two conflicting tendencies: (i) the cortical surface
should pass through the representative points in stimulus space; (ii) the area
of the sheet should be kept a minimum. This ensures the formation of smooth
receptive fields and, hence, the minimal “wiring” interconnecting the cortical
cells, which, in turn, ensures the closeness of the cortical cells representing simi-
lar stimuli. The stripes and patches seen within cortical areas have been argued
to be adaptations that allow the efficient wiring by such structures [12].
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In cortical mappings, the topological order usually develops by elastic synap-
tic interactions [4]. Let us derive a cortical map from a topology-preserving map.

Taking the Taylor series expansion (in power of γ) results in

F =− 1
β

ln
n∑

i=1

exp
(
− β

2
|xµ −wi|2

)

+
γ

2

n−1∑
i=2

pi(µ)
(
|xµ −wi−1|2 + |xµ −wi+1|2

)
. (9)

Consider the weight vector as a “particle” moving in space-time x and de-
compose this particle trajectory:

wj = 〈x(j)〉 = pj(ν)xν , (10)

where x(j) and 〈x(j)〉 are the position and the expected position of the particle
at time j respectively.

Applying decomposition (10) to free energy (4) and taking the low tempera-
ture limit yield

F = − 1
β

ln
n∑

i=1

exp
(
− β

2
|xµ −wi|2

)
+
γ

2

n−1∑
i=1

|wi+1 −wi|2. (11)

Minimization of free energy function (11) results in the elastic net algorithm:

∆wj = −η ∂F
∂wj

= η
(
p̃j(µ)(xµ −wj) + γ(wj+1 − 2wj + wj−1)

)
, (12)

where

p̃j(µ) =
exp(−β

2 |xµ −wj |2)∑n
k=1 exp(−β

2 |xµ −wk|2)
(13)

is a reduction of pj(µ) to the case of no lateral interactions.

4 Elastic Nets

The elastic net is based on elastic, diffusion-type, interactions [3]. This algorithm
works like an elastic rubber ring: it gradually drags points on the ring towards
the “cities” and an elastic force keeps neighbouring points close to one another.

Earlier, Simic showed the relationship between the Hopfied network and the
elastic net: it derived the latter from Hopfield’s objective function for the TSP
[13,14]. Let us show how to derive the elastic net from the batch version of soft
topology-preserving map.
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Fig. 1. Weight vector distribution of the elastic ring: (a) initial, (b) and (c) after

applying learning rules (8) and (17) respectively (see details in the text)
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Taking the Taylor series expansion (in power of γ) results in

〈F 〉 =− 1
βN

N∑
µ=1

ln
n∑

i=1

exp
(
− β

2
|xµ −wi|2

)

+
γ

2N

n−1∑
i=2

N∑
µ=1

pi(µ)
(
|xµ −wi−1|2 + |xµ −wi+1|2

)
. (14)

Consider the weight vector as a “particle” moving in space-time x and de-
compose this particle trajectory:

wj = 〈x(j)〉 =
N∑

ν=1

pj(ν)xν , (15)

where x(j) and 〈x(j)〉 are the position and the expected position of the particle
at time j respectively.

Applying decomposition (15) to free energy (7) and taking the low tempera-
ture limit yield

〈F 〉 = − 1
βN

N∑
µ=1

ln
n∑

i=1

exp
(
− β

2
|xµ −wi|2

)
+

γ

2N

n−1∑
i=1

|wi+1 −wi|2. (16)

Minimization of free energy function (16) results in the elastic net algorithm:

∆wj = −η ∂F
∂wj

=
η

N

( N∑
µ=1

p̃j(µ)(xµ −wj) + γ(wj+1 − 2wj + wj−1)
)
. (17)

Defining β ≡ 1
σ2 with the Gaussian distribution width σ, energy (16) takes

the exact form of the Durbin-Willshow elastic net energy [3]. Shrinking the
distribution width is, thus, equivalent to reducing the system temperature.

Let us demonstrate how different algorithms work for the TSP. The simu-
lations are performed for 64 “cities” that are sites on a 8 × 8 regular square.
The elastic ring has 128 points. The training is cyclic with a fixed sequence, i.e.
a particular order of pattern presentation is fixed. The inverse temperature β
increases from 2 to 200 in steps of 0.01. The learning rate is linearly decreasing
functions of time, i.e. η̂ = 1

N η = η̂0(1− t/T ) with η̂0 = 1 and t = 0, .., T . Let us
take γ = 0.06. Initially, the weight vectors are distributed equidistantly on the
unit radius circle (Fig. 1(a)). Application of learning rules (8) to the task results
in formation of an optimal tour (Fig. 1(b)). Typically, elastic strength is allowed
to decrease with time passing [1]. Therefore, for the case of elastic net (learning
rule (17)), we consider γ = γ0(1 − t/T ) with γ0 = 0.06, which provides a finer
pattern than one for fixed γ (Fig. 1(c)). Thus, both nearest-neighbour lateral
interactions and elastic synaptic interactions produce similar solutions (optimal
tours in our case) for given interaction strength.
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5 Conclusions

Remarkably, cortical map and elastic net can be derived from incremental and
batch versions of soft topology-preserving map respectively. The nearest-
neighbour lateral interactions are transformed to the elastic ones. In turn, the
Gaussian variance of cortical map and elastic net is equivalent to the temperature
of soft topology-preserving map. The latter elucidates indirect incorporation of
soft competition and deterministic annealing into cortical maps and elastic nets.

One algorithm reduces to another in the limit of low temperature. At begin-
ning of learning process, when the temperature is high, the state trajectory is
very sensitive to any changes in the system and can take any possible direction.
This is why the optimal tours in Fig. 1(b) and (c) are different. However, the
algorithms tend to identity in working, and the tours formed are qualitatively
the same.
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Abstract. This work deals with the problem of automatically obtaining ANNs 
that cooperate in modelling of complex functions. We propose an algorithm 
where the combination of networks takes place at the phenotypic operational 
level. Thus, we evolve a population of networks that are automatically classified 
into different species depending on the performance of their phenotype, and 
individuals of each species cooperate forming a group to obtain a complex output. 
The components that make up the groups are basic ANNs (primitives) and could 
be reused in other search processes as seeds or could be combined to generate 
new solutions. The magnitude that reflects the difference between ANNs is their 
affinity vector, which must be automatically created and modified. The main 
objective of this approach is to model complex functions such as environment 
models in robotics or multidimensional signals. 

1   Introduction 

The researchers dealing with modelling real environments tend to dedicate great efforts 
to the automatic modularization of the solutions, searching for models as simple and 
reusable as possible. In the field of evolutionary learning, an element of paramount 
importance is how to make efficient use of the learned structures to obtain other 
structures that can be applied in more complex modelling processes without performing 
a new learning process.  

A very powerful technique for the instantiation of the models, when the learning 
process consists in modelling from input-output pairs, is the application of artificial 
neural networks (ANNs). In the case of evolutionary learning, these models adapt to the 
task through evolution and the modularity of solutions can be obtained creating complex 
ANN sets as a composition of simpler ones. In this sense, a very common approach in 
the literature [1], [2], [3] is to apply an evolutionary algorithm over two different 
populations, one made up of simple neuronal units and the other of patterns that indicate 
how those neural units must be combined. These approaches have been successful, for 
example, in classification problems.  

A different approach is proposed here, where the basic structures participating in the 
process are complete networks evolving in the same population and they are combined 
at the phenotypic level into groups that collaborate in the solution of the problem. The 
work of Xin Yao and Paul Darwen [4] must be mentioned here. They propose an 
evolutionary learning approach to design modular systems automatically. To do this, 
they use the concept of speciation introduced by Goldberg [5] through a fitness sharing 
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technique [6]. The main novelty of this work lies in the fact that within each species 
they use coevolutionary techniques where the concept of just one individual solution 
does not exist. The authors apply this technique to the prisoner’s dilemma and the 
algorithm works successfully. 

This kind of modular approaches imply the existence of collaboration between 
individuals of the population to achieve a successful result. This is called in the 
literature symbiotic evolution and is a background problem in multiobjective 
optimization [7]. In this field, the development of fitness sharing techniques, where the 
fitness of a given individual is scaled through some similitude measure with respect to 
the other individuals, is common [8]. These approaches start from the knowledge of the 
Pareto front to be obtained, this is, they start from the knowledge of the desired 
objectives and search for individuals specialized in these objectives and that collaborate 
towards their achievement.  

The problem we try to solve in this work is quite different because we look for an 
automatic decomposition of the model into simple and basic networks (primitives) that 
combined provide the desired solution. No knowledge about how to do it is assumed 
(we don’t know the best decomposition into primitives). Each one of these simple 
networks is functionally different and, consequently, they belong to different species 
that evolve together. 

A recent algorithm that is based on coevolution and species formation is COVNET 
[9], where authors use a subnetworks population (nodules) that is divided into species 
that evolve independently, and another network population that combine these nodules. 
The main difference with our approach lies at the species formation level. The number 
of species in COVNET is prefixed, whereas in our algorithm it arises automatically 
from the evolution itself. 

In the next section we will introduce the main concepts used in this algorithm such as 
groups and affinity. The remaining sections provide an overview of the operation. 

2   Groups and Affinity 

The main objective of this work is very simple: to develop an algorithm capable of 
modelling a complex function using ANNs. Because of this complexity, we assume it 
will be simpler to find the solution using more than one ANN. So our approach is based 
on providing a search algorithm with the capability of obtaining the solution by 
aggregation of simple ANNs.  

We do not want to impose knowledge about the way to carry out this combination 
because, in most cases, it is not possible to know how to extract simple parts (that could 
be modeled separately) from a complex function. This is, we know what we want to 
obtain from our ANNs (phenotype) but we don’t know how to achieve this (genotype). 
This way, our efforts in the design of the algorithm are concentrated in obtaining a 
procedure to efficiently combine the outputs provided by different ANNs to reach a 
desired result. 

Thus, the first important feature of our algorithm is that the solution is provided by a 
combination of ANNs (a group) that, in the simplest case, will be formed by just one 
network but it could contain several. All the ANNs in a group combine their outputs to 
provide a complete solution to the problem. 
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To conform the groups, we have developed a selection criteria based on a magnitude 
called affinity that classifies the ANNs depending on their phenotype. The main idea is 
that initially all the networks have a random affinity and through a self organization 
process these affinities become different automatically. Then, the groups that provide 
the solution to the problem are made up by combining ANNs with high affinity to each 
other. The details of this process will be explained in section 4.2. 

3   Evolution 

From the previous basic concepts of the algorithm two main requirements can be 
extracted: first that our approach is based on the use of a set of ANNs that can be 
combined and second that to improve the networks we must apply a search algorithm. 
Taking into account these two points, we propose the use of an evolutionary algorithm 
as search technique because it is based on a population (a set) of solutions and it is an 
established technique for adjusting the parameters of ANNs. Furthermore, evolutionary 
algorithms are very adequate for this approach because of their capabilities to create 
specialized individuals (species) in the population. This way, once some species appear 
in the population, we can make up the groups that conform the solutions using 
individuals from these species. 

The differentiation between species must arise from the phenotypic capability of each 
ANN. It is the collaboration towards a common goal by a group what determines the 
different species through the association of individuals that are specialized in the 
different parts of the solution. This association is established through some type of 
affinity criterion based on the functional performance of the phenotype of the ANNs, so 
that individuals with higher affinity towards each other tend to collaborate in the tasks to 
be carried out. 

We have developed a process of life interaction in order to evaluate the individuals in 
such a way that the survival of an individual is determined by the fitness obtained by the 
whole group in which the individual participates and not only on its particular fitness. 
The most important part of this group formation strategy is establishing the affinity 
among individuals, which must be a part of the evolutionary process and progressively 
adapt to the needs and virtues of each individual autonomously. 

4   Details of the Algorithm 

From the point of view of an evolutionary algorithm, the objective of group creation is 
to obtain individuals made up of subindividuals through the combination of their 
particular actuations, thus permitting a much more versatile way of reusing acquired 
knowledge. 

As mentioned in the previous section, the proposed strategy is a part of any standard 
evolutionary algorithm where the individuals represent ANNs and where the solution is 
not a simple individual but an aggregation of some (a group) at a phenotypic level. 
Consequently, individuals will be evaluated (fitness calculation) as a part of a group and 
not individually. Evolution, on the other hand, takes place over the individuals as usual 
and the groups are formed in the fitness calculation stage of the algorithm. 
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The operation is simple and can be summarized in the following 6 steps: 

1. Initial creation of a random population of ANNs, as usual in general 
evolutionary algorithms. 

2. Initial creation of a random affinity value (represented by a vector in 
general) associated to each individual.  

3. Fitness calculation of all the ANNs in population. To do this, we apply 5 
basic steps: 

a. Each individual in the population creates its own group by 
choosing other individuals from a window of the population using 
its and their affinity values.  

b. Each group calculates a fitness value, resulting from the common 
application of its individuals to the modelling problem. 

c. Each individual creates a new group and the fitness in these new 
groups is calculated. The best groups remain. 

d. The fitness value obtained in step c) permits adjusting the affinity 
of the individuals depending on the increase or decrease of fitness. 

e. Steps c) and d) are repeated a given number of iterations. At the 
end, we assign each individual the fitness of its own group. 

4. Selection over the population of ANNs (like in an ordinary evolutionary 
algorithm) including the affinity value of each individual as a part of the 
selection criteria favoring reproduction of individuals with similar functional 
characteristics (same species). 

5. Crossover and mutation as usual but including the affinity vector that is 
transmitted from parents to offspring. 

6. Steps 3, 4 and 5 are repeated a given number of generations. 

As we can see, this is the operation schema of a simple evolutionary algorithm where 
the fitness calculation is more complex and where the reproduction is directed towards 
the formation of species by mixing operationally similar individuals. 

Each individual can form its own group selecting the other individuals from a 
candidate’s window instead of the whole population, trying to reduce the number of 
possible combinations. In addition to its own group, every individual can participate in 
other groups without limitation of number. 

4.1   Fitness Calculation 

Once a group is formed, its fitness is calculated in general as the fitness provided by a set 
of outputs that are the result of some combination of the individual outputs of its members. 
In the simplest case the combination is carried out through the addition of these outputs 
that must be clearly marked to discriminate which ANN affects which output. The group 
must provide values for all the outputs of the problem, otherwise it is penalized. 

After calculating the fitness of all the groups, we carry out a self organization stage 
(steps from a) to e) in the algorithm), which allows each individual to create more affine 
groups. On each step of this stage, the individuals form new groups and their fitness is 
calculated. If the fitness of the new group is better than that of the old one, the group is 
maintained; otherwise the older group is preserved. After a set number of recombination 
steps, each individual has formed its most affine group using the technique explained in 
the next section. 
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4.2   Affinity 

Affinity is used in our algorithm as a label to classify the ANNs depending on the 
function they perform. It is represented by a numerical vector with fixed upper and 
lower limits, in which the dimension determines the complexity of the groups that may 
be formed.  

Each element in the affinity vector is represented by a real number. When an individual 
forms a group it searches for other individuals in the population with complementary 
affinity vectors. For example, if each element of the vector is represented by a real number 
between –V and V, we can establish that the desired global affinity value is the zero 
vector. This way, a component value of –V1 is the complementary of a value of V1 and a 
value of –V2 is the complementary of a value of V2. In most cases, an individual will not 
find another individual with a complementary affinity and it will be necessary to use two 
or three colleagues to reach the desired affinity.  
As we can see, the number of individuals that conform a group depends on the 
dimension of the affinity vector. The higher the dimensionality the larger (on average) 
the number of individuals in the group necessary to obtain complementary affinities. For 
example, if we have an individual with a 3-dimensional affinity vector (V1, V2, -V3) it 
could select one only individual with affinity (-V1, -V2, V3) to form the group. But it is 
simpler to find two individuals of vectors (-V4, -V5, V6) and (-V7, -V8, V9) that verify -
V1= -V4+(-V7), -V2= -V5+(-V8) and V3= V6+V9. As we can see, higher dimensionalities 
imply a more complicated process to find individuals with complementary affinities. 

Initially, the affinity vectors are random as no knowledge of the characteristics of the 
individuals and/or their shortcomings is available. As mentioned before, every time a 
group is evaluated (fitness calculation), if the group improves the fitness of the previous 
group in which the individual participated, the distance of the affinity vector of the 
individual (in Euclidean terms) with respect to the affinity vectors of the rest of the 
individuals in the group is increased. In addition, from this instant, this will be the new 
group for the individual. On the other hand, if the fitness of the group is worse than that 
 

 

Fig. 1. Modelling result (points) of a 3D function (surface) made up by the addition of 4 basic 
functions 

z = 2⋅exp(-5(x2-y2))-1 + sin(x+y) + 
cos(3*(x+y)) + exp(x2/2)-2 
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of the previous group, it is the distance with respect to the affinity of the members of the 
previous group that is increased. This method favours the formation of species, that is, 
of clusters of individuals with similar affinity vectors. 

After each self organization stage, all the individuals have automatically adjusted 
their affinity vector depending on the function they carry out in the group. The 
individuals that are included in more than one group adjust their affinity vector in each 
one, maximizing the available information. As time progresses, each individual will 
have an affinity vector representing its preferences that has been automatically obtained. 

In the evolutionary process, we tend to select for reproduction individuals with 
similar affinity vectors, which are transmitted in the crossover from the parents to the 
offspring. This way, we are promoting the formation of species in the population. The 
feature that distinguishes these species (the affinity vector) has not been imposed by the 
designer, but it is adjusted in “lifetime” through the evolution. 

5   Operation Example 

Just to display the results the mechanism can produce and the way it works, we 
consider here a simple problem consisting of an objective function that was 
constructed by adding 4 different functions: 2⋅exp(-5(x2-y2))-1, sin(x+y), cos(3*(x+y)) 
and exp(x2/2)-2 limited to a range from [-1.5, 1.5] in x and y. In this experiment, the 
affinity vector considered is two dimensional and the values of each dimension can 
vary between [-1, 1]. Thus, it seems that an optimal solution for this problem would 
be the generation of four species, each one specialized in modelling each one of the 
known functions or any other combination of functions that lead to the perfect 
modelling of the global function. 

The networks that will be evolved in this case are standard multilayer perceptrons 
which have two inputs (the x and y coordinates) and one output (the z coordinate). The 
objective is obviously to obtain the network or combination of networks that best 
approximate the objective function. 

The results of modelling obtained with the best group are presented in Fig. 1, where 
we have represented the prediction (points) and a sampling of the objective function 
(surface). The results are very satisfactory taking into account the complexity of the 
expected signal. We are going to take a closer look at what have happened with the 
affinity values for the individuals and what types of species arose.  
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Fig. 2. Evolution of the affinity vectors for the whole population. Left graph represents the 
initial distribution, middle graph the distribution after 2000 generations and right graph the 
final distribution 
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Fig. 2 displays the evolution of the affinity vectors for the whole population (1000 
individuals in this case). In the left graph we have represented the initial random 
affinities distributed from -1 to 1 in both axes. In the middle graph we show the affinity 
vectors in generation 2000. As we can see, the values are still not clustered, and some 
individuals do not belong clearly to a species, although four affinity areas are starting to 
be delimited. Finally, in the right graph we show the affinity vectors in generation 3600 
(final) where 4 clear species have been formed with affinity vectors (-1, 1), (1, -1), (0.5, 
0.5) and (-0.5, -0.5).  

The final group taken as solution of the modelling problem (that provides prediction 
shown in Fig. 1) is made up of 4 individuals, one from each species. In Fig. 3 we present 
the functions provided by each one of these individuals in the final group, as compared to 
the original four functions that were combined in order to produce the test problem. We 
can see that the decomposition into primitives is different from the original one which is 
normal because there are lots of possible mathematical combinations to reach the desired 
functions. What is important here is that these primitives have been obtained automatically 
and could be reused in other search processes. 

 

 

Fig. 3. The left graphs show the four theoretical functions that make up the target in the 
operation example. The right graphs show the functions provided by each individual in the best 
group (phenotype corresponding to each specie) 
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6   Conclusions 

In this work we have presented an affinity based strategy for obtaining groups of 
cooperating artificial neural networks as a solution for evolutionary learning problems. 
This strategy may be applied in general to any type of evolutionary algorithm where the 
objective is to obtain a group of solution points which, through their combination and 
cooperation in a phenotypic level produce a modular or decomposable solution to the 
problem so that parts of these solutions may be later reused in other problems. The main 
idea behind the phenotypic affinity based process is that during the evaluation phase of 
the evolutionary algorithm the individuals can try out how fit they are through 
collaboration with other individuals by forming groups. The results of these trials result 
in modifications of each individual’s affinity vector. This process leads to the formation 
of species of individuals specialized in different subtasks of the global one, thus 
allowing for the modularity we desire. The arisal of these species implies certain 
modifications in the general evolutionary algorithm, especially during the reproduction 
stage so that functionally similar individuals are chosen for reproduction. The results 
applying this strategy have been very fruitful. Here we have presented a quite complex 
case with the arising of four species into the population. 
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Abstract. The Growing Hierarchical Self Organizing Map (GHSOM)
was introduced as a dynamical neural network model that adapts its
architecture during its unsupervised training process to represents the
hierarchical relation of the data.

However, the dynamical algorithm of the GHSOM is sensitive to the
presence of noise and outliers, and the model will no longer preserve the
topology of the data space as we will show in this paper. The outliers
introduce an influence to the GHSOM model during the training process
by locating prototypes far from the majority of data and generating maps
for few samples data. Therefore, the network will not effectively represent
the topological structure of the data under study.

In this paper, we propose a variant to the GHSOM algorithm that
is robust under the presence of outliers in the data by being resistant to
these deviations. We call this algorithm Robust GHSOM (RGHSOM).
We will illustrate our technique on synthetic and real data sets.

Keywords: Growing Hierarchical Self Organizing Maps, Robust Learn-
ing Algorithm, Data Mining, Artificial Neural Networks.

1 Introduction

In the last decade, Neural Networks have proven to be a valuable tool in data
mining with various engineering applications in pattern recognition, image ana-
lysis, process monitoring and fault diagnosis.

Most of the real data are highly dimensional and to find the best model ca-
pable to learn and generalize the data, the neural designer has the difficulty to
decide in advance the architecture and the number of parameters of the model.
To overcome the architectural design problem several algorithms with an adap-
tive structure during the training process have been proposed, as for example
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for the SOM based models we refer the GHSOM [12] and the Dynamic SOM [1]
to name a few.

The GHSOM was introduced by [12] as a dynamical model that adapts its
architecture during its unsupervised training process to represent the hierarchical
relation of the data. The GHSOM has a hierarchical structure of multiple layers,
where each layer consists of several independent growing SOM’s.

Real data are not free of outliers, i.e., data items lying very far from the
main body of the data. Unfortunately unsupervised neural networks are not ro-
bust to the presence of outliers as we have shown in early works (see [3] and
[4]). Furthermore, it is also possible that the outliers are not erroneous but
some data items really are strikingly different from the rest. For this reason it
is not advisable to discard the outliers and instead special attention must be
paid.

In this paper we propose a variant to the learning algorithm of the GHSOM
that diminishes the influence of outliers, but still considers them during the
training, we call this model RGHSOM. The remainder of this paper is organized
as follows. The next section we introduce the M-estimators as robust method
for parameter estimation. In the third section, we introduce the learning algo-
rithm of the RGHSOM. Simulation results on synthetic and real data sets are
provided in the fourth section. Conclusions and further work are given in the
last section.

2 Robust M-Estimators for the Learning Process

The learning process of Artificial Neural Networks models can be seen as a pa-
rameter estimation process, and their inference relies on the data. When there
exist observations substantially different from the bulk of data, known as out-
liers, they can influence badly the model structure bringing degradation in the
estimates. In this work we seek for a robust estimator for the parameters of the
RGHSOM by applying M-estimators introduced by Huber [8].

Let the data set χ = {xi}i=1..n consists of an independent and identically
distributed (i.i.d.) sample of size n coming from the probability distribution

F (x). An M-estimator θ̂
M

n is defined by

θ̂
M

n = arg min
θ∈Θ

{RLn(θ)} where RLn(θ) =
1
n

n∑
i=1

ρ (xi, θ)

where Θ is the parametric space, RLn(θ) is a robust functional cost and ρ is the
robust function that introduces a bound to the influence of outliers data during
the training process. By assuming that ρ is differentiable, whose derivative is
given by ψ(x, θ) = ∂ρ(xi,θ)

∂θ , the M-estimator can be defined implicity by the

solution of 1
n

∑n
i=1 ψ

(
xi, θ̂

M

n

)
= 0.
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3 The RGHSOM Model

The RGHSOM has a tree architecture where each node consists in a robust self
organizing map (RSOM) [4] that models a particular region of the input space.
The model is generated dynamically during the training process. In this section
we propose to robustify the learning process of the GHSOM such that the model
becomes insensitive to the presence of outlying observations.

Locating the Neuron to Be Hierarchical Expanded. When the layer 0 is
created with the neuron m[0], it must be located at the center of the data that
it models before a new grid will be generated. The estimation of the location of
the neuron is given by an M-estimator m[0] obtained as the minimization of the
robust functional cost given by,

RL(m[0], s[0]) =
∑
xi∈I

ρ

(
xi −m[0]

s[0]

)
I 
= φ

where s[0] its robust estimation of the standard deviation of the data of the input
space I

For example for ρ(x) = x2 the M-estimator will be the mean m[0] = Xn of
the data, or for ρ(x) = |x| will be the median m[0] = median{xi, i = 1..n}. In [7]
several M-estimators can be found, in particular we are interested in estimators
that diminish the influence of outliers. To estimate s[0] we prefer the MEDA
function given by s[0] = 1.483 median

{
|[xi −m[0]]−median[xi −m[0]]|

}
After the location of the first neuron, a new grid with initial size of 2×2 units

is created beneath it. The map could be created randomly, where the prototypes
are generated from a normal or an uniform distribution with mean m[0] and
variance (s[0])2. It can be also created deterministically around the center.

Robust Self Organizing Map (RSOM). In [4] we introduced a robust learn-
ing algorithm for the Kohonen’ SOM [9]. When the data x is presented to the
model, it searches for the best matching unit (bmu) that is nearest to the
input and is obtained by

∥∥∥x−m[u]
l,c

∥∥∥ = minj{
∥∥∥x−m[u]

l,j

∥∥∥}. The winning unit
and its neighbors adapt to represent the input by modifying their reference
vectors towards the current input. The amount that the units learn will be
governed by a neighborhood kernel hc([u, l, j], t), which is a decreasing func-
tion of the distance between the unit j and the bmu c on the map lattice
l at layer u at time t. The kernel is usually given by a Gaussian function,

hc([u, l, j], t) = α(t) exp

(
−
∥∥∥r

[u]
l,j−r

[u]
l,c

∥∥∥2

2σ(t)2

)
, where r[u]

l,j and r
[u]
l,c denote the coor-

dinates of the neurons j and c in the lattice l at layer u, α(t) is the learning rate
parameter and σ(t) is the neighborhood range. In practice the neighborhood
kernel is chosen to be wide in the beginning of the learning process to guarantee
global ordering of the map, and both its width and height decrease slowly during
learning.
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The influence of the outlier was diminished by introducing a robust ψ(·)
function, ψ : χ×M[u]

l,j → R
n, m[u]

l,j ∈M
[u]
l,j ⊆ R

n, in the update rule as follows:

m
[u]
l,j (t+ 1) = m

[u]
l,j (t) + hc([u, l, j], t)ψ

(
x−m[u]

l,j (t)

s
[u]
l,j (t)

)
j = 1..M [u]

l (1)

where s[u]
l,j (t) is a robust estimation of the standard deviation of the set of data

C[u]
l,j modelled by the neuron j of the map l at layer u. To estimate s[u]

l,j (t) we use
a variant of the MEDA function given by:
s
[u]
l,j (t) = 1.483median

{
|h∗c([u, l, j], t)[x−m

[u]
l,j ]−median(h∗c(l, j, t)[x−m

[u]
l,j ]|)

}
The learning parameter function α(t) is a monotonically decreasing function

with respect to time, for example this function could be linear α(t) = α0 +(αf −
α0)t/tα or exponential α(t) = α0(αf/α0)t/tα , where α0 is the initial learning
rate (< 1.0), αf is the final rate (≈ 0.01) and tα is the maximum number of
iteration steps to arrive αf .

For example the Huber function could be used, which is given by ψH(x,mj) =
sgn(rj)min{|rj |, δ}, δ ∈ R

+, rj = (x−mj)/sj .

Quality Measure and Global Network Control. The quality of the adap-
tation of the RGHSOM to the data is measured in terms of the deviation between
the units and it is given by the robust quantization error of each unit j of the
map l at layer u:

rqeu,l,j =
∑

xi∈C[u]
l,j

ρ

(
xi −m

[u]
l,j

s
[u]
l,j

)
, C[u]

l,j 
= φ (2)

where C[u]
l,j is the set of input vectors belonging to the Voronoi polygon of the unit

j of the map l at layer u. When the training process is starting, we calculate the
robust quantization error rqe0 of the first neuron representing the layer 0 over
the whole data set I. All units must represent their respective Voronoi polygons
of data at a robust quantization error smaller than a fraction τ of rqe0:

rqeu,l,j < τ · rqe0 (3)

The units that not satisfy this criterion require a more detailed data repre-
sentation.

Hierarchical Growth. Every unit has to be checked for fulfillment of the global
stoping criterion given by equation (3). If a unit j of the map l at layer u does
not fulfill the criterion, then a new layer must be created for the vectors mapped
onto this unit. The new grid with initial size of 2 × 2 units is created beneath
the unit m[u]

l,j . The map could be created randomly, where the prototypes are

generated from a normal or a uniform distribution with mean m[u]
l,j and variance
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(s[u]
l,j )2, where the last is calculated as the variance of the set C[u]

l,j . It can be also
created deterministically around the center.

Growth Process. During the growing process, the map is trained with the
RSOM algorithm, and all its units are analyzed with equation (2). Then, the
unit with the highest rqe, called error unit e and its most dissimilar neighbor d
are determined by

e = arg maxj

{∑
xi∈C[u]

l,j

ρ

(
xi−m

[u]
l,j

s
[u]
l,j

)}
, and d = arg maxj

(∥∥∥m[u]
e −m[u]

l,j

∥∥∥),

respectively, where C[u]
l,j 
= φ, m[u]

l,j ∈ Ne,Ne is the set of neighboring units of the
error unit e. A row or column of units is inserted between e and d and their
model vector are initialized as the means of their respective neighbors. After
insertions, the map is trained again.

The growth process thus continues only until the map’s robust mean quan-
tization error given by RMQE

[u]
l = 1

nU
·
∑

j∈U rqeu,l,j , nU = |U| reaches a
certain fraction γ of the rqe of the corresponding unit κ in the upper layer
RMQE

[u]
l < γ · rqeκ, where U is the subset of the maps units onto which data

is mapped. All the units of the map must fulfills the stoping criterion.

Evaluation of the Adaptation Quality. To evaluate the quality of adapta-
tion to the data a common measure to compare the algorithms is needed and
the following metric based on the mean square quantization error is proposed:

MSQE =
1
n

∑
m

[u]
l,j∈N

∑
xi,i=1..n

hc([u, l, j], t)
α(t)

∥∥∥xi −m
[u]
l,j

∥∥∥2

(4)

where N is the set of all prototypes that are leaves in the hierarchical structure,
i.e., it does not have a grid below.

4 Simulation Results

In this section we compare the computational capabilities of the RGHSOM with
the GHSOM algorithm to show the lack of robustness of the last method and the
improvement obtained by our algorithm. To validate the RGHSOM algorithm we
follow the Prechelt test [11], for this reason we apply first the algorithm to com-
puter generated data and then to two real data sets obtained from benchmarks
and we compare the results with the GHSOM algorithm.

4.1 Experiment #1: Computer Generated Data

Five clusters of two-dimensional Gaussian distribution Xk ∼ N (µk, Σk), k =
1, ..., 5 were constructed, where µk andΣk are the mean vector and the covariance
matrix respectively of the cluster k. A total of 500 training samples and 500 test
samples were drawn. The information about the parameters used to generate
the clusters are
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Cluster n µ Σ

1 75 [0.5; 0.5]T 0.032 ∗ I2

2 75 [0.6; 0.4]T 0.032 ∗ I2

3 100 [0.1; 0.1]T 0.102 ∗ I2

4 100 [0.8; 0.8]T 0.152 ∗ I2

5 150 [0.6; 0.9]T 0.012 ∗ I2

The observational process is obtained by adding additive outliers: Zk = Xk +
Vk Uk, where Vk is zero-one process with P (Vk 
= 0) = γ, 0 < γ � 1 and Uk has
distribution N (0, ΣUk

) with |ΣUk
| � |Σk|, k = 1, ..., 5. The generating process

was affected with γ = 0%, 5% and 10% of outliers with ΣUk
= 0.52 ∗ I2.

The simulation results are shown in table 1, where the column Algorithm
is the type of learning algorithm, %out is the percentage of additive outliers,
Neurons, Grids and Layers gives the number of prototypes, maps and grids
generated respectively, column % neurons is the percentage of neurons that
model at least one data, the MSQE is the mean square quantization error
(4) of the test set consisting in 500 samples. Furthermore we introduce the
Akaike information criterion (AIC), AIC = n ln(MSQE)+2p, and the Bayesian
information criterion (BIC), BIC = n ln(MSQE) + p + p ln(n) both penalize
the the number of parameters (see [2]), p is the number of parameters (neurons)
in the model.

As can be noted, the RGHSOM outperforms the GHSOM algorithm in all
the cases. With increasing percentage of outliers the RGHSOM obtained a lower
MSQE and its error increases slowly with the degree of outliers. The number
of prototypes, grids and layers needed to model the topology of the data are
lower than the GHSOM in one order of magnitude. The percentage of neurons
usage given by the column % neurons of the RGHSOM is closer to 60% while
the GHSOM model is around 30%, i.e., the last model has neurons and grids
modelling no data. Furthermore, if we analyze the information criterion we can
appreciate that the RGHSOM with negative values is better than the GHSOM
with positive values when the MSQE is penalized with the number of parame-
ters. Both models were trained with 500 data but the GHSOM needed over 600
neurons to model the topology structure, and this is unacceptable.

Table 1. Summary results showing the comparative performance of the GHSOM v/s

RGHSOM algorithms using the synthetic dataset

Algorithm %out. Neurons Grids Layers % neurons MSQE AIC BIC

GHSOM 0 977 145 7 29.89 0.306 2452.816 6456.979
RGHSOM 0 126 16 4 53.17 0.128 -772.747 -115.706

GHSOM 5 647 98 7 29.83 0.192 469.9 3844
RGHSOM 5 61 6 4 57.38 0.113 -967.6 -649.5

GHSOM 10 638 97 7 28.21 1.509 430.892 3757.812
RGHSOM 10 63 7 4 66.67 0.745 -937.644 -609.123
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4.2 Experiment #2: Real Datasets

In the second experiment we test the algorithm with two real datasets known as
the Wisconsin Breast Cancer Database obtained from the UCI Machine Learn-
ing repository [5] and the The Phoneme Database of the French and Spanish
phoneme recognition problem from the Elena project [6].

The Cancer data was collected by Dr. Wolberg, N. Street and O. Mangasarian
at the University of Wisconsin [10]. The samples consist of visually assessed
nuclear features of fine needle aspirates (FNAs) taken from patients’ breasts. It
consist in 569 instances, with 30 real-valued input features and a diagnosis (M
= malignant, B = benign) for each patient. We partitioned the dataset into the
Training and Test with size of 300 and 269 data respectively.

The Phoneme data of the French and Spanish phoneme recognition problem
from the Elena project [6] consists in distinguishing between nasal (AN, IN,
ON) and oral (A, I, O, E) vowels. The data has 5404 examples, each with 5
continuous valued inputs (the normalized amplitudes of the five first harmonics),
and 1 binary output. We partitioned the dataset into the Training and Test with
size 3000 and 1404 data respectively.

Table 2. Summary results showing the comparative performance of the GHSOM v/s

RGHSOM algorithms using the Wisconsin Breast Cancer Database and the Phoneme

Database

Dataset AlgorithmNeuronsGrids Layers % neuronsMSQE AIC BIC

Cancer GHSOM 696 108 4 16.95 2.064 1587.04 4787.957
RGHSOM 372 27 3 44.89 2.085 941.70 2650.93

Phoneme GHSOM 3814 543 7 20.66 0.381 5310.750 31188.30
RGHSOM 822 83 5 51.58 0.547 197.254 5774.430

The simulation results are shown in table 2 and has the same fields than
table 1. We have similar conclusions than the Synthetic case. The difference
is that the GHSOM algorithm has a lower MSQE than the RGHSOM, but
as mentioned before, if we analyze the information criterion we can appreciate
that the RGHSOM outperforms the GHSOM when the MSQE is penalized
with the number of parameters. It is important to mention that the Cancer
and the Phonema data have 300 and 3000 training samples respectively and
the GHSOM needed 696 and 3814 neurons to learn the topology, this model is
clearly overfitted and it is undesirable to have more parameters than data. The
percentage of neurons usage given by the column % neurons of the RGHSOM is
closer to 45% while the GHSOM model is around 20%, i.e., the last model has
a lot of neurons and grids modelling no data.

5 Concluding Remarks

In this paper we have introduced the Robust Growing Hierarchical Self Orga-
nizing Maps (RGHSOM) for the analysis of data that were affected by outliers.
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The performance of our algorithm shows better results in the simulation study
in both the synthetic and real data sets. In the synthetic data we study several
degree of contamination while in the real case, we investigated two benchmarks
data known as Cancer and Phoneme databases. The comparative study with
the GHSOM shows that our algorithm outperforms the alternative models while
conserving its complexity rather low avoiding overfitting. The outliers introduce
an influence to the GHSOM model during the training process by locating pro-
totypes far from the majority of data and generating maps for few samples data.
Therefore, the network will not effectively represent the topological structure of
the data under study.

Further studies are needed in order to analyze the convergence, the ordering
properties together with the possible applications of the RGHSOM.
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Abstract. The web contains rich and dynamic collections of hyperlink informa-
tion, web page access, and usage information providing rich sources for data 
mining. From this, we need a system to recommend a visitor good information. 
This recommendation system can be constructed by web usage mining process. 
The web usage mining mines web log records to discover user access patterns 
of web pages. Also it is the application of data mining techniques to large web 
log data in order to extract usage patterns from user’s click streams. In general, 
the size of web log records is so large that we have difficulty to analyze web log 
data. To make matter worse, the web log records are very sparse. So it is very 
hard to estimate the dependency between the web pages. In this paper, we 
solved this difficulty of web usage mining using support vector machine. In the 
experiments, we verified our proposed method by given data from UCI machine 
learning repository and KDD cup 2000.  

1   Introduction 

The web log records contain much collection of hyperlink information and the usage 
transactions of web page access. The size of web log data is very large, but web log data 
are very sparse. So we have a serious difficulty for web mining. It is very difficult to 
estimate the dependency of all web pages from spare web data. We have found that the 
statistical learning theory by Vapnik was a good approach for analyzing the sparse data 
because of its ε -insensitive loss function[16]. Using the missing value imputation by 
statistical learning theory, the spare data set is changed to complete data set. This pro-
vides a useful strategy for sparse data pre-processing like web log data. In this paper, we 
use SVR(support vector regression) among statistical learning models. The SVR is the 
regression version of SVM(support vector machine) by Vapnik[7]. The SVM can be 
applied to the case of regression, maintaining all the main features that characterize the 
maximal margin. Using SVR we make an efficient missing value imputation model to 
preprocess sparse web log. In our work, the SVR method offered a good result in spare 
web log data. Through experiments by UCI machine learning repository and KDD Cup 
2000 data we verified these results[17],[18].  

2   Support Vector Machine for Web Usage Mining 

2.1   A Problem of Web Usage Mining 

The sparseness of web log file is a problem of web usage mining. This is occurred by 
several reasons. Frequently it happens when the not visited web pages are much larger 
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than the visited web pages in web log file. The click stream data of cleaned web log 
are very sparse. So we have a difficulty of web log analysis as web usage mining with 
web information recommendation, next web page prediction, and web page duration 
time forecasting. The click stream data with sparseness is hard to analyze by general 
methods as regression, MLP, and others[6]. In this case the SVR is very useful tool 
for analyzing sparse data. Because of the sparseness of web log file, the structure of 
click stream data is incomplete. These incomplete data have extremely many missing 
cells. The missing data patterns from given data matrix are following figure[10]. 

(a) Univariate (b) Multivariate

(c) Monotone (d) General

 
Fig. 1. Typical examples of  missing data 

We show 4 missing data patterns in figure 1. In the (a) and (b) of figure 1, the 
missing data are eliminated by simple imputation method as mean and conditional 
mean methods. The (c) shows monotone missing pattern. The method for this pattern 
is statistical missing data analysis models as multiple imputations. But the (d) is a 
very difficult pattern for imputing missing values. We know the missing data pattern 
of web log file is (d). So our study will use an effective method which is SVR for 
analyzing missing data.  

2.2   Support Vector Machine for Regression 

Our given training data consist of N pairs 1 1( , ), , ( , )N Nx y x y , where x  denotes 

the input patterns and y  is target variable. In SVR with ε -insensitive loss function, 

our goal is to find a function ( )f x  that has at most ε -deviation from the actually 

obtained targets iy  for all the training data, and at the same time, is as flat as possi-

ble[15]. In other words, we do not care about errors as long as they are less than ε , 
but will not accept any deviation larger than this. The ε - insensitive loss function is 
defined as,  

)|),((|)),(,( εαα xfyLxfyM −=                                  (1) 
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α  is a positive constant. The loss is equal to 0 if the discrepancy between the pre-

dicted and the observed values is less than ε . The case of linear function f  is 

described. 

bxwxf +>=< ,)(                                                (3) 

where >⋅⋅< , denotes the dot product. For SVR, the Euclidean norm 2|||| w  is 

minimized. Formally this problem can be written as a convex optimization problem 
by requiring[16]. Analogously to the loss function in [16], we introduce slack vari-

ables iξ , *
iξ to copy with otherwise infeasible constraints of the optimization prob-

lem.   
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The constant 0>C  determines the trade off between the flatness of f  and the 

amount up to which deviations larger than ε  are tolerated. Using a standard duali-
zation method utilizing Lagrange multipliers, the parameters are determined from 
equation (4) and (5)[5]. 

2.3   Web Usage Mining Using Support Vector Regression 

In this paper, for the sparseness elimination from click stream data, the missing 
value imputation approach was used. Our imputation method is SVR. This has a 
good performance for sparse data analysis because of its ε -insensitive loss func-
tion[16]. And this satisfies conditions for consistency of risk minimization princi-
ple[16].  Figure 2 shows sparse click stream data from web log file. This must be 
complete for web usage mining. 
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Fig. 2. Incomplete click-stream data from web 
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Each cell of table in above figure contains a duration time of user accessing. The 
sparseness of cells is very serious. Therefore, general preprocessing methods like 
the missing value imputation methods as single and multiple imputations are not 
suitable to solve this problem. This fact will be verified next experiment in section 
5.1. In our research, the SVR was used for sparseness elimination from web log file. 
Figure 3 shows complete table without sparseness using SVR method.  
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Fig. 3. Complete data without missing value 

The duration time of i th page is estimated as following equation.  

),...,,,...,(ˆ
)1()1(1 PageNiPageiPagePagePagei TTTTfT +−=                 (6) 

In above equation,  
PageKT  was defined the duration time of page K by user accessing 

and 
PageiT̂  was defined the estimated duration time. 

PageiT̂ was computed by the SVR 

method of (N-1) pages, PageNiPageiPagePage TTTT ,...,,,..., )1()1(1 +−   out of i page.  There-

fore we predicted each page’s duration time as using estimating missing cells. This 
approach changes sparse table of figure 2 into complete table of figure 3. 

3   Experimental Results 

Since this paper restricted itself to the consideration of web usage mining by SVR, we 
tried three experiments related with web usage mining. First, the experiment of miss-
ing value imputation for preprocessing was performed using the abalone data set from 
UCI machine learning repository. Next, using the web log data of real web 
site(gazelle.com) from KDD cup 2000, our method of web usage mining was con-
firmed experimentally. In the final experiment, we verified our recommendation sys-
tem for web usage mining.  

3.1   Experiment 1: Missing Value Imputations 

In this section, we showed the experimental results of the performance between 
single and multiple imputations by abalone data set from UCI machine learning 
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repository[18]. The number of instances of given data was 4,177. The 7 attributes 
which are length(x1), diameter(x2), height(x3), whole weight(x4), shucked 
weight(x5), viscera weight(x6), and shell weight(x7) represent the abalone’s physi-
cal state. The data were originally complete. For our experiments, we made given 
data incomplete on purpose. The incomplete data consisted of sub data sets with 
missing ratios as 5%, 10%, 20%, 25%, 30%, 40%, 50%, and 60%. We compared the 
multiple imputations methods with single imputation methods. In current experi-
ment, the MSE(mean squared error) of each table was computed as following[2]. 

2

1

1
( )

N

i i
i

MSE T O
N =

= −                                           (7) 

where, iT  is the target variable(known) and iO  is the predictive vari-

able(unknown). The smaller the value of MSE is, the better the performance of  
method is. We verified this experimental result by following table. 

Table 1. MSE of imputation methods for preprocessing 

Missing ratios Methods 
5%     10%      20%     30%      40%      50%      60% 

Tree 0.0068  0.0070  0.0078  0.0083  0.0089  0.0091  0.0108 
A’s wave 0.0540  0.0585  0.0505  0.0591  0.0603  0.0631  0.0673 
D-based 0.1413  0.1459  0.1357  0.1461  0.1491  0.1501  0.1533 

Single 
Imputation` 

Huber 0.1309  0.0540  0.0588  0.0611  0.0673  0.0679  0.0736 
P-score 0.0021  0.0031  0.0039  0.0045  0.0051  0.0053  0.0067 

MCMC(1) 0.0013  0.0015  0.0022  0.0024  0.0036  0.0055  0.0057 
MCMC(2) 0.0011  0.0014  0.0020  0.0022  0.0033  0.0051  0.0052 

Multiple 
Imputation 

MCMC(3) 0.0010  0.0013  0.0018  0.0020  0.0029  0.0047  0.0048 

In the above table, Tree, A’s wave, D-based, and Huber of single imputation 
methods were tree imputation, Andrew’s wave, distribution based imputation, and 
Huber imputation respectively[3],[8],[9],[13],[14]. P-score of multiple imputations 
methods was propensity score[10]. The MCMC(m)s of multiple imputations meth-
ods were MCMC imputation methods. In each MCMC(m), the missing data were 
filled in m times to generate m complete data sets. In the above result, the more 
missing ratio was increased, the larger the value of MSE was. Also we knew the 
MSEs of multiple imputations methods were smaller than the MSEs of single impu-
tation methods. The result of above MCMC imputations showed that the values of 
MSEs were smaller according to increase the value of m. So we compared proposed 
SVR method with multiple imputations methods in following section. 

3.2   Experiment 2: Preprocessing Web Log Data 

In this section, we showed the results of experiment using KDD Cup 2000 data[17]. 
The data set had web log file of real internet shopping mall(gazelle.com).  The ca-
pacity of given data was 1.2GB. We used he one-third of given data for the valida-
tion and the other two-thirds for training[11]. After data cleaning, we showed the 
basic information of given data in the following table. 
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Table 2. Summarized data set 

Attributes Value range 
Cookie-id 13,109 (users) 

assortment-id 269 (web pages) 
duration-time 0~1000 (second(s)) 

In table 2, the cookie-id was the index of user accessing to web site. The assort-
ment-id represented each web page containing the descriptive contents of each item 
in the shopping mall and the duration-time of web page had the value between 0 
and 1000 seconds. By previous experimental result, the propensity score and 
MCMC methods were compared with our SVR approach. Table 3 showed the result 
of this experiment. 

Table 3. Result of evaluation 

Methods MSE (total) MSE (upper 50%) 
P. Score 3.10 2.38 Multiple 

Imputation MCMC(3) 2.36 1.98 
SVR 1.69 1.21 

In this result, the MSE values of total and upper 50% of testing data were com-
putted. The MSE of SVR was smaller than propensity score and MCMC. Therefore, 
we found the SVR had a good performance. Also next figure showed a computing 
time among propensity score, MCMC, and SVR methods. In figure 4, SVR had the 
smallest computing time in the compared methods. Because web usage mining was 
dynamically on-line process, SVR was a good method for recommendation system 
of web contents in web usage mining. So, in next experiment, we compared the 
recommendation system by SVR with other system. 
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Fig. 4. Computing times of compared methods 
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3.3   Experiment 3: Recommendation of Web Pages 

We made an experiment on the performance of SVR by comparing with Pearson’s 
correlation and collaborative filtering methods[1],[4],[12]. For this experiment, the 
150 users, those who accessed more than 20 web pages, were used. On the assump-
tion that 10 pages of above given data were already visited, the other 10 pages were 
used for estimating the preference of each web page. The preferences of web pages 
were computed by SVR. According to the order of preference value, the web pages 
standing a high 50% rank of given data were defined ‘High’ and the others were 
defined ‘Low’. And we used following confidence measure for the evaluation of 
recommendation system[6]. 

( ) ( | )Confidence X Y P Y X=                 (8) 

Above equation is the conditional probability of Y given that X has occurred. The X 
and Y were the web pages in our experiment.  

Table 4. Accuracy of recommendation between SVR and Pearson’s correlation 

Confidence SVR Pearson’s  
Correlation 

Collaborative 
Filtering 

P(High|High) 0.41 0.35 0.33 
P(Low|Low) 0.38 0.31 0.29 
P(High|Low) 0.16 0.16 0.19 
P(Low|High) 0.12 0.13 0.18 

In above table, P(High|High) was showed the probability of visited High(web 
pages) after visited High(web pages). So we wanted that the values of P(High|High) 
and P(Low|Low) were large and the values of P(High|Low) and P(Low|High) were 
small. From table 4 we knew that the confidence of SVR was the best in the com-
parative methods. 

4   Conclusion 

The objective of this paper was to use SVR for an effective web usage mining. 
Though the SVR had been used in statistical machine learning models for the data 
without web log data, we tried to use SVR for web log data analysis. In our work, 
we verified the performance of SVR by the accuracy of preprocessing and the con-
fidence of recommendation in web usage mining. Our future works will be to de-
velop the hybrid SVR combined with the competitive co-evolving computing for 
intelligent web usage mining. 
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Abstract. This paper presents a method to iteratively grow a compact
Support Vector Regressor so that the balance between size of the ma-
chine and its performance can be user-controlled. The algorithm is able
to combine Gaussian kernels with different spread parameter, skipping
the ‘a priori’ parameter estimation by allowing a progressive incorpo-
ration of nodes with decreasing values of the spread parameter, until a
cross-validation stopping criterion is met. Experimental results show the
significant reduction achieved in the size of the machines trained with
this new algorithm and their good generalization capabilities.

1 Introduction

Support Vector Regressors (SVRs) extend the excellent properties of the Support
Vector Machines (SVMs) to solving function approximation problems [11]. One
common way of designing a SVR is through the ε-insensitive cost function, that
mainly consists in assuming as error-free all the samples with error smaller than
a threshold ε. Moreover, the expression of the regressor is determined as a linear
combination of kernel functions ‘centered’ in some patterns also called Support
Vectors (SVs). SVRs are specially attractive because the regressor is the result
of a convex optimization problem, that guarantees a globally optimal unique
solution. Moreover, the machine size is automatically determined after solving
the optimization problem, what skips the previous estimation of the optimal
architecture, a drawback of traditional neural networks.

However, SVRs may be of reduced usability in certain applications since the
resulting machine size can be extremely high. The regressor can be regarded as a
one hidden layer neural network -every kernel computation representing a node
in the hidden layer- with a node in the output layer that combines the outputs
of the hidden one. Besides, the performance of the machine is usually severely
determined by the parameters of the kernel function used in the SVR [9]. That
involves two more restrictions on the SVR: (i) the ‘a priori’ estimation of optimal
kernel parameters, and (ii) the difficulty to carry out a multiresolution analysis
of data, i.e., to tackle different parts of a same problem with different granularity.
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With respect to the complexity of the machine, some previous works have
tried to reduce the final machine size through either a postprocessing stage, like
the Reduced Set Method of [8] or a prior reduction of the kernel matrix, like
the sparse greedy matrix approximation of [10]. However, the former incurs in
extra computational cost (training a conventional SVR plus the pruning stage)
and the latter may lead to suboptimal results since the reduction of the kernel
matrix is not oriented by the problem to be solved.

Recently, a method to iteratively Grow a Support Vector Classifier (GSVC)
has been proposed [6]. This method enables to balance the trade-off between the
size of the classifier and the classification error. The core of GSVC is WLS-SVC
(Weighted Least Squares SVC) [4], an algorithm that constructs a semiparamet-
ric approximation to a SVC based on a previously selected architecture. More-
over, WLS-SVC allows to separate the selection of the kernel representatives
-’centroids’- from the determination of the coefficients of the ensemble of kernel
functions. This property supports the classification algorithm MK-GSVC (Multi-
kernel GSVC) [6], that enables the combination of different kernel functions in
the same SVC. This paper introduces the algorithm Multi-Kernel Growing Sup-
port Vector Regressors (MK-GSVR), that extends the ideas underlying MK-
GSVC to functional approximation problems. When combined with a Gaussian
kernels of different spread parameter σ, MK-GSVR approximates the functions
as mixtures of heterogeneous Gaussian functions and avoids the previous esti-
mation of the optimal σ. Although not explored in this paper, combinations of
linear kernels and varying degree polynomials can also be considered.

The rest of the paper is organized as follows. Section 2 reviews the con-
struction of compact SVRs from a given architecture, that forms the core of
the MK-GSVR algorthim, described in Section 3. Some numerical results are
presented in Section 4, and finally, Section 5 presents the concluding remarks.

2 Incremental Training to Control the Complexity of a
SVR

As introduced before, MK-GSVR iteratively builds a parametric approximation
SVR. Therefore, MK-GSVR includes two main procedures: the selection of hy-
perparameters of the kernels introduced in the ensemble at each iteration and the
solution of the optimization problem that determines the weights of the ensem-
ble so that the structural risk is globally minimized. This last function is carried
out by WLS-SVR (Weighted Least Squares SVR), a version of WLS-SVC that
constructs compact SVRs with ε-insensitive cost function, whose formulation is
presented in this section. The starting point of WLS-SVR is a method to de-
termine the architecture of the SVR by the solution of a Iterative Re-Weighted
Least Squares problems (IRLS-SVR) [7]. Given a projection onto a suitable fea-
ture space φ(·) associated to a kernel k(·, ·), and a training dataset {(xi, yi)}l

i=1,
with x ∈ X and y ∈ �, the analytical expression of the SVR in feature space is:

f(x) = φT (x)w + b (1)
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If we drop the bias term, w is the solution of the following equation [7]:

[I + ΦDa+a∗ΦT ]w = ΦDa+a∗ [y −Eε] (2)

where Φ = [φ(x1), . . . ,φ(xl)], E = D−1
a+a∗Da−a∗1 and Da±a∗ are diagonal ma-

trices with (Da±a∗)ii = ai ± a∗i . Coefficients a(∗)
i

1 are computable as [4]:

ai =
αi

yi − f(xi)− ε
, a∗i =

α∗
i

f(xi)− yi − ε
. (3)

At this point, we assume a parametric solution to equation (2), w = Ψβ.
The solution is supported by some ‘a priori’ chosen centroids {c}R

i=1, so Ψ =
[φ(c1), . . . ,φ(cR)]:

[I + ΦDa+a∗ΦT ]Ψβ = ΦDa+a∗ [y −Eε] (4)

multiplying both terms by ΨT we arrive at:

[ΨTΨ + ΨTΦDa+a∗ΦTΨ ]β = ΨTΦDa+a∗ [y −Eε] (5)

The application of the kernel trick [9] in equation (5) allows to solve the
system in the input space by substituting the dot products with kernels. This
way, substituting K = ΦTΨ , (K)ij = k(xi, cj) and IΨ = ΨTΨ , (IPsi)ij =
k(ci, cj), equation (5) turns to

[IΨ +KTDa+a∗K]β = KTDa+a∗ [y −Eε] (6)

Equation (6) is the actual system to iteratively solve by means of WLS-SVR,
in a manner analogous to the one described in [4] for the classification scenario.
For this purpose, variables a(∗)

i are initialized to {0, C} with equal probability,
and equation (6) is solved to obtain an initial set of weights β. Then, coefficients
a
(∗)
i are updated according to a procedure analogous to that described in [4]:

ai =

⎧⎨
⎩

0 if yi − kiβ − ε < 0
M if C

M ≥ yi − kiβ − ε ≥ 0
C/(yi − kiβ − ε) if yi − kiβ − ε ≥ C

M

(7)

a∗i =

⎧⎨
⎩

0 if kiβ − yi − ε < 0
M if C

M ≥ kiβ − yi − ε ≥ 0
C/(kiβ − yi − ε) if kiβ − yi − ε ≥ C

M

(8)

where ki represents the i-th row of K and M is a constant typically above
C2. This updating is equivalent to approaching the abrupt change in the step
function (α as a function of the slack variables) of SVM by a steep function with
slope M [4]. This procedure of solving for β and updating the a(∗)

i is repeated
until convergence.

1 We refer to both ai and a∗
i with the notation a

(∗)
i .
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3 Growing Support Vector Regressors

In this section we describe an algorithm for iteratively growing the architecture
of a SVR, controlling its complexity, analogous to that one in [6] for the classifi-
cation scenario. Then the formulation for a case with mixture of different kernels
is presented (Gaussian kernels with varying width), and the GSVR algorithm is
extended to the multi-kernel case.

3.1 Growing Support Vector Regressor Algorithm: GSVR

For initialization of the GSVR algorithm, the first N centroids are picked up at
random from the training set, since no information about the function is available
yet. Then an initial kernel matrix K0 is computed and the initial function β(0)
and coefficients a(∗)

i (0) are obtained via WLS-SVR.
The prediction error obtained with this initial machine can be used to select

new centroids to increase the representational capabilities of the machine, by
incorporating them into the architecture and updating weights. In our case,
we force the training procedure to concentrate on the worst predicted patterns
(those outside the regression tube), thereby improving the representation in F
of this region of the input space. The method for selecting new centroids is
analogous to the one described in [2]. Note that, every time the regressor is
expanded with new nodes, the GSVR algorithm only updates the parameters
for step “n” using those at step “n − 1” as a starting point, not needing re-
training from scratch. Furthermore, all the kernels computed at step “n” do not
need to be re-computed at following steps, because their centroids are kept.

To avoid overfitting and to get good generalization characteristics, we stop
the algorithm by means of a validation procedure that detects when performance
stops increasing. Validation is applied on a reserved subset (about 20%) of the
training data that is not fed into WLS-SVR until the architecture is completely
determined. Once the growth has finished, the training and validation subsets
are merged and WLS-SVR is invoked for a last update of the regressor weights,
to maximally exploit the available data for training the best machine.

3.2 Mixture of Kernels to Solve a Multi-resolution Regressor:
MK-GSVR

In some applications, it is not clear a priori which kernel function is the most
appropriate, and it might be desirable to train a more flexible SVM by combining
different kernels to solve a given problem. In what follows we will restrict to the
Gaussian case, where combining kernels with different σ value can be interpreted
as a multi-resolution approach, observing the problem at different scales of detail,
although, as shown in [1], mixture of different kernels is also possible.

It is necessary to reformulate the algorithms to support multi-kernel, by com-
bining several discriminant functions with different kernels and globally maxi-
mizing the flatness of the resulting function. The multi-kernel SVR is:
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f(x) =
J∑

j=1

φT
j (x)wj + b, (9)

where φj(·) are the mapping functions corresponding to the J different kernels
and b includes all the bias terms. We obtain wT

j by jointly maximizing the
flatness of the function in each space Fj (Fj corresponds to projection φj(·))

LMK =
J∑

j=1

δj
2
‖wj‖2 −

l∑
i=1

αi [ε− yi + f(xi)]−
l∑

i=1

α∗
i [ε+ yi − f(xi)], (10)

where coefficients {δj} represent a set of (possible) weights for the combination
of kernels. Then, dropping the bias term for simplicity, substituting (3) and (9)
in (10) and minimizing we arrive to

δjwj − ΦT
j Da [y − ΦW − ε] + ΦT

j Da∗ [ΦW − y − ε] = 0 j = 1, . . . , J, (11)

where Φj =
[
φj(x1) · · ·φj(xN )

]T , Da(∗) are a diagonal matrices with (Da(∗))ii =

a
(∗)
i , Φ = [Φ1 · · ·ΦJ ] and W =

[
wT

1 · · ·wT
J

]T . We can further combine the equa-
tions in (11) obtaining:

ΛW − ΦTDa [y − ΦW − ε] + ΦTDa∗ [ΦW − y − ε] = 0, (12)

where Λ is a diagonal matrix defined as

Λ =

⎡
⎢⎢⎢⎣
δ1I1 0 · · · 0
0 δ2I2 · · · 0
...

...
. . .

...
0 0 · · · δJIJ

⎤
⎥⎥⎥⎦

where {Ij} are identity matrices whose sizes are in concordance with {wj}.
Finally we rearrange (12) leaving the terms that depend on W in the left-hand
side of the equation and moving the independent terms to the right-hand side:[

Λ+ ΦTDa+a∗Φ
]
W = ΦTDa+a∗ [y −Eε] , (13)

where E = D−1
a+a∗Da−a∗1 and we have applied the identity Da±a∗ = Da ±Da∗

for diagonal matrices. At this point, we introduce the parametric approximation,
and we assume that the solution of the equation has a form

wj = ΨT
j βj j = 1, . . . , J, (14)

where Ψj = [φj(cj
1) · · ·φj(cj

Rj)]T . Now, we can write the solution of the system
in terms of the parametric approximation W = ΨT β, where Ψ is a diagonal ma-
trix with (Ψ)ii = Ψi and β = [βT

1 · · ·βT
J ]T . This parametric solution is included

in (13). Multiplying each side of (13) by Ψ and grouping terms, we arrive to:[
ΨΛΨT + ΨΦTDa+a∗ΦΨT

]
β = ΨΦTDa+a∗ [y −Eε] . (15)
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Products between matrices Φ and Ψ are inner products of vectors in the projected
spaces, and can be written in their kernel forms:[

IΨ +KTDa+a∗K
]
β = KTDa+a∗ [y −Eε] , (16)

where IΨ = ΨΛΨT and K = ΦΨT :

IΨ =

⎡
⎢⎢⎢⎣
δ1Ψ1Ψ

T
1 0 . . . 0

0 δ2Ψ2Ψ
T
2 . . . 0

...
...

. . .
...

0 0 . . . δJΨJΨ
T
J

⎤
⎥⎥⎥⎦ , K =

[
Φ1Ψ

T
1 · · ·ΦJΨ

T
J

]
. (17)

Here, it is worth remarking that, due to the block-diagonal structure of ma-
trices IΨ and Ψ , inner products between projected vectors corresponding to
different mappings associated to different kernels kj , ki with j 
= i never appear,
i.e. all the inner products involve well defined projections and can be calculated
via the corresponding kernel. IΨ and K can be calculated with kernels using:

IΨj = δjΨjΨ
T
j , (IΨj)mn = δjkj(cj

m, cj
n), m, n = 1, . . . , Rj , (18)

Kj = ΦjΨ
T
j , (Kj)ik = kj(xi, cj

k), i = 1, . . . , l, k = 1, . . . , Rj . (19)

Once we have calculated matrices IΨ andK, (16) can be solved via WLS-SVR
to obtain the parametric approximation to the MK-SVR formulated in (13).

A growing scheme for the Gaussian MK-SVR case can be easily implemented
based on the lines explained in Section 3.1. The machine is initialized with few
centroids and with a high value of parameter σ, so that data are examined with a
coarse resolution. The GSVR proceeds normally until the MSE of the validation
set shows that training has saturated. Then, σ is decreased in order to process
in a deeper detail (lower resolution) the parts of the regression function that
are still badly learned. The value of σ is decreased after each saturation of the
learning until no improvement is observed in the validation error. Moreover, from
iteration to iteration there is no need to recalculate all the kernel matrices, but
just to add the blocks corresponding to the new nodes.

4 Experimental Results

In this section we present some results showing the performance of our algorithm
when compared with the standard SVR algorithm2. First we present a toy ex-
ample in 1D that allows us to see graphically how both algorithms work. Then
we present the results on three real-world problems.

4.1 Toy Example

The sinc function is largely used to present the SVR capabilities [7], because it is
a well-known simple one dimensional curve (so it can be plotted). We have used

2 We have used for our experiments SVMlight [3].
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51 training samples, which were equally spaced ranging from -10 to 10 for the
variable x and we have added zero-mean gaussian noise with σn = 0.18 to the
variable y = sin(x)

x . An RBF kernel has been selected, and cross-validation has
been used for selecting the optimal parameters for each case: C = 1000, ε = 0.1
and σ = 5 for SVMlight, and C = 2, ε = 0.1 and ncc = 1 (number of centroids
added at each iteration) for MK-GSVR. Then we test the resulting architectures
with 401 samples, equally spaced ranging from -10 to 10 for the variable x and
the variable y = sin(x)

x without noise.
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(a) SVM
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(b) MK-GSVR

Fig. 1. Regressor functions. Continuous line is the regressor function, dashed line is

the original sinc function, dotted line shows the insensitive region, “x” shows training

patterns and “o” denotes the support vectors (a) or centroids (b)

Both results are depicted in Figure 1. MK-GSVR performs an error reduc-
tion around 40% with respect to SVMlight, with MSEMK−GSV R = 0.0047 and
MSESV Mlight = 0.0075. Also the resulting architecture is smaller in MK-GSVR:
21 centroids for MK-GSVR and 26 support vectors for SVMligh. We can also
see how MK-GSVR selects centroids not only among the patterns outside the
ε-tube (the support vectors of the standard SVM), but also inside.

4.2 Real-World Problems

We have used two real data sets to test the performance (in MSE prediction error
and size of the resulting machine) between the QP-SVR [3] and the MK-GSVR.
Those data sets are Boston Housing, CPU-performance3 and Kin4. We have
used a five-fold cross-validation method for selecting the optimal parameters as
described in section 4.1. The results are shown in Table 1. We can see how the
performance of MK-GSVR is comparable to QP-SVM, in terms of Mean Squared

3 Taken from ftp://ftp.ics.uci.edu/pub/machine-learning-databases/.
4 From http://www.cs.toronto.edu/ delve/data/kin/desc.html.
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Table 1. Results for Boston Housing and CPU performance. Mean values and standard

deviation (in parenthesis) of minimum squared error and machine size are shown

SVMlight MK-GSVR

Data set MSE SVs MSE centroids

Boston Housing 19.24 (17.84) 397.4 (1.67) 18.15 (12.33) 94.4 (43.53)

CPU performance 5182.3 (7044.8) 158.6 (3.91) 5285.9 (6970.4) 49 (18)

Kin 0.0599 (0.0029) 4696.8 (31.5) 0.0625 (0.0035) 63.6 (18.1)

Error. What is more important, MK-GSVR yields much smaller machines, about
1/4, 1/3 and even 1/75 smaller, respectively.

5 Concluding Remarks

We have presented an algorithm that iteratively grows a support vector regressor
(GSVR) in a problem-oriented form. In its multi-kernel version (MK-GSVR), it
is capable of solving function regression problems in a multi-resolution approach,
with the advantage of skipping the problem of an ‘a priori’ estimation of kernel
hyperparameters. The algorithm presented here is simple, efficient and allows
to control the trade-off between machine complexity and performance in terms
of prediction error. Experimental results in several benchmark problems point
out that MK-GSVR generalization is comparable to SVRs. Most prominently,
the experiments show an important reduction on the final machine size built by
MK-GSVR with respect to the original SVR.

Ongoing research includes schemes of Growing Support Vector Regressors
with mixtures of different types of kernels, not just kernels with variable hyper-
parameters [1]. Under this general formulation we are also developing adaptive
and distributed [5] versions of the algorithm, in order to deal with new problems
present in Data Mining applications over communication networks.
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2. D. Gutiérrez-González, E. Parrado-Hernández and A. Navia-Vázquez. Mega-
GSVC: Training SVMs with millions of data. Proceedings of the Learning’04 Con-
ference, pages 73-78, Elche (Spain), 2004.

3. T. Joachims. Making large scale SVM learning practical. In B. Schölkopf,
C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods— Sup-
port Vector Learning, pages 169–184. M.I.T. Press, Cambridge, (MA), 1999.
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Abstract. Cellular neural networks (CNNs) introduced by Chua and Yang in
1988 are recurrent artificial neural networks. Due to their cyclic connections and
to the neurons’ nonlinear activation functions, recurrent neural networks are non-
linear dynamic systems, which display stable and unstable fixed points, limit
cycles and chaotic behavior. Since the field of neural networks is still a recent
one, improving the stability conditions for such systems is an obvious and quasi-
permanent task. This paper focuses on CNNs affected by time delays. We are
interested to obtain sufficient conditions for the asymptotic stability of a cellular
neural network with time delay feedback and zero control templates. Due to their
sector restricted nonlinearities, stability of the neural networks is strongly con-
nected to robust stability. With respect to this we shall use a quadratic Liapunov
functional constructed via the technique due to V. L. Kharitonov for uncertain
linear time delay systems, combined with an approach suggested by Malkin for
systems with sector restricted nonlinearities.

1 Introduction

Cellular neural networks (CNNs), introduced by Chua and Yang in 1988 [2], are artifi-
cial recurrent neural networks displaying 2D or 3D arrays of identical nonlinear dynam-
ical systems (the so-called cells) locally interconnected. CNNs have been successfully
applied to signal and image processing, shape extraction and edge detection. In such ap-
plications stability and other problems of dynamical behavior of the CNN are equally
important. These properties are necessary for the network to achieve its goal and have
to be checked on the CNN mathematical model.

In the last ten years the research was oriented towards the dynamics of the networks
affected by time delays due to the signal propagation at the synapses level of the bi-
ologic brain or the reacting lag in the case of the artificial neural network. These lags
may introduce oscillations or may lead to instability of the network.

Our primary interest is to obtain sufficient conditions for the asymptotic stability of
a CNN with time delay feedback and zero control template. With respect to this it is
important to point out that the nonlinearities of the neural networks being sigmoidal,
belong to the class of the sector restricted (Lurie type) nonlinearities what sends to the
absolute stability problem; at its turn this problem (of stability with respect to an entire
class of nonlinear functions) appears in a more contemporary setting as a robustness
problem.

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 366–373, 2005.
c©Springer-Verlag Berlin Heidelberg 2005
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Since the simplest Liapunov function(al) in this case is the quadratic one, we focus
on such function(al)s. In the linear case a quadratic Liapunov functional may provide
necessary and sufficient conditions for exponential stability, but in the time delay case
the sharpest most general quadratic Liapunov function (as suggested by the papers of
Datko and Infante with Castelan - their exact references are to be found in [6] is rather
difficult to manipulate. On the other hand, the simplified versions which are currently
used (including our earlier reference [3], [4], [5]) deserve improvement.

For this reason we adopted the construction of V. L. Kharitonov [6], [9] which is
mainly based on the algebraic Liapunov equation idea: given a certain structure of the
Liapunov function(al) derivative, the functional itself, together with its derivative is
constructed (solving ATP + PA = −Q with respect to P when Q is given, but in the
case of the time delay systems). Now, the approach of Kharitonov is suitable mainly for
uncertain linear systems, the uncertainty being subject to some quadratic inequalities.

The sector restricted nonlinearities are also subject to quadratic inequalities hence
they are within the same class of problems. We shall apply a method due to I. G. Malkin
in the early stage of the absolute stability studies [1], [10] which takes advantage of the
properties of the quadratic Liapunov function(al), being rather simple and straightfor-
ward. Since this approach of Malkin was introduced and applied to systems with a
single nonlinearity, the present paper is also an extension of the method of Malkin to the
case of several nonlinearities and time delay systems.

2 The Mathematical Model – Problem Statement

A. Consider a cellular neural network with time delay feedback and zero control
templates

żi(t) = −aizi(t) +
∑
j∈N

cijgj(zj(t− τj)) + Ii, i = 1, n (1)

where j is the index for the cells of the nearest neighborhood N of the ith cell, ai is
a positive parameter, cij are synaptic weights (which can have an inhibitory effect if
cij < 0, or an excitatory one if cij > 0), Ii is the bias and τj are positive delays.

The nonlinearities for the cellular neural networks are e.g. of the bipolar ramp type:

gi(zi) =
1
2
(|zi + 1| − |zi − 1|) (2)

hence they are bounded, nondecreasing and globally Lipschitzian functions, with the
Lipschitz constant Li = 1. Worth mentioning that other sigmoidal nonlinear functions
which are to be met in neural networks may also be considered: they are also nonde-
creasing and globally Lipschitzian, possibly with other Lipschitz constants.

Without loss of the generality, using a change of the coordinates, xi = zi − z∗i , one
can shift the equilibrium point z∗ to the origin so that system (1) can be written into the
form:

ẋi(t) = −aixi(t) +
∑
j∈N

cijfj(xj(t− τj)), i = 1, n (3)
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where we denoted

fj(σ) = gj(σ + z∗j )− gj(z∗j ), ∀j . (4)

These functions are subject to sector restrictions. For instance, if gj(zj) are given by (2)
then since they are nondecreasing and globally Lipschitzian with the Lipschitz constant
Li = 1 we shall have, taking also into account the above definition of fi that

0 <
fi(σ)
σ

≤ 1 (5)

Denoting

A0 = diag(−ai)n
1 , Cj =

⎛
⎜⎜⎜⎝

0 · · · 0 c1j 0 · · · 0
0 · · · 0 c2j 0 · · · 0
... · · ·

...
...

... · · ·
...

0 · · · 0 cnj 0 · · · 0

⎞
⎟⎟⎟⎠ , Aj = Cj · diag(ki)n

1 (6)

with cij = 0 when j /∈ N system (3) may be written into the form

ẋ(t) = A0x(t) +
n∑

j=1

Ajx(t− τj) (7)

provided we take fj(σ) ≡ kjσ, with the initial condition xi(θ) = ϕ(θ), for θ ∈ [−τ, 0],
where τ = maxj τj , ϕ ∈ C(−τ, 0; Rn). Remark that in the nonlinear case system (3)
reads as

ẋ(t) = A0x(t) +
n∑

j=1

Cjdiag(f�(x�(t− τj))) (8)

B. In order to make the approach of the paper more clear, we shall discuss briefly two
robustness problems concerning a general linear system of the form (7) where Aj are
defined by (6) and Cj possibly by (6). Assume (7) be exponentially stable for given kj ,
j = 1, . . . , n, and consider the perturbed system

ẏ(t) = A0y(t) +
n∑

j=1

Cjdiag(k� + b�)y(t− τj) (9)

with −ki ≤ bi ≤ ki, i = 1, . . . , n. This system may be re-written as

ẏ(t) = A0y(t) +
n∑

j=1

(Aj +∆j)y(t− τj) (10)

with ∆j = Cjdiag(b�). The robustness problem with respect to these linear uncer-
tainties is to find conditions such that the perturbed system (10) remains exponentially
stable for all bi ∈ (−ki, ki), ∀i = 1, n. This is ensured by the Kharitonov-like ap-
proach [6], [9].
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Now, for given σ 
= 0 we may always find some bj(σ) from

bj(σ) =
fj(σ)
σ

− kj (11)

and consider the system

ẏ(t) = A0y(t) +
n∑

j=1

(Aj +∆j(σ))y(t− τj) (12)

with∆j(y) := Cjdiag(b�(y�(t−τj))). The idea of this substitution belongs to Malkin.
If we succeed in showing stability preservation for bi ∈ (−ki, ki), ∀i = 1, n, then we
have obtained absolute(robust) stability for the nonlinear functions satisfying

0 ≤ ki − ki <
fi(σ)
σ

< ki ki (13)

3 The Construction of the Quadratic Liapunov Functional – The
Robustness Approach

Given positive definite n×nmatricesP0, Pj , Rj , j = 1, n let us define on C(−τ, 0; Rn),
following [6], [9], the positive definite functional

W (φ(·)) = φT (0)P0φ(0)+
n∑

j=1

φT (−τj)Pjφ(−τj)+
n∑

j=1

∫ 0

−τj

φT (θ)Rjφ(θ)dθ. (14)

We focus now on system (7) with Aj defined as above, system that we assume
exponentially stable for some kj . According to the general theory due to Datko, In-
fante and Castelan and others, there exists a positive definite quadratic Liapunov func-
tional defined e.g. on C(−τ, 0; Rn) with its derivative along the solutions of (7), also
quadratic and negative definite on the same space. The construction of [6], [9] will give
the quadratic functional V (φ) such that

d

dt
V (xt) = −W (xt) (15)

with W defined by (14); here xt(·) := x(t + ·) is, as usual, the state of the time delay
system in the Krasovskii-Halanay-Hale notation.

The corresponding Liapunov-Krasovskii functional results of the form

V (xt) = xT (t)U(0)x(t) +
n∑

j=1

2xT (t)
∫ 0

−τi

U(−τi − θ)Ajx(t+ θ)dθ +

+
n∑

k=1

n∑
j=1

∫ 0

−τk

xT (t+ θ2)AT
j

(∫ 0

−τi

U(θ1 − θ2 + τk + τj)Ajdθ1

)
dθ2 +

+
n∑

j=1

∫ 0

−τi

xT (t+ θ) [(τj + θ)Rj + Pj ]x(t+ θ)dθ (16)

+
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where, since the system (7) is exponentially stable, the matrix valued function

U(τ) =
∫ ∞

0

KT (t)[P0 +
n∑

j=1

(Pj + τjRj)]K(t+ τ)dt (17)

is well defined for all t ∈ R; hereK(t) is the fundamental (Cauchy) matrix or the state
transition matrix associated to the system (7) (see [9]).

Following the steps in [9], the time derivative of Liapunov-Krasovskii functional
along the solutions of the perturbed system (10) is

d

dt
V (yt) = −W (yt) +

+ 2[
n∑

j=1

∆jy(t+ τj)]T [U(0)y(t) +
n∑

j=1

∫ 0

−τj

UT (τj + θ)Ajy(t+ θ)dθ] (18)

where W is that of (14). From now on we consider several cases. First, let the uncer-
tainties be linear, hence bj are some constant real numbers. We have

∆T
j ∆j = (Cjdiag(b�))TCjdiag(b�)) ≤

(
n∑

i=1

c2ij

)
b2jI ≤

(
n∑

i=1

c2ij

)
k

2

jI = !jI

(19)
i.e. a quadratic restriction on the uncertainties. This will be useful for the estimate of the
perturbing term in (18) in order to still obtain a non-positive derivative of the Liapunov
functional (16) along (10). It is not difficult, using standard inequalities (in the line of
[6]) to obtain the following estimate

d

dt
V (yt) ≤ −yT (t)[P0 − µUT (0)U(0)]y(t)−

n∑
j=1

yT (t− τj)[Pj −
2
µ
ρjI]y(t− τj)−

−
n∑

j=1

∫ 0

−τj

yT (t+ θ)[Rj − µAT
j U(τj + θ)UT (τj + θ)Aj ]y(t+ θ)dθ (20)

for some µ̃ > 0 and µ = µ̃
∑n

j=1 k
2

j

∑n
i=1 c

2
ij . This is clear from the definition of bj

and from the fact that bj ≤ kj hence (20) is fulfilled.
We have constructed a Liapunov - Krasovskii quadratic functional which is strictly

positive definite and with the derivative along linear system’s solutions at least non-
positive; this last property is preserved with respect to the considered uncertainties and
this shows a possible robust exponential stability of the linearized system (7). But, as
already mentioned, the idea of Malkin [1], [10] gives more - exponential stability of the
nonlinear system (8). This will become clear from the short description of the method.
Let bi(σ) be a nonlinear function defined below

bi(σ) =
fi(σ)
σ

− ki, ∀i (21)
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Now, if the Liapunov function(al) and its derivative - both being quadratic forms -
have good sign properties for all bi ∈ (−ki, ki), then for any fixed xi 
= 0 one can ob-
tain bi from (21) and for bi(xi) ∈ (−ki, ki) the properties of the Liapunov function(al)
do not change.

Moreover it is quite clear that the terms bi may be even time varying what shows that
fi may be time varying within the interval (−ki, ki) provided they are at least integrable
with respect to t. (Integrability is necessary just to secure existence of the solution for
the Cauchy problem in the Carathéodory sense). Also the Lipschitz property has now to
hold uniformly with respect to t.

We may thus state the following

Theorem 1. Let system (7) be exponentially stable. Then system (8) is exponentially
stable for all nonlinearities satisfying (13) if there exist positive definite matrices P0,
Pj , Rj , and a positive value µ, such that

P0 > µUT (0)U(0), Pj >
2
µ
ρjI, j = 1, . . . , n

(22)
inf

−τj≤θ≤0

(
Rj − µAT

j U(τj + θ)UT (τj + θ)Aj

)
> 0

Sketch of the proof: If we use the standard properties of the eigenvalues of positive
definite matrices and the ordering of the quadratic forms, the following estimates are
obtained

δ‖φ‖2 ≤ V (φ) ≤ γ‖φ‖2, W̃ (φ) ≥ εW (φ)
for some positive δ, γ, ε and with ‖φ‖ = sup−τ≤θ≤0 |φ(θ)|, the usual norm of the

uniform convergence on C(−τ, 0; Rn), where W̃ is the right hand side of (20 . From
now on we have only to apply standard results of stability theory for time delay systems
based on quadratic functionals [7], [8], [13] to obtain the result.

4 The Case of the Dynamics of the Neural Networks

The system discussed previously had a structure which was alike (3) but under a gen-
eral structure for A0 and with a stability assumption for some ki in the linear case.
This assumption is much alike to the so-called minimal stability introduced by V. M.
Popov [11]: in order to obtain stability for all nonlinear (and linear) functions from
some sector, it is (minimally) necessary to have this property for a single linear func-
tion within this sector.

For (3) we haveA0 diagonal and of Hurwitz type sinceA0 = −diag(ai) and ai > 0.
Therefore, taking also into account (5), we may take ki = 0. The state transition ma-
trix K(t) in (17) is now the transition matrix of A0 namely K(t) = exp(A0t) =
diag(exp(−ait)). Therefore U(τ) = U(0) exp(A0τ) and

V (φ) = φT (0)U(0)φ(0) +
n∑

j=1

∫ 0

−τj

φT (θ)(Pj + (τj + θ)Rj)φ(θ)dθ (23)

which clearly is strictly positive definite - from the properties of U(·), Pi, Rj . The
conditions of Theorem 1 are modified taking into account that kj = 0 hence Aj = 0.
The result in the case of (3) is as follows

)
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Theorem 2. System (3) is exponentially stable for sigmoidal functions, in particular
for (2) provided there exist positive definite matrices P0, Pj , Rj , and a positive value µ,
such that

P0 > µUT (0)U(0), Rj > 0, Pj − 2(k
2

j (
n∑

i=1

c2ij)/µ)I > 0 (24)

Remark that the conditions are valid regardless the values of the delays hence we
obtained what is usually called delay independent stability. Also stability is exponential
since both the Liapunov functional and its derivative are quadratic functionals. Stability
is also global since the functional and the inequality for the derivative are valid globally.

5 Conclusions and Future Research

The paper presents new results concerning stability of CNNs with time delays; it is
somehow a continuation of previous research in the field of CNNs [3], [4] [5]. The ap-
proach being based on the Liapunov method, only sufficient stability conditions have
been obtained, like in other research. From this point of view our results are in the
standard line. Their specific features come from the extended use of the methods of
the absolute stability in the area of time delay systems with sector restricted nonlin-
earities [12]. It is this point of view that lead us to consider the approach of Malkin
in the absolute stability applied to our case. The first contribution of the paper is thus
application of this approach to systems with several nonlinear functions: this class of
systems is unavoidable if we deal with neural networks while in the original work of
Malkin [10] as well as in further development [1] only single nonlinearity systems have
been considered.

Next result of the paper is connected to the Liapunov functional involved throughout
the paper. As it is the case in the study of the absolute stability, the chosen functional
has been of quadratic type. The construction of a quadratic Liapunov functional for lin-
ear time delay systems is in fact the problem of solving the Liapunov operator equation
ATP + PA = −Q on some functional space, A being a specific C0-semigroup gener-
ator. The early paper of Repin, further results of Datko and Infante with Castelan (see
[6], [9] for complete reference) showed the difficulties of the construction. Usual sim-
plifications, also used in our previous papers lead to conservative results. The genuine
breakthrough from [6], [9] allowed us to obtain improved sufficient stability criteria.
We think this is due also to the context offered by this Liapunov functional construction
to the approach of Malkin; this approach thus knew an additional extension to the time
delay case.

But, as already pointed out, obtaining sharper criteria is a quasi-permanent task. This
goal is achievable by improving sharpness of the estimates i.e. by making use of sharper
inequalities. The researchers are thus in position to apply the entire set of procedures
and results of the Liapunov methods, also to complete and to extend it. Moreover, the
Liapunov method remains the basic one in coping with such problems as oscillations
and several equilibria; worth mentioning that these problems are crucial in the dynamics
of the neural networks.
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5. Danciu, D., Răsvan, Vl.,: Stability Criteria for Cellular Neural Networks. Annals “Dunărea
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Abstract. Global exponential stability of cellular neural networks with
time-varying coefficients and delays is considered in this paper. By uti-
lizing a delay differential inequality, a new sufficient condition ensur-
ing global exponential stability for cellular neural networks with time-
varying coefficients and delays is presented. Since the condition does not
require that the delay function be differentiable or the coefficients be
bounded, the results here improve and extend those given in the earlier
literature.

1 Introduction

Since cellular neural networks with delay were introduced [1], they have been
extensively studied in the past decade and successfully applied to moving image
treatment. Since these applications rely on qualitative properties of stability, the
stability of cellular neural networks with delay have been deeply investigated and
many important results on the global asymptotic stability and global exponential
stability of one unique equilibrium point have been given, see, for example,[2]-
[21] and references cited therein. However, few studies have considered dynamics
for cellular neural networks with time-varying coefficients and delays [22]-[25].
In this paper, by using a delay differential inequality, we discuss the global
exponential stability of cellular neural networks with time-varying coefficients
and delays and obtain a new sufficient condition.

2 Preliminaries

The dynamic behavior of a continuous time cellular neural networks with time-
varying coefficients and delays can be described by the following state equations:

� The project was supported by the National Natural Science Foundation of China
(Grant No. 60403001)and China Postdoctoral Science Foundation.

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 374–381, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Global Exponential Stability Analysis in Cellular Neural Networks 375

x′i(t) = −ci(t)xi(t) +
n∑

j=1

aij(t)fj(xj(t))

+
n∑

j=1

bij(t)fj(xj(t− τj(t))) + Ii(t).
(1)

where n corresponds to the number of units in a neural networks; xi(t) corre-
sponds to the state vector at time t; ci(t) > 0 represents the rate with which
the ith neuron will reset its potential to the resting state in isolation when
disconnected from the network and external inputs. f(x(t)) = [f1(x1(t)), · · · ,
fn(xn(t))]T ∈ Rn denotes the activation function of the neurons; A(t) = [aij

(t)]n×n is referred to as the feedback matrix, B(t) = [bij(t)]n×n represents the
delayed feedback matrix, while Ii(t) is an external bias vector at time t, τi(t) is
the transmission delay along the axon of the jth unit and satisfies 0 ≤ τi(t) ≤ τ.

Throughout this paper, we will assume that the real valued functions ci(t) >
0, aij(t), bij(t), Ii(t) are continuous functions. The activation functions fi, i =
1, 2, · · · , n are assumed to satisfy the following conditions (H)

|fi(ξ1)− fi(ξ2)| ≤ Li|ξ1 − ξ2| ,∀ξ1, ξ2.

This type of activation functions is clearly more general than both the usual
sigmoid activation functions and the piecewise linear function (PWL): fi(x) =
1
2 (|x+ 1| − |x− 1|) which is used in [26].

The initial conditions associated with system (1) are of the form

xi(s) = φi(s), s ∈ [−τ, 0]

in which φi(s) are continuous for s ∈ [−τ, 0].
We say that system (1) is globally exponentially stable if there exist constants

ε > 0 andM ≥ 1 such that for any two solutions x(t) = (x1(t), x2(t), · · · , xn(t))T

and z(t) = (z1(t), z2(t), · · · , zn(t))T with the initial conditions x(s) = φ(s) and
z(s) = ϕ(s) for s ∈ [−∞, 0] respectively, one has

||x(t)− z(t)|| ≤M ||φ− ϕ||e−εt

for all t ≥ 0, where the norm is defined as

||φ|| = sup
−∞≤s≤0

[
n∑

i=1

|φi(s)|2
]1/2

Lemma 1. [27] Let x(t) be a continuous nonnegative function on t ≥ t0 − τ
satisfying inequality (2) for t ≥ t0.

D+x(t) ≤ −k1(t)x(t) + k2(t)x̄(t) (2)

where x̄(t) = sup
t−τ≤s≤t

{x(s)}. If k1(t) or k2(t) is bounded, and α = inf{t≥t0}{k1

(t)− k2(t)} > 0, then there must exist a positive η > 0 such that

x(t) ≤ x̄(t0) exp{−η(t− t0)} (3)

holds for all t ≥ t0 − τ .
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3 Stability Analysis

In this section, we will use the above Lemma to establish the exponential stability
of system (1). Consider two solutions x(t) and z(t) of system (1) for t > 0
corresponding to arbitrary initial values x(s) = φ(s) and z(s) = ϕ(s) for s ∈
[−τ, 0]. Let yi(t) = xi(t)− zi(t), then we have

y′i(t) = −ci(t)yi(t) +
n∑

j=1

aij(t) (fj(xj(t))− fj(zj(t)))

+
n∑

j=1

bij(t) (fj(xj(t− τj(t)))− fj(zj(t− τj(t)))) (4)

Let gj(yj(t)) = fj(yj(t) + zj(t))− fj(zj(t)), one can rewrite Eq.(4) as

y′i(t) = −ci(t)yi(t) +
n∑

j=1

aij(t)gj(yj(t)) +
n∑

j=1

bij(t)gj(yj(t− τj(t))) (5)

Note that the functions fj satisfy the hypothesis (H), that is,

|gi(ξ1)− gi(ξ2)| ≤ Li|ξ1 − ξ2| ,∀ξ1, ξ2.
gi(0) = 0 (6)

Theorem 1. Let

k1(t) = mini

[
2ci(t)−

n∑
j=1

L
2αij

j |aij(t)|2βij

−
n∑

j=1

γj

γi
L

2−2αji

i |aji(t)|2−2βji −
n∑

j=1

L
2ζij

j |bij(t)|2ηij

]

k2(t) = maxi

[
n∑

j=1

γj

γi
L

2−2ζji

i |bji(t)|2−2ηji

] (7)

where αij , βij , ζij and ηij are real constants and γi > 0 is a positive constant.
Eq.(1) is globally exponentially stable if

α = inf
t≥t0

{k1(t)− k2(t)} > 0

Proof. Let z(t) = 1
2

∑n
i=1 γiy

2
i (t), Calculating the derivative of z(t) along the

solutions of (5), we get

z′(t) =
n∑

i=1

γiyi(t)y′i(t)

=
n∑

i=1

γiyi(t)

⎡
⎣−ci(t)yi(t) +

n∑
j=1

aij(t)gj(yj(t))
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+
n∑

j=1

bij(t)gj(yj(t− τj(t)))

⎤
⎦

≤
n∑

i=1

γi

⎡
⎣−ci(t)y2

i (t) +
n∑

j=1

Lj |aij(t)||yi(t)||yj(t)|

+
n∑

j=1

Lj |bij(t)||yi(t)||yj(t− τj(t))|

⎤
⎦ (8)

Recall that the inequality 2ab ≤ a2 + b2 holds for any two real constants a, b. By
using this inequality, we have

Lj |aij(t)||yi(t)||yj(t)| =
(
L

αij

j |aij(t)|βij |yi(t)|
) (
L

1−αij

j |aij(t)|1−βij |yj(t)|
)

≤ 1
2
L

2αij

j |aij(t)|2βijy2
i (t)

+
1
2
L

2−2αij

j |aij(t)|2−2βijy2
j (t) (9)

Similarly, we have

Lj |bij(t)||yi(t)||yj(t− τj(t))|

=
(
L

ζij

j |bij(t)|ηij |yi(t)|
)(
L

1−ζij

j |bij(t)|1−ηij |yj(t− τj(t))|
)

≤ 1
2
L

2ζij

j |bij(t)|2ηijy2
i (t)

+
1
2
L

2−2ζij

j |bij(t)|2−2ηijy2
j (t− τj(t)) (10)

Substituting (10) and (9) into (8), we get

z′(t) ≤
n∑

i=1

γi

⎡
⎣−ci(t)y2

i (t) +
1
2

n∑
j=1

L
2αij

j |aij(t)|2βijy2
i (t)

+
1
2

n∑
j=1

L
2−2αij

j |aij(t)|2−2βijy2
j (t) +

1
2

n∑
j=1

L
2ζij

j |bij(t)|2ηijy2
i (t)

+
1
2

n∑
j=1

L
2−2ζij

j |bij(t)|2−2ηijy2
j (t− τj(t))

⎤
⎦

≤ −1
2

n∑
i=1

γi

⎡
⎣2ci(t)−

n∑
j=1

L
2αij

j |aij(t)|2βij

−
n∑

j=1

γj

γi
L

2−2αji

i |aji(t)|2−2βji −
n∑

j=1

L
2ζij

j |bij(t)|2ηij

⎤
⎦ y2

i (t)
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+
1
2

n∑
i=1

γi

⎡
⎣ n∑

j=1

γj

γi
L

2−2ζji

i |bji(t)|2−2ηji

⎤
⎦ ȳ2

i (t)

≤ −k1(t)z(t) + k2(t)z̄(t)

According to Lemma above, if the condition (3) is satisfied, then we have

1
2
γmin

n∑
i=1

y2
i (t) ≤ z(t) ≤ z̄(t0) exp{−η(t− t0)}

=
1
2

n∑
i=1

γiȳ
2
i (t0) exp{−η(t− t0)}

≤ 1
2
γmax

n∑
i=1

ȳ2
i (t0) exp{−η(t− t0)}

which implies that
∑n

i=1 y
2
i (t) ≤ γmax

γmin

∑n
i=1 ȳ

2
i (t0) exp{−η(t − t0)}. This com-

pletes the proof.

As consequence of Theorem 1, we have the following corollary.

Corollary 1

k1(t) = mini

[
2ci(t)−

n∑
j=1

Lj |aij(t)|

−
n∑

j=1

Li|aji(t)| −
n∑

j=1

Lj |bij(t)|
]

k2(t) = maxi

[
n∑

j=1

Li|bji(t)|
] (11)

Eq.(1) is globally exponentially stable if

α = inf
t≥t0

{k1(t)− k2(t)} > 0

In fact, (11) is a special case of (7) as αij = βij = ζij = ηij = 1
2 (i, j = 1, 2, · · · , n).

Therefore, by Theorem 1 we can see that Corollary 1 is true.

Remark 1. Note that the criteria obtained here are independent of delay and
the coefficients ci(t), aij(t) and bij(t) may be unbounded.

4 An Example

In this section, we will give an example showing the effectiveness of the condition
given here.
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Example 1. Consider the following non-autonomous delayed neural networks

x
′
1(t) = −c1(t)x1(t) + a11(t)f(x1(t)) + a12(t)f(x2(t))

+b11(t)f(x1(t− τ1(t))) + b12(t)f(x2(t− τ2(t)))
x

′
2(t) = −c2(t)x2(t) + a21(t)f(x1(t)) + a22(t)f(x2(t))

+b21(t)f(x1(t− τ1(t))) + b22(t)f(x2(t− τ2(t)))

(12)

where the activation function is described by fi(x) = tanhx. Clearly, fi(x) satisfy
hypothesis (H) above with L1 = L2 = 1. For system (12), taking

c1(t) = et +
1
2

sin t− 1
2

cos t+ 6;

c2(t) = 8− 3
2

sin t− 1
2

cos t;

a11(t) = et + sin t+ 1, a12(t) = 1− sin t;
a21(t) = 2− sin t, a22(t) = 1− cos t;
b11(t) = 1 + sin t, b12(t) = 1− cos t;
b21(t) = 3− sin t, b22(t) = 2 + cos t;

τ1(t) = τ2(t) =
1
2

(|t+ 1| − |t− 1|) .

then we can easily check that

k1(t) = 5; k2(t) = 4
α = inf

t≥t0
{k1(t)− k2(t)} = 1 > 0

Therefore, it follows from Corollary 1 that the system (12) is globally exponen-
tially stable.

Remark 2. Since the delay function τ(t) in Eq.(12) is not differentiable, the
results in [4] and in [22]-[25] can not be applied to this example. Furthermore,
due to the unboundedness of c1(t) and a11(t), the results in [21] are not applicable
for this example. Hence, the results here improve and extend those established
earlier in [4], [22]-[25] and [21].
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Abstract. Being  based on the theory of evolution and natural selection, the 
Genetic Algorithms (GA) represent a technique that has been proved as good 
enough for the  resolution of those problems that require a search  through  a 
complex space of possible solutions. The maintenance of a population of 
possible solutions that are in constant evolution may lead to its diversity being 
lost, consequently it would be more difficult, not only the achievement of a 
final solution but also the supply of more than one solution The method that is 
described here tries to overcome those difficulties by means of a modification 
in traditional GA’s. Such modification involves the inclusion of an additional 
population that might avoid the mentioned loss of diversity of classical GA’s. 
This new population would also provide the piece of exhaustive search that 
allows to provide more than one solution. 

Keywords: Evolutionary Computation, Genetic Algorithms, Artificial Neural 
Networks, Homogenisation, Diversity.  

1   Introduction 

Up to day, Evolutionary Computation (EC) techniques [1] have been highly efficient 
problem solvers through the use of mechanisms that mimic natural evolution [2]. One 
of these techniques, Genetic Algorithms (GA) [3] has proved to be specially useful 
when solving problems that require the optimisation of a group of parameters [4]. As 
a general rule, EC techniques, and more specifically GA, develop a population of 
solutions that through consecutive generations, they become progressively near of the 
ideal solution. This evolution is based on the achievement of brand new solutions by 
means, not only of the recombination of individuals in the population (crossover 
operation), but also of the random modification of some of the solutions (mutation 
operation). Nevertheless, this way of working causes that, when population of 
solutions is excessively homogeneous, GA tends to explore several times the same 
area of the search space. Diversity loss causes that crossover operations barely 
explore new regions within the space of solutions. Therefore, only mutation may add 
new information that allows access to unexplored areas of search space. This fact may 
represent a significant delay when trying to find the final solution to the problem. 
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Another inconvenience that is associated to the lack of diversity turns up when 
trying to solve those problems that have multiple global solutions (multiple global 
minimums) or several solutions that have a validity slightly lower than the optimal 
one (unique optimal solution with multiple quasi-global minimums). In such cases, 
classical GA tendency regarding population would be to keep only values that solely 
correspond to one of the solutions or to some of them. 

2   State of the Art 

In order to minimise the impact of homogenisation, or at least to tend that it may only 
affect later states of searching phase, several alternatives have been designed, based 
most of them on heuristics. Some of the approaches try to solve this problem by 
means of the dynamic variation of crossover and mutation rates [5]. In that way, when 
diversity decreases, a higher amount of mutations are done in order to increase the 
exploration through the search space; when diversity increases, the number of 
mutations is decreased in order to increase the number of crossings with the aim of 
improving exploitation in optimal solution search. 

Other approaches consist of the use of new crossover or replacement algorithms. 
Some of the crossover algorithms that improve diversity and that should be 
highlighted are BLX (Blend Crossover) [6], SBX (Simulated Binary Crossover) [7], 
PCX (Parent Centric Crossover) [8], CIXL2 Confidence Interval Based Crossover 
using L2 Norm [9] or UNDX (Unimodal Normally Distributed Crossover) [10]. 
Regarding replacement algorithms, schemes that may keep population diversity have 
been also looked for. An example of this type of schemes is Crowding crossover, not 
only deterministic [11] but also probabilistic [12]. 

The main inconvenience of the techniques previously described (replacement and 
crossover operators) lies in the fact that they add new parameters that should be 
configured according the process of execution of GA. This process may be disturbed 
by the interactions among those parameters [13]. 

3   Performance of Proposed GA 

The GA proposed in this work is based on the addition of a new population (genetic 
pool) to a traditional GA, the aim of which would be to force an homogeneous search 
throughout the search space. In order to achieve this, the genetic pool divides the 
search space into sub-regions. Every one of the individuals of the genetic pool has its 
own fenced range for gene variation. In this way, every one of these individuals 
would represent a specific sub-region within the global search space and they will 
carry out an exhaustive exploration of their respective regions. On the other hand, the 
group of individual ranges in which any gene may have its value, is extended over the 
whole of those possible values that a given gene may have. Therefore, the genetic 
pool would sample the whole of the search space. Depending on both type and 
complexity of the problem that it is intended to solve, the user has to set the number 
of sub-regions that require into the search space. It should be borne in mind that a 
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traditional GA performs its search considering only one sub-region (the whole of the 
search space). In addition to the genetic pool, it is also used another population 
(secondary population), where a classical GA would develop its individuals in an 
interactive fashion with those individuals of the genetic pool. This secondary 
population would contribute the solutions, whereas the genetic pool would act as a 
support, keeping search space homogeneously explored. 

4   Description of Populations 

4.1  Genetic Pool 

As it has been previously mentioned, every one of the individuals at the genetic pool 
represents a sub-region of the global search space. Therefore, they should have the 
same structure or gene sequence than when using a traditional GA. 

The difference lies in the range of values that these genes might have. When 
offering a solution, traditional GA may have any valid value, whereas in the proposed 
GA, the range of possible values is restricted. Total value range is divided into the 
same number of parts than individuals in genetic pool, so that a sub-range of values is 
allotted to each individual. Those values that a given gene may have will remain 
within its range for the whole of the performance of the proposed GA. 

In addition to all that has been said, every individual at the genetic pool will be in 
control of which are the genes that correspond to the best found solution up to then 
(meaning whether they belong to the best individual at secondary population). This 
Boolean value would be used to avoid the modification of those genes that, in some 
given phase of performance, are the best solution to the problem. 

 

Fig. 1. Format of the individuals of genetic pool  

Every one of the genes in an individual has an I value associated which indicates 
the relative increment that would be applied to the gene during a mutation operation 
based only on increments and solely applied to individuals of the genetic pool. It is 
obvious that this incremental value should have to be lower than the maximum range 
in which gene values may vary. The structure of the individuals at genetic pool is 
shown at Fig.1. As these individuals do not represent global solutions to the problem 
that has to be solved, knowing their fitness value will not be compulsory. 

4.2   Secondary Population 

Unlike at genetic pool, the genes of individuals of secondary population may adopt 
values throughout the whole of the solutions area. In this way, they may offer global 
solutions to the problem, which is something that none of the individuals at genetic 

BaN…Ba2a1 I aN …I a2B I a1G aN … Ga2a1G 



 Diversity and Multimodal Search with a Hybrid Two-Population GA 385 

 

pool is able to do due to the restriction of the value of their genes to a sub-range. 
Therefore, not genetic pool but secondary population would provide the user with 
global solutions to the problem that is wanted to be solved. 

The evolution of the individuals at this population will be carried out by means of 
traditional GA on one condition regarding crossover operation. The two individuals 
that take part in this operation do not belong to the same population, both of them, 
genetic pool and secondary population, are represented instead. 

5   Genetic Operators 

As it happens with classical GA, in the method proposed here, the development of 
solutions is carried out by means of the use of crossover and mutation operators. 

5.1   Crossover 

This operator recombines the genetic material of an individual from secondary 
population with a representative of the genetic pool. In the proposed method, the 
former individual is randomly chosen, therefore, there is no need for the secondary 
population to be organized attending to the fitness value of its individuals, 
consequently there would be an improvement regarding the required lapse for 
execution. A representative is also chosen from the genetic pool, so that means that its 
genetic information is used when building a new individual for every given crossover 
operation. During the building process, the value for every gene of the representative 
is randomly and independently chosen among all the individuals (see Fig. 2). The 
individual that has been generated as previously described, represents, unlike every 
one of the individuals separately, not a partial but a global solution. 

Genetic Pool

… ……

Secondary Population

Uniform Crossover

Gen 1

…

Ind N

Ind 1

…

Ind S

Ind 1

Gen N…

Gen 1 Gen N…

Genetic Pool

… ……

Secondary Population

Uniform Crossover

Gen 1

…

Ind N

Ind 1

…

Ind S

Ind 1

Gen N…

Gen 1 Gen N…

 

Fig. 2. Crossover operation 
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After the selection of parents, a uniform crossover is performed aiming for the 
greatest genetic recombination that may be possible. During the implementation 
performed and as a result from this crossover, only one individual was generated after 
the random selection of every one of its genes from both its ancestors. The insertion 
into the secondary population has been done by means of a non destructive 
replacement algorithm for ancestors in such way that the insertion is solely performed 
when offspring level of fitness is higher than the level of the previously selected 
ancestor at secondary population. 

If the application of the crossover operator shows a better solution to the problem 
than those already stored ones, the genes that were provided by the representative to 
the genetic pool (Boolean values Bij at Fig.1) are consequently marked at the pool. 

5.2   Mutation 

The application of the mutation operator involves selecting at random one of the 
individuals at the genetic pool in order to apply to one of its genes the specified 
increment that is set by the I value associated to that gene. The selected gene should 
not be from the best stored solution at secondary population, meaning that the 
individual should not have the Bi value already marked. When the addition of current 
gene value plus the increment exceeds the upper end of the sub-range in which the 
gene may vary (LIM_SUP_IND), it takes on the lesser value at the sub-range 
(LIM_INF_IND). Furthermore, it is also reduced (Delta) the incremental value that is 
going to be applied to subsequent mutations of that gene. In such way, it is intended 
to do a more exhaustive route through all the values that a given gene may have as 
generations advance. The mutation operation would be solely applied to the 
individuals that belong to the genetic pool. 

6   Description of Performed Tests 

At previous works [14][15], it has been proved that the proposed system obtains 
solutions not only  in quite less time but also with a lower number of generations  that 
when using a traditional GA. The proposed algorithm is going to be used at a complex 
and real case in which GA may be applied to, the artificial neural networks (ANN) 
training, serving also this test as a comparison with classical GA. To undertake what 
is intended, ANN is going to be used in order to solve the classification problem of 
the iris flower.  

The iris flower data (SAS Institute, 1988) were originally published by Fisher [16] 
for examples in discriminant analysis and cluster analysis. Four parameters, including 
sepal and petal length and width, were measured in millimetres on fifty iris specimens 
from each of three species, Iris setosa, Iris versicolor, and Iris virginica. So, given the 
four parameters, one should be able to determine which of the three classes a 
specimen is categorized to. There are 150 data points listed in the database. 

We trained different architectures of ANN, and the one that the best results 
produces are the following: 1 hidden layer with 3 neurons and hyperbolic tangent 
activation functions in all the neurons. 
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With this fixed architecture, the training is performed by means of classical GA 
together with different types of selection algorithms in order to eventually compare 
the evolution of the training with that one obtained using the algorithm of two 
populations. In this way, the behaviour of the proposed algorithm may be observed 
when tackling a real problem that involve some complexity. 

7   Results 

Populations of both algorithms have been allowed to evolve until having 500 
generations in order to compare both evolutions. The evolution of the proposed 
algorithm after 9 independent executions and its average execution may be observed 
at Fig. 3. Regarding classical GA, they were used the selection algorithms known as 
roulette and tournament. The results are shown at Fig.4. 

When trying out classical GA, 1000 individuals of the population were used and 
the parameters that achieve better results use 65% crossover, 25% mutation and 10% 
copy rates. Two-population GA was tested with the same number of individuals from 
secondary population (for better comparison with classical GA) and with 20 
individuals from genetic pool. In the later algorithm, the parameters that achieve 
better results use 40% crossover, 15% mutation and 45% copy rates. 

The evolution of 500 generations of both algorithms (average values after 9 
executions) may be observed at Fig.5, where it is obvious that two-population GA has 
a greater convergence speed than classical one. It can be also noticed that the time 
required to obtain 500 generations by two-population GA is 1/3 less of that required 
by classical GA, being this fact mainly due to its lower genetic operator rates for each 
generation. 
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Fig. 3. Evolution of the fitness obtained by means of two population GA and average fitness 
after nine executions  
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Fig. 4. Evolution of the fitness obtained by means of classical algorithm using the roulette 
selection algorithm (left) and tournament selection algorithm (right)  

8   Conclusions 

Given the results of tests performed, it could be stated that the proposed GA fulfils 
what was suggested regarding systematic exploration through the space of solutions. 
The use of a genetic pool leads the system to divide the problem into sub-regions in 
which, every individual will focus its search for solutions, thus, avoiding not only that 
the search might be focused within only one region, but also that the population might 
undergo its homogenisation. 

It could be confirmed as well that the proposed system achieve the solution using a 
lower number of interactions than a classical GA, precisely due to the maintenance of 
a higher diversity within the population. It is also worthy of mention the fact that the 
proposed GA only requires one additional parameter being adjusted from classical 
GA: the number of individuals at the genetic pool.Future works 
One of the working lines that is intended to follow would try to achieve the 
automatism in the treatment of the regions that were defined by the genetic pool. 
Depending on the track that the search might follow, in some occasions it will be 
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interesting to define a higher number of sub-regions than in some others. In order to 
define this adjustment dynamically, it would be necessary to establish some metrics 
that might determine when and in which way the structure of the genetic pool should 
be modified. It is also intended to check the level of efficiency of a hybrid solution 
that consist on both, a search method based on populations and the GA that was 
proposed here. In such case, the fist method would be executed until the moment that 
the genetic population reached a critic diversity threshold and then, the two-
population GA would start its execution until reaching an acceptable diversity level. 
Another research line would be focused on the distribution of the proposed GA. The 
development of the algorithm might allow the exchange regarding, not only 
individuals among several distributed populations, but also sub-regions for search.  
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Abstract. We propose the identification of fuzzy systems with the aid of ge-
netic fuzzy granulation to carry out the model identification of complex and 
nonlinear systems. The proposed fuzzy model implements system structure and 
parameter identification with the aid of genetic algorithms and information 
granulation. To identify the structure of fuzzy rules we use genetic algorithms. 
Granulation of information realized with Hard C-Means clustering help de-
termine the initial parameters of fuzzy model such as the initial apexes of the 
membership functions and the initial values of polynomial functions being 
used in the premise and consequence part of the fuzzy rules. And the initial 
parameters are tuned effectively with the aid of the genetic algorithms and the 
least square method. An example is given to evaluate the validity of the pro-
posed model. 

1   Introduction 

Fuzzy modeling has been a focal point of the technology of fuzzy sets from its very 
inception. Fuzzy modeling has been studied to deal with complex, ill-defined, and 
uncertain systems in many other avenues. In the early 1980s, linguistic modeling [2], 
[4] and fuzzy relation equation-based approach [5], [6] were proposed as primordial 
identification methods for fuzzy models. The general class of Sugeno-Takagi models 
[8] gave rise to more sophisticated rule-based systems where the rules come with 
conclusions forming local regression models. While appealing with respect to the 
basic topology (a modular fuzzy model composed of a series of rules) [9], [10], these 
models still await formal solutions as far as the structure optimization of the model is 
concerned, say a construction of the underlying fuzzy sets - information granules 
being viewed as basic building blocks of any fuzzy model. Some enhancements to the 
model have been proposed by Oh and Pedrycz [11], [12], yet the problem of finding 
“good” initial parameters of the fuzzy sets in the rules remains open. 

This study concentrates on the central problem of fuzzy modeling that is a devel-
opment of information granules-fuzzy sets. Taking into consideration the essence of 
the granulation process, we propose to cast the problem in the setting of clustering 
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techniques and genetic algorithms. The design methodology emerges as a hybrid 
structural optimization and parametric optimization. Information granulation with the 
aid of HCM clustering help determine the initial parameters of fuzzy model such as 
the initial apexes of the membership functions and the initial values of polynomial 
function being used in the premise and consequence part of the fuzzy rules. And the 
initial parameters are tuned (adjusted) effectively with the aid of the genetic algo-
rithms and the least square method. The proposed model is evaluated using a numeri-
cal example. 

2   Information Granulation (IG) 

Information granules [13], [14] are informally viewed as linked collections of objects 
(data point, in particular) drawn together by the criteria of proximity, similarity, or 
functionality. Granulation of information is an inherent and omnipresent activity of 
human beings carried out with intent of better understanding of the problem. In par-
ticular, granulation of information is aimed at splitting the problem into several man-
ageable chunks. In this way, we partition this problem into a series of well-defined 
subproblems (modules) of a far lower computational complexity than the original one. 
The form of information granulation (IG) themselves becomes an important design 
feature of the fuzzy model, which are geared toward capturing relationships between 
information granules. 

It is worth emphasizing that the HCM clustering has been used extensively not 
only to organize and categorize data, but it becomes useful in data compression and 
model identification. For the sake of completeness of the entire discussion, let us 
briefly recall the essence of the HCM algorithm [15]. 

We obtain the matrix representation for hard c-partition, defined as follows.  
[Step 1].  Fix the number of clusters (2 )c c m≤ <  and initialize the partition matrix. 

[Step 2].  Calculate the center vectors vg of each cluster. 
[Step 3]. Update the partition matrix U(r); these modifications are based on the stan-
dard Euclidean distance function between the data points and the prototypes. 
[Step 4].  Check a termination criterion. 

3   Fuzzy Inference Systems (FIS) with the Aid of Information 
Granulation 

The identification procedure for fuzzy models is usually split into the identification 
activities dealing with the premise and consequence parts of the rules. The identifica-
tion completed at the premise level consists of two main steps. First, we select the 
input variables x1, x2, …, xk of the rules. Second, we form fuzzy partitions of the 
spaces over which these individual variables are defined. The identification of the 
consequence part of the rules embraces two phases, namely 1) a selection of the con-
sequence variables of the fuzzy rules, and 2) determination of the parameters of the 
consequence (conclusion part). And the least square error (LSE) method used at the 
parametric optimization of the consequence parts of the successive rules. 
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In this study, we carry out the modeling using characteristics of input-output data 
set. Therefore, it is important to characteristics of data. To find this we use HCM 
clustering. By classifying data as characteristics through HCM clustering, we design 
the fuzzy model by means of center of classified clusters. Information granulation 
with the aid of HCM clustering help determine the initial parameters of fuzzy model 
such as the initial apexes of the membership functions and the initial values of poly-
nomial function being used in the premise and consequence part of the fuzzy rules. 

3.1   Premise Identification 

In the premise part of the rules, we confine ourselves to a triangular type of member-
ship function. For the triangular membership functions we have parameters to opti-
mize. The HCM clustering helps us organize the data into cluster, and in this way we 
take into account the characteristics of the experimental data. In the regions where 
some clusters of data have occurred, we end up with some fuzzy sets that help repre-
sent the specificity of the data set. In the sequel, the modal values of the clusters are 
refined (optimized) using genetic optimization (GAs). 

The premise identification according to information granulation with the aid of 
HCM clustering is as follows. 

Suppose that we are given a set of data U={x1, x2, …, xl ; y}, where xk =[x1k, …, 
xmk]

T, y =[y1, …, ym]T, l is the number of variables and , m is the number of data. 

[Step 1]. Arrange a set of data U into data set Xk composed of respective input data 
and output data. 

Xk=[xk ; y] (1) 

Xk is data set of k-th input data and output data, where, xk =[x1k, …, xmk]
T, y =[y1, …, 

ym]T, and k=1, 2, …, l. 
[Step 2]. Perform the HCM clustering to find the center vector vkg with data set Xk. 

[Step 2-1]. Classify data set Xk into c-clusters, which granulate the information. 
[Step 2-2]. Calculate the center vectors vkg of each cluster. 

vkg={vk1, vk2, …, vkc} (2) 

Where, k=1, 2, …, l, g = 1, 2, …, c. 
[Step 3]. Partition the corresponding input space by the center vectors vkg and assign a 
comprehensive meaning to each cluster such as Small, Big. 
[Step 4]. Set the initial apexes of the membership functions with the center vectors vkg. 

3.2   Consequence Identification 

The characteristics of input-output data is also involved in the conclusion parts as 
follows: 

[Step 1]. Find a set of data included in the fuzzy space of the j-th rule. 
[Step 1-1]. Find the input data included in each cluster (information granule) from 
the partition matrix ugi, g = 1, 2, …, c, i=1, 2, …, m of each input variable. 
[Step 1-2]. Find the input data pairs included in the fuzzy space of the j-th rule. 
[Step 1-3]. Find the corresponding output data from above input data pairs. 
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[Step 2]. Compute the center vectors Vj of the data set by the arithmetic mean in 
each rule. 

Vj={V1j, V2j, …, Vkj; Mj} (3) 

where, k=1, 2, …, l. j=1, 2, …, n. Vkj and Mj are center values of input and output data, 
respectively. 
[Step 3]. Set the initial values of polynomial functions with the center vectors Vj. 

4   Optimization of IG-Based FIS  

The need to solve optimization problems arises in many fields and is especially domi-
nant in the engineering environment. There are several analytic and numerical optimi-
zation techniques, but there are still large classes of functions that are fully addressed 
by these techniques. Especially, the standard gradient-based optimization techniques 
that are being used mostly at the present time are augmented by a differential method 
of solving search problems for optimization processes. Therefore, the optimization of 
fuzzy models may not be fully supported by the standard gradient-based optimization 
techniques, because of the nonlinearity of fuzzy models represented by rules based on 
linguistic levels. This forces us to explore other optimization techniques such as ge-
netic algorithms. First of all, to identify the fuzzy model we determine such an initial 
structure as the number of input variables, input variables being selected and the num-
ber of membership functions in premise part and the order of polynomial (Type) in 
conclusion. And then the membership parameters of the premise are optimally tuned 
by GAs. In what follows, we briefly review the underlying ideas of GAs, and then 
discuss a form of the performance index used in this identification problem. 

Genetic algorithms [16] have proven to be useful in optimization of such problems 
because of their ability to efficiently use historical information to obtain new solu-
tions with enhanced performance and a global nature of search supported there.  

In this study, for the optimization of the fuzzy model, genetic algorithms use the 
serial method of binary type, roulette-wheel in the selection operator, one-point cross-
over in the crossover operator, and invert in the mutation operator. Here, we use 1000 
generations, 60 populations, 10 bits per string, crossover rate equal to 0.6, and muta-
tion probability equal to 0.1 (the choice of these specific values of the parameters is a 
result of intensive experimentation). 

5   Experimental Studies 

We illustrate the performance of the model and elaborate on its development by ex-
perimenting with data coming from the gas furnace process. The time series data (296 
input-output pairs) resulting from the gas furnace process has been intensively studied 
in the previous literatures [11], [12], [17], [18]. The delayed terms of methane gas 
flow rate u(t) and carbon dioxide density y(t) are used as six input variables with vec-
tor formats such as [u(t-3), u(t-2), u(t-1), y(t-3), y(t-2), y(t-1)]. And as output variable 
y(t) is used. The first one (consisting of 148 pairs) was used for training. The remain-
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ing part of the series serves as a testing set. We consider the MSE being regarded here 
as a performance index. 

We carried out the structure identification on a basis of the experimental data using 
GAs to design Max_Min-based and IG-based fuzzy model. The maximal number of 
input variables was set to be equal to 2 from above the type of vector format. The 
corresponding input variables were picked up to be y(t-2), y(t-1) for Max_Min-based  
fuzzy and u(t-3), y(t-1) for IG-based fuzzy model. To evaluate the proposed model we 
designed the Max_Min-based and IG-based fuzzy model for each model. In case of 
input variables of y(t-2), y(t-1), the number of membership functions assigned to each 
input was set up to be 3, 2 and the other was set up to be 3 for each input. At the con-
clusion part, each system comes with the consequence type 2 and 4, respectively. For 
each fuzzy model, we conducted the optimization of the parameters of the premise 
membership functions. 

Table 1 summarizes the performance index for Max_Min-based and IG-based 
fuzzy model. 

Table 1. Performance index of Max_Min-based and IG-based fuzzy model (θ=0.5) 

Model 
Identifica-

tion 
Input variable No. Of MFs Type PI E_PI 

Structure* 0.092 0.215 Max/Min_FIS 
Parameters* 0.089 0.201 

Structure 0.085 0.218 
IG_FIS 

Parameters 

y(t-2) 
y(t-1) 

3x2 
Type 

2 
0.086 0.198 

Structure 0.018 0.315 Max/Min_FIS 
Parameters 0.016 0.257 
Structure* 0.015 0.281 

IG_FIS 
Parameters* 

u(t-3) 
y(t-1) 

3x3 
Type 

4 
0.015 0.256 

* identified structure using GAs 

From the table 1 it is clear that the performance of a IG-based fuzzy model is better 
than that of a Max_Min-based fuzzy model not only after identifying the structure but 
also after identifying optimally the parameters. 
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Fig. 1. Optimal convergence process of performance index for Max_Min-based and IG-based 
fuzzy model (y(t-2),  y(t-1)) 
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Fig. 2. Optimal convergence process of performance index for Max_Min-based and IG-based 
fuzzy model (u(t-3),  y(t-1)) 

Figure 1 and 2 depict the values of the performance index produced in successive 
generation of the GAs. It is obvious that the performance of an IG-based fuzzy model 
is good from initial generation due to the characteristics of input-output data. Model 
output and predicting error of training and testing data for IG-based fuzzy model is 
presented in figure 3 and 4. 

The identification error (performance index) of the proposed model is also com-
pared to the performance of some other models in table 2. 
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Fig. 3. The comparison of original and output data for IG-based fuzzy model (y(t-2),  y(t-1)) 
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Fig. 4. The comparison of original and output data for IG-based fuzzy model (u(t-3),  y(t-1)) 



 Identification of Fuzzy Systems with the Aid of Genetic Fuzzy Granulation 397 

 

Table 2. Comparison of identification error with previous models 

Model PIt PI E_PI No. of rules 
Tong's model[3] 0.469   19 

Pedrycz's model[4] 0.776   20 
Xu's model[7] 0.328   25 

Sugeno's model[9] 0.355   6 
Simplified  0.024 0.328 4 

 0.022 0.326 4 
Oh et al.'s 

model[11], [12] Linear 
 0.021 0.364 6 
 0.035 0.289 4 Simplified 

(θ=0.5)  0.022 0.333 6 
 0.026 0.272 4 

HCM+GA 
[18] Linear 

(θ=0.5)  0.020 0.264 6 
y(t-2),  y(t-1)  0.086 0.198 6 Our model 

(θ=0.5) u(t-3),  y(t-1)  0.015 0.256 9 

6   Conclusions 

In this paper, we have developed a comprehensive identification framework for fuzzy 
model with the aid of information granulation. The underlying idea deals with an 
optimization of information granules by exploiting techniques of clustering and ge-
netic algorithms. The experimental studies showed that the model is compact (real-
ized through a small number of rules), and their performance is superb in comparison 
to other models. The proposed model is effective for nonlinear complex systems, so 
we can construct a well-organized model. 

While the detailed discussion was focused on triangular fuzzy sets, the developed 
methodology applies equally well to any other class of fuzzy sets as well as a type of 
nonlinear local model. Moreover, the models scale up quite easily and do not suffer 
from the curse of dimensionality encountered in other identification techniques of 
rule-based systems. 
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Abstract. TSK models are a very powerful tool for function approxima-
tion problems given a dataset of input/output data. Given a global error
function to approximate, there are several methodologies for training
(adjust the parameters and find the optimal structure) the TSK model.
Nevertheless, this strategy implies that the interpretability of the rules
comprising the neuro-fuzzy TSK system as linearizations of the nonlin-
ear subjacent system can be lost. Several recent works have addressed
this problem with partial success, sometimes performing a tradeoff be-
tween global accuracy and local models interpretability. In this paper we
propose an accurate modified TSK neuro-fuzzy model for function ap-
proximation that solves the cited problem, and that furthermore allows
us to interprete the output of the rules as the Taylor Series Expansion
of the system output around the rule centres.

1 Introduction

Typically, the structure of a multiple-input single-output (MISO) Takagi-Sugeno-
Kang (TSK) [1] fuzzy system and its associated fuzzy inference method comprises
a set of K IF-THEN rules in the form

Rulek : IF x1 is µk
1 AND . . . AND xn is µk

n THEN y = Rk (1)

where the µk
i are fuzzy sets characterized by membership functions (MF) µk

i (xi)
in universes of discourse Ui (in which variables xi take their values), and Rk are
the consequents of the rules.

The output of a fuzzy system with rules in the form shown in Eq. 1 can be
expressed (using weighted average aggregation) as

F (x) =

K∑
k=1

µk(x)Rk

K∑
k=1

µk(x)
(2)
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provided that µk(x) is the activation value for the antecedent of the rule k, which
can be expressed as

µk(x) = µk
1(x1)µk

2(x2) . . . µk
n(xn). (3)

As we have mentioned before, TSK fuzzy systems are often used to deal with
function approximation problems due to its ability to explain non-linear relations
using a relatively low number of simple rules. We must recall that the problem
of function approximation is about to estimate an unknown function f from
samples of the form {(xm; zm) ;m = 1, 2, . . . ,M ; with zm = f(xm) ∈ IR, and
xm ∈ IRm} and is a crucial problem for a number of scientific and engineering
areas. The main goal is thus to learn an unknown functional mapping between
the input vectors and their corresponding continuous output values, using a set
of known training samples. Later, this generated mapping will be used to obtain
the expected output given any new input data.

Specifically, for function approximation problems, two main techniques ap-
pear in the literature using neuro-fuzzy TSK systems: Grid-Based Fuzzy Systems
(GBFSs) [8] and Clustering-Based Fuzzy Systems (CBFSs) [9] (though there are
also several hybrid and modified techniques), whose main difference is the type
of partitioning of the input space. GBFSs have the advantage that they per-
form a thorough coverage of the input space, but at the expense of suffering
from the curse of dimensionality problem that makes them inapplicable in cases
of moderate complexity. In contrast, Clustering-Based Fuzzy System (CBFSs)
techniques locate the rules in the zones of the input space in which they are
needed, being more suitable thus, for example, for Time Series Prediction prob-
lems in which the input data is more centralized in some regions of the input
space, or for problems with moderate complexity and a higher number of input
variables.

In this paper we deal with CBFSs, though the method proposed is also ap-
plicable to GBFSs. In both cases, as we have said, the interpretability of the
local sub-models is a must [2, 3]. Some methodologies are centred in the inter-
pretability of the local sub-models [4], but these systems barely represent a good
approximation to the I/O dataset. On the other side, most of the neuro-fuzzy
approaches (including RBF networks [7]) are centred on reducing the global error
function

J =
∑

m∈D

(f (xm)− zm)2 . (4)

In relation to GBFSs, there are some recent approaches [3, 6] that solve
both the accuracy and local interpretability problems with, in principle, no
need of trade-off between both objectives. In this paper we present a novel
modified TSK neuro-fuzzy model that will allow us to use learning algorithms
that minimize J (see Eq. 4), while providing full interpretability to the local
models, in the line of the TaSe model [6], using the Taylor Series Expansion
concept.
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2 The TaSe-C Model

In this section we introduce our modified TSK model for function approximation,
which we will call the TaSe-C model (Taylor Series-Based TSK model for CBFSs)
that allows the interpretability of the local models. First we will review the
characteristics that a TSK fuzzy model has to comply in order to provide this
interpretability.

2.1 Requirements for the Interpretability of the TSK Rules

First we will recall the Taylor Theorem that states that if a function f(x) defined
in an interval has derivatives of all orders, it can be approximated near a point
x = a, as its Taylor Series Expansion around that point:

f(x) = f(a) + (x− a)T

[
∂f

∂xi
(a)

]
i=1...n

+
1
2
(x− a)TW (x− a)

+ . . .+
1

(n+ 1)!
f (n+1)(c)(x− a)n+1 (5)

where in each case, c is a point between x and a, and where W is a triangular
matrix of dimensions nxn having the respective second order partial derivatives.

The Taylor Theorem opens a door for the approximation of any function
through polynomials, that is, through the addition of a number of simple func-
tions. It is therefore a fundamental key in the field of Function Approximation
Theory and Mathematical Analysis. Thus, we can use rule consequents Rk (in
Eq. 1) that have the truncated form of Eq. 5. Having a system with a fixed MF
configuration, the rule consequents coefficients can be optimally calculated using
the Least Squares approach (from Eq. 4) as explained in [5].

But in order to obtain a model in which each rule consequent Rk in Eq. 1
is the Taylor Series Expansion of the model output around each rule centre,
we will require the model output to be continuous and differentiable (at least
as many times as the order of the polynomial rule consequent Rk, so that the
Taylor Theorem could be applied properly) and the activation of all the rules in
each rule centre ck to be 0 but for the respective rule k. That is, the activation
function of every rule must be continuous and differentiable and must vanish as
it approaches to every other rule centre.

For GBFSs, Bikdash in [4] presented a modified membership function type
that complied with such interpretability, and in [5] and [6], this approach was
expanded to perform function approximation from a I/O data set and a complete
GBFS learning algorithm. Nevertheless, for CBFSs this problem is trickier. It’s
not straightforward to obtain a fuzzy clustering partition that covers the whole
input space and that accomplishes the previous requirements, neither exists a
Membership Function type that could provide such interpretability in CBFSs.

Aggregation Operator. As we have mentioned, for CBFSs it is impossible to
have MFs that comply with such desired properties. The non-grid input space
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partition organization avoids this possibility. Suppose the simplest case in which
we have a one-dimensional input space with domain [0,1] and two gaussian-type
MFs (thus two rules) centred in c1 = 0.3 and c2 = 0.7 with σ = 0.3. In this
case there is a strong overlap between both MFs in both rule centres. To avoid
this overlap we will allow the domain of the first MF µ1(x) to be limited by
the function 1 − µ2(x), i.e., when the activation value of the other rule is 1,
the activation value of the first rule will be forced to be 0. More specifically the
activation value for the first rule µ1(x) will be limited by

µ′2(x) =
{

1− µ2(x) if x < c2

0 if x ≥ c2 (6)

and on the other hand, the activation value for the first rule µ1(x) will be limited
by

µ′1(x) =
{

1− µ1(x) if x > c1

0 if x ≤ c1 (7)

that is to say, the final activation value of any point for the each rule will be

µk∗(x) = µk(x)

⎛
⎜⎝1−

j=n;
j �=k∏
j=1

µ′j(x)

⎞
⎟⎠ . (8)

Thus, generalizing to the n-dimensional case with any number of rules K, the
general expression for the output of the TSK system, using weighted average (to
force each activation value of each rule at the same rule centre to be 1) can be
calculated as

F (x) =

K∑
k=1

µk∗(x)Rk

K∑
k=1

µk∗(x)
==

K∑
k=1

⎛
⎝µk(x)

⎛
⎝1−

j=n;
j �=k∏
j=1

µ′j(x)

⎞
⎠
⎞
⎠Rk

K∑
k=1

⎛
⎝µk(x)

⎛
⎝1−

j=n;
j �=k∏
j=1

µ′j(x)

⎞
⎠
⎞
⎠

(9)

where the µ′j(x) has the form

µ′j(x) = µ′j1 (x1)µ
′j
2 (x2) . . . µ′jn (xn) (10)

in which each µ′ji (xi) has the form shown in Eq. 6 or Eq. 7 depending on the
relative position of the centres cji and cki .

This new formulation of the system output in Eq. 9 is simply a modified
aggregation operator with weighted averaging behaviour. Fig. 1 shows the uni-
dimensional toy example with the original MFs µ1(x) and µ2(x) and the final
MFs µ1∗(x) and µ2∗(x).

For higher dimensional cases, Fig. 2 shows an example of a two dimensional
case with domain [0,10] with 3 gaussian-type MFs having centres in [3,3], [5,5]
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(a) (b)

Fig. 1. a) Original MFs for a one-dimensional example. b) Activations using the mod-

ified Aggregation Operator

(a) (b)

Fig. 2. a) Original MFs for a two-dimensional example. b) Activations using the mod-

ified Aggregation Operator

and[7,7] with σ = 2. Again, the activation values of the rule centres is 0 except
for the respective rule. Additionally, we have to mention that although CBFSs
have been seen as low interpretable systems due to the overlap of the MFs, and
since each rule has its own MF in each input variable [10], this model performs
a pseudo-partitioning of the input space that is very intuitive as we can see
from Fig. 2; no rule has effect in the rest of the rule centres, and besides, the
activation value is limited according to the location of the rest of the centres in
the input space. Every rule defines a region of the input space where it has a
positive activation value around its respective rule centre, that is limited by the
rest of rule centres positions.

Translating this new approach to the RBF networks, the traditional three
layered structure of the RBF network could be modified so that a new layer
is introduced between the hidden layer and the output layer that performs the
calculations needed as seen in Eq. 9. Also for the Taylor Series-based rule conse-
quent coefficients, the well-known regression weights (see [11]) can be expanded
here to obtain higher order polynomial weights, for example of order 2 [5].
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3 Simulations

In this section we present an application of our TaSe-C for function approxi-
mation using a significative example. Given the function f1 that is expressed
as

f1(x1, x2) = sin(x1 ∗ x2) + noise x ∈ [−2, 2] (11)

we will generate and evaluate 400 equally distributed points as our I/O data set
using a normally distributed noise term with σ = 0.05. As an example we will
make use of a CBFS with second order polynomial consequent rules, and 9 cen-
tres that have been initialized using the input clustering k-means algorithm [12].
Fig. 3 shows the original f1 function and the function approximation obtained
by the TaSe-C model using the nine rules. As we can see, the approximation
obtained using only 9 rules is quite precise (with a training Normalized Root-
Mean Square Error NRMSE [8] = 0.082 and test error NRMSE = 0.050). Fig.
4a shows the distribution of the MFs µk∗ in the input space centred on the nine
clusters, and Fig. 4b shows the activation functions µk∗(x) for each rule.

To see the interpretability properties obtained by our TaSe-C model, Fig. 5a
shows the approximation obtained by the model and the second order polynomi-
als of each rule consequent around each rule centre. Also in Fig. 5b we show the

a) b)

Fig. 3. a) Original function f1. b) Approximation obtained by the TaSe-C model using

9 rules located using the C-means algorithm

a) b)

Fig. 4. a) Clusters location in the input space µk∗. b) Activation functions µk∗(x) for

the nine rules
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a) b)

Fig. 5. a) Model output + polynomial representations around the centres. b) Polyno-

mial representations around the centres

second order polynomials of each rule consequent. From both views we can see
the high local interpretability obtained by the TaSe-C system for the local mod-
els. In fact, each of the local model corresponds to the Taylor Series Expansion
of the TaSe-C model output around each of the rule centres.

4 Conclusions

In this paper we have presented a new neuro-fuzzy TSK model, the TaSe-C
model, that brings interpretability to the local models (rules) in clustering based
fuzzy systems using the Taylor Series Expansion of the model output around the
rule centres. Several recent works have addressed the local models interpretabil-
ity problem with partial success, sometimes performing a tradeoff between global
accuracy and local models interpretability. Using our TaSe-C model, the desir-
able property inherent to the neuro-fuzzy TSK models is recovered, according
to which TSK models can be seen as linearizations of the nonlinear subjacent
system.
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Abstract. We introduce an advanced architecture of genetically optimized Hy-
brid Fuzzy Neural Networks (gHFNN) and develop a comprehensive design 
methodology supporting their construction. The gHFNN architecture results 
from a synergistic usage of the hybrid system generated by combining Fuzzy 
Neural Networks (FNN) with Polynomial Neural Networks (PNN). We distin-
guish between two types of the linear fuzzy inference rule-based FNN struc-
tures showing how this taxonomy depends upon the type of a fuzzy partition of 
input variables. As to the consequence part of the gHFNN, the development of 
the PNN dwells on two general optimization mechanisms: the structural optimi-
zation is realized via GAs whereas in case of the parametric optimization we 
proceed with a standard least square method-based learning. 

1   Introductory Remarks 

The models should be able to take advantage of the existing domain knowledge and 
augment it by available numeric data to form a coherent data-knowledge modeling 
entity. The omnipresent modeling tendency is the one that exploits techniques of 
Computational Intelligence (CI) by embracing fuzzy modeling [1], [2], [3], [4], [5], 
[6], neurocomputing [7], and genetic optimization [8].  

In this study, we develop a hybrid modeling architecture, called genetically opti-
mized Hybrid Fuzzy Neural Networks (gHFNN). In a nutshell, gHFNN is composed 
of two main substructures driven to genetic optimization, namely a fuzzy set-based 
fuzzy neural network (FNN) and a polynomial neural network (PNN). From a stand-
point of rule-based architectures, one can regard the FNN as an implementation of the 
antecedent part of the rules while the consequent is realized with the aid of a PNN. 
The role of the FNN is to interact with input data, granulate the corresponding input 
spaces. The FNNs come with two kinds of network architectures, namely fuzzy-set 
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based FNN and fuzzy-relation based FNN. The role of the PNN is to carry out nonlin-
ear transformation at the level of the fuzzy sets formed at the level of FNN. The PNN 
that exhibits a flexible and versatile structure [9] is constructed on a basis of Group 
Method of Data Handling (GMDH [10]) method and genetic algorithms (GAs). The 
design procedure applied in the construction of each layer of the PNN deals with its 
structural optimization involving the selection of optimal nodes (polynomial neurons; 
PNs) with specific local characteristics (such as the number of input variables, the 
order of the polynomial, and a collection of the specific subset of input variables) and 
addresses specific aspects of parametric optimization. To assess the performance of 
the proposed model, we exploit a well-known time series data. Furthermore, the net-
work is directly contrasted with several existing intelligent models. 

2   Conventional Hybrid Fuzzy Neural Networks (HFNN) 

The architectures of conventional HFNN [11], [12] result as a synergy between two 
other general constructs such as FNN and PNN. Based on the different PNN topolo-
gies, the HFNN distinguish between two kinds of architectures, namely basic and 
modified architectures. Moreover, for the each architecture we identify two cases. In 
the connection point, if input variables to PNN used on the consequence part of 
HFNN are less than three (or four), the generic type of HFNN does not generate a 
highly versatile structure. Accordingly we identify also two types as the generic and 
advanced. The topologies of the HFNN depend on those of the PNN used for the 
consequence part of HFNN. The design of the PNN proceeds further and involves a 
generation of some additional layers. Each layer consists of nodes (PNs) for which the 
number of input variables could the same as in the previous layers or may differ 
across the network. The structure of the PNN is selected on the basis of the number of 
input variables and the order of the polynomial occurring in each layer.  

3   Genetically Optimized HFNN (gHFNN) 

The gHFNN emerges from the genetically optimized multi-layer perceptron architec-
ture based on fuzzy set-based FNN, GAs and GMDH. These networks result as a 
synergy between two other general constructs such as FNN [13] and PNN [9].  

3.1   Fuzzy Neural Networks Based on Genetic Optimization 

We consider two kinds of FNNs (viz. FS_FNN and FR_FNN) based on linear fuzzy 
inference. The FNN is designed by using space partitioning realized in terms of the 
individual input variables or an ensemble of all variables. The fuzzy partitions formed 
for each case lead us to the topologies visualized in Fig. 1. Table 1 represents the 
comparison of fuzzy rules, inference result and learning for two types of FNNs. In 
Table 1, Rj is the j-th fuzzy rule while Aij denotes a fuzzy variable of the premise of 
the corresponding fuzzy rule and represents membership function ijµ . ws and w ex-
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press  a connection (weight) existing between the neurons as we have already visual-
ized in Fig. 1. 

Table 1. Comparison of fuzzy set with fuzzy relation-based FNNs 
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(a) FS_FNN; individual input variables         (b) FR_FNN; ensemble of input variables 

Fig. 1. Topologies of FNN 

The learning of FNN is realized by adjusting connections of the neurons and as 
such it follows a standard Back-Propagation (BP) algorithm [14]. For the linear fuzzy 
inference-based FNN, the update formula of a connection is as shown in Table 1. 
Genetic algorithms (GAs) are optimization techniques based on the principles of natu-
ral evolution. In essence, they are search algorithms that use operations found in natu-
ral genetics to guide a comprehensive search over the parameter space [8]. In order to 
enhance the learning of the FNN and augment its performance of a FNN, we use GAs 
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to adjust learning rate(η), momentum coefficient(α) and the parameters of the mem-
bership functions of the antecedents of the rules. 

3.2   Genetically Optimized PNN (gPNN) 

When we construct PNs of each layer in the conventional PNN [9], such parameters 
as the number of input variables (nodes), the order of polynomial, and input variables 
available within a PN are fixed (selected) in advance by the designer. The overall 
genetically-driven optimization process of PNN is shown in Fig. 2. 

Configuration of input variables for consequence part
& initial information concerning GAs and gPNN

Initialization of population

Generation of a PN by a
chromosome in population

Evaluation of PNs(Fitness)

Elitist strategy &
Selection of  PNs(W)

Stop
condition

Generate a layer of gPNN
A layer consists of optimal PNs

selected by GAs

Reproduction
Roulette-wheel selection

One-point crossover
Invert mutation

Stop
condition

x1 = z1,  x2 = z2,  ..., xW = zW
The outputs of the preserved PNs

serve as new inputs to the next
layer

gPNN
gPNN is organized by GMDH and

GAs

Yes

No

Yes

No

END

GAs

 

Fig. 2. Overall genetically-driven optimization process of PNN 

4   The Algorithms and Design Procedure of gHFNN 

The premise of gHFNN: FS_FNN (Refer to Fig. 1) 
[Layer 1] Input layer. 
[Layer 2] Computing activation degrees of linguistic labels. 
[Layer 3] Normalization of a degree activation (firing) of the rule. 
[Layer 4] Multiplying a normalized activation degree of the rule by connection. If we 
choose Connection point 1 for combining FNN with gPNN as shown in Fig. 1, aij is 
given as the input variable of the gPNN. 

( , )ij ij ij ij ij ij ij ij ia Cy Cy Here Cy ws w xµ µ= × = × = + ⋅  (1) 

[Layer 5] Fuzzy inference for the TSK fuzzy rules. If we choose Connection point 2, fi 

is the input variable of gPNN. 
[Layer 6; Output layer of FNN] Computing output of a FNN. 

The design procedure for each layer in FR_FNN is carried out in a same manner as 
the one presented for FS_FNN. 
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The consequence of gHFNN: gPNN (Refer to Fig. 2) 
[Step 1] Configuration of input variables. 

If we choose the first option (Connection point 1), x1=a11, x2=a12,…, xn=aij (n=i×j). 
For the second option (Connection point 2), we have x1=f1, x2=f2,…, xn=fm (n=m). 

[Step 2] Decision of initial information for constructing the gPNN. 
[Step 3] Initialization of population. 
[Step 4] Decision of PNs structure using genetic design. We divide the chromosome 
to be used for genetic optimization into three sub-chromosomes as shown in Fig. 3(a). 
In Fig. 3(b), ‘PNn’ denotes the nth PN (node) of the corresponding layer, ‘N’ denotes 
the number of inputs coming to the node, and ‘T’ denotes the polynomial order in the 
node (Refer to Table 2). 

1 0 0 0 1 1 0 1 0 1 0 0 0 1

1st
sub-chromosome

2nd
sub-chromosome

3rd
sub-chromosome

N T

xi

xj z
PNn

N T
i j

0 1 1 1

1st 2nd Nth

1 1

xn

0 1

Divided by N
Order of

PolynomialNo. of inputs

(Input No.)
n

       

N T

xi

xj

z

No. of inputs
Polynomial order(Type T)

nth Polynomial Neuron(PN)

PNn

 
            (a) Design of PNs using chromosome                        (b) Formation of each PN 

Fig. 3. The PN design using genetic optimization 

Table 2. Different forms of regression polynomial forming a PN 

     Number of inputs 
Order of the polynomial 

2 3 4 

1 (Type 1) Bilinear Trilinear Tetralinear 
2 (Type 2) Biquadratic-1 Triquadratic-1 Tetraquadratic-1 
2 (Type 3) Biquadratic-2 Triquadratic-2 Tetraquadratic-2 

[Step 5] Evaluation of PNs. 
[Step 6] Elitist strategy and selection of PNs with the best predictive capability. 
[Step 7] Reproduction.  
[Step 8] Repeating Step 4-7.  
[Step 9] Construction of their corresponding layer. 
[Step 10] Check the termination criterion (performance index) – MSE. 
[Step 11] Determining new input variables for the next layer. 

The gPNN algorithm is carried out by repeating Steps 4-11. 
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5   Experimental Studies 

The performance of the gHFNN is illustrated with the aid of a time series of gas fur-
nace [14]. We use two types of system input variables of FNN structure, Type I and 
Type II to design an optimal model from gas furnace data. Type I utilize two system 
input variables such as u(t-3) and y(t-1) and Type II utilizes 3 system input variables 
such as u(t-2), y(t-2), and y(t-1). The output variable is y(t). 

Table 3. Performance index of gHFNN for the gas furnace 

Premise part Consequence part 

Structure 
No. of rules 

(MFs) 
PI EPI 

CP
Layer

No. of
inputs

Input No. T 
PI EPI 

1 4 4 2 1 3 3 0.019 0.292 
2 4 7 12 2 10 2 0.018 0.271 
3 4 20 21 5 3 2 0.017 0.267 
4 3 22 13 29 · 2 0.016 0.263 

4 
(2+2) 

0.041 0.267 01

5 4 25 18 27 9 3 0.015 0.258 
1 3 1 2 3 · 3 0.0232 0.130 

2 4 12 15 13 6 2 0.0196 0.120 

3 2 19 30 · · 2 0.0194 0.115 

4 4 2 21 11 5 1 0.0188 0.113 

FS_FNN 

6 
(2+2+2) 

0.0256 0.143 02

5 4 13 3 26 25 1 0.0184 0.110 

1 4 4 1 3 2 2 0.019 0.267 

2 4 7 1 13 22 3 0.026 0.251 

3 2 1 28 · · 3 0.025 0.244 
4 2 7 6 · · 3 0.025 0.243 

4 
(2x2) 0.025 0.265 

5 3 29 22 17 · 3 0.016 0.249 
1 4 6 5 2 8 1 0.083 0.146 
2 4 21 18 6 9 2 0.028 0.116 
3 4 4 24 5 6 2 0.022 0.110 
4 3 28 4 5 · 2 0.021 0.106 

FR_FNN 

8 
(2x2x2) 

0.033 0.119 

5 3 21 18 25 · 1 0.021 0.104 
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ŷPN6

2 3

PN22

2 2

PN8

3 3

PN13

3 1

PN28

3 3

PN1

4 3

PN1

3 3

PN7

3 1

∏

∏

∏

∏
u(t-3)

y(t-1)

1

∏

∏

∏

∏

 

(a) In case of using FS_FNN with Type II     (b) In case of using FR_FNN with Type I 

Fig. 4. Optimal topology of genetically optimized HFNN for the gas furnace 
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      (a) In case of using FS_FNN with Type II        (b) In case of using FR_FNN with Type I 

Fig. 5. Optimization procedure of gHFNN by BP learning and GAs 

     Table 3 includes the results of the overall network reported according to various alterna-
tives concerning various forms of FNN architecture, format of entire system inputs and 
location of the connection point (CP). The optimal topology of gHFNN is shown in Fig. 4. 
Fig. 5 illustrates the optimization process by visualizing the performance index in successive 
cycles. Table 4 contrasts the performance of the genetically developed network with other 
fuzzy and fuzzy-neural networks studied in the literatures. 

Table 4. Comparison of performance with other modeling methods 

Model PI EPI No. of rules 
Box and Jenkin’s model [14] 0.710   

Pedrycz’s model [1] 0.320   
Xu and Zailu’s model [2] 0.328   

Sugeno and Yasukawa's model [3] 0190   
Kim, et al.'s model [15] 0.034 0.244 2 

Lin and Cunningham's mode [16] 0.071 0.261 4 
Simplified 0.024 0.328 4(2×2) 

Complex [4] 
Linear 0.023 0.306 4(2×2) 

Simplified 0.024 0.329 4(2×2) Hybrid [6] 
(GAs+Complex) Linear 0.017 0.289 4(2×2) 

Simplified 0.022 0.333 6(3×2) 

Fuzzy 

HCM+GAs [5] 
Linear 0.020 0.264 6(3×2) 

Simplified 0.043 0.264 6(3+3) 
FNN [13] 

Linear 0.037 0.273 6(3+3) 
0.023 0.277 4 rules/5th layer(NA) 

Generic [11] 
0.020 0.119 6 rules/5th layer(22 nodes) 
0.019 0.264 4 rules/5th layer(NA) 

SOFPNN 
Advanced [12] 

0.017 0.113 6 rules/5th layer(26 nodes) 
0.017 0.267 4 rules/3rd layer(16 nodes) 

FS_FNN 
0.019 0.115 6 rules/3rd layer(10 nodes) 

0.025 0.244 4 rules/3rd layer(8 nodes) 
Proposed model 

(gHFNN) 
FR_FNN 

0.022 0.110 7 rules/3rd layer(14 nodes) 

6   Concluding Remarks  

The genetically optimized HFNNs are constructed by combining FNNs with gPNNs. 
The proposed model comes with two kinds of rule-based FNNs (viz. FS_FNN and 
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FR_FNN based on linear fuzzy inferences) as well as a diversity of local characteris-
tics of PNs that are extremely useful when coping with various nonlinear characteris-
tics of the system under consideration. In what follows, in contrast to the conventional 
HFNN structures and their learning, the depth (the number of layers) and the width 
(the number of nodes) as well as the number of entire nodes (inputs) of the proposed 
genetically optimized HFNN (gHFNN) can be lower. 

The comprehensive design methodology comes with the parametrically as well as 
structurally optimized network architecture. 1) As the premise structure of the 
gHFNN, the optimization of the rule-based FNN hinges on GAs and BP. And 2) the 
gPNN that is the consequent structure of the gHFNN is based on the technologies of 
the PNN and GAs. The PNN is comprised of both a structural phase such as a self-
organizing and evolutionary algorithm, and a parametric phase of least square estima-
tion-based learning, moreover the PNN is driven to genetic optimization, in what 
follows it leads to the selection of the optimal nodes. In the sequel, a variety of archi-
tectures of the proposed gHFNN driven to genetic optimization have been discussed.  
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Abstract. In this paper, we introduce a neo scheme of fuzzy-neural networks – 
Fuzzy Polynomial Neural Networks (FPNN) with a new fuzzy set-based poly-
nomial neurons (FSPNs) whose fuzzy rules include the information granules 
(about the real system) obtained through Information Granulation(IG). We in-
vestigate the proposed networks from two different aspects to improve the per-
formance of the fuzzy-neural networks. First, We have developed a design 
methodology (genetic optimization using Genetic Algorithms) to find the opti-
mal structure for fuzzy-neural networks that expanded from Group Method of 
Data Handling (GMDH). It is the number of input variables, the order of the 
polynomial, the number of membership functions, and a collection of the spe-
cific subset of input variables that are the parameters of FPNN fixed by aid of 
genetic optimization that has search capability to find the optimal solution on 
the solution space. Second, we have been interested in the architecture of fuzzy 
rules that mimic the real world, namely sub-model (node) composing the fuzzy-
neural networks. We adopt fuzzy set-based fuzzy rules as substitute for fuzzy 
relation-based fuzzy rules and apply the concept of Information Granulation to 
the proposed fuzzy set-based rules. The performance of genetically optimized 
FPNN (gFPNN) with fuzzy set-based polynomia neurons (FSPNs) composed of 
fuzzy set-based rules is quantified through experimentation where we use a 
number of modeling benchmarks data which are already experimented with in 
fuzzy or neurofuzzy modeling. 

1   Introduction 

A lot of researchers on system modeling have been interested in the multitude of 
challenging and conflicting objectives such as compactness, approximation ability, 
generalization capability and so on which they wish to satisfy. Fuzzy sets emphasize 
the aspect of linguistic transparency of models and a role of a model designer whose 
prior knowledge about the system may be very helpful in facilitating all identification 
pursuits. In addition, to build models with substantial approximation capabilities, 
there should be a need for advanced tools. 
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As one of the representative advanced design approaches comes a family of self-
organizing networks with fuzzy polynomial neuron (FPN) (called “FPNN” as a new 
category of neuro-fuzzy networks) [1], [4], [8]. The design procedure of the FPNNs 
exhibits some tendency to produce overly complex networks as well as comes with a 
repetitive computation load caused by the trial and error method being a part of the 
development process.  

In this paper, in considering the above problems coming with the conventional 
FPNN [1], [4], [8], we introduce a new structure of fuzzy rules as well as a new ge-
netic design approach. The new structure of fuzzy rules based on the fuzzy set-based 
approach changes the viewpoint of input space division. In other hand, from a point of 
view of a new understanding of fuzzy rules, information granules seem to melt into 
the fuzzy rules respectively. The determination of the optimal values of the parame-
ters available within an individual FSPN leads to a structurally and parametrically 
optimized network through the genetic approach.  

2   The Architecture and Development of Fuzzy Polynomial Neural    
     Networks (FPNN) 

The FSPN encapsulates a family of nonlinear “if-then” rules. When put together, 
FSPNs results in a self-organizing Fuzzy Set-based Polynomial Neural Networks 
(FSPNN). As visualized in Fig. 1, the FSPN consists of two basic functional modules. 
The first one, labeled by F, is a collection of fuzzy sets (here denoted by {Ak} and 
{Bk}) that form an interface between the input numeric variables and the processing 
part realized by the neuron. The second module (denoted here by P) refers to the 
function – based nonlinear (polynomial) processing that involves some input variables 
This nonlinear processing involves some input variables (xi and xj), which are capable 
of being the input variables (Here, xp and xq), or entire system input variables. Each 
rule reads in the form  

if xp is Ak then z is Ppk(xi, xj, apk) 
if xq is Bk then z is Pqk(xi, xj, aqk) 

(1) 

where aqk is a vector of the parameters of the conclusion part of the rule while P(xi, xj, 
a) denoted the regression polynomial forming the consequence part of the fuzzy rule. 
The activation levels of the rules contribute to the output of the FSPN being computed 
as a weighted average of the individual condition parts (functional transformations) 
PK (note that the index of the rule, namely “K” is a shorthand notation for the two 
indexes of fuzzy sets used in the rule (1), that is K = (l, k)). 
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In the above expression, we use an abbreviated notation to describe an activation level 
of the “K” th rule to be in the form 

( , )
( , ) total_rules related to input 

( , )
1

l k
l k l

l k
k

µ
µ

µ
=

=  
(3) 

When developing an FSPN, we use genetic algorithms to produce the optimized net-
work. This is realized by selecting such parameters as the number of input variables, 
the order of polynomial, and choosing a specific subset of input variables. Based on 
the genetically optimized number of the nodes (input variables) and the polynomial 
order, refer to Table 1, we construct the optimized self-organizing network architec-
tures of the FSPNNs.  

Table 1. Different forms of the regression polynomials forming the consequence part of the 
fuzzy rules 

No. of inputs Order of  
the polynomial 

1 2 3 

0 (Type 1) Constant Constant Constant 
1 (Type 2) Linear Bilinear Trilinear 
2 (Type 3) Biquadratic-1 Triquadratic-1 
2 (Type 4) 

Quadratic 
Biquadratic-2 Triquadratic-2 

                               1: Basic type, 2: Modified type 

3   Information Granulation Through Hard C-Means Clustering   
     Algorithm 

Information granules are defined informally as linked collections of objects (data 
points, in particular) drawn together by the criteria of indistinguishability, similarity 
or functionality [9]. Granulation of information is a procedure to extract meaningful 
concepts from numeric data and an inherent activity of human being carried out with 
intend of better understanding of the problem. We granulate information into some 
classes with the aid of Hard C-means clustering algorithm, which deals with the con-
ventional crisp sets.  

3.1   Definition of the Premise and Consequent Part of Fuzzy Rules Using 
        Information Granulation 

We assume that given a set of data X={x1,x2,…,xn} related to a certain application, 
there are some clusters which are capable of being found through HCM. The center 
point and the membership elements represent each cluster. The set of membership 
elements is crisp. To construct a fuzzy mode, we should transform the crisp set into 
the fuzzy set. The center point means the apex of the membership function of the 
fuzzy set. Let us consider building the consequent part of fuzzy rule. We can think of 
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each cluster as a sub-model composing the overall system. The fuzzy rules of Infor-
mation Granulation-based FSPN are as followings. 

if xp is A*
k then z-mpk = Ppk((xi-v

i
pk),(xj- v

j
pk),apk) 

if xq is B*
k then z-mqk is Pqk((xi-v

i
qk),(xj- v

j
qk),aqk) 

(4) 

Where, A*
k and B

*
k mean the fuzzy set, the apex of which is defined as the center 

point of information granule (cluster) and mpk is the center point related to the output 
variable on clusterpk, v

i
pk is the center point related to the i-th input variable on clus-

terpk and aqk is a vector of the parameters of the conclusion part of the rule while P((xi-
vi),(xj- v

j),a) denoted the regression polynomial forming the consequence part of the 
fuzzy rule which uses several types of high-order polynomials (linear, quadratic, and 
modified quadratic) besides the constant function forming the simplest version of the 
consequence; refer to Table 1. If we are given m inputs and one output system and the 
consequent part of fuzzy rules is linear, the overall procedure of modification of the 
generic fuzzy rules is as followings. The given inputs are X=[x1 x2 … xm] related to a 
certain application, where xk =[xk1 … xkn]

T, n is the number of data and m is the num-
ber of variables and the output is Y=[y1 y2 … yn]

T. 

Step 1) build the universe set 
Universe set U={{x11, x12, …, x1m, y1}, {x21, x22, …, x2m, y2}, …, {xn1, xn2, …, xnm, yn}} 
Step 2) build m reference data pairs composed of [x1;Y], [x2;Y], and [xm;Y]. 
Step 3) classify the universe set U into l clusters such as ci1, ci2, …, cil (subsets) by 
using HCM according to the reference data pair [xi;Y]. Where cij means the j-th clus-
ter (subset) according to the reference data pair [xi;Y]. 
Step 4) construct the premise part of the fuzzy rules related to the i-th input variable 
(xi) using the directly obtained center points from HCM.  
Step 5) construct the consequent part of the fuzzy rules related to the i-th input vari-
able (xi). On this step, we need the center points related to all input variables. We 
should obtain the other center points through the indirect method as followings. 
Sub-step1) make a matrix as shown in (5) according to the clustered subsets 

21 22 2 2

51 52 5 5

1 2

m

mi

j

k k km k

x x x y

x x x y
A

x x x y
=  (5) 

Where, {xk1, xk2, …, xkm, yk}∈cij and Ai
j means the membership matrix of j-th subset 

related to the i-th input variable.  
Sub-step2) take an arithmetic mean of each column on Ai

j. The arithmetic mean of 
each column is the additional center point of subset cij. The arithmetic mean of col-
umn is described as (6)  

1 2 m

ij ij ij ij
center points v v v m=  (6) 

Step 6) if i is m then terminate, otherwise, set i=i+1 and return step 3. 
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4   Genetic Optimization of FPNN 

GAs are aimed at the global exploration of a solution space. The main features of 
genetic algorithms concern individuals viewed as strings, population-based optimiza-
tion and stochastic search mechanism (selection and crossover). GAs use serial 
method of binary type, roulette-wheel as the selection operator, one-point crossover, 
and an invert operation in the mutation operator [2]. In this study, for the optimization 
of the FPNN model, GA uses the serial method of binary type, roulette-wheel used in 
the selection process, one-point crossover in the crossover operation, and a binary 
inversion operation in the mutation operator. To retain the best individual and carry it 
over to the next generation, we use elitist strategy [3]. The overall genetically-driven 
structural optimization process of FPNN is shown in Fig. 1. 
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Fig. 1. Overall genetically-driven structural optimization process of FPNN 

The framework of the design procedure of the genetically optimized FSPNN com-
prises the following steps 

[Step 1] Determine system’s input variables 
[Step 2] Form training and testing data 
[Step 3] specify initial design parameters 
[Step 4] Decide FSPN structure using genetic design 
[Step 5] Carry out fuzzy-set based fuzzy inference and coefficient parameters estima-
tion for fuzzy identification in the selected node (FSPN) 
[Step 6] Check the termination criterion 
[Step 7] Determine new input variables for the next layer. 

5   Experimental Studies 

We demonstrate how the IG-gFSPNN can be utilized to predict future values of a 
chaotic Mackey-Glass time series. This time series is used as a benchmark in fuzzy 
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and neurofuzzy modeling. The performance of the network is also contrasted with 
some other models existing in the literature [5], [6], [7]. The time series is generated 
by the chaotic Mackey-Glass differential delay equation. To come up with a quantita-
tive evaluation of the network, we use the standard RMSE performance index. 

Fig. 2 depicts the performance index of each layer of gFPNN with Type T* accord-
ing to the increase of maximal number of inputs to be selected.  
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Fig. 2. Performance index of IG-gFSPNN (with Type T*) with respect to the increase of num-
ber of layers 

     Fig. 3 illustrates the different optimization process between gFSPNN and the pro-
posed IG-gFSPNN by visualizing the values of the performance index obtained in 
successive generations of GA when using Type T*.  

Table 2 summarizes a comparative analysis of the performance of the network with 
other models.  
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Fig. 3. The optimization process quantified by the values of the performance index (in case of 
using Gaussian MF with Max=5 and Type T*) 

Table 2. Comparative analysis of the performance of the network; considered are models 
reported in the literature 

Performance index Model 
PI PIs EPIs 

0.044   

0.013   Wang’s model[5] 

0.010   

ANFIS[6]  0.0016 0.0015 

FNN model[7]  0.014 0.009 
Triangular 
(2nd layer) 

Max=5  1.72e-4 3.30e-4 
Proposed 

IG-gFSPNN 
Type T* 

Gaussian 
(2nd layer) 

Max=5  1.48e-4 2.61e-4 

6   Concluding Remarks 

In this study, we have surveyed the new structure and meaning of fuzzy rules and 
investigated the GA-based design procedure of Fuzzy Polynomial Neural Networks 
(FPNN) along with its architectural considerations. The whole system is divided into 
some sub-systems that are classified according to the characteristics named informa-
tion granules. Each information granule seems to be a representative of the related 
sub-systems. A new fuzzy rule with information granule describes a sub-system as a 
stand-alone system. A fuzzy system with some new fuzzy rules depicts the whole 
system as a combination of some stand-alone sub-system.  

The GA-based design procedure applied at each stage (layer) of the FSPNN leads 
to the selection of the preferred nodes (or FSPNs) with optimal local characteristics 
(such as the number of input variables, the order of the consequent polynomial of 
fuzzy rules, and input variables) available within FSPNN. The comprehensive ex-
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perimental studies involving well-known datasets quantify a superb performance of 
the network in comparison to the existing fuzzy and neuro-fuzzy models. 
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Abstract. This work introduces two new neuro-fuzzy systems for intelligent 
agents called Reinforcement Learning - Hierarchical Neuro-Fuzzy Systems 
BSP (RL-HNFB) and Reinforcement Learning - Hierarchical Neuro-Fuzzy 
Systems Politree (RL-HNFP). By using hierarchical partitioning methods, 
together with the Reinforcement Learning (RL) methodology, a new class of 
Neuro-Fuzzy Systems (SNF) was obtained, which executes, in addition to 
automatically learning its structure, the autonomous learning of the actions to 
be taken by an agent. These characteristics have been developed in order to 
bypass the traditional drawbacks of neuro-fuzzy systems. The paper details the 
two novel RL_HNF systems and evaluates their performance in a benchmark 
application – the cart-centering problem. The results obtained demonstrate the 
capacity of the proposed models in extracting knowledge from the agent’s 
direct interaction with large and/or continuous environments. 

1   Introduction 

This work presents two news hybrid neuro-fuzzy models, called Reinforcement 
Learning Hierarchical Neuro-Fuzzy BSP (RL-HNFB) [1] and Reinforcement 
Learning Hierarchical Neuro-Fuzzy Politree (RL-HNFP), which are based on a 
Reinforcement Learning algorithm to provide an agent with intelligence, making it 
capable, by interacting with its environment, to acquire and retain knowledge for 
reasoning (infer an action). 

The proposed models were devised based on an analysis of the limitations in the 
existing RL models [2-3] and on the desirable characteristics for RL-based learning 
systems, particularly in applications involving continuous environments and/or 
environments considered to be highly dimensional.  

When the environment is large and/or continuous, the application of traditional 
Reinforcement Learning methods based on lookup tables (a table that stores value 
functions for a small or discrete state space) is no longer possible, since the state space 
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becomes too large. This problem is known as the curse of dimensionality [3]. In order to 
bypass it, some form of generalization must be incorporated into how the states are 
represented.  

On the other hand, most neuro-fuzzy systems [4-6] present limitations with regard 
to the number of inputs allowed and/or to the limited (or nonexistent) form to create 
their own structure and rules [7-8]. 

Thus, the new Reinforcement Learning-Hierarchical Neuro-Fuzzy BSP and 
Politree models apply a recursive partitioning methodology (already explored with 
excellent results in Souza [7-8]), which significantly reduces the limitations of the 
existing neuro-fuzzy systems.  

The use of this partitioning method combined with Reinforcement Learning 
resulted in a new class of Neuro-Fuzzy System (NFS), called Reinforcement 
Learning-Hierarchical Neuro-Fuzzy System (RL-HNF). In addition to the ability to 
create its own structure, this model autonomously learns the actions that must be 
taken by an agent.  

In this manner, the new RL-HNF model presents the following important 
characteristics: it automatically learns its structure; it performs self-adjustment of the 
parameters associated with the structure; it is capable of learning an action to be taken 
when the agent is in a given state of the environment; it is able to deal with a greater 
number of inputs when compared with the traditional neuro-fuzzy systems; and it 
automatically generates linguistic rules. These characteristics represent an important 
differential in relation to the existing intelligent agent learning systems.  

The paper is organized as follows: section 2 contains a brief description of BSP 
and Politree partitionings. Section 3 introduces the RL-HNFB and RL-HNFP models, 
describing their basic cells, architectures and learning methods. Section 4 presents the 
results obtained with the case study: cart-centering problem [9]. The main objective of 
using this case study was to evalute how well the proposed models would adapt to 
changes in the domain of the input variables without having to retrain the systems. 
Lastly, section 5 presents the conclusions. 

2   Hierarchical Partitioning 

The partitioning process of the input/output space has great influence on the neuro-
fuzzy system performance in relation to its desirable features (accuracy, 
generalization, automatic generation of rules, etc).  

The BSP – Binary Space Partitioning [7-8] divides the space successively, in a 
recursive way, in two regions. Figure 1a shows an example of a two dimensional 
input partitioned using the BSP method.  

The Politree partitioning is a generalization of the quadtree [8]. In this partitioning 
the subdivision of the n-dimensional space is accomplished in m=2n subdivision. The 
Politree partitioning can be represented by a tree structure.  Figure 1b presents the 
generic politree partitioning (with n inputs). 

Hierarchical partitioning is flexible and minimizes the exponential rule growth 
problem, since it creates new rules locally according to the learning process. This type 
of partitioning is considered recursive because it makes use of a recursive process to 
generate partitions. In this manner, the resulting models have a hierarchy in their 
structure and consequently, hierarchical rules.  
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Fig. 1.  (a) BSP Tree representing the BSP partitioning (b) generic tree representation of the 
politree partitioning with n inputs, where m = 2n 

3   Reinforcement Learning – Hierarchical Neuro-fuzzy BSP  
(RL-HNFB) and  Politree (RL-HNFP) Models  

The RL-HNFB and RL-HNFP models are composed of one or various standard cells 
called RL-neuro-fuzzy BSP (RL-NFB) and RL-neuro-fuzzy-Politree (RLNFP), 
respectively. These cells are laid out in a hierarchical structure, according to the 
partition being used. The following sections describe the basic cells, the hierarchical 
structures and the learning algorithm.  

3.1   Reinforcement Learning Neuro-fuzzy BSP and Politree Cells 

An RL-NFB cell is a mini-neuro-fuzzy system that performs binary partitioning of a 
given space in accordance with the membership functions described in figure 2(a). In 
the same way, an RL-NFP cell is a mini-neuro-fuzzy system that performs 2n 
partitioning of a given input space, also using complementary membership functions 
in each input dimension. The RL-NFB and RL-NFP cells generate a precise (crisp) 
output after the defuzzification process [1][10]. 

The RL-NFB cell has only one input (x) associated with it. For further details 
about RL-NFB cell, see [1]. 

The RL-NFP cell receives all the inputs that are being considered in the problem. 
For illustration purpose, figure 2(b) depicts a cell with two inputs – x1 and x2 - 
(Quadtree partitioning), providing a simpler representation than the n-dimensional 
 

 

 

 

 

 

 
Fig. 2.  Internal representation of the (a) RL-NFB and (b) RL-NFP cells 
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form of Politree. In figure 2(b) each partitioning is generated by the combination of 
two membership functions - ρ (low) and µ (high) of each input variable.  

The consequents of the cell’s poli-partitions may be of the singleton type or the 
output of a stage of a previous level. Although the singleton consequent is simple, this 
consequent is not previously known because each singleton consequent is associated 
with an action that has not been defined a priori. Each poli-partition has a set of 
possible actions (a1, a2, ... an), as shown in figure 2, and each action is associated with 
a Q-value function. The Q-value is defined as being the sum of the expected values of 
the rewards obtained by the execution of action a in state s, in accordance with a 
policy π. For further details about RL theory, see [3].  

The linguistic interpretation of the mapping implemented by the RL-NFP cell 
depicted in Figure 2(b) is given by the following set of rules:  

rule1:  If x1 ∈ ρ1 and x2  ∈ ρ2 then y = ai rule2:  If x1 ∈ ρ1 and x2 ∈ µ2 then y = aj  
rule3:  If x1 ∈ µ1 and x2∈ ρ2 then y = ap  rule4:  If x1∈  µ1 and x2∈ µ2 then y = aq 

where αi is the firing level of rule i (poli-partition i) and consequent ai corresponds to 
one of the two possible consequents below:  

A singleton (fuzzy singleton consequent, or zero-order Sugeno): the case where ai  = 
constant; 
The output of a stage of a previous level: the case where ai  = ym , where ym 
represents the output of a generic cell ‘m’, whose value is calculated by equation (1) 
below. Since the high (µ) and low (ρ) membership functions are complementary, the 
defuzzification process is simplified, with the denominator of the equation on the left 
being equal to 1 for any values of inputs ‘x’, where αi corresponds to the firing level 
of partition i.  

3.2   RL-HNFB and RL-HNFP Architectures 

RL-HNFB models can be created based on the interconnection of the basic cells. The 
cells form a hierarchical structure that results in the rules that compose the agent’s 
reasoning. Figure 3 exemplifies the RL-HNFB and RL-HNFP architectures. The 
output of the system in figure 3(a) (defuzzification) is given by equation (2). For 
further details about RL-NFB architecture, see [1].  

In the architecture presented in figure 3(b), the poli-partitions 1, 3, 4, … m-1 have 
not been subdivided, having as consequents of its rules the values a1, a3, a4, … am-1, 
respectively. On the other hand, poli-partitions 2 and m have been subdivided; so the 
consequents of its rules are the outputs (y2 and ym) of subsystems 2 and m, 
respectively. On its turn, these subsystems have, as consequent, the values a21, a22, ..., 
a2m, and  am1, am2, ..., amm, respectively. Each 'ai' corresponds to a consequent of zero-
order Sugeno (singleton), representing the action that will be identified (between the 
possible actions), through reinforcement learning, as being the most favorable for a 
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certain state of the environment.  The output of the system depicted in figure 3(b) 
(defuzzification) is given by equation (3). Again, in these equations, αi corresponds to 
the firing level of partition i and ai is the singleton consequent of the rule associated 
with partition i. 
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3.3   RL-HNFB and RL-HNFP Learning Algorithm 

The learning process starts with the definition of the relevant inputs for the 
system/environment where the agent is and the sets of actions it may use in order to 
achieve its objectives. The agent must run many cycles to ensure learning in the 
system/environment where it is. A cycle is defined as the number of steps the agent 
takes in the environment, which extends from the point he is initiated to the target point.  

The RL-HNFB and RL-HNFP models employ the same learning algorithm. Each 
partition chooses an action from its set of actions; the resultant action is calculated by 
the defuzzification process (see equation (1) and represents the action that will be 
executed by the agents’ actuators. After the resultant action is carried out, the 
environment is read once again. This reading enables calculation of the environment 
reinforcement value that will be used to evaluate the action taken by the agent. The 
reinforcement is calculated for each partition of all active cells, by means of its 
participation in the resulting action. Thus, the environment reinforcement calculated 
by the evaluation function is backpropagated from the root-cell to the leaf-cells. Next, 
the Q-values associated to the actions that have contributed to the resulting action are 
updated, based on the SARSA algorithm [3]. More details can be found in [10]. 

The RL_HNFB and RL_HNFP models have been evaluated in a control 
application. This case study is presented in the next section.  
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4   Case Studies  

The case studied, the cart-centering problem (parking the car) [9], is generally used as 
a benchmark of the area of evolutionary programming, where the force that is applied 
to the car is of the “bang bang” type [9]. This problem was used mainly for the 
purpose of evaluating how well the RL-HNFB and RL-HNFP models would adapt to 
changes in the input variable domain without having to undergo a new training phase. 

The problem consists of parking, in the centre of a one-dimensional environment, a 
car with mass m that moves along this environment due to an applied force F. The 
input variables are the position (x) of the car, and its velocity (v), where the τ  
parameter represents the time unit. The objective is to park the car in position x = 0 
with velocity v = 0. The equations of motion are: 

ttt vxx .ττ +=+    and  mFvv ttt /.ττ +=+  (4) 

The global reinforcement is calculated by equation 5 below: 
If (x > 0 and v < 0) or (x < 0 and v > 0)  

|)(|
2

e|)e_objectiv(-|distanc
1

velocity
global ekekR +=  (5) 

Else     R global  = 0   

The evaluation function increases as the car gets closer to the centre of the 
environment with velocity zero. The k1 and k2 coefficients are constants greater than 1 
used for adapting the reinforcement values to the model’s structure. The values used 
for time unit and mass were τ = 0.02 and m = 2.0. 

 The stopping criterion is achieved when the difference between the velocity and 
the position value in relation to the objective (x=0 and v=0) is smaller than 5% of the 
universe of discourse of the position and velocity inputs. Table 1 shows the average of 
the results obtained in 5 experiments for each configuration. 

Table 1. Configurations and results of the RL-HNFB and RL-HNFP models applied to the cart-
centering problem 

No. Position Limits Velocity 
Limits Size of the Structure Average steps 

learning phase 

RL-HNFB1 |10| |10| 195 cells 424 

RL- HNFB2 |3| |3| 340 cells 166 

RL-HNFP1 |10| |10| 140 cells 221 

RL-HNFP2 |3| |3| 251 cells 145 

The columns position and velocity limits refer to the limits imposed to the 
(position and velocity) state variables during learning and testing. The actions used in 
these experiments are: F1 = {-150, -75, -50, -30, -20, -10, -5, 0, 5, 10, 20, 30, 50, 75, 
150}. The size of the structure column shows the average of the number of cells at the 
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end of each experiment and the last column shows the average steps during the 
learning phase. The number of cycles was fixed at 1000. At each cycle, the car’s 
starting points were x = -3 or x = 3. 

As can be observed from Table 1, the RL-HNFP structure is smaller because each 
cell receives both input variables, while in the case of the RL-HNFB model, a 
different input variable is applied at each level of the BSP tree. 

Table 2 below presents the results obtained for one of the 5 experiments carried out 
at each configuration shown in Table 1 when the car starts out at points (-2, -1, 1, 2) 
which were not used in the learning phase. 

Table 2. Testing results of the proposed models applied to the cart-centering problem 

Initial Position 

| 3| |2| |1| Configuration 

Average number of steps 

RL-HNFB1 387 198 141 

RL-HNFB2 122 80 110 

RL-NFHP1 190 166 99 

RL-NFHP2 96 124 68 

In the first configuration of each model, the results show that the broader the 
position and velocity limits are (in this case equal to |10|), the more difficult it is to 
learn. In these cases a small oscillation occurs around the central point. What actually 
happens is that the final velocity is very small but, after some time, it tends to move the 
car out of the convergence area, resulting in a peak of velocity in the opposite direction 
to correct the car’s position. In the second configurations, the results show that there 
were fewer oscillations when the position and velocity limits were lowered to |3|.  

A different test was carried out with configuration 2 of RL-HNFB and RL-HNFP 
in which the environment limits were expanded to 10 and the velocity limits were 
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Fig. 4. Test results with a larger environment (-10 to 10) for the cart centering problem for the 
(a) RL-HNFB2 configuration and  (b) RL-HNFP2 configuration 
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maintained at 3. The results obtained are presented in the graphs of figure 4. In this 
new test, although the environment is three times larger than the environment used for 
learning, the car is able to achieve its objective when it starts out from the following 
points: the environment limit (10 and -10); halfway in the environment (-5 and 5) and 
points that are close to the objective (-1 and 1) (Figure 4). This behaviour was made 
possible because the input variables were normalized, enabling the autonomous 
learning process to adapt to changes in the environment without requiring a new 
learning process. 

5   Conclusions 

The objective of this paper was to introduce a new class of neuro-fuzzy models which 
aims to improve the weak points of conventional neuro-fuzzy systems and 
reinforcement learning models. The models RL-HNFB and RL-NFHP belong to a 
new class of neuro-fuzzy systems called Reinforcement Learning Hierarchical Neuro-
Fuzzy Systems. 

These models are able to create their own structures and allow the extraction of 
knowledge in a fuzzy rule-base format.  

The RL-NFHB and RL-HNFP models were able to create and expand the structure 
of rules without any prior knowledge (fuzzy rules or sets); extract knowledge from the 
agent’s direct interaction with large and/or continuous environments (through 
reinforcement learning), in order to learn which actions are to be carried out; and 
produce interpretable fuzzy rules, which compose the agent’s intelligence to achieve 
his goal(s). The agent was able to generalize its actions, showing adequate behaviour 
when the agent was in states whose actions had not been specifically learned. This 
capacity increases the agent’s autonomy. Normalizing the inputs also enabled the 
model to adequately respond to changes in the limits of input variables. This 
characteristic was also very interesting, because it further increases the autonomy 
desired for this agent. 
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Abstract. In order to extract learning algorithms from living neural aggregates 
it would be advantageous to achieve one-to-one neuron-electrode interfacing 
with in vitro networks. Towards this goal, we have developed a hybrid glass-
elastomer technology, which allows topology specification in small networks 
(of the order of 10 neurons) and recording of extracellular potentials from indi-
vidual neurites grown through microfluidic channels. Here we report on pro-
gress towards adhesion-free placement of cells within microwells, promotion of 
neurite growth and recording of intra-channel extracellular spikes. 

1   Introduction 

We have recently reported on the development of hybrid glass-elastomer multielec-
trode devices for in vitro neural network patterning and recording of extracellular 
potentials [1]. The goal is the achievement of one-to-one neuron-electrode interfacing 
with small networks (approx. 10 neurons) in order to extract neural information proc-
essing algorithms. 

In our devices, network topology specification is realized by microfluidic channels 
capable of guiding neurite growth. Extracellular potentials are recorded by substrate 
embedded ITO electrodes over which neurites extend. As transmembrane channels 
(mostly at the axon-hillock) sink current to generate an action potential, the extracel-
lular flow is confined within microchannels and the associated potentials recorded by 
intra-channel electrodes. 

The fabrication process has been reported elsewhere [1]. Briefly, the approach  is 
based on the assembly of a sandwich structure; polymeric (PDMS) films (100 µm in 
thickness) including microchannels for neurite guidance and through holes for neu-
ronal soma confinement are fabricated with a combination of soft-lithography tech-
niques [2] and micro-hole punching [1] and overlaid on standard multielectrode arrays 
[3]. Microchannels with a cross-section of 15x5 µm allow neurite outgrowth while 
confining cell bodies within microwells. Inter-well distances of  100-200 µm have 
proved adequate to obtain spikes in the order of 60-80 µV, resulting in signal-to-noise 
ratios of 3-4, for typical electrode/electronics noise levels. 
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Fig. 1. Top view of two microwells in a neurovector with one neuron plated per microwell. The 
transparent 100 µm-thick PDMS film, containing through holes interconnected by a neurite 
guiding microchannel (cross-section 15x5 µm), is overlaid on a glass substrate with embedded 
40 µm-wide ITO electrodes 

Fig. 1 shows, in top view, a two-well neurovector, a device for interfacing with 
uni-dimensional aggregates, i.e. a set of neurons patterned to form in vitro chains. Fig. 
2 shows a SEM image of a microwell. The conic geometry of the microwell facilitates 
neuron placement. The entrance of a microchannel is also visible at the bottom of the 
well. 

Placement of individual Helix aspersa neurons in microwells and sprouting of neu-
rites of sufficient length to transverse the microchannels are necessary conditions for 
network formation. The mollusk neurons used for our work are typically in the range 
20-50 µm in diameter. Selection, transport and placement within the neurovector must 
be compatible with cell viability. Here we report on progress towards improved neu-
ron placement and network formation within neurovector structures. 

2   Cell Placement and Neurite Sprouting 

Placement of individual neurons within microwells is achieved by selection of healthy 
cells from dispersed brains and subsequent transport by suction/expel sequences with 
fire-polished borosilicate capillaries.  Sonication of the capillaries in ace-
tone/isopropanol for 10 minutes and thorough rinsing in Milli-Q water greatly reduces 
the probability of damage to neurons during transport. The neurovectors were de-
signed for easy cell placement. Neurons were to be dropped on the PDMS film and 
rolled on the surface, by sequential puffs of culture medium, to fall within wells. The 
conic shape of the wells facilitates the latest phases of the process. 
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   Fig. 2. SEM image of a cross-section through a microwell and microchannel 

     For this procedure to be successful, an anti-fouling coating must be used, since 
PDMS is known to facilitate cell adhesion, possibly due to hydrophobic-hydrophobic 
interactions. We have experimented with a number of film treatments.  

Incubation of the PDMS structures in 1% bovine serum albumin (BSA) in 1% PBS 
for up to 2 hours markedly decreased adhesion but was insufficient to avoid adhesion 
to the walls of the microwells. Interestingly, on occasions, neurons adhered to the 
walls of the microwells and grew neurites that would extend to the upper end of the 
well and over the surface of the PDMS film for hundreds of microns (see Fig. 3).  

Adhesion was successfully minimized with 24h BSA treatment in which case 
nearly 100% of the cells reached the substrate at the lower end of the microwells. 
Fig.1 shows two cells growing in BSA-coated PDMS structures. However, the use of 
BSA as a coating on the PDMS film had a negative effect on the probability of 
sprouting. While 90% of the cells sprouted when cultured in controls without BSA, 
only 30% grew neurites when plated within BSA-treated structures.   

To a first approximation, and assuming independence, chains with N adjacent 
sprouted neurons would occur with a probability of approximately 0.3N which renders 
small size networks feasible but larger aggregates time consuming. 

It is hypothesized that the effect of BSA on cell growth can relate to its leach to the 
culture after cell placement. Since cell adhesion and growth requires charge-rich sub-
strates, poly-l-lysine is often used to coat surfaces intended to promote cell adhesion 
and neurite growth. BSA is commonly used as a blocked of unspecific binding. 
Therefore, BSA could act as a blocker of neurite growth through binding to substrate-
bound poly-l-lysine. 

To address this problem, PDMS was used uncoated whereas brain dissociation was 
carried our in 1% BSA to promote shielding of the cells by a BSA rich , hydrophilic 
and anti-fouling shell. After a 30 minutes incubation , BSA coated neurons were 
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transferred to PDMS. Culture medium was changed to remove traces of BSA and 
avoid putative blocking of poly-l-lysine.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 3. Phase-contrast image showing neurite outgrowth over the surface of the PDMS film 

upon adhesion of neurons on the walls of microwells 

Preliminary data show that adhesion is reduced, as observed with overnight BSA 
treatment of PDMS. Experiments on the probability of neurite outgrowth are underway. 

We have also experimented with Pluronic P105 (Basf, Germany) an amphiphilic 
polymer with one hydrophobic polypropylene oxide (PPO) and two hydrophilic poly-
ethylene oxide (PEO) blocks. The hydrophobic segment is adsorbed onto the hydro-
phobic surface of untreated PDMS while the hydrophilic ends remain accessible on 
the surface and decrease protein and cell adhesion. Treatments with 0.1% w/v Plu-
ronic of up to 24h decreased adhesion on the surface but were not sufficient to avoid 
adhesion on the microwell walls in 70% of the cells plated.  Moreover, Pluronic P105 
appeared toxic to mollusk neurons after 96 h in culture.  

Pluronic F68, a PEO-PPO-PEO polymer with higher hydrophilic to hydrophobic 
chain ratios as compared to P105, has been proven non-toxic with insect cell cultures 
and is currently under test as a  PDMS anti-fouling treatment. 

Fig. 4. Extracellular potentials recorded from the lumen a microchannel threaded by a neurite. 
Electrodes at different locations record spikes correlated in time but with different shapes/signs 

20 µm Neurites

MicrowellsCell bodies

60 µV 

10 ms
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3 Extracellular Potentials 

Fig. 4 shows typical extracellular potentials recorded from a single microchannel -
guided neuron by parallel electrodes as shown in Fig. 1. The location of the electrodes 
and the grounds of the circuit result in correlated spikes recorded with  various char-
acteristic shapes by different electrodes. Signal magnitudes with respect to distant 
grounds of 60 µV are typical. 

The axon-hillock and the passive neuronal segments result in a current dipole, i.e. hill-
ocks sink current while dendrites source it during the rising phase of the action potential 
whereas the pattern is reversed during the repolarization phase. The voltage drop along 
the channel associated with this dipole can be measured at different points along the 
microchannel. Details on the instrumentation will be described in detail in a future report. 

4 Conclusions 

Preliminary data suggest that BSA anti-fouling coatings facilitate cell placement 
within microwells. However, if PDMS is treated overnight, the probability of sprout-
ing is markedly lower within neurovectors, possibly due to BSA leach and subsequent 
block of growth cone adhesion and extension. Coating of cells with BSA and subse-
quent elimination of remaining BSA traces, as opposite to treatment of PDMS struc-
tures amenable to leach, is being explored.  

Moreover, the use of conditioned medium and co-culture with entire brains has 
been shown to promote sprouting [4]. Observation of occasional extensive sprouting 
in proximal neurons suggest that sufficient neurite growth could be promoted by ade-
quate partners. Random selection of neurons from dispersed tissue may, therefore, be 
inadequate to support extensive outgrowth. Research will focus on the use of cells 
from individual ganglia or, preferably, from identified neurons with confirmed con-
nections in vivo in order to increase the probability of sprouting and connection be-
tween adjacent cells. Overall these strategies could compensate for the effects of BSA 
on neurite outgrowth. 

Despite decreased sprouting probabilities due to BSA treatments, neurite extension 
along microchannels already makes possible the recording of extracellular spikes with 
the current version of the experimental setup. 
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Abstract. Based on explicit numerical constructions for Kolmogorov’s super-
positions (KS) linear size circuits are possible. Because classical Boolean as 
well as threshold logic implementations require exponential size in the worst 
case, it follows that size-optimal solutions for arbitrary Boolean functions (BFs) 
should rely (at least partly) on KS. In this paper, we will present previous theo-
retical results while examining the particular case of 3-input BFs in detail. This 
shows that there is still room for improvement on the synthesis of BFs. Such 
size reductions (which can be achieved systematically) could help alleviate the 
challenging power consumption problem, and advocate for the design of Kol-
mogorov-inspired gates, as well as for the development of the theory, the algo-
rithms, and the CAD tools that would allow taking advantage of such optimal 
combinations of different logic styles. 

1   Introduction 

The problem we are going to discuss in this paper is that of the size of circuits imple-
menting arbitrary Boolean functions (BFs) f : {0,1}n  {0,1}. This is a well-studied 
problem, and its solution translates into optimal Boolean circuits—leading to mini-
mum size, area, and most importantly power dissipation. The optimal solution de-
pends on the set of gates used to implement BFs. In particular it is well known that 
implementing arbitrary BFs using classical Boolean gates (BGs), requires O(2n) size 
circuits (for PARITY). By using threshold logic gates (TLGs) the bound is smaller 
O(2n/2) [1, 2, 3], revealing an exponential gap. The bounds for TLGs have been ob-
tained for (small) constant depths, as TLGs are perceptrons, hence approximating 
shallow neural structures. It is possible to reduce the size of TL circuits for non-
constant depths, but results are known only for particular BFs [4]. The difficult prob-
lems when trying to implement TLGs are: the large fan-ins and the precision of the 
weights [5]. These are theoretically related [3, 6, 7] as: 

2( –1)/2 < weight < ( +1)( +1)/2 / 2  (1) 

for any fan-in =  > 3, i.e., precision can be as high as O(nlogn) bits per weight. 
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Better results with respect to size can be obtained only if the elementary gates are 
more powerful, e.g., multi-threshold TLGs [8, 9] or multiple valued logic gates [10, 
11]. In this paper we will take such an approach, and advocate for using Kolmo-
gorov’s superpositions (KS) theorem. This shows that there is a solution requiring 
only 2n + 1 functions of one variable which can approximate any f : [0,1]n  IR. 
Such a linear size solution appears very promising and could help alleviate the chal-
lenging power consumption problem [12, 13]. 

The paper will start by presenting Hilbert’s thirteenth problem and KS in Section 2. 
Motivations for using Kolmogorov’s theorem for BFs will be given in Section 3, 
while the particular case of three input BFs will be analyzed and discussed in Section 
4. Conclusions and future directions of research are ending the paper. 

2   Kolmogorov’s Superposition 

In 1900 the German mathematician David Hilbert challenged mathematicians to solve 
23 fundamental problems [14]. In the thirteenth of these problems he conjectured that 
there exist continuous multivariate functions that cannot be decomposed as a finite 
superposition of continuous functions of fewer variables.  

Hilbert’s thirteenth problem was refuted by Kolmogorov [15] and Arnol’d [16]. In 
1957 Kolmogorov also proved a general theorem where the functions in the decom-
position are one dimensional, known as Kolmogorov’s superpositions (KS) theorem 
[17]. Formally, for each integer n  2, there exist 2n + 1 functions ψq, q = 0, …, 2n in 
C([0, 1]n) of the form ψq(x) = )(1 p

n
p pq x= ψ , x = (x1, …, xn) ∈ [0,1]n, ψq ∈ C([0, 1]n), 

p = 1, …, n, such that each f in C([0, 1]n) is representable as f(x) = =
n

q qq
2

0 ))(( xψφ , 
φq ∈ C(IR). Here C(X) denotes the space of continuous real-valued functions on the 
topological space X. This means that for every real-valued continuous function 
f : [0,1]n → IR there are continuous functions φq (depending on f) such that 

])([),...,( 1
2

01 === n
p ppq

n
q qn xxxf ψφ , (2) 

where ψpq are universal for the given dimension n, i.e., independent of f (see Fig. 1.a). 
Such results were refined by Sprecher [18], and by Lorenz [19]. Sprecher ([18, 20]) 

showed that for a given δ > 0 there is a rational a, 0 < a < δ, such as the unknown 
approximation mapping could be generated by replacing the set of functions ψpq by 
λpψq, where λp are independent constants, and ψq are monotonic increasing functions: 

])([),...,( 1
2

01 == += n
p pp

n
q qn aqxxxf ψλφ . (3) 

The function ψ and the constants λp are independent both of the function f, and of the 
dimension n. Another improvement is due to Lorenz in 1966 [19], namely that the 
function φq could be replaced by only one function φ. 

Probably, the first suggestion of applying KS to circuits, together with a construc-
tion approximating ψ, was presented by de Figueiredo [21]. The construction of ψ 
was obtained as the uniform limit of a sequence ψr, r  ∞, where ψr was a continu-
ous nondecreasing piecewise linear function. This provided a procedure for the syn-
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thesis of (nonlinear) circuits. Figueiredo’s experience revealed that KS representation 
“is fragile and sensitive to perturbations.” 
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Fig. 1. (a) Direct implementation of f : [0,1]n  IR based on KS (n inputs and 2n+1 hidden 
nodes). (b) Sprecher’s function ψ for n = 2 and  = 10 (k is the precision in number of digits in 
base ) 

Hecht-Nielsen realized that Sprecher’s version of KS could be interpreted as a mul-
tiplayer feed forward neural network (NN), showing that NNs are universal approxi-
mators [22]. As the functions ψ and φ are highly non-smooth, the first hypothesis was 
that KS was not relevant for NNs [23]. It was later shown that it is possible to adapt 
KS to NNs [24, 25]: the functions ψ and φ can be approximated by staircase-like 
functions. The learning problem was reduced to the learning of the weights from the 
second hidden layer to the output, which can be solved by linear regression [26, 27]. 

Constructive aspects of KS were detailed in [28–33]. For given integers n ≥ 2 and 
 ≥ 2n+2, the function ψ is defined such that for each integer k 

)1/()1(
11 2
~

)( −−−−
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− −
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rii γγψ  (4) 

where rrr iii )2(:
~ −−= γ , )][1(: 1

1
1∏−

=
−
=+= r

s
r

st trr iim , for all r = 1, …, k; 01 =i , 
0][ 1 =i ; 0=ri  if ir = 0, …, –2 and 1=ri  if ir = –1; 0][ =ri  if ir = 0, …, –3 and 
1][ =ri  if ir = –2, –1, r ≥ 2. Taking 11 =λ , ∞
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r

nnp
p

r

γλ  for 
p = 2, …, n, and a = 1/ /( –1), satisfies eq. (3). The fact that  depends on n, makes it 
that the function ψ and the constants λp will also depend on n. 

All recent simulations of KS [34–36] rely on staircase-like approximations (see 
Fig. 1.b), similar to [21] and advocated in [24, 25]. 

3   On Kolmogorov’s Superposition and Boolean Functions 

KS was intended for approximating real functions, but it can be used for BFs also 
[37–39]. Due to technological limitations, one digit of precision (k = 1) should be 
enough (remember that  ≥ 6). This gives (0.i1) = 0.i1, i.e. the identity function. This 
is an analog comparison xp + qa. Unfortunately, KS has a large fan-in = 2n + 1 and 
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double exponential weights (see eq. 4). For BFs, the precision is at most (2n + 2)– n 
bits per weight. This is the same as the precision required by TLGs (see eq. 1). Be-
cause simple analog implementations are limited by technology to a few bits of preci-
sion, a solution would be to decompose a BF into simpler BFs of fewer variables 
[Remark: Previous theoretical results [40] have also shown that VLSI-optimal imple-
mentations of BFs using TLGs are obtained for small fan-ins ≤ 6]. With nanoelectron-
ics raising many implementation concerns, it is to be expected that only very low-
precision analog gates could be implemented reliably. 

One aspect when considering nanoelectronics is the very challenging power con-
sumption problem [12, 13]. In this context, the results from [41, 42], which show that 
hybrid analog/digital implementations appear to be the most energy efficient ones, 
should be of interest. Informally, the fact that analog circuits can do better than digital 
ones could be understood as the size is reduced, and the switching activity is also 
lower. The power and area tradeoffs utilization as a function of the output signal-to-
noise ratio, show area and power advantages of analog at low signal-to-noise ratios 
(see Fig. 7(b) in [41], which shows total current reductions of 4–6x). Therefore, low 
precision analog might have an edge, and when optimally mixed with digital should 
lead to power-efficient solutions. 

Based on such potential advantages with respect to power, we propose extending 
the existing compendium of gates by the addition of a few analog gates of low preci-
sion (hence small fan-ins): Kolmogorov-inspired gates (KGs). 

4   On Boolean Functions of Three Inputs 

We start with the 3D view of the probability of being in one of the four states of a 
Karnaugh map for two inputs BFs (Fig. 2.a). When an input switches, the associated 
voltage will have to go through analog values. The probabilities associated to such 
voltages are lower, the lowest one being that of having both inputs at VDD/2. Between 
the highest and the lowest probabilities, separating contours have been drawn (Fig. 
2.a.). From a probabilistic point of view, the lines forming a square seem to define the 
optimal separation. These are of the form x ± y = c. 

We have analyzed all the 256 BFs of three inputs, but shall present here only the 
70 BFs having four “ones” and four “zeros” in their truth table. Fig. 3.a presents the 
optimized results when using only KGs for synthesizing the 70 BFs. 

The next sep was to analyze if an optimal solution can be obtained using BGs in 
combination with KGs. The results are presented in Fig. 3.b. It can be seen that the 
use of KGs lead to a simpler solution in only 8 out of the 70 cases (11%), while in 4 
cases (6%) a combination of KGs and BGs is minimal. 

The final step was to allow majority gates of three inputs (MAJ-3) in these optimi-
zations. The results are presented in Fig. 4.a. Only 8 BFs require KGs, while MAJ-3 
gates improve on 8 other BFs. 

To get a better understanding, we have plotted in Fig. 4.b. the number of gates 
(size) in the hidden layer when using the three different types of logic: BGs, KGs, and 
MAJ (symmetric). Note that we did not properly use KS theorem, so in this sense 
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2n+1 is incorrect here. The results presented in Fig. 4.a. show that at most three gates 
are needed in the hidden layer, which is four gates less than KS (2*3+1=7), and one 
less than the worst BF case (23/2=4). 

The results from this optimized first layer can be combined (in subsequent lay-
ers) by using: KGs, BGs, TLGs, leading to various mixtures of analog and digital 
solutions. Such an implementation will certainly reduce size, but our expectations 
are that the solution will also reduce area, while it is very likely that it will also 
reduce power. 

The results presented here suggest that the new low precision analog gates could be 
used in advanced library of gates. The main problem in this case would be that the 
synthesis CAD tools should be able to take advantage of them. The other immediate 
 

 

Fig. 2. (a) 3D probability view on top of a generic Karnaugh map for BFs of two inputs. (b) 3D 
probability view on top of a generic Karnaugh map for BFs of three inputs 

  

Fig. 3. (a) Using a KGs (with k = 1) for implementing BFs of three inputs (for the 70 cases 
having four “ones” and four “zeros” in their truth table). (b) Optimization using both BGs and 
KGs for BFs of three inputs (for the 70 cases having four “ones” and four “zeros” in their truth 
table). KGs are able to improve in 12 out of the 70 cases 
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Fig. 4. (a) Combined synthesis for BFs of three inputs for all the cases having four “ones” and 
four “zeros” in their truth table (worst cases). The six yellow shaded Karnaugh maps are the 
trivial ones (x, y, z, x_bar, y_bar, z_bar), the eight red shaded Karnaugh maps are variations of 
MAJ-3, the eight blue shaded Karnaugh maps use KGs, while the two green-shaded Karnaugh 
maps are the XOR functions. (b) Size of the first layer when using KS (2n+1), Boolean gates 
(2n/2), and TLGs for implementing symmetric functions (n) 

application would be in the design of (novel) building blocks for (future CMOS,  
or beyond CMOS) FPGAs. These blocks should be custom designed using low preci-
sion analog gates like the ones suggested in this paper. This will reduce the power 
consumption. An advantage in this case is that, after the block(s) have been custom 
designed, the CAD tools do not need to be changed. 

5   Conclusions 

The size of circuits implementing BFs can be reduced (theoretically, from exponential 
down to linear) by allowing KGs. These are analog gates that raise implementation 
and reliability concerns [43], and limit the applicability of the method to very small 
fan-ins, hence KGs should be used in advanced libraries of gates, and in the design of 
novel building blocks for future (even beyond CMOS) FPGAs. 

Allowing combinations of BGs, KGs, and TLGs, can reduced the size significantly. 
Our expectation is that both power and area could be reduced (as compared to classi-
cal Boolean implementations). 

The optimal combination of different types of gates has the potential of minimizing 
circuit size, but a lot of work is needed on: the design and implementation of KGs, the 
theory for optimally combining BGs, TLGs and KGs, and the development of CAD 
tools able to take into account different logic styles. Obviously, novel high-level logic 
synthesis tools are needed considering that emerging nano devices such as resonant 
tunneling devices (RTD), single electron tunneling (SET) devices, or molecular ones 
are implementing TLGs [44, 45]. 
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Abstract. This presentation has two goals: (i) to review the recently suggested 
concept of bio-inspired CrossNet architectures for future hybrid CMOL VLSI 
circuits and (ii) to present new results concerning the prospects and problems of 
using these neuromorphic networks as classifiers of very large patterns, in 
particular of high-resolution optical images. We show that the unparalleled 
density and speed of CMOL circuits may enable to perform such important and 
challenging tasks as, for example, online recognition of a face in a high-
resolution image of a large crowd.   

1   CrossNets 

There is a growing consensus that the forthcoming problems of the Moore Law [1] 
may be only resolved by the transfer from a purely semiconductor-transistor (CMOS) 
technology to hybrid (“CMOL”) integrated circuits [2, 3]. Such circuit would 
complement a CMOS chip with a nanowire crossbar (Fig. 1) with nanodevices (e.g., 
specially designed functional molecules) formed between the nanowires at each 
crosspoint.  

 

Fig. 1. CMOL circuit (schematically): (a) side view and (b) top view showing several adjacent 
pins. The latter view shows that the specific angle between the interface pin lattice and  
nanodevice crossbar allows each nanodevice to be addressed via the appropriate pin pair (e.g, 
pins 1 and 2 for the left of the two shown devices, and pins 1 and 2’ for the right device) 



 CMOL CrossNets as Pattern Classifiers 447 

 

The basic idea behind such hybrid circuits is that its minimum features are not 
defined by lithography (which below ~10 nm will become prohibitively expensive) 
but by a Nature-given standard such as the size of a certain molecule. Estimates show 
[3] that CMOL circuits may feature unprecedented density (up to ~1012 active devices 
per cm2), at acceptable fabrication costs. 

Realistically, nanodevices will hardly ever be formed (e.g., chemically self-
assembled) with 100% yield. This is why CMOL circuit architectures should ensure 
their high defect tolerance. Recently we have shown that such high tolerance may be 
achieved in cell-based FPGA-type reconfigurable logic circuits [3, 4] and (to a less 
extent) in hybrid memories [3, 5]. However, the most natural application of the 
CMOL technology is in bio-inspired neuromorphic networks which are generically 
defect-tolerant.  

We have proposed [6-8] a family of such architectures, called Distributed Crossbar 
Networks (“CrossNets”), whose topology uniquely maps on  CMOL circuits. Figure 
2a shows the generic architecture of our CrossNets. Relatively sparse neural cell 
bodies (“somas”) are implemented in the CMOS subsystem. In the simplest firing rate 
model, each soma is just a differential amplifier with a nonlinear saturation 
(“activation”) function Vout = f(Vin). Axons and dendrites are implemented as 
physically similar, straight segments of nanowires, while nanodevices (latching 
switches), formed at the nanowire crosspoints, play the role of elementary synapses. 
Axonic voltage Va, developed by the somatic amplifier, is transferred by each axonic 
nanowire to synapses, so that if the synaptic latch of a particular synapse is in the ON 
state, a current proportional to Va is flowing into the corresponding dendritic 
nanowire, contributing to the input signal of the post-synaptic cell.  

In the generic CrossNets (Fig. 2a), any pair of cells is interconnected by two 
synapses leading to the opposite inputs of the somatic amplifier, so that the net 
synaptic weight wjk may take any of three values which may be normalized to -1, 0, 
and +1. In other CrossNets versions the number of synapses is larger. In particular, in 
 

 

Fig. 2. Cell coupling is the (a) generic feedforward and (b) Hebbian feedforward CrossNets. 
Here and below, axonic nanowires are shown in red, synaptic nanowires in blue. Each gray 
square show the interface pin area of a somatic cell. (The cells as such may be much larger, 
since they are implemented in the underlying CMOS subsystem) 
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recurrent CrossNets, the number of nanowires and synapses per cell is doubled to 
carry feedback signals. (Generally, CrossNets are asymmetric: wkj ≠ wjk..)  In order to 
enable quasi-Hebbian learning rule, the number of nanowires and synapses per cell 
may be increased even further (Fig. 2b).  

In the simplest cases (e.g., quasi-Hopfield networks with finite connectivity),1 the 
tri-level synaptic weights of the generic CrossNets are quite satisfactory, leading to 
just a very modest network capacity loss [7]. However, some applications (in 
particular, pattern classification) may require a larger number of weight quantization 
levels L (e.g., L ~ 30 for a 1% fidelity [8]). This can be achieved by using compact 
square arrays (e.g., 4×4) of latching switches (Fig. 3). 

In CrossNets the CMOS-implemented somatic cells are large and sparse. Because 
of this, the each axonic signal is passed to dendritic wires of many (M) other cells, 
and each dendritic signal is contributed by M pre-synaptic cells. The distribution  of 
somatic cells may vary, creating several CrossNet species (Fig. 4).  

CrossNet training faces several hardware-imposed challenges: 

(i) The synaptic weight contribution provided by the elementary latching switch 
is binary. 

(ii) The only way to adjust any particular synaptic weight is to turn ON or OFF 
the corresponding latching switch(es). This is only possible to do by applying 
certain voltage V = Va - Vd between the two corresponding nanowires. At this 
procedure, other nanodevices attached to the same wires should not be 
disturbed. 

 

Fig. 3. A half of a composite synapse for providing L = 2n2+1 discrete levels of the weight in 
(a) operation and (b) weight import modes. The dark-gray rectangles are resistive metallic strips 
at soma/nanowire interfaces 

 
                                                           
1  So far, this operation mode is the only one for which the CrossNet defect tolerance has been 

analyzed in detail [8]. The results are very encouraging: for example, the network may have 
a 99% fidelity, with a 50% capacity loss, at a fraction of bad nanodevices above 80% (!). 
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Fig. 4. Two main CrossBar species: (a) FlossBar and (b) InBar, in the generic  (feedforward, 
non-Hebbian, ternary-weight) case for the connectivity parameter M = 9. Only the nanowires 
and nanodevices coupling one cell (indicated with red dashed lines) to M post-synaptic cells 
(blue dashed lines) are shown; actually all the cells (e.g., B and C on panel (b)) are similarly 
coupled. Bold points show open-circuit terminations of the axonic and dendritic nanowires, 
which prevent cell interaction in bypass of synapses 

(iii) Processes of turning single-electron latches ON and OFF are statistical rather 
than dynamical [2], so that the applied voltage V can only control probability 
rates of these, generally random events. (This problem is least significant, 
because the randomness may be confined by an appropriate design of the 
nanodevices [6].) 

We have shown that these challenges may be met using (at least) the following 
training methods [8]: 

(i) Synaptic weight import. This procedure is started with training of a 
homomorphic “precursor” artificial neural network with continuous synaptic weighs 
wjk, implemented in software, using one of established methods (e.g., error 
backpropagation). Then the synaptic weights wjk are transferred to the CrossNet, with 
some “clipping” (rounding) due to the binary nature of elementary synaptic weights. 
To accomplish the transfer, pairs of somatic cells are sequentially selected via CMOS-
level wiring. Using the flexibility of CMOS circuitry, these cells are reconfigured to 
apply external voltages ±VW to the axonic and dendritic nanowires leading to a particular 
synapse, while all other nanowires are grounded. The voltage level VW is selected so that it 
does not switch the synapses attached to only one of the selected nanowires, while voltage 
2VW applied to the synapse at the crosspoint of the selected wires is sufficient for its 
reliable switching. (In the composite synapses with quasi-continuous weights (Fig. 4), 
only a part of the corresponding switches is turned ON or OFF.) 

(ii) Error backpropagation. The synaptic weight import procedure is 
straightforward when wjk may be simply calculated, e.g., for the Hopfield networks. 
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However, for very large CrossNets used as classifiers the precursor network training 
may take an impracticably long time. In this case the direct training of a CrossNet 
may become necessary. We have developed two methods of such training, both based 
on “Hebbian” synapses  (Fig. 2b). In CrossNets with such synapses, each axonic and 
dendritic signal is now passed, in the dual-rail format, through two nanowires to 
groups of four latching switches. Starting from the Arrhenius law describing the 
probability of switching of each single-electron latch, it is straightforward to show [8] 
that the average synaptic weight of the 4-latch group obeys the following equation: 
 

                               (1) 
 
where Γ0 and γ are parameters of the latching switch, while S is a global, externally-
controllable shift  voltage which may applied to all switches via a special gate. The 
quasi-Hebbian rule (1) may be used to implement the backpropagation algorithm 
either using a periodic time-multiplexing [8] or in a continuous fashion, using the 
simultaneous propagation of signals and errors along the same dual-rail channels 

2   Pattern Classification 

It could seem that both feedforward CrossNet species shown in Fig. 4 may be used as 
multilayered perceptrons (MLPs) for pattern classification [9]. However, in both cases 
there are some problems. FlossBars (Fig. 4a) are indeed the MLPs, but with limited 
connectivity between the layers., while InBars (Fig. 4b) do not have a layered 
structure at all. (For example, cell C gets input not only from the “first-layer” cell A, 
but also from the “second-layer” cell B.)  

Figure 5 shows typical results of our study of an impact of these features on the 
performance of these networks as classifiers. The results show that, unfortunately, 
InBars cannot be trained to work well as classifiers, at least by error backpropagation. 
(At this stage, we still cannot offer a simple explanation for this fact.) On the other 
hand, finite connectivity of FlossBars does not affect their fidelity too substantially. 
Moreover, some connectivity restriction turns out to be useful to achieve the best 
training results. Unfortunately, Fig. 4a shows that FlossBars are not very convenient 
for CMOL implementation: interconnect pin areas are too close (at the distance of the 
order of nanowire pitch), so that CMOS layout of somatic cells may be difficult. (This 
would not be a problem for InBar – Fig. 4b.) 

Figure 6 shows a possible way to overcome these difficulties: an MLP with a 
global synaptic crossbars providing full connectivity between layers implemented in 
InBar style. The only evident negative feature of this network is a certain loss of chip 
real estate, since nanodevices over the CMOS somatic cell areas are not used. (In 
contrast, CMOS circuits under the synaptic crossbars may be utilized – see below.) 
This loss, however, may be very limited, because the somatic area width W (in terms 
of the cell number) is only determined by the pitch ratio of CMOS and nanowiring, 
and may be of the order of 10, i.e. substantially smaller than the data vector length  
D ~ 103 for the most challenging classifier applications. In this case the relative area 
loss is of the order of (LW)/L2 = W2/D ~ 10%, i.e. negligible. 

( ) ( ) ( )04 sinh sinh sinh ,a d

d
w S V V

dt
γ γ γ= − Γ
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Fig. 5. Test set fidelity of an InBar (with N = 784+784+10 cells and connectivity M = 784) and 
FlossBar MLPs (also with 784+784+10 cells with limited connectivity between the input and 
first hidden layer) after their training as classifiers of the MNIST data set of handwritten 
characters [10]. In both cases, the training set size was 60,000 images, test set 10,000 patterns, 
with 28×28 = 784 pixels (with 256 shades of gray) each 

 

Fig. 6. Multi-layered perceptron based on InBar somatic areas and global synaptic crossbars: 
(a) general structure and (b) CMOL implementation of two adjacent layers (schematically). In 
this case, each green circle denotes a composite synapse consisting of two arrays shown in Fig. 
3, with quasi-continuous synaptic weight 

Let us give an approximate estimate of performance of such CMOL classifiers for 
such a challenging and important task as a search of a particular person’s face on a 
high-resolution picture of a large crowd. The most difficult feature of such 
recognition is the search for face location, i.e. optimal placement of a face on the 
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image relative to the panel providing input for the processing network. The enormous 
density and speed of CMOL hardware gives a possibility to time-and-space multiplex 
this task (Fig. 7). In this approach, the full image (say, formed by CMOS 
photodetectors on the same chip) is divided into P rectangular panels of h×w pixels, 
corresponding to the expected size and approximate shape of a single face. A CMOS-
implemented communication channel passes input data from each panel to the 
corresponding CMOL neural network, providing its shift in time, say using the TV 
scanning pattern (red line in Fig. 7). The standard methods of image classification 
require the network to have just a few hidden layers, so that the time interval ∆t 
necessary for each mapping position may be so short that the total pattern recognition 
time T = hw∆t may be acceptable even for online face recognition. 

 

Fig. 7. Scan mapping of the input image on CMOL neural network inputs. Red lines show the 
possible time sequence of image pixels sent to a certain input of the network processing image 
from the upper-left panel of the pattern 

Indeed, let us consider a 4-Megapixel image partitioned into 4K 32×32-pixel 
panels (h = w = 32). This panel will require a neural network with several (say, four) 
layers with 1K cells each in order to compare the panel image with ~103 stored faces. 
With the feasible 45-nm CMOS technology [1], 4-nm nanowire half-pitch [3, 4], and 
65-level synapses (sufficient for better than 99% fidelity [8]), each interlayer crossbar 
would require chip area about (4K×64 nm)2 = 64×64 µm2, fitting 4×4K of them on a 
~0.6 cm2 chip.2 With the typical nanowire capacitance of 2×10-10 F/m and latching 

                                                           
2  The CMOS somatic-layer and communication-system overheads are negligible. Also small is 

the chip area required for the output signal pins, because the search result may be 
demultiplexed into just a few bits (say, the recognized face’s ID number and its position on 
the image).  
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switch ON resistance ~1010  (providing acceptable power consumption of the order 
of 10 W/cm2 [8]), the input-to-output signal propagation in such a network will take 
only ~4×(8×10-9 m)×(2×10-10 F/m)×(1010 ) ≈ 50 ns, so that ∆t may be of the order of 
100 ns and the total time T = hw∆t of processing one frame of the order of 100 
microseconds, much shorter than the typical TV frame time of ~10 milliseconds. The 
remaining two-order-of magnitude gap may be used, for example, for double-
checking the results via stopping the scan mapping (Fig. 7) at the most promising 
position. (For this, a simple feedback from the recognition output to the mapping 
communication system is necessary.)3 

It is instructive to compare the estimated CMOL chip speed with that of the 
implementation of a similar parallel network ensemble on a CMOS signal processor 
(say, also combined on the same chip with an array of CMOS photodetectors). Even 
assuming an extremely high performance of 30 billion additions/multiplications per 
second, we would need ~4×4K×1K×(4K)2/(30×109) ≈ 104 seconds ~ 3 hours per 
frame,  evidently incompatible with the online image stream processing. 

3   Conclusions 

Our preliminary estimates show that even such a brute-force approach as a parallel 
use of a few thousand similar neural networks on a single silicon chip, with time-
multiplexing analysis of each of ~103 possible mappings of a high-resolution image 
on the network input, may enable CMOL CrossNets to perform tasks clearly 
impossible for the usual implementation of neural networks on serial digital 
computers. Our nearest goals are to verify and quantify these predictions via explicit 
numerical simulation of such systems, and to work on the development of more 
elaborate schemes for CMOL CrossNet applications as classifiers of complex 
patterns. 

Useful discussions with X. Ma and Ö. Türel are gratefully acknowledged. The 
work has been supported by AFOSR, NSF, and MARCO FENA Center. 
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Abstract. An analog VLSI implementation of adaptive synapses being
part of an associative memory realised with pulsed neurons is presented.
VLSI implementations of dynamic synapses and pulsed neurons are ex-
pected to provide robustness and low energy consumption like observed
in the human brain. We have developed a VLSI implementation of synap-
tic connections for an associative memory which is used in a biological
inspired image processing system using pulse coded neural networks. The
system consists of different layers for feature extraction to decompose the
image in several features. The pulsed associative memory is used for com-
pleting or binding features. In this paper, we focus on the dynamics and
the analog implementation of adaptive synapses. The discussed circuits
were designed in a 130 nm CMOS process.

1 Introduction

A biological inspired approach for image processing is a system that uses prin-
ciples observed in the visual system of the human brain. It is expected that a
bio-inspired system is more robust and has a wide field of application as well as
low power consumption. We are developing a bio-inspired image processing sys-
tem that consists of different layers like the human visual system1. A schematic
of the system is depicted in fig. 1. The first layer is a CMOS sensor with a reso-
lution of 128 × 128 pixel. Every pixel-cell generates a current depending on the
brightness of the captured image. The current of all cells are fed in parallel to
the underlying layers. Each following layer forms a detector for a specific fea-
ture. The feature detectors are built by groups of neurons that are connected in
various ways to deliver the desired functionality. Every layer detects a specific
feature, for example spots, edges or pattern identified by Gabor-filter [1, 2].

1 The development of the image processing system with pulsed neurons is a cooper-
ation project with the project leader Infineon Technologies AG, U. Ramacher, A.
Heittmann, Munich, and the project partners: University of Berlin, Dresden, Pader-
born, Ulm. The Project is funded by the Federal Ministry of Education and Research
(BMBF).

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 455–462, 2005.
Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Image processing system with feature detectors and AM

To achieve object recognition in the image processing system the information
from the different feature detectors has to be bound to a symbolic representation
of an object. This can be done by applying an associative memory (AM) after the
detector layers. An associative memory can also be used to correct or to complete
information from the detectors when the information is partially available only.
In our approach, the size of the input vector and the output vector of the AM
is the number of outputs of the previous feature detector.

Synapse implementations as proposed in [8] provide a constant weight func-
tion for pulsed neurons. Other implementations [9] provide a Hebbian learning
rule. In our approach we adapt the weight to the actual state of neighboring
neurons and membrane potentials and provide an analog, dynamic weight. The
adaption of the synapse depending on the post-synaptic membrane potential
does not only implement a form of Hebbian learning, but also provides a mech-
anism for synchronisation of neighboring neurons. The advantage of a dynamic
weight is the reduced complexity of the neurons by maintaining the ability of
complex signal processing.

2 Associative Memory

The AM consists of five layers as depicted in fig. 2. Its principle is based on a
binary neural associative memory (BiNAM) as it uses a programmable matrix
M to perform a mapping of the input vector (feature vector). The characteristics
of binary neural associative memories are discussed in detail in [7]. A VLSI im-
plementation of a BiNAM is proposed in [4, 5]. The additional layers around the
memory-matrix are a synchronisation layer S for synchronising asynchronous
pulses from the input vector expected from detectors like the spot-detector. A
similar version of the synchronisation layer is discussed in [3]. Layer D is for
decoupling the synchronisation layer from the output vector when the AM is
initialised by layer I if necessary. At last layer P is used for precharging the
synchronisation layer. The method of precharging is described later. Addition-
ally, three surveillance neurons are used which measure the local activity in each
layer and activate functions in the different layers.
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Fig. 2. Structure of the associative memory with pulsed neurons and dynamic synapses

2.1 Neuron Model

The neuron model used in the image processing system is an integrate and fire
(IAF) neuron without active decay of the membrane potential [1]. It also lacks a
refractory period after pulse generation. All pulses from pre-synaptic neurons l
from a setNk to a post-synaptic neuron k are integrated to a membrane potential
ak according to (1), where xl ∈ {0, 1} denotes a firing event of the pre-synaptic
neuron l. The parameter wkl is the weight of the synaptic connection between
neuron l and k.

ak(t) =
∫ ∑

l∈Nk

[wkl(t) · xl(t) + wk0 · ik(t)] dt (1)

The weight wk0 is only used in neurons on the layer directly after the CMOS
sensor where the gradual current ik from the CMOS cells is integrated and
the image information is transformed to a rate-based code in the pulsed neural
network.
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2.2 Dynamic Synapses

For the realisation of several neural structures we have implemented two types
of connections. The first type is a synaptic weight that underlies the dynamic
given in (2). The dynamics highly depends on the membrane potential ak of a
post-synaptic neuron and on the parameter µ as well as on a constant decay rate
adjusted by parameter γ [1].

d

dt
wkl = −γ · wkl + µ ·

(
ak −

Θ

2

)
· xl (2)

Now we examine a neural system consisting of a pre-synaptic neuron, a synap-
tic weight and a post-synaptic neuron at a time when the weight is close to zero.
If the parameter µ is chosen as a negative value and a post-synaptic neuron’s
membrane potential is lower than Θ/2, where Θ defines the firing threshold of a
neuron, the pulse of a pre-synaptic neuron lowers the synaptic weight even more.
The weights in our model have a lower bound of zero, so further pre-synaptic
pulses can not increase the membrane potential on the post-synaptic neuron
anymore. If the membrane potential of the post-synaptic neuron is higher than
Θ/2, the pre-synaptic pulses raise the weight depending on the parameter µ and
increase the membrane potential of the post-synaptic neuron.

If the parameter µ is chosen as a positive value the membrane potential of
the post-synaptic neuron can only be increased when its value is lower than
Θ/2. With specific values for the parameters γ and µ we can build a system
of three neurons and two synaptic connections where one neuron can precharge
the post-synaptic neuron, and another neuron can cause a fire event of the post-
synaptic neuron only if it has been precharged. This principle is used in the
synchronisation layer of the pulsed associative memory.

For the VLSI implementation of the synaptic rule described in (2) the second
term of the equation has been modified. The Term g(ak) is a nonlinear function
weighting the post-synaptic membrane potential ak of neuron k. For the func-
tion g(ak) we use the tanh-characteristic of a differential amplifier in the VLSI
implementation.

d

dt
wkl = −γ · wkl + g (ak) · xl (3)

The second type of connection is a dendritic type. The weight adaption rule
between two neurons k and l is given by (4), where ipre describes the current
coming from a synaptic connection between a second pre-synaptic neuron and
neuron k, xpre ∈ {0, 1} the fire event of the pre-synaptic neuron, α an offset
(here chosen as 0) and w∞ a value the weight relaxes to when no pre-synaptic
current is received.

d

dt
wkl = −γ · (w∞ − wkl) + µ · (ipre − α) · wkl · xpre (4)

This adaption rule is only used in the decoupling layer L of the pulsed AM
and could be simplified to a switch in our implementation.
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3 VLSI Implementation

3.1 Dynamic Synapse

For the VLSI implementation of the pulsed AM using a 130 nm technology pro-
cess by Infineon Technologies AG, we have developed a dynamic synapse as
depicted in fig. 3. With the output v w dyn we control a pulsed current source,
weighting the pre-synaptic pulse. The schematic of the current source, missing
from the following synapse schematic, is given in fig. 4. The transistors M1-M5
form a differential amplifier which provides a smooth tanh characteristic g(ak)
instead of high differential amplification.
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Fig. 3. Schematic of adaptive synapse with passive decay

The membrane potential ak of the post-synaptic neuron k, present at the in-
put v mem, is compared to a reference voltage generated by M8-M11. To reduce
the impact of sub-threshold current and leakage current in the 130 nm process
we introduce multiplexer units to cut off parts of the circuit, when not needed.
Multiplexer MUX 2 and MUX 3 select the source of the reference voltage. If
a pre-synaptic pulse is present at v puls in and the synapse is in normal op-
erating mode (load=0), v mem is compared to a voltage corresponding to the
firing threshold of Θ/2. Transistor M12 opens and the differential current, gen-
erated by M1-M5, charges the capacity C. M13 is connected as a diode to allow
charging of the capacity only. Without the presynaptic pulse M12 closes and
supply voltage is applied to the differential amplifier as reference voltage. This
prevents further charging of the capacity by sub-threshold current. An active
decay, dependend on the membrane potential of the post-synaptic neuron is not
desired in this implementation. The passive decay parameter γ is implemented
by the sub-threshold current of M14. MUX 3 can also be used to imprint a volt-
age level for a constant weight mode if the load signal is set to high signal. An
additional multiplexer (MUX 1) is used to select the type of the synapse, that
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we can choose between a constant or dynamic connection. We implemented the
constant weight for simulations on unsynchronised input on a standard BiNAM.
The bias voltage for transistor M5 is generated once by transistors M6 and M7
and provided to every adaptive synapse in the AM. Their gate-width is 200 nm
and their gate-length is 1.5 m for M6 and 400 nm for M7. The voltage reference
dissipates a static power of 6.4 W.

3.2 Pulsed Current Source

The variable pulsed current source as depicted in fig. 4 transforms voltage pulses
generated by preceding neurons to corresponding current pulses by weighting
supply current by transistor M3. The gate voltage of M3 is controlled by a pulse
from a pre-synaptic neuron, appearing at the input v pulse in and the voltage
from a weight applied at the input v ref. Transistors M4-M7 adapt the voltage
v ref to an appropriate gate voltage for M3. M7 limits the current flow through
the voltage divider to reduce power dissipation. The voltage reference built by
M8 and M9 dissipates a static power of 3.6 W.
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Fig. 4. Schematic of pulsed current source

4 Area and Power Consumption

The implemented dynamic synapse, including an additional multiplexer for swit-
ching to a constant weight as well as the presented variable pulsed current source,
uses an area of 1073.03 m2. The average power consumption is estimated with
24.07 W per active synapse. The static power consumption of unused synapses
is estimated with 0.88 W. The implemented AM consisting of 203 neurons,
10400 dynamic synapses, 300 static synapses and control logic, uses an area of
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18.04mm2. A maximal power consumption of 533mW and an average power
consumption of 245mW, when only 1/8 of the dynamic synapses is active, is
expected.

5 Simulation

Simulation has been accomplished on the schematics of the dynamic weight and
the pulsed current source as well as additional neurons to generate pulses and
provide the dynamics of the membrane potential. The membrane potential of
a post-synaptic neuron is fed back to the input v mem of the dynamic weight.
At the start of the simulation it is reset to 0. From 0ms to 10ms the weight
is charged to a specific value. From 0ms to 400ms the pre-synaptic neuron
generates pulses with a pulse-width of 10 s and a period 500 s at the input
v pulse in. The weight, represented by v cap increases when the pre-synaptic
neuron is firing and decreases slightly between the firing events by passive decay
as depicted in fig. 5.

With the high constant weight, the membrane potential v mem of the post-
synaptic neuron is uniformly charged until it reaches the firing threshold. After
400ms the pre-synaptic neuron is cut off from the weight. Without pre-synaptic
pulses the weight is not charged anymore according to (2). Therefore, it decreases
only by passive decay realised by transistor M14. The effect of the decreasing
weight is a slower charging of the membrane potential of the post-synaptic neu-
ron. The parameter v theta characterises the reference voltage of the differential

post-synaptic

pulses

weight

membrane-

potential

reference

voltage

differential

voltage

Fig. 5. Simulation: Rise and decay of the synaptic weight
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amplifier. From 10ms to 400ms it changes between supply voltage and a voltage
level representing a half of the firing threshold as described in section 3.1. The
differential voltage of the differential amplifier is depicted as diff out.

6 Conclusion

The image processing system in fig. 1 is capable of extracting different fea-
tures from a captured image. The associative memory, necessary for binding
sub-symbolic features to an object representation, or completing missing infor-
mation was presented and the function of its different layers was described. The
AM layers need different types of synapses to perform the desired function. At
first the neuron model used in this paper was presented and two types of synapses
with different dynamics were introduced. Further we have implemented the dy-
namic synapse in a 130 nm technology process provided by Infineon Technologies
AG. The increased leakage and sub-threshold currents of the 130 nm technology
process have been considered for the design of the dynamic synapse. Therefore,
we introduced multiplexer units to cut off unused parts of the circuit from the
capacity that stores the weight. As a next step the AM is fabricated and tested
on our rapid prototyping platform RAPTOR2000 [6].
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Abstract. This work shows the design and application of a mixed-mode analog-
digital neural network circuit for sensor conditioning applications.  The pro-
posed architecture provides a high extension of the linear range for non-linear 
output sensors as negative temperature coefficient resistors (NTC) or giant 
magnetoresistive (GMR) angular position sensors, by using analog current-
mode circuits with digital 8-bit weight storage.  We present an analog current-
based neuron model with digital weights, showing its architecture and features.  
By modifying the algorithm used in off-chip weight fitting, main differences of 
the electronic architecture, compared to the ideal model, are compensated.  A 
small neural network based on the proposed architecture is applied to improve 
the output of NTC thermistors and GMR sensors, showing good results.  Circuit 
complexity and performance make these systems suitable to be implemented as 
on-chip compensation modules. 

1   Introduction 

As it is well known, Artificial Neural Networks (ANNs) fit the transfer function of a 
system by means of a training process where input-output data pairs are iteratively 
presented.  ANNs are implemented in several ways, depending on the application 
requirements.  In systems where size, power consumption and speed are main con-
straints, electronic analog implementation is a suitable selection [1].  The present-day 
technology trend to shrinking bias voltages makes difficult to process high-resolution 
data codified in voltage-mode.  In this case, current-mode processing gives better 
results at lower bias, reducing power consumption [2]. 

On the other hand, implementation of reliable long-term and mid-term analog pro-
grammable weights is hard because of mismatching and offsets.  Due to the high 
accuracy of digital storage, combining both electronic technologies can improve the 
system performance.  Previous works [3] have presented the use of mixed-mode mul-
tipliers in artificial neuron implementations, showing promising results applied to real 
problems. 



464 G. Zatorre et al. 

 

ANNs can be used in adaptive sensor output improvement, applied to sensors that 
present nonlinear behavior, such as negative temperature coefficient resistors (NTC, 
Fig. 1a) or giant magnetoresistive sensors (GMR, Fig. 1b).  Previous works show the 
use of these processing tools implemented in digital technology [4] or as analog cir-
cuits, but applied to classification tasks [5]. 

This paper shows the application of current-based mixed-mode adaptive circuits to 
the improvement of non-linear sensors output.  In Section 2, the proposed current-
based mixed-mode artificial neuron is presented and the simulated behavior is com-
pared to the ideal one.  In order to improve neuron operation, some changes in the 
training process are proposed.  Section 3 shows an implementation of an adaptive 
linearization circuit based on this structure, showing the results achieved in two sam-
ples from two different sensors (NTC and GMR).  Finally, some conclusions of this 
work are presented. 

2   Electronic Processor 

The proposed neuron architecture has been designed in current-mode using the 0.35 
mm Austria Microsystems (AMS) design kit.  Current-mode circuits are designed to 
use current as information carrier.  Current-mode electronics show better performance 
than the corresponding voltage-mode circuits when low bias voltages and reduced 
power consumption are main requirements, representing a good option to be embed-
ded as signal conditioning circuits into a sensor chip.  The proposed neuron architec-
ture consists of a current-mode four-quadrant analog-digital multiplier plus a current 
conveyor (CC) that performs the activation function.  The main neuron building 
blocks are shown in Fig. 2.  Fig. 2a shows the mixed-mode multiplier: Input current is 
multiplied by a factor in the range of ±1 using a transistor-based R-2R current ladder 
[6], [7], controlled by the digital weight bits bi.  Resulting sign is selected modifying 
the current flow direction: if the weight is positive (sign bit is ‘0’), current  
 

 

Fig. 1. (a) NTC behavior mounted on a resistive divider (two different samples); (b) GMR 
angular sensors behavior (two different samples) 
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flows directly to the multiplier; however, if the weight is negative (sign bit is ‘1’), 
current direction is inverted using the current follower described in [8].  The ideal 
multiplier output is 

=
=

N

n
n
n

out
b

II
1

0
22

 (1) 

Real multiplier operation is described by 

pwpout 0136726.0974865.0 −=  (2) 

Where p is the current that inputs to the multiplier, w is the digital weight and out is 
the current output.  Divergences between real and ideal multiplier operation are 
shown in Fig. 3. 

The non-linear output is executed using a class AB CC (Fig. 2b).  Fig. 4 shows cir-
cuit operation compared to the ideal hyperbolic tangent. 

The most important neuron non-ideality is due to the output circuit.  As Fig. 5 
shows, circuit presents differences in the non-linear corners (upper and lower limits of 
the central range) plus an additional output offset.  Both effects modify the operation 
of the network implemented with this processing element.  In order to adjust the net-
work weights, correcting the undesired effects, we have selected a perturbative algo-
rithm [9] executed off-line: Network training is simulated on a computer; next,  
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Fig. 2. Main neuron blocks: (a) analog-digital multiplier; (b) sigmoid output circuit 
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Fig. 3. Differences between the four quadrant mixed-mode multiplier operation and the ideal 
multiplication 

 

Fig. 4. Class AB current conveyor operation (continuous line) compared to the ideal one (dot-
ted line) 

trained weights are loaded into the digital storage blocks of the processing elements.  
The use of this algorithm is due to its robustness to neuron non-idealities compared to 
gradient descent-based techniques [10].  Moreover, we have verified that the learning 
algorithm improves its performance by simulating a half of the hidden layer neurons 
with the inverse of the real non-linear operation function. 
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Once the desired performance is reached, the inverted output function is replaced 
by the real one in the corresponding simulated processors, changing the sign of the 
involved weights.  A fast network re-training provides higher performances than us-
ing the actual output function in the training phase (Fig. 5), reducing significantly 
training times. 

3   Applications 

The proposed processing element has been used to extend the linear range of two 
different sensors: two samples of NTC resistors mounted on a resistive divider (see 
output in Fig. 1a) and two samples of GMR angular position sensors (see output in 
Fig. 1b). 
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(a)                                                              (b) 

Fig. 5.  Network output error (continuous line) compared with the sensor output error for an 
NTC when (a) training is developed normally and (b) a half of the hidden neurons are simulated 
using the inverse of the actual output 
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Fig. 6. Output network error (continuous line) compared to the second NTC sensor output.  
Error remains under the proposed limits 
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3.1   Linearizing NTC Sensors Output 

A neural network with one input (nonlinear sensor output), one output (correction that 
must be added to the sensor output) and two hidden neurons is used to extending the 
limited linear range of two different NTC sensors, keeping the error lower than 1K 
degree.  Each sensor has a data set consisting of 71 temperature-voltage samples in 
the range of 252-323 K degrees.  A set of 10 patterns are reserved for network valida-
tion purposes; the rest are applied in the training cycle.  Sensor output errors are com-
pared to the corrected output errors in Fig. 5b and 6.  Fig. 8a shows the result- ing 
corrected output of one of the NTC sensors compared to the sensor output and the 
ideal one. 
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Fig. 7. (a) Output network error (continuous line) compared to the first GMR sensor output 
(dotted line); (b) Output network error (continuous line) compared to the second GMR sensor 
output (dotted line) 
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Fig. 8. Output network (dotted line) compared to the sensor output (dashed line) and ideal 
straight output (continuous line) for (a) An NTC sensor and (b) a GMR sensor 
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3.2   Linearizing GMR Sensors Output 

As in the previous case, two sensor samples are used to test the goodness of the pro-
posed technique to extend the linear range of a sensor output. In this case, the number 
of patterns available along the sensor span (180-355 angular degrees) is 175; 20 of 
them are kept for the validation stage. Neural network consists of 1 input, 1 output 
and 4 processing elements in a hidden layer. Fig. 7 show the errors achieved using 
this technique compared to the output errors for both sensor samples.  Fig. 8b show 
the resulting corrected output compared to the sensor output and the ideal linear one. 

4   Conclusions 

This paper shows the application of adaptive mixed-mode circuits to the improvement 
of non-linear sensors output.  The proposed processing element, designed using the 
0.35 µm Austria Microsystems design kit, consists of a current-based artificial neuron 
using an analog-digital multiplier plus a current conveyor that implements the non-
linear output function. Digital weight codification allows the long-term storage with 
the selected accuracy. Our application uses 8-bit precision, multiplying the input cur-
rents using the mixed-mode multiplier. The use of a perturbative training algorithm 
yields a better weight fitting than gradient descent-based techniques. Moreover, 
changing the sign of the non-linear output function in a half of the neurons in the 
simulated training phase improves dramatically the system performance. 

The application of this system to the output linearization of several NTC and GMR 
sensors show very good results. Table 1 presents the linear output range extension 
achieved with this technique, assuming a maximum error of 1 K for NTC temperature 
sensors and 1º for angular position GMR sensors. 

Table 1. Results achieved extending the linear range of each sensor using the proposed 
neuron model 

Sensor Linear range Extended range % 

NTC #1 274-308 K 252-323 K 108 

NTC #2 274-308 K 252-323 K 108 

GMR #1 252-305 deg 198-328 deg 145 

GMR #2 234-292 deg 202-322 deg 107 
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Abstract. A computing platform is described for simulating arbitrary networks 
of spiking neurons in real time. A hybrid computing scheme is adopted that 
uses both software and hardware components. We focus on conductance-based 
models for neurons that emulate the temporal dynamics of the synaptic integra-
tion process. We have designed an efficient computing architecture using recon-
figurable hardware in which the different stages of the neuron model are proc-
essed in parallel (using a customized pipeline structure). Further improvements 
occur by computing multiple neurons in parallel using multiple processing 
units. The computing platform is described and its scalability and performance 
evaluated. The goal is to investigate biologically realistic models for the control 
of robots operating within closed perception-action loops.  

1   Introduction 

A number of studies have investigated the use of event-driven computation schemes 
for the efficient simulation of spiking neurons [1, 2, and 3]. The computation in these 
schemes occurs only at the arrival of each pre-synaptic spike packet and requires that 
two pieces of information, i.e. is the effect of the pre-synaptic spike on the neuron’s 
membrane potential. Second is the probability that the neuron fires in response to the 
pre-synaptic spike.  

We are interested in synchronization phenomena within neural populations, for 
which important features are the temporal dynamics of the synapses [4, 5]. The grad-
ual injection of charge in the membrane potential due to an input spike is captured by 
the Spike Response Model (SRM) [6]. In its general form, this model is not amenable 
to an event-driven approach and the standard integration approach is computationally 
inefficient when using conventional computational architectures (single or multi proc-
essor platforms) [7]. A number of studies implement a specific type of SRM [8, 9, 10, 
11, and 12] according to the neuron model proposed by Eckhorn et al. [13]. Here we 
present a hybrid hardware and software simulation scheme for networks of SRM neurons. 
On this scheme we can define the temporal dynamics of synaptic filters, the membrane 
capacitance, the resting potential and time constant as well as the synaptic weights. The 
approach is based on reconfigurable hardware (FPGA device); the easy modification of 
the computing modules facilitates the exploration of different neural models. 

g í



472 E. Ros et al. 

 

2   Computing Scheme 

The hardware component consists of an add-on board providing memory resources 
and an FPGA device that works as a neuro-processor (Fig. 1). The software compo-
nent runs on the host computer and the communication between the two is achieved 
via the PCI bus. Currently the hardware component is restricted to compute the neural 
integration. The software component is responsible for maintaining the network 
connectivity, for routing spikes between neurons, and for learning.  

Communication between the hardware and software components is restricted to 
spike events. The software component generates pre-synaptic spikes and the hardware 
component generates post-synaptic spikes. The pre-synaptic events is a structure I(ts, 
Aneu, wexc, winh), where ts is the time of the spike relative to the current epoch given as 
an integer between 0 and (Nt - 1), Aneu is the address of the post-synaptic or target 
neuron, and (wexc, winh) are the synaptic efficacies. The post-synaptic event is another 
structure Output(ts, Aneu), where ts is the time of the spike relative to the current epoch 
given as an integer between 1 and Nt , and Aneu is the address of the post-synaptic or 
generating neuron. With these structures each neuron can have only two types of 
meta- synapses, one that is excitatory and one that is inhibitory. These meta-synapses 
receive the input events that can accumulate contributions from several cells. 
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Embedded 

Memory Blocks 
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Fig. 1. Software-Hardware communication scheme. We use on-board memory SRAM banks to 
interface the software and hardware components 

3   Neuron Model 

The SRM consists of terms to calculate the membrane potential together with a spike 
generation mechanism [6]. For a neuron with excitatory and inhibitory synapses, the 
membrane potential Vx is given by:  

( ) ( )minxinhxmaxexcrestingx
r

xx UVSGVUSGVVVV −⋅⋅−−⋅⋅+−−= )(
1

τ
 (1) 

Where r   is the time constant of the resting term, Sexc and Sinh are the synaptic contri-
butions and G is a gain term that modulates the refractory period modelling with ex-
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ponential functions of Gerstner [6]. Umax and Umin are the maximum and minimum 
values of the membrane potential. Vresting is the membrane resting potential. 

The neuron model is implemented using a processing unit with the following com-
ponents; (1) two input IIR spike response filters with different time constants for 
GABAergic synapses and AMPA synapses. (2) an integrator register that stores the 
membrane potential, which is computed at each time step. (3) one output IIR filter 
whose time constant controls the post-firing refractory period through the gain term 
G. (4) one spike generation mechanism that generates spikes according to the mem-
brane potential. 

 4   Parallel Computing Strategies 

A sequential implementation of the neuron model requires 17 time steps for all the 
computations. This is optimised by adopting a design strategy that efficiently exploits 
the parallel computing resources of FPGA devices. Implementing algorithmic paral-
lelism, or pipelining, is a frequently used technique in hardware design to reduce the 
number of time steps needed to perform complex operations. In order to exploit the 
inherent parallelism of the FPGA devices, we have designed a pipelined computing 
structure with Nstages = 5 stages (S1 to S5 in Fig. 2) to calculate expression (1). These 
stages are:  

1. State fetch: retrieves an input spike from the pre-synaptic spike table (stored in the 
embedded memory blocks, EMB) and the neural state for the corresponding neuron 
from the neural state table (stored in another EMB).  

2. Neural computation I: calculate the synaptic conductance using the IIR filters (Sexc 
and Sinh).  

3. Neural computation II: calculate the membrane potential (Vx). 
4. Neural computation III: calculate the resting and refractory components (G), and 

generate a post-synaptic spike if required.  
5. State write-back: store the output spike and the neural state in the tables. 
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Fig. 2. Pipeline computing structure. We define 5 pipeline stages. The computing cycles of 
each stage are indicated in the figure 

Besides the internal parallelism of each data path, the computing platform uses sev-
eral processing units (PU) in the FPGA that run in parallel. We have adopted a scal-
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able computing scheme by splitting the embedded memory resources into customized 
blocks assigned to different computing units. 

5   Computational Resource Consumption 

The computational load described in section 3 has been distributed into different pipe-
lined stages to allow parallel processing along the data path. We have used the 
RC1000 board of Celoxica [15] as prototyping platform to evaluate the computation 
scheme. This is a PCI board with 4 banks of SRAM memory on board (2MB each) 
and a Xilinx device with two million of gates (Virtex- 2000E) [16]. Table 1 summa-
rizes the hardware resources required for the whole computing system with a single 
processing unit. It can be seen that a single processing unit consumes less than 25% of 
the hardware resources (slices) of the device therefore we can implement up to 4 units 
running in parallel on a single device. 

Table 1. The table shows the memory and computational resources consumed by a single proc-
essing unit compared with the available resources on a Virtex 2000-E device 
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Fig. 3. Computational resources of each pipeline stage. Each bar represents the resources per-
centage of a single processing unit 

We can see the resources consumption of the different pipeline stages in Fig. 3. 

S2 is the most expensive stage since it includes two IIR filters computed in parallel 
(with their multiplicative terms). These multiplications require high precision (14 bits 
for the input terms) to make the filters stable, hence this stage includes two fix point 

Embedded memory blocks Slices Equivalent gates 
80 out of 180 4581 out of 19200 1389247 
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multipliers of 14 bits. Furthermore, this stage needs to store the temporal states of the 
filters (two per neuron), which requires significant memory resources. 

The number of time steps consumed in each pipeline stage is shown above the bars 
in Fig. 3. Since all the stages work in parallel synchronously, the data throughput is 
limited by the longest stage (S2 in this case). The longest pipeline stage consumes 
NTSlps = 6 time steps. Therefore each processing unit produces an updated neuron 
state every NTSlps steps. There is a latency (L) of 30 time steps in computing a neuron 
state (L = Nstages · NTSlps). If Fclk is the clock frequency, the data throughput or number 
of neural state updates per second is given by: 

lps

clk
neuron NTS

F
R =

 (2) 

For a circuit design with NTSlps = 6 time steps and Fclk = 25 MHz, then Rneuron = 
4.16·106 updates/second. Using the FPGA of the RC1000 prototyping platform, we 
have implemented and tested the system with 1024 neurons and we are able to place 
up to 4 cores on the chip. The on-chip resources do not depend on the number of 
neurons simulated or the number of input/output spikes. This is so because they are 
stored into on-board memory and they are transferred to the FPGA in packets.  

6   Computing Performance 

In Section 2 we described the computing scheme based on epochs of Nt time cycles. 
This computing strategy reduces the communications over the PCI-bus. The comput-
ing scheme requires two main modules that run in parallel: 

1. Stimuli grabber circuit. It loads the pre-synaptic spikes to be computed in the 
next cycle. 

2. Processing units. They compute the neuron states iteratively taking in to account 
the inputs stimuli.  

If the firing probabilities of the cells are low, we can assume that the processing units 
take longer than the stimuli grabber. If we choose the following configuration: Nt = 20 
cycles, Nneurons = 1024 neurons, NTSlps = 6 time steps and Fclk = 25 Mhz, then the time 
taken by the hardware using a single processing unit to compute one epoch is tepoch  
4.94 ms. The total time to compute an epoch is greater than the time taken by the 
hardware because it is necessary to include the time to communicate the pre- and 
post-synaptic spikes and the time to share data between and synchronise the threads in 
the software component. A suitable integration step for biologically plausible neurons 
based on the SRM is 100µs. For a simulation to be in real time, an epoch of 20 time 
cycles must be computed in less than 2 ms. To achieve this we use several computing 
processing units in parallel. The Fig. 4 plot illustrates that the co-processor board can 
compute 1024 neurons in real-time when receiving less than 6144 stimuli per epoch 
(i.e. 20x100µs cycles/epoch in less than 2ms). The optimal configuration is with 4 
processing units on the chip processing 4096 stimuli per epoch. 
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Fig. 4. Scalability study. Optimal configuration for real time processing omitting the transmis-
sion time through the PCI bus (100 MB/s of measured bandwidth using DMA). 1024 output 
events take about 0.1 ms and 2048 stimuli take 0.3 ms 

7   Real-Time Cerebellar Simulations 

The effective performance of the system depends on the network connectivity and 
load, emphasizing the importance of testing it within a biologically realistic context. 
 

 
Fig. 5.  Performance on cerebellar model. The speedup of the hardware co-processor over a 
software co-processor with respect to the total number of neurons 
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For this we use a model of the olivary-cerebellar system applied to a simple tracking 
task (abstracted as visual smooth pursuit). Full details of the model and its application 
to visual smooth pursuit are given in [17]. This model explores the role of climbing 
fibre-modulated plasticity in the cerebellar cortex and nuclei for cerebellar learning, 
however the performance is measured after training has stabilised and the learning 
rules are inactivated, in order to ensure that the computation cost is not bound by the 
learning. All of the neurons are calculated in the co-processor, except for the mossy 
fibre and feedback inputs. The cerebellar model is composed by 1000 granular cells 
(1-100 Hz), 2 Purkinje cells (30-120 Hz), 4 Interneurons (5-60 Hz), 4 Golgi cells (50-
60 Hz), 2 Nuclear neurons (30-70 Hz), 2 Inferior Olive cells (0-10 Hz) and 21 Mossy 
inputs (20-80 Hz). The average activity of the network is around 2.4 Hz). The simula-
tion speedup achieved by the hardware platform is shown in Fig. 5. 

8   Discussion 

With the current prototyping platform (RC1000) we can implement up to four proc-
essing units and compute in real time (with an integration time step of 100 µs) up to 
1024 neurons receiving 4096 input stimuli. But we have studied the scalability of the 
system and the design can be easily adapted to more powerful devices for real time 
computing of larger neural systems. The average network activity is critical, i.e. if the 
number of stimuli received is too high the “computing” time increases. With an inte-
gration time step of 100 µs however, we expect there to be a low activity per time-
step. In the cerebellar model, the average number of pre-synaptic spikes per neuron 
per 2 ms time-step is in the presented simulation. In fact, the presented approach uses 
an iterative computing strategy in the FPGA and an event-driven communication 
scheme between the host and the co-processing board. This iterative computing mode 
allows the exploration of specific issues difficult to track within an event-driven com-
puting scheme. 
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Abstract. Address-Event-Representation (AER) is a communication protocol 
for transferring images between chips, originally developed for bio-inspired 
image processing systems. Such systems may consist of a complicated 
hierarchical structure with many chips that transmit images among them in real 
time, while performing some processing (for example, convolutions). In 
developing AER based systems it is very convenient to have available some 
kind of means of generating AER streams from on-computer stored images. In 
this paper we present a hardware method for generating AER streams in real 
time from a sequence of images stored in a computer’s memory. The 
Kolmogorov-Smirnov test has been applied to quantify that this method follows 
a Poisson distribution of the spikes. A USB-AER board and a PCI-AER board, 
developed by our RTCAR group, have been used. 

1   Introduction 

Address-Event-Representation (AER) was proposed in 1991 by Sivilotti [1] for 
transferring the state of an array of analog time dependent values from one chip to 
another. It uses mixed analog and digital principles and exploits pulse density 
modulation for coding information. Figure 1 explains the principle behind the AER 
basics. The Emitter chip contains an array of cells (like, for example, a camera or 
artificial retina chip) where each pixel shows a continuously varying time dependent 
state that change with a slow time constant (in the order of ms). Each cell or pixel 
includes a local oscillator (VCO) that generates digital pulses of minimum width (a 
few nano-secconds). The density of pulses is proportional to the state of the pixel (or 
pixel intensity). Each time a pixel generates a pulse (which is called “Event”), it 
communicates to the array periphery and a digital word representing a code or address 
for that pixel is placed on the external inter-chip digital bus (the AER bus). Additional 
handshaking lines (Acknowledge and Request) are also used for completing the 
asynchronous communication. The inter-chip AER bus operates at the maximum 
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possible speed. In the receiver chip the pulses are directed to the pixels whose code or 
address was on the bus. This way, pixels with the same code or address in the emitter 
and receiver chips will “see” the same pulse stream. The receiver pixel integrates the 
pulses and reconstructs the original low frequency continuous-time waveform. Pixels 
that are more active access the bus more frequently than those less active.  

 

Fig. 1. Illustration of AER inter-chip communication scheme 

Transmitting the pixel addresses allows performing extra operations on the images 
while they travel from one chip to another. For example, inserting properly coded 
EEPROMs allows shifting and rotation of images. Also, the image transmitted by one 
chip can be received by many receiver chips in parallel, by properly handling the 
asynchronous communication protocol. The peculiar nature of the AER protocol also 
allows for very efficient convolution operations within a receiver chip [2]. 

There is a growing community of AER protocol users for bio-inspired applications 
in vision and audition systems, as demonstrated by the success in the last years of the 
AER group at the Neuromorphic Engineering Workshop series [3]. The goal of this 
community is to build large multi-chip and multi-layer hierarchically structured 
systems capable of performing complicated  array data processing in real time. The 
success of such systems will strongly depend on the availability of robust and 
efficient development and debugging AER-tools. One such tool is a computer 
interface that allows not only reading an AER stream into a computer and displaying 
it on its screen in real-time, but also the opposite: from images available in the 
computer’s memory, generate a synthetic AER stream in a similar manner as would 
do a dedicated VLSI AER emitter chip [4][6]. 

In the following sections we present the hardware implementation of one of the 
already existing methods for synthetic AER generation [9][10][11], and we evaluate 
the nature of the distribution of the events respect to the inter spike intervals (ISIs). 
For this analysis we have used a hardware USB-AER interface developed by RTCAR 
group. 

2   Synthetic AER Generation by Hardware 

One can think of many software algorithms that would transform a bitmap image into 
an AER stream of pixel addresses [5]. At the end, the frequency of appearance of the 
address of a given pixel must be proportional to the intensity of that pixel. Note that 
the precise location of the address pulses is not critical. The pulses can be slightly 
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shifted from their nominal positions because the AER receivers will integrate them to 
recover the original pixel waveform. 

From the software methods already proposed, we present the hardware 
implementation in VHDL of the Random method. Some modifications have been 
made to reduce the resources needed in the FPGA.  

This method sends a sequence of addresses to the AER bus without any buffer. 
Next event to be sent is selected in real-time from an image composed by NxN pixels, 
with N a power of 2, and each pixel can have up to k grey levels, with k=255 in this 
implementation. Each event needs a time to be sent. Let’s call it time slot. The 
algorithm would implement a particular way of selecting the next address to be 
transmitted, through the AER bus, in the current time slot.  

At each time slot an event could be placed in the AER bus, or not. This method 
uses a Linear Feedback Shift Register (LFSR) [7][8] for selecting the pixel of the 
image in charge of sending an event, and also to decide if the event is going to be sent 
or not. The LFSR has a resolution of log(NxNxk), so the random number obtained for 
each time slot is divided into: 

1. An address for selecting a pixel of the image and  
2. A gray level value.  

Thanks to the LFSR, each gray level value of each pixel is generated only once. If 
a pixel in the image has a value p, then the method will validate p events along time 
and will send those p, from the k possible, for this pixel. They will not be perfectly 
equidistant in time, but in average they will be reasonably well spaced. This method is 
very simple to be implemented in hardware. Next Sections explains in more details 
the implementation issues for this method. 

3   Random Method 

This method is an implementation of Linear Feedback Shift Register (LFSR) based 
random number generators. LFSR random number generators are based on a linear 
recurrence of the form: 

2mod)( 11 knknn xaxax −− ++=  (1) 

where k>1 is the order of the recurrence, ak=1, and aj∈{0,1} for each j. This 
recurrence is always purely periodic and the period length of its longest cycle is 2k-1 
if and only if its characteristic polynomial  

=

−−=
k

i

ik
i zazP

0

)(  
(2) 

is a primitive polynomial over the Galois field with 2 elements. 
With these premises and limiting the maximum number of address events 

necessary to transmit an image, we know the number of bits needed for the LFSR and 
the primitive polynomial. For this implementation, the limit corresponds with a 64x64 
image of 256 gray levels, what implies a 20-bit LFSR. 
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The characteristics polynomial P(z) used for 20 bits is: 

1)( 1720 ++= zzzP  (3) 

 
which corresponds to the LFSR of Figure 2.  

 

Fig. 2. Linear Feedback Shift Register for random synthetic AER generation 

where all bits are ‘1’ after a reset, what is the seed of the random numbers generator. 
This way, the 20-bit numbers are divided in two parts: the gray level correspond with 
the 8 more significant bits, and the address of the pixel in the image are the other 12 
bits. The method works as follows:  

- For each time slot, the LFSR generates a random 20-bit number.  
- The 12 less significant bits are used to address the gray level of the image stored 

in memory.  
- Once addressed that pixel, its gray level is compared with the 8 more significant 

bits of the LFSR.  
- If the gray level of the pixel is greater or equal to the 8 MSB of the LFSR, an 

event is transmitted with the 12 LSB of the LFSR as the address.  
- In the other case, no event is produced for this time slot.  

The LFSR ensures that each possible event of each pixel is obtained from the 
LFSR only once per each (220-1) time slots. 

4   Inter-spikes-intervals Distribution Analysis 

In this section we will compare the Inter-Spike-Intervals (ISIs) of this hardware 
synthetic AER generation method with the normalized distribution that it should have, 
using the Kolmogorov-Smirnov statistical test. 

In neuro-inspired systems, signals can often be modelled by a Poisson distribution 
[12][13]. A Poisson distribution can be described by the following formula [14]: 

( ) T
n

n e
n

T
TP λλ −=

!
)(  (4) 

where P is the probability of having n events the interval time T. The distribution of 
ISIs is the probability that no event occurs in the interval: 
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TeTP λ−=)(0  (5) 

which is the exponential distribution. 
An USB-AER board with a Spartan II 200 FPGA has been used for the Random 

method, configured with different gray values for the same pixel address. And a PCI-
AER board that captures events and their timestamp, controlled through MATLAB, 
has been also used to capture the ISIs. Figure 3 shows the cumulative probabilistic 
distribution of ISIs: the expected exponential distribution versus the measured 
distribution generated by the Random method ISIs for gray levels 50 to 255, 10 by 10. 
For a high gray level, the distributions are close to each other, what implies that the 
spike train generated with the Random method is close to the Poisson distribution. 

 

Fig. 3. Expected cumulative Exponential ISIs distribution versus measured ISIs distribution 
generated by the Random method for gray levels 

We use the Kolmogorov-Smirnov (KS) test to quantify how good the observed 
distribution of ISIs follows the theoretical exponential distribution. Figure 4 shows 
the result of applying the KS test to the Random distribution obtained with different 
gray levels. The test is passed if the result is bellow 5%. It is shown that for small 
gray levels, behaviour is not much Poisson like. This is due to the LFSR because all 
the possible numbers obtained from the LFSR are used to produce a sequence of 
events for just one frame, resulting in only few different ISIs for a pixel of low 
intensity. We will address this problem by increasing the number of bit in the LFSR, 
so the shift register has a longer period than a frame and has a different initialization 
at the start of each frame. 

50 
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Fig. 4. Kolmogorov-Smirnov test results for Random method distribution 

5   Conclusions 

We have presented a hardware implementation of the Random method. We have 
demonstrated that it has a really well similar behaviour to the Poisson distribution. 
Therefore, it could be a very realistic method to be used for neuro-inspired systems, 
as AER systems. But for low frequency of events, this method becomes worse and 
worse for this kind of systems. So it could be improved in this way. 

In contrast to existing AER generators like [15], this USB-AER board directly 
generates Poisson spike trains instead of sequencing raw spike trains. 

The USB-AER board running with the Random method for AER Poisson synthetic 
generation, and the PCI-AER board with the MATLAB interface, are a useful tool for 
testing and debugging AER system. These two boards have been presented in the 
paper title “Test Infrastructure for Address-Event-Representation Communications” 
of this proceeding. 
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Abstract. In this paper we analyse a serial (ripple carry) and a paral-
lel (Kogge-Stone) adder when operating in subthreshold at 100nm and
70nm. These are targeted for ultra low power consumption applications.
The elementary gates used are threshold logic gates (perceptrons). Simu-
lations have been performed both with and without considering the delay
on the wires. These simulations confirm that wires play a significant role,
reducing the speed advantage of the parallel adder (over the serial one)
from 4.5x to 2.2–2.4x. A promising result is that the speed of both adders
improves more than 10x when migrating from 100nm to 70nm. The full
adder based on threshold logic gates (used in the ripple carry adder) im-
proves on previously known full adders, achieving 1.6fJ when operated
at 200mV in 120nm CMOS. Finally, the speed of the parallel adder can
be matched by the serial adder when operating at only 10–20% higher
Vdd, while still requiring less power and energy.

1 Introduction

The scaling of CMOS in the few tens of nm range, brings with it many challenges
[1]. A recent analysis of these challenges [2], has revealed (once more) that the
most important ones are: power consumption (and the dissipation of the heat
associated to it), and reliable functioning (i.e., both defect- and fault-tolerance).
In this paper we shall focus on neural inspired ultra low power solutions. We will
show that neural-inspired gates, combined with serial architectural approaches
might outperform parallel solutions when run at the same speed in subthreshold
scale CMOS.

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 486–493, 2005.
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1.1 Power Consumption

The power consumption of a CMOS integrated circuit contains three parts: dy-
namic power, short-circuit power, and static power. The dynamic average power
component (capacitive switching) has seen a fair share of analysis and numer-
ous mature methods to manage it. The short-circuit component has only rarely
been considered, and it is quite common to ignore it, or estimate its contribution
to about 10% of the dynamic power. The third component is the static power,
and this has recently become important. Static power includes both leakage
(which translates into stand-by power) and DC currents. The drastic increase
of the leakage currents is raising concerns that, for future technology nodes, the
standby-power will become larger than dynamic power, and is the culprit of
scaling. Therefore, reducing leakage by design has started to be investigated.

1.2 Subthreshold Operation

One approach in the bid to lower power dissipation is the reduction of Vdd, obvi-
ously a very effective way of reducing all the components of power. The aggressive
scaling of Vdd to below VTh (known as subthreshold operation) has been known,
and used in ultra low power designs [3, 4, 5]. The major disadvantage is the very
slow speed, and subthreshold operation has been considered a poor approach,
in that the much-needed speed is sacrificed for ultra low power (limiting its ap-
plication range). Still, the papers reporting on subthreshold designs are mostly
based on older technology nodes. The advantage of subthreshold operation is
that it puts (at least part of) the leakage currents to good use.

1.3 Scaling and Optimal Design

The scaling of subthreshold designs was not properly investigated, and we ex-
pect that subthreshold could become an interesting design approach particularly
because the operation speeds would be improved as scaling proceeds towards
smaller technology nodes. It is not difficult to envision a situation in which de-
signs in older technology nodes operating at standard power supply voltages
would have comparable operation speeds to those in advanced technologies at
subthreshold voltages. This would mean that for example a microprocessor de-
signed to run at 1 GHz in 0.18 µm at normal Vdd might be redesigned to operate
at 1 GHz in subthreshold in say 45 nm. The main advantage would be a power
reduction of a few orders of magnitude. If these were confirmed, the range of ap-
plications that could enjoy ultra-low power and improved speed would increase
significantly. It must also be noted here that the available literature on sub-
threshold CMOS have ring oscillators as the main type of circuits studied, while
only a few articles discuss gates, and small systems are the exception rather than
the rule:

– a 16-bit serial adder [6];
– a 32-bit adder [7] (we infer that the adder is serial, as the authors mention

that it has 2.3k transistors, using standard CMOS gates); and
– an 8x8 serial multiplier [8].
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Only very recently, analysis of the optimality of subthreshold designs has
started to be explored: (i) transistor level optimisations have been reported in
[9], (ii) transistor sizing have only recently been discussed [10], while a very
preliminary comparison of architectural approaches will be presented in this
paper. It is obvious that subthreshold operation shows different design tradeoffs,
and that optimal designs (at the transistor, gate, and system level) have yet to
be identified.

1.4 Architectural Approaches

The particular example we are going to use in this paper is a 32-bit adder. Many
different design alternatives are possible. It is commonly considered that the
slowest one is the ripple carry adder (RCA, or serial solution), while the Kogge-
Stone is expected to be the fastest. Classical CMOS gates are almost never used,
when fast addition is in the picture, and domino gates are the norm.

Threshold logic gates (perceptrons) have also been advocated for fast addi-
tion, as they allow for shallow neural-inspired structures [11]. This theoretically
leads to very high speeds [12], and a mixed dynamic and threshold logic is prob-
ably the fastest [13]. Threshold logic gates working in subthreshold have been
reported in [14, 15], and this type of gate has been used for the circuits pre-
sented here. Finally, highly optimised threshold logic adders have also been used
for achieving higher speeds in inherently slower single electron technologies [16].

Scaled power supply voltages lead to additional difficulties, e.g. noise mar-
gins. Process and environmental variations will also be major factors in designing
systems that operate in subthreshold (due to the exponential dependence of the
leakage current with respect to gate-to-source, threshold and drain-to-source
voltages). Reducing the voltage supply might save the day for power consump-
tion, but will adversely affect reliability.

The solution to this problem is to add redundancy to the design. From this
perspective an RCA is easier to integrate with e.g. MAJ-3 multiplexing than a
more complex parallel adder [17].

2 Serial and Parallel Adders

2.1 Details of the Circuits Used

Two 32-bit adder structures have been investigated. Both use the MAJ-3 gate
of Fig. 1(a) as the basic logic gate.

The first adder is an RCA having a critical path of 32 stages. Each stage is
a full-adder like the one in Fig. 1(c) [18]. This full adder has improved the PDP
from 6.51fJ down to 1.57fJ and the power dissipation from 15.5nW to 7.3nW, at
Vdd = 200mV in STM 120nm compared to all previously published full adders
using the same basic logic gate. This RCA implementation has 704 transistors.

The second adder is a Kogge-Stone parallel prefix adder [19]. This adder can
be seen in Fig. 2(a), while the different building blocks have been implemented
using MAJ-3 gates (see Fig. 1(a)) and are detailed in Figs. 2(b), 2(c) and 2(d).
This adder uses a total of 4180 transistors, and has a critical path of seven stages.
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Fig. 1. MAJ-3 logic gate and full adder

Theoretically, the relative delay of RCA vs. Kogge-Stone should be 32
7 = 4.5.

2.2 Device Models and Experimental Setup

All simulations were done in Spice3f5 (ngspice). Berkeley Predictive Technology
Models (BPTM) [20] have been used for all transistors. Each BPTM node was
generated with the standard parameters suggested in [20].

Each input wire to an adder is driven by a gate, and each output has a gate
as a load.

The addition performed in all experiments was 0xffffffff + 1, which exer-
cises the longest / critical path (from bit 0 to the carry out). Delays are measured
from the time the input signal is asserted till the carry out reaches Vdd

2 .
Energy was estimated from the current flowing to Vss during the addition.

2.3 Evaluating Wires

For the simulations where wire delays were included, all wires have been modelled
using the four-segment π-model. Parameters for the wires have been determined
using the BPTM interconnect calculator with the values suggested for each node.

Length estimates of the longer wires were found by assuming that each build-
ing block of the Kogge-Stone adder in BPTM 70nm is 7x7µm2. The length of
the shorter wires (which are the only ones present in the RCA adder) have been
estimated based on a layout of the MAJ-3 gate. For other technology nodes,
these lengths have been scaled accordingly.

3 Results and Discussions

The results of the simulations are synthesised in Table 1. The most important
ones are also presented in Figs. 3 and 4.

As expected, the parallel adder is faster than RCA when the same Vdd, tech-
nology node, and transistor sizes are used.

Simulations without considering wire delays are in very good agreement with
the theoretical 32

7 = 4.5 speed advantage of the parallel adder.
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Fig. 2. Kogge-Stone adder

Simulations including wire delays show that these have a large impact on
adder performance. In BPTM 100nm, the Kogge-Stone adder is 4.5 times faster
than RCA, while with wire delays it is only 2.2–2.4 times faster. Similar tenden-
cies hold true for 70nm (see Table 1).

Figs. 3(a) and 3(b) reveal the correlation between Vdd and propagation delays.
As Vdd is increased, power consumption is also increased. Hence, Fig. 4 shows
the estimated energy for both the parallel adder and RCA. Vdd for the parallel
adder is varied from 150mV to 250mV giving propagation delays spanning one
order of magnitude: 5000ns to 500ns. Vdd for RCA was set such as to achieve the
same performance. All our experiments show that this Vdd is between 110% and
120% of the Vdd of the parallel adder. For all these experiments, the RCA was
more energy efficient than the parallel adder when running at the same speed.

When using the same Vdd in both 100nm and 70nm, we have also seen more
than 10x reduction in delays for both adders. There is no clear indication that de-
lays in subthreshold due to local wiring is scaled any differently from transistors
across technology nodes.

All the results reported here are from simulations and not from chip measure-
ments. This must be taken into account when interpreting the data, as errors
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Table 1. Summary of simulation results. RCA = Ripple Carry Adder, PAR = Kogge-
Stone Adder, “w” indicates that wire delays are included in the simulations

Circuit Vdd Node tdelay E LP MOS WP MOS LNMOS WNMOS
[mV] [nm] [ns] [pJ] [nm] [nm] [nm] [nm]

RCA 260 100 767.9 120 690 120 120
PAR 260 100 168.8 120 690 120 120
RCAw 260 100 922.6 120 690 120 120
PARw 260 100 391.0 120 690 120 120
RCAw 250 100 1179 120 690 120 120
PARw 250 100 484.8 120 690 120 120
RCA 200 100 2847 120 690 120 120
PAR 200 100 627.6 120 690 120 120
RCAw 200 100 3421.7 120 690 120 120
PARw 200 100 1484.3 120 690 120 120
RCAw 150 100 10961 120 690 120 120
PARw 150 100 5051 120 690 120 120
RCA 200 70 291 90 590 90 90
PAR 200 70 77 90 590 90 90
RCA 200 70 275.7 100 600 100 100
PAR 200 70 85 100 600 100 100
RCA 200 70 241.3 80 460 80 80
PAR 200 70 64.8 80 460 80 80
RCAw 200 70 278 80 460 80 80
PARw 200 70 127 80 460 80 80
RCAw 175 70 430 80 460 80 80
PARw 175 70 211 80 460 80 80
RCA 150 70 595.5 80 460 80 80
PAR 150 70 186.6 80 460 80 80
RCAw 150 70 683.0 80 460 80 80
PARw 150 70 367.6 80 460 80 80

RCAw 183.8 100 5045.5 1.48 120 690 120 120
PARw 150 100 5051 2.26 120 690 120 120
RCAw 238.5 100 1479.9 2.48 120 690 120 120
PARw 200 100 1484.3 3.4 120 690 120 120
RCAw 292.5 100 488.2 5.0 120 690 120 120
PARw 250 100 484.8 6.57 120 690 120 120
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Fig. 3. Impact of Vdd on delay

might come from the simulator, the Berkeley models, or from incorrect assump-
tions regarding transistor sizes and wire lengths.

The results have also shown to depend heavily on transistor sizing. Because
of the difficulty of ensuring representative scaled sizing across technology nodes,
comparisons across different technology nodes should be taken with care.

For FPGAs, wire delays are larger than for a custom design due to longer
wires as well as switchbox resistance. Therefore a serial architecture may have
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same delay as the Kogge-Stone adder

an even larger advantage when compared to parallel in subthreshold FPGAs,
and such techniques are already used in todays FPGAs.

4 Conclusions and Future Work

This paper has presented simulations in subthreshold that back the followings:

– migrating from 100nm to 70nm reduces the propagation delay by over 10x;
– full adders using threshold logic gates require very small energy;
– serial adders can match the speed of parallel ones in subthreshold when Vdd

is increased only by 10-20%;
– at equal speeds in subthreshold, a serial adder has an advantage over parallel

ones with respect to power consumption (and energy).

The more general conclusion is that, when operated in subthreshold serial
solutions might do better than parallel ones, both for full custom arithmetics
and FPGA based arithmetics.

Future work should concentrate on: optimising the implementations of the
gates (e.g., combinations of gates), better characterisation (through fabrication
and measurements), and the analysis of reliability enhanced adders using both
low level techniques (e.g., high matching), as well as circuit level ones (based on
redundancy).
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Abstract. In this paper, a fully functional prototype of an asynchronous
4-to-4 Address Event Representation (AER) mapper is presented. AER
is an event driven communication protocol originally used in VLSI im-
plementations of neural networks to transfer action potentials between
neurons. Often, this protocol is used for direct inter-chip communication
between neuromorphic chips containing assemblies of neurons. Without
an active device between two such chips, the network connections be-
tween them are hard-wired in the chip design. More flexibility can be
achieved by communicating through an AER mapper: The network can
freely be configured and, furthermore, several AER busses can be merged
and split to form a complex network structure. We present here an asyn-
chronous AER mapper which offers an easy and versatile solution. The
AER mapper receives input from four different AER busses and redirects
the input AE to four output AER busses. The control circuitry is imple-
mented on an FPGA and is fully asynchronous, and pipelining is used to
maximize throughput. The mapping is performed according to prepro-
grammed lookup tables, which is stored on external RAM. The mapper
can emulate a network of up to 219 direct connections and test results
show that the mapper can handle as much as 30 × 106 events/second.

1 Introduction

The AER protocol [7] is a popular tool in neuromorphic applications. It is used
to emulate direct connections in for example neural networks. It uses a high
speed digital bus which events are asynchronously multiplexed onto. A unique
address identifies each sender, e.g. a neuron, and the receiver is responsible for
distributing this event to the correct location. Since the speed of the bus ex-
ceeds the frequency of events, very few collision occur and can be handled with
a minimal delay. However, the virtual connection must be designed in hard-
ware in advance and can not be changed during operation. So to use the AER
protocol with multiple PCB’s, one needs to carefully plan the interconnections.
In many applications, this is difficult, in some cases impossible. One example
is evolutionary hardware, where a genetic algorithm is used to determine the
configuration directly in hardware. Thus, the ability to change the connectivity
of several components is crucial to test a system in real time and the need to
be able to program the interconnections “on the fly” is apparent. Two research
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groups in Rome and Sevilla have developed devices which address this issue. The
Rome-board [1] is a PCI-AER board and is mainly constructed to be an inter-
face between a PC and boards that communicate with the AER protocol. It can
work as an AER mapper, it can monitor the communication on an AER bus or
it can send sequences of events to an AER bus to emulate a real stimuli. Though
it has many nice features, it is fairly slow (5 × 106 events/sec) and it needs to
be connected to a PC to operate. Like the Sevilla-board, which is a simpler,
dedicated and faster AER mapper, the design is synchronous. (Both boards are
under development and most of the information is based on private communica-
tion since there exists no publications to refer to.) And since the time domain is
of importance in the AER protocol, e.g. information lies in the timing between
successive events [6], to approach the problem from an asynchronous point of
view may seem preferable. This is due to the fact that synchronous devices quan-
tizise information in the time domain, thus vital timing information can be lost.
Therefore, we introduce the asynchronous 4-to-4 AER mapper, which can easily
be programmed to emulate any network of up to eight individual components.

2 Model

The AER mapper is a four-to-four mapper. It receives input from four different
AER input busses and redirects these addresses to four output AER busses. In
this way, the device is capable of interconnecting up to eight individual chips or
circuit boards, thus emulating a huge network of connections. The total amount
of direct connections which can be emulated is 219, over 0.5 million connections.
The mapping is performed according to preprogrammed lookup tables, which we
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store on external RAM. This mapping can be changed during normal operation
by a separate AER cable. The process of programming is covered in section 4.

Each input bus takes as input a 16 bit address and sends out an arbitrarily
amount of output AE’s of the same length. The output AE’s can be sent on
any of the four output busses, the output bus does not need to be the same for
each AE and an output AE can be sent on several output busses at the same
time. Since there are four input busses with an address space of 216 and a total
of 219 possible direct connections, one input event can on average cause two
output events if the mapper operates at the limit of its input capacity. However,
individual inputs can cause up to 213 outputs, and inputs that cause the same set
of outputs as previously programmed input, need not consume extra mapping
capacity. This is possible, because the mapper is constructed with two blocks
of RAM. The first block of RAM (iRAM), has a 16 bit address space (64k) of
32 bit words, where 13 bits are used to denote the number of output AE’s and
19 bits are used as a pointer to the second block of RAM (oRAM). The second
block of RAM has a 19 bit address space (512k) of 24 bit words, where 16 bits
are used as the output address and 4 bits for selecting output bus (4 bits not
used).

The mapping is performed in two main stages. A schematic of the AER map-
per and the control logic on the FPGA are shown in figure 1 and 2 respectively.
First, when an event is received on one of the four input AER busses, e.g. bus
number 3, a request is sent to the FPGA. The request is processed and triggers
LE[3] such that the incoming address is stored on an external latch (iLatch[3]).
The request is then acknowledged. The input AER bus is again ready to receive
an event. At the same time a request is sent to the next stage on the FPGA
which grants access to iRAM. A full non-greedy arbitration is performed for all
four inputs such that collisions are avoided. When the event is granted access,
nR1OE[3] goes active and the data is loaded from iRAM[3] and sent to the
FPGA, where it is latched and acknowledged. The first stage is now complete
and a new address can be stored on iLatch[3].

The second stage uses the data from iRAM to determine which addresses to
send to oRAM. A simple example illustrates the process. If the 19 bit pointer
to oRAM is 1000 (DEC) and the 13 bit number 10 (DEC), the mapper will
send 10 successive addresses, i.e. 1009, 1008, .. , 1001, 1000. The first address
(1009) is sent to a new internal latch (mLatch) along with a request, where it
is stored and acknowledged. The next address (1008) can then be calculated.
The first address is then granted access to oRAM by nR2OE and the data is
loaded. The data is 20 bits wide and contains the 16 bit output AER address
and a 4 bit number. The number is sent back to the FPGA and stored on a
latch (oLatch) and acknowledged. Thus, the second address can be latched by
mLatch. The latched number determines which of the four output AER busses
the output AER address is to be sent to. Thus, if the number is 0101, the AER
output address is sent on AER bus 1 and 3. When this output AER address is
acknowledged, the second address is granted access to oRAM and new data is
loaded. This process continues until all addresses are processed.

Kolle
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3 FPGA Implementation

The control logic of the AER mapper is implemented on an FPGA. We have
used an Altera Flex10K30A FPGA which has 208 I/O pins. It operates on a 3.3V
supply. The FPGA is programmed using a MasterBlaster serial communication
cable, which allows us to program the device from a PC or UNIX workstation.
We have also chosen to include a second configuration device (EPC1PDIP3),
which is a ROM where the final version of the FPGA design can be pro-
grammed and loaded at startup. An alternative solution in future implemen-
tations could be to use a flash card with a USB interface to a PC or UNIX
workstation.

The control logic of the mapper is a fully asynchronous design and is based on
the work by Häfliger in [3]. Since asynchronous design is not a very common and
preferable design method in FPGA implementations, and commercial FPGA’s
are solely constructed for synchronous design [5], there exist no supported timing
or delay elements which can be used in commercial FPGA design. Both special-
ized FPGA’s [4] and different methods have been developed for asynchronous
implementations [2], but these remain expensive and cumbersome to use, and the
extra effort and money would probably not justify the choice of asynchronous
over synchronous. And since timing is a crucial part of asynchronous design, we
therefore had to find a method to set a more or less fixed delay on the control
signals on a common cheap off-the-shelf FPGA. The solution to the problem was
to use a LCELL primitive supported by the Altera Quartus software package.
The primitive is basically a buffer, with a simulated delay of approximately 2ns
for one LCELL. Test results also showed that the delay was as expected with
only minimal variations. Thus, we were able to create fairly accurate delay ele-
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ments throughout the design. Though not a failsafe way of designing, it proved
to be a powerful tool in easily creating the control logic of the asynchronous AER
mapper.

4 Programming

A separate AER cable is used to program the RAM. It takes as input a 12
bit address (CDATA[11..0]), where 8 bits are data (CDATA[7..0]) and the re-
maining 4 bits (CDATA[11..8]) are used to determine what the data is to repre-
sent. CDATA[11..8] is demultiplexed by HSdist4to16, and the resulting signals
(CA[12..0]) are used as clock input to internal latches (CA[6..0]) and to control
the write enable of the external RAM (nCA[12..7]).

The programming is not done directly, but the data is first stored on several
internal latches. This is done such that the whole address and data for one entry
can be stored before the RAM itself is programmed. For example, to program a
set of data at one specific address in iRAM, one need to latch 48 bits internally,
i.e. 16 bit address and 32 bit data, before the data can be written to the RAM.
Which latch the data is stored on, determines what the data is used for. We have
four internal latches for the RAM data and three more for the RAM addresses.
Several tri-state buffers are used to separate the different physical lines, such
that the same data can be used for both iRAM and oRAM. The programming
latches for the address part are shown in figure 3.
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Fig. 3. The internal programming latches. Two tri-state busses separates the two dif-

ferent physical lines R1ADR[15..0] and R2ADR[18..0]

The programming is executed in MATLAB and some scripts are written to
facilitate the operation. The main function is

mapping=pgrmMapping(in,out,inbus,outbus);

where in is the input address, out is an array with the output addresses, inbus
the input bus number and outbus an array with the the output bus numbers.
It returns a matrix mapping with all the mappings executed so far.

H. Riis and Ph. HäfligerKolle
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[r2adr,mapping]=getR2adr(in,out,inbus,outbus);
[r,c]=size(out);
pgrmRAM1(in,r2adr+r*2^19,inbus);
for i=1:r
pgrmRAM2(r2adr+(i-1),out(i,1),outbus(i,1));
end;

First, the main function checks if the inbus and outbus are correctly specified,
i.e. if they are a number from 0 to 3. Then, the first sub function, getR2adr,
is called. This function loads a mapping database, mapping, where all previous
mappings are stored. The database is constructed such that the column of one
entry denotes which oRAM address the output AER address is stored. Each
entry holds the information given to the main functions. Therefore, the mapping
can easily be retrieved, it prevents the user from overwriting entries in the oRAM
and, furthermore, the user do not need to be concerned with both the iRAM
data and the oRAM address when programming a mapping.

Based on the information retrieved from the first sub function, the two next
functions are called. pgrmRAM1 takes as input the input address and the input bus
number directly from the main function. The data to be stored (r2adr+r*2^19)
is a pointer to oRAM (first 19 bits) plus a number r (last 13 bits) which denotes
how many output AER addresses which are to be generated.

pgrmRAM2 is then called for each of the output AER addresses. It takes as
input the computed oRAM address, which is increased by one for each call, the
output AER address and its corresponding output bus number. The program-
ming is now complete for one input AE.

5 Results

The circuit was tested with a National Instrument (NI) DAQ board (PCI-6534
High Speed Digital I/O PCI module) connected to a PC workstation. In addition,
a PCI-to-AER and a 5V-to-3.3V PCB was used to connect the PCI-bus to the

t

tb

a

Fig. 4. Measurement 1: The timing of input request/acknowledge and the output re-

quest is highlighted to the right. ta is 25ns while tb is 225ns

The main function consists of three sub functions
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tbta

Fig. 5. Measurement 2: The transition from different input AE is highlighted to the

right. ta is 45ns and tb is 20ns

mapper board. All signals from the PCI-bus have a length of 1.6µs, independent
of when the acknowledge is received. We used a Hewlett Packard 16500C Logic
Analysis System to sample and plot the test data. The sampling period of the
16500C is 4ns, which is sufficient for our test measurements. For more accurate
timing measurements, e.g. measuring the delay of the LCELL primitive, we used
a Agilent 54624A digital oscilloscope.

In figure 4, a simple mapping experiment is plotted where IREQ is the input
request from the PCI-board, IACK the corresponding request, OREQ[3..0] the
output requests of the four output busses and AE_OUT the output address. Three
successive AE’s are received on input bus 0 and redirected to output bus 0,
3 and 2 respectively. The timing of the initial handshake is highlighted to the
right. From the figure, one can see that it takes about 25ns (ta) from the input
request is acknowledged and approximately 225ns (tb) before the output request
is sent. Since the input request from the PCI-board has a fixed period of 3.2µs,
we are not able to test the speed of such a one-to-one mappings directly. Thus,
the effect of pipelining is not taken advantage of and the full potential of the
mapper is not shown.

However, if we perform a one-to-multiple mapping experiment, i.e. if one in-
put AE results in the sending of multiple output AE’s, several features of the
AER mapper can be utilized. Such an experiment is plotted in figure 5. We
plot the same signals as in the previous experiment and three input AE’s are
programmed to send out 120 AE’s each on different output busses. The tempo-
ral resolution of the Logic Analyzer is not high enough to plot the individual
spikes, so the output AE’s are shown as black solid lines. The whole process
takes roughly 13µs which means that the mapper can send just under 30×106

events/second.
The transition between two of the incoming AE’s is again plotted to the

right. We see that the period ta of the 360 output AE’s is approximately 45ns
and that the delay tb between AE’s from the two different inputs is not more than
20 ns. This suggests that one-to-one mappings also can be processed at a similar
rate. It must be noted that the global delay of the signals still is about 225ns, but
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since this is a fixed delay forced on any of the incoming events, the timing of
events are preserved throughout the system.

From the same figure, we see that the output address is valid about 5-10ns
before and after the output request is set. This is a safety margin which is set
by using the previously described delay elements. This margin may be reduces
to improve the performance of the system. If only reduced by a total of 4-5 ns,
thus reducing the AE period to 40ns, the overall performance is improved by
nearly 10% .

6 Conclusion

An asynchronous AER mapper has been presented. It can be used as a passive or
active device in a multi-node network that uses the AER protocol for inter-chip
communication. Its ability to emulate complex networks structures combined
with speed and robustness makes it a powerful tool for interconnecting relatively
large systems.

The asynchronous FPGA implementation is at the present moment not op-
timized for speed, but instead we have concentrated on making the control cir-
cuitry fail proof without any glitches. This is very important in asynchronous
design, because any ill timed signal may set the system in a non valid state.
However, several improvements are in progress which can significantly speed up
the communication without compromising on robustness. Also, some improve-
ments in handling non valid addresses are currently tested, i.e. addresses which
are not programmed to be redirected. The final result of the mapper should be
an easy and “plug-and-play”-like device, such that anyone who is interested in
using the mapper, needs only minimal knowledge of the circuit design and would
only need a higher level software script to program and prepare the mapper for
operation.
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Abstract. This paper reports the recent steps to the attainment of a compact 
high-speed optoelectronic neuroprocessor based on an optical broadcast archi-
tecture that is used as the processing core of a vision system. The optical broad-
cast architecture is composed of a set of electronic processing elements that 
work in parallel and whose input is introduced by means of an optical sequen-
tial broadcast interconnection. Because of the special characteristics of the ar-
chitecture, that exploits electronics for computing and optics for communicat-
ing, it is readily scalable in number of neurons and speed, thus improving the 
performance of the vision system. This paper focuses on the improvement of 
the optoelectronic system and electronic neuron design to increase operation 
speed with respect to previous designs. 

1   Introduction 

Neural networks are computational approach that is nowadays demonstrating applica-
bility to many computational cost problems [1].On the contrary of traditional proces-
sors, an artificial neural network can be seen as a set of very simple processing ele-
ments with a high degree of interconnectivity between them. The computation 
strength of a simple processing element is very small, but the massive cooperation 
between lots of them results in a powerful machine for tasks as pattern recognition 
and classification [2]. 

For vision there have been a wide range of neural systems with application ranging 
from early to high level vision operations. Examples are the hardware implementation 
of the bio inspired artificial retina [3] or – more recent – pulse or spiking neural net-
works (PCNN) [4] for low or medium level tasks. For high level operation such image 
classification, neural networks are emulated via software [1]. Software based imple-
mentations of neural networks are often not fast enough to meet the real time re-
quirements of some vision application but the main disadvantage is that their devel-
opment require high computer literacy and math background; which contrast with one 
of the most exciting properties of neural networks that is its ability of learning. 

There have been also hardware implementations of neural network processors. The 
idea was the development of parallel processing architectures to optimize neural net-
work algorithms; examples were the CNAPS processor [5] and the analogue Intel 
ETANN [6] among others [7]. Recent trends are the implementation of neural proc-
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essing systems instead of parallel processing architectures. As example we can find 
the VindAx processor from Axeon Ltd. [8] implementing a self-organizing map and 
the IBM zero instruction set computer (ZISC) implementing a radial basis function 
(RBF) neural network [9]. The ZISC has been tested and compared with other neural 
network hardware implementation for a quite complicated vision task: face tracking 
and identification [10]. Although higher operation speed, the performance of this 
system is worse than the other proposed implementations (RBF on FPGA and DSP); 
the performance difference was linked to the limit in the size of input pattern to 64 
elements. 

Our work is focused on the implementation of a neural processing system for smart 
vision applications. The performance demanding for such a device are fast operation 
speed and large size. Large size means that the hardware architecture must not impose 
a (small) limit in the size of input patterns nor to the number of neural nodes and 
interconnections between them. 

It is also our understanding that optics may help in the implementation of neural 
processing architectures, but with a different approach that is used in optical comput-
ing architectures – such optical correlators [11] and optical neural networks [12]. In 
those systems optics is used for computing, basically for spatial filtering, in optical 
correlators, and for multiplication and addition, in optical vector-matrix multipliers. 
Some problems encountered in the realization of large-scale optoelectronic systems are: 
optical alignment, interconnection weight reconfiguration and assignment by spatial 
light modulators (SLM), and the construction of the associated opto-mechanical sub-
systems with reduced dimensions. Our point of view is that optics must be used only for 
interconnects, while electronics must be used for computing [13]. 

In this paper we describe in section 2 the basic principles of the optoelectronic ar-
chitecture for neural networks we have proposed [14] and that has been used as the 
processing core of a vision system [15][16]. In section 3 we describe the implementa-
tion of a new fast prototype based on a new neuron design. In section 4 we describe 
the vision system that will be benefited by the new fast optoelectronic neural network 
design and its preliminary results. We finish with conclusions in section 5. 

2   Broadcast Neural Network Processor 

As represented in equation (1), the output of a single neuron yj in a neural network is 
a non-linear function of a weighted sum of inputs: 

1

N

j ji i
i

y f w x
=

=  (1) 

where N is the size of the input pattern, xi is one element of the input and wji is the 
interconnection weight between input i and neuron j. Hardware implementations of 
neural processors, especially optoelectronic implementations [11][12], usually try to 
construct an architecture where basic operations are executed simultaneously for all 
neurons. The hardware architecture we propose simplifies the optical interconnection 
scheme and avoids the use of SLM but takes advantage of the high spatial and tempo-
ral communication bandwidth of optical beams. As represented in figure 1, it is com-
posed of a set of K cells comprising of M optoelectronic neurons that share the same 
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optical input and that execute neural operations – i.e. multiplications and additions – 
in parallel. We have shown this architecture is configurable [16][17] and can be pack-
age in a small volume by the use of CMOS circuits for the optoelectronic neurons and 
holographic interconnections elements [17]. 
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Fig. 1. Optoelectronic architecture with K cells with M neurons in each cell 

2.1   Neuron Functionality 

The option we propose for our optoelectronic architecture is time-sequential process-
ing of the inputs [14]. We propose a system composed of a large number of process-
ing elements whose functionality can be seen in figure 2. 
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INPUT 
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Fig. 2. Neuron model in the optical broadcast architecture 

Each processing element comprises of one multiplier and one accumulator whose 
input is presented sequentially, one input element at a time. To obtain the output yj as 
a function of the sum of N weighted inputs, N time slots are required. In each time 
slot one input element is introduced, multiplied by the corresponding interconnection 
weight and accumulated to previous result. Time-sequential input processing seems to 
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delay neuron output, but it benefits the overall speed performance of our optoelec-
tronic architecture as it is discussed in reference [17]. 

2.2   Optical Interconnection for the Broadcast Cell  

Optics has been proposed as a solution to overcome fundamental problems for scaling 
electrical interconnections [13]. A neural network cell in our architecture is composed 
of an array of M neurons. All the neurons in a cell share the same time-distributed 
input. We propose to use an optical-broadcast interconnection to distribute the inputs 
to all the neurons in a cell, as represented in figure 3. This optical interconnection will 
allow the distribution of the input signal, at high speed, to a very high number of 
processing elements that work in parallel. As the input is presented sequentially and 
distributed to all the neurons in a cell, we obtain a fully-interconnected architecture, 
that is, any input can contribute to the activation of any neuron. 
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Fig. 3. Optical broadcast cell 

3   Fast Prototype Implementation 

The input vector is distributed sequentially to all neurons in the cell by means of an 
optical time modulated signal. The optoelectronic neuron must multiply each input 
with the corresponding interconnection weight and accumulate the result until the 
entire input vector has been presented at the end of the operation cycle. The basic 
neuron scheme that implements that functionality is presented in figure 4. The light 
pulses that reach one neuron are converted to current pulses by the photodetector. A 
switch, controlled by the corresponding interconnection weight (signal W), connect or 
not the detector with a capacitor, that acts as the storage element. By this way, the 
product operation is implemented by the switch and the accumulation function of the 
neuron is implemented by the increasing voltage in the capacitor (equation 1). Addi-
tionally there is a switch controlled by signal CLR that resets the capacitor at the 
beginning of an operation cycle. 
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Fig. 4. Basic neuron design 

Equation (2) summarizes how the neuron works.  

1
CV XW PR t

C
∆ = ∆  (2) 

It represents the increment of the voltage of the capacitor in a time slot which is 
proportional to the product of input (X) and interconnection weight (W) and the de-
sign parameters of the system. They are the value of the storage capacitor (C), the 
optical power that reaches the detector (P), the responsivity of the detector (R) and the 
time slot (∆t). For binary unipolar inputs and interconnection weights, if input X is ‘0’ 
the voltage in the capacitor does not increase because no light arrives to the detector 
and no photocurrent is generated; if input X is ‘1’, the voltage in the capacitor in-
creases only if the interconnection is ‘1’ because in this case the detector is connected 
to the capacitor. 

We have designed a previous neuron design that allows ∆t to have a maximum 
value of 10 µs [18]. It seems (equation 2) that if we need to decrease ∆t, we only need 
to reduce the value of the storage capacitor C. But doing so we observe injection 
charge effects due to the commutation of switch S1, we also see unwanted discharge 
of the capacitor. Additionally a high speed switch must be used. 

So the new neuron circuit we propose for the implementation of a fast prototype is 
based on a differential configuration (see figure 5). The new circuit functionality is 
the same as the circuit in figure 4: If input is ‘0’ there is no current so the voltage in 
the capacitor is constant. If input is ‘1’ there is a current that increments the charge in 
the capacitor if interconnection weight W is ‘1’; in this case the voltage applied to the 
base of transistor Q1 is higher than the voltage in the base of Q2. If interconnection 
weight W is ‘0’, the voltage applied to the base of Q1 is lower so the current flows 
through Q1. Figure 5 shows first test of the fast neuron circuitry. Signal CLR that 
resets the capacitor at the beginning of the operation cycle; we show both inputs (X) 
and interconnection weights (W) alternate between ‘0’ and ‘1’, the operation cycle is 
composed of 32 time slots. Last waveform is the voltage in the storage capacitor, 
which increases when both input and interconnection weight are ‘1’. This new neuron 
design allows reducing the time slot ∆t to 7 ns (three orders of magnitude with respect 
previous prototype [19]). Emitters and detectors and optical interconnections have 
also been modified [19]. 
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Fig. 5. Fast neuron design 

 

Fig. 6. Neuron measurements 

4   Fast Vision System 

The vision system we have implemented is composed of a CMOS image sensor and 
the optoelectronic broadcast neural network configured as a Hamming classifier. A 
controller provides control signals. This system captures an image and classifies it 
between four classes that are represented by a sample pattern [16]. As the CMOS 
image sensor works as a random access analog memory, its control signals are the 
same that are used to the sample patterns memory and are independent of the size of 
the optoelectronic classifier. To build a high speed system we need to use a fast sam-
ple patterns memory (TI SN74V273-6PZA). The block diagram of the fast optoelec-
tronic neural network for vision applications is presented in figure 7. The optoelec-
tronic part is composed by: (1) high speed laser diode (Mitsubishi FU-427SLD) with 
fiber pigtail and 155 Mb/s laser driver (based on MAX3263 device), (2) 1:16 fiber 
coupler, and (3) 2 GH discrete InGaAs PIN photodiodes integrated in a pig-tail mod-
ule (Mitsubishi FU-39PD) with associated neuron circuitry (figure 5). 
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The vision system operation is benefited by the use of a FIFO memory. There are 
two steps. First user selects input and sample pattern and download it to the FIFO 
memory. Second is the operation cycle of the optoelectronic classifier, where the 
FIFO memory is read at a rate of 155 MHz, that gives an input pattern element value 
X and all corresponding sample patterns elements (Wj). Results are presented in fig-
ure 8, we see the evolution of the voltage on the storage capacitor for different input 
(X) and sample patterns (W) that are 64×64 pixel resolution (N=4096 elements). Next 
step is to provide input image (X) from the CMOS sensor as described in [16]. 
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Fig. 7. Fast vision system 

 

 

28 µs 

(1)

(2)

(3)

CLR

VC 

(a)      

(1)

(2)

(3)

W X

(b)  

Fig. 8. Fast vision system preliminary results: (a) waveforms, (b) input and sample patterns 

5   Conclusions 

We have proposed a novel optoelectronic architecture for neural networks whose 
main advantage over electronic counterparts is that it is scalable in speed and size. 
Optical interconnections benefits the processor size as the number of neurons or proc-
essing nodes that compound the hardware architecture can be made very high as elec-
tronic wires are removed from the circuit. Additionally optical interconnects promise 
higher bandwidth than electrical interconnects [13], so input signal distribution can be 
made faster. 
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We have designed a fast optoelectronic circuit for neurons and a fast system con-
troller. The control signals that are needed do not depend on the number of processing 
elements that compound the optoelectronic neural network architecture, which also 
help on the scaling of the system. We have shown that this fast prototype is able to 
perform the comparison of a 64×64 pixel resolution input image between a set of 
sample patterns in 28 µs, which is three orders of magnitude faster than our previous 
prototype [18][19]. The higher number of processing nodes the higher the number of 
classes, but the classification speed remains constant. 
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Abstract. Recent advances in arrays of microelectrodes open the door to both 
better understanding of the way the brain works and to the restoration of dam-
aged perceptive and motor functions. In the case of sensorial inputs, direct 
multi-channel interfacing with the brain for neuro-stimulation requires a com-
putational layer capable of handling the translation from external stimuli into 
appropriate trains of spikes. The work here presented aims to provide auto-
mated and reconfigurable transformation of visual inputs into addresses of mi-
croelectrodes in a cortical implant for the blind. The development of neuropros-
theses such as this one will contribute to reveal the neural language of the brain 
for the representation of perceptions, and offers a hope to persons with deep 
visual impairments. Our system serves as a highly flexible test-bench for almost 
any kind of retina model, and allows the validation of these models against 
multi-electrode recordings from experiments with biological retinas. The cur-
rent version is a PC-based platform, and a compact stand-alone device is under 
development for the autonomy and portability required in chronic implants. 
This tool is useful for psychologists, neurophysiologists, and neural engineers 
as it offers a way to deal with the complexity of multi-channel electrical inter-
faces for the brain. 

1   Introduction 

The study of the role of electricity in neural tissues has been a concern of medicine 
for decades, with revealing precedents in past centuries. The understanding of how 
the brain encodes information using electrical signals has made significant advances 
thanks to the studies carried out in the fifties by Stephen Kuffler, in which the recep-
tive fields of retinal ganglion cells in cats were determined. In 1958, Hubel and Wie-
sel recorded electrical activity in primary visual cortex of a cat, using microelec-
trodes. These studies confirmed that the activity of single neurons encodes informa-
tion [1]. However, later discoveries showed that there is information not only in the 
activity of single cells, but also in the interrelated firing of groups of neurons. Popula-
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tion coding is still a research field in which (see [2] for a review) a number of groups 
are working with different approaches. These studies benefit from the development of 
arrays of multiple electrodes [3, 4, and 5] allowing to record correlated neural activity 
for controlled stimuli, both in vitro and in vivo setups. 

The pairs stimulation-recording of neurons, pave the way to understand the encod-
ing of sensorial signals, which is useful to elicit adequate patterns for stimulation. 
This is the key for the development of sensorial neuroprostheses, so the uses of mi-
croelectrode arrays for recording and stimulation are symbiotic. 

The electrical stimulation of neural tissue is being employed in patients with Park-
inson’s disease [6] with very long penetrating electrodes inserted in deep brain struc-
tures. Another therapeutic application of electrical currents is the restoration of mus-
cle control in spinal cord injuries of patients having a good functional muscular tissue, 
but damaged neural control of it [7].  Some research laboratories are undertaking 
investigations to develop artificial limbs with neural control and sensorial feedback 
for amputees [8, 9]. 

An exciting field of research is the restoration of sensorial abilities, like audition 
and vision, by means of electrical stimulation. Cochlear implants are a good sample of 
this, allowing totally deaf subjects to understand spoken words and even good pro-
nunciation after training. The success in this kind of prostheses [10] has encouraged 
scientists to guide their next steps to vision, in which additional difficulties arise, due 
to the complexity and amount of information of images with respect to sound. 

2   Computational Retina-Like Layer for Stimulating the Neural 
Interface 

The work presented in this paper is developed in the framework of a European pro-
ject, named CORTIVIS (Cortical Visual Neuroprosthesis for the Blind, 
http://cortivis.umh.es), which aims to build an implant that would automatically de-
liver stimulation currents to the visual area of the brain cortex in blind individuals 
(see Fig. 1). This is a challenge that is also being faced with similar and different 
approaches by several research groups world-around. 

Desirable features for such a device are portability, reconfigurability, real-time op-
eration, wireless trans-cranial transmission of data and energy, and the sending of as 
much information as possible through a limited number of electrode channels [11]. 

 

Fig. 1. Main blocks of the CORTIVIS prosthetic system, including one or two camera inputs, 
filtering and coding stages and wireless transmission to one or more implanted arrays of micro-
electrodes 
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The last stage of the prosthesis is a neural interface with the brain cortex. In our 
case, the penetrating microelectrode array of Utah [3] is being considered due to the 
capability of this device to stimulate the ‘input’ neurons of each column of the cortex 
structure, located typically in layer IV, 1-1.5 mm beneath the surface. 

The handling of multiple channels for stimulation is a complex task in which sev-
eral abstraction levels must be considered. From an engineering perspective, the lower 
level is a physical layer regarding the size, shape, composition and biocompatibility 
of the electrodes. The next upper layer considers the electrical features of the signals 
to be delivered to each electrode, including amplitude, pulse widths, number of pulses 
in a burst, etc. The following level in this scheme is a communication protocol layer, 
concerning the encoding of commands, error correction, energy and data transmis-
sion, and housekeeping telemetry. The top of this organization is the computational 
data layer. Its mission is to translate external stimuli into spike patterns in the form of 
events to be addressed to the target microelectrodes. 

The subject of this paper focuses mostly on this last upper layer. This stage must 
allow for flexibility, as long as retina and visual pathways have not completely been 
characterized and multiple approximations are being considered by different research 
groups. This way, different models with changing parameters can be essayed on the 
prosthesis. 

When designing this top layer for the handling of electrical cortical multi-channel 
interfaces, we must take into account some desirable features. First of all, the layer 
must be bio-inspired, that is, compliant with accepted retina models. This level should 
have images as input and produce spikes timely as output to target electrodes,      
mimicking the function of a natural retina. 

There are a considerable number of parameters implied in retina models, which 
must be adjusted to produce outputs that are coherent with biological experiments, for 
the same external stimuli. So flexibility is the second requirement for this layer. Addi-
tionally, retina transfer functions are under study to define retina models, so we 
should allow variations in this stage. 

Some experiments are being undertaken, in which in-vitro retinas are exposed to 
controlled stimuli and the response is recorded. Later, the data is matched and ana-
lyzed by using statistical and signal processing procedures [12]. 

3   Retiner: A Test-Bench for Retina Models 

Driven by the main lines described before, we have developed a software platform to 
easily define and test retina models. This is a program developed under MatlabTM that 
allows entering descriptions of retina models and observing the results of applying them 
to different inputs. The purpose is to offer the physicians and neuro-physiologists a test-
bench to essay retina models and check them against biological experimental data, spe-
cifically spiking neurons recordings obtained from natural retinas. 

The program, named “Retiner” [13], feeds from a variety of source images, ranging 
from static picture files in different standard formats (BMP, JPEG, PNG, TIFF…) to 
AVI video files, or even live-capture from any camera supported by the Microsoft® 
Video for Windows® driver (Fig. 2). 



A Computational Tool to Test Neuromorphic Encoding Schemes 513 

 

 

Fig. 2. A view of the Retiner program front-end, showing different choices for image 
and video input 

In the case of live acquisition, the input can be recorded for later matching analysis 
with the output. Some tests have been carried out with a logarithmic response camera. 
Common CCD or CMOS sensors, with linear response to light, get saturated in high 
contrast scenes, causing a loss of information at the entry point of the system, while in 
the case of logarithmic sensors, the proportional response to high illumination is 
lower than to dark parts of the image, allowing the camera to register dark and bright 
objects in the same frame. 

Whichever is the input, Retiner separates it into three-color planes corresponding 
to each kind of photoreceptors, whose gain can be selected independently. 

Over these color channels and the intensity channel we can design a set of spatially 
opponent filters to simulate the function of bipolar cells. This opposition between the 
center and the periphery of the receptive field of these cells is modeled with a differ-
ence-of-Gaussians filter. As our purpose is providing a general test-bench for retina 
models, we have decided to include different kinds of spatial filters like Gaussians, 
difference of Gaussians, laplacian of Gaussians and any user-defined expression that 
MatlabTM can compute. The convolution is the method used in these cases to apply 
the filter to the image. This operation involves a mask with the weighting factors for a 
pixel neighborhood. 

Retiner includes temporal filtering, which enhances image changes between con-
secutive frames, thus enhancing those parts of the scene where changes are taking 
place (due to external movement, ego-motion or both). The temporal enhancement 
takes as input two consecutive frames. Both frames are pre-processed to reduce noise 
through a parameterized gaussian blurring filtering. In any case, this previous filter is 
the same for both frames. 

It is possible to select a foveated processing for the temporal enhancement. In such 
a case, a circular region centered on the image keeps its values, and the rest of the 
pixel values are magnified or reduced (Fig. 3), so that the pixels out of the circular 
area are multiplied by an interpolated value. The radius of the fovea and the size of 
the mask are some of the parameters of this filter that can be varied. 

At this moment we are developing a new module to include into Retiner. This 
module works with two cameras simultaneously, taking advantage of the new Image 
Acquisition Toolbox included in MatlabTM 7.0 [14]. It approximates depth of the 
scene based on stereovision. 
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Fig. 3. Foveated processing shape for the temporal enhancement filter, which is emphasized in 
the periphery 

The relative distance to the objects in the scene is estimated by computing the dis-
parity between the positions of the same point when captured by both cameras. Dis-
parity can be translated into depth considering that points with smaller disparities are 
farther than points with greater disparities. The correspondence algorithm has been 
implemented and enhanced by including a preprocessing stage in order to adjust the 
cameras. This stage moves the images one over another and gets the global displace-
ment where differences are minimum. It has been included in the implementation 
because of the difficulty to comply the epipolar requirement [15]. The information 
obtained can be used to emphasize image areas where closer objects are present. Dis-
parity calculation is very expensive in terms of computing time, and is not able to run 
in real-time while in live capture for a software model of the retina. However, a hard-
ware implementation of the algorithm will achieve the required real-time processing. 

Using the output of the filters we must build an arithmetic combination, including 
some or all of them, in order to determine the relative importance of the information 
every one contributes with. 

Once we have computed the combination of the filters, the following step is defin-
ing the receptive field associated to each electrode of the array, that is, to determine 
the set of pixels in the image taking part in every electrode’s activity. The resolution 
we can obtain depends on the number of electrodes in the array and on the input  
image size. For example, with a given size of the image, reducing the number of elec-
trodes means an increasing amount of pixels activating it, and a lower resolution. In 
 

 

Fig. 4. Retiner user interface to select shape and size for the receptive field of every channel 
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our software different microelectrode array sizes, image sizes, and configurations can 
be selected for the receptive fields. 

Fig. 4 shows the tool designed for the receptive field setup. It allows the following 
shapes: variable height and width rectangles with any orientation, ellipses with axes 
of variable length, variable radius (center-periphery) circles, and variable size squares. 

The last two options allow us to model features present in the human retina, vary-
ing from the fovea, where the correspondence photoreceptor-ganglion cell is near 
one-to-one, to the outer areas of the retina, where a ganglion cell gathers information 
from a high number of photoreceptors. 

 

Fig. 5. Implementation scheme of the integrate-and-fire spiking neuron model, which applies to 
each component of the spatio-temporal filtered image (activity matrix) 

 

Fig. 6. Full-field flashing stimulation of a retina: (top) stimulus occurrences, (middle) in vivo 
recording from a rabbit retina, and (bottom) output of Retiner simulation for this stimulus 
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The function of the next stage is neuromorphic coding: translating activity levels of 
the electrodes into spike trains that the brain can understand. The implementation is 
based on an integrate-and-fire spiking neuron model including a leakage term (Fig. 5). 
Some parameters of this process may be configured, like the threshold each electrode 
must reach for producing a spike, the resting level after an event, and a leakage factor 
that decreases the accumulated value when no input is present. 

All the spike events produced in a simulation session can be stored in a text file for 
a later off-line graphical analysis. The file format is compliant with the NEV format 
from the BIONIC Technologies acquisition software [16]. At this window we also can 
study spikes generated in any in-vivo recording experiment. For the analysis we can 
display activity produced at the whole microelectrode array, or select some of them, 
when interested in a deep analysis on a certain area of the prosthesis (see Fig. 6). 

4   Discussion 

We have presented a new tool that assists neuroengineers in the design of retinal proc-
essing prosthetic systems. It has a high degree of flexibility due to the amount of 
parameters considered, and permits the simulation of processing of visual inputs, and 
the comparison of the spike-train outputs with records obtained in experiments with 
biological retinas. 
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Abstract. Address-Event-Representation (AER) is a communication protocol 
for transferring spikes between bio-inspired chips. Such systems may consist of 
a hierarchical structure with several chips that transmit spikes among them in 
real time, while performing some processing. To develop and test AER based 
systems it is convenient to have a set of instruments that would allow to: 
generate AER streams, monitor the output produced by neural chips and modify 
the spike stream produced by an emitting chip to adapt it to the requirements of 
the receiving elements. In this paper we present a set of tools that implement 
these functions developed in the CAVIAR EU project.  

1   Introduction 

Address-Event-Representation (AER) was proposed in 1991 by Sivilotti [1] for 
transferring the state of an array of neurons from one chip to another. It uses mixed 
analog and digital principles and exploits pulse density modulation for coding 
information. The state of the neurons is a continuous time varying analog signal.  

Fig. 1 explains the principle behind the AER. The emitter chip contains an array of 
cells (like, e.g., an imager or artificial retina chip) where each pixel shows a state that 
changes with a slow time constant (in the order of milliseconds). Each pixel includes 
an oscillator that generates pulses of minimum width (a few nanoseconds). Each time 
a pixel generates a pulse (called "event"), it communicates with the periphery and its 
address is placed on the external digital bus (the AER bus). Handshaking lines 
(Acknowledge and Request) are used for completing the communication. 

In the receiver chip the pulses are directed to the pixels or cells whose address was 
on the bus. This way, pixels with the same address in the emitter and receiver chips 
will "see" the same pulse stream. The receiver cell integrates the pulses and 
reconstructs the original low frequency continuous-time waveform.  

Transmitting the pixel addresses allows performing extra operations on the images 
while they travel from one chip to another. For example, inserting memories (e.g. 
EEPROM) allows transformations of images. 
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Fig. 1. AER inter-chip communication scheme 

There is a growing community of AER protocol users for bio-inspired applications 
in vision and audition systems, as demonstrated by the success in the last years of the 
AER group at the Neuromorphic Engineering Workshop series [2]. The goal of this 
community is to build large multi-chip hierarchically structured systems capable of 
performing complicated array data processing in real time. To make these objectives 
possible it is essential to have a set of instruments that would allow to: 

− Sequence: Produce synthetic AER event streams that can be used as controlled 
inputs while testing and adjusting a chip or set of chips. 

− Monitor: Observe the output of any element in the system. 
− Map: Alter the stream produced by an emitter and send the modified stream to a 

receiver  

For these purposes we have designed and implemented two different instruments: a 
PCI board capable of sequencing and monitoring events at a rate of over 15Mevents/s 
and a versatile board that can be used for sequencing, monitoring and mapping. This 
last board can be used either in a stand alone mode or connected to an external  
 

 

Fig. 2. AER tools usage scenario 
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computer through a USB bus. A possible scenario for these tools is shown in fig. 2 
where a computer with a PCI-AER board produces output for AER chip1. The output 
from this chip is remapped by a USB-AER board and fetched to AER chip 2. The 
stream produced by chip 2 is monitored by another USB-AER board which can send 
its output directly to a VGA monitor or to a computer through USB bus. 

2   Sequencing and Monitoring AER Events 

To be useful for debugging an AER tool should be able to receive and also send a 
long sequence of events interfering as little as possible with the system under test. 
Let’s start explaining the meaning of interfacing in the context. 

As neurons have the information coded in the frequency (or timing) of their spikes, 
the pixels that transmit their address through an AER bus also have their information 
coded in the frequency of appearance of those addresses in the bus. Therefore, inter-
spike-intervals (ISIs) are critical for this communication mechanism. Thus, a well 
designed tool shouldn’t modify the ISIs of the AER. 

The ISIs may be difficult to preserve depending on the nature of the emitter and/or 
receiver chips. Let’s suppose the case of having an AER emitter chip connected to an 
AER receiver chip, and we want to debug their communication. In principle, there are 
two possibilities: connecting to the bus an AER sniffer element, or to introducing a 
new AER element in between the emitter and the receiver. 

− The sniffer element will consist on an AER receptor that captures the address and 
stores it with a timestamp in memory for each request that appears on the AER bus. 
The problem in this case is that the speed of the emitter and receiver protocol lines 
could be faster than the maximum speed supported by the sniffer (15 ns per event 
in some existing chips), causing events to be lost. Another typical problem could 
be that the throughput of the AER bus (unknown in principle) would be so high 
that the interface memory cannot be downloaded to the computer’s memory on 
time. This also implies that events are lost. 

− The other possibility is to introduce a new AER element between the two chips. In 
this case the emitter sends the event to the AER element and the AER element 
sends the same event to the receiver chip. The problem now is that the new AER 
element will always introduce a delay in the protocol lines, and may also block the 
emitter if it is not able to keep up with its throughput. Therefore, ISIs are not 
conserved. But the behaviour will be the same than if we connect the emitter to a 
slower receiver.  

The throughput problem requires using very fast PC interfaces and the problem of 
very fast emitter or receiver protocols can be reduced by using a very high frequency 
clock for the stages that interface with the AER protocols. 

3   PCI-AER Interface 

Before the development of our tools the only available PCI-AER interface board was 
developed by Dante at ISS-Rome (See [2]). This board is very interesting as it embeds 
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all the requirements mentioned above: AER generation, remapping and monitoring. 
Anyhow its performance is limited to 1Mevent/s approximately. In realistic 
experiments software overheads reduce this value even further. In many cases these 
values are acceptable but, currently many address event chips can produce (or accept) 
much higher spike rates. 

As the Computer interfacing elements are mainly a monitoring and testing feature 
in many address event systems, the instruments used for these proposes should not 
delay the neuromorphic chips in the system. Thus, speed requirements are at least 10 
times higher than those of the original PCI-AER board. Several alternatives are 
possible to meet these goals: 

− Extended PCI buses. 
− Bus mastering.  
− Hardware based Frame to AER and AER to Frame conversion. 

When the development of the CAVIAR PCI-AER board was started, using 
64bit/66MHz PCI seemed an interesting alternative as computers with this type of 
buses were popular in the server market. When we had to make implementation 
decisions the situation had altered significantly. Machines with extended PCI buses 
had almost disappearing and, on the other hand, serial LVDS based PCI express [3] 
was emerging clearly as the future standard but almost no commercial 
implementations were in the market. Therefore, the most feasible solution was to stay 
with the common PCI implementation (32 bit bus at 33MHz) and consider PCI 
express for future implementations. Speed improvements, thus, should come from the 
alternative possibilities. 

The previously available PCI-AER board uses polled I/O to transfer data to and 
from the board. This is possibly the main limiting factor on its performance. To 
increase PCI bus mastering is the only alternative. The hardware and driver 
architecture of a bus mastering capable board is significantly different, and more 
complex, than a polling or interrupt based implementation. 

Hardware based frame to AER conversion doesn’t increase PCI throughput but, 
instead, it reduces PCI traffic. First some important facts have to be explained. It is 
well known that some AER chips, especially grey level imagers where pulse density 
is proportional to the received light intensity, require a very large bandwidth. This is 
also the case of many other chips when they are not correctly tuned. For example let’s 
consider a Grey level 128*128 imager with 256 grey levels. In a digital frame based 
uncompressed 25fps format, it would require a bandwidth of 128*128*25= 
0.39MBytes/s. The maximum requirements for an “equivalent” system that would 
output AER supposing the number of events in a frame period is equal to the gray 
level and considering the worst case where all pixels spike with maximum rate is: 

2bytes/event*256events/pixel*number of pixels/ frame period= 200MBytes/s 
The meaning of this figure should be carefully considered. A well designed AER 

system, which produces events only when meaningful information is available, can be 
very efficient but, an AER monitoring system should be prepared to support the 
bandwidth levels that can be found in some real systems. These include systems that 
have not been designed carefully or that are under adjustment. Currently the available 
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spike rates, even in these cases, are far from the value shown above but, some current 
AER chips may exceed the 40Mevents/s in extreme conditions.  

The theoretical maximum PCI32/33 bandwidth is around 133Mbytes/s. This would 
allow for approximately 44Mevent/s considering 2 bytes per address and two bytes 
for timing information. Realistic figures in practice are closer to 20Mbyte/s. Thus, in 
those cases where the required throughput is higher a possible solution is to transmit 
the received information by hardware based conversion to/from a frame based 
representation. Although this solution is adequate in many cases, there are 
circumstances where the developers want to know precisely the timing of each event, 
thus both alternatives should be preserved. 

Implementing AER to Frame conversion is a relatively simple task as it basically 
requires counting the events over the frame period. Producing AER from a frame 
representation is not trivial and several conversion methods have been proposed 
[4][5].  

The theoretical event distribution would be that where the number of events for a 
specific pixel is equal to its associated grey level and those events are equally 
distributed in time. The normalized mean distance from the theoretical pixel position 
in time to the resulting pixel timing with the different methods is an important 
comparison criterion. In [6] it is shown that, in most circumstances, the behavior of 
the methods is similar and, thus, hardware implementation complexity is an important 
selection criterion. From the hardware implementation viewpoint random, exhaustive 
and uniform methods are especially attractive.  

As a result of these considerations the design and implementation of the CAVIAR 
PCI-AER board was subdivided into a set of intermediate steps in which initially no 
mastering was implemented. Later Bus mastering was included and hardware based 
frame to AER conversion was included as a last step. 

 

Fig. 3. CAVIAR PCI-AER board 
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The physical implementation of all the steps is equal. They differ in the VHDL 
FPGA code and in the operating system dependant driver. The first design was a 
VIRTEX based board which was completely redesigned after the first tests. It was 
established that most of the functionality, demanded by the users, could be supported 
by the larger devices in the less expensive SPARTAN-II family. The Spartan Version 
of the board is shown in fig. 3. 

Currently a Windows driver that implements bus mastering is being tested. The 
Linux version with bus mastering is still under development. An API that is 
compatible, as much as permitted by the different functionality, with that used in the 
current PCI-AER board has been implemented. MEX files to control the board from 
MATLAB have also been developed. 

4   USB-AER 

The CAVIAR PCI-AER board can perform Address Event sequencing and 
monitoring functions but has no hardware mapping capabilities. Although software 
based mapping is feasible a specific device for this purpose is needed if we want to 
build AER systems that can operate without requiring any standard computer. This 
standalone operating mode requires to be able to load the FPGA and the mapping 
RAM from some type of non volatile storage that can be easily modified by the users. 
MMC/SD cards used in digital cameras are a very attractive possibility. However in 
the development stage the users prefer to load the board directly from a computer and, 
for this purpose USB seems the most suitable solution. 

Many AER researchers would like to demonstrate their systems using instruments 
that could be easily interfaced to a laptop computer. This requirement can also be 
supported with the USB-AER board as it includes a relatively large FPGA that can be 
loaded from MMC/SD or USB, a large SRAM bank and two AER ports. Thus the 
board can be used also as a sequencer or a monitor. Due to the bandwidth limitations 
of full speed USB (12Mbit/s) Hardware based event to frame conversion is essential 
in this board for high, or even moderate, event rates. 

Input Level Shifter

Output Level
Shifter

FPGA
512K X 32

SRAM
Micro Controller

MMC /
SD

AER IN

AER OUT

USB

 

Fig. 4. USB-AER Block Diagram 
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The USB-AER board is based around a Spartan-II 200 Xilinx FPGA, with a 
512K*32 12ns SRAM memory bank. The board uses a Silicon Laboratories 
C8051F320 microcontroller to implement the USB and the MMC/SD interface. A 
simple VGA monitor interface is also provided to allow the board to act as a monitor 
(frame grabber). A block diagram of the board is shown in fig. 4. 

The board will act as a different device according to the module that is loaded in 
the FPGA either through a MMC/SD card or from the USB bus. Currently the 
following Modes are implemented: 

− Mapper: 1 event to 1 event and 1 event to several events. 
− Monitor (frame-grabber): using either USB or VGA as output. 
− Sequencer: based on hardware frame to AER conversion using the Random or 

Exhaustive method.  

The power consumption is around 220mA (1.63W) working as random sequencer. 
And its size is 100x130 mm. 

Modules are under development to capture sequences of up to 512K events with 
timestamps and to play these sequences back. These modules are very interesting 
when a researcher wants to use the output stream produced by a chip from another 
researcher as input to his or her chip. 

This new board was interfaced in Telluride 04 [7] to the current version of the 
CAVIAR retina and to an imager developed at JHU. Later in the CAVIAR meeting in 
September 04 it was interfaced to the remaining project chips. The USB-AER board 
is shown in fig. 5. 

A simple interface to control this board is available under windows. It allows 
loading modules into the FPGA, uploading or downloading data to the FPGA, and 
showing the received images when the board acts as a monitor. 

 

Fig. 5. USB-AER Board 
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A Linux driver for the USB-AER is currently under test. With this driver the USB-
AER board can be easily integrated with several MATLAB applications developed at 
INI [8]. 

5   Conclusions 

A set of tools has been developed that allow efficient testing and demonstration of 
address event based systems. A demonstration scenario is shown in fig. 6. In this case 
a USB-AER board is generating a stream of events that correspond to the image 
shown in Fig. 6 in the laptop screen, which is rotated by a second USB-AER board 
used as a mapper to produce an AER event stream, which is captured by a PCI-AER 
board used as a monitor to produce the output shown in the desktop PC screen.  

In this scenario only the presented tools are shown. In real world cases the tools are 
used to evaluate or tune neural chips. In the CAVIAR project the chips have been 
interfaced to two different retinas, a convolution chip, a winner take-all chip and a 
learning chip. 

Although the AER protocol is asynchronous, the VHDL codes for both boards 
have been developed synchronously, due that both the PCI and the USB buses are 
synchronous. To avoid the metastability two cascade flip-flops have been used for the 
input protocol lines. 

 

Fig. 6. Demonstration Scenario 
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Abstract. This paper describes a tool devised for automatic design of
bioinspired visual processing models using reconfigurable digital hard-
ware. The whole system is indicated for the analysis of vision models,
especially those with real–time requirements. We achieve a synthesizable
FPGA/ASIC design starting from a high level description of a retina,
which is made and simulated through an ad-hoc program. Our tool allows
a thorough simulation of the visual model at different abstraction levels,
from functional simulation of the visual specifications up to hardware-
oriented simulation of the developed FPGA model. The main objective
of this work is to build a portable and flexible system for a visual neuro-
prosthesis and to stimulate efficiently an array of intra–cortical implanted
microelectrodes. A set of parameters can be adjusted in every step of the
design flow in order to maximize the design flexibility of the model. Fur-
thermore these parameters allow the different scientists who have to deal
with the development to modify a well known characteristic.

1 Introduction

Visual rehabilitation of vision impaired people is one of the major challenges
in biomedical engineering, and specially in the field of neuroengineering, more
oriented to the development of neural prosthetic systems. The work presented
here is being carried out within the EC project CORTIVIS (QLK6–CT–2001–
00279) (see [1]), which has as a main objective the development of a cortical
visual neuroprosthesis for the blind.

A project of this kind opens up a large interface where different sciences
must coexist and interact with the design of the visual system. We present a
work which deals with this large interface and performs a top–down design flow
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(see fig. 1) taking into account the plurality of sciences and different levels of
abstraction. Although available for a large number of computer vision schemes,
we focus our attention to the development of a visual bio–inspired neuropros-
thesis. The result is a general system for specification, simulation and testing of
general–purpose computer vision models.

1.1 Justification of the Selected Implementation

The huge computing requirements for real–time retina–like digital processing of
visual information forced us to work with the FPGA hardware technology in
order to achieve the required real–time specifications of a bio–inspired visual
system. FPGA technology allows an easy projection of a vision functional model
onto reconfigurable hardware platforms. This technology also brings the oppor-
tunity of modeling our particular system adapting the real biological parallelism
schemes for processing the visual information. The characteristics of a portable
neuro–prosthesis ask for a very configurable system able to be adapted to every
individual implanted. In that way, the possibility of changing the main process-
ing parameters of the final hardware system is very important to syntonize with
every patient peculiarity.

1.2 Modeling the Visual System

We have used Retiner (see [2]), a tool for modeling, simulating, testing and com-
paring vision models developed by some of the authors during the CORTIVIS
project. This program is primarily written in Matlab and allows us to test the
results of different computer vision models (therefore retina schemes) with many
types of inputs, from static images (in standard formats like BMP, JPEG, PNG,
TIFF, . . . ) up to live video (using a normal webcam) or a simple AVI video file.
The main purpose of Retiner is to offer the physicians and neuro-physiologists a
test-bench to essay retina models and check them against biological experimental
data.

Our work in this paper has been to adapt Retiner to be inserted in the top–
down design flow displayed in fig. 1, which spans from a functional specification
to a real hardware representation of the system.

2 Tool Description

The software structure of the tool is designed following a component model in
order to a better debugging and organization of every task. We present both,
the simulation and synthesis schemes of our tool. In this paper we focus our
attention in the medical purpose of the tool. We present the simulation and
synthesis schemes that are used to perform our tasks. Fig. 1 represents the
design flow that is being managed compared to the typical abstraction layers in
the design of integrated circuits area.

We start the design from Retiner which allows us to easily make high level
descriptions of image processing retina-like operations. Once we check that the
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Fig. 1. Typical design flow using our tool

design is giving coherent results, we can proceed to run the tool that is described
in this paper, to automatically obtain a hardware design in a standard descrip-
tion language (VHDL) that can be later used to program a real–time working
circuit implementing our design, by means of third party commercial FPGA pro-
gramming tools. The well–known AlphaData RC1000 PCI board, which contains
a VirtexE 2000 FPGA chip, is being using to test the tool.

2.1 Synthesis Tasks

Fig. 2 represents the synthesis scheme that follows our tool.
Another example of applications that allow a high level specification of a

system using Simulink blocks which can be translated into hardware can be
consulted in [3, 4].

This work is in the context of a larger translation strategy (see [5]) but in this
paper we are very interested in the way biomedical specialists from the project
CORTIVIS can obtain a suitable artificial retina in reconfigurable hardware.

From a retina–like description defined by Retiner in a mathematical way we
start the translation routines of our tool. After determining the desired mathe-
matical behavior of the retina, a certain number of spatio–temporal filters can
be selected to define any Matlab-compatible mathematical expression. Up to this
state of the work, a linear weighted combination of the filters can be properly
processed. The reference [6] can be considered for consulting the overall hard-
ware scheme. A typical class of filters used to mathematically describe retinal
functions is the Difference of Gaussians (DoG):

DoG(X1, X2, Q1, Q2)
∆= X1 ⊗Q1 −X2 ⊗Q2 (1)

where ⊗ indicates convolution, while Q1 and Q2 are two appropriate filter ker-
nels. The DoG operator is available in Retiner software. In this way a general
retina description could have this look:

F1 = DoG(R+G,B; . . .) (2)
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F2 = DoG(R+B,G; . . .) (3)
F3 = DoG(I, I; . . .) (4)

... (5)
Fn = DoG(. . .) (6)

Retina = a× F1 + b× F2 + c× F3 + . . . (7)

with R,G,B, I standing for red, green and blue color channels, I standing for
light intensity channel and a, b, c ∈ �.

The ellipsis stand for the necessary parameters that every filter function can
have; in this case every difference of gaussians filter (1 . . . i) will have σ1 and σ2

as the sigma parameter of every individual gaussian and a kernel mask of length
li standing for the convolution kernel length.

Any linear combination of R,G,B and I is allowed in the kernel of every
DoG. A more concrete example of a visual processing system is shown below

Model =
3
2
(4 DoG(2 R+G,B;σ1, σ2, l) + 2 DoG(2 R+G, 2 B;σ1, σ2, l)) (8)

This is the main entry point to our translation tool. As is represented in
fig. 2 this expression is given to the HSM–RI module, an application which
starts the synthesis process. This module adapts the mathematical expression
to minimize the hardware resources. The process is carried out by cancelling
unsuitable products and divisions, building a list of the hardware primitives
that will be generated taking into account which of them can be shared and
rewriting the expression on the hardware side.

Once the equation 8 has been processed, it becomes:

Model = 9 ·Gauss(I1;σ1, l)− 6 ·Gauss(I2;σ2, l)− 3 ·Gauss(I3;σ2, l) (9)

with I1 . . . I3 the different inputs of the modules.
A simplification and sharing of resources has been done. Further optimiza-

tions of the models are possible, depending on the hardware partitioning of every
individual primitive.

The corresponding scheme that is generated by the tool is shown in fig. 3. As
it can easily be understood there was no need to calculate twice the I1 signal, so
only one signal will feed the necessary primitives. In this context, eq. 9 involves
only 3 gaussians instead of the 4 which would generate eq. 8.

At last, HSM–RI commanded by CodeRetiner module generates a CodeS-
imulink [7, 8, 9, 10] Matlab script which makes the interface with the CodeS-
imulink libraries and is able to generate both a Simulink model and a VHDL
synthesizable project from its input. Every box in the Simulink–CodeSimulink
model has a dual in VHDL which does the same, although some boxes can be
hierarchical and join different boxes in a single one.

There’s a feed–back between CodeRetiner and Retiner in order to control the
process and enable a direct interaction in the synthesis flow. In this way, it is
possible to stop the flow in the generation of the Simulink model (from Retiner)
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for a full precision simulation and stop in the generation of the hardware oriented
Simulink model in order to perform a hardware simulation.

An interesting characteristic of the tool is the automatic selection of the most
appropiated digital hardware constraints in every VHDL module. This option is
carried out by calculating the dynamic range of every CodeSimulink box from
the model in successive simulations with different hardware variables (as the
datawidth).
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Table 1. HSM–RI processing steps

1. Syntax analysis of the expression (parsing).
- Evaluation of the syntax of the mathematical expression.
- Evaluation of the syntax of every individual function.

2. Signal extraction.
- Signals algebraic minimization.
- Deletion of unnecessary signals.

3. Expansion of the mathematical expression.
4. Reorganization of the computing primitives and signals.

- Inference of computationally lower cost functions.
- Rewritting of the expression with well–known block primitives.

The table 2.1 schematizes HSM–RI processing steps carried out by HSM–RI.

As an example of a quantitative measurement of our results, a retina–like
image processing system with the following characteristics:

- Parallel–Serial architecture.
- Custom made 8× 8 bits multipliers.
- Saturation in case of results exceeding the operand bit length target of the

next module.
- Three DoG filters which generate six (5× 5) convolution gaussian.
- External RAM access.
- Fixed point arithmetic.
- Final weighted sum of the three gaussian filters.

occupies the 31% (9465 slices) of a Xilinx VirtexE 2000 working up to 20Mhz.

2.2 Simulation of the System

Our tool is based on Matlab and Simulink (via CodeSimulink) to co–simulate
the system. In fact, the Simulink model calculated by Retiner can be used to
simulate the system. Three different simulation levels are allowed: The top level
simulation is carried out by Retiner, where a full precision simulation of the whole
system can be performed. Later, via the auto–calculated new model in Simulink,
two new simulations are possible, a full precision of the adapted model which
shouldn’t differ from Matlab one and a simulation based on the hardware which
will be inferred. The hardware simulation is performed using the CodeSimulink
libraries.

3 Conclusions

A tool for synthesis, co–simulation and co–emulation of hybrid software/hardware
general purpose vision systems has been presented. We have focused on the de-
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velopment of bio–inspired vision systems. The tool is capable of producing a
synthetizable VHDL model by interfacing with CodeSimulink libraries which is
ready to be used with a FPGA or other integrated circuit technology. We believe
that the top-down designing methodology is very useful considering the amount
of different sciences which have to do in the development of the final system. By
the meaning, this methodology dramatically reduces the design time and brings
a general sight of the evolution of the system (specifications, proposed model,
high–level simulation, hardware constraints, low–level simulation and synthesis).
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Abstract. Address-Event-Representation (AER) is a communications protocol 
for transferring images between chips, originally developed for bio-inspired 
image processing systems. In [6], [5] various software methods for synthetic 
AER generation were presented. But in neuro-inspired research field, hardware 
methods are needed to generate AER from laptop computers. In this paper two 
real time implementations of the exhaustive method, proposed in [6], [5], are 
presented. These implementations can transmit, through AER bus, images 
stored in a computer using USB-AER board developed by our RTCAR group 
for the CAVIAR EU project. 

1   Introduction 

Sivilotti in 1991 proposed a new communications protocol [1] to interconnect neuro-
inspired system, Address-Event-Representation (AER). The idea of AER is to provide 
an interconnection mechanism to communicate neuron-based chips. One neuron sends 
information to the next neurons layer sending pulses. The frequency of these pulses is 
proportional to the stimulus received by the neurons. 

In biological systems, neurons are connected by point to point connections. In 
silicon based systems when we want to connect neurons located in different chips, 
point to point connections are not feasible (each chip can implement thousands of 
neurons communicate to a similar number of neurons in other chips). As it is not 
possible to interconnect chips using the required number connections lines, AER tries 
to solve this using a time multiplexed high speed digital bus. 

An emitter chip, like a retina, is composed by cells that send pulse streams. The 
frequency of these pulses is proportional to the stimulus these cells are receiving. An 
arbiter combines all the streams and sends the address of the selected cell through the 
AER bus. At the receiver side, a decoder has to de-multiplex incoming events and 
send each event to the corresponding cell. This cell can integrate received pulses in 
order to reconstruct correct value. 

To properly synchronise devices attached to this bus, a simple asynchronous 
handshake protocol based in two signals is used: a request signal (REQ) driven by the 
emitter device, and an acknowledge signal (ACK) driven by the receiver. 

n
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     By connecting several AER devices, we can get a bio-inspired system able to make 
complex image or audio processing in real time. Many papers about AER have been 
presented like [2], [3], and [4]. 

In [5] and [6] some software methods to convert an image stored in a computer 
memory into an AER stream were proposed. AER system researchers need computer 
interfaces for testing and debugging purposes. On PCI based interfaces the bus 
bandwidth allows software to be used to produce individual events. If frame based 
videos have to be converted this can be done by software methods. This is not the 
case when using lower bandwidth USB connections, as in this case, it is necessary to 
transmit frames through the USB bus and perform frame to AER conversion in 
hardware. In this paper we present two hardware implementations of the Exhaustive 
method [5] [6] and we evaluate theirs behaviour.  

2   Exhaustive Method for Synthetic AER Generation 

The exhaustive method for synthetic AER generation has been presented in [5] and 
[6]. A. Linares-Barranco et al. present a software implementation of this method, this 
paper present two hardware implementations of the exhaustive method. Before 
presenting each implementation, let us see how the software exhaustive method is 
used to transmit an image through AER bus. 

The time needed to transmit an image is called frame period. This algorithm 
divides the period in K slices of NxM positions for an image of NxM pixels with a 
maximum grey level of K. This method is based on the idea that each possible event 
(with maximum of NxMxK per frame period) has assigned one fixed position in the 
address event sequence. In thus way, for the slice k, an event of the pixel (i,j) is sent 
on the time t if the following condition is fulfilled: 

KPKPk jiji ≥+⋅ ,, mod)(    and tjMikMN =+⋅−+−⋅⋅ )1()1(  (1) 

where jiP , is the intensity value of the pixel (i,j). 

 
 

 

Fig. 1. The event distribution made by the Exhaustive method 

The Exhaustive method tries to distribute the events of each pixel into the K slices 
at equal distances. 

Slice 1 Slice 2 Slice K Slice k 

… …

N.M.(k-1) (i-1).M+j 

P(i,j) 

t 

N.M.K 

N.M N.M N.M 
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3   “Modulus” Exhaustive Method Implementation 

The “modulus” implementation tries to emit each event as near as possible to the 
correct place. The idea of this implementation consists in dividing the period in slices; 
in each slice all the image is scanned. To decide if a pixel emits an event the 
following expression is used:  

* mod 256
i i

slice p p<  (2) 

where: 

 slice: is a counter which provides the slice number 
 Pi:  is the pixel value. 

This formulation is very similar to formulation presented in [7]. The 
implementation tries to distribute the events in the best way possible. But the division 
of the period is sufficient to put all the events in theirs correct place. The exhaustive 
method shares the events, minimizing the errors.  

Let us see a simple example of the exhaustive method approach. Consider an 
image with 8 grey levels, Table 1 shows how the method decides when a pixel has to 
emit an event. Columns represent grey levels (0 to 7) and rows represent slice; each 

cell is the value of * mod 8
i

window p , in dark is marked the slices where each event 

has to emit depending on its value. 
     Fig. 2 shows a diagram of the system, 

 

Fig. 2. “Modulus” system diagram 

The size of the slice counter and pixel value are given by the number of grey levels, 
so 

2
logsize K=  where K is the number of grey levels, usually K = 256. The size of the 

pixel address depends on the size of the image, thus 
2

_ log _size address size image= . 
For this implementation the size of the image is 1024 pixels. 
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Table 1. Events distribution using “modulus” exhaustive methods implementation with 8  
grey levels 

  Gray levels 
  0 1 2 3 4 5 6 7 

0 0 0 0 0 0 0 0 0 
1 0 1 2 3 4 5 6 7 
2 0 2 4 6 0 2 4 6 
3 0 3 6 1 4 7 2 5 
4 0 4 0 4 0 4 0 4 
5 0 5 2 7 4 1 6 3 
6 0 6 4 2 0 6 4 2 

Sl
ic

es
 

7 0 7 6 5 4 3 2 1 

4   “Bitwise” Exhaustive Method Implementation  

Bitwise implementation tries to get a very simple hardware approach to exhaustive 
method to minimize processing time and increase event rate. The idea of exhaustive 
method is to divide a frame time needed to send a whole image into slices. Each slice 
has a fixed time slot for each pixel. For a specified pixel, each slice has a slot and the 
number of slices that send an event is proportional to the bright level of the pixel. The 
distance between two events of a pixel should be constant. If a pixel has a value P, it 
should emit P times in K-1 slices (K is the number of values allowed, from 0 to K-1, 
so for 0 level no events are emitted and for K-1, events are sent it all slices).  

Bitwise implementation is based on a binary counter driven by a periodic clock signal. 
This binary counter is divided into two parts. The least significant part is used to address the 
pixel, and the most significant part is used as “slice counter” to identify a slice in a period. A 
full run of the whole counter last a period: (K-1)*N*M clock cycles).  

In order to determine if a pixel has to send an event, the slice number and pixel 
value have to be compared. If pixel level is greater than the bit-reversed slice counter, 
then the event has to be sent. This bit reversal is needed to homogenise event 
distribution. Bit reversal is very popular because it is used in FFT algorithm, and also 
in many ciphering algorithms to get maximum bit dispersion [8].  

Table 2. Events distribution using “bitwise” exhaustive methods implementation with 8 grey 
levels 

  Gray levels 
  0 1 2 3 4 5 6 7 

0 0 0 0 0 0 0 0 0 
1 4 4 4 4 4 4 4 4 
2 2 2 2 2 2 2 2 2 
3 6 6 6 6 6 6 6 6 
4 1 1 1 1 1 1 1 1 
5 5 5 5 5 5 5 5 5 
6 3 3 3 3 3 3 3 3 

Sl
ic

es
 

7 7 7 7 7 7 7 7 7 

As it is show in Table 2 for K=8, we have K-1 slices from 0 to K-2. For maximum 
grey level (value=7) all slices are used. For grey level 1 one by each 7 is used. A pure 
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binary counter will count one more slice, adding an additional empty slice because no 
pixel is going to be emitted during slice number. This additional slice decreases 
performance, increasing period by T/(K-1). This is not very important for high K values. 

The whole system design is shown in Figure 3: 

 

Fig. 3. "Bitwise" system diagram 

5   Implementations Comparison 

Both implementations have been programmed into board developed by RTCAR group at 
the University of Seville, called USB-AER board. USB-AER board has a FPGA that can 
be programmed for multiple applications. The implementations presented have been 
programmed in an USB-AER board in order to test their reliability.  

In order to evaluate how both methods distribute the events in [6], an error 
measurement method is presented. We use this test to evaluate both implementations 
of the exhaustive method. The mathematical expression of the error measurement is: 

_ eNormalized error
m

=  (3) 

where: 

1

ns

k

k

D d

e
ns

=

−
=  

1
2·( 1) (1 )me D

P
= − ⋅ −  with 1P ≠  

(4) 

ns is the number of samplers. 
D is the theoretical event distance 
d is the real event distance 
p is the pixel value 
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Fig. 4. Normalized error for “modulus” Exhaustive method implementation 

 

Fig. 5. Normalized error for "bitwise" Exhaustive method implementation 

The test consists in transmitting an image with all pixels set to zero except one. 
This pixel changes its value, in order to test how implementation follows the 
theoretical event distribution for each grey level. The images have 256 grey levels. 
Figures 4 and 5 present the error distribution for each implementation. 

Figure 4 and Figure 5 show, in solid line, the normalized error for “modulus” and 
“bitwise” hardware implementation respectively (taken 10 by 10 and power of 2 grey 
values); dotted line represents the theoretical implementation normalized error.  
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Both implementations present zero error when grey level is a power of 2, because 
in this case the period is divisible by these values. This is expected for all exhaustive 
method implementations. 

The main differences between both implementations are for low pixel values. 
While “modulus” implementation presents smaller errors than “bitwise” 
implementation, this last implementation is simpler, because it does not need to 
compute any multiplication. 

6   Conclusions 

Two hardware implementations of the exhaustive method are presented. These 
implementations make possible the interconnection between computers and neuro-
inspired systems, through an AER-BUS. Thus a computer can be used as an AER 
stream generator to develop other systems even with a relatively low bandwidth 
connection to the generator interface. This is typically the case of laptop computers 
with no PCI slots. 
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Abstract. In this paper, we propose a Parallel Genetic Algorithm
(PGA) based on a modified survival method and discuss its efficient
implementation. For parallel computation, we use a hybrid distributed
architecture based on the coarse-grain and fine-grain. Moreover, we pro-
pose a modified survival-based GA using tournament selection method.
To show the validity of a proposed PGA, we evaluate its performance
with optimization problems such as DeJong’s functions, mathematical
function, and set covering problem. In addition, we implement a PGA
processor with ALTERA EP2A40672F FPGA device. The experimental
results will be shown that proposed PGA remarkably improves the speed
of finding optimal solution than single GAP.

1 Introduction

The Genetic Algorithm (GA) is one of evolutionary algorithm based on phe-
nomenon of natural society and it has been known as a method of solving large-
scaled optimization problems with complex constraints. However, GA needs a
long computation time and has a local minima problem due to its iteratively
adaptive process and evolution mechanism. By this reason, the parallel and dis-
tributed processing of GAs are mainly employed in recent works for reducing
the evolution computation time [1,2,3,4]. In addition, the importance of hard-
ware implementation is increased to use in real applications such as large-scaled
optimization problems and real-time image processing [3,4,11]. Therefore, we
propose a hardware-oriented parallel GA based on a modified survival method
and discuss a its efficient implementation. To show the validity of the proposed
algorithm, we compare the proposed algorithm with the survival-based GA [5]
and design a target board with ALTERA EP2A40672F device for estimating its
performance with optimization problems such as DeJong’s functions, mathemat-
ical function, and set covering problem.

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 541–551, 2005.
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2 Parallel Genetic Algorithm

The PGA can be categorized to three types: global, coarse-grained and fine-
grained [6,7]. The coarse-grained algorithm has the advantage of simple parallel
architecture implementation because it can be realized with several same GA
processors. But it needs more concentration on designing data path to reduce
the hardware complexity. In case of global parallelism, it needs main controller
to take charge of scheduling the other processors. Such global method is more
efficient to control parallel system but it has the limitation of improving the
processing speed.

2.1 Proposed Parallel Genetic Algorithm

A proposed PGA is devised for efficient hardware implementation, which re-
duces the hardware complexity and increases the computational capability. For
this purpose, we improve the steady-state model using a modified replacement
method and propose a easily expandable architecture based on ring migration.
Our selection scheme is that population replacement occur whenever the off-
spring’s fitness is better than worse parent’s. It has improved the selection scheme
and the preservation of chromosome because the increment of chromosome with
high possibility to attain a optimal solution give pressure to converge the solu-
tion as fast as possible compared to random selection of survival based GA. In
addition, we modify an algorithm by adding migrator module for parallel and
distributed processing. The proposed algorithm is mainly divided into two parts
as below:

The Sequential GA Part: The proposed GA use a modified tournament selec-
tion and special survival condition. These enhanced selection algorithm is based
on the partial update model that continuously replaces the population by means
of update condition occurring, which the offspring’s fitness is better than worse
parent’s. The modified tournament selection only needs two chromosomes from
the population in order to generate two parents. On the other hand, the simpli-
fied tournament selection [11] needs four chromosomes. A worse chromosome of
two parents is compared to the best chromosome between two offspring and the
migrated chromosome from another processor. It selects better one between two
chromosomes and detailed selection algorithm is described below pseudo-code.

Migration Part of Hybrid PGA: The important parameters of migration are
migration interval, migration rate, selection method of migrating chromosome
and topology type. Because migration method of the proposed PGA is based on
the steady-state model [12] with tournament selection, migration interval of our
PGA is performed as each generation. In addition, migration rate and migrating
chromosome is continuously decided according to the proposed selection scheme.
To consider on the complexity of hardware implementation, proposed topology
for parallel architecture is basically organized with coarse-grained algorithm and
each coarse-grained PGA is connected to other coarse-grained PGA group like
fine-grained topology.
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Pseudo-Code of the Proposed PGA: The Pseudo-code for the proposed
parallel GA is following as

Procedure Parallel GA( ) Begin

1-- Initialize Population and Best_chrom and Parent_B
For I = 0 to Np-1 do

Chrom_data = Random(Ndata); Chrom_fit = Fitness (Chrom_data);
Chrom = Chrom_data & Chrom_fit; Population(I) = Chrom;

End For ;
Best_chrom, Parent_B = all bits is initialized by zero;

2-- Start Genetic Algorithm
While evolution(Best_chrom) do

3-- Select two chromosomes from population and decide parents
Chrom_A = Selection(Population(address = RNG(Npa)};
Chrom_B = Selection(Population(address = RNG(Npb)};
Parent_A = Max. of Fitness (chrom_A, chrom_B);
Parent_B = previous Parent_A;

4-- Decide Worse_data from two chromosomes using fitness value
Worse_adrs = Min. of Fitness (chrom_A_adrs, chrom_B_adrs);
Worse_fit = Min. of Fitness (chrom_A_fit, chrom_B_fit);
Worse_data = Worse_adrs & Worse_fit;

5-- Do Crossover and Mutation and evaluate a fitness
Crossover(A, B) = Choose[1-point, 2-point, uniform];
Mutation (A, B) = Choose[ single-point, multi-point]
Offspring_data(A, B) = Crossover(Parent_A, Parent_B);
Offspring_data(A, B) = Mutation (offspring_A_data, offspring_B_data);
Offspring_fit(A, B) = Fitness (offspring_A_data, offspring_B_data);
Offspring(A,B) = (offspring_A_data & A_fit, offspring_B_data & B_fit);

6-- Update a population after accept data from other GA
Migr_chrom_in = Migrator( other GA );
New_chrom = Max. of Fitness (offspring_A, offspring_B);
Migr_chrom_out = Max. of Fitness (offspring_A, offspring_B);

If New_chrom_fit > Worse_fit then
If New_chrom_fit > Migr_chrom_in_fit then

Population(Worse_adrs) = New_chrom;
Else Population(Worse_adrs) = Migr_chrom_in;

End if;
Else

If Worse_fit > Migr_chrom_in_fit then
Population(Worse_adrs) = Worse_data;
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Else Population(worse_adrs) = Migr_chrom_in;
End if;

End if
If New_chrom_fit > Best_chrom_fit then Best_chrom = New_chrom;
End if;

7-- Migrate data to other GA
If Migration=’1’ then

Migrator( Migr_chrom_out );
End if;

End While;

End procedure end.

As shown in above, we modified the random selection of survival-based GA to
the tournament selection. In case of the steady-state GA model, it just replaces
two previous parents with two offspring that generated by genetic operator. But
the proposed PGA model compare a worse chromosome of two parents with the
best chromosome among two offspring and the migrated chromosome from an-
other processor. And then, it selects better one between two chromosomes and
the probability of premature convergence increases relatively. This method only
needs two chromosomes from the population in order to generate two parents.
The proposed migration algorithm makes possible to interchange between pop-
ulations of processors. As this module accepts good chromosomes from other
processor, the entire average fitness value of population increased. As a result,
the proposed parallel GA has faster convergence speed finding optimal solution
than a single GA and it has merit that the probability of approaching optimal
solution is high.

2.2 Performance Estimation of Proposed PGA

We compare the maximum value of each chromosome’s fitness or the fitness
mean of population about each generation to estimate the performance of GA
and compare Goldberg’s Simple GA [5] with the proposed sequential GA using
MATLAB on Pentium PC (2.8 GHz). Because two algorithms have different up-
date model of population, we compare two algorithms in view of finding optimal
solution. The used fitness functions are DeJong’s function [5] and Royal-road
function [2] and Set covering problem (SCP)[13].

SCP: The SCP is a well-known combinatorial NP-hard optimization problem.
The SCP can be defined the problem of covering the rows of zero-one matrix by
a subset of the columns at minimal cost within m-row, n-column [13]. The SCP
is important to the minimization of logic circuit or the optimization of the re-
source selection problem. For experiment, we chose fitness function that obtains
minimal expression of Boolean function that composed of 19 rows 63 columns
with non-unicost. The objective is to find a minimum-sized set of rows whose
elements covered all of the 63 columns.
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DeJong’s Function: The used Dejong’s function [8] is

DeJong(1) : f(x1, x2, x3) =
3∑

i=1

x2
i xi ⊆ [−5.12, 5.12] (1)

DeJong(2) : f(x1, x2) = 100(x2
1 − x2)2 + (1− x1)2 xi ⊆ [−2.048, 2.048] (2)

DeJong(3) : f(x1, x2, x3, x4, x5) =
5∑

i=1

|xi| xi ⊆ [−5.12, 5.12] (3)

Mathematical Function Optimization: The used optimization function is

f(x) = 21.5 + x× sin(4πx) + y × sin(20πy) (4)

where 0 ≤ x ≤ 12.1, 4.1 ≤ y ≤ 5.8. It is the problem that finds the maximum
value in given range.

Experimental results by comparison of the speed finding optimal solution and
fitness mean of each algorithm are shown in Table 1. For experiment, population
size, mutation rate, crossover rate and mutation method are 256, 0.005, 0.7,
and 1-point respectively. We can show that proposed algorithm normally finds
optimal solution faster than that of Simple GA about 35%.

Table 1. Performance Comparison of Simple GA with Proposed GA

Simple GA[1] Proposed GA[2] [1]:[2]

Test Function No. of generation Time(s) No. of generation Time(s) Ratio(time)

DeJong (1) 37 8.772 1,070 7.023 1:0.80

DeJong (2) 868 152.393 11,069 82.083 1:0.54

DeJong (3) 67 25.909 1,694 15.504 1:0.60

Rayal-Road 552 122.530 12,914 90.353 1:0.74

SCP 18 2.194 704 1.236 1:0.56

3 Parallel Genetic Algorithm Processor

The effective hardware implementation of the PGA is to design an architecture
that realizes a compromise between the architectural complexity and the per-
formance of the PGA [4,14]. For this purpose, we divide into concurrent parallel
groups and each parallel group is connected with pipeline and control signals.

3.1 Pipelining and Parallelism

For parallel and pipeline architecture, it is important to divide into the con-
current and independent operation group based on the sequence of algorithm
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Fig. 1. Block diagram of the proposed parallel GAP

[8, 9]. As shown Figure 2, proposed PGA is divided to four parallel groups and
two single modules consist of six stages pipelining. Because each parallel group
has different computation time, we design pipelining architecture based on hand-
shaking protocol for continuous update of population. Also, this technique makes
it possible to achieve efficient computation because each parallel group can op-
erate independently by clock signal. The used parallelism for the hardware per-

Fig. 2. Pipelining operation in Six stages

formance is hybrid architecture with fine-grained and coarse-grained. In other
words, PGA execute concurrently with several sub processors that have sub pop-
ulation and one of sub processors can be export the population with the highest
fitness value to another coarse-grained processor groups. In proposed processor,
one or more than two modules evaluate the genetic operation of multiple indi-
viduals simultaneously because each module is designed as the pipelining based
on handshaking protocol. Also, we use multiple fitness function and selective mi-
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gration method for performing more efficient internal computation of processor
and eliminating the bottleneck of population interchange between processors.

3.2 The Modules of Parallel GAP

Selection Module: Because two parents are obtained by only two fetched indi-
viduals from memory in our PGA, the modified tournament selection method is
used for contributing to both a reduction of VLSI size and an increase of speed.
In addition, it makes the solution converge into the optimal one as fast as possible
because this scheme has higher selection pressure compared to random selection
of survival-based GA. As shown in Figure 3, the proposed selection module is
consisted of two major blocks which execute concurrently and it works as follow.
The left block chooses two individuals randomly from the memory and it obtains
better one between two individuals using a comparator, stores the tournament
winner in the two registers of current parent [A] and [B]. The register of current
parent [A] is replaced with the register of previous parent at the same time. As

Fig. 3. Hardware structure of Selection Module

a results, two parents is chosen for next step, which is crossover and mutation.
The right block computes the address of replacement and the fitness value of
worse individual and the address of the worse individual is selected by control
signal of multiplexer as shown in Figure 3.

Crossover and Mutation Module: The crossover and mutation module re-
ceives a selected pair of individuals A and B from the selection module, decides
whether to perform crossover and mutation based on random values sent from the
random number generator (RNG). This module has several methods of crossover
and mutation for the generality in various problems. In case of crossover, it pro-
vides the four methods such as 1-point crossover, 2-point crossover, uniform
crossover and no crossover. As shown in Figure 4, the crossover block is com-
posed of one comparator, two register (a,b) and i MUX boxes including two
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Fig. 4. Hardware structure of Crossover & Mutation Module

multiplexers. The i is the number of bits in the chromosome. In case of muta-
tion, we use the string method. The mutation block is composed of i two-input
XOR gates, i comparator and two register (m,n) as shown in Figure 4.

Survival Determination Module: This module selects the chromosome
among two offspring, worse parent, and the migrated chromosome from sub
processor. After that, the selected chromosome is stored in memory and re-
placed finally for upgrade of population. We use three comparators to update
chromosome and send migration chromosome to another processor.

Migrator Module: This module is a part of interface that takes charge of
the migration of chromosome from one processor to another. As result, migrator
module improve the speed of finding optimal solution and the average population
fitness because it doesn’t include the migrated chromosome unconditionally in
sub population but compares offspring after accepting the migrated chromosome.

Communication Topology: For parallel architecture, communication topol-
ogy is important to interconnect between sub processors. For efficient implemen-
tation of PGA, we use the ring type topology for the parallelism of coarse-grain
and it can be expanded to fine-grained topology. Basic unit (BU) is here defined
as a basic coarse-grained parallel GA group that is made up of some single GA
chips and connected to each other in ring form. One of GA in BU, GAP 1, is ex-
port to another BUs for fast evolution and easily expand to fine-grained parallel
GAP.
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Fig. 5. Communication Type

4 Performance Evaluation of Proposed GAP

For experiment, we design a test board with ALTERA EP2A40672F device and
proposed one parallel GAP occupies the 76% of 38400 logic elements. We com-
pare with software GA for the performance evaluation of the proposed hardware
GAP. Software GA is designed with C and executed on a Pentium PC (2.8
GHz). The used population size, crossover, and mutation probability is 256, 1,
and 0.055, respectively. Table 2 shows the comparison result between software
GAP and the proposed hardware GAP. The selection module of the proposed
hardware GAP performs 100 times faster than that of software. In addition,
crossover and mutation module is performed 100 times faster. Table 3 shows

Table 2. Software vs. Hardware (execution time per generation)

Operation Software[us] Hardware[us] 1:SW/HW

Selection 54.8 0.48(10) 1:114.2

Crossover & Mutation 54.8 0.48(10) 1:114.2

Fitness Evaluation 1587.2 0.57(12) 1:2784.5

1-Generation 1829.0 3.6(80) 1:508.0

SCP 1235800 749.4(21588) 1:1649.1

a comparison of the proposed single GAP (1-processor) and parallel GAP (2-
processor). In case of the software simulation of SCP, the single GAP obtained
optimal solution after performed 704 generations on average and the parallel
GAP just found it after 398 generations. In the hardware simulation, we exper-
imented with same device, same parameters condition for absolute comparison
with two processors. The used clock rate, population size, crossover method,
mutation rate and chromosome length are 25 MHz, 256, 1-point, 0.055, 19 bits
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Table 3. Proposed SGAP vs. Proposed PGAP

Proposed SGAP Proposed PGAP

(1-Processor) [1] (2-Processor) [2]

Software

Set-Covering Generation 704 398

Problem Time[us] 1235800 1749700

Ratio([1]:[2]) 1:0.706

Hardware

Set-Covering Generation 21588 10703

Problem Time[us] 749.4 325.8

Ratio([1]:[2]) 1:0.435

and the fitness function is the non-unicost SCP. This result also shows that the
parallel GAP finds optimal solution faster than that of the single GAP same as
software simulation result.

5 Conclusion

In this paper, we propose a Parallel Genetic Algorithm (PGA) based a modified
survival method and discuss its efficient implementation. Our design is based
on the steady-state model with modified tournament selection and special sur-
vival condition. Also, we propose a hybrid distributed architecture based on the
coarse-grain and fine-grain to achieve a highly efficient parallel computation.
The proposed hardware can be 500 times faster than software emulation on a
2.8 GHz PC. Also, the proposed parallel GAP (2-processor) can be increased
the speed of finding optimal solution by about 40% more than the single GAP.
Since it has shorter computation time, the proposed parallel GAP would be ap-
plied as a tool to get the optimal solution in various problems such a real time
processing, the speech recognition and computer vision.
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Abstract. This paper presents a strategy for the implementation of large scale 
spiking neural network topologies on FPGA devices based on the I&F 
conductance model. Analysis of the logic requirements demonstrate that large 
scale implementations are not viable if a fully parallel implementation strategy 
is utilised. Thus the paper presents an alternative approach where a trade off in 
terms of speed/area is made and time multiplexing of the neuron model 
implemented on the FPGA is used to generate large network topologies. FPGA 
implementation results demonstrate a performance increase over a PC based 
simulation. 

Keywords: SNN, FPGA, Hardware, I&F. 

1   Introduction 

Recent trends in computational intelligence have indicated a strong tendency towards 
forming a better understanding of biological systems and the details of neuronal 
signal processing [1]. Such research is motivated by the desire to form a more 
comprehensive understanding of information processing in biological networks and to 
investigate how this understanding could be used to improve traditional information 
processing techniques [2]. Spiking neurons differ from conventional artificial neural 
network models as information is transmitted by the mean of spikes rather than by 
firing rates [3-6]. It is believed that this allows spiking neurons to have richer 
dynamics as they can exploit the temporal domain to encode or decode data in the 
form of spike trains [7].   

Software simulation of network topologies and connection strategies provides a 
platform for the investigation of how arrays of these spiking neurons can be used to 
solve computational tasks. Such simulations face the problem of scalability in that 
biological systems are inherently parallel in their architecture whereas commercial 
PCs are based on the sequential Von Neumann serial processing architecture. Thus, it 
is difficult to assess the efficiency of these models to solve complex problems [8]. 

When implemented on hardware, neural networks can take full advantage of their 
inherent parallelism and run orders of magnitude faster than software simulations, 
becoming thus, adequate for real-time applications. Developing custom ASIC devices 
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for neural networks however is both time consuming and expensive. These devices 
are also inflexible in that a modification of the basic neuron model would require a 
new development cycle to be undertaken. Field Programmable Gate Arrays (FPGAs) 
are devices that permit the implementation of digital systems, providing an array of 
logic components that can be configured in a desired way by a configuration bitstream 
[3]. The device is reconfigurable such that a change to the system is easily achieved 
and an updated configuration bitstream can be downloaded to the device. Previous 
work has indicated that these devices provide a suitable platform for the 
implementation of conventional artificial neural networks [9, 10]. 

It is the aim of the authors current research to devise a strategy for the 
implementation of large scale SNNs on FPGA hardware. A primary objective of the 
research is to investigate how biological systems process information and as a result 
the system employs biologically plausible neuron models. Section two of this paper 
provides details on the SNN model used for the hardware implementation while the 
approach used to enable large scale networks to be implemented is described in 
section three. Results using this approach to implement a 1D co-ordinate transform 
application are detailed in section four while conclusions and future work are 
presented in section five. 

2   SNN Model Implementation 

Considerable research has been undertaken in developing an understanding of the 
behaviour of a biological neuron however there are less research results available on 
how large arrays of these interconnected neurons combine to form powerful 
processing arrays. The Hodgkin-Huxley spiking neuron model [11] is representative 
of the characteristics of a real biological neuron. The model consists of four coupled 
nonlinear differential equations which are associated with time consuming software 
simulations and would incur high “real-estate” costs when a hardware implementation 
is targeted [12]. Thus hardware implementations demand the application of a simpler 
neuron model. One such model is the Integrate-and-Fire (I&F) model which has been 
widely investigated by other researchers [12-14].  The model consists of a first order 
differential equation where the rate of change of the neuron, v, is related to the 
membrane currents. The I&F model used is,  
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The forward Euler integration scheme with a time step of dt=0.125ms was used to 
solve the I&F model equations. Using this method differential equation (1) becomes 
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and differential equation (3) becomes, 
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A description of the parameters from the above equations and the values used can be 
found in Table 1.  

Table 1. I&F Model Parameters 

Param Common Pyramidal Inhibitory Description 

mc  8nF/mm2   membrane capacitance 

lE  -70mV   membrane reversal potential 

thv  -59mV   threshold voltage 

resetv  -70mV   reset voltage 

refτ  6.5ms   refractory period 

j
delayt  0.5ms   propagation delay 

lg   1uS 1uS membrane leak conductance 

A  0.03125mm2 0.015625mm2 membrane surface area 
j

sE   0mV -75mV reverse potential of synapse 

j
sτ   1ms 4ms synapse decay time 

The hardware implementation employed a fixed point coding scheme. 18 bits 
were used to represent the membrane voltage (4), 10 bits of which correspond to the 
fractional component. The synaptic conductance (5), was implemented using 12 bit 
precision for the fractional component. Multiplicand and divisor parameters were 
chosen as powers of 2 so that they could be implemented using binary shift thus 
utilising a smaller amount of logic than what would be required by a full multiplier 
or divider.  

A biologically plausible Spike Timing Dependant Plasticity (STDP) algorithm, 
based on the Song and Abbott approach, was implemented in hardware to train the 
network[15-16]. Each synapse in an SNN is characterized by a peak conductance q 
(the peak value of the synaptic conductance following a single pre-synaptic action 
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potential) that is constrained to lie between 0 and a maximum value qmax. Every pair 
of pre and post-synaptic spikes can potentially modify the value of q, and the changes 
due to each spike pair are continually summed to determine how q changes over time. 
The simplifying assumption is that the modifications produced by individual spike 
pairs combine linearly. A pre-synaptic spike occurring at time tpre and a post-synaptic 
spike at time tpost modify the corresponding synaptic conductance by q  q + qmax 
F(∆t), where ∆t =  tpre + tpost  and F(∆t) is defined by 
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The time constants τ+ and τ- determine the ranges of pre- to postsynaptic spike 
intervals over which synaptic strengthening and weakening are significant, and A+ 
and A_ determine the maximum amount of synaptic modification in each case. The 
modification function for the STDP algorithm is shown in Fig. 1.  

 

Fig. 1. STDP Modification Function 

3   Large Scale Implementation 

Despite the computational simplicity of the I&F model there is still a limit to the size 
of network that can be implemented on an FPGA.  Consider the logic requirements to 
incorporate each SNN component on an FPGA as shown in Table 2.  

Using a fully parallel implementation the number of neurons that can be 
implemented on an FPGA is generally limited to the number of embedded multipliers 
provided. Further multipliers can be generated from the logic, however this is area 
intensive and rapidly consumes the remainder of the resources, leaving little logic to 
implement STDP synapses. The largest device in the Xilinx Virtex II series of FPGAs  
is the XC2V8000 device which consists of 46,592 slices and 168 embedded 
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                                          Table 2. SNN Logic Requirements 

SNN Component Slices Embedded Multipliers 
Synapse 33 0 
STDP Synapse 106 0 
Neuron 63 1 

multipliers. Therefore using an STDP synapse to neuron connection ratio of 1:1 a 
total of 168 neurons and 168 STDP synapses could be implemented on a XC2V8000 
device (using approximately 60% of the available resources for functional circuitry). 
Increasing the connection ratio of STDP synapses to neurons to a more realistic ratio 
of 10:1 enables a network consisting of 41 neurons and 410 synapses to be 
implemented. Finally using a more biologically plausible ratio of 100:1 indicates that 
the largest size network that could be implemented would be 4 neurons and 400 
STDP synapses. 

Utilising this fully parallel implementation with a clock speed of 100 MHz and a 
Euler integration time step of 0.125ms per clock period, a 1 second real time period of 
operation could be completed in 0.8ms. This provides a speed up factor of 12500 
compared to real time processing. This compares very favourably with a software 
implementation where the data is processed serially and can take hours to run a 
several second real time simulation. The speed up factor indicates that there are 
possibilities for examining speed/area trade offs and determining alternative solutions 
that will lead to larger network capabilities. By partitioning the design between 
hardware and software a compromise can be made between the size of network that 
can be implemented and the computing speed. One approach is to use a controller that 
can time-multiplex a single neuron or synapse, which reduces the amount of logic 
required but increases the amount of time to compute. A flow diagram for this process 
is shown in Fig. 2. 

The program running on the processor loops through the number of neurons/ 
synapses to be computed. It reads the past time steps values for the neuron/synapse 
and sends them to the hardware component as inputs. The result of the hardware 
computation is read back and then written to RAM such that it can be used for the 
next time step computation. This approach has been adopted and a system has been 
developed which utilises the MicroBlaze soft processor core. MicroBlaze is a 32-bit 
soft processor core featuring a RISC architecture with Harvard-style separate 32-bit 
instruction and data busses. Synapse and neuron blocks are implemented in the logic 
along with the processor cores and can be accessed to perform custom SNN instructions 
for the processor.  An overview of the system developed is shown in Fig. 3. 

 
Fig. 2. Flow Diagram 
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Fig. 3. MicroBlaze Overview 

 

Fig. 4. Multiple Processor System 

The main component in the system is the MicroBlaze soft processor core. The 
program running on this processor is contained in the Local Memory Bus (LMB) 
Block RAM (BRAM) and is accessed through the LMB BRAM controller. The 
neuron/synapse/STDP blocks are implemented in the FPGA logic and accesses by the 
processor using the Fast Simplex Links (FSL) interface which are uni-directional 
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point-to-point communication channel busses. The neural network data for the 
network is then held in SRAM which is external to the FPGA device. This memory is 
accessed over the On-chip Peripheral Bus (OPB) via the OPB External Memory 
Controller (EMC). As the memory is synchronous a clock-deskew configuration using 
two Digital Clock Managers (DCM) blocks with a feedback loop ensures that the 
clock used internal to the FPGA and that for clocking of the SRAM chips is 
consistent. Additional memory is also made available to the processor in the form of 
additional BRAM which is also accessed over the OPB bus. Internal status of the 
network such as the synapse weights or output spike trains can be displayed on a host 
PC via the serial port which is provided by the OPB User Asynchronous Receive 
Transmit (UART). Finally the OPB MDM provides an interface to the JTAG 
debugger allowing the system to be debugged if problems arise. Multiple instances of 
the soft processor core can be instantiated on a single FPGA thus a degree of 
parallelism can be maintained in the network while a number of FPGAs can also be 
designated to operate in parallel. Thus the system can be extended by increasing the 
number of processors in the system as shown in Fig. 4.  

4   Co-ordinate Transform 

In order to test the system described in the previous section, a spiking network 
designed to perform one dimensional co-ordinate transformation was implemented. 
Co-ordinate transformation is used in the SenseMaker system [17], to convert arm 
angles of a haptic sensor to (x,y) co-ordinates. These co-ordinates are then used to 
generate a haptic image representation of the search space. A biologically plausible 
strategy was developed based on the principle of the basis function network proposed 
by Deneve et al [18] and was further extended by incorporating the STDP algorithm 
described in section 2 to train the network to perform the function y = x – c. 

An input layer with 100 neurons is fully connected to the output layer with 
synapses for which weights are determined by STDP. The training layer with 100 
neurons is connected to the output layer with fixed weights within a receptive field. 
The output layer receives spikes from both the input and the training layers during the 
training stage. Only the input layer is used during the testing stage. 

Using this approach a network was trained to perform the function y = x – 72°. A 
Gaussian distributed spike train was presented at each input neuron while a similarly 
distributed spike train was applied at the appropriate training neuron. For example if a 
spike train centred at neuron 50, i.e. 0°, was applied to the input layer, a spike train 
centred at neuron 30, i.e. -72° would be applied at the training layer. Using this 
approach for the complete network produced the weight distribution matrix as shown 
in Fig. 6. This figure shows, in a graphical manner, the value of the synaptic weights 
connecting the input and output layers converged after training has been completed. It 
can be seen that the weight distribution reflects the function itself, i.e. a shift y = x - 
72°. The figure shows the fixed weight interpretation of the synapse weights. As a 12 
bit coding scheme was used, the actual weight can be determined by dividing by 212, 
e.g. 48 ÷ 212 = 0.01171875.  
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Fig. 5. SNN Trained by STDP for y=x-c 

 

Fig. 6. Weight Distribution Matrix 
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After training, the network was tested by applying input spike trains and observing 
the output spike train produced by the network implemented on the FPGA. These 
tests indicated that the network possessed good generalisation capabilities, with an 
input spike train centred on neuron x, an output spike train could be observed centred 
on neuron  x – 72°. Fig. 7 and Fig. 8 display the input and output spike trains for one 
such test where an input centred at neuron 50 (0°) was applied and an output centred 
at neuron 30 (-72°) can be observed. These results were obtained from a single 
processor system as depicted in Fig. 3.  

Experiments have also been undertaken to evaluate the performance of the multi-
processor system when applied to the co-ordinate transformation application. For this 
experiment the network structure was divided up over the 4 processors, as depicted in 
Fig. 4, such that each processor was responsible for 25 of the 100 output neurons. 
Using this approach the weight matrices for the individual processors were obtained 
and are shown in Fig. 9. These individual matrices can then be combined to form the 
single matrix for the overall network depicted in Fig. 10. 

  

            Fig. 7.  Input Layer Spike Activity        Fig. 8. Output Layer Spike Activity 

  

     Fig. 9. Multi-Processor Weight Matrices                  Fig. 10. Combined Weight Matrix 

To test the maximum capability of this system the largest network possible was 
also trained on the FPGA system. The network structure consisted if 1400 input 
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synapses, training synapses and output synapses with each processor responsible for 
350 of these output neurons. In total there are 1,964,200 synapses and 4200 neurons 
for this network. The results obtained are the same as for the smaller versions of the 
network. 

The FPGA implementation for the experiments detailed in this section took place 
on the BenNuey system developed by Nallatech which provides a multi-FPGA 
platform. Two of the FPGAs in this platform were utilised for the 4 MicroBlaze 
system, an XC2V8000 and an XC2V4000 device. The platform can accommodate up 
to 7 FPGAs, thus this system could be extended further by configuring additional 
FPGAs in the system with additional processors. The times taken to perform a 1 
second real time simulation using the approaches above are shown in Table 3. 

Table 3. Simulation Performance 

Network Size PC (Matlab) 1 µBlaze 4 µBlaze 
100*100*100 2,917.2s 115.7s 27.2s 
1400*1400*1400 454,418s N/A 4,237s 

The multi-processor FPGA approach achieves a performance improvement factor of 
107.25 over the Matlab simulation which was implemented on a Pentium 4 2GHz PC.  

5   Conclusions and Further Development 

The results presented in this paper displays that the existing system is a viable 
platform for the implementation of large scale biologically plausible neural networks 
on FPGA devices. The current system outperforms a Matlab software simulation by 
over a factor of 100. Further improvements could be gained by increasing the number 
of processors in the system thus distributing the processing power and introducing a 
higher degree of parallelism. 

Further enhancements however have also been identified which may further 
improve performance of the system. It is a goal of this work to benchmark the 
MicroBlaze soft processor core against the PowerPC core which is integrated on 
Xilinx Virtex II Pro devices to determine possible gains from moving to this 
technology.  

The work to date has identified that the combination of multiple processor 
instances with dedicated SNN blocks interfaced to the processor can give 
performance gains over software simulations. A target of this work is also however to 
improve the performance of the system such that a large amount of neurons and 
synapses can be simulated on the FPGA system in real time. From analysing the 
implementations to date it has been identified that large portions of the network are 
regularly inactive for large periods of time. With the current approach however for 
each time step of the simulation each synapse and neuron value is computed 
regardless. A more efficient approach would be to only compute neuron and synapse 
when necessary, i.e. when input activity for that component is present. This event 
based simulation is the next stage of this work which aims to further improve the 
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computational performance of the hardware implementations.  Future work is also 
investigating the applicability of this platform to replicate the perceptual capabilities 
of humans which may demand networks of the order of 105 neurons and 108 synapses. 
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Abstract. Field Programmable Gate Arrays (FPGAs) are being used as 
platforms for the digital implementation of intelligent systems. Binary digital 
systems provide an accurate, robust, stable performance that is free from the 
drift and manufacturing tolerances associated with analogue systems. However 
binary systems have a much lower functional density than their analogue 
counterparts resulting in inefficient use of silicon surface area. A design for a 
novel Configurable Logic Block (CLB) is presented which retains the robust 
qualities of digital processing whilst providing increased functional density. 
The circuit design uses Si/SiGe Inter-band Tunneling Diodes (ITDs) and  
NMOS/CMOS transistors to create quaternary memory cells in a topology and 
architecture suited to the implementation of neural networks. The performance 
of the CLB is simulated in HSPICE and the results are presented. 

1   Introduction 

FPGAs are general purpose templates which can be programmed to carry out specific 
functions. Their re-configurable array based architectures and re-programmable 
functionality along with their on chip memory capabilities make them suited to the 
hardware implementation and training of neural networks. The robust, noise tolerant, 
accurate performance offered by FPGA-based digital systems is highly desirable but 
comes at a cost. In the context of neural networks, existing binary FPGA systems are 
inefficient in terms of functional density when compared to analogue 
implementations. On the other hand analogue systems suffer from the problems of 
drift and manufacturing tolerances which can have a negative effect on their 
performance. Combining the desirable qualities offered by analogue and digital 
systems requires the use of devices and signal systems that will offer increased 
functional density and robust, accurate performance. Normally, reduced feature sizes 
of transistors is the means by which increased functional density and capacity in 
integrated circuits are achieved. However, quantum devices known as resonant 
tunneling devices (RTDs) and the circuits based on them demonstrate an inherent 
increased functionality due to the Negative Differential Resistance (NDR) 
characteristics and the effect of the resulting current-voltage inversion.  
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This paper proposes a CLB design that uses a combination of RTDs and a Multi-
valued Logic (MVL) signal system, both of which have been shown to increase 
functional density in logic circuits [1,2]. As the CLB is the core functional element in 
FPGAs it follows that the functional density of neural networks implemented on these 
devices will be improved. The CLB design uses Si/SiGe inter-band tunneling diodes 
(ITDs) and NMOS transistors as the fundamental components because they possess 
characteristics that make them suited to use within a VLSI system such as an FPGA. 
The circuits that follow were simulated on HSPICE using models based on data 
obtained from manufactured devices. 

2   Neural Network Implementation in an FPGA 

FPGA based neural networks benefit from the robust and repeatable performance that 
binary systems offer. The reprogrammable nature of SRAM based FPGAs allows 
flexibility in circuit architectural configuration. However neural networks place a heavy 
demand on the resources of the devices. The diagram shown in figure 1 shows one method 
of implementing a neuron. As this represents a single neuron it illustrates the demands that 
would be placed on an FPGA realization of many neurons and several layers. 
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Fig. 1. Illustration of how a neuron could be implemented in an FPGA 

The diagram in figure 1 represents a single neuron but there will be a need for 
many of these in the vertical direction and two or more in the horizontal direction to 
allow input, output and hidden layers within the neural network architecture. The bit 
width and the number of inputs will be critical in determining how many of neurons 
can be created on the FPGA. The circuits proposed here offer the possibility of 
reducing the number of CLBs required to create a given neuron by using an MVL 
digital system instead of a binary system. Thus an MVL FPGA would retain the 
advantages offered by binary whilst increasing its functional density. 

3   ITD Characteristics 

The fundamental circuit component used in the designs presented in this paper is the 
ITD. The current voltage characteristics of ITDs display negative differential 
resistance due to the resonant tunneling effect that determines their behavior. 
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Fig. 2. (a) Typical I-V characteristic curve for an ITD (b) Load line depiction of a RTD series 
pair operation 

A typical I-V characteristic is shown in figure 2(a). This shows that a single device 
has three main regions: a positive-differential-resistance region (PDR1), a negative-
differential-resistance region (NDR) and a second positive-differential-resistance 
region (PDR2). The I-V curve demonstrates that the device has two positive stable 
states, one in PDR1 and one in PDR2.  

 

Fig. 3. I-V characteristics of a 3ITD stack with resistive load line running through stable points 

The simulated devices used in this research have characteristics that display a peak 
current when the bias voltage is 0.2 volts and a valley current occurs when the bias 
voltage is increased to 0.55 volts. When the devices are deployed in the TLGs the 
resulting high and low logic levels can be latched with a holding current of 
approximately Aµ30  or less. By connecting two RTDs in series and then applying a 

clocked bias to the series chain, one of the RTDs can latch to PDR2. The diagram in 

Load Line 

Stable points 

I-V Chars 
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figure 2(b) uses the load line of ITD1 to illustrate this. The ITD with the lowest peak 
current will latch to the stable point in its PDR2 region. The other ITD returns to the 
stable point in its PDR1 region. If this concept is extended so that there are three ITDs 
in series acting as drivers and transistor connected as a load it is possible to obtain a 
total of four stable states and this is illustrated in figure 3. By combining the stacked 
ITDs and the load transistor the characteristics are ‘stretched’ resulting in the four 
stable states becoming spread between 0.5 and 3.6 volts. The voltage level of each of 
the states can be assumed to represent a logic level in a quaternary system. These 
characteristics provide the core functionality for the circuits that are combined to 
create the MVL CLB design. 

4   Si/SiGe ITD Based Quaternary Memory Circuit  

The diagram shown in figure 4 shows the circuit diagram for the quaternary memory 
used in the CLB design [1]. The circuit operates off a clocked power supply and 
during the leading edge of the supply the amount of current flowing in the ITDs 
determines which device/devices will switch to their PDR2 regions. Any of the stable 
states shown in figure 2 can be latched to if the appropriate value of current is injected 
via the input transistor into the storage/output node of the driver ITDs. The value of 
the load resistor/transistor as a holding element is important as it must not by itself be 
capable of allowing any of the ITDs to switch, otherwise they would always do so at 
the leading edge of the clocked power supply. When the injection current is turned off 
the ITDs ‘hold’ in their various states due to the current provided via the load. The 
circuit was simulated using Si/SiGe ITDs and NMOS transistors. The performance in 
terms of stability and fan-in/fan-out capability under load conditions is greatly 
improved compared to III/V based device implementations.  
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Fig. 4. a) Quaternary memory cell with load transistor and a three ITD stack as driver b) 
Expanded view of 3ITD to show nodes between devices in the stack 

This is due to the isolation provided by the high impedance of the NMOS between 
input and output gate. Given also that the output node is likely to be connected to the next 
stage via the gate of an NMOS transistor the amount of current taken from the node is 
greatly reduced compared to a III/V based HFET resulting in stable circuit operation [3,4]. 
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The performance of the quaternary memory cell was assessed through HSPICE 
simulations by using the models developed for the ITD and NMOSFET from the 
measured data of manufactured devices. The input/programming and stored 
waveforms for the cell are shown in figure 5. The waveforms demonstrate the 
operation of the cell showing that there are four distinct logic states that can be 
latched to by input voltages that fall within a certain range. This very important 
quality means that a certain amount of input signal attenuation will be tolerated by the 
cell which is a requirement of devices and circuits within VLSI systems. These 
circuits have a rise time of 1 to 1.5 nS, and a power consumption of 91 µW. 
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Fig. 5. Input signals and stored logic levels for quaternary cell 

 

Fig. 6. Quaternary LUT architecture 

The quaternary cells were assembled first into groups of four to create a universal 
gate and then four of these were used in the design of a two input MVL look up table 
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(LUT). The LUT is the major component of the CLB proposed in this paper as it is 
the re-programmable function generator at the core of the design. The memory cells 
were accessed via NMOS transistor based multiplexers which were addressed using 
binary signals derived from radix conversion circuits based on literal gates with 
functions X03, X01 and Y03, Y01. The inputs to the conversion circuits comprised two 
MVL lines carrying radix 4 signals and the resulting outputs were 4 lines of radix 2. 
The circuit architecture shown in Figure 6 was simulated and was found to operate 
correctly when programmed with randomly chosen MVL functions.  

The simulated graphs shown in figure 7 show the waveforms at outputs of  the 
radix conversion circuits and output of the LUT. These confirm that he LUT is 
operating correctly by outputting the known function stored in the quaternary memory 
cells in the correct order for an input of two radix 4 variables incrementing from 00 to 
33 arithmetic order. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7. Output waveforms for the LUT and the radix conversion circuits 

5   Si/SiGe ITD-Based MVL CLB 

The MVL LUT is combined with an MVL latch (comprising a single quaternary 
memory cell) along with multiplexers to produce the MVL CLB shown in figure 7. 
The CLB provides the option of registered and unregistered output as well as choice 
of data source in. Its design has been kept relatively simple for the purposes of this 
research work and is intended to demonstrate the potential of MVL in FPGAs. The 
CLBs were simulated in an array based architecture and interconnected to each other 
to perform functions such as addition and multiplication as these are key 
mathematical processes associated with the implementation of neural networks.  

Both binary and quaternary LUTs are capable of representing 16 possible input 
variable combinations. In the binary case the number of potential input combinations 
will be 1624 === nrx  whilst in the quaternary case the number will be 

1642 === nrx .  However the functional capacities of the respective LUTs are very 
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LUT output 
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different as in the binary case the number of possible output functions is given by 
162 22

4

===
nrrN  and in the quaternary case this is 324 24

2

===
nrrN . In both 

cases 16 memory cells will be required to cover all the possible input combinations. 
Thus whilst it is true to say that a two-input quaternary LUT equates to a four-input 
binary LUT at their inputs the same is not true for the outputs of the systems because 
the quaternary LUT effectively stores two bits per cell. 

MUX

MVL 
LUT MVL inputs 

Control signal MVL 

MVL  Data in 

Radix 
Converter 

MUX

MVL
Latch

MVL  
outputsMVL LUT 

 

Fig. 8. Basic MVL CLB 

 

Fig. 9. Single input quaternary and two input binary cell 

Consider briefly the single-input quaternary LUT shown in figure 9 this is 
effectively a universal gate which allows a mapping of any quaternary input state to 
any quaternary output state.  This equates to two binary digits at both the input and 
output. In that case it’s clearly possible to get two completely different single digit 
functions out for each two-input combination albeit in radix 4 numbers. So for 
example if MVL state ‘2’ is placed at the input this equates to binary digits ),( 21 xx  

i.e. (1,0) and these two bits can be operated on simultaneously by completely different 
functions for example 0),( 21 =xxAND  and 1),( 21 =xxOR . Thus at the output the results 

of both operations can be represented by the quaternary number ‘1’ which equates to 
binary ’01’. To carry out the same operations using binary LUTs would require the 
parallel connection of two two-input LUTs. This implies, that by using MVL 
memory, reductions can be made not only in the number of lines required but also in 
the number of LUTs required for certain processing and a given level of functionality. 
Thus for architectures with highly parallel connection the number of binary CLBs 
used can be replaced by half the amount of quaternary CLBs whilst retaining the same 
functionality. This increase in functional density has many beneficial effects such as a 
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reduction in; device count, interconnection lines and interconnection resources. 
Alternatively the functional capacity of the FPGA could be doubled whilst using the 
same number of quaternary CLBs. Because neuronal circuits quickly use up resources 
when implemented on FPGAs, doubling the capacity of the device will make 
available twice the resources and hence increase its ability to deploy the neural 
networks. In terms of the area saved on chip this will be dependant on the physical 
size of the ITDs. However, if they can be stacked on the drain or source of a FET they 
will consume no area above that required for the transistor. The ITDs described are 
currently in micron dimensions as they are prototypes but these would be scaled for 
manufacture to fit within the drain/source of a transistor. The fabrication difficulties 
that this might create is outside the scope of this paper. 

6   Summary 

The resource intensive applications of neural networks quickly consume the 
functionality and connectivity of FPGAs. Thus it is necessary either to create FPGAs 
specific to the implementation of neural networks or to increase the resource 
capability of existing designs. A Si/SiGe ITD based MVL CLB design was presented 
that demonstrated an increase in functional density and a doubling of functional 
capacity for a quaternary system. All of the circuits presented were simulated and 
found to exhibit correct functionality and robust circuit operation. The inherent low 
complexity of ITD based circuits along with the MVL signal system were responsible 
for the gains in functional density and capacity. 
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Abstract. In this contribution, we describe a hardware platform for
evolving a fuzzy system by using Fuzzy CoCo — a cooperative coevo-
lutionary methodology for fuzzy system design — in order to speed up
both evolution and execution. Reconfigurable hardware arises between
hardware and software solutions providing a trade-off between flexibility
and performance. We present an architecture that exploits the dynamic
partial reconfiguration capabilities of recent FPGAs so as to provide
adaptation at two different levels: major structural changes and fuzzy
parameter tuning.

1 Introduction

Nature has long inspired scientists from many disciplines, but it is only very
recently that technology is allowing the physical implementation of bio-inspired
systems. Nowadays a non negligible part of computer science is devoted to build-
ing and developing new bio-inspired systems and most of them yield quite good
performance, but often even their creators do not know why and how such sys-
tems work since they perform opaque heuristics. Fuzzy systems are an exception
among these approaches since they might provide both good results and inter-
pretability of them. Nevertheless, the construction of fuzzy systems is a hard
task involving a lot of correlated parameters, which are often constrained to sat-
isfy linguistic criteria. Evolutionary algorithms fit well to such a task [4]. Fuzzy
CoCo is an evolutionary technique, based on cooperative coevolution, conceived
to produce accurate and interpretable fuzzy systems [3].

Three approaches to implement fuzzy systems exist: microprocessor-based
(or software), dedicated ASIC and FPGA-based solutions. Maximum flexibility
can be reached with a software specification of the full system; however, fuzzy
systems are highly parallel and microprocessor-based solutions perform poorly
compared to their hardware counterparts. Dedicated ASIC is the best solution
for achieving good performance, but such an approach dramatically reduces the
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adaptability of the system [1]. Finally, FPGA-based systems provide both higher
performance for parallel computation than software solutions and enhanced flex-
ibility compared to ASIC thanks to their dynamic partial reconfiguration (DPR)
feature [7]. They thus constitute the best candidate for evolving hardware. More-
over, their run-time reconfiguration features can be used to reduce execution time
by hardwiring computationally intensive parts of the algorithm [2].

In this paper we propose a hardware platform for evolving fuzzy systems
by using Fuzzy CoCo in order to speed up both evolution and execution while
offering equivalent performance. The rest of this section presents an introduc-
tion to Fuzzy CoCo and a brief description of dynamic partial reconfiguration
on FPGAs. Then, Section 2 describes our hardware platform. In Section 3 we
describe the genome used to encode our system. Section 4 presents the experi-
mental setup and results of the simulated platform. Finally, Section 5 contains
a discussion about the possibilities and limitations of the platform, gives some
directions for further work and concludes.

1.1 Fuzzy CoCo

Fuzzy CoCo is a Cooperative Coevolutionary approach to fuzzy modeling,
wherein two coevolving species are defined: database (membership functions,
MFs hereafter) and rule base. In Fuzzy CoCo, the fuzzy modeling problem is
solved by two coevolving cooperative species. Individuals of the first species
encode values which define completely all the MFs for all the variables of the
system. Individuals of the second species define a set of rules of the form:

if (v1 is A1) and . . . (vn is An) then (output is C),

where the term Av indicates which linguistic label of the fuzzy variable v is used
by the rule. The two evolutionary algorithms used to control the evolution are
instances of a simple genetic algorithm. The genetic algorithms apply fitness-
proportionate selection to choose the mating pool and apply an elitist strategy
with an elitism rate Er to allow a given proportion of the best individuals to
survive into the next generation. Standard crossover and mutation operators are
applied with probabilities Pc and Pm, respectively.

An individual undergoing fitness evaluation establishes cooperation with one
or more representatives of the other species, i.e. it is combined with individuals
from the other species to construct fuzzy systems. The fitness value assigned to
the individual depends on the performance of the fuzzy systems it participated
in. Representatives, or cooperators, are selected both fitness-proportionally and
randomly from the last generation since they have already been assigned a fitness
value. In Fuzzy CoCo, Ncf cooperators are selected according to their fitness and
Ncr cooperators are selected randomly from the population. For a more detailed
exposition of Fuzzy CoCo see [3].

1.2 Dynamic Partial Reconfiguration on FPGAs

FPGAs [5] are programmable logic devices that allow, by software reconfigura-
tion, the implementation of digital systems. They provide an array of logic cells
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that can be configured to perform a given logic function by means of a configura-
tion bitstream. Some FPGAs allow performing partial reconfiguration, where a
reduced bitstream reconfigures only a given subset of internal components. Dy-
namic Partial Reconfiguration (DPR) is done while the device is active: certain
areas of the device can be reconfigured while other areas remain operational and
unaffected by the reprogramming [7]. For Xilinx’s FPGA families Virtex, Virtex-
E, Virtex-II, Virtex-II Pro (applicable also for Spartan-II and Spartan-IIE) there
are two documented flows to perform DPR: Module Based and Difference Based.

With the Difference Based flow the designer must manually edit low-level
changes such as: look-up-table equations, internal RAM contents, I/O standards,
multiplexers, flip-flop initialization and reset values. A partial bitstream is gener-
ated, containing only the differences between the before and the after designs [8].

The Module Based flow allows the designer to split the whole system into
modules. For each module, the designer generates a configuration bitstream
starting from an HDL description and goes through the entire implementation
independently of other modules. A complete initial bitstream must be gener-
ated before partial bitstreams are generated for each reconfigurable module.
Hardwired Bus Macros must be included. These macros guarantee that each
time partial reconfiguration is performed the routing channels between modules
remain unchanged, avoiding contentions inside the FPGA and keeping inter-
module connections correct.

2 Our Evolvable FPGA Platform

The proposed platform consists of three parts: a hardware substrate, a compu-
tation engine and an adaptation mechanism, as described in [6].

The hardware substrate supports the computation engine. It must provide
good performance for real-time applications and enough flexibility to allow fuzzy
system evolution through the adaptation mechanism. The substrate must allow
to test different possible modular layers in a dynamic way. As aforementioned,
programmable logic devices such as FPGAs appear as the best solution because
they provide high performance thanks to their hardware specificity and a high
degree of flexibility given their dynamic partial reconfigurability.

The computation engine constitutes the problem solver of the platform. We
have chosen fuzzy systems due to their ability to provide not only accurate pre-
dictions, but interpretability of the results as well. Other computational tech-
niques such as filters, oscillators, or neural networks are not excluded. Further
details are presented in Section 2.2.

The adaptation mechanism allows to modify the function described by the
computational part. Two types of adaptation are available: major structural
modification and parameter tuning. We keep our architecture modular in order
to allow structural adaptation as described in detail in [6]. Herein, we concentrate
in parameter tuning.
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Fig. 1. Schematic of the evolvable fuzzy platform. The fuzzy architecture presented

at the bottom consists of three layers: (1) fuzzification, (2) rule-based inference and

(3) defuzzification. These blocks are described in detail in Section 2.3. The two grey

boxes on the top represent the boundaries of the two dynamically reconfigurable layers

defined for evolution purposes

2.1 The Adaptation Mechanism

In our architecture parameter tuning implies modifying lookup table (LUT) func-
tions. We used the Difference-based reconfiguration flow since only small modifi-
cations are performed. This choice provides two advantages: (1) minimization of
the reconfiguration bitstream size and hence the reconfiguration time and (2) al-
lowing the posibility of automatically generating the bitstream. To achieve that,
we created three hard macros using LUTs for each evolvable part of our platform:
the input MFs parameters, the inference rules, the aggregation configuration and
the output MFs parameters. By using hard macros location constraints, we can
locate each LUT and hence modify it by using Difference-Based reconfiguration
as described in [7]. As aforementioned, we use a coevolutionary approach, Fuzzy
CoCo, as adaptation strategy. Each Fuzzy CoCo’s species is thus implemented
as a dynamically reconfigurable layer (see Figure 1), which facilitates separate
evolution.

2.2 The Fuzzy Computation Engine

Our fuzzy architecture consists of three layers: fuzzification, rule-based inference
and defuzzification. Fuzzification transforms crisp input values into membership
values. The rule-based inference, which computes the firing of each fuzzy rule,
provides an activation level for one of the four output MFs. As several rules can
propose the same action – i.e. the same output MF – the output fuzzy values are
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aggregated by using an aggregation operator (e.g. maximum). Defuzzification
produces a crisp output from the resulting aggregated fuzzy set. We merge in-
ference and defuzzification into a single physical module since the latter is static.
Figure 1 shows a top level view of the platform.

2.3 Fuzzy Model Setup

Our implementation has 4 input variables with 3 triangular MFs each. The in-
ference layer contains 20 rules that take up to 4 fuzzy input values from different
input variables. The system is easily scalable with respect to the number of in-
puts or rules. For the sake of interpretability, we add a default rule, whose effect
is important when the other rules are not very active. In our implementation, the
default rule has a fixed activation level encoded by the genome. One of the most
commonly used defuzzification methods is the Center of Areas (COA), which is
computationnaly expensive since it includes division. We propose an iterative
method and the use of rectangular ouput MFs for this stage. More details on
these issues are provided below.

Fuzzification. Taking into account semantic criteria, consecutive MFs of a
given input variable are orthogonal [3]. The whole variable is thus defined by
means of three parameters, say p1, p2 and p3, defining the function edges as
shown in Figure 2. Each parameter represents a key point and is taken from
the LUTs. To compute the fuzzy membership value, we propose an iterative ap-
proach. The graphic and the pseudocode shown in Figure 2 describe an example
of fuzzification, for the second MF of a variable, of an input value between p2
and p3.

P1 P2 P3
pointer data

delta

f(pointer)

0

15

255

pointer = P2;

result = 15;

while pointer < data loop

pointer = pointer + delta;

result = result - 1;

end loop;

return result;

Fig. 2. Fuzzification algorithm: graphic representation and pseudocode. In the exam-

ple, the iterative procedure computes the resulting membership value, result, approxi-

mating the decreasing linear function with a decreasing counter

Rules. For maximum flexibility, we require rules to be able to include fuzzy
and and or operators (i.e. respectively minimum and maximum). As explained
in Section 2.1, we have created a hard macro that uses only LUTs to compute
any combination of and and or operators on 4 fuzzy values chosen among 16
input values. Figure 3 shows an implementation of the minimum between two
4-bit values a and b.
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S1 S2 S3S0

D1 D2 D3

V0 V1 V2 V3

a0   b0 a1   b1 a2   b2 a3   b3

min0 min1 min2 min3

Fig. 3. Implementation of a 4-bits minimum operator. Each rectangle represents a LUT

taking 4 bits as input. The macro is made up of three layers (D, S and V) and four

stages (one per bit). The layer D indicates to the next stage whether a decision can be

made. Once a decision is made, further D units transmit this fact. The layer S indicates

which value, a or b, is chosen by the multiplexer V

area = 0;

pointer = 0;

while area < totalArea/2 loop

pointer = pointer + 1;

area = area + aggr(pointer);

end loop;

return pointer;

Fig. 4. Rectangular defuzzification MFs and pseudocode for the second step of the

defuzzification algorithm. Note that, in the pseudocode, aggr() is a function that

returns the activation level of the current output linguistic value. Moreover, totalArea

was previously computed by the first step of the algorithm. The two steps differ only

in their end criteria

Aggregation. As mentioned before, the activation level of each output MF
corresponds to the aggregation of all the rules proposing such MF as output.
As shown in Figure 1, the maximum number of rules for each output MF is
five plus the default rule. However, we allow the merging of two consecutive
output MFs, which has the double effect of increasing the maximium number of
rules for the merged MF and decreasing the number of possible output MFs. For
example, very-low and low might be merged to constitute a single MF, called
low, by forcing them to have the same membership value. In that case, only three
output MFs are available instead of four. On the other hand, up to 10 rules plus
the default rule might use low as consequent.
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Defuzzification. In our architecture, we consider 4 rectangular output MFs,
as those shown in Figure 4. This form, intermediate between singletons and tri-
angular MFs, allows the use of an iterative algorithm to approximately compute
the center of areas. Although this method increases latency, it reduces logic and
can be efficiently pipelined. The defuzzification process is made up of two steps:
the first step computes the total area and the second one, illustrated by the
pseudocode in Figure 4, iterates until reaching half the total area.

3 Genome Encoding

Figure 5 illustrates our genome encoding. Individual 1 is used to define the
database of input MFs while individual 2 is used to describe the rule set and
output MFs. The i-th input variable is defined by three 8-bit parameters: Pi1,
Pi2 and Pi3 (Section 2.3). For purposes of simplicity, we have pre-assigned five
rules to each output linguistic value. The genome must describe the connections
between the input MFs and the rules. Encoding the k-th rule requires five pa-
rameters: four 2-bit antecedent values Akj to choose the applicable MF and one
one-bit value tk for the type of operator. The default rule is encoded by two
parameters: one 4-bit value dr for its activation level and one 2-bit value dra for
its consequent. The aggregation needs four 2-bit parameters Ml with l = 1, 2, 3, 4
that indicate the value to be chosen for each output linguistic value among the
original and the merged results (Section 2.3). The output MFs are completely
encoded by three 8-bit values Po1, Po2 and Po3 that represent their boundaries
(see Figure 4). The genome of the first individual, encoding 4 input variables, is
96 bits long. The genome of the second individual, encoding 20 active rules, the
default rule, 4 aggregated MFs and an output variable, is 218 bits long.

Fig. 5. A schematic view of the genome describing the controller

4 Platform Simulation and Results

4.1 Setup

The experimental setup consists of two parts : (1) a Matlab simulation of the
migration of a fuzzy system individual (FSI) from software to hardware imple-
mentation, (2) a Matlab simulation of the evolved hardware implementation.

Migration of an FSI from software to hardware implementation: by using Fuzzy
CoCo evolution, we ran 50 evolutions using the software fuzzy system in order
to generate 50 FSIs using at most 10 rules. Then, we compared performance of
both the hardware and the software fuzzy system for all these individuals.





580 G. Mermoud et al.

Table 1. Comparison between software and hardware implementation performance

for the same individual. The best and worst cases are given according to the hardware

performance in comparison with the software using the same individual. 50 trials were

performed

Software Hardware Loss

Mean 97.6 89.5 8.31
Best 96.7 96.7 0.0
Worst 97.3 75.3 22.6
Std dev 0.9 6.3 6.6

Table 2. Comparison between evolved software and hardware implementation perfor-

mances after 100 generations. The best and worst cases are the overall best and worst

performances of both implementations. 48 trials were performed

Software Hardware Loss

Mean 97.6 97.4 0.14
Best 99.3 98.7 0.66
Worst 95.4 94 1.4
Std dev 1 0.9 1.14

5 Conclusions and Further Work

In this paper, we have presented a fuzzy hardware platform intended to be
evolved by using Fuzzy CoCo. We described the three parts of the platform: the
hardware substrate, the computation engine and the adaptation mechanism and
how they can be merged. We presented experimental results that show that our
platform can reach almost the same performance as a software implementation
of Fuzzy CoCo.

Our promising results have incited us to engage in further investigation of
this approach. We are currently pursuing three lines of research: (1) refining
the implementation in order to allow on-chip evolution, (2) implementing more
challenging applications, especially by increasing our platform size, (3) experi-
menting hybrid systems (e.g. fuzzy neural networks). An on-chip evolution would
require a processor inside the device being reconfigured, but it would make our
platform completely autonomous. Such a capability combined with a larger plat-
form would allow more challenging applications, especially in the robotics field.
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Abstract. This contribution presents the hardware implementation of a
neural system, which is a variant of a Hopfield network, modified to per-
form parametric identification of dynamical systems, so that the resulting
network possess time-varying weights. The implementation, which is ac-
complished on FPGA circuits, is carefully designed so that it is able to
deal with these dynamic weights, as well as preserve the natural paral-
lelism of neural networks, at a limited cost in terms of occupied area and
processing time. The design achieves modularity and flexibility, due to
the usage of parametric VHDL to describe the network. The functional
simulation and the synthesis show the viability of the design, whose re-
finement will lead to the development of an embedded adaptive controller
for autonomous systems.

1 Introduction

In contrast to software simulations, hardware implementation of neural networks
preserves parallelism and, besides, it allows for the construction of application
specific neural modules. On one hand, these neural circuits will outperform soft-
ware when attempting computationally intensive tasks, such as pattern recog-
nition. On the other hand, they can be successfully embedded in autonomous
robots, due to their reduced dimensions, weight and power consumption. Among
the architectures proposed for hardware implementation of ANNs, Field Pro-
grammable Gate Arrays (FPGAs) provide some advantages, such as rapid pro-
totyping, adaptation, reduced cost and simplicity of design [4]. However, until
a few years ago, FPGAs have been unable to reproduce the behaviour of ANNs
when the solution of complex, high-dimensional problems was attempted and
real-world tasks were involved. The difficulty to deal with a large number of
weights that must be stored as floating-point high precision real numbers was a
major weakness. Another drawback stemmed from the need of performing mul-
tiplications, a basic operation of neural processing. Only recent advances, such
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as the appearance of reconfigurable FPGAs [1], have considerably tempered the
impact of these limitations. Consequently, the study of implementation issues
is currently a worthwhile task that deserves further research [2], in order to
determine the viability of neural hardware systems.

The main aim of this work is ascertaining the feasibility of FPGA implemen-
tation of a recurrent neural system. The studied ANN is based upon continuous
Hopfield networks, which are modified in order to solve the problem of on-line
parametric identification of a dynamical system. The problem solution will con-
sist in an estimation of the parameters that appear as coefficients in the Ordinary
Differential Equations (ODEs) that model the system. This estimator is part of
a wider research project, which is intended to provide an embedded adaptive
controller of an autonomous robot, in the presence of uncertain and/or time-
varying environmental parameters. In this context, several observations suggest
that FPGA is a promising approach: i) concurrency, which is connatural to Hop-
field networks, is best reproduced by hardware implementation, when compared
to software simulations; ii) in general, the Hopfield networks that are applied
to parametric identification comprise a reduced number of neurons and, conse-
quently, the number of weights is not beyond the capabilities of current FPGAs;
iii) autonomous systems will often require an identification and control module,
which should be built on a small and light circuit, in order to permit its em-
bedding into the autonomous system. Despite these favourable properties, some
issues must be studied in order to implement the proposed architecture. An im-
portant difference of the neural estimator, compared to conventional Hopfield
networks, is the fact that its weights vary with time. This variability introduces
an additional difficulty with respect to other reported FPGA implementations
of ANNs, due not only to the architecture restrictions that are imposed, but
also to the eventual implications on the system convergence and stability. The
design that is here presented focuses on supporting time-varying weights, while
preserving as much as possible the natural parallelism of the network. The con-
struction of a working FPGA-based architecture will allow for determining the
practical convergence conditions of the estimator, depending both on the data
precision and the permitted processing speed. Then, these requirements can be
compared to those of the theoretical stability analysis [3], which was established
considering unlimited precision real numbers.

The rest of the paper is organized as follows. Section 2 concisely describes
the adopted model of the Hopfield network, which is the Abe formulation, and
its application to parametric identification. In Section 3, the architecture of the
network is presented, focusing on the constitutive elements of the design and
the degree of parallelism achieved. The VHDL description and the signal repre-
sentation format are presented in Section 4. The synthesis proceeds in Section
5, together with a discussion of the simulation and implementation results. Fi-
nally, Section 6 presents some concluding remarks on the main features of the
proposed design. The paper ends with a summary of the future directions of
research aimed at attaining an identification module that can be embedded in
an adaptive controller of an autonomous robotic system.
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2 Parametric Identification with Hopfield Networks

The Abe formulation [5] of continuous Hopfield networks has been shown to
provide promising results in optimization [6]. Its dynamics is defined by the
following systems of ODEs (see [7] and references therein):

d pi

d t
=
∑

j

wij sj − bi ; si(t) = tanh
(
pi(t)
β

)
(1)

where si is the state of neuron i and the value of β adjusts the slope of the hy-
perbolic tangent. In order to formalize the problem of parametric identification,
consider a dynamical system whose behaviour is modelled by an ODE, which we
assume to be linear in the parameters (LIP):

y = A (θn + θ) (2)

where both the vector y and the matrix A can depend on the states x, the
inputs u and the state derivatives d x

d t . The vector θ of parameters is unknown
and possibly time-varying, whereas an a-priori estimation θn is known. Despite
the restriction to LIP models, still Equation (2) comprises a wide variety of
nonlinear systems, in particular, in the context of robotics, since every rigid
mechanical system can be cast into the LIP form [8]. The problem of parametric
identification [9] can be defined as determining an estimation θ̂ that minimizes
the prediction error e = y −A

(
θn + θ̂

)
. Hence, identification can be regarded

as an optimization problem, whose solution is attained by the network given by
Equation (1), as long as the weights are defined as:

W = −A	A b = A	 Aθn −A	y (3)

The states s of the resulting network represent at each instant the obtained
estimation θ̂ (see [3] for further details).

The design process is illustrated with the implementation of a mechanical
system, namely an ideal single link manipulator, modelled by the following ODE:

y =
d2 x

d t2
= −g

l
sinx− v

ml2
d x

d t
+

1
ml2

u (4)

where x is the angular position, l is the manipulator arm length, v is the fric-
tion coefficient, m is the mass transported by the arm, u is the control torque
produced by a motor and g is the gravity, assumed constant. In order to cast
the model into the LIP form, the formal parameter vector θ is defined as:
(θn + θ)	 =

(
−g/l,−v/m l2, 1/m l2

)
. Then, the matrix A can be defined as

A =
(
sinx, d x

d t , u
)

so that Equation (2) holds. The corresponding neural estima-
tor comprises three neurons, since the size of the parameter vector is three.
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3 Digital Architecture of the Hopfield Network

This section describes the architectural design of the continuous Hopfield net-
work given by Equation (1) or, rather, its discretization by the Euler rule, as-
suming β = 1 for simplicity. Then, the model of the individual i-th neuron is
built upon the following components (Figure 1):

– A memory component (RAM) where the values of the synaptic weights are
stored. At this stage of the design, the calculation of the weights according
to Equation (3) is performed by an external software module.

– A Multiply-Accumulate (MAC) component that computes the weighted sum∑
wij sj . The weights wij that correspond to successive values of j are se-

quentially presented by appropriately addressing the RAM, whereas the cor-
responding states sj are selected by a multiplexer from the output vector.

– A subtracter component that computes the difference between the result of
the MAC and the bias signal bi.

– A multiplier component that computes ∆t times the result of the subtracter.
– An accumulator component that adds the result of the preceding multipli-

cation to the previous value of pi.
– A Look-Up Table (LUT) that implements the activation function tanh.

The usage of the MAC element results in a proper trade-off between cost and
processing speed. On one hand, it provides a substantial saving of hardware,
compared to a completely parallel computation of the weighted sum. On the
other hand, a reasonable degree of parallelism is preserved, since the number of
neurons is moderate in our application.

RAM
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S
u

b
s
t
r
a

c
t
o

r
 

Multiplier

A
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u
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r
 

Look 

up

Table

Fig. 1. Hardware model of an individual neuron

The whole network is constructed by joining several (three in our application)
neurons together, each of which is modelled as explained above. The global
architecture involves some remarkable peculiarities regarding the design of the
hardware Hopfield model:

– Only one MAC per neuron is used to compute the product sum.
– Each MAC has its own RAM where the weights are dynamically.
– The neurons of the Hopfield network perform their computations in parallel.
– Whenever a new computation is completed, corresponding to a ∆t time

advance, the outputs of the LUTs are serially introduced into each MAC.
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Fig. 2. Global architecture of the Hopfield network with three neurons

The resulting Hopfield architecture is schematically shown in Figure 2. This
architecture exhibits a high degree of parallelism and regularity. Besides, the
recurrence that is an intrinsic feature of Hopfield networks is implemented in a
natural way, contrarily to sequential software simulations.

4 VHDL Description of the Hopfield Network

In order to implement the architecture described in the previous section, a VHDL
program has been produced. The VHDL syntax is used at register transfer level,
since this style is best suited to the synthesis that is later performed. The de-
scription of our design is hierarchical, starting from the creation of a component
that models an individual neuron. Then, this modular component is replicated
so as to construct the architecture of the whole network. As stated above, the
component neuron comprises a RAM, a MAC, a subtracter, a multiplier, an
accumulator and a LUT. The VHDL description of a neuron is summarized in
Figure 3.a). The network consists of a set of neurons, together with a multiplexer
that selects the appropriate output for feedback at each cycle. In Figure 3.b) the
VHDL description of the network is sketched. In order to achieve design flex-
ibility, the word size (nb_bits) and the memories depth (nb_add) are defined
as generic parameters. The designer can adjust the performance of the network
simply by selecting different values.

The signals are coded as signed 2’s complement binary integers, as is usual in
FPGA-based (i.e. digital) implementation of ANNs. Actually, a virtual decimal
point allows for dealing with fixed-point rational numbers. The location of the
virtual decimal point can be decided by the designer, since it has no effect on
the mathematical hardware. For our application, a word length of 8 bits has
beenselected, reserving 3 bits for the fractional part, hence the signals have the
form SIIII:FFF, where S is the sign bit, I is an integer bit and F is a fractional
bit.
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entity neuron is

-- word size

generic ( nb_bits:integer );

port ( wr1, ... );

end neuron;

architecture neuron_description

of neuron is

component RAM

generic( nb_add:integer;

nb_bits:integer );

...

component MAC ...

component Subtracter ...

component Accumulator ...

component LUT

generic( nb_add:integer;

nb_bits:integer );

...

component Multiplier ...

...

entity network is

generic ( nb_bits, k:integer );

port ( clk, ... );

end network;

architecture network_description

of network is

component neuron1 ...

component neuron2 ...

component neuron3 ...

component mux_8

generic( nb_bits:integer;

k:integer );

...

a) b)

Fig. 3. Structure of the VHDL description of: a) one neuron; b) a Hopfield network

with three neurons

5 Synthesis and Simulation

In order to perform the synthesis correctly, the network must be simulated until it
meets the functional specifications. With this aim, the Modelsim SE PLUS 5.7g
simulator of Modeltech is used. The success of the functional simulation is il-
lustrated by the resulting chronogram, which is partially shown in Figure 4.
Once the functionality has been verified, the VHDL-RTL code is used as a
source for synthesizing the proposed architecture, by means of the synthesis tool
XILINX ISE 6.3i. The Xilinx Virtex family is used as the target technology.

A summary of the synthesis results is reproduced in Table 1. The most usual
flaws of FPGA implementations stem from the reduced area and the limited
frequency. In our neural network, the percentage of used components is small,
except for the number of input/outputs. When considering the eventual scaling
of the circuit, it is remarkable that the number of neurons will not grow dra-
matically in usual applications, due to the way the identification method has
been designed. However, the simulation results still deserve further analysis in
order to determine whether the discretization errors are too severe, since real
values are stored as fixed-point numbers. If the precision has to be incremented,
eventually a more advanced FPGA family should be used. Contrarily, frequency
does not seem to be a significant issue and the permissible frequency is valid for
most applications.
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Neuron 1

XXXX 0000 0001 0010 0000 0001 0010 0011 0100 0101 0011 0100 0101 0110 0111 0101 0110 0111 0101 0001 0000 0010 0001 0000 0010 0

01111010 10000000 10001100 01111010 10000000 10001100 01111010 10000000 10001011 01111010 10000000 10001011 0

XXXXXXXX 01111000

00000000 11111111 00000000 00000111

Neuron 2

10000000

XXXX 0000 0001 0010 0000 0001 0010 0011 0100 0101 0011 0100 0101 0110 0111 0101 0110 0111 0101 0001 0000 0010 0001 0000 0010 0

XXXXXXXX 10000000

00000000 11111111 00000000 00000110 11111011

Neuron 3

10001100 10000000 01101000 10001100 10000000 01101000 10001011 10000000 01101001 10001011 10000000 01101001 1

XXXX 0000 0001 0010 0000 0001 0010 0011 0100 0101 0011 0100 0101 0110 0111 0101 0110 0111 0101 0001 0000 0010 0001 0000 0010 0

XXXXXXXX 10010001

00000000 00000001 00000000 11111000 00000100

/neu_std_real/rst

/neu_std_real/clk

Neuron 1

/neu_std_real/wr1

/neu_std_real/add_ram1 XXXX 0000 0001 0010 0000 0001 0010 0011 0100 0101 0011 0100 0101 0110 0111 0101 0110 0111 0101 0001 0000 0010 0001 0000 0010 0

/neu_std_real/data_ram1 01111010 10000000 10001100 01111010 10000000 10001100 01111010 10000000 10001011 01111010 10000000 10001011 0

/neu_std_real/i1 XXXXXXXX 01111000

/neu_std_real/s1 00000000 11111111 00000000 00000111

Neuron 2

/neu_std_real/wr2

/neu_std_real/data_ram2 10000000

/neu_std_real/add_ram2 XXXX 0000 0001 0010 0000 0001 0010 0011 0100 0101 0011 0100 0101 0110 0111 0101 0110 0111 0101 0001 0000 0010 0001 0000 0010 0

/neu_std_real/i2 XXXXXXXX 10000000

/neu_std_real/s2 00000000 11111111 00000000 00000110 11111011

Neuron 3

/neu_std_real/wr3

/neu_std_real/data_ram3 10001100 10000000 01101000 10001100 10000000 01101000 10001011 10000000 01101001 10001011 10000000 01101001 1

/neu_std_real/add_ram3 XXXX 0000 0001 0010 0000 0001 0010 0011 0100 0101 0011 0100 0101 0110 0111 0101 0110 0111 0101 0001 0000 0010 0001 0000 0010 0

/neu_std_real/i3 XXXXXXXX 10010001

/neu_std_real/s3 00000000 00000001 00000000 11111000 00000100

Fig. 4. Extract of the functional simulation results of the Hopfield network. Observe

the sequential MAC operation in three consecutive cycles

Table 1. Synthesis Results

Selected Device v100bg256-5

Number of Slices 446 out of 1200 37%
Number of Slice Flip Flops 300 out of 2400 12%
Number of 4 input LUTs 743 out of 2400 30%
Number of bonded IOBs 146 out of 184 79%
Timing Summary Minimum period 20.922ns
Maximum Frequency 47.797MHz
Maximum combinational path delay 14.550ns

6 Conclusions

In this paper, we present a successful FPGA synthesis for digital implementation
of Hopfield networks, modified to perform parametric identification. The main
feature of the design is the ability to deal with time-varying weights, whose
values are presented to the FPGA at predetermined intervals. The results of the
functional simulation support the design, proving that current FPGAs are able
to work fast enough to provide on-line solution to complex tasks. Besides, the
synthesis summary suggests that the area usage is moderate.

The main direction of future research is the analysis of the results provided by
the estimator along an extended time period. The aim is to determine whether
the convergence of the estimation is preserved despite both the limited precision
of the data representation and the approximated implementation of the transfer
function. On the other hand, the usage of more powerful FPGA families will
allow for including dedicated multipliers, as well as incrementing the bit length
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of data. The validation of these results will pave the way for the construction
of an adaptive controller, available for embedding into an autonomous robotic
system.
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Università di Palermo, Viale delle Scienze, I-90128, Italy

distefano@diepa.unipa.it, costantino.giaconia@unipa.it

Abstract. The architecture of a general purpose fuzzy logic coprocessor
and its implementation on an FPGA based System on Chip is described.
Thanks to its ability to support a fast dynamic reconfiguration of all
its parameters, it is suitable for implementing adaptive fuzzy logic algo-
rithms, or for the execution of different fuzzy algorithms in a time sharing
fashion. The high throughput obtained using a pipelined structure and
the efficient data organization allows significant increase of the compu-
tational capabilities strongly desired in applications with hard real-time
constraints.

1 Introduction

Fuzzy logic [1] based algorithms are extensively applied in a wide range of ap-
plications involving the treatment of imprecise data or management of complex
processes that can hardly described by a mathematical model. Fuzzy logic is
also viewed as a convenient method to embed knowledge of human experts in
applications. Some examples of the most advanced fields in which fuzzy logic has
gained an increasing success are the visual guidance of robots or autonomous
vehicles [2] [4], analysis of sensors data and data fusion techniques [5][6]; braking
systems and stability control in automotive environment [7]. Many of such appli-
cations require real-time processing capability in order to guarantee satisfactory
performances or even to meet basic safety requirements. To achieve this goal a
number of fuzzy logic processors have been proposed [8]-[10], as well as dedicated
hardware implementations [11]-[15]. The main disadvantage of these solutions is
their relatively low flexibility compared to a software implementation, since in
many cases fuzzy logic processors lack of general purpose computational capa-
bilities. Moreover, hardware implementations usually employ techniques, such
as the use of look-up tables to store the Membership Function (MF) shapes,
that prevent a fast modification of the fuzzy parameters. This makes difficult, or
even impossible, the execution of fast adaptive fuzzy algorithms, since to change
a membership function parameter (shape, position, base width, etc.) it is nec-
essary to compute all its values and to store them in the LUT memory at each
iteration [16]. To overcome all these weaknesses a new fuzzy coprocessor was de-
veloped, mainly intended to be implemented on FPGA-based Systems on Chip.
The coprocessor was optimized for the execution of fast adaptive algorithms, by
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Fig. 1. Rule word data format

minimizing the number of clock cycles required to changes MF and rules pa-
rameters. This capability can also be conveniently exploited to execute different
fuzzy algorithms in the same coprocessor, using a time shared scheme. In order
to achieve good speed performances a pipelined architecture was chosen, and
a convenient data organization was employed to minimize the communication
overhead with the main processor.

2 Coprocessor Architecture

The coprocessor was designed to be easily connected to a generic 32 bit processor
through the system bus. Its architecture and operations was chosen in order to
maximize its dynamic configurability as well as its generality. The coprocessor
works as a general purpose fuzzy logic controller provided with two 8 bit inputs
and one 8 bit output. It is possible to specify up to 16 membership function
(i.e. fuzzy subsets) for each of the two inputs. There is not a fixed rule matrix
as in other fuzzy processors, instead the rules to be evaluated are provided on
the fly by the processor along with input data. This approach, even requiring a
slightly increased CPU effort, results in an easier adaptation to different algo-
rithms and allows an enhanced ability to support adaptive algorithms employing
a dynamically changing set of rules. Each rule and input data are packed in a
32 bit word, and is passed to the coprocessor using a single bus transaction. The
word format is shown in figure 1. As it can be seen, rules format is inspired to
the usual linguistic form, in fact each word specify either the antecedent part of
the rule (the two crisp input and the index of the two membership function to
use), either the consequent part, consisting in an 8 bit value specifying the rule
output (as a fuzzy singleton).

Fig. 2. Architecture of the fuzzy coprocessor
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To effectively process the rules, the coprocessor has a pipelined structure
composed by the five stages shown in figure 2. A detailed description of opera-
tions and hardware implementation of the various stages is given in the following
subsections.

2.1 Membership Function Evaluation

In order to evaluate the rules premise, it is necessary to compute the degree of
membership of each input to a specified membership function. Many proposed
fuzzy processors make use of look-up tables to store membership function shapes.
Even if this approach allows to easily create arbitrary shaped functions, it has
some serious limiting factors: 1) it requires a significant amount of memory re-
sources (not always available in a System on Chip implementation); 2) it makes
difficult to quickly change the membership function characteristics; 3) usually a
maximum of two overlapping functions are allowed [9]. To overcome all these lim-
itations the proposed design employs a combinatorial circuit to evaluate on line,
and within a single clock cycle, the value of a membership function. Symmetric
triangular MFs are used, since they allow an efficient arithmetic computation
of their values, and each membership function can be completely described by
only two parameters (figure 3 left): its center, and its slope (that is inversely
proportional to the width of its base).

Fig. 3. Example of membership functions obtained varying the two parameter center

and slope (left). Structure of the membership function evaluation block (right)

Only these parameter are stored in a small RAM block (using only 16 word
of 16 bit), instead of the entire MF shapes. Using these data, MFs evaluation
blocks process 8 bit wide input data, and return an 8 bit degree of membership.
This is calculated using the following expression 1:

MF (x, c, s) =
{

255− |x− c| · s when MF > 0
0 when MF < 0

(1)

where x is the input, c is the center coordinate (8 bit), and s is the slope
(8 bit). This expression is implemented in hardware using an adder/subtractor,
an 8x8 bit multiplier and a clipping unit (figure 3 right). The coprocessor employs
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two separate membership function generators in order to evaluate concurrently
the degree of membership of the two input (figure 2). If the use of the 8x8 bit
multiplier is not convenient (e.g. it is not available or it requires too many logic
resources to be implemented) it is possible to use a 3 bit barrel shifter instead of
it. In this case only MFs with 8 possible slopes can be obtained. In most cases
this is not a serious limitation.

2.2 Rule Evaluation and Inference

Once the degree of membership of the two input is tested, the fuzzy AND is
computed applying the MIN operator to the two 8 bit membership values. The
output of the minimum block (Wi), representing the rule firing strength, is passed
to the next pipeline stage along with the rule output value (Ci, 8 bit). In or-
der to perform the inference and defuzzification process, all rules have to be
evaluated and the partial results accumulated. Since rule outputs are expressed
by fuzzy singleton (i.e. numerical values), it is convenient to employ the Fuzzy-
Mean (FM) aggregation/defuzzification method [17]. This implies performing
the aggregation together with the defuzzification process, without any addi-
tional cost. Partial products for the defuzzification stage are generated in the
third and fourth pipeline stages, which contain an 8x8 bit multiplier to evaluate
the product WiCi and two 16 bit accumulators to add up this product and Wi
respectively. The last pipeline stage computes the crisp 8 bit output by using the
Center Of Gravity (COG) defuzzification method. The crisp output is obtained
using the following formula:

O =
∑n

i=1WiCi∑n
i=1Wi

(2)

whereWi are the rule firing strengths, and Ci the rules’ outputs. For this purpose
a 16 bit integer divider, based on the serial restoring algorithm is used.

3 Pipelining

A pipeline structure was chosen and the various stages are built in order to
maximize the overall throughput. First of all the pipeline was balanced with
respect to the propagation delay of each block, thus maximizing the operating
clock frequency. This aspect is slightly influenced by the particular technology
used; the proposed solution takes into account an implementation in an FPGA
provided with embedded RAM blocks and multipliers. In order to exploit the
whole pipeline capacity a bus capable of performing a read or write operations
in a single clock cycle should be used. This condition is usually verified in most
of System on Chip buses, where pipelined or burst operations are supported.
Finally, the minimization of pipeline stalls needs an additional optimization of
the overall architecture. The last pipeline stage is represented by the integer
divider, that needs at least 16 clock cycles to perform a division, and is activated
only after all the rules have already been evaluated. From the other side the
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Fig. 4. Detailed pipelined operation

rules evaluation process usually requires a comparable number of clock cycles
to be completed, this condition suggests to split the first four pipeline stages
from the last one, hence obtaining two independent macro-stages. This simple
precaution makes possible to carry out the division while the next set of rules
are evaluating. The maximum throughput can be achieved when the number of
rules to be evaluated are exactly 16, in this case in fact there are not stalls in
the pipeline as showed in figure 4.

4 Data Organization and Programming

The coprocessor is programmed by means of simple ”load” and ”store” assembler
instructions or similar read or write operations directed to its memory mapped
registers (shown in figure 5).

Typically, the first operation performed by the CPU is the initialization of
MFs parameters. This is done by writing in the appropriate registers a 16 bit
words describing their centers and base width. Since a maximum of 16 MFs
per input can be specified, this phase requires a maximum of 32 instructions
to be performed (i.e. 32 clock cycles in most cases). This operation can also

Fig. 5. Memory map of the coprocessor registers
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be performed at run time and can even be directed to single MFs. Rules are
passed to the coprocessor with a single 32 bit write operation as discussed before.
Once the coprocessor receives a rule, it is immediately processed by the first
four pipeline stages, and the results accumulated. When all the rules have been
evaluated the CPU can start the divider unit to obtain the crisp output. A new
set of rules can be immediately evaluated, while the divider is still running.
The passed rules and their numbers depend on the particular fuzzy algorithm
executed: it is possible to have a fixed set of rules, repeated at each iteration
(changing the input values if needed); or a dynamic one, where the rules and their
numbers can vary according to some adaptive algorithm. Another interesting
possibility is to use the coprocessor to execute more than one fuzzy algorithm in a
time-shared manner. This can be useful in applications performing several tasks,
each requiring a different fuzzy algorithm (like the one found in automotive or
robotics field [2][7]). To switch from one fuzzy context to another it is necessary
to change the MF parameters and to use a different set of rules. This operation
can be performed in few clock cycles as discussed before, since it doesn’t require
the computation of new MF values and/or to update look-up tables content;
moreover, it can be implemented with compact and modular code. If the whole
number of MFs used is less or equal to 16 per input, it is even possible to store
all the parameters belonging to different fuzzy algorithms in the MF memory
at the beginning and only for once; and referencing the appropriate MF in the
rules simply by its index number.

5 Experimental Results

The coprocessor was described in VHDL language, and was implemented in
a Xilinx Spartan3-200 FPGA. This device is equipped with 1920 logic blocks
(slices), 216Kbit of internal memory, available as Block RAMs, and 12 embedded
18x18 bit multiplier. The design required about 267 slices (13%) and only 64 byte
of RAM. It was capable of running at a clock frequency of 73MHz, after a fully
automatic Place & Route process. The coprocessor was tested by implementing
it in a System on Chip composed by a Xilinx MicroBlaze 32 bit RISC processor
core [18], running at a clock frequency of 66MHz. The coprocessor was attached
to the CPU On-chip Peripheral Bus (OPB) [19]. Since the MicroBlaze processor
is a Harvard machine, it was configured to use the dedicated Local Memory Bus
(LMB) to access the instruction memory.

The system performances were tested measuring the execution time of an
ANSI C program (running on the MicroBlaze processor) implementing a generic
fuzzy controller, employing 3 MFs per input, and 9 rules. The execution time
was measured by means of an hardware timer, implemented on the system,
counting the clock cycles. The first test measured the execution time of a single
iteration of the basic fuzzy controller. The controller was implemented: a) in
software, using LUT-based MFs; b) in software, using the same arithmetic MF
evaluation algorithm used by the coprocessor; c) using the coprocessor. The
results are shown in figure 6. As it can be seen the number of clock cycles
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Fig. 6. Number of clock frequency required in the three experimental cases for the

standard (Test 1) algorithm, and the adaptive one (Test 2)

required using the coprocessor (c) are about 4 times smaller than the software-
only implementation (a). It has to be noted that the coprocessor would require
the same execution time even if the number of rules to evaluate where up to
16. A second test measured the execution time of the adaptive version of the
same fuzzy controller, where for sake of simplicity, only one MF was allowed to
change at each iteration. As expected the coprocessor allowed significantly faster
execution (from 10 to about 80 times). Interestingly, this spread could be greatly
increased in both cases, if the program is written in assembler instead of C: in
the above mentioned conditions it required only 31 to 35 clock cycles for each
iteration (i.e. about 0.4µs @ 66MHz).

6 Conclusion

We described the architecture and the FPGA implementation of an adaptive
fuzzy coprocessor. The experimental results shows a remarkable increase (up
to 1000 times) in the execution speed of an adaptive fuzzy algorithm, when
compared with an optimized software implementation. Finally, it is worth to note
that the proposed architecture is fully scalable in term of number of inputs by
linearly increasing the number of MFs evaluation blocks and slightly modifying
the control logic and/or the memory map.

References

1. L. A. Zadeh: ”Fuzzy sets”, Information & Control, vol. 8, no. 69, June 1965.

2. M. Elarbi-Boudihir, A. Rahmoun, D. Ziou: ”A fuzzy control system for visual
guidance of an autonomous mobile robot”, Proc. of the IEEE/IEEJ/JSAI Intl.
Conf. on Intelligent Transportation Systems, 5-8 Oct. 1999.

3. J. Urzelai, J.P. Uribe, M. Ezkerra: ”Fuzzy controller for wall-following with a non-
holonomous mobile robot”, Proc. of the 6th IEEE Intl. Conf. on Fuzzy Systems,
vol. 3, 1-5 July, 1997.



An FPGA-Based Adaptive Fuzzy Coprocessor 597

4. W. Li: ”’Perception-action’ behavior control of a mobile robot in uncertain envi-
ronments using fuzzy logic”, Proc. of the IEEE/RSJ/GI Intl. Conf. on Intelligent
Robots and Systems ’94, vol. 1, 12-16 Sept. 1994.

5. R.E. Gibson, D.L. Hall, J.A. Stover: ”An autonomous fuzzy logic architecture for
multisensor data fuzion”, Proc. of the IEEE Intl. Conf. On Multisensor Fusion and
Integration for Intelligent Systems, Las Vegas, 1994.

6. E. Benoit, L. Foulloy, S. Galichet, G. Mauris: ”Fuzzy sensor for the perception of
colour”, Proc. of the 3rd IEEE Conf. on Fuzzy Systems, vol. 3, 26-29 June 1994.

7. H. Eichfeld, A. Mertens, et al.:”Applications of SAE 81C99x fuzzy coprocessors”,
Proc. of the 1998 IEEE Intl. Conf. on Fuzzy Systems, vol. 1, 4-9 May 1998.

8. M. Sasaki, F. Ueno, T. Inoue: ”7.5 MFLIPS fuzzy microprocessor using SIMD and
logic-in-memory structure”, Proc. Of the 2nd IEEE International Conference on
Fuzzy Systems, vol. 1, 28 March-1 April 1993.

9. V. Salapura: ”A fuzzy RISC processor”, IEEE Transactions on Fuzzy Systems, vol.
8, no. 6, Dec. 2000.

10. H. Eichfeld, M. Klimke, et al. :”A general-purpose fuzzy inference processor”, IEEE
Micro, vol. 15, issue 3, June 1995.

11. T. Yamakawa: ”A survey on fuzzy information processing hardware systems”, Proc.
of the IEEE Intl. Symposium on Circuits and Systems, vol. 2 , 28 April-3 May 1995.

12. H. Watanabe, W. D. Dettloff, K. E. Yount: ”A VLSI fuzzy logic controller with
reconfigurable, cascadable architecture”, IEEE Journal of Solid-State Circuits, vol.
25, no. 2, April 1990.

13. D. Kim: ”An implementation of fuzzy logic controller on the reconfigurable FPGA
system”, IEEE Transactions on Industrial Electronics, vol. 47, no. 3, June 2000.

14. M. A. Manzoul, D. Jayabharathi: ”FPGA for fuzzy controller”, IEEE Transactions
on Systems, Man, and Cybernetics, vol. 25, no. 1, Jan. 1995.

15. S. Singh, K. S. Rattan: ”Implementation of a fuzzy controller on an FPGA using
VHDL”, Proc. of the 22nd Intl. Conf. of the North American Fuzzy Information
Processing Society, 24-26 July 2003.

16. J. M. Jou, P. Y. Chen, S. F. Yang: ”An adaptive fuzzy logic controller: its VLSI ar-
chitecture and applications”, IEEE Transactions on Very Large Scale Integrations
(VLSI) Systems, vol. 8, no. 1, Feb. 2000.

17. Jager, Ren ”Fuzzy Logic in Control” - Ph.D. thesis Delft University of Technology,
Department of Electrical Engineering, Control Laboratory, pp. 312. Delft, The
Netherlands. ISBN 90-9008318-9.

18. Xilinx Corporation, ”MicroBlaze processor reference guide”, version 3.2, April
2001.

19. IBM Corporation, ”On-Chip Peripheral Bus - Architecture Specifications”, version
2.1, April 2001.



Cascade Ensembles

N. Garćıa-Pedrajas1, D. Ortiz-Boyer1, R. del Castillo-Gomariz1,
and C. Hervás-Mart́ınez1

University of Córdoba,
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Abstract. Neural network ensembles are widely use for classification
and regression problems as an alternative to the use of isolated networks.
In many applications, ensembles has proven a performance above the
performance of just one network.

In this paper we present a new approach to neural network ensembles
that we call “cascade ensembles”. The approach is based on two ideas:
(i) the ensemble is created constructively, and (ii) the output of each
network is fed to the inputs of the subsequent networks. In this way we
make a cascade of networks.

This method is compared with standard ensembles in several problems
of classification with excellent performance.

1 Introduction

Neural network ensembles[11] are receiving increasing attention in recent neural
network research, due to their interesting features. They are a powerful tool
especially when facing complex problems. Network ensembles are usually made
up of a linear combination of several networks that have been trained using
the same data (see Figure 1, although the actual sample used by each network
to learn can be different. Each network within the ensemble has a potentially
different weight in the output of the ensemble. Several works have shown [11]
that the network ensemble has a generalisation error generally smaller than that
obtained with a single network and also that the variance of the ensemble is lesser
than the variance of a single network. If the networks have more than one output,
a different weight is usually assigned to each output. The ensembles of neural
networks have some of the advantages of large networks without their problems
of long training time and risk of over-fitting. For more detailed descriptions of
ensembles the reader is referred to [2] [14] [3] [10] [5].

Although there is no clear distinction between the different kinds of multinet
networks [7] [1] [6], we follow the distinction of [13]. In an ensemble several redun-
dant approximations to the same function are combined by some method, and in
a modular system the task is decomposed into a number of simpler components.

This combination of several networks that cooperate in solving a given task
has other important advantages such as [8] [13]:
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– They can perform more complex tasks than any of their subcomponents [15].
– They can make an overall system easier to understand and modify, as the

whole system is decomposed in smaller parts.
– They are more robust than a single network.

Fig. 1. Standard ensemble of neural networks

In most cases, neural networks in an ensemble are designed independently
or sequentially, so the advantages of interaction and cooperation among the
individual networks are not exploited. Earlier works separate the design and
learning process of the individual networks from the combination of the trained
networks. In this work we propose a framework for designing ensembles, where
the training and combination of the individual networks are carried out together,
in order to get more cooperative networks and more effective combinations of
them.

The design of neural network ensembles implies making many decisions that
have a major impact on the performance of the ensembles. The most important
decisions that we must face when designing an ensemble are the following:

– The method for designing and training the individual networks.
– The method of combining the individual networks, and the mechanism for

obtaining individual weights for each network if such is the case.
– The measures of performance of the individual networks.
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– The methods for encouraging diversity among the members of the ensembles
and how to measure such diversity.

– The method of selection of patterns that are used by each network to learn.
– Whether to include regularization terms and their form.

Techniques using multiple models usually consist of two independent phases:
model generation and model combination[10]. The disadvantage of this approach
is that the combination is not considered during the generation of the models.
With this approach the possible interactions among the trained cannot be ex-
ploited until the combination stage [8], and the benefits that can be obtained
from this interactions during the learning stage are lost.

However, several researchers[16][9] have recently shown that some informa-
tion about cooperation is useful for obtaining better ensembles. This new ap-
proach opens a wide field where the design and training of the different networks
must be interdependent.

In this paper, we present a new model for constructively making the ensem-
ble. Our basic aim is improving the combination of networks. In this way we
created an ensemble where the i-th network receives as inputs the outputs of the
i − 1 already trained networks. This ensemble is so-called cascade ensemble. In
this way, some of the ideas of the constructive cascade-correlation networks are
applied to ensemble construction [4].

This paper is organised as follows: Section 2 describes our model of cascade
ensembles; Section 3 shows the experimental results of our model and its com-
parison with standard ensembles; finally Section 4 states the conclusions of our
work.

2 Cascade Ensembles

The main advantage of cascade ensembles is that each time a new network is
added to the ensemble, that network knows the outputs of the previously trained
networks. In this way, the construction of the ensemble is not separated in two
stages: training and combination of the networks.

In the proposed model, each network tries to refine the classification car-
ried out by the previous models. For a pattern x the input to k-th network is
(x, y1, y2, . . . , yk−1), where yi is the output of network i (see Figure 2).

Cascade ensembles can also be defined in other ways that are under develop-
ment. The main advantages of this approach are:

1. The ensemble is made constructively. In this way, the complexity of the
ensemble can match the problem, as the addition of new networks can be
stopped when the required performance is achieved.

2. The stages of training and combination are not separated. The new networks
have the knowledge acquired by previous networks.

3. There is no need of an additional combination scheme and the subsequent
optimisation algorithm needed to set its parameters.
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Fig. 2. Cascade ensemble of neural networks

3 Experiments

The experiments were carried out with the objective of testing our model against
an standard ensemble. We have applied our model and standard ensemble method
to several real-world problems of classification. These problems are briefly de-
scribed in Table 1. These nine datasets cover a wide variety of problems. There
are problems with different number of available patterns, different number of
classes, different kind of inputs, and of different areas of application. Testing our
model on this variety of problems can give us a clear idea of its performance.

The tests were conducted following the guidelines of L. Prechelt [12]. Each
set of available data was divided into three subsets: 50% of the patterns were
used for learning, 25% of them for validation and the remaining 25% for testing

Table 1. Summary of data sets. The features of each data set can be C(continuous),

B(binary) or N(nominal). The Inputs column shows the number of inputs of the network

as it depends not only on the number of input variables but also on their type

Data set Cases Classes Features Inputs
Train Test C B N

Anneal 674 224 5 6 14 18 59
Glass 161 53 6 9 – – 9
Heart 202 68 2 6 1 6 13
Hepatitis 117 38 2 6 13 – 19
Horse 273 91 3 13 2 5 58
Pima 576 192 2 8 - - 8
Sonar 104 104 2 60 – – 60
Promoters 80 26 2 – – 57 114
Vehicle 635 211 4 18 – – 18
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Table 2. Results for the classification of the described problems for cascade and stan-

dard ensemble. For each problem we show the averaged training and test error, the

standard deviation, and the best and worst result

Problem Model Training Generalisation t-test

Mean SD Best Worst Mean SD Best Worst

Anneal Casc 0.0113 0.0140 0.0000 0.0460 0.0250 0.0122 0.0134 0.0580 –
Std 0.0064 0.0056 0.0015 0.0179 0.0106 0.0064 0.0015 0.0223 0.0000

Glass Casc 0.1201 0.0183 0.0870 0.1553 0.2692 0.0325 0.2075 0.3396 –
Std 0.1660 0.0147 0.1429 0.1925 0.2943 0.0236 0.2453 0.3396 0.0011

Heart Casc 0.1229 0.0102 0.0990 0.1436 0.1373 0.0156 0.1029 0.1618 –
Std 0.0726 0.0056 0.0545 0.0792 0.1539 0.0120 0.1324 0.1912 0.0000

Hepatitis Casc 0.0499 0.0129 0.0342 0.0855 0.1140 0.0222 0.0789 0.1842 –
Std 0.0051 0.0043 0.0000 0.0085 0.1289 0.0174 0.1053 0.1579 0.0054

Horse Casc 0.0223 0.0054 0.0110 0.0366 0.2934 0.0252 0.2527 0.3516 –
Std 0.0289 0.0036 0.0220 0.0330 0.3018 0.0160 0.2637 0.3297 0.1274

Pima Casc 0.2215 0.0086 0.2066 0.2500 0.2061 0.0196 0.1667 0.2552 –
Std 0.2218 0.0048 0.2118 0.2326 0.2049 0.0137 0.1823 0.2396 0.7819

Promoters Casc 0.0000 0.0000 0.0000 0.0000 0.1526 0.0189 0.1154 0.1923 –
Std 0.0000 0.0000 0.0000 0.0000 0.1538 0.0000 0.1538 0.1538 0.7109

Sonar Casc 0.0295 0.0182 0.0000 0.0577 0.1766 0.0137 0.1442 0.2115 –
Std 0.0000 0.0000 0.0000 0.0000 0.1779 0.0090 0.1635 0.2019 0.6703

Vehicle Casc 0.1546 0.0136 0.1276 0.1858 0.1919 0.0212 0.1517 0.2417 –
Std 0.1796 0.0072 0.1669 0.2016 0.1962 0.0190 0.1611 0.2464 0.4157

the generalization error. There is an exception, Sonar problem, as the patterns
of this problem are prearranged in two subsets due to their specific features.
The ensembles are made up by 10 networks, each one with 10 hidden nodes
with logistic transfer function. The training parameters for the back-propagation
algorithm are η = 0.01 and α = 0.01.

The training and generalisation results are shown in Table 2. The table shows
also the p-values of paired t-test for generalisation error. The results show that
the cascade algorithm performs better than standard ensembles in 7 problems
(in three of them with statistical significance). This is interesting as the cascade
models avoids the use any method for combining the outputs.

4 Conclusions and Future Work

In this paper we have introduced a new approach to neural network ensembles
called cascade ensembles where the ensemble is created constructively. The pre-
liminary results showed in this paper are very promising and open a wide field
of study for this approach.

As work for the future, we are working in two ideas. Firstly, the application
of sampling methods, such as bagging and boosting, to our model. Secondly,
the modification of the cascade inputs, as there different ways for feeding the
outputs of the trained networks to the new networks.
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Abstract. As shown in the bibliography, training an ensemble of networks is an 
interesting way to improve the performance with respect to a single network. 
However there are several methods to construct the ensemble. In this paper we 
present some new results in a comparison of twenty different methods. We have 
trained ensembles of 3, 9, 20 and 40 networks to show results in a wide spec-
trum of values. The results show that the improvement in performance above 9 
networks in the ensemble depends on the method but it is usually low. Also, the 
best method for a ensemble of 3 networks is called “Decorrelated” and uses a 
penalty term in the usual Backpropagation function to decorrelate the network 
outputs in the ensemble. For the case of 9 and 20 networks the best method is 
conservative boosting. And finally for 40 networks the best method is Cels. 

1   Introduction 

The most important property of a neural network (NN) is the generalization capabil-
ity. The ability to correctly respond to inputs which were not used in the training set. 

One technique to increase the generalization capability with respect to a single NN 
consist on training an ensemble of NN, i.e., to train a set of NNs with different weight 
initialization or properties and combine the outputs of the different networks in a 
suitable manner to give a single output. 

It is clear from the bibliography that this procedure in general increases the gener-
alization capability [1,2]. 

The two key factors to design an ensemble are how to train the individual networks 
and how to combine the different outputs to give a single output. 

Among the methods of combining the outputs, the two most popular are voting and 
output averaging [3]. In this paper we will normally use output averaging because it 
has no problems of ties and gives a reasonable performance. 

In the other aspect, nowadays, there are several different methods in the bibliogra-
phy to train the individual networks and construct the ensemble [1-3]. 

However, there is a lack of comparison among the different methods and it is not 
clear which one can provide better results. 
                                                           
1 This research was supported by the project MAPACI TIC2002-02273 of CICYT in Spain. 
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One comparison can be found in [4], it is a previous work developed by our re-
search group. In paper [4], eleven different methods are compared. 

Now, we present more complete results by including nine new methods, so we in-
crease the number of methods in the comparison to a total of twenty. The empirical 
results are quite interesting, one of the new methods analyzed in this paper seems to 
have the best performance in several situations. 

2   Theory 

In this section we briefly review the new nine ensemble methods introduced in this 
paper for comparison. The description of the rest of methods denoted by “Simple 
Ensemble”, “Ola”, “Evol”, “Decorrelated”, “Decorrelated2”, “CVC”, “Cels”, “Boost-
ing”, “Bag_Noise” and “Adaboost”, can be found in reference [4] and in the refer-
ences cited there. 

CVC Version 2: In the usual CVC the available data is divided in training, cross-
validation and testing. After that, the data for training is divided by the number of 
networks giving several subsets. Then, one different subset is omitted for each net-
work and the network is training with the rest of subsets. 

The version 2 of CVC included in this paper is used in reference [5]. The data for 
training and cross-validation is jointed in one set and with this jointed set the usual 
division of CVC is performed. In this case, one subset is omitted for each network and 
the omitted subset is used for cross-validation. 

Aveboost: Aveboost is the abbreviation of Average Boosting. This method was pro-
possed in reference [6] as a variation of Adaboost. In Adaboost, it is calculated a 
probability for each pattern of being included in the training set for the following 
network. In this case a weighted adaptation of the probabilities is performed. The 
method is complex and a full description can be found in the reference. 

TCA, Total Correptive Adaboost: It was also proposed in reference [6] and it is 
another variation of Adaboost. In this case the calculation of the probability distribu-
tion for each network is treated as an optimization problem and an iterative process is 
performed. The algorithm is complex and a full description is in [6]. 

Aggressive Boosting: Aggressive Boosting is a variation of Adaboost. It is reviewed 
in [7]. In this case it is used a common step to modify the probabilities of a pattern, 
this common step can increase or decrease the probability of the pattern for being 
included in the next training set.  

Conservative Boosting: It is another variation of Adaboost reviewed in [7]. In this 
case the probability of the well classified patterns is decreased and the probability of 
wrong classified patterns is kept unchanged. 

ArcX4: It is another variation of Boosting, it was proposed and studied in reference 
[8]. The method selects training patterns according to a distribution, and the probabil-
ity of the pattern depend on the number of times the pattern was not correctly classi-
fied by the previous networks. The combination procedure proposed in the reference 
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is the mean average of the different networks. In our experiments we have used this 
procedure and also voting. 

EENCL Evolutionary Ensemble with Negative Correlation: This method is pro-
posed in reference [9]. The ensemble is build as a population of a genetic algorithm, 
the fitness function is selected to consider the precision in the classification of the 
individual networks and also to penalize the correlation among the different networks 
in the ensemble. The details can be found in the reference. In this paper two variations 
of the method proposed in the reference are used. They are denoted by EENCL UG 
(the ensemble used in this case is given by the last generation of the evolutionary 
algorithm) and EENCL MG (in this case the best generation is selected). 

3   Experimental Results 

We have applied the twenty ensemble methods to ten different classification prob-
lems. They are from the UCI repository of machine learning databases. Their names 
are Cardiac Arrhythmia Database (Aritm), Dermatology Database (Derma), Protein 
Location Sites (Ecoli), Solar Flares Database (Flare), Image Segmentation Database 
(Image), Johns Hopkins University Ionosphere Database (Ionos), Pima Indians Diabe-
tes (Pima), Haberman’s survival data (Survi), Vowel Recognition (Vowel) and Wis-
consin Breast Cancer Database (Wdbc). 

We have constructed ensembles of a wide number of networks, in particular 3, 9, 
20 and 40 networks in the ensemble. In this case, we can test the results in a wide set 
of situations.  

We trained the ensembles of 3, 9, 20 and 40 networks. We repeated this process of 
training an ensemble ten times for different partitions of data in training, cross-
validation and test sets. With this procedure we can obtain a mean performance of the 
ensemble for each database (the mean of the ten ensembles) and an error in the per-
formance calculated by standard error theory. The results of the performance are in 
table 1 for the case of ensembles of three networks, in table 2 for the case of nine and 
in table 3 for the case of 20. We omit the results of 40 networks by the lack of space 
and because the improvement of increasing the number of networks is in general low, 
a resume of the performance for 40 networks can be found below. 

By comparing the results of table 1, and 2 with the results of a single network we 
can see that the improvement by the use of the ensemble methods depends clearly on 
the problem. For example in databases Aritm (except for the case of CVC version 2), 
Flare, Pima and Wdbc there is not a clear improvement.  

In the rest of databases there is an improvement, perhaps the most important one is 
in database Vowel. 

There is, however, one exception in the performance of the method Evol. This 
method did not work well in our experiments. In the original reference the method was 
tested in the database Heart. The results for a single network were 60%, for a simple 
ensemble 61.42% and for Evol 67.14%. We have performed some experiments with this 
database and our results for a simple network are 82.0 ± 0.9, clearly different. 
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Table 1. Results for the ensemble of three networks 

 ARITM DERMA ECOLI FLARE IMAGEN 
Single Net. 75.6 ± 0.7 96.7 ± 0.4 84.4 ± 0.7 82.1 ± 0.3 96.3 ± 0.2 
Adaboost 71.8 ± 1.8 98.0 ± 0.5 85.9 ± 1.2 81.7 ± 0.6 96.8 ± 0.2 
Bagging 74.7 ± 1.6 97.5 ± 0.6 86.3 ± 1.1 81.9 ± 0.6 96.6 ± 0.3 
Bag_Noise 75.5 ± 1.1 97.6 ± 0.7 87.5 ± 1.0 82.2 ± 0.4 93.4 ± 0.4 
Boosting 74.4 ± 1.2 97.3 ± 0.6 86.8 ± 0.6 81.7 ± 0.4 95.0 ± 0.4 
Cels_m 73.4 ± 1.3 97.7 ± 0.6 86.2 ± 0.8 81.2 ± 0.5 96.82 ± 0.15 
CVC 74.0 ± 1.0 97.3 ± 0.7 86.8 ± 0.8 82.7 ± 0.5 96.4 ± 0.2 
Decorrelated 74.9 ± 1.3 97.2 ± 0.7 86.6 ± 0.6 81.7 ± 0.4 96.7 ± 0.3 
Decorrelated2 73.9 ± 1.0 97.6 ± 0.7 87.2 ± 0.9 81.6 ± 0.4 96.7 ± 0.3 
Evol 65.4 ± 1.4 57 ± 5 57 ± 5 80.7 ± 0.7 77 ± 5 
Ola 74.7 ± 1.4 91.4 ± 1.5 82.4 ± 1.4 81.1 ± 0.4 95.6 ± 0.3 
CVC version 2 76.1 ± 1.6 98.0 ± 0.3 86.8 ± 0.9 82.5 ± 0.6 96.9 ± 0.3 
AveBoost 73.4 ± 1.3 97.6 ± 0.7 85.3 ± 1.0 81.8 ± 0.8 96.8± 0.2 
TCA 70.7 ± 1.9 96.1 ± 0.6 85.4 ± 1.3 81.9 ± 0.7 94.8 ± 0.5 
ArcX4 75.4 ± 0.8 97.8 ± 0.5 85.3 ± 1.1 78.3± 0.9 96.6 ± 0.2 
ArcX4 Voting 73.0 ± 0.8 97.0 ± 0.5 85.7 ± 1.1 80.6 ± 0.9 96.5 ± 0.2 
Aggressive B 72.3 ± 1.9 97.0 ± 0.5 85.7 ± 1.4 81.9 ± 0.9 96.6 ± 0.3 
Conservative B 74.8 ± 1.3 96.9 ± 0.8 85.4 ± 1.3 82.1 ± 1.0 96.5 ± 0.3 
EENCL UG 71 ± 2 96.8 ± 0.9 86.6 ± 1.2 81.4 ± 0.8 96.3 ± 0.2 
EENCL MG 74.5 ± 1.3 97.2 ± 0.8 86.6 ± 1.2 81.9 ± 0.5 96.0 ± 0.2 
Simple Ens. 73.4 ± 1.0 97.2 ± 0.7 86.6 ± 0.8 81.8 ± 0.5 96.5 ± 0.2 

Table 1 (continuation). Results for the ensemble of three networks 

 IONOS PIMA SURVI VOWEL WDBC 
Single Net. 87.9 ± 0.7 76.7 ± 0.6 74.2 ± 0.8 83.4 ± 0.6 97.4 ± 0.3 
Adaboost 88.3 ± 1.3 75.7 ± 1.0 75.4 ± 1.6 88.43 ± 0.9 95.7 ± 0.6 
Bagging 90.7 ± 0.9 76.9 ± 0.8 74.2 ± 1.1 87.4 ± 0.7 96.9 ± 0.4 
Bag_Noise 92.4 ± 0.9 76.2 ± 1.0 74.6 ± 0.7 84.4 ± 1.0 96.3 ± 0.6 
Boosting 88.9 ± 1.4 75.7 ± 0.7 74.1 ± 1.0 85.7 ± 0.7 97.0 ± 0.4 
Cels_m 91.9 ± 1.0 76.0 ± 1.4 73.4 ± 1.3 91.1 ± 0.7 97.0 ±0.4 
CVC 87.7 ± 1.3 76.0 ± 1.1 74.1 ± 1.4 89.0 ± 1.0 97.4 ± 0.3 
Decorrelated 90.9 ± 0.9 76.4 ± 1.2 74.6 ± 1.5 91.5 ± 0.6 97.0 ± 0.5 
Decorrelated2 90.6 ± 1.0 75.7 ± 1.1 74.3 ± 1.4 90.3 ± 0.4 97.0 ± 0.5 
Evol 83.4 ± 1.9 66.3 ± 1.2 74.3 ± 0.6 77.5 ± 1.7 94.4 ± 0.9 
Ola 90.7 ± 1.4 69.2 ± 1.6 75.2 ± 0.9 83.2 ± 1.1 94.2 ± 0.7 
CVC version 2 89.7 ± 1.4 76.8 ± 1.0 74.1 ± 1.2 89.8 ± 0.9 96.7 ± 0.3 
AveBoost 89.4 ± 1.3 76.5 ± 1.1 75.1 ± 1.2 88.1 ± 1.0 95.6 ± 0.5 
TCA 87.9 ± 1.2 75.4 ± 0.8 73.0 ± 1.5 87.5 ± 1.1 91 ± 4 
ArcX4 89.4 ± 1.0 76.0 ± 0.8 68 ± 2 90.8 ± 0.9 96.3 ± 0.6 
ArcX4 Voting 89.0 ± 1.0 76.3 ± 0.8 74 ± 2 86.2 ± 0.9 96.1 ± 0.6 
Aggressive B 90.3 ± 0.9 74.3 ± 1.5 73.8 ± 1.5 86.9 ± 1.2 96.6 ± 0.6 
Conservative B 89.4 ± 1.0 75.6 ± 1.2 75.6 ± 1.1 88.8 ± 1.1 97.0 ± 0.6 
EENCL UG 93.0 ± 1.0 74.7 ± 1.0 73.9 ± 1.2 87.2 ± 0.8 96.2 ± 0.4 
EENCL MG 93.7 ± 0.9 75.3 ± 1.0 73.9 ± 0.8 87.4 ± 0.7 96.4 ± 0.5 
Simple Ens. 91.1 ± 1.1 75.9 ± 1.2 74.3 ± 1.3 88.0 ± 0.9 96.9 ± 0.5 

Now, we can compare the results of tables 1 and 2 for ensembles of different num-
ber of networks. We can see that the results are in general similar and the improve-
ment of training an increasing number of networks, for example 20 and 40, is in gen-
eral low. Taking into account the computational cost, we can say that the best alterna-
tive for an application is an ensemble of three or nine networks. 
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We have also calculated the percentage of error reduction of the ensemble with re-
spect to a single network. We have used equation 1 for this calculation. 

networkgle

ensemblenetworkgle
reduction PorError

PorErrorPorError
PorError

sin

sin·100
−

=  (1) 

Table 2. Results for the Ensemble of nine networks 

 ARITM DERMA ECOLI FLARE IMAGEN 
Adaboost 73.2 ± 1.6 97.3 ± 0.5 84.7 ± 1.4 81.1 ± 0.7 97.3 ± 0.3 
Bagging 75.9 ± 1.7 97.7 ± 0.6 87.2 ± 1.0 82.4 ± 0.6 96.7 ± 0.3 
Bag_Noise 75.4 ± 1.2 97.0 ± 0.7 87.2 ± 0.8 82.4 ± 0.5 93.4 ± 0.3 
Cels_m 74.8 ± 1.3 97.3 ± 0.6 86.2 ± 0.8 81.7 ± 0.4 96.6 ± 0.2 
CVC 74.8 ± 1.3 97.6 ± 0.6 87.1 ± 1.0 81.9 ± 0.6 96.6 ± 0.2 
Decorrelated 76.1 ± 1.0 97.6 ± 0.7 87.2 ± 0.7 81.6 ± 0.6 96.9 ± 0.2 
Decorrelated2 73.9 ± 1.1 97.6 ± 0.7 87.8 ± 0.7 81.7 ± 0.4 96.84 ± 0.18 
Evol 65.9 ± 1.9 54 ± 6 57 ± 5 80.6 ± 0.8 67 ± 4 
Ola 72.5 ± 1.0 86.7 ±1.7 83.5 ± 1.3 80.8 ± 0.4 96.1 ± 0.2 
CVC version 2 76.1 ± 1.6 98.0 ± 0.3 86.8 ± 0.9 82.5 ± 0.6 96.9 ± 0.3 
AveBoost 73.4 ± 1.3 97.6 ± 0.7 85.3 ± 1.0 81.8 ± 0.8 96.8 ± 0.2 
TCA 70.7 ± 1.9 96.1 ± 0.5 85.4 ± 1.3 81.9 ± 0.7 94.8 ± 0.5 
ArcX4 75.4 ± 0.8 97.8 ± 0.5 85.3 ± 1.1 78.3 ± 0.9 96.6 ± 0.2 
ArcX4 Voting 73.3 ± 0.8 97.6 ± 0.5 84.9 ± 1.1 80.1 ± 0.9 97.2 ± 0.2 
Aggressive B 72.3 ± 1.9 97.0 ± 0.5 85.7 ± 1.4 81.9 ± 0.9 96.6 ± 0.3 
Conservative B 74.8 ± 1.3 96.9 ± 0.8 85.4 ± 1.3 82.1 ± 1.0 96.5 ± 0.3 
EENCL UG 71 ± 2 96.8 ± 0.9 86.6 ± 1.2 81.4 ± 0.8 96.3 ± 0.2 
EENCL MG 74.5 ± 1.3 97.2 ± 0.8 86.6 ± 1.2 81.9 ± 0.5 96.0 ± 0.2 
Simple Ens 73.8 ± 1.1 97.5 ± 0.7 86.9 ± 0.8 81.6 ± 0.4 96.7 ± 0.3 

Table 2 (continuation). Results for the ensemble of nine networks 

 IONOS PIMA SURVI VOWEL WDBC 
Adaboost 89.4 ± 0.8 75.5 ± 0.9 74.3 ± 1.4 94.8 ± 0.7 95.7 ± 0.7 
Bagging 90.1 ± 1.1 76.6 ± 0.9 74.4 ± 1.5 90.8 ± 0.7 97.3 ± 0.4 
Bag_Noise 93.3 ± 0.6 75.9 ± 0.9 74.8 ± 0.7 85.7 ± 0.9 95.9 ± 0.5 
Cels_m 91.9 ± 1.0 75.9 ± 1.4 73.4 ± 1.2 92.7 ± 0.7 96.8 ± 0.5 
CVC 89.6 ± 1.2 76.9 ± 1.1 75.2 ± 1.5 90.9 ± 0.7 96.5 ± 0.5 
Decorrelated 90.7 ± 1.0 76.0 ± 1.1 73.9 ± 1.3 92.8 ± 0.7 97.0 ± 0.5 
Decorrelated2 90.4 ± 1.0 76.0 ± 1.0 73.8 ± 1.3 92.6 ± 0.5 97.0 ± 0.5 
Evol 77 ± 3 66.1 ± 0.7 74.8 ± 0.7 61 ± 4 87.2 ± 1.6 
Ola 90.9 ± 1.7 73.8 ± 0.8 74.8 ± 0.8 88.1 ± 0.8 95.5 ± 0.6 
CVC version 2 89.7 ± 1.4 76.8 ± 1.0 74.1 ± 1.2 89.8 ± 0.9 96.7 ± 0.3 
AveBoost 89.4 ± 1.3 76.5 ± 1.1 75.1 ± 1.2 88.1 ± 1.0 95.6 ± 0.5 
TCA 87.9 ± 1.2 75.4 ± 0.8 73.0 ± 1.5 87.5 ± 1.1 91 ± 4 
ArcX4 89.4 ± 1.0 76.0 ± 0.8 68 ± 2 90.8 ± 0.9 96.3 ± 0.6 
ArcX4 Voting 91.3 ± 1.0 76.3 ± 0.8 73.9 ± 1.0 94.6 ± 0.9 96.6 ± 0.6 
Aggressive B 90.3 ± 0.9 74.3 ± 1.5 73.8 ± 1.5 86.9 ± 1.2 96.6 ± 0.6 
Conservative B 89.4 ± 1.0 75.6 1.2 75.6 ± 1.1 88.8 ± 1.1 97.0 ± 0.6 
EENCL UG 93.0 ± 1.0 74.7 ± 1.0 73.9 ± 1.2 87.2 ± 0.8 96.2 ± 0.4 
EENCL MG 93.7 ± 0.9 75.3 ± 1.0 73.9 ± 0.8 87.4 ± 0.7 96.4 ± 0.5 
Simple Ens 90.3 ± 1.1 75.9 ± 1.2 74.2 ± 1.3 91.0 ± 0.5 96.9 ± 0.5 

The value of the percentage of error reduction ranges from 0%, where there is no 
improvement by the use of a particular ensemble method with respect to a single 
network, to 100%. There can also be negative values, which means that the perform-
ance of the ensemble is worse than the performance of the single network. 
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Table 3. Results for the Ensemble of twenty networks 

 ARITM DERMA ECOLI FLARE IMAGEN 
Adaboost 71.4 ± 1.5 97.5 ± 0.6 86.0 ± 1.3 81.1 ± 0.8 97.29 ± 0.19 
Bagging 75.9 ± 1.7 97.6 ± 0.6 87.1 ± 1.0 82.2 ± 0.5 97.0 ± 0.3 
Bag_Noise 76.0 ± 1.1 97.3 ± 0.6 87.4 ± 0.8 82.1 ± 0.5 93.3 ± 0.3 
Cels_m 75.4 ± 1.2 93.9 ± 1.4 86.3 ± 1.3 81.5 ± 0.4 95.74 ± 0.19 
CVC 74.8 ± 1.3 97.3 ± 0.6 86.5 ± 1.0 81.7 ± 0.7 96.8 ± 0.2 
Decorrelated 76.1 ± 1.1 97.6 ± 0.7 87.1 ± 0.7 81.3 ± 0.5 96.9 ± 0.2 
Decorrelated2 73.9 ± 1.1 97.6 ± 0.7 88.1 ± 0.7 81.6 ± 0.5 96.8 ± 0.2 
Evol 65.9 ± 1.9 47 ± 5 55 ± 4 81.2 ± 0.5 63 ± 5 
Ola 72.5 ± 1.1 87.0 ± 1.4 84.3 ± 1.2 80.7 ± 0.4 96.4 ± 0.2 
CVC version 2 74.3 ± 1.2 97.5 ± 0.6 86.6 ± 1.1 81.8 ± 0.4 97.03 ± 0.17 
AveBoost 75.5 ± 1.1 97.9 ± 0.5 86.2 ± 1.2 82.4 ± 0.7 97.3 ± 0.3 
TCA 71.6 ± 1.8 92 ± 2 85.4 ± 1.5 79.7 ± 0.9 95.7 ± 0.3 
ArcX4 74.4 ± 1.4 97.8 ± 0.6 85.6 ± 0.8 78.4 ± 1.4 97.38 ± 0.19 
ArcX4 Voting 75.1 ± 1.4 97.3 ± 0.6 86.0 ± 0.8 78.6 ± 1.4 97.3 ± 0.2 
Aggressive B 74.8 ± 1.5 97.0 ± 0.6 87.1 ± 1.1 82.0 ± 0.5 97.2 ± 0.3 
Conservative B 74.7 ± 0.9 97.9 ± 0.6 86.9 ± 1.2 82.8 ± 0.6 97.2 ± 0.3 
EENCL UG 72.9 ± 0.9 95.1 ± 1.1 87.2 ± 0.7 82.0 ± 0.8 96.9 ± 0.3 
EENCL MG 73.5 ± 1.6 96.2 ± 0.9 87.7 ± 1.0 81.4 ± 0.6 96.6 ± 0.3 
Simple Ens 73.8 ± 1.1 97.3 ± 0.7 86.9 ± 0.8 81.5 ± 0.5 96.7 ± 0.2 

Table 3 (continuation). Results for the ensemble of twenty networks 

 IONOS PIMA SURVI VOWEL WDBC 
Adaboost 91.4 ± 0.8 74.8 ± 1.0 74.3 ± 1.5 96.1 ± 0.7 96.3 ± 0.5 
Bagging 89.6 ± 1.1 77.0 ± 1.0 74.6 ± 1.7 91.3 ± 0.6 97.5 ± 0.4 
Bag_Noise 92.7 ± 0.6 76.3 ± 0.8 74.6 ± 0.7 86.7 ± 0.7 96.1 ± 0.5 
Cels_m 93.3 ± 0.7 75.4 ± 1.0 64 ± 3 87.5 ± 0.8 96.5 ± 0.5 
CVC 89.6 ± 1.3 76.2 ± 1.3 73.8 ± 0.9 91.9 ± 0.5 97.4 ± 0.4 
Decorrelated 91.1 ± 0.9 76.1 ± 1.0 74.1 ± 1.4 93.3 ± 0.6 97.0 ± 0.5 
Decorrelated2 90.9 ± 0.9 76.1 ± 1.0 74.3 ± 1.3 93.3 ± 0.5 97.0 ± 0.5 
Evol 66.1 ± 1.2 65.2 ± 0.9 74.8 ± 0.7 60 ± 3 78 ± 3 
Ola 69.4 ± 1.2 74.2 ± 1.1 74.1 ± 0.7 88.7 ± 0.8 95.3 ± 0.6 
CVC version 2 91.0 ± 0.9 76.7 ± 0.8 73.6 ± 1.0 93.3 ± 0.6 95.9 ± 0.6 
AveBoost 91.4 ± 1.0 76.0 ± 1.1 74.8 ± 1.2 95.8 ± 0.6 95.8 ± 0.6 
TCA 86.1 ± 1.0 73.5 ± 0.9 71.3 ± 1.8 85 ± 3 94.4 ± 0.7 
ArcX4 92.0 ± 0.9 72.7 ± 1.1 69 ± 2 96.6 ± 0.5 96.4 ± 0.6 
ArcX4 Voting 92.6 ± 0.9 75.0 ± 1.1 73.8 ± 1.9 96.1 ± 0.5 96.6 ± 0.6 
Aggressive B 91.6 ± 0.9 75.5 ± 1.3 73.9 ± 1.7 96.9 ± 0.6 96.8 ± 0.6 
Conservative B 92.4 ± 1.0 76.7 ± 1.2 72.8 ± 1.3 96.6 ± 0.6 96.4 ± 0.6 
EENCL UG 92.3 ± 1.1 75.2 ± 0.8 72.5 ± 1.5 88.2 ± 0.9 95.8 ± 0.4 
EENCL MG 92.3 ± 1.0 76.2 ± 1.3 74.1 ± 1.0 88.3 ± 0.9 96.5 ± 0.4 
Simple Ens 90.4 ± 1.0 75.9 ± 1.2 74.3 ± 1.3 91.4 ± 0.8 96.9 ± 0.5 

This new measurement is relative and can be used to compare more clearly the dif-
ferent methods. Furthermore we can calculate the mean performance of error reduc-
tion across all databases this value is in table 4 for ensembles of 3, 9, 20 and 40 net-
works. 

According to this global measurement Ola, Evol and BagNoise performs worse 
than the Simple Ensemble. The best methods are Bagging, Cels, Decorrelated, Decor-
related2 and Conservative Boosting. In total, there are around ten methods which 
perform better than the Simple Ensemble. 

The best method for 3 networks in the ensemble is Decorrelated, the best method for 
the case of 9 and 20 networks is Conservative Boosting and the best method for the case 
of 40 networks is Cels but the performance of Conservative Boosting is also good. 
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Table 4. Mean percentage of error reduction for the different ensembles 

 Ensemble 3 Nets Ensemble 9 Nets Ensemble 20 Nets Ensemble 40 Nets 
Adaboost 1.33 4.26 9.38 12.21 
Bagging 6.86 12.12 13.36 12.63 
Bag_Noise -3.08 -5.08 -3.26 -3.05 
Boosting -0.67    
Cels_m 9.98 9.18 10.86 14.43 
CVC 6.18 7.76 10.12 6.48 
Decorrelated 9.34 12.09 12.61 12.35 
Decorrelated2 9.09 11.06 12.16 12.10 
Evol -218.23 -297.01 -375.36 -404.81 
Ola -33.11 -36.43 -52.53 -47.39 
CVC version 2 10.25 10.02 7.57 7.49 
AveBoost 1.13 10.46 9.38 10.79 
TCA -9.71 -25.22 -43.98 -53.65 
ArcX4 1.21 2.85 7.85 10.05 
ArcX4 Voting -2.08 9.73 10.76 11.14 
Aggressive B 1.22 7.34 13.03 13.54 
Conservative B 4.45 13.07 14.8 14.11 
EENCL UG 0.21 -3.23 -3.59 1.10 
EENCL MG 3.96 1.52 2.84 7.89 
Simple Ens 5.89 8.39 8.09 9.72 

So, we can conclude that if the number of networks is low it is seems that the best 
method is Decorrelated and if the number of network is high the best method is in 
general Conservative Boosting. 

Also in table 4, we can see the effect of increasing the number of networks in the 
ensemble. There are several methods (Adaboost, Cels, ArcX4, ArcX4 Voting, Aggres-
sive Boosting and Conservative Boosting) where the performance seems to increase 
slightly with the number of networks in the ensemble. But other methods like Bag-
ging, CVC, Decorrelated, Decorrelated2 and Simple Ensemble does not increase the 
performance beyond 9 or 20 networks in the ensemble. The reason can be that the 
new networks are correlated to the first ones or that the combination method (the 
average) does not exploit well the increase in the number of networks. 

4   Conclusions 

In this paper we have presented experimental results of twenty different methods to 
construct an ensemble of networks, using ten different databases. We trained ensem-
bles of 3, 9, 20 and 40 networks in the ensemble to cover a wide spectrum of number 
of networks in the ensemble. The results showed that in general the improvement by 
the use of the ensemble methods depends clearly on the database, in some databases 
there is an improvement but in other there is not improvement at all. Also the im-
provement in performance from three or nine networks in the ensemble to a higher 
number of networks depends on the method. Taking into account the computational 
cost, an ensemble of nine networks may be the best alternative for most of the meth-
ods. Finally, we have obtained the mean percentage of error reduction over all data-
bases. According to the results of this measurement the best methods are Bagging, 
Cels, Decorrelated, Decorrelated2 and Conservative Boosting. In total, there are 
around ten methods which perform better than the Simple Ensemble. The best method 



 Ensembles of Multilayer Feedforward: Some New Results 611 

 

for 3 networks in the ensemble is Decorrelated, the best method for the case of 9 and 
20 networks is Conservative Boosting and the best method for the case of 40 networks 
is Cels but the performance of Conservative Boosting is also good. So we can con-
clude that if the number of networks is low it seems that the best method is Decorre-
lated and if the number of network is high the best method is in general Conservative 
Boosting. 
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Abstract. Among visual processings in the visual networks, movement
detections are carried out in the visual cortex. The visual cortex for the
movement detection, consist of two layered networks, called the primary
visual cortex (V1), followed by the middle temporal area (MT). In the bi-
ological visual neural networks, a characteristic feature is nonlinear func-
tions, which will play important roles in the visual systems. In this pa-
per, V1 and MT model networks, are decomposed into sub-asymmetrical
networks. By the optimization of the asymmetric networks, movement
detection equations are derived. Then, it was clarified that asymmetric
networks with the even-odd nonlinearity combined , are fundamental in
the movement detection. These facts are applied to two layered V1 and
MT networks, in which it was clarified that the second layer MT has an
efficient ability to detect the movement.

1 Introduction

The visual information is processed firstly in the retina, next the thalamus on
the way and the cortex, which are on the final visual pathway of the biologi-
cal networks. It is questioned that what kinds of functions are realized in the
structures of the networks. What are the relations between the structures and
the functions in the neural networks? Among characteristics of the visual net-
works, movement detections are carried out in the visual cortex. The visual
cortex for the movement detection, consist of two layered networks, called the
primary visual cortex area (V1), followed by the middle temporal area (MT).
The computational model of networks in visual cortex V1 and MT, was devel-
oped by Simoncelli and Heeger[15, 16]. The model networks in V1 and MT, are
identical in their structure. In this paper, first we start from the network model
developed by Simoncelli and Heeger[16], which shows a linear receptive field,
followed by half-aquaring rectification and normalization in V1 and next V1 af-
ferents, followed by half-squaring rectification and normalization in MT. Then,
the half-squaring nonlinearity and normalization (saturation) is analyzed by the

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 612–621, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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approximation of Taylor series. Thus, the model is transformed in the parallel
network structures, decomposed into asymmetric sub-networks.

Next, we will discuss the relations between the functions and the structure in
the asymmetric networks with nonlinear functions, which are fundamental in the
parallel networks expanded in V1 and MT model. The asymmetric network with
nonlinear functions, are clarified in retinal networks by Naka, et al[9]. By the
optimization conditions on the asymmetric networks, movement detection equa-
tions are derived. Then, it was clarified that the even-odd nonlinearity combined
asymmetric networks, are fundamental in the movement detection.

2 Parallel Processing by Neural Networks

Simoncelli and Heeger presented a model of the cortical area V1 and the mid-
dle temporal area MT, which detect the movement stimulus in the vertebrate
brain[16]. Lu and Sperling showed the human visual motion perception model, in
which the half-wave rectification plays an significant role in their mechanisms[17].
The computational model for the visual motion, consists of two primary stages
corresponding to cortical areas V1 and MT, which is developed by Simoncelli
and Heeger. The network model is shown in Fig.1.

Visual input from retina

Half-squaring
Rectification
Nonlinearity

Normalization

Fig. 1. Processing Model in Cortical Area V1

In the cortical area V1 and also the middle temporal area MT, the movement
detection is carried out. Model in these areas, is shown in Fig.1 (Simoncelli et
al). In Fig.1, the half-wave squaring rectification followed by the normalization
which includes saturation, is approximated by the nonlinear sigmoid function in
the following,

f(x) =
1

1 + e−η(x−θ)
(1)
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By Taylor expansion of the equation (1) at x = θ, the equation (2) is derived
as follows,

f(x)x=θ = f(θ) + f ′(θ)(x− θ) +
1
2!
f ′′(θ)(x− θ)2 + · · ·

=
1
2

+
η

4
(x− θ) +

1
2!

(
−η

2

4
+
η2eηθ

2

)
(x− θ)2 · · · (2)

In the equation (2), a sigmoid function is adopted as the approximation of the
half-wave squaring nonlinearity, which is followed by the normalization operation
as shown in Fig.1. In the Taylor series of the sigmoid function, the parameter η
becomes to be large as η ≥ 8 and θ ! 0.5 by max of f(x) = 1 in the equation (2).
Thus, the first order (x− θ) term η/4 exists and the second order term (x− θ)2
also exists by the relation ηθ � loge 2.

L :  Linear
S :  Squaring
T :  Tripling
F :  Fourth-order

L S T F

L *
.   .   . .   .   .

Linear Filters

Fig. 2. Network Decomposed Model

X(t)

h1’’(t)h1’(t)

X’(t)

Linear
Pathway

y1(t)
Squaring

y2(t)
Nonlinear Pathway

B

N

B

C

Fig. 3. Asymmetric Neural Network

Fig.2 shows parallel-pathways model with half-wave squaring rectification,
which is approximated by the nonlinear higher order terms. The linear term L∗
on the left pathway is represented, while the linear term L on the right pathway,
the squaring nonlinearity S, which is the second order nonlinearity on it, the
tripling nonlinearity T, which is the third order nonlinearity on it, and the forth
order nonlinearity on it, are represented.

To analyze functions of the network model in Fig.2, the biological network in
the catfish retina was clarified by Naka[7, 9, 12]. Naka[4, 9] presented a simplified,
but essential networks of catfish inner retina, which has an asymmetric structure
of the neural networks. A biological network of catfish retina is shown in Fig.3,
which might process the spatial interactive information between bipolar cells B1

and B2. The bipolar B cell response is linearly related to the input modulation
of light. The C cell shows an amacrine cell, which plays an important roll in the
nonlinear function as squaring of the output of the bipolar cell B2.

The N amacrine cell was clarified to be time-varying and differential with
band-pass characteristics in the function. It is shown that N cell response is
realized by a linear filter, which is composed of a differentiation filter followed
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by a low-pass filter. Thus the asymmetric network in Fig.3 is composed of a
linear pathway and a nonlinear pathway.

3 Asymmetric Neural Network with Quadratic
Nonlinearity

Movement perception is carried out firstly in the retinal neural network. Fig.4
shows a schematic diagram of a motion problem in front of the asymmetric
network in Fig.3.

B2 cellB1 cell
α

Fig. 4. Schematic diagram of motion problem for spatial interaction

We assume here the input functions x(t) and x′′(t) to be Gaussian white
noise, whose mean values are zero, but their deviations are different in their
values. In Fig.4, moving stimulus shows that x(t) merges into x′′(t), thus x′′(t)
is mixed with x(t). Then, we indicate the right stimulus by x′(t). By introducing
a mixed ratio, α, the input function of the right stimulus, is described in the
following equation, where 0 ≥ α ≥ 1 and β = 1−α hold. Then, Fig.4 shows that
the moving stimulus is described in the following equation,

x′(t) = αx(t) + βx′′(t) (3)

Let the power spectrums of x(t) and x′′(t), be p and p′′, respectively and an
equation p = kp′′ holds for the coefficient k, because we assumed here that the
deviations of the input functions are different in their values.

First, on the linear pathway of the asymmetrical network in Fig.3, the input
function is x(t) and the output function is y(t), which is an output after the
linear filter of cell N.

y(t) =
∫
h′′′1 (τ)(y1(t− τ) + y2(t− τ))dτ + ε (4)

where y1(t) shows the linear information on the linear pathway, y2(t) shows the
nonlinear information on the nonlinear pathway and ε shows error value. The
y1(t) and y2(t) are given, respectively as follows,

y1(t) =
∫ ∞

0

h′1(τ)x(t− τ)dτ (5)
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y2(t) =
∫ ∞

0

∫ ∞

0

h′′1(τ1)h′′1(τ2)x′(t− τ1)x′(t− τ2)dτ1dτ2 (6)

We assume here the linear filter N to have only summation operation without
in the analysis. Thus the impulse response function h′′′1 (t) is assumed to be value
1 without loss of generality.

3.1 Optimization of Asymmetric Neural Networks

Under the assumption that the impulse response functions, h′1(t) of the cell B1,
h′′1(t) of the cell B2 and moving stimulus ratio α in the right to be unknown,
the optimization of the network is carried out. By the minimization of the mean
squared value ξ of ε in equation (4), the following necessary equations for the
optimization of equations (5) and (6), are derived,

∂ξ

∂h′1(t)
= 0,

∂ξ

∂h′′2(t)
= 0 and

∂ξ

∂α
= 0 (7)

Then, the following three equations are derived as the conditions for the
optimization in the equation (7).

E[y(t)x(t− λ)] = h′1(λ)p
E[(y(t)− C0)x(t− λ1)x(t− λ2)] = 2p2α2h′′1(λ1)h′′1(λ2) (8)
E[(y(t)− C0)x′(t− λ1)x′(t− λ2)] = 2p′2h′′1(λ1)h′′1(λ2)

where C0 is the mean value of y(t), which is shown in the following. Here, the
equations (9) can be rewritten by applying Wiener kernels, which are related
with input and out put correlations by Lee and Schetzen’s method[8].

First, we can compute the 0-th order Wiener kernel C0, the 1-st order one
C11(λ), and the 2-nd order one C21(λ1, λ2) on the linear pathway by the cross-
correlations between x(t) and y(t). The suffix i, j of the kernel Cij(·), shows that
i is the order of the kernel and j = 1 means the linear pathway, while j = 2
means the nonlinear pathway. Then, the 0-th order kernel under the condition
of the spatial interaction of cell’s impulse response functions h′1(t) and h′′1(t),
becomes

C0 = E[y(t)]

= p(α2 + kβ2)
∫ ∞

0

(h′′1(τ1))2dτ1 (9)

The 1-st order kernel is defined by the correlation between y(t) and x(t) as
on the linear pathway, and the correlation value is derived from the optimization
condition of equation (9). Then, the following 1-st order kernel is shown.

C11(λ) =
1
p
E[y(t)x(t− τ)] = h′1(λ) (10)
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The 2-nd order kernel is defined and it becomes from the optimization con-
dition of equation (9), in the following,

C21(λ1, λ2) =
1

2p2
E[(y(t)− C0)x(t− λ1)x(t− λ2)]

= α2h′′1(λ1)h′′1(λ2) (11)

From equations (3), (10) and (11), the ratio α is a mixed coefficient of x(t)
to x′(t), is shown by α2 as the amplitude of the second order Wiener kernel. On
the nonlinear pathway, the 1-st order kernel C12(λ) and the 2-nd order kernel
C22(λ1, λ2) is defined by the cross-correlations between x(t) and y(t) as shown
in the following. Here, C22(λ1, λ2) is computed from the optimization condition
of equation (9), while C12(λ) is derived as an additional condition from C11(λ).

C12(λ) =
1

p(α2 + kβ2)
E[y(t)x′(t− λ)]

=
α

α2 + k(1− α)2
h′1(λ) (12)

and

C22(λ1, λ2) = h′′1(λ1)h′′1(λ2) (13)

The motion problem is how to detect the movement in the increase of the
ratio α in Fig.4. This implies that for the motion of the light from the left side
circle to the right one, the ratio α can be derived from the kernels described in
the above, in which the second order kernels C21 and C22 are abbreviated in the
representation of equations (11) and (13). Then, the following

(C21/C22) = α2 (14)

holds. From the equation (14) the ratio α is shown as follows.

α =
√
C21

C22
(15)

The equation (15) is called here α-equation, which implies the change of the
movement stimulus on the network and shows the detection of the movement
change by the α. The equation (15) does not show the direction of the movement.
Some measure to show the direction of the movement, is needed. We will discuss
how to detect the direction of the movement in the following.

From the first order kernels C11 and C12, and the second order kernels in the
above discussion, the following movement equation is derived,

C12

C11
=

√
C21

C22

C21

C22
+ k

(
1−

√
C21

C22

)2 (16)
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where k in the equation shows the difference of the power of the stimulus between
the receptive fields of the left and the right cells B1 and B2.

In Fig.4, the left side stimulus moves from the receptive field of the cell
B1 to the receptive field of the right cell B2, gradually, in bold line, while the
movement of the stimulus is shifted from the right to the left as shown in dotted
line. Then, the different equations from the equations (15) and (16), are similarly
derived, which shows that the different equations exist for the stimulus movement
directions[18].

3.2 Asymmetric Networks with Odd-Even Orders Nonlinearities

Asymmetric network with 1-st and 4-th orders nonlinearities, are considered.
The asymmetric network consists of the 1-st order nonlinearity (odd order non-
linearity) on the left pathway and the 4-th order (even order nonlinearity) on
the right pathway. On the left (1-st order nonlinearity),

C11(λ) = h′1(λ)

C21(λ1, λ2) = 6α2(α2 + kβ2)ph′′1(λ1)h′′1(λ2)
∫ ∞

0

h′′21 (τ)dτ (17)

On the right (4-th order nonlinearity),

C12(λ) =
1

(α2 + kβ2)
h′1(λ)

C22(λ1, λ2) = 6(α2 + kβ2)ph′′1(λ1)h′′1(λ2)
∫ ∞

0

h′′21 (τ)dτ (18)

From equations (17) and (18), the α-equation and the movement equation,
are derived as follows. The the α-equation becomes

C21(λ1, λ2) = α2C22(λ1, λ2) ∴ α =
√
C21

C22
(19)

The movement equation becomes

C12(λ) =
α

(α2 + kβ2)
C11(λ) ∴ C12

C11
=

√
C21

C22

C21

C22
+ k

(
1−

√
C21

C22

)2 (20)

The α-equation (19) and the movement equation (20), are same to those of
(15) and (16), respectively, in the asymmetric network with 1-st and 2 -nd orders
nonlinearities.
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The 3-rd order kernels, become

C31(λ1, λ2, λ3) = 0, C32(λ1, λ2, λ3) = 0

The 4-th order kernels, become

C41(λ1, λ2, λ3, λ4) = α4h′′1(λ1)h′′1(λ2)h′′1(λ3)h′′1(λ4)
C42(λ1, λ2, λ3, λ4) = h′′1(λ1)h′′1(λ2)h′′1(λ3)h′′1(λ4) (21)

From the equation (21), the α-equation is derived as follows, which is equiv-
alent to the equation (19).

∴ α =
{
C41

C42

}
=

(√
C21

C22

)

Thus, the asymmetric network with 1-st and 4-th orders nonlinearities, are
equivalent to that with 1-st and 2-nd orders nonlinearities. Similarly, it is shown
the asymmetric networks with the even order on the one side pathway and
with another even order on the other side pathway, cannot detect the direction
of the movement. Those network characteristics are generalized as follows: the
asymmetric network with the odd order nonlinearity on the one pathway and
the even order nonlinearity on the other pathway, has both α-equation and the
directional movement equation.

4 Layered Model by Decomposed Asymmetric Networks

Heeger and Simoncelli presented a network model with half-wave squaring rec-
tification nonlinearity in V1 and MT cortex areas in the brain[14, 15, 16]. In
this paper, this parallel processing model is interpreted analytically to have the
tracking function of the moving stimulus, which is based on the asymmetrical
nonlinear networks described in the above.

Fig.5 shows a layered network model of cortex areas V1 followed by MT,
which implies the same network model in Fig.1. The sigmoid function is repre-
sented by Taylor series as shown in the section 2, which includes the 1-st, the
2-nd, the 3-rd, the 4-th . . . and higher orders nonlinearity terms. Thus, the net-
work model in Fig.5, is transformed to that of layered decomposed asymmetric
model as shown in Fig.6. The function of the layered decomposed networks in
Fig.6, is based on the asymmetric network with nonlinearities in the section 3. In
V1 decomposed network in Fig.6, the left side linear pathway (1-st order nonlin-
earity) and the right side nonlinear pathway, computes the α-equation (detection
of stimulus) and the movement equation (detection of the moving direction).

Fig.6 shows that only the first layer V1, is weak in the detection of the stimu-
lus compared to the second layer MT, since these odd order nonlinearities in V1,
has transformed to the even order nonlinearities (2-nd, 6-th, 10-th . . . orders) in
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the second layer MT. This shows that the second layer MT, has both efficient
abilities of the detection of the stimulus and the direction of the stimulus. It is
proved that the α-equation and the movement equation are not derived in the

Visual input from retina

Half-squaring
Rectification
Nonlinearity

Normalization

Half-squaring
Rectification
Nonlinearity

Normalization

Fig. 5. Layered model of V1 followed

by MT

L :  Linear
S :  Squaring
T :  Tripling
F :  Fourth-order

L S T F

.   .   .

Linear Filters

L :  Linear
S :  Squaring
T :  Tripling
F :  Fourth-order

L S T F

.   .   .

Linear Filters

Fig. 6. Layered decomposed networks

of Fig.5

symmetric network with the even order nonlinearity on the pathway and the
other even nonlinearity on the another pathway. Both the even (or odd) nonlin-
earities on the parallel pathways, do not have efficient works on the movement
detection.

5 Conclusion

In this paper, the neural networks in the cortical areas V1 and MT, are discussed
to make clear the function of their movement detection ability. Then, the net-
works are decomposed to the asymmetric networks with nonlinear higher order
terms. The ability is described by the moving detection equation (α-equation)
and the movement direction equation. It was clarified that the asymmetric net-
work with the even and the odd nonlinearities, has efficient ability in the move-
ment detection. Based on the asymmetric network principle, it is shown that the
parallel-symmetric network with half-squaring rectification of V1 and MT, has
efficient ability in the movement detection.
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Abstract. We present a novel technique to reduce the computational
burden associated to the operational phase of neural networks. To get
this, we develop a very simple procedure for fast classification that can be
applied to any network whose output is calculated as a weighted sum of
terms, which comprises a wide variety of neural schemes, such as multi-
net networks and Radial Basis Function (RBF) networks, among many
others. Basically, the idea consists on sequentially evaluating the sum
terms, using a series of thresholds which are associated to the confidence
that a partial output will coincide with the overall network classification
criterion. The possibilities of this strategy are well-illustrated by some
experiments on a benchmark of binary classification problems, using Re-
alAdaboost and RBF networks as the underlying technologies.

1 Introduction

Artificial Neural Networks (ANNs) are nowadays widely used in classification
and regression problems because of their extraordinary abilities for input-output
knowledge discovery [1, 2]. During the training phase, ANNs automatically adjust
their parameters by means of a set of labeled patterns. Later, in the operational
phase, the network is used to predict the output corresponding to new unseen
patterns, or the class they belong to. Some of the most classical techniques,
such as Multi-Layer Perceptrons (MLPs) and Radial Basis Functions Networks
(RBFNs) [1] are known to have universal approximation capabilities. Besides,
their performance can be improved ever further by means of Multi-Net (M-N)
systems [3] that combine the output of several base learners. Recently, Support
Vector Machines (SVMs) have been proposed [4] achieving excellent results,
mainly in binary classification problems. Although the recognition capabilities
of M-N systems and SVMs is out of discussion, the computational complexity of
the resulting machine can be very high if the number of base learners or support
vectors, respectively, is very large.
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In this paper we consider the binary classification problem, and we propose
a very simple procedure to speed up the operational phase of most ANNs. In
particular, this method can be applied to any network whose output consists of
a weighted sum of different terms:

y(x) = sign (o(x)) = sign

(
M∑

m=1

αmom(x)

)
(1)

where x ∈ �d is the input pattern and y(x) = ±1 the prediction about the class
it belongs to, om(x) are the outputs of the M units that make up the network,
and αm ∈ � their associated weights. Note that, to keep our formulation as
general as possible, we are not assuming any predetermined implementation for
the network units. In this way, om(x) could be a kernel function [5] as well as
the output of a base learner of a M-N system.

For certain networks, such as M-N systems, RBFNs or SVMs, the number of
units which are combined is usually very large, leading to a very intensive com-
putational demand during the classification phase. To speed up pattern classifi-
cation, we propose to sequentially evaluate the different terms in (1), achieving
the following partial sums:

yk(x) =
k∑

m=1

αmom(x) (2)

Hopefully, if the absolute value of yk(x) is high enough, the current sign of
yk(x) will coincide with y(x), making it possible to avoid the calculation of the
restating M − k network units. To be more precise, if

yk(x) > η+
k or yk(x) < η−k

we will classify x according to the present sign of yk(x). On the contrary, if

η−k < yk(x) < η+
k

we assume that the confidence about y(x) being equal to the sign of yk(x) is
not enough, making it necessary to proceed with the evaluation of the (k+1)-th
unit.

Obviously, to apply the above method in a particular scenario, it is necessary
to select the thresholds {η+

k } and {η−k } during the training phase. In the next
section we will explain how this can be done with little extra computational
effort. Furthermore, to get the most from this fast classification strategy, it would
be desirable to sort out the units appropriately, taking into account the most
relevant ones during an early stage of the classification process.

2 Setting the Classification Thresholds

In first term, we propose to set up the positive and negative thresholds, {η+
k }

and {η−k } respectively, to guarantee that the original network criterion is kept,
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and no additional errors are provoked by the fast classification method. It is
useful to distinguish two different cases depending on the range of om(x):

i) om(x) : �d → [−1, 1]: In this case we have that the difference between the
overall network and its k-th partial output is given by

ȳk(x) = yM (x)− yk(x) =
M∑

m=k+1

αmom(x) (3)

that can be bounded by

−
M∑

m=k+1

|αm| < ȳk(x) <
M∑

m=k+1

|αm|

Thus, choosing

η+
k =

M∑
m=k+1

|αm|; η−k = −η+
k (4)

satisfies our requirement that the overall network classification is preserved.
ii) om(x) : �d → [0, 1]: Using similar arguments to those in the previous case

we get
M∑

m=k+1
αm<0

αm < ȳk(x) <
M∑

m=k+1
αm>0

αm

that allows us to set

η+
k = −

M∑
m=k+1
αm<0

αm; η−k = −
M∑

m=k+1
αm>0

αm (5)

Obviously, (4) and (5) are worst-case choices, consequently providing very
reduced computational savings. It is immediate to relax these selections by intro-
ducing an additional parameter β ∈ [0, 1] that allows to redefine the thresholds
as

η+
k

′
= βη+

k ; η−k
′
= βη−k

Parameter β measures our confidence that a fast decision on x will respect the
criterion of the overall classifier. As we have explained, if β = 1 we are 100% sure
that no additional errors are introduced by the fast classification process. On the
contrary, when β = 0 only the first unit is considered. Finally, values between
0 and 1 correspond to situations where an intermediate degree of certainty is
required.
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3 Sorting Out the Network Units

As explained in Section 1, not only the selection of the thresholds, but also the
order of the network units plays an essential role in the performance of the fast
classification method. As a general rule, to achieve a maximum computational
saving, it is convenient to place the most relevant units in the first positions.

Although the construction of certain networks, such as RealAdaboost (RA)
ensembles [6], directly gives the units in decreasing order of importance, this is
not true in general. In this second case, different criteria can be established to
measure unit relevance, and thus to sort out the units that compose the network.
For instance, we could use the absolute values of αm. Another possibility is to
use the average activation of each unit that we define as

γm =
l∑

i=1

|αmom(xi)| (6)

where xi, i = 1, . . . , l, are the training patterns.
For illustrating both strategies we have considered an example in which the

fast classification method was applied to a RBFN trained on the contraceptive
dataset that will be presented in the next section. Analyzing the curves in Fig.
1 we can see that using an appropriate order is very important if one wants
to achieve significant computational savings without affecting the recognition
performance of the original classifier (β = 1).

Although more sophisticated schemes could be designed, in the sequel we
will use the decreasing order of |αm|, that provided a maximum computational
saving in the previous example.

4 Experiments

To illustrate the validity of the fast classification strategy, we have carried out
a number of experiments on a benchmark of seven binary classification tasks. A
summary of the main characteristics of each problem, including the number of
training and test patterns in each class and the dimension of the input space,
is given in Table 1. Kwok is a synthetic problem that was introduced in [7]; the
rest are datasets of real data taken from the Machine Learning Repository of
the University of California Irvine [8]. When no predefined train/test partition
was provided, we used a 10 fold cross-validation strategy.

In the next two subsections we present results when using RealAdaboost
ensembles of MLP classifiers, and for the excellent RBFN implementation of
Rätsch (see, for instance, [9]). In both cases, all results were averaged over 50
independent designs.

4.1 Fast Classification with RealAdaboost Schemes

RealAdaboost (RA) [6] is a boosting algorithm that works by sequentially adding
learners to an ensemble, progressively paying attention to the hardest to classify



626 J. Arenas-Garćıa et al.
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Fig. 1. Classification Error and average number of units evaluated during the test

phase for a RBFN classifier trained on the contraceptive dataset when using different

strategies for sorting out the network units

Table 1. Benchmark dataset description

# train # test dim

kwok 300/200 6120/4080 2

tictactoe 199/376 133/250 9

contraceptive 506/377 338/252 9

image 821/1027 169/293 18

spam 1088/1673 725/1115 57

phoneme 952/2291 634/1527 5

waveform 2694/1306 659/341 21

patterns. For this set of experiments we have used MLP networks with one single
hidden layer as the elements of RA, using the basic backpropagation algorithm
for their training. Both the number of hidden neurons (N) and the number of
rounds for RA (T ) were fixed on a trial and error basis for each problem.

It is easy to identify the RA classification function with Eq. (1) by simply
setting M = T , and letting om(x) and αm be the outputs of each base learner
and its associated weight. For this particular case, and given the special char-
acteristics of the RA scheme, it is not necessary to modify the original order of
the units.
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Fig. 2. Fast Classification with RealAdaboost ensembles. Each figure shows the clas-

sification error (CE) and average number of learners (Tav) that need to be evaluated

for different values of the confidence rate parameter β

In Fig. 2 we have depicted the influence of β on the test classification error
(CE) and on the average number of learners evaluated (Tav) for four of the
problems considered. As expected, β imposes a compromise between these two
quantities, but there exists a wide range for which no performance degradation
is observed and significant complexity reductions can be achieved.

Results for the complete benchmark are reported in Table 2. The original
CE of RA is given under the ‘β = 1’ column. We can see that, even for this
very conservative case, important reductions in the computational load can be
achieved. It is important to remark that this gain is obtained at a negligible cost
during the training phase. Finally, computational savings of about 90% are not
rare for lower values of β, keeping in all cases a very similar CE to that of the
overall RA scheme.

4.2 Fast Classification with RBF Networks

RBFNs are well-known classifiers that obtain their output as a weighted linear
combination of radial basis functions. We will only consider here the case of
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Table 2. RealAdaboost test classification error (CE) and average number of learn-

ers evaluation (Tav) for the seven problems in the benchmark and three values of β.

Computational savings with respect to the complete evaluation of the RA machine are

given inside parentheses

N T
CE (%)
β = 1

Tav

β = 1
CE (%)
β = .5

Tav

β = .5
CE (%)
β = .3

Tav

β = .3

kwok 4 20 11.8
6.41

(−67.9%)
11.8

3.92
(−80.4%)

11.8
2.52

(−87.4%)

tictactoe 8 100 2.51
71.1

(−28.9%)
2.53

55.3
(−44.7%)

2.58
42.27

(−57.7%)

contraceptive 2 20 29
11.21

(−43.9%)
29

7.82
(−60.7%)

29
5.7

(−71.5%)

image 4 50 2.84
7.5

(−85%)
2.85

4.49
(−91%)

2.97
2.99

(−94%)

spam 5 50 5.68
9.48

(−81%)
5.69

5.13
(−89.7%)

5.73
3.09

(−93.8%)

phoneme 9 50 14.74
14.46

(−71.1%)
14.74

8.54
(−82.9%)

14.74
5.77

(−88.4%)

waveform 2 20 7.89
6.73

(−66.3%)
7.9

3.69
(−81.6%)

7.89
2.23

(−88.8%)

Table 3. Test CE and Kernel Evaluations per Pattern (KEPP) when using RBFNs.

The relative reduction on the KEPP with respect to the number of units in the network

(second column) is also shown inside parentheses

KEPP
CE (%)
β = 1

KEPP
β = 1

CE (%)
β = .5

KEPP
β = .5

CE (%)
β = .3

KEPP
β = .3

kwok 10 11.68
7.45

(−25.5%)
11.75

6.26
(−37.4%)

12.85
4.7

(−53%)

tictactoe 29 0.39
24.45

(−15.7%)
0.39

22.55
(−22.2%)

0.39
20.57

(−29.1%)

contraceptive 18 29.9
14.96

(−16.9%)
30.37

13.94
(−22.5%)

32.96
12.24

(−32%)

image 185 3.16
151.7

(−18%)
3.16

139.98
(−24.3%)

3.16
129.83

(−29.8%)

spam 277 6.06
246.67

(−10.9%)
6.06

235.24
(−15.1%)

6.06
224.17

(−19.1%)

phoneme 325 12.06
284.92

(−12.3%)
12.06

268.67
(−17.3%)

12.06
253.17

(−22.1%)

waveform 80 8.75
61.76

(−22.8%)
8.75

56.96
(−28.8%)

8.87
52.06

(−34.9%)

Gaussian kernels:

om(x) = exp
(
−‖x− cm‖2

2σ2
m

)
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We used 2%, 5%, and 10% of the training data as the number of kernels in the
RBFN, keeping the setting which offered a best result. The position and width of
the kernels were automatically adjusted by means of a gradient descent scheme.

Results are reported in Table 3 in terms of test CE and average number of
Kernel Evaluations per Pattern (KEPP) during the test phase. Again, the CE
is kept under control even for β = 0.3, but now the computational saving is not
as impressive as in the RA case. We are currently studying other ways to sort
out the RBFN kernels to further reduce the KEPP.

5 Conclusions

In this paper we have presented a very simple procedure to alleviate the com-
putational burden required by powerful neural network classifiers. The scheme
works by sequentially comparing the partial output of the net to a positive and
a negative thresholds, taking decisions as soon as a desire degree of certainty is
reached.

The proposed scheme has shown to be specially suited for Adaboost type
classifiers, in which the constituent units are by construction given in order
of relevance. Other ANN schemes obtain more limited improvements and they
could benefit from the design of algorithms that obtain a convenient order of the
network units. Another interesting line of research would consist on extending
these ideas to speed up the training phase.
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Abstract. In this article it is made a study of the characterization capacity and 
synthesis of objects of the self-organizing neural models. These networks, by 
means of their competitive learning, try to preserve the topology of an input 
space. This capacity is being used for the representation of objects and their 
movement with topology preserving networks. We characterized the object to 
represent by means of the obtained maps and kept information solely on the co-
ordinates and the colour from the neurons. From this information it is made the 
synthesis of the original images, applying mathematical morphology and simple 
filters on the information which it is had.  

1   Introduction 

The objective of the synthesis or compression of objects is to minimize the amount of 
data to store for the correct representation of the images, with the smaller loss of in-
formation. The compression algorithms usually try to eliminate the redundancy in the 
data, so that it is possible the reconstruction of the image. The usual sequence of  
characterization/synthesis process will consist of the redundancy data reduction  ob-
taining the most relevant data, the codification of these data, transmission, decoding,  
 

 

Fig. 1. Representation of bi-dimensional objects with self-organizing networks 

and reconstruction or synthesis of the images. It is known that the self-organizing 
neural networks, by means of a competitive learning, make an adaptation of the vec-
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tors of reference of the neurons as well as of the network of interconnection among 
them; obtaining a mapping that tries to preserve the topology of an input space. Also, 
they are able of a continuous readjustment with new input patterns, with no need to 
begin the learning again. These capacities have been used for the representation of 
objects [1] and their movement [2] by means of a self-organizing model, Growing 
Neural Gas (GNG) [3], that has a process of learning less strict than other self-
organizing models, like the Kohonen maps [4].  

In figure 1 the capacity of representation of bi-dimensional objects with these neu-
ral networks can be observed, extracting the more relevant topological information as 
much to make the analysis of the object shape, to make the synthesis of this. In this 
work we use GNG for the characterization and syntheses of gestures of the hand. 

2   Growing Neural Gas 

Growing Neural Gas is a neural model in which a topology of union between the 
neurons does not settle down and in which, from an initial number of neurons, these 
they are inserted or eliminated until a condition of conclusion is fulfilled (maximum 
number of neurons, time available, error of quantization).  

The algorithm of learning of the GNG he is the following one:  

1. Start with two neurons a  and b  at random positions aw and bw  in dR . 
2. Generate an input signal ξ  according to a density function )(P ξ . 
3. Find the nearest neuron (winner neuron) 1s  and the second nearest 2s . 
4. Increase the age of all the edges emanating from 1s .   
5. Add the squared distance between the input signal and the winner neuron to a 

counter error of 1s : 

2

1 1
ξ∆ −= sw)s(error  

(1) 

6. Move the winner neuron 1s  and its topological neighbours (neurons connected to 

1s ) towards ξ  by a learning step wε  and nε , respectively, of the total distance: 

)w(w sws 11
−= ξε∆  (2) 

)w(w
nn sns −= ξε∆  (3) 

7. If 1s  and 2s  are connected by an edge, set the age of this edge to 0. If it does not 
exist, create it. 

8. Remove the edges larger than maxa . If this results in isolated neurons (without 
emanating edges), remove them as well. 

9. Every certain number λ  of input signals generated, insert a new neuron as fol-
lows: 

• Determine the neuron q  with the maximum accumulated error. 
• Insert a new neuron r  between q  and its further neighbour f : 
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( )fqr ww.w += 50  (4) 

• Insert new edges connecting the neuron r  with neurons q and f , removing the 
old edge between q and f . 

• Decrease the error variables of neurons q and f multiplying them with a con-
stantα . Initialize the error variable of r with the new value of the error variable 
of q and f . 

10. Decrease all error variables by multiplying then with a constant β . 
11. If the stopping criterion is not yet achieved, go to step 2. 

In summary, the adaptation of the network to the input space takes place in step 6. 
The insertion of connections (step 7) between the two neurons nearer to each one of 
the input patterns establishes, finally, an induced Delaunay triangulation by the input 
space. The elimination of connections (step 8) eliminates the edges that no longer 
must comprise of this triangulation. This is made eliminating the connections between 
neurons that no longer are next or that they have nearer neurons. Finally, the accumu-
lation of the error (step 5) allows to identify those zones of the input space where it is 
necessary to increase the number of neurons to improve the mapping. 

3   System Description 

The characterization/synthesis system is made up of modules for the segmentation, 
characterization and synthesis of images or sequences of images (figure 2). 

 
 

 
 
 
 
 
 

Fig. 2. System for characterization/synthesis of images 

3.1   Segmentation 

The segmentation of images in colour has been a field on which has studied exten-
sively in the last years [5]. As well as the use of this for the tracking of objects in 
images [6][7][8]. The colour offers several advantages respect to the geometric in-
formation that it can be insufficient under adverse conditions, like partial occlusions 
or changes of scale or resolution. In this work we have tried to make an initial module 
for colour segmentation that allowed the segmentation of gestures of the hand in se-
quences of images with complex background, whose results served as input to a com-
plex neural system for gesture recognition [2]. For it, a study of different colour mod-
els for skin segmentation has been made and the use of model HSI with thresholds 
empirically has been decided. This model is invariant to small changes in the illumi-
nation of the scene and provides a robust images segmentation. 

Images

   Synthesis  Segmentation Characterization

Images

Media
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3.2   Characterization 

Given an image R)y,x(I ∈  we perform the transformation 

( ) ( )( )y,xITy,xT =ψ  that associates to each one of the pixels its probability of 

belonging to the object, according to a propertyT . For instance, in figure 1, this 
transformation is a threshold function. 

           
 
 
   

 

 

Fig. 3. Silhouette extraction 

If we consider ( )y,x=ξ  and ( )ξψξ T)(P = , we can apply the learning algo-

rithm of the GNG to the image I , so that the network adapts its topology to the ob-
ject. This adaptive process is iterative, so the GNG represents the object during all the 
learning, giving the opportunity to stop the process if necessary, obtaining a good 
answer (figure 3). 

As a result of the GNG learning we obtain a graph, the Topology Preserving Graph 

C,NTPG = , with a vertex (neurons) set N  and an edge set C  that connect 

them (figure 1). This TPG  establishes a Delaunay triangulation induced by the  

object. 

3.3   Synthesis 

The capacity for information compression of self-organizing neural networks has 
been demonstrated in this work. The representation of a bi-dimensional object by 
means of GPT  extracts more important information about the object topology to 

make the analysis of the object shape. In this point, the inverse problem considers: 
how to generate the shape of the object from hisGPT ? That is to say, how to apply 

this work to the synthesis of objects. For it, it is come following two alternatives, 
depending on the information available at the moment for making the synthesis: If at 
the moment of the adaptation of GPT  we have information associated to each neu-

ron, relative to the distance r  of any of them to the closest point of the contour of the 
object t; it is drawn for each one of the neurons a circle with radiusr . 

If we only had the GPT , without additional information, it is drawn circles with 

centre in each one of the neurons and with a radius r  that is based on the set of edges 
that leave each one of them: 
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In figure can be seen the result of both steps of the synthesis process. In a first step 
ellipses in the coordinates of the neurons are drawn and later in a second step a me-
dium filter is applied to smooth the contour of the object. Also, if information from 
the intensity or colour of any of the points on the original image that corresponds to 
each one of the neurons coordinates is available, we can create a colour image, so that 
the synthesis has a similar visual appearance than the real object. In order to improve 
the quality of the synthesis, eliminating the effect of the drawing of multiple circles, is 
made a filtrate (medium, erosion/expansion...). 

 

Fig. 4. Gray level images synthesis from a self-organizing map 
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4   Experiments and Results 

Experiments with different gestures from the hand have been made to prove the effec-
tiveness of the method, obtaining results, that although not represent exactly the 
original aspect of the gestures, have enough quality to visually recognize the gestures 
made. The images used took with a window from 200x200 pixels, using a GNG neu-
ral network with 49 neurons. Therefore we are reconstructing the object with only 49 
coordinates instead of the over 4000 points of the image. 

In the following figures the results of the GNG learning process and later recon-
struction of the gestures of the hand can be observed.  

The colour of any of the neurons coordinates in the original image is assigned to 
the area of influence in the object, calculated based on the Voronoi diagram obtained 
from the Delaunay triangulation that the neurons represent. 

Finally an improvement is made on the previous reconstruction, applying an aver-
age filter on the result of the morphologic operations of reconstruction. 

 
 
 

 

 

 

 

Fig. 5. Original colour images for characterization/reconstruction 

 
 
 
 

 

 

Fig. 6. Object characterization with GNG 

 

 

 

 

Fig. 7. Reconstruction based on the Voronoi diagram 
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Fig. 8. Reconstruction with average filter 

5   Conclusions and Further Work 

In this work we have demonstrated the compression capacity of self-organizing maps, 
taking as example the characterization and later reconstruction from gestures of the 
hand. For it, a previous study of the capacity of segmentation of different colour mod-
els has become. Although the reconstruction has not enough quality for some applica-
tions, the reduction of information when making the synthesis turns to the method in a 
tool of compression with numerous applications like the video-conference for deaf 
people. At the present time we are working in the optimization of the reconstruction 
models, as well as in the optimization of the self-organizing maps used and the hard-
ware implementation of these to increase the global system speed. 
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Abstract. In this paper we analyze the performance of several evolutionary al-
gorithms in the feature and instance selection problem. It is also introduced the 
ARGEN + AREPO search algorithm which has been tested in the same prob-
lem. There is no need to adapt parameters in this genetic algorithm, except the 
population size.  The reported preliminary results show that using this technique 
in a wrapper model to search data subsets, we can obtain similar accuracy like 
with the hill-climbers and genetic algorithms models also here presented, but 
keeping a less amount of data.   

1   Introduction 

To search feature and instance subsets, looking for a reduction of the original sets, can 
help to improve performance in prediction tasks using the smallest possible computa-
tional resources. Two of the most used search strategies in this kind of problems are 
Hill-Climbers (HCs) and Genetic Algorithms (GAs). The kind of GA presented in this 
paper keeps the advantages of both searching techniques and, besides, it is reinforced 
by means of the ARGEN concept here described. The result is an “artificial algo-
rithm with a more natural behavior”. 

2   Data Selection 

The models to select feature and instance subsets presented in this paper are based on 
wrapper architecture [7]. These models use the Distance-Weighted K-Nearest 
Neighbors (DW-KNN) classifier [11] to measure the accuracy of training feature and 
instance subsets over the evaluation data (unseen data). The neighbors in the DW-
KNN algorithm for the reported experiments were three. Two kinds of search algo-
rithms were used in the models: hill-climbers and genetic algorithms. They allow us 
to search and select a feature and instance subset from the original training data. The 
search process is run until a maximum number of iterations have been reached. The 
wrapper model returns the feature and instance subset with the highest fitness value 
found, i.e., the data subset which best classifies the evaluation data. The fitness func-
tion is formed by the accuracy over the “evaluation data” with a certain “training 



638 A. León-Barranco and C.A. Reyes-García 

 

subset” (taken from the “original training data”) and, the proportion of the “training 
subset” with regard to the “original training data” [8]. The fitness function is formed 
in the following way: 

MN

mn
DataSetPDataSetF F +

+−= α)()(
 

Where the value of “ ” is 1, to differentiate two data subsets which have the same 
accuracy, but, different amount of data, giving a higher fitness value to the one which 
has less data. To represent feature and instance subsets in this paper, bit-strings of 
length N+M are used, where N is the number of instances and M the number of fea-
tures of the original training data set. One bit “1” in the ith position indicates that one 
feature or instance should be part of the “training subset” and one bit “0” indicates 
that it should be eliminated, see Figure 1. 

N - INSTANCES M - FEATURES 
0 1 1 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 1 0 0 1 0 

Fig. 1. Representation of one chromosome (training subset) which has 6 (n) instances with 3 
(m) features each, these data are selected from an “original training data“ set of 15 (N) instances 
with 8 (M) features each 

3   Hill-Climbers and Genetic Algorithms 

The hill-climbing algorithms are searching techniques that use binary notation. Unlike 
the genetic algorithms, regularly they manipulate a single chromosome [4]. Generally 
these start with a randomly generated solution. Then, every bit is flipped in a certain 
order, one at-a-time. If a better solution is found, it is kept, and the procedure contin-
ues until no improvements can be found or, until a given number of iterations is 
reached. There are many different HC algorithms, but, in this paper only four were 
selected for evaluation in the feature and instance selection problem, they are the 
following: SAHC (Steepest-Ascent Hill Climbing), NAHC (Next-Ascent Hill Climb-
ing), RMHC (Random-Mutation Hill Climbing) [9] and RBC (Random Bit Climbing) 
[4]. The GAs are powerful heuristic search strategies based upon evolution mecha-
nisms, some researchers use these as a basis of optimum-seeking techniques in case of 
vast search spaces [2], in this work, the feature and instance subsets space. There are 
many problems which are easily solved by means of GAs, but, can be difficult for a 
basic hill-climbing technique. Five GAs were selected for evaluation and to compare 
their performance with the HCs and the novel algorithm presented in this paper. The 
chosen algorithms are the following: SGA (Simple Genetic Algorithm) [10], some-
times known as canonical genetic algorithm [14], TDA (Traditional Genetic Algo-
rithm) which differs from the first because one or more individuals are passed to the 
next generation by elitism (steady-state) [13], CHC (Cross-generational elitist selec-
tion, Heterogeneous recombination and Cataclysmic mutation) [5], GENITOR (GE-
Netic ImplemenTOR) [15] and CFRSC  (Common Feature/Random Sample Climbing) 
[6]. Section 4 presents a general description of the genetic algorithms suggested in 
this paper. 
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4   ARGEN + AREPO 

ARGEN (ARtificial Genetic ENgineering) + AREPO (ARtificial Evolution of POpula-
tions) is an improved version of AREPO, an adaptive evolutionary algorithm. AREPO 
is a population level based evolutionary algorithm that moves from Classical Genetic 
Algorithms towards Artificial Evolution of Populations. It is composed by individuals 
able to meet and interact. AREPO is a technique for setting the genetic parameters 
during a run by adapting the population size and the operator rates on the basis of the 
environmental constrain of a maximum population size (resource of the ecosystem). 
In addition, genetic operators are seen as alternative reproduction strategies and also 
fighting among individuals is used [1]. 

Table 1. Results of HCs on the Feature and Instance Selection for UCI Repository datasets 

 

ARGEN is the reinforced part of AREPO. GEN (Genetic ENgineering) [12] bio-
logically is a set of techniques that allow us to modify the organism’s characteristics 
in a predetermined sense, by means of the alteration of its genetic material. ARGEN 
(ARtificial GEN) is a term that is introduced in this paper to include all kinds of al-
terations made to an individual (in GAs) to improve his fitness. Three levels of altera-
tion have been distinguished: “bit-level”, where the alterations are directly made to 
the chromosome’s bits (mutation), “individual-level”, where the alteration is given by 
the way in which new information is introduced to one chromosome (crossover) and 
finally, the “population-level” which is the way the chromosomes are selected to mate 
and reproduce (artificial selection).  The difference with the traditional way is that 
this alterations poof-based let us adapt the individual to a certain environment, i.e., 
adapt better the individuals to a certain problem. 

Real Accuracy (%) Method Accuracy (%) 
Database Method 

Average Best Average Best 
Storage 

SAHC 94.57 97.86 98.56 100 27.95 

NAHC 94.14 96.43 99.14 100 1.27 

RMHC 95.43 97.14 98.78 100 27.21 

Breast Cancer (WI) 

RBC 94.50 97.86 97.12 100 31.37 

SAHC 60.93 69.77 77.86 88.09 29.05 

NAHC 60.93 69.77 86.19 95.24 9.42 

RMHC 62.56 72.09 78.33 85.71 28.16 

Glass 

RBC 60.23 69.77 69.29 83.33 26.57 

SAHC 83.94 88.73 92.29 98.57 20.96 
NAHC 83.66 87.32 96.57 100 2.55 
RMHC 84.08 87.32 92.00 97.14 20.89 

Ionosphere  

RBC 84.65 90.14 90.43 94.29 22.68 

SAHC 93.67 96.67 99.67 100 27.09 
NAHC 93.00 100 99.67 100 3.80 
RMHC 94.33 100 99.00 100 26.25 

Iris 

RBC 92.33 100 98.67 100 29.81 

SAHC 61.01 73.91 75.94 79.71 30.46 
NAHC 59.13 72.46 90.87 94.20 11.21 
RMHC 57.97 73.91 75.94 78.26 28.45 

Liver Disorders 

RBC 60.00 73.91 71.45 78.26 26.25 

SAHC 96.39 98.15 96.39 97.68 27.15 
NAHC 99.12 100 99.77 100 13.23 
RMHC 95.65 100 95.74 100 27.14 

Monks1 

RBC 85.32 96.76 86.76 97.68 38.16 

SAHC 64.58 71.76 71.48 73.61 42.52 
NAHC 62.82 68.06 81.39 84.72 29.58 
RMHC 65.37 69.44 71.30 73.15 43.67 

Monks2 

RBC 63.89 69.44 67.68 70.83 26.73 

SAHC 98.89 100 99.72 100 26.76 
NAHC 100 100 100 100 7.14 
RMHC 98.01 100 98.93 100 23.39 

Monks3 

RBC 91.34 97.22 92.45 99.07 29.88 
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     The general ARGEN + AREPO algorithm is the following: 

1. Initialize population 
2. Evaluate population 
3. Alter best individual (bit-level) 
4. While not termination condition 

4.1. Get two individuals (natural & artificial selection) 
4.2. If “meeting” 

4.2.1. If “reproduction” 
4.2.1.1. Crossover (individual-level) 
4.2.1.2. Evaluate 

4.2.2. Else 
4.2.2.1. Simple Mutation 
4.2.2.2. Evaluate 

4.3. Else 
4.3.1. Fight 

5. Alter best individual (bit-level) 

4.1   Adaptation Rules 

One of the main features of ARGEN+AREPO algorithm is the adaptability of the 
parameters like in [1]. Population size is constrained by the environmental limit and 
its dynamics are determined by the meeting probability, reproduction and competition 
rules among individuals. These three adaptive rates are defined as: 

Mp

Cp
Pm =

 
Pm−=1Pr  Pr1 −=Pc  

     Where Pm is the meeting probability (the population density), Pr is the reproduc-
tion rate, Pc the competition rate, Cp the current population size and Mp the maxi-
mum population size. Thus, if the population density is low the reproduction rate is 
high and the competition rate is low. Vice versa, because of the lack of environmental 
resources, the competition rate gets higher and the reproduction rate decreases. 

4.2   Meeting and Competition 

When two individuals meet they can interact in two ways: by reproducing (crossover) 
or by fighting for natural resources (the stronger kills the weaker), otherwise the cur-
rent individual can generate a new individual by a simple mutation. Competition starts 
according to the adaptive rate Pc. It means that when two individuals meet and they 
do not mate then they fight for survival, the stronger kills the weaker and this one is 
removed from the population. 

4.3   Initialization and Finalization 

In ARGEN + AREPO the initial size of the population is a random number, limited 
by the maximum size of individuals. All individuals are unique, ranked in the popula-
tion by their fitness. As can be observed in Table 1, the results of hill-climbing algo-
rithms show that these algorithms are good searching techniques, so, in the initial 
population we alter the best chromosome by means of a hill-climber algorithm with 
the intention to improve his fitness. The finalization of the algorithm is given in the 
same way; the best chromosome is altered with a hill-climbing algorithm to improve 
its fitness. Like in Genitor, ARGEN + AREPO algorithm ends when a maximum 
number of iterations are reached. 
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Table 2. Performance of GAs in the data selection problem. The results of the original AREPO 
algorithm and the one introduced are included 

Real Accuracy (%) Method Accuracy (%) Database Method Average Best Average Best Storage 

SGA 95.14 99.29 97.91 99.28 29.45 
TGA 95.21 97.14 99.21 100 16.80 
CHC 95.86 97.14 99.21 100 25.56 
CFRSC 94.93 97.86 99.35 100 4.87 
GENITOR 95.86 98.57 99.35 100 23.97 
AREPO 95.21 97.14 99.35 100 26.02 

Breast Cancer (WI) 
  
  
  

ARGEN + AREPO 95.11 97.84 98.93 100 1.42 
SGA 63.02 67.44 75.48 88.09 29.67 
TGA 60.93 72.09 86.67 92.86 15.31 
CHC 61.63 69.77 84.76 90.48 28.93 
CFRSC 60.46 76.74 87.86 95.24 18.79 
GENITOR 61.63 76.74 85.48 92.86 24.69 
AREPO 59.30 65.17 83.33 95.24 23.45 

Glass 
  
  
  

ARGEN + AREPO 57.14 66.67 85.12 93.02 8.95 
SGA 84.65 88.73 90.29 97.14 22.25 
TGA 84.51 90.14 96.86 100 11.25 
CHC 84.65 87.32 96.14 100 16.10 
CFRSC 85.21 90.14 97.57 100 3.12 
GENITOR 85.35 88.73 96.29 98.57 17.99 
AREPO 85.35 90.14 95.29 97.14 18.66 

Ionosphere  
  
  
  

ARGEN + AREPO 84.86 92.86 95.77 98.59 2.49 
SGA 94.67 100 98.67 100 28.33 
TGA 93.00 100 100 100 6.05 
CHC 93.67 100 100 100 10.39 
CFRSC 94.33 100 99.33 100 6.03 
GENITOR 94.00 100 100 100 15.83 
AREPO 93.00 100 100 100 20.22 

Iris  
  
  
  

ARGEN + AREPO 96.67 100 100 100 2.67 
SGA 62.32 71.01 76.23 79.71 32.17 
TGA 60.43 68.12 90.72 95.65 28.83 
CHC 61.30 68.12 85.36 88.41 32.15 
CFRSC 59.71 68.12 92.03 97.10 24.82 
GENITOR 61.74 73.91 85.65 88.41 36.39 
AREPO 61.45 68.12 83.04 86.96 35.14 

Liver Disorders  
  
  
  

ARGEN + AREPO 60.43 71.01 90.29 97.10 9.15 
SGA 97.87 100 98.80 100 25.28 
TGA 100 100 100 100 11.01 
CHC 100 100 100 100 17.30 
CFRSC 100 100 100 100 10.97 
GENITOR 100 100 100 100 18.51 
AREPO 100 100 100 100 20.97 

Monks1 
  
  
  

ARGEN + AREPO 100 100 100 100 8.79 
SGA 68.80 73.61 70.93 74.54 46.51 
TGA 69.26 74.07 86.48 88.43 59.41 
CHC 68.10 73.61 81.76 84.26 59.88 
CFRSC 66.90 72.22 84.26 86.57 52.43 
GENITOR 68.80 75.00 80.32 82.41 54.75 
AREPO 66.39 71.76 77.78 80.56 53.45 

Monks2 

ARGEN + AREPO 65.51 71.76 85.23 89.81 37.55 
SGA 96.39 100 98.06 100 22.35 
TGA 99.58 100 99.86 100 8.24 
CHC 99.31 100 99.58 100 14.43 
CFRSC 99.54 100 99.91 100 8.62 
GENITOR 100 100 100 100 17.54 
AREPO 100 100 100 100 19.67 

Monks3 

ARGEN + AREPO 100 100 100 100 6.19 
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4.4   Natural and Artificial Selection 

Artificial selection is the modification of the hereditary constitution of the offspring by 
controlling the crossover between the parents. The idea presented in ARGEN + 
AREPO combines the Natural and Artificial Selection because the first is based upon 
the notion that all individuals in nature have a chance of mating. So, at each iteration, 
we pick the ith individual of the population, for i from 1 to current population size, 
then, applying artificial selection, the second individual is selected by ranking, like in 
the Genitor algorithm. In this way everyone has a chance of mating and bio-diversity 
is enhanced. 

4.5   Simple Mutation and Alterations at the Individual-Level 

In ARGEN + AREPO mutation is performed according to the adaptive reproduction 
rate Pr and when it occurs, in the bit-string k bits are randomly flipped. The mutated 
individual does not replace the original one; simply it is ranked in the population, in 
case to be different from all individuals in the population, so the population size in-
creases in one unit. When the population size reaches its maximum value, the off-
spring is ranked in the population, but only if it is different from all individuals in the 
population and, in that case the least fit individual is removed from the population. 
Crossover is performed according to the adaptive rate Pr, the alterations made be-
tween individuals is directed by the 2-point “reduced surrogate” [14] crossover opera-
tor, and if it occurred the resulting offspring would not replace their parents, they 
would be simply ranked in the population. In this way, population increases by two 
new elements. When the population reaches its maximum limit then the alterations at 
individual-level is as in the simple mutation. 

5   Preliminary Results 

For the data selection problem, the performance of the four HCs and all genetic algo-
rithms here presented (including AREPO and ARGEN + AREPO) was evaluated in 
the wrapper model. The results for HCs are presented in Table 1 and the results for 
GAs in Table 2; the column “method” shows the searching algorithm used in the 
wrapper model. The stop criterion was to reach a maximum of 8000 evaluations of the 
fitness function, for all the searching techniques. In SGA and TGA a population of 50 
individuals was used with a crossover rate of 0.8 and a mutation rate of 0.01. CHC 
uses the same number of individuals and a rate of 0.35 for the cataclysmic mutation. 
The population size in CF/RSC is 10, and, the individuals generated by each of them 
are 10. In GENITOR, AREPO and ARGEN + AREPO the population used was 1000 
individuals. All datasets used in the experiments were taken from the Machine Learn-
ing Database Repository at the University of California, Irvine [7]. For each database 
10 experiments were performed. At each experiment, 60% of data for training and 
20% for evaluation were randomly selected from the corresponding database; both 
directed to the wrapper model. The remainder 20% was left to evaluate the accuracy 
of the feature and instance subset given by the wrapper model. There is an exception 
in Monks1, Monks2 and Monks3 because each of these datasets are divided in train-
ing and test subsets, thus, from the test subset 50% of data were randomly selected for 
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evaluation and the remainder for testing. The “Average” and “Best” columns from 
“Method Accuracy” show the average accuracy of the 10 data subsets given by the 
wrapper model over their respective evaluation subsets, and, the best accuracy ob-
tained from the 10 experiments, respectively. The “Average” and “Best” columns 
from “Real Accuracy” show the average and best accuracy, respectively, of the 10 
data subsets returned by the wrapper model, but, evaluated over their respective test 
subsets. Finally the “Storage” column shows the percentage of the original training set 
that is necessary to store to classify new instances, these results are also an average of 
the 10 experiments.  

5.1   Automatic Infant Cry Recognition 

Additionally, it was chosen an Infant Cry database to show the performance of 
ARGEN + AREPO in a different problem from those of the UCI Repository.  The 
Automatic Infant Cry Recognition Process detects pathologies of recently born babies 
by means of their cry, it is very similar to Automatic Speech Recognition. It is divided 
in two main parts, the first one corresponds to signal processing, or acoustic feature 
extraction, and the second part is the pattern classification. The patterns are repre-
sented by vectors of Mel Frequency Cepstral Coefficients (MFCC). The used dataset 
has 1376 instances of 305 features each. There are three kinds of infant cry: normal, 
hypo-acoustics and asphyxia. The experiments with the infant cry dataset followed 
the same methodology applied to HCs and GAs. The results are presented in Table 3. 

Table 3. Results at the classification of normal and pathological baby cry, this last divided in 
two classes: asphyxia, and hypoacustics 

Real Accuracy (%) Method Accuracy (%) Database Method 
Average Best Average Best 

Storage 

Infant Cry SGA 98.88 99.64 99.64 100 24.68 
  TGA 98.84 100 100 100 12.94 
  CHC 99.31 100 100 100 18.43 
  CFRSC 97.97 98.91 99.93 100 1.92 
 GENITOR 99.24 100 100 100 18.07 
 AREPO 99.16 100 99.96 100 20.57 
 ARGEN + AREPO 98.19 99.64 100 100 2.94 

5.2   ARGEN + AREPO and Support Vector Machines 

In all experiments to select feature and instance subsets, it was used the DW-KNN 
classifier, which shows a good performance. In order to test our algorithms with a 
different classifier we selected Support Vector Machines [3] (SVMs) which have 
gained much attention since their introduction. Experimental results show that SVMs 
can reach certain performance that is equal or higher than other classifiers, requiring 
less training data.  Results of the ARGEN + AREPO algorithm combined with this 
classifier in a wrapper model to the feature and instance selection problem are pre-
sented in Table 4. In all experiments, the kernel function used was “rbf” (radial basis 
function), and the regularization constant “C” received a value of 10. We could see 
that in the “average” of the “real accuracy”, in five of eight databases, the classifier 
DW-KNN (Table 2) is better than SVMs (Table 4), although this last shows much 
better accuracy in those databases where DW-KNN is deficient. 
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6   Conclusions 

In the wrapper model used to the feature and instance selection problem, the HCs 
algorithms have shown good performance, even over some GAs. In the experiments 
we could notice that performance of the training data subsets returned when using 
some GAs, obtain high accuracy while the wrapper model is applied, but, this accu-
racy falls down when new unseen instances are being classified. The reasons of this 
effect could be due to the mixing of overfitting [11] and the lack of exploration in the 
search process. The ARGEN + AREPO algorithm introduced in this work has shown 
to be a better option, to the feature and instance selection problem, using the DW-
KNN classifier and the SVM classifier because in both, is reached a high accuracy 
keeping the least amount of training data.  

Table 4. Feature and instance selection with the ARGEN + AREPO algorithm, but, a different 
classifier in the wrapper model and the test phase is used, SVMs 

Real Accuracy (%) Real Accuracy (%) 
Database 

Average Best Average Best 
Storage 

Breast Cancer (WI) 92.23 94.24 98.14 99.29 5.19 
Glass 60.95 69.05 77.67 90.70 19.07 
Ionosphere  91.14 94.29 99.58 100 6.66 
Iris 95.67 100 99.67 100 3.17 
Liver Disorders 55.07 62.32 81.74 85.51 9.40 
Monks1 99.44 100 99.21 100 9.84 
Monks2 75.28 79.17 82.68 87.5 76.10 
Monks3 99.49 100 99.68 100 8.46 
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Modelling Perceptual Discrimination 
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Abstract. Accounts of perceptual decision making, such as evidence accrual 
models, represent mental states as noisy numerical vectors describing the 
stimuli. As such, these are not biological models. An alternative scheme is 
presented in which mental states are represented as functions. This generalises 
an analogue coding scheme for numbers, and might be biologically 
implemented as functions of cortical activity. Some properties of this 
representation are illustrated in modelling accuracy and response time patterns 
observed in a classic experiment into perceptual processes. 

1    Introduction 

This paper concerns representation in the context of perceptual discrimination tasks, 
such as selection of the brighter of two lights. In these tasks, the mental representation 
is assumed to change with time since the stimuli were presented. A response is made 
when the representation supports a particular selection, or when a guess is forced. 
Modelling of discrimination tasks must therefore attempt to explain time to respond, 
as well as response accuracy.  

This paper presents a model of perceptual decision making in which mental 
representations are a vector space of real-valued functions defined on an n-
dimensional manifold -- such functions we call spatial maps. A property of a stimulus 
is modelled as the restriction of the function representing the perceived stimulus to a 
subset of the manifold. As biological motivation, one could think of the functions as 
some physical function of neural activity defined on a cortical layer, for example, an 
electromagnetic field (McFadden 2002).   

Conventionally, stimuli are represented as numerical vectors, each component of 
which summarises a perceived quality or property. Component values may be treated 
as observations of a random variable that provides noisy estimates of the property or 
quality, where the noise might be external or internal to the decision-making system 
being modelled.  Decision boundaries divide the vector space into disjoints sets, each 
associated with a different response. For example, the simplest task involving two 
stimulus classes, each perceived via Gaussian-distributed observations on a single 
dimension, has been described by signal detection theory (Townsend & Ashby 1983). 
The decision maker cannot know for certain which class any particular observation 
came from, but can set a threshold on perceived stimulus values and respond 
according to whether the perceived value is above or below the threshold. 
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A variety of evidence accrual models are used to explain response time in 
perceptual decision making, that is, the time at which the decision is made relative to 
presentation of the stimuli. (See Ratcliff and Smith (2004) for a comparison of major 
models.) In modelling a two-choice decision involving noisy one-dimensional stimuli, 
a single accumulator may be assumed to gather evidence in the form of a sum of 
differences between repeated noisy observations of the stimuli, or alternatively a pair 
of accumulators each gathers evidence for one stimuli. In such discrete accumulator 
models, the number of observations N is assumed to increase linearly with time. A 
response is made when the difference between the sums lies outside a no-decision 
region around zero (the decision boundary); or when one of a pair of accumulators 
reaches its threshold; or when the time available expires.   

Conventional models of perceptual decision making are not biological models.   
Perceptual response time effects have been emulated in neural net models (eg. Brown 
& Heathcote, in press).  These nevertheless employ numerical vectors to represent 
perceived stimuli. 

The purpose of our paper is threefold. Firstly, it shows how the biologically 
motivated spatial maps might represent stimuli with measurable physical properties. 
Secondly, it demonstrates how a psychometric function could have a formulation not 
available if numerical vectors were used to represent perceived stimuli. Finally, it 
applies the model to explain data from a classic discrimination experiment (Vickers & 
Packer 1982). 

2   Spatial Map Representations 

Aisbett & Gibbon (2001, 2003) have previously proposed real valued functions as a 
flexible representation scheme. Townsend, Solomon and Spencer-Smith (2001) and 
Townsend and Spencer-Smith (2003) have investigated geometric and topological 
properties of certain families of functions, arguing that such representations are 
needed to simulate more complex psychological processing.  They suggest that for 
some psychological modelling, internal states should be represented as a function on a 
low dimensioned manifold, say n-dimensional for n < 3.   

The relationship between measurable values of a physical stimulus and 
representation based on functions has not previously been investigated. This section 
does this. 

It is instructive to reflect first on ANN modelling of perceptual decision making.   
Input to networks designed to model early perceptual processing are sampled physical 
signals, usually 2-D picture arrays, or audio traces. Processing is aimed at reducing 
the dimensionality of the input, to produce activation on nodes that correspond to 
dimensions such as redness, angle or size. There may be one output node from the 
early processing system for each perceptual dimension, or there may be a set of nodes 
in which value is coded by the ordering of the nodes in the set, as well as by nodal 
activation. 

If order is used to code value, coding may be either place-based or thermometer. 
Place based coding schemes are familiar from Arabic and other number systems, as 
well as from binary coding of integers. Thermometer coding provides alternative 
“analog” representations of real numbers or intervals (eg. Smith 1993). It is robust in 
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the presence of noise, at the cost of redundancy. Thermometer coding of integers on 
input nodes has been shown to improve the ability of feed forward neural networks to 
model categorical perception  (Tijsseling & Harnad 1997).   

Thermometer coding provides an insight into how qualities that have magnitude, 
such as length or brightness, might be modelled using spatial maps. 

Thermometer coding of a set of numbers N can be based on an arbitrary set X 
provided that there are a set of sets {Xb ⊂  X}b∈ N  which satisfy the relationship  

   Xa  ⊂  Xb  for any pair a, b in N with a < b.                      (1) 

0 2 4 6

step function

std dev=.2

std dev=1

 

Fig. 1. Spatial maps on R+ representing a noiseless reading (step function) and two noisy 
readings (shown as erfc or complementary cumulative distribution functions of a Gaussian) 

An equivalent coding of the numbers in N can be defined using a set of 
characteristic or membership functions χb on X, where  χb(x) = 1 if x ∈ Xb;  χb(x) = 0 
if x ∉  Xb. The coding can be generalised by allowing the functions χb to take values 
in the interval [0, 1]. If χb(x) is between 0 and 1 then x can be interpreted as being 
possibly in the set representing b.  This allows imprecision in perceived values to be 
modelled directly in the internal representation, rather than as an external probability 
distribution. Figure 1 illustrates modelling two noisy readings of a value b using the 
complement to a Gaussian cumulative distribution function, where X is the positive 
reals. This contrasts with the noise free step function representing the analog 
thermometer coding of b, that is, a function f on the non-negative reals such that  
f(x) = 1 for x < b  and f(x) = 0 for x > b.   

A further generalisation of thermometer coding extends the set of functions that are 
used to represent values on a perceptual dimension, from sets of functions indexed by 
numbers in N to other sets of functions from X into the unit interval. It also extends 
the range of the functions to the non-negative reals, R+, to allow addition. 

This leads us to the general definition of internal representations as members of a 
real vector space Φ of functions from an n-manifold X into R.. If X is an n-
dimensional manifold, such as a subset of Rn, and the functions are continuous, the 
members of Φ can be thought of as spatial maps.  Continuity and other conditions that 
may be imposed on Φ mean the set of internal representations is richer than an 
arbitrary set of vectors having one component for each member of X.   
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Dimensions are defined as (connected) subsets Xi of X. A value on a dimension 
specified by Xi is the restriction f|Xi  of a function f in Φ.  If subsets Xi and Xj are 
disjoint, the dimensions are separable. If the sets intersect, interaction effects occur 
and the dimensions are so-called integral. The ability to represent these dimensional 
interactions are an advantage of the spatial map formulation (Aisbett & Gibbon 2001).  

A family Φn defined on a subset Y of Rn can be associated with any family Γ  of 
probability density functions on a real (possibly infinite) interval [0, a).  Define the 
embedded complementary cumulative distribution function (CCDF) f of a distribution 
p in Γ by f(x) = y > |x|  p(y)dy. This is a radially symmetric function, taking the CCDF 
of p along each radial line.   Form Φn  from the basis set of embedded CCDFs. 
Suppose that the n-dimensional sphere of radius a is contained in Y. Then if f is the 
embedded CCDF corresponding to p ∈ Γ, substituting for f and integrating by parts 
shows that Y f(x)dx is the expected value Y x p(x)dx  multiplied by the volume of the 
unit sphere in Rn. The family Φn therefore naturally models noisy mental 
representations of the physical magnitudes of a stimulus quality. This is illustrated in 
Figure 1 for n=1. (Note that if noise were modelled pointwise as observations of a 
random variable (so that the value at any point x in Y is f(x)+ ε)  then the noisy 
function that results will not generally be a member of Φn even when f is. It will not 
be continuous even when f is continuous.) 

Mental representations are time varying. The notation ft(x) will be used to denote 
the value of a spatial map f at time t on the point x of X.  In this paper, time is treated 
as discrete, although this assumption is not essential.  Section 4 introduces additional 
assumptions needed to model the time course of representations in a discrimination 
task. 

3   Decisions and Response Time 

Any choice decision involves some notion of comparative similarity. We therefore 
require that Φ  have an L1  norm, denoted || ||X .  Then the distance between a pair of 
perceived stimuli f and g is defined to be 

   d(f, g; X) = ||f – g||X 
 ≡  X |f(x) – g(x)|dx.                          (2) 

For example, the distance between the step function and one of the erfc functions 
depicted in figure 1 is the sum of the roughly triangular regions which meet at the 
intersection of the step and erfc functions. 

The integrability required to define the L1 norm is a natural biological condition, as 
physical activity of neural populations can be aggregated over subvolumes.  

The norm in (2) restricts to subsets Y of X where it will be denoted || ||Y. On 
dimensions it can be interpreted as the magnitude of the stimulus on that dimension. 
(The integral may not be defined for some pathological subsets that are not of interest 
here.)  The distance between perceived stimulus values f and g on a dimension is the 
norm|| f - g||Xi. on the subset Xi defining that dimension.  

For X, or for any subset Y of X, a partial order  can be defined, namely 

   f <Y g if and only if f(x) < g(x) for all x ∈ Y                      (3) 
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This is obviously not a total order. An n-dimensional real space does not have a total 
order either, but this goes further in allowing that a single dimension does not have a 
total order. Thus, on a single dimension, ||f||Xi <Xi  ||g||Xi would not necessarily mean 
that stimulus f|Xi was perceived to be smaller than g|Xi. 

Turning now to the modelling of a discrimination task: suppose two stimuli 
originally presented at time t=0 have mental representations ft and gt at time t. We 
consider only the simple task of deciding which stimulus is “biggest”. There might 
nevertheless be multiple dimensions of the stimuli which are relevant to the task 
instructions, as for example when selecting the largest size based on both height and 
width.  Suppose the relevant qualities of the stimuli are defined on a subset Y.  

If the mental representations of ft and gt cannot be ordered, then there may be no 
natural response. However, it may be impractical to wait till one function exceeds the 
other everywhere on Y: indeed, this might never occur. We therefore propose that the 
response is made at the earliest period t for which the following so-called stopping 
rule is satisfied: 

 |||ft||Xi –||gt||Xi | / ||ft –gt||Xi  = | Xi ft(x) – gt(x)dx| / Xi |ft(x) – gt(x)| dx > K,    (4) 

for K < 1  is a task-dependent parameter. K will be larger when the task requires 
accuracy rather than speed, for example.  Note that if numbers were used rather than 
functions on a measurable set, equation (4) is always satisfied so it cannot be 
employed in determining response time.  

Having waited until one function appears likely to exceed the other, the response at 
that time t will be made according to whether or not 

   |||ft||Y  <Y ||gt||Y .                                                                 (5) 

4   Modelling a Two-Choice Discrimination Task 

This section reinterprets data reported by Vickers and Packer (1982) on experiments 
investigating models of confidence in perceptual discrimination tasks. The 
experimental stimuli were pairs of different length bars, displayed on a screen. The 
length of the bars was constant throughout a trial, but the position of the longer bar 
varied randomly between right and left. The longer bar was always the same length, 
but the shorter bar took one of 5 lengths, resulting in 5 different levels of 
discriminability in the conditions of the experiment. Participants chose which side had 
the longer bar, and assigned a confidence rating to their selection.  In trial blocks, 
participants were either instructed to be as accurate as possible, or to be fast while 
trying to be accurate (speed condition).  

As expected, the percentage of correct responses fell and the time to respond 
increased as the level of discriminability decreased (see the top two plots in Figure 2, 
reproduced from figure 2 of Vickers & Packer). The results also exhibit a well known 
phenomenon called the speed/accuracy tradeoff – if participants are hurried making a 
decision, they are less accurate.  

We therefore have to model the tendency to develop more accurate mental 
representations of stimuli magnitudes with time. We do this by changing the 
relationship between the representation and the magnitude, which in section 2 we 
proposed to be based on CCDFs. So suppose the representation of a stimulus of 
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magnitude L is, at time t, the embedded CCDF of a distribution defined on R+ with 
mean m(t) and variance v(t). Suppose initially that m(0) is an observation of a normal 
distribution with mean the true stimulus value, and variance s.   Then to model 
convergence in the estimate of L as well as reducing noise v, set 

 m(t) = |w.m(t-1)+ (1-w)(L - m(t-1)) + n(t)|;  and v(t) = |m(t)-L|2 .               (6) 

Here, n is zero-mean Gaussian noise, and w is from a uniform distribution on [0, 1]. 
Six parameters are needed to model the physical stimuli lengths over all levels, 2 

stopping rule criteria K are used for speed or accuracy conditions, and 1 parameter s is 
needed for the variance in starting point m(0). There is also an implicit parameter used 
to scale time to fit the experimental data.  

The simulated results when the  CCDFs are those of truncated normal distributions. 
are shown in the lower plots in Figure 2. They fit the actual data closely.  
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Fig. 2. Top plots – experimental results from Vickers & Packer (1982) for average accuracy 
and response time against difficulty of task. Bottom plots – simulated results. See text 

5   Discussion 

This paper presented a representational scheme based on families of functions we 
called spatial maps, and illustrated its application to perceptual discrimination.  
Functional representations had been suggested earlier by Townsend and colleagues, 
and explored in the context of shape representation.  The present scheme was 
motivated by analogue coding of numbers and was not specialised for any property or 
quality types.   
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The advantage of spatial map representation over direct modelling of physical 
magnitudes as real numbers is the ability to capture noise in the representation of the 
stimulus, rather than with ancillary modelling structures. We suggested embedding  
1-dimensional CCDFs in 2 (or higher) dimensions as radially symmetric functions. 
These carry information about the uncertainty in the estimated value which is coded 
as the mean. While embedded CCDFs are inefficient, they are biologically realisable 
in 2 or, more correctly, 3 dimensions. We modelled accumulation over time as 
convergence of the CCDFs to a step function at the true value, allowing for noise that 
is proportional to the error in the estimate.  

The reanalysis of experiments by Vickers and Packer (1982) showed how a 
psychometric function, the response time, depended on a  stopping rule that could not 
be formulated if numerical vector representations were assumed. Further reanalysis of 
published experimental results will be fruitful in developing insights into the extent to 
which the conventional use of numerical vectors to model mental representations 
limits potential interpretations of mental activity. Targeted experiments to distinguish 
between use of spatial representation and numerical representations in perception are 
needed. 

A more detailed mathematical specification of the families used in the 
representation is required to ensure all properties specified in modelling processes are 
available, while constraining the families as far as possible. The link between 
psychometric modelling and biological modelling of psychological phenomena also 
bears further work. Biological models are usually equated with connectionist models. 
We have argued against this because of the simplicity of the connectionist modelling, 
and suggested that functional representations may be as valid. To sustain this 
argument the nature of the functions and the set on which they are defined need to be 
explored and identified neurophysiologically. 
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Abstract. An associative neural network with chaotic neuron model and synap-
tic depression (CSDNN) is constructed. Memory switching phenomenon in the 
network is demonstrated. Simulation results show that with various parameter 
value settings and with various initial conditions, the memory retrieval fre-
quency of CSDNN distributes uniformly among the stored patterns, and the rate 
of memory retrieval of CSDNN is much higher than that of a chaotic neural 
network. The possible utilization of memory retrieval in CSDNN is also dis-
cussed.  

1   Introduction 

It is well known that an autoassociative neural network can store memories through 
its synaptic connections [3][4]. Unlike a conventional autoassociative neural network 
which evolves to settle at a stable steady state, a chaotic associative neural network 
generates peculiar behavior that the network retrieves some stored patterns and es-
capes from them in the transient phase [1][2][5]. Such a chaotic associative memory 
is constructed with chaotic neuron models interconnected through a conventional 
auto-associative matrix of synaptic weights. On the other hand, once the weights of 
the synapses in a conventional autoassociative neural network are learned by learning 
rules, they are fixed during the memory retrieval process. This implies that the syn-
apses of the neurons are assumed to be 'static', i.e., that they change their weights only 
on the slow time scale. However, it has been discovered that synaptic plasticity occurs 
across many time scales-from the order of days to the order of milliseconds [10]. The 
dynamic association in a neural network when a synaptic depression is included in the 
network is investigated [7]. Similar to a chaotic associative memory, the output of 
such a network transits among the stored patterns during the retrieval process.  

In this paper, we explore the dynamics of an associative neural network with cha-
otic neuron models and synaptic depression (CSDNN). We also find the memory 
switching phenomena in this kind of network. More importantly, we find that the 
retrieval frequency of the stored pattern in CSDNN is much higher than that in a cha-
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otic neural network [1]. Stated in other way, after CSDNN escapes from a stored 
pattern, it spends much less time to evolve to another stored pattern than a chaotic 
neural network. Therefore, if the associative dynamics is interpreted as a memory 
searching process, CSDNN is a quick memory searching network. We also make a 
discussion in the last of this paper that CSDNN might be a potential good mean for 
solving combinatorial optimization problems. 

2   Models of the Neural Network with Chaotic Neurons and 
Dynamic Synapses  

The chaotic neuron model in this paper is described by the following equation [1] [2]: 

,])}({)([)1(
0=

Θ−−−=+
t

d

d dtxgktAftx α                          (1) 

where t  is a discrete time step ( t = 0,1,2 ), )(tx  is the neuronal output with an ana-

log value between 0 and 1 at the discrete time t , f  is the activation function, )(tA  

is the external stimulations at the time t , g  is the refractory function, α  is the refrac-

tory scaling parameter, k is the refractory decay parameter, and Θ  is the threshold.  

The term )}({ dtxgk d −  represents the influence of the refractoriness due to the 

neuronal output of  d  time steps ago. 
An internal state of the neuron  can be defined as follows: 
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A reduced difference equation describing dynamics of the internal state can be rep-
resented as follows: 

),()}]({[)()1( ttyfgtkyty θα +−=+                     (3) 

where )1()1()()( ktkAtAt −Θ−−−≡θ . 

When we set atxxg == )(,)( θ which is temporally constant, and 

)}/exp(1/{1)( εyyf −+= , which is the logistic function with the steepness parame-

ter ε , the model shows not only periodic response but also chaotic response accord-
ing to the parameter values [1] [2]. 

The chaotic neural network is composed of the chaotic neurons shown above. The 
dynamics of the i th chaotic neuron integrated in a chaotic neural network is de-
scribed as follows [2]: 

{ } Θ−−−−+−=+
= = ===

t

d

t

d

t

d
ii

d
rj

d
f

N

j
ijj

d
e

M

j
iji dtxgkdtxktwdtAkvftx

0 0 011

)()()()()1( α  (4) 

where ijv  is the synaptic weight to the i th neuron from the j th external input, 
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)(twij
 is the synaptic weight to the i th neuron from the j th neuron, ek  is the decay 

parameter for the external inputs, fk  is the decay parameter for the feedback inputs, 

and rk  is the decay parameter for the refractoriness. 

Equation 4 can be transformed into the following reduced and simultaneous forms [2]: 
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                        (1 ),i i rkθ ≡ Θ −  
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In this paper, the chaotic neural network is expressed as a simplified form of Eqs.9-11: 
)},1()1({)1( +++=+ ttftx iii ςη                                     (9) 
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where ia  denotes the sum of the threshold and the temporally constant external input 

to the i th neuron. 
The weight of the dynamic synapse is determined by two parts as follows [7]: 

                                ),()( trwtw j
c
ijij ⋅=                                                                 (12) 

where c
ijw  is a static term that is determined by the stored patterns; )(trj  is the term 

that is caused by the synaptic depression. 
c
ijw  is defined as follows: 
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where sN  is the number of the stored patterns; p
iµ  is the i th component of the p th 

stored pattern. The four stored patterns is shown in Fig. 1 (see [1] for details).  

 

Fig . 1. The four stored patterns. The output pattern of the 100 neurons is displayed in the form 
of a 10 by 10 matrix 
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The model of the synaptic depression can be described as follows (see [7] for details): 

 ),()(/)(1()()1( txtrUtrttrtr iiiii ⋅⋅−−⋅∆+=+ τ                               (14) 

where )(tri , which affects the weight of the dynamic synapse (see Eqn. 12), is the 

recovered synaptic resources of the neuron i ; τ  is the recovery constant; the term 

)(trU i⋅  represents a fraction of the recovered synaptic resources of the neuron i ; t∆  

is the time step of discretization. 

3   Simulation Results  

CSDNN is composed of chaotic neurons and dynamic synapses. There are two groups 

of parameters. The group of ε ,α , fk , rk  and ia  is for chaotic neuron models, the 

other group of τ  and U  is for synaptic depression. As the dynamics of the chaotic-

neural network [1] can be studied by changing the parameter of the refractoriness rk , 

and the effect of the depression of the dynamic synapses can be adjusted by the pa 
 

 

Fig. 2. Memory retrieval of CSDNN under the parameters of 015.0=ε , 6=α ,
fk =0.1, 

6.0=rk , 2=ia , 10=τ  and 08.0=U . The time step t  is from 0 to 100 
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Table 1. Memory (stored patterns and reverse stored patterns) retrieval frequency with U  fixed 
at 0.01 and rk  increased from 0.7 to 0.8. The total time steps of the simulation is 5000 

 0.7 0.75 0.8 

Pattern Stored Reverse Stored Reverse Stored Reverse 

 172 200 141 185 188 195 

 224 422 270 270 156 169 

 58 229 183 365 118 167 

 282 310 184 185 241 205 

R  0.38 0.36 0.29 

Table 2. Memory (stored patterns and reverse stored patterns) retrieval frequency with rk  
fixed at 0.65 and U  increased from 0.07 to 0.1. The total time steps of the simulation is 5000 

U  0.07 0.09 0.08 0.1 

Pattern Stored Reverse Stored Reverse Stored Reverse Stored Reverse 

 183 221 91 92 91 90 167 166 

 75 223 90 180 197 144 125 166 

 185 219 46 91 54 92 171 170 

 432 255 182 45 288 183 208 86 

R  0.36 0.16 0.23 0.26 

Table 3. Memory (stored patterns and reverse stored patterns) retrieval frequency in four runs. 
Each run starts with randomly generated initial conditions. rk  is fixed at 0.8 and U  is fixed at 
0.01. The total time steps of the simulation is 5000 

 Run 1 Run 2 Run 3 Run 4 
Pattern Stored Reverse Stored Reverse Stored Reverse Stored Reverse 

 184 199 174 187 174 191 183 193 

 164 175 162 173 154 169 165 176 

 114 157 120 163 128 172 113 161 

 245 208 238 206 243 215 245 211 

R  0.29 0.28 0.28 0.29 

rameter of U  in Eqn. 14, we explore the characteristic of the memory retrieval be-
havior of the CSDNN by changing these two parameters. If the refractoriness and the 
depression of the dynamic synapses are both strong, the behavior of CSDNN seems 
somewhat like random. Therefore, we fix one of the two parameters at a small value, 
increasing the other parameter from a small value to a large value. Other parameters 
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are fixed following related literatures [1][7]. We fix 015.0=ε , 6=α , fk =0.1, 

2=ia  and 10=τ  in this paper.  

Fig .2 shows an example of the memory retrieval process of CSDNN. CSDNN vis-
its a stored pattern (reversed stored pattern), escapes from the stored pattern, searches 
for next stored pattern, and once again visits another stored pattern. The main subject 
in this paper is to explore the memory (stored pattern and reverse stored pattern) re-
trieval frequency, and Tab .1, Tab .2 and Tab .3 show the simulation result. Tab .1 is 
the retrieval frequency of the stored patterns and reverse stored patterns with U  fixed 

at 0.01 and rk  increased from 0.7 to 0.8. Tab .2 is the memory retrieval frequency 

with rk  fixed at 0.65 and U  increased from 0.07 to 0.1. Tab .3 is the memory re-

trieval frequency with four randomly generated initial conditions. To characterize the 
memory retrieval frequency of CSDNN, we define the rate of memory retrieval as 
follows:  

simulationtheofstepstimetotalthe

patternsstoredthevisitingnetworktheofstepstimethe
R =     (15) 

We decide that the neural network is visiting a stored pattern (reverse stored pattern) 
if the Hamming distance of the output pattern of the neural network equals that of the 
stored pattern exactly.  

Tab .1, Tab .2 and Tab .3 show that with various parameter value settings and with 
various initial conditions, the retrieval frequency of CSDNN distributed uniformly 
among the four stored patterns, and the rate of memory retrieval in CSDNN is around 
0.29, which is much higher than that in a chaotic neural network [1]( around 0.03).  

4   Discussion 

A neural network with chaotic neurons and dynamic synapses (CSDNN) is con-
structed. The associative dynamics in such a network is similar to that in chaotic neu-
ral networks [1], but CSDNN transits more quickly among stored patterns than cha-
otic neural networks. Since the associative properties of chaotic neural network are 
similar to dynamical behavior of the olfactory system [11] and may play a functional 
role of rapid and unbiased access to the learned patterns in the olfactory system, the 
quick memory search property of CSDNN might be very important for living beings, 
especially as the external environment for them change rapidly.  

The quick memory search property of CSDNN might also be utilized in technical 
field. Neural network approaches have been shown to be powerful tools for combina-
torial optimization, but the conventional neural network approaches suffer from the 
local minimum problems. Neural networks combined with simulated annealing tech-
niques have a globally searching ability for combinatorial optimization problems 
[8][9], but they suffer from other drawbacks such as efficiency. The quick memory 
search property of CSDNN might be helpful for addressing these problems. The 
stored patterns can be viewed in some sense the local or global minima of the energy 
function of the network. The quick memory transition means that the network can 
escape from local minima quickly once it traps in the local minima. If global mini-
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mum of the energy function of the network is viewed as a memory, the quick memory 
transition also means that the network can find the global minimum quickly. Thus 
CSDNN may be a potential good mean for solving optimization problems in technical 
field. 
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Abstract. In stereoscopic vision, there are two artificial eyes implemented so 
that it can obtain two separate views of the scene and simulate the binocular 
depth perception of human beings. Traditionally, camera calibration and 3D 
reconstruction of such a vision sensor are performed by geometrical solutions. 
However, the traditional camera model is very complicated since nonlinear 
factors in it and needs to approximate the light projection scheme by a number of 
parameters. It is even very difficult to model some highly distorted vision 
sensors, such as fish-eye lens. In order to simplify both the camera calibration 
and 3D reconstruction procedures, this work presents a method based on neural 
networks which is brought forward according to the characteristics of neural 
network and stereoscopic vision. The relation between spatial points and image 
points is established by training the network without the parameters of the 
cameras, such as focus, distortions besides the geometry of the system. The 
training set for our neural network consists of a variety of stereo-pair images and 
corresponding 3D world coordinates. Then the 3D reconstruction of a new s 
cene is simply using the trained network. Such a method is more similar to  
how human’s eyes work. Simulations and real data are used to demonstrate  
and evaluate the procedure. We observe that the errors obtained from our 
experimentation are accurate enough for most machine-vision applications. 

1   Introduction 

In a stereoscopic vision system, the inputs to the computer are 2D-projections of 3D 
world objective things. The task of machine vision is to reconstruct 3D world according 
to such 2D pictures using the triangulation metrology and interpret the context of the 
scene. In this course, with a geometrical approach, it is unavoidable to determine the 
                                                           
* This work is supported by the National Natural Science Foundation of China (NSFC No. 

60405009 and 60374056) and Zhejiang Natural Science Foundation of China (ZJNSF 
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relative position, the direction and internal and external parameters of the cameras. This 
procedure is termed as camera calibration. 

Vision sensor calibration is an important issue of stereoscopic vision study, its 
purpose is to solve the position, parameters of the camera and build the model of 
imaging. Traditional camera calibration can be divided into two methods: one is linear 
model; another is non-linear model. Though linear model is simple, it is a standard 
basic model of the camera calibration, as it has not considered some linear or non-linear 
distortion in the course of imaging. So it cannot describe the geometry relation of 
imaging accurately, especially while using wide-angle lens, there is greater distortion in 
the place far away from the center of picture, making the precision of calibration 
greatly influenced. Though the non-linear model [1] takes care of the distortion effects, 
but it also leads to a more complicated mathematic equation at the same time. 
Furthermore, after the sensor is calibrated, the system still needs other mathematical 
approaches to formulate the 3D computation for obtaining the coordinates of a point in 
the scene. Sometime another nonlinear is necessary to perform such a computation. 

In order to simplify the calibration and reconstruction procedures, this paper 
proposes a new method for three-dimensional vision calibration and reconstruction, 
which is based on feed-forward neural network, utilizing the artificial neural network 
through directly learning the information of the 2D pictures and information of the 
corresponding 3D coordinates, getting the relation between them, thus avoiding to 
build the complicated distortion model of cameras. Therefore, such a method works 
very similar to how human’s eyes work and the stereoscopic sensor can work well even 
with a highly distorted vision sensor, such as camera pair with fish-eye lenses. 

2   The General Imaging Model of a Camera 

The common foundation of the optics triangulation is the theory of the geometrical 
optics imaging. The camera is used as the eye of a machine, through which realize the 
conversing from scenery to image. Fig.1 shows the imaging procedure from world 
coordinates to image coordinates (on pixels): 

 

Fig. 1. The imaging model of a general camera 
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1) Transformation from world coordinates system to camera coordinates system: 
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2) Transformation form camera coordinate system to no-distorted 2D-image 
coordinates: 
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3) The relation between the 2D-sensor coordinate system and image coordinate system: 
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The general projection form of an ideal camera: 
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     In the formula M is a 3-by-4 matrix, as we know, using more than 6 given points in 
space and their image pair-point coordinates, we can get projection matrix through least 
square method, accordingly get all internal and external parameters. 

The non-linear model adds a few distortion parameters ),(),,( yxyx yx δδ  on the 

basis of linear model: 
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It needs to use non-linear optimization to standardizing the camera while 
considering non-linear distortion, but it will also introduce too much non-linear 
parameter always and not only affect the precision, but also cause the instability of 
solution [2]. The method adopted in this paper need not to consider the non-linear 
distortion since the neural network algorithm has good nonlinear mapping ability. 
Through the learning of the network, in fact it has already taken the non-linear factor 
into account automatically. So it easily solved this non-linear optimization problem. 

3   Neural Network Model 

Back-Propagation (BP) Network is a kind of neural algorithm used widely for solving 
non-linear problems. The basic thought of the error back-propagation algorithm is to 
revise the connection coefficient from outputting floor according to the mean square 
errors between the Expected output and the network output of a sample, utilizing the 
method of gradient descent. The topological structure of neural network model that 
based on BP algorithm includes input layer, latent layer and output layer. BP network 
can learn a large number of mapping modes without any mathematic function describes 
the relation between the output mode and input mode. 

According to transmission projection principle, the coordinates of corresponding 
points in two images are corresponded with the world coordinates of their spatial point. 
And there exits a nonlinear relation, which can be used to train the network. So we can 
establish such a mapping relation between the coordinate system of image and the 
coordinate system. From Fig.2, ZYX ,,  presents the coordinate of a world point, 

corresponding the coordinate of two image ( 11,vu ) and ( 22 ,vu ). In this neural 

network model, 2211 ,,, vuvu  is the input of the neural network, and ZYX ,,  is the 

output of the neural network. 

 

Fig. 2. ANN model for camera calibration 

According to the above-mentioned neural network models, we adopted this 
feed-forward network with three layers. The common method of setting the number of 
node of latent layer is to try several numbers. Here we set up less likely latent nodes to 
train the network first, then increase the latent node gradually. Practically, it is 
determined as 

( ) alnsqrtm ++=                               (6) 
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This is used as an initial value of this trying method, among them m is counted for 
the nodes of latent floor, n is counted for the nodes of input floor, l is counted in order to 
export the node and a is a constant between .10~1  

4   Experiments 

4.1   The Calibration Data 

In this paper, the calibration data was provided by Zhenyou Zhang from website [3]. 
The calibration object for reference is a level board with white background, on which 
distributes a number of 8*8 black lattices. Each lattice has four coordinates. As a result 
there are 256 points known for test altogether. Fig.3 illustrated the pictures obtained 
from two cameras that located at different space location. 

 

Fig. 3. Two images from two cameras (after [3]) 

4.2   Network Structure 

In the experiments we finally selected the network structure of a single latent floor with 
7 nodes after several times of trying. A sigmoid activation function is adopted for the 
latent layer and a linear activation function for both input and output layer. Then we 
improved the BP algorithm with the momentum law. 

The method of momentum law is an improvement of ordinary BP algorithm, which 
is to improve the calculation of connection values. After putting into the momentum 
item, the calculation formula of a connection value is determined as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )kWkWykW l
i

l
i

ll
i

l
i +−∆+=+ − 11 1)( ηαδ                  (7) 

     Here α  stands for study step, η  for momentum factor. The adoption of the 

additional momentum item reduces the sensitiveness of network to details of curved 
error surface, suppressing the network to fall into some minimum effectively and 
contributing to reduce the training time at the same time. As a result, it improves the 
speed of learning and increases the dependability of the algorithm. The ‘trainbpm.m’ 
function offered in Matlab toolbox can be used to train the BP networks, which has less 
than four layers with additional momentum factors. 
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4.3   Network Training 

The network is trained with 64 groups of sample data. The convergence tempo of the 
network mainly depends on the complexity of nonlinear mapping among the inputs and 
outputs. The more complicated the mapping relationship is, the longer time it is to train. 

In order to make the BP network based on gradient drop rule to converge at the 
minimum point at a large, the learning rate should be small enough, but this will 
lengthen the time of converging greatly. And high learning rate will lead to fall into 
some local minimum point but difficult to converge. Through the method of turning 
step in the course of experiment, we decided the learning rate to be 0.02. 

Fig.4 and Fig.5 show the learning errors in the course of training. From Fig.4 we can 
find the learning error in the first 1000 training decreased rapidly as the increase of the 
times of training. 

 

 

Fig. 4. Training after 1000 times 

From Fig. 5 we find out that the magnitude of learning error decreased from 10-1 to 
10-3 after 10000 times of training. So the simulation in which the neural network was 
trained has produced very satisfactory results. Increasing the training times to make the 
training error decreased to the magnitude of 10-4 or more will not produce significant 
improvement of accuracy. 

In this test, because the sample data are not very large, though we had not carried on 
the normalization to the sample data, the training result is still satisfactory. Of course, 
as increasing the size of the sample data, we need to carry on the normalization to the 
sample data since the limitation in the sensitive district of the sigmoid function. At that 
time, all sample data including inputs and outputs were normalized between 0 and 1 
before training [5]. It is necessary to acquire a quick learning. The normalization can be 
performed by 

)/()(' minmaxmin xxxxx −−=     ]1,0['∈x . 
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Fig. 5. Training after 10000 times 

4.4   Network Testing 

In order to check the accuracy of the trained network, we test the network with eight 
stereo-pair points, which their corresponding spatial coordinates are known and were 
not included in the training set. Then we use the network to perform 3D-reconstruction. 
The mean square error between the Expected output and the network output is the way 

to evaluate this method [5]. Mathematically, it is written as:  

( ) 3/222 zyxRMS ∆+∆+∆=  

Here, zyx ∆∆∆  , , represent the differences between the corresponding coordinates of 

Expected output and network output. 

Table 1. Simulation Result 

                                              (Mm) 
Expected output Network output  

wx  wy  wz  wx  wy  wz  RMS  

67.222 -67.222 0 67.134 -67.193 0.000178 0.053495 
67.222 -26.667 0 67.222 -26.711 -0.00039 0.025404 
58.333 -13.889 0 58.344 -13.872 -0.00078 0.011699 
53.333 -53.333 0 53.361 -53.395 0.000415 0.039278 
49.444 -26.667 0 49.451 -26.707 0.000229 0.023445 
31.667 -35.556 0 31.678 -35.634 0.000676 0.045481 
22.778 -44.444 0 22.795 -44.52 -9.3E-05 0.044963 
17.778 -62.222 0 17.806 -62.296 -0.00175 0.045691 
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From Table.1, it is obvious that through the neural network of BP study algorithms, 
satisfactory results of three-dimension coordinates can be obtained directly as well as 
avoiding non-linear computations. The precision can be up to 0. 1mm, while the error 
of traditional calibration method is above 1 mm. Therefore, the proposed method based 
on improved BP neural network can carry on the three-dimensional vision camera 
calibration very well. The accuracy is higher than that of traditional methods and can 
meet the requirements of common industrial applications. 

However, this 3D vision measuring method using neural network still exists 
drawbacks, the main one is that it needs many training sets compared with geometrical 
methods and the training process is relatively slow. In addition, the number of latent 
nodes needed to be fixed through times of trying. 

5   Conclusion 

This paper proposed a neural network approach perform both the camera calibration 
and 3D reconstruction with a stereoscopic vision sensor, which works very similarly to 
how human perceives the three-dimensional scene. The distinct advantage of the 
approach using neural network is that the method comprises the complicated nonlinear 
relation between 2D information on the images and three-dimensional information in 
the world, which can include various kinds of distortion and other nonlinear factors 
during the imaging period. Therefore, the method is very suitable for calibration and 
3D reconstruction of a highly distorted stereoscopic vision sensor in which a traditional 
geometrical approach usually fails or is very expensive to implement. Furthermore, the 
inherent parallel running ability of the network will make the measuring speed of the 
network very fast and can meet the requirements of some real-time applications. 
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Abstract. This paper shows how Evolutionary Algorithm (EA) robust-
ness help to solve a difficult problem with a minimal expert knowl-
edge about it. The problem consist in the design of a Brain-Computer
Interface (BCI), which allows a person to communicate without us-
ing nerves and muscles. Input electroencephalographic (EEG) activity
recorded from the scalp must be translated into outputs that control
external devices. Our BCI is based in a Multilayer Perceptron (MLP)
trained by an EA. This kind of training avoids the main problem of MLPs
training algorithms: overfitting. Experimental results produce MLPs with
a classification ability better than those in the literature.

1 Introduction

Brain-Computer Interface (BCI) is a novel method by which humans and com-
puters can interact. Research in this area has grown rapidly in the last 15 years
often addressed to people with severe motor disorders. BCI relies in detecting
brain activity to communicate or control cursor movement or prosthesis.

There are a wide variety of signals that can be measured in a human brain:
chemical, electrical, magnetic, mechanical, metabolic and thermal. Among them,
the most frequently used is scalp electroencephalogram (EEG). EEG signals let
us detect tiny changes in synaptic electrical currents that occur when different
areas of the brain are used. These currents are in the order of microamps. With
EEG it is impossible to gain precise information about the firing of a specific
neuron but general patterns and rhythms of the activity of millions of them.

When a region of the brain is not active, it has a tendency to synchronize
its firing patterns with its neighbors, producing discernible rhythms of various
frequencies in the EEG. For instance, when the visual cortex is inactive, the
area is dominated by the α rhythm, which is a repeating pattern at around
8Hz. The motor cortex creates the µ rhythm, at about 10Hz, when it is in rest.
When a subject plans a movement, the neurons in this region must start firing
independently to perform the movement and the µ rhythm disappears. This is
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known as the Event Related Desynchronisation, and is often what a BCI system
tries to detect in the EEG.

Several methods have been used to classify EEG signals and guess user in-
tentions. The most important are Genetic Algorithms, Hidden Markov Models
[1], Neural Nets [2, 3], Linear Discriminant Analysis, Probabilistic Methods [4],
Spatial Filtering [5] and Support Vector Machines [6]. Every method has its ad-
vantages and disadvantages. Linear methods require linearly separable data but
tend to be faster, simpler, and more robust. If the data is not linear or there is
a strong noise, nonlinear methods are more appropriate, even though they are
computationally more demanding.

For this work we choose a problem of self-regulation of slow cortical potentials
(SCPs), of the Ia data set from the BCI Competition 2003 ([7, 8]) as a
test bed. The goal of this competition was to validate signal processing and
classification methods for BCI. Thanks to the competition we can compare our
method and results with several other people’s work.

More exhaustive states of the art with detailed physiological information can
be found in [9, 8]. Next sections describes the data set Ia, the experimental results
and gives a conclusion and some clues on future work.

2 Self-regulation of Slow Cortical Potentials:
Data Set Ia

This data set was provided by Niels Birbaumer from the Institute of Medical
Psychology and Behavioral Neurobiology, University of Tübingen [10].

Data set Ia was taken from a healthy subject. The subjects were asked to move
a cursor up or down on a computer screen, while their slow cortical potentials
(SCPs) were recorded. The subjects received visual feedback of their SCPs (Cz-
Mastoids) which were corrected for vertical eye movements. Cortical positivity
(negativity) led to a downward (upward) movement of the cursor on the screen.
Each trial lasted 6 seconds.

During each trial, the task to produce cortical negativity or positivity was
visually presented by a highlighted goal at either the top or bottom of the screen
from 0.5 s on. The visual feedback was presented from second 2 to second 5.5.
For the competition, only this interval of every trial was provided for training
and testing in order to avoid the classification of brain responses related to task
presentation or reinforcement. Brain activity was recorded from the following 6
scalp positions at a sampling rate of 256 Hz. The sampling rate of 256Hz and
the recording length of 3.5s results in 896 samples per channel for every trial.
As 6 channels were recorded, the total length of every trial is 5376.

The training set were 268 trials recorded on two different days and mixed
randomly. Of the total 268 trials, 168 originated from day 1 and the remaining
100 trials from day 2. Of these trials, 135 belong to class 0 and 133 to class 1.
The test set contains 293 trials recorded on the second day.

For the BCI Competition 2003 ([7, 8]) every participant had to submit their
estimated class ratings for every trial of the test set. The performance measure
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was the correct response rate defined by the number of correctly classified trials
divided by the total number of trials.

The competition winner was Brett Mensh from the MIT with an error rate of
11.3% using a linear discriminat analysis on the DC potentials and features from
the spectral analysis of high β power band [11]. Error rates below 12% were also
achieved by Gido Dornhege (Fraunhofer FIRST, IDA, Berlin) using regularized
linear discriminant classifiers and Kai-Min Chung (National Taiwan University,
Taipei) who applied a support vector machine classification on the data after
downsampling to 25Hz. The best result using a MLP was 19.8% from Justin
Sanchez (University of Florida). For a more detailed outcome of the competition
see [7].

3 Experimental Results

3.1 Algorithm Description

Our algorithm uses MLPs trained by an Evolutionary Algorithm (EA). The
MLPs are fully connected and with any number of hidden layers. Optimum
results, due to time constraints, were obtained with just one layer of one neuron,
a simple Perceptron. Every MLP were represented by a floating point vector to
let us apply some algorithms like blend crossover (BLX) [12] more easily. The
EA is real coded and was implemented with EO [13].

The objective is to train a MLP to classify the training set, a matrix of 268
vectors of length 5376, into two classes. The test set is used after the training
process to verify the quality of the MLP obtained.

Without much knowledge about the brain behaviour, our work focuses on
extracting the maximum information possible from the training set.

Three genetic operators were used whose rates of application were experimen-
tally determined by means of the run of a set of experiments. These operators
were two kinds of mutation and blend crossover [12].

The first mutation operator was additive following a Gaussian distribution
of center 0 and deviation 1. The second mutation operator was multiplicative
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with a uniform distribution over the interval [-2, 2]. Both of them were applied
to only one gene of an individual in every generation if it was due. The blend
crossover or BLX-α [12] is two parent based and its parameter values will be
studied the section 3.2.

Other caracteristics of our method are: As no local search method is used, our
method is more resistant to the overfitting problem. No cross-validation method
is needed because all the available samples can be used to validate the MLPs. For
this reason the results of our algorithm doesn’t depend on the partitions selected.
The number of parameters of the algorithm is lower than similar methods as no
local search algorithm is used to accelerate the training.

3.2 Parameter Selection

Our first task was to adjust the parameter values through the run of a series of
experiments. For some parameters optimum values are easy to guess. Population
sizes bigger than 200 individuals are very resource consumpting and gives little
additional improvements in solution quality (see figure 1).

For some others, as the number of generations, common sense is not always
the best way to fix it. In most of the memetic methods, as [14], the classification
error on the training set decreases with time, but on the test set this is only true
for a limited period of time. After some number of generations the overfitting
problem appears and the MLPs start to lose it’s generalization ability. This is
due to the use of some kind of cross-validation and back-propagation learning
method (or any of it’s more advanced versions as Quickprop or R-Prop). In figure
1 right, it can be seen that our algorithm doesn’t suffer from this problem as
generalization keeps constant once reached the maximum.
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Fig. 2. EA parameters: amut (left): Additive Gaussian mutation of center 0 and stan-

dard deviation 1, mmut (right): Multiplicative uniform mutation in [-2, 2]

The genetic operators application rate was calculated with two methods.
The first is running three series of experiments. Application rates of additive
mutation (amut, figure 2 left) and multiplicative mutation (mmut, figure 2 right)
don’t follow a clear trend so using low rates will help performance. Classification
error seems to improve with higher crossover rates (xover, figure 3 left).
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Fig. 3. EA parameters: xover (left): BLX-α crossover application rate, alpha (right):

α value for the BLX-α crossover

The second method is the use of a dynamic breeder able of self adapting
the application rates based on the success of the new offspring generated. This
method offers the best results, but with the added cost of more individual eval-
uations. After every application of an operator a individual has to be evaluated
to adjust the statistics for that operator. The operator rates may change a 5%
maximum per generation. The best values found by the dinamic breeder were
amut = 0.34, mmut = 0.5 and xover = 0.98. Until this second method is fully
tested it will be trusted only as a clue to find the optimal parameter values.

The rest of the parameters were determined by the run of series of experi-
ments. Some were interesting as alpha, the α value for the BLX operator. As
can be seen in figure 3 right, the parameter has a great impact in the quality of
solutions taking into account the training set, but over the test set, the difference
is much lower. This lead us to think that the effect of this operator is similar to
that of local search methods in memetic algorithms (in a more evident way than
mutation operators).

Finally, the architecture of the net was selected with G-Prop [14]. The best
results were obtained with a simple Perceptron of one neuron and with a MLP
with 2 hidden neurons and one output neuron. For this parameter, arch, the
results were very similar for both the training and test sets, see figure 4 left.
More hidden layers add complexity to the net with no additional benefits in
quality.

3.3 Preprocessing the Data Sets

From the 6 channels of the original data set, 0 and 1 are the more relevant,
specially channel 0. To demonstrate this we try to classify the data sets just
from one of the channels every time. The results are in figure 4 right. Channels
0 and 1 are equally effective to learn the training set. For the Test set, channel
0 is better. Using just one channel the training process can be speed up losing a
4.85% in classification quality on the training and gaining a 7.55% on the test set.
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Table 1. Classification error % on test set

Author Method Training Set Test Set
x ± σ best x ± σ best

B.D. Mensh SPC 18.7 11.3

J. Sanchez MLP 19.8

G. Romero MLP+EA 7.20±2.06 5.97 11.77±1.47 8.53

A preprocessing of the training and test sets also help to improve the qual-
ity of the solutions found. The best preprocessing found is a direct Fourier
transform known as the discrete cosine transform (Yk = X0 + (−1)Xn−1 +
2
∑n−2

j=1 Xj cos πjk
n−1 ). The use of this preprocessing make the training set abso-

lute classification accuracy go up a 3.10%. The improvement in the test set is a
7.04%.

3.4 Results

Experimental results are compared against the best from the BCI Competi-
tion 2003 [7, 8]. Results from the competition are the best classification error
obtained. We also show the mean and standard deviation for a series of 100
experiments using the optimal parameter discovered and changing the random
seed. Average results are similar of the best found in the literature and even
better MLPs are found with our method.

4 Conclusions and Future Work

MLPs and simple Perceptrons are capable of classifying EEG signals very accu-
rately. Not all the inputs are equally relevant. The channel 0 is more appropiate
and lead to better training times and better classification capacity. Also the use
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of some kind of preprocessing on the data can improve the results, as we have
verified through the use of a discrete cosine transform.

The method presented on this paper avoids overfitting because no local search
algorithm is used. As a consequence, a lower number of parameter is needed to
use it and also the need for a division of the data set into training set and
validation set, or any other kind of cross-validation, is avoided.

As a multiobjective problem, the size of the MLPs, the speed of training and
the quality of the classification are in conflict. An implementation using fitness
sharing [15] and with the help from a visual analysis of the data [16] can lead to
better results in all or part of these subproblems.
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Abstract. This paper proposes a new vision-based system that can ex-
tract walking parameters from human demonstration. The system uses
only a non-calibrated USB webcam connected to a standard PC, and
the human is only required to put three color patches on one of his legs
and walk roughly in a perpendicular plane with respect to camera ori-
entation. The walking parameters are then extracted in real time, using
a local tracking system to follow the markers and a fast decision layer
to detect the main features of the leg movement. As only one leg can
be tracked properly using only one camera, we assume symmetric move-
ment for left and right legs. Once extracted, the parameters have been
successfully tested by generating walking sequences for both simulated
and real Robo-Erectus humanoid robots.

1 Introduction

Biped Locomotion has become a key topic in robotic research over the last
decade. Both hardware improvements and new software architectures have al-
lowed the implementation of impressive humanoid robots such as Honda ASIMO,
Sony QRIO or Fujitsu HOAP-2. Many universities have begun research in hu-
manoid robotics, and some very interesting prototypes have appeared over the
last years. Most of them use one of the two main approaches to biped locomo-
tion: static or dynamic. Both approaches will be reviewed in Section 2. The main
objective, in any case, is to produce a gait as natural and stable as possible.

One of the most popular and efficient methods to generate these natural gaits
is imitation. As humanoid robots are inspired by the properties of a biological
system -humans- it is not far-fetched to consider biologically inspired computa-
tion methods for them. The idea is that the movements of a humanoid robot
will be more natural when produced through imitation of a human teacher. This
process of imitation can be simplified by extracting suitable characteristics of
the human motion [1].

If we focus in the walking process, a common assumption is to consider it as a
periodic movement. The postures at the beginning and the end of each step have

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 677–684, 2005.
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to be identical to have a continuous and repeatable gait [3]. This requires the
selection of specific initial conditions, constraint functions and their associated
gait parameters. However, this gait will not usually be human-like. A common
solution to this issue is the use of Human Motion Capture Data (HMCD) to
drive the robot [5]. Nevertheless, some researchers show that the HMCD cannot
be applied directly to humanoid robots due to kinematic and dynamic incon-
sistencies between the human subject and the humanoid. Kinematic corrections
are usually required while calculating the joint angle trajectory [2].

Adaptation of HMCD for a humanoid robot is commonly made with periodic
joint motion corrections at selected joints to approximately match the desired
Zero Moment Point (ZMP) trajectory. Constrained optimization methods can
be used to maximize the dynamic stability against sliding during walking. In
any case, it is very complex to adapt the trajectories from human to humanoid.
The main problems arise from differences between human and humanoid bodies,
stability, and noise during the perception stage. In order to get as good reference
trajectories as possible, commercial HMCD systems can be used. However, most
of them are very expensive and intrusive. They usually require special suits or
markers, fine calibration and specific environments.

This paper introduces a new approach to the adaptation problem. The pro-
posed method relies on parameter extraction to facilitate the gait conversion
from human to humanoid. This means that perceived trajectories will not be
used directly to create synthetic gait. Instead of this, the system analyzes the
perceived motion and extracts the main walking parameters from it. These pa-
rameters are then used to create motion for the humanoid. If the set of extracted
parameters is sufficient to characterize the gait, the generated movement will im-
itate correctly the perceived one [3][6]. The proposed method does not require
a complex perception system to extract the base parameters. The HMCD used
for our system was collected in the ARICC Lab at Singapore Polytechnic, using
a non-calibrated USB webcam. The human performer only need to wear three
color patches roughly placed on hip, knee and ankle.

2 Biped Locomotion and Key Walking Parameters

Biped motion is generally divided into a Single Support Phase (SSP), when only
one foot is on the ground, and a Double Support Phase (DSP), when both feet
are on the ground. In ordinary human gait, the DSP lasts for approximately 20%
of the step cycle.

There are two types of biped gait: static and dynamic. Static walkers rely on
the static equilibrium condition: maintain the Center of Gravity (CG) on the
convex hull of the contact area with the ground. This approach denies inertial
forces and therefore can be applied only if robot movements are very slow. Dy-
namic walkers achieve fast and natural walking motion following the principle of
dynamic equilibrium: they use ZMP instead of CG, so that inertia components
and gravity are considered. This is the approach adopted in this paper.
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Fig. 1. a) Walking parameters and coordinates, b) Joint positions and angles

The process of gait generation can be simplified if we just generate a synthetic
gait from key walking parameters. These parameters can be seen in Fig. 1.a and
are deeply explained in [3]. There are four time-related parameters, related to
step period, SSP and DSP intervals, and time of maximum ankle height. The
detection of these key moments in the walking process will be one of the main
objectives of the perception stage. The rest of parameters are related to lengths
and distances.

3 System Overview

Our system uses a tracking stage to estimate joint positions (Fig. 1.b) in real-
time. The outputs of this stage are the centroids of the detected markers. This
information is used as input for a decision algorithm that determines the walk-
ing phase, and detects transitions between phases. The moments in which these
transitions occur, and the joint positions at these moments, are used to extract
the walking parameters. Finally, these parameters are tested by generating sim-
ulated and real robot walking sequences and comparing them with the perceived
ones.

4 Perception System

Our perception system relies on a fast and efficient color-based tracking algo-
rithm to extract the movement of a human leg. We instrument the human with
three color patches located in the hip, knee and ankle of one of his legs. The
tracked human is also supposed to walk more or less in a perpendicular straight
line with respect to camera orientation.

The perception system is divided into two stages. The first stage tracks the
color markers, and reduces drastically the amount of information the system is
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using, from a video sequence to just the (x, z) positions of the three markers in
each frame. The second stage uses these positions to determine the phase of the
movement.

4.1 Tracking Algorithm

The algorithm we are using to track the color markers was proposed in [4], and
it relies on a hierarchical representation of the regions of interest to track these
regions in real time. The basis of the algorithm is to use a weighted template
to follow each object. This template changes not only its position, but also its
shape so that it can successfully handle partial occlusions, and perspective and
physical deformations. The method represents both target and template using a
Bounded Irregular Pyramid (BIP). This structure is a hierarchical approach to
tracking that reduces very much the computational cost and allows the system
to track the three leg markers in real time.

The only difference between the original tracking algorithm and our imple-
mentation is that we have used Hue-Saturation-Intensity (HSI) color space, more
suitable to track saturated colors. See [4] for further details.

4.2 Decision Algorithm

The positions of hip, knee and ankle are used to extract walking parameters from
the HMCD. As these parameters are related to walking phases, the proposed
system must be able to detect these phases and, specially, the transitions between
them.

Each step can be roughly divided into three stages: the first is the Double
Support Phase (DSP). The second and third phases are contained in the Single
Support Phase (SSP).

The decision stage will determine when the leg is changing from one phase,
or state, to another (Fig. 2). More concretely, the decision will be related to
ankle movement. A previous average filter is applied before decision to reduce
noise. Alternative approaches were tried such as computing joint angle trajectory
minima, and other measurements on relative joint distances. However these have
appeared to be more sensitive to noise, as the inertia of markers and noise affects
more the distance and angle information.

Fig. 2. Decision algorithm states
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5 Extraction of Walking Parameters

Our approach to walking process considers it as a symmetric, periodic and
smooth motion. The hip, knee and ankle trajectories, both in Cartesian and
Joint spaces, can be considered as smooth curves characterized by a set of key
points [3]. These key points should be identified in the transition moments where
the state of the leg is changing. So changes detected in the decision stage become
the key moments in which walking parameters can be extracted.

These parameters, already introduced in Sect. 2, can be divided into two
main groups: time parameters and position parameters.

5.1 Time Parameters

Time parameters are directly obtained from the decision stage. We consider that
each step begins with a DSP followed by a SSP. Being T (kab) the time instant,
in step k, in which the leg moves from state a to state b, time parameters are
obtained as detailed below:

– Ts. The SSP period is obtained using this equation:

Ts = T (k12)− T (k20) (1)

– Td. The system is tracking only one leg. This means that there is no direct
way to obtain the DSP period as it is defined as the time between the SSPs
of both legs. If we assume a symmetric walking pattern, then Td can be
obtained from the moment in which the tracked ankle stops:

Td = (T (k20)− T ((k − 1)12)− Ts)/2 (2)

– Tm. This is the moment in which the ankle reaches its maximum height,
measured from the beginning of the previous DSP. This is easily obtained
from the transition between states 0 and 1:

Tm = T (k01)− T (k20) + Td (3)

– Tc. This is the step period, Tc = Td + Ts.

5.2 Position Parameters

These parameters (Fig. 1.a) are obtained in the same way as time parameters, as
the main information about joints motion is also related to transition moments:

– Sl. The step length is the horizontal motion of the tracked ankle during
states 0 and 1:

Sl = |xa(k12)− xa(k20)| (4)

where xa(kab) denotes the horizontal (x) value for the ankle position in step
k, in the transition from state a to state b.
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– Ha0 and La0. Both parameters are related to transition between states 0
and 1:

Ha0 = |za(k01)− za(k20)|; La0 = |xa(k01)− xa(k20)| (5)

– Xsd and Xed. These parameters are distances between hip and ankle in key
instants. The system extracts these parameters at the beginning and the end
of the SSP :

Xsd = |xa(k20)− xh(k20)|; Xed = |xa(k12)− xh(k12)| (6)

– Hmmax and Hmmin. The extraction of these parameters is slightly different,
as they are not related to transition moments [3]. Hmmax and Hmmin are
only required to produce a more natural motion in the simulator and real
robot. The perception stage will obtain them as the maximum and minimum
vertical hip positions during the human demonstration.

6 Experiments and Results

The proposed system has been tested in an indoor environment, using pink color
patches as markers. The algorithm runs on a standard PC and the images are
captured using a Ranger VCAM365 commercial webcam. Our approach does not
require the camera to be calibrated. Besides, no specific illumination conditions
nor specific background have been used.

The HMCD has been used to generate walking sequences over a Simulator
developed at ARICC [6]. These sequences have been also successfully adapted to
a real Robo-Erectus robot [7], also developed and built at ARICC, in Singapore
Polytechnic. Table 1 shows the walking parameters extracted from a perceived
walking motion. Time parameters are in seconds, position parameters are in
pixels. After perception, all position parameters are normalized with respect
to perceived shank length. When these parameters are translated to the robot
simulator or the real robot, they are multiplied by the value of shank length that
simulator or robot are using.

The parameters presented in Table 1 were used to generate a simulated walk-
ing sequence. The horizontal motion of hip and ankles in the simulator is shown

Table 1. Walking parameters extracted from human motion

Parameter Value Normalized Value Parameter Value Normalized Value

Tc 2.1325 2.1325 Ha0 3 0.069767
Ts 0.9690 0.9690 La0 12 0.279070
Td 1.1635 1.1635 Xsd 12 0.279070
Tm 1.6165 1.6165 Xed 8 0.186047
Shank 43 1 Hmmax 71 1.651163
Sl 26 0.604651 Hmmin 66 1.534884
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Fig. 3. Simulated walking cycle: a) Horizontal displacements of the hip and both ankles,

and b) Joint angle trajectories

Fig. 4. Perceived walking cycle: a) Horizontal displacements of the hip and right ankle,

b) Joint angle trajectories

in Fig. 3.a. By extracting only the relevant parameters and reconstructing the
trajectories the system is able to synthesize a low noise smooth and stable mo-
tion. On the other hand, Fig. 3.b presents the trajectories in joint space for the
previous movement. We can see here how it would be much more difficult to
extract the walking parameters in this space, because angle trajectories are not
as clearly associated with walking parameters as joint displacements.

Fig. 4 shows the perceived walking cycle. Although there are evident simi-
larities between real and generated cycles (so that real and artificial movements
will be very similar), the perceived walking sequence is much more noisy, and
non periodical. Besides, we must also consider the possibility of losing markers.
All this justifies the extraction of parameters as opposed to direct trajectory
imitation.



684 J.P. Bandera, C. Zhou, and F. Sandoval

7 Conclusions and Future Work

This paper has presented a novel approach to extraction of walking parame-
ters from a perceived video sequence. The chosen parameterization allows to
apply the extracted parameters on the simulator or real robot. The results show
that generated sequences are rather similar to real ones. The proposed method
requires only a standard, uncalibrated digital camera and three color patches.

Future work will address on-line balance compensation and imitation. We will
also collect human walking data under various behavioral conditions. Parameter
estimation techniques will be tested to extract more effectively human walking
parameters for humanoid control and imitation. We will also conduct research
on the use of periodic joint motion corrections at selected joints to dynamically
match the desired ZMP trajectory.
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Abstract. Hand-design of control systems for autonomous robots that
act in dynamic or noisy environments is a complex task.

In this paper, a new technique for controller design, termed decision-
vector, is presented. An evolutionary approach is proposed: the control
systems (candidate solutions) are made up of the set of robot states with
respect to the obstacles it can detect, and the corresponding actions to
take on each one of those situations.

This initial work carries out the evolution of controllers in two envi-
ronments, so that it is clear that, in spite of the simplicity of the proposed
model, it is powerful enough to guide the robot to reach a target avoiding
obstacles, and even, tracking a spread mark on the ground.

1 Introduction

Instead of hand-design a system to make a specific task, an evolutionary ap-
proach can set up a system whose behavior is specified, direct or implicitly, in
the evaluation function (fitness function). It is convenient to use an evolutionary
algorithm (AE) [3] as a method to search the space of the possible adaptations
of the control system to the environment, not as a method to search for all the
possible control systems.

In evolutionary computation, the members of a population must be evaluated
throughout many generations. In the case of the evolution of control systems for
robotics, several authors propose to evaluate robots in the real world [1, 5, 6]. In
this paper, we propose to use a simulator to evaluate controllers. Then, once the
control system has been tuned, it could be evaluated controlling a real robot. In
any case, simulations must be made taking in account that the robot will act in
a noisy environment and the sensors may introduce noise.

Designing a controller for an autonomous robot must be done using no details
about the environment it is moving in, i.e., it must directly interact and explore
the environment by means of its sensors.

In order to set up these kind of controllers, many authors have used fuzzy logic
[7]. Nevertheless, in most cases, the design is made by hand or using architectures
not suitables as the system complexity grows [8]. Other authors use genetic
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programming to set up controllers that solve avoiding obstacles tasks [6]. Finally,
some authors propose to evolve artificial neuronal networks (in their different
configurations) for robot control [2]. The design of these control systems must be
done automatically. However most of commented methods need the intervention
of an expert, or some knowledge about the problem or the environment.

This paper proposes to automatically design a control system to guide a
robot. An EA is used to establish the parameters of a simple architecture of
control to successfully guide the robot through different environments.

The evaluation of an individual of the population (controller) consist of guid-
ing the robot for a period of time using a simulator (developed for this purpose).

The rest of this paper is structured as follows: Section 2 presents the model
of the robot and the control system. Section 3 describes two experiments (sim-
ulation environments). Simulations are intended to faithfully model physical
characteristics of the robot and its interactions with the environment. Finally,
section 4 shows obtained results, followed by a brief conclusion (sección 5).

2 Robot Model

The navigation of an autonomous robot requires using several sensors to interact
with its environment. End of race mechanical sensors (”bumpers”) or ultrasounds
sensors are commonly used. That way, the robot can measure the distance to
the closest objects in its operational range.

Proposed model of the robot uses three sensors, two actuators (to move the
wheels) and a control system. Ultrasounds sensors are used to measure the dis-
tance to the objects in the direction the sensor is oriented. 2D ray-tracing cal-
culus are used to simulate the sensors operation and to measure distances. This
way, the robot may detect an object, both when it moves forwards or makes a
turn. Wheels are handled by two independent engines, that allows the robot to
advance or to turn. Signals to active both engines are sent as real numbers in the
interval [0,10]. Thus, to move forward, both wheels must advance an identical
amount (sending the same value to both engines). In another case, the robot will
turn towards the side whose engine received a smaller value of activation.

The simulator represents an environment of 400x400 pixels. Several obstacles
(according to the problem) are included. The surface is suposed to be smooth.
In order to make a movement, the robot must make the following steps:

1. Read the sensor activation values, obtaining the distance to the closest ob-
stacles and the amount of mark on the ground (or “residues”) in each sensor
direction.

2. The controller receives the values and decides the movement to take.
3. The controller calculates how much the wheels must turn, and it sends these

values to the engines.
4. The engines turn independently, making the robot either move forward or

turn.

The simulator, both in the Linux and Win32 versions is available for download
at the following web page: http://atc.ugr.es/∼pedro/robot
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a b

Fig. 1. (a) Different configurations (states) of the obstacles with respect to the robot,

taking into account the lateral and frontal sensors. (b) Movements to take to resolve

a labyrinth following the wall on the left. First column shows the sensor values, ”1”

means that an obstacle is close in that direction (left, center or right sensor). Second

column shows how much each wheel must turn (the action to take)

We propose to develop a controller that decides the next movement taking
into account the obstacle position with respect to the sensors. A sensor may
be detecting (or not) an object. Thus, there are eight possible configurations
(states) of the obstacles with respect to the robot (see figure 1-a).

If a movement (action to take) is defined for each of the eight configurations
(states), the controller will be able to guide the robot through the environment.
The robot will react suitably on any object it faces, independently it is located.

As an example, figure 1-b defines a set of movements for the eight configura-
tions, so the robot cross a labyrinth following the wall it has on the left.

The developed EA is specified in the following pseudocode:

1. Generate an initial population of individual-controllers, initializing randomly
the actions to take.

2. Repeat for g generations:
(a) evaluate the new individuals, obtaining their fitness value
(b) select the n best individuals, according to their fitness, to mate using

the genetic operators to obtain the new ones
(c) replace the n worst individuals in the population by the new ones.

The mutation genetic operator randomly modifies the wheel turning values
for some states that the individual codifies (depending on the mutation range).
The crossover operator swaps some ”movements” (action to take on a state)
between two individual-controllers depending on the number of crossing points.

The fitness value of an individual (how the controller guides the robot during
a number of steps) follows two criteria: first, the distance to the target is ob-
tained. In the case of two individuals that guided the robot to the same distance,
the one that collided least with the walls would be considered the best. In the
case of being following a mark on the ground, the first criterium is the amount
of tracked mark after moving during that number of steps.
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3 Experiments

The experiments must be carried out using a set of dynamic environments, so
that, a controller able to resolve several environments is more robust than an-
other specialized in a concrete scene [4]. In this paper the resolution of two
environments with different purposes and difficulties is proposed.

a b

Fig. 2. (a) In the first experiment, the robot must cross the corridor without crashing

against the walls. The starting point comes given by the point in the left part, while

the target is pointed out by the X sign. (b) The second experiment consist of tracking

a spread mark on the ground, avoiding the collisions with the walls

Experiments consisted of 10 simulations for each proposed environment (see
figure 2). Due to the evaluation time needed for each controller (individual of
the EA), experiments were set using 10 generations, and a population size of
20 individuals. To evaluate a controller, the robot is handled during a given
number of steps. The evaluation finishes either if no more steps are left to take
or the target is reached. The steps number was set to 200 (after some runs it was
verified that that number is enough to reach the target). Each new evaluation,
the robot is placed in a different place (close to the starting point), facing a new
random direction to avoid the controller specializes and it always reaches the
target starting from a very concrete point.

The first problem (see figure 2-a) consists of guiding the robot through a
corridor, making turns both to the left and to the right, and avoiding collisions
with the walls. The corridor presents the difficulty of the turns to the left and
to the right, so that, controllers must resolve both to complete the route. Thus,
a controller that only avoid obstacles by the left side, or only by the right side,
or only by the front, will not be able to solve the problem.

In the second problem (see figure 2-b) the controller must handle the robot
to track a spread mark on the ground (in the sense of cleaning some residues).
It is mandatory to maximize the amount of tracked spot. This problem presents
the difficulty that not only the robot must track the mark, but also it must avoid
crashes against the walls.
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4 Results

Only in one run out of ten, the first problem could not be resolved. In the rest
of the runs, a controller that handled the robot almost without collisions was
obtained. Figure 3 shows the evolution of the robot distance to the target (a) and
the number of collisions (b), in the case of the best individual in each generation
and the average for all the controller population. As the simulation progresses,
both the best individual and the population, on average, reduce the distance
to the target and the number of crashes. Due to the difficulty of this problem,
the average distance does not reduce in the same way that the best individual’s
distance to the target does, since not all the controllers are able to handle the
robot through the corridor without crashes.

Figure 4 shows the amount of tracked mark (a) and the number of collisions
(b) evolution. As the simulation progresses, the amount of spot grows, while
the number of crashes reduces. Due to the absence of obstacles in the second
problem environment, the controllers easily avoid to collide with the walls.
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Fig. 3. Experiment 1: Distance to the target (a) and number of collisions (b) evolution

during a typical simulation for the best individual and the population average. Both
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5 Conclusions and Future Work

Control system design is a complex task that can be carried out using an EA.
This paper proposes a method based on an EA to design simple controllers that
guide correctly an autonomous robot.

Two experiments are presented in which the controllers should guide the
robot through two different environments. The first one consists of crossing a
corridor, making turns both to the left and to the right, and avoiding collisions
with the walls. The second one consists of tracking a mark on the ground, avoid-
ing collisions with the walls. Simulations are set up the most realistic, introducing
“noise” to modelize the system (sensor activations and wheels advances).

At the moment, we are improving the simulator and the algorithm to develop
new controllers. A real robot is being developed, following the specifications given
above: The hardware design consists of a parallel port board where the sensors
and the actuators on the engines are connected. The computer reads the sensor
activations and orders the movement to the wheels through the parallel port.
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Table 1. Typical situations during the simulations in the first experiment: (a) indi-

vidual in the first stage of its evaluation; (b) bad controller that does not crosses the

corridor; (c) the robot correctly crosses the corridor, colliding with the walls in some

points; (d, e, f) three snapshots of the simulation where the best individual (controller)

crosses the corridor

a b

c d

e f
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Table 2. Typical situations during the simulations in the second experiment: (a) bad

individual that does not track the mark on the ground and crashes against the wall;

(b) the robot loses the path, however, it is able to return to the spot; later on, it will

evolve to give rise to better individuals; (c, d, e, f) it follows the contour of the mark

and, if it loses the path, it return and to track the mark. As it follows the contour, it

seems to move in spiral, reducing the spot

a b

c d

e f
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Abstract.. The implementation in a robot of the coordination between
different sensors and actuators in order to achieve a task requires a high
formulation and modelisation effort, specially when the number of sen-
sors/actuators and degrees of freedom available in the robot is huge. This
paper introduces a highly distributed architecture that is independent
from the robot platform, capable of the generation of such a coordination
in an automatic way by using evolutionary methods. The architecture is
completely neural network based and it allows the control of the whole
robot for, in principle, any type of task based on sensory-motor coor-
dination. The article shows how the proposed architecture is capable of
controlling an Aibo robot for the performance of three different difficult
tasks (standing, standing up and walking) using exactly the same neural
distribution. It is also expected that it will be directly scalable for higher
levels of control and general design in evolutionary robotics.

1 Introduction

Creating a control system for a quadruped robot like Aibo is a very challenging
task, since the number of degrees of freedom available is high and the sensorial
information to process is huge. To obtain a coordination between the elements in
order to perform a global robot task is difficult and is a problem not completely
solved yet in a general sense. Furthermore, the solution happens to be more
difficult when the control mechanism is completely neural based and the way the
different modules should interact is not programmed by hand. Some works have
been developed that use completely neural based controllers on wheeled robots
[1][2]. Those generate sensory-motor patterns required for the task, mainly using
behaviour-based systems, but there are none applied to robots as complicated
as a quadruped. An exception could be those works that address the problem
of walking in quadruped or biped robots by using neural oscillators and Central
Pattern Generators (CPG) [3][4][5][6], like for example the use of CPGs for the
control of several postures and movements [7], but those are always focused on
CPG dependent tasks (walking, running, scratching) and not having on mind a
general purpose sensory-motor task.
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Having as a goal the complete control of the robot by artificial neural net-
works, together with the idea of generic control (any robot, any task), this paper
introduces a general highly distributed architecture for the control of a robot on
a sensory-motor coordination task. The idea is to have an architecture able to
generate a coordination between different elements in a general way with inde-
pendence of the task at hands and the robotic platform used. By taking as point
of departure Minsky’s idea of society of mind [8] and the idea of modularity
of mind by Fodor [9], we see the robot’s mind as a group of different modules
each one in charge of its own device (sensor or actuator) that interacts with
the rest of modules, where module is something similar to Fodor’s definition:
domain-specific processing systems, with their own proprietary transducers, and
delivering non-conceptual outputs. The interaction of those modules produces
as effect the accomplition of the task by the whole robot.

In order to show the results of our research, the article has been organised
as follows. Section 2 describes the architecture developed including the learning
mechanism. Section 3 shows the results obtained when the architecture was
implemented on an Aibo robot in both simulation and real robot. Section 4
generates conclusions from the results and points towards future work based on
those results.

2 Architecture Definition

The architecture is based on several uniform modules, composed of neural net-
works, where each module is in charge of one element of the robot. Through the
use of a neuro-evolutionary algorithm, modules learn how to cooperate between
them and how to control its associated element, allowing the whole robot to
accomplish the task at hands.

2.1 Hardware

Using Fodor’s definition of module, we define the Intelligent Hardware Unit
(IHU) as a module created around a physical device (sensor or actuator). Every
IHU is composed by a sensor or by an actuator and a micro-controller imple-
menting an artificial neural network (ANN) that process the information of its
associated device (received sensor information for sensors, commands sent to the
actuator for actuators). It is said that the ANN is in charge of its sensor/actuator.
This means that is the neural net the one that decides which commands must
be sent to the actuator, or how must it be interpreted a value received from
a sensor, and under which circumstances. All IHUs are interconnected to each
other in order to be aware of what the other IHUs are doing. So in some sense,
the net is also in charge of deciding what to say to the other elements as well as
to interpret what the others are saying. The structure of a IHU can be seen in
the following figure, together with a neural controller for a simple system with
two sensors and two actuators.

It should be stated that when put several IHU together on a control task,
each element has its own particular vision of the situation because each one is
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Fig. 1. Schematics of an IHU, and the connection schema of four ANNs from four IHUs

controlling a simple robot

in charge of its own sensor or actuator. This leads to a situation where each unit
knows what the others are doing but needs to select an action for its controller
or sensor output, and based on its knowledge of the global situation and that of
its particular device, decides what the next action will be.

Even though in the original definition a microprocessor was required for any
IHU element, on the experiments presented here it has been simulated the exis-
tence of the micro-controllers linked to each device by allocating some process-
ing time in the robot central processor for each IHU, since it was not physically
possible to have one dedicated micro-controller for each IHU, neither in the sim-
ulations, nor in the real robot tests. It will be assumed that the results are not
very different from the original idea.

2.2 Neuro-evolutionary Algorithm

To teach the networks the coordination required for the task a neuro-evolutionary
approach has been selected. For the Co-evolution of the different networks and
due to the necessity of evolving different ANNs for different roles on a common
task, a co-evolutionary algorithm is required. By using such kind of algorithm
it is possible to teach to the networks how they must cooperate to achieve a
common goal, when every network has its own an different vision of the whole
system.

The algorithm selected to evolve the nets is the ESP (Enforced Sub-
Populations) [10][11], which has been proved to produce good results on dis-
tributed controllers [12]. This algorithm is also in principle free of bias for a
special task. It is a general algorithm which produces good results in systems
where several parts must interact to obtain the general view of the situation.

The chromosome codes in a direct way the weights of the network connections.
A chromosome is generated for each IHU’s network, and all are evolved at the
same time over the same situation.
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Usually in ESP, neurons in the hidden layer are also connected to themselves
and to the other neurons of the same layer. This information is also coded in
the chromosome. However, in the robot presented in this work and for the sake
of simplicity, hidden neurons neither have been connected to themselves nor to
the other neurons of the same layer.

3 Implementation

In order to validate the architecture explained in previous section, it was per-
formed an implementation on a complex robot. Based on previous results where
the architecture was tested on a very simple simulated robot [13], the architec-
ture was later tested for the control of a complex real and simulated robot with
several sensors and actuators while performing a task.

3.1 Validation with a Complex Robot

For a validation of the architecture on real robots the Aibo robot was selected.
This is a complex robot with several degrees of freedom and multiple sensors
and actuators that requires a good coordination between them to achieve any
simple task. The aim for this stage was to see if the architecture was capa-
ble of controlling such a complex robot in the realization of some simple tasks
and a more complicated one. First task was to keep an up position; second
was to stand up from a lying position, and third task was to generate a gait
behaviour.

For the realization of those experiments a simulator and a real robot were
used. The simulator selected was the Webots program by Cyberbotics, which
allowed the easy evolution of the controller without having to use the real robot
[14]. This introduced easiness in the experiments since the simulator had the
possibility of letting the system running alone doing training. Also damaging the
robot and problems with batteries were avoided by using the simulator. Once
the controller was generated and tested on the simulator, a direct connection
was established to the real robot, that allowed the test of the resulting neural
controller on it. At this stage of the Webots simulator development (version
4.0.28beta) only direct connection of the simulator to the real robot is available,
since the cross-compilation of controller for real Aibo feature was not working
yet for the ERS-7 model. Direct connection means that the controller runs on
the computer (under Webots) but controls the real robot via wireless connection.

For the control of the robot the following sensors and actuators were taken
into account:

– Actuators: four leg upper joints (J1), four leg middle joints (J2), four leg
lower joints (J3). These are all motors that move Aibo’s joints and determine
its position on space.

– Sensors: four leg upper joints, four leg middle joints, four leg lower joints,
four legs paw sensors. These are the sensors that indicate the state of the
joint motors (actuators). Last four paw sensors indicate the state of the feet
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paws. Those are switched on when the feet touches the ground or off when
not touching. Furthermore, three accelerometer sensors (X,Y and Z) were
used for determining Aibo’s position.

This gives a total of 31 sensors and actuators, making the required number of
ANNs to 31. All nets have the same number of inputs (31), outputs (1) and
hidden units (8) for all the experiments. For the nets of the controllers, the
inputs are connected to the outputs of all the other nets including itself. For the
sensor networks are connected in the same way except that the entry from itself
comes from the real sensor instead. For actuators, nets output indicate the kind
of value that needs to be sent to the joint. For sensors, the output indicates the
sensor value that is reported to the rest of IHU (including itself).

Values obtained from sensors were quantified, allowing a precision of one
degree. This quantification generates a kind of dumping mechanism that prevents
undesirable oscillations and never ending training. Network outputs of sensors
were quantised in the same way. Network outputs of the actuators were quantized
to provide only three possible values: move joint for 0.05 radians up, move joint
for 0.05 radians down, or not move the joint.

Other required parameters for the evolution that were kept the same in all
experiments are represented on table 1, and were selected based on previous
experiences.

Table 1. Parameters used during neuro-evolution

Parameter Name Parameter Value

Subpopulations 8
Size of subpopulations 40

Mutation rate 0.4
Stagnation 20

First Test: Keep Standing Up Position. The architecture was first tested
to keep the robot on a standing up position . The robot was set up on an initial
standing up position on the space and let free to act using its control networks.
The goal was to keep up as high as possible with as less joint movements as
possible. This seems a simple experiment but it is not because networks are
directly connected to actuators and they keep on sending movement commands
to the actuators all the time. This implies that joints will keep on moving unless
the not-move-joint command is decided by their associated nets. This continuous
movement of joints could lead to strange robot positions and eventually make it
fall. In this task then, the robot must learn how to achieve a stable high position
and keep it until the end of the evaluation time. For this purpose, the following
fitness function was defined:

fitness = finalHeight/numberOfMovements
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which evaluates the robot for its final height in opposition to the number of
movement commands sent to the joints. Evaluation time for each phenotype was
time steps.

After 13 generations the robot learned how not to fall dawn and how to keep a
good structure to stay stable, but still too many movements were realized. After
generation 28, movements were reduced to a a reasonable value while keeping
the standing up position in both simulator and real robot.

Second Test: Stand Up. In this case the robot was required to change from a
laying down position to a standing up one. For this purpose, the same architec-
ture as in the previous experiment was used, been the only difference the fitness
function and the time of evaluation of each phenotype, that in this case was of
time steps.

The fitness function was defined as follows:

fitness = paws ∗ finalHeight

Results showed that the robot was able to change its position to the desired one
(see figure 2) after 77 generations in both simulator and real robot.

Fig. 2. Figures showing initial laying down position and final stand up obtained posi-

tion of Aibo in both simulation and real robot

Third Test: Walking. This is by far the most difficult of the tests performed,
and by hence, it was the one that gave more problems.

When designing controllers for robot walkers there are two main approaches:
the first one uses a walking algorithm designed by hand by an engineer which
indicates at any step the position of every joint of the robot [15][16][17]. Usu-
ally this approach has a set of parameters to be tuned, and they can be done
of several ways (by hand, by try and modify, by genetic algorithms, etc...). The
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resulting gait is one perfectly engineered that behaves exactly in the way the
algorithm says.

The second approach consists of using CPGs. CPGs are non-linear oscillators
made of neural nets. CPGs are coupled between them to generate the control
signal for the actuators taking or not into account sensors information. The ar-
chitecture developed here is very similar to that of CPGs, since it implements a
group of neurons connected to the actuators, but it implements more connectiv-
ity and receives information from all sensors.

In this case, the architecture was implemented using recurrent neural nets
instead of simple feedforward ones, and the fitness function was developed to
conditionate the robot to acquire a determined gait style, based on the obser-
vance of Sony’s walking style.

fitness = height ∗ distance

Rule 1: fitness = 0 if J1 joints out of (-0.698,0.261) radians
Rule 2: fitness = 0 if J3 joints out of (0.349,1.658) radians
Rule 3: fitness = 0 if less than three paws down
Rule 4: fitness = 0 if after one front paw up does not follow a back paw up

For this experiment, an incremental evolutionary approach was taken, where
the robot was let to neuro-evolve the controller for a few generations with rule 1
activated. After a determined number of evaluation steps rule 2 was activated,
and so happens with rule 3 and 4. After applying four rules for several generations
a basic walking pattern arise.

4 Discussion

Results presented here show that the neural architecture proposed is able to
control a complex robot, and generate the required coordination mechanisms
between sensors and actuators to perform complex tasks like walking or standing
up. Coordination is learned during training phase and then used to solve the task
during test phase with a completely neural based controller.

Experiments were performed in a general way, it is, there was no special con-
sideration neither for the robot being controlled nor for the task being developed.
Having implemented the architecture in such a way, it could be suggested that
the architecture would be capable of the generation of any sensory-motor coordi-
nation required for any other task on any other robot, been the only limitations
those imposed by evolutionary robotics. We admit thought, that the architec-
ture has only been tested on two simulation robots (see author’s previous work
[13]) and only one real robot. Nevertheless, some research is been performed at
present by the authors to apply this architecture to different types of robots on
different tasks.

We think this work is a step closer to the final goal of obtaining a completely
neurally controlled robot were more deliberative tasks could be performed.
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Abstract. We propose a technique to speed up the learning of the in-
verse kinematics of a robot manipulator by decomposing it into two or
more virtual robot arms. Unlike previous decomposition approaches, this
one does not place any requirement on the robot architecture and, thus,
it is completely general. Parametrized Self-Organizing Maps (PSOM) are
particularly adequate for this type of learning, and permit comparing re-
sults obtained directly and through the decomposition. Experimentation
shows that time reductions of up to two orders of magnitude are easily
attained.

1 Introduction

Neural networks have proved useful for learning the inverse kinematics of robot
manipulators, either lacking a well-defined model or needing on-line recalibration
while functioning. The main shortcoming is the large number of training samples
(i.e., robot movements) required to attain an acceptable precision [2, 3].

Several attempts have been made at reducing the number of required sam-
ples, among them the use of hierarchical networks [4, 10], the learning of only
the deviations from the nominal kinematics [5], and the use of a continuous
representation by associating a basis function to each knot [9].

In [6, 7] we proposed a practical trick that can be used in combination with
all the methods above. It consists in decomposing the learning of the inverse
kinematics into several independent and much simpler learning tasks. This was
done at the expense of sacrificing generality: the procedure works only for some
robot models subject to certain types of deformations. Specifically, the procedure
assumes that the last three robot joints cross at a point, a condition satisfied by
some classic robot architectures.

Here we present another decomposition technique for learning inverse kine-
matics that is not limited by the above assumption. While being more general,
it still retains the main advantage of the trick above: The input dimensionality
of each of the tasks resulting from the decomposition is half that of the origi-
nal one. Thus, for a given desired accuracy, if the number of training samples
required to learn inverse kinematics directly is O(nd), through the decomposi-
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tion it reduces to O(nd/2). This yields an enormous reduction in the number of
samples required for high-precision applications.

The paper is structured as follows. In the next section we describe the pro-
posed decomposition of the inverse kinematics mapping. Section 3 explains how
the workings of two parameterized self-organizing maps (PSOMs) encoding the
kinematics of the component virtual robots can be combined to provide the in-
verse kinematics of the original robot. The following two sections are devoted
to the training scheme and the way to retrieve the kinematics from the compo-
nent PSOMs, respectively. In Section 6, some illustrative experimental results of
learning with and without the decomposition are presented, permitting to quan-
tify the savings obtained. Finally, some conclusions and prospects for future work
are put forth in Section 7.

2 Kinematics Decomposition

The technique described here is based on the idea of decomposing the kinematics
of a serial manipulator into those of several “virtual robots”. The advantage of
the approach is that, since the component robots are much simpler than the
original one, the learning of their inverse kinematics requires less sampling points
to be acquired.

We will explain the technique using only two virtual robots (see Fig. 1).
The extension to more virtual robots is straighforward. Let θ = (θ1, θ2...θn) and
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1

2

3

µ3

µ2

µ1

end-effector A

end-effector B

virtual robot A

virtual robot B

Fig. 1. Decomposing the robot manipulator (left) into two virtual robot arms (right)
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T1, T2, ..., Tn be the joints and the associated transformation matrices, respec-
tively, of the real robot. To connect the two robots we select a reference frame
A rigidly linked to Ak, the reference frame of joint k. Thus, A = AkAc, where
Ac is a constant matrix. It can be, for example, a reference frame centered on
any point I of link k. Ideally k = n/2.

The first virtual robot, or robot A, has k joints ζ = (ζ1, ζ2, ..., ζk), and their
associated transformation matrices are T1, T2, ...Tk−1, TkAc. The second robot,
or robot B, is composed of n−k joints µ = (µ1, .., µn−k) with associated reference
matrices T−1

n , T−1
n−1, ...T

−1
k+2, (Tk+1Ac)−1.

We could consider that we have virtually broken the original robot into two
pieces, exactly at point I of link k. Robot A is the first piece of the robot and has
its end-effector at the extreme of the broken link. Robot B is the other piece of
the original robot, the base of robot B being the original end-effector (translated
and rotated to the origin of coordinates), and the end-effector of robot B, the
extreme of the other half of the broken link. The second robot can also be seen
as the remaining of the original robot, inverted and translated to the reference
frame.

By θ = (ζ, µ) we mean

θi = ζi, ∀i = 1...k (1)
θi = µn−i+1, ∀i = k + 1...n (2)

We denote DKA(ζ) and DKB(µ) the direct kinematics of robots A and B,
respectively. It is easy to see that θ = (ζ, µ) is a valid inverse kinematics solution
for a given position X and orientation Ω of the real robot iff

DKA(ζ) = TR(X,Ω)DKB(µ), (3)

where TR(X,Ω) is the matrix transformation yielding a translation X and an
orientation Ω.

3 Kinematics Composition

The approach consists in creating two neural networks (or any other interpola-
tors) NA and NB approximating the functions DKA(ζ) and DKB(µ) (see Fig.
2). When the joint values of pose (X,Ω) are required, a search in the inputs of
the two networks is carried out to find values of ζ and µ satisfying (3) as much as
possible. This can be done by imposing a common cost function to be minimized
in (ζ, µ) such as

(NA(ζ)− TR(X,Ω)NB(µ))2, (4)

or by decomposing the output of the networks into two components: position
(NAp, NBp) and orientation (NAo, NBo), and then minimizing:

(NAp(ζ)− (X +NBp(µ)))2 + (NAo(ζ)− (Ω NBo(µ)))2. (5)
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Network NA Network NB

1, 2, 3 µ1,µ2,µ3

–(NA p ( ) (X + NB p (µ))) 2 + ( NA o( ) – ( NB o(µ))) 2

NA p ( ), NA o( ) NB p (µ), NB o(µ)

Fig. 2. The workings of the two networks are linked through the cost function at the

top

To facilitate the search we require the output of the neural networks to be
differentiable with respect to the input. We consider that the memory-based
neural networks are especially well suited to our application, since they use
stored function points to build the approximation of the function. On the one
hand, they allow a quick search among the stored points to find a good starting
point for continuous minimization. On the other hand, we can apply TR(X,Ω)
to the stored points of network NB, so that the whole approximation of the
function gets translated and rotated, becoming NB′. In this way, the function
to be minimized becomes (NA(ζ)−NB′(µ))2, whose derivatives are more easily
obtained.

A Parametrized Self-Organized Map (PSOM) [9] is the type of network bet-
ter suited to our requisites. It approximates a function using a regular grid of
sampled points. Because of its excellent interpolation capabilities, the required
number of points is very small. Of particular interest to us is that PSOMs treat
input and output variables in the same way. This means that it is as natural
to ask which output corresponds to a given input as asking which input corre-
spond to a given output. Therefore, our search in the input variables is naturally
addressed and embedded in the framework of these networks.

4 Learning the Inverse Kinematics of the Virtual Robots

Usual inverse kinematics learning requires the capability to observe the position
and orientation of the robot end-effector, represented by the transformation ma-
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trix M . Our method requires also knowing the position and orientation of the
point I, encapsulated in the transformation matrix MI .

Every time the robot performs a movement (even during working operation),
a sampling point for each of the virtual robots can be obtained. The learning
amounts to supplying virtual robot A with a sampling point consisting of an
input ζi = θi, i = 1...k and an output MI . For robot B the sampling point has
as input µi = θn−i+1, i = 1...n−k and as output M−1MI . We could understand
this as moving the whole robot B “freezed” in its current configuration to the
place it is supposed to be, before extracting its kinematics sample point.

When using PSOMs to learn the kinematics of the virtual robots, the move-
ments are generated following a regular grid in the space of joint angles.

5 Computing Kinematics with PSOMs

Once trained, a PSOM works by putting some constraints on a subset of the
variables of the system (input or output), for example fixing them to a desired
value. The system then carries out a quick optimization aimed to find a point of
the approximated input-output manifold satisfying the constraints or, if impos-
sible, the closest one to satisfying them. The starting point of the process is the
stored point that best satisfies the constraints. From it, an iterative minimization
procedure is launched, which finishes in a few steps.

For PSOMs trained on the kinematics of a robot, to get the inverse kinematics
we simply fix the position and orientation variables and we let the minimiza-
tion get the point in the interpolating surface with the desired pose values, the
remaining components of the point are taken to be the result. To obtain the
inverse of the real robot using the PSOMs for the virtual robots, we first trans-
form the points stored in NB with the desired pose, as explained in Section 3.
Afterwards, we look for a good starting point for the minimization by finding
the closest pair (in pose space) between the points stored in NA and the trans-
formed points in NB. Let (A0), B0)) be this closest pair. A minimization step
is then carried out in NA with B0) as target pose, and another step is done in
NB with A0) as desired pose. The result of the step in NA and NB are two
points whose pose components are A1), and B1), respectively. These points will
be the starting point for the following steps in which the desired poses for NA
and NB will be B1) and A1), respectively. More iterations are performed in the
same way, until Ai) and Bi) are closer than a certain threshold. Then we extract
the inverse kinematics of the real robot by concatenating the joint components
of the last obtained points.

6 Experiments

The experiments have been executed in a new general simulation environment
developed at our institute, which allows the visualization of any serial manip-
ulator. The only input needed for the simulator is a Denavit-Hartenberg table,
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Table 1. Classic algorithm

number of position position orientation orientation
movements mean error stdev. error mean error stdev. error

64 476 229 0.927 0.635
729 46 21 0.101 0.049
4096 11 17 0.012 0.027

Table 2. Decomposition algorithm

number of position position orientation orientation
movements mean error stdev. error mean error stdev. error

8 377 236 0.770 0.653

27 48 42 0.092 0.045

64 10 35 0.016 0.059

125 3.6 27 0.005 0.049

216 2.1 8.3 0.002 0.011

343 1.6 6.4 0.002 0.014

512 0.9 2.9 0.002 0.021

from which the graphical model is created using a uniform link and joint repre-
sentation.

We used a PSOM variant known as LPSOM. This model builds a PSOM ex-
tracting for each query a subgrid of the sampling grid, which is centered on the
closest point to the query. The representation of pose orientation has been thor-
oughly studied and different alternatives have been compared experimentally [8].
There exist many possible representations, but none is completely satisfactory.
For example, the Euler representation is very compact, but lacks continuity. This
drawback affects also other in principle good candidate representations such as
quaternions. The classical 3× 3 rotation matrix is continuous but not compact.
The solution was to select a subset of elements of the standard rotation matrix
that determine it. The five elements in the last column and row are good in
general, although not perfect because the matrix is not determined in one point
(when the common element of the last row and last column takes a value of 0).
Therefore, it is safer to use 6 elements, the last two columns of the rotation
matrix, which completely determine it.

We have chosen the well-known PUMA robot to validate our technique.
The experiments were carried out using a very large workspace, allowing ranges
for the six joints [1] as follows: [-150,-35],[-215,-100],[-35,80],[-110,5],[-100,15],[-
100,15]. We trained one LPSOM in a classical way, by generating samples of the
kinematics of the robot in a regular grid in the joint space covering the workspace
above. Then we moved the robot to the different configurations represented in
the grid to obtain the associated positions and orientations. Thus, each knot in
the grid requires one movement. The results are shown in Table 1. The units are
millimeters and radians.
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In the experiment to test our decomposition approach, we used two smaller
PSOMs, one for each of the two virtual robots A and B. The corresponding
regular grids were also generated. In this case, with only one movement of the
robot, we get the required information for one knot of robot A and another knot
of robot B. Table 2 shows the results. The comparison of both tables reveals
that, for the only number of points in common (64), the averages in position
and orientation are around 50 times more precise for the decomposition algo-
rithm. We note also that the limits of physical accuracy of the manipulator are
approximately reached with 512 movements with the decomposition algorithm,
whereas it was impossible with our computer memory resources (allowing grids
of up to 262,144 points) to reach precisions under 1 mm and .01 radians with
the classic procedure.

7 Concluding Remarks and Future Work

The purpose of this paper is to propose a technique to learn inverse kinematics
(IK) with a reasonable number of movements when high accuracy is required.

Unlike our previous work on IK learning through function decomposition
[6, 7], the technique here proposed doesn’t place any restriction on the type of
robot architecture to which it can be applied. The kinematics of any serial ma-
nipulator undergoing whatever deformation can be learned with this technique.
However, a new “sensorial” requisite must be fulfilled: the reference frame at-
tached to a point in an intermediate link of the robot must be known using some
sensing system. We think that this is not a shortcoming, since learning IK with
any procedure requires anyway a sensorial system to determine the position and
orientation of the gripper.

One of the most promising applications of our technique is to flexible robots.
Since it reduces the dimensionality of the functions to be learned from 6 to 3, it
is still affordable to include the load change as an extra variable and still have
quick learning.

In addition to learning efficiency, our technique has other advantages over
classic IK learning. For instance, it allows the robot to learn to move in the
complete workspace without actually moving everywhere, and to approach risk
zones only after learning has been successfully completed.

Among the tasks left for future work, we can mention testing the extension
of this framework to more than two virtual robots. Also, we think that appro-
priately weighting the learning of the position and orientation of the two virtual
robots can further improve the results. The inaccuracies in the interpolated po-
sition of the virtual subrobots are simply added (vectorially) in the composed
robot. Instead, inaccuracies in the orientation components of the subrobots re-
sult in orientation inaccuracies of the same order in the composed robot, but
also add a possibly large error component in position.

An open issue common to all the approaches to IK learning is the representa-
tion of orientation. We think that the goodness of representations for orientation
can be evaluated with respect to three criteria: 1) compactness, 2) continuity, and
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3) whether interpolated representations are proper representations. Compact-
ness saves memory (especially in memory-based models) and should influence
positively generalization. But continuity (two close orientations in the represen-
tation space should also be close as regards to robot motion) has a more radical
influence in the quality of the interpolation. Finally, it is desirable that every in-
terpolated representation corresponds to a true orientation. Otherwise, one has
the problem of how to map interpolated values onto the representation space, as
it happens with rotation matrices. By choosing as representation six elements
of the rotation matrix, we have given priority to the continuity criterion, while
trying to maximize compactness. Interpolated representations do not correspond
necessarily to points inside the representation space, but this does not seem a
big problem in practice.

Acknowledgements. This work was supported by the I+D project DPI 2004–
07358 of the Spanish Ministry of Education.
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Abstract.. The implementation in a robot of the coordination between
different sensors and actuators in order to achieve a task requires a high
formulation and modelisation effort, specially when the number of sen-
sors/actuators and degrees of freedom available in the robot is huge. This
paper introduces a highly distributed architecture that is independent
from the robot platform, capable of the generation of such a coordination
in an automatic way by using evolutionary methods. The architecture is
completely neural network based and it allows the control of the whole
robot for, in principle, any type of task based on sensory-motor coor-
dination. The article shows how the proposed architecture is capable of
controlling an Aibo robot for the performance of three different difficult
tasks (standing, standing up and walking) using exactly the same neural
distribution. It is also expected that it will be directly scalable for higher
levels of control and general design in evolutionary robotics.

1 Introduction

Creating a control system for a quadruped robot like Aibo is a very challenging
task, since the number of degrees of freedom available is high and the sensorial
information to process is huge. To obtain a coordination between the elements in
order to perform a global robot task is difficult and is a problem not completely
solved yet in a general sense. Furthermore, the solution happens to be more
difficult when the control mechanism is completely neural based and the way the
different modules should interact is not programmed by hand. Some works have
been developed that use completely neural based controllers on wheeled robots
[1][2]. Those generate sensory-motor patterns required for the task, mainly using
behaviour-based systems, but there are none applied to robots as complicated
as a quadruped. An exception could be those works that address the problem
of walking in quadruped or biped robots by using neural oscillators and Central
Pattern Generators (CPG) [3][4][5][6], like for example the use of CPGs for the
control of several postures and movements [7], but those are always focused on
CPG dependent tasks (walking, running, scratching) and not having on mind a
general purpose sensory-motor task.

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 709–716, 2005.
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Having as a goal the complete control of the robot by artificial neural net-
works, together with the idea of generic control (any robot, any task), this paper
introduces a general highly distributed architecture for the control of a robot on
a sensory-motor coordination task. The idea is to have an architecture able to
generate a coordination between different elements in a general way with inde-
pendence of the task at hands and the robotic platform used. By taking as point
of departure Minsky’s idea of society of mind [8] and the idea of modularity
of mind by Fodor [9], we see the robot’s mind as a group of different modules
each one in charge of its own device (sensor or actuator) that interacts with
the rest of modules, where module is something similar to Fodor’s definition:
domain-specific processing systems, with their own proprietary transducers, and
delivering non-conceptual outputs. The interaction of those modules produces
as effect the accomplition of the task by the whole robot.

In order to show the results of our research, the article has been organised
as follows. Section 2 describes the architecture developed including the learning
mechanism. Section 3 shows the results obtained when the architecture was
implemented on an Aibo robot in both simulation and real robot. Section 4
generates conclusions from the results and points towards future work based on
those results.

2 Architecture Definition

The architecture is based on several uniform modules, composed of neural net-
works, where each module is in charge of one element of the robot. Through the
use of a neuro-evolutionary algorithm, modules learn how to cooperate between
them and how to control its associated element, allowing the whole robot to
accomplish the task at hands.

2.1 Hardware

Using Fodor’s definition of module, we define the Intelligent Hardware Unit
(IHU) as a module created around a physical device (sensor or actuator). Every
IHU is composed by a sensor or by an actuator and a micro-controller imple-
menting an artificial neural network (ANN) that process the information of its
associated device (received sensor information for sensors, commands sent to the
actuator for actuators). It is said that the ANN is in charge of its sensor/actuator.
This means that is the neural net the one that decides which commands must
be sent to the actuator, or how must it be interpreted a value received from
a sensor, and under which circumstances. All IHUs are interconnected to each
other in order to be aware of what the other IHUs are doing. So in some sense,
the net is also in charge of deciding what to say to the other elements as well as
to interpret what the others are saying. The structure of a IHU can be seen in
the following figure, together with a neural controller for a simple system with
two sensors and two actuators.

It should be stated that when put several IHU together on a control task,
each element has its own particular vision of the situation because each one is
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Fig. 1. Schematics of an IHU, and the connection schema of four ANNs from four IHUs

controlling a simple robot

in charge of its own sensor or actuator. This leads to a situation where each unit
knows what the others are doing but needs to select an action for its controller
or sensor output, and based on its knowledge of the global situation and that of
its particular device, decides what the next action will be.

Even though in the original definition a microprocessor was required for any
IHU element, on the experiments presented here it has been simulated the exis-
tence of the micro-controllers linked to each device by allocating some process-
ing time in the robot central processor for each IHU, since it was not physically
possible to have one dedicated micro-controller for each IHU, neither in the sim-
ulations, nor in the real robot tests. It will be assumed that the results are not
very different from the original idea.

2.2 Neuro-evolutionary Algorithm

To teach the networks the coordination required for the task a neuro-evolutionary
approach has been selected. For the Co-evolution of the different networks and
due to the necessity of evolving different ANNs for different roles on a common
task, a co-evolutionary algorithm is required. By using such kind of algorithm
it is possible to teach to the networks how they must cooperate to achieve a
common goal, when every network has its own an different vision of the whole
system.

The algorithm selected to evolve the nets is the ESP (Enforced Sub-
Populations) [10][11], which has been proved to produce good results on dis-
tributed controllers [12]. This algorithm is also in principle free of bias for a
special task. It is a general algorithm which produces good results in systems
where several parts must interact to obtain the general view of the situation.

The chromosome codes in a direct way the weights of the network connections.
A chromosome is generated for each IHU’s network, and all are evolved at the
same time over the same situation.



712 R.A. Téllez, C. Angulo, and D.E. Pardo

Usually in ESP, neurons in the hidden layer are also connected to themselves
and to the other neurons of the same layer. This information is also coded in
the chromosome. However, in the robot presented in this work and for the sake
of simplicity, hidden neurons neither have been connected to themselves nor to
the other neurons of the same layer.

3 Implementation

In order to validate the architecture explained in previous section, it was per-
formed an implementation on a complex robot. Based on previous results where
the architecture was tested on a very simple simulated robot [13], the architec-
ture was later tested for the control of a complex real and simulated robot with
several sensors and actuators while performing a task.

3.1 Validation with a Complex Robot

For a validation of the architecture on real robots the Aibo robot was selected.
This is a complex robot with several degrees of freedom and multiple sensors
and actuators that requires a good coordination between them to achieve any
simple task. The aim for this stage was to see if the architecture was capa-
ble of controlling such a complex robot in the realization of some simple tasks
and a more complicated one. First task was to keep an up position; second
was to stand up from a lying position, and third task was to generate a gait
behaviour.

For the realization of those experiments a simulator and a real robot were
used. The simulator selected was the Webots program by Cyberbotics, which
allowed the easy evolution of the controller without having to use the real robot
[14]. This introduced easiness in the experiments since the simulator had the
possibility of letting the system running alone doing training. Also damaging the
robot and problems with batteries were avoided by using the simulator. Once
the controller was generated and tested on the simulator, a direct connection
was established to the real robot, that allowed the test of the resulting neural
controller on it. At this stage of the Webots simulator development (version
4.0.28beta) only direct connection of the simulator to the real robot is available,
since the cross-compilation of controller for real Aibo feature was not working
yet for the ERS-7 model. Direct connection means that the controller runs on
the computer (under Webots) but controls the real robot via wireless connection.

For the control of the robot the following sensors and actuators were taken
into account:

– Actuators: four leg upper joints (J1), four leg middle joints (J2), four leg
lower joints (J3). These are all motors that move Aibo’s joints and determine
its position on space.

– Sensors: four leg upper joints, four leg middle joints, four leg lower joints,
four legs paw sensors. These are the sensors that indicate the state of the
joint motors (actuators). Last four paw sensors indicate the state of the feet
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paws. Those are switched on when the feet touches the ground or off when
not touching. Furthermore, three accelerometer sensors (X,Y and Z) were
used for determining Aibo’s position.

This gives a total of 31 sensors and actuators, making the required number of
ANNs to 31. All nets have the same number of inputs (31), outputs (1) and
hidden units (8) for all the experiments. For the nets of the controllers, the
inputs are connected to the outputs of all the other nets including itself. For the
sensor networks are connected in the same way except that the entry from itself
comes from the real sensor instead. For actuators, nets output indicate the kind
of value that needs to be sent to the joint. For sensors, the output indicates the
sensor value that is reported to the rest of IHU (including itself).

Values obtained from sensors were quantified, allowing a precision of one
degree. This quantification generates a kind of dumping mechanism that prevents
undesirable oscillations and never ending training. Network outputs of sensors
were quantised in the same way. Network outputs of the actuators were quantized
to provide only three possible values: move joint for 0.05 radians up, move joint
for 0.05 radians down, or not move the joint.

Other required parameters for the evolution that were kept the same in all
experiments are represented on table 1, and were selected based on previous
experiences.

Table 1. Parameters used during neuro-evolution

Parameter Name Parameter Value

Subpopulations 8
Size of subpopulations 40

Mutation rate 0.4
Stagnation 20

First Test: Keep Standing Up Position. The architecture was first tested
to keep the robot on a standing up position . The robot was set up on an initial
standing up position on the space and let free to act using its control networks.
The goal was to keep up as high as possible with as less joint movements as
possible. This seems a simple experiment but it is not because networks are
directly connected to actuators and they keep on sending movement commands
to the actuators all the time. This implies that joints will keep on moving unless
the not-move-joint command is decided by their associated nets. This continuous
movement of joints could lead to strange robot positions and eventually make it
fall. In this task then, the robot must learn how to achieve a stable high position
and keep it until the end of the evaluation time. For this purpose, the following
fitness function was defined:

fitness = finalHeight/numberOfMovements
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which evaluates the robot for its final height in opposition to the number of
movement commands sent to the joints. Evaluation time for each phenotype was
time steps.

After 13 generations the robot learned how not to fall dawn and how to keep a
good structure to stay stable, but still too many movements were realized. After
generation 28, movements were reduced to a a reasonable value while keeping
the standing up position in both simulator and real robot.

Second Test: Stand Up. In this case the robot was required to change from a
laying down position to a standing up one. For this purpose, the same architec-
ture as in the previous experiment was used, been the only difference the fitness
function and the time of evaluation of each phenotype, that in this case was of
time steps.

The fitness function was defined as follows:

fitness = paws ∗ finalHeight

Results showed that the robot was able to change its position to the desired one
(see figure 2) after 77 generations in both simulator and real robot.

Fig. 2. Figures showing initial laying down position and final stand up obtained posi-

tion of Aibo in both simulation and real robot

Third Test: Walking. This is by far the most difficult of the tests performed,
and by hence, it was the one that gave more problems.

When designing controllers for robot walkers there are two main approaches:
the first one uses a walking algorithm designed by hand by an engineer which
indicates at any step the position of every joint of the robot [15][16][17]. Usu-
ally this approach has a set of parameters to be tuned, and they can be done
of several ways (by hand, by try and modify, by genetic algorithms, etc...). The
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resulting gait is one perfectly engineered that behaves exactly in the way the
algorithm says.

The second approach consists of using CPGs. CPGs are non-linear oscillators
made of neural nets. CPGs are coupled between them to generate the control
signal for the actuators taking or not into account sensors information. The ar-
chitecture developed here is very similar to that of CPGs, since it implements a
group of neurons connected to the actuators, but it implements more connectiv-
ity and receives information from all sensors.

In this case, the architecture was implemented using recurrent neural nets
instead of simple feedforward ones, and the fitness function was developed to
conditionate the robot to acquire a determined gait style, based on the obser-
vance of Sony’s walking style.

fitness = height ∗ distance

Rule 1: fitness = 0 if J1 joints out of (-0.698,0.261) radians
Rule 2: fitness = 0 if J3 joints out of (0.349,1.658) radians
Rule 3: fitness = 0 if less than three paws down
Rule 4: fitness = 0 if after one front paw up does not follow a back paw up

For this experiment, an incremental evolutionary approach was taken, where
the robot was let to neuro-evolve the controller for a few generations with rule 1
activated. After a determined number of evaluation steps rule 2 was activated,
and so happens with rule 3 and 4. After applying four rules for several generations
a basic walking pattern arise.

4 Discussion

Results presented here show that the neural architecture proposed is able to
control a complex robot, and generate the required coordination mechanisms
between sensors and actuators to perform complex tasks like walking or standing
up. Coordination is learned during training phase and then used to solve the task
during test phase with a completely neural based controller.

Experiments were performed in a general way, it is, there was no special con-
sideration neither for the robot being controlled nor for the task being developed.
Having implemented the architecture in such a way, it could be suggested that
the architecture would be capable of the generation of any sensory-motor coordi-
nation required for any other task on any other robot, been the only limitations
those imposed by evolutionary robotics. We admit thought, that the architec-
ture has only been tested on two simulation robots (see author’s previous work
[13]) and only one real robot. Nevertheless, some research is been performed at
present by the authors to apply this architecture to different types of robots on
different tasks.

We think this work is a step closer to the final goal of obtaining a completely
neurally controlled robot were more deliberative tasks could be performed.
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Abstract. Combining previous experience and knowledge to contemplate tasks 
of increasing complexity is one of the most interesting problems in autonomous 
robotics. Here we present an ANN based modular architecture that uses the 
concept of modulation to increase the possibilities of reusing previously ob-
tained modules. A first approximation to the modulation of the actuators was 
tested in a previous paper where we showed how it was useful to obtain more 
complex behaviours that those obtained using only activation / inhibition. In 
this paper we extend the concept to sensor modulation, which enables the archi-
tecture to easily modify the required behaviour for a module, we show how 
both types of modulation can be used at the same time and how the activation / 
inhibition can be seen as a particular case of modulation. Some examples in a 
real robot illustrate the capabilities of the whole architecture. 

1   Introduction 

When designing a behaviour based architecture in a bottom up fashion [4][2] two 
main problems have to be considered [12]: the decomposition of a robot control sys-
tem into subparts is not evident and the interactions between modules grow exponen-
tially as the complexity of the system grows. So, it’s necessary to establish a scalable 
method to perform the decomposition and to obtain the interactions between modules. 

In hierarchical architectures, the global behaviour is decomposed into lower level 
behaviours that will be implemented in particular controllers and organized in a hier-
archy where a controller can be activated or inhibited by other higher level controller. 
The behaviours can be obtained individually and then the interconnection between 
them established. It is also possible to reuse the behaviours. The problem that arises is 
that the decomposition is not clear in every case, as it implies a specific knowledge of 
what sub-behaviours must be employed. This, in general, implies a greater participa-
tion of the designer in the process of obtaining a global controller. Examples are 
Brooks [4] and Colombetti, Dorigo and Borghi [5]. 

In distributed architectures, all the controllers compete at the same level for control 
of the actuators each instant of time, leading to less participation of the designer. They 
also preserve the level of behaviour reuse. However, as a drawback, they induce a 
higher level of difficulty when obtaining the relations between modules. Distributed 
architectures are exemplified by Arbib [1] and Arkin [2].  
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An alternative classification of control architectures is to differentiate between 
competitive and cooperative coordination. In the former only one process writes its 
output to the actuators each moment of time. Examples are [4] and [13]. In coopera-
tive coordination, the outputs of two of more processes that control the same actuators 
are combined into a single output to be sent to the actuators, usually through summa-
tion with different degrees, as the case of [1][2]. 

We propose modulation as a way to bridge the gap between hierarchical architec-
tures, usually competitive, and distributed architectures, usually cooperative. In that 
line, we show in [3] that actuator modulation permits to obtain a graceful and con-
tinuous transition between behaviours that were obtained for other problems and 
which, through the adaptation of their outputs, can be set to perform together more 
complex tasks. In this paper, we will see that sensor modulation, i.e. the modification 
of how the modules “see the world”, is useful to adapt controllers in order to value the 
environment in a different way. We will also present the whole control architecture 
where both types of modulation can coexist and where the activation / inhibition can 
be seen as a particular case of modulation. 

The concept of modulation has not been employed often in the literature on 
autonomous robot behaviour controllers. Among the authors that have done some 
work in this line, we can cite Husbands and col. [8] and Ishiguro and col. [9], which 
use modulation within a single ANN. From the point of view of multi-module archi-
tectures, some work has been carried out by Meyer and col. [11], who apply modula-
tion in the neural nodes of the modules, and Duro et al. [6], who establish a base for a 
direct modulator-modulated structure in which a network or networks modulate the 
behaviour of other networks influencing their connection weights. 

Taking into account that the concept of modulating the operation of an ANN im-
plies adapting the values that result from it through some external action, from a sys-
tematic point of view, modulating structures can be classified into three groups: struc-
tures that act on the input, structures that act on the network nodes or synapses and 
structures that act on the outputs of the network. Most of the work presented can be 
framed on the first two classes. The second one, which may be referred as functional 
modulation, is the most powerful of the three as it permits actually modifying the 
function the network is implementing. However, it presents many implementation 
problems, especially due to exponential growth of the modulating networks as the 
modulated networks grow. In addition, the modulated networks or, in general, behav-
iour modules have to contemplate their modulation by others, which precludes the use 
of legacy controllers. On the other hand, input or output modulation take the modu-
lated controller as a black box and the modulator just acts over its inputs or outputs in 
order to force the desired behaviour or its adaptation. 

2   Constructing Control Architectures with Modulation 

In [7] we established a hierarchical, modular ANN based, control architecture for 
autonomous robots where both modules and connections are obtained incrementally 
in an evolutionary process. In this control architecture, if the behaviour is very simple, 
it’s obtained as a whole in an evolutionary process. Otherwise, the designer tries to 
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identify sub-behaviours that may be useful to generate the global behaviour required. 
There is no problem if useless behaviours are included in this preliminary set. Behav-
iours, after being obtained separately, are provided to the system as modules and an 
evolutionary process will obtain a higher level module that select those lower level 
behaviours from the initial set (activating just one in each instant of time) that are use-
ful and will ignore the rest. This process can be repeated as many times as desired, 
leading to a controller with a hierarchical structure. To prevent the problem of the de-
signer having to completely determinate all the necessary lower level behaviours, a 
higher level behaviour may be coevolved with a lower level behaviour. 

The control flows in this architecture from the top (root node) to the bottom (leaf 
nodes). Every module is an ANN where its inputs are sensors, but only the lower level 
modules can take control of actuators through their outputs. Other modules take part 
in the decision process of what lower level module has to be activated in the end. The 
same module may appear several times in a controller, as it may be needed for differ-
ent sub-behaviours. In that case, even if we only plot it once for the sake of simplicity, 
the module will be replicated in the hierarchy as many times as necessary. 

As indicated before, in [3] we presented an initial output modulation strategy. This 
was done by defining a new type of high level module, called actuator modulator, 
that, instead of activating only one lower level module, it activates every lower level 
module connected to it but modifying the way the lowest modules take control of ac-
tuators. As more than one module is allowed to take control of the actuators, all of 
these controllers cooperate by adding their outputs to each actuator. 

The work presented in this paper develops the concept and provides new ways to 
modulate behaviours. We are now adding a new high level module, called sensor 
modulator. This module activates also every lower level module connected to it, in 
this case modifying how these lower level modules perceive the environment through 
their sensors. 

Both modulators are also ANNs and are obtained through evolution. Because we 
are not modifying anything inside the modulated ANN, any ANN can be modulated. 
These are the main definitions in the architecture we present: 

• A module X is an ancestor of a module Y if there is a path from X to Y. 
• X is a descendant of Y if there is a path from Y to X. 
• X is a direct descendant if there is a path of length 1 from Y to X. 
• X will be called a Root node (denoted as R) if it has no ancestors. 
• X is an actuator node (A) if its outputs establish values for the actuators. 
• X is a selector node (S) if its output selects one of its direct descendants as the 

branch to follow, shortcircuiting the others. 
• X is an actuator modulating node (AM) if its outputs modify (multiplying with a 

value between 0 and 2) the outputs of its descendant nodes of type A. The modula-
tions propagate through the controller hierarchy until they reach the actuator nodes 
in such a way that if between R and A there is more than one AM that modulates 
one output of A, the resulting modulating value will be the product of the individ-
ual modulations in the path. Assuming that AM wishes to modulate the values of n 
actuators, its number of outputs must necessarily be n*number of direct descen 
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Fig. 1. Example of a controller with all the elements of the architecture 

dants, as the modulation propagated to each descendant is usually different. When 
more than one node A provides values for the same actuator, the actuator receives 
the sum of these values. An AM does not necessarily modulate all the actuators 
over which the set of nodes acts, just any subset of them.  

• X is a sensor modulating node (SM) if its outputs modify (multiplying with a value 
between 0 and 2) the inputs of its descendant nodes. The modulations propagate 
through the controller hierarchy until they reach the actuator nodes in such a way 
that if between R and Y there is more than one SM that modulates one input of Y, 
the resulting modulating value will be the product of the individual modulations in 
the path. Assuming that SM wishes to modulate the values of n sensors, its number 
of outputs must necessarily be n*number of direct descendants, as the modulation 
propagated to each descendant is usually different. An SM does not necessarily 
modulate all the sensors over which the set of nodes acts, just any subset of them. 

The use of actuator modulators leads to a continuous range of behaviours for the 
transitions between those determined by the individual controllers. This is due to the 
fact that actuators values can now be a linear combination of those produced by every 
low level module. 

The sensor modulators permit changing how a module reacts under a given input 
pattern transforming it in a different one. This way, it is very easy to make changes in 
that reaction for already learned input patterns. We will show an example of this later. 

In addition to increasing the architecture’s possibilities, modulation results in a 
very interesting secondary effect: there can be more than a sub-tree being executed 
simultaneously in the controller. So, the architecture is not really different from a dis-
tributed architecture where modules are categorized into different groups, because ac-
tuator modulators can be put together in the same level and sensor modulators can be 
set aside of the hierarchy and attached to the appropriate inputs where necessary. This 
is true even if we have selectors, because it is evident that a selector can be replaced 
by an actuator modulator that modulates every actuator with “1” in the descendant  
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Fig. 2. Alternative representation for the architecture (arrows represent blocks of connections) 

tree activated and with “0” in the others1. In the figure 2 we display an alternative 
general representation for a controller taking this equivalence into account. 

To a human designer it may be easier to understand a controller using the first rep-
resentation, as the equivalent controller with the second representation has more con-
nections, but the existence of this second representation is important because it shows 
that the architecture can be taken, if desired, as a distributed one where the modules 
are just classified into very general groups. The second representation is also useful to 
implement the controller in hardware or in a parallel environment because all of the 
modules’ outputs can be calculated simultaneously. 

Just to provide a flavour of what can be achieved with modulation, in what follows 
we will present two experiments. The controllers were obtained using SEVEN [7], an 
environment that integrates the simulation of different robot platforms with the evolu-
tionary processes, and later tested on the real robot (a Pioneer 2-DX). 

3   Sensor Modulation 

In this example we will see how sensor modulation may be useful to quickly adapt 
behaviours to new requisites that imply a different reaction when dealing with already 
learnt input patterns. 

We start from a controller obtained previously to achieve wall following, at a given 
distance from the wall, with the Pioneer 2-DX. The new desired behaviour is for the 
robot to follow walls at a distance that depends on light intensity (measured with a 
couple of added light sensors): the more intensity, the closer it must follow the walls. 

The controller only uses two modules: the original wall following and the sensor 
modulator that is being evolved. The ANN being evolved has 2 inputs (light sensors), 
a hidden layer with 11 neurons and 8 outputs (each one modulates one of the 8 inputs 
of the wall following module, corresponding to frontal sonar sensors). The connec-
tions between neurons are gaussian synapsis. The evolutionary algorithm used was a 
macroevolutionary algorithm [10] with 800 individuals, 100 evaluations and 1000 

                                                           
1 This replacement can be carried out if we replicate common modules in different branches, as 

we indicated before. 
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steps of life in each evaluation per individual, and 100 generations. Two different 
light conditions were present in the evolution and the robot had to follow the wall at 
different distances. We could be tempted to think the problem is not complicated, but 
we have to realize that the solution is not as easy as modulating every input value by 
the same factor, because the same change in input values does not necessarily lead to 
the same change in the activation of connected neurons. 

In the figure 3 we display the sonar activation values for both light conditions and 
the obtained behaviour. The evolution has lead to a sensor modulator that achieves its 
task by playing mainly with two sonar sensors (1 and 6). As an additional advantage, 
it prunes the wall following module making sonars 3 and 7 unnecessary. 
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Fig. 3. Sensor modulation. Left: sonar activation level for two different light conditions (left 
bar = more light, right bar= less light). Center: behaviour in the simulator. Right: behaviour in 
the real robot 

4   Sensor and Actuator Modulation Combined 

The next example illustrates the use of both types of modulation together and the kind 
of rich behaviour that can be obtained with only two low level modules. The behav-
iour we want to obtain can be described as follows. The robot has to catch a prey 
avoiding a predator. Prey and predator are also mobile objects. The robot gains energy 
as it goes near the prey and loses energy as it goes near the predator. There are two in-
ternal values that affect also the robot energy: the energetic cost associated to each 
step and the anxiety level of the robot that makes it loses energy (the higher the anxi-
ety level, the higher energy loss). The objective is to catch the prey maximizing en-
ergy. That means that if the energetic cost in each step or the anxiety is very high the 
robot will go straight to the prey, without worrying about getting near the predator. In 
other case, the robot will try to catch the prey avoiding predator by a long distance. 

The controller has 4 modules: 2 low level modules (go straight to the prey and es-
cape straight from the predator), 1 actuator modulator (which modulates outputs of 
the 2 low level modules depending on distance to prey and predator) and 1 sensor 
modulator (which modulates inputs of the actuator modulator depending on anxiety). 

The ANN of the sensor modulator has 2 inputs, 2 hidden layers with 6 neurons 
each one and 2 outputs. The ANN of the actuator modulator has 3 inputs (two of them 
modulated by the sensor modulator), 2 hidden layers with 6 neurons each one and 2 
outputs. To simplify the problem, the only output of the low level modules is the an-
gular velocity (which will be between -40º/sec and 40º/sec). Linear velocity is set to a 
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fixed value (200 mm/sec). Predator and pray follow a predefined motion with a linear 
velocity of 70 mm/sec and a maximum angular velocity of 2º/sec. The prey escapes 
from the robot and the predator tries to get between the prey and the robot. 

The construction of the controller without the sensor modulator was explained in 
[3]. So, we only obtained the new sensor modulator. The evolutionary algorithm em-
ployed was a macroevolutionary algorithm with a population of 100 individuals 
which evolved 100 generations. Each individual was evaluated 200 times and it had 
300 steps of life each time. 

Figure 4 shows some examples. As the actuator modulator is the same as the one in 
[3] the behaviour is similar: it only plays with the “escape from predator” module and 
it maintains the modulation of the “go to prey” module constant. The sensor modula-
tor evolves in a similar way and it maintains the modulation of the sensor that indi-
cates the distance to the prey constant and only modulates the sensor that indicates the 
distance to the predator. That “constant modulation” applied to the “distance to prey” 
sensor is in fact a “0”, so the ANN corresponding to the actuator modulator can be 
pruned. This makes sense, the actuator modulator activates by default the “go to prey” 
module and only when it is near the predator activates as necessary the “escape from 
predator” module. It is also really interesting that the sensor modulator only changes 
the actuator modulator behaviour when anxiety is higher than the amount of energy 
lost in each step, otherwise the actuator modulator already behaves correctly. 
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Fig. 4. “Catch prey and avoid predator” behaviour. Graphics represent modulation levels. 
Dashed lines = actuator modulator outputs, continuous lines = sensor modulator outputs 

5   Conclusions 

This paper deals with a complete modulation based architecture for robot controllers. 
The inclusion of sensor modulators allows the architecture to easily modify behav-
iours changing how they consider input patterns. The reaction of a module to a given 
input pattern can be very complex, so it is easier to use a sensor modulator to adapt 
that reaction than to obtain other module from scratch. This modulation can be used 
together with actuator modulation and the other components of the architecture to ob-
tain many different behaviours from a small set of controllers in a structured manner. 
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An interesting result from behaviour design point of view is that, due to the nature 
of its components, the architecture can be seen as hierarchical or distributed with 
modules grouped into a few different classes. Thus, it presents advantages of both 
types of architectures. 

Both types of modulation individually and the complete architecture have been 
tested on real robots in real operating conditions and the behaviours obtained corre-
spond with the desired ones. 
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Abstract. In the field of explorative data analysis self-organizing maps
have been used successfully for a lot of applications. In our case, we ap-
ply the self-organizing map for the analysis of semiconductor fabrication
data by training recorded high dimensional data sets. Usually, the train-
ing result is displayed by using appropriate visualization techniques and
the results are evaluated manually. Especially for large data sets an au-
tomated post-processing of the training result is essential. In this paper
an automatic training result analysis based on specific image processing
is introduced. Dependencies between components maps are calculated
by structure overlapping analysis based on the segmentation of compo-
nent maps. This novel method has been integrated into the data analysis
software DanI, that simulates self-organizing maps for data analysis with
several pre-processing and post-processing capabilities.

1 Introduction

The range of applications where self-organizing maps (SOMs)[3] are used is ex-
tremely wide. Applications like machine vision, optical character recognition
and, signal processing are typical for SOMs [7]. In cooperation with an industrial
partner we use self-organizing maps for the analysis of semiconductor fabrication
data. Aim in this field of explorative data analysis is the optimization of the fab-
rication process in terms of quality and yield [5]. During the data collection phase
various parameters are captured from the fabrication process. One type of data
is physical parameters like film thickness, implantation dose, equipment settings
etc. that are collected during the fabrication process. The second type of data
is a measurement result of electrical test structures like voltages, currents and
derived data. These different types of data are summarized up to high dimen-
sional data sets containing several ten thousands of vectors with several hundred
of vector components. Due to the large number of vectors a manual analysis is
not possible. By applying the data set to a self-organizing map during a training
phase a mapping of the high dimensional data set to a mostly two dimensional
map is achieved [3][5] and the training result may be interpreted visually in a
qualitative way. But in general an automatic post-processing of the trained SOM
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is desirable to get quantitative dependencies between the various components in
the data set and to reduce time for analysis. Therefore, an automated analysis
of the trained SOM has been developed. In this paper, we introduce an auto-
mated structure overlapping analysis, that performs an image segmentation on
the visualizations of self-organizing maps like component maps or U-Matrices
[8]. An image segmentation algorithm based on the Discrete Curve Evolution
Algorithm [4] extracts the structure of the input data after being mapped to the
SOM. Size, shape and position of the extracted structures of all component maps
of the SOM are compared to identify similarities. The resulting level of overlap-
ping gives information about dependencies in the data set. The SOM algorithm
as well as the analysis of the trained data are implemented in the data analysis
tool DanI. We demonstrate the capabilities of the new approach on an artificial
test data set containing three-dimensional vectors. In section 2 the data analysis
using SOMs and the segmentation of self-organizing maps is discussed. The three
dimensional artificial data set is introduced in section 3. Furthermore, the ap-
plied image processing and the Discrete Curve Evolution algorithm as well as its
necessary extension for an automated segmentation of histograms is explained.
In section 4 the data analysis software DanI is introduced. The discussed topics
are summarized in a conclusion in section 5.

2 Segmentation of Self-organizing Maps

The unsupervised learning algorithm of self-organizing maps is used in the field
of explorative data analysis by the authors, because of its nonlinear projection
of a high dimensional input space onto a two-dimensional map of neurons. Af-
ter projection to the two-dimensional map of neurons the training result has to
be examined. Different visualization techniques, like U-Matrix and component
maps, have become popular. All this visualizations are capable to visualize spe-
cific properties of the map representing the input data. What they are suffering
from is the necessary manual analysis of the visualized structure of the data.
Manual analysis of high dimensional data is not only time consuming, but also a
very complex task. Additionally, manual data analysis often results in qualitative
results only. When quantitative results are demanded more reliable methods are
necessary. In order to allow a quantitative comparison between different compo-
nent maps it is necessary to identify the structure of the maps using appropriate
algorithms. Component maps and U-Matrix are two-dimensional graphical rep-
resentations of the trained SOM. These two-dimensional visualization techniques
can be treated as ordinary images. Therefore, image processing methods can be
applied to analyze them.

The principle procedure shown in the following is illustrated by using an
artificial three-dimensional data set (see figure 1). Different types of clusters
are included in the data set. Linear and non linear dependencies between two
components of the data are in included as well as randomized dependencies.
In total the data set contains 6000 three-dimensional vectors. This data set is
trained on a two-dimensional, rectangular SOM of 50 by 50 neurons.
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Fig. 1. Three-dimensional data set con-

taining 6000 data points

Fig. 2. Component map of the

y-component of the data set

3 Image Processing

For the segmentation of component maps and U-Matrices we handle the visual-
izations as ordinary digital images, where one neuron is represented by one pixel
in the image. Histogram based segmentation is used for further image processing.
Firstly, the coloured image is converted into a grey level image with 256 levels
and the grey level histogram is calculated. In this histogram separated accumu-
lations of grey levels with high rates correspond to areas with similar colours
in the original image. Replacing these accumulations of grey levels by one grey
level in the original image, leads to a segmented image. The task is to find the
appropriate separators in the histogram. In real world images the scene is of-
ten illuminated in a way that only one fixed separator is necessary. Generally,
in the field of data mining more then one separator is needed as well as their
position of them is application specific. Because of dealing with unknown data
the separation of grey level accumulations in histograms is a non trivial process.
In case of analyzing data from a semiconductor production process the captured
data is afflicted with noise. Measurement impreciseness and small differences in
the properties of the fabricated device under test are responsible for this noise.
Noisy histograms include a large number of entries, which are not forming the
shape of the histogram. Before further computation the histogram is smoothed,
because the qualitative shape of the histogram is needed only. Suitable smooth-
ing algorithms are moving averages, local smoothing, low pass filters, or other
methods that reduce noise in the histogram [6]. Especially local maxima should
be reduced by the smoothing algorithm, because this reduces the expense to
identify the important peaks in the histogram later on. The number of points to
represent the histogram can then be reduced without destroying the shape of the
histogram. Latecki et al. have introduced a shape simplifying algorithm, the Dis-
crete Curve Evolution [1],[4]. Treating the histogram as a polygon of connected
line segments a relevance function K(s1, s2) can be defined as:
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K(s1, s2) =
β(s1, s2) · l(s1) · l(s2)

l(s1) + l(s2)
(1)

In (1) the relevance K(s1, s2) of the kink between two adjacent line segments
s1 and s2 is calculated. β(s1, s2) is the enclosed angle between the segments,
l(s) is the length of the line segment s (cf. figure 3). The relevance K(s1, s2) is
calculated for every kink in the histogram. The kink with minimal relevance is
deleted. Then the algorithm starts from the beginning. After several iterations
the minimal points representing the shape of the histogram are left. Using a
fixed number of iterations is not suitable in the field of explorative data analysis.
Removing too many kinks may delete the shape of the histogram. Removing to
few kings leads to a non minimal histogram representation, which aggravates
the search of the separators in the histogram more than necessary. The Discrete
Curve Evolution introduced by Latecki has been enhanced with a dynamic stop
criterion by the authors. In figure 3 the grey level histogram corresponding to

Fig. 3. Grey level histogram based on fig. 2 and definition of β (small figure) in (1)

figure 2 is shown. The histogram is smoothed, because the qualitative shape (see
black line) is necessary for further computation, not the quantitative one. The
dynamic stop criterion stops the Discrete Curve Evolution Algorithm one step
before a kink is deleted, that is forming the major shape of the histogram. As
a result, the histogram is reduced to the main shape forming peaks. This leads
directly to the question what is an important peak in a histogram? In figure
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3 a human observer would identify five peaks that characterize the histogram.
A relevance measurement is needed, to specify the importance of a peak in a
histogram. It is defined as:

SPeak = w · h = Width ·Height (2)

The size of a peak SPeak is defined heuristically as the product of the opening
width w of a peak and its height h (cf. figure 3). After each iteration of the
Discrete Curve algorithm the size of all peaks in the histogram is calculated
and averaged in SPeak. The relation between the peaks is defined by a heuristic
weight function Wt, that is initialized with zero.

SPeak < 0.25 · SPeak : Wt+1 = 0.5 · (Wt − 1) (3)

SPeak ≥ 0.25 · SPeak : Wt+1 = 0.5 · (Wt + 1) (4)

SPeak is the average peak size, which is calculated after each iteration. The
weight of a peak is increasing, if its current size is longer than twenty five per-
cent of the average peak size, otherwise the weight is decreased. If shape of
the histogram is reduced to the minimal number of peaks, the separators are
placed at the local minima between two peaks. If there is a plain line between
two maxima, the middle of the line is chosen as a position for the separator.
In figure 3 vertical separators show the sectioning of the histogram, calculated
with the method described above. Based on the separation in the histogram the
image of the component map can be segmented. We use standard segmentation
algorithms for separating the structures of the original image into binary sub
images. I. e. we select one section of the histogram and set all pixels in a binary
copy of the original image to one, if they have the corresponding colour range of
the section in the histogram. After storing this binary image, we proceed with
the next section in the histogram. Out of these binary images stored for every
section in the histogram the structures can be extracted very easily. Because
one section in the histogram may correspond to more than one structure in the
binary image, we use conventional region growing in the binary image to extract
the structures. Figures 4 and 5 are showing the segmented y and z component
maps of the SOM for the data set depicted in figure 1.

3.1 Structure Overlapping Analysis

If the extraction of the structures of all components in a data set has been per-
formed, an overlapping analysis of the structures can be generated automatically.
Size, shape and position are compared between the structures of all component
maps. Minimal size of the structures as well as the minimal similarity of the
structures are parameters of the process, that can be adjusted manually. The
minimal size is used as a relevance measure. It avoids comparing large (impor-
tant) structures with smaller ones (less important). More important then the
size is the similarity between two structures. The similarity is defined as the
percentage of overlapping between two structures of the analyzed components.
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The capabilities of the new method will be demonstrated in the following. Based
on the artificial data set of figure 1 the relations between the y and z-component
(cf. figure 6) of the data set will be discussed. Therefore, the new method has
been applied on the y and z-component of the artificial data set. Figures 4 and 5
are showing the segmentation of the component maps, mentioned above. Obvi-
ously both component maps are separated in five structures. Brighter grey levels
in the figures correspond to larger values in the input data. E. g. combining
the structures 2 and 5 in figure 4 leads to a structure that is very similar to
structure 4 in figure 5. Structure 2 has a size of 52.4% and structure 5 has a size
of 46.2% of structure 4 in figure 5. Although there is only one structure in z-
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component map, there are two structures in y-component map. This corresponds
to the two topmost right clusters in figure 6. The z-values of these clusters can
not be separated, because they partially share the same interval. In contrast,
these clusters are separated in the y-component and in z-component map of
the SOM. Although the new segmentation method and the structure extraction
haven been applied to component maps, both can be applied on the U-Matrix.
As typical U-Matrices have clearly separated structures and large areas with
nearly the same colours, standard image segmentation using one separator in
the histogram produces satisfying results.

4 Implementation of Self-organizing Maps

In cooperation with an industrial partner the software DanI (Data analysis for
the Integrated circuit fabrication) has been developed (figure 7). It integrates
pre-processing of recorded data, training of the SOM, visualization, recall and
analysis functionality into one powerful tool. Input interfaces like MS Excel
allow comfortable import of data. If necessary, data pre-processing algorithms
can be applied on the data in order to process missing, faulty or alphanumeric
data. The training of the data itself can be performed on the local processor of

Fig. 7. DanI-Software: Data analysis for the IC-fabrication
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a personal computer or speeded up using an accelerator [2], developed by the
authors. After training, the SOM can be visualized using component maps and
U-Matrix. Additionally, correlation calculations can be executed on the SOM
training results as well as on the raw data. For the analysis of high dimensional
data the structure overlapping analysis has been implemented. The structures
of a key component are compared with the clusters of all other components
automatically. As a result the coverage of the structures is presented to the user
in percentage rate. The extracted structures can also be used for correlation
computation.

5 Conclusion

It has been shown that SOM based explorative data analysis can be automated
by applying an image segmentation on visualization of the SOM. A multi thresh-
old histogram based segmentation has been developed to identify and extract the
structures of component maps. The structure overlapping analysis, presented in
this paper, analyses the extracted structures and returns quantitative dependen-
cies between vectors of the input data. Structure overlapping analysis as well as
the automated image segmentation have been combined to an automated data
analysis method that has been integrated into the data analysis software DanI.
The features of the software, like pre-processing, training, visualization, recall
and analysis, have been presented. The principles of the automated analysis have
been demonstrated using an artificial data set.
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Abstract. Profile Hidden Markov Models (Profile HMM) are well suited
to modelling multiple alignment and are widely used in molecular biology.
Usually, heuristic algorithms such as Baum-Welch are used to estimate
the model parameters. However, Baum-Welch has a tendency to stagnate
on local optima. A more involved approach is to use some form of stochas-
tic search algorithm that ‘bumps’ Baum-Welch off from local maxima.
In this paper, a hybrid genetic algorithm is presented for training pro-
file HMM (hybrid GA-HMM training) and producing multiple sequence
alignment from groups of unaligned protein sequences. The quality of the
alignments produced by hybrid GA-HMM training is compared to that
by the other Profile HMM training methods. The experimental results
prove very competitive with and even better than the other tested profile
HMM training methods. Analysis of the behavior of the algorithm sheds
light on possible improvement.

1 Introduction

Hidden Markov Models (HMMs) are a class of probabilistic models that are
generally applicable to time series or linear sequences. HMMs have been most
widely applied to recognizing words in digitized sequences of the acoustics of
human speech [1]. HMMs were introduced into computational biology in the
late 1980s, and have been a preferred choice of method when solving problems.
Profile HMM is a particular type of HMM well suited to modelling multiple
alignment. Profile HMM can be used to detect potential membership in a family
by obtaining significant matches of a sequence to the profile HMM, to give an
alignment of a sequence to the family or more precisely to add it into the multiple
sequence alignment of the family, and to classify protein families [2].

The standard algorithm for training HMM from initially unaligned example
sequences are hill-climbing algorithms, such as gradient descent [3] or Baum-
Welch expectation maximization [2], which are iterative algorithms in which the
likelihood (or the posterior probability) increases in each iteration. A serious
problem with any hill-climbing optimization technique is that it often ends up
in a local maximum. To deal with this problem, noise injection during HMM
re-estimation or stochastic methods can be used to avoid local maxima. Noise

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 734–741, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



A Novel Optimization of Profile HMM by a Hybrid Genetic Algorithm 735

injection was introduced in Krogh et al.[2], an alternative and very elegant sim-
ulated annealing algorithm was described in Eddy [4]. Genetic algorithm was
also used to estimate HMM. Kwong et al. [5] applied an GA to estimate the left-
right models, and used small population sizes (30 individuals) and low mutation
(0.0001) and crossover (0.01) probabilities. Thomsen [6] presented an evolution-
ary algorithm capable of evolving both the topology and the model parameters
of HMM, and the applicability of the method was exemplified on a secondary
structure prediction problem. In this paper, we present a hybrid genetic algo-
rithm for training profile HMM, and producing multiple alignments to test the
applicability of the introduced method.

2 Profile HMM

Krogh et al.[2] introduced a profile HMM architecture that was well suited for
representing profiles of multiple sequence alignment. The basic model architec-
ture is shown in Fig.1.
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Fig. 1. Profile hidden Markov model

A HMM describes a series of observations by a ‘hidden’ stochastic process -
a Markov process. Each position in the model has three states. A state shown
as a rectangular box is a match state that models the distribution of letters
in the corresponding column of an alignment. Diamond-shaped states model
insertions of letters between two alignment positions, and circular states model a
deletion, corresponding to a gap in an alignment. States of neighboring positions
are connected, as shown by lines. For each of these lines there is an associated
transition probability, which is the probability of going from one state to the
other. For additional details on profile HMM, see [2].

Sequence alignment under probabilistic models can be scored using the log-
odds ratio [7]. The log-odds score asserts whether or not the probability that
the sequence s was generated by the model m is larger than the probability that
the sequence was generated by the null model φ:

score(s) = logz

P (s|m)
P (s|φ)

(1)
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where the logarithm can be to any base z , most often to base 2, in which case
the score is reported in bits. The higher the score, the better. The log-odds score
has been used by HMMER [4], HMMER is a freely distributable implementation
of profile HMM software for protein sequence analysis. In this paper, we also use
the log-odd score to score sequence alignment.

3 Methods and Algorithm

3.1 Representation

For a profile HMM of lengthM , hereM is the number of match states in the pro-
file HMM rather than the total number of states, which is 3M+3 for the profile
HMM architecture in Fig.1. There are M positions in the model, each posi-
tion has three states(match, delete, and insert). Each of these M match states
(mk, k = 1...M) can generate a letter x from the 20-letter amino acid alphabet
according to a distribution P (x|mk), k = 1...M , and all emission probabilities
in each match state must satisfy the following equation:

20∑
i=1

P (xi|mk) = 1 (2)

The notation P (·|mk), k = 1...M means that each of the match states mk,
k = 1...M , have distinct distributions, where ‘·’ indicates any possible letters
from the 20-letter amino acid alphabet. There are a total of M+1 insert states
which generate amino acids in exactly the same way as the match states, but
use probability distributions P (·|ik), k = 0...M . From each state, there are three
possible transitions to other states, as shown in Fig.1. The transition probability
from state q to state r is called T (r|q), and for each state, transition probabilities
must satisfy the following equation:

3∑
i=1

T (ri|q) = 1 (3)

where ri denotes any possible next state. The notations T (·|dk), k = 1...M ,
T (·|ik), k = 0...M , T (·|mk), k = 0...M mean that each of the states (delete
states dk, k = 1...M , insert states ik, k = 0...M , match states mk, k = 0...M)
have distinct transition distributions, where ‘·’ indicates any possible next state.
At position M , the three states have no transition to delete state. For a model
of length M , the total number of state transition probabilities is 9M+3, and the
total number of symbol emission probabilities is 40M+20, if the profile HMM
describes a family of proteins.

The goal of hybrid GA-HMM training is to find a model, i.e. a proper model
length M and probability parameters, that accurately describes a family of pro-
teins by assigning large probabilities to sequences in that family. In hybrid GA-
HMM training, the profile HMM is encoded into a string of real numbers that
acts as a chromosome (see Fig.2).
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Fig. 2. Genetic representation of profile HMM

3.2 Population Initialization

The population of initial parent profile HMMs was generated as follows: i)The
initial number of model lengthM was set to the average length of all the training
sequences Mavg. ii)The probabilities were randomly initialized (between 0.0 and
1.0) and normalized to satisfy Equations (2) and (3).

3.3 Crossover and Mutation

The crossover operators used are the standard arithmetic crossover , one-
point crossover , and two-point crossover , which take two parent profile
HMMs and create two offsprings. For parent profile HMMs of different length,
crossover operator acts on the domain [1,Mmin], as shown in Fig.3, and Mmin =
min(Mparent1,Mparent2). After crossover, the probabilities in each chromosome
must be normalized to satisfy Equations (2) and (3).

Parent1(P1)

49M1+23

M1<=M2

Parent2(P2)

49M1+23

49M2+23

Child1(P1') child2(P2')

( p1' = a1 p1 + a2p2, p2' = a2 p1 + a1p2, a1 + a2 =1, a1 >0, a2>0 )

Child1(P1') child2(P2')
(b) One-point crossover

(a) Arithmetic crossover

Child1(P1') child2(P2')

(c) Two-point crossover

Fig. 3. Crossover operators

Three mutation operators are used in this paper:
The insertPosition operator adds a new position into the model. This po-

sition is selected randomly between 1 and M , and the 49 probabilities associated
with the new states are assigned randomly and normalized. After this change,
the model length become M+1.

The deletePosition operator deletes a position from the model. This po-
sition is chosen randomly between 1 and M , and must ensure a valid profile
HMM. After this change, the model length become M -1. Together with the in-
sertPosition operator, the model architecture is re-estimated, much like model
surgery (for additional details on model surgery, see[2,7]).
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The modifyProbabilities operator selects probabilities from parent chromo-
some randomly and the selected probabilities are replaced by random generated
real numbers; after this change, the affected probabilities are normalized.

3.4 Fitness Evaluation

The average log-odds score lm of the profile HMM solution m generates the
training observation sequences O1, ..., On must be calculated as references for
the fitness evaluation:

lm = (
n∑

i=1

log2

P (Oi|m)
P (Oi|φ)

)/n (4)

where Oi, (i = 1...n) is a protein sequence of Li letters, and denoted x1...xLi
.

The log likelihood score log2P (Oi|m) is calculated by forward procedure[1], and
log2P (Oi|φ) =

∑Li

i=1 log2 P (xi|φ). Since the probabilities of solution m were
randomly initialized, lm may be negative, so to guarantee positive, the fitness
value fm of solution m will be calculated as follows:

fm =

{
lm + Cmin when lm + Cmin > 0,
0 Otherwise.

(5)

where Cmin is the log-odds score obtained by Baum-Welch training.

3.5 The Hybrid Genetic Algorithm

Since GA has a global search ability and heuristics have a local search ability,
their hybridization will possibly form a more powerful search.

In our hybrid GA, Baum-Welch algorithm is employed. Crossover is applied
with probability Pc using one of the three mentioned crossover operators (the
choice is made randomly with equal probability for all three crossover opera-
tors). Mutation is applied with probability P

′
m using one of the three mentioned

mutation operators (the choice is made randomly with equal probability for all
three mutation operators). P

′
m is decreased with current generation g increased

using the formula: P
′
m = Pm(1.0− g/gmax), where gmax is the predefined maxi-

mal generation. An offspring replaces the parent only if it is fitter. The offspring
is refined using Baum-Welch algorithm [1,7], which re-estimated all the param-
eters ( P̂ (x|mk) and T̂ (r|q)). To avoid over-fitting, Dirichlet mixture priors for
regularization [2,6,7] is used, for more details on Dirichlet mixture priors, see [8].
The algorithm terminates either after a predefined number of generations gmax

or after a predefined number of non-improved generations gunimproved. All the
steps can be summarized by the following pseudo-code:

Procedure Hybrid GA-HMM
BEGIN
1. Initialize population.

Set models’ length to Mavg;
P (·|·) = random();
T (·|·) = random();
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2. Evaluate.
Calculate fmi , i=1...populationsize;

WHILE (gcurrent ≤ gmax and gcurrentunimproved ≤ gunimproved )
BEGIN
WHILE (pcurrentsize ≤ populationsize)
BEGIN

3. Tournament selection.
4. Crossover.

IF( random() ≤ Pc)
Select one of the three crossover operators with equal probability;
Apply the selected crossover operator on parents;

5. Mutation.
IF( random() ≤ P

′
m)

Select one of the three mutation operators with equal probability;
Apply the selected mutation operator on offsprings;

6. Apply Baum-Welch on offsprings.
Calculate P̂ (·|·), T̂ (·|·);

7. Apply regularization on offsprings.
8. Evaluate.

END
END

END

4 Experimental Results

The modeling was first tested on the globins, a large family of heme-containing
proteins involved in the storage and transport of oxygen that have different
oligomeric states and overall architecture. The globin protein sequences used for
the training set were taken from the file globin50.fa of HMMER1.8.4, which con-
tains 50 randomly selected unaligned globin sequences. We validated this model
from the alignments it produced by the Viterbi algorithm [1,7], and compared
to the performance of the hmmt program of HMMER1.8.4, hmmt can build
an HMM from initially unaligned training sequences, and allows a choice of
approaches, simulated annealing (SA), the Viterbi approximation of the Bauw-
Welch (Viterbi), and the full Bauw-Welch (BW) implementations. The align-
ment accuracy was assessed by the sum-of-pairs score (SPS) and the column
score (CS), SPS indicates the ratio of pairs correctly aligned while CS shows the
ratio of columns correctly aligned, for how to calculate them see Thompson et
al. [9]. The alignment of seven representative globins from Bashford et al. [10]
was used as the reference alignment, and the BAliScore program [9] was used
to calculate SPS and CS score. In the test, we used Dirichlet mixture priors [8]
for regularization, a ten-component mixture Dirichlet prior for match emissions,
and single component Dirichlet priors for insert emissions and transitions, the
data was taken from the file BrownHaussler.pri of HMMER1.8.4. All the tests
were performed on the same precondition.

We used the following parameters in the hybrid GA-HMM training: popu-
lation size=10, Pc=0.7, Pm=0.1, gmax=100, gunimproved=10. For Viterbi HMM
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Table 1. Results obtained from the experiments

training methods SPS/CS log-odds
score

don’t surgery 0.195/0.000 250.45
Viterbi

surgery 0.283/0.000 257.32

BW don’t surgery 0.598/0.190 292.32

min 0.523/0.190 286.85
SA max 0.738/0.474 304.24

avg 0.595/0.319 300.05

min 0.535/0.207 291.62
hybrid GA max 0.841/0.716 328.94

avg 0.671/0.412 306.13

Table 2. Results obtained from the experiments when populationsize =
10, 20, 30, 40, 50 respectively

population size 10 20 30 40 50

min 0.647/0.353 0.580/0.267 0.702/0.474 0.718/0.440 0.606/0.276
SPS/CS max 0.766/0.586 0.810/0.578 0.872/0.741 0.858/0.716 0.899/0.819

avg 0.689/0.416 0.713/0.456 0.797/0.603 0.777/0.571 0.779/0.584
min 307.09 310.86 316.24 314.06 312.15

log-odds max 314.27 318.49 324.72 324.35 322.26
avg 308.53 314.23 318.12 320.44 322.17

Table 3. Average SPS/CS obtained from the experiments, for hybrid GA,
populationsize = 10

training methods BW SA hybrid GA

reference2 0.659/0.101 0.662/0.112 0.738/0.163
reference3 0.382/0.038 0.439/0.094 0.491/0.148

training, model surgery [7] was applied, but for SA HMM training, model surgery
did not seem to improve the accuracy in this test, so these results were not listed.
We ran SA and hybrid GA 50 times respectively. The minimal, the maximal,
and the average (avg) scores were listed in the Table 1.

In order to improve the performance of hybrid GA, set populationsize equal
to 10,20,30,40,50 respectively. In each instance ran the program ten times. The
minimal, the maximal, and the average (avg) scores were listed in the Table 2.

The modeling was also tested on the sequences from BAliBASE reference2
and reference3, for additional details on BAliBASE, see [11]. Each alignment in
reference2 and reference3 tested only once, and the average score is given. Table
3 shows the results of the experiments.

We built a profile HMM from the alignment of seven representative globins
from Bashford et al.[10] using the MAP construction algorithm[6], and encoded
this model as an individual for the population initialization, the performance of
hybrid GA is improved, here populationsize = 10, the result is (average score of
10 runs): log-odss score=315.37, SPS=0.718, CS=0.485. For complicated HMMs,
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the parameter space may be complex, with many spurious local optima that
can trap a training algorithm. Large collections of protein structural alignments
are now available, so build the model from a multiple sequence alignment, and
further refining it using one of these methods (BW,SA,GA etc) can greatly
improve the accuracy of the model.

5 Conclusion

In our study, Baum-Welch algorithm was employed, other heuristic algorithms
for training HMMs can also be employed. We use insertPosition operator and
deletePosition operator slightly change the model architecture, that much like
model surgery, and the change is stochastic. In our future work, architecture
learning operators will be added.

References

1. Rabiner,L.R.(1989) Aturorial on hidden Markov models and selected applications
in speech recognition. Proc. IEEE, 77,257-286.

2. Krogh,A.,Brown,M.,Mian,I.S.,Sjolander,K.and Haussler,D.(1994) Hidden Markov
models in computational biology: Applications to protein modeling. Journal of
Molecular Biology, 235, 1501-1531.

3. Baldi,P.,Chauvin,Y.,Hunkapiler,T.,and McClure,M.A.(1994) Hidden Markov
modes of biological primary sequence information. Proc. Natl. Acad. Sci. USA,
91, 1059-1063.

4. Eddy,S.(1995) Multiple alignment using hidden Markov models. Proc. Int.
Conf. on Intelligent Systems for Molecular Biology, 114-120, Cambridge, Eng-
land:AAAI/MIT Press.

5. Kwong,S.,Chau,C.W.(1997) Analysis of parallel genetic algorithms on HMM based
speech recognition system IEEE Transactions on Consumer Electronics, 43, 1229-
1233.

6. Thomsen, R.(2002) Evolving the Topology of Hidden Markov Models using Evolu-
tionary Algorithms. Proceedings of the Seventh International Conference on Par-
allel Problem Solving from Nature - PPSN VII, 861-870, 2002.

7. Durbin,R.,Eddy,S.R.,Krogh,A. and Mitchison,G.J.(1998) Biological Sequence
Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge Univer-
sity Press, Cambridge, UK.

8. Brown,M.P,Hughey,R.,Krogh,A.,Mian,I.S.,Sjölander,K., and Haussler,D.(1993)
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Abstract. In this work, we suggest a new feature selection technique
that lets us use the wrapper approach for finding a well suited feature
set for distinguishing experiment classes in high dimensional data sets.
Our method is based on the relevance and redundancy idea, in the sense
that a ranked-feature is chosen if additional information is gained by
adding it. This heuristic leads to considerably better accuracy results,
in comparison to the full set, and other representative feature selection
algorithms in twelve well–known data sets, coupled with notable dimen-
sionality reduction.

1 Introduction

In recent years, there has been an explosion in the rate of acquisition of data in
several domains. A typical data set may contain thousands of features. Theoret-
ically, having more features should give us more discriminating power. However,
this can cause several problems: increase computational complexity and cost;
too many redundant or irrelevant features; and estimation degradation in the
classification error.

Most of the feature selection algorithms approach the task as a search prob-
lem, where each state in the search specifies a distinct subset of the possible
attributes [1]. The search procedure is combined with a criterion in order to
evaluate the merit of each candidate subset of attributes. There are a lot of
possible combinations between each procedure search and each attribute mea-
sure [2]. Feature selection is grouped in two ways according to the attribute
evaluation measure: depending on the type (filter or wrapper techniques) or on
the way that features are evaluates (individual or subset evaluation). The filter
model relies on general characteristics of the data to evaluate and select feature
subsets without involving any mining algorithm. The wrapper model requires
one predetermined mining algorithm and uses its performance as the evaluation
criterion. It searches for features better suited to the mining algorithm, aiming to
improve mining performance, but it also is more computationally expensive [3]
than filter model. Feature ranking (FR), also called feature weighting [1, 4], as-
sesses individual features and assigns them weights according to their degrees
of relevance, while the feature subset selection (FSS) evaluates the goodness
of each found feature subset. (Unusually, some search strategies in combination
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with subset evaluation can provide a ranked list). In the FR algorithms category,
a subset of features is often selected from the top of a ranking list. This approach
is efficient for high–dimensional data due to its linear time complexity in terms
of dimensionality. In the FSS algorithms category, candidate feature subsets are
generated based on a certain search strategy. Different algorithms address theses
issues distinctively. In [2], a great number of selection methods are categorized.
We found different search strategies, namely exhaustive, heuristic and random
search, combined with several types of measures to form different algorithms.
The time complexity is exponential in terms of data dimensionality for exhaus-
tive search and quadratic for heuristic search. The complexity can be linear to
the number of iterations in a random search [5], but experiments show that in
order to find best feature subset, the number of iterations required is usually at
least quadratic to the number of features [6]. The most popular search methods
in machine learning ([7, 8]) can not be applied to these data sets due to the large
number of features. One of the few used search techniques in these domains is
sequential forward [9, 10, 11] (also called hill–climbing or greedy).

The limitations of both approaches, ranking and subset selection, clearly
suggest that we should pursue a hybrid model. Recently, a new framework for
feature selection has been used, where several above–mentioned approaches are
combined. The process of selection involves two phases due to the high number
of attributes: Algorithms begin with a phase where attributes are individually
evaluated, and provide a ranking according to a filter criterion. In the next step,
a feature subset evaluator (filter or wrapper) is applied to a fixed number of
attributes from the previous ranking (greater than a threshold value, or the first
k features) following a search strategy. The method proposed by Xing et al. [12],
the one proposed by Yu and Liu [9], and another by Guyon et al. [13] are among
the most referenced works at present following this framework.

Our paper is organized as follows. In section 2, we present the concept of
relevance and redundancy at the same time used in our wrapper approach. Al-
gorithm is described in section 3. Experimental results are shown in Section 4,
and the most interesting conclusions are summarized in section 5.

2 Wrapper Approach over Feature Ranking

Feature ranking makes use of a scoring function S(i) computed from the values
xk,i and yk (k = 1, . . . ,m examples and i = 1, . . . , n features). By convention,
we assume that a high score is indicative of high relevance and that features
are sorted in decreasing order of S(i). We consider ranking criteria defined for
individual features, independently of the context of others. In feature subset se-
lection, it is a fact that two types of attributes are generally perceived as being
unnecessary: attributes that are irrelevant to the target concept, and attributes
that are redundant given other attributes. We now formally define incremental
ranked (IR) usefulness in order to devise an approach to explicitly identify rele-
vant features and do not take into account redundant features. In other words,
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learning can be achieved more efficiently and effectively with just relevant and
non–redundant features.

Definition 1. Let R be a set of M features sorted in decreasing order of S(i),
given a sample of data D, a learning algorithm L , and a subset of selected fea-
tures F , feature Fi is incrementally useful to L with respect to F if the accuracy
of the hypothesis that L produces using the group of features {Fi} ∪ F is better
significantly (denoted by �) than the accuracy achieved using just the subset of
features F , in this case Fi is added to F . Note that the process starts from the
first feature in R, and continues with the next ranked attribute.

Wrapper subset evaluates attribute sets by using a learning scheme. Five cross
validation is used to estimate the accuracy of the learning scheme for a set of
features. We conduct Student’s paired two–tailed t–test in order to evaluate the
statistical significance (at 0.1 level) of the difference between the previous best
subset and the candidate subset. This last definition allows us to select features
from the ranking, but only those that increase the classification rate significantly.
Although the size of the sample is small (5 cross validation), our search method
use a t–test. We want to obtain an heuristic not to do an accurate population
study. However, on the one hand it must be noted that it is an heuristic based on
an objective criterion, to determine the statistical significance degree of difference
between the accuracy of each subset. On the other hand, the confidence level has
been relaxed from 0.05 to 0.1 due to the small size of the sample. Statistically
significant differences at the p < 0.05 significance level would not permitted us to
add more features, because it would be difficult to obtain significant differences
between the accuracy of each subset by the test. Obviously, if the confidence
level is increased, more features can be selected, and vice versa. Then, the user
can adjust the confidence level.

3 Algorithm

There are two phases in the algorithm shown in Figure 3: Firstly, the features
are ranked according to some evaluation measure (line 1–4). In second place, we
deal with the list of attributes once, crossing the ranking from the beginning to
the last ranked feature (line 5–12).

Consider the situation depicted in Figure 2; an example of feature selection
process by IR. It shows the attributes ranked according to some evaluation mea-
sure. We obtain the classification accuracy with the first feature in the list (f5).
In the second step, we run the classifier with the first two features of the ranking
(f5,f7), and a paired t–test is performed to determine the statistical significance
degree of the differences. As it is lower than 0.1, f7 is not selected. The same oc-
curs with the two next subsets (f5,f4 and f5,f3), but feature f1 is added, because
the accuracy obtained is significatively better than that obtained with only f5,
and so on. In short, the classifier is run nine times to select, or not, the ranked
features (f5,f1,f2): once with only one feature, four times with two features, three
with three features and once with four features. The same situation occurs in
high–dimensional data.
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Input: E training, U--measure, W--classifier

Output: BestSubset

1 list l = {}
2 for each Fi ∈ F
3 S(i) = compute(fi, U)

4 position Fi into l according to S(i)
5 BestClassification = 0
6 BestSubset = ∅
7 for each Fi ∈ l
8 TempSubset = BestSubset ∪ Fi

9 TempClassification = WrapperClassification(TempSubset, W)

10 if (TempClassification � BestClassification)

11 BestSubset = TempSubset

12 BestClassification = TempClassification

Fig. 1. IR Algorithm

f5 f7 f4 f3 f1 f8 f6 f2 f9

Fig. 2. Example of feature selection process by IR

4 Experiments and Results

The aim of this section is to evaluate our approach in terms of classification accu-
racy, degree of dimensionality and speed on selected features, in order to see how
IR fare in situations where there are large numbers of features. The comparison
was performed with two representative groups of high–dimensional data sets:
Three data sets are selected from the UCI Repository1, and three selected from
the NIPS 20032 feature selection benchmark. The main characteristic of these
data sets is the great number of features. The full characteristics of all the data
sets are summarized in Table 1. In order to compare the effectiveness of feature
selection, attribute sets chosen by each technique were tested with two learn-
ing algorithms, a probabilistic (naive Bayes) and a decision tree learner (c4.5).
These two algorithms were chosen because they represent two quite different
approaches to learning.

As already mentioned, the proposed search is realized over a ranking of at-
tributes, and any evaluation measure can be used for it. In the experiments, we
use two criterions: one belongs to wrapper model and one to filter model. In the
wrapper approach, denoted by IRW , we order attributes according to their indi-

1 http://www.ics.uci.edu/ mlearn/MLRepository.html
2 http://clopinet.com/isabelle/Projects/NIPS2003/
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Table 1. Data sets

Data Acr. Feat. Inst. Classes

Musk(1) MK 166 6598 2

Arrhythmia(1) AR 279 452 16

Madelon(2) MA 500 2000 2

Multi–feature(1) MF 649 2000 10

Arcene(2) AC 10000 100 2

Dexter(2) DE 20000 300 2

Table 2. Accuracy of nb on selected features. The symbol ” +” and ”− ” respectively

identify statistically significant, at 0.1 level, wins or losses over IRW

Data Wrapper Filter Full
IRW IRF SFW CFSSF FOCUSSF

Acc Att Acc Att Acc Att Acc Att Acc Att Acc

MK 84.59 1 84.59 1 N/A 65.75− 10 83.37− 11 83.86
AR 73.01 7 73.02 8 74.35 15 69.69− 25 69.03− 21 61.74−

MA 63.00 4 62.65 3 62.75 6 60.90 6 59.15− 15 58.40−

MF 97.30 15 97.85 19 N/A 97.10 86 93.65− 7 93.35−

AC 90.00 22 93.00 19 83.00 4 N/A 60.00− 4 70.00−

DE 88.67 14 88.00 15 84.67 11 N/A 90.33 23 88.67

vidual predictive power, using as criterion the performance of the target classifier
built with a single feature. In the filter approach, a ranking is provided using
non–linear correlation measure. We choose symmetrical uncertainty (denoted by
IRF ), based on entropy and information gain concepts.

Due to the high–dimensional data, we limit our comparison to sequential for-
ward (SF) techniques (see Introduction section). We choose three representative
subset evaluation measures in combination with SF search engine. One, denoted
by SFW , uses a target learning algorithm to estimate the worth of attribute
subsets; the other two are subset search algorithms which exploit sequential for-
ward search and utilize correlation measure (variation of CFS algorithm [8]) or
consistency measure (variation of FOCUS [7]) to guide the search, denoted by
CFSSF and FOCUSSF respectively (both of them used in [9]).

The experiments are conducted using the WEKA’s implementation of all
these existing algorithms and our algorithm is also implemented in the WEKA
environment [14]. For each data set, we run CFSSF and FOCUSSF algorithms
(both of them are independent of the learning algorithm), and for each data set
and each classifier, we run the wrapper feature selection algorithms, IRW , IRF

and SFW . We record the running time and the number of selected features for
each algorithm. We then apply the two classifiers (nb and c4) on the original
data set as well as on each newly obtained data set containing only the selected
features from each algorithm and record overall accuracy by a 10–fold cross–
validation.
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Table 3. Accuracy of c4 on selected features

Data Wrapper Filter Full
IRW IRF SFW CFSSF FOCUSSF

Acc Att Acc Att Acc Att Acc Att Acc Att Acc

MK 96.83 7 96.30 7 96.44 6 95.54− 10 95.04− 11 96.88
AR 74.32 6 73.02 5 74.10 8 69.04− 25 71.67 21 64.38−

MA 83.50 9 80.20− 23 80.80− 11 74.55− 6 78.20− 15 70.35−

MF 95.70 13 94.55 10 95.70 17 94.45− 86 91.40− 7 94.75
AC 91.00 6 94.00 9 95.00 7 N/A 77.00− 4 74.00−

DE 88.00 12 88.33 17 90.33 12 N/A 89.33 23 76.00−

Tables 2 and 3 report accuracy and number of features selected from nb and c4
respectively by each feature selection algorithm and the full set. We conduct an
Students paired two–tailed t–test in order to evaluate the statistical significance
of the difference between two averaged accuracy values: one resulted from IRW

and the other resulted from one of IRF , SFW , CFSSF , FOCUSSF and the full
set. The symbol ” + ” and ” − ” respectively identify statistically significant,
at 0.1 level, wins or losses over IRW . And Table 4 records the running time for
each feature selection algorithm, showing two results for each wrapper approach,
depending on the learning algorithm chosen.

Before we compare our technique with the others. Note the similarity between
the results obtained with the two approaches of our algorithm, one based on a
ranking–wrapper (IRW ) and the other on a ranking–filter (IRF ). As we can
see from Table 2 and 3, in all the cases, except for one data set (MA) with c4
classifier, these accuracy differences are not statistically significant. the number
of attributes selected are similar but IRF is a little bit faster than IRW because
of the time needed to build the ranking for the wrapper–ranking approach.

Apart from the previous comparison, we study the behavior of IRW compar-
ing in three way: with respect to a whole set of features; with respect to another
wrapper approach; and with respect to two filter approaches.

Classification accuracies obtained with the whole feature set are statistically
lower than those obtained with our wrapper approach. As we can see from the
last column in Table 2 and 3, IRW wins in most of the cases, except in two data
sets (MK and DE) and two data sets (MK and MF) for nb and c4 respectively.
These accuracy differences are especially relevant in two data sets (AR and AC)
and four (AR, MA, AC and DE) for nb and c4 respectively. We notice that the
number of selected features is drastically low as regards the whole set.

For the two classifiers, no statistical significant differences are shown, ex-
cept for c4 in MA data set, between the accuracy of our wrapper approach and
the accuracy of the sequential forward wrapper procedure (SFW ). On the other
hand, the advantage of IRW with respect to the SFW for nb and c4 is clear.
We can observe (see Table 4) that IRW is consistently faster than SFW . The
time savings from IRW become more obvious when the computer–load neces-
sities of the mining algorithm increases. In many cases the time savings are in
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Table 4. Running time (seconds) for each feature selection algorithm

Data Wrapper Filter
nb c4

IRW IRF SFW IRW IRF SFW CFSSF FOCUSSF

MK 334 72 N/A 2400 2700 10277 10 77
AR 251 140 4089 291 245 2400 2 14
MA 156 96 825 2460 5100 18000 5 52
MF 1984 2643 N/A 6502 5280 72000 73 45
AC 1020 660 1027 1121 945 5820 N/A 35
DE 3300 2622 20280 9240 20880 86400 N/A 1320

degrees of magnitude, and in two cases, SFW did not report any results: for nb
in MF data set SFW did not produce any results after forty eight hours running
(hence, neither selected features nor accuracy results); and in MK data set for
nb classifier, results are not shown because the accuracy obtained with each in-
dividual feature is lower than without feature. These results verify the superior
computational efficiency of incremental search applied by IRW over greedy se-
quential search applied by SFW , with similar number of attributes and without
statistical significant differences.

In general, the computer–load necessities of filter procedures can be consid-
ered as negligible with respect to wrapper ones (Table 4), except for FOCUSSF

in DE data set. However, accuracies obtained with IRW are notably better for
nb and c4. Firstly, for the last two data sets (AC and DE) results were not
produced by CFSSF because the program ran out of memory after a period of
considerably long time due to its quadratic space complexity. Secondly, in the
rest of data sets, IRW either improves or maintains the accuracy of both CFSSF

and FOCUSSF . From Table 2 and 3, it can be seen that apart from the two
last data sets, IRW improves CFSSF on two and four data sets for nb and c4
respectively. And IRW improves FOCUSSF on five and four data sets and no
statistical significant differences on the rest.

5 Summary and Future Work

The success of many learning schemes, in their attempts to construct data mod-
els, hinges on the reliable identification of a small set of highly predictive at-
tributes. The inclusion of irrelevant, redundant and noisy attributes in the model
building process phase can result in poor predictive performance and increased
computation. The most popular search methods in machine learning can not be
applied to these data sets due to the large number of features. However, in this
paper, we have proposed a new feature selection technique that lets us use a
wrapper approach for finding a well suited feature set for classification. We use
the incremental ranked usefulness definition to decide at the same time, whether
a feature is relevant and non–redundant or not (non–relevant or redundant). The
technique extracts the best non–consecutive features from the ranking, trying to
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statistically avoid the influence of unnecessary attributes on the later classifica-
tion. This new heuristic, named IR, shows an excellent performance comparing
to the traditional sequential forward search technique, not only regarding the
classification accuracy with respect to filter approaches, but also the computa-
tional cost with respect to the wrapper approach. By way of comparison, a rough
estimate of the time required by the SF wrapper approach to choose this many
features is on the order of thousands of hours, assuming the method does not
get caught in a local minima first and prematurely stops adding attributes as a
result.

Acknowledgements

The research was supported by the Spanish Research Agency CICYT–Feder
under grant TIN 2004-00159 and TIN 2004–06689–C03–03.

References

1. Blum, A., Langley, P.: Selection of relevant features and examples in machine
learning. In Greiner, R., Subramanian, D., eds.: Artificial Intelligence on Relevance.
Volume 97. (1997) 245–271

2. Liu, H., Yu, L.: Toward integrating feature selection algorithms for classification
and clustering. IEEE Trans. on Knowledge and Data Engineering 17 (2005) 1–12

3. Kohavi, R., John, G.: Wrappers for feature subset selection. Artificial Intalligence
1-2 (1997) 273–324

4. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal
of Machine Learning Research 3 (2003) 1157–1182

5. Liu, H., Setiono, R.: A probabilistic approach to feature selection: a filter solution.
In: 13th Inter. Conf. on Machine Learning, Morgan Kaufmann (1996) 319–327

6. Dash, M., Liu, H., Motoda, H.: Consistency based feature selection. In: Pacific-Asia
Conference on Knowledge Discovery and Data Mining. (2000) 98–109

7. Almuallim, H., Dietterich, T.: Learning boolean concepts in the presence of many
irrelevant features. Artificial Intelligence 69 (1994) 279–305

8. Hall, M.: Correlation-based feature selection for discrete and numeric class machine
learning. In: 17th International Conf. on Machine Learning, Morgan Kaufmann,
San Francisco, CA (2000) 359–366

9. Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy.
Journal of machine learning research 5 (2004) 1205–24
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Abstract. The PCASOM is a novel self-organizing neural model that performs 
Principal Components Analysis (PCA). It is also related to the ASSOM net-
work, but its training equations are simpler. The PCASOM has the ability to 
learn self-organizing maps of the means and correlations of complex input dis-
tributions. Here we propose a method to extend this capability to build intrinsic 
dimensionality maps. These maps model the underlaying structure of the input. 
Experimental results are reported, which show the self-organizing map forma-
tion performed by the proposed network.  

1   Introduction 

The Principal Components Analysis Self-Organizing Map (PCASOM) [6] is an exten-
sion of the self-organizing feature map (SOFM) proposed by Kohonen [4]. The 
SOFM builds self-organizing maps where each neuron stores the centroid of its recep-
tive field, i.e., the input subset which it represents. Each PCASOM neuron extends 
this by learning an estimation of the covariance matrix of its receptive field. This is 
related to the ASSOM model [5], where each neuron learns a vector subspace. These 
three models are adequate to create topographic maps, which are faithful representa-
tions of the input space. However, their representation ability is different, because the 
SOFM models the receptive field by a mean vector, while the other two build more 
elaborate representations. Nevertheless, both the ASSOM and the PCASOM are un-
able to learn the intrinsic dimensionality of the input data, which is a standard meas-
ure of the underlaying complexity of a dataset ([2], [11]). This limitation is shared by 
other PCA-related procedures, such as the local PCA networks, where the input dis-
tribution is partitioned into meaningful clusters ([3], [9], [10]). 

The Principal Components Analysis Competitive Learning (PCACL) [7] is a 
novel local PCA network, which uses the explained variance method to estimate the 
intrinsic dimensionality. In this paper we combine this method with the original 
PCASOM model to obtain topographic maps of the intrinsic dimensionality of an 
input distribution. 

Sections 2 and 3 are devoted to the PCASOM model and the application of the ex-
plained variance method to PCASOM, respectively. In Section 4 we prove some im-
portant properties of our proposal, and a brief discussion is considered in Section 5. 
Finally, sections 6 and 7 deal with experimental results and conclusions. 
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2   The PCASOM Model 

In the time instant t each unit j of the PCASOM stores the matrix Rj(t) as a covariance 
matrix estimation and the vector ej(t) as a mean vector estimation. When an input 
sample is presented to a self-organizing map, a competition is hold among the neu-
rons. Every unit (say, j) of our network has an associated orthonormal vector basis 
Bj(t) at every time instant t. It is formed by the Kj eigenvectors corresponding to the Kj 
largest eigenvalues of Rj(t). The neuron c that has the minimum sum of projection 
errors for the input vectors xi(t), i=1,...,N, is declared the winner: 
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where Orth(x,B) is the orthogonal projection of vector x on basis B. So, we are look-
ing for the neuron which best represents the inputs xi(t). 

We consider a topology that defines which neurons are neighbors. When a neuron 
c wins the competition it is updated. Its neighbors are also updated, according to the 
degree of neighborhood pjc between winning neuron c and its neighbor j: 
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In equation (2), dj,i is the distance between winning neuron i and neuron j, and the 
value s(t) controls the neighborhood size. The degree of neighborhood and the learn-
ing rate are combined to control the updating of the neurons. For every neuron i we 
have 
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where ηR(t) is learning rate for the covariance matrix and ηe(t) is the learning rate for 
the mean. These expressions are very similar to the weight update equations of the 
competitive learning and the self-organizing feature map (SOFM). Please see [6] for a 
detailed justification of the model equations. 

The learning process is divided into two phases, like the standard self-organizing 
map algorithms: the ordering phase and the convergence phase. It is during the 
ordering phase when the topological ordering of the neurons takes place. The learn-
ing rates typically present a linear or exponential decay in this phase, and so does 
the neighborhood size s(t). The convergence phase is required principally for the 
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fine-tuning of the computational map. The learning rates are maintained at a small, 
constant value during this phase. 

3   The Explained Variance Method for the PCASOM 

PCA methods form a vector base B={bh | h=1,...,K} with the eigenvectors bh corre-
sponding to the K largest eigenvalues of R, where K is a parameter which is specified 
before the start of the learning process. In the case of local PCA neural models and 
PCASOM, each neuron j has a covariance matrix Rj and a mean vector ej. 

The explained variance method considers a variable number of basis vectors Kj(t), 
which is computed independently for each neuron j. This number reflects the intrinsic 
dimensionality of the data in the cluster of data represented by neuron j. Many meth-
ods to estimate intrinsic dimensionality are based in the analysis of the eigenvalues 
λj

p(t) of the covariance matrix Rj(t), p=1,…,D. 
If we use a vector base BZ={b1,..., bZ}, where Z is the number of basis vectors, the 

mean squared error associated with the cluster of data of the neuron is given by: 
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Note that if Z=0 we get the maximum possible mean squared error. The goal here is to 
select a number of basis vectors Kj which ensures that at least a fraction α of the 
maximum mean squared error is removed, 
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where α∈[0,1]. This is achieved if we take (see [0]): 
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The parameter α is the amount of variance which we want the neurons to explain. 
Hence, we select Kj(t) so that the amount of variance explained by the directions asso-
ciated to the Kj(t) largest eigenvalues is at least α. 

We can summarize the algorithm for PCASOM with the explained varaince 
method as follows: 

1. For every unit j, obtain the initial covariance matrix Rj(0) by generating a random 
symmetric nonnegative matrix, with the elements of the main diagonal near to one, 
and all the others near to zero. 

2. For every unit j, build the vector ej(0) by using small random values, either nega-
tive or positive, for its components, and use (8) to compute Kj. 

3. At time instant t, select the input vectors xi(t), i=1,...,N, with N≥1, from the input 
distribution. Compute the winning neuron c according to (1). 

4. For every unit j, update the vector ej and the matrix Rj by using (3), (4) and (5). 
5. For every unit j, use (8) to recompute Kj. 
6. If convergence has been reached, stop the simulation. Otherwise, go to step 3.  
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4   Properties 

Proposition 1. Let z∈{0,1,…,D}. If α∈[0,z/D], then for every neuron j and every time 
instant t, it holds that 0≤Kj(t)≤z. 

Proof: As the eigenvalues are sorted in decreasing order, it holds that: 
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By the hypoteses, we have that α∈[0,z/D], so: 
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Then by (8) and (12) we have 0≤Kj(t)≤z, as desired. 

Proposition 2. If we take α=0, the PCASOM model with the explained variance 
method reduces to Kohonen’s SOFM. 
Proof: We use z=0 in the previous proposition, and we get α=0  Kj(t)=0 for every 
neuron j. Then the covariance matrices are not used in the competitive phase, so it 
reduces to that of the original SOFM. The estimated mean vectors ej(t) play the role of 
the weight vectors. 

5   Discussion 

The proposed model has the following advantages: 

a) It learns the number of basis vectors which are needed to represent the input distri-
bution with a specified accuracy. That is, the basis vectors are selectively removed or 
added to the neurons as needed. 
b) The learned number of basis vectors can be used to obtain intrinsic dimensionality 
information. Low values of Kj mean that the region represented by neuron j has a low 
dimensionality, and vice versa. Hence, a intrinsic dimensionality map is obtained 
when we arrange the values Kj according to the network topology. This is a topog-
raphic map, which models how the intrinsic dimensionality varies in the input distri-
bution. 
c) It is a generalization of Kohonen’s SOFM, as proven in the previous section. 
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6   Experimental Results 

We have designed a set of experiments to test the map formation ability of our 
method. For this unsupervised task we have used two freely-accessible data sets. 

The first data set comes from the VizieR service [12, which is an information sys-
tem for astronomical data. In particular, we have selected the Table 6 of the Complete 
near-infrared and optical photometric CDFS Catalog from Las Campanas Infrared 
Survey [1]. We have extracted 22 numerical features from 10,000 stars. Hence, we 
have 10,000 sample vectors. These data have been normalized in order to cope with 
the variability and the very heterogeneous scaling of the original data. 

The second data set is from the NASA Earth Observatory [8]. This data set is made 
up of climatic images taken every month by satellites. We have selected January 
1988, and 14 parameters for this month. So we have 14 images, each with 360x180 
pixels. These 14 images are combined to form a single multisensor image, where 
every pixel is a vector with 14 components. The values of the components are real 
numbers in the interval [0,1]. So we have 360x180=64800 sample vectors. 

For both datasets, we have used α=0.99, 200,000 epochs and linear decay rates for 
the learning rate and the neighbourhood size. The startup of the ordering phase has 
been ηe(0)=ηR(0)=0.5, σ(0)=1, with null final values of the three parameters. The 
convergence phase has used constant values ηe=ηR=0.04, σ =0.04. 

 

Fig. 1. Covariance matrices for the first data set, 4x5 rectangular lattice 
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Fig. 2. Mean vectors for the first data set, 4x5 rectangular lattice 

Figures 1 to 3a show the results with the first dataset. We have tested a 4x5 rectan-
gular topology (Figs. 1–3a), and a 20x20 rectangular topology (Fig. 4). Figure 1 
shows the final covariance matrices, Fig. 2 is the final mean vectors, and Figs. 3a and 
4 are the intrinsic dimensionality maps. These figures illustrate the formation of to-
pographic maps, where neighbour neurons have similar values (darker tones mean 
higher values). In particular, Figs. 3a and 4 depict the intrinsic dimensionality model-
ling of the input distribution. Figure 3b shows the intrinsic dimensionality map ob-
tained from a 4x5 rectangular topology with the second data set. It must be high-
lighted that two regions can be distinguished in this map (one with lower  
 
 
 
 
 
 

Fig. 3. Intrinsic dimensionality maps, 4x5 lattice: (a) data set 1 (left). (b) data set 2 (right) 

 

Fig. 4. Intrinsic dimensionality map for the first data set, with a 20x20 rectangular lattice 
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dimensionality to the left and the other with higher dimensionality). There also a 
coherence between the neighbourhood in the map and the similarity in the value (in-
dicated as gray levels). 

Figure 5 shows the receptive field of each neuron in a different gray level, with the 
samples arranged according to their geographic location. We can see in this figure 
that the receptive fields correspond to geographical zones with similar climatic condi-
tions. This is achieved despite the fact that the network is not feeded any information 
about geographic location (only climatic information is provided). 

 

Fig. 5. Receptive fields of the neurons for the second data set 

7   Conclusions 

We have adapted the explained variance method to the PCASOM model in order to 
build self-organizing maps with intrinsic dimensionality information. This allows to 
obtain instrinsic dimensionality maps, which can be used to analyze input distribu-
tions more deeply than the ASSOM model and the original PCASOM. These maps 
represent how the variability of the data changes in the input distribution. Two impor-
tant properties of our proposal have been proved. One of them explains the role of the 
parameter introduced by the explained variance method, and the other states that the 
proposed model is an extension of Kohonen’s SOFM. Finally, experimental results 
have been presented to show its map formation capability. 
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Abstract. Modern data analysis tools have to work on high-dimensional data, 
whose components are not independently distributed. High-dimensional spaces 
show surprising, counter-intuitive geometrical properties that have a large 
influence on the performances of data analysis tools. Among these properties, 
the concentration of the norm phenomenon results in the fact that Euclidean 
norms and Gaussian kernels, both commonly used in models, become 
inappropriate in high-dimensional spaces. This papers presents alternative 
distance measures and kernels, together with geometrical methods to decrease 
the dimension of the space. The methodology is applied to a typical time series 
prediction example.  

1   Introduction 

Modern data analysis has to cope with tremendous amounts of data. Data are indeed 
more and more easily acquired and stored, due to huge progresses in sensors and ways 
to collect data on one side, and in storage devices on the other side. Nowadays, there 
is no hesitation in many domains in acquiring very large amounts of data without 
knowing in advance if they will be analyzed and how.  

The spectacular increase in the amount of data is not only found in the number of 
samples collected for example over time, but also in the number of attributes, or 
characteristics, that are simultaneously measured on a process. The same arguments 
lead indeed to a kind of precaution principle: as there is no problem in measuring and 
storing many data, why not to collect many measures, even if some (many) of them 
prove afterward to be useless or irrelevant? For example, one could increase the 
number of sensors in a plant that has to be monitored, or increase the resolution of 
measuring instruments like spectrometers, or record many financial time series 
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simultaneously in order to study their mutual influences, etc. In all these situations, 
data are gathered into vectors whose dimension correspond to the number of 
simultaneous measurements on the process of phenomenon. When the dimension 
grows, one speaks about high dimensional data, as each sample can be represented as 
a point or vector in a high-dimensional space.  

The di culty in analyzing high-dimensional data results from the conjunction of 
two e ects. First, high-dimensional spaces have geometrical properties that are 
counter-intuitive, and far from the properties that can be observed in two-or three-
dimensional spaces. Secondly, data analysis tools are most often designed having in 
mind intuitive properties and examples in low-dimensional spaces; usually, data 
analysis tools are best illustrated in 2-or 3-dimensional spaces, for obvious reasons. 
The problem is that those tools are also used when data are high-dimensional and 
more complex. In this kind of situations, we loose the intuition of the tools behavior, 
and might draw wrong conclusions about their results. Such loss of control is already 
encountered with basic linear tools, such as PCA (Principal Component Analysis): it 
is very di erent to apply PCA on a 2-dimensional example with hundreds of samples 
(as illustrated in many textbooks), or to apply it on a few tens of samples represented 
in a 100-dimensional space! Known problems such as collinearity and numerical 
instability easily occur. The problem is even worse when using nonlinear models: 
most nonlinear tools involve (much) more parameters than inputs (i.e. than the 
dimension of the data space), which results in lack of model identifiability, instability, 
overfitting and numerical instabilities.  

For all these reasons, the specificities of high-dimensional spaces and data must 
then be taken into account in the design of data analysis tools. While this statement is 
valid in general, its importance is even higher when using nonlinear tools such as 
artificial neural networks. This paper will show some of the surprising behaviors of 
high-dimensional data spaces, what are the consequences for data analysis tools, and 
paths to remedies. In Section 2, examples oh high dimensional data are given, along 
with some details about the problems encountered when analyzing them. Section 3 
details surprising facts in high-dimensional spaces and some ideas that could be 
incorporated in the tools to lower the impact of these phenomena. In Section 4, the 
current research about nonlinear dimension reduction tools is briefly presented, as 
another way to face the problems encountered in high-dimensional spaces. Finally, 
Section 5 gives an example of a time series prediction task where the dimensionality 
of the regressors has to be taken into account.  

2   High-Dimensional Data  

Working with high-dimensional data means working with data that are embedded in 
high-dimensional spaces. When speaking about non-temporal data, this means that 
each sample contains many attributes or characteristics. Spectra are typical examples 
of such data: depending on the resolution of the spectrometer, spectra contain several 
hundreds of measurements (see Figure 1 left). Fortunately for the sake of analysis, the 
hundreds of coordinates in spectra are not independent: it is precisely their 
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Fig. 1. Examples of high-dimensional data. Left: spectrum; right: regressor for a time series 
prediction problem 

dependencies that are analyzed in order to extract relevant information from a set of 
spectra [1]. More generally, redundancy in the coordinates is a necessary condition to 
analyse a low number of samples in a high-dimensional space. Indeed let us imagine 
on the contrary that all coordinates are independent; a simple linear regression model 
will contain as many parameters as the number of coordinates in the space. If the 
number of samples available for learning is less than the dimension of the space, the 
problem is undefined (in other words the model is unidentifiable). This problem is 
known as collinearity, and has no other solution than exploiting the dependencies 
between coordinates in order to reduce the number of model parameters; using 
smoothing splines is an example of dependency exploitation [2]. While collinearity is 
the expression of this phenomenon when linear models are used, a similar problem 
appears when nonlinear models are used; it results in overfitting, i.e. in a too efficient 
modelling of learning samples without model generalization ability. 

An example of high-dimensional data with temporal dependencies is shown in 
Figure 1 right. Knowing a time series up to time t, the problem consists in forecasting 
the next value(s) of the series. Without additional information from exogeneous  
variables, the forecasting problem is solved by building a regression model with a 
number of (often consecutive) values from the time series, and with output the next 
value. The model is built on the known part of the series, and used to predict 
unknown values. When no indication is available on the optimal regressor size, large 
regressors are usually preferred, in order to avoid loosing relevant information 
necessary for the prediction. However large regressors mean high-dimpensional input 
data to the model, a large number of parameters, and the same difficulties as the ones 
encountered with the first example. 

In both situations, the goal will be threefold: 

– to take into account in the model the dependencies between characteristics, in 
order to avoid a large number of effective model parameters; 

– to adapt the design of the model to the specificities of high-dimensional spaces. 
– to reduce, whenever possible, the dimensionality of the data through selection 

and projection techniques;  

The first goal is highly problem-dependent and beyond the scope of this paper. The 
second and third goal will be respectively discussed in Sections 3 and 4. 
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3   Surprising Facts in High-Dimensional Spaces and Remedies  

This section describes some properties of high-dimensional spaces, that are counter 
intuitive compared to similar properties in low-dimensional spaces. Consequences on 
data analysis are discussed, with possible ideas to be incorporated in data analysis 
tools in order to meet the specific requirements of high-dimensional spaces.  

3.1   The Curse of Dimensionality  

Data analysis tools based on learning principles infer knowledge, or information, from 
available learning samples. Obviously, the models built through learning are only 
valid in the range or volume of the space where learning data are available. Whatever 
is the model or class of models, generalization on data that are much di erent from all 
learning points is impossible. In other words, relevant generalization is possible from 
interpolation but not from extrapolation.  

One of the key ingredients in a successful development of learning algorithms is 
therefore to have enough data for learning so that they fill the space or part of the 
space where the model must be valid. It is easy to see that, every other constraint 
being kept unchanged, the number of learning data should grow exponentially with 
the dimension (if 10 data seem reasonable to learn a smooth 1-dimensional model), 
100 are necessary to learn a 2-dimensional model with the same smoothness, 1000 for 
a 3-dimensional model, etc.). This exponential increase is the first consequence of 
what is called the curse of dimensionality [3]. It is among others illustrated by 
Silverman on the problem of the number of kernels necessary to approximate a 
dimension-dependent distribution up to a defined precision [4].  

More generally, the curse of dimensionality is the expression of all phenomena that 
appear with high-dimensional data, and that have most often unfortunate consequ- 
ences on the behavior and performances of learning algorithms.  

3.2   Some Geometrical Properties of High-Dimensional Spaces  

Even without speaking about data analysis, high-dimensional spaces have surprising 
geometrical properties that are counter-intuitive. Figure 2 illustrates four such phenomena.  

Figure 2 a) shows the volume of a unit-radius sphere with respect to the dimension 
of the space. It is seen that while this volume increases from dimension 1 (a segment) 
to 5 (a 5-dimensional hypersphere), it then decreases and reaches almost 0 as soon as 
the space dimension exceeds 20. The volume of a 20-dimensional hypersphere with 
radius equal to 1 is thus almost 0!  

Figure 2 b) shows the ratio between the volume of a unit-radius sphere and the volume 
of a cube with edge lengths equal to 2 (the sphere is thus tangent to the cube). In dimen- 
sion 2, the ration is obviously /4, which means that most of the volume (here surface) of 
the cube is also contained in the sphere. When the dimension increases, this ratio rapidly 
decreases toward 0, to reach a negligible value as soon as the dimension reaches 10. In 
terms of density of data in a space, this means that if samples are drawn randomly and 
uniformly in a cube, the probability that they fall near the corners of the cube is almost 
one! As it will be detailed below, this also means that their norm is far from being random 
(it is concentrated near the maximum value, i.e. the square root of the dimension). 
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Fig. 2. Four phenomena in high-dimensional spaces 

Figure 2 c) shows the ratio between the volumes of two embedded spheres, with 
radii equal to 1 and 0.9 respectively. Unsurprisingly the ratio decreases exponentially 
with the dimension. What is more surprising is that, even if the two radii only di er 
by 10%, the ratio between both volumes is almost 0 in dimension 10. If data are 
randomly and uniformly distributed in the volume of the larger sphere, this means that 
almost all of them will fall in its skull, and will therefore have a norm equal to 1!  

Finally, one can consider a multi-dimensional Gaussian distribution scaled to have 
its integral equal to 1. Figure 2 d) shows the percentage of the volume of the Gaussian 
function that falls inside a radius equal to 1.65. It is well known that this percentage is 
equal to 90% in dimension 1. Figure 2 d) shows that this percentage rapidly 
decreases, up to almost 0 in dimension as low as 10! In other words, in dimension 10, 
almost all the volume of a Gaussian function is contained in its tails and not near its 
center, a definition that contracts with the commonly accepted view of locality!  

 

 

Fig. 3. Probability of a point from a Normal distribution to be at distance r of the center, for 
several space dimensions 
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More than geometrical properties, these four examples show that data even 
uniformly distributed concentrate in unexpected parts of the space, that norms of 
vectors do not follow intuitive distributions, and that functions considered as local are 
not local anymore. Such properties should definitely be taken into account in the 
design of data analysis algorithms.  

3.3   The Concentration of Norms  

More directly related to data analysis is the so-called concentration of the norm 
phenomenon. Figure 3 illustrates this phenomenon in the case of Gaussian 
distributions (with standard deviations equal to 1). For several dimensions of the 
space (1, 2, 3, 5, 10 and 20), the figure shows the probability density functions (pdf) 
to find a point drawn according to a Gaussian distribution, at distance r from the 
center of that distribution. In dimension 1, this pdf is a monotonically decreasing 
function. In dimension 2, it has a bell shape (not exactly a Gaussian one; it actually is 
a Rayleigh distribution) with a peak around 1, that illustrates the fact that there are 
more points at distance 1 from the center than at distance 0.2 or 2. When the 
dimension increases, the bell shape remains, but is shifted to the right. In dimension 
20 for example, the percentage of data lying at distance less than 2 from the center is 
so low than it cannot be seen at the scale of the figure (despite the fact that the 
standard deviation of the Gaussian distribution is 1). This means that the distances 
between all points and the center of the distribution are concentrated in a small 
interval. Relative di erences between these distances vanish; these distances become 
less and less discriminative (therefore relevant for analysis) when the dimension 
increases.  

The concentration of norm phenomenon is more precisely described in several 
mathematical results. In 1994, Demartines [5]has shown that for random vectors with 
independent and identically distributed components, the mean of their Euclidean norm 
increases as the square root as the dimension of the space, while the variance of their 
norm does not increase. He concludes that if the dimension is high, all vectors are 
normalized, as the error resulting from taking the mean of their norm instead of their 
actual norm becomes negligible.  

Independently from Demartines’ results, Beyer [6] proved that when the dimension 
increases, the relative di erence between the largest and smallest norm in a dataset 
converge to zero in probability. The relative di erence it the di erence between the 
largest and smallest norms, divided by the smallest one; it is called the relative 
contrast. The result is valid for arbitrary distance measures, under mild conditions on 
the distributions. Beyer concludes that, in a nearest neighbor search context, all points 
converges to approximately the same distance from the query point. The notion of 
nearest neighbor becomes less intuitive in high-dimensional spaces.  

Other norms than the Euclidean distance may be used in data analysis tools. For 
example, Minkowski norms with order p are defined as the pth root of the sum of the 
vector components to the power p:  
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Hinneburg [7] has shown that the absolute di erence between the largest and smallest 
norm in a set (called the contrast)is somewhat constant with dimension for the 
Euclidean distance. However it increases with dimension for the L1 norm and rapidly 
decreases toward 0 for norms with an order greater than 2. Hinneburg concludes that 
nearest neighbor search with Lp norms when p > 2 are meaningless in high-
dimensional spaces.  

Aggarwal [8] has extended Hinneburg’s results to fractional norms (the value of p 
is no more restricted to be an integer). He proved that the relative contrast tends 
toward zero with the dimension, faster for large values of p. He then pleads in favor 
of small values of p.  

Francois [9] has shown that in the context of nearest neighbor search, the optimal 
distance to be used also depends on the type of noise on the data. He has shown that 
fractional norms are preferable in the case of colored noise, but if Gaussian noise is 
assumed, then Euclidean metrics is more robust than fractional ones. This might give 
a lower limit to the value of p that Aggarwal prones to be small. 

3.4   Gaussian Kernels  

In many data analysis methods, Gaussian kernels are used. This is the case in RBFN 
(Radial-Basis Function Networks), in most SVM (Support Vector Machines) and LS-
SVM (Least-Squares Support Vector Machines), and many others. Most often, the use 
of Gaussian kernels is justified by two properties: 

 

Fig. 4. Kernel values as a function of the distance to their centers for several space dimensions, 
along with the distribution of distances for normally distributed data. Vertical lines correspond 
to 5 and 95 percentile resp 
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– Gaussian kernels are deemed to be local. Embedded in a model, using local 
functions avoids illegitimate generalization in regions of the space that are empty 
from learning points (it avoids the already mentioned extrapolation problem).  

– Gaussian kernels are used (up to a scale factor) as a smooth, thus di erentiable, 
measure of similarity between two points. A Gaussian function evaluated on the 
norm of the vector di erence between two points (as usually done in RBFN and 
SVM) results in a high value if the points are close, and in a low one if the 
points are far one from the other.  

The first property has already been discussed above. The second one makes the 
hypothesis that Gaussian kernels can discriminate between close and far points in a 
distribution. As illustrated in Figure 4 (from [10]), this is not the case in high-
dimensional spaces either. The bell-shaped curves (thin lines) show, in dimensions 2, 
5, 10 and 100, the distribution of distances between each sample and the center of a 
multi-dimensional Gaussian distribution; the vertical lines correspond to the 5% and 
95% percentiles, respectively. Gaussian kernels are superimposed on the graphs (thick 
lines). As it can be seen in dimensions 2 and 5, the values taken by the Gaussian 
kernels are very di erent for small and large distances found in the distribution (see 
for example the dotted vertical lines). However in dimension 100 this does not remain 
true anymore. Even by adjusting the standard deviation of the Gaussian kernels (see 
the dotted kernels), they remain flat in the range of e ective distances in the 
distribution. It becomes clear that Gaussian kernels are not appropriate for high-
dimensional data analysis tools.  

In order to overcome this problem, Francois [10] suggests to use so-called p-
Gaussian kernels, defined as  

K(x, y) = exp(−d(x, y)
p

/
p

),  

where p and  are two parameters allowing to adjust not only the slope of the function 
but also a shift to larger distances. Through the knowledge of a robust measure (for 
example percentiles) of e ective range of distances in the distribution, it is possible to 
adjust the p and  valuesin order to be optimal for a specific dataset.  

More flexible kernels such as p-Gaussians should certainly be used in high- 
dimensional contexts, to overcome the limitations of Gaussian ones.  

4   Reducing Dimension  

When faced to di culties resulting from the high dimension of the space, a possibi- 
lity is to try to decrease this dimension, of course without loosing relevant 
information in the data. Dimension reduction is used as preprocessing, before 
applying data analysis models on data with a lower dimension.  

PCA (Principal Component Analysis)is the most traditional tool used for 
dimension reduction. PCA projects data on a lower-dimensional space, choosing axes 
keeping the maximum of the data initial variance. Unfortunately, PCA is a linear tool. 
Nonlinear relations between the components of the initial data may be lost in the 
preprocessing. If the goal is to further use nonlinear data analysis tools on the reduced 
data, one easily sees that the use of a linear preprocessing is not appropriate.  
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There is nowadays a huge research e ort in developing nonlinear projection tools 
that do not su er from the above limitation. Nonlinear projection means to find a 
lower-dimensional space in which the data as well are described as in the original 
space. This supposes that data lie on a sub-manifold in the original space. Ideally, 
there should be a bijection between this sub-manifold and the lower-dimensional 
space; the existence of a bijection is a proof that no information is lost in the 
transformation. Figure 5 shows an artificial example of nonlinear dimension reduction 
(from dimension 3 to 2, for illustration purposes). If curved axes as the ones shown on 
the left part of the figure could be found and defined in the initial data space, one 
could unfold the axes to find the lower dimensional representation as shown in the  
right figure.  

There are several ways to design nonlinear projection methods. A first one consists 
in using PCA, but locally in restricted parts of the space [11]. Joining local linear 
models leads to a global nonlinear one; it has however the disadvantage of being not 
continuous, therefore of limited interest.  
Kernel PCA [12] consists in first transforming the data into a higher-dimensional 
space, and then applying PCA on the transformed data. Kernel PCA benefits from the 
strong theoretical background of kernel methods, and reveals to be interesting in 
specific situations. However, the method su ers from a difficult choice of the initial 
transformation, and from the apparent contradiction to increase the dimension of the 
data before reducing it.  

 

Fig. 5. 2-dimensional nonlinear projection of 3-dimensional horseshoe distribution 

Distance preservation methods form a class of nonlinear projection tools that have 
interesting geometrical properties. The principle is to find a lower dimensional 
representation of data where the pairwise distances are respected as much as possible 
with respect to the original data space. Sammon’s nonlinear mapping [13] belongs to 
this class of methods. Short distances in the original space are favored, to allow 
unfolding of large, nonlinear surfaces and volumes. Demartines and Herault’s CCA 
(Curvilinear Component Analysis) [14] greatly improves the previous method by 
giving more weight to short distances in the projection space instead of the original 
one. This seemingly minor modification allows to cut varieties with loops, which are 
more than common in high dimensional spaces. Another important improvement in 
distance preservation methods consists in measuring the distances in the original 
space along the manifold, instead of taking the Euclidean distance between pairs of 
points; unfolding is then much facilitated. The Curvilinear Distance Analysis (CDA) 
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[15] and Isomap [16]methods, independently developed, belong to this category; 
contrarily to Isomap, CDA combines the advantages of the curvilinear measure and the 
larger weights on short distances, leading to e cient unfolding in a larger class of 
situations.  

Other nonlinear projections tools must be mentioned too. Self-Organizing Maps 
(SOM) or Kohonen’s maps [17] may be viewed as neighbor-preservation nonlinear 
projection tools. SOM are classically used in representation tasks, where the dimension 
of the projection space is limited to 3. However, there is no technical di culty to extend 
the use of SOM to higher-dimensional projection spaces. SOM are used when a 
combination of vector quantization, clustering and projection is looked for. However, 
the quality of the bijection with the original space (no loss of information in the 
transformation) is limited compared to distance-preservation methods.  

 

Fig. 6. Time series state space. Left: time series. Top right: 2-dimensional state space. Bottom 
right: 3-dimensional state space 

Finally, the classical bottleneck MLP [18] also performs a nonlinear dimension 
reduction that is bijective by design. Despite its interesting concept, the bottleneck 
MLP su ers from its limitation to simple problems, because of the numerical 
di culties to adjust the parameters of a MLP with many layers.  

5   Time Series Prediction 

Time series forecasting consists in predicting unknown values of a series, based on 
past, known values. Grouping past values into vectors (called regressors) makes time 



768 M. Verleysen and D. François 

 

series forecasting an almost standard function approximation problem (see Figure 1 
right). Naturally, because of the non random character of the time series, 
dependencies exist between the coordinates of the regressors. The situation is thus a 
typical where dimension reduction should be possible, leading to improved prediction 
performances. Takens’ theorem [19] provides a strong theoretical background for 
such dimension reduction. 

5.1   Takens’ Theorem  

Let us first define a regressors state space as illustrated in Figure 6. The left part of the 
figure shows an artificial time series (that is obviously easy to predict). The right part 
shows state spaces of regressors formed by two (top) and three (bottom) consecutive 
values of the series. In these regressors spaces, it is possible to see that the data 
occupy a low-dimensional part of the space; this dimensionality is called the intrinsic 
dimension of the regressors (the intrinsic dimension is 1 in the illustrated example, as 
regressors follow a line), and may be estimated for example by using Grassberger-
Procaccia’s method [20]. 

 

Fig. 7. BEL20 financial index. Left: daily returns over approximately 7 years; right: 90-days 
averaged prediction over test set of the daily return sign 

Takens’ theorem expresses two properties regarding the regressors space and its 
intrinsic dimension: 

– First, if q is the intrinsic dimension of the regressors (estimated in a sufficiently 
large-dimensional state space), then the size of the regressors to be used to predict 
the series is between q and 2q+1. In other words, more than 2q+1 values in the 
regressors do not carry supplementary information useful to predict the series. 

– Secondly, the regressors in the 2q + 1-dimensional space may be projected 
without loss of information in a q-dimensional space.  

As in most time series prediction problems the optimal size of regressors is 
difficult to know a priori, Takens’ theorem provides a way to estimate it. The 
prediction model will then be developed on a minimal but sufficient number of 
variables. 
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5.2   BEL20 Prediction Example 

Figure 7 shows an example of the application of the above methodology on the 
problem of predicting the Belgium BEL20 financial stock market index [21]. The left 
part of the figure shows the daily returns (relative variations) of the BEL20 index. 
According to standard procedures in stock market index forecasting [22], 42 
indicators are built from the series (returns, averages of returns, moving averages, 
etc.). By design, many of these indicators are dependent or even correlated.  
A linear PCA is applied to first reduce the the dimensionality of the regressors. 
Keeping 99% of the variance leads to a reducet set of 25 compound indicators. 
Grassberger-Procaccia’s procedure is used to estimate the intrinsic dimensionality of 
the regressors, which is found to be approximately 9. Then, the 25-dimensional 
regressors resulting from the PCA are further projected in a 9-dimensional space, 
using the Curvilinear Component Analysis algorithm. Finally, a Radial-Basis 
Function Network is built on the 9-dimensional vectors to predict the next value of 
the BEL20 daily return.  

Unsurprisingly, it is extremely difficult to obtain very good predictions in such 
problem! Nevertheless, if the goal is restricted to predict the sign of the next returns 
(which means to predict if the index will increase or decrease), the results are not so 
bad. Figure 7 (right) shows percentage of good predictions of the sign, averaged over 
90 days. Numerically, the percentage of success in the correct approximation of the 
sign is 57%, i.e. 7% more than a pure random guess.  

6   Conclusion 

High-dimensional spaces show surprising geometrical properties that are counter 
intuitive with respect to the behavior of low-dimensional data. Among these 
properties, the concentration of norm phenomenon has probably the most impact on 
the design on data analysis tools. Its consequences are among others that standard 
Euclidean norms may become unselective in high-dimensional spaces, and that the 
Gaussian kernels, commonly used in many tools, become inappropriate too. 
Suggestions to overcome these consequences are presented. Another direction to 
follow is to reduce the dimensionality of the data space, through appropriate nonlinear 
data projection methods. The methodology is illustrated in the context of time series 
forecasting, on the BEL20 stock market index prediction problem.  
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Abstract. In real-world database, generally, attribute values of objects
are numerical, from real-world practice point of view, numeral is too de-
tail to obtaining good information or decision. Hence, a linguistic data
summary of a set of data, which is expressed by a sentence or a small
number of sentences in a natural language, would be very desirable and
human consistent. In this paper, from the structure and valuation of
fuzzy statement point of view, extracting linguistic data summarize is
discussed. To extract complex linguistic data summaries, a new aggre-
gation operator for aggregating linguistic terms is proposed, a numerical
example of Personnel Database is also provided.

1 Introduction

How to process perception based information that is described in natural lan-
guages is a problem. The methodology of computing with words (CWW ) pro-
posed by Zadeh may be viewed as an attempt to harness the highly expressive
power of natural languages by developing ways of CWW or propositions drawn
from a natural language[1]-[3]. Based on difference background, many researchers
have study CWW [1], [4]-[9]. On the other hand, for a database, the raw data
are often not useful and do not provide “knowledge.” Knowledge discovery from
a database is not a trivial act that requires some intelligent techniques, many
important methods and results have been proposed to extract linguistic data
summaries from numerical database [10]-[19].

2 Linguistic Data Summary

In a database of workers, let V be a quality (attribute) of interest, e.g., age,
salary, etc; Y = {y1, y2, · · · , yn} is a set of objects that manifest quality V ;
V (yi) (i = 1, · · · , n) are values of quality V for each object yi; D = {V (yi)|i =
1, · · · , n} is a set of data. A linguistic data summary of a set of data consists of
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[10]: (1) summarizer S, e.g., young; (2) a quantity in agreement Q, e.g., most;
(3) truth T . And a linguistic data summary can be formalized by Qy’s are S is
T, in which Q is a fuzzy linguistic quantifier, Y = {yi|i = 1, · · · , n} is a set of
objects, S is a summarizer (property), and T is a truth degree, e.g.,

most (Q) of employees (y’s) are young (S) is T . (1)

Many researchers used T (are(Qy′s, S)) = a, a ∈ [0, 1] to express the valua-
tion [16]-[18]. In this paper, we always assume that Q, S and T consist of
linguistic terms, respectively, i.e., Q = {q1, · · · , qm}, S = {s1, · · · , sl} and
T = {t1, · · · , tk}, for each qm′ ∈ Q, sl′ ∈ S, and tk′ ∈ T are linguistic terms,
respectively, e.g., most, young, and very true. Due to each summarizer sl′ ∈ S
is the property of objects (records) Y , sl′ can be represented by a fuzzy set on
D = {V (yi)|i = 1, · · · , n}. e.g., if sl′ is young and Dsl′ = {1, · · · , 90}, then sl′

is represented by µsl′ : Dsl′ −→ [0, 1]. In this paper, suppose each summarizer
sl′ ∈ S has a fuzzy set on Dsl′ . Fuzzy linguistic quantifier qm′ ∈ Q and fuzzy
linguistic truth degree tk′ ∈ T are defined as follows [15]:

– Let P (Y ) = {A|A ⊆ Y } be the power set of Y . Define a binary relation on
P (Y ): A ∼ B if and only if | A |=| B |, where | A | is the cardinal number
of A. Obviously, “∼” is an equivalence relation on P (Y ). The factor set of
P (Y ) by ∼ is denoted by P (Y ) = P (Y )/ ∼.

– For each fuzzy linguistic quantifier qm′ ∈ Q, its fuzzy set is defined by

µqm′ : P (Y ) −→ [0, 1]. (2)

– For each fuzzy linguistic truth degree tk′ ∈ T , its fuzzy set is defined by

µtk′ : [0, 1] −→ [0, 1]. (3)

Example 1. The membership functions of several fuzzy linguistic quantifiers are

µ∃(A) =
{

1, if | A |≥ 1,
0, ifA = ∅. µ∀(A) =

{
1, ifA = Y,
0, otherwise.

µmost(A) =

⎧⎨
⎩

1, if | A |≥ α,
|A|−β
α−β , ifβ ≤| A |≤ α,

0, if | A |≤ β.
µabout3(A) =

⎧⎨
⎩

|A|−1
2 , if1 ≤| A |≤ 3,

5−|A|
2 , if3 ≤| A |≤ 5,

0, otherwise.

In which α, β such that α, β ∈ (0, | Y |), it is decided by experts or deciders.

3 Extracting a Simple Linguistic Data Summary

Let a simple linguistic data summary “Qy’s are S is T,” then Q, S and T can
be obtained automatically by the following steps [15],

– Fixing a summarizer sl′ ∈ S (it can be one or several) and a level (threshold)
θ, this can be done by experts or deciders. Let

Dθ
sl′ = µ−1

sl′ (V (yi)) = {V (yi)|µsl′ (V (yi)) ≥ θ}. (4)
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– Selecting a fuzzy linguistic quantifier qm′ ∈ Q. According to Eq.(4), qm′ can
be selected such that

µqm′ (A) = max{µq1(A), µq2(A), · · · , µqm
(A)}, (5)

in which A = {yi|V (yi) ∈ Dθ
sl′}. In the real world practice, maybe µqm′ (A) is

not only one, in this case, one qm′ can be selected by deciders or the indexes
of linguistic terms, e.g., qm′ has a maximal index.

– Selecting a fuzzy linguistic truth degree tk′ ∈ T . From the viewpoint of
logic, the more objects satisfying statement with the quantifier, the higher
the truth degree. On the other hand, the bigger µqm′ (A) is, the more objects
is satisfying the statement with the quantifier. Hence, tk′ can be selected as:

µtk′ (µqm′ (A)) = max{µt1(µqm′ (A)), µt2(µqm′ (A)), · · · , µtk
(µqm′ (A))}. (6)

Example 2. Table 1 is a personnel database. In which, the employee y1 is 25
years old and earns 1.8 thousand dollar a year.

Table 1. Personnel Database

V �Y y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

age 25 48 31 35 28 51 37 43 34 27 53 45

salary 1.8 2.0 2.8 3.0 2.8 3.0 2.3 2.5 3.5 2.9 3.0 3.1
...

...
...

...
...

...
...

...
...

...
...

...
...

Let Sage = {young(y), middle age(ma)}, Ssalary = {low(l), high(h)}. Se-
lect Q = {several(s), about half(ah), most(m)}, T = {approximately true(at),
true(t), very true(vt)}. Their membership functions are as follows:

µy(x) =

⎧⎨
⎩

1
10x− 2, ifx ∈ [20, 30],
4− 1

10x, ifx ∈ (30, 40],
0, ifx > 40.

µma(x) =

⎧⎨
⎩

5.5− 1
10x, ifx ∈ (45, 55],

1
10x− 3.5, ifx ∈ (35, 45],
0, ifx ≤ 35.

µl(x) =

⎧⎨
⎩

2(x− 1.5), ifx ∈ [1.5, 2],
2(2.5− x), ifx ∈ (2, 2.5],
0, ifx ≥ 2.5.

µh(A) =

⎧⎨
⎩

4.3− x, ifx ∈ [3.3, 4.3],
x− 2.3, ifx ∈ [2.3, 3.3),
0, x < 2.3.

µs(A) =

⎧⎨
⎩

1
2 (|A| − 1), if |A| ∈ [1, 3],
2− 1

3 |A|, if |A| ∈ (3, 6],
0, if |A| > 6.

µah(A) =

⎧⎪⎪⎨
⎪⎪⎩

0, if |A| < 4
1
2 |A| − 2, if |A| ∈ [4, 6],
2.5− 1

4 |A|, if |A| ∈ (6, 10],
0, if |A| > 10.

µm(A) =
{

1
4 (|A| − 10), if |A| ∈ [10, 14],
0, if |A| < 10. µat(x) =

{
2(1− x), ifx ∈ [0.5, 1],
2x, ifx ∈ [0, 0.5).

µt(x) =

⎧⎨
⎩

5(1− x), ifx ∈ [0.8, 1],
10
3 (x− 0.5), ifx ∈ [0.5, 0.8),
0, ifx ∈ [0, 0.5).

µvt(x) =
{

5x− 4, ifx ∈ [0.8, 1],
0, ifx ∈ [0, 0.8).
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(1) Fixing a summarizer s′ = young ∈ Sage and s′′ = high ∈ Ssalary. Let
threshold θ = 0.5, then according to µy and µh, we obtain

D0.5
s′ = {V (yi)|µs′(V (yi)) ≥ 0.5} = {25, 31, 35, 28, 34, 27}, (7)

D0.5
s′′ = {V (yi)|µs′′(V (yi)) ≥ 0.5} = {2.8, 3.0, 3.5, 2.9, 3.1}, (8)
As′ = {yi|V (yi) ∈ D0.5

s′ } = {y1, y3, y4, y5, y9, y10}, (9)
As′′ = {yi|V (yi) ∈ D0.5

s′′ } = {y3, y4, y5, y6, y9, y10, y11, y12}, (10)

(2) According to µs, µah, µm and Eq.(9), we obtain

µs(As′) = 0, µah(As′) = 1, µm(As′) = 0,
max{µs(As′), µah(As′), µm(As′)} = µah(As′), (11)

according to µat, µt, µvt and Eq.(11), we obtain

µat(µah(As′)) = µt(µah(As′)) = 0, µvt(µah(As′)) = 1, (12)

Hence the fuzzy linguistic truth degree is µvt(µah(As′)), according to Eq.(11)
and Eq.(12), we obtain the following linguistic data summary:

about half of employees are young is very true. (13)

(3) Similar (2), we also obtain the following linguistic data summary about
salary:

most of employees have high salary is approximately true. (14)

4 A New Linguistic Aggregation Operator

4.1 Fuzziness of the Index of Linguistic Label

From information granule (IG) point of view[3], each linguistic label is a fuzzy
IG which is a clump of physical or mental objects (points) drawn together by
indistinguishability, similarity, proximity or functionality. If a granule is crisp,
then using the natural number index of the granule is equal to using the granule
itself, e.g., 5th month of a year (May). However, if a granule is fuzzy, then there
exists problem in using the natural number index of the granule, e.g., let G be a
peoples set, 1 denotes “young people” of G, 2 denotes “old people” of G, in this
case, a people g ∈ G is in 1 (or 2) can not be decided due to their boundaries
are not sharply. From algebra viewpoint, let X ⊆ R be a universal set. All
granules on X are denoted by P (X), R+ = {x|x ≥ 0}, define a linear function
F : X −→ R+.

Let µA be a membership function of granule A ∈ P (X). F̃ (X) the collection
of membership functions on X such that ∀µA(x) ∈ F̃ (X), µA(x) a membership
function of a granule A ∈ P (X). Define

G : F̃ (X) −→ P (X) (15)
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Then an equivalence relation “!” on F̃ (X) is obtained, µA(x) ! µB(x) ↔
G(µA(x)) = G(µB(x)), i.e., µA(x) and µB(x) are membership functions of the
same granule A, denoted [µA(x)] ∈ F̃ (X)/ !. Select representative element
µA(x) of [µA(x)], by using F and extension principle, one-to-one mapping is
obtained: E : F̃ (X)/ !−→ D = {χ|χ : R+ → [0, 1], E([µA(x)]) = E(µA(x)) =
χ} Due to G is a surjection from F̃ (X) to P (x), there exists one-to-one mapping
τ between F̃ (X)/ ! and P (x), and one-to-one mapping κ between P (x) and D.
Therefor, χ can be selected as the index of granule A.

F̃ (X)/ � 
�

F̃ (X) 
 P (X)

�������������
G

D

κ

E

τv

Fig. 1. Commutativity of a diagram of maps between P (x) and D

In Fig.1, v is the natural map of F̃ (X) to the quotient set F̃ (X)/ !, E is
extension principle, κ = Eτ−1. If granule A is crisp, then µA(x) is the charac-
teristic function of classical set A, and χ is also a characteristic function. Using
the natural numbers theory, the indexes of granules is the natural numbers,
i.e., E(A ∈ X/ !) = i ∈ R+. If granule A is fuzzy, according to extension
principle, E([µA(x)]) = χ is a fuzzy number on R+. Let µA be triangular mem-
bership function of fuzzy granule A, then χ is a triangular fuzzy number ĩ,
where µA(F−1(i)) = 1. Therefor, indexes of granules are fuzzy numbers instead
of natural numbers.

Example 3. Let linguistic labels young = (30, 10, 10),middle−age = (45, 10, 10),
are triangular fuzzy sets on [20, 55], in which components are the center, left
width and right width, respectively. Linear function F : [20, 55] −→ [0, 1] is
F (x) = 1

35x −
4
7 , correspondingly, indexes of linguistic labels are young 2̃

7
=

young( 2
7 , 2

7 , 2
7 ) and middle− age 5̃

7
= middle− age( 5

7 , 2
7 , 2

7 ).

4.2 Flowa Operator

Definition 1. Let S = {s̃i} and | S |= T (the cardinal number of S) , A =
{aj̃1

, aj̃2
, · · · , aj̃n

} ⊆ S be a set of labels to be aggregated (n ≤ T ). W =
{w1, w2, · · · , wn} is a weighting vector such that ∀s ∈ {1, · · · , n}, ws ∈ [0, 1]
and

∑n
s=1 ws = 1. Let B = (j1, j2, · · · , jn), where js is the center of j̃s, C =

σ(B) = (jσ(1), · · · , jσ(n)) such that jσ(s′) ≥ jσ(s),∀s′ ≤ s, denote

w = fowa(B) = WCT =
n∑

s=1

wsjσ(s),

then the new linguistic aggregation operator Flowa is defined as
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Flowa((aj̃1
, aj̃2

, · · · , aj̃n
)) = aj̃k

,

where aj̃k
such that j̃k(w) = max{j̃1(w), · · · , j̃T (w)}(| S |= T ).

Remark 1. Due to aj̃s
⇐⇒ j̃s, therefor, aggregating linguistic labels {aj̃s

|s =
1, · · · , n} is transformed by aggregating the indexes of the linguistic labels.

Example 4. Let Q = {several(s), about half(ah), most(m)}, T = {approximately
true(at), true(t), very true(vt)}, their membership function and the index are in
Table 2.

Table 2. Linguistic labels, membership functions and the indexes

number Meaning Membership function The index

1 s (3, 2, 3) s 4̃
13

= s( 4
13 , 4

13 , 6
13 )

Q 2 ah (6, 2, 4) ah 1̃0
13

= ah( 10
13 , 4

13 , 8
13 )

3 m (14, 4, 0) m2̃ = m(2, 8
13 ,0)

1 at (0.5, 0.5, 0.5) at1̃ = at(1,1,1)

T 2 t (0.8, 0.3, 0.2) t1̃.6 = t(1.6,0.6,0.4)

3 vt (1, 0.2, 0) vt2̃ = vt(2,0.4,0)

For Q, select y = F (x) = 2
13x −

2
13 . For T , select y = F (x) = 2x. Sup-

pose the weighting vector W = (0.3, 0.4, 0.3), to aggregate Q by using Flowa

operator, we obtain w1 = 0.3 × 4
13 + 0.4 × 10

13 + 0.3 × 2 = 1, ah 1̃0
13

(1) =

max{s 4̃
13

(1), ah 1̃0
13

(1),m2̃(1)}, Flowa((s, ah,m)) = ah 1̃0
13

= about half.

Theorem 1. (Commutativity) Let Flowa, then

Flowa((aj̃1
, aj̃2

, · · · , aj̃n
)) = Flowa((aj̃σ(1)

, aj̃σ(2)
, · · · , a

j̃σ(n)
)).

Where (σ(1), · · · , σ(n)) is a permutation of (1, · · · , n).

Theorem 2. (Boundedness) Let W	 = (0, · · · , 0, 1), W 	 = (1, 0, · · · , 0), T
(t−norm) and S (co-t−norm), then

1. min{j1, · · · , jn} = W	C
T ≤ fowa((j1, · · · , jn)) ≤W 	CT = max{j1, · · · , jn}

2. min{aj̃1
, aj̃2

, · · · , aj̃n
} ≤ Flowa((aj̃1

, aj̃2
, · · · , aj̃n

)) ≤ max{aj̃1
, aj̃2

, · · · , aj̃n
}

3. T (aj̃1
, · · · , aj̃n

) ≤ Flowa(aj̃1
, · · · , aj̃n

) ≤ S(aj̃1
, · · · , aj̃n

)

Remark 2. Based on OWA operator, these conclusion are proved easily. In def-
inition 1, let f	

owa((j̃1(w), · · · , j̃T (w))) = W 	CT , then j̃k(w) = max{j̃1(w), · · · ,
j̃T (w)} = f	

owa((j̃1(w), · · · , j̃T (w))). From this point of view, the new linguistic
aggregation operator Flowa can be understood as a OWA operator, differs from
OWA operator, two times OWA operator is used in Flowa.
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4.3 Obtaining a Complex Linguistic Data Summary
Based on Flowa

A complex linguistic data summary can be obtained based on Flowa, i.e.,

1. Extracting simple linguistic data summaries by using method of Section 3;
2. Fuzziness of indexes of linguistic labels by using method of Subsection 4.1;
3. Selecting weighting vector W by using the following fuzzy linguistic quanti-

fier [11], a, r, b ∈ [0, 1],

Q(r, a, b) =

⎧⎨
⎩

0, if r < a,
r−a
b−a , if a ≤ r < b,

1, if r ≥ b.
(16)

4. Aggregating simple linguistic data summaries by using Flowa.

Example 5. Continue Example 2, aggregate about half of employees are young is
very true and most of employees have high salary is approximately true. Accord-
ing to Table 2 and Eq.(16) ((a, b) = (0.2, 0.8)), W = (0.6, 0.4) can be obtained
and

w1 = 0.6× 10
13

+ 0.4× 2 =
16.4
13

, w2 = 0.6× 1 + 0.4× 2 = 1.4,

ah 1̃0
13

(
16.4
13

) = max{s 4̃
13

(
16.4
13

), ah 1̃0
13

(
16.4
13

),m2̃(
16.4
13

)},

Flowa(about half, most) = about half. (17)
t1̃.6(1.4) = max{at1̃(1.4), t1̃.6(1.4), vt2̃(1.4)},
Flowa(approximately true, very true) = true. (18)

According to Eq.(17) and Eq.(18), the complex linguistic data summary (about
half of employees are young and have high salary) is true can be obtained.

5 Conclusion

In this paper, based on the structure and semantics of predicate of fuzzy logic,
automatic extracting simple linguistic data summaries from personnel database
is discussed. To obtain complex linguistic data summaries, a new linguistic ag-
gregation operator is presented.

This work is supported by the National Natural Science Foundation of China
(Grant No. 60474022).

References

1. P. P. Wang, “ Computing with words”, John Wiley and Sons, 2001.
2. L. A. Zadeh, “ Fuzzy logic = computing with words”, IEEE Trans. Fuzzy Systems,

Vol. 4, pp. 103–111, 1996.



778 Z. Pei et al.

3. L. A. Zadeh, “ Toward a theory of fuzzy information granulation and its centrality
in houman reasoning and fuzzy logic”, Fuzzy Sets and Systems, Vol. 90, pp. 103–
111, 1997.

4. F. Herrera and E. Herrera-Viedma, “ Aggregation operators for linguistic weighted
information,” IEEE Trans.System,Man, Cybernet.-Part A:Systems Humans, Vol.
27, pp. 646–656, 1997.

5. Zheng Pei and Yang Xu, “ Lattice implication algebra model of linguistic variable
Truth and its inference”, in edited by Da Ruan et al, Applied Computational
Intelligence, World Scientific, pp. 93–98, 2004.

6. Zheng Pei, Keyun Qin, “Obtaining Decision Rules and Combining Evidence based
on modal logic”, Progress in Natural Science (in chinese), Vol. 14(5), pp. 501-508,
2004.

7. F. Herrera, E. Lopez and M. A. Rodriguez, “ A linguistic decision model for pro-
motion mix management solved with genetic algorithms,” Fuzzy Sets and Systems,
Vol. 131, pp. 47–61, 2002.

8. Christer Carlsson and Robert Fullér, “Benchmarking in linguistic importance
weighted aggregations”, Fuzzy Sets and Systems. 114 (2000) 35–41.

9. N. C. Ho, T. D. Khang, V. N. Huynh and H. C. Nguyen, “ Hedge algebras, linguistic
valued logic and their application to fuzzy reasoning”, International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 7, pp. 347–361, 1999.

10. R.R. Yager, “A new approach to the summarization of data”, Information Sciences.
Vol. 28, pp. 69-86, 1982.

11. R.R.Yager, “On ordered weighted averaging aggregation operators in multicriteria
decision making”, IEEE Trans.Systems,Man Cybernet. 18 (1988) 183–190.

12. R.R. Yager, “Database discovery using fuzzy sets”, International Journal of In-
telligent Systems,Vol. 11, pp.691-712, 1996.

13. R.R. Yager, J. Kacprzyk, “Linguistic data summaries: A perspective”, in Proceed-
ings of IFSA’99 Congress (Taipei, Taiwan R.O.C.), vol. 1, pp. 44-48, 1999.

14. G. Raschia, N. Mouaddib, “SAINTETIQ: a fuzzy set-based approach to database
summarization”, Fuzzy Sets and Systems,Vol. 129, pp. 137-162, 2002.

15. Zheng Pei, Yang Xu, Da Ruan, Keyun Qin, “Extracting a complex linguistic data
summaries from perssonnel database via linguistic aggregation of simple ones”,
Information Sciences on Linguistic Decision Making: Tools and Applications. (to
appear)
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Abstract. In Machine Learning, ensembles are combination of classi-
fiers. Their objective is to improve the accuracy. In previous works,
we have presented a method for the generation of ensembles, named
rotation-based. It transforms the training data set; it groups, randomly,
the attributes in different subgroups, and applies, for each group, an axis
rotation. If the used method for the induction of the classifiers is not in-
variant to rotations in the data set, the generated classifiers can be very
different. In this way, different classifiers can be obtained (and combined)
using the same induction method.

The bias-variance decomposition of the error is used to get some in-
sight into the behaviour of a classifier. It has been used to explain the
success of ensemble learning techniques. In this work the bias and vari-
ance for the presented and other ensemble methods are calculated and
used for comparison purposes.

1 Introduction

One of the research areas in Machine Learning is the generation of ensembles.
The basic idea is to use more than one classifier, in the hope that the accuracy
will be better. It is possible to combine heterogeneous classifiers, where each
of the classifiers is obtained with a different method. Nevertheless, it is also
possible to combine homogeneous classifiers. In this case all the classifiers have
been obtained with the same method. In order to avoid identical classifiers, it is
necessary to change something, at least the random seed.

There are methods that alter the data set. Bagging [3] obtains a new data set
by resampling the original data set. An instance can be selected several times, so
some instances will not be present in the new data set. The Random Subspaces [8]
method obtains a new data set deleting some attributes. Boosting [14] is a fam-
ily of methods. The most prominent member is AdaBoost. In this case the data
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set is modified depending on the classification errors of the previously generated
base classifier. The bad classified examples are assigned a greater weight, so the
next classifier will give more importance to those examples. Another possibil-
ity, instead of modifying the data set, is to modify the base learning method.
For instance, in the Random Forest method [4], decision trees are constructed
in a way such as the selected decision for a node is, to some extent, random.
Comparatives among ensemble generation methods are presented in [1, 5, 9].

These method share the idea that it is necessary to modify the data set in
a way that some information is lost (e.g., instances, attributes), or the learning
method does not use all the information (i.e., random forest). None of the modi-
fications would be considered if it was desired to obtain a unique classifier. They
are used ensemble methods need diverse base classifiers.

Rotation-based ensembles [13] transform the data set, but in a way that all
the present information is preserved (although is is transformed). The idea is to
group the attributes, and for each group to apply an axis rotation. Hence, all the
available information (instance and attributes) in the data set is still available.
Although there are a lot of learning methods that are invariant to rotations, one
of the most used with ensembles, decision trees, are very sensitive to this kind
of variations, because the generated decision surfaces are formed by parallels to
the axis.

When the method was presented [13] it was compared with other ensemble
methods using only the error. It is well known that the error of a classifier can
be divided in bias and variance. In this work we calculate these measures for
different ensemble methods and use them for comparison purposes.

The rest of the work is organized as follow. The proposed method is described
in Sect. 2. The bias-variance decomposition of the error is presented in Sect. 3.
Section 4 includes the experimental validation. Finally, section 5 concludes.

2 Rotation-Based Ensembles

This method is introduced in [13]. It is based on transforming the data set, in a
different way for each member of the ensemble. Then, the base learning method
is used with the transformed data set. The results of the different classifiers are
combined using majority vote.

The transformation process is based on Principal Component Analysis (PCA)
[7]. These components are linear combinations of attributes. Normally, this tech-
nique is used for reducing the dimensionality of the data set, because the com-
ponents are ordered according to their importance, so the last ones can be dis-
carded. Nevertheless, we are going to consider all the components. In this case,
the transformed data set has exactly the same information than the original one,
with the only difference of axis rotation. This technique works with numeric at-
tributes. If the data set has discrete attributes, they must be transformed to
numeric.

One of the objectives in ensemble methods is that the combined classifiers
were diverse, because nothing is gained if they are equal. Another objective,
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somewhat contradictory to the previous one, is that the combined classifiers were
accurate. PCA is an adequate transformation for ensemble generation because,
first, no information is loss, so the accuracy of the base classifiers should not be
worsened, as happens with other ensemble methods. And second, because the
model generated by the base classifier can be rather different, given that the
method was not invariant to rotations.

Nevertheless, for a given data set, the result of PCA is unique. For generating
different classifiers it is necessary to obtain several transformed data sets. The
possibilities are:

– To apply PCA to a subset of the instances. Unless the number of instances
were rather small, the results will be rather similar.

– To apply PCA to a subsets of the classes. In fact, this is a variant of the
previous possibility, because when classes are selected, their instances are
being selected. Nevertheless, the hope is that the results of the analysis will
be more diverse.

– To apply PCA to a subset of the attributes. In this case only the selected at-
tributes would be rotated. In order to modify all the attributes, it is possible
to group the attributes in groups, and to apply PCA for each group.

The previous strategies are considered for the application of PCA, but once
that the analysis has been obtained, then all the data set if reformulated using
the components. If the previous strategies are combined, it is possible, except
for very small data sets, to obtain a lot of different data sets.

The application of PCA to groups of attributes is another mechanism for
diversification, but it also provides additional advantages. First, the execution
time of the analysis depends mainly on the number of attributes, so is much
quicker to do the analysis in groups that doing it with all the attributes.

An algorithmic description of the method is presented in [13].

3 Bias-Variance Decomposition of the Error

The bias-variance decomposition of the error is a useful tool for analyzing learn-
ing algorithms. Originally it was proposed for regression, but there are several
variants for classification [10, 6]. It decomposes the error in three terms [16], de-
rived with reference to the performance of a learner when trained with different
trained sets drawn from some distribution of training sets:

– Squared bias: a measure of the error of the central tendency of the learner.
– Variance: a measure of the degree to which the learner’s predictions as it is

applied to learn models from different training sets.
– Intrinsic noise: a measure of the degree to which the target quantity is in-

herently unpredictable.

Given that it is infeasible to estimate the intrinsic noise from sample data,
this term is usually aggregated to the bias term.
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One of the possible explanations for the success of bagging and boosting
uses this decomposition [11]. Although there is no general theory on the effects
of bagging and boosting on bias and variance, Bagging is assumed to reduce
variance without changing the bias. Boosting in the early iterations primarily
reduces bias and in the later iterations reduces mainly variance.

4 Experimental Validation

4.1 Data Sets

The used data sets appear in table 1. They are the ones available in the format of
the WEKA library. All of them are form the UCI repository [2]. Some of the data
sets were slightly modified. First, for the data sets “splice”and“zoo”an attribute
was eliminated. They were instance identifiers. This kind of attributes are not
useful for learning, and in the current implementation, they cause a considerably
overhead, because continuous attributes are converted to numeric. Second, for
the data set “vowel”, there was an attribute indicating if the instance was for
training or for testing. This attribute was eliminated. Moreover, this data set
includes information of the speakers and their sex. We consider two versions,
“vowel-c” and “vowel-n” using and not using this context information, because
there are works that use and not use this information.

4.2 Settings

The used method for constructing decision trees is one of the available in the
WEKA library [17], named J48. It is a reimplementation of C4.5 [12]. The im-
plementations of Bagging and AdaBoost.M1 are also from that library.

The parameters of the different methods were the default ones. The number
of classifiers to combine was 10. For rotation-based ensembles, the number of
attributes is each group was 3.

PCA is defined for numeric attributes. For the presented method, discrete
attributes were converted to numeric ones, with as many attributes as possible
values. This transformation was not applied for the methods used for comparison
(bagging, boosting. . . ) because they can deal directly with discrete attributes.

The bias and variance are calculated with the method proposed in [16]. It is
available in WEKA. The default parameters were used. The exception was the
number of times each instance is classified, that was set to 50 (the default value
is 10). With these settings, it runs 50×2-fold cross validation.

4.3 Results

Table 2 shows the error, bias and variance results. It also includes, for each
method, the mean for all the data sets, although it is a very gross measure
of relative performance. Rotation-based ensembles have the minimum mean for
the error and the variance. The minimum mean for the bias is obtained with
boosting, although the result for rotation-based is very close.
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Table 1. Characteristics of the used data sets

data set classes examples discrete continuous

anneal 6 898 32 6
audiology 24 226 69 0
autos 7 205 10 16
balance-scale 3 625 0 4
breast-cancer 2 286 10 0
breast-w 2 699 0 9
colic 2 368 16 7
credit-a 2 690 9 6
credit-g 2 1000 13 7
diabetes 2 768 0 8
glass 7 214 0 9
heart-c 5 307 7 6
heart-h 5 294 7 6
heart-statlog 2 270 0 13
hepatitis 2 155 13 6
hypothyroid 4 3772 22 7
ionosphere 2 351 0 34
iris 3 150 0 4
labor 2 57 8 8
letter 26 20000 0 16
lymphography 4 148 15 3
primary-tumor 22 239 17 0
segment 7 2310 0 19
sonar 2 208 0 60
soybean 19 683 35 0
splice 3 3190 60 0
vehicle 4 846 0 18
vote 2 435 16 0
vowel-c 11 990 2 10
vowel-n 11 990 0 10
waveform 3 5000 0 40
zoo 7 101 16 2

The table also includes the geometric mean ratio [15]. For each data set, the
ratio is the value for the alternative method divided by the value for rotation-
based ensembles. Then, the geometric mean of the ratios is calculated. A ge-
ometric mean ratio greater than 1.0 represents an advantage of rotation-based
and a lower value represents an advantage to the alternative algorithm. In the
table, all the geometric rates are greater than 1.0.

Finally, the table also shows for each method and measure the number of
times that the result is better and worst than the result for rotation-based. The
only case that is not favourable to the presented method is the bias for boosting,
that is better for 18 of 32 data sets. This is consistent with previous results, that
indicate that boosting with few iterations reduces mainly the bias [11].
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5 Conclusions and Future Work

Rotation-based ensembles is a novel approach for the generation of ensembles
of classifiers. The method compares favorably to Bagging, Random Forest and
AdaBoost.M1, when using decision trees as base classifiers. The proposed method
has smaller mean values, favourable geometric mean rations, and is more times
better than worst when compared with the other methods. The only exception
is that the bias is better for boosting than for rotation-based ensembles.

It is somewhat surprising that the results of the method were better than
the results for boosting, because it appears to be rather more elaborated, and
with a most solid theoretical basis. Nevertheless, one of the features of boosting,
not present in neither our method nor Bagging is the ability of obtaining strong
classifiers from weak ones, such as decision stumps. On the other hand, Bagging
and our method allow the construction of the base classifiers in parallel.

Currently, only decision trees have been considered as base classifiers. Other
methods that are not rotation-invariant can be considered. On the other hand,
rotation-invariant methods can also be used if the number of attributes in the
transformed data set is different than the number for the original data set.

The experimental validation has been limited to classification problems. Ap-
parently, the method can be also used for regression problems, if the base re-
gression method is not invariant to rotations, as is the case for regression trees.

The presented method is compatible with another ensemble methods. First,
the base classifier for an ensemble method can be another ensemble method. For
instance, it could be possible to use the presented method using bagging as base
classifier. In this way, it could be possible to combine 100 decision trees, but
applying the PCA procedure only 10 times. This can be useful because the PCA
procedure is slower than resampling, the used strategy for Bagging.

Second, it is possible to apply several transformations to the original data
set. For instance, resample and then the presented method. In this way, the two
ensemble methods are not used hierarchically, but simultaneously. Hence, it is
necessary to study the possible usefulness of some of these combinations.
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Abstract. The incompleteness of data is a most common source of uncertainty 
in real-world Data Mining applications. The management of this uncertainty is, 
therefore, a task of paramount importance for the data analyst. Many methods 
have been developed for missing data imputation, but few of them approach the 
problem of imputation as part of a general data density estimation scheme. 
Amongst the latter, a method for imputing and visualizing multivariate missing 
data using Generative Topographic Mapping was recently presented. This 
model and some of its extensions are tested under different experimental 
conditions. Its performance is compared to that of other missing data imputation 
techniques, thus assessing its relative capabilities and limitations. 

1   Introduction 

The occurrence of missing data is a pervasive problem in real application areas, 
especially acute in domains such as social sciences [1], bioinformatics [2], 
environmental sciences [3], or signal processing [4]. Methods that impute the missing 
values are therefore of paramount importance for the successful analysis of such data. 
Different methods are suitable for different types of data (continuous, discrete, 
categorical) and for different application fields. 

Many data imputation methods have been proposed in the literature: their review is 
beyond the scope of this brief paper and can be found elsewhere [5]. A fair 
comparison between methods is difficult not only because of their dependency on 
data types and application domains, but also because they are not likely to perform 
homogeneously under all types of conditions. The aim of this study is not carrying out 
a full-blown comparison of methods. Instead, a fairly detailed evaluation of the 
robustness of performance of a proposed method is carried out, followed by a 
comparison of performance with two alternative methods. 

The method for missing data imputation put forward in this study was only 
recently proposed and preliminarily evaluated [6,7]. It is based on a constrained 
mixture of Gaussians model, the Generative Topographic Mapping (GTM) [8], 
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trained by EM [9] and it encompasses missing data imputation, clustering, and 
visualization in a low dimensional latent space. The missing data imputation method 
is here extended to adaptively regularized variants of the GTM. Their performance is 
compared with that of two alternative methods, in order to assess the capabilities and 
limitations of the model. 

2   The Generative Topographic Mapping 

In this section we introduce the neural network-inspired Generative Topographic 
Mapping (GTM) [8], a latent variable model with sound foundations in probability 
theory that can simultaneously perform soft-clustering and visualization of the 
available data as well as imputation of missing data values. GTM is defined as a 
probabilistic alternative to Kohonen's SOM [10]: it generates a non-linear and 
topographically preserving mapping, from a low-dimensional latent space in Lℜ  
(with L being usually 1 or 2 for visualization purposes) onto the Dℜ  space in which 
the original data reside, through a linear combination of basis functions defined as: 

( )uWy φ=  (1) 

where y is a D-dimensional point in data space, u is an L-dimensional point in latent 
space, W is the matrix that generates the mapping, and φ  is a set of S basis functions 

sφ  (Gaussians in this study). To achieve computational tractability, the prior 

distribution of u in latent space is constrained to form a uniform discrete grid of M 
centres, analogous to the layout of the SOM units, in the form: 

( ) ( )
=

=
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(2) 

This way defined, the GTM becomes a constrained mixture of Gaussians. A 
density model in data space is therefore generated for each component i of the 
mixture, leading to the definition of the following log-likelihood expression: 
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(3) 

where xn is one of N points in data space, ( )ii uWy φ=  is the ith component centre , 

and β is the estimated common inverse variance of the isotropic Gaussian 
distributions in data space whose centres are iy . Parameter optimisation can be 

accomplished using the EM algorithm [9]. Matrix W is re-estimated as the solution of 
the following system of equations: 

XRWG TTT
oldnew ΦΦΦ =  (4) 
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where Φ  is a M×S matrix with elements isφ , R is a matrix with elements 

( )niin pR xu=  , G is a matrix with elements 
=

N

n
inR

1
 in the diagonal and zeros 

elsewhere, and X is the data matrix. Parameter β is re-estimated as 

= =
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(5) 

This algorithm is also at the core of the GTM ability to regenerate missing data. 

2.1   Adaptive Regularization of the GTM 

An advantage of the probabilistic setting of the GTM is the possibility of introducing 
regularization in the mapping. This procedure automatically regulates the level of 
map smoothing necessary to avoid data overfitting, resorting to either a single 
regularization term [11], or to multiple ones [Selective Map Smoothing : 12]. 

The first case entails the definition of a modified log-likelihood of the form:  

( ) ( ) 2

1 2

1
wWxW αββα −=

=

N

n
nPEN ,|pln,,L  

 

(6) 

where w is a vector shaped by concatenation of the different column vectors of W and 
α is a regularization coefficient. The re-estimation of W now becomes: 

XRWI+G TTT
oldnew ΦΦΦ =

β
α

 
(7) 

and the re-estimation of β remains unchanged. The regularization coefficient α  can 
be adaptively optimized using the evidence approximation within a Bayesian 
formalism [13] which aims to maximize ( )X|,p βα . Details of this method and its 

extensions can be found in [11, 12]. 

2.2   Missing Data Imputation Through Generative Topographic Mapping 

A further advantage of the GTM’s probability theory foundations is its ability to cope 
with incomplete data and regenerate them [7,14] taking advantage of its optimization 
using the EM algorithm, which is ideally suited to deal with missing data [15]. 

The GTM is trained (i.e., the probability density of the data is approximated) using 
only the observed data, whereas the missing data are treated as latent (i.e. 
unobservable) variables. Missing values are reconstructed as part of the maximization 
step of EM, prior to the re-evaluation of W, using the posterior probabilities 

o
nip xu  of the latent space centres being responsible for each point in the original 

data space (responsibilities) that are calculated only on the observed data. The 
expectation of the missing data (identified by superscript m, as opposed to o for 
observed) is: 
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Parameter W is re-estimated with a variation on Eq.4: 

rego
new

o XRWG TTT ΦΦΦ =  (9) 

where the superscript o indicates responsibilities calculated only on the observed data, 
and the superscript reg indicates that the fully regenerated (observed plus imputed) 
data are used. Parameter β is re-estimated as: 
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where inz  is an indicator variable that represents our ignorance of which latent centre 

i is responsible for the generation of the missing data in nx . Compare this to Eq.5. 

2.3   Missing Data Imputation for the Adaptively Regularized GTM 

The algorithmic implementation of GTM with adaptive regularization entails 
interleaving the EM algorithm with the Bayesian re-estimation of hyperparameters α 
and β. This re-estimation must undergo some changes to adapt it to the GTM 
procedure for missing values imputation. Eq.7 then becomes: 

rego
oldnew

o XRWI+G TTT ΦΦΦ =
β
α

 
(11) 

Update formulae for hyperparameters α and β are now changed, and can be 
calculated through maximization of the approximate expression: 

( ) Cln
W

ln,,L reg
*

reg
PEN ++− αβα

22

1
Hw*  

(12) 

where LPEN is that of Eq.6, evaluated at the most probable values of w (simbolized by 
the asterisk), and where all the constant terms have been grouped as C; finally, H* is 
the Hessian of  ( )βα ,,LPEN *w− . 

3   Alternative Missing Data Imputation Methods 

We do not aim to provide a full review of missing data imputation methods here, 
which can be found elsewhere [5]. The target is somehow narrower, and only two 
methods are selected for comparison with the GTM. The first, introduced by 
Troyanskaya et al. [4] and called KNNimpute, is based on K-Nearest Neighbours 
(KNN). KNN shares with the GTM that both can be considered prototype methods 
that attempt to represent the overall data distribution with a reduced number of 
generated instances (prototypes). Unlike the GTM method, though, KNNimpute is 



 Comparative Assessment of the Robustness of Missing Data Imputation 791 

 

mostly heuristic, a feature that affects its results, as we shall see later. The algorithm 
can be summarized as follows: For each incomplete record in the data set, its missing 
values are replaced by a weighted-by-similarity average of the corresponding 
observed values of the K nearest neighbours. The second method is Unconditional 
Mean Imputation where, for each incomplete record in the data set, its missing values 
are replaced by the average of the observed values of the corresponding attribute for 
all records. This will be used as a baseline for the acceptability of the results. 

Although not used in this comparative study, some methods, related to the GTM 
one that is presented in this paper, have been recently defined. They include those of 
Hunt and Jorgensen [16] for a mix of continuous and categorical data and Wang et al. 
[17] for general mixtures of multivariate Student distributions. 

4   Experimental Settings 

Five data sets of very different characteristics were selected for the experiments. An 
artificial data set with 150 registers was generated using a mixture of three 4-D 
generalized Gaussians. Additionally, the Iris and Ecoli data sets from UCI 
Repository1, the Oil 3-Phase data from the GTM homepage2, and the kin8nm data set 
of the kin family from the Delve project site3, were selected. Throughout the reported 
experiments, a missing completely at random (MCAR) [15] setting was assumed, 
where random masks were created to simulate different proportions of missing data. 
Following an otherwise common procedure [4], the performance of the models, in 
terms of the correctness of missing data imputation, was evaluated resorting to the 

normalized root mean square error ( )
21

21 −=
N

n

reg
nnN

RMSE xx , where reg
nx is a 

data instance as regenerated by the model. 
For the GTM, the adaptive matrix W was initialized following a standard 

procedure [8]. The grid of GTM latent centres was fixed to a square layout of 10x10 
nodes. The corresponding grid of basis functions φ  was fixed to a 5x5 layout. 

Alternative layouts were tested without significant differences being observed. 
The experimental settings were varied in different ways to cover a broad spectrum 

of conditions:  

• Several levels of data incompleteness were considered, ranging from 5% to 40%, 
in order to test the limits of the robustness of the data imputation methods. 

• Two GTM models were tested: the completely unregularized GTM and its 
adaptively regularized variant with a single common regularization term [11].  

• Three levels of Gaussian noise contamination were added (with standard deviations 
of 0.05, 0.1 and 0.2), in order to assess whether regularization improves the model 
performance in the presence of noise, and to what extent. 

                                                           
1 www.ics.uci.edu/~mlearn/MLRepository.html 
2 www.ncrg.aston.ac.uk/GTM 
3 www.cs.toronto.edu/~delve/data/kin/desc.html 
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Fig. 1. Performance curves for the GTM models, KNNImpute, and Unconditional Mean 
Imputation, on each of the datasets, following the layout described in the main text 
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For each of the experimental variants, the GTM was trained 10 times. Mean results 
are provided in Fig.1. 

5   Results and Discussion 

The results of the set of experiments outlined in section 4 are presented in Fig.1, 
according to the following layout: each of the rows corresponds to a data set. In turn, 
each of the rows consists of three displays for data with increasing level of added 
noise. Finally, each display contains results for the GTM models (gtm non-r and gtm 
reg in the figures), Unconditional Mean Imputation (mean), and KNNimpute (knn). 

Overall, the imputation error is lower for the GTM models than for KNNimpute. 
The negative influence of added noise can be seen for all methods, although GTM 
models are more robust towards high noise levels than KNNimpute. All models 
degrade in a reasonably graceful way with the increase of the level of missing values. 
It is very interesting, though, to find out that, due to its probabilistic definition, the 
performance of the GTM-based method is bound by that of the Unconditional Mean 
Imputation baseline. This is not true for KNNimpute. An extreme example of this are 
the results for a very complex data set such as kin8nm: GTM does not provide any 
improvement over Unconditional Mean, but KNNimpute performs much worse than 
both. The regularization of the GTM consistently improves its performance, but only 
up to a level of data incompleteness usually around 20%, suggesting that higher levels 
of incompleteness render regularization useless in terms of missing data 
reconstruction.  

6   Conclusions 

In this study, we have tested a method for missing data imputation [6] based on the 
properties of the EM algorithm as applied on a constrained mixture of Gaussians: the 
GTM model [8]. We have extended this method to encompass adaptively regularized 
variants, providing details of the necessary modifications in the algorithm. This 
extension does entail only minor extra computational effort. The performance of the 
GTM models has been compared to that of two alternative methods: KNNimpute and 
Unconditional Mean Imputation.  

The results show an overall satisfactory performance of the GTM method for 
missing data imputation, degrading gracefully even for very high levels of data 
incompleteness. The capabilities and limitations of the GTM-based method have been 
highlighted.  
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Departamento de Lenguajes y Ciencias de la Computación,
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Abstract. In this paper we present CIDIM (Control of Induction by
sample DIvision Method), an algorithm that has been developed to in-
duce small and accurate decision trees using a set of examples. It uses an
internal control of induction to stop the induction and to avoid the over-
fitting. Other ideas like a dichotomic division or groups of consecutive
values are used to improve the performance of the algorithm. CIDIM has
been successfully compared with ID3 and C4.5. It induces trees that are
significantly better than those induced by ID3 or C4.5 in almost every
experiment.

1 Introduction

Learning from examples and inducing knowledge from them form a very wide
research area in Machine Learning. Many knowledge representations have been
proposed, but one of the most used is the decision tree. Decision trees have been
extendedly used by Machine Learning community (CART [1], ID3 [2], C4.5 [3],
ITI [4] ... ) and they have some positive characteristics. They have the ability
of splitting the hyperspace into subspaces and fitting each space with different
models. They have also a desirable feature like is the understandability.

Decision trees are usually evaluated considering their accuracy and their size
[5]. An accurate tree is desirable, but, if the tree is also small, it is even more
desirable. It is known that finding the smallest tree that classifies a set of exam-
ples without error is a NP − complete problem [6] and designing a good split
criteria is fundamental.

In this paper we introduce CIDIM (Control of Induction by sample DIvision
Method), an algorithm that induces decision trees using an internal control of
induction. This control, combined with a dichotomic division of the training set
of examples and with a grouping of consecutive values, lets CIDIM build small
and accurate trees.

The rest of paper is organized as follows: Section 2 presents some preliminary
concepts and sets out the basic notation. In Section 3, we introduce CIDIM. Some

� This work has been partially supported by the MOISES project, number TIC2002-
04019-C03-02, of the MCyT, Spain.
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experimental results are shown in Section 4. Finally, in Section 5, we summarise
our conclusions and suggest future lines of research.

2 Preliminary Concepts

A problem with a attributes can be defined as a pair (m, k) ∈ N
a × N, where

m = (m1, . . . ,ma). Each attribute Xi is defined in a domain Di = {1, 2, . . . ,mi},
where i = 1, . . . , a. We call the set of attributes X. Thus, X = {X1, . . . , Xa}.

There is a special attribute called Class that we denote C and its domain is
D = {1, 2, . . . , k}, where k ≥ 2.

For a given problem we can define the universe of examples (UE) as UE =
D1 × . . .×Da ×D and an example (e) as an element of UE .

In this way e = (X1(e), X2(e), . . . , Xa(e), C(e)) ∈ UE , where Xi(e) represents
the value of the attribute i in the example e (i = 1, . . . , a) and C(e) is the class
that matches this example.

We will work with finite sequences of examples (E), thus E = {e1, e2, . . . , eN},
where elements can be repeated.

3 CIDIM

CIDIM (Control of Induction by sample DIvision Method) is an algorithm that
has been developed to induce accurate and small decision trees. It can be used
with any problem with a finite number of attributes. These attributes must be
nominal and can be ordered or not. The class attribute must have a finite number
of unordered classes.

Three basic ideas support CIDIM: division of the training set, group of con-
secutive values and internal control of induction. In the following subsections we
comment these characteristics with more detail.

3.1 Division of the Training Set

The top down decision induction tree (TDIDT) algorithms [2, 3], generally, di-
vide the set of examples into two subsets: the training subset (used to induce the
tree) and the test subset (used to test the results). CIDIM makes an additional
division. It divides the training subset into two new subsets with the same class
distribution and similar size: the construction subset (called CNS) and the con-
trol subset (called CLS). A formal description of CNS and CLS is shown in
Figure 1.

CNS and CLS are used in the expansion process. Every node has its corre-
sponding CNS and CLS subsets. When an expansion is made, CNS and CLS
subsets of the parent node are divided into multiple CNS and CLS subsets, each
one corresponding to the appropriate son node. Thus, the size of CNS and CLS
decrease as the node is deeper in the tree. These subsets are used when groups
of consecutive values are formed (see Subsection 3.2) and when the evaluation
of the internal control of induction is tested (see Subsection 3.3).
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|CNS| �= 0 ∧ |CLS| �= 0
CNS ∩ CLS = ∅

CNS ∪ CLS = E

0 ≤
∣∣∣{e ∈ CNS | C(e) = i}

∣∣∣− ∣∣∣{e ∈ CLS | C(e) = i}
∣∣∣ ≤ 1 ∀i ∈ D

Fig. 1. CNS and CLS subsets

3.2 Group of Consecutive Values

Let us consider a nominal attribute with values {O1, O2, ..., On}. Typically,
TDIDT algorithms add one branch to the tree for each value, if the attribute is
selected to be expanded. But, if it is known that an attribute is ordered, it will
be desirable no to treat it like an unordered attribute.

CIDIM has different expansion behaviours depending on the kind of attribute
selected to expand a node. When the attribute is unordered, the expansion is
the classical expansion, but when the attribute is ordered, CIDIM uses a greedy
algorithm to find groups of consecutive values. It is based on a recursive splitting
of the values into groups. Initially there is an unique group with all the values of
the attribute that is being considered. In each step, CIDIM evaluates if a split
will produce an improvement. The process continues until each group has only
one value or until there is no improvement.

The improvement of splitting is measured on CNS using a disorder measure
(dm split). Like BOAT algorithm [7], CIDIM does not fix the disorder measure
and any one can be used. Thus, given a node to be expanded, CIDIM searches
which is the best split for each unused attribute, so, as much pairs ”attribute-
split” as unused attributes will be calculated.

Another disorder measure (dm improve) is used to decide which pair is the
one that produces the best improvement considering CNS. This new disorder
measure is also not fixed like the previous one. The same disorder measure can
be used in both cases. We have empirically detected that entropy is a very good
disorder measure to be used in splitting process and the disorder measure to
decide which is the best one depends on the problem.

Once the best pair attribute-split (Attribute&Split) is selected, the internal
control of induction (see Subsection 3.3) decides if the expansion is possible.

Obviously, a same attribute can be divided into different groups of values
in different branches. It depends on the CNS and CLS subsets in each node.
Remember that CNS and CLS subsets are partitioned during the expansion
process and different leaves have different CNS and CLS subsets.

3.3 Internal Control of Induction

Usually, the expansion of the tree finishes when all examples associated with a
node belong to the same class, yielding too large trees. In order to avoid this
overfitting, external conditions are considered by different algorithms (C5, an
updated version of C4.5, demands that at least two branches have at least a
pre-configurable number of examples). CIDIM uses the following as an internal
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condition: a node is expanded only if its expansion improves the accuracy calcu-
lated on CLS. Tree expansion supervision is local for every node and it is driven
by two indexes: the absolute index IA and the relative index IR (see equations in
(1)). For every step, a node is expanded only if one or both indexes are increased.
If one index decrease, expansion is not made. The absolute and relative indexes
are defined as

IA =
∑N

i=1 CORRECT (ei)
N

IR =
∑N

i=1 PC(ei)(ei)
N

(1)

where N is the number of examples in CLS, e a single example, C(e) the class
of the e example, Pm(e) the probability of m class for the e example in the node
using CNS, and CORRECT (e) = 1 if PC(ei) = max{P1(e), P2(e), ..., Pk(e)} or
0 if another case.

3.4 The Algorithm

Now we have presented the basis of CIDIM, we can introduce the algorithm. A
pseudocode description of CIDIM can be seen in the Figure 2.

CIDIM needs a set of examples (E, the training set) and two disorder mea-
sures (dm split for splitting and dm improve for selecting the best one) to induce
a decision tree, whose root node (RootCIDIMTree) is given as output.

The first step in the algorithm is a random dichotomic division of the train-
ing set (Random Dichotomic Division Keeping Class Frequency(E)) result-
ing two subsets (CNS and CLS). This division keeps the class frequency of
the original set (E) and is made following the description given in Subsection
3.1. Once the training set is divided, the root node (RootCIDIMTree) is cre-
ated using CNS and CLS. Then, CIDIM begins an iterative process that fin-
ishes when all nodes are labelled. This process try to expand unlabelled nodes

In: E, dm split, dm improve

1. {CNS, CLS}=Random Dichotomic Division Keeping Class Frequency(E)
2. RootCIDIMTree = New Node(CNS, CLS)
3. UnlabelledNodes = {RootCIDIMTree}
4. while UnlabelledNodes �= ∅ do:
5. Node = Random Select(UnlabelledNodes)
6. Attribute&Split = Best Attribute Split(Node, dm split, dm improve)
7. if Improve Prediction(Node, Attribute&Split) then
8. NewNodes = Expand(Node, Attribute&Split)
9. UnlabelledNodes = UnlabelledNodes − {Node} + NewNodes

10. else
11. UnlabelledNodes = UnlabelledNodes − {Node}

Out: RootCIDIMTree

Fig. 2. CIDIM algorithm
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while they exists (UnlabelledNodes 
= ∅). The process begins selecting an un-
labelled node in a random way (Node = Random Select(UnlabelledNodes))
and calculating the pair attribute-split that produces the best improvement
(Attribute&Split = Best Attribute Split(Node, dm split, dm improve)). Both
disorder measures and CNS subset of the node are used to calculate this pair
like is described in 3.2. Once we have this pair, CIDIM tests if the best expansion
that can be made using the selected pair (Attribute&Split) improves the pre-
diction given by the unexpanded node. If the expansion must not be made, the
node is labelled as a leaf node, but, if the expansion is possible, new nodes are
created using the attribute selected and the split calculated (Attribute&Split).

We must note that a previous and simplified version of CIDIM [8] has been
used to solve real problems, such as system modelling [9] or modelling of prog-
nosis of breast cancer relapse [10].

4 Experimental Results

The experiments we have done and the results we have obtained are now exposed.
Before we go on to deal with the particular experiments, we must explain some
questions:

– The five datasets we have used are summarised in Table 1 that shows the
number of examples, the number of attributes, and the number of values for
the class. All these datasets have been taken from the UCI Machine Learning
Repository [11] and are available online. All the datasets used have a common
feature: attributes are continuous and have been discretized. We have used
these because CIDIM is designed for dealing with nominal variables (ordered
or unordered).

– CIDIM has been compared with other well-known method: C4.5 [3]. In addi-
tion, results for ID3 have been used to calculate a combined index that it is
explained below. For the experiments, we have used the implementation of
ID3 and C4.5 given in Weka [12]. CIDIM has been configured with entropy
as the disorder measure for splitting (dm split) and the disorder measure for
selecting the best split (dm improve). ID3 and C4.5 have been configured
with their default configuration. ID3

Table 1. Summary table for the datasets used in experiments

Name UCI Repository Name Examples Attributes Classes

Balance balance-scale 625 4 3
Ecoli ecoli 336 7 8
Ionosphere ionosphere 351 34 2
Pima pima-indians-diabetes 768 8 2
Wdbc breast-cancer-wisconsin 569 30 2
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– For studying the performance of CIDIM we have selected two criteria: the
accuracy – the percentage of test examples that are correctly classified – and
the size of the trees – number of leaves and number of nodes.

– For every experiment, the presented values have been obtained from a 10 x
10 fold cross-validation. Average and standard deviation values are given. To
compare prediction accuracies, number of leaves and nodes, and evaluate the
relevance of the differences, a statistical test must be made [13]. A t-test has
been conducted using the results of the cited 10 x 10 fold cross-validation.
Calculation of t-test values have been done using the statistical package R
[14]. A difference is considered as significant if the significance level of the
t-test is better than 0.05. In tables, ⊕ indicates that the accuracy or the size
of the tree induced are significantly better than those of CIDIM. % signifies
that the accuracy or the size of the tree induced are significantly worse than
those of CIDIM. In addition to this comparisons, the best result for each
experiment has been emphasized using numbers in boldface.

Once we have established the datasets we can continue talking about the
experiments. In Table 2 we show results of ID3, C4.5 and CIDIM.

Having obtained the results shown in Table 2, we can observe two questions:

– Decision trees induced by CIDIM are usually significantly smaller than those
induced by ID3 or C4.5 (there is only one exception in balance dataset).

– Accuracy reached by CIDIM is comparable to the accuracy reached by C4.5
and significantly better than accuracy reached by ID3.

Table 2. Comparison between ID3, C4.5 and CIDIM. Average values and standard

deviations are given for number of leaves, number of nodes and accuracy. Significance

tests are with respect to CIDIM

Dataset Algorithm Leaves Nodes Accuracy

ID3 387.92 ± 1.87 � 484.65 ± 2.33 � 38.19 ± 1.20 �
Balance C4.5 33.56 ± 1.02 ⊕ 41.70 ± 1.27 ⊕ 63.86 ± 1.40 �

CIDIM 53.50 ± 3.10 78.54 ± 4.73 68.48 ± 1.18

ID3 295.24 ± 2.45 � 344.28 ± 2.86 � 70.28 ± 0.36 �
Ecoli C4.5 49.00 ± 1.52 � 57.00 ± 1.78 � 77.33 ± 0.90

CIDIM 30.16 ± 1.64 42.25 ± 2.52 77.29 ± 0.80

ID3 107.80 ± 1.52 � 125.60 ± 1.78 � 85.61 ± 1.07 �
Ionosphere C4.5 31.78 ± 1.13 � 36.91 ± 1.32 � 87.85 ± 0.51

CIDIM 16.91 ± 1.07 23.59 ± 1.68 88.71 ± 1.64

ID3 896.08 ± 6.32 � 1045.26 ± 7.38 � 61.30 ± 0.92 �
Pima C4.5 48.04 ± 5.34 � 55.88 ± 6.23 � 73.85 ± 0.49 ⊕

CIDIM 21.81 ± 2.33 29.37 ± 3.43 73.29 ± 0.74

ID3 135.88 ± 2.21 � 158.36 ± 2.57 � 92.94 ± 0.71
Wdbc C4.5 56.98 ± 2.30 � 66.31 ± 2.68 � 93.01 ± 0.55

CIDIM 15.14 ± 1.58 21.62 ± 2.42 92.48 ± 1.05
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InitialError = 100 - probability of majority class (fixed in every experiment)
Error = 100 - accuracy percentage
Leaves = number of leaves in the induced tree
Improvement = ((InitialError − Error)/InitialError) × 100
Reduction = (ID3Leaves − Leaves)/ID3Leaves

where ID3Leaves is the number of leaves in tree induced by ID3
Combined Index (C.I.) = Reduction × Improvement/100

Fig. 3. CombinedIndex (C.I.)

Table 3. Comparison between C4.5 and CIDIM using C.I. Significance tests are with

respect to CIDIM

Dataset Algorithm Combined Index (C.I.)

Balance C4.5 0.3012 ± 0.0239 �
CIDIM 0.3582 ± 0.0204

Ecoli C4.5 0.5048 ± 0.0116 �
CIDIM 0.5429 ± 0.0114

Ionosphere C4.5 0.4665 ± 0.0092 �
CIDIM 0.5778 ± 0.0363

Pima C4.5 0.2374 ± 0.0138
CIDIM 0.2290 ± 0.0206

Wdbc C4.5 0.4713 ± 0.0127 �
CIDIM 0.7091 ± 0.0253

Table 2 shows good performance of CIDIM in this experiments, but we want
to establish a relation between the accuracy and the size of the trees. Both
characteristics are important to determine the quality of the decision tree. Thus,
we have defined a Combined Index (C.I.). This index takes two references: the
initial error in the dataset (InitialError) and the number of leaves in decision
trees induced by ID3 (ID3Leaves). We use this values because they can be
considered as the worst (or very bad) bounds for accuracy and complexity (or
size) of an induced decision tree. Then we evaluate the improvement of both
characteristics and combine them in an index. Thus, the definition of this index
is shown in Figure 3. We have calculated the Table 3 using this C.I.

As we can see in Table 3 the results show that CIDIM is significantly better
than C4.5 in almost every experiment and it is never significantly worse. This is
possible because of the basic ideas we used to develop this algorithm.

5 Conclusions

This paper introduces CIDIM, an algorithm that induces small and accurate
decision trees. We have compared results obtained with ID3, C4.5 and CIDIM
using different datasets and we can note some questions. CIDIM induces small
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trees (usually smaller than those induced by ID3 or C4.5). Accuracy achieved
by CIDIM is comparable with the accuracies achieved by ID3 or C4.5, and some
times it is better.

The complexity (or size) of a decision tree must be considered as a mea-
surement almost as important as accuracy. Considering this we have proposed
a combined index that relates both qualities and CIDIM performs better than
C4.5 in almost every experiment. Thus, we can conclude that CIDIM has a good
performance. However, it would be desirable to improve the method for dealing
with continuous attributes. Out aim of improving CIDIM involves two issues:

– we are working to make that CIDIM could learn using continuous attributes.
Thus, we will not have to discretize real attributes to nominal ordered at-
tributes.

– we are also working to develop a multiple classifier system that uses CIDIM
as the base classifier. The random dichotomic division of the training set
makes CIDIM a randomized algorithm, what is very profitable to be used in
a multiple classifier system.
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Abstract. The supervised learning methods applying evolutionary al-
gorithms to generate knowledge model are extremely costly in time and
space. Fundamentally, this high computational cost is fundamentally due
to the evaluation process that needs to go through the whole datasets to
assess their goodness of the genetic individuals. Often, this process carries
out some redundant operations which can be avoided. In this paper, we
present an example reduction method to reduce the computational cost
of the evolutionary learning algorithms by means of extraction, storage
and processing only the useful information in the evaluation process.

1 Introduction

Machine Learning is used when we want to build a knowledge model from a
training dataset and predict the outcome of a new unseen instance. When the
class of the training data is known, we work in the Supervised Learning field.
There are several methods and algorithms in the specific literature that extract
the inherent knowledge to a set of labelled data. A large number of these meth-
ods (Hider [1, 11], Cn2 [6], Rise [9], Oc1 [15], Gabil [7], GAssist [3], Gil
[13], Sia [17], Ecl [8], etc.) use probabilistic algorithms to search solutions that
able to model the behaviour of data. When the learning process is carried out
by applying techniques of evolutionary computation, particularly evolutionary
algorithms, it is called evolutionary learning, which is the framework of our
approach.

The evolutionary learning methods usually evaluate the rules directly from
the database. That is to explore such database sequentially, taking each of the
examples and testing the quality of the rule through the correct classification
of those examples. We can see, therefore, that the learning process of these
systems is very costly in terms of time and space. Some approaches is focused
on improving the learning process in order to reduce its computational cost by
applying methods of incremental learning and windowing [4] or techniques of
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Fig. 1. Example

scalability [16]. Nevertheless, an appropriated organization of the information
can also contribute to a reduction of the computing time. In this sense, the
structure named EES [12] allows us to process only those examples, the values
of which are covered by such rule will be processed, and not the totality of the
database. However, although this solution reduces the computational cost, the
use of the EES reflects a redundant process of the data for the rules sharing
regions in the space.

The aim of this research is to avoid repetitive counting of examples during
the evaluation process of the individuals of the population. In this paper, we
propose a preprocessing method which extracts the useful information from the
data to be used in the evaluation and stores it in a format that allows an efficient
access of such data.

2 Motivation

One of the critical factors related to applying the evolutionary algorithms in su-
pervised learning is the evaluation of the individuals of the population. Usually,
each individual represents one or several rules as potential solutions to the prob-
lem. In this work, we assume that each individual codifies only one rule, however,
our approach can be easily adapted to individual with variable length. The eval-
uation function measures the goodness of each individual of the population. This
goodness is based on the number of goals (number of examples correctly clas-
sified) and errors (number of misclassified examples) that the encoded rule has
during the classification of the examples from the dataset.

Gabil and Gil are named concept learner, since they handle with discrete
attributes exclusively. Other advanced tools, like Hider, GAssist or Ecl can
treat continuous and discrete attributes thanks to a discretization algorithm
that diminishes the cardinality of the set of values of the continuous attribute.
Thus, the rules can only establish conditions using a finite set of intervals. We
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name these atomic intervals, because once the intervals are obtained, they can
not be split. The discretization process turns the initial search space, that it is
theoretically infinite, into a finite space of solutions. Figure 1 shows an example
of a dataset with 120 examples, two classes (A and B) and two continuous
attributes. The discretization method has obtained 6 intervals (I1

i ) for At1 and
3 intervals (I2

j ) for At2. Each pair of intervals (I1
i , I2

j ) defines a subspace or
region (Sij). The values in brackets {εA|εB} represent the number of examples
of each class in the correspondent region. These subspaces can be linked in a
rule, but they can not be split, since their decision bounds are given by atomic
intervals. Consequently, these regions are called atomic subspaces.

Evaluation by means of a linear search processes each and every one of the
examples in the database independently of the conditions established by the
rule. The computational cost of a individual evaluation1 is Θ(Nm), where N is
the number of examples and m is the number of attributes in the database. For
example, the rule

If a1 ∈[4.5, 14.5] and a2 ∈[3.5,8.5] ⇒ Class=A

is represented by the shaded area in Figure 1 and it means that if an exam-
ple belongs to the subspace {I1

3 ∪ I1
4 ∪ I1

5} ∩ {I2
2 ∪ I2

3}, such example must be
classified as A. In order to count the goals and errors for this rule, each exam-
ple of the dataset is analysed. If the example is covered, that is it fulfills the
conditions of the rule, then the class is compared, as Figure 2 illustrates. In
this case, the rule has 41 goals and 13 errors.This process is repeated for each
individual, which means an unnecessary computational cost due to two aspects
principally:

1 Evaluation cost for only one individual.
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1. Redundant count of examples for those space areas shared by some rules.
2. The whole space exploration to evaluate rules which only cover a part of

such space.

In general, since the cost of the individual evaluation is very high, normally
it is tried to reduce some of the two parameters which take part in this: N and
m. The techniques that reduce the number of attributes m are commonly named
feature selection methods [14], and their goal is to remove those attributes which
are irrelevant and/or harmful for learning. In other way, the example pruning
methods are included into the instance editing techniques [18], and they are
focused on reduce the size of dataset (N). This work is framed in these last
techniques. We propose an instance reduction method that benefits from the
methodology followed by the typical evolutionary algorithms for rule discovery.

3 Example Reduction Method

As we mentioned before, the atomic subspaces can not be divided. Therefore,
although examples which belong to a same subspace can be different syntacti-
cally, from the point of view of the individual evaluation they are semantically
similar. This fact makes possible to count how many examples of each class co-
exist in each atomic subspace and to store these values for its later utilization
in evaluation process. This idea is put into practice in a novel editing method
that removes all those examples that result redundant for evaluation.

To explain our proposal in a clear way, we are going to use the example
showed in Figures 1 and 2, to later generalize the solution to data collections
with any kind of attributes and greater number of classes.

3.1 Algorithm

The aim of the editing method is to reduce the number of examples of the dataset
D to obtain a subset D∗ ⊆ D which contains the same knowledge that D, but
with a smaller number of examples N∗. Initially, we begin from a dataset D
with a number of examples N , where continuous attributes have already been
discretized. From this discretization results a set of atomic intervals per attribute
that define the atomic subspaces. Each example e = (a1, a2, . . . , am|c) is made
up by a collection of attributes and a class (v.g, e1 = (10.1, 6.5 |B). For each
atomic subspace Sij , the instances of each class {εA|εB} are counted and they
are chosen as many representative examples (ec

ij) as different class coexist in the
subspace. These representative examples2 are added to the reduced dataset D∗.
Each representative example have the same form that an original example, but
we add a weight ωc

ij equal to the εc which counts the instances of the class c in the
subspace Sij . The regions with some εc equal to 0 do not have representative
in D∗ for the class c. For example, in Figure 1, eA

43 = (10.5, 7.2 |A, 4) and

2 Although these representatives not have to coincide with some original example, for
simplicity, we choose the first which is in the data set.
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Fig. 3. Reduction for example of Figures 1 and 2

eA
43 = (10.1, 6.5 |B, 13) represent the subspace S43, whereas eA

53 = (13.2, 6.5
|A, 5) is the only representative for the subspace S53. For the empty regions, like
S13, D∗ does not contain any example.

Figure 3 shows the result obtained by this editing method for the example
explained in Figure 1. Representative examples of each atomic subspace are
displayed in bold type, whereas removed examples appear with a lighter color.
The reduced dataset (D∗) are shown to the right and it will be used to the
evaluate process. As we can see, the original dataset, with N = 120 examples,
has been replaced by D∗, with N∗ = 13 weighted examples.

Once editing process has finished, the evaluation of the individuals can be
carried out in a linear way, as it was shown by Figure 2, but now, the number of
examples smaller. Note that it is necessary to take into account the examples’
weight when the goals and errors are counted, since each ec

ij ∈ D∗ represents to
ωc

ij examples in D. This method solves only the first of the problems mentioned
in Section 2, since it continues being needed a linear search throughD∗. However,
our approach is very simple to apply and it achieves satisfactory experimental
results, as Section 4 shows.

Notice that the generalization of the methods for k class and m attribute is
trivial. Simply we would have a collection of class accountant {εc1 |εc2 | . . . |εck

};
and a indexes collection to denote a subspace (Si1...im) or example (ec

i1...im
).

3.2 Discrete Attributes

By applying our proposal for data set with discrete attributes is similar to the
previous one for continue attributes, although we should emphasize some impor-
tant peculiarities.

Continuous attributes, though they are discretized, often define a space much
more complex than the discrete ones, principally due to two reasons: first, the
number of intervals is normally larger in real applications, which multiplies the
number of subspaces; and second, the regions usually include more than one
example, that is, there are examples with the same semantical meaning. Thus,
our proposal has a priori more justification when the dataset contains continuous
attributes.
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When the dataset contains only discrete attributes and there are not re-
peated examples, each atomic subspace contains at the most one example only,
that is, the editing process would not produce reduction in the number of ex-
amples. However, although the multiplicity of examples can look like not much
habitual, it is relatively common. For example, the application of some feature
selection method can cause that some examples are identical if those attributes
that distinguish them was eliminated. Another clear example is given when there
is noise in the dataset. In this case we can remove the repeated examples in a
same atomic subspace by setting wc

ij to 1. However, this solution is not advisable
because we could be eliminating useful information for the learning.

Therefore, the our approach is favourable whenever the dataset contains simi-
lar examples from the point of view of the learning process, otherwise it does not
reduce the size of data. Anyway, our method does not cause a significant increment
in the computational costwith regard to the evolutionary algorithm, and we advise
its use when there is no previous information about the multiplicity of dates.

4 Empirical Results

In order to show the reduction of the computational cost of the evaluation pro-
cess, we have designed the following experiments with some datasets from UCI
Repository [5]. The the evolutionary tool used was Hider [1, 11], that generates
a set of hierarchical decision rules from a labeled dataset. This tool uses its own
discretization method, named Usd [10], before running the evolutionary algo-
rithm that obtains the rules. Thus, the editing method must be applied after
the discretization and before the learning process. This algorithm required some
changes, though minimal, to adapt the evaluation of the individuals to the new
dataset with weight. To check that the editing does not damage the accuracy of
the rules, a 10-fold cross-validation was achieved with each dataset. In this sense,
it is important to point out that the accuracy and complexity of the knowledge
models resulted similar by using the editing method and without it.

The datasets used were: Breast Cancer, Bupa, Cleveland, Glass, Hayes Roth,
Heart, Hepatitis, Horse Colic, Iris, Led7, Pima Diabetes, Tic Tac Toe, Vote and
Zoo. Hider was run for each database by using the original dataset (D) and the
reduced dataset (D*) in order to compare the computational cost in time and
space. Thus, the number of examples was reduced for 8 cases and kept for the
other 6 datasets. Logically, for those last ones, the cost shown a light increase by
using D*, although this never exceeded the 5% with respect to the inverted time
by using D. Among to the 8 databases where the editing had a favourable effect,
the reduction of the dataset was higher than 20% for 6 cases. Table 1 shows this
results. The five first columns show the features of each database: name, number
of examples, number of attributes, type of attributes (continuous or discrete)
and number of class, respectively. The next column is the number of examples
after the editing process. Finally, the three last columns give the relative cost
concerned to the runtime, the evaluation time and the space used. This values
is obtained by dividing, in each case, the cost with D* by the cost with D. The
last row shows each previous relative cost on average.



810 R. Giráldez et al.

Table 1. Results

Features Editing Relative Cost

Dataset N m Type #Classes N∗ Runtime Evaluation Time Space

Breast Cancer W. 699 9 C 2 263 0.44 0.44 0.38
Hayes Roth 132 4 C 3 28 0.33 0.23 0.21
Iris 150 4 C 3 70 0.59 0.57 0.47
Led7 3200 7 D 10 336 0.31 0.13 0.11
Vote 435 16 D 2 342 0.82 0.74 0.79
Zoo 101 16 D 7 59 0.49 0.38 0.58

Average 0.49 0.41 0.42

By observing the average results, the size of dataset is reduced to 42%. This
caused a decrease in the evaluation time to 41%. The rule-learning methods that
EAs use invest approximately 85% of their time in evaluating the individuals (the
mean of the executions of a 10-fold cross-validation with 20 UCI Repository
databases [2]). Therefore, this proves the importance of the evaluation with
regard to the efficiency of the algorithm. We can deduce that the editing method
does not add significant computational cost to the algorithm, so that the runtime
is very similar to the evaluation time. In short, for the dataset of table 1, we
concludes that the our approach speeds up the learning process, by using less
than a half of computational resources, on average.

5 Conclusions and Future Works

In this paper we present new editing method that reduces the evaluation cost
of individuals in evolutionary algorithms for supervised learning. This method
identifies those regions of attribute space that are indivisible during the learning
process, and, furthermore, the method extracts the useful information from each
of them. The method takes advantage of those examples which share the same
region are identical from the point of view of the learning.

After the empirical experiments, we conclude that our proposal produces a
reduction of the computational cost associated to the evaluation of individuals
during the learning, in time and space. This reduction is proportional to the
reduction in the number of the examples that are the result from the editing
process. This no affects to the quality of the knowledge model obtained by the
learning algorithm. If the method does reduce the number of examples, our
method does not cause a significant increment in the computational cost with
regard to the evolutionary algorithm.
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Abstract. Differential Evolution (DE) algorithm is a new heuristic approach 
which has been proposed particulary for numeric optimization problems. It is a 
population based algorithm like genetic algorithms using the similar operators; 
crossover, mutation and selection. In this work, DE algorithm has been applied 
to the design of fixed point digital Finite Impuls Response (FIR) filters and its 
performance has been compared to that of Genetic Algorithm (GA) and Least 
Squares Algorithm (LSQ).  

1   Introduction 

Heuristic optimization algorithms such as genetic algorithm, tabu search and simu-
lated annealing algorithms have been widely used  in the optimal design of digital 
filters. When considering global optimization methods for digital filter design, the GA 
seems to have attracted considerable attention. Filters designed by GA have the poten-
tial of obtaining near global optimum solution [1,2]. However, they are not so suc-
cessful at determining local minimum in terms of convergence speed. In order to 
overcome this disadvantage of GA in numeric optimization problems, Differential 
Evolution algorithm has been introduced by Storn and Price [3]. Differential Evolu-
tion algorithm is a new heuristic approach mainly having three advantages; finding 
the true global minimum of a multi modal search space regardless of the initial 
parameter values, fast convergence, and using a few control parameters. DE algorithm 
is a population based algorithm like genetic algorithms using the similar operators; 
crossover, mutation and selection. The studies on the design of optimal digital  filters 
by using DE algorithm are not as common as GA. In literature, there are only a few 
studies related to the application of DE algorithm to the digital filter design [4-6].  

For the filter parameters the choice of the appropriate binary representation, i.e., 
fixed point or power of two representation, can improve the performance of the filter 
designed. The approximation of FIR digital filters with fixed point representation 
coefficients provides a larger coefficients space than that of power of two for the 
same wordlength so it yields a better performance. In this work, the performance 
comparison of the design methods based on Differential evolution and Genetic algo-
rithms is presented for digital FIR filters with fixed point coefficients since DE algo-
rithm is very similar to, but much simpler than GA. Also, Least Squares design of FIR 
filters is realized for fixed point coefficient coding scheme and the results are com-
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pared. The paper is organized as follows. Section 2 briefly describes a basic genetic 
algorithm. Section 3 presents a basic differential evolution algorithm. Section 4 de-
scribes the application of algorithms to the design of digital FIR filters. Section 5 
presents the simulation results and discussion.  

2   Basic Genetic Algorithm 

The genetic algorithm is an artificial genetic system based on the process of  natural 
selection and genetic operators. It is also a heuristic algorithm which tries to find the 
optimal results by  decreasing the value of objective function (error function) con-
tinuously [7]. A simplified GA cycle is shown in Fig.1. 

 

 

 

 

 

 

Fig. 1. A simplified GA cycle 

Initial population consists of a collection of chromosomes [8]. In practice these 
chromosomes represent a set of solutions for the problem. The chromosome which 
produces the minimum error function value represents the best solution. The chromo-
somes which represent the better solutions are selected by the reproduction operator 
and then sent to the crossover operation. In this operation, two new chromosomes are 
produced from two chromosomes existing in the population. A common point in the 
selected chromosomes is randomly chosen and their corresponding digits are ex-
changed. Thus, new chromosomes which represent the new solutions are produced. 
The next operator is mutation. Generally, over a period of several generations, the 
genes tend to become more and more homogenous. Therefore, many chromosomes 
can not continue to evolve before they reach their optimal state. In the mutation proc-
ess, some bits of the chromosomes mutate randomly. Namely, certain digits will be 
altered from either ‘0’ to ‘1’ or ‘1’  to  ‘0’ in binary encoding [9]. 

In addition to the operators mentioned above GA also contains ‘Elite’ operator. By 
means of Elite operator, the best solution is always kept. In the evaluation process, the 
solutions in the population are evaluated and a fitness value associated with each 
solution is calculated. These fitness values are used by the selection operator. Roulette 
Wheel method is employed for the selection process. 

Evaluation  Mutation 

   Crossover Reproduction

    Initial 
Population 
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1, +Gjiv   if ( jrnd ≤ CR) or  irnj =  

Gjix ,     if ( jrnd >CR) and irnj ≠      

3   Differential Evolution Algorithm 

An optimization task consisting of D parameters can be represented by a D dimen-
sional vector. In DE, a population of NP solution vectors is randomly created at the 
start where NP is a control parameter called population size. Then, the population is 
successfully improved by applying mutation, crossover and selection operators.  

The main steps of a basic DE algorithm is given below: 

Initialization 
Evoluation 
Repeat 

Mutation 
Recombination 
Evaluation 
Selection 

Until (termination criteria are met) 

3.1   Mutation 

For each target vector Gix ,  , a mutant vector is produced by 

 )()( ,3,2,,1,1, GrGrGiGrGiGi xxFxxKxv −⋅+−⋅+=+              (1) 

where }{ NPrrri ,...,2,1,,, 321 ∈  that randomly chosen and must be different from 

each other. In Eq (1), F is the scaling factor [ ]2,0∈  affecting on difference vector 

( )GrGr xx ,3,2 − , K  is the combination factor. 

3.2   Crossover  

The parent vector is mixed with the mutated vector to produce trial vector 1, +Gjiu  

  =+1,Gjiu  (2) 

where j = 1,2,…,D; [ ]1,0∈jr  random number; CR stands for the crossover con-

stant [ ]1,0∈  and ∈irn (1,2,…,D) randomly chosen index. 

3.3   Selection 

Performance of the trial vector and its parent is compared and the better one is se-
lected. This method is usually named greedy selection. All solutions have the same 
chance of being selected as parents without dependence of their fitness value. The 
better one of the trial solution and its parent wins the competition providing signifi-
cant advantage of converging performance over genetic algorithms. 
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4   Application of Algorithms to the Problem 

The transfer function of a FIR filter is given by Equation (3), 

                           
=

−=
N

n

n
n zazH

0

)(                                                      (3) 

na  represents the filter parameters to be determined in the design process and N 

represents the polynomial order of the function. In the design of FIR filter by using 
GA or DE,  firstly the solutions must be represented in the string form of parameters. 
The representation scheme used in this work is shown in Fig. 2. 
 

 

 

Fig. 2. Representation of solutions in string form 

In order to evaluate the strings representing possible FIR filters, Least Mean 
Square (LMS) error is used. The strings which have higher evaluation values repre-
sent the better filters, i.e. the filters with better frequency response. The expression of 
LMS function is given below: 

                [ ] 2

1

2|)(||)(| −=
f

DI fHfHLMS                               (4) 

where )( fH I  is the magnitude response of the ideal filter and )( fH D  is the mag-
nitude response of the designed filter.  The  fitness  function  to be maximized is de-
fined depending on LMS function as the following, 

                                                
i

i LMS
Fitness

1=                                          (5) 

where ifitness  is the fitness value of the solution i and  LMSi  is the LMS error value 

calculated when the solution i is used for the filter. 

4.1   Fixed Point Coding Scheme 

Among the possible quantizations, using the fixed point representation as a represen-
tation scheme provides a larger coefficient space for the same coefficient wordlengths 
and this yields a better performance in most cases. The coefficient space in this repre-
sentation is defined in a ‘b’ bits wordlength as follows: 
 

Fixed point :     
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5   Simulation Results 

The simulations are realized for the symetric FIR filter with the order of  20.  In the 

simulations, the sampling frequency was chosen as Hzf s 1= . Also,  for all the 

simulations the  sampling number was taken as 100. A lowpass filter with the follow-
ing characteristic has been designed. 

                                  
≤≤

≤≤
=

5.03.0,0

25.00,1
)(

f

f
fH                                   (7) 

The control parameter values of  DE and GA used in this work are given in Table 1. 

Table 1.  Control parameter values of  DE and GA algorithms 

 
 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency

M
a
g
n
it
u
d
e

  LSQ with infinite

  precision coefficients

  LSQ with fixed point

  coefficients

  GA with fixed point

  coefficients

  DE  with fixed point

  coefficients

 

Fig. 3. Magnitude responses of filters with fixed point coefficients 

Differential Evolution Algorithm Genetic Algorithm 

Population size = 50 Population size = 50 

Crossover rate = 0.8 Crossover rate = 0.8 

Scaling factor (F) = 0.8 
Combination factor (K) = 0.8 

Mutation rate = 0.01 

Generation number = 500 Generation number  = 500 
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The magnitude responses of the designed digital FIR filters with the fixed point 
coefficients by using DE, GA, and LSQ algorithms for the filter of 20th order  are 
demonstrated in Fig. 3. 

The coefficients relavent to the designs demonstrated in Fig. 3., are given in Table 2.  

Table 2. The coefficients obtained in the designs 

In the case of  LSQ, firstly the filter is designed with infinite precision coefficients 
and then the coefficients are converted to the fixed point form. In the case of GA and 
DE the coefficients are directly produced as fixed point coefficients. 

The maximum deviation rate δ  represents the deviation from the desired response 
in the passband and stopband regions and is usually used for the evaluation of the 
designed filter’s performance. In Table 3, the δ  values for the bands are given for all 
design methods. 

Table 3. Maximum deviation rates 

 Least Squares Design 
(Infinite Precision 

Coefficients) 

Least Squares 
Design 

(Fixed Point ) 

Genetic  
Algorithm 

(Fixed Point) 

Differential  
Evolution  Algorithm 

(Fixed Point) 

passbandδ       0.39019760 0.41524920 0.48050 0.23050 

stopbandδ       0.09032543 0.09087496 0.08636 0.08949 

 Least Square Design 
(Infinite Precision 

Coefficients) 

Least Square 
Design 

(Fixed Point ) 

Genetic  
Algorithm 

(Fixed Point) 

Differential  
Evolution Algorithm 

(Fixed Point) 
a(1) -0.00962590531221 -2 1 -5 
a(2) 0.03273214110702 8 9 4 
a(3) 0.00983774777526 2 1 6 
a(4) -0.04340235407583 -11 -11 -7 
a(5) -0.01000454673447 -3 -1 -7 
a(6) 0.06217196582458 15 17 12 
a(7) 0.01012478623494 3 1 8 
a(8) -0.10520482879053 -26 -27 -25 
a(9) -0.01019737132958 -3 -1 -9 

a(10) 0.31800965173022 79 81 81 
a(11) 0.51022164017166 127 127 127 
a(12) 0.31800965173022 79 81 81 
a(13) -0.01019737132958 -3 -1 -9 
a(14) -0.10520482879053 -26 -27 -25 
a(15) 0.01012478623494 3 1 8 
a(16) 0.06217196582458 15 17 12 
a(17) -0.01000454673447 -3 -1 -7 
a(18) -0.04340235407583 -11 -11 -7 
a(19) 0.00983774777526 2 1 6 
a(20) 0.03273214110702 8 9 4 
a(21) -0.00962590531221 -2 1 -5 
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As seen from Table. 3., DE algorithm provides the minimum deviation from the 
desired response in the passband, namely, it provides the best response in terms of 
deviation. In the stopband region, all the algorithms show the similar performances 
but the performance of GA is  slightly better than the others. 

In Table 4, the LMS error values for the filters designed by GA and DE are given. 
From the table it is clear that the performance of  DE is significiantly better than that 
of GA in terms of LMS error.  

Table 4.  LMS error values for different filter orders 

Algorithms LMS error value 

DE 0.519923 

GA 1.005820 

6   Conclusion 

Differential evolution, genetic and least squares algorithms have been applied to the 
design of digital FIR filters with fixed point coefficients.  Although DE algorithm has 
more simple structure than GA, for the same population size and generation number, 
DE algorithm demonstrates a better performance in terms of magnitude response and 
hence LMS error. Also, in the simulations, it is seen that DE is significiantly faster 
than GA for finding the optimum filter. Consequently,  DE algorithm has succesfully 
designed fixed point digital FIR filter with desired magnitude response and also found 
optimal filter much quicker than GA. Therefore, DE can be succesfully used in fixed 
point digital FIR filter design. 
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Abstract. In many practical applications, the data is organized along a
manifold of lower dimension than the dimension of the embedding space.
This additional information can be used when learning the model param-
eters of Gaussian mixtures. Based on a mismatch measure between the
Euclidian and the geodesic distance, manifold constrained responsibilities
are introduced. Experiments in density estimation show that manifold
Gaussian mixtures outperform ordinary Gaussian mixtures.

1 Introduction

Probability density estimation is a fundamental concept in unsupervised learning
and knowledge discovery. In general, density estimation is performed regardless
of the intrinsic geometric structure of the data. However, they are concentrated
on lower dimensional manifolds embedded in the higher dimensional input space
in many data mining applications. As a result, the true density mass in the
vicinity of a data point is oriented along the manifold, rather than along all the
directions in the input space. Estimating the unknown density by conventional
techniques such as the Parzen windows [1] is suboptimal, as it leads to giving
too much probability to irrelevant directions of space (i.e. perpendicular to the
local manifold orientation) and too little along the manifold. In [2] manifold
Parzen windows are introduced to improve nonparametric density estimation in
this situation. In this paper, a related approach for mixture models is proposed.

In practice, finite mixtures [3], and in particular Gaussian mixtures, can also
be used for nonparametric-like density estimation [4]. That is, provided the num-
ber of components can be varied arbitrarily and provided the numerical difficul-
ties encountered when learning the parameters by the expectation-maximization
(EM) algorithm [5] can be avoided, they are suitable to estimate any unknown
density. The aim of this work is to show how to incorporate the prior knowledge
that the data are located on a lower dimensional manifold during the learning
process by EM. This is achieved by acting on the responsibilities only. Based
on the discrepancy between the Euclidian and the geodesic distance, a manifold
constrained E-step is constructed resulting in better generalization capabilities.
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Section 2 presents how to recover the data manifold and how to approximate
the geodesic distance by the graph distance. In Section 3, the learning procedure
of finite Gaussian mixtures (FGM) by EM is recalled. Section 4 introduces mani-
fold constrained Gaussian mixtures (MFGM) and discusses the resulting E-step.
Finally, in Section 5, the approach is validated experimentally and compared to
Parzen windows using Gaussian isotropic kernels and ordinary FGM.

2 Constructing the Data Manifold

The basic principle of nonlinear data projection techniques, such as CDA [6] and
ISOMAP [7] is to find the lower dimensional data manifold (if any) embedded
in the input space and unfold it. An essential building block for constructing the
manifold is the geodesic distance. This metric is measured along the manifold
and not through the embedding space, akin the Euclidean distance. As a result,
the geodesic distance less depends on the curvature of the manifold, thus taking
the intrinsic geometrical structure of the data into account.

2.1 Geodesic Distances

Consider two data points xi and xj on the multidimensional manifold M of
lower dimensionality as the embedding space. Manifold M is parameterized as
follows:

m : R
p → M ⊂ R

d : t �→ x = m(t) ,

where d is the dimension of the embedding space and p (≤ d) is the dimension of
M. Different paths may go from point xi to point xj . Each of them is described
by a one-dimensional submanifold Pi,j of M with parametric equations:

p : R → Pi,j ⊂ R
p : z �→ t = p(z) .

The geodesic distance between xi and xj is then defined as the minimal arc
length connecting both data samples:

l(xi,xj) = min
p(z)

∫ zj

zi

||Jzm(p(z))||dz ,

where Jz(·) denotes the Jacobian with respect to z. In practice, such a mini-
mization is untractable, since it is a functional minimization.

2.2 Graph Distances

Even though geodesic distances cannot be computed in practice, they can eas-
ily be approximated by graph distances [8]. The problem of minimizing the arc
length between two data samples lying on M reduces to the problem of mini-
mizing the length of path (i.e. broken line) between these samples, while passing
through a number of other data points of M. In order to follow the manifold,
only the smallest jumps between successive samples are permitted. This can be
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achieved by using either the K-rule, or the ε-rule. The former allows jumping to
the K nearest neighbors. The latter allows jumping to samples lying inside a ball
of radius ε centered on them. In the remaining of the paper, we only consider
the K-rule as the choice for ε is more difficult in practice than for K.

The data and the set of allowed jumps constitutes a weighted graph, the
vertices being the data, the edges the allowed jumps and the edge labels the
Euclidean distance between the corresponding vertices. In order to be a distance,
the path length (i.e. the sum of successive jumps) must satisfy the properties of
non-negativity, symmetry and triangular inequality. The first and the third are
satisfied by construction. Symmetry is ensured when the graph is undirected.
For the K-rule, this is gained by adding edges as follows: if xj belongs to the K
nearest neighbors of xi, but xi is not a neighbor of xj then the corresponding
edge is added. Remark also that extra edges are added to the graph in order to
avoid disconnected parts. For this purpose a minimum spanning tree [9] is used.

The only remaining problem for constructing the distance matrix of the
weighted undirected graph is to compute the shortest path between all data
samples. This is done by repeatedly applying Dijkstra’s algorithm [10], which
computes the shortest path between a source vertex and all other vertices in a
weighted graph provided the labels are non-negative (which is here the case).

3 Finite Gaussian Mixtures

A finite Gaussian mixture (FGM) [3] is a linear combination of M Gaussian
distributions:

p̂(x) =
M∑

m=1

πmN (x|µm,Λm) , (1)

The mixing proportions {πm}M
m=1 are non-negative and must sum to one. The

multivariate Gaussian distribution with mean µ and precision or inverse covari-
ance matrix Λ is defined as:

N (x|µ,Λ) = (2π)−
d
2 |Λ| 12 exp

{
−1

2
(x − µ)T Λ (x − µ)

}
, (2)

where x ∈ R
d and |Λ| is the determinant of Λ.

Estimating the true density p(x) by the approximate density p̂(x) then con-
sists in computing the parameters {µm}M

m=1, {Λm}M
m=1 and {πm}M

m=1 based on
the observed data {xn}N

n=1. By applying the EM algorithm [5] their maximum
likelihood estimates can be computed in an elegant way.

Given a particular density model and assuming the data samples are i.i.d.,
the joint distribution of the observed data or data likelihood is:

L = p̂(x1, ...,xN |π1, ..., πM ,µ1, ...,µM ,Λ1, ...,ΛM ) =
N∏

n=1

p̂(xn) .
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Unfortunately for FGM, maximizing L (or equivalently its log) subject to the
constraint on the mixture proportions is untractable, unless one defines a com-
ponent dependent auxiliary variable associated to each data sample:

ρm(xn) =
πmN (xn|µm,Λm)∑M
m=1 πmN (x|µm,Λm)

. (3)

Keeping the auxiliary variables fixed, the Lagrangian logL+λ(
∑M

m=1 πm−1),
λ being the Lagrange multiplier, can be maximized by setting its derivatives with
respect to the model parameters to zero. Rearranging leads to the following
estimation formulas for the component means, precisions and weights:

µm =
∑N

n=1 ρm(xn)xn∑N
n=1 ρm(xn)

, (4)

Λm =

{∑N
n=1 ρm(xn) (xn − µm) (xn − µm)T∑N

n=1 ρm(xn)

}−1

, (5)

πm =
1
N

N∑
n=1

ρm(xn) . (6)

Observe that (4) and (5) are nothing else than weighted averages based on the
auxiliary variables ρm(xn).

EM [5, 3] operates iteratively in two stages. In the E-step, the auxiliary vari-
ables (3) are computed, while the current model parameters are kept fixed.
Subsequently, during the M-step the model parameters are updated according
to (4-6) using the auxiliary variables computed in the E-step. At each iteration
step a monotonic increase of the likelihood function is guaranteed [11].

Interpretation of the E-Step. Each mixture proportion πm is the prior pro-
bability of having the mth component of the mixture. Recalling Bayes’ rule, it
can easily be seen from expression (3) that each auxiliary variable ρm(xn) is
the posterior probability that data sample xn was generated by the mixture
component m, provided density model (1). In other words, it corresponds to the
probability of having component m if data sample xn is observed:

P̂ (m|xn) =
P (m)p̂(xn|m)

p̂(xn)
=

πmN (xn|µm,Λm)∑M
m=1 πmN (xn|µm,Λm)

= ρm(xn) .

The auxiliary variables are therefore often called responsibilities.

Latent Variable Viewpoint of the E-Step. More formally, finite mixture
models can be viewed as latent variable models. The component label asso-
ciated to each data sample is unobserved, that is we do not know by which
component a data sample was generated. Consider the set of binary latent vec-
tors {zn}N

n=1, with latent variables znm ∈ {0, 1} indicating which component has



824 C. Archambeau and M. Verleysen

generated xn (znm = 1 if xn was generated by component m and 0 otherwise,
and

∑M
m=1 znm = 1). The prior distribution of the latent variables and the con-

ditional distribution of observed data are then respectively:

P̂ (zn) =
M∏

m=1

π znm
m , p̂(xn|zn) =

M∏
m=1

N (xn|µm,Λm)znm .

Marginalizing over the latent variables results indeed in (1). Given this latent
variable model, it can be shown that EM maximizes iteratively the expected
complete data log-likelihood with respect to the posterior distribution of the
latent variables (subject to the constraint on the mixture proportions):

Ez|x [logL] =
N∑

n=1

M∑
m=1

Ez|x [znm]︸ ︷︷ ︸
ρm(xn)

{log πm + logN (xn|µm,Λm)} ,

where Ez|x [·] is the expectation with respect to P̂ (znm|xn). In other words, EM
uses the expected value of the latent variables as indicator of the component that
generated the data samples. This expected value is equal to the responsibility.

4 Manifold Finite Gaussian Mixtures

Assume the data is lying on a manifold of lower dimension than the dimension
of the input space. It would be appealing to take this additional information
into account when learning the model parameters. Below, we explain how to
achieve this by adjusting the responsibilities according to some prior belief on
the discrepancy between the Euclidian and the geodesic distance.

4.1 Manifold Constrained E-Step

Let us respectively denote the Euclidian and graph distance between sample xn

and component mean µm by δe(xn,µm) and δg(xn,µm). The graph distance
δg(xn,µm) approximates the corresponding geodesic distance l(xn,µm).

Consider the exponential distribution with location parameter γ and scale
parameter β:

E(y|γ, β) =
1
β

exp
{
−y − γ

β

}
. (7)

Setting γ to δe(xn,µm)2 and y to δg(xn,µm)2 provides an appropriate measure
of the mismatch between both distances, since δe(xn,µm) ≤ δg(xn,µm). The
adjusted responsibilities can be defined as follows:

ρm
′(xn) =

P (m)p̂′(xn|m)
p̂′(xn)

=
πmNE(xn|µm,Λm)∑M

m=1 πmNE(xn|µm,Λm)
, (8)

where NE(xn|µm,Λm) is a Gaussian-Exponential distribution of the following
particular form:

NE(xn|µm,Λm) = N (xn|µm,Λm)E(δg(xn,µm)2|δe(xn,µm)2, 1) . (9)
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Choosing β equal to 1 leaves the responsibility unchanged if both distances
are identical. However, when the discrepancy between the distances increases
the conditional distribution p̂′(xn|m) decreases. This means that it is less likely
that data sample xn was generated by component m because the corresponding
geodesic distance is large compared to the Euclidian distance. This results in
a weaker responsibility. As a consequence, data samples lying far away from
the component means on the manifold will contribute less to the update of the
corresponding component means and precisions during the M-step.

Remark also that adapting the responsibilities in this way is consistent with
the latent variable viewpoint. It can be shown that in this case, manifold con-
strained EM maximizes iteratively the expected complete data log-likelihood
with respect to the resulting adjusted posterior P̂ ′(znm|xn) instead of P̂ (znm|xn):

Ez|x [logL] =
N∑

n=1

M∑
m=1

Ez|x [znm]︸ ︷︷ ︸
ρm

′(xn)

{log πm + logN (xn|µm,Λm)} .

In this equation Ez|x [·] is the expectation with respect to the posteriorP̂ ′(znm|xn),
which is adjusted according to the mismatch between both distances.

4.2 Learning Manifold Gaussian Mixtures

The learning procedure for manifold constrained finite Gaussian mixtures
(MFGM) can be summarized as follows:

1. Construct the learning manifold by the K-rule and compute the associated
distance matrix δg(xi,xj) by Dijkstra’s shortest path algorithm.

2. Repeat until convergence:

Update the distance matrix of the component means. Find for each
µm the K nearest training samples {xk}K

k=1 and compute its graph dis-
tances to all training data by δg(xn,µm)= mink{δg(xn,xk)+δe(xk,µm)}.

E-step. Compute the manifold constrained responsibilities by (8).
M-step. Update the model parameters by (4-6).
End.

Remark that the increase of the computational cost at each iteration step is
limited with respect to conventional FGM. Indeed, updating the distance matrix
of the component means does not require to recompute the data manifold, nor
to re-apply Dijkstra’s algorithm. The additional computational effort is due to
the construction of the learning manifold and the computation of its distance
matrix; both are performed only once (in step 1).

5 Experimental Results

In this section, the quality of MFGM density estimators are assessed on three 2D
artificial data sets. MFGM is compared to ordinary FGM and Parzen windows
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(a) Learn. Manif. (b) MFGM(-1.25). (c) FGM(-1.17). (d) Parzen (-1.04)

(e) Learn. Manif. (f) MFGM (- 0.41). (g) FGM (-0.31). (h) Parzen (- 0.59).

(i) Learn. Manif. (j) MFGM (4.53). (k) FGM (4.61). (l) Parzen (4.62).

Fig. 1. Density estimators of a Cross, a Spiral and a S-shape. Each column shows

successively the learning manifolds, the estimates of MFGM, ordinary FGM and Parzen

windows. For each model, the ANLL of the test set is between parentheses

using Gaussian kernels [1]. The performance measure that we use is the average
negative log-likelihood of the test set {xq}Nt

q=1: ANLL = − 1
Nt

∑Nt

q=1 log p̂(xq).
The first distribution is a Cross. The data samples are generated from a

uniform U(−0.5,+0.5) in horizontal or vertical direction with probability 1
2 .

Gaussian noise with zero mean and standard deviation σn = 0.03 is added in
the transversal direction. The training set and the validation set contain both
100 samples, and the test set 500 samples. For comparison purposes M is fixed
a priori to 4 for both mixture models. The density estimators using the opti-
mal kernel width for Parzen windows (σopt = 0.03) and the optimal number of
neighbors for MFGM (Kopt = 3), as well as the ANLL are shown in Figure 1.

The second data set is located along a noisy Spiral. A training set of 300
points, a validation set of 300 points and a test of 1000 points were generated
from the following distribution: x = [0.04t sin(t) + e1,−0.04t cos(t) + e2], where
t ∼ U(3, 15) and e1, e2 ∼ N (0, 0.025−2). The number of components in the
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mixtures is fixed to 10, the optimal kernel width for Parzen is 0.025 and the
optimal number of neighbors for constructing the learning manifold is 4. The
results are shown in Figure 1.

The third distribution has a S-shape. A training set, validation set a and test
set of respectively 100, 100 and 1000 points are generated from one of the fol-
lowing distributions with probability 1

2 : x = [3 cos(t) − 3 + e1,−10 sin(t) + e2] or
x = [3 cos(t) + 3 + e1, 10 sin(t) + e2], with t ∼ U(0, π) and e1, e2 ∼ N (0, 0.5−2).
The results for M = 6, σopt = 0.5 and Kopt = 10 are shown in Figure 1.

Discussion. Visually MFGM gives the best results for the three experiments,
the discretization step being chosen sufficiently small to avoid visual artifacts.
On the one hand, MFGM provides smoother estimates than Parzen windows.
On the other hand, the geometric arrangement of the data is better respected
with MFGM than with conventional FGM. In the case of the spiral, FGM com-
pletely fails to provide a good estimate as one component mixes two branches.
Numerically, MFGM generalizes better than FGM in the three examples, as we
observe a lower ANLL on the test set (see Fig. 1). Note also that the MFGM is
not sensitive to few unhappy edges in the learning manifold, e.g. the S-shape.

6 Conclusion

In this paper, manifold finite Gaussian mixtures (MFGM) were introduced. It
was shown that in situations where the data are located along a lower dimen-
sional manifold, MFGM outperforms ordinary FGM. As with FGM, the param-
eters of MFGM are learnt by EM, except that the E-step is further constrained
according to the mismatch between the Euclidean and the geodesic distance. As
a result, training samples lying close to a component mean in Euclidean space,
but far away on the manifold, will less contribute to the computation of the
corresponding mean and covariance matrix in the M-step. In the near future, we
plan to extend the approach to other mixtures models, e.g. Student-t mixtures.
We also plan to study the effect of fine tuning hyperparameter β, which regulates
how the mismatch between both distances penalizes the responsibilities.
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Abstract. This paper is concerned with the comparison of three types of 
Gaussian based Artificial Neural Networks in the very high dimensionality 
classification problems found in hyperspectral signal processing. In particular, 
they have been compared for the spectral unmixing problem given the fact that 
the requirements for this type of classification are very different from other 
realms in two aspects: there are usually very few training samples leading to 
networks that are very easily overtrained, and these samples are not usually 
representative in terms of sampling the whole input-output space. The networks 
selected for comparison go from the classical Radial Basis Function (RBF) 
network to the more complex Gaussian Synapse Based Network (GSBN) 
considering an intermediate type, the Radial Basis Function with Multiple 
Deviation (RBFMD). The comparisons were carried out when processing a 
benchmark set of synthetic hyperspectral images containing mixtures of spectra 
from materials found in the US Geological Service database. 

1   Introduction 

As remote sensing of the earth becomes a more important element in the toolbox of 
scientists, the mechanisms for processing the ever larger data streams coming from 
the instruments used for this purpose increase their relevance. High resolution 
hyperspectrometers are among the instruments that will be used in an ever increasing 
number [1][2][3]. In hyperspectral remote sensing images, each spatial resolution 
element data is acquired with high spectral resolution over the electromagnetic 
spectrum ranging the 400-2500 nm (visible to near infrared). It is commonplace to use 
50 to 250 spectral bands of bandwidths in the 5 to 20 nm range. The large amount of 
information hyperspectral imaging provides permits a detailed description of the 
spectral signature thus greatly improving the ability to detect and identify individual 
materials or classes with respect to other remote sensing techniques.  

Any analysis or classification method for hyperspectral image processing is aimed 
at the identification of what pixels contain different spectrally distinct materials 
(endmembers) and in what proportions. A number of approaches based on statistical 
theory or using filtering or correlations have been applied to the analysis of these data 
sets by different authors with the objective of improving the classification results [4]. 
Some of these methods are compared using classification performance in [5].  

From this point of view, artificial neural networks (ANNs) appear as a very suitable 
and effective alternative to deal with spectral image analysis difficulties [6] [7]. In the 
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case of ANNs trained using supervised training algorithms, the main drawback to 
performing the analysis and classification of hyperspectral remote sensing data is the 
difficulty in obtaining labelled sample data that can be trusted to the point of using it for 
quantitative evaluation. The scarcity of ground truth data has been recognized and 
specific training strategies have been devised to cope with this handicap [8], [9].  In fact, 
in an ideal world, we would be able to obtain a training procedure that produces good 
classifiers from very small training sets. This problem becomes even more pronounced 
when pixels correspond to combinations of materials, that is, the “spectral unmixing” 
problem [6]. Ideally, hyperspectral images may allow the identification of single pixel 
materials. However as these pixels are frequently combinations of materials, it is often a 
plus to be able to decompose each pixel spectrum into its constituent material spectra. 
The cause of the mixture of several material spectra into a hyperspectral pixel spectrum 
may be that different land covers are included in the area whose radiance measurement 
results in an image pixel. 

In this work we assume a linear mixture model, in which several basic materials 
(endmembers) are combined according to some abundance coefficients at each image 
pixel. Taking its spatial distribution, the abundance coefficients may be visualized as 
abundance images, which provide a description of the spatial distribution of the 
material. The computation of the abundance coefficients given a pixel spectrum and a 
set of endmembers is what is termed the unmixing procedure. If the endmembers are 
given, the unmixing procedure is equivalent to the parallel detection of the spectral 
features represented by the endmembers.  

One basic approach is classical, if you concentrate only on what is relevant the 
classification becomes much more robust and efficient. This is the approach followed 
in the work leading to this paper. An Artificial Neural Network architecture and 
training algorithm that implement an automatic procedure to concentrate on what is 
relevant and ignore what is not straight from the training set is required in order to 
effectively perform the task. To do this, many authors have resorted to Gaussian 
based ANNs as a way to implicitly establish this filtering ability in the network. This 
is the case of the work of Dundar and Landgrebe [10] with RBFs, where the authors 
claim that Gaussian RBFs have proven to be in their case the most effective network 
for hyperspectral image processing, or that of Crespo et al. [11] with GSBNs where 
the Gaussian processing has been transferred to the synapses, thus providing more 
degrees of freedom.  

In this paper the objective is to evaluate the performance of three Gaussian based 
types of ANNs when dealing with multidimensional signals and very few training 
points are available. These three types of networks range from the classical Radial 
Basis Function Network as proposed above, to a modification of RBFs where they 
have been endowed with trainable deviations for each dimension, to the more 
versatile Gaussian Synapse Based networks. In the sections that follow we will 
describe this networks and through a similar backpropagation based training 
algorithm we will compare their performance when unmixing a benchmark set of 
images based on Graña et al´s repository. 
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2   Description of the ANNs 

Gaussian based ANNs have been widely applied in image processing due to their 
capabilities in noise filtering. As commented in the previous section, we are going to 
compare the results provided by three different types of these networks. In the radial 
basis function (RBF) neural networks the input layer directly transmits the inputs to 
the neurons of the hidden layer. In these neurons the Gaussian function is applied over 
the inputs by using one parameter per synapse (center) and one parameter per hidden 
neuron (deviation). The output provided by the neurons in the hidden layer passes to 
the output neurons trough a linear combination of weights as in a perceptron. The 
radial basis function with multiple deviation (RBFMD) neural networks are 
structurally similar to RBF networks but having one deviation parameter per synapse  
 

 

Fig. 1. Top graph represents an RBF neural network, middle graph and RBFMD neural 
network and bottom graph a GSBN 
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Fig. 2. Representation of the spectra corresponding to the 5 endmembers used to generate the 
training and test data sets 

instead of per neuron in the hidden layer. Finally, the Gaussian synapse based 
networks (GSBN) have a multilayer perceptron structure, but replacing the simple 
weights used in the synapses by Gaussian functions in order to filter the inputs. The 
main difference between these three types of networks is the number of parameters to 
be trained, being the RBF the one requiring fewer parameters and the GSBN the one 
requiring most. As it is shown in the next section, this number of parameters 
determines the complexity of the learning process and the generalization capability.  

 

Fig. 3. Modeling over the training set (left) and the test set (right) provided by one of the networks 
for two significant error values: 0.009 in top graphs and 0.005 in bottom graph 

The relevant differences between these types of ANNs arise from their basic 
structural units as shown in Fig. 1. These units have two input neurons (x and y) and 
one output neuron (z). The top graph of Fig. 1 corresponds to a RBF neural network, 
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in which a single parameter per synapse (the centers Cx and Cy) should be trained. The 
middle graph corresponds to a RBFMD neural network where two parameters per 
synapse must be trained (the centers Cx and Cy and the deviations dx and dy). Finally, 
at the bottom is a GSBN neural network where 3 parameters per synapse should be 
trained (ax, bx, cx, ay, by and cy). The right part of Fig. 1 provides a representation of 
the decision boundaries implementable by each of these three ANNs when the input 
variables range between -3 and 3. This corresponds to the possible outputs provided 
by a certain neuron of the hidden layer to the next layer. As it can be seen, RBF 
networks (top graph) provide symmetric decision boundaries in both axes while the 
RBFMD ones (middle graph) are able to filter independently on each axis presenting 
a more flexible decision boundary. This capability is very suitable for our purposes 
because the network has higher degree of freedom to filter the information. In the case 
of the GSBN network (bottom graph) we can see a more complex decision boundary 
because the filtering appears in both axes independently again and, in addition, the 
shared zone could be discriminated through the value of the sigmoids in the neurons. 

The main reason for studying networks that provide more complex and flexible 
decision boundaries is the high dimensionality of the search space and the complexity 
of the subspace to discriminate in hyperespectral unmixing problems. The application 
of these networks increases the number of parameters that must be trained and, 
consequently, the computational cost but it should be compensated by the decrease of 
the minimum necessary network size and, what is more important, the speed of the 
network training stage as well as the need to use fewer training samples. 

In the next section we will show the result of the comparison between the three 
types of networks presented applied to a hyperespectral image. 
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Fig. 4. Number of neurons in the hidden layer versus the number of iterations to achieve the 
desired for the 3 types of networks (RBF represented by hollows, RBFMD by solids and GSBN 
by marks) with 3 different mu values for each one 
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3   Comparison of Networks 

To compare the networks we have used a set of 5 synthetic endmembers developed by 
Graña et al. [14] which is shown in Fig. 2. A training set containing 10 spectra 
resulting from the linear combination of these 5 endmembers and a test set of 1000 
spectra have been created. The training algorithms applied are variations of the 
classical backpropagation algorithm modified for the radial basis functions [13] and 
for the Gaussian synapses [12]. This training process is applied over the training set 
for each type of network and every iteration the network is tested over the test set. 

First of all, in Fig. 3 we have represented the modeling over the training and the 
test sets provided by one of the networks for two significant error values. From the 
curves we can establish that the learning has been successful when the MSE is lower 
than 0.005 according to the modeling over the test set. 
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Fig. 5. MSE evolution with respect to the number of iterations in the training process and in the 
test process using a RBF network with 8 neurons (top graph), a RBFMD with 4 neurons 
(middle graph) and a GSBN with 2 neurons (bottom graph) 
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To measure the quality of the network obtained we will focus on two main 
parameters: the number of iterations required to achieve a given error value and the 
stability of error evolution (to detect overtraining problems). In the first case, in order 
to compare the three types of networks we have used two parameters: the learning 
coefficient mu and the number of neurons in the hidden layer. In Fig. 4 we show 
number of neurons in the hidden layer versus the number of iterations to achieve the 
desired error for the 3 types of networks (RBF represented by hollow symbols, 
RBFMD by solid symbols and GSBN by line symbols) and with 3 different mu values 
for each one. The data shown in the figure provide a good indicator of several facts. 
On one hand, RBF based networks are a lot slower than other types of networks in 
every case, even when taking into account the same number of parameters. Take into 
account, that an RBF with 6 neurons has the same number of trainable parameters 
than a RBFMD with 3 neurons and a GSBN with 2 neurons. The RBFMD is clearly 
more efficient in terms of reaching the solution in less iterations, but the one that 
performs the best is the GSBN. This is so for just about any size of the network. The 
figure shows that the influence of the mu parameter is only significant in the case of 
GSBN networks where just low mu values provide valid errors, if training is carried 
out with high mu the networks take very long to achieve a result and often they will 
end up overtraining.. 

In terms of overtraining, taking into account the different number of parameters 
that characterize each type of network, we must select networks with different number 
of neurons in the hidden layer in order to perform an equivalent comparison. Thus, in 
Fig. 5 we have represented the MSE evolution against the number of iterations in the 
training process and in the test process using a RBF network with 8 neurons (top 
graph), a RBFMD with 4 neurons (middle graph) and a GSBN with 2 neurons 
(bottom graph).  In this test, we have provided a little advantage for the RBF in terms 
of number of parameters, but we wanted to make sure it did not overtrain. As we can 
see, in the case of the RBF network, the evolution of the error in the test process is 
highly stable because the network does not overtrain. On the other hand, GSBN and, 
mainly, the RBFMD networks are more unstable they are very sensitive to 
overtraining and having achieved a given error for the test set as training progresses 
this level of error may increase and even create large oscillations in the case of 
RBFMD with large mus.. 

This way, from these results the main conclusion we can extract is that although 
the three types of networks achieve the desired error value (MSE=0.005) in almost all 
cases, the RBF networks are the one that need more iterations for training for the 
same number of trainable parameters. The GSBN networks are the ones that need less 
iterations. Finally, RBFMD are in an intermediate point in both features but are quite 
sensitive to overtraining, probably because of the deviation parameter in the 
denominator of the exponential. 

4   Conclusions 

In this paper we have compared three types of Gaussian based artificial neural 
networks in terms of their performance when addressing the spectral unmixing 
problem in a set of benchmark synthetic hyperspectral images. From this comparison 
it is clear that for equivalent number of parameters in the networks, the Gaussian 
synapse based networks converge to very good classification results in less iterations 
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than the other two, whereas the radial basis functions do so in a much smoother 
fashion. In terms of the overtraining behavior, it is clear to see that the RBF networks 
are much harder to overtrain and thus perform much better on the test sets 
independently of the length of the training period (which in many cases is very hard to 
set beforehand), obviously, at the cost of a much slower training process. 
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Abstract. A robust and effective voice activity detection (VAD) al-
gorithm is proposed for improving speech recognition performance in
noisy environments. The approach is based on filtering the input chan-
nel to avoid high energy noisy components and then the determina-
tion of the speech/non-speech bispectra by means of third order auto-
cumulants. This algorithm differs from many others in the way the de-
cision rule is formulated (detection tests) and the domain used in this
approach. Clear improvements in speech/non-speech discrimination ac-
curacy demonstrate the effectiveness of the proposed VAD. It is shown
that application of statistical detection test leads to a better separation
of the speech and noise distributions, thus allowing a more effective dis-
crimination and a tradeoff between complexity and performance. The
algorithm also incorporates a previous noise reduction block improving
the accuracy in detecting speech and non-speech.

1 Introduction

Nowadays speech/non-speech detection is a complex problem in speech process-
ing and affects numerous applications including robust speech recognition [1],
discontinuous transmission [2, 3], real-time speech transmission on the Internet
[4] or combined noise reduction and echo cancellation schemes in the context
of telephony [5]. The speech/non-speech classification task is not as trivial as
it appears, and most of the VAD algorithms fail when the level of background
noise increases. During the last decade, numerous researchers have developed
different strategies for detecting speech on a noisy signal [6] and have evaluated
the influence of the VAD effectiveness on the performance of speech processing
systems [7]. Most of them have focussed on the development of robust algorithms
with special attention on the derivation and study of noise robust features and
decision rules [8, 9, 10]. The different approaches include those based on energy
thresholds [8], pitch detection [11], spectrum analysis [10], zero-crossing rate [3],
periodicity measure [12], higher order statistics in the LPC residual domain [13]
or combinations of different features [3, 2]. This paper explores a new alternative
towards improving speech detection robustness in adverse environments and the
performance of speech recognition systems. The proposed VAD proposes a noise
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c© Springer-Verlag Berlin Heidelberg 2005
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reduction block that precedes the VAD, and uses Bispectra of third order cumu-
lants to formulate a robust decision rule. The rest of the paper is organized as
follows. Section 2 reviews the theoretical background on Bispectra analysis and
shows the proposed signal model, analyzing the motivations for the proposed
algorithm by comparing the speech/non-speech distributions for our decision
function based on bispectra and when noise reduction is optionally applied. Sec-
tion 3 describes the experimental framework considered for the evaluation of the
proposed statistical decision algorithm. Finally, section summarizes the conclu-
sions of this work.

2 Model Assumptions

Let {x(t)} denote the discrete time measurements at the sensor. Consider the
set of stochastic variables yk, k = 0,±1 . . .±M obtained from the shift of the
input signal {x(t)}:

yk(t) = x(t + k · τ) (1)

where k · τ is the differential delay (or advance) between the samples. This
provides a new set of 2 · m + 1 variables by selecting n = 1 . . . N samples of the
input signal which can be represented using the associated Toeplitz matrix.

Using this model the speech-non speech detection can be described by using
two essential hypothesis(re-ordering indexes):

Ho =

⎛
⎜⎜⎝

y0 = n0

y±1 = n±1

. . .
y±M = n±M

⎞
⎟⎟⎠ ; H1 =

⎛
⎜⎜⎝

y0 = s0 + n0

y±1 = s±1 + n±1

. . .
y±M = s±M + n±M

⎞
⎟⎟⎠ (2)

where sk’s/nk’s are the speech/non-speech (any kind of additive background
noise i.e. gaussian) signals, related themselves with some differential parameter.
All the process involved are assumed to be jointly stationary and zero-mean.
Consider the third order cumulant function Cykyl

defined as:

Cykyl
≡ E[y0ykyl]; Cykyl

(ω1, ω2) =
∞∑

k=−∞

∞∑
l=−∞

Cykyl
·exp(−j(ω1k+ω2l))) (3)

and the two-dimensional discrete Fourier transform (DFT) of Cykyl
, the bispec-

trum function. The sequence of cumulants of the voice speech is modelled as a
sum of coherent sine waves:

Cykyl
=

K∑
n,m=1

anmcos[knω1
0 + lmω2

0 ] (4)

where anm is amplitude, K × K is the number of sinusoids and ω is the fun-
damental frequency in each dimension. It follows from equation 4 that amn is
related to the energy of the signal Es = E{s2}. The VAD proposed in the later
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Fig. 1. Different Features allowing voice activity detection. (a) Features of Voice Speech

Signal. (b) Features of non Speech Signal

reference only works with the coefficients in the sequence of cumulants and is
more restrictive in the model of voice speech. Thus the Bispectra associated to
this sequence is the DTF of equation 4 which consist in a set of Dirac´s deltas
in each excitation frequency nω1

0 ,mω2
0 . Our algorithm will detect any high fre-

quency peak on this domain matching with voice speech frames, that is under
the above assumptions and hypotheses, it follows that on H0,

Cykyl
(ω1, ω2) ≡ Cnknl

(ω1, ω2) � 0 (5)

and on H1:
Cykyl

(ω1, ω2) ≡ Csksl
(ω1, ω2) �= 0 (6)

Since sk(t) = s(t + k · τ) where k = 0,±1 . . . ± M , we get

Csksl
(ω1, ω2) = F{E[s(t + k · τ)s(t + l · τ)s(t)]} (7)

The estimation of the bispectra (equation 3) is deep discussed in [14] and
many others, where conditions for consistency are given. The estimate is said
to be (asymptotically) consistent if the squared deviation goes to zero, as the
number of samples tends to infinity.

2.1 Detection Tests for Voice Activity

The decision of our algorithm implementing the VAD is based on statistical
tests from references [15] (Generalized likelihood ratio tests) and [16] (Central
χ2-distributed test statistic under H0). We will call the tests GLRT and χ2 tests.
The tests are based on some asymptotic distributions and computer simulations
in [17] show that the χ2 tests require larger data sets to achieve a consistent
theoretical asymptotic distribution. Then we decline to use it unlike the GLRT
tests.

If we reorder the components of the set of L Bispectrum estimates Ĉ(nl,ml)
where l = 1, . . . , L, on the fine grid around the bifrequency pair into a L vec-
tor βml where m = 1, . . . P indexes the coarse grid [15] and define P-vectors
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φi(β1i, . . . , βPi), i = 1, . . . L; the generalized likelihood ratio test for the above
discussed hypothesis testing problem:

H0 : µ = 0 against H1 : η ≡ µT σ−1µ > 0 (8)

where µ = 1/L
∑L

i=1 φi and σ = 1/L
∑L

i=1(φi−µ)(φi−µ)T , leads to the activity
voice speech detection if:

η > η0 (9)

where η0 is a constant i.e. the probability of false alarm.

2.2 Noise Reduction Block

Almost any VAD can be improved just placing a noise reduction block in the data
channel before it. The noise reduction block for high energy noisy peaks, consists
of four stages(1) Spectrum smoothing 2)Noise estimation 3)Wiener Filter (WF)
design and 4)Frequency domain filtering) and was first developed in [18].

2.3 Some Remarks About the Algorithm

We propose a alternative decision based on an average of the components of the
bispectrum (the absolute value of it). In this way we define η as:

η =
1

L · N

L∑
i=1

N∑
j=1

∣∣∣Ĉ(i, j)
∣∣∣ (10)

where L,N defines the selected grid (high frequencies with noteworthy variabil-
ity). We also include long term information (LTI) in the decision of the on-line
VAD [19] which essentially improves the efficiency of the proposed method as is
shown the following pseudocode:

– Initialize variables
– Determine η0 of noise in the first frame
– for i=1 to end:

1. Consider a new frame (i)
calculate η(i)

2. if H1 then
• VAD(i)=1
• apply LTI to VAD(i-τ)

else
• Slow Update of noise parameters: η0(i + 1) = αη0 + βη(i),

α + β = 1 α → 1
• apply LTI to VAD(i-τ)

Fig. 2 shows the operation of the proposed VAD on an utterance of the Span-
ish SpeechDat-Car (SDC) database [20]. The phonetic transcription is: [“siete”,
“θinko”, “dos”, “uno”, “otSo”, “seis”]. Fig 2(b) shows the value of η versus
time. Observe how assuming η0 the initial value of the magnitude η over the
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Fig. 2. Operation of the VAD on an utterance of Spanish SDC database. (a) Evaluation

of η and VAD Decision. (b) Evaluation of the test hypothesis on an example utterance

of the Spanish SpeechDat-Car (SDC) database [20]

first frame (noise), we can achieve a good VAD decision. It is clearly shown how
the detection tests yield improved speech/non-speech discrimination of fricative
sounds by giving complementary information. The VAD performs an advanced
detection of beginnings and delayed detection of word endings which, in part,
makes a hang-over unnecessary. In Fig 1 we display the differences between noise
and voice in general and in figure we settle these differences in the evaluation of
η on speech and non-speech frames.

3 Experimental Framework

The ROC curves are frequently used to completely describe the VAD error rate.
The AURORA subset of the original Spanish SpeechDat-Car (SDC) database
[20] was used in this analysis. This database contains 4914 recordings using
close-talking and distant microphones from more than 160 speakers. The files
are categorized into three noisy conditions: quiet, low noisy and highly noisy
conditions, which represent different driving conditions with average SNR val-
ues between 25dB, and 5dB. The non-speech hit rate (HR0) and the false alarm
rate (FAR0= 100-HR1) were determined in each noise condition being the ac-
tual speech frames and actual speech pauses determined by hand-labelling the
database on the close-talking microphone. Fig. 3 shows the ROC curves of the
proposed VAD (BiSpectra based-VAD) and other frequently referred algorithms
[8, 9, 10, 6] for recordings from the distant microphone in quiet, low and high
noisy conditions. The working points of the G.729, AMR and AFE VADs are
also included. The results show improvements in detection accuracy over stan-
dard VADs and similarities over representative set VAD algorithms [8, 9, 10, 6].
The benefits are especially important over G.729, which is used along with a
speech codec for discontinuous transmission, and over the Li’s algorithm, that
is based on an optimum linear filter for edge detection. On average (HR0+HR1

2 ),
the proposed VAD is similar to Marzinzik’s VAD that tracks the power spectral
envelopes, and the Sohn’s VAD, that formulates the decision rule by means of
a statistical likelihood ratio test. These results clearly demonstrate that there is
no optimal VAD for all the applications. Each VAD is developed and optimized
for specific purposes. Hence, the evaluation has to be conducted according to the
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(a)

(b)

(c)

Fig. 3. ROC curves obtained for different subsets of the Spanish SDC database at

different driving conditions: (a) Quiet (stopped car, motor running, 12 dB average

SNR). (b) Low (town traffic, low speed, rough road, 9 dB average SNR). (c) High

(high speed, good road, 5 dB average SNR)
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Table 1. Average speech/non-speech hit rates for SNRs between 25dB and 5dB. Com-

parison of the proposed BSVAD to standard and recently reported VADs

G.729 AMR1 AMR2 AFE (WF) AFE (FD)

HR0 (%) 55.798 51.565 57.627 69.07 33.987
HR1 (%) 88.065 98.257 97.618 85.437 99.750

Woo Li Marzinzik Sohn BSVAD

HR0 (%) 62.17 57.03 51.21 66.200 85.150
HR1 (%) 94.53 88.323 94.273 88.614 86.260

specific goal of the VAD. Frequently, VADs avoid loosing speech periods leading
to an extremely conservative behavior in detecting speech pauses (for instance,
the AMR1 VAD). Thus, in order to correctly describe the VAD performance,
both parameters have to be considered. On average the results are conclusive
(see table 1).

4 Conclusion

This paper presented a new VAD for improving speech detection robustness in
noisy environments. The approach is based on higher order Spectra Analysis
employing noise reduction techniques and order statistic filters for the formu-
lation of the decision rule. The VAD performs an advanced detection of begin-
nings and delayed detection of word endings which, in part, avoids having to
include additional hangover schemes. As a result, it leads to clear improvements
in speech/non-speech discrimination especially when the SNR drops. With this
and other innovations, the proposed algorithm outperformed G.729, AMR and
AFE standard VADs as well as recently reported approaches for endpoint de-
tection. We think that it also will improve the recognition rate when it was
considered as part of a complete speech recognition system.
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Abstract. Due to the demand for cellular wireless services, recent interests are 
in techniques, which can improve the capacity of CDMA systems. On such 
technique is multi-user detection. Multi-user Detection (MUD) is the intelligent 
estimation/demodulation of transmitted bits in the presence of Multiple Access 
Interference (MAI). In this paper, we will show the role of matched filter used 
as pre-processing tool for MUD in DS-CDMA system. 

1   Introduction 

Code Division Multiple Access (CDMA), as a spread spectrum technique has become 
widely accepted as the future of cellular systems. In an orthogonal DS-CDMA 
cellular system, multiple users are allowed to transmit simultaneously by assigning to 
them orthogonal signature waveforms. The orthogonality of these signature 
waveforms ensures that each user’s signal can be extracted from its superposition 
with all the other signals at the receiver end. However, theoretical limits on the 
number of orthogonal sequences places an upper bound on the number of users that 
can be supported by such a system.  

Also practically, the inherent nature of the wireless channel introduces multiple 
path fading and delays, which destroy the orthogonality of these signature waveforms. 
In such a scenario, it is often desirable to use signature waveforms with low cross 
correlation’s (almost orthogonal) to ensure minimum degradation in performance. 
The role of multi-user detection becomes increasingly crucial in non-orthogonal 
CDMA systems. 

A communication system can achieve significant capacity gains if the negative 
effect of Multiple-User Interference (MUI) can be removed. In multi-user detection 
we exploit the correlation properties of the signature waveforms of different users to 
extract the desired signal(s). Then instead of acting as interference, the other users’ 
signals are used for mutual benefit by implementing joint detection at the receiver. 
The optimal ML receiver for multi-user detection was found by Verdu in [6]. 
However, this receiver has exponential complexity per bit and thus is not feasible for 
implementation in a real time system. Since then, a wide range of multi-user receivers 
have been proposed as a trade-of between complexity and optimality. 
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In this pursuit, the criteria of optimality have varied from ML sequence estimation 
to MMSE to marginally ML optimal. An important measure of any multi-user 
detector is its near-far resistance. In a situation when there is a large variation in the 
energies of the signals received from different users, the detection of relatively lower 
energy signals becomes increasingly erroneous even in high SNR regions due to 
multiple user interference. Near-far resistance is defined as the ability of a receiver to 
reject the structured interference offered by the other users. 

A conventional multi-user detector does not account for the structure of the MUI, 
considering it as just background noise and does not have good near far resistance.  

 

Fig. 1.1. A typical multi-user detector 

2   Matched Filter Receiver 

The simplest scheme to demodulate CDMA signal is to use the conventional matched 
filter detector, which is optimal in AWGN noise but is sub-optimal because the MAI 
does not necessarily resemble white Gaussian noise. But in this paper, the purpose is 
to show the importance for MF detector as pre-processing step of any MUD. 

The received signal is passed through a bank of matched filters attached in rake 
configuration (figure1.1) that coherently demodulates and dispreads each of the 
received paths. The problem of this receiver arises from the fact that, even if the 
powers of all users are equal, some cross correlation among signals might still have 
high values due to different path delays. Therefore even by adjusting the power level 
using fast power control and selecting codes with low cross correlations, the 
performance of the matched filter is limited and so is the capacity since, to maintain 
acceptable interference limits, the number of users have to be reduced. 
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The decision statistic at the output of the Kth matched filter is given by: 
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where N is the length of the signature sequence. We have : 
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The 2nd term in (1.7) is the MAI. The matched filter treats the MAI just as white 
noise.  
The  noise variance at the output of the matched filter is given by: 
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Similarly, the noise covariance can be shown to be : 
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hence the noise covariance matrix can be defined as : 
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Stacking up (1.7) for all the users we get in matrix notation:    y=RAb+n,  and we use 
in our simulation the two types of MUD algorithms: 

 MUD Algorithm 
Decorrelating detector R-1 
MMSE linear detector R+N0A

-2 

3   Independent Component Analysis and CDMA 

Independent component analysis is a statistical technique where the goal is to 
represent a set of random variables as a linear transformation of statistically 
independent component variables. One of the most promising solution for linear 
ICA/BSS problem is FastICA [8] due its simplicity and fast convergence. 

To obtain a better performance, we use  the RAKE-ICA  as a receiver in DS-
CDMA downlink system used in [1]. ICA method try to estimate the source process 
assuming nothing about the mixture but its linearity. The novel scheme of receiver 
ICA-based receiver uses the statistical independence of signals using FastICA. ICA is 
considered here as an additional element, attached to RAKE  receiver. 

4   Simulation 

In this section we give simulation results for the performance of matched filter and 
the other linear  receivers when the MF detector is used as pre-processing step in DS-
CDMA system in the presence of MUI and thermal noise. We consider the bit error 
rate probabilities BER of different receivers using MF in first step of the signal-to-
noise ratio SNR for K=18. pseudorandom noise are used as  the spreading code of the 
users of length  N=127. 

We can observe that the linear receivers are effective in over coming the near-
far problem, and perform much better that the MF detector. This implies that the 
MF detector is usually used  as front end of MUD to minimizes the probability of 
error Pe. 
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Fig. 1.2. BER vs SNR for conventional matched filter, MMSE detector, linear detector and 
WLS receiver  for K=18 and N=127 

5   Conclusion 

The choice of the MUD algorithm depends on a lot of factors like the application, 
channel information available, availability of training sequences, complexity cost and 
overhead involved. To pick one out which is the optimal one or the best one is not an 
easy task! and the matched filter  is used  as the front end of any MUD. Most MUD 
therefore have the matched filter as the front end. 
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Abstract. In this paper we propose an endpoint detection system based on the 
use of several features extracted from each speech frame, followed by a robust 
classifier (i.e Adaboost and Bagging of decision trees, and a multilayer percep-
tron) and a finite state automata (FSA). We present results for four different 
classifiers. The FSA module consisted of a 4-state decision logic that filtered 
false alarms and false positives. We compare the use of four different classifiers 
in this task. The look ahead of the method that we propose was of 7 frames, 
which are the number of frames that maximized the accuracy of the system. The 
system was tested with real signals recorded inside a car, with signal to noise 
ratio that ranged from 6 dB to 30dB. Finally we present experimental results 
demonstrating that the system yields robust endpoint detection. 

1   Introduction 

In speech and speaker recognition a fast and accurate detection of the speech signal in 
noise environment is important because the presence of non-voice segments or the 
omission of voice segments can degrade the recognition performance [2,3,4]. On the 
other hand in a noise environment there are a set of phonemes that are easily masked, 
and the problem of detecting the presence of voice cannot be solved easily. The prob-
lem is further complicated by the fact that the noise in the environment can be time 
variant and can have different spectral properties and energy variations. Also there are 
limitations on the admissible delay between the input signal, and the decision of the 
presence or absence of voice. Therefore the variability of the environment justifies the 
use of different features, which might be adapted to discriminate voice from different 
kind of environmental noise sources. The variability of circumstances justifies the use 
of the aggregation of classifiers which are trained differently. The use of FSA is justi-
fied by the fact that the classifiers make bursts of nearly consecutive mistakes; these 
bursts of false alarms or false positive decision are easily filtered by the FSA.  

                                                           
∗  This work has been partially supported by the Spanish CICyT project ALIADO, the EU inte-

grated project CHIL and the University of Vic under the grant R0912. 
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2   General Structure of the System 

We designed a system which consisted of a frame level classifier followed by a FSA. 
The idea behind the design was to use a robust classifier with input features, which in 
isolation have proved to yield good performance in different on the environmental 
conditions, and a FSA which implemented the decision logic that filters short bursts 
of nearly consecutive false alarms or false positives. 

2.1   Selected Features 

The selected features were: 

• The Teager energy [1] is a measure of the energy of a system in a simple harmonic 

motion, which is 2 2E A ω∝ . In [2] this measure is proposed for endpoint detec-
tion. We used the windowed mean of this energy of frame ‘j’: 

 2
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• Differential Teager energy: The derivative of the Teager energy was computed by 

filtering the Teager energy with: 2( ) 1H z z−= −   

• Zero crossing rate: was computed for each frame by  
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• Spectral entropy: [3]: This method is based on measuring the normalized spectral 
power density function for each frame, which can be interpreted as the probability 
of a certain frequency. The associated entropy is computed, and non discriminative 
frequencies are windowed out  

1
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In case of speech, for certain phonemes, the energy is concentrated in a few frequency 
bands, and therefore will have low entropy, while in the case of noise with flat spec-
trum or low pass noise, the entropy will be higher.  

• Spectral coherence between consecutive frames gives a measure of the similarity 
between of two frames  
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 We use as feature the values of 2
( )γ ω  computed by means of the DFT. 

2.2   Classifiers 

We did experiments with four different classifiers: a linear discriminant, the 
AdaBoost of linear classifiers the bagging of decision trees, and a Multilayer Percep-
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tron (MLP). The linear discriminant was selected as benchmark. As can be seen in 
figure 1, when the classification (with AdaBoost) is done at the frame level without 
the finite state automata, there is a high number of false alarms. This phenomenon 
was common to all classifiers. The distribution of the false alarms is such that they 
can be easily filtered by the finite state automata. Nevertheless, it also means that at 
the frame level the confusion between classes is high. The use of a decision tree alone 
was discarded because of the poor results, when the tests were done with noisy sig-
nals. The decision trees in these cases grow specific branches for similar cases with 
different labels, which means that the decision trees tend to grow in excess. Pruning 
the trees degraded abruptly the performance. The best results with a decision tree 
were slightly worse than the linear discriminant.  

We do not present results with support vector machines either, because the high 
overlap between classes in the feature space in the low SNR case, yields bad results 
and an extremely high number of support vectors. 

The use of bagging of the decision trees is justified because of this low ‘hit’ rate at 
frame level. Bagging decision trees improved the performance because we were able 
to grow trees (trained by bootstrapping on the training database) with a high number 
 

 
Fig. 1. Segmentation done by a frame level classifier (AdaBoost), for the utterance: ‘selec-
cionar centro de la ciudad’. Note the false alarms and false negative points 

 
Fig. 2. Segmentation done by the FSA on the frame level classification. Comparison on an ex-
ample of a manual segmentation (dark line) with the segmentation done by our system (clear 
line) 
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of nodes, i.e. adapted to the specificities of the training database, and afterwards the 
aggregation of trees smoothed the variance and therefore reduced the error rate [5]. 

The AdaBoost [6] was selected in order to improve the accuracy of a linear dis-
criminant. As the classification rate of a linear discriminant is low, the use of 
AdaBoost creates a set of classifiers that specialize in the distribution of the misclassi-
fied frames in the feature space. Also in the case of AdaBoost it is known that the per-
formance degrades when there is a high overlap between cases in the feature space, 
consequently in order to reduce the degradation caused by this overlap, we selected 
the number of classifiers by cross validation with a criterion based on the final 
recognition rate, i.e. the accuracy after the finite state automata. The use of AdaBoost 
in combination with decision trees was discarded because the preliminary 
experiments yielded extremely big trees, which were computationally prohibitive. 
This is explained because the high overlap between classes made the trees to 
specialize in contradictory examples. 

2.3   The FSA and the Decision Criterion 

After the classifier step we used as decision logic a FSA, which had four states, and 
the transition from one state to the other was controlled by the number of frames that 
corresponded to each class: 1 Øvoice, 0 Øno voice. A diagram is shown in figure 3. 
The parameters for the FSA: N = number of contiguous voice frames, M = number of 
contiguous non voice frames; were tuned by a compromise between: the number of 
consecutive frames of false negatives, frames of false positives, and the rate of real 
negatives (absence of voice) and real positives (presence of voice) after applying the 
FSA. The rates were computed on the training database. The compromise was ob-
tained by inspection of the ROC curve (Receiver Operating Characteristics), (see fig-
ure 4) and histograms of duration of bursts of false negatives, and false positives. 
These parameters were adjusted as follows: 

 

Fig. 3. Finite State Automata that filters the bursts of false alarms and false negatives 

We plotted histograms of: a-consecutive false positive frames, and real positive 
(consecutive frames of voice), for different values of M, and b-histograms of consecu-
tive false negative frames, as compared with the real negative frames (absence of 
voice), for different values of M. 
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Fig. 4. The ROC obtained by the use of the FSA, with M=7 frames as out-speech for the chan-
nel with a SNR=8,5dB. The frame level classifier was based on the AdaBoost 

We selected the value of M that in both cases corresponded approximately to the 
crossing of the false positive and real positive cases. Then with the value of M fixed, 
we plotted the ROC curve for different values of N and selected a value of N that 
gave a hit rate of 98%. 

3   Experimental Results 

The experiments were done with a subset of the SpeechDat Car [7], in Spanish. The 
subset consisted of 100 files with speakers of both sexes, and phrases of different 
kinds. The files were hand labeled. Each file contained four recordings of the same 
signal, one recorded near the mouth of the speaker, which had a mean SNR of about 
30dB. The other three were recorded in different places of the car, and had a mean 
SNR of about 8,5 dB. The sampling frequency was 16 kHz. The signal was divided 
into frames of 33 ms, with an overlap of 50%. A pre-emphasis was done before the 
processing of the signal. For each frame we computed the following features:  Teager 
energy, Differential Teager energy, zero crossings, spectral entropy, and spectral co-
herence between successive frames. Then the classifier made a decision at frame 
level, and the FSA made a final labeling based on the history of the decisions made by 
the classifier. Therefore the delay introduced by the system is the delay of the FSA, 
which is of 7 frames for ‘in speech’ and ‘out speech’. 

The endpoint detection results were computed by a 5 fold cross validation. This 
was done in order not to make the results dependent of the random distribution of files 
between training and testing. This gave a mean of 13500 for train and 3300 frames for 
test in each cycle of the cross validation process. Of these frames approximately 65% 
was no-voice and 35% voice.  

The number of linear discriminants in the AdaBoost was selected to be 10 after ex-
periments with cross validation on the training database. For comparison purposes, 
the number of trees in the bagging experiment was selected also to be 10. Increasing 
the number of bagged trees did not give significant improvements. The topology of 
the MLP was decided by the performance on the training database, and the training 
was stopped by the performance on a validation subset of the training database. 
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In order to quantify the performance of the system we will use the following 
parameters:  

• Accuracy (ACC), the ratio between the total numbers of predictions that were cor-
rect to the total number of cases. 

• True positive rate (TPR), which is the ratio of positive cases that were correctly 
classified to the total number of positive cases. 

• False positive rate (FPR), which is the ratio of negative cases that were incorrectly 
classified as positive to the total number of negative cases. 

• Precision (PRC), which is the ratio of predicted positive cases that were correct to 
total number of positive cases. 

Table 1.  Results (%) of a channel with mean SNR of 30dB 

 
Linear 

Classifier 
AdaBoost linear 

classifiers 
Bagging decision 

trees MLP(5;3;1) 
ACC 86 92 92 93 
TPR 77 89 89 91 
FPR 0.6 3 2 2 
PRC 99 97 98 98 

Table 2. Results (%) of a channel with mean SNR of 8dB 

 
Linear 

Classifier 
AdaBoost linear 

classifiers Bagging decision trees MLP(5;3;1) 
ACC. 78 83 81 84 
TPR 77 85 82 86 
FPR 19 18 20 18 
PRC. 85 87 86 87 

 

 

Fig. 5. Histogram of the distance of a frame to the nearest endpoint. Upper histogram is the 
transition from ‘no voice’ to voice. Lower from voice to ‘no voice’ 
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The results are presented in table 1 and 2. We have not presented the confidence 
margins. Due to the high number of frames, in all cases they lower than 10e-3. The 
results have to be interpreted in the light of figure 5. Most of the errors came from a 
misplacement of the transition between voice/no voice, which in most cases can be 
quantified in a few frames. The manual labeling of the boundary between the seg-
ments of voice/ no voice is subjective in a margin of a few frames. This is reflected in 
the fact that the histogram of placement of the boundary is slightly biased to the right 
or left depending on the case of beginning or ending of speech. This bias comes from 
the fact that at this point the classifiers gives bursts of false alarms, which are filtered 
by the FSA. Figure 2 shows an example of this bias on the endpoints. 

4   Conclusions 

In this paper, we propose a system for real-time endpoint detection. The system is 
based in a frame level classifier followed by a finite state automaton that filters false 
alarms or false positives. The frame level classifier is based in five different features. 
The delay introduced is of 7 frames. The experiments were done on speech recorded 
in a car environment. In the future we will evaluate the endpoint detection with a 
speech recognition system. 
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Abstract. In this paper we study direction of arrival (DOA) estimation of mul-
tiple audio sources by canonical correlation analysis (CCA), which is based on 
a sparse linear arrays. This array is composed of two separated subarrays. From 
the receiving data set, we can obtain the separate components by CCA. After a 
simple correlation, time difference can be obtained, and then we can compute 
the azimuth of different audio sources. The important contribution of this new 
estimation method is that it can reduce the effect of inter-sensor spacing to 
DOA estimation and the computation burden is light. Simulation result con-
firms the validity and practicality of the proposed approach. Results of DOA es-
timation are more accurate and stable based on this new method. 

1   Introduction 

Multiple audio sources direction of arrival (DOA) estimation is of great interest to 
many applications, such as hearing aids, fault location and target tracking etc. A 
sparse linear array is considered as the main conditions. The main problem of this 
topic is how to separate different sources only by the receiving signals. People often 
think of applying blind source separation (BSS) on it [1]. But BSS method exists one 
fatal disadvantage is how to determine the inter-sensor spacing. In other words, this 
method can not solve the contradictory of phase ambiguity and signal correlation [2]. 
Consider about the simplicity and practicality, we propose a new DOA estimation 
method based on canonical correlation analysis (CCA), which is an important method 
of multivariate statistical since it was proposed by H.Hotelling [3]. The main charac-
ter of CCA is it can find the basic vectors from two sets of variables, similarly to our 
ears. There are detail descriptions of CCA in [4][5]. CCA has been applied in some 
preliminary work [6][7][8] in recent years. Uncorrelated components can be obtained 
by CCA, in addition, has maximum spatial or temporal correlation within each com-
ponent. Then we can apply CCA to seek the correlate components of the data from 
double receiving sensors. After a general correlation of the two canonical components, 
we can obtain the time difference and complete the estimation of DOA based on time 
difference. The structure of this paper is as follows: In the Section 2, we will analyze the 
issue of multiple audio sources DOA estimation and pose the problem. In the Section 3, 
the estimation algorithm will be analyzed. Then some experiments of the algorithm 
applied in this paper are conducted in the Section 4. Finally a conclusion is given. 
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2   Problem Formulation 

The model of DOA estimation between the audio sources received by separate sensor 
is shown as in Fig. 1. 

( )1s t ( )2s t

DOA Estimation

D

Receiving

sensor1

Receiving

sensor2

( )tx ( )ty

2θ
1θ

 

Fig. 1. System receiving model 

In generally, supposing there are m  receiving sensors, the distance between the 
phase centers of the subarrays is D . If have ( )n n m≤  audio signals, ( )iθr  is the 
sensor respond to the signal on direction iθ , then ( ) ( )1[1, ,..., ]ii j mj T

i e e φφθ −=r , where 
2 sini iDφ π θ λ= , λ  is the wavelength. The receiving model could be described as: 

( ) ( ) ( ) ( ) ( ) ( )
1

n

i i ij
i

t s t t t tθ τ
=

= ⋅ − + = ⋅ +x H r n A s n  (1) 

where ( )tx  is the receiving signals. A  is a m n×  mixing matrix, which is the prod-
uct of responding function ( ) ( )1 ,..., nθ θ=R r r  and the mixing matrix H  during the 
signal transmitting process. ( )ts  are the source signals. ijτ  are the delays from source 
i  to sensor j . ( )tn  are 1m×  dimension noise signals. The signals are assumed as 
mutually independent and independent with noise in the following analysis. In order 
to describe the problem more clearly, here we assume that there are two audio sources 
and two receiving sensors, which includes two inter-sensors separately. As the inter-
sensor spacing is more less than the distance of audio sources to receiving sensors, the 
receiving model can be simplified as: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

1 11 1 12 2 2 1 11 1 1 12 2

2 21 1 22 2 2 2 21 1 1 22 2

x t a s t a s t y t b s t b s t

x t a s t a s t y t b s t b s t

τ τ
τ τ

= + − = − +

= + − = − +
 (2) 

The key problem of DOA estimation of multiple audio sources is how to estimate 
the time difference of each source to sensors in such setting environments, which is the 
basic condition of DOA estimation and the main problem that this paper wants to solve. 
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3   DOA Estimation Algorithm 

The new DOA estimation algorithm includes three steps: The first step is CCA, by 
which we can obtain the separate sources from the two receiving sensors. Then we 
conduct a correlation of the two groups of separate sources, time difference of two 
audio sources can be obtained. The last step is DOA estimation by the time difference 
estimation results.  

3.1   Canonical Correlation Analysis 

The main difference between CCA and the other statistical methods is that CCA is 
closely related to mutual information [6]. Hence CCA can be easily motivated in 
information based on tasks and our natural selection. 

Consider two sets of input data 1 2, , , px x x  and 1 2, , , qy y y , p q≤ , we attempt 
to find the coefficient ( )1 2, , ,i i ipa a a=a  and ( )1 2, , ,i i iqb b b=b  by the idea of 
principle components.  The two sets of data can be written as combination of some 
pairs of variables iξ  and iη , which can be described as: 

1 11 1 1 1 11 1 1

1 1 1 1

...
p p q q

p p pp p p p pq q

a x a x b y b y

a x a x b y b y

ξ η

ξ η

′ ′ ′ ′= + + = + +

′ ′ ′ ′= + + = + +
 (3) 

where ,x y′ ′  are the standardization value of ,x y respectively. 1 1,ξ η  are the first pair 
of canonical variable, the correlation coefficient can be describe as 

1 1
rξ η , brief written 

as 1r . 2 2,ξ η  are the second pair of canonical variable, the correlation coefficient can 
be describe as 

2 2
rξ η , brief written as 2r . Then p  pairs of canonical variables and p  

canonical correlation coefficients can be obtained. 
Mutual independent variables can be obtained by the method of canonical correla-

tion.  Here we introduce a theorem [5] (which will be proven in appendix A).   

Theorem. Let ( ) ( )1 2 1 2, , , , , , ,
T T

p qx x x y y y= =x y  are two sets of random vari-

ables, ( ) ( )cov ,cov= =xx yyx y , ( ) ( )cov ,cov= =xy yxx, y y, x , xx yy,  are 

positive definite, then -1 -1
xx xy yy yx and -1 -1

yy yx xx xy  have the same non-zero 

latent roots 2 2 2
1 2 0rλ λ λ≥ ≥ ≥ > . If their mutual orthogonal identity eigenvectors 

are r1 2, , , and 1 2 , , r,  respectively, then i i
∗ =

1- 2
xxa , i i

∗ =
1- 2

yyb  

( )1,2,...,i r=  are the ith  pair of canonical correlation variables, iλ  is the ith  ca-

nonical correlation coefficient. 

By the theorem, canonical correlation variable and coefficients can be obtained by 
the follow steps: 
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Step 1: computing the correlations of the two sets of variables as: 

1 1 1 1 1 1

1 1 1

1 1 1 1 1 1

1 1

p q

p p p p q

p q

q q p q p q

x x x x x y x y

x x x x x y x y

y x y x y y y y

y x y x y y y y

r r r r

r r r r

r r r r

r r r r

= = xx xy

yx yy

 (4) 

The right matrix in  (4) is a partitioned matrix. 

Setp 2: Computing the canonical correlation coefficients ir . Firstly, we compute two 
matrices L  and M , where 1 1 1 1,− − − −= xx xy yy yx yy yx xx xyL M = , secondly, we 
compute the eigenvalue iλ  of matrix L  and M , we can obtain 

1 2 i pλ λ λ λ≥ ≥ ≥ ≥ ≥ , then i ir λ=  can be obtained. 

Step 3: Computing the canonical variables iξ  and iη . First computing the eigenvec-
tors of matrix L  about iλ , we can obtain the coefficient matrix A . Second comput-
ing the eigenvectors of matrix M about iλ , we can obtain the coefficient matrix B . 
Thirdly we introduce standardization variables jx′ and jy′ , then the canonical vari-
ables iξ and iη  can be obtained. 

Then canonical variables iξ  and iη  can be obtained in turns, which is the basis of 
time difference estimation. From the two receiving data sets, two groups of separate 
sources can be obtained by CCA.   

3.2   Time Difference Estimation 

After the canonical variables iξ  and iη  having been obtained, the following step is to 
estimate the time difference τ∆  of the two independent receiving signals, viz. the 
canonical variables iξ  and iη . Here we assuming 1 2( ), ( )x xs n s n  and 1 2( ), ( )y ys n s n are 
the corresponding separate audio sources by CCA. To a same audio source, the re-
ceiving time is different as the as the different receiving position. In this case, we 
must consider the resemble property of the two signals must be considered during the 
time varying. Within the observation time T , assuming the total number of samples is 
N , the correlation function can be described as: 

( ) ( ) ( )

( ) ( ) ( )

1

2

1

1 1

1

2 2

1ˆ

1ˆ

N

s x y
k

N

s x y
k

R s k s k
N

R s k s k
N

τ

τ

τ τ
τ

τ τ
τ

−

=

−

=

= −
−

= −
−

 (5) 

Then the separate time difference can be obtained as: 

( ){ }
( ){ }

1

2

1

2

ˆarg max

ˆarg max

s

s

R

R

τ

τ

τ τ

τ τ

=

=
 (6) 
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As the distance between the phase centers of the subarrays is fixed, we can begin the 
DOA estimation by the time difference 1 2,τ τ . 

3.3   DOA Estimation 

After time difference 1 2,τ τ  have been obtained, the estimation of DOA is relatively 

simple. In order to clarify the estimation of DOA clearer, here we set the time differ-
ence is τ∆ .  A simplified coordinate can be established as in Fig. 2. 

D

θ
θ

N

D∆

 

Fig. 2. DOA estimation by time difference 

From Fig.2, we can get sinD D θ∆ = , sinc D Dτ θ∆ = ∆ = , where 340.29 /c m s=  
is the velocity of sound, DOA can be obtained as: 

( )( )arcsin c Dθ τ= ⋅ ∆  (7) 

From (7) we can see that the precision of DOA decided by D  and the measure 
precision τ∆ , where ( )sinD cτ θ∆ = . Partial derivative of τ∆  can be written as: 

( ) ( ) ( ) ( )
d d dD dc

D c

τ τ τ
τ θ

θ
∂ ∆ ∂ ∆ ∂ ∆

∆ = + +
∂ ∂ ∂

 
(8) 

where ,D c  are all constant, so the result of partial derivative  is ( ) cosd D d cτ θ θ∆ = , 

then the estimation precision can be written as: 

( )( ) ( )cosd c d Dθ τ θ= ⋅ ∆  (9) 

From (9) we can know that the precision of DOA is limited by the distance be-
tween the phase centers of the subarrays and the time difference estimation precision, 
it also relates to the direction of sources. 

4   Simulations 

In order to verify the validity of this DOA estimation algorithm applied in this paper, 
here a series of experiments have been conducted. The background of the experiments 
is assumed as: there is two spatially separated receiving subarrays. The distance be-
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tween the phase centers of the subarrays is 3m , two audio sources come from differ-
ent direction and the sampling frequency is 8000Hz , time differences are set as 

1 28τ =  and 2 32τ = . According to the DOA estimation algorithm proposed in this 

paper, CCA was conducted at first. The receiving signals are shown in Fig. 3 and the 
separation results by CCA are shown in Fig.4. The details are shown in Fig. 5. 
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                  Fig. 3. Mixing signals             Fig. 4. Separate signals by CCA 

Then a cross correlation between the corresponding separation signals is con-
ducted. The correlation results are shown as in Fig.6. 

From the correlation results, the time difference of different audio source can be 
obtained as follow: 1 228, 32τ τ= − = , which is corresponding with the experiments 

setting. Submitting these results to (7), we can obtain that 1 223.39 , 26.98θ θ= − = . 

However, if by direct correlation method or GCC method, we often can not obtain the 
different time difference. 
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                  Fig. 5. Separation details                                    Fig. 6. Correlation results 

After completing the estimation of DOA, here we conduct some experiments to 
analysis the error, which is corresponding with the varying of distance between the 
phase centers of the subarrays, precision of time difference estimation and DOA. The 
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estimation error results are separately shown in Fig.7 and Fig.8. From the results, we 
can see that the estimation precision is not only decided by the estimation precision of 
time difference, but also decided by other parameter. 

 
 
 
 
 

 

 

 

 

 

 
 
From the error curve of different case, we can see that DOA estimation error is in-

verse proportion to distance between the phase centers of the subarrays. However, 
DOA estimation error is direct proportion to DOA value within a definite range. 

5   Conclusion 

In this paper, we have investigated the fundamental limitations in multiple audio 
sources DOA estimation with a sensor array consisting of two spatially separated 
subarrays. We propose a novel DOA estimation method based on CCA, which can 
effectively overcome the contradictory of phase ambiguity and signal correlation and 
will play an important role in military and civilian affairs. 
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Appendix A: Proof of Theorem 

Computing the variable is to choose a,b  in the condition of 1, 1T T= =xx yya a b b , 

then we will obtain the maximum value of T
xya b .  Taking Lagrangean function  as 

the assistant function as : 

( ) ( ) ( ), , 1 1T T Ts t s tΦ = + − + −xy xx yya,b a b a a b b  (A1) 

In order to maximize Φ , Φ  must content with following condition: 

2 0

2 0

s

t

∂Φ ∂ = =

∂Φ ∂ = =
xy xx

yx yy

a b + a

b a + b
 

(A2) 

Then we can obtain: 

2s = − -1
xx xya b  (A3) 

2t = − -1
yy yxb a  (A4) 

Equation (A3) left multiplies T
xxa , then 2 Ts = − xya b . Equation (A4) left multi-

plies T
yyb , then 2 Tt = − yxb a , so s t= . a,b  can be written as: 

2

2

4

4

s

s

=

=

-1 -1
xx xy yy yx

-1 -1
yy yx xx xy

a a

b b
 (A5) 

By (A5), we can know that a,b are the eigenvectors of -1 -1
xx xy yy yx , 

-1 -1
yy yx xx xy  and they have the same eigenvalue. 
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Abstract. The work presented in this paper suggests a Traffic Sign
Recognition (TSR) system whose core is based on a Multilayer Percep-
tron (MLP). A pre-processing of the traffic sign image (blob) is applied
before the core. This operation is made to reduce the redundancy con-
tained in the blob, to reduce the computational cost of the core and
to improve its performance. For comparison purposes, the performance
of the a statistical method like the k-Nearest Neighbour (k-NN) is in-
cluded. The number of hidden neurons of the MLP is studied to obtain
the value that minimizes the total classification error rate. Once obtained
the best network size, the results of the experiments with this parameter
show that the MLP achieves a total error probability of 3.85%, which is
almost the half of the best obtained with the k-NN.

1 Introduction

Systems dedicated to Traffic Sign Recognition (TSR) tasks usually have two
specific stages. The fist one is related to the detection of traffic signs in a video
sequence or image. And the second one is related to the recognition of these
detected signs, which is paid special attention in this work. The performance
of these stages highly depends on lighting conditions of the scene and the state
of the road sign due to deterioration or vandalism. Another problem to sur-
pass is the rotation, translation or inclination of the sign. Its perfect position
is perpendicular to the trajectory of the vehicle, however many times it is not
like that. Problems related to the traffic sign size are of special interest too.
Although traffic sign sizes are normalized, we can find signs of different ones. So,
the recognition of a traffic sign in this environment is not easy.

The TSR problem has been studied many times in the literature. The works
[1][2][3] solve this problem using the correlation between the traffic sign and
the elements of a data base. This technique involves great computational cost.

� This work is supported by Spanish MEC Project TEC2004/03511/TCM.
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In other works [4], Matching Pursuit (MP) is used in two stages: training and
testing. The training process finds a set of best MP filters for each road sign.
The testing process projects the input unknown road sign to different MP filters
to find the best match. This method also implies great computational cost,
specially when the number of elements grows up. In a recent work [5], a Neural
Network (NN) following the Adaptive Resonance Theory is used as classification
technique. This work applies this technique to the whole image, where many
traffic signs can exist. This involves that the NN complexity must be very high
in order to recognize all the signs contained in the image.

The objective of this paper is the study of different classification techniques
applied to the TSR problem. The methods studied in this paper are the k-
Nearest Neighbour (k-NN) and a Neural Network (NN) based method using
the Multilayer Perceptrons (MLPs). In order to reduce the MLP complexity,
the classification is applied after the traffic signs have been extracted from the
image.

2 System Overview

The TSR system used is presented here. Also, the traffic signs obtained with it
and considered for the experiments are shown. The TSR stage is the most im-
portant block of the system. It is divided in two parts: traffic sign pre-processing
stage and TSR core. Two different methods are proposed for its core. The first
one is based on statistical methods (k-NN) and it is taken as a reference for
comparison purposes with the second one (MLP).

The blocks that composes the TSR system are shown in Fig. 1. The Video
Camera block takes a video sequence. The Image Extraction block makes the
video sequence easier to read and it is the responsible to create images. The
Sign Detection and Extraction Stage extracts all the traffic signs contained in
each image and generates the small images called blobs, one per sign. Fig. 1 also
shows an example of the way this block works. The Form Recognition Stage is
the responsible to discern among the different forms: circular, square, triangular
and others. Once the blob form is classified, the TSR Stage has the responsibility
to recognize which is the exact type of signal.

3 Traffic Sign Pre-processing Stage

Each blob presented at the input of the TSR stage has the information of the red
(R), green (G) and blue (B) colours. The blob dimension is 30x30 pixels for each
component (R, G and B). So, the total size of each blow is 2700 pixels. Due to
the dimensions of the blob, the purpose of this stage is to reduce the redundancy
of information given to the TSR core in order to reduce the computational cost,
which is an important parameter in real-time implementations.

Consider B is the matrix that contains the three colour components of the
blob. Also, consider B′ results from representing B in a grey scale. This change
from RGB to grey scale is calculated with (1). The values of bi,j and b′i,j are the
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Fig. 1. Blocks of a TSR System

elements of the i-th row and j-th column of the matrix B and B′, respectively,
where both indexes (i and j ) varies from 1 to 30.

b′i,j = 0.49bi,j + 0.29bi+30,j + 0.22bi+60,j (1)

The normalized averages to the maximum pixel value (28) of R (MR), G
(MG) and B (MB) are calculated with (2), (3) and (4), respectively. They are
normalize between 0 to 1 because the application of this data to the TSR core.

MR =
1

256

⎛
⎝ 1

900

30∑
i=1

30∑
j=1

bi,j

⎞
⎠ (2)

MG =
1

256

⎛
⎝ 1

900

60∑
i=31

30∑
j=1

bi,j

⎞
⎠ (3)

MB =
1

256

⎛
⎝ 1

900

90∑
i=61

30∑
j=1

bi,j

⎞
⎠ (4)

The vertical (vh) and horizontal (hh) histograms are calculated with (5) and
(6), respectively.

vhi =
1
30

30∑
j=1

(
b′i,j > T

)
, i = 1, 2, ..., 30 (5)

hhj =
1
30

30∑
i=1

(
b′i,j > T

)
, j = 1, 2, ..., 30 (6)

T is the adaptive threshold calculated with (7) for each blob. vhi is the i-th
value of the vh and corresponds to the ratio of values of column j-th that are
greater than the threshold T. hhj is the j-th value of the hh and corresponds to
the ratio of values of row i-th that are greater than the threshold T.
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Fig. 2. Eight different classes of international traffic signs (normal and with problems)

T =
1

900

30∑
i=1

30∑
j=1

b′i,j (7)

This pre-processing provides an observation vector x of 63 elements. It is
composed of: vh (30 elements), hh (30 elements), MR, MG and MB.

3.1 Traffic Sign Data Base Description

For the experiments presented in this paper eight different types of circular traffic
signs were considered. These signs belong to the international traffic code. Fig.
2 (Normal Traffic Signs) shows the different classes of traffic signs considered
in this work. These signs have been collected with the TSR system presented
above. So, they present distortions due to the problems described in Sect. 1. Some
examples are shown in Fig. 2 (Traffic Signs with problems). The problems caused
by vandalism are shown in the examples of classes S1 and S3. The problems
related to the blob extraction in the Sign Detection and Extraction Stage (not a
correct fit in the square image) are shown in the examples of classes S1, S3 and
S7. Examples of signs with problems of rotation, translation or inclination are
those of classes S3, S4, S5, S7 and S8. Finally, the differences of brightness are
observed in both parts of Fig. 2.

The data base has been divided into three sets: train, validation and test. The
first one is used as reference in the k-NN and to train the MLP. The second one
is used during the training of the MLP to obtain good generalization results[6].
And the last one is used to evaluate the performance of the k-NN and the MLP.

The total number of traffic signs (blobs) considered for the experiment is 235.
So, after pre-processing each blob, a total number of 235 observation vectors of
63 samples length each is obtained. The size of the train, validation and test sets
are 79, 78 and 78 observation vectors (patterns), respectively.

4 TSR Core

TSR can be formulated as a multiple hypothesis test. The objective is to min-
imize a risk function that is given as the average cost C, defined in (8) for L
hypothesis.
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C =
L∑

i=1

L∑
j=1

Ci,jP (Di|Sj)P (Sj) (8)

P(Di|Sj) is the probability of deciding in favor of Si (decision Di) when the
true hypothesis is Sj , Ci,j is the cost associated with this decision and P(Sj) is
the prior probability of hypothesis Sj .

The classifier performance can be specified with the probability of correct clas-
sification (Pcc) and the probability of misclassification (Pmc) for each hypothesis
(class) or the total correct rate (Pc) and the total error rate (Pe) for all the hy-
potheses (classes). The Pcc is the probability of a pattern is correctly classified
and the Pmc is the probability that a pattern is wrongly classified (Pmc=1-Pcc).
The Pc and Pe express the percentage of total classification successes and errors
(Pe=1-Pc) for all the hypothesis (classes), respectively.

4.1 Statistical Methods: k-NN

The k-NN approach is a widely-used statistical method. It is usually applied in
other signal processing areas related to recognition. For example, it is used in
RADAR, in the field of Automatic Target Recognition (ATR)[7].

This technique assumes that the data sets contain Mi points of class Si and
M points in total, so that

∑
i Mi = M . Then a hypersphere around the obser-

vation point x is taken, which encompasses k points irrespective of their class
label. Suppose this sphere, of volume V, contains ki points of class Si, then
p(x|Si) ≈ ki

MiV
provides an approximation to this class-conditional density. The

unconditional density can be estimated using p(x) ≈ k
MV , while the priors can

be estimated using p(Si) ≈ Mi

M . Then applying Bayes’ theorem, it’s obtained
(9)[8].

p(Si|x) =
p(x|Si)p(Si)

p(x)
≈ ki

k
(9)

Thus, to minimize the probability of misclassifying a vector x, it should be
assigned to the class Si for which the ratio ki/k is highest.

The way to apply this method consists in comparing each pattern of the test
set with all of the train set and deciding which class Si is the most appropriate. k
indicates the number of patterns that take part in the final decision of classifying
an observation vector in class Si.

4.2 NNs: MLP

The Perceptron was developed by F. Rosenblatt [9] in the 1960s for optical
character recognition. The Perceptron has multiple inputs fully connected to an
output layer with multiple outputs. Each output yj is the result of applying
the linear combination of the inputs to a non linear function called activation
function. MLPs extend the Perceptron by cascading one or more extra layers of
processing elements. These layers are called hidden layers, since their elements
are not connected directly to the external world. Fig. 3 shows an MLP with I
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Fig. 3. Structure of a MLP

inputs (observation vector x), one hidden layer with N neurons and O outputs
(classification vector y).

Cybenko’s theorem [10] states that any continuous function f : Rn → R
can be approximated with any degree of precision by log-sigmoidal functions.
Therefore, it is selected a MLP with one hidden layer using the log-sigmoidal
function given in (10) as the activation function, where z is its input.

L(z) =
1

1 + exp(−z)
(10)

The Back-Propagation Algorithm [6] with cross-validation is used to train the
MLP. This algorithm tries to find the minimum of the error surface given by the
Mean Square Error (MSE) criterion.

5 Results

The first TSR core proposed is based on the k-NN for comparison purposes.
Table 1 shows the Pe of the test set for each k. The best classification results
(minimum Pe) are obtained for k=1,2,3. The parameter selected is k=1 because
it gives the least computational cost. Table 3 shows the Pmc for each class. As
can be observed, the patterns that belongs to the classes S1, S4, S5 and S8 are
correctly classified, whereas the patterns of class S3 are those that produces the
greater Pmc. The patterns of classes S2, S6 and S7 have the same Pmc.

The second TSR core proposed is based on a MLP. Its parameters are: I=63
inputs (pattern length), one hidden layer with N neurons and O=8 outputs
(number of classes Si). After training different MLPs (63/N/8) with the train
and validation sets, the Pe obtained with the test set for each N is shown in table
2. The best classification results (minimum Pe) are obtained for a total number
of 58 neurons in its hidden layer (63/58/8). For this network size, table 3 shows
the Pmc for each class. As can be observed, the patterns related to the classes
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Table 1. Pe(%) versus k parameter for each k-NN experiment

k 1 2 3 4 5 6 7 8 9 10

Pe 7.69 7.69 7.69 8.97 10.26 8.97 11.54 14.10 12.82 14.10

Table 2. Pe(%) versus N for each trained MLP (63/N/8)

N 10 18 26 34 42 50 58 66 74 82

Pe 15.38 7.69 8.97 7.69 5.13 7.69 3.85 8.97 7.69 7.69

Table 3. Pmc(%) for k-NN(k=1)|MLP(63/58/8) experiments

S1 S2 S3 S4 S5 S6 S7 S8

Pmc 0.00|0.00 1.28|0.00 3.84|1.28 0.00|0.00 0.00|0.00 1.28|1.28 1.28|1.28 0.00|0.00

Table 4. P(Di|Sj)(%) for k-NN(k=1)|MLP(63/58/8) experiments

S1 S2 S3 S4 S5 S6 S7 S8

D1 100.0|100.0 0.00|0.00 0.00|0.00 0.00|0.00 0.00|0.00 0.00|0.00 0.00|0.00 0.00|0.00
D2 0.00|0.00 92.31|100.0 0.00|0.00 0.00|0.00 0.00|0.00 0.00|0.00 12.50|12.50 0.00|0.00
D3 0.00|0.00 0.00|0.00 57.14|85.71 0.00|0.00 0.00|0.00 16.67|16.67 0.00|0.00 0.00|0.00
D4 0.00|0.00 7.69|0.00 14.29|0.00 100.0|100.0 0.00|0.00 0.00|0.00 0.00|0.00 0.00|0.00
D5 0.00|0.00 0.00|0.00 0.00|0.00 0.00|0.00 100.0|100.0 0.00|0.00 0.00|0.00 0.00|0.00
D6 0.00|0.00 0.00|0.00 28.57|14.29 0.00|0.00 0.00|0.00 83.33|83.33 0.00|0.00 0.00|0.00
D7 0.00|0.00 0.00|0.00 0.00|0.00 0.00|0.00 0.00|0.00 0.00|0.00 87.50|87.50 0.00|0.00
D8 0.00|0.00 0.00|0.00 0.00|0.00 0.00|0.00 0.00|0.00 0.00|0.00 0.00|0.00 100.0|100.0

S1, S2, S4, S5 and S8 are correctly classified. While the patterns of classes S3,
S6 and S7 are not correctly classified and have the same Pmc.

The Pe for the k-NN (k=1) is 7.69% and for the MLP (63/58/8) is 3.85%.
Although both methods have low error rates, the MLP is the better solution be-
cause it achieves an error rate reduction of 49, 99%, i.e., the Pe is nearly reduced
to the half. Table 4 shows the way the error is distributed for the classes in the
terms of the (P(Di|Sj)) for each experiment. As can be observed, the classes
S1, S4, S5 and S8 are correctly classified with both techniques. The patterns of
class S2 are correctly classified with the MLP, while some patterns of this class
are classified as S4 with the k-NN (k=1). Also, the patterns of classes S6 and
S7 are classified in the same way with both methods. There are some patterns
that are classified as S3 when they are S6, and some of them are recognized as
S2 when they are S7. Finally, the great difference between the performance of
the methods relies on the classification of patterns of class S3. The MLP is more
robust against errors of classifying this class as S4 and S6.

The MLP is robust against the error of classifying patterns of classes S3 as
S4 and the k-NN is not. And its error of classifying patterns of S3 as S6 is slower
than the k-NN one.
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6 Conclusions

The classification results obtained in this work show the robustness of the TSR
system against problems like lighting conditions, rotation and traffic sign sizes.

Both TSR strategies presented obtain low error rates. This is due to the
redundancy minimization in the blobs achieved with the pre-processing stage.
It’s important to note that best results are obtained with the MLP, specially for
the traffic signs that belongs to classes S2 and S3. Moroever, it’s observed that a
relationship between classes S3 and S6 exists independently the TSR core used.

The Pe achieved with the MLP (63/58/8) is 3.85%, which implies an error
rate reduction of 49.93% comparing with the k-NN (k=1), i.e., the error rate
is nearly reduced to the half. So, according to the results of the MLP, we can
consider it a good solution to be implemented in a real-time TSR systems.
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Abstract. In this paper, a new algorithm for traffic sign recognition is
presented. It is based on a shape detection algorithm that classifies the
shape of the content of a sign using the capabilities of a Support Vector
Machine (SVM). Basically, the algorithm extracts the shape inside a
traffic sign, computes the projection of this shape and classifies it into
one of the shapes previously trained with the SVM. The most important
advances of the algorithm is its robustness against image rotation and
scaling due to camera projections, and its good performance over images
with different levels of illumination. This work is part of a traffic sign
detection and recognition system, and in this paper we will focus solely
on the recognition step.

1 Introduction

A traffic sign recognition system basically consists on an image processing sys-
tem mounted over a vehicle recording the road, and the goal of the system is the
detection of all traffic signs present on the scene, and also its classification ac-
cording with its shape, colors and meaning. Table 1 shows the meaning of traffic
signs according with its color and shape. All the signs and properties described
are for the Spanish traffic signs.

In most cases, traffic sign research is divided into two basic steps, namely
detection an recognition. The detection step is the process that determines which
parts of the images are candidate to be a traffic sign. In many works [1], [2],
[3], [4], the detection is based on a color-based segmentation, taking advance
of the main colors used on traffic signs, as we can see in table 1. For that
reason, red, blue, yellow and/or white are the most frequently colors used on the
segmentation process.

Once candidate blobs have been extracted from the image, some approaches
implement a pre classification step according with its shape [1], [5]. From table
1, the shapes used in traffic signs are the equilateral triangle, the circle, the
octagon and the square. With this additional step, we reduce the classification
problem to a smaller number of classes, therefore reducing the time employed in
the classification stage.

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 873–880, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Table 1. Meaning of traffic signs according to its color and shape

Color Shape Meaning

Red Rim Circle Prohibition

Red Rim (Up) Triangle Danger

Red Rim (Down) Triangle Yield

Red Octagonal Stop

Blue Square Recommendation

Blue Circle Obligation

White Circle End of prohibition

Yellow Circle End of prohibition (construction)

Fig. 1. Block diagram

In figure 1 we can see the block diagram of the traffic sign recognition system
we have described. The algorithm described in this paper is related with the last
step in figure 1, that is, once every possible blob has been classified according
with its shape and color, the last step consists on the recognition of the content
of the sign, and so, the identification of the sign. A complete description for the
rest of the system can be found in [5].

Many works have been proposed for the recognition step. In [4], a NN is used
to perform the classification of every possible blob. In [3], the identification of
signs is carried out by a normalized correlation-based pattern matching using a
traffic sign image database. In this work the classification task is performed by a
SVM [6] as it will be described later. We have focused our algorithm on circular
signs, since on these kind on signs, object rotations appear as a problem than
can not be solved as easily as with other kind of shapes, where reorientation of
the blob can be done from the edges of the sign.

2 Shape Classification

Since the inside part of a typical traffic sign is normally composed of one or two
colors, plus the background, a new segmentation process can be performed over
the blob to separate the content of the sign from the background. After this
process, the problem is reduced to classify the shape of the segmented object
into one of all possible objects that can be found inside a traffic sign, that is,
classify the sign according with its meaning.

2.1 Segmentation

Figure 2 shows an example of sign segmentation for circular images with white
background. In 2(a) we can see the blob corresponding to the sign. This blob is
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(a) (b) (c)

Fig. 2. Segmentation example. (a) Original blob, (b) Original blob without the red

rim, (c) Segmented image

the output of the previous steps, as mentioned above. Since the previous steps
has classified the sign into the circular group, we can approximately determine
the center and the radius of the sign. With this two parameter, removing the
red rim from the sign is straightforward. Obviously, this step must be different
for every kind of sign, according with its shape and colors, but the procedure
is the same for signs from the same category. In 2(b), the same sign is shown,
where the red circular rim has already been removed. Once the rim is removed,
the last process is the segmentation of the content of the sign. In figure 2(c)
the segmented image is shown, where the segmentation has been performed over
the luminance matrix, using an adaptive threshold. This process gives a certain
robustness against illumination changes.

2.2 Object Projection

The classification of the segmented object now is performed computing the pro-
jections of the objects. These projections are computed at several values of θ,
according with figure 3. As we will see later, this procedure give a great robust-
ness against object rotations. For each value of θ, a new coordinates system,
denoted uv, is generated, where the transformation matrix between this system
and the image coordinates system (xy) is given by:(

u
v

)
=
(

cos θ sin θ
− sin θ cos θ

)
·
(

x
y

)

Since the projection of the object is computed for each value of θ, the whole
operation will yield a two dimension matrix of size M x N (see figure 4), being
M the number of values of θ where the projections are computed, and N is the
number of samples of each projection. For a particular value of M, the value of
θ for each iteration is incremented according with the following step:

∆θ =
2π

M

The projections are computed over the coordinate u, (see figure 3). To make
the results independent of the object size, and hence, robust to image scaling, N
is a constant in the system, and the step between samples in the coordinate u are
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Fig. 3. uv and xy coordinates system

Fig. 4. Projection matrix

determined taking into account the size of the object. The maximum width of
the object can be estimated from the second order moments in the angle of the
least moment of inertia [7]. For a rectangle of height H, width B, and B > H,
the second order moments are:

µ20 = B3H
12

µ02 = H3B
12

From these expressions, we can compute the width of the rectangle, B:

B = 8

√
122 · µ3

20

µ02
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For an arbitrary shape, the previous expression allows us to estimate the
maximum width of the object from its second order moments. In this case,
the previously computed value of B is not its maximum width, but it leads
us to determine the starting and ending values in the coordinate u where the
projections are to be computed. These limits will be:

−k
B

2
< u < k

B

2

where k is a constant chosen according with the following discussion. Large
values of k implies that many samples of the projections will be null for values
of u near −kB/2 and kB/2, because we are evaluating beyond the object. With
small values of k, samples of the projection can be loosen because we are not
analyzing the whole object. The value actually chosen was k = 2, and so the
projections are computed for −B < u < B and −B < v < B (see figure 3).
With this value, the step between samples will be:

∆u =
2 · B
N

From now on, we will call this matrix the projection matrix. The next step
consists on the computation of the mean value for every column in the projection
matrix to obtain a vector of N elements. As with the previous matrix, we will call
this vector the projection vector. With this step we make this vector invariant
to object rotation, since a rotation on the object is reflected as a circular shift
on the projection matrix in coordinate θ, and since we compute the mean value
for every value of θ, the result is independent of the orientation of the object.
In figure 5 it is shown the projection vector for a circle (5(a) and 5(b)) and the
projection vector for a square (5(c) and 5(d)).

As it can be seen easily, the projection vector is symmetric, and hence, only
half of the vector is used. This new projection vector, of size N/2, will be the
vector used in the classification process. Figure 6 shows the projection vector for
some different shapes used in the evaluation section, along with its corresponding
image and its segmented mask.

(a) (b) (c) (d)

Fig. 5. Projection vector examples
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(a) Category A (Maximum speed limit 120)

(b) Category B (Maximum speed limit 40)

(c) Category C (Maximum speed limit 90)

(d) Category D (No overtake)

(e) Category E (Maximum speed limit 100)

Fig. 6. Projection vector examples for the test images
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3 Experimental Results

A set of 154 blobs were chosen to test the proposed scheme. These blobs were
extracted from an image database we have created for the evaluation of dif-
ferent traffic sign detection and recognition algorithms, and it is available at
http://roadanalysis.uah.es. In this set we have included signs from 5 different
types, as can be seen in figure 6. The algorithm basically extracts the projec-
tion vector as described above, taking N equal 100, that lead to a final vector of
N/2 = 50 samples. The value of N was chosen as a tradeoff between precision and
speed of the algorithm. We also take M equal 90, leading to a step of 4 degrees
in θ. This value of M is again a tradeoff between precision and speed. Higher
values of M implies more computational load, with no significant improvement
in the results. Smaller values of M may reduce the robustness of the algorithm
to object rotations.

In the experiment, an exhaustive search over the parameters γ and C was
performed in order to find the values where the total number of errors in the
experiment were minimum. The results for this search show that the optimal
values lay near the values γ = 1 and C = 100. Once the optimal values were
found, from now on, all remaining experiments use these two particular values
for parameters γ and C. We used 4 blobs of each category, which account for a
total of 20 blobs, in the search step. For the rest of the set, one third of the blobs
of each category was taken as the training set, leaving the rest of the blobs as
the testing set. This experiment was repeated three times, taking as the training
set for a particular experiment a different set of blobs than the ones used on
the other experiments. The processes were performed with a SVM [6] with a
Gaussian Kernel. The implementation uses the library LIBSVM [8].

Table 2 shows the results for the optimal values. This table shows, for each
category, the success probability as the number of blobs properly classified with
respect to the total number of blobs in the prediction set. Note that the exper-
iment was repeated three times, and these values are the mean values for the
three experiments. It also shows the number of blobs used for the training step
and the number of blobs used in the prediction step.

From the results, we must conclude that the success probability is not good
enough for categories with a small number of samples, especially for categories A
and B, whereas for categories with enough number of samples are satisfactory,
which makes the overall success probability acceptable. We also have to take
into account that the images used in the experiment are realistic images, that

Table 2. Results for γ = 1 and C = 100

Category A B C D E Total

Number of blobs 18 18 29 46 23 134

Training 6 6 9 15 7 43

Prediction 12 12 20 31 16 91

Success prob. (%) 80 78 89 97 87 90
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includes different illuminations, occlusions, deteriorated signs and other kind of
problems that make the success probability decrease.

4 Conclusions

This paper describes a new algorithm for the recognition of traffic signs. It is
based on a shape detector that focuses on the content of the sign to perform the
recognition of traffic signs. The classification is done by a SVM where the input
is a vector computed from the projections of the object at several angles to over-
come orientation problems. Other advantages of the algorithm is its robustness
against different illumination and scaling, and also its simplicity.

The direction of our future work must include the increase of the test set
database in two ways: first, increase the number of categories, and second, in-
crease the number of blobs for each category. We also need to focus our work in
the previous steps, especially the segmentation, since this step is crucial for the
correct operation of the whole system. We also have to deal with other kind of
problems, like partial occlusions, shadows, bad illuminations, etc.
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Abstract. A computer vision system to recognize license plates of vehicles in 
real-time environments is presented in this study. The images of moving 
vehicles are taken with a digital camera and analyzed in real-time. An artificial 
neural network (ANN) system is used to locate the area and position of the 
license plate. The system has the following stages: (i) Image acquisition and 
determination of the location of the vehicle license plate (VLP), (ii) 
segmentation of the VLP into separate characters using image processing 
techniques, and (iii) recognition of each symbol in VLP using a feedforward 
artificial neural network (ANN) and assembly of the characters. Performance 
results are presented at the end. 

1   Introduction 

Automated recognition and identification of vehicle license plates (VLP) has great 
importance in security and traffic systems. It can help in many ways in monitoring 
and regulating the road traffic. For the management of urban and rural traffic, there is 
a lot interest in the automation of the license plate recognition in order to regulate the 
traffic flow, to control access to restricted areas, and to survey traffic violations. 

VLP identification is a difficult problem in computer vision and hence it is divided 
into several steps. The first step in the process is to locate the VLP. After that, 
characters in the VLP are recognized one by one using a recognition program such as 
a neural network. Character recognition is a popular and well-studied area in 
computer vision. In general, ANN and matching methods are used [1-5] for this 
purpose. In the literature, there are many studies which use different approaches for 
the VLP identification problem; ANN based [6-8], inductive learning method based 
[9], and techniques based on 2D coloration [10].  Some VLP identification studies 
focus only in the character recognition aspect of the problem [8, 9] while others [6, 7] 
also include the process of finding the location of VLP in the entire vehicle image. 
There is also some VLP recognition work for electronic tool collection and traffic 
management systems, and for the help of color blindness [10-13]. 

2   Licence-Plate Recognition System 

An AVLP system consists of a camera, a frame grabber card, a computer, and 
software to process the images. Generally, various external conditions (such as 
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sunlight, shadows etc.) may affect the performance of the VLP system. Therefore, it is 
better to get the license plate illuminated with an infrared light source. A sample 
AVLP system is given Fig 1. Two sample images captured by the system in various 
external conditions are shown in Fig. 2. 

 
 

 
 

Fig. 1. A sample A VLP system , the image on the left top is captured during daytime and the 
one on the right bottom is captured at night 

3   Locating the License Plate in an Image 

The VLP image has color and a complex background. We need to use the color 
properties and the composition of the complex background to locate the VLP in the 
entire image. A VLP consists of letters and numbers. Most studies in the literature use 
text detection and tracking for this purpose. Most commonly, these studies are either 
connected-components based (CC-based) [14, 15], or texture based [16, 17] or ANN 
based [18]. Here, we used a neural network as a classifier to identify the VLP pixels 
from the text areas. In this paper, VLP text pixels are classified as text and all other 
pixels are grouped as non-text. We used an ANN with three layers; input layer, hidden 
layer and the output layer.  

The input layer receives the gray-level pixel values from the textual image. The 
output value of a hidden neuron is obtained as the dot product of the input vector and 
the weights assigned to the links connected to that neuron. The weights are adjusted 
during the training session through a back-propagation algorithm such as to minimize 
the sum of the squared error. 

First, the frame images are filtered and then they are classified. Classification 
determines whether a pixel belongs to a text area or not. During the training session, a 
set of different patterns is used to adjust the weights of the network. Each pattern 
consists of the gray values of a pixel and its neighbors, along with the actual class of 
that pixel. Gray pixel values range from 0 to 256. We map these pixel values to 0 
(text) or 1 (non-text). A pattern which consists of a 9x9 window is fed to the input 
layer and the output value indicates the class of the center pixel; text (0) or non-text 
(1). In the end, a classified image is obtained (see Figure 2). The last step in this 
process involves smoothing the classified image by removing the noise elements from 
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it. Smoothing is accomplished as follows. A pixel’s class is determined as non-VLP 
text if the number of pixels, which are classified as text, in the 3x3 neighborhood is 
less than a threshold. Otherwise, the pixel’s class is determined as text. The smoothed 
image is then projected along the y-axis and its histogram is computed. VLP zone is 
identified as a consecutive vertical zone in which the histogram values are above a 
certain threshold. 

        

Fig. 2. Gary level image and classified image 

4   Plate Segmentation 

Vehicle License Plate Properties. A standard (recreational) Turkish VLP consists of 
three symbols; county code, a letter code, and a numeric code. Since there are a total 
of 85 counties in the country, county code starts at 01 and goes up to 85 in decimal. 
The second part in the VLP is a three-letter alpha numeric symbol using only capital 
letters A-Z. The third region has a maximum 4-digit decimal number as shown in 
Figure 3 (a). License plates for military and government vehicles use a different style. 
This study considers only civilian VLPs. The following steps are used in order to 
locate and segment the license plate image into individual characters. 

First Step. VLP which is located by separating it from a complex background image 
is converted into a binary image with background taking the pixel value of 0. 
Horizontal projection is used for border clearing. For each row in the image, the 
number of zeros (0) are counted and the resulting histogram is plotted sideways as 
shown in Figure 3.  

Second Step. After the VLPs’ background is cleaned up, the individual characters are 
separated from each other using vertical projection (histogram). Basically, a zero 
value (0) in the vertical histogram indicates a border crossing between two characters. 
To save processing time in the next stage, we further eliminate the blank space 
between characters by drawing the character boundaries as close to the characters as 
possible. 

Third Step. Normalization, in the original image, characters have different pixel 
sizes. It is important to normalize their size for further processing. In this step, every 
segmented character is mapped to a (19x11) pixel format. This makes it easier to 
design an ANN for the character recognition in the next stage. 
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Fig. 3. A Turkish VLP on the right, horizontal projection in the middle and VLP character 
segmentation on the left 

5   Artificial Neural Network Model 

A backpropagation algorithm is used for training the ANN model.  The basic structure 
and formulation of backpropagation is summarized here. Training a neural network 
involves computing weights so as to get an output response to the input within an 
error limit. The input and target vectors make up a training pair.  The backpropagation 
algorithm includes the following steps [19]: 

1. Select the first training pair and apply the input vector to the net. 
2. Calculate the net output. 
3. Compare the actual output with the corresponding target and find the error. 
4. Modify the weights so as to reduce the error. 

These steps are repeated until the error is within the accepted limits. In the step 2, 
output sets for test inputs are calculated. If they are the same within an error range as 
the expected sets, then it is considered as the net has learnt the problem, and the final 
weights are stored so that they can be reused when needed. The developed ANN has a 
multi-layer feedforward structure as shown in Fig. 4.The variable definitions are 
given as follows [20,21]: L=0:  input layer, L=1: hidden layer, L=2: output layer, 
W1,ji:  weight matrix between the input layer and the hidden layer. W2,tj:  weight 
matrix between the hidden and the output layer, B1,j:  bias values of hidden neurons, 
B2,t: bias values of output neurons.  

 

Fig. 4. A Multi-layer feedforward net structure 
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Equation (1) gives the output of the hidden layer. 
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Equation (2) gives the output of the output layer. 
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6   ANN Model Design for Character Recognition 

Some characters used in the training set for the ANN are given in Table 1. 

Table 1. Some Characters used in the training set 

A B C D E F G H I 
J K L M N O P R S 
T U V Y Z 0 1 2 3 
4 5 6 7 8 9    

The proposed ANN, a multilayer feedforward network, consists of 209 input 
variables, 104 hidden neurons, and 33 output variables and it is designed to recognize 
one single character at a time. Backpropagation algorithm is used for training. The 
training set is composed of two files; input and output. Input file contains image data 
belonging to 33 characters and each character has 209 image segments which are 
provided as inputs to the ANN.   Fig. 5 shows three samples of segmented characters. 
The output file consists of 33 outputs each representing a single letter.  

0  0  0  0  0  0  0  0  0  0  0   
0  0  0  0  0  0  0  0  0  0  0   
0  0  0  1  1  1  1  1  1  0  0   
0  0  1  1  1  1  1  1  1  0  0   
0  1  1  1  0  0  0  1  1  1  0   
0  1  1  1  0  0  0  1  1  1  0   
0  1  1  1  0  0  0  1  1  1  0   
0  0  1  1  0  0  0  1  1  1  0   
0  0  1  1  1  0  1  1  1  0  0   
0  0  1  1  1  1  1  1  1  0  0   
0  1  1  1  1  0  0  1  1  1  0   
0  1  1  1  0  0  0  0  1  1  0   
0  1  1  1  0  0  0  0  1  1  0   
0  1  1  1  0  0  0  0  1  1  0   
0  1  1  1  1  0  0  1  1  1  0   
0  1  1  1  1  1  1  1  1  1  0   
0  0  1  1  1  1  1  1  1  1  0   
0  0  0  0  0  0  0  0  0  0  0   
0  0  0  0  0  0  0  0  0  0  0  

0  0  0  0  0  0  0  0  0  0  0   
0  0  0  0  0  0  0  0  0  0  0   
0  1  1  0  0  0  0  0  1  1  0   
0  1  1  0  0  0  0  0  1  1  0   
0  1  1  0  0  0  0  0  1  1  0   
0  1  1  0  0  0  0  0  1  1  0   
0  1  1  0  0  0  0  0  1  1  0   
0  1  1  0  0  0  0  0  1  1  0   
0  1  1  1  1  1  1  1  1  1  0   
0  1  1  1  1  1  1  1  1  1  0   
0  1  1  0  0  0  0  0  1  1  0   
0  1  1  0  0  0  0  0  1  1  0   
0  1  1  0  0  0  0  0  1  1  0   
0  1  1  0  0  0  0  0  1  1  0   
0  1  1  0  0  0  0  0  1  1  0   
0  1  1  0  0  0  0  0  1  1  0   
0  1  1  0  0  0  0  0  1  1  0   
0  0  0  0  0  0  0  0  0  0  0   
0  0  0  0  0  0  0  0  0  0  0  

0  0  0  0  0  0  0  0  0  0  0   
0  0  0  0  0  0  0  0  0  0  0   
0  1  1  1  0  0  0  1  1  1  0   
0  0  1  1  0  0  0  1  1  1  0   
0  0  0  1  1  0  0  1  1  0  0   
0  0  0  1  1  1  1  1  1  0  0   
0  0  0  0  1  1  1  1  0  0  0   
0  0  0  0  1  1  1  1  0  0  0   
0  0  0  0  0  1  1  0  0  0  0   
0  0  0  0  0  1  1  0  0  0  0   
0  0  0  0  0  1  1  0  0  0  0   
0  0  0  0  0  1  1  0  0  0  0   
0  0  0  0  0  1  1  0  0  0  0   
0  0  0  0  0  1  1  0  0  0  0   
0  0  0  0  0  1  1  0  0  0  0   
0  0  0  0  0  1  1  0  0  0  0   
0  0  0  0  0  1  1  0  0  0  0   
0  0  0  0  0  0  0  0  0  0  0   
0  0  0  0  0  0  0  0  0  0  0  

Fig. 5. Three sample of segmented characters 
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7   Character Recognition Using an ANN Model 

ANN recognizes one character at a time. It recognizes the characters stored in the test file 
one at a time in sequential order starting from the first character until it reaches the last 
character. A special control mechanism is used for generating the outputs. As explained 
earlier, Turkish VLP has three regions containing, from left to right, the county code, a 
letter code, and a numeric code as shown in Figure 3. County code starts at 01 and goes up 
to 85 in decimal. Therefore, first two characters must be numeric. The second region in the 
VLP is a three-letter alpha numeric symbol using only capital letters A-Z. The third region 
has a 4-digit decimal number. This knowledge of the VLP composition helps in the 
recognition process.  When recognizing the characters in the first and third plate regions, 
we only need to use the outputs O27,…,O36. Each time, we pick the one with the maximum 
value.  Similarly, outputs O1, .., O26 are used for recognizing the characters in the second 
plate region. The output of ANN is streamed into a text file.   

8   Test Results 

The Character recognition system was first trained with data from three samples. 
When three samples were not sufficient to generate satisfactory results, the number is 
gradually increased; first to six, and then nine, and finally 12 samples. At the testing 
stage, the system was tested starting with A and ending with Z, in order. The testing 
results are given in Table 2. 

Table 2. Test results for individual character recognition (X unrecognized, + recognized) 

Samples  Samples  Samples 

3 6 9 0
0 

 3 6 9 0
0 

 3 6 0
0 

X + + + L + + + + Z X + +
+ + + + M X + + + 0 + + +
+ + + + N + + + + 0 + + +
X + + + O + + + + 0 + + +
+ X + + P X + + + 3 X + +
+ + + + R + + + + 4 X X +
+ + X + S X + + + 5 + + +
+ + + + T + + + + 6 + + +
+ + + + U + + + + 7 + + +
+ X + + V X X + + 8 X + +
+ + + + Y + + + + 9 + + +

We tested our VLP recognition technique using images taken from 40 vehicles at 
random during various periods of the day; around noon on a sunny day (15 images), on a 
rainy day (15 images), during sunset or sun rise, and at night time (10 images). The images 
had the following properties: they were taken with a simple HP Digital camera and they 
were shot from a fixed distance, Images were taken with a shooting angle ranging between 
00 -150, Vehicles were either stationary or moving at a certain speed between 0-30 km/h. 

The testing results were given in Table 3. Our program recognized 38 out of 40 
license plates. This result translates into a 95% recognition rate which is considered to 
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be fairly high. The system failed to recognize only two VLPs. The reason for this 
failure is mainly due to the poor results obtained during the image processing phase. 
Basically, the quality of original image was so poor that the segmentation system 
failed to separate the characters correctly. And hence, ANN system could not 
recognize them. If the image quality is poor, some characters in VLP appear to be the 
same. The pairs (B, E), (F, P), and (P, R) are examples of such characters. There are 
other characters with similar properties too. If the image quality is not good and these 
characters are presented to ANN, they may be confused for one another. In only one 
case, the incorrect result was due to the failure of the ANN system. We have also 
applied our method to Missouri-USA license plates. We have shown that our approach 
can be used with minor changes for the recognition of Missouri license plates. 

Table 3. Test results for license plate recognition 

 
Image type How many Recognized Un recognized 
Sunny day   05 04 0 
Rainy or close to dark 05 05 - 
Night time 00 9 0 

9   Conclusions 

A computer vision system to recognize license plates of vehicles is presented and tested in 
a real-time environment. The system used the following steps: (i) real-time image 
acquisition, (ii) determining the location and position of the vehicle license plate (VLP) 
using an artificial neural network (ANN), (iii) segmentation of the VLP into separate 
characters using image processing techniques, and (iv) recognition of each symbol in VLP 
using a feedforward artificial neural network (ANN) and assembly of the characters. 

The system is tested using car images taken with a simple digital camera from random 
vehicles during various periods of the day and under different weather conditions. 
Vehicles were either stationary or moving at a certain speed (between 0-30 km/h). The 
system recognized 38 out of 40 license plates with 95% accuracy. The reason for the two 
failures was mainly due to the poor quality of images obtained initially. When the image 
quality is poor, some characters in VLP appear to be the same (such as the pairs (B, E), (F, 
P), and (P, R)). The recognition system is also tested on Missouri-USA license plates and 
satisfactory results are obtained.  

In conclusion, we can state that the VLP recognition system can be safely used in 
real-time environments provided that good quality images (with good focus and 
resolution) are taken from moving vehicles. 

References 

1. Pal, U., Chaudhuri, B.B.: Machine-printed and hand-written text lines identification. In: 
Pattern recognition letters, Elsevier, (2001) 431-441 

2. Blumenstein, M, Verna, B.: Neural based segmentation and recognition technique for 
handwritten words. In: Proc. Of  World Congress on Comp. Intell., Alaska, USA (1998) 
1738-1742   



888 C. Oz and F. Ercal 

 

3. Zheng,  B., Qian  W.,  Clarke, L.: Multistage neural network for pattern recognition in 
mammogram screening. In: Proc. of 1994 IEEE Int’l Conf. on Neural Networks (ICNN), 
Orlando, FL, USA (1994) 3437-3448. 

4. Han, K,   Sethi,  I. K.: Handwritten signature retrieval and identification. In: Pattern 
Recognition Letters 14, (1993)  305-315 

5. Iee, S. W.: Off-line recognition of totally unconstrained handwritten numerals using 
multilayer cluster neural network. In: IEEE Trans. on Patt. Anal. and Mach. Intell. 18, 
(1996) 648-650. 

6. Draghici,  S.:A neural network based artificial vision system for license plate recognition. 
In: Int’l J. of Neural Systems 8 (1997) 113-126 

7. Wei, W., Wang, M., Huang, Z.: An automatic method of location for number-palate using 
color features. In: Proc. of 2001 IEEE Int’l Conf. on Image proc. (ICIP). Volume 1. (2001) 
780-785. 

8. Lee,  C.: SIMNET: A neural network architecture for pattern recognition and data mining. 
PhD thesis, University of Missouri-Rolla (2003) 

9. Aksoy  M. S,  Cagil  G, Turker  A. K.: Number palate recognition using inductive learning.  
Robotics and Autonomous Systems 33, (2000)  149-153. 

10. Oz, C,  Koker, R.: Vehicle License plate recognition using artificial neural Networks.  In: 
Proc. of Second Int’l Conf. on Electrical and Electronics Engineering, Bursa, Turkey. 
(2001) 378-380 

11. Grattoni,  P,  Pettiti, G,  Rastello,  M. L.: Experimental set-up for the characterization of 
automated number-plate recognizers. Measurements 26. (1999) 003-004 

12. Zarrillo, M. L,  Radwan,  A. E,  Aldeek,  H. M.: Modeling traffic operations at electronic 
tool collection and traffic management systems. Computers and Industrial Engineering 33, 
(1997) 857-860 

13. Kou, Y.,  Hsu, J.: Color-blindness plate recognition using a neuro-fuzzy approach. 
Engineering Applications of Artificial Intelligence 11, (1998)  530-547 

14. Jain,  A. K,  Yu, B.: Automatic text location in images and video frames. In: Proc. of  
ICPR. (1998) 1499-1498 

15. Zhou,  J.,   Lopresti,  D.: Extracting text from www images.  In: Proc. of Fourth ICDAR, 
(1997) 048-050 

16. Wu, V., Manmatha, R.,   Riseman, E. N.: Finding text in images. In: Proc. of 2nd  ACM 
Int’l. Conf.  on Digital Libraries, Images and Multimedia, (1997) 3-12 

17. Jain, A. K,   Bhattacharjee,  S.:Text segmentation using gabor filters for automatic 
document processing.  Machine Vision Applications 5 (1992) 069-084 

18. Li,  H., Doermann, D., Kia, O.: Automatic text detection and tracking in digital video. 
IEEE Transactions on Image Processing 9 (2000) 047-056 

19. Zarrillo, M. L.,  Radwan,  A. E.,  Aldeek,  H. M.: Modeling traffic operations at electronic 
tool collection and traffic management systems. Computers Industrial Engineering 33, 
(1997) 857-860. 

20. Abulafya, N.: Neural networks for system identification and control. MSc Thesis. 
University of London (1995) 

21. Narendra, K.S.: Adaptive control using neural networks.  Neural Networks for Control,  
MIT (1990)  



 

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 889 – 898, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Matching Algorithm for Hangul Recognition 
Based on PDA 

Hyeong-Gyun Kim1, Yong-Ho Kim2, and Jong-Geun Jeong3 

1 Dept of Computer & Internet, Dongkang College, South Korea 
2 Dept of Internet Information, Chosun College of Science & Technology, South Korea 

comkim@netian.com 
3 Dept of Computer Engineering, Honam University, South Korea 

jkjeong@honam.ac.kr 

Abstract. Electronic Ink is a stored data in the form of the handwritten text or 
the script without converting it into ASCII by handwritten recognition on the 
pen-based computers and Personal Digital Assistants(PDA) for supporting 
natural and convenient data input. One of the most important issue is to search 
the electronic ink in order to use it. We proposed and implemented a script 
matching algorithm for the electronic ink. Proposed matching algorithm 
separated the input stroke into a set of primitive stroke using the curvature of 
the stroke curve. After determining the type of separated strokes, it produced a 
stroke feature vector. And then it calculated the distance between the stroke 
feature vector of input strokes and one of strokes in the database using the 
dynamic programming technique. 

1   Introduction 

There have been various research reports on the data processing and recognition for 
the electronic ink of PDA since the early 1990s. As the effective way of searching 
electronic ink data from the large data base, several approximate ink matching 
algorithms for the Hangul recognition of electronic ink data have been 
proposed[3][4], and methods utilizing the blind Markov Network and R-tree rate have 
been proposed[5][6]. However, these methods were developed with the main input 
type of English script. As compared writing English and Hangul scripts with pen, the 
English scripts can be decomposed into the continuous circular arcs, while the Hangul 
has the clear cornering position and direction of strokes. The proposed algorithm for 
matching the English scripts had been implemented[4] and applied for the Hangul 
scripts, showing very low matching rates. Consequently there is no meaning in 
directly applying the matching algorithm for the English scripts to the Hangul scripts, 
so that it is required to apply a Hangul matching algorithm for the electronic ink data 
mainly with the Hangul scripts, considering the geometric features of Hangul. This 
study proposes the Hangul matching system for storage and recognition in the form of 
electronic ink using the script data input with pen in the Hangul PDA. 
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2   Related Work 

In Figure 1, we show a pictogram and its segmentation into pen strokes and 
handwritten symbols. We can choose to represent pictograms by any of the 
three granules presented in the figure, i.e., as one entity containing the entire 
pictogram (Figure la), as a sequence of pen strokes (Figure lb), or as a sequence 
of alphabet symbols (Figure l). Of course, in order to select, for instance, the 
symbols as granules, we have to have a segmentation algorithm that properly 
separates the symbols. For instance, for strokes, a simple segmentation 
algorithm picks local minimum (or maximum) points and uses them to segment 
the curve. 

 

Fig. 1. Example illustrating the segmentation of the pictogram in (a) into (b) strokes, (c) 
alphabet symbols 

 

Fig. 2. An example of (a) a hand printed word, cursive handwritten word 

Segmentation could be a difficult task for some types of pictograms, such as 
cursive handwritten words (see Figure 2b), or a simpler task as in hand printed words 
(see Figure 2a). Some languages, like Japanese, lend themselves easily to symbol 
segmentation. In Japanese, Kanji symbols are already separated by blank spaces, The 
choice of granularity has an impact on the type of indices we build. 
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Fig. 3. A list of pictograms, all representing concept “gold” 

The second issue is that, for matching purposes, it is better to talk about 
pictogram (symbols, strokes) classes instead of individual pictograms. A 
pictogram class is the set of pictograms that have the same semantics, according 
to the user. Figure 3 shows a (non-exhaustive) list of pictograms that represent 
the concept “gold.” Of course, it would be impractical to store a pictogram class by 
storing the list of pictograms that belong to it. Alternatively, we have to choose a 
representative of the class and a distance metric. 

Common features are: direction, velocity, change in direction, change in velocity, 
accumulative angle (with respect to the initial point), accumulative length and angle 
of bounding box diagonal (also with respect to the initial point), and accumulative 
sequence length. 

The input format of our pictogram is an array s of P time-stamped sample points:  

                                   Sp =(xp,yp,tp), 0 p<P          (1) 

After computing the local features, the pictogram can be represented by a sequence 
of feature vectors (v1, t1), (v2, t2),...The dimensionality of the vi corresponds to the 
number of local features at each point, Global Features: Global features are 
characteristics of the entire pictogram. Among them are: the bounding box 
coordinates, the total angle traversed by the pictogram (measured by the angle from 
the beginning point to the endpoint), and length of the bounding box diagonal. After 
computing global features, the pictogram can be represented by a vector of global 
feature values. We show here how to build two representative models. The choice of 
model also has an impact on the index technique that we use. 

2.1   Hidden Markov Models 

HMMs are already used in the field of speech and handwritten recognition as a 
powerful tool for speech and handwritten document matching.[2] Each pictogram in 
the database can be modeled by an HMM. The HMM is constructed so that it accepts 
the specific pictogram with high probability (relative to the other pictograms in the 
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database). In order to recognize a given input pictogram, we execute each HMM in 
the database and select the one that generates the input sequence with the highest 
probability, Since each HMM in the underlying sequence database has to be tested, 
this results in a linear process where the speed of execution is the primary difficulty. 
An HMM is a doubly stochastic process, where there is a probability distribution that 
governs the transitions between states and an output probability distribution that 
identifies the distribution of output symbols for each state. 

 
Fig. 4. Several examples of HMMs: (a) the ergodic model with three states, (b) a left-to-right 
model with four states and (c) a parallel path left-to-right model with six states 

We use one type of HMM structures, termed left-to-right HMM[4] (e.g., see Figure 
4b). The left-to-right type of HMMs is useful for modeling temporal signals as in 
sound and cursive handwritten text because the underlying state sequence associated 
with the model has the property that, as time increases, the state index increases (or 
stays the same) — that is, the system states proceed from left to right. A left-to-right 
HMM can be constructed to model a handwritten word or an alphabet symbol. The 
HMM is constructed so that it accepts the word (or the symbol) with high probability 
(relative to the other words in the database). 1 The probability y given by the HMM is 
the distance metric used for ranking purposes. Given an HMM that models a word (or 
symbol), we can run an input symbol against it and obtain as an output a matching 
probability, Given a set of stored words (or symbols), one can match an input word 
(or symbol) by running each one of the corresponding HMMs against the input and 
choosing those with the best matching probability. In fact, we can keep the size of the 
answer set as a parameter and choose the k best matches. 

3   Proposed Hangul Matching Algorithm 

In this study the Hangul matching algorithm was used to implement a system so 
that the prime script of Hangul is used in the form of the electronic ink data in 
the PDA. First divide the ink data into basic stroke units by the Hangul 
matching algorithm and then apply the dynamic programming technique. While 
considering hardware limitation of PDA, it is designed to store the Hangul 
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numeric data on the CF memory to enhance the recognition rate as well as to 
secure the effective speed. When converting Hangul data value by various 
electronic ink data on the PDA, the applied system matches the converted one 
with Hangul with the existing Hangul data. 

3.1   Preprocessing 

Shaking hand may cause mistakes on curves and strokes when writing. Mistakes 
are compensated through smoothing, filtering, removing mistakes and 
normalizing sizes. 
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The current value is displaced by an average with the weight around 7 points, 
and the stroke curves are smoothed as shown in Eq. (2). The irregular spacing 
of points due to writing speeds are finalized uniform through DDA(Dot Density 
Algorithm) filtering.  

3.2   Feature Extraction Process 

The input strokes would show various forms of scribbles along with irregular lengths 
and angles in view of writing styles. So the feature points are utilized as the basic 
recognition unit to reduce unessential volume of information among the coordinate 
data column of input strokes[2][3]. However, several feature points may exist in 
specific parts of input strokes according to the writing speeds and angle variations, so 
that the process of removing rings, decorative lines, and neighboring feature points 
removes unnecessary feature points congregated within the given distance of marginal 
values. The feature and virtual vectors are information to match with the Hangul 
database, so that the feature vectors are procedural and directional information for the 
input strokes and the virtual vectors are information for position relation between 
strokes in the letter element or between letter elements[2][3]. In addition, the position 
relation and inclusive relation of position information as position information between 
strokes are extracted for letter element separation and recognition. The inclusive 
relation is the indication of adjacent level among the minimum circumscribed squares 
of strokes neighboring the minimum circumscribed square including the current 
strokes, composing inclusion, overlap, and separation.  

Fig.5(a) shows a case of extracting inclusive relations for the input letter ‘ ’. 
Dotted squares are the minimum circumscribed squares including strokes, and a 
number is the stroke number inside the dotted square, which means the dotted square 

1 indicates the whole size for the stroke ‘ ’. It is indicated that the dotted square 2 is 
included in the dotted square 1, the dotted squares 1,3, & 5 are separated each other, 
and the dotted squares 3 & 4 are overlapped. The position relation is a centroid of the 
current stroke and the direction information among the centroids of all input strokes, 
and is utilized as position relation information among the letter element, inside and 
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Fig. 5. Extraction of position relation among strokes 

letter space. Fig.5(b) is an extraction case of input letter ‘ ’, and shows the 
direction information on centroids among each letter elements comprising of 
letter. The position relation among strokes provides the position to decompose 
into the basic strokes from calculating the curvature for the points comprising 
strokes when considering input strokes as one curve. When indicating 
curvatures over the marginal value for the arbitrary points comprising strokes, 
the stroke is separated at that point. 

3.3   Determination of Basic Stroke Units 

Separation of letter element is prerequisite process for letter element 
recognition, and separation and recognition are in parallel processing in this 
study. The letter element recognition recognizes the letter element by matching 
stroke information extracted from the letter element separation and stroke 
information stored in the Hangul database and converts information of each 
recognized letter element into the assigned value of the electronic ink data to 
generate a letter. 

There are sequential letter element separation using position relation among 
strokes and back-tracking letter element separation performing recognition by 
changing the number of strokes comprising each letter element through 
matching Hangul database. The sequential letter element separation recognizes 
a case of separate inclusive relation among strokes as the stroke from the other 
source, and case of overlapped or inclusive as the strokes from the same letter 
element. But in case of separate inclusive relation among strokes inside letter 
element, the sequential letter element separation shows insufficient letter 
separation capability, so that the back-tracking letter element separation is 
performed in case of false recognition or non-recognition. The existing back-
tracking method shows the demerits of reprocessing all procedures. But the 
back-tracking letter element separation, based on stroke information extracted, 
separates the total strokes of input letter into the optimal number of strokes to 
recognize according to the recognition by letter element. There are sequential 
letter element separation using position relation among strokes and back-
tracking letter element separation performing recognition by changing the 
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number of strokes comprising each letter element through matching Hangul 
database. 

 

Fig. 6. Back-tracking letter element separation algorithm 

The existing back-tracking method shows the demerits of reprocessing all 
procedures. But the back-tracking letter element separation, based on stroke 
information extracted, separates the total strokes of input letter into the optimal 
number of strokes to recognize according to the recognition by letter element. 
Fig.6 and Fig.7 shows an algorithm for the back-tracking letter element 
separation and a parallel processing for letter element separation and 
recognition, respectively. This study shows fast processing speed by performing 
the letter element separation differently according to configuration information 
of input letter and stroke types. 

3.4   Similarity Calculation 

The process separates the input data into the basic stroke unit by stroke 
curvatures. Seven basic strokes have been assigned to ensure fast matching 
speed in the PDA in consideration of the geometric characteristics of Hangul as 
shown in Fig.7. The next step decides types of basic strokes separated by the 
curvatures to create stroke feature vectors. The stroke feature vector has basic 
stroke unit information separated from the input data. Once the stroke feature 

Step 1. Sequential letter element separation 
Step 2. Recognition of initial sound 
        if (Recognize success) step 3  
        else Apply back-tracking, Retry initial sound recognition 
Step 3. Recognition of vowels 
        if (Recognize success)  
                if ( No initial sound exists)  

            Complete letter element separation,  
character recognition 

                else step 4  
        else Back-tracking application, step 3  
        if (Retrial success) step 4  
        else Back-tracking application, step 2  
Step 4. Recognition of final consonant 
        if (Recognize success)  

Complete letter element separation, character recognition 
        else Back-tracking application, step 3  
                  if(Retrial of final consonant recognition success)  

Complete letter element separation,  
                        if (Retrial of final consonant recognition success)  

Complete letter element separation 
                            Character recognition 
                            else Back-tracking application, step 2  
                  else Back-tracking application,  step 2  
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vector created, the dynamic programming calculates distances among the stroke 
feature vectors for the stroke feature vector of query and the ink data in the 
database, and compares the data having the shortest distance with the data value 
on the CF memory to return matching result. 

3.5   Report on Matching Result 

The letter element recognition comprises the synchronization process of values 
on the Hangul database on the CF memory, containing structural configuration 
information of Hangul and diverse stroke information of various users for each 
letter element. The structural configuration information of Hangul includes 
packing information among letter element using in recognizing the vowels, 
collection information, position relation among strokes, letter element 
classification information by configuration, etc. In addition, letter element 
models for recognition by letter element has the general stroke information. 

 

Fig. 7. Processing flow for Letter element separation and Recognition 

However, the letter containing excessive curvatures and any scribbles 
between letter elements is difficult to extract the accurate information, then 
utilizing only straight line, smooth curve information and stroke configuration 
in various directions. Fig.8 shows the hierarchical recognition process for the 
Hangul data ink. 



 Matching Algorithm for Hangul Recognition Based on PDA 897 

 

 

Fig. 8. Hierarchical recognition process 

4   Implementation and Conclusion 

The randomly extracted electronic ink data collection was used for the test, and 
input type was the Hangul scripts. Visual C# and MS-SQL were applied to 
construct Hangul data on the CF memory, and the mobile program was prepared 
in Embedded Visual C++ and performed with the test PDA(Compaq  ipaq 
3850). Matching rates were measured with the three element, and the model is 
as follows. 

),,( rtnmR =  
(3) 

The test results show merits of the matching algorithm as follows. First, the 
matching algorithm is practical. Generally the number of the electronic ink data 
using in the PDA and mobile computer is around 300. The suggested algorithm 
shows the matching rate of nearly 98% even with 300 database. Second, the fast 
searching speed shows an average 0.8 second in matching speed with 300 
database, which is a very fast speed when considering the environment of the 
PDA having hardware limitations as compared with the desktop computer. 
Third, one merit of writer-dependent matching algorithm provides the security 
capability for anybody having different strokes. In case of the writer-dependent 
matching, the different strokes for the same letter recognize the different form 
of pattern. Therefore when anyone of different strokes wants to use, the 
probability of providing desired data becomes low, providing the security 
capability for the private information. 

This study suggested and implemented the Hangul matching system for 
storing and recognizing the electronic ink form with the Pen-input script data in 
the PDA. The suggested Hangul matching system calculates the stroke 
curvature along with the preprocessing procedure and works through the 
process separating into the basic stroke units. Then it creates the stroke feature 
vectors by the decision of types of basic stroke unit for calculating the distance 
value with the dynamic programming. When calculating the distance value, the 
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edit operation includes deletion, insertion, and exchange operation as well as 
packing and separation operation in consideration of the characteristics of 
Hangul. The resulting values are used to compare the Hangul numeric value on 
the CF memory and recognize Hangul, applying it to the system.  
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Abstract. Linear Discriminant Analysis (LDA) technique is an important and 
well-developed area of image recognition and to date many linear 
discrimination methods have been put forward. Despite these efforts, there 
persist in the traditional LDA some weaknesses. In this paper, we propose a 
new LDA-based method called Block LDA (BLDA) that can outperform the 
traditional Linear Dicriminant Analysis (LDA) methods. As opposed to 
conventional LDA, BLDA is based on 2D matrices rather than 1D vectors. That 
is, we firstly divides the original image into blocks. Then, we transform the 
image into a vector of blocks. By using row vector to represent each block, we 
can get the new matrix which is the representation of the image. Finally LDA 
can be applied directly on these matrices. In contrast to the between-class and 
within-class covariance matrices of LDA, the size of the these covariance 
matrices using BLDA is much smaller. As a result, BLDA has three important 
advantages over LDA. First, it is easier to evaluate the between-class and 
within-class covariance matrices accurately. Second, less time is required to 
determine the corresponding eigenvectors. And finally, block size could be 
changed to get the best results. Experiment results show our method achieves 
better performance in comparison with the other methods.  

Index Terms: Linear Discriminant Analysis (LDA), Block Linear Discriminant 
Analysis (BLDA), face recognition. 

1   Introduction 

Face recognition research has been started in the late 70s and is one of the active and 
exciting researches in computer science and information technology areas since 1990 
[1]. Generally, there are three phases for face recognition, mainly face representation, 
face detection, and face identification. Face representation is the first task, that is, how 
to model a face. The way to represent a face determines the successive algorithms of 
detection and identification. There are a variety of approaches for face representation, 
which can be roughly classified into three categories: template-based, feature-based, and 
appearance-based. The simplest template-matching approaches represent a whole face 
using a single template, i.e., a 2-D array of intensity, which is usually an edge map of 
the original face image. In a more complex way of template-matching, multiple 
templates may be used for each face to account for recognition from different 
viewpoints. Another important variation is to employ a set of smaller facial feature 
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templates that correspond to eyes, nose, and mouth, for a single viewpoint. The most 
attractive advantage of template-matching is the simplicity, however, it suffers from 
large memory requirement and inefficient matching. In feature-based approaches, 
geometric features, such as position and width of eyes, nose, and mouth, eyebrow's 
thickness and arches, face breadth, or invariant moments, are extracted to represent a 
face. Feature-based approaches have smaller memory requirement and a higher 
recognition speed than template-based ones do. They are particularly useful for face 
scale normalization and 3D head model-based pose estimation. However, perfect 
extraction of features is shown to be difficult in implementation. Eigenfaces approach is 
one of the earliest appearance-based face recognition methods, which was developed by 
M. Turk and A. Pentland [2] in 1991. This method utilizes the idea of the PCA and 
decomposes face images into a small set of characteristic feature images called 
eigenfaces. Recognition is performed by projecting a new face onto a low dimensional 
linear “face space” defined by the eigenfaces, followed by computing the distance 
between the resultant position in the face space and those of known face classes.  

The Fisherface method [4] combines PCA and the Fisher criterion [9] to extract the 
information that discriminates between the classes of a sample set. It is a most 
representative method of LDA. Nevertheless, Martinez et al. demonstrated that when 
the training data set is small, the Eigenface method outperforms the Fisherface method 
[7]. Should the latter be outperformed by the former? This provoked a variety of 
explanations. Liu et al. thought that it might have been because the Fisherface method 
uses all the principal components, but the components with the small eigenvalues 
correspond to high-frequency components and usually encode noise [11], leading to 
recognition results that are less than ideal. In line with this theory, they presented two 
enhanced Fisher linear discrimination (FLD) models (EFMs) [11] and an enhanced 
Fisher classifier [12] for face recognition. Their experiential explanation lacks sufficient 
theoretical demonstration, however, and EFM does not provide an automatic strategy 
for selecting the components. Chen et al. proved that the null space of the within-class 
scatter matrix contains the most discriminative information when a small sample size 
problem takes place [13]. Their method is also inadequate, however, as it does not use 
any of the information outside the null space. In [5], Yu et al. propose a direct LDA 
(DLDA) approach to solve this problem. It removes the null space of the between-class 
scatter matrix firstly by doing eigen-analysis. Then a simultaneous diagonalization 
procedure is used to seek the optimal discriminant vectors in the subspace of the 
between-class scatter matrix. However, in this method, removing the null space of the 
between-class scatter matrix by dimensionality reduction would indirectly lead to the 
losing of the null space of the within-class scatter matrix which contains considerable 
discriminative information. Rui Huang [10] proposed the method in which the null 
space of total scatter matrix which has been proved to be the common null space of both 
between-class and within-class scatter matrix, and useless for discrimination, is firstly 
removed. Then in the lower-dimensional projected space, the null space of the resulting 
within-class scatter matrix is calculated. This lower-dimensional null space, combined 
with the previous projection, represents a subspace of the whole null space of within-
class scatter matrix, and is really useful for discrimination. The optimal discriminant 
vectors of LDA are derived from it. 

In the LDA-based face recognition technique, the 2D face image matrices must be 
previously transformed into 1D image vectors. The resulting image vectors of faces 
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usually lead to a high dimensional image vector space, where it is difficult to evaluate 
the between-class and within-class covariance matrices accurately due to its large size 
and the relatively small number of training samples. Fortunately, the eigenvectors can 
be calculated efficiently using the SVD techniques and the process of generating these 
covariance matrices is actually avoided. However, this does not imply that the 
eigenvectors can be evaluated accurately in this way since the eigenvectors are 
statistically determined by the between-class and within-class covariance matrices, no 
matter what method is adopted for obtaining them. In this paper, a new LDA 
approach called BLDA, is developed for image feature extraction. As opposed to 
conventional LDA, BLDA is based on 2D matrices rather than 1D vectors. That is, we 
firstly divides the original image into blocks. Then, we transform the image into a 
vector of blocks. By using row vector to represent each block, we can get the new 
matrix which is the representation of the image. Finally LDA can be applied directly 
on these matrices. In contrast to the between-class and within-class covariance 
matrices of LDA, the size of the image covariance matrix using BLDA is much 
smaller. As a result, BLDA has three important advantages over LDA. First, it is 
easier to evaluate the between-class and within-class covariance matrices accurately. 
Second, less time is required to determine the corresponding eigenvectors. And 
finally, block size could be changed to get the best results. The remainder of this 
paper is organized as follows: In Section 2, the traditional LDA method is reviewed. 
The idea of the proposed method and its algorithm are described in Section 3. In 
Section 4, experimental results are presented on the ORL face image database to 
demonstrate the effectiveness of our method. Finally, conclusions are presented in 
Section 5. 

2   Linear Disciminant Analysis 

Let us consider a set of N sample images 1 2{ , ,..., }Nx x x  taking values in an n-

dimensional image space, and assume that each image belongs to one of c  classes 

1 2{ , ,..., }cC C C . Let iN  be the number of the samples in class ( 1, 2,..., )iC i c= , 

1

i

i
x Ci

x
N

µ
∈

=  be the mean of the samples in class iC , 
1

1 N

i
i

x
N

µ
=

=  be the mean 

of all samples. Then the between-class scatter matrix bS  is defined as 

1

1 1
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b i i i b b
i

S N
N N

µ µ µ µ
=

= − − = Φ Φ  (1) 

and the within-class scatter matrix wS  is defined as 

1

1 1
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k i

c
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w k i k i w w
i x C

S x x
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µ µ
= ∈

= − − = Φ Φ  (2) 



902 

 

Also, the total scatter matrix or mixture scatter matrix tS  is defined as 

1

1 1
( )( )

N
T T

t b w i i t t
i

S S S x x
N N

µ µ
=

= + = − − = Φ Φ  (3) 

which is also the covariance matrix of all the samples. 

In LDA, the projection optW   is chosen to maximize the ratio of the determinant of 

the between-class scatter matrix of the projected samples to the determinant of the 
within-class scatter matrix of the projected samples, i.e., 

1 2arg max [ ... ]
T

b

opt W mT
w

W S W
W w w w

W S W
= =  (4) 

where { 1,2,..., }iw i m=  is the set of generalized eigenvectors of bS  and wS  

corresponding to the m  largest generalized eigenvalues { 1,2,..., }i i mλ = , i.e., 

1, 2,...,b i i w iS w S w i mλ= =  (5) 

3   Our Proposed LDA 

In the LDA-based face recognition technique, the 2D face image matrices must be 
previously transformed directly into 1D image vectors. The resulting image vectors of 
faces usually lead to a high dimensional image vector space. However, in our 
proposed BLDA approach, we firstly divides the original image into s hxw=  size 

blocks with ,h w  are the height and width of the block. Then, we transform the image 

into a vector of blocks. By using row vector r with T sr ∈  to represent each block, 

we can get the matrix kxsX ∈ which is the representation of the image , with k  is 
the number of blocks. See fig. 1 for the process. 

 
 
 
 
 
 
 
 

Fig. 1. The process of getting representation of each image 
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Now, set of N sample images are represented as 1 2{ , ,..., }NX X X  with 
kxs

iX ∈ . Then the between-class scatter matrix bS  is re-defined as 

1

1
( )( )

i i

c
T

b i C X C X
i

S N
N

µ µ µ µ
=

= − −  (6) 

and the within-class scatter matrix wS  is re-defined as 

1

1
( )( )

i i

k i

c
T

w k C k C
i X C

S X x
N

µ µ
= ∈

= − −  (7) 

The total scatter matrix  is re-defined as 

1

1
( )( )

N
T

T i X i X
i

S X X
N

µ µ
=

= − −  (8) 

with 
1

N
kxs

X i
i

Xµ
=

= ∈  is the mean image of all samples and 
1

i

i

C
X Ci

X
N

µ
∈

=  

be the mean of the samples in class iC . 

Similarly, a linear transformation mapping the original kxs  image space into an 

mxs feature space, where m k< . The new feature matrices mxs
iY ∈  are defined 

by the following linear transformation : 

( )T mxs
i i XY W X µ= − ∈  (9) 

where 1,2,...,i N=  and kxmW ∈  is a matrix with orthonormal columns. And the 

projection optW   is chosen with the criterion same as that in (4). 

After a transformation by BLDA, a feature matrix is obtained for each image. 
Then, a nearest neighbor classifier is used for classification. Here, the distance 

between two arbitrary feature matrices iY  and jY is defined by using Euclidean 

distance as follows : 

2

1 1

( , ) ( ( , ) ( , ))
k s

i j i j
u v

d Y Y Y u v Y u v
= =

= −  (10) 

Given a test sample Y , if ( , ) min ( , )c j
j

d Y Y d Y Y= , then the resulting decision 

is Y belongs to the same class as cY . 
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4   Experimental Results 

This section evaluates the performance of our propoped algorithm compared with that 
of the original LDA algorithm based on using ORL. In the ORL database, there are 
ten different images of each of 40 distinct subjects. For some subjects, the images 
were taken at different times, varying the lighting, facial expressions (open / closed 
eyes, smiling / not smiling) and facial details (glasses / no glasses). All the images 
were taken against a dark homogeneous background with the subjects in an upright, 
frontal position (with tolerance for some side movement).  

In our experiments, firstly we tested the recognition rates with different number of 
training samples. ( 2,3, 4,5)k k =  images of each subject are randomly selected 

from the database for training and the remaining  images of each subject for testing. 
For each value of k , 5 runs are performed with different random partition between 
training set and testing set. The block size 3 by 3 is used in this first experiment, and 
two methods which are LDA and BLDA  are performed. Table 1. shows the 
recognition results of the best recognition accuracy among all the dimension of 
feature vectors. It means we test on all dimension of feature vectors and choose the 
best recognition accuracy. 

Table 1. The recognition rates on ORL database with different training samples of two methods 
(LDA, BLDA – 3x3 block size) 

Training samples 2 3 4 5 
LDA (Fisherfaces) 78.83 86.9 91.03 93.6 

BLDA (3x3) 86.22 89.61 93.53 95.83 

Next, we try to test BLDA approach performance when the block size is changed. 
And several results can be show in the Table 2. The same protocol as previous 
experiments, we choose the recognition result of the dimension feature vectors which 
give the best accuracy. 

Table 2. The recognition rates with different block sizes 

 Training samples 
Size of block 2 3 4 5 

[2x2] 86.77 90.4 94.23 96.48 
[3x3] 86.22 89.61 93.53 95.83 
[5x5] 87.88 90.92 94.86 96.89 

[10x2] 86.17 90.41 93.6 95.98 
[10x10] 83.51 88.52 90.55 93.57 

From Table 2, it seems to be that the block size 5x5 give the best recognition 
results among all. However we still not yet find the relationship between the block 
size and the recognition result. 
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5   Conclusions 

A new LDA-based method (BLDA) for face recognition has been proposed in this 
paper. As opposed to conventional LDA, BLDA is based on 2D matrices rather than 
1D vectors. That is, we firstly divides the original image into blocks. Then, we 
transform the image into a vector of blocks. By using row vector to represent each 
block, we can get the new matrix which is the representation of the image. Finally 
LDA can be applied directly on these matrices. In contrast to the covariance matrix of 
LDA, the size of the image covariance matrix using BLDA is much smaller. As a 
result, BLDA has three important advantages over LDA. First, it is easier to evaluate 
the covariance matrix accurately. Second, less time is required to determine the 
corresponding eigenvectors. And finally, block size could be changed to get the best 
results. 
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Abstract. A cellular neural network is proposed as the main processing
core in a novel FPGA-based augmented reality system. The described
application is focused on visually impaired people aid. The aim is to
enhance the user’s knowledge of the environment with useful information
extracted by image processing. A CNN architecture oriented to hardware
implementation on FPGA is presented, and used as the image processor
in a fully FPGA-based system. So, CNNs and FPGAs are combined in
a system which makes the most of their characteristics to achieve high
performance and versatility.

1 Introduction

Nowadays, the advantages of Cellular Neural Networks (CNNs) are already well
known in image processing. It is specially interesting for the application described
in this paper the facts that they make real time output feasible, that can be tuned
to produce the desired result and the possibility to perform different processing
algorithms just by changing the template set.

On the other hand, the Field Programmable Gate Array (FPGA) devices’
internal structure makes them perfectly suitable for executing in parallel el-
ementary digital processing tasks. This, together with their reconfigurability
capabilities, explains why FPGAs constitute a competitive alternative for high
performance signal [1], [2] and image processing [3], [4]. Moreover, because of
their flexibility it is possible to implement not only specific algorithms but also
interfaces, controllers, glue logic, even microprocessors, and so to integrate the
whole system in just one chip (SOC, system on a chip concept). Therefore, par-
allelism and flexibility (and cost) become FPGAs a very interesting alternative
to ASICs for CNN implementation. Several works have focused on the FPGA
implementation of CNNs [5], [6], [7]. In this work, advantage of CNNs charac-
teristics is taken by means of the implementation on FPGA for an augmented
reality system.

Augmented Reality (AR) is a highly interdisciplinary field which has received
increasing attention since late 90s. Basically, it consists of a combination of the
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real scene viewed by a user and a artificially generated image, running in real
time. So, AR allows the user to see the real world supplemented with some in-
formation considered as useful, enhancing the user’s perception and knowledge
of the environment (Fig. 1). Many areas of knowledge are involved in AR, inclu-
ding signal and image processing, wearable computing, computer vision, com-
puter graphics and information visualization. The applications of AR spread on
a wide range, from entertainment to military purposes, including medical visuali-
zation and training, engineering design, manufacturing and, as proposed in this
work, impairment aids.

Virtual Environment

Mixed Reality

Real Environment Augmented Reality Augmented Virtuality

Fig. 1. Milgram’s reality-virtuality continuum. It shows how real and virtual worlds

can merge. Augmented reality is nearer the real world than the virtual world because

the real world perception predominates over the generated data

AR usually implies the use of a Head Mounted Display (HMD), in order
to increase the sense of presence [8], [9]. Because of the particular characte-
ristics of our application, an optical see-through HMD has been chosen in this
work (Fig. 2), together with a camera mounted on the HMD to acquire an image
of the environment.

Fig. 2. Optical see-through approach adopted in this work. Optical combiners in front

of the user’s eyes inside the HMD allow to see the virtual image, generated in the

graphics system from the camera image and, thanks to their transmissive properties,

to see through them the real world

In this work, an AR application is developed for people affected by tunnel
vision. As it will be described in section 2, people suffering from this visual
disorder can be aided by enhancing their knowledge of the environment with
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information obtained by processing images from a camera. The image processing
is performed with a CNN. The CNN model is presented in section 3. The overall
system architecture is described in section 4. The results of the implementation
and some examples are shown in section 5 and, finally, conclussions are presented
in section 6.

2 Target Application

Tunnel vision consists of a loss of peripheral vision, while retaining a high reso-
lution central vision. It is associated mainly to several eye diseases such as re-
tinitis pigmentosa and glaucoma. The loss of the peripheral visual field affects
considerably the patient’s ability to localize objects and people and navigate,
and consequently, his relationship with people and the environment (Fig. 3).

Fig. 3. Simulation of patient’s view affected by tunnel vision (right). The severe re-

duction of the visual field can be observed comparing with the normal vision (left)

The devices used to aid affected people are traditionally based on techniques
for reducing optically the size of the objects. This minification process allows
to see a wider field of view, but at the expense of lessening the high resolution
central vision.

To overcome this disadvantage, Peli et al. [10] have proposed an augmented
reality-based method to enhance the user’s knowledge of the environment by in-
creasing his field of view. The contour of the image obtained from a video camera
is superimposed on his own view of the entourage seen with a see-through HMD.
In their work, contour information is generated by an edge detection algorithm,
performed by a four-pixel neighbour gradient filter and a treshold function, run-
ning on a laptop PC [11]. They draw the conclussion that, although patients
consider the system useful for navigating and obstacle avoiding, a specifically de-
signed system to perform image processing (edge detection) and increase frame
rate is necessary. Obviously, an effective improvement of the user’s environment
perception requires real time processing.
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With this aim, a system based on the FPGA implementation of the Canny
edge detection algorithm to extract contour information, has been recently de-
veloped [12]. Now, we propose the use of CNNs to increase the versatility of the
system through the possibility of using different templates, while achieving real
time processing, implemented on reconfigurable hardware too.

3 The CNN Discrete Model

The discrete CNN implemented is based on the model shown in Figure 4, derived
by approximating the continuous model with the Euler method. Three more
models have been evaluated, obtained through transformation of the continuous
model by differentia algorithm (TDA-backward), numeric integration algorithm
(TIA-Tustin) and response-invariant algorithm (RIT-first order impulse). The
one chosen here offers the best results approximating the continuous model, while
requiring the minimum computational cost [13]. As can be seen in Figure 4, we
restrict the system to the use of the 3 × 3 neighbourhood. We have adopted a
pixel pipeline approach for data input and output, where 5 identical stages are
connected in cascade.

Fig. 4. The CNN discrete model

4 System Description

The proposed system consists basically of a camera to acquire images of the
environment, a head mounting display to visualize the information that enhances
the user’s vision, and a Xilinx Virtex-II FPGA as processor and controller unit.

The camera is the M4088, a monochrome camera module with 8 bits digital
output that provides a very low cost solution for higher quality video applica-
tion. It uses OmniVision’s CMOS image sensor OV5017 and outputs a 384 × 288
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pixels image at 50 frames per second. A digital interface facilitates the configu-
ration and inicialization of the camera, executed from the FPGA. The camera
pixel clock frequency is 14.31 MHz.

The data from the camera are written on SRAM memory at the frequency
determined by the camera frame rate, and simultaneously they are read from
the memory to be processed by the FPGA. Due to the large size, data between
the different stages of the processing are stored in external SRAM
memories. The output of the last stage is also stored in SRAM memory, where
data are read from at the VGA frame rate to be sent to the HMD. The memory
interface for controlling the write and read operations is implemented on the
own FPGA.

VGA synchronization signals for the HMD are generated by the FPGA to
show a 640 × 480 pixels image at 60 frames per second. The image pixels values
are converted into analog signals by the ADV7123 from Analog Devices, a triple
channel digital to analog converter for video applications.

The head mounted display used in this work is the Sony Glasstron PLM-
S700E. It is a binocular and high resolution device with SVGA/VGA input
and adjustable see-through capability. Its design and light weight (120 gr. head)
allows its use with correction glasses and makes it easy the movement of the
head and the mobility of the person. All these characteristics become this HMD
into a suitable choice for our application.

The processed image must be properly positioned in the HMD screen in order
to maximize utility making use of the patient’s visual remains. Therefore, the
contour information is reducted in a minification factor and centered in the user’s
high resolution central vision field. This image minification factor depends on
the width of the field of view where the scene is presented, and determines how
small objects in the HMD look: the higher minification value, the narrower field
of view and the smaller objects. The suitable value depends on each patient, not
only on his visual conditions but also on his adaptability to the composed scene
and his personal preferences. In the results shown in section 5 the adopted value
was 4.

5 Results

The design has been developed in VHDL, synthesized with Xilinx XST and
implemented on a Xilinx XC2V4000 FPGA. It uses a 22.3% of the slices available
on the Xilinx XC2V4000 FPGA and a 83% of the embedded multipliers.

The results obtained in different situations, both indoor and outdoor environ-
ments, are shown in Figure 5. In all of them, the contour information extracted
from the image of the camera by the CNN is superimposed on the central vi-
sion field. A residual 10o field of view has been considered. In these examples, a
57.9o (H) × 45.7o (V) lens has been used. A wider field of view can be acquired
by the camera with the appropiate lens.
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a) b)

c)

Fig. 5. Simulation of patient’s view through the HMD: a) in an indoor environment.

It can be observed that the clothes stand is situated on a corner and beside a shelf.

b) in an outdoor environment, showing a car in a parking. c) looking at a person sitting,

who is between a shelf and a picture

6 Conclusions

An augmented reality system has been developed to aid visually impaired people.
In order to achieve the requirements of performance and flexibility, a CNN has
been the adopted solution to perform image processing, and an FPGA device has
been chosen as the hardware platform. With the proposed system, the patient’s
limited view of the environment is enhanced superimposing on it the contour
information extracted from a video camera image by means of a head mounted
display with see-through capability. So, the person’s abilities to localize objects,
orientate and navigate are improved. The results make clear the viability and
utility of the system.
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Nevertheless, the CNN architecture must be optimized, in order to reduce the
used resources. Future works will focus on this topic firstly. Also, the increase of
functionality by performing the CNN other image processing algorithms, and the
inclusion of textual information to the augmented scene or a graphic interface
to facilitate user’s customization of different configuration parameters will be
evaluated.
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Abstract. Magnetic Resonance Images(MRI) are piecewise constant
functions that can be corrupted by an inhomogeneous illumination field.
We propose a gradient descent parametric illumination correction algo-
rithm for MRI. The illumination bias is modelled as a linear combination
of 2D products of Legendre polynomials. The error function is related
to the classification error in the bias corrected image. In this work the
intensity classes are given beforehand, so the adaptive algorithm is used
only to estimate the bias field. We test our algorithm against Maximum
A Posteriori algorithms over some images from the ISBR public domain
database.

1 Introduction

The MRI is different from the other medical visualization techniques because it
is not the result of a tomography transformation. MRI allows to visualize with
great contrast the soft tissues and has revolutionized the capacity to diagnose the
pathologies that affect them. The visualization of magnetic resonance is based on
the phenomenon known as nuclear magnetic resonance (NMR). The MRI results
from the aggregated measurements of the tissues composition at the molecular
level. The MRI has a high space resolution and provides much information on the
anatomical structure, allowing quantitative pathological or clinical studies, the
derivation of digitized anatomical atlases and also the guide before and during
the therapeutic intervention. Many of the image analysis tasks of the radiologists
are repetitive, for this reason the introduction of automated methods of image
process is desired. The automated image processing range from the impulsive
noise elimination, applying linear filters and others like the anisotropic filters,
automated image to segmentation and registration. The image registration is
the aligment of different images to obtain a more complete visualization. It is
applied in the fusion of images from multiple modalities and the comparison of
the patients data with anatomical atlases. The image segmentation consists of
its decomposition in regions. The regions identification criteria vary depending
on the application. The image segmentation is critical in applications like the
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diagnosis of schizophrenia, the detection of tumors and the surgery based on aug-
mented reality. The segmentation methods must be reliable and reproducible.
For example, in studies of degenerative cerebral diseasees like the schizophrenia,
Alzheimer’s disease [6], multiple sclerosis, it is necessary the precise measure-
ment of the amount of gray matter, white matter, damages in the white matter,
CSF and their space distributions and temporary changes. Given the piece wise
constant nature of MRI the automatic image segmentation is trivial if the tissue
intensity classes are known. There are two problems affecting the image segmen-
tation: the additive noise and the illumination inhomogeneity. Usually we can
cope with the additive noise by conventional clustering algorithms however the
illumination inhomogeneity induced distrortion need more sofisticate methods.

In this paper we deal with the correction of illumination inhomogeneities
proposing gradient descent algorithm. We compare this algorithm with Bayesian
state of the art algorithms. The method is described in Section 2, and experi-
mental results of illumination field correction algorithms in MRI are presented
in Section 3. Finally, some conclusions are draw in Section 4.

2 Description of the Algorithms

We will denote the observed and classification images as y = (yi; i ∈ I) ; x =
(xi; i ∈ I, xi ∈ Ω) where i ∈ I ⊂ N

2 is the pixel site in the discrete lattice of the
image support. The assumed image formation model is the following one:

yi = βi · ri + ηi, (1)

where βi is the bias due to the illumination, ri is the reflectance and ηi is the
additive noise. In the MRI we have the additional restriction of the reflectance
values belonging to a discrete set, Γ = {µ1, ...., µc} so ri = µxi

. The illumination
correction problem is the problem of estimating the image segmentation x and
the illumination bias field β from y. The algorithms that we describe in the
following, perform this estimation either as a Maximum A Posteriori (MAP)
probability estimation process, or as an error minimization processs.

2.1 BMAP

The BMAP [5] is a bayesian image processing algorithm [2, 3] which consists
on the MAP estimation of the image classification for a given illumination bias,
whose maximum likelihood estimation in its turn is performed given an image
classification. The algorithm, thus, iterates both conditional estimations. for its
presentation we will begin with the form that assume the conditional probability
and a priori distribution. The conditional probability distribution is:

p (yi |xi ) =
1√

2πσ2
xi

exp

{
−1

2

(
yi − (1 + βi) µxi

σxi

)2
}

, (2)
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It incorporates the hypothesis that the additive noise is a gaussian dis-
tributed, that is, the difference of the observed image intensity with respect
to the illumination corrected tissue class intensity average follows a gaussian
distribution.

The a priori probability distribution is modelled by a Markovian field:

p (x) =
1
Z

exp

{
−
∑
c∈C

Vc (x)

}
, (3)

where Z is the normalization constant and the sum of the potentials Vc (x)
extends to the set of cliques C defined on the lattice of pixel sites. The potentials
model the spatial relationships between pixel intensities and allow to introduce
smoothness restrictions or other global restrictions. Considering only the cliques
formed by one and two pixels, we have that the potentials can be written like:∑

c Vc (x) =
∑

i {V1 (xi) + V2 (xi)}. The local potentials can be expressed like:

V1 (xi)=
∑
ω∈Ω

−α0ωδ (xi = ω) ; V2 (xi)=
∑

i,j∈cl(i)

[αl (−δ (xi = xj) + δ (xi �= xj))] ,

(4)

In these expressions δ (c) =
{

1 if c
0 otherwise . We denote by cl (i) the cliques

of order two within a neighborhood of radius l around the reference pixel i:
cl (i) =

{
j : j ∈ I, |i − j| <

√
l, i �= j

}
. The potentials V1 (xi) correspond to the

a priori probabilities of pixel classes. The potentials V2 (xi) specify a classifica-
tion smoothness restriction, penalizing the classifications of neighboring pixels
different from the central pixel classification and rewarding those that are equal.

For computational reasons, in [5] the neighborhood radius considered was 2.
Therefore the a priori probability density parameters to be set are: α =
(αoω, ω ∈ Ω;α1, α2) . The parameters αoω are estimated from the a priori proba-
bilities of the pixel classes. We will not follow the iterative estimation procedure
described in [5] for the order two parameters because we have verified that it
adds little to the algorithm accuracy.

The problem of the MAP estimation of the classification image x∗ =
arg max

x
p (x |y ) becomes an minimization problem on the energy u (x |y ) ∝

− log (p (x |y )) .:
x∗ = arg min

x
u (y |x,β∗, θ∗, α∗ ) . (5)

The energy minimization can be made of diverse ways, applying methods
global random search like the simulated annealing [1]. In [5] it is performed by
the aplication of ICM, which is a greedy local search algorithm . ICM does not
guarantee optimal global but it gives good suboptimal solutions in a reasonable
computation time. ICM assumes that pixels are independent, that is:

p (x |y ) =
∏

i

p (xi |yi ) , (6)
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so that the energy function can be expressed as the sum of the individual pixel
energies

u (x |y ) =
∑

i

u (xi |yi ) . (7)

In terms of the a priori and conditional probabilities, the local energy of each
pixel can be written:

u (xi |yi ) = −1
2

(
yi − (1 + βi) µxi

σxi

)2

+ log (σxi
) + V1 (xi) + V2 (xi) (8)

ICM starts from an initial arbitrary classification x(0) and iterates the clas-
sification of the image through the optimization of the local pixel energy, until
classification changes fall below a threshold. The complete BMAP altorithm
iterates the MAP estimation of the classification by the ICM, the maximum
likelihood estimation of the bias, the class intensity averages and their variances

β̂i = yi

µxi

− 1, µ̂ω =
∑

i∈Rω
yi(1+βi)∑

i∈Rω
(1+βi)

2 , σ̂2
ω =

∑
i∈Rω

(yi−(1+βi)µω)2

|Rω| ,

2.2 Wells

The Wells algorithm [8] tries to make the MAP estimation of the illumination
bias

β̂ = arg max
β

p (β | y ) . (9)

As it’s well-know p (β |y ) ∝ p (y |β ) p (β) . Assuming the pixel intensity sta-
tistical independence, the a priori probability density of the complete image can
be written like

p (y |β ) =
∏

i

p (yi |βi ) . (10)

And the conditional probability of the intensity is obtained computing the
sum over tissue class marginals

p (yi |βi ) =
∑
xi

p (yi, xi |βi ) =
∑
xi

p (yi |xi, βi ) p (xi) . (11)

The conditional probability of the observed image p (yi |xi, βi ) follows the
same distribution as in equation 2. The a priori proability of the classes is
assumed uniform in [8]. The a priori ilumination bias probability is modeled by
a random multidimensional variable with Gaussian distribution p (β) = Gψβ

(β),
where ψβ is the n × n covariance matrix for the entire bias field. The approach
taken in [8] to search the MAP solution was to solve the root of the posterior
probability derivative. This leads to the following Expectation Maximization
algorithm.

A necessary condition for a maximum of the a posteriori probability of β
is that its gradient with respect to β is zero. After some formal derivations,
this condition leads to the following equality β̂ = HR where H is in general
intractable because it depends on the covariance matrix of the illumination bias.
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It is assumed to be well approximated by a low pass filter. The weighted resid-
uals R are given by Ri ≡

∑
j Wijσ

−1
j

(
yi − µj

)
where Wij is equivalent to the

a posteriori probability of class j in pixel site i. The expectation maximization
algorithm consists of the iteration of the following steps

Wij ←

[
p (xi) Gσxi

(yi − µ (xi) − βi)
]
xi=tejido−clase−j∑

xi
p (xi) Gσxi

(yi − µ (xi) − βi)
. (12)

β̂ ← HR (13)

2.3 GradClassLeg

GradClassLeg (GCL) is our own proposition of an illumination correction al-
gorithm. In this algorithm we have modeled the illumination bias as a linear
combination of 2D products of Legendre polynomials given by

b (i, ,p) =
m∑

k=0

m−k∑
l=0

pijPk (ix) Pl (iy) ; (14)

where i= (ix, iy) and Pk (.) is the Legendre polynomial of k order. The number of
parameters that compose p is n = (m + 1) m+2

2. . Given an illumination field, the
image correction error that we consider as the objective function is the following
one:

e (p) =
∑

i

c∏
k=1

(
yi

b̂ (i,p)
− µk

)2

(15)

GCL is a gradient descent algorithm of this function of error:

pt+1= pt+αt∇e (p) , (16)

The iterative application of equation 16 starts from a random initial bias.
The gradient vector is ∇pe (p) =

{
∂

∂pij
e (p)

}
,where

∂

∂pij
e (p,I)=

∑
x

∑
m

∏
k �=m

(
f (x)

b̂ (x,p)
− µk

)2(
f (x)

b̂ (x,p)
− µj

)
−f (x) Pi (x) Pj (y)

b̂2 (x,p)
.

(17)

3 Results on Brain MRI

In this section we present the experimental results of MRI illumination inhomo-
geneity correction algorithms over images downloaded from International Brain
Segmentation Repository (IBSR) [4] maintained by the Massachusetts General
Hospital, Center for Morphometric Analysis. The images are T1-weighted images
of normal subjects. There are manual segmentations of the regions correspond-
ing to the gray matter, white matter and CSF. The skull and empty space have
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Fig. 1. Accuracy classification results of the pixels into gray matter, white matter and

CSF obtained by GCL, Wells and BMAP on each slice

been removed from both the MRI and classification images. The images con-
sist of slices of 256 × 256 pixels, 8 bits/pixel corresponding to coronal cuts that
are grouped in volumes. The number of slices varies between images. The man-
ual segmentations are provided like volumes in which the values of the pixels
are: noclass = 0, csf = 128 gray = 192 white = 254. The illumination in-
omogeneities, if they exist, are unknown. The GradClassLeg, Wells and BMAP
algorithms have been tested on these images. They are applied independently
to each slice, without downsizing. The algorithms have not performed the esti-
mation of the intensity class means, they have assumed the nominal values of
classification images as the true values of the intensity classes means.

Strictly speaking, we do not realize an illumination correction process on the
3D MRI data, we perform a succession of independent 2D processes. Extension
of GCL to 3D data is still in the stage of fine tuning of the gradient descent
parameters. The algorithms have been used to estimate the illumination bias.
The image is corrected with this bias and the pixel classification according to the
intensity values assigned to each class in the manual segmentation images. Each
foreground pixel is assigned to the class with the closest intensity mean value.
The classification accuracy at each slice is computed as the average percentage
of correct classification for each class, weighted by the percentage of pixels of
each class in the slice (the a priori probabilities of the class in the slice). The
operational parameter values used on each algorithm are the following ones:
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Fig. 2. The slice #32 classification images obtained by the algorithms assuming the

intensity nominal values corresponding to each classe: (a) GCL (b) BMAP (c) Wells

– GradClassLeg: α = 0.01, 25 steps of iteration, minimum order 1, maximum
order 5.

– BMAP: neighbourhood 2, MRF potentials that modeled the a priori proba-
bility α1 = α2 = 0.01, diameter of the smoothing mask of slant 20 ,

– Wells algorithm: smoothing mask with diameter 25.

The figure 1 plots the classification accuracy of each algorithm over an image
shows the algorithms results over one image from ISBR. The plots present the
classification accuracy of each algorithm over each image slice. It stands out that
the GradClassLeg improves in almost all slices the other two algorithms. The
figure 2 displays for the specific case of slice #32 the classification images of
the corrected image using the nominal values of the intensity classes given in
the manual segmentation images. It is apparent that the classification obtained
from the GradClassLeg is most consistent with the manual segmentation. The
Wells algorithm classifies most of the image as white matter, while the BMAP
algorithm classifies most of the image as gray matter.

4 Conclusions

We propose a parametric gradient descent illumination inhomogeneity correction
algorithm GradClassLeg, which assumes as the illumination bias model a linear
combination of 2D products of Legendre polynomials. The GradClassLeg has
been tested and compared exhaustively with two other algorithms found in the
literature, BMAP and the Wells’ algorithm. The GCL systematically improves
the classification results on a set of MRI images downloaded from the IBSR.
We are currently tuning the 3D implementation of the algorithm in order to
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apply it as a competitive 3D analysis tool. This approach taken to define the
algorithm is not restricted to the processing of MRI data. It can be extended
to the illumination correction of other images, like faces, as a preprocessing for
recognition processes.
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Abstract. By analyzing electroencephalograms taken from healthy sub-
jects and epilepsy patients, we investigated whether the complexity of
the electroencephalogram (EEG) could be characterized by a multifrac-
tal. Our results showed that the EEGs from the two sets exhibit higher
complexity than monofractal 1/f scaling. A significant finding was the
observation that the dynamics of the epileptic EEGs exhibited anticorre-
lated, correlated, and uncorrelated behaviors. In conclusion, multifractal
formalism based on the wavelet transform modulus maxima (WTMM)
may be a good tool to characterize the various dynamics of the two sets.

1 Introduction

In recent years, neuroscientists have reported that the brain has multiple feed-
back loops and that numerous components of the brain interact mutually [1]. Re-
searchers have also begun to recognize that electroencephalogram (EEG) signals
stem from a highly nonlinear system [1] [2] [3]. Two different approaches for EEG
analysis have used. One is a linear approach, in which researchers view an EEG’s
behavior as linearly correlated noise. The other is a nonlinear approach, in which
researchers have suggested nonlinear mechanisms in the EEG. However, much
disputation between the two approaches is still occurring. Recent research has
suggested that although the EEG exhibits short-term information loss such as
random walk processes, the EEG could be characterized by long-range power law
correlations that indicate time scale invariance and fractal structure. Monofrac-
tal signals have linear properties and homogeneity [4]. However, in general, many
physiological time series fluctuate in a complex manner and have inhomogeneity,
suggesting that different parts of the signal have different scaling properties [5].
The aim of the present study is (i) to elucidate whether the EEG exhibits higher
complexity than fractal 1/f scaling-characterized by a multifractal spectrum,
(ii) to assess whether the EEG has nonlinear deterministic structures and (iii)
to investigate whether pathological brain states affect the phenomenon of multi-
fractality in the EEG dynamics. The scaling features of the EEG time series were
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investigated by means of the wavelet transform modulus maxima (WTMM). We
compared the multifractal properties of EEG signals obtained during epileptic
seizures and in healthy subjects in a relaxed state with their eyes open.

2 Methods and Materials

2.1 WTMM-Based Multifractal Formalism

The wavelet transform of a signal f(t) is defined as

Tψ[f ](x0, a) =
1
a

∫ ∞

−∞
f(x)ψ(

x − x0

a
)dx (1)

where x0 is the position parameter, a is the scale parameter, and ψ(t) is the
mother wavelet function [6]. We used a third derivative Gaussian function as
the analyzing wavelet. A partition function Zq(a) was defined as the sum of the
power of order q of the local maxima of | Tψ[f ](x0, a) | at scale a [6]. For small
scales, it was expressed as

Zq(a) ∼ aτ(q) (2)

where τ(q) is the scaling exponent. For monofractal signals, τ(q) is a linear func-
tion: τ(q) = qh(q) − 1, where h(q) = dτ(q)/dq = constant, and is the global
Hurst exponent [4] [5]. For multifractal signals, τ(q) is a nonlinear function and
h(q) = dτ(q)/dq = not constant [4] [5]. For positive values of q, Zq(a) char-
acterizes the scaling of the large fluctuations and strong singularities, whereas
for negative values of q, Zq(a) characterizes the scaling of the small fluctuations
and weak singularities. The singularity spectrum D(h) can be expressed using a
Legendre transform [4] [5] [6].

D(h) = q
dτ(q)
dq

− τ(q) (3)

D(h) can quantify the statistical properties of the different subsets charac-
terized by different exponents, h. Nonzero D(h) and h = 0.5 imply that the
fluctuations in signal exhibit uncorrelated behavior. Values of h in the range
0 < h < 0.5 imply anticorrelated behavior, while h > 0.5 corresponds to corre-
lated behavior [5].

2.2 Surrogate Time Series and Statistical Analysis

To assess the presence of nonlinearity in the time series, an appropriate null
hypothesis is that the original time series arise from a Gaussian linear process
measured through a static monotonic, possibly nonlinear function [7]. In this
study, the iterative amplitude adjusted Fourier transform (iAAFT) was used for
each original time series. The surrogate time series generated by the iAAFT
preserve the Fourier amplitudes of the original time series but randomize the
phase [7]. A paired-sample t-test was used to compare the mean of each set
between the original data and the surrogate data. The significant level was 0.05.
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2.3 Data

We used two sets of EEG data files [8]. One set A consists of 100 segments taken
from five healthy subjects’ scalps using a standardized electrode location scheme.
The subjects were relaxed, awake, and with their eyes open. The other set E
consists of 100 segments obtained from five patients during epileptic seizures.
Set E was recorded intracranially. Each segment of 23.6 s duration was selected
and cut out from continuous multichannel EEG recordings after visual inspection
for artifacts and was chosen to satisfy a criterion of weak stationarity. All EEG
signals were sampled at 173.61 Hz, 12 bits/sample. Band-pass filter settings
were 0.53-40 Hz (12 dB/octave). All recording parameters were fixed except
different recording electrodes were used for extracranial and intracranial EEG
registration [8]. In this study, 30 segments from set A and 30 segments form
set E were randomly selected. The set of 30 segments selected from set A was
denoted as AA. Similarly, the set of 30 segments selected from set E was denoted
as EE.

3 Results

Singularity spectra were computed using the WTMM for the two sets and the
surrogate data. The shape of D(h) for the set AA was broad. The range of local
Hurst exponents with D(h) greater than 0.8 was 0 < h < 0.5. The shape of
D(h) for the surrogate data was also broad. For the surrogate data, local Hurst
exponents in the range 0 < h < 0.5 corresponded to D(h) greater than 0.8. The
average values of local Hurst exponents with maximum D(h) for the set AA
and for the surrogate data were 0.232 and 0.222, respectively. Fig. 1 shows the
multifractal spectra for the sets AA and the surrogate data.

The shape of D(h) for the set EE was also broad. The range of local Hurst
exponents with D(h) greater than 0.6 was 0.25 < h < 1.0. For the surrogate

Fig. 1. Singularity spectra for the set AA and the surrogate data
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Fig. 2. Singularity spectra for the set EE and the surrogate data. D(h) is obtained as

the Legendre transform of τ(q)

Fig. 3. Comparison of singularity spectra for the two sets and the surrogate data

data of the set EE, the shape of D(h) was broad but was diminished in size.
The range of local Hurst exponents with D(h) greater than 0.6 was reduced
to 0.25 < h < 0.75 for the surrogate data. The average values of local Hurst
exponents with maximum D(h) for the set EE and for the surrogate data were
0.552 and 0.414, respectively. Fig. 2 shows the singularity spectra for the set EE
and the surrogate data. Fig. 3 shows that the singularity spectra for the two sets
and the surrogate data.
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4 Discussion and Conclusion

As shown in Fig. 3, the shapes of D(h) for the two sets were broad, indicating
that the EEG could not be characterized as monofractal, but was multifractal.
We suggest that the EEGs from the two sets have higher complexity and inho-
mogeneity. We found that the subsets characterized by local Hurst exponents of
0 < h < 0.5 were statistically dominant for the set AA. Therefore, the dynamics
of the EEGs taken at rest with eyes open exhibit anticorrelated behavior. This
means that large values are more likely to be followed by small values and vice
versa [9]. The results observed after the surrogate test showed no significant
change of the shape of D(h) and no significant change of the value of the local
Hurst exponents with maximum D(h). This means that the EEGs taken during
rest with eyes open have a quasilinear structure. These results also are consis-
tent with previous studies [8] [10]. For the set EE, statistically dominant subsets
were characterized by local Hurst exponents of 0.25 < h < 1.0. We found that
the dynamics of the epileptic EEGs exhibited anticorrelated, correlated, and un-
correlated behaviors. This finding indicates that the epileptic EEG has more
inhomogeneity than EEGs taken at rest with eyes open. Moreover, the aver-
age value of local Hurst exponents with maximum D(h) for the sets EE and AA
were 0.552 and 0.232, respectively. From the dominant local Hurst exponents and
the local Hurst exponents with maximum D(h), we found that multifractality
could quantify the complex dynamics from different physiological and patho-
logical brain states. From the results of the surrogate data for the set EE, we
found that the local Hurst exponents for the dominant subsets were significantly
changed to 0.25 < h < 0.75. In addition, we found that the average value of local
Hurst exponents with maximum D(h) was significantly changed from 0.552 to
0.414 (p < 0.001). The surrogate data, however, remained a multifractal process.
These findings indicate that epileptic EEGs have significant nonlinear determin-
istic structures. This finding is in accord with other studies [8] [10]. In summary,
we investigated the possibility that the EEGs from the two sets exhibit higher
complexity than 1/f scaling. Our results showed the existence of inhomogeneity
in the two sets. We found that the EEGs taken during rest with the eyes open
exhibited anticorrelated behavior and had linear structures. Of significance was
the finding that the epileptic EEGs exhibited anticorrelated, correlated, and un-
correlated behaviors. Our finding indicated that epileptic EEGs had nonlinear
deterministic structures rather than linear structures. Multifractality based on
the WTMM allowed the various dynamics of the two sets to be revealed and
characterized.

Acknowlegements. This study was supported by a grant of the project “Devel-
opment of the Core Technology of Medical Devices for Elderly”, Ministry of
Science and Technology (MOST), Republic of Korea.
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Abstract. When dealing with multi-class classification tasks, a popu-
lar and applicable way is to decompose the original problem into a set
of binary subproblems. The most well-known decomposition strategy is
one-against-one and the corresponding widely-used method to recombine
the outputs of all binary classifiers is pairwise coupling (PWC). However
PWC has an intrinsic shortcoming; many meaningless partial classifi-
cation results contribute to the global prediction result. In this paper,
this problem is tackled by the use of correcting classifiers. A novel algo-
rithm is proposed which works in two steps: First the original pairwise
probabilities are converted into a new set of pairwise probabilities, then
pairwise coupling is employed to construct the global posterior proba-
bilities. This algorithm is applied to face recognition on the ORL face
database, experimental results show that it is effective and efficient.

1 Introduction

Multi-class classification is a common task in many real life problems such as
face recognition and speech recognition. Two kinds of algorithms are involved;
algorithms of the first kind take all classes into consideration at once [1], while
algorithms of the second kind decompose the original problem into a set of binary
subproblems and construct a multi-class classifier by combing all corresponding
binary classifiers [2, 3]. Due to their good scalability and less computational
complexity, algorithms of the second kind are preferred by most researchers [3].

Among various decomposition strategies proposed, one-against-one is the
most popular one. It trains one classifier for each pair of classes, ignoring the
remaining ones. Hence for a k-class problem, k(k−1)

2 binary classifiers need to be
trained. In prediction, the outputs of all binary classifiers must be recombined to
construct the global result. A simple combining algorithm is Max-Voting, which
assigns a test example to the class with the most winning two-class decisions
[5]. For binary classifiers with probabilistic outputs, a more sophisticated algo-
rithm, called pairwise coupling (PWC), can be used [6]. PWC couples all pairwise

� This work is supported by the National Natural Science Foundation of China under
grant No.60072029 and No.60271033.
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probabilities, i.e. the probabilistic outputs of all binary classifiers, into a set of
posterior probabilities. Then the test example is assigned to the class with the
max posterior probability. However PWC has a shortcoming: When a test exam-
ple does not belong to either class related to a binary classifier, the prediction
result of this classifier is meaningless and can damage the global result.

In [4], Moreira and Mayoraz proposed an algorithm, called PWC-CC, to solve
this problem, where CC stands for correcting classifier. A correcting classifier is
the binary classifier trained to distinguish a pair of classes from the remaining
ones. Experimental results showed that PWC-CC has much better performance
than PWC. However the original PWC-CC is quite simple and has some dis-
advantages. In this paper, we propose a novel PWC-CC algorithm to overcome
these disadvantages. The new algorithm works in two steps: First the original
pairwise probabilities are converted into a new set of pairwise probabilities, then
pairwise coupling is employed to form the global posterior probabilities. Exper-
imental results show that our algorithm is effective and can achieve even better
performance. The rest of the paper is organized as follows: In Section 2, we briefly
review some related works. Section 3 describes the proposed algorithm. Exper-
imental results and corresponding analysis are presented in Section 4. Finally,
Section 5 concludes the paper.

2 Related Works

2.1 Pairwise Coupling Methods

Take for example we are dealing with a classification task involving k classes wi,
1 ≤ i ≤ k, k ≥ 3. Then there are k(k−1)

2 binary classifiers. Suppose classifier Cij ,
i < j, is trained to separate class wi from class wj . Given a test example x, the
output of Cij is a probability rij = Prob(x ∈ wi|x, x ∈ wi or wj), called pairwise
probability. Obviously rji = 1− rij holds. To couple all the pairwise probabilities
into a common set of posterior probabilities pi = Prob(x ∈ wi|x), several PWC
methods have been proposed.

Method by Hastie and Tibshirani. In [6], Hastie and Tibshirani introduced
a new set of auxiliary variables µij :

µij =
pi

pi + pj
. (1)

and aimed at finding pi so that the corresponding µij are in some sense “close”
to the observed rij . In their work, the Kullback-Leibler distance between rij and
µij

l(P) =
∑
i<j

nij

[
rij log

rij

µij
+ (1 − rij) log

1 − rij

1 − µij

]
. (2)

is selected as the closeness measurement, where nij are the weights. They pointed
out that if nij are considered equal, which is reasonable when the multi-class
data are balanced, P satisfies
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pi > pj ⇀↽ (p̃i =
2
∑

s:s �=i ris

k(k − 1)
) > (p̃j =

2
∑

s:s �=j rjs

k(k − 1)
) . (3)

Therefore P̃ is sufficient if one only requires a classification rule such as

arg max
1≤i≤k

p̃i . (4)

Furthermore, P̃ can be derived as an approximation to the identity

pi =
∑
j:j �=i

(
pi + pj

k − 1

)(
pi

pi + pj

)
=
∑
j:j �=i

(
pi + pj

k − 1

)
µij , (5)

by replacing pi + pj with k
2 and µij with rij in (3). Thereby the differences

between pi are underestimated, which causes the method to be instable when
dealing with unbalanced probabilities.

Method by Wu, Lin, and Weng. In [7], Wu et al. proposed another PWC
method. They found the optimal P through solving the following optimization
problem:

min
k∑

i=1

∑
j:j �=i

(rjipi − rijpj)2 , (6)

s.t.
k∑

i=1

pi = 1 , pi ≥ 0 ∀i .

Note that (6) can be reformulated as

min 2PTQP ≡ min
1
2
PTQP , (7)

where

Qij =
{∑

s:s �=i r 2
si if i = j ,

−rjirij if i �= j .
(8)

Then P can be obtained by solving the following linear system:[
Q e
eT 0

] [
P
b

]
=
[
0
1

]
. (9)

This method is easy to implement and has a more stable performance.

2.2 Improved Pairwise Coupling with Correcting Classifiers

If a test example x is classified by classifier Cij , while x belongs to neither class wi

nor class wj , the output of Cij , i.e. rij , is meaningless. Consequently considering
rij in forming the posterior probabilities P (P̃) will bring in nonsense and can
damage the quality of P (P̃).
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To tackle this problem, Moreira and Mayoraz proposed an algorithm called
PWC-CC [4]. This algorithm trains k(k−1)

2 additional binary classifiers CCij ,
called correcting classifiers, to distinguish classes wi and wj from the remaining
ones. For a given example x, the probabilistic output of CCij is qij = Prob(x ∈
wi or wj |x). Obviously qij = qji holds. Then P̃ is computed using the following
formula instead of (3):

p̃i =
2
∑

s:s �=i ris · qis

k(k − 1)
. (10)

If an example x belongs to neither class wi nor class wj , the output of classifier
CCij , i.e. qij , is expected to be small (close to 0). Otherwise, qij is expected to be
large (close to 1). Thus by using formula (10), the impact of those meaningless
rij are largely weakened and the accuracy of the global prediction is improved.

3 Our Method

3.1 Motivation

Let us analyze Moreira and Mayoraz’s algorithm in a more detailed way. First,
we divide formula (10) into two formulas.

r,
ij = rij · qij , (11)

p̃i =
2
∑

s:s �=i r,
is

k(k − 1)
, (12)

Note that (12) has exactly the same form as (3).
Then we immediately get

r,
ji = qij − r,

ij �= 1 − r,
ij . (13)

and
k∑

i=1

p̃i �= 1 . (14)

Formula (13) indicates that r,
ij obtained by (11) are not real pairwise probabil-

ities. Thereby sophisticated PWC method, e.g. the one described by (6), can
not be applied to them. Formula (14) indicates that p̃i obtained by (12) are
not posterior probabilities and the interpretation of P̃ becomes ambiguous. We
consider these the disadvantages of the original PWC-CC method.

3.2 Analysis

The purpose of using correcting classifiers is to reduce the impact those mean-
ingless rij have on the global P (P̃). The original PWC-CC method achieves
this purpose by weighting rij with corresponding qij . Thus the values of the
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qij :

⎡
⎣ − 0.90 0.70

0.90 − 0.40
0.70 0.40 −

⎤
⎦ pi :

⎡
⎣ 0.58

0.30
0.12

⎤
⎦

PWC : rij :

⎡
⎣ − 0.60 0.60

0.40 − 0.90
0.40 0.10 −

⎤
⎦ =⇒ p̃i :

⎡
⎣ 0.40

0.43
0.17

⎤
⎦

PWC − CC : r,
ij :

⎡
⎣ − 0.54 0.42

0.36 − 0.36
0.28 0.04 −

⎤
⎦ =⇒ p̃O

i :

⎡
⎣ 0.32

0.24
0.11

⎤
⎦

NPWC − CC : tij :

⎡
⎣ − 0.83 0.83

0.17 − 0.66
0.17 0.34 −

⎤
⎦ =⇒ p̃N

i :

⎡
⎣ 0.55

0.28
0.17

⎤
⎦

Fig. 1. Comparion of NPWC-CC, PWC-CC and PWC on a 3-class problem. pi are

the real probabilities of a test example x. p̃i, p̃O
i , and p̃N

i are estimated by formula (3).

Both PWC-CC and NPWC-CC classifies x correctly, while plain PWC behaves wrong.

Note that p̃N
i is closest to pi

meaningless rij are likely to be decreased, while those meaningful ones are kept
nearly unchanged.

There are other ways to achieve the same purpose. One approach is to reduce
the confidence of meaningless rij and enhance the confidence of meaningful
rij . This is based on the following observation: When making a global decision in
real life, those who have more confidence in their opinions dominate those who
have less confidence in their opinions. We believe the binary classifiers behave
in a similar way. A classifier Cij is considered to have much confidence in its
output if the corresponding rij is very large (close to 1) or very small (close to
0). On the contrary, a rij around 0.5 indicates that Cij is not that confident in
determining which class wins.

3.3 Algorithm

Based on the previous analysis, a novel PWC-CC (NPWC-CC) algorithm is
proposed. NPWC-CC works in two steps:

1. rij are converted into a new set of pairwise probabilities tij .

tij =

{
1−∆

′

2 rij ≤ 0.5
1+∆

′

2 rij > 0.5
, (15)

where
∆

′
=
{

tanh(4∆) qij ≥ 0.5
qij∆ qij < 0.5 , (16)

∆ = |rij − rji| = |2rij − 1| . (17)
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2. Then a PWC method is employed to couple tij into a global P (P̃).

In the first step, those meaningless rij , with expected small qij , are likely to
be made more unconfident (corresponding tij are closer to 0.5). On the other
hand, the confidences of the meaningful rij are strengthened (corresponding tij
are farther from 0.5). An comparison of NPWC-CC, PWC-CC and PWC is
illustrated in Figure 1.

From (15) (16) and (17), we immediately get tij = 1 − tji. This means that
tij are real pairwise probabilities. Therefore any PWC method can be employed
in NPWC-CC and the obtained pi (p̃i) are meaningful posterior probabilities.
Thus the disadvantages of PWC-CC are overcame.

4 Experimental Results

The proposed algorithm is applied to face recognition on the ORL face database.
The database contains 10 different images of 40 distinct subjects. For some of the
subjects, the images were taken at different times, varying lighting slightly, facial
expressions (open/closed eyes, smiling/non-smiling) and facial details (glasses/
no-glasses). All the images were taken against a dark homogeneous background
and the subjects are in up-right, frontal position (with tolerance for some side
movement). The original resolution of the images was 92×112, 8-bit grey levels.
Some example faces are show in Figure 2. In our experiments, the ORL database
is randomly divided into two sets with equal size. Five images of each subject
are used for training, the rest five are used for testing. Feature extraction is done
with the Eigenface algorithm.

Support vector machines (SVMs) are employed as binary classifiers to learn
each binary subproblem. However standard SVMs do not produce probabilistic
outputs. In [9], Platt suggested to map original SVM outputs to probabilities by
fitting a sigmoid after the SVM:

P (y = 1|x) =
1

1 + exp(Af(x) + B)
. (18)

Fig. 2. Example faces of four subjects from ORL, each row corresponds to one subject
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Parameters A and B are found by minimizing the negative log likelihood of the
training data:

min −
l∑

i=1

ti log(pi) + (1 − ti) log(1 − pi) , (19)

where
pi =

1
1 + exp(Af(xi) + B)

, ti =
yi + 1

2
. (20)

yi is the target label of example xi, f(·) is an SVM.
LIBSVM [10] is employed for SVMs training and testing. Experimental results

are listed in Table 1. Where PWC1 is the PWC method described by formula (3),
PWC2 is the method described by (6), NPWC-CC1 employs PWC1 in its second
step, NPWC-CC2 employs PWC2 as its coupling method. Note that, NPWC-
CC1 and PWC-CC differ only in the way they change the original pairwise
probabilities.

Table 1. Face recognition performance of various algorithms

#eigenfaces PWC1 PWC2 PWC-CC NPWC-CC1 NPWC-CC2

20 94.5% 94.5% 95.5% 95.5% 95.5%

40 94.5% 95% 95.5% 95.5% 96%

60 95% 95% 96.5% 96.5% 97%

80 93.5% 94% 94.5% 94.5% 95.5%

100 95% 95.5% 96% 96% 96%

From Table 1, we can see that the use of correcting classifiers greatly improves
the recognition accuracy. As expected, PWC-CC and NPWC-CC1 perform ex-
actly the same, which verifies the analysis in Section 3.2 that the impact of
meaningless rij can be reduced by making them more unconfident. NPWC-CC2
performs best on all cases. This highlights the virtue of NPWC-CC that more
sophisticated coupling method can be employed, which is impossible for PWC-
CC. In [7], it was concluded that PWC2 has a more stable performance that
PWC1. Our experimental results give the same result.

5 Conclusion

Pairwise coupling (PWC) is a widely-used algorithm in multi-class classifica-
tion tasks. But it has an important drawback, due to the nonsense introduced
by those meaningless pairwise probabilities. PWC-CC tackles this problem by
weighting the pairwise probabilities with the outputs of additional correcting
classifiers. Though PWC-CC performs much better than PWC, it has its own
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disadvantages. In this paper, a novel PWC-CC (NPWC-CC) method is pro-
posed. NPWC-CC works in two steps: First the original pairwise probabilities
are converted into a new set of pairwise probabilities, wherein those meaningless
probabilities are made more unconfident, while the confidences of the meaning-
ful ones are strengthened. Then a PWC method is employed to couple the new
pairwise probabilities into global posterior probabilities. NPWC-CC overcomes
the disadvantages of PWC-CC and can achieve even better performance.
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Abstract. Face recognition is one of the most important image processing 
research topics which is widely used in personal identification, verification and 
security applications. In this paper, a face recognition system, based on the 
principal component analysis (PCA) and the feedforward neural network is 
developed. The system consists of two phases which are the PCA preprocessing 
phase, and the neural network classification phase. PCA is applied to calculate 
the feature projection vector of a given face which is then used for face 
identification by the feedforward neural network. The proposed PCA and neural 
network based identification system provides improvement on the recognition 
rates, when compared with a face classifier based on the PCA and Euclidean 
Distance. 

1   Introduction 

Much of work done in computer recognition of faces has focused on detecting indi-
vidual features such as the eyes, nose, mouth, and head outline, and defining a face 
model by the position, size, and relationships among these features. Such approaches 
have proven difficult to extend to multiple views and have often been quite fragile, 
requiring a good initial guess to guide them. Research in human strategies of face 
recognition, moreover, has shown that individual features and their immediate rela-
tionships comprise an insufficient representation to account for the performance of 
adult human face identification [1]. Bledsoe [2,3] was the first to attempt to use semi-
automated face recognition with a hybrid human-computer system that classified 
faces on the basis of fiducially marks entered on photographs by hand. Parameters for 
the classification were normalized distances and ratios among points such as eye 
corners, mouth corners, nose tip, and chin point. Fischler and Elschlager [4] described 
a linear embedding algorithm that used local feature template matching and a global 
measure of fit to find and measure the facial features. Generally speaking, we can say 
that most of the previous work on automated face recognition [5, 6] has ignored the 
issue of just what aspects of the face stimulus are important for face recognition. This 
suggests the use of an information theory approach of coding and decoding of face 
images, emphasizing the significant local and global features. Such features may or 
may not be directly related to our intuitive notion of face features such as the eyes, 
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nose, lips, and hair. In mathematical terms, the principal components of the distribu-
tion of faces, or the eigenvectors of the covariance matrix of the set of face images, 
treating an image as point (or vector) in a very high dimensional space is sought.  The 
eigenvectors are ordered, each one accounting for a different amount of the variation 
among the face images. These eigenvectors can be thought of as a set of features that 
together characterize the variation between face images. Each image location contrib-
utes more or less to each eigenvector, so that it is possible to display these eigenvec-
tors as a sort of ghostly face image which is called an "eigenface". Each individual 
face can be represented exactly in terms of a linear combination of the eigenfaces. 
Each face can also be approximated using only the "best" eigenfaces, those that have 
the largest eigenvalues, and which therefore account for the most variance within the 
set of face images. The best M eigenfaces span an M-dimensional subspace which we 
call the "face space" of all possible images. The method proposed by M. Turk and A. 
Pentland [7] uses a PCA based face recognition system which is called the eigenfaces 
method. In this method, a given face image is transformed into the eigenspace to 
obtain a feature projection vector. The Euclidean Distance between the projection 
vector of a given face and the class projection vectors are used to determine a correct 
or false recognition. In this paper, the projection vectors obtained through the same 
PCA procedure are used as the input vectors for the feedforward neural network clas-
sifier. The proposed PCA and neural network based identification system provides 
improvement on the recognition rates, when compared with a face classifier based on 
the PCA and Euclidean Distance introduced by M. Turk and A. Pineland [7]. 

2   Calculating Eigenfaces 

Let a face image I(x,y) be a two-dimensional N × N array. An image may also be 
considered as a vector of dimension N2, so that a typical image of size 112 × 92 be-
comes a vector of dimension 10,304, or equivalently a point in a 10,304-dimensional 
space. An ensemble of images maps to a collection of points in this huge space. Im-
ages of faces, being similar in overall configuration, will not be randomly distributed 
in this huge image space and thus can be described by a relatively low dimensional 
subspace. The main idea of the principle component is to find the vectors that best 
account for the distribution of face images within the entire image space. These vec-
tors define the subspace of face images, which we call "face space". Each vector is of 
length N2, describes an N × N image, and is a linear combination of the original face 
images. Because these vectors are the eigenvectors of the covariance matrix corre-
sponding to the original face images, and because they are face-like in appearance, we 
refer to them as "eigenfaces".  

Let the training set of face images be Γ1,Γ2,….,ΓM then the average of the set is de-
fined by 

=

Γ=Ψ
M

n
nM 1

1
 (1) 
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Each face differs from the average by the vector        

Ψ−Γ=Φ ii  (2) 

This set of very large vectors is then subject to principal component analysis, which 
seeks a set of M orthonormal vectors, Un , which best describes the distribution of the 
data. The kth vector, Uk , is chosen such that 

( )
=

Φ=
M

n
n

T
kk U

M 1

21λ  (3) 

is a maximum, subject to 
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otherwise
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The vectors Uk and scalars λk are the eigenvectors and eigenvalues, respectively of the 
covariance matrix 

T
M

n

T
nn AA

M
C =ΦΦ=

=1

1
 (5) 

where the matrix A =[Φ1 Φ2....ΦM]. The covariance matrix C, however is N2×N2 real 
symmetric matrix, and determining the N2 eigenvectors and eigenvalues is an intrac-
table task for typical image sizes. We need a computationally feasible method to find 
these eigenvectors. 
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Fig. 1. First 25 eigenfaces with highest eigenvalues 
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Consider the eigenvectors vi of ATA such that 

iii
T vAvA µ=  (6) 

Premultiplying both sides by A, we have 

iii
T AvAvAA µ=  (7) 

where we see that Avi are the eigenvectors and  µi are the eigenvalues of  C= A AT. 
Following these analysis, we construct the M × M matrix L= ATA, where 

Lmn=ΦT
mΦn , and find the M eigenvectors, vi , of L. These vectors determine linear 

combinations of the M training set face images to form the eigenfaces UI .      

MIvU
M

k
kIkI ,....,1,

1

=Φ=
=

 (8) 

Examples of eigenfaces after applying the eigenfaces algorithm are shown in Fig.1.  
With this analysis, the calculations are greatly reduced, from the order of the 

number of pixels in the images (N2) to the order of the number of images in the 
training set (M). In practice, the training set of face images will be relatively small  
(M << N2), and the calculations become quite manageable. The associated eigenvalues 
allow us to rank the eigenvectors according to their usefulness in characterizing the 
variation among the images.  

3   Using Eigenfaces to Classify a Face Image  

The eigenface images calculated from the eigenvectors of L span a basis set with 
which to describe face images. Sirovich and Kirby [8, 9] evaluated a limited version 
of this framework on an ensemble of 115 images (M = 115) images of Caucasian 
males digitized in a controlled manner, and found that 40 eigenfaces were sufficient 
for a very good description of face images.  In practice, a smaller M' can be sufficient 
for identification, since accurate reconstruction of the image is not a requirement. 
Based on this idea, the proposed face recognition system lets the user specify the 
number of eigenfaces (M') that is going to be used in the recognition. For maximum 
accuracy, the number of eigenfaces should be equal to the number of images in the 
training set. But, it was observed that, for a training set of fourteen face images, seven 
eigenfaces were enough for a sufficient description of the training set members. In 
this framework, identification becomes a pattern recognition task. The eigenfaces 
span an M' dimensional subspace of the original N2 image space. The M' significant 
eigenvectors of the L matrix are chosen as those with the largest associated eigenval-
ues. 

A new face image (Γ) is transformed into its eigenface components (projected onto 
"face space") by a simple operation, 

)( Ψ−Γ= T
kk Uw  (9) 
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for k = 1,...,M'. This describes a set of point by point image multiplications and sum-
mations, operations performed at approximately frame rate on current image process-
ing hardware, with a computational complexity. The weights form a feature vector, 

[ ]M
T www ....21=Ω  (10) 

that describes the contribution of each eigenface in representing the input face image, 
treating the eigenfaces as a basis set for face images. The feature vector is then used 
in a standard pattern recognition algorithm to find which of a number of predefined 
face classes, if any, best describes the face. The face class Ωk can be calculated by 
averaging the results of the eigenface representation over a small number of face 
images of each individual. Classification is performed by comparing the feature vec-
tors of the training face images with the feature vector of the input face image. This 
comparison is based on the Euclidean Distance between the faces classes and the 
input face image. This is given in Eq. (11). The idea is to find the face class k that 
minimizes the Euclidean Distance.                

( )kk Ω−Ω=ε  (11) 

Where Ωk is a vector describing the kth faces class. 

4   Neural Networks for Classification  

Neural networks can be trained to perform complex functions in various fields of 
applications including pattern recognition, identification, classification, speech, vi-
sion, and control systems. 

In [10] a hybrid neural-network solution is presented which is compared with other 
methods. The system combines local image sampling, a self-organizing map (SOM) 
neural network, and a convolutional neural network.  

Zhujie and Y.L. Yu [11] implemented a system to face recognition with eigenfaces 
and Back propagation neural network using 15 person database from Media Labora-
tory of MIT. In order to improve their system, Gaussian smoothing was applied where 
the system performance reached to 77.6%. This performance is almost the same per-
formance with the Euclidean Distance based approach that we used for ORL Face 
Database of 40 persons, where half of images are used for training and the other half 
are used for  testing (see Table 1 ). 

4.1   Feedforward Neural Networks (FFNN) 

In FFNN the neurons are organized in the form of layers. The neurons in a layer 
get input from the previous layer and feed their output to the next layer. In this 
type of networks connections to the neurons in the same or previous layers are not 
permitted. Fig. 2 shows the architecture of the proposed system for face classifi-
cation. 
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Fig. 2. Architecture of the proposed Neural Network 

4.2   Training and Simulation of Neural Network 

A large neural network for all people in the database of 40 persons was implemented. 
After calculating the eigenfaces, the feature projection vectors are calculated for the 
faces in the database. These feature projection vectors are used as inputs to train the 
neural network. Fig.3 shows the schematic diagram for the NN training phase.  

 

Fig. 3. Training phase of the Neural Network 

Fig. 4. Simulations of Neural Network for Classification 
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When a new image is considered for recognition, its feature projection vector is calcu-
lated from the eigenfaces, and this image gets its new descriptors. These descriptors are 
fed to the neural network and the network is simulated with these descriptors, where the 
network outputs are compared. By looking at the maximum output the new face is de-
cided to belong to the class of person with this maximum output. 

5   Experimental Results 

In ORL database there are 10 different images for each 40 distinct persons. The neural 
network is trained with the first n poses of the 40 persons in the database. After the 
training the remaining 10-n poses of the persons have been used for the testing. As 
expected the recognition performance increases with the increasing number of faces 
used to train the neural network (Table 1).  However the real improvement is due to 
the use of the FFNN as the classifier instead of the Euclidean Distance based classi-
fier. Table 1 clearly shows that, in all cases, the FFNN based face recognition system 
performs better than the Euclidean Distance based system. 

Table 1. Performances of Euclidean Distance and Neural Networks  

Training Images Testing Images 
Euclidean Distance 

performance 
Neural Networks 
preformance 

2 8 71 75 
3 7 73 76 
4 6 77 80 
5 5 78 85 
6 4 89 90 
7 3 92 94 
8 2 94 95 

6   Conclusion  

In this paper, a face recognition system, based on the PCA preprocessing followed by a 
FFNN based classifier is proposed. The feature projection vectors obtained through the 
PCA method are used as the input vectors for the training and testing of the FFNN ar-
chitecture. The face recognition performance of the system using FFNN is better than 
the Euclidean Distance based classification system for changing number of training 
images. The performance of the FFNN based system with 5 training faces from each 
subject gives highest performance improvement which is 7% over the Euclidean Dis-
tance based system.  
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Abstract. An edge detection is one of the most important tasks in image 
processing. Image segmentation, registration and identification are based on 
edge detection. In the literature, there is some techniques developed to achive 
this task such as Sobel, Prewitt, Laplacian and Laplacian of Gaussian. In this 
paper, a novel knowledge-based approach which have been used to realize 
control techniques for past years is proposed for edge detection. Some of the 
classical techniques are used with certain parameters such as threshold  and  to 
implement edge detection process. The another restricts about classial approach, 
results generally have fixed edge thickness. The rule-based approach offers 
most advantages such as giving permission to adapt some parameters easily.  
The edges thickness can be changed easily by adding new rules or changing 
output parameters. That is to say rule-based approach has flexible structure 
which can be adapted any time or any where easily and new fuzzy approach 
produces nice result as well as classical techniques at least. 

1   Introduction 

An edge in an image is defined a boundary or contour where a abrupt change occurs 
in some physical aspect such as gray level value of an image[1]. Edge detection is one 
of the most important tasks in image procesing. Especially segmentation, registration, 
identification and recognition are based on edge detection algorithm. Many edge 
detection techniques are available in the literature. But most of them either have fixed 
result such as thickness of edges or some parameters must be selected certainly for 
good result such as threshold and . The fuzzy logic approach doesn’t have this 
restricts. Simply, fixing some parameters changes the result of processing. Some of 
the other knowledge-based techniques that used for edge detection are based on 
classical tecniques [4,9,11], some of them are based on training. The proposed 
techniques just use pure fuzzy IF-THEN rules and have simple structure to implement 
edge detection algorithm. 

2   Detection of Image Edges 

Edges in images are constituted significant gray level changing. In the other words, 
the edges are high frequency components of an image. That is to say a high-pass filter 
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can detect edges in an image. But working on frequncy domain can load the task with 
additional complexity. So commonly edge detection techniques based on spatial 
domain working. On the spatial domain, an edge can be classically detected via first 
or second order derivative. Because of second order derivative has high sensitivity 
towards noises, first order derivative has been used for edge detection commonly and 
especially gradient which is based on first order derivative is popular. Before 
examining the first order derivative, we keep in mind our fuzzy system designed 
based on the relationship between each pixel and its eight closest neighbor pixels. 

And so if we recall the gradient which column vector has x and y direction first 
order derivative, an edge can be found by the following formula: 

∂
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Solution of the Eq.(1) is 
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f∇ in Eq.(2) can be an edge, a line or a point at x and/or y direction. The first 
order numerical derivative calculated by the following formulas: 
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If we assign center and its neighbor pixels in a sample matrix to z coefficients the 
following equations are possible. 
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Fig. 1. Coefficents and possible edge directions for 3x3 sample matrix 

We can calculate the first order derivative values by using Eq.(3) for all directions 
shown in Fig.1.  
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and by using Eq.(2) possible edge value are calculated by following formula: 

[ ]2

1

4321 DDDDD ∇+∇+∇+∇=∇  (6) 

The computational burden of implementing Eq.(5) and Eq.(6), it is common 
practice to approximate the magnitude of the gradient by using absolute values 
instead of squares and square roots. So the Eq.(5) and Eq.(6) are converted: 

59151 zzzzD −+−=∇
, 58252 zzzzD −+−=∇

, 57353 zzzzD −+−=∇
,

56454 zzzzD −+−=∇  

(7) 

4321 DDDDD ∇+∇+∇+∇=∇  (8) 

3   Fuzzy Approach 

In order to implement a new fuzzy edge detection system 1D∇ , 2D∇  , 3D∇  and 

4D∇  are calculated and put into place of the fuzzy system that uses membership 

functions like Fig.3. The fuzzy system uses singleton fuzzifier and Zero-order Sugeno 
Inference System. Membership functions type is triangle and shown in Fig.2. 

a b c  

Fig. 2. Triangle membership function 

The partial function shown in Eq.(9) for triangle membership function. 

≤≤
−
−

<≤
−
−

=

cxb
bc

xc

bxa
ab

ax

xtrim

,

,

)(µ
 

 

(9) 

 
 



946 Y. Becerikli and T.M. Karan 

 

The following rules are applied to the inputs and then a crisp value is found. 

Rule 1:    Rule 2: 

IF ( 1D∇ is VL)  THEN  ( 1a  is 1k ) IF ( 2D∇ is VL)  THEN  ( 1b  is 1k ) 

IF ( 1D∇ is LO)  THEN  ( 2a  is 2k ) IF ( 2D∇ is LO)  THEN  ( 2b  is 2k ) 

IF ( 1D∇ is MD) THEN  ( 3a
 is 3k

)  IF ( 2D∇ is MD) THEN  ( 3b
 is 3k

) 

IF ( 1D∇ is HI)   THEN  ( 4a  is 4k ) IF ( 2D∇ is HI)   THEN  ( 4b  is 4k ) 

IF ( 1D∇ is VH)  THEN  ( 5a
 is 5k

) IF ( 2D∇ is VH)  THEN  ( 5b
 is 5k

) 

Rule 3:    Rule 4: 

IF ( 3D∇
is VL)  THEN  ( 1c  is 1k ) IF ( 4D∇ is VL)  THEN  ( 1d  is 1k ) 

IF ( 3D∇
is LO)  THEN  ( 2c  is 2k ) IF ( 4D∇ is LO)  THEN  ( 2d  is 2k ) 

IF ( 3D∇
is MD) THEN  ( 3c

 is 3k
)  IF ( 4D∇ is MD) THEN  ( 3d

 is 3k
) 

IF ( 3D∇
is HI)   THEN  ( 4c  is 4k ) IF ( 4D∇ is HI)   THEN  ( 4d  is 4k ) 

IF ( 3D∇
is VH)  THEN  ( 5c

 is 5k
) IF ( 4D∇ is VH)  THEN  ( 5d

 is 5k
) 

If  K shows a row vector, the Sugeno constant values  are [ ]255,128,48,16,0=K  

and four output values are found by using Eq.(9). 
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Fig. 3. Membership functions 
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(10) 
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The last process is addition of all output values calculated by using Eq.(10) to 
obtain all possible direction components as edge. 

4321 yyyyy +++=  (11) 

where y is the final result. 

4   Experimental Results 

In this section some experiments are made to verify the performance of the new fuzzy 
edge detector on different sample images. The image that is not corrupted by any 
noise are considered here. To perform the experiments some parameters must be 
determined first. The gray level value of the experimens is ranged [0,255]. Masks 
used by Sobel, Prewitt and Laplacian edge detector are shown below. 
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Fig. 4. (a) Sobel x-direction mask, (b) Sobel y-direction mask 
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Fig. 5. (a) Prewitt x-direction mask, (b) Prewitt y-direction mask 
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Fig. 6. Laplacian mask  

The morphological gradient is calculated by using Eq.(12). 

[ ] [ ]ByxfByxfyxg ⊗−⊕= ),(),(),(  (12) 

In Eq.(12), ⊕  symbol indicates morphological dilation and ⊗  symbol indicates 
morphological  erosion. The parameters that are used by membership functions are shown here. 
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[ ]16,8,0_ =VLItrim  

[ ]40,24,8_ =LOItrim  

[ ]88,56,24_ =MDItrim  

[ ]184,120,56_ =HIItrim [ ]510,315,120_ =VHItrim  

 

 

(13) 

Experimental results realized for digitized images with size 256x256. In this 
experiments, one of the most important points are K values that are defined for output 
constant values. These parameters play a very important role to determine sharpness 

of the edges. Thickness of the edges depend on the K values. While 1k  and 2k  are 

bringing to light background details, 3k , 4k  and 5k  bring to light foreground details. 

Accordingly, values of K selected diffently for every inspection and appropriate 
values can be determined by human experiments that be basic of heuristic approach. 
Accordingly for the experimental results, these parameters was selected after some 
attemting about this.  

For [ ]255,128,50,25,0K = , the edges are become evident but are not black-white 

such as thresholded images. In Fig.12 and Fig.18 these K values are used. In order to 

has more less edge thickness these parameters defined as [ ]128,64,32,16,0K =  in 

Fig.24. Accordingly unwanted edge thickness are prohibited. 

 

Fig. 7. Tomatoes-peppers  

 

Fig. 8. Laplacian applied to the image 

 

Fig. 9. Sobel operator applied to the image 

 

Fig. 10. Prewitt operator applied to the image 
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Fig. 11. Morphological gradient Applied to 
the image 

 

Fig. 12. Fuzzy approach applied to the image 

 

Fig. 13. Lena Image 

 

Fig. 14. Laplacian  applied to the image 

 

Fig. 15. Sobel operator applied to the image 

 

Fig. 16. Prewitt operator applied to the image 

 

Fig. 17. Morphological gradient applied to 
the image 

 

Fig. 18. New Fuzzy approach applied to 
image 
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Fig. 19. Cameraman Image 

 

Fig. 20. Laplacian  applied to the image 

 

Fig. 21. Sobel operator applied to the image 

 

Fig. 22. Prewitt operator applied to image 

 

Fig. 23. Morphological gradient applied to 
the image 

 

Fig. 24. . New Fuzzy approach applied to the 
image 

5   Conclusions and Future Works 

In this work, we have used a new approach for edge detection that one of the most 
difficult tasks in image processing. In this approach, heurisric rules applied the system  
and results was observed for different images. Moreover we have seen that this 
system has dynamic structure adopted by changing rules easily. Accordingly the 
novel technique called fuzzy approach will be used fairly at the future for different 
tasks. 
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Abstract. This paper investigates the fault detection and prediction of 
rhythmically soniferous products, such as clocks, watches and timers. Such 
products with fault cannot work steadily or probably cause malfunction. The 
authors extend the concept of computer audition and establish an architectural 
model of product fault prediction system based on probabilistic neural 
networks. The system listens to the product sound by the multimedia 
technology and the sound features are extracted to detect and predict faults by 
the neural network. The paper analyzes the reasons of timer faults and the 
corresponding sound features. Experiments are made in the laboratory to 
demonstrate the proposed method. The technology is expected to apply in 
factories in coming years for realizing automatic product test and improving 
efficiency of product inspection. 

1   Introduction 

The preparation. When a timer or clock is manufactured, its functionality has to be 
inspected before it is sold to customers. The major functionality is the accuracy and 
faultless performance in a specified working period. Traditionally, people have to 
inspect these products manually. Since a clock or timer has to be inspected with a 
long period to wait until a fault caused, the process is with very low efficiency. 
Inspectors need to test the sample with several poses again and again. It is the 
common desirability to find an efficient and simple method to do so. This paper 
proposes to apply the computer audition technology to automate such inspection 
work. 

Generally, computer audition means that computer processes and understands 
human voice. This paper extends this conception for computer to understand a 
product’s sound features. Just like human themselves, people can listen to all kinds of 
nature sound and factitious sound, such as wind, pitter-patter, thunderclap, hooter, 
speaker, machining sound etc. This paper attempts to use computer to understand 
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soniferous product (with a regular rhythm) and inspect if the target is manufactured 
without faults. This is especially important to improve production efficiency to an 
enterprise that produces some mechanical clocks or timers. 

Artificial neural network (ANN) is an extremely simplified model of the human 
brain. Thanks to its ability to learn and generalize, ANN is especially useful for 
classification and prediction. It is a neoteric field international, and it is developed 
promptly in the last few decades. Neural network surmounts the limit of traditional 
numerical computer that is on basis of linear processing. And it is a flag of human to 
begin to consider the nonlinear living world. Among the common sorts of neural 
networks, the probabilistic neural network (PNN) is known to have good 
generalization properties. A PNN is an implementation of a statistical algorithm 
called kernel discriminant analysis in which the operations are organized into a 
multilayered feedforward network with four layers, i.e. Input layer, Pattern layer, 
Summation layer, and Output layer. It can be trained much faster than the back 
propagation ANNs. The faster training is achieved at the cost of an increased 
complexity and higher computational and memory requirements. The inspection 
system presented in this paper works in real-time on common personal computers, 
once the training has been completed. This paper adopts a PNN for fault detection and 
prediction of mechanical clocks or timers with the sound features extracted by 
computer audition. 

 

Fig. 1. The Inspection system for detection and prediction of clocks and timers 

2   The Inspection System 

2.1   The System Overview  

Fig. 1 illustrates a fault detection and prediction system for common mechanical 
clocks and timers, which takes advantage of artificial neural network and computer 
audition. The system is mainly composed of some sound sensors (microphones) to 
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listen to the clocks, a sound digitizer (sound card) to collect the sound, a speaker for 
selective play, a controller, a feature extraction module to analyze the sound wave 
from a product, a monitor for selective display, a probabilistic neural network module 
to predict faults, and some output devices. The samples should be winded with the 
clockwork spring so that they play sound in regular pattern before inspection. The 
sound sensors and sound card can sample the sound sequence and carry them to 
computer memory for processing. Fig. 2 illustrates a segment of sound record of a 
certain clock. The artificial neural network piles up experience by self-study from 
known products previously judged by experienced workers, and makes fault 
prediction on the assembled products. Moreover, there are some auxiliary programs in 
the system to support database manager, transactions on fault prediction, printing, 
system on-line control, and other functions. 

2.2   The Probabilistic Neural Network for Fault Prediction 

Neural networks are computing architectures that consist of massively parallel 
interconnections of simple neural processors. The study of such architectures has been 
inspired by the learning abilities and parallelism of biological nervous systems. 

Information processing in network is realized by interaction of neurons, the storage 
of knowledge and information is performed as the fact relationship of neurons, and 
studying or recognition of network is decided by dynamical process of change of 
weight linked among neurons. Every neuron has some input values (vector X), and 
every input value is corresponding with a weight or threshold ( i). Summing up all 
input data through weight or threshold, a single output value is y, where y = f(X× ). 
There are two main stages while the network works. One is learning stage. Given a set 
of input data and a set of known output data, the network can change the weights or 
thresholds by self-study. The other is working stage. In this stage, all weights and 

Fig. 2. An example of clock sound record (sampled 44Hz, compressed by 1/200) 
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thresholds are not changed anymore. The network is only to calculate the output data 
according the input data. 

There are two main reasons to adopt neural network for fault prediction in this 
paper. (1) For clocks and timers, we are still not clear the precise model of fault 
expression. A neural network takes advantage not necessary to establish mathematical 
models. People need only give the present data to network and the network will select 
a model itself. Furthermore, it will solve the problem all-right. (2) Neural network can 
contain more noises than other methods, as horary sequence data are usually gone 
with lots of noises. 

Among common neural network models, the probabilistic neural network is most 
suitable for fault prediction of this application. The architecture of the PNN designed 
in this paper contains four layers: the input layer, hidden layer, summarization layer, 
and decision output layer. It will be presented in next section in detail of this network. 

2.3   Sound Record of a Clock  

Taking account the traits of clocks and timers, we can find that its obvious 
characteristic is working with a regular pattern of sound wave. A mechanical clock 
sounds "ticktack, ticktack, ..." in certain frequency because it works with gears inside. 
For a desired product, it will work second by second well and truly. 

Under perfect conditions, the sound wave that the clock utters should be quite 
regular and periodic. But every period may be not similar with each other in practice 
because many factors and noises exist. Figure 2 illustrates a practical sound wave of a 
clock, which is sampled in the frequency of 44Hz and is compressed in a ratio of 
1/200. However, a clock with fault is obviously not the same as a normal clock 
somewhere. In this paper, that is studied and judged by the artificial neural network. 

Fig. 3. Feature analysis of clock sound 

3   Feature Extraction 

According to our experiences, the reason why a clock causes malfunction is found is 
mainly from the part accuracy and assembly. If there is an imprecise part inside or the 
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parts are unsuitably assembled, the clock will probably stop after working a period of 
time. An imprecise part may have too rough teeth of gear, unsuitable gap between 
gears, imprecise dimensions of gear, or deflection assembled. 

All abnormal behaviors can be reflected to the set of periods, amplitudes, and 
syllables of the sound wave although there are many factors that cause malfunction. 
Every syllable has its shape and size. The shape is not considered in this paper. The 
area size has the integration characteristic since it is corresponding to the energy of a 
syllable. That is, the syllable energy A= W, where W is area size. Here the size W is 
extracted from sound wave and used as the PNN input. 

The inspection time is supposed to start at 0, and the sound wave is 

    z = f(t),     0  t  T. 

After sampled under a certain frequency F(Hz), the magnitude is 

    y = g(n)= f(n/F),     0  n  FT. 

If the frequency of object product is C (Hz), i.e. it strikes C times every second, the 
span of a syllable is s = F/C. Then the syllable No.i is located in t(i) < n < t(i+1), or 

    X: n0+(i-1)*s < n < n0+i*s 

The starting point of the first syllable is determined as following, 

 Integral field X0:  
  m/F < x < m/F+1/CL, L=1/(5~8)s, 
 Repeat: 
     s0= |z| dx   (x in X0) 
       = |y|,     m< n < m +s/L 
     If s0<s* then n0=m, end 
 End 

The aim of this algorithm is to find the interval between two syllables. The letter L 
stands for calculated span of a cycle which is usually valued as 1/5 to 1/8 time of a 
syllable span s. If the energy value between the span is no more than a threshold St, it 
is considered that the starting point of the syllable is located here. And the threshold 
St is usually valued as 3 to 5 times of the sonority when the testing is silent (but 
background noise exists), which namely St = (3~5) S. 

Therefore, the syllable No.i has the energy of 

    Wi = |z| dx  

where the integral field X: 

  t(i)< x < t(i+1),  t(i+1)=t(i)+1/C  
      = |f(x)| dx 
      = |g(n)| , where n0+(i-1)*s < n < n0 +i*s. 

The sound period Ti and amplitude Ai can be easily determined after the syllable is 
located. Then during the inspection, a certain period (observation window) with a 
defined number of syllables is chosen to extract sound features as the input of the 
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PNN. For example, we may always choose the most recent 30 syllables from the 
wave record and extract the following features: 

MW - the mean energy of syllables in the defined period (window) 
W - the variance of the syllable energy in the defined period 

MDW - the mean differential energy of syllables 
DW - the variance of the differential syllable energy 

MT - the mean period length of syllables 
T - the variance of the syllable length 

MDT - the mean of differential period length of syllables 
DT - the variance of the differential syllable length 

MA - the mean amplitude of syllables 
A - the variance of the amplitudes 

MDA - the mean of differential amplitudes of syllables 
DA - the variance of the differential amplitudes 

 

Fig. 4. The PNN for clock fault prediction 
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4   PNN-Based Prediction 

A PNN is typically easy to set up and eliminates lengthy and arduous network 
training iterations but still possesses good generalization characteristics. For example, 
it takes advantages that fast training process (several orders of magnitude faster than 
backpropagation), an inherently parallel structure, guaranteed to converge to an 
optimal classifier as the size of the representative training set increases (no local 
minima issues), and training samples can be added or removed without extensive 
retraining. 

Fig. 4 illustrates the architecture of the PNN designed in this paper. It contains four 
layers: the input layer, hidden layer, summarization layer, and decision output layer. 
In the hidden layer, an activation function is applied to the distance measure between 
the unknown input and the training example. For example, it can be designed to 
classify an input vector into several categories with category 1 for “severe fault”, 
category 2 for “general fault”, category 3 for “general OK”, and category 4 for 
“perfect”. Input vector is applied to 12 input nodes (I1 to IC). The hidden layer 
contains 25 nodes numbered from H1 to H25. Both the summarization layer and 
decision output layer contain 4 nodes, S1 to S4 and D1 to D4, respectively. 

A PNN supplied with Mathworks Matlab and the Neural Network ToolBox is used 
to conduct the experiments. A sample set with a size of 28 clocks is used in the 
experiments, in which 20 are used for training and other 8 are used for testing. The 
result show that 100% of the 8 samples can be predicted correctly in a period of about 
15 minute inspection for each sample by the computer audition. However, this good 
result maybe includes the reason of small set size. If the size increases, the network 
will probably not able to yield such percentage. Therefore, this result is a bit limited 
with the current available data in the experiments. 

5   Conclusion 

This paper proposed a computer audition method for fault detection and prediction of 
mechanical clocks and timers. An audition system is constructed to listen to the product 
sound by the multimedia technology and the sound features are extracted to detect and 
predict faults. The probabilistic neural network (PNN) is used for inspection of clocks 
and timers which will be one of the successful application in this industry. 

The limitation of this work is that no enough training and testing samples are available 
during the experiments of this research at the current stage. This obviously affects the 
value of established network model for practical application since a PNN usually requires 
a representative training set (even more so than other types of neural network's). 

Acknowledgments 

This work was supported by the National Natural Science Foundation of China 
(NSFC No. 60405009 and 60374056) and Zhejiang Natural Science Foundation of 
China (ZJNSF No.Y104185). 



 Fault Detection and Prediction of Clocks and Timers 959 

 

References 

1. Rutkowski, L.: Adaptive probabilistic neural networks for pattern classification in time-
varying environment. IEEE Trans. on Neural Networks. Vol. 15, No. 4, (2004) 811 - 827 

2. Lin W.-M., Lin C.-H., Sun Z.-C.: Adaptive multiple fault detection and alarm processing 
for loop system with probabilistic network. IEEE Trans. on Power Delivery. Vol. 19, No. 
1, Jan. (2004) 64 – 69  

3. Lennox B., Rutherford P.: Novel fault prediction technique using model degradation 
analysis. Proc. of the American Control Conference. Vol.5 (1995) 3274-3278 

4. Ruan Q., Yuan B.: Status and trends of computer audio-visual information processing. 
Telecommunications Science, Vol.9, No.4 (1993) 23-30 

5. Lau C., Widrow B.: Special Issue on Neural Networks II: Mathematical Analysis: 
Implementations and Applications. Proc. IEEE, Vol.78, No.10, 1990 

6. Zhao J.S., Chen B.Z. and Shen J.Z.: A Neural Network Approach to the Dynamic Fault 
Diagnosis of Hydrocracking Process. Proc. of the Second Chinese World Congress on 
Intelligent Control and Intelligent Automation. Xian, China, June, (1997) 1892-1897 

7. Ganchev, T. Fakotakis, N. Tasoulis, D.K. Vrahatis, M.N.: Generalized locally recurrent 
probabilistic neural networks for text-independent speaker verification. IEEE Int. Conf. on 
Acoustics, Speech, and Signal Processing. Vol. 1, May (2004) I-41-4 

8. Bolat, B. Kucuk, O.: Speeh/music classification by using statistical neural networks. IEEE 
12th Signal Processing and Communications Applications Conference. April (2004) 227 - 
229 

9. Comes, B.; Kelemen, A.: Probabilistic neural network classification for microarraydata. 
Int. Joint Conf. on Neural Networks. Vol. 3, July (2003)  1714 - 1717 

 



Long Term Prediction of Product Quality

in a Glass Manufacturing Process Using a
Kernel Based Approach

Tobias Jung1, Luis Herrera2, and Bernhard Schoelkopf3

1 Johannes Gutenberg-Universitaet,
Fachbereich Mathematik & Informatik, 55099 Mainz, Germany

2 University of Granada, Dpt. of Computer Architecture and Technology,
18071 Granada, Spain

3 M.P.I. for Biological Cybernetics, 72076 Tuebingen, Germany

Abstract. In this paper we report the results obtained using a kernel-
based approach to predict the temporal development of four response
signals in the process control of a glass melting tank with 16 input pa-
rameters. The data set is a revised version1 from the modelling challenge
in EUNITE-2003. The central difficulties are: large time-delays between
changes in the inputs and the outputs, large number of data, and a gen-
eral lack of knowledge about the relevant variables that intervene in the
process. The methodology proposed here comprises Support Vector Ma-
chines (SVM) and Regularization Networks (RN). We use the idea of
sparse approximation both as a means of regularization and as a means
of reducing the computational complexity. Furthermore, we will use an
incremental approach to add new training examples to the kernel-based
method and efficiently update the current solution. This allows us to use
a sophisticated learning scheme, where we iterate between prediction and
training, with good computational efficiency and satisfactory results.

1 Introduction

In this paper we report on using kernel based methods to predict the temporal
development of four response signals that are quality-related process variables
occurring in the manufacturing of glass. The data, provided by Schott Glass
(Mainz), consists of 16 input values and four output values (each recorded at
15-minute intervals) and is the rescaled operational data of a glass melt obtained
over a period of forty weeks. For the last two weeks, only the 16 input values
are known, i.e. the control targets of the process engineers and the sometimes
unexpected, but measurable external influences (like e.g. outside temperature),
and our goal was to predict the four output values. The real physical meaning
of the data and the manner in which the melting reacts to these inputs was not
given. The central difficulty in forecasting the outputs is the seemingly irregular

1 To obtain the data set cwt 2004, please contact katharina.lankers@schott.com.
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behavior with random spikes and the unknown delay time between variation of
an input signal and the “response” from the glass melting tank.

Several paradigms and methodologies have been applied for time series pre-
diction problems. Specifically, support vector machines (SVM) and kernel-based
methods (KM) are receiving increasing attention [6, 8], due to its remarkable
characteristics such as good generalization performance, the absence of spuri-
ous local minima, the possibility of sparse representation of the solution and
the relative independence of the computational complexity on the number of
input dimensions of the problem [4, 7]. Nevertheless, one disadvantage of KMs
is that the computational complexity scales at least quadratically in the number
of training samples. Thus a large amount of computation time will be involved
when KMs are applied for solving large-size problems.

In this paper we present a kernel based approach that makes use of the idea
of the sparse matrix approximation [3] in order to reduce the computational
complexity of the problem and also as a means of regularization. Additionally, the
performance of the model is improved using an iterative process that augments
the original training sequence, by increasingly adding as new input variables
noisy copies of the original data (obtained by learned 1-step predictions). The
results obtained for the long term prediction problem showed that our approach
obtained satisfactory results in comparison to those presented for the EUNITE
2003 competition [1].

The rest of the paper is organized as follows. Section 2 presents the kernel
based learning methodology used in this paper. Section 3 presents the applica-
tion of the methodology to the cwt 2004 data set and the predictions obtained.
Section 4 concludes the work.

2 Methodology, Kernel Based Learning

2.1 SVM and RN

Given a data set of � examples {(xi, yi)}

i=1 with xi ∈ X ⊂ R

d being the
inputs and yi ∈ Y ⊂ R being the outputs, the goal is to learn the underlying
model. In this paper, we will consider as the space of candidate functions, the
Reproducing Kernel Hilbert Space (RKHS) H of functions f : X → Y endowed
with reproducing kernel k, where k : X × X → Y is a symmetric, positive
definite function (e.g. think of Gaussian RBF). The underlying function can be
thus reconstructed solving a Tikhonov functional of the following general form

min
f∈H

H [f ] =
1
�


∑
i=1

c(xi, yi, f(xi)) + Λ ‖f‖2
H (1)

where the first term measures the error in the approximation and the second
term measures the complexity (i.e. the smoothness) of the current candidate.
The Representer Theorem tells us that any solution to (1) has a representation
in the form: f(·) =

∑

i=1 βik(xi, ·) (i.e. as a sum of kernels centred on the data)
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where βi are the coefficients that need to be determined [4]. The choice of the
cost function c in (1) leads to two different methodologies:

– Quadratic costs c(xi, yi, f(xi)) = 1
2 (yi − f(xi))2 lead to RN. The coefficients

βi are obtained by solving the linear system

β = (KT K + �ΛK)−1KT y = (K + �ΛI)−1y

with symmetric kernel matrix K. Note that we have to estimate one coeffi-
cient for each data point.

– ε-insensitive costs c(xi, yi, f(xi)) = max(0, |yi − f(xi)| − ε) lead to Support
Vector Regression. The coefficients βi are obtained using βi = (α∗

i −αi) and
solving the constrained quadractic programming (QP)

min
α,α∗∈R�

−1
2
(α∗ − α)T K(α∗ − α) − ε(α∗ + α)T e + (α∗ − α)T y (2)

subject to 0 ≤ α∗ , α ≤ Ce., where α, α∗ ∈ R

 denotes the unknowns,

K ∈ R

×
 the kernel matrix, e = (1, . . . , 1)T and C ∈ R≥0 corresponds

to the regularization parameter. Note that we have to calculate as many
coefficients as we have data.

From a practical point of view, in order to apply these methods we need
to choose (e.g. via cross validation) the kernel k, the tolerance ε and the right
amount of regularization C or Λ.

In both cases the overall computational demand increases (at least) quadrati-
cally in the number of data. Moreover, if we were to incrementally add new sam-
ples and simultaneously needed to predict using the currently available model,
we would constantly have to retrain our solution from scratch. Clearly this is
completely infeasible. The next subsection describes a possible solution to this
problem.

2.2 Sparse Approximation and Incremental Learning

The technique of sparse approximation allows us to dramatically reduce the
number of variables considered in the optimization problem. It is based on the
observation that the kernel matrix K often has rapidly decaying eigenvalues, and
thus that the data in the feature space spans a rather low-dimensional manifold.
Instead of using all the data, we can restrict us to use only the data points that
compose the basis of this manifold. Therefore, we can approximate the data set
by choosing just a few samples (a suitable basis) and projecting the remaining
ones onto their span [2, 3, 4, 5] (this technique is very common in the context of
Gaussian process regression).

For example let the first m samples be our basis {k(xi, ·)}m
i=1 (m � �). Then

the remaining � − m ones can be approximated via linear combination

k(xi, ·) ≈
m∑

j=1

aijk(xj , ·) , i = m + 1 . . . �. (3)
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Since we are dealing with elements in RKHS H, we have to determine coef-
ficients aij such that the distance

di :=

∥∥∥∥∥∥k(xi, ·) −
m∑

j=1

aijk(xj , ·)

∥∥∥∥∥∥
2

H

, i = m + 1 . . . � (4)

is minimized. Writing (4) in terms of the inner product (and recalling that in H
we have 〈k(xi, ·), k(xj , ·)〉H = k(xi,xj)) and setting its derivate to zero leads to

ai = K̃−1k̃i (5)

where K̃ ∈ m×m with [K̃]ij = k(xi,xj) and k̃i ∈ m with k̃i=
(
k(x1,xi), . . . ,

k(xm,xi)
)T . Once we have determined ai corresponding to input xi, we obtain

the corresponding approximation error as

di = kii − k̃T
i ai (6)

This quantity tells us how well the basis {k(xi, ·)}m
i=1 is able to approximate

a given sample. Now it is very straightforward to use this error as a guide to
(greedily) build up the basis online [9], thus allowing incremental addition of
data: every time a new sample arrives, we check whether it can be approximated
by the current basis well enough. If the error is below some chosen threshold,
we do not need to add the current sample to the basis and can hence discard
it. Only samples that cannot be approximated well are added to the basis. This
incremental approach for building the manifold basis usually reduces the total
number of samples to a small fraction of it.

2.3 Solving a Reduced Problem

Thus, we can use the sparse greedy approximation to reduce the computational
workload [3]: instead of solving a QP in � variables, we only need to consider the
m variables corresponding to the selected basis (usually m � �). Let A ∈ R


×m

be the matrix consisting of rows ai from (5). Then we approximate the full kernel
matrix K ∈ R


×
 via K ≈ AK̃AT . We define reduced variables α̃, α̃∗ ∈ R
m by

setting α̃ = AT α and α̃∗ = AT α∗. Now instead of solving the full QP (2) we
can formulate a reduced QP: we replace K by AK̃AT and y by ỹ = A†y and
obtain

min
α̃,α̃∗∈Rm

−1
2
(α̃∗ − α̃)T K̃(α̃∗ − α̃) − ε(α̃∗ + α̃)T A†e + (α̃∗ − α̃)T ỹ (7)

Note that if we solve the reduced problem (7), we obtain the same result as if
we had solved the full problem (2) using only the training samples {xi, ỹi}m

i=1

in the basis. However, solving the reduced problem only depends on m and is
asymptotically independent of �. A similar reduction to an m-by-m problem is
obtained in the case of regularization networks [5].
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3 Predicting the Schott Data cwt 2004

The data set cwt 2004 consists of 20 measurements obtained in regular intervals
(once every 15 minutes) from a glass melting process. Each row contains 20
observations from one time step. The first 16 observations (denoted by in1–
in16) are measurements that could have an influence on the targets (like e.g.
room temperature). The remaining 4 observations out1–out4 are the targets that
we want to predict. The task in the EUNITE-2003 challenge was the following:
use the given values for time steps 1-16 000 to learn a model that predicts out1–
out4 for the next 1568 steps.

3.1 Preprocessing

The given data set cwt 2004 consisted of raw measurements. We used the follow-
ing steps during preprocessing of the data: replace missing values by an estimate
(linear interpolation), remove outliers, apply data smoothing (rolling mean), nor-
malize inputs and de-trend (remove increasing trend in first output, that often
can not be implicitly considered by traditional learning methodologies).

3.2 Timeseries Prediction as Supervised Learning

To obtain a model suitable for future predictions we use the supervised learning
framework with 1-step predictions as targets and λ past observations as inputs.
Thus our training samples {(xt, yt)}t were given by

xt =
(
outt−1, . . . , outt−λ, inp1t, . . . , inp1t−λ , . . . , inp16t, . . . , inp16t−λ

)T

yt = outt

We used lag λ = 40. Each of the 4 outputs is treated independently, that is
we train 4 different models. Instead of using the usual approach of feeding the

Table 1. Comparison of the prediction errors for time step 16 001-17 568

SVM RN

output 1 MSE 7.44 9.44
TOL=0.01 TubeERR 115.54 149.87
σ = 0.015 #Basis 591

output 2 MSE 41.83 47.41
TOL=0.011 TubeERR 2082.12 2382.44
σ = 0.005 #Basis 195

output 3 MSE 24.07 22.28
TOL=0.01 TubeERR 1214.25 1069.10
σ = 0.013 #Basis 476

output 4 MSE 20.84 23.29
TOL=0.009 TubeERR 781.02 1115.24
σ = 0.013 #Basis 486
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Fig. 1. Results using SVMs. We show the original outputs and the prediction obtained

using SVMs. The gray curves mark the boundaries of the tolerated error TubeERR
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training examples once to the function approximator, we used a more compli-
cated, iterated training procedure adapted from [2] (dropping the inp to avoid
cluttered notation):

1. Iteration: using {(xi, yi)}

i=λ we obtain the model f1. With f1 we can com-

pute the 1-step predictions for the known time steps i = λ+ 1 . . . � to obtain
ŷ1

i = f1(xi). Now we assemble the modified training samples {(x1
i , yi)}


i=λ

with
x1

i =
(
ŷ1

i−1, yi−2, yi−3, . . . , yi−λ, . . .
)T

and add them to the current training set.
2. Iteration: using {(xi, yi)}


i=λ ∪ {(x1
i , yi)}


i=λ we obtain model f2. With f2

we can compute the 1-step predictions for the known time steps i = λ +
1 . . . � to obtain ŷ2

i = f2(xi). Now we assemble the modified training samples
{(x2

i , yi)}

i=λ with

x2
i =

(
ŷ2

i−1, ŷ
2
i−2, yi−3, . . . , yi−λ, . . .

)T

and add them to the current training set.
3. Iteration etc.

Thus, in the kth iteration we build our model using the training sequence

{(xi, yi)}

i=λ ∪ {(x1

i , yi)}

i=λ ∪ . . . ∪ {(xk

i , yi)}

i=λ .

Note that this iterated training procedure greatly benefits from sparse approx-
imation which drastically reduces the computational complexity. In the simu-
lations performed, using repeated training resulted in much better predictions
when compared with the results obtained using just one iteration. Thus we could
observe that augmenting the original training sequence by increasingly ”noisy”
copies of the original data (where the ”noise” is obtained by the learned 1-step
predictions) is very helpful in getting good forecasts.

3.3 Results

In this section we compare the resulting predictions obtained from RN and
SVM using sparse approximation in both cases and Gaussian RBF kernels. To
determine the parameters, we used the following four validation sets: (1) train
1-13 500 predict 13 501-14500 (2) train 1-14 000 predict 14 001-15000 (3) train 1-
14 500 predict 14 501-15500 (4) train 1-15 000 predict 15 001-16000. The optimal
parameters that led to the best (averaged) prediction error during validation were
then used to obtain the final model. These parameters are: (output1) TOL=0.01,
σ = 0.015 (output2) TOL=0.011, σ = 0.005 (output3) TOL=0.01, σ = 0.013
(output3) TOL=0.009, σ = 0.013. The parameters governing regularization (C =
500, Λ = 0.1) and tolerance (ε = 0.1) were determined outside the validation
loop.

Forecasting the global trend of the outputs is more important than the mod-
elling of high-frequency variations. To this end a custom error measure TubeERR
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was devised, that does not penalize small deviations. Also an emphasize is done
in that forecasts into the far future are less reliable. Thus the TubeErr measure
is defined as

TubeERR(i) = max
(
0, |yi − f(xi)| − (3 + 0.003 ∗ i)

)
, i = 0, 1, . . .1568 − 1

Thus, to evaluate the quality of the predictions, we use MSE and the TubeERR
error measure provided by Schott. Using these two measures, the optimal number
of iterations in the iterated learning scheme was calculated using pre-tests on
the validation sets. The achieved error is summarized in Table 1. Figure 1 shows
the resulting predictions using SVM; see how for the four outputs, the prediction
obtained follows the main variations and is inside the TubeERR region most of
the 1568 time steps.

4 Conclusions

In this paper we have reported the use of a kernel-based method to predict the
long term time series used in the data modelling competition EUNITE-2003. We
have used the idea of sparse approximation as a means of reducing the compu-
tational complexity and an incremental learning approach to add new training
samples to the kernel-based method and efficiently update the current solution.
The results obtained support the suitability of the proposed methodology for
this long term time series prediction problem with high training complexity.
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Abstract. This paper presents and application of Genetic Programming (GP) 
for time series forecast. Although this kind of application has been carried out 
with a wide range of techniques and with very good results, this paper presents 
a different approach. In most of the experiments done in time series forecasting 
the objective is, from a consecutive set of samples or time interval, to obtain the 
value of the sample in the next time step. The aim of this paper is to study the 
forecasting not only on the next sample, but in general several samples forward. 
This will allow the building of more complete prediction systems. With this 
objective, one of the most widely used series for this kind of application has 
been used, the Mackey-Glass series. 

1   Introduction 

Time series forecasting is a classical application in the world of Artificial Intelligence, 
and in general in the world of computation [1][2][3], and it has many practical 
applications. It has been successfully applied to a wide range of different 
environments and problems, from financial series forecasting [4] to the modelling of 
complex hydrological processes [5][6]. Time series forecasting has been done using 
very different techniques, such as Artificial Neural Networks (ANNs) [7][8][9], 
Genetic Algorithms (GAs) [10] or Genetic Programming (GP) [11][12]. 

GP [11][13] is the technique used in this paper. This technique has already been 
extensively used in the field of signal processing, with practical applications such as 
signal modelling [6] or filter design [12][14]. The ability of GP to develop 
mathematical equations, and in general any kind of expressions, has made possible 
that it may be successfully applied on signal processing, and its application in time 
series forecast is obvious [14]. 

2   Description of the Problem 

The classical approach for forecasting time series involves taking a time interval with 
the objective of predicting the value of the series in the following moment of time. 
This consists on building a system that takes a consecutive set of samples from the 
signal and returns a prediction of the next sample. 
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There are several ways to build this system with GP. The most usual one is to use 
GP to generate a mathematical expression that, taking as variables the consecutive 
group of samples, returns a prediction of the value of the following sample. However, 
in this paper the prediction will not be made only on the next value of the signal, but 
in general on the M next values of the signal. To achieve this, different systems will 
be created, one for each value of the anticipation with which the prediction is desired. 
This may be seen on Fig. 1. 

f(x(n),x(n-1),…,x(n-N)) 
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f(x(n),x(n-1),…,x(n-N)) 
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Fig. 1. Prediction systems with one forward sample and with M forward samples 

This paper will focus on the study of 2 important parameters. These parameters are 
the number of consecutive samples taken for prediction (N), and the number of 
forward samples with which the prediction is desired (M). 

To do this, a well-known time series has been taken. This series is the Mackey-
Glass time series [15], which has been extensively used for time series forecast in the 
bibliography. For this study, 200 samples of this series were taken. The Mackey-Glass 
equation is an ordinary differential delay equation: 
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3   GP Configuration 

As mentioned beforehand, the way in which GP will be used to make predictions is 
through the creation of mathematical expressions. These equations will return the 
predictions of the desired values from a consecutive set of samples. For this objective, 
GP has been configured with the most common mathematical expressions, and using 
as inputs the values of the samples of the interval. These inputs are introduced into 
GP as variables. Therefore, the configuration of the GP algorithm is as shown on 
Table 1. The operator “%” stands for the protected division operator, which returns a 
value of 1 when a number is divided by 0 and the result of the division in other case. 

Table 1. Terminal and function sets 

Function set +, -, *, % 
Terminal set Constants [-1, 1] 
 Variables X(n-N), ..., X(n-1), X(n) 

Each expression created by GP will be evaluated through the whole signal, and, as 
result, the fitness function will return the mean difference between the forecasted 
values and the actual values. This fitness function will be, for a signal with T samples 
and taking N variables (size of the time interval) and for a prediction of M forward 
samples, the following expression: 

 
  

where f(x(n),x(n-1),...,x(n-N)) is the expression generated by GP that is being 
evaluated. This expression cannot be evaluated on the whole signal, as an initial set of 
samples are required to make the first prediction. This initial set of samples is N. The 
number of samples in which this expression can be evaluated on the signal is T-
(N+M-1), taken from N (first prediction) to T-M (last prediction), as may be 
graphically seen on Fig. 1. 

Prediction will be done separately for each of the values on M and N. Therefore, a 
different system for each anticipation value of the prediction will be generated. 

4   Results 

4.1   Training 

The main interest of this paper is to study the results with different values of M and 
N. In this sense, many different trials have been done with different values of M and 
N, but, in order to obtain coherent results, the same GP configuration had to be kept. 
With this purpose, several trials were done with different values of M and N in order 
to obtain a good GP configuration. This GP configuration is the following: 
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• Selection Algorithm: Roulette. 
• Mutation rate: 5 %. 
• Crossover rate: 95 % 
• Population: 1000 individuals. 

This configuration was kept in all of the trials with different values of M and N. 
These two parameters have taken values until they reached a maximum value of 20. 
This means that to make a prediction, an interval with a size between 2 and 20 
samples from the signal was taken, and this prediction was made with an anticipation 
from 1 to 20 samples. For each combination of the parameters M and N, 30 
independent runs were done, so the total number of runs carried out is 19*20*30 = 
11400. Alter these trials, the mean values of the error for each combination of N and 
M, can be graphically seen on Fig. 2. 

 
 
 
 

 
 
 

 
 
 
 
 
 

 
 

 

Fig. 2. Mean error values obtained for each combination of M and N 

Logically, the error increases as the desired anticipation for the prediction increases 
too (the value of M). But the system reaches a point in which the difference in the 
value on M is not significative and the values of the error are very similar, except in 
those cases in which its value is very low. 

Before looking at Fig 2, one could think that the system would obtain better results 
with higher values of N because the GP algorithm would be provided with more 
information from the signal in order to make better predictions. This is not true. Fig. 2 
shows that the value of the error obtained is, in general, lower for lower values of N. 
This means that a lower error is obtained by taking less information from the signal. 
This occurs because as the number of samples from the signal taken for making the 
prediction increases, the search area also increases, because the system will have 
more variables. Therefore, the system will takes longer to evolve and return a good 
expression and it will tend more to fall on a local optima. 

Fitness 

Size of time 
interval (N) 

Number of samples 
forward (M) 
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However, it is important to realize that the values shown on Fig. 2 are just mean 
values. The best error values were obtained, for low M values, with few information 
from the signal (N = 2, 3), and for medium and high M values, with high N values 
(N= 15, ..., 20). This means that it is necessary to take a great deal of information 
from the signal in order to make a prediction significantly in advance. This cannot be 
seen on Fig. 2, because they show mean error values, and to obtain these values the 
same GP parameters had to be used. For high values of N, it would have been suitable 
to use a bigger population size in order to escape from falling into local optima, but it 
was necessary to keep the population size constant to obtain coherent results. 

Fig 3. shows the signals obtained with the best expressions returned by GP with 
values of advances of M = 1, 4, 8, 12, 16 and 20 samples forward. These expressiones 
were obtained taking 2, 3, 18, 18, 19 and 19 samples from the signal respectivelly. So, 
it can be seen that it is necessary to take more information from the signal in order to 
make a satisfactory prediction with high values of M. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 3. Best ouput signals for advances of 1, 4, 8, 12, 16  20 samples 

4.2   Test 

These results have been tested with a file containing other 200 samples of the 
Mackey-Glass time series. Fig. 4 shows the best signals obtained in the test phase for 
values of M = 1, 4, 8, 12, 16 and 20 samples forward. These signals were built with 
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the expressions obtained in the training phase with values of N = 2, 3, 5, 18, 19 and 
19 respectively. These were the values that gave best results in the test phase for those 
values of M. 

Fig. 4 shows that the expressions obtained can return good results, although the 
values of the mean error are slightly higher than in the training phase, with parts of 
the signal where they were not trained.  
 
 

 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

Fig. 4. Best ouput signals for advances of 1, 4, 8, 12, 16  20 samples in the test 

5   Conclusions 

This paper presents an application of GP in the field of signal processing. Signal 
forecasting is a research field that has already been widely studied with a large 
number of different techniques. However, this paper aims at offering a step forward, 
making a more generic application in which the prediction is not made on the 
following sample from a consecutive group of samples, but instead that now it is 
possible to advance the prediction by a given number of samples. 

If one sample forward forecasting has many undeniable real-world applications, the 
possibility of forecasting several samples forward allows the creation of more 
complete systems, because this anticipation will allow the implementation and 
improvement of prevention systems, alarms, etc. 
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As shown in the experiments carried out, it is difficult to obtain good results, 
because in those cases in which much anticipation in the forecast is desired, it will be 
necessary to take a large amount of information from the signal. This lead to the 
problem that the search space increases significantly, and the system becomes more 
likely to falling on local optima. The solution can be to increase the population size as 
the number of the samples taken from the signal increses. This could not be done in 
the experiments, because it was necessary to keep the GP parameters constant in order 
to be able to make coherent comparisons between the results obtained. 

6   Future Works 

From this study, the research work goes on different directions. 
A possible continuation of this work is a more detailed study of the number of 

variables necessary to obtain a good prediction for a concrete anticipation. In this 
sense, it could be possible to make a regression process that returns a relationship 
between the anticipation desired for a prediction and the number of variables 
necessary to obtain it. 

The use of other time series with different mathematical properties, as well as other 
kind of series (finantial series, etc.) is interesting to make a comparison of the results 
and to validate the use of this technique on real-world series. 
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Abstract. Recently, multiple works proposed multi-model based approaches to 
model nonlinear systems. Such approaches could also be seen as some “spe-
cific” approach, inspired from ANN operation mode, where each neuron, repre-
sented by one of the local models, realizes some higher level transfer function. 
We are involved in nonlinear dynamic systems identification and nonlinear 
dynamic behavior prediction, which are key steps in several areas of industrial 
applications. In this paper, two identifiers architectures issued from the multi-
model concept are presented, in the frame of nonlinear system’s behavior pre-
diction context. The first one, based on “equation error” identifier, performs a 
prediction based on system’s inputs and outputs. However, if the system’s in-
puts are often accessible, its outputs are not always available in prediction 
phase. The second one, called “output error” based identifier/predictor needs 
only the system’s inputs to achieve the prediction task. Experimental results 
validating presented multi-model based structures have been reported and 
discussed. 

1   Introduction 

Identification of nonlinear systems is an important task for model based control, sys-
tem design, simulation, prediction and fault diagnosis. The identification task involves 
two essential steps: structure selection and parameter estimation. These two steps are 
linked and generally have to be performed in order to achieve the best compromise 
between error minimization and the total number of parameters in the final model. In 
real world applications (real world situations), strong nonlinearity and large number 
of related parameters make the realization of those steps challenging, and so, the iden-
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tification task difficult. A large variety of structures to take into account systems non-
linearity have already been proposed among which, Wiener and Hammerstein type 
models [1], Volterra series [2], Fuzzy logic based models [3], [4] and especially in 
last decades, neural network based approaches, which applications are numerous in 
dynamical system modeling [6]. However, a number of real world applications, espe-
cially those dealing with nonlinear systems behavior prediction, require refined gen-
eralization capabilities, which are not always ensured with simple artificial neural 
networks issued solutions. 

Recently, a multiple works treat multi-model based approaches to avoid difficulties 
(modeling complexity) related to non-linearity ([7], [8] [9] and [12]). The use of 
multi-model for identifying complex systems is due to the fact that it is not always 
possible to find an analytical relation which describes the system’s behavior in its 
whole operating range. The complexity of the system can be considerably reduced if 
the operating range of the system is divided into different regions in which its local 
behavior could be described with relatively simple functions. This approach is at the 
base of multi-model theory.  

In a general way, in multi-models based approaches, a set of models, correspond-
ing to a set of operating ranges contributes to identify the whole system. In other 
words, such approach could appear as some kind of weighted contribution of a set of 
models approximating the whole system’s behavior. Thus, it could also be seen as 
some “specific” approach, inspired from ANN operation mode, where each neuron 
(here represented by one of the local models) realizes some higher level transfer func-
tion. Concerning the learning process (taking into account the analogy with learning 
in ANN), it could be performed on the level of contribution rate of each model to the 
global response, called also “activation degree” associated to each of participant mod-
els in such multi-model architecture. Several strategies could be exploited to deter-
mine “activation degree” (validation interval) of each model in such multi-model 
structures. All of them operate on the basis of the whole system’s feature space (op-
eration space) partitioning. What differs is the way of the partitioning. The most ele-
mentary partitioning strategy is the “grid partitioning”, where a prearranged clustering 
chart maps the system’s feature space dividing it into several partitions associating to 
each of obtained partitions a local model describing the system’s behavior in that 
interval. However, if the implementation facility is the main advantage of this simple 
strategy, the appropriated choice of each interval reminds its principle drawback. 
Among promising strategies to overcome this difficulty are: “decision tree construc-
tion” (DTC - a deterministic partitioning approach) and “fuzzy clustering” partition-
ing (FC – a probabilistic approach). The clusters construction in both of these parti-
tioning strategies is based on identification error minimization. 

In this paper we present and compare two identifiers architectures issued from 
the multi-model concept, in the frame of nonlinear system’s behavior prediction 
dilemma. In the first one, both identification (system’s modeling) and prediction 
tasks are based on the mutual usage of system’s inputs and outputs. However, in 
real-world applications, especially those concerning the behavior prediction area, it 
is not always possible to access system’s output during the prediction phase. So, if 
this first identification/prediction architecture could be successfully applied in a 
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number of fields related to the controllers design, it is not always appropriated for 
other behavior prediction applications. In the second one, only the identification 
task takes partially advantage from the system’s outputs. In fact, during the predic-
tion operation, the system’s outputs are supposed to be inaccessible. System’s fea-
ture space partitioning has been based on Decision Tree Construction (DTC) and 
Fuzzy Clustering (FC) strategies. 

The paper is structured as follow: first, the principle of Multi-Model approach is 
presented. Then, the application of such multi-model based architecture to the non 
linear systems identification and their behavior prediction is presented. Next, the 
multi-model architectures are validated giving experimental results. Finally, perspec-
tives of the presented work conclude this paper. 

2   Multi-modeling Principle 

A multi-model is composed of several models each of which is valid in a well defined 
interval which corresponds to a part of the operation range of the system or covers a 
part of the whole feature space of the problem to be solved. The local validity of a 
model in a well defined interval is specified by using functions with limited supports 
which tend to significantly increase the contribution of the local models in that zone 
and tend to decrease it elsewhere. The combination of all local models allows descrip-
tion of the whole system’s behavior. The local models participations in the multi-
model’s output are quantified (determined) by “activation degree” associated to each 
local model. The action of “activation degrees” on multi-model’s response could be 
seen as some kind of local models responses weighting fashioning its response in 
order to approximate the modeled  behavior. 
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Fig. 1. General bloc diagram of a multi-model and the associated learning process 
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Consider a non-linear dynamical system described by the general equation, expressed 
by relation (1), where F(.) represents a global unknown model (system to be identified) 

and ( )tϕ  is a regression vector composed by a number of delayed system’s inputs and 

outputs. The associated multi-model, composed by M local models and their weights 

( )( )ii t βϕρ , , with ( )( ) 0≥ii t βϕρ  (for all i) and ( )( ) 0,
1

>
=

M

j

ii t βϕρ  (for all ( )tϕ ), is 

defined by the weighted average expressed in the relation (2). In this relation ( )( )tfi ϕ  

represents the i-th local model and iβ  is a parameter related to the validity function iρ .  
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Defining the “activation degree” of the i-th local model conformably to the relation 
(3), the general relation for multi-model architecture could then be written according 
to the relation (4), where ω (.) is the “activation degree” of the i-th local model.  
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The general concept of Multi-modeling could be seen as some kind of artificial 
neural network structure, where the neurons' activation functions are those corre-
sponding to the local models' transfer functions. The appropriated choice of the “acti-
vation degree” parameters could be seen as some learning procedure. Generally, the 
proposed multi-model structures use conventional (polynomial) local models. How-
ever, local models could be any kind of models. Figure 1 shows the general bloc dia-
gram of a multi-model as well as the general learning process in such structures. 

3   Multi-model Based Identifier/Predictor Structures 

System identification with multi-models can be done in two steps: structural identification 
and parametric identification. Structural identification allows the specification of the oper-
ating zones and the structure of each local model. The specification of the operating zones 
consists of determining the characteristic space “Z” and its decomposition into different 
zones, each of which have a validity function. In each step of the decomposition, a new 
zone is added so that the number of local models is increased by one. The decomposition 
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can be orthogonal [10]. The specification of the structure of each local model consists of 
determining the relation which describes the model in its validity domain. 

Depending on the regression vector construction, one can have two types of multi-
model: “equation error based” multi-model (EE), depicted in the left block diagram of 
figure 2 and “output error” based multi-models (OE), shown in the right bloc diagram 
of the same figure. The parameter estimations result from the minimization of the 
error between the system output and the multi-model output. One can plan to mini-
mize the error between the system output (in a specific interval) and the local models 
outputs (local learning) or to minimize the error between the system output and the 
multi-model output (global learning). We used the global learning, which is per-
formed according to the relation (5) criterion, where N is number of measurements. 
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Fig. 2. Learning mechanism bloc diagram for equation error (left) and for output error (right) 
based multi-models 

According to the criterion nature J, one distinguishes two types of optimization: 

- Linear optimization: if the criterion J is quadratic with respect to the vector parame-
ter θ  of the local models, one can use the least square method to set the parameters. 
In general the regression vector contains some delayed outputs which make the cri-
terion not quadratic. However by replacing these delayed outputs by the correspond-
ing measurements, the criterion becomes quadratic. 

- Non linear optimization: if the model is non-linear, the parameters can’t be com-
puted analytically and iterative techniques of optimisation are to be used. The es-
timation )1( +kθ  of θ  at the k + 1-th iteration is obtained by the relation (6), 

where )(ˆ kθ  – estimation of θ  obtained at the k-th iteration, kη  – “relaxation” 

control parameter, Gk – estimation of the gradient of the criterion at the iteration k, 
Hk – matrix which modifies the search direction. Its choice defines the non-linear 
optimization method. Levenberg – Marquardt method is used for which Hk is the 

regularised Hessien matrix expressed by relation (7), where kHa  – the approxi-

mated Hessian, kλ  – coefficient of regularization, I – identity matrix. 
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4   Validation Results 

Software tool was created under Matlab environment, using an object oriented pro-
gramming, to validate the above-presented multi-model based identifier/predictor 
architectures. A benchmark based on a dynamic non linear system, described by rela-
tion (8) where ui(t) are system’s inputs and Ys(t) its output ui(t) take random value in 
interval [0 , 1]: [ ]990.0,01 ∈u , [ ]985.0,02 ∈u  and [ ]294.0,703.0−∈sy , was created 

to validate the presented multi-models performances. The regression vector of this 
system is ( ) ( ) ( ) ( )[ ]1  1  1 21 −−−= tYtutut sϕ .  
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Table 1. Validation results relative to the local models parameters estimation, inputs and out-
puts validation intervals 

Local Models Parameters Learning & Test-
ing Errors 

Multi-model 
Structure + 
Partitioning  
 

Num. of 
 Local 
models  a b c d Learn.  Test 

EE + DTC 5 0.078 
0.314 
0.397 
-0.182 
0.010 

-1.387 
-0.088 
-0.578 
-0.900 
-0.569

-0.217 
0.423 
0.355 
-0.146 
-0.152

0.511 
0.016 
-0.238 
-0.090 
0.032 

9.4 10-5 1.5 10-4 

EE + FC 6 0.436 
0.139 
0.798 
0.075 
-0.249 
0.405 

-0.827 
-0.265 
-0.707 
-1.630 
-0.830 
-0.235

0.320 
0.284 
0.585 
-0.473 
-0.122 
0.442 

0.001 
-0.024 
-0.394 
0.503 
0.186 
-0.156

1.2 10-4 2.5 10-4 

OE + DTC 3 0.267 
0.302 
0.178 

-0.747 
-0.552 
-0.656

-0.066 
-0.088 
-0.018

-0.115 
0.107 
-0.141

5.9 10-3 5.3 10-3 

OE + FC 2 0.128 
-0.143

-0.081 
-0.383

-0.052 
0.023 

0.091 
0.314 

9.0 10-3 1.0 10-2 

We have considered an EE and OE multi-models based architectures (figure 2) with lin-

ear local models described by iiiii dycubuay +++= ˆ21  where iiii dcba   and    ,  ,  



982 K. Madani et al. 

 

are local model’s parameters (to be optimized) and with a global learning. The learning 
procedure operates as follows: an observation matrix, including inputs and outputs (sys-
tem’s outputs for EE based multi-model and estimated outputs for the OE based one) is 
updated progressively until the output’s value stabilizes.  For both cases, we have consid-
ered “decision tree construction” (DTC) and “fuzzy clustering” (FC) partitioning strate-
gies. The FC partitioning has been based on FCM (Fuzzy Centers Mean) algorithm. The 
feature space partitioning is accepted if it reduces the global error. The learning process 
stops if the feature partitioning process doesn’t lead to a new lower error between esti-
mated and system’s outputs. The EE based multi-model uses the linear criterion. The OE 
based multi-model uses the nonlinear criterion with “Levenberg-Marquardt” optimization 
algorithm. Table 1 gives validation results relative to each of two multi-models. For each 
space partitioning strategy, local models parameters, learning and testing errors are re-
ported. Figures 3 and 4 compare estimated (predicted) output with the system’s one for 
each multi-model based predictor.  

 

Fig. 3. System’s and Multi-model issued outputs using EE scheme: results obtained with deci-
sion tree partitioning strategy (left) and with fuzzy clustering partitioning strategy (right) 

 

Fig. 4. System’s and Multi-model issued outputs OE scheme: results obtained with decision 
tree partitioning strategy (left) and with fuzzy clustering based partitioning strategy (right) 
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One can remark that system’s output prediction with EE based multi-model struc-
ture leads to better results. In fact, the usage of system’s output makes the prediction 
more accurate. However, system’s output availability in real world prediction context 
remains restrictive and often unrealistic. That’s why, even if to operate correctly (with 
acceptable approximation and prediction performances) the OE based multi-model 
structures seem to require more complex learning and optimization mechanisms, they 
remain the most effective to solve prediction problems. The OE based prediction 
could be enhanced by using hybrid scheme where the learning (identification) is per-
formed on the basis of an EE model and the prediction on the basis of an OE model. 

5   Conclusion 

The Multi-modeling general concept could be seen as some kind of artificial neural 
network structure, where the neurons activation functions are those corresponding to 
the local models transfer functions. Two multi-model based identifier/predictor struc-
tures have been presented. If prediction performances obtained for the first one (equa-
tion error based multi-model), which uses both system’s inputs and outputs, seem to 
be better than those obtained for the second one (using only input of the system), its 
usage concerns a limited number of real world cases. In fact, it is not always possible 
to access system’s output (during the prediction phase) in the case of real world be-
havior prediction applications. On the other hand, the performances of the “output 
error” based identifier/predictor could be enhanced on one hand by increasing local 
models complexity (for example, by using higher order local models) and on the other 
hand, by improving feature space partitioning strategy and learning mechanism. 
These features delineate future perspectives of the present work.   
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Abstract. This paper presents k-NN as an approximator for time series predic-
tion problems. The main advantage of this approximator is its simplicity. De-
spite the simplicity, k-NN can be used to perform input selection for nonlinear 
models and it also provides accurate approximations. Three model structure se-
lection methods are presented: Leave-one-out, Bootstrap and Bootstrap 632. We 
will show that both Bootstraps provide a good estimate of the number of 
neighbors, k, where Leave-one-out fails. Results of the methods are presented 
with the Electric load from Poland data set. 

Keywords: k-NN, Time Series Prediction, Bootstrap, Leave-one-out and Model 
Structure Selection. 

1   Introduction 

In any function approximation, system identification, classification or prediction task 
one usually wants to find the best possible model and the best possible parameters to 
have good performance. Selected model must be generalizing enough still preserving 
accuracy and reliability without unnecessary complexity, which increase computa-
tional load and thus calculation time. Optimal parameters must be determined for 
every model to be able to rank the models according to their performances. 

Furthermore, in order to select the best model, or model class, one also needs to de-
termine the best input set, to use in the determination of the best parameters for each 
structure. When too many inputs are selected, it is possible to get even worse results 
than with fewer inputs containing more accurate and valid information. Vice versa, 
with only few inputs the accuracy of the model might not be enough and results are 
poor and unreliable. 

The problems mentioned above occur simultaneously, so it is difficult to find the 
right combination of correct attributes. It can be a very tedious and time-consuming 
procedure to go through every possible structure to select the best one. 

In this paper, we focus in finding the optimal structure for k-Nearest Neighbors (k-
NN) approximator. At the same time we consider the problem of selecting the most 
necessary and optimal inputs for the k-NN as well as selecting the structure of the 
approximator. The k-NN method is presented in Section 2; Section 3 describes the 
selection of the inputs with an exhaustive search and Section 4 the selection of the 
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structure using Leave-one-out (LOO) and Bootstraps. In Section 5 we show some 
experimental results with an electric load time series and then derived conclusions 
from the results in Section 6. 

2   k-Nearest Neighbors 

k-Nearest Neighbors approximation method is a very simple, but powerful method. It 
has been used in many different applications and particularly in classification tasks [1]. 

The key idea behind the k-NN is that similar input data vectors have similar output 
values. One has to look for a certain number of nearest neighbors, according to 
Euclidean distance [1], and their corresponding output values to get the output ap-
proximation. We can calculate the estimation of the outputs by using the average of 
the outputs of the neighbors in the neighborhood.  

If the pairs (xi, yi) represent the data with xi as an n-dimensional input and yi as a 
scalar output value, k-NN approximation is 

k

y

y

k

1j
jP

i
==

)(

ˆ , 
(1) 

where i represents the output estimation, P(j) is the index number of the jth nearest 
neighbor of the input xi and k is the number of neighbors that are used. 

We use the same neighborhood size for every data point, so we use a global k, 
which must be determined. 

3   Input Selection 

In order to select the best set of inputs, all possible 2n (n is the maximum number of 
inputs) input sets are built and evaluated. For each input set the global optimum num-
ber of neighbors is determined and the generalization error estimate (defined in Sec-
tion 4) of the set is calculated as a mean of errors of all data points. In this way it is 
possible to compare all different input sets and take the best one to be used in the final 
k-NN approximation. 

In this case, adding one input doubles the needed calculation time. We have to 
make a compromise between the maximum input size to use and the calculation time 
available. This kind of exhaustive search for best inputs is usually not preferred, be-
cause of the huge computational load. However, with k-NN the computations can be 
performed in a reasonable time, thanks to the simplicity of the k-NN. 

4   Model Structure Selection 

We consider the problem of determining a model which approximates as accurately as 
possible an unknown function g(.). This approximation is chosen among a set of sev-
eral possible models.  Models in a set are denoted here by  
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where q represents the qth model in the set, θ(q) are the parameters of the qth model 
and x is a n-dimensional input vector. The parameters that define a set of possible 
models are called hyper-parameters; they are not estimated by the learning algorithm, 
but by some external procedure [4]. 

In a typical learning procedure, the θ(q) parameters are optimized to minimize the 
approximation error on the learning set; the structure is determined as the minimiza-
tion of the generalization error defined as 
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where xi are n-dimensional input vectors to the model and yi the corresponding scalar 
expected outputs. 

According to the definition (3), the generalization error is the mean square error of 
the model, computed on an infinite sized test set. Such set is not available in practice, 
so we must approximate the generalization error. The best model structure q is the 
structure that minimizes the approximation of the generalization error. 

In our case the model parameters consist in selecting the number of neighbors to 
use in the k-NN approximation. We have used two different methods to select the 
global optimal number of neighbors, Leave-one-out (LOO) and Bootstrap 632. 

Leave-one-out is a common method used in many statistical evaluation purposes 
and we wanted to show that Bootstrap 632 is better than LOO in this case, even [2] 
claims that Bootstrap 632 doesn’t work in selecting the number of neighbors. 

4.1   Leave-One-Out 

Leave-one-out [3] is a special case of k-fold cross-validation resampling method. In k-
fold cross-validation the training data is divided into k approximately equal sized sets. 
Then model is trained by using all but one set and the leftover set is used in valida-
tion. The generalization error estimation of k-fold cross-validation is a mean of all k 
different validation results. 

LOO procedure is the same as k-fold cross-validation with k equal to the size of the 
training set N. So, for each different neighborhood size, LOO procedure is used to 
calculate its generalization error estimate by removing each neighbor at a time from 
the training set, building a model with the rest of the training data and calculating the 
validation error with the one taken out. This procedure is done for every data point in 
the training set and the estimate of the generalization error is calculated as a mean of 
all k, or N, validation errors (4). 
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where xi is the ith input vector from the training set, yi is the corresponding output 
and θι*(q) includes the model parameters without using (xi, yi) in the training. 
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Because we want to use the global optimum size of the neighborhood, we have to 
calculate the LOO error for each data point and each size of the neighborhood. After 
that we can take the mean over all data points to find out, which is globally the opti-
mum number of neighbors. We select the number of neighbors that gives us the small-
est generalization error. 

4.2   Bootstrap and Bootstrap 632 

Bootstrap [4] is a resampling technique developed to estimate some statistical pa-
rameters (like the mean of a population, its variance, etc). In the case of a model 
structure selection, the parameter to be estimated is the generalization error.  

When using bootstrap, the generalization error is not estimated directly. Rather the 
bootstrap estimates the difference between the generalization error and the training 
error, or apparent error according to Efron [2]. This difference is called the optimism. 
The estimation of the generalization error will be the sum of the training error and the 
estimated optimism.  

The training error is computed using all available data on the training set. 
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where hq is the qth model that is used, I denotes the training set, θ*(q) includes the 
model parameters after learning, xi

I is the ith input vector from the training set, yi is the 
corresponding output and N is the number of elements in the training set. 

The optimism is estimated using a resampling technique, based on drawing with 
replacement within the training set. This bootstrap set is as large as the training set 
with its participants drawn randomly from the training set. Each model is trained 
using the bootstrap set and optimism is calculated as the difference between the learn-
ing error (6) and the validation error (7). 

Learning error is calculated in the bootstrap set with model trained in the same 
bootstrap set. 
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where Aj is the jth bootstrap set, xi
Aj is the ith input vector from the bootstrap set and yi

Aj 
is the corresponding output. 

Validation error is calculated in the initial training set with model trained on the 
same bootstrap set than the learning error. 
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Above described optimism calculation procedure is repeated as many times, or 
rounds, as possible considering linearly increasing computation time. The optimism 
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of a model is then calculated, as a mean of the difference of the two error functions 
described above 

J

qqEqqE

qismmopti

J

j
j

AA
jj

IA
j

jjj

=

θ−θ
= 1

*,*, ))(,())(,(

)(ˆ , 
(8) 

where J is the number of bootstrap rounds done. 
The final generalization error estimate is the sum of the training error and the op-

timism 
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Bootstrap 632 [5] is a modified version of the original Bootstrap. Where the origi-

nal Bootstrap gives biased estimation of the generalization error (3), Bootstrap 632 is 
not biased [4] and thus is more comparable with other methods estimating the gener-
alization error. Bootstrap 632 converges towards the correct generalization error in a 
reasonable amount of calculation time. 

The main difference between standard Bootstrap and Bootstrap 632 is the estima-
tion of optimism. In original Bootstrap the optimism is calculated as difference of the 
errors in two sets, in the initial training data set and in the randomly drawn bootstrap 
set (8). Bootstrap 632 estimates optimism using the data points not drawn into the 
bootstrap set (10). The model is trained using this set of unselected data points and its 
error is evaluated on the bootstrap set. 
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where the error function is the same as the learning error (6), except the model is 
trained using j, the complement of the bootstrap set Aj. 

The estimation of the generalization error of the Bootstrap 632 is calculated as 
weighted sum of the training error and the new optimism (10). 

))(,(632.)(ˆ368.)(ˆ *,632 qqEqismmoptiqE II
gen θ+= . (11) 

From equation (11) it gets quite clear to see, that the name of the Bootstrap 632 
comes from the weighting coefficient of the training error term. The value 0.632 is the 
probability of one sample to be drawn to the bootstrap set from the training set [2, 5]. 

5   Experimental Results 

5.1   Time Series Prediction 

Time series forecasting [6] is a challenge in many fields. In finance, one forecasts 
stock exchange courses or stock market indices; data processing specialists forecast 
the flow of information on their networks; producers of electricity forecast the load of 
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the following day. The common point to their problems is the following: how can one 
analyse and use the past to predict the future? 

Next section will demonstrate how k-NN can be used to predict future values of a 
time series. 

5.2   Results of Data Set 1: Electric Load 

The dataset used in experiments is a benchmark in the field of time series prediction: 
The Poland Electricity Dataset. It represents the electric load of Poland during 2500 
days in the 90’s. 

In our experiments we used the first half of the data set as a training set and the 
other half as a test set in order to evaluate the selected model’s performance between 
different methods. 
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Fig. 1. Electric load time series from Poland 

Fig. 2 and 3 show the generalization error estimates of all different methods ac-
cording to the number of neighbors, when using the best selected input set. 
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Fig. 2. The generalization error estimate using Leave-one-out according to the number of 
neighbors 

The Table 1 shows the results of the experiments with three methods in select-
ing the inputs and number of neighbors. We have used n = 8 as a maximum num-
ber of inputs and J = 100 bootstrap rounds in calculations in both, Bootstrap and 
Bootstrap 632. 
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Fig. 3. The generalization error estimate using Bootstrap (solid line) and Bootstrap 632 (dashed 
line) according to the number of neighbors 

Table 1. The results using Electric load data set and methods described in this paper 

Selected Inputs k Êgen Test error
LOO t - {1, 2, 5, 7, 8} 3 0.0021 0.0011

Bootstrap t - {1, 2, 5, 7, 8} 1 0.0011 0.0007
Bootstrap 632 t - {1, 2, 5, 7, 8} 1 0.0020 0.0007  

All three methods select the same inputs but different number of neighbors. Ac-
cording to the test error both, Bootstrap and Bootstrap 632, select the best k. On the 
other hand, Bootstrap and Bootstrap 632 use J times more time than LOO. 

In Fig. 4 we have used the model selected by bootstrap to predict 300 first test set 
values. 
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Fig. 4. Test set from Electric load data. 200 first values predicted and plotted. Solid line repre-
sents the real values and dashed represents the prediction 

6   Conclusion 

We have shown, that all methods, Leave-one-out and Bootstraps, select the same 
inputs. But number of neighbors is selected more efficiently by Bootstraps, according 
to the test error; even some studies have proven otherwise [2]. 
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It has also been shown, that k-NN is a good approximator for time series. We have 
also tested k-NN with a couple of other time series and acquired the same results. As a 
conclusion we suggest Leave-one-out to be used in input selection and Bootstrap or 
Bootstrap 632 in selection of k. 
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Abstract. In nonlinear robust identification context, a process model is
represented by a nominal model and possible deviations. With paramet-
ric models this process model can be expressed as the so-called Feasible
Parameter Set (FPS), which derives from the minimization of identifi-
cation error specific norms. In this work, several norms are used simul-
taneously to obtain the FPS. This fact improves the model quality but,
as counterpart, it increases the optimization problem complexity result-
ing in a multimodal problem with an infinite number of minima with
the same value which constitutes FPS contour. A special Evolutionary
Algorithm (ε−GA) has been developed to find this contour. Finally, an
application to a thermal process identification is presented.

1 Introduction

In Robust Process Control all designs are based on a nominal process model and
a reliable estimate of the uncertainty associated to this nominal model through
robust identification. Uncertainty can be caused mainly by measurement noise
and model error [8] (e.g. dynamics not captured by nominal model). Although
uncertainty can have different sources, it always will appear as an error between
model and process outputs (identification error for a specific experiment).

Different procedures for Robust Identification are based on error statisti-
cal assumptions [3] or rely on deterministic hypotheses, where the identification
error, although unknown, will be bounded by a certain norm [2],[10]. That deter-
ministic approach will be used in this work to estimate the model parameters set
which keeps the identification error bounded. A parametric uncertainty related
to model parameters also is assumed.

For linear in parameters models, the FPS (consistent with the data and the
given a priori information), if it exists, is a convex polytope (in the parameter
space) and it can be approximated by orthotopes, ellipsoids or parallelotopics [6].
In nonlinear models, the polytope can be non-convex even disjoint which both
increase the computational complexity, above all, if the number of data increases.
Also in this case, if the model is time differentiable respect to the unknown

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 993–1001, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



994 J.M. Herrero et al.

parameters, interval computation [9] or deterministic search algorithms [7] can
be used. Otherwise, heuristic optimization such as random search or Monte Carlo
techniques are applied [4].

Because to find the FPS contour is a multimodal problem with infinite num-
ber of solutions with the same value, a specific Evolutionary Algorithm (ε−GA),
based on Evolutionary Algorithm for Multiobjective Optimization [1], [5], has
been used. The flexibility of the algorithm permits to solve robust identification
problems with several norms considered simultaneously.

2 FPS Identification

In this work the following structure is assumed for the nonlinear model:

ẋ(t) = f(x(t),u(t), θ), ŷ(t) = g(x(t),u(t), θ) (1)

where

– f(.), g(.) are the nonlinear functions of the model,
– θ ∈ D ⊂ Rq is the vector of unknown model parameters,
– x(t) ∈ Rn is the vector of model states,
– u(t) ∈ Rm is the vector of model inputs,
– ŷ(t) ∈ Rl is the vector of model outputs.

Let E(θ) = Y − Ŷ(θ) , where

– E(θ) is the identification error,
– Y are the process output measurements , [y(0),y(T )...y(NT )], when the

inputs U = [u(0),u(T )...u(NT )] are applied to the process,
– Ŷ: are the simulated1 outputs [ŷ(0), ŷ(T )...ŷ(NT )], when the same inputs

U are applied to the model.

Denote ‖E(θ)‖pi
as the pi-norm of the identification error. Defining FPSi

consistent with a certain norm i ∈ A := [1, 2 . . . s] as

FPSi := {θ ∈ D : ‖E(θ)‖pi
≤ δi, δi > 0} , (2)

the FPS for all norms simultaneously is given by

FPS := {
⋂
A

FPSi} . (3)

Therefore the FPS will be conditioned by each FPSi and these ones by
the bounds δi . The selection of δi and pi-norms is based on a priori process
knowledge (e.g. tolerated model error) and noise characteristics. High values for

1 Model outputs are calculated by integrating equation (1). T is the sample time and
N is the measurement number.
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δi provide a more conservative FPSi whereas low ones could achieve an empty
FPSi. The FPS can be characterized by its contour given by

C(FPS) := {θ ∈ FPS : ∃i | ‖E(θ)‖pi
= δi} . (4)

The problem of obtaining C(FPS) is formulated as the minimization problem
of cost function

J(θ) :=

⎧⎨
⎩
∑

B Ji if B �= ∅
∏

A Ji if B = ∅
(5)

where2

B := {i ∈ A : ‖E(θ)‖pi
> δi} ; Ji(θ) =

∣∣‖E(θ)‖pi
− δi

∣∣ .
Since C(FPS) includes an infinite number of points, especially when

q > 1 for searching space D ∈ Rq, the exact C(FPS) calculation is impossi-
ble. Consequently a uniformly distributed sample of C(FPS), called C∗(FPS)
will be calculated.

3 Obtaining C∗(FPS) with ε−GA

A set of some global minima of (5) sufficiently distributed to characterize C(FPS)
is necessary to obtain C∗(FPS). That problem is similar to multiobjective op-
timization problems and Pareto Front localization. So, a specific Evolutionary
Algorithm (ε−GA) based on these ideas has been developed.

The ε−GA algorithm is composed of three populations (see Fig. 1).

1. P (t) is the main population with size NindP . It explores the searching space
during the algorithm iterations (t).

2. A(t) with size NindA is the archive where the solution of the optimization
problem is stored. NindA can be variable and it will never be higher than
Nind max A.

3. GA(t) is an auxiliary population which is used in the algorithm evolution.
Its population size, NindGA, is an even number.

In archive A(t), searching space D is divided by a hypergrid of width ε,
in order to force the algorithm to produce just one solution at the same box
(orthotope). This ensures the diversity in the archive, avoiding the convergence
in one unique point or area inside D. The pseudocode of the ε − GA algorithm
is given by

1. t := 0
2. A(t) := ∅

2 Notice that for all global minima θ̄ ∈ C(FPS), J(θ̄) = 0. If FPS = ∅, minima get a
J > 0 and it will be necessary either to increase the value of some δi or to modify
the model structure to achieve an FPS �= ∅.
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Fig. 1. ε − GA algorithm structure

3. P (t) := ini random(D)
4. eval(P (t))
5. A(t) := store(P (t), A(t))
6. while t < n iterations do
7. GA(t) := create(P (t), A(t))
8. eval(GA(t))
9. A(t + 1) := store(GA(t), A(t))

10. P (t + 1) := update(GA(t), P (t))
11. remove(A(t))
12. t := t + 1
13. end while

The main steps of the above algorithm are detailed:

Step 3. Population P (0) is initialized with NindP individuals, randomly cre-
ated inside the searching space D.

Step 4 and 8. Function eval calculates the value of the cost function (5) for
every individual from P (t) (step 4) and GA(t) (step 8).

Step 5 and 9. Function store analyzes whether every individual of P (t) (step
5) or A(t) (step 9) must be included in archive A(t). An individual θ1 is
included in archive A(t) if it satisfies the following conditions:
1. θ1 is in the same box that θ2 (inside the hypergrid), then θ1 replaces θ2

iff J(θ1) < J(θ2).
2. θ1 is in an empty box and NindA < Nind max A.
3. θ1 is in an empty box and NindA = Nind max A and ∃θ2 : J(θ1) <

J(θ2). In this case, when θ1 is included in A(t), the individual with the
highest cost function value is removed. Thus, the number of individuals
in A(t) is never higher than Nind max A.

Step 7. Function create creates GA(t) every iteration using the following pro-
cedure:
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1. Two individuals are randomly selected, θ1 from P (t), and θ2 from A(t).
2. θ1 and θ2 are crossed over by the linear recombination technique and

two new individuals θ
′
1 and θ

′
2 are created.

3. θ
′
1 and θ

′
2 are included in GA(t).

This procedure is repeated NindGA/2 times until GA(t) population size will
be reached.

Step 10. Function update updates P (t) with individuals from GA(t). Every
individual θGA from GA(t) is randomly compared with an individual θP

from P (t). If J(θGA) ≤ J(θ
′
P ) then θGA replaces θP , on the other hand, θP

is maintained.
Step 11. Function remove deletes individuals from A(t). Every individual θA

from A(t) is compared with the individual θ
′
P from P (t) with the highest

cost function value . If J(θA) > J(θ
′
P ) then θA is removed.

Finally, the solution C∗(FPS) are individuals from the final A(t).

4 Robust Identification – Experimental Results

Consider a scale furnace with a resistance placed inside. A fan continuously in-
troduces air from outside (air circulation) while energy is supplied by an actuator
controlled by voltage. Using a data acquisition system, resistance temperature
and air temperature are measured when voltage is applied to the process. Fig.
2 shows the input signal applied and the output signal measured for an experi-
ment of length N = 6000. These signals will be used for the robust identification
problem.

The dynamics of the resistance temperature can be modelled by

ẋ1(t) =
1

1000
(
k1u(t)2 − k2 ((x1(t) − Ta(t))

)
+ Offset

ẋ2(t) = (1/k3)(x1(t) − x2(t)) (6)
ŷ(t) = x2(t)

where

– ẋ1(t), ẋ2(t) are the model states,
– u(t) is the input voltage with rank 0 - 100 (%),
– ŷ(t) is the resistance temperature (oC) (model output),
– Ta(t) is the temperature inside furnace (oC),
– k1, k2, k3 are the model parameters (θ) to be identified,
– Offset is the correction to ensure zero steady-state error at a particular

operating point.

Two norms, p1 = �∞ (maximum model error) and p2 = �1 (average model
error) have been selected. Therefore the cost function (5) is formed by using

J1(θ) =
∣∣‖E(θ)‖∞ − δ1

∣∣ , J2(θ) =
∣∣‖E(θ)‖
1 − δ2

∣∣ . (7)
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Fig. 2. Output process y(t), input process u(t) and disturbance Ta(t). T = 1sec. (sam-

ple time), N = 6000 (experiment length)

The bounds δ1 and δ2 are selected considering that 3

β1 = min
θ∈D

‖E(θ)‖∞ = 1.8 oC , β2 = min
θ∈D

‖E(θ)‖
1 = 0.42N oC ,

thus, δ1 = 1.6 × β1 = 3 oC and δ2 = 1.6 × β2 = 0.7N oC.
The configuration parameters of the ε − GA algorithm are the following:

– Searching space 4D: k1∈ [0.05 . . . 0.12],k2 ∈ [3.0 . . . 8.0] and k3 ∈ [1.0 . . . 25.0].
– NindP = 8000, NindGA = 8, Nind max A = 200 and n iterations = 3000.
– ε = [1.75 · 10−3, 0.125, 0.60] is the hypergrid width to have 40 divisions per

dimension.

As a result, the solution C∗(FPS) obtained by ε−GA is shown in Fig. 3 and com-
pared with C(FPS) obtained by exhaustive search. The algorithm has achieved
an appropriate distribution of the C∗(FPS) around C(FPS)5. The number of
cost function J(θ) evaluations results in

n eval J = Nind P + n iteracions · Nind GA = 8000 + 3000 · 8 = 32000,

3 GAs has been applied to solve both optimization problems.
4 Limits of D have been selected based on:

θ∞ = arg minθ∈D ‖E(θ)‖∞ = [0.082, 5.15, 9.5] , θ�1 = arg minθ∈D ‖E(θ)‖�1

= [0.079, 4.95, 5.75] .
5 If a better characterizing of C(FPS) is required, the Nind max A parameter should

be increased.
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Fig. 3. C(FPS) (solid surface), C∗(FPS) (stars)

0 1000 2000 3000 4000 5000 6000
20

30

40

50

60

70

80

90

100

110

Time(sec.)

Fig. 4. Real output y(t) (line). ŷ(t) simulated outputs envelope produced for all indi-

vidual in C∗(FPS) (solid)
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which is exactly half of the computational cost if the cost function would be
evaluated in every grid box. Although the accuracy obtained with the ε − GA
algorithm is higher than the exhaustive search one. In addition, the mean value
of the cost function for the archive individuals is 0.0031 and the maximum 0.007.
Figure 4 shows that the real process output y(t) and the envelope of simulated
model outputs produced by all identified parameters in C∗(FPS).

5 Conclusions

A specific evolutionary algorithm ε−GA, inspired by Multiobjective Evolution-
ary Algorithms, has been developed to find the Feasible Parameter Set (FPS) of
a nonlinear model under parametric uncertainty. That robust identification prob-
lem is formulated by assuming, simultaneously, the existence of several bounds in
identification error. The solution of this problem is shown to be possible through
an approximation of the contour of FPS, C∗(FPS). The algorithm presents the
following features:

– By assuming parametric uncertainty, all kind of processes can be identified if
its outputs can be calculated by model simulation. Differentiability respect
to the unknown parameters is not necessary.

– Because more than one norm is taken into account at the same time, the
computational cost is reduced since different FPSi intersection is done im-
plicitly.

– Non-convex even disjoint C(FPS) can be calculated.
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Abstract. Prediction of time series is an important problem in many
areas of science and engineering. Extending the horizon of predictions
further to the future is the challenging and difficult task of long-term
prediction. In this paper, we investigate the problem of selecting non-
contiguous input variables for an autoregressive prediction model in order
to improve the prediction ability. We present an algorithm in the spirit
of backward selection which removes variables sequentially from the pre-
diction models based on the significance of the individual regressors. We
successfully test the algorithm with a non-linear system by selecting in-
puts with a linear model and finally train a non-linear predictor with the
selected variables on Santa Fe laser data set.

1 Introduction

Time series prediction plays an important role in analysis of many problems
encountered in science and engineering, for instance in climatology [1], ecology
[2], electricity production [3], and economics [4].

Long-term prediction is difficult and time-consuming, since it extends the hori-
zon of prediction further to the future, adding significant uncertainty in the pre-
diction task. We address the problem of input selection for the purpose of long-
term prediction. We present an algorithm for input variable selection in the spirit
of backward selection, in which variables are progressively removed from the au-
toregressive prediction model. The removal of variables is based on a median and
a standard deviation of parameter distributions sampled with a bootstrap resam-
pling procedure [5]. These statistics reflect the uncertainty for a variable to play
an important role in the prediction task. We apply the algorithm in a long-term
prediction setting, where input selection is performed for different k-step-ahead
prediction models. Whereas the input selection is accomplished with the linear
autoregressive models, the final model is a non-linear predictor used in the pre-
diction of a prominent non-linear benchmark (Santa Fe laser data set [6]).

2 Resampling Using Bootstrap

The bootstrap is a statistical resampling method represented by Efron et al.
in [5]. The idea of bootstrap is to sample original data and to estimate some
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statistics from these resampled sets. No assumptions are made about the forms
of probability distributions in the bootstrap method. The statistic of interest and
its distribution are computed by resampling the original data with replacement.

In this article the bootstrap is applied in context of the linear autoregressive
process AR(l). It can be represented by the following equation

yt =
l∑

i=1

αiyt−i + εt . (1)

It is assumed that εt is a sequence of independently normally distributed random
noise with zero mean and common finite variance. Let us assume that N + l
observations are available. Equation (1) can be written in the matrix form as
follows

y = Y α + ε , (2)

where y = (yl+1, . . . , yl+N )T , ε = (εl+1, . . . , εl+N )T , α = (α1, . . . , αl)T and

Y (N×l) =

⎡
⎢⎢⎢⎣

yl yl−1 . . . y1

yl+1 yl . . . y2

...
...

. . .
...

yl+N−1 yl+N−2 . . . yN

⎤
⎥⎥⎥⎦ . (3)

The parameters α are estimated by minimizing the mean square error (MSE),
i.e., (1/N)‖y − ŷ‖2 = (1/N)‖y − Y α̂‖2 where ‖.‖ is the L2-norm. The least
squares estimates of parameters are α̂ = (Y T Y )−1Y T y. Here we assume that
the data are normalized to zero mean and unit variance and, thus there is no
need for the constant term in Equations (1) and (2). Due to the normalization
the upper limit for the MSE is 1, which is obtained by the mean predictor.

Bootstrapping the regression model can be done in two different ways and
both could also be applied in this case. The methods are bootstrapping residuals
and bootstrapping pairs [5]. The regressors i.e. the columns of the design matrix
Y are treated as fixed quantities in the bootstrapping residuals approach. That
assumption is strong and it can fail even if Equation (2) for the AR(l) process is
correct. In the bootstrapping pairs approach weaker assumptions about validity
of Equation (2) are made.

In the bootstrapping pairs, P̂ is assumed to be an empirical distribution
of the observed data pairs (yl+t; yl+t−1, yl+t−2, . . . , yt) = (yl+t;Y l+t), where
t = 1, . . . , N and yl+t and Y l+t = [yl+t−1, yl+t−2, . . . , yt] are values of the target
and the regressors, respectively. In other words, yl+t is one element of the vector
y and Y l+t is the corresponding row from the matrix Y . P̂ puts probability
mass of 1/N on each pair (yl+t;Y l+t). A bootstrap sample is a random sample
of size N drawn with replacement from the population of N pairs (yl+t;Y l+t).
B independent bootstrap samples (y∗j ,Y ∗j), j = 1, . . . , B, of size N are drawn
with replacement from the distribution P̂ . Therefore, some data pairs from the
original data (y,Y ) can appear zero times or once or twice etc. in the bootstrap
sample (y∗j ,Y ∗j).
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The bootstrap replications α̂∗j of the estimates of parameters α̂ are α̂∗j =
(Y ∗jT

Y ∗j)−1Y ∗jT
y∗j . B bootstrap replications α̂∗j

i form a distribution of the
estimates of parameters α̂i. This distribution of the bootstrap replications can
be used in an evaluation of the significance of parameters. In this paper, the
evaluation is based on medians and standard deviations of the distributions.

3 Input Selection

The usual task is to define the order l in Equation (1) and use all the inputs
yt−i, i = 1, . . . , l in the prediction of yt. This kind of solution is referred to
ordinary least squares (OLS) solution later on. The OLS solution is not always
satisfactory. The OLS estimates have low bias but a large variance, which may
diminish the prediction accuracy. The prediction accuracy can sometimes be
improved by shrinking some estimates of parameters toward zero or setting them
exactly to zero [7].

In this paper, we present a methodology to select a subset of inputs that
have the strongest explanatory power in the AR process. This also makes the
interpretation of the dependencies in time series easier.

First, the maximum number of inputs have to be set, i.e., to define the value
of l. It can be selected to be a relatively large to ensure that the final order
of the estimated AR process can be large enough. The procedure continues by
estimating AR process using all the inputs yt−i, i = 1, . . . , l that is calculating
the OLS estimates of parameters α̂i. The distributions of parameters α̂i and the
standard deviation s of the training MSE are estimated using the bootstrapping
pairs method. In addition, the validation error is calculated using the parameters
α̂i. The validation error is the MSE for the validation set, i.e., for data that are
not used in the training phase.

The next step is to delete the least significant regressor. The median value mi

and the standard deviation σi of parameter α̂i are calculated from the bootstrap
replications α̂∗j

i . The ratio |mi|/σi is used as a measure of significance of the
corresponding parameter. The parameter or regressor with the smallest ratio is
pruned from the set of possible inputs. After that, the bootstrapping using the
remaining inputs and pruning is repeated as long as there are variables left in
the set of inputs.

The quantity di = (
∑B

j=1(mi − α̂∗j
i )2)

1
2 /(B − 1) could be used instead of the

standard deviation as a measure of the width of the distribution of the estimates
of parameters. Another alternative is to estimate the width of the distribution
using the difference ∆i = α̂j∗

i,high − α̂j∗
i,low , where α̂j∗

i,high is B · (1 − q)th and
α̂j∗

i,low is B · qth value in the ordered list of the B replications of α̂∗j
i and q could

be for instance 0.165.
The Algorithm 1 produces sequentially l different models. The computational

complexity of the proposed algorithm is O(l) whereas a backward selection type
of algorithm would be of complexity O(l2) and the full, exhaustive (brute-force)
search of all possible variable configurations would take O(2l). The purpose is to
select a model which is as sparse as possible in the sense that it includes only a
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Algorithm 1 Algorithm for input selection
1: Let L be the set of indices of the inputs. In the beginning, L includes all the indices

i, yt−i, i = 1, . . . , l.
2: if i ∈ L estimate B bootstrap replications α̂j∗

i , j = 1, . . . B of the parameters α̂i by
minimizing MSE using the training data, otherwise set α̂i = 0, i /∈ L

3: Compute the mean and the standard deviation sL of the bootstrap replications of
the training MSEs.

4: Estimate parameters α̂i using the training data and compute the validation error
Ev using the estimated model.

5: Compute the median mi and the standard deviation σi for all the estimates α̂i, i ∈
L from the bootstrap replications α̂j∗

i .
6: Compute the ratio |mi|/σi, ∀i ∈ L and delete the index with the smallest ratio

from the set L.
7: if L �= ∅ go to step 2, otherwise go to step 8
8: Find the minimum validation error Emin

v . Sum Emin
v and corresponding smin

L . Find
the smallest set of indices Lf i.e. the least complex model whose validation error
is under the previous sum. The inputs corresponding to the indices in the set Lf

are included to the final model.

few input variables. Goals of this approach are to avoid the curse of dimension-
ality, over-parameterization, and overfitting for the non-linear modeling phase.
On the other hand, the prediction accuracy should not decrease significantly.
The initial model is selected based on the minimum validation error Emin

v . The
corresponding standard deviation smin of training error is also used as the esti-
mate of standard deviation of Emin

v . The final model is the least complex model
whose validation error is under the sum Emin

v + smin. The procedure is listed
step by step in detail in Algorithm 1.

The ratio |mi|/σi can be seen as a Z-score test statistic to test the hypothe-
sis [8] that a parameter α̂i = 0. The statistics are estimated using bootstrap, so
there are not made any assumptions about the probability distributions of pa-
rameters. This applies especially when the median and the difference ∆i would
be used. We use the median instead of the mean as the location parameter of
the distribution, since it is a reasonable estimate for skewed distributions, and
distributions with outliers. Furthermore, median is the same as the mean, if the
distribution is symmetric. The standard deviation and deviation based on the
median are reasonable measures for the symmetric distributions, whereas the
difference ∆i describes better the width of an asymmetric distribution. In the
case of a symmetric distribution, for instance a Gaussian distribution, σi, di,
and ∆i produce equal estimates of the width of the distributions.

In addition, the ratio can be considered as a signal-to-noise ratio. If the ratio
is small then the bootstrap replications of parameters vary strongly around the
median and the importance of the corresponding input in the prediction is in-
significant. The idea of proposed algorithm is similar to the traditional backward
stepwise selection, which sequentially deletes inputs based on the F -statistics [8].

Algorithm 1 can also be applied to long-term prediction. In that case the
target is yt+k, k > 0 in the Equation (1).
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4 Long-Term Prediction

In the literature, two techniques are used for long-term prediction [6]. In recur-
rent prediction — the first of the two approaches — only one model is built,
that is, ŷt = f(yt−1, . . . , yt−l). The same model is used repeatedly to obtain
the long-term prediction. For instance, for the two-step-prediction the model
ŷt+1 = f(ŷt, yt−1, . . . , yt−l+1) is used [9]. The main advantage of this method
is that only one model has to be built, the disadvantage being that the qual-
ity of predictions is rapidly decreasing with respect to the increasing horizon of
prediction. Therefore, in the context of long-term prediction, we focus on the
models of the form ŷt+k = fk(yt−1, . . . , yt−l), which is known as the direct pre-
dictor. Because the computational load of this method, i.e., building different
models up to the maximum prediction horizon K, we need a fast method for
input selection. Moreover, we want to select inputs in a non-contiguous manner,
for instance, allowing for the inputs such as ŷt+k = fk(yt−1, yt−3, yt−8, yt−12).

5 Experiments on the Santa Fe Laser Data Set

The data set used in the experiments is the Santa Fe laser data set described
in [6]. The training set size Ntr = 1000 is selected to be the same as in the
Santa Fe time-series competition [6] (see Figure 1). The validation set used for
the selection of the model-orders is chosen to be large (Nval = 4546) in order to
perform well on structure selection, and a large testing set (Ntest = 4547) should
ensure realistic statistical estimate of the performances of the results.

0 100 200 300 400 500 600 700 800 900 1000

0

2

4

t

y t

Fig. 1. The first thousand samples Ntr from Santa Fe laser time series

5.1 Linear Models and Input Selection

Input selection Algorithm 1 has been used to yield input variables with a max-
imum number of inputs l = 20 and the maximum prediction horizon being
K = 19 corresponding to 20 models. The number of bootstrap resamples has
been chosen to be B = 1000, which is considered to be large enough for reliably
estimating the distribution of the parameters in the linear model.

Figure 2 (a) presents an example of input selection in the case of two-step-
ahead prediction (k = +1). In this case, Algorithm 1 selected the model with
6 inputs. Compared to the model with 18 inputs with the minimum validation
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ror (dashed line), vertical line marks the minimum validation error (18 inputs) and a

standard deviation of training error, the final model is chosen to be the least complex

model (6 inputs) within the standard error (dash-dotted line). (right) number of se-
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Fig. 3. The final models. The targets yt+k, k = 0, +1, . . . , +19 are in the horizontal

axis and the possible regressors yt+l, l = −1,−2, . . . ,−20 are in the vertical axis. The

selected inputs are denoted by black rectangles in each column

error the number of parameters has decreased considerably (by 12). At the same
time the validation error has only increased less than one standard deviation
of the minimum validation error. In Figure 2 (b), the number of inputs for
each 20 models according to the minimum validation error and the final number
of selected inputs are shown. The reduction in the number of parameters is
on average 12. In Figure 3, the selected inputs for all long-term models are
visualized. Parsimonious models are selected based on the proposed algorithm,
on average 5 inputs are selected. For instance, the 12-step-ahead model has 5
inputs, marked by 5 black rectangles on the vertical axis at column k = +11
(ŷt+11 = f(yt−1, yt−4, yt−5, yt−9, yt−13)).

The final models were obtained using the median mi and the standard devi-
ation σi in the input selection. The final models were exactly same as in Figure
3, when the input selection was repeated using di and ∆i instead of σi. This
might indicate that the distributions are approximately normal distributions.
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Fig. 5. MSE for MLP networks (solid line), linear models (dash-dotted line) and recur-

rent prediction (dashed line) for both validation (left panel) and test sets (right panel),

respectively

5.2 Non-linear, Non-contiguous Regressor Model

Based on the results from the previous section, we train a non-linear model. Here,
we have used a multi-layer perceptron (MLP) network [10]. The output of the
network is ŷt = µ +

∑p
j=1 βj tanh

(∑l
i=1 wjiyt−i + bj

)
, where p is the number

of neurons in the hidden layer. The network is trained using the Levenberg-
Marquardt optimization method by back-propagating the error gradients [10].
Hundred different initializations are used in the training of the models in order
to avoid local minima of the training error, and the best model is chosen (for
each model-order). The minimum training error (among different initializations)
is a monotonically decreasing function with respect to p. Validation error is
evaluated for the best non-linear model to choose the final number of neurons
p. The maximum number of tested neurons was 20. An example is shown in
Figure 4 (a). The selected number of neurons p, which is less than 20 in each
network, and the corresponding number of parameters in each 20 MLP networks
are shown in Figure 4 (b). The maximum number of parameters in the non-linear
models is 109. Because of the parsimony of the selected input set, it is possible
to train the model from a small training sample such as ours (Ntr = 1000).
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Figure 5 illustrates the differences between the recurrent and direct prediction
for the validation (left panel) and the test (right panel) set up to the maximum
prediction horizon K. The direct non-linear predictions (solid line) clearly out-
perform the recurrent approach (dashed line). The direct predictions calculated
using the linear models (dash-dotted line) are also better than the recurrent
non-linear predictions in the long-term.

6 Conclusions

The proposed algorithm selected parsimonious sets of inputs for all long-term
prediction models. The non-linear models built using the corresponding inputs
led to good prediction performance. Direct long-term prediction is superior to
recurrent prediction for the whole prediction horizon. The main advantage of the
proposed approach is that it combines fast input selection with accurate but com-
putationally demanding non-linear prediction. Linear complexity of the input
selection makes this approach viable for input selection in large-scale problems.
Further research include experiments with different data sets and comparisons
to different input selection methodologies, e.g. the use of mutual information, to
achieve accurate comprehension of the performance of the proposed algorithm.
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Abstract. This paper presents a comparison between direct and recursive pre-
diction strategies. In order to perform the input selection, an approach based on 
mutual information is used. The mutual information is computed between all 
the possible input sets and the outputs. Least Squares Support Vector Machines 
are used as non-linear models to avoid local minima problems. Results are illus-
trated on the Poland electricity load benchmark and they show the superiority of 
the direct prediction strategy. 

Keywords: Time Series Prediction, Mutual Information, Direct Prediction, Re-
cursive Prediction, Least Squares Support Vector Machines and Prediction 
Strategy. 

1   Introduction 

Prediction is an important part of decision making and planning process in engineer-
ing, business, medicine and many other application domains. Long-term prediction is 
typically faced with growing uncertainties arising from various sources, for instance, 
accumulation of errors and lack of information [1]. In long-term prediction, when 
predicting multiple steps ahead, we have several choices. In this work, two variants of 
prediction approaches, namely, direct and recursive prediction, using Least Squares 
Support Vector Machines (LS-SVM) [17], are studied and compared. Meanwhile, to 
improve the efficiency of prediction, mutual information (MI) is used to select the 
inputs [12]. Based on the experimental results, a combination of input selection and 
forecast strategy which can give comparatively accurate long-term time series predic-
tion will be presented. 

The paper is organized as follows: in section 2, mutual information is introduced. 
Time series prediction is explained in section 3. In section 4, LS-SVM is defined. In 
section 5 we present the experimental results and in section 6 conclusions and further 
works are presented. 
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2   Mutual Information for Input Selection 

2.1   Input Selection  

Input selection is one of the most important issues in machines learning especially 
when the number of observations is relatively small compared to the number of  
inputs. In practice, there is no dataset with infinite number of data points and further-
more, the necessary size of the dataset increases dramatically with the number of 
observations (curse of dimensionality). To circumvent this, one should first select the 
best inputs or regressors in the sense that they contain the necessary information. 
Then it would be possible to capture and reconstruct the underlying relationship be-
tween input-output data pairs. Within this respect, some model dependent approaches 
have been proposed [2-6].  

Some of them deal with the problem of feature selection as a generalization error 
estimation problem. In this methodology, the set of inputs that minimize the gener-
alization error is selected using Leave-one-out, Bootstrap or other resampling tech-
niques. These approaches are very time consuming and may take several weeks. 
However, there are model independent approaches [7-11] which select a priori in-
puts based only on the dataset, as presented in this paper. So the computational load 
would be less than in model dependent cases.  Model independent approaches select 
a set of inputs by optimizing a criterion over different combinations of inputs. The 
criterion computes the dependencies between each combination of inputs and the 
corresponding output using predictability, correlation, mutual information or other 
statistics.   

In this paper, the mutual information is used as a criterion to select the best input 
variables (from a set of possible variables) for long-term prediction purpose.  

2.2   Mutual Information 

The mutual information (MI) between two variables, let say X and Y, is the amount of 
information obtained from X in presence of Y, and vice versa. MI can be used for 
evaluating the dependencies between random variables, and has been applied for 
Feature Selection and Blind Source Separation [12].  

Let us consider two random variables: the MI between them would be  

),()()(),( YXHYHXHYXI −+=  , (1) 

where H(.) computes the Shannon’s entropy. In the continuous entropy case, equation 
(1) leads to complicated integrations, so some approaches have been proposed to 
evaluate them numerically. In this paper, a recent estimator based on k-Nearest 
Neighbors statistics is used [13]. The novelty of this approach consists in its ability to 
estimate the MI between two variables of any dimensional spaces. The basic idea is to 
estimate H(.) from the average distance to the k-Nearest Neighbors (over all xi). MI is 
derived from equation (1) and is estimated as  
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)()()(/1)(),( NnnkkYXI yx ψ+ψ+ψ−−ψ=  , (2) 

with N the size of dataset and (x) the digamma function, 

dxxdxx /)(1)()( Γ−−Γ=ψ  , (3) 

)1(ψ  −0.5772156 and  

[ ]=
−>=< N

i iEN 1
1 )...(...  . (4) 

nx(i), ny(i) are the numbers of points in the region ||xi − xj||  εx(i)/2 and ||yi − yj|| 
 εy(i)/2. ε(i)/2 is the distance from zi to its k-Nearest Neighbors. εx(i)/2 and εy(i)/2 are 

the projections of ε(i)/2 [14]. k is set to be 6, as suggested in [14]. Software for calcu-
lating the MI based on this method can be downloaded from [15]. 

3   Time Series Prediction  

Basically, time series prediction can be considered as a modeling problem [16]:  a 
model is built between the input and the output. Then, it is used to predict the future 
values based on the previous values. In this paper we use two different strategies to 
perform the long-term prediction, which are direct and recursive forecasts. 

3.1   Direct Forecast 

In order to predict the values of a time series, M +1 different models are built,  

))(),...,2(),1(()(ˆ ntytytyfmty m −−−=+  , (5) 

with m = 0,1,…M, M is the maximum horizon of prediction. The input variables on 
the right-hand part of (5) form the regressor, where n is the regressor size.  

3.2   Recursive Forecast 

Alternatively, model can be constructed by first making one step ahead prediction,  

))(),...,2(),1(()(ˆ ntytytyfty −−−=  , (6) 

and then predict the next value using the same model,  

))1(),...,2(),1(),(ˆ()1(ˆ +−−−=+ ntytytytyfty  . (7) 

In equation (7), the predicted value of )(ty is used instead of the value itself, which is 

unknown. Then, )1(ˆ +ty  to )(ˆ Mty +  are predicted recursively. 
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4   Least Squares Support Vector Machines 

LS-SVM are regularized supervised approximators. Comparing with simple SVM, 
Only linear equation is needed to solve the results, which avoids the local minima in 
SVM. A short summary of the LS-SVM is given here; more details are given in [17]. 

The LS-SVM model [18-20] is defined in its primal weight space by,  

( ) by T +ϕω= xˆ  , (8) 

where ϕ(x) is a function which maps the input space into a higher dimensional feature 
space, x is the N-dimensional vector of inputs xi, and ω and b the parameters of the 
model. In Least Squares Support Vector Machines for function estimation, the follow-
ing optimization problem is formulated, 

( )
=ω

γ+ωω=ω
N

i
i

T

eb
eeJ

1

2

,, 2

1

2

1
,min  , (9) 

subject to the equality constraints, 

( ) Nieby iii T ,,1, =++ϕω= x  . (10) 

In equation (10), the superscript i refers to the number of a sample. Solving this op-
timization problem in dual space leads to finding the i and b coefficients in the fol-
lowing solution, 

=
+α=

N

i
ii bKh

1

)()( xx,x  . (11) 

Function (x, xi) is the kernel defined as the dot product between the ϕ(x)T and 
ϕ(x) mappings. The meta-parameters of the LS-SVM model are σ, width of the 
Gaussian kernels (taken to be identical for all kernels), and , regularization factor.  
LS-SVM can be viewed as a form of parametric ridge regression in the primal 
space. Training methods for the estimation of the  and b parameters can be found 
in [17].  

5   Experimental Results  

The dataset used in this experiment is a benchmark in the field of time series predic-
tion: the Poland Electricity Dataset [21]. It represents the daily electricity load of 
Poland during 2500 days in the 90s. 

The first two thirds of the whole dataset is used for training, and the remaining data 
for testing. To apply the prediction model in equation (5), we set the maximum time 
horizon M = 6 and the regressor size n = 8.  

First, MI presented in section 2.2 is used to select the best input variables. All the 
2n-1 combinations of inputs are tested. Then, the one that gives the maximum MI is 
selected. The selection results for direct forecast are:  
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Table 1. Input selection results of MI 

 y(t) y(t+1) y(t+2) y(t+3) y(t+4) y(t+5) y(t+6) 
y(t-1) X X X X X X X 
y(t-2) X X X X X X X 
y(t-3)   X  X X  
y(t-4)  X X X    
y(t-5)  X X     
y(t-6) X   X    
y(t-7)    X    
y(t-8)       X 

 

For example, the 4th column means that,  

))7(),6(),4(),2(),1(()3(ˆ 3 −−−−−=+ tytytytytyfty  . (12) 

Then the LS-SVM is used to make the prediction. To select the optimal parameters 
model selection method should be used here, in the experiment, leave-one-out is uses. 
The errors for the leave-one-out procedure of every pairs of γ and σ are listed. Then 
the area around the minima is zoomed and searched until the hyper parameters are 
found. For recursive prediction, only one function is used, so one pair of γ and σ is 
needed, which is (33, 0.1). For direct prediction, seven pairs of parameters are re-
quired. They are (33, 0.1), (40, 0.1), (27, 0.1), (27, 0.1), (27, 0.1), (22, 0.1) and (27, 
0.1). The mean square error values of the results are listed in the table below: 

Table 2. MSE values of direct and recursive prediction 

 y(t) y(t+1) y(t+2) y(t+3) y(t+4) y(t+5) y(t+6) 
direct 0,00154 0,00186 0,00178 0,00195 0,00276 0,00260 0,00260 

recursive 0,00154 0,00362 0,00486 0,00644 0,00715 0,00708 0,00713 
 

As illustration, the MSE values are presented also in Fig. 1:  

 

Fig. 1. Prediction results comparison: dashed line corresponds to recursive prediction and solid 
line corresponds to direct prediction 
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Fig. 2. )(ˆ ty (represented as yh) and y(t) for each horizon of prediction 

 

Fig. 3. An example of prediction: )(ˆ ty is represented in dotted line and )(ty is represented in 

solid line 

In Fig. 1, the horizontal axis represents i in y(t+i), which varies from 0 to 6. The 
vertical axis represents the corresponding MSE values. The dashed line shows MSE 
values for recursive prediction and the solid line shows MSE values for direct predic-
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tion. From this figure, it can be seen that as i increases, the performances of the direct 
predictions are better than that of the recursive ones. 

To illustrate the prediction results, the predicted values by direct prediction are 
plotted against the real data in Fig. 2. The more the points are concentrated around a 
line, the better the predictions are. It can be seen that when i is large, the distribution 
of the points diverts from a line, because the prediction becomes more difficult. 

In Fig. 3, one example of the prediction results is given.  The dashed line repre-
sents seven real values from the Poland dataset. The solid line is the estimation using 
direct prediction. The figure shows that the predicted values and the real values are 
very close.  

The same methodology has been applied to other benchmark and similar results 
have been obtained. 

6   Conclusion  

In this paper, we compared two long-term prediction strategies: direct forecast and 
recursive forecast. MI is used to perform the input selection for both strategies: MI 
works as a criterion to estimate the dependencies between each combination of inputs 
and the corresponding output. Though 2n - 1 combinations must be calculated, it is 
fast compared to other input selection methods. The results show that this MI based 
method can provide a good input selection. 

Comparing both long-term prediction strategies, direct prediction gives better per-
formances than recursive prediction. The former strategy requires multiple models. 
Nevertheless, due to the simplicity of the MI input selection method, direct prediction 
strategy can be used in practice. Thus, the combination of direct prediction and MI 
input selection can be considered as an efficient approach for a long-term time series 
prediction.  
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Abstract. Based on the Nyström approximation and the primal-dual
formulation of Least Squares Support Vector Machines (LS-SVM), it
becomes possible to apply a nonlinear model to a large scale regression
problem. This is done by using a sparse approximation of the nonlinear
mapping induced by the kernel matrix, with an active selection of support
vectors based on quadratic Renyi entropy criteria. The methodology is
applied to the case of load forecasting as an example of a real-life large
scale problem in industry, for the case of 24-hours ahead predictions. The
results are reported for different number of initial support vectors, which
cover between 1% and 4% of the entire sample, with satisfactory results.

1 Introduction

Computing forecasts of a time series requires the estimation of a good initial
model. The more information is included in the model, the better the perfor-
mance of the forecasts, leading to good performance beyond the first step out of
sample. Kernel based estimation techniques, such as Support Vector Machines
(SVMs) and Least Squares Support Vector Machines (LS-SVMs) have shown
to be powerful nonlinear regression methods [16, 1, 17]. Both techniques build a
linear model in the so-called feature space where the inputs have been trans-
formed by means of a (possibly infinite dimensional) nonlinear mapping ϕ. This
is converted to the dual space by means of the Mercer’s theorem and the use
of a positive definite kernel, without computing explicitly the mapping ϕ. The
SVM model solves a quadratic programming problem in dual space, obtaining a
sparse solution. The LS-SVM formulation, on the other hand, solves a linear sys-
tem in dual space under a least-squares cost function [15], where the sparseness
property can be obtained by sequentially pruning the support value spectrum.

Although the LS-SVM system is solved on its dual form, the problem can
be formulated directly in primal space by means of an explicit approximation
for the nonlinear mapping ϕ. Furthermore, it is possible to compute a sparse
approximation by using only a subsample of selected Support Vectors from the
dataset in order to estimate a large-scale nonlinear regression problem in primal
space, making use of all possible information from the available data sample.
Working in primal space gives enough flexibility to apply different techniques
from statistics or the traditional system identification framework [10].

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 1018–1026, 2005.

c© Springer-Verlag Berlin Heidelberg 2005



Load Forecasting Using Fixed-Size LS-SVM 1019

In this paper we apply LS-SVM in primal space to the problem of short-term
load forecasting, which is an important area of quantitative research [13, 4], in
order to build a model that can be used for 24-hours ahead prediction. Usually
a load series shows important seasonal patterns (yearly, weekly, intra-daily pat-
terns) that need to be taken into account in the modelling strategy [9]. In our
case, the data series comes from a local low voltage substation in Belgium and it
contains 28,000 hourly values. This paper is structured as follows. The descrip-
tion of the LS-SVM is presented in Section 2. In Section 3, the methodology for
working in primal space is described, with the particular application to a large
scale problem. Section 4 presents the problem and describes the setting for the
estimation, and the results are reported in Section 5.

2 Function Estimation Using LS-SVM

The standard framework for LS-SVM estimation is based on a primal-dual for-
mulation. Given the dataset {xi, yi}N

i=1 the goal is to estimate a model of the
form

yi = wT ϕ(xi) + b + ei (1)

where x ∈ R
n, y ∈ R and ϕ(·) : R

n → R
nh is a mapping to a high dimensional

(and possibly infinite dimensional) feature space. The following optimization
problem is formulated:

min
w,b,e

1
2
wT w + γ

1
2

N∑
i=1

e2
i (2)

s.t. yi = wT ϕ(xi) + b + ei, i = 1, . . . , N.

With the application of the Mercer’s theorem for the kernel matrix Ω as Ωij =
K(xi,xj) = ϕ(xi)T ϕ(xj), i, j = 1, . . . , N it is not required to compute explicitly
the nonlinear mapping ϕ(·) as this is done implicitly through the use of positive
definite kernel functions K. For K(xi,xj) there are usually the following choices:
K(xi,xj) = xT

i xj (linear kernel); K(xi,xj) = (xT
i xj + c)d (polynomial of

degree d, with c a tuning parameter); K(xi,xj) = exp(−||xi −xj ||22/σ2) (radial
basis function, RBF), where σ is a tuning parameter. From the Lagrangian
L(w, b, e;α) = 1

2 wT w + γ 1
2

∑N
i=1 e2

i −
∑N

i=1 αi(wT ϕ(xi) + b + ei − yi), where
αi ∈ R are the Lagrange multipliers, the conditions for optimality are given
by ∂L

∂w = 0 → w =
∑N

i=1 αiϕ(xi), ∂L
∂b = 0 →

∑N
i=1 αi = 0, ∂L

∂ei
= 0 → αi =

γiei, i = 1, . . . , N , and ∂L
∂αi

= 0 → yi = wT ϕ(xi) + b + ei. By elimination of
w and ei, the following linear system is obtained:

[
0 1T

1 Ω + γ−1I

] [
b
α

]
=
[

0
y

]
, (3)
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with y = [y1, . . . , yN ]T ,α = [α1, . . . , αN ]T . The resulting LS-SVM model in dual
space becomes

y(x) =
N∑

i=1

αiK(x,xi) + b. (4)

Usually the training of the LS-SVM model involves an optimal selection of the
kernel parameters and the regularization parameter, which can be done using
e.g. cross-validation techniques [8] or Bayesian inference [11].

3 Estimation in Primal Space

In order to work in the primal space, it is required to compute an explicit ap-
proximation of the nonlinear mapping ϕ. Then, the final estimation of the model
can be done using different techniques.

3.1 Nonlinear Approximation in Primal Space

Explicit expressions for ϕ can be obtained by means of an eigenvalue decompo-
sition of the kernel matrix Ω with entries K(xi,xj). Given the integral equation∫

K(x,xj)φi(x)p(x)dx = λiφi(x), with solutions λi and φi for a variable x with
probability density p(x), we can write

ϕ = [
√

λ1φ1,
√

λ2φ2, . . . ,
√

λnh
φnh

]. (5)

Given the dataset {xi, yi}N
i=1, it is possible to approximate the integral by a sam-

ple average. This will lead to the eigenvalue problem (Nyström approximation
[18])

1
N

N∑
k=1

K(xk,xj)ui(xk) = λ
(s)
i ui(xj), (6)

where the eigenvalues λi and eigenfunctions φi from the continuous problem can
be approximated by the sample eigenvalues λ

(s)
i and eigenvectors ui as

λ̂i =
1
N

λ
(s)
i , φ̂i =

√
Nui. (7)

Based on this approximation, it is possible to compute the eigendecomposition of
the kernel matrix Ω and use its eigenvalues and eigenvectors to compute the ith

required component of ϕ̂(x) simply by applying (5) if x ∈ {xi}N
i=1 (is a training

point), or for any point x(v) by means of

ϕ̂i(x
(v)) ∝ 1√

λ
(s)
i

N∑
k=1

ukiK(xk,x(v)). (8)

This finite dimensional approximation ϕ̂(x) can be used in the primal problem
(2) to estimate w and b.
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3.2 Sparseness and Large Scale Problems

It is important to emphasize that the use of the entire training sample of size N
to compute the approximation of ϕ will yield at most N components, each one
of which can be computed by (7) for all x ∈ {xi}N

i=1. However, if we have
a large scale problem, it has been motivated [16] to use of a subsample of
M � N datapoints to compute the ϕ̂. In this case, up to M components will
be computed. External criteria such as entropy maximization can be applied for
an optimal selection of the subsample: given a fixed-size M , the aim is to select
the support vectors that maximize the quadratic Renyi entropy [7]

HR = − log
∫

p(x)2dx, (9)

which can be approximated by using
∫

p̂(x)2dx = 1
M2 1T Ω1. The use of this

active selection procedure can be important for large scale problems, as it is
related to the underlying density distribution of the sample. In this sense, the
optimality of this selection is related to the final accuracy that can be obtained
in the modeling exercise.

3.3 Estimation Technique

Once the nonlinear mapping has been computed using a sparse approximation
based on a subsample, the model has to be estimated in primal space. Let us
denote by zk = ϕ̂(xk) for k = 1, . . . N and consider the new zk ∈ R

m as the
observations for the linear regression

y = Zβ + b1 + e (10)

with e = [e1, e2, . . . , eN ]T ∈ R
N×1 y = [y1, y2, . . . , yN ]T ∈ R

N×1 and Z =
[zT

1 ;zT
2 ; zT

3 ; . . . ;zT
N ] ∈ R

N×m. The quantity m is the number of components of
ϕ̂ that are going to be considered in the estimation [5], with m ≤ M . For ease
of notation, consider the matrix of full regressors ZF = [1Z], and the vector of
full coefficients βF = [b,β]T . The regression (10) can be written as:

y = ZF βF + e. (11)

In this paper, we estimate the above equation by Ordinary Least Squares
(OLS), where only m < M components of ϕ̂ are used, and they are selected by
looking at the eigenspectrum of the M × M kernel matrix Ω [3].

4 Practical Example: Short-Term Load Forecasting

In this section the practical application is described, in term of the problem
context, methodological issues and results.
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4.1 Description and Objective

The main goal in load forecasting to estimate a model that can capture all the
dynamics between possible explanatory variables for the load, in order to produce
forecasts from one hour ahead, up to one day ahead [12]. In the literature there
is a broad consensus about important explanatory variables: past values of the
load, weather information, calendar information, etc. For further details, the
interested reader is referred to [4, 5]. Our objective is to show the application of
the large-scale methodology described in the previous section, which is a practical
approach to exploit the information contained in a large load time series.

4.2 Data and Methodology

The data consists of a 3.5-years load series from a particular substation in Bel-
gium, thuis containing more than 28,000 datapoints. We define our training set
to consist of 26,000 datapoints. The model formulation to be tested is a non-
linear ARX specification, with the following structure: an autoregressive part of
164 lagged load values, covering a complete week; temperature-related variables
measuring the effect of temperature on cooling and heating requirements [2];
and calendar information in the form of dummy variables for month of the year,
day of the week and hour of the day [4]. This leads to a set of 211 explanatory
variables. The procedure for modelling with the large-scale fixed-size LS-SVM
methodology can be described in the following steps:

1. Normalize inputs and outputs to have zero mean and unit variance
2. Select an initial subsample of size M

3. Build the M -size kernel matrix and compute its eigendecomposition
4. Build the nonlinear mapping approximation for the rest of the data
5. Estimate a linear regression in primal space
6. Estimate the nonlinear mapping approximation for a test data
7. Use the regression estimates with the test data nonlinear mapping to produce

the out of sample forecast

In this example, tuning of the hyperparameter σ is performed by 10 fold cross-
validation (CV) in the training sample. We keep the value of σ that minimizes the
out-of-sample mean squared error (MSE). To illustrate the effect of increasing
sizes of M , the above methodology is tested for sizes of M = 200, 400, 600, 800
and 1000 support vectors, selected with the quadratic entropy criterion. It is
important to emphasize that we are using between 1% and 4% of the available
dataset to build the nonlinear mapping for the entire sample. Values of M larger
than 1000 are possible, as the only constraint in this approach is the available
computational resources at hand.

To compare the results of the nonlinear models, we estimate a linear regres-
sion with the same set of initial inputs. After estimation, the inputs that are not
statistically significant are removed on a stepwise selection process based on the
t−statistics, yielding a final set of 153 regressors.



Load Forecasting Using Fixed-Size LS-SVM 1023

5 Results

In this section the results of the fixed-size LS-SVM methodology applied to the
load modelling problem are reported, for the training procedure, the selection of
support vectors and the out of sample performance.

5.1 Training Performance

The results for the computed MSE in a crossvalidation basis, and the equivalent
result for the linear model, are shown in Table 1 using the selected σ. It is
also reported the number of support vectors m that are used for building the
nonlinear mapping on each case.

5.2 Support Vector Selection

It is possible to compare the performances for a model estimated with a random
selection of support vectors awith respect to the same model estimated with
a quadratic Renyi entropy selection starting from the same random selection.
Both models can be compared in terms of performance on the same test set.
Figure 1 show the comparison for the results after 20 random initial selections,
in which the model is either estimated after quadratic entropy selection taking
the random selection as the initial starting point (Case I), or it is estimated
directly (Case II). In all tests it has been used M = 200. Clearly starting from
different random selections, the entropy-based selection yields lower dispersion
in the errors.

Table 1. CV performance of fixed-size LS-SVM with M support vectors

Estimation MSE (CV) Selected components m

Linear 0.043 153
M=200 0.032 166
M=400 0.022 327
M=600 0.017 416
M=800 0.016 462
M=1000 0.015 496

Table 2. Performance on a test set for different forecasting horizons

Model MSE test (one-hour-ahead) MSE test (24-hours-ahead)

Linear 0.038 0.042
M=200 0.027 0.031
M=400 0.019 0.025
M=600 0.016 0.023
M=800 0.014 0.021
M=1000 0.014 0.021
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Fig. 1. Box-plot of the MSE in a test set for models estimated with entropy-based (1)

and random (2) selection of support vectors. Results for 20 repetitions
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Fig. 2. Forecasts (dashed lines) and actual values (full line) for a selected 24-hours

period, for the case of one-hour-ahead with M = 400 (Left); and 24-hours-ahead with

M = 800 (Right)

5.3 Out of Sample Performance

The estimated models are tested in a one-hour-ahead basis and a 24-hours-ahead
prediction with iterative simulations running for the next 24 hours. Averages of
the MSE for each case are reported on Table 3. An example of one-hour-ahead
prediction for the case M = 400 and 24-hours-ahead prediction for M = 800 are
shown in Figure 2.

6 Conclusion

The methodology of fixed-size LS-SVM has been applied to short-term load fore-
casting. This paper has shown that it is possible to build a large scale nonlinear
regression model from a dataset with 26,000 samples using different subsamples
as support vectors, with satisfactory results. The results show that the nonlin-
ear regressions in primal space improve their accuracy with larger values of M .
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The maximum value of M to be used depends on the computational resources
at hand, and it also depends on the underlying distributional properties of the
dataset. In this context, it was shown that quadratic entropy active selection
of support vectors leads to performances which are less disperse as those ob-
tained by random selection of support vectors. The forecasting performance is
very good, with MSE’s around 2% for both forecasting modes (one-hour-ahead
and 24-hours-ahead) when the nonlinear mapping is computed using 800 selected
support vectors, which represent 3% of the sample available. Further research on
a more dedicated definition of the initial input variables should lead to further
improvements.
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Abstract. There exists a wide range of paradigms and a high num-
ber of different methodologies applied to the problem of Time Series
Prediction. Most of them are presented as a modified function approx-
imation problem using I/O data, in which the input data is expanded
using outputs at previous steps. Thus the model obtained normally pre-
dicts the value of the series at a time (t + h) using previous time steps
(t−τ1), (t−τ2), . . . , (t−τn). Nevertheless, learning a model for long term
time series prediction might be seen as a completely different task, since
it will generally use its own outputs as inputs for further training, as
in recurrent networks. In this paper we present the utility of the TaSe
model using the well-known Mackey Glass time series and an approach
that upgrades the performance of the TaSe one-step-ahead prediction
model for long term prediction.

1 Introduction

There exist several methodologies and approaches to deal with time series pre-
diction problems. The TaSe model, that was first presented in [3] and whose full
learning methodology was fully developed in [4], is a modified TSK model [1]
that uses a Grid Partitioning (thus a Grid-Based Fuzzy System GBFS [5] type)
of the input space that partially overcomes the two main drawbacks of this type
of models: the curse of dimensionality problem and the lack of interpretability.

The curse of dimensionality problem has to do with the exponential growth
in the number of rules when the number of input dimensions and the number of
membership functions per input variable grow. The lack of interpretability has
to do with different aspects that fuzzy models should include but that most of
the times are lost in the design and in the learning process: the transparency of
the model (transparent partition of the input space), the need of maintaining
a relatively low number of rules [7] (very related thus with the curse of dimen-
sionality problem) and, more specifically for the TSK models, the interaction
of the global and local models [8] (that should allow us to interpret the rules
comprising the TSK system as linearizations of the nonlinear subjacent system).

The TaSe model considers these intrinsic aspects of the TSK fuzzy systems,
providing high accuracy for function approximation and time series prediction
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problems [4] and providing full interpretability to the polynomial consequents
using a fundamental key in the field of Function Approximation Theory and
Mathematical Analysis, as is the Taylor Theorem. The TaSe model allows us
to interpret its rules consequents as the Taylor Series Expansion of the model
output around the rule centres, thus giving an explicit interpretation of the
model.

The rest of the paper stays as follows: In section 2, we will introduce the main
concepts related to the TaSe methodology and its application to the well known
Mackey-Glass time series benchmark [2]. Section 3 briefly presents a modified
point of view of the time series forecasting problem for long term prediction
problems. In section 4 we present a modified training of the TaSe model to
improve the prediction of long term time series and section 5 concludes the
paper.

2 The TaSe Model Learning Methodology

In general, the structure of a multiple-input single-output (MISO) Takagi-Sugeno-
Kang (TSK) [1] fuzzy system and its associated fuzzy inference method comprises
a set of K IF-THEN rules in the form

Rulek : IF x1 is µk
1 AND . . . AND xn is µk

n THEN y = Rk (1)

where the µk
i are fuzzy sets characterized by membership functions (MF) µk

i (xi)
in universes of discourse Ui (in which variables xi take their values), and Rk are
the consequents of the rules.

The output of a fuzzy system with rules in the form shown in (1) can be
expressed (using weighted average aggregation) as

F (x) =

K∑
k=1

µk(x)Rk

K∑
k=1

µk(x)
(2)

provided that µk(x) is the activation value for the antecedent of the rule k, which
can be expressed as

µk(x) = µk
1(x1)µk

2(x2) . . . µk
n(xn). (3)

Now we briefly review the peculiarities and specifications of the TaSe model
as well as its learning algorithm. For a complete presentation please refer to [4].

2.1 TaSe Specifications

The TaSe model uses rule consequents (Rk in (1)) in the form

f(x) = f(a) + (x − a)T

[
∂f

∂xi
(a)

]
i=1...n

+
1
2
(x − a)T W (x − a) + . . . + (4)
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(where a is the rule centre specified in the respective rule antecedent), i.e. in the
form specified by the Taylor Theorem to approximate any function f(x) as a
sequence of polynomials.

But in order to be able to interpret the rule consequents as the Taylor Series
Expansion of the model output with respect to the rule centres, two properties
are required: first the model output must be continuous and differentiable at
least as many times as the order of the polynomial form used in the consequents,
and second, the activation value of every MF must be zero at each rule centre,
except for the MFs of the respective rule, so that the rule consequent is the only
function specified for that precise point (the rule centre). The OLMF basis, first
presented in [6], provides such two properties to the fuzzy model and thus will
allow us to obtain an interpretable model for function approximation from a set
of I/O data [4].

2.2 TaSe Learning Methodology

TSK fuzzy learning implies two parallel processes: structure identification (that
deals with finding the optimal input space subdivision/number-of-rules according
to the specified training I/O data) and parameter adjustment, both for rule
antecedents and for rule consequents.

With respect to the parameter adjustment, the rule consequents coefficients
can be linearly obtained using Least Squares to solve the error function

J =
∑

m∈D

(f (xm) − zm)2 . (5)

The rule antecedents parameters (specifically only the centres positions have
to be optimized) will be optimized using the local-search Levenberg-Marquardt
algorithm.

The structure identification approach used for the TaSe model uses an in-
cremental iterative method, that will add one MF per iteration in the variable
selected to be the optimal one to receive such MF. The structure identification
algorithm stops whenever the validation error stops decreasing [4].

2.3 Application of the TaSe Model to the Mackey-Glass Time
Series Prediction Problem

The Mackey-Glass time series [2] is a very well known time series benchmark,
that has been widely used in the literature. This time series is described by the
following delay differential equation

dx(t)
dt

=
ax(t − τ)

1 + x10(t − τ)
− bx(t) (6)

A sequence of 1200 data points were generated with an initial condition
x(0) = 1.2 and τ = 17 using the 4th order Runge-Kutta method. To make the
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Table 1. Trace of the structure identification algorithm for the Mackey Glass time

series prediction problem

MFs N Rules RMSE (for predicting x(t+6))

x(t-18) x(t-12) x(t-6) x(t) – Training Validation Test

1 1 1 1 1 0.032 0.029 0.034

1 2 1 1 2 0.0084 0.008 0.0098

2 2 1 1 4 0.0032 0.0037 0.0035

3 2 1 1 6 0.0024 0.0027 0.0028

3 2 1 2 12 0.0020 0.0024 0.0024

3 3 1 2 18 0.0014 0.0020 0.0017

3 3 1 3 27 0.0011 0.0018 0.0013

comparisons with earlier works fair, we chose the parameters so that the training
vectors for the model have the following format

[x (t − 18) , x (t − 12) , x (t − 6) , x (t) ; x (t + 6)] (7)

In Table 1 we show the evolution of the structure identification learning
algorithm (that iterates increasing the system complexity until the validation
error stops decreasing), taking the last 1000 data of the 1200, using 500 data for
training and validation and the final 500 for testing. The algorithm starts with
an initial MF configuration of 1 MF per variable and iterates adding 1 MF to
the selected variable.

Table 2 compares the prediction error for different computational paradigms
presented in the bibliography for this benchmark problem (taken from [9]). In
order to perform an equal comparison (also in complexity), we show our test
error for three MF configurations: 3× 2× 1× 1 with 91 (156 + 1 mobile centre)
parameters and 3 × 2 × 1 × 2 with 181 (15 × 12 + 1 mobile centre) parameters
and 3× 3× 1× 3 with 408 (15× 27 + 3 mobile centres). The results drawn from
this example show the convenience of the TaSe model due to its high degree
of accuracy for function approximation and time series prediction problems;
with only 6 rules, the TaSe model is able to identify the non-linear behaviour
of the Mackey-Glass time series better than many other time series prediction
methods proposed in the literature (with a similar model complexity), being
the consequents of these rules the Taylor Series Expansion of the output of the
model centred in their respective rule centres.

3 Long Term Predictions

So far we have presented an approach for modelling a set of I/O in which the
objective is to predict the output x̂(t+6) assuming we know the inputs specified
in (7). But for long term prediction problems, the objective could be expressed
as: “having a short sequence of data, try to predict the rest of the data sequence
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Table 2. Comparison results of the prediction error of different methods for prediction

step equals to 6 (500 training data) See [9]

Method Prediction Error
(RMSE)

Auto Regressive Model 0.19

Cascade Correlation NN 0.06

Back-Prop. NN 0.02

6th-order Polynomial 0.04

Linear Predictive Method 0.55

Kim and Kim (Genetic Algorithm and 5 MFs 0.049206
Fuzzy System) 7 MFs 0.042275

9 MFs 0.037873

ANFIS and Fuzzy System (16 rules) 0.007

Classical RBF (with 23 neurons) 0.0114

TaSe Fuzzy System with 6 rules 0.0028

TaSe Fuzzy System with 12 rules 0.0024

Optimal TaSe Fuzzy System with 27 rules 0.0013

until we reach a certain time-step”. Thus the training data for this model would
be that of (7), but in fact, the application of the model to predict the complete
data sequence should use iteratively the training data

x̂ (t + 6) = f (x̂ (t − 18) , x̂ (t − 12) , x̂ (t − 6) , x̂ (t)) (8)

and this is not what our initial model has been trained for.
Suppose a toy example of a series x = {1, 2.5, 3.5, 4}. A model that tries to

predict x̂(t + 1) = f(x(t)) would use as training set the pairs [1; 2.5], [2.5; 3.5],
[3.5; 4]. Thus using least squares, a simple linear model that uses a single constant
parameter x̂(t + 1) = a ∗ x(t) would solve the equation

[1, 2.5, 3.5]′ ∗ a = [2.5, 3.5, 4]′ . (9)

The solution is a = 1.29 and the MSE = 0.6. But in fact, the long term
prediction training error, starting from the initial value x(t0) = 1 and predicting
the following values using the model output is MSE = 2.72 (the “long term”
prediction would be [1.29, 1.292, 1.293]). The right way thus to train a long term
prediction model would be

[
1, 1 ∗ a, 1 ∗ a2

]′ ∗ a = [2.5, 3.5, 4]′ (10)

whose solution is a = 1.67 and the “long term” prediction MSE is 0.54. Never-
theless even for this toy example, this is a nonlinear optimization problem with
very high complexity, and thus the traditional function approximation modelling
techniques don’t work here.
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Fig. 1. Original (dotted line) and approximated (solid line) long term prediction for

the test data set

4 Long Term Prediction Using the TaSe One-Step Ahead
Prediction Model

We have barely seen the overwhelming recursive task that would be to model
directly a long term prediction problem from an I/O dataset. Thus, we could
try to use directly the one-step ahead prediction model to perform that task.
Using the optimal model obtained as shown in Table 1, and using the obtained
outputs as new inputs (thus using in total 23 (18+5) known outputs to predict
500 unknown values), Fig. 1 shows the long term prediction for the test data
set. The RMSE obtained for the training data set equals 0.030 and for the test
data set is 0.031.

From these results we see that we have obtained a pretty good solution for
this long term prediction problem. Thanks to the highly accurate TaSe optimal
model, we have been able to obtain a sequence of outputs very similar to the
original one.

Nevertheless we present here a modification in the training stage that will
allow us to obtain better results. In [10], Schoelkopf et al. expanded the training
data by adding small modifications in each training item for the specific classi-
fication problem. Similarly we could expand our training data for the series so
that we consider small modifications in time in this case. But this is an interpo-
lation problem and the task in some cases is at least as difficult as the prediction
problem. Nevertheless in this case, in the training problem we have obtained a
very good approximation of the time series (training RMSE = 0.0011). Thus,
using the same optimal model, we have expanded the training data to consider
a new section of the time series that is a small modification of the original time
series, which, in fact presents the same behaviour. Fig. 2 shows the long term
prediction for the test data set using the re-trained optimal TaSe model. The
RMSE obtained for the training data set is 0.015 and for the test data set equals
0.019.

Further extensions of the training data didn’t bring further significant results
in this case. Now consider the original Mackey-Glass time series and an added
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Fig. 2. Original (dotted line) and approximated (solid line) long term prediction for

the test data set using the expanded training data set

Fig. 3. a) Original (dotted line) and approximated (solid line) long term prediction for

the test data set using the original training data set for the noisy problem. b) Original

(dotted line) and approximated (solid line) long term prediction for the test data set

using the expanded training data set for the noisy problem

noise component with variance 0.05 ∗ σx where σx is the standard deviation of
the time series. The optimal TaSe model has in this case only 12 rules, due to the
noisy behaviour. In this case, we performed an iterative process as that done for
the noiseless series. We used once and again the training output as new training
data in the form shown in (7) to obtain the optimal rule consequents. Fig. 3
shows the long term prediction for the test data set using the simple training
data (Fig. 3a) with RMSE 0.12 and 0.13 for the training and test datasets, and
re-trained optimal TaSe model in the optimal iteration according to the long
term prediction of the training data (Fig. 3b), for which the RMSE obtained is
0.10 for both datasets.

Thus this process can be seen as a time series de-noising process. If we find a
single output model that is accurate enough and that is able to partially get rid
of the noise, the same model output can be used as training in order to obtain
better results when performing long term prediction using the single output
model that predicts a single x̂(t + h) = f (x(t − τ0), ..., x(t − τn)).
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5 Conclusions

In this paper we haver briefly reviewed the TaSe fuzzy methodology for func-
tion approximation and its applicability to time series prediction using the well-
known Mackey Glass time series. Since a complete long term prediction learning
methodology implies an overwhelming learning task, we have proposed to use
the one-step ahead model obtained with the TaSe model to perform a long term
prediction of the series. We have also seen that we could expand the training
dataset by considering the output of our model as another sequence of the same
series, and that this training data set expansion can provide better results.
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Abstract. Recently, the application of Independent Component Analy-
sis (ICA) to natural images has raised a great interest. Some outstanding
features have been observed, like the sparse distribution of the indepen-
dent components and the special appearance of the ICA bases (most
of them look like edges). This paper provides a new insight on this be-
haviour, being supported by experimental results. In particular, a math-
ematical proof of the relation between ICA and sparse coding is given.

1 Introduction

Independent Component Analysis (ICA) is an emergent technique for studying
empirical data [3][4][9]. It involves a mathematical procedure that transforms a
number of zero-mean observed variables x1, ..., xN into a number of “as statisti-
cally independent as possible” variables s1, ..., sN called independent components.
In linear ICA, this transformation reads:

si =
N∑

n=1

binxn,∀i = 1, ..., N (1)

where bin, n = 1, ..., N , are real coefficients. In matrix form,

S = BX ⇐⇒ X = AS (2)

where B = (bij) and A = B−1 = (aij).
The application of ICA to natural images has raised a great interest (some

results can be found in [6][7][9]) because of two outstanding observed features.
First, the special appearance of the ICA bases (the columns of matrix A): most
of them look like edges [9]. Second, it is obtained that the distribution of the
independent components is sparse. Both facts were first observed by Bell and
Sejnowski [2], who linked them with some properties of the human visual system
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and proposed an Information-Theoretic model to explain the behavior of the
neurons of the visual cortex (see also [1][5][11]). In particular, they hypothesized
that a certain kind of cortical neurons (specifically, the simple cells) perform
an independent component analysis of the visual information received by the
photoreceptors in the retinas. The objective of this paper is to analyze these
experimental results and provide a mathematical basis to explain the connection
between ICA and sparse coding.

2 Mathematical Analysis

To apply ICA to an image I, we divide it into N2 patches of k1 × k2 pixels
each. These patches are stacked into the columns of matrix X, obtaining X =
[x1|x2|...|xN2 ] where xj = [x1j , x2j , ..., xN1j ]T contains the j -th patch, with j =
1, 2, ..., N2 and N1 = k1 k2. We consider each row of matrix X as a realization
of a random process.

There are different ways to carry out the independent component analysis
of empirical data. Among them, consider the maximization of high-order cumu-
lants, like skewness and kurtosis, which is a very popular criterion that is inspired
in the Central Limit Theorem [4][9][10]. Let us define y = bT X = [y1, y2, ..., yN2 ],
where yi = bT xi. Our objective is to find the vector b that solves the following
constrained optimization problem:

max
b

Jp (y) =
1

N2

N2∑
j=1

yp
j subject to

1
N2

N2∑
j=1

yj
2 = 1 (3)

with p > 2. The restriction is necessary to avoid the solution b → ∞. When
p = 3, Jp (y) is an estimation of the skewness. If p = 4, Jp (y) leads to the
kurtosis.

The Lagrangian L(y, λ) is given by:

L (y, λ) = Jp (y) − λ

⎛
⎝ N2∑

j=1

yj
2 − N2

⎞
⎠ (4)

where λ is the Lagrange multiplier. It is shown in the Appendix that the sta-
tionary points of L(y, λ) are the solutions to:

∂

∂b
L (y, λ) =

1
N2

(
pXyp−1 − 2λXy1

)
= 0

∂

∂λ
L (y, λ) =

1
N2

‖y1‖2
2 − 1 = 0 (5)

where ∂
∂bL(y, λ) is a N1 × 1 vector whose k -th component is ∂

∂bk
L(y, λ), and

yk def
=

⎡
⎢⎢⎣

yk
1

yk
2

...
yk

N2

⎤
⎥⎥⎦ (6)
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One class of solutions is obtained when pyp−1 = 2λy1, i.e., either yj = 0 or:

yj =
(

2λ

p

) 1
p−2

(7)

for each j = 1, 2, ..., N2, with the restriction ‖y1‖2 =
√

N2. Sparse solutions are
possible1. For example, consider

y1 = y2 = ... = yM =
(

2λ

p

) 1
p−2

(8)

with M � N2 where

λ =
p

2

(
N2

M

) p−2
2

(9)

and yn = 0 for all n > M . It means that b is perpendicular to N2 − M patches
xn, i.e., to most of the image. In practice this is what happens when we work
with natural images. The fact that the sources have an sparse distribution was
first observed by Bell et al [2], who explained this result after identifying b with
response patterns of simple neurons of the visual cortex (they hypothesized that
these neurons perform an independent component analysis of the visual informa-
tion received by the photoreceptors in the retinas2).Our preceding mathematics
suggest now a complementary explanation: experiments show that, in natural
images, the patches xj are almost collinear to each other unless they correspond
to edges. Thus, a vector b that is orthogonal to most of the image (excepting to
the edges) is theoretically possible, and therefore an sparse solution is obtained.
The key is that, as shown above, ICA algorithms look for such a vector b since it
produces sparse solutions and maximize the higher-order cumulants of the data.

3 Example

Let us take the natural grey-scale image showed in Fig. 1. We divide it into 8×8
patches to obtain the matrix of observations and apply ICA.

As we shown in the previous section the distribution of matrix S should be
sparse. In Fig. 2 we show some of the rows of matrix the S corresponding to the
“Lena” image.

Interestingly, the (k1k2 × k1k2) matrix A has a very particular structure. If
we arrange its columns into (k1 × k2) blocks and represent them as images, we
observe that most of them look like edges with different orientations, as shown in
Fig. 3. These images are usually called ICA bases, and their special appearance
was first observed also by Bell et al [2] (see also [1][5]).

1 Specifically, it can be easily shown that (3) attains a global maximum when one and
only one of the yj is different from zero.

2 Other works have dealt with this subject (see, for example [8]), but no mathematical
analysis has been given so far.
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Fig. 1. The “Lena” image (256 × 256)

Fig. 2. Some rows of matrix S

Let us return to the ICA model (2). Since X = AS, the i -th column of X,
xi = [x1i, x2i, ..., xN1i]T , i = 1, 2, ..., N2, can be written as:

xi = Asi = s1i a1 + s2i a2 + ... + sN1i aN1 (10)

where si = [s1i, s2i, ..., sN1i, ]T , i = 1, 2, ..., N2, is the i -th column of S and
ak = [a1k, a2k, ..., aN1k, ]T , k = 1, 2, ..., N1, is the k -th column of A. As shown in
the previous Section, si has a sparse distribution, so that most of its elements
are negligible (e.g., see Fig. 2). It follows that there even exist indexes j for which
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Fig. 3. ICA bases obtained for the “Lena” image, that has been divided into 8 × 8

patches

Fig. 4. Patches of the image that are similar to the ICA bases

xi = Asi
∼= sji aj (11)

It means that most of the ICA bases are, except for a scale factor, like patches of
the original image. In practice, as illustrated in Fig. 3, the ICA bases are edges
that already exist in the image (e.g., the locations of the edges shown in Fig. 3
are highlighted in Fig. 4). This is as expected, since, as discussed in the previous
Section, the non-negligible elements sji of matrix S correspond to edges.

To illustrate that when the ICA bases are edges (3) is maximum, let us do
the following experiment. We build two matrices of bases, A1, obtained from



1040 S. Hornillo-Mellado, R. Mart́ın-Clemente, and J.M. Górriz-Sáez

edges of the “Lena” image, and A2, obtained from patches taken randomly from
the same image. We calculate the matrices S1 and S2 using A1 and A2, re-
spectively, and obtain both the skewness and the kurtosis of these two groups

Fig. 5. Skewness and kurtosis of the independent components y when bases are like

edges (◦) and when bases are like any other pattern (+)

of independent components. Skewness is a particular case of Jp (y) when p = 3
and kurtosis is very similar to J4 (y) (see (3)). In Fig. 5 are shown the results
obtained. Both the skewness and the kurtosis are greater when the ICA bases
are edges than when they are any other kind of pattern.

4 Conclusions

In digital image processing, the connection between ICA and sparse coding has
been raised a great interest. Many works have dealt with this matter, but no
mathematical study has been done so far. In this paper we have analyzed this
connection and provided a mathematical proof that is supported by experimental
results.

The connection between ICA and sparse coding can be applied in many fields
of digital image processing, like texture segmentation, edge detection [6], digital
watermarking [7] or elimination of noise [9]. These results can be also useful in
modelling of biomedical systems, like the human visual system [2].
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Appendix: Proof of Eqn. (5)

The derivative of (4) with respect to k -th element of b, bk, is given by:

∂

∂bk
L (y, λ) =

∂

∂bk
Jp (y) − λ

∂

∂bk

⎛
⎝ N2∑

j=1

yj
2 − N2

⎞
⎠ (12)

The first term is given by:

∂

∂bk
Jp (y) =

1
N2

∂

∂bk

N2∑
j=1

yj
p =

1
N2

∂

∂bk

N2∑
j=1

(
bT xj

)p

=
p

N2

N2∑
j=1

yp−1xkj (13)

=
p

N2
[xk1, xk2, ..., xkN1 ]y

p−1

since yj = bT xj =
∑N1

j=1 bkxkj , where xkj is the entry (k, j) of matrix X, and

yk def
=

⎡
⎢⎢⎣

yk
1

yk
2

...
yk

N2

⎤
⎥⎥⎦ (14)



1042 S. Hornillo-Mellado, R. Mart́ın-Clemente, and J.M. Górriz-Sáez

Secondly,

λ
∂

∂bk

⎛
⎝ N2∑

j=1

yj
2 − N

⎞
⎠ = 2λ

N2∑
j=1

yj
∂

∂bk
yj = 2λ

N2∑
j=1

yjxkj (15)

In matrix form, we have:

∂

∂b
L (y, λ) =

1
N2

(
pXyp−1 − 2λXy1

)
(16)

where ∂
∂bL(y, λ) is a N1 × 1 vector and ∂

∂bk
L(y, λ) is its k -th component.

On the other hand:

∂

∂λ
L (y, λ) =

N2∑
j=1

y2
j − N2 = ‖y1‖2

2 − N2 (17)
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Abstract. The task of recovering a set of unknown sources from another
set of mixtures directly observable and little more information about the
way they were mixed is called the blind source separation problem. If
the assumption in order to obtain the original sources is their statis-
tical independence, then ICA (Independent Component Analysis) may
be the technique to recover the signals. In this contribution, we propose
and analyze three evaluation functions (contrast functions in Indepen-
dent Component Analysis terminology) for the use in a genetic algorithm
(PNL-GABSS, Post-NonLinear Genetic Algorithm for Blind Source Sep-
aration) which solves source separation in nonlinear mixtures, assuming
the post-nonlinear mixture model. A thorough analysis of the perfor-
mance of the chosen contrast functions is made by means of ANOVA
(Analysis of Variance), showing the validity of the three approaches.

1 Introduction

Blind Source Separation refers to the problem of recovering a set of non-
observable source signals from another set of related and observable “mixtures”,
without having any a priori knowledge neither about the sources, nor the way
they were mixed. In many real world situations, one or more desired signals need
to be recovered from the mixtures only. When the assumption in order to ob-
tain the original sources is their statistical independence, then ICA (Independent
Component Analysis) can be applied. ICA is a method for finding underlying
factors or components from multidimensional or multivariate statistical data [1].

This technique deals with the problem of transforming a set of observation
patterns x, whose components are not statistically independent from one an-
other, into a set of patterns y = F (x) whose components are statistically inde-
pendent from each other. In linear ICA, which is the most extensively studied
case, the transformation F is restricted to being linear. Nonlinear ICA allows F
to be nonlinear.

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 1043–1050, 2005.

c© Springer-Verlag Berlin Heidelberg 2005
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The nonlinear separation of sources has been addressed in [2], [3] and [4].
However, nonlinear ICA, is rather unconstrained, and normally demands addi-
tional information to make the estimations coincide with the estimations. Ap-
plying the post-nonlinear constraint, other authors (Taleb and Jutten [5], Rojas
et al. [6], [7]) proposed several contrast functions which approximate the mutual
information of the estimated components.

A fundamental difficulty in nonlinear ICA is that is highly non-unique with-
out some extra constraints. Therefore finding independent components does not
lead us necessarily to the original sources [4]. Blind source separation in the
nonlinear case is, in general, impossible. Taleb and Jutten [5], added some extra
constraints to the nonlinear mixture so that the nonlinearities are independently
applied in each channel after a linear mixture. In this way, the indeterminacies
are the same as for the basic linear instantaneous mixing model: invertible scal-
ings and permutations.

The mixture model can be described by the following equation:

x(t) = f(A · s(t)). (1)

The unmixing stage, which will be performed by the algorithm here proposed
is expressed by equation 2:

y(t) = W · g(x(t)). (2)

In this contribution, we propose the use of a genetic algorithm to solve post-
nonlinear blind source separation. We also present three different evaluation
functions that asses each candidate solution. Neural network approaches have
the drawback of possibly being trapped into near-optimal solutions in situations
where the search space presents many local minima. As an alternative, genetic
algorithms deal simultaneously with multiple solutions, not a single solution,
and also include random elements, which help to avoid getting trapped into
sub-optimal solutions.

2 Nonlinear Blind Source Separation Using a Genetic
Algorithm

The proposed algorithm will be based on the estimation of mutual information,
value which cancels out when the signals involved are independent. Mutual in-
formation between the elements of a multidimensional variable y is defined as:

I(y1, y2, ..., yn ) =
n∑

i=1

H(yi) − H(y1, y2, ..., yn). (3)

In order to exactly compute mutual information, we need also to calculate
entropies, which likewise require to know the analytical expression of the proba-
bility density function (PDF) which is generally not available in practical appli-
cations of speech processing. Thus, we propose several evaluation functions (or
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Fig. 1. Flow chart of the genetic algorithm for source separation of post-nonlinear

mixtures

contrast function in BSS terminology) that approximate mutual information. A
contrast function, Ψ(·), is any non-linear function which is invariant to permu-
tation and scaling matrices, and attains its minimum value in correspondence of
the mutual independence among the output components.

Independently of the selected contrast function, the operation of the basic
genetic algorithm is invariant, needing the following features to be completely
characterized:

1. Encoding Scheme. The genes will represent the coefficients of the odd poly-
nomials which approximate the family of nonlinearities g (see equation 2).
The linear matrix will be approximated by a well-known method such as
JADE [8].

2. Initialization Procedure. Both polynomial and matrix coefficients which form
part of the chromosome are randomly initialized.

3. Fitness Function. The key point in the performance of a GA is the definition
of the fitness function. In this case, the fitness function that we want maxi-
mize will be precisely the inverse of the approximation of mutual information
given in equation 3:

Fitness(y) =
1

I(y)
=

1
p∑

i=1

H(yi) − H(y1, y2, ..., yp)
(4)

4. Genetic Operators. Typical crossover and mutation operators will be used for
the manipulation of the current population in each iteration of the GA. The
crossover operator is “Simple One-point Crossover”. The mutation operator
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(“Non-Uniform Mutation” [9]), is more favorable to exploration in the early
stages of the algorithm, while exploitation takes more importance when the
solution given by the GA is closer to the optimal.

5. Parameter Set. Population size, number of generations, probability of mu-
tation and crossover and other parameters relative to the genetic algorithm
operation were chosen depending on the characteristics of the mixing prob-
lem.

The flow chart for the genetic algorithm that solves blind source separation
in post-nonlinear mixtures is shown in Figure 1.

3 Contrast Functions Proposed

In order to calculate the degree of independence of a set of variables precisely it is
necessary to have the mathematical expression of their probability density func-
tions. Actually, since that information is not typically available, is usual to utilize
approaches of independence measures. In this research work, several functions
have been evaluated, most of them based on the calculation of approaches of the
mutual information or measures derived from it. One of the great advantages of
genetic algorithms is its flexibility in the use of evaluation functions.

3.1 Cross-Cumulants Minimization

It is possible to build a contrast function based on the simultaneous minimiza-
tion of several cumulants, cross-cumulants 2-2, 3-1 and 1-3 to be precise. We
can also add some penalization factors to the contrast functions, promoting so-
lutions whose estimations are closed to zero mean and unit variance (C1 and C2,
respectively).

ΨCrossCumulants(yi, yj) = cum22(yi, yj)+
+ cum31(yi, yj) + cum13(yi, yj) + αC1 + βC2 (5)

where α and β are weights (real numbers) for the penalization functions.
Unfortunately, this simple approach is only valid for separating two signals.

Although it can be extended to three or more computing the contrast function
by pairs, the computational cost would be exponentially increasing with the
number of mixtures.

3.2 PDF Direct Approximation Using Histograms

We propose to approximate densities through the discretization of the estimated
signals building histograms and then calculate their joint and marginal entropies.
In this way, we define a number of bins m that covers the selected estimation
space and then we calculate how many points of the signal fall in each of the
bins (Bi i = 1, ...,m). Finally, we easily approximate marginal entropies using
the following formula:
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H(y) = −
n∑

i=1

p(yi) log2p(yi) ≈ −
m∑

j=1

Card(Bj(y))
n

log2

Card(Bj(y))
n

(6)

where Card(B) denotes cardinality of set B, n is the number of points of esti-
mation y, and Bj is the set of points which fall in the jth bin.

The same method can be applied for computing the joint entropies of all the
estimated signals:

H(y1, ..., yp) =
p∑

i=1

H(yi |yi−1, ..., y1 ) ≈

≈ −
m∑

i1=1

m∑
i2=1

...

m∑
in=1

#Bi1 i2...ip
(y)

n
log2

#Bi1 i2...ip
(y)

n
. (7)

where p is the number of components which need to be approximated.
Therefore, substituting entropies in equation 3 by approximations of equation

6 and 6, we obtain a contrast function which will reach its minimum value when
the estimations are independent.

3.3 Gram-Charlier Expansion for Mutual Information
Approximation

A widely applied method for mutual information approximation is the applica-
tion of the Gram-Charlier expansion, which only needs some moments of yi as
suggested by Amari et al.[10] to express each marginal entropy of y as:

H(yi) ≈
log(2πe)

2
−
(
ki
3

)2
2 · 3!

−
(
ki
4

)2
2 · 4!

+
3
8
(
ki
3

)2
ki
4 +

1
16
(
ki
4

)3
(8)

where ki
3 = mi

3 , and ki
4 = mi

4 − 3.
Substituting equation 8 in the calculation of mutual information (equation

3), we obtain a new contrast function:

evalIM−GramCharlier(g)−1 = ΨIM−GramCharlier(y)

=
n∑

i=1

[
log(2πe)

2
−
(
ki
3

)2
2 · 3!

−
(
ki
4

)2
2 · 4!

+
3
8
(
ki
3

)2
ki
4 +

1
16
(
ki
4

)3]−

− log |det (W)| −
n∑

i=1

E

[
log

∣∣∣∣∣
P∑

k=1

(2k − 1)pikx2k−2
i

∣∣∣∣∣
]

(9)

The approximation of entropy in equation 8 is only valid for uncorrelated
random variables, being necessary to preprocess the mixed signals (prewhiten-
ing) before estimating their mutual information. Whitening or sphering of a
mixture of signals consists of filtering the signals so that their covariances are
zero (uncorrelatedness), their means are zero, and their variances equal unity.
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4 ANOVA of Simulations

Analysis of Variance (ANOVA) is a statistical method that yields values that
can be tested to determine whether a significant relation exists between variables
of interest. This method is widely used in industry to help identify the source
of potential problems in the production process, and identify whether variation
in measured output values is due to variability between various manufacturing
processes, or within them.

In our case, we will use ANOVA in order to analyze the estimations in terms
of their similarity to the original sources and testing which variables (factors)
affect more to the performance of the proposed algorithm. It will be of special
interest the influence of the contrast function chosen, so that we can determine
which one works better in practice. Table 1 shows the factors defined for the
analysis of variance.

Table 1. Chosen factors for the ANOVA

Levels of the chosen factors
Factor Level 1 Level 2 Level 3 Level 4

Contrast Function ΨIM−GramCharlier ΨHistograms ΨCrossCumulants

Nr. Samples 2000 4000 8000

Population Size 10 20 30 40

Generations number 10 20 40 80

Crossover probability 0.05 0.2 0.5

Mutation probability 0.01 0.1 0.3

Selection probability 0.01 0.1 0.2

The simulation applies the following linear and non-linear transformation to
a set of two voice signals of 10.165 samples each one (see mixtures in figure 2):

A =
[

0.4891 −0.1202
−0.4641 0.8668

]
, F =

[
tanh(x)

tanh(x/2)

]
(10)

In this case, we performed an ANOVA with the output variable as the aver-
age crosstalk between estimations and the sources and another ANOVA for the
computation time. Table 2 briefly shows the different results obtained depending
on the contrast function chosen for the genetic algorithm.

From the results, it can be drawn that the contrast function based on the
Gram-Charlier expansion for mutual information approximation achieves better
results. Also, from the ANOVA is deduced that results also improve if the number
of samples increases, as it is normally expected. Other factors, as the crossover
or mutation probabilities do not have a strong influence on the crosstalk results.

ANOVA was also applied to assess how each of the different levels of the
factors in Table 2 affect the computation time. As can be expected, all the
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Fig. 2. Representation of the post-nonlinear mixtures along time and joint distribution

Table 2. Multiple range table for the factor “Contrast Function” in the ANOVA

Contrast Func. Nr. of runs Avg. Crosstalk Homogenous Group

ΨHistograms 1296 -11.399 dB B

ΨCrossCumulants 1296 -10.201 dB C

ΨIM−GramCharlier 1296 -15.638 dB A

Fig. 3. Homogenous groups for each contrast function for the average crosstalk (left)

and average computation time (right)

factors have a strong statistical significance over the algorithm response time
(e.g. as population size increases, computation time also increases).

Regarding the effect of the chosen contrast function over the computation
time, algorithm using ΨIM−GramCharlier takes an average time of 25.228s, while
using ΨCrossCumulants and ΨHistograms takes an average of 21.92s and 19.88s,
respectively. Therefore, contrast function ΨIM−GramCharlier, although is the one
which gives the best results in terms of crosstalk, is also the most complex
regarding time of computation (see Figure 3).
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5 Conclusion

We have presented three contrast functions to evaluate candidate solutions in a
proposed genetic algorithm for post-nonlinear blind source separation. A thor-
ough analysis such as ANOVA was applied in order to assess the validity and
efficiency of the approaches, showing that the function based on the mutual in-
formation approximation by means of the Gram-Charlier expansion achieves the
best similarity results between the estimations and the sources.
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Abstract. Microarray Data Processing is becoming a field of important activity 
for Signal Processing and Pattern Recognition areas, as the extraction and min-
ing of meaningful data from large groupings of microarray patterns is of vital 
importance in Medicine, Genomics, Proteomics, Pharmacology, etc. In this pa-
per emphasis is placed on studying and cataloging the nature of possible 
sources of corruption of microarray data and in establishing a pre-processing 
methodology for discriminating sources of corruption from microarray data (de-
noising). We also discuss ways of precisely reconstructing original contribu-
tions (theoretically hybridized data) using ICA methods. Some classical exam-
ples are shown, and a discussion follows the presentation of results. 

1   Introduction 

Cells react to stimuli from their environment or resulting from their internal state by 
the induction or repression of genes via among other factors up- or down-regulating 
the amounts of corresponding mRNA molecules. Different experimental conditions 
show different characteristic expression patterns. High-throughput genome-wide 
measurements of gene transcript levels have become available with the recent devel-
opment of microarray technology. Intelligent and efficient mathematical and compu-
tational analysis tools are needed to read and interpret the information content buried 
in those large data sets. 

During the last years special importance has been placed on the interpretation, clas-
sification and recognition of relationships expressed in microarray data to infer the 
activity of specific genes, using clustering techniques and other statistical analysis 
tools like principal component analysis (PCA). In most cases it was tacitly assumed 
that the obtainment of microarray data from genetic samples is a fully reliable process 
per se, not having to take into account the large complexity of the procedures used. 
Some of them concern the construction of the microarrays, the hybridization process, 
the scanning and the final numeric processing. In the present work the emphasis is 
focussed on the specific processing of microarray data to compensate or even cancel 
undesirable effects resulting from unreliability in the mentioned processes to increase 
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the robustness of microarray data generation. The problem is stated by defining possi-
ble sources of corruption and the desired, undistorted hybridization data in terms of a 
signal or image decomposition process, in which both the corrupting effects and the 
desired data combine as in an additive or convolutive model to result in the observed 
microarray data. Under this hypothesis, the desired microarray data are considered a 
realization of more or less unpredictable or randomly distributed stochastic process, 
while the corrupting processes, affecting the microarray, are to be seen as processes 
having some kind of spatial pattern far from randomness, due to the intrinsic nature of 
the corruption causes. Therefore some pre-processing methods, using 2D Fourier 
Transforms, could be used to obtain a first estimation of the set of observations caus-
ing corruption and of the theoretical microarray data from hybridization. Further on 
from this starting point, the problem may be configured as a typical combination of 
independent sources, amenable of being solved using powerful Independent Compo-
nent Analysis, as FastICA, NMLE, JADE, and others [11]. In this paper emphasis will 
be placed in studying and cataloging the nature of the possible sources of corruption 
and in establishing a pre-processing methodology for discriminating sources of cor-
ruption from microarray data (de-noising). Possible routes to precisely reconstruct 
original contributions using ICA methods will be discussed also. Some examples will 
be shown, and a discussion will follow the presentation of preliminary results. 

2   Problem Statements: Robust Microarray Pre-processing 

The robustness of the estimations derived from microarray processing is an important 
issue of consideration. Due to distribution patterns of the sample tests on the microar-
rays, the molecular interference at a microscopic level, the irregularities in illumina-
tion due to field distributions and to optical interference, the cross-talk phenomena in 
the hybridization process etc. different experimental conditions inevitably will pro-
duce different characteristic expression patterns. This is for example seen in Fig. 1, 
 
  

 
Fig. 1. a) Original microarray data corrupted by defective microarray preparation (taken from 
[8]). b) Corruption patterns after separation using multiplicative decomposition 
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where microarray results (a) present defects (b) which become evident after contrast-
ing against a second experiment. These defects seem to be due to contamination dur-
ing the microarray production process. A thorough discussion of possible sources of 
perturbations which can affect the final reliability of the data extraction process may 
be found in [10][2].   

The results from microarrays, designed as multi-probe test of chips produced by 
different commercial microarray providers, can be treated as multivariate 2-D images 
on which Independent Component Analysis can be used instead of other less resolv-
ing data fusion algorithms. The approach proposed in the present work is based on the 
review of the basic decomposition model for microarray data, considering that, as 
illustrated in Fig. 2, several independent sources are contributing to produce the final 
observation. 

 

. 

Fig. 2. Decomposition model for microarray data 

The mathematical model for source decomposition would then be of a convolving 
or multiplicative nature. To reduce it to an additive linear model, as proposed in [5], 
the logarithms of microarray data should be used instead. Resulting from scanning 
procedures, images form matrices of positive semi-definite variables, thereby filling 
any zeroes with a non-zero residues: 

l
nn

l
hh

l
dd

l
o www PXPY ++= ;

( ) ( ) ( ) ( )n
l

nh
l
hd

l
do

l
o PPXXPPYY log;log;log;log ====  

(1) 

where Y0 represents the matrix of observations (microarray data), Pd the matrix of 
probe arrangements (distribution pattern), Xh represents the hybridization matrix, 
whose extraction would be our ultimate objective, and Pn designates the matrix of 
corrupting processes (noise matrix). According to the linear superposition model, 
the coefficients wd, wh, and wn would be gain factors or weights accounting for the 
contribution of the factors of decomposition to the observation process. The de-
composition model would then be referred to as a multiple source independent 
component analysis.  

Such a hypothesis may be established assuming that the contributions of perturba-
tion noise due to array manufacture and hybridization show low wave number  
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spectral contents corresponding to structures of large sizes or wave lengths. Keeping 
this hypothesis in mind, the perturbations, produced by probe arrangement, crosstalk, 
reactive distributions etc., which affect sizable parts of the array, will be reduced to 
low wave number contents of the spatial spectrum of the image. This way the problem 
would then be split in two:  

1. First of all a set of observations should be produced establishing some kind 
of discrimination on the information contents of the resulting data based on 
the spatial distribution of the corrupting processes.  

2. The second part of the problem would be reduced to a classical ICA formula-
tion: given two sets of observations obtained from the microarray data using 
wave number information by low pass-band filtering, find the independent 
sources in the microarray data, corresponding to low and high wave number 
contents.  

The decomposition process would be carried out by means of a 2D Fourier Transform 
as follows: 
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m, n designate the spatial indexes of the array, j, k being the wave number indices, 
NxN  the size of the observations matrix Yo and i the square root of –1. A two-
dimensional high-pass filter will be applied to this resulting matrix Ψo to produce the 
resulting observation matrix related with high wave number contents, therefore asso-
ciated with small wavelength perturbations 

ouu H=  (3) 

Finally the matrix Ψu with its high wave number contents will be transformed back to 
the spatial domain to produce a microarray data matrix devoid of long wave length 
spatial correlations 
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Matrices Yo and Yu will constitute the sets of observations to start a process of inde-
pendent component analysis with the final objective of obtaining a more robust esti-
mation of the hybridization pattern Ph. as discussed in the following section. 

3   Independent Component Analysis for Microarray Analysis 

ICA, a modern statistical method, allows us to better understand data in complex and 
noisy environments. One exploits the fact that ICA can separate the patterns in which 
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we are interested from independent other effects like random sample variations or 
biological patterns unrelated to the subject of investigation. The technique has the 
potential of significantly increase the quality of the resulting data, and improve the 
biological validity of subsequent analysis [11].  

With microarray data, ICA extracts expression modes Xh, the independent compo-
nents (ICs), each of which represents a linear influence of a hidden cellular variable. 
Each retrieved IC is considered a putative biological process, which can be character-
ized by the functional annotations of genes that are predominant within the compo-
nent. Each component thus defines corresponding groups of induced and repressed 
genes. Samples and genes can be visualized by projecting them to particular expres-
sion modes Xh or to their influences W, respectively. A projection to expression 
modes helps to highlight particular biological functions, to reduce noise, and to com-
press the data in a biologically sensible way. A recently proposed Ensemble Learning 
implementation of ICA [12], which identifies latent variables underlying the data, 
seems particularly well suited to deal with noisy microarray data sets. In particular, 
this technique allows one to estimate the inherent measurement noise and other fac-
tors corrupting the recorded data. In general, there is yet little published data on the 
use of ICA for analysis of microarray data, however. 

4   A Case Study: Data from E. Coli 

With the purpose of checking the technique proposed in the paper a sample microar-
ray shown in Fig. 3 from the analysis of E. Coli was used  [9]. 

 

Fig. 3. Microarray data from genetic expression of E. Coli (taken from ) 
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On this figure a smaller frame near its middle part (as highlighted) has been chosen 
to better illustrate the pre-processing steps proposed. In Fig. 4.a a close up of the 
selection is shown where several regular specific patters useful in the study are seen. 

  

Fig. 4. a) Close up view of the E. Coli microarray section used for the study. b) Idem from the 
output section after preprocessing 

In the upper left (files 59-60, columns 8-28) the specific profile of a probe set may 
be seen. Probe sets are special arrangements of probe pairs testing a specific single 
gene. Each probe is a short sequence of nucleotides (usually 25) with perfect match to 
a specific segment of the gene. Paired with the 20 perfect match probes (PM) another 
set of 20 probes have been included which match with the same gene segments but for 
a single nucleotide. This second set is called the mismatch set (MM). Both sequences 
show some activity regarding the specific gene tested, although it is expected that the 
PM set will show higher hybridization levels than the MM set. Differential estimation 
algorithms as MAS, MBEI or RMA [3][6][4] will evaluate the so called expression 
signal for the probe set. Another feature in the array is the cross placed at the exact 
 

  

Fig. 5. Comparative analysis of the 20 pair probe set showing the improvements in the expres-
sion level with respect to background. a) Original features. b) Results after enhancement 
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centre of the microarray with maximum response. A third feature is the checkerboard 
pattern in the lower right (files 3-18, columns 39-54). The pre-processing technique 
explained in section 2 has been applied to the entire microarray, and the corresponding 
frame in the results have been plotted in Fig. 4.b. What can be appreciated is that spe-
cific patterns with small extensions in the spatial domain (high wave numbers) are left 
almost invariant (see the cross mark), while patterns showing large extension are re-
moved (see the checkerboard pattern). The 20 pair probe has been apparently removed, 
but a closer inspection like in Fig. 5 reveals that this is only a subjective impression, as 
the pattern is still there, the relative levels of the pairs having been enhanced. 

On the other hand it may be shown that their differential profiles have been im-
proved. In a simple comparative analysis it may be seen that the average PM-MM 
estimate of the expression signal is neatly improved by a factor of two after preproc-
essing. Partial correlation shows also an improvement, although not so relevant. 

Table 1. Expression signal estimates 

Estimation method Input data Preproc. data 
Average PM-MM 0.1092 0.2105
Partial Correlation 0.6304 0.7773

In any case the issue of signal estimation remains an open question far from be-
ing well settled. The average difference algorithm used by microarray processing 
software is not universally accepted, other researchers preferring perfect matches 
only adjusting the background [6][3], or using a model-based approach [4] as 
quoted in [1]. 

5   Conclusions 

Through the present paper the possibility of obtaining indirect estimates of the spatial 
corruption patterns in microarrays using filtering in the wave number domain as a pre-
processing for a subsequent Independent Component Analysis has been discussed. 
Results show that the working hypothesis assuming that spatial perturbations are 
mostly confined to the space of low wave numbers seems to be confirmed. Independ-
ent Component Analysis might proof effective in detecting corruption patterns and 
helping in improving expression signal estimation. This could open new possibilities 
for the definition of more accurate and robust methods for expression signal en-
hancement, which could help in the detection and classification of genetic information 
in cases where microarray data are corrupted, scarce or present low resolution. 
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Abstract. Traditional approaches to gas sensing are usually related
with gas identification and classification, i.e., recognition of aromas. In
this work we propose an innovative approach to determine the concen-
tration of the single species in a gas mixture by using nonlinear source
separation techniques. Additionally, responses of tin oxide sensor arrays
were analyzed using nonlinear regression techniques to determine the
concentrations of ammonia and acetone in gas mixtures. The use of the
source separation approach allows the compensation of some of the most
important sensor disadvantages: the parameter spreading and time drift.

1 Introduction

Metal-oxide semiconductors have been used as gas sensors for many years. The
benefits of this type of sensors include the low cost and good sensitivity against
combustible (oxidizable) gases. The principle is based on the change of the con-
ductivity. As a common material tin oxide ( SnO2 ) is used. Its electrical conduc-
tivity is caused by point defects, whereby oxygen defects work as donors. Reduc-
ing gases decrease the amount of adsorbed O2 and thereby lead to an increase in
the conductivity. This conductivity effect can also result from the reaction of a
reducing gas with the oxygen of the semiconductor whereby defects are formed
in the material, which diffuse into the volume at higher temperatures. In order
to avoid adsorption of unwanted gases (including humidity) and to accelerate
the desorption of reaction products, the sensors are operated at temperatures
between 200C and 500C. Conductivity sensors respond on different oxidizing
gases like CO, H2, CH4, H2S, NOx , ..., thus they have no selectivity for a
single gas.

1.1 Problem Statement

Traditional gas sensing systems are intended to detect and distinguish the pres-
ence of gases in the ambient atmosphere, i.e., they are designed to differentiate
between the different odors in a specific environment. However, there are many
applications in which is desirable to be able to predict the concentrations of sin-
gle gases in a gas mixture using the same simple and cheap nonselective sensors
mentioned before. Unfortunately, semiconductor gas sensors respond to the pres-
ence of reducing or oxidizing gases by nonlinear conductance changes, and, due
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to the involved chemistry, they do not react to just one gas component, but with
different sensitivities to different gas components. In this work, we deal with the
improvement of the sensors selectivity by means of advanced signal processing
techniques (nonlinear extensions of blind source separation -BSS- algorithms),
as well as the compensation of the parameter spreading phenomena considering
the absence of a parametric model for the gas sensors response. Here we pro-
pose the use of blind source separation techniques in the nonlinear context to
separate single species from binary gas mixtures, by using the sensors cross sen-
sitivities and the statistical information derived from the parameter spreading
phenomena.

The rest of this paper is organized as follows: In section II we present a gen-
eral overview on our proposed approaches to solve the single species separation
from binary mixtures of gases. In section III a general approach to invert the
sensors nonlinearity by using kernels is presented. Section IV shows a general
overview on the extracted information from the real data base provided by the
people of the sensors area at the Universitat Rovira i Virgili, as well as some
experimental results. Finally, section V I presents some conclusions and remarks.

2 Proposed Approaches

Due to the complexity of the problem, there exist several approaches to solve
the problem formulated in section I. The application of BSS techniques to sep-
arate/extract signals from mixtures of them has been widely used and studied
since Jutten and Herault [1] proposed the first algorithm at the end of eight-
ies. However, for several real applications the well known linear model fails and
nonlinear extensions become necessary. In order to determine the input analyte
concentrations we can use the traditional methods, e.g., non linear regression or
ANN to invert the sensor’s transfer function and the posterior reconstruction of
gas concentrations, or we can use hybrid based methods like the proposed here.

2.1 Nonlinear Regression and MLP Solution

In a traditional approach, each of the N partially selective sensors, could be
modelled by fitting a polynomial curve to each sensor response. From previous
experimental studies [2], it has been demonstrated that the general response of
a sensor R to a gas mixture was found to be:

R

R0

−1/β

= (
1 +

∑
j Kj [G1j ]n1j [G2j ]n2j

[O2]
) (1)

Where R0 is the response before the addition of gas, Gij denotes the ith gas
concentration and nij is a numerical coefficient, and j depends on the number
gases. As general remarks it is necessary to appoint that the effects of one gas
can be enhanced or suppressed by the presence of another gas. So, we have to
find the polynomial coefficients of the experimental curve, which can be deter-
mined using a best fit solution.
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Using nonlinear regression techniques or a multilayer perceptron (MLP ), we
fit the sensor curves and we found the terms in (1), the input analyte concentra-
tions can then be determined using an iterative technique to find a solution to
the simultaneous nonlinear equations that result from the curve fitting process.
A simple method that sequentially checks every possible input analyte combi-
nation in the component space for a closeness of fit to the actual sensor outputs
was used in this work. This basic method was implemented in order to compare
results with the nonlinear BSS approach.

2.2 Nonlinear Extensions to BSS Algorithms

The problem of source separation has been extended to particular nonlinear
models, e.g., the so-called post-nonlinear (PNL) mixtures [3] and algorithms for
BSS in PNL have been proposed. In our case for nonlinear mixtures, the obser-
vations are e = f(As), where f(:) is an unknown nonlinear invertible mapping,
and A is a regular unknown mixing matrix. Here, the sources s can be recovered
by estimating non-linear mappings gi(:), for compensating the fi(:), and the de-
mixing matrix B for compensating the mixing matrix A, so that y = Wg(e) has
independent components. One can show [4] this occurs if and only if gi ◦ fi is
linear and WA = DP , provided that A has at least two non-zero entries per row
or per column. Consequently, output independence leads to source separation,
with the same indeterminacies as in linear memory less mixtures. A fundamental
characteristic of the nonlinear BSS problem is that in the general case, solutions
always exist, and they are highly non-unique. One reason for this is that if x
and y are two independent random variables, any of their functions f(x) and
g(y) are also independent. An even more serious problem is that in the nonlinear
case, x and y can be mixed and still be statistically independent.

There have been proposed several methods to invert the nonlinear stage and
then apply a BSS algorithm, some of them are oriented to solve the Post Non-
linear model (where the nonlinearities are invertible and component-wise), while
other methods are designed for general nonlinear mixtures. Between the PNL
methods we can cite:

– Minimization of mutual information: Quadratic dependence measure for
Nonlinear Blind Sources Separation, Minimization-Projection algorithms,
separability of bounded sources in PNL mixtures, separation of Markovian
sources in NL mixtures, adaptive splines, radial basis functions, see e.g., [5],
[6], [8].

– Linearization methods: ACE and Gaussianization; where it is proposed the
alternating conditional expectation (ACE) method of non-parametric statis-
tics for approximate inversion of the post-nonlinear functions, see [7].

On the another hand, separation methods for general nonlinear mixtures
include: Variational Bayesian methods, Kernel-based methods, see [8] and [9]
and combinations of kernel PCA and Nonlinear Factor Analysis.
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3 A Kernel-Based Approach

As a first approach, we propose the extension of mutual information minimiza-
tion MMI-based algorithms to the nonlinear case. Initially, the main idea is
to preprocess the input data using a nonlinear mapping, projecting data into a
feature space and solve the MMI problem. However, direct mapping lead us to
high dimensional feature spaces, so, the problem can be tractable only for binary
mixtures with a few of samples. Then, we can solve this problem by using kernel
functions to avoid the feature space representation or computation [9].

3.1 The Linear BSS Algorithm and the Nonlinear Extension

Suppose there are K signals present at an array of M sensors, K < M . The sensor
outputs are appropriately pre-processed and sampled at arbitrary time instants
n, where n = 1, ..., N . Based on the simplifying assumptions above, the array
output vector x(n), may be modelled as a function of the inputs x(n) = f(s(n)),
where:

x(n) = f(As(n)), (2)

Where A represents the mixing matrix (representing for example the sensors’
sensitivity matrix and parameters) and s(n) are the signals present at the M
sensors array. A matrix of the k sensors’ sensitivity and other parameters against
different measurands can be derived, then the founded matrix can be used as a
linear approximation of the sensor array x(n) = ST s(n).

As pointed before, by using kernels, if f is an invertible (or approximately
invertible) non linear function, then, it can be mapped into a feature space where
the separation can be achieved, i.e., by using linear algorithms in feature space,
the nonlinearity in input space can be solved.

4 Experimental Setup

4.1 Real Data from Semiconductor-Based Gas Sensor

The gas mixtures subject to inspection by the proposed scheme should satisfy
the two criteria set by the BSS-model. First, the single species should be as
independent as possible before sampling by the sensor array. Second, a mixture
of two single species should follow a linear relationship. The last condition is
not met if the mixing of gases involves a chemical reaction, thus generating new
molecular structures in the gas. Figure 1 shows the orthogonality of two sensors
responses by contour plots. If the sensors gradients are parallel everywhere in
the space of gas concentrations, then the sensors are completely redundant:
Measurements on the sensors yield identical information. However, orthogonal
sensors with linearly independent gradients do provide independent information.
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Fig. 1. Contours of constant resistance for two sensors. Given measured resistances of
the sensors, the intersection of the two corresponding contours indicates the composi-
tion of the mixture

4.2 Single Gas Species and Binary Mixtures

We have used an array of 15 commercial tin-oxide sensors (Figaro Engineering)
of n different types: family TGS800 provided by the department of electronic
engineering, Universitat Rovira i Virgili (Tarragona, Spain). The output of this
array was recorded in presence of two gases: Ammonia for concentrations 0, 50,
100, 200 and 400 ppm, and Acetone for concentrations 0, 50, 100, 200 and 400
ppm, see figures 2 and 3.

The experimental data set consist of 202 different files with 17x6248 samples,
each file was obtained by varying the gas concentrations. However, the data set
has not a temporal structure. In order to generate a large data set that does have
some temporal structure, we consider two different techniques: first we generate
an unique file containing the response of each sensor in the array to different gas
concentrations, emulating a continuous flow gas monitoring system. Secondly,
we trained a MLP using the concentrations of gases as input and the array of
sensors as output. Then we generate simulated mixtures corresponding to the
response of the sensor array in presence of a randomly generated gas source data.

4.3 The Sensor Array Architecture

In order to generate the sensor array response, we used the fitted curve of each
single sensor and the calculated parameters, but with each sensor in the artificial
array having a different sensitivity, i.e., varying the value of the parameter kmix
in (1). In this model, only one property of the sensor is changed. In real world
applications, several tin oxide sensors can be doped with different amounts of Pd
or Pt to change selectivity and resistance that can be measured for each sensor.

It was generated an artificial response for two gas sensors in the array. Using
the nonlinear fitting and the MLP model results for each sensor in the array, we
choose the sensor 4 response for a binary mixture (ammonia and acetone), with
ammonia constant at 50ppm and 400ppm, while acetone varies: 50ppm, 100ppm,
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Fig. 2. Responses of two sensors (circle and triangle-left) for three experimental rep-
etitions to 50 − 400ppm Acetone at (a) 50ppm Ammonia, (b) 100ppm Ammonia, (c)
200ppm Ammonia, (d) 400ppm Ammonia

Fig. 3. Experimental sensor response at different gas concentrations
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Fig. 4. Original gas source data. The nonlinear mixtures. Recovered data

200ppm and 400ppm. Using the fitted parameters according to equation (1), we
generate the artificial static response considering an array of two sensors (in
this case corresponding to the founded values for sensor 4). We used the trained
MLP as well as the fitted model to generate virtual mixtures corresponding to
the responses of the sensor array in the presence of the gas source data.

4.4 Separation of Binary Mixtures

Using the kernel trick to preprocess the data using a nonlinear mapping, pro-
jecting it to some feature space, leads us to a partial solution. Here we are using
a polynomial kernel of degree 2, but, it is supposed that using higher order poly-
nomial kernels it can be possible to recover more than twenty ”quasi” sources
and then applying the BSS algorithm. We have to appoint that here we are us-
ing artificially generated sensor responses, corresponding to data with temporal
structure. A new challenge for this work is the use of more realistic data sets.

5 Conclusions and Future Work

The goal of the present research was to verify the separation ability of the pro-
posed approach to determine the single species concentrations in a binary mix-
ture of gases. It is interesting to note that the separation is achieved under
certain constraints, e.g., the range of species concentration and the operating
temperature. Our preliminary study and some empirical results showed that the
kernel used to learn the nonlinear function by mapping the data to some higher
dimensional feature space can be improved with some additional computational
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cost (by using high degree polynomial kernels). In our approach, each single
sensor is modelled by a parameter set, then, the response is linearized before
applying the linear source separation techniques. After a successfully separa-
tion, the adaptive non-linear BSS algorithm can continuously learn from the
environment and the demixing matrix can be adapted to the new response of
the sensor array by calculating the actual sensor parameters, this allows a com-
pensation of the parameter spreading phenomena and the time dependent drift.
Experimental results confirm that single gas species identification by a sensor
array can be improved using the non-linear BSS model. Additionally, we have
been implementing a new approach to determine the concentration of single gas
species from binary mixtures by using blind source separation of linear-quadratic
mixtures, by rearranging equation (1), using a recurrent structure. Moreover, we
applied nonlinear BSS techniques to ion sensitive field effect transistor (ISFET)
sensor arrays, in order to quantify the ionic activities in liquid samples.
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Abstract. In this paper we propose a new algorithm for the clustering
of signals using incomplete independent component analysis (ICA). In
the first step we apply the ICA to the dataset without dimension re-
duction, in the second step we reduce the dimension of the data to find
clusters of independent components that are similar in their entries in the
mixture matrix found by the ICA. We demonstrate that our algorithm
out-performs k-means in the case of toy data and works well with a real
world fMRI example, thus allowing a closer look the way how different
parts of the brain work together.

1 Introduction

The problem of finding data samples that belong together in huge data spaces is
an old problem in data analysis. For independent component analysis (ICA) the
literature so far concentrates on the comparison of the independent components
themselves. Two recent published algorithms for these problem are the tree-
dependent ICA [1] and the topographic ICA [2], which have also been applied
to functional magnetic resonance imaging (fMRI) data [3].

fMRI data is a grateful example to utilize spatial ICA as the functional
segregation of the brain [4] closely matches the requirement of statistical spatial
independence. A severe problem in the case of fMRI is the mass of data that
has to be analyzed to find the interesting components as each fMRI session will
typically yield hundreds of different components. However, the parts of the brain
that work together during the experiment also will form clusters of activation in
the time domain that can be exploited to cluster the components that represent
the collaborating parts of the brain.

2 Theory

First we will give a short overview on independent component analysis. Then we
will describe the idea behind clustering with incomplete ICA and demonstrate
our algorithm.

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 1067–1074, 2005.
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2.1 Independent Component Analysis

Let s1(t), . . . , s(t) be m independent signals with unit variance for simplicity, rep-
resented by a vector s(t) = (s1(t), . . . , sm(t))T , where T denotes the transpose.
Let the mixing matrix A generate n linear mixtures x(t) = (x1(t), . . . , xn(t))T

from these source signals according to:

x(t) = As(t) (1)

Note that each column of the mixing matrix A represents the contribution of
one source to each mixture.

Assume that only the mixtures x(t) can be observed. Then the task to recover
the original sources s(t) along with the mixing matrix A is commonly referred
to as “independent component analysis”. For the complete case n = m many
algorithms exist to tackle this problem, e.g. Infomax (based on entropy maxi-
mization [5]) and FastICA (based on negentropy using fix-point iteration [6]),
just to mention some of the most popular ones. The other cases like the more
difficult overcomplete (n < m) and the more trivial undercomplete (n > m) case
have also been widely studied in the literature, see e.g. [7, 8].

2.2 The Influence of Dimension Reduction

In this paper we concentrate on the incomplete case: What will happen if we try
to extract deliberately fewer sources than can be extracted from the mixtures
x(t)? This incomplete case differs from the overcomplete case in that we do not
want to extract a subset of all independent sources. Rather we try to cluster
all sources into fewer components than could be extracted in principle. This
is equal to a dimension reduction of the data set. It is therefore obvious that
this is not possible without to sacrifice some information content. A common
way to keep the loss of information as low as possible is to apply a principal
component analysis to the mixtures x(t) and to do the dimension reduction
based on the eigenvectors ei corresponding to the smallest eigenvalues λi of
the data covariance matrix C [9]. This is also a convenient and often necessary
preprocessing step (“whitening”) for many ICA algorithms, as it reduces the
degrees of freedom in the space of the solutions by removing all second order
correlations of the data and setting the variances to unity:

x̃ = EΛ− 1
2 ET x, (2)

where E is the orthogonal matrix of eigenvectors of the covariance matrix of
x, with C(x) = E((x − E(x))(x − E(x))T ), and Λ the diagonal matrix of its
eigenvalues.

It can easily be shown that this dimension reduction will cluster the inde-
pendent components si(t) based on their presence in the mixing matrix A, as
the covariance matrix of x depends on A: [10]

E(xxT ) = E(AssT AT ) (3)
= AE(ssT )AT (4)
= AAT (5)
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If two columns in the mixing matrix A are almost identical up to a linear
factor, i.e. are linearly dependent, this means that the two sources represented
by those columns are almost identically represented (up to a linear factor) in the
mixtures. A matrix with two linearly dependent columns does not have full rank,
hence will have at least one zero eigenvalue due to its restricted dimensionality.
This also holds for the transpose AT of the matrix A as the transpose has the
same dimensionality as the original matrix, as well as for the product of both
matrixes AAT .

Setting this close-to-zero eigenvalue to zero in the course of a dimensional-
ity reduction, will thus combine two almost identical columns of A to a single
one. This means that components that appear to be similar to each other in
most of the mixtures will be clustered together into new components by the
dimension reduction with PCA. After the dimension reduction, a standard ICA
algorithm can be used to find the independent components in the dimension
reduced dataset.

2.3 Clustering with Incomplete ICA

The idea behind the clustering with an intentionally incomplete ICA is to com-
pare different ICA runs with a different level of dimension reduction applied
beforehand. First, a complete ICA is performed extracting the maximal number
of independent components from the data set. In a second run, an ICA is per-
formed on a reduced data set which resulted from a dimension reduction during
PCA preprocessing.

The independent components (IC) of the complete ICA without dimension
reduction are then compared with the IC of several incomplete ICA runs. Inde-
pendent components which form part of the components of the incomplete ICA
are then grouped into the cluster which is represented by the IC of the incom-
plete ICA at hand. Hence the ICs of any incomplete ICA form sort of prototype
ICs of the clusters formed by ICs from the complete set.

2.4 Algorithm

The algorithm for clustering by incomplete ICA can be described as follows:

1. apply a standard ICA to the dataset without dimension reduction: ICA1
2. apply a standard ICA to the dataset with dimension reduction: ICA2
3. find the independent components in ICA1 that are similar to some forms of

components in ICA2.

3 Examples

First we show for toy data that clustering with incomplete ICA outperforms
the standard k-means clustering algorithm. Then we apply the algorithm to real
world data from a fMRI experiment.
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Fig. 1. The figure on the left shows the set of circles that represent the letter “A”. The

figure on the right shows one mixture of the toy data set. The A-set in the upper left

corner and the C-set in the lower right corner are almost undetectable

3.1 Toy Data

To test the quality of the clustering, we choose to create a toy data set. 64
sources were designed where each of the sources represents a circle in a square
lattice of 100 × 100 lattice points. The mixing matrix was initialized randomly
and then modified so that two sets of circles – one representing the letter “A”
in the upper left corner, the other representing the letter “C” in the lower right
corner – appeared together in the mixtures by setting the columns of these sets
to the same values with random differences of up to 5%. Figure 1 shows the set
of “A” as well as one mixture. The results for the C-class circles were similar to
the results of the A-class and are therefore omitted.

k-Means Analysis. A standard k-means clustering analysis was performed to
cluster the columns of the mixing matrix A. Figure 2 shows on the left the
mean overall error of 100 k-means analysis runs for 3 up to 63 clusters. It can
be seen that in this case this statistic gives no hint on the number of clusters in
the dataset. On the left side of the figure the mean number of wrong circles is
plotted. While the k-means analysis obviously clusters all the A-class circles in
one cluster up to an overall number of searched-for clusters of 10, it fails to do
so with an average error of almost 1 not-A circle. For more than 20 clusters this
error disappears, but at the same time A-class circles appear in other clusters.

Incomplete ICA. For this analysis the FastICA algorithm [6] was used. 1 up
to 63 components (data reduction via a preceding PCA) were searched in 100
runs for each analysis. As the ICA first had to de-mix the mixture of circles a
basic de-noising of the resulting components was necessary (every pixel with a
level of 70% was counted as activated).

On the left part of figure 3 we show the mean error of the decomposition
< e >=< 1− kcorr > against the number of components that were used for the
preceeding PCA, with the correlation coefficient kcorr of the column of the first
A-class circle in the mixing matrix A and the column of the estimated mixing
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Fig. 2. The figure on the left shows the overall mean error against the number of

clusters that were used for the k-means analysis. In the right figure the number of

wrong circles in the A-cluster (stars) and the number of A-circles in the wrong cluster

(crosses) are plotted against the number of clusters searched. It can be seen that within

this data set the k-means analysis fails to cluster the right circles, independent of the

number of clusters that were searched
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Fig. 3. The plot on the left shows the overall mean error against the number of PCA

components that were used for the incomplete ICA. In the plot on the right side the

number of wrong circles in the A-cluster (stars) and the number of A-circles in the

wrong cluster (crosses) are plotted against the number of PCA components. The clus-

tering with the incomplete ICA worked without flaw from 3 up to 31 PCA components

matrix of the A-cluster. The incomplete ICA obviously had no problem in finding
the right column of the mixing matrix for the class-A circles. On the right side
of figure 3 the plot for the number of falsely classified circles shows that the
algorithm worked well for 3 up to 31 used components, thus being remarkably
stable. For more than 52 components the ICA separated the single circles of the
A- and C-Cluster, as can be expected due to the setting of the data.

3.2 fMRI Data

The clustering algorithm was then applied to fMRI data of a modified Wis-
consin Card Sorting Test of one subject. This data set consisting of 467 scans



1072 I.R. Keck et al.

Fig. 4. The components that form the cluster of Figure 5, found in ICA1. The images

appear flipped

was created at the institute for medicine at the Research Center Jülich, Ger-
many, preprocessed to remove motion artefacts, normalized and filtered with a
gaussian filter to increase the signal to noise ratio. Spatial ICA was used for
the analysis so that the independent components correspond to activation maps
and the columns of the mixing matrix correspond to the time courses of this
activation. [11].

For the clustering with the incomplete ICA the data was first reduced via
PCA to 400 dimensions, so that almost all information was retained. Then the
(spatial) ICA1 was calculated using the extended Infomax algorithm. After this
step the (spatial) ICA2 was calculated, with the dimensionality of the data
reduced to 20. The 20 independent components of ICA2 were manually compared
to a cluster of activations found in the data set using a general linear model
analysis. Figure 5 (left) shows the component that was found to correspond this
cluster. Then all independent components of ICA1 were searched automatically
for activations in the same places. Figure 4 shows these components together
with their time courses. As can be seen in this figure the time courses of the
components differ in detail, while their sum closely follows the time course of
the cluster component of ICA2 (Figure 5 (right)). These components and their
time courses can now be analyzed further within the framework of normal brain
research to understand their connectivity and collaboration.
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Fig. 5. Left side: This cluster of activations was found in ICA2. The position of acti-

vations matches the activations found in a general linear model analysis of the data.

Right side: comparison of the time course of the cluster from ICA2 (solid line) with

the sum of the time courses of its components from ICA1 (circles)

4 Conclusion

We were able to show that with the presented algorithm the independent com-
ponents of a standard ICA can successfully be clustered depending on their
appearance in the mixtures. Our algorithm out-performs the k-means algorithm
with respect to the validity of the result in the toy data example and works well
for fMRI data. This can lead to new insights in the way the different parts of
the brain work together as our algorithm is a computationally cheap method to
cluster the interesting independent components in fMRI data analysis while at
the same time minimizing the manual work of the brain researcher.
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3. A. Meyer-Bäse, F.J. Theis, O. Lange, C.G. Puntonet, “Tree-Dependent and Topo-
graphic Independent Component Analysis for fMRI Analysis”, in Proc. ICA 2004,
volume 3195 of Lecture Notes in Computer Science, 782–789, Granada, Spain,
2004.



1074 I.R. Keck et al.

4. R. S. J. Frackowiak, K. J. Friston, Ch. D. Frith, R. J. Dolan, J. C. Mazziotta,
“Human Brain Function”, Academic Press, San Diego, USA, 1997.

5. A.J. Bell, T.J. Sejnowski, “An information-maximisation approach to blind sepa-
ration and blind deconvolution”, Neural Computation, 7(6), 1129–1159 (1995).

6. A. Hyvärinen, “Fast and Robust Fixed-Point Algorithms for Independent Compo-
nent Analysis”, IEEE Transactions on Neural Networks 10(3), 626–634 (1999).

7. S. Amari, “Natural Gradient Learning for Over- and Under-Complete Bases in
ICA”, Neural Computation 11, 1875–1883 (1999).

8. F.J. Theis, A. Jung, C.G. Puntonet, E.W. Lang, “Linear geometric ICA: Funda-
mentals and algorithms”, Neural Computation, 15, 419–439, 2003

9. A. Hyvärinen, E. Oja, “Independent Component Analysis: Algorithms and Appli-
cations”, Neural Networks, 13(4-5), 411–430, 2000.

10. A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, E. Moulines, “A Blind Source
Separation Technique Using Second-Order Statistics”, IEEE Transactions on Sig-
nal Processing, 45(2), 434–444, 1997

11. M.J. McKeown, T.J. Sejnowski, “Analysis of fmri data by blind separation into
independent spatial components”, Human Brain Mapping 6, 160–188 (1998).



A Hybridization of Simulated Annealing and
Local PCA for Automatic Component

Assignment Within ICA
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Abstract. Independent component analysis (ICA) as well as blind
source separation (BSS) often faces the problem of assigning the indepen-
dent or uncorrelated components estimated with ICA or BSS techniques
to underlying source signals, artifacts or noise contributions. In this work
an automatic assignment tool is presented which uses a priori knowledge
about the form of some of the signals to be extracted. The algorithm is
applied to the problem of removing water artifacts from 2D NOESY
NMR spectra. The algorithm uses local PCA to approximate the water
artifact and defines a suitable cost function which is optimized using
simulated annealing. The blind source separation of the water artifact
from the remaining protein spectrum is done with the recently developed
algorithm dAMUSE.

1 Introduction

Blind Source Separation (BSS) methods consider the separation of observed
sensor signals into their underlying source signals knowing neither these source
signals nor the mixing process. Considering biomedical applications, BSS meth-
ods are especially valuable to remove artifacts from the signals recorded. In many
biomedical applications quite a number of independent components have to be
determined with ICA algorithms and it is not a priori clear how many compo-
nents should be assigned to the signals representing artifacts. This is especially
obvious in 2D NOESY NMR proton spectra of proteins, where a prominent wa-
ter artifact distorts the recorded spectra considerably. Recently artifact removal
was considered using BSS techniques based on a generalized eigenvalue decom-
position (GEVD) of a matrix pencil [11], [7]. Replacing the GEVD with the
algorithm dAMUSE [12], [10], BSS and denoising can be achieved in one stroke.
The method is very efficient and fast and outperformed FastICA and SOBI in

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 1075–1082, 2005.
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all cases studied [9]. But, the estimated components related with the water ar-
tifacts had to be assigned by hand. With more than 100 estimated components
this turns out to become a rather tedious undertaking prone to be biased by
subjective judgements of the assignment criteria.

In this work we propose a local PCA approximation to the free induction
decay (FID) related with the water artifact. Hereby we explicitly use knowledge
about the form of the water FID and the fact that inevitably it will always dom-
inate the total FID of these systems. We formulate a suitable cost function to be
optimized by simulated annealing [3] to determine those underlying uncorrelated
components, which are estimated with dAMUSE [12] and are related with the
water artifact.

The following section introduces the new algorithm AutoAssign. To illustrate
the proposed method, it is applied to experimental 2D NOESY NMR spectra of
aqueous solutions of several protein fragments1.

2 Theory

2.1 BSS – Model and Signal Separation with dAMUSE

Given N complex sensor signals x(t1,n, t2,l) ≡ xn[l] sampled at L discrete
time instances, and arranged in a data matrix XN×L with N rows and L
columns, where the rows of the data matrix correspond to 1D free induc-
tion decays (FIDs) of the 2D NOESY experiment taken at N discrete evolu-
tion times t1,n ≡ [n], n = 1, . . . , N . Note that FIDs represent superpositions
of exponentially decaying sinusoids with different frequencies and decay con-
stants, called interferograms. Blind source separation (BSS) then relies on the
following linear mixing model x[l] = As[l] + ε[l] where l = 0, . . . , L − 1 and
x[l] = (x1[l], . . . , xN [l])T designates the observed signals (interferograms) sam-
pled at time instance [l], s[l] the underlying uncorrelated source signals (single
FIDs) , A the stationary mixing matrix and ε[l] an additional zero mean white
Gaussian noise term which is independent of the source signals.

A generalized eigenvalue decomposition using congruent matrix pencils may
be used to separate water artifacts, i.e. those FIDs originating from water proton
magnetic moments, from 2D NOESY NMR spectra of proteins [8]. It provides
the basis for the algorithm dAMUSE [12] used in this work. It solves the BSS
problem relying only on second order GEVD techniques using congruent matrix
pencils [13], [11]. The latter are formed with correlation matrices (Rx1,Rx2) of
zero mean sensor signals x[l], i.e. the observed FIDs. The algorithm dAMUSE
extends the GEVD using congruent matrix pencils to signals embedded in a high-
dimensional feature space of delayed coordinates to provide a means to perform
BSS and denoising simultaneously [10]. The method uses the concept of a tra-
jectory matrix borrowed from singular spectral analysis (SSA)[2]. Consider N
sensor signal components xn[l] comprising L samples, each row of the trajectory

1 We are grateful to W. Gronwald and H. R. Kalbitzer to provide those spectra.
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matrix [5] contains M delayed versions xn(l + (M − m)K),m = 0, .....,M − 1,
where K denotes the delay in number of sampling intervals between consecutive
rows and M gives the dimension of the embedding space. The total trajectory
matrix Xe of all N signals is formed by concatenating the component trajec-
tory matrices Xe

n according to: Xe = [Xe
1,X

e
2, . . . ,X

e
N ]T . After embedding, the

instantaneous mixing model can be written as Xe = AeSe where Se represents
the source signal trajectory matrix, Ae = An ⊗ IM×M is a block matrix and
IM×M denotes the identity matrix. The sensor pencil can be computed with
Rx1 = 〈Xe(Xe)H〉 and Rx2 = 〈ZZH〉 using the trajectory matrix Xe and a fil-
tered version Z = XeCH with C a circular convolution matrix and H denoting
the Hermitian conjugate [10].

The eigenvalues and eigenvectors of the congruent matrix pencil (Rx1,Rx2)
can be obtained via standard eigenvalue decompositions (EVD) applied in two
consecutive steps:

– Compute a standard EVD of the symmetric positive definite correlation ma-
trix Rx1 = VΛVH , i.e, the eigenvectors (vi) and eigenvalues (λi) and orga-
nize the eigenvalues in descending order (λ1 > λ2 > . . . > λq . . . > λNM ).
For denoising purposes, among others a variance criterion can be established
to retain only the largest eigenvalues exceeding a threshold parameter Θ [12].

– The transformation matrix can then be computed using the q largest eigen-
values and respective eigenvectors Q = Λ− 1

2 VH where Q is an q × NM
matrix.

– Compute the matrix R̃ = QRx2QH and its standard eigenvalue decompo-
sition: the eigenvector matrix U and eigenvalue matrix Dx

The eigenvectors of the pencil (Rx1,Rx2) form the columns of the eigenvector
matrix E = QHU = VΛ− 1

2 U which can be used to compute the output signals
as described in [12].

2.2 The Algorithm AutoAssign

Applying the BSS algorithms above to 2D NOESY NMR spectra to separate
the water artifact and other related artifacts from the protein spectra, the most
tedious task is to assign the uncorrelated components estimated to the water
signal. Because of erratic phase relations, up to 40 estimated components out of
128 or 256 need to be assigned to the water resonance. Hence an automated and
objective assignment procedure deemed necessary.

The idea is to embed the signal in a high-dim feature space of delayed co-
ordinates and to apply a cluster analysis to the columns of the corresponding
trajectory matrix. Within each cluster a local PCA is then performed to obtain
a low-dim approximation to the signals using only the most important principal
components to approximate the signals. The latter are then fed into a suitable
cost function which is optimized with simulated annealing.

Embedding and local PCA: Consider a signal xn[l] = (xn[l], xn[l + 1], . . . , xn[l +
(M−1)])T embedded in an M-dim feature space. Divide the space in kc subspaces
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N (k) using k-means clustering and center the signals in each cluster locally by
subtracting the cluster mean x̄(i)

n = (N (i))−1
∑

xn[l]∈N (i) xn[l], i = 1, . . . , kc.
Next a principal component analysis (PCA) is performed on each cluster sep-
arately. Then a local approximation x̃n[l] =

∑p(i)
j=1 αj [l]w

(i)
j + x̄(i)

n to the time
domain signal is computed, using only the eigenvectors wj to the p largest eigen-
values and αj [l] = xn[l] · w(i)

j and xn[l] ∈ N (i). This yields the new trajectory
matrix X̃n, the entries of which represent local PCA approximations of the orig-
inal signals

X̃n =

⎡
⎢⎢⎢⎢⎢⎣

x̃n[M − 1] x̃n[M ] . . . x̃n[L − 1]
x̃n[M − 2] x̃n[M − 1] . . . x̃n[L − 2]
x̃n[M − 3] x̃n[M − 2] . . . x̃n[L − 3]

...
...

. . .
...

x̃n[0] x̃n[1] . . . x̃n[(L − 1) − (M − 1)]

⎤
⎥⎥⎥⎥⎥⎦ (1)

The final global approximation 〈x̃n[l]〉[l], l = M − 1, ...., L − 1 is obtained by
averaging all entries at the same time instance [l] which lie along diagonals.

As the water FID provides the dominant contribution to each interferogram
observed, the approximation can be simplified further by retaining only the prin-
cipal component to the largest eigenvalue, i.e. xn,1[l] = α1[l]w1. The approxi-
mation thus contains the contribution from the water signal almost exclusively.

Simulated annealing: This approximation to the FID related with the water
artifact is then used to define a cost function E(β) =

∑L−1
l=0 (xn,β[l] − xn,1[l])2

to be minimized with simulated annealing [3]. The BSS approximation to the
water signal using the uncorrelated components estimated with the dAMUSE
algorithm is obtained as xn,β[l] =

∑
j βj(A)njsj [l] where a new configuration

β is generated by changing any βj randomly. A configuration is represented by
a vector β which contains as many components βj as there are sources sj . To
each source one element of β is assigned which can take on the values βj ∈ {0, 1}
only. The difference in the values of the cost function for the current and the new
configuration ∆E = E(βnew)−E(βold) determines the probability of acceptance
of the new configuration in the simulated annealing algorithm according to

P [βnew]
P [βold]

= min
{

1, exp
(
− ∆E

kBT

)}
(2)

After convergence, the configuration which best fits to the local PCA approxi-
mation of the water signal is obtained. Nullifying these components deliberately,
the water-artifact-free protein spectrum x̃n can be reconstructed using the re-
maining estimated source signals s̃n via x̃n = As̃n.

3 Results and Discussion

The algorithms discussed above have been applied to several experimental 2D
NOESY proton NMR spectra of proteins dissolved in water. A simple pre-
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saturation of the water resonance was applied to prevent saturation of the dy-
namic range of the analog-digital-converter (ADC). Every data set comprises 512
or 1024 FIDs S(t1, t2) ≡ xn[l] or their corresponding spectra Ŝ(11, ω2) ≡ x̂n[l],
with L = 2048 samples each, which correspond to N = 128 or N = 256 FIDs
evaluated at t1 ≡ [n]. With each increment of the evolution period also the
phase is incremented, hence only FIDs with equal phase modulations have been
considered for analysis. A BSS analysis, using the algorithm dAMUSE [12] in
combination with AutoAssign, was applied to all data sets.

3.1 Experimental Spectra

To test the performance of the algorithm AutoAssign in combination with the
algorithm dAMUSE we applied it the following four sets of 2D NOESY proton
NMR spectra of proteins dissolved in water:

– First we applied the algorithms to 2D NOESY proton NMR spectra of the
cold-shock protein TmCSP of the bacterium Thermotoga maritima. It rep-
resents a small globular protein with 66 amino acids [4].

– The spectra in Fig. 1 refer to the RAS-binding domain (RBD) of the protein
RalGDS. The domain forms a 87 amino acids long C-terminus of the latter
protein [1].

– The synthetic peptide P11 consists of 24 amino acids only and represents
the helix H11 of the human Glutathion reductase [6].

– Finally the 2D NOESY NMR spectra of the Histidine containing phospho-
carrier protein HPr of the bacterium Staphylococcus carnosus with 88 amino
acids have been analyzed.

In each case a number NIC = NPC of uncorrelated components has been esti-
mated using dAMUSE and Nw components have been automatically assigned
to the water artifact using the algorithm AutoAssign.

Table 1. Parameter values for the embedding dimension of the feature space of

dAMUSE (MdAMUSE) and localPCA (MlocalPCA), the number (K) of sampling in-

tervals used per delay in the trajectory matrix, the number of clusters (kc) used with

local PCA in AutoAssign, the number Npc of principal components retained after the

first step of the GEVD and the half-width (σ) of the Gaussian filter used in the algo-

rithm dAMUSE

Parameter TmCSP RalGDS P11 HPr

MlocalPCA 40 50 30 50
MdAMUSE 2 4 3 2
kc 2 2 2 2
NPC = NIC 168 168 148 396
Nw(dAMUSE) 46 56 46 160
σ 0.3 0.1 0.3 0.03
K 1 1 1 1
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Fig. 1. RalGDS: a)- 1D slice of the original 2D NOESY spectrum corresponding to the

shortest evolution period t1, b)- corresponding protein spectrum obtained by subtract-

ing the local PCA approximation to the FID of the water artifact from the total FID,

c)- corresponding protein spectrum reconstructed with the dAMUSE and AutoAssign

algorithms
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Table 2. Signal-to-noise ratios of the reconstructed spectra of TmCSP, RalGDS, P11

and HPr obtained dAMUSE and AutoAssign

SNR [dB]

TmCSP RalGDS P11 HPr
dAMUSE 19.3 21.9 21.9 19.8

To estimate a local PCA approximation of the water artifact, data have been
projected into a MlocalPCA-dimensional feature space and kc clusters have been
determined in feature space with a k-means algorithm. Also a Gaussian filter
with width σ centered near the water resonance in the 1D proton NMR spectra
has been used. The algorithm AutoAssign automatically identified a number Nw

of uncorrelated components which have to be assigned to the water artifact. The
algorithm dAMUSE was used to solve the corresponding BSS problem. Remem-
ber that the automatic assignment has been done with the FIDs corresponding
to the shortest evolution period only and it is assumed that this assignment
also holds for all other evolution periods as well. Note that all parameters have
been varied and optimal parameters have been selected according to the best
minimum of the cost function of the SA-algorithm. The parameters yielding the
best minimum of the cost function with the simulated annealing algorithm are
collected in Table 1.

With all experimental spectra the SNR has been determined relative to the
approximated protein spectra, which were obtained by subtracting a local PCA
approximation of the FID of the water artifact from the total FID as explained
in the theory section. Hence with all experimental spectra the corresponding
approximated spectra formed the reference against which the reconstructed spec-
tra have been compared. The SNRs of the reconstructed spectra obtained with
dAMUSE plus AutoAssign are summarized in Table 2. Fig. 1 shows a 1D slice of
the 2D NOESY NMR spectrum together with the approximated spectrum. The
local PCA yields a very good approximation of the contribution of the water
artifact to the total FID. After subtraction and Fourier transformation only a
small water peak remains in the resulting protein spectrum. The reconstructed
spectrum obtained with the algorithms dAMUSE and AutoAssign is also shown
in Fig. 1. Excellent results are also obtained with no intensity distortions of the
protein peaks of the spectra. Also all baseline distortions are perfectly straight-
ened out and even peaks very close to the water artifact are well recovered.
Comparable results are obtained with the other proteins as well but are not
shown because of space limitations.
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Abstract. Cerebral processing mainly relies on functional connectivity among 
involved regions. Neuro-imaging techniques able to assess these links with 
suitable time resolution are electro- and magneto-encephalography (EEG and 
MEG), even if it is difficult to localize recorded extra-cranial information, 
particularly within restricted areas, due to complexity of the ‘inverse problem’. 
By means of Independent Component Analysis (ICA) a procedure ‘blind’ to 
position and biophysical properties of the generators, our aim in this work was 
to identify cerebral  functionally different sources in a restricted area. MEG data 
of 5 subjects were collected performing a relax-movement motor task in 5 
different days. ICA reliably extracted neural networks differently modulated 
during the task in the frequency range of interest. In conclusion, a procedure 
solely based on statistical properties of the signals, disregarding their spatial 
positions, was demonstrated able to discriminate functionally different neuronal 
pools activities in a very restricted cortical area. 

1   Introduction 

Signal timing is essential for brain function. In order to understand the mechanisms 
sustaining human brain processing, it is crucial to obtain measures with the same time 
resolution of the cerebral processing itself: this is possible by studying directly the 
electrical neuronal activity.  Neurophysiological techniques (electro- and magneto-
encephalography, EEG and MEG) allow this investigation with the characteristic 
property to detect large neuronal synchronized pools activity. The main goal is to 
access information about underlying neural sources activity starting from the recorded 
EEG and MEG signals. Standard approach has been up to now to solve the so called 
‘inverse problem’, i.e. to use Maxwell’s equations, which codify the relationship 
between electrical currents and the generated electrical and magnetic fields, to 
calculate  spatial distribution of the intra-cerebral currents starting from the magnetic 
and/or electric field detected in an enough-wide extra-cephalic spatial surface. This 
problem does not admit a unique solution, i.e. many different current configurations 
induce the same field distribution. For this reason, it is necessary to pose 
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supplementary information, in order to define the generating currents [1]; the 
procedure provides position, intensity and direction of the modeled cerebral currents 
related to neural networks placed in different cerebral areas. Extensive reports have 
been devoted to show that neuronal networks with specific functional roles are highly 
interconnected one to each other in a distributed network [2] and cortical networks 
controlling for integrated tasks could be partially overlapping in space [3]. For this 
reason, modeling cerebral sources on the base of their positions limits the ability in 
studying the neural activity. Moreover, cerebral processing mainly relies on 
functional connectivity among involved regions, with changes in the synchronization 
of the neuronal firing rhythms [4]; if synchronization within a restricted cortical area 
is under investigation, differentiating different neural components on the base of their 
positions severely limits the evaluation.  

On the last decade, a class of feature extraction procedures not based on a priori 
assumptions on source spatial and physical properties, named blind source separation 
techniques (BSS) [5,6] was developed. This approach discriminates different sources 
on the base of the statistical properties of their generated signal. A subclass of 
algorithms is the Independent Component Analysis (ICA). The use of ICA algorithm 
is based on three assumptions: (1) the linear and instantaneous mixing of sources 
contribution to the sensors; (2) the existence of sources that are statistically 
independent from one another;  (3) the stationarity of the mixing process. The good 
applicability of the procedure on  recordings of electric and magnetic brain activity 
mainly stems from point (1), which is true without approximation. The main 
difference of the ICA procedure with respect to the inverse problem approach is 
contained in the discrimination criteria based on the probability distribution of the 
sources generated signal.  

ICA algorithms were successfully applied to EEG and MEG recordings mostly in 
order to identify and remove artifactual  from the physiological activities of interest 
[7]. By using ICA procedure, Makeig and colleagues [8] successfully provided 
answer to a long debated question, whether responses recorded from outside the scalp 
result from stimulus-evoked brain events or stimulus-induced changes in ongoing 
brain dynamics. This answer comes out from the ability of the ICA approach to 
extract single trial responses instead of identifying them by averaging out several 
responses; in this way the modulation of the continuous ongoing activity induced by 
stimulus processing could be assessed in detail.  

Aim of the present work was to demonstrate that ICA make us able to identify 
sources with different functional roles in a very restricted area, without a priori 
assumption on the model of underlying cerebral sources; to do this, the rolandic 
neuronal activity in the dominant hemisphere was focused, comparing a very simple 
hand motor task to rest state. Neuronal involvement during hand movement was 
assessed via a well established criteria of neuronal areas behavior: the on-going 
activity reduction during movement with respect to relax [9]. To strengthen 
consistency of this approach, by evaluating the test-retest reliability of the procedure, 
5 subjects were repeated 5 times in different days. Moreover, since it is always a 
major problem, both in the general theory and in real ICA applications,  how many 
and which among the estimated components (ICs) are to be selected and flagged as 
really describing different sources of activity, cluster analysis has recently been used to 
group ICs verifying the same flagging criteria; information theory distances [10,11] or 
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generalized Euclidean distance [8] have been the more frequent clustering measures 
used. In the present work, accordingly with our aim, a “functional” measure was 
introduced in a ICs clustering algorithm: a standardized Euclidean distance between “IC 
reactivity during movement with respect to relax” (defined in method section).  

2   Methods 

2.1   Experimental Setup 

Five healthy subjects (34 ±6 years; 3 male; right-handed) were enrolled for the study. 
Subject was required to lye on a bed, with open eyes in order to reduce the effects 

of the occipital spontaneous activity in the rolandic region. During a time interval of 4 
minutes, she/he was alternating periods of 20 sec in the two following conditions: 1) 
complete relax [Relax] and 2) opening-closing the right hand [Hand_movement] at a 
frequency of around 2 c/sec. The recording session was repeated for each subject five 
times in different days (mean intersession period 3 weeks). Brain magnetic fields 
were recorded by means of a 28-channel system [12] operating in a magnetically 
shielded room, the active channels being regularly distributed on a spherical surface 
(13.5 cm of curvature radius) and covering a total area of about 180 cm2. Recording 
apparatus was centred on the C3 position of the 10-20 International EEG system. Ag–
AgCl electrodes served for recording electrooculogram (EOG) and electrocardiogram 
(ECG) in order to control for eye blinking or cardiac interferences. Surface 
electromyographic (EMG) signal from right flexor digitorum superficialis muscle was 
acquired to monitor the hand movement and relaxation.  MEG and EMG data were 
sampled at 1000 Hz (pre-sampling analogical filter 0.48-256 Hz), and collected for 
off-line processing. 

2.2   Data Analysis 

The ICA algorithm ERICA [13] was applied on data recordings of each session for 
each subject,  with PCA pre-whitening and reduction; number of dimensions chosen 
to preserving at least 94% of total explained variance. The algorithm was applied on 
full length recordings, containing continuous successive periods of Relax and 
Hand_movement conditions. After ICs estimation, the ‘switching system’ described in 
Barbati et al. [7]1 was applied, in order to exclude non-cerebral activities, as for 
example eyes movements, cardiac artefacts or environmental noise. The output of the 
switching system resulted in a certain number of non-artefactual components coming 
from each session of each subject. Separately for each subject, a clustering procedure 
was adopted to identify ‘functionally distinct’ ICs groups. Input matrix for cluster 
analysis was constructed as follows: power spectrum density (PSD) difference 
between Relax and Hand_movement conditions for each IC was computed; the two 
frequency bands of interest: alpha (7.5-12.5 Hz) and beta (13-25 Hz) were selected,  

                                                           
1 In this application, with respect to procedure published in [7], the switching system did not 

use the ‘global kurtosis’ index and the threshold of  PSD correlation coefficient with EOG 
and ECG  was modified from the ‘maximum value’ to ‘greatest than 0.90’. 
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and the areas of the PSD difference in these two bands were computed (IC reactivity 
area). The clustering measure between two ICs was the 2-dimensions Standardized 
Euclidean Distance between “IC reactivity area" in alpha and beta. A hierarchical 
clustering algorithm based on average linkage was used to obtain a dendrogram for 
each subject. No a priori threshold was used to define the  final number of clusters. To 
test for repeatability of obtained clusters, i.e. to check whether they contained ICs 
coming from each session, a ‘repeatability score’ was defined as 1 if a cluster was 
present in at least all but one sessions, 0 otherwise. To assign a functional role to the 
identified clusters, a MANOVA analysis with between-subject factor CLUSTER was 
performed, considering as dependent variables the 2-D “IC reactivity area” in alpha 
and beta bands. Non repeatable clusters were excluded from the analysis. Correction 
for multiple comparisons was applied if necessary, i.e. if more than two repeatable 
clusters were present. On the basis of MANOVA post-hoc comparisons results, 
clusters were classified by the size of their alpha and beta means reactivities and 
labelled as “N=not reactive”, “L=low reactive”, “H=high reactive”. We defined a 
‘reactivity score’ by  assigning a score of 1 for N, a score of 2 for L, and a score of 3 
for H. Finally,  we computed a ‘total score’ by multiplying the ‘repeatability score’ 
with the ‘reactivity score’. Source labels were assigned for each subject on the basis 
of the ‘total score’ of the clusters: Mu was the greatest score, Alpha the second one, 
‘low/not reactive’ the third, ‘noise’ the 0-score.  

To describe spatial characteristics of the sources labelled as Mu and Alpha, the 
ICs belonging the respective clusters were separately retro-projected, so as to obtain 
the field distribution along time ( rec and rec). A moving equivalent current dipole 
(ECD) model inside an homogeneous best-fitted sphere was used; the ECD 
characteristic (spatial coordinates, strength and orientations) were calculated at 1 
ms intervals in 8 sec time epochs in the Relax and Hand_movement conditions. 
ECD coordinates were expressed in a right-handed Cartesian coordinate system 
defined on the basis of three anatomical landmarks2. ECD characteristic were also 
calculated in the same time epochs using the field distribution of original signals 
separately filtered in beta (Filt ) and alpha bands (Filt ), to somehow extract 
respectively activities related to the Mu and Alpha sources. To compare source 
positions related to these conditions to the marker of the hand sensory cortical 
projection, we recorded in the same sessions the evoked activity following the right 
median nerve stimulation. Standard parameters for nerve stimulation were used 
(interstimulus 631 ms, intensity adjusted to provoke painless thumb twitch). About 
200 artefact free trials were averaged to obtain the evoked response. Position and 
orientation  of ECD related to M20, the initial response deflection around 20 ms 
from the stimuli, were calculated.  

3   Results 

Reactivity during hand movement with respect to relax, i.e. the reduction of power 
during movement all over the frequency range between 2-45 Hz most evident in alpha 
                                                           
2 x-axis passing through the two preauricolar points directed rightward, the positive y-axis 

passing through the nasion, the positive z-axis consequently. 
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and beta bands, was clearly visible over the recording channels in all repetitions for 
each subject; we show one paradigmatic subject in Figure 1a.  

3.1   IC Extraction 

The IC extraction in the repetitions of the 5 subjects produced an average number for 
each session of 11 ± 3 ICs. The mean number of ICs automatically excluded in each 
session by the switching system was 5 ± 2, and the mean number of retained ICs that 
formed the input cluster matrix was 7 ± 2. Two subjects (S2, S5) had only four 
sessions. The total number of ICs given to cluster algorithm for each subject was 
respectively: 35, 28, 31, 32, 28. 

3.2   IC Clustering 

Although no a priori threshold was used to define the  final number of clusters, 
consistently 2-3 repeatable clusters (at least 4 out of 5 sessions or 3 out of 4) were 
 

Table 1. For the first two subjects, characteristics of the obtained clusters are reported in the 
first 4 columns; steps to assign source labels are reported in the last 4 columns 

Subject 
code 

Cluster 
identifier 

Cluster size Rep. Rep_Score 
 

Rec_score T_Score Source 
Label 

S1 C1 5 4/5 1 L 2 Alpha 
S1 C2 14 4/5 1 N 1 no_reac 
S1 C3 1 1/5 0 - 0 Noise 
S1 C4 15 5/5 1 H 3 Mu 
S2 C1 18 4/4 1 L 2 Alpha 
S2 C2 1 1/4 0 - 0 noise 
S2 C3 9 4/4 1  H 3 Mu 
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Fig. 1. In a representative subject (S1), the PSD in Relax (top) and during Hand_movement 
(bottom) are shown for original channel signals (a), Alpha retro-projected channel signals (b) 
Mu retro-projected channel signals (c). Note that in the original channel signals a clear 
reactivity is present in alpha and less in beta bands; in the retro-projected channel signals, 
activity is instead clearly decomposed in a factor with both frequency ranges low reactive 
(Alpha) and another with both frequency ranges high reactive (Mu) 
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found in each subject, with a cut-off around the 50% of the dendrogram maximum 
distance (Figure 2). A total number of 3 to 5 clusters resulted with this cutoff. Size 
and repeatability of each cluster for the first two subjects are reported in Table 1. 

3.3   Source Labelling  

MANOVA indicated in all subjects presence of clusters with significantly different 
reactivity (p<0.01 consistently for each subject). Post-hoc comparisons produced 
cluster reactivity sorting as defined in method section. Accordingly, clusters were 
scored from the lowest (‘reactivity score’=1) to the highest (=3, Table 1). On the base 
of this ‘reactivity score’ and the previously defined ‘repeatability score’ the clusters 
were flagged. All the ICs belonging the flagged clusters were considered to represent 
a cerebral activity source (Table 1). Alpha and Mu sources resulted both present in 
four out of five subjects. 

3.4   Labelled Source Localization 

No difference was found between ECD position and orientation in Relax with respect 
to Hand_movement conditions, for any of the retro-projected channel signals (µrec, 

rec) or filtered original data (Filt  and Filt ). Sources obtained from field 
distribution constructed by retro-projecting all ICs belonging to Alpha and Mu sources 
resulted much more concentrated in position and orientation than those from band 
filtering original data (Vol in Table 2).  
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Fig. 2. Dendrograms for the first two subjects. Horizontal dot line indicates cutoff value. 
Different symbols represent ICs coming from different sessions. Prototypical PSD in relax (fine 
line) and in contraction (bold line) for each repeatable cluster is depicted. Beside the 
physiological inter-subject PSD variability, it is clearly evident the presence of high- and low-
reactive ICs. In particular, Mu source reacted during Hand_movement with respect to Relax 
much stronger in alpha and beta bands with respect to Alpha source 
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Table 2. For the first two subjects, median across the 8 s of the ECD positions (x, y, z) and 
direction unitary vectors (px, py, pz) of signals referring to µrec, rec, Filt  and Filt .  M20 of 
the source activated at 20 ms from the median nerve stimulation at wrist is reported. In square 
brackets 5th and 95th  percentiles of the ECD coordinates are indicated. Volume of the cube 
containing 90% of ECD positions (side=95th–5th coordinate percentiles) is indicated in the 
four cases (Vol). Position and direction of µrec and M20 are highly consistent (mean distance 
19.6 mm), with the µrec   ECD anterior to M20 ECD (7 mm, paired-t test p=0.04) 

  position  direction 
  x (mm) y (mm) z (mm) Vol 

(cm3) 
px  py  pz 

M20 -43 4 90  .61 .45 .65 
µrec -40 

[-41,-34] 
7 

[-2,10] 
115 

[102,116] 
1 .29 

[.19,.52] 
.86 

[.65,.90] 
.43 

[.39,.55] 
rec -47 

[-55,-25] 
-41 

[-45,-40] 
108 

[107,113] 
1 .65 

[.46,.65] 
.17 

[.11,.66] 
.74 

[.59,.75] 
Filt 
  

-38 
[-82,-21] 

7 
[-42,23] 

89 
[47,119] 

285 .27 
[.03,.60] 

.83 
[.21,.94] 

.49 
[.22,.95] 

S1 
 

Filt  
 

-56 
[-97,-28] 

-4 
[-48,-12] 

98 
[44,140] 

238 .46 
[.07,1.00] 

.75 
[.18,.94] 

.53 
[.30,.97] 

M20 -45 0 105  .47 .83 .31 
µrec -34 

[-38,-33] 
4 

[3,10] 
99 

[94,108] 
1 .44 

[.33,.51] 
.68 

[.52,.78] 
.59 

[.52,69] 

rec -1 
[-15,11] 

2 
[-30,45] 

98 
[72,115] 

84 .26 
[.04,.91] 

.92 
[.11,.99] 

.28 
[.04,.59] 

Filt  
 

-29 
[-62,0] 

13 
[-35,37] 

103 
[58,126] 

304 .38 
[.09,.73] 

.72 
[.15,.93] 

.55 
[.26,.78] 

S2 
 

Filt  
 

-36 
[-74,-3] 

13 
[-27,23] 

110 
[44,136] 

327 .31 
[.04,.61] 

.81 
[.25,.96] 

.51 
[.22,.83] 

4   Discussion 

ICA has already been demonstrated able to identifying source time courses along the 
whole analysis period, allowing both the study of the modulation of continuous 
ongoing activity induced by the stimulus and extracting single trial responses instead 
of averaging out several trials, which introduces smoothing and loss of information. 
Present ICA and clustering procedure provided evidence that it is possible to separate 
neural sources with superimposed spectral contents and different functional behaviors 
in a very restricted cortical area. In particular, compatibly with the known strong 
inter-subject PSD variability, Mu source reacted during opening and closing the hand 
much stronger than the Alpha source in alpha and beta bands in all subjects; i.e., it 
was demonstrated, for the first time by extra-cranial recordings within a restricted 
cortical area,  that on the base solely of the statistical properties of the generated 
signal it is possible to identify neuronal pools activities with different functional roles. 
The result has been obtained by “flagging” the extracted ICs by a clustering procedure 
based on functional source properties, i.e. the reactivity to the motor task, 
disregarding spatial characteristics. Since cluster analysis is mainly a descriptive 
statistical tool, further tests were performed on obtained clusters to verify that they 
were  differently reactive at a statistically significant level in alpha and beta bands. It 
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remains an open question whether this, and others neurophysiological ICA and BSS 
applications results, are due to intrinsic statistical properties of different functional 
neuronal pools or to algorithmic limitations in obtaining perfect independence. A 
surprising side-effect in our application was that these broad-band activities 
generators displayed a more "dipole-like" magnetic field scalp distribution than the 
raw data, even though neither the locations of the sensors nor the biophysics of 
volume propagation figure into the ICA algorithm. This could represent an 
improvement when the involved source position is under investigation. The confirmed 
efficiency in automatically extract the non-artefactual ICs already applied by Barbati 
and colleagues [7],  promise to be very useful particularly  in whole-head helmet 
arrays recordings. In conclusion, evidences are provided that, from a physically 
restricted cortical area, ICA is able to identify functionally different neuronal pools 
activities, repeatable intra-subject, non-dependent on spatial location; the extracted 
cerebral sources obtained in this way are promising candidates for the evaluation of 
intra-regional synchronization during stimulus and task-specific processing. 
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Abstract. When using ICA for image separation, a well-known prob-
lem is that most often a large correlation exists between the sources.
Because of this dependence, there is no more guarantee that the global
maximum of the ICA contrast matches the outputs to the sources. In or-
der to overcome this problem, some preprocessing can be used, like e.g.
band-pass filtering. However, those processings involve parameters, for
which the optimal values could be tedious to adjust. In this paper, it is
shown that a simple ICA algorithm can recover the sources, without any
other preprocessing than whitening, when they are correlated in a spe-
cific way. First, a single source is extracted, and next, a parameter-free
postprocessing is applied for optimizing the extraction of the remaining
sources.

1 Introduction

In the recent past years, Independent Component Analysis (ICA) has been a fast
growing research topic; many algorithms have been developed to solve the ICA
problem. Though they share the same goal, all algorithms approach the problem
differently and may have different performances on specific applications. This
explains why new ICA contrasts are still developed nowadays. For instance, the
support width measure (SWM) has been recently suggested as cost function for
ICA; its main advantages are its theoretical convexity for bounded sources, its
geometrical interpretation and its simplicity [1].

A particular application of ICA is the blind separation of mixed images.
This application does not entirely fulfill the assumptions of the canonical ICA
problem, since natural images can be highly correlated, i.e. the sources are not
independent anymore. Consequently, it can be expected that usual ICA algo-
rithms would fail to recover the source images given only linear mixtures of
them. Indeed, even if exceptions seem to exist [2], two mixed images can be
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more independent than the dependent sources. However, several tools have been
designed to address this issue. The most efficient one seems to be filtering. In
that case, it is assumed that a frequency band exists, for which the source im-
ages are statistically independent. By filtering the raw image mixtures outside
this frequency band, new mixtures are obtained and processed by a usual ICA
algorithm. Once the latter has converged, the computed unmixing matrix is used
for separating the initial (unfiltered) mixed images [3].

Even if the previous method looks very efficient, additional parameters ap-
pear, like the cutoff frequencies and the order of the filter, which may be difficult
to adjust. For instance, finding the frequency band that makes unknown images
fully independent, starting from mixtures of them may be a tedious task. To our
knowledge, no simple and automatic method exists to solve this problem.

In this work, we propose to use the SWICA algorithm [4] for optimizing
the SWM cost function and for solving image separation problems without any
other preprocessing than whitening. The method is tested on a simple example,
involving two correlated source images (landscapes). SWICA is first applied to
extract a single source image. Next, it is modified to optimize the separation of
the second source image. Paradoxically, it is an apparently weakness of the SWM
criterion that allows us to separate correlated images without any filtering.

The remainder of this paper is organized as follows. Section 2 introduces
the SWM contrast and the corresponding algorithm (SWICA). Section 3 deals
with additional theoretical issues, whereas experiments are detailed in Section 4.
Finally, conclusions are drawn in Section 5.

2 ICA by Support Width Minimization

In order to make this paper self-contained, this section summarizes the SWM
criterion [1] and the related ICA algorithm [4] (SWICA).

2.1 The SWM Cost Function

Consider the linear mixing model x = As, where s = [s1, . . . , sn]T is a source
vector made of n independent and zero-mean random variables, A is a square
mixing matrix and x = [x1, . . . , xn]T is the vector of the mixtures. In general,
the mixtures are dependent and correlated, but it is easy to find a decorrelation
transformation V such that z = Vx satisfies the whiteness condition E{zzT } =
In. Next, if the sources are white, then an ICA algorithm can be run on the
whitened mixtures z in order to recover the sources. More formally, the ICA
algorithm identifies the orthogonal matrix W in the unmixing model s ≈ y =
Wz. The symbol ‘≈’ means that the transfer matrix C � WVA is equal to PD,
where P and D are permutation and scaling matrices, respectively.

Several methods exist to find W. One of them consists in minimizing the sup-
port width Ω(yi) of each estimated source yi, provided the sources are bounded
(i.e. the support of the source distribution Ω(si) is finite). In this case, it has
been shown that if the number of sample points is large enough, the SWM crite-
rion is convex. In other words, each local minimum of Ω(yi) satisfies ci = ±ek,
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where ci is the i-th row of C and ek the k-th row of In. This can be understood
by looking at the theoretical expression of Ω(yi), expressed as a function of the
source supports:

Ω(yi) =
n∑

j=1

ci(j)Ω(sj) , (1)

where the source supports Ω(s1), . . . Ω(sn) are positive and finite. The function
Ω(yi) can have a minimum only if ci = ±ek, i.e. when yi is proportional to a
source sj .

The support minimization of the output is illustrated in Fig. 1. The first
angle φ correspond to the rotation of the source resulting from VA while angle
ϕ is associated with the unmixing matrix W. The width D is shown when W
has not converged yet to a satisfactory unmixing matrix, i.e. Ω(y1) = Ω(w1z) is
not minimized yet. After convergence of the algorithm, we observe Ω(y1) = D′,
which corresponds to y1 ∝ s1; this minimum is global since in this example,
Ω(s1) < Ω(s2). A local minimum of Ω(y1) would be obtained if y1 ∝ s2.

Fig. 1. SWM: principle of ICA by finding directions with minimum support width

2.2 The SWICA Algorithm

SWM is a single-unit ICA criterion. For this reason, when several sources have
to be extracted, an algorithm based on a deflation approach must be used. In
addition, it must be mentioned that the SWM contrast (−Ω) is not differentiable,
thus making all traditional optimization procedures (fixed point, gradient ascent,
etc.) unusable. The algorithm we propose takes as input the whitened mixtures
and extracts the sources one after the other, by determining the corresponding
row of W. In order to keep W orthogonal, rows of W are seen as directions and
are updated accordingly. For this purpose, angular variations of the current row
wi towards another row wj are defined and noted as

wi↑j = cos(α)wi + sin(α)wj and wi↓j = cos(α)wi − sin(α)wj . (2)
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Such angular variations allow comparing the current value of the contrast
(−Ω(wiz)) to surrounding values (−Ω(wi↑jz) or −Ω(wi↓jz)). As the contrast is
not differentiable, a very simple optimization procedure is proposed. Briefly put,
for each row wi, the algorithm looks at the contrast value in each perpendicular
direction (wj with i + 1 < j < n), for both positive and negative angular varia-
tions. Then it updates W by rotating both wi and wj according to the highest
contrast value. Consequently, the algorithm keeps W orthogonal.

The only parameters of the algorithm are the convergence rate and the num-
ber of iterations. By construction, the algorithm is monotonic: the contrast is
either increased or kept constant. Similar algorithms using more sophisticated
techniques, like discrete gradient approximations (based on a 2nd-order Taylor
expansion) have been tried too. Unfortunately, they lead to worse results than
the simple proposed algorithm. In addition, they involve a larger number of
parameters that are tedious to adjust. More details can be found in [4].

3 SWM: An Extreme Statistics Contrast

Maximizing the contrast requires an estimation of −Ω(yi). If the number of
observations is large enough, the following estimator measures the support width
of a random variable u:

Ω̂(u) = max(u) − min(u) . (3)

This estimator works best for abruptly bounded variables. When tails of the
distribution are longer and less dense, as for platykurtic variables, the estimator
may fail to give a good approximation of the support, as illustrated in Fig. 2(a),

−5  5 

−5

 

5 

(a) Essential points for the esti-
mation of Ω(y1) are missing: the
source extraction failed

−5  5 

−5

5 

(b) Four points have been added
at the borders of the source JPDF
(located by the arrows); these ’ar-
tificial’ points allow SWICA to
extract the sources

Fig. 2. SWICA applied on super-Gaussian signals: scatter plots of the source signals

(dots) and of the outputs (circle)
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because there are not enough observations in ‘critical areas’ (the ‘corners of the
square’ in the figure). In this case, SWICA may be completely mislead: SWICA
has minimized the support of y1, but this output does not correspond to a
source. Of course, if four well-chosen observations are available (see arrows in
Fig. 2(b)), the problem disappears. This means that the SWM contrast may be
very sensitive to a small number of observations. Fortunately, the distributions of
the pixel intensities in an image are usually abruptly bounded, due to particular
implementation choices (small encoding range) and image properties (because
neighboring pixels often have similar values, there are usually few outliers).

4 Separation of Correlated Images

In this section, we show results of three ICA algorithms (FastICA [5], JADE
[6] and SWICA) used to separate two correlated images (correlation: 26%). The
source images are two gray-level landscapes (Fig. 3(a) and 3(d)); pixel intensi-
ties range from 0 to 255. A random linear mixing matrix and a decorrelation
transformation are then applied; mixed images are shown in Fig. 3(b) and 3(e)
(after translation and scaling to map the mixtures in the full range [0, 255], for
readability purposes).

When looking at the scatter plot of the source images in Fig. 5(a), it becomes
clear that they are not independent because the joint probability density function
cannot be factorized (for instance, look at several horizontal – or vertical –
conditional pdfs in the scatter plot: they are not equal to each other). As could be
feared, both JADE and FastICA fails to recover the source images (see Fig. 4(b)
and 4(c)).

In order to assess the extraction quality of the i-th source si, the ‘i-th per-

formance index’ is defined as PI(i) �
∑ n

j=1 ci(j)
2

maxj ci(j)2
− 1; a zero PI(i) indicates that

yi is proportional to a source, while a high PI(i) means that yi results from the
superimposition of several sources.

4.1 Extraction of the First Source

SWICA behaves rather differently than JADE and FastICA and recovers one
of the sources (Fig. 4(d)). The output scatter plot is a parallelogram and two
of its edges are parallel to the vertical axis: values of y1 computed by SWICA
nearly equal those of s1, since both marginal pdfs (initial sources and estimated
ones) along the horizontal axis coincide. Unfortunately, the two other edges of
the parallelogram are not parallel to the horizontal axis, meaning that y2 does
not correspond to the second source.

Understanding why both JADE and FastICA fail in this example is straight-
forward. Because source images are correlated, estimating independent sources
amounts to extracting their common but independent components. In the case
of two landscapes, these components are not the source images but new images
(e.g. comp. 1 could account for the shared soil/sky contrast whereas comp. 2
could account for varying trees, mountain and clouds).
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(a) Source 1 (b) Mixture 1 (c) Output 1

(d) Source 2 (e) Mixture 2 (f) Output 2

Fig. 3. Example of images separation using SWICA (cov=0.26); source images (a,d),

rescaled mixed images (b,e), rescaled extracted images (c,f)

Contrarily to other ICA contrasts, the SWM extracts a very limited piece of
information out of the marginal pdf of the currently estimated source y1: the
bounds. In our image application, bounds are particularly interesting parts of
the image distribution. Indeed, images may be assumed to involve three more
or less important parts: (i) a global shared shape, (ii) local independent details
and (iii) encoding techniques. The global shared shape leads to highly correlated
and dense spots in the scatter plot. On the other hand, local independent details
contributes to fill the scatter plot in a uniform but very sparse way. Finally, en-
coding technique generally produce saturation effects (towards full white and/or
black), which are independent (source images are independently encoded). Usual
ICA contrasts are especially sensitive to the global shape, which is dominating
in correlated images, and thus try to make the images independent. On the other
hand, SWM focuses on the bounds of the scatter plot: these bounds are generally
well drawn due to parts (ii) and/or (iii) of the images and contains most of the
independent features of the images. Of course, if parts (ii) and (iii) in the image
are negligible, the edge of the scatter plots disappear and SWICA is likely to
fail.

This explains why SWICA can match its first output y1 to one of the source
(see Figure 1). But why does SWICA fail to recover the second source image?
Actually, as for all ICA orthogonal contrasts, we whiten the mixtures before-
hand and then constrain the unmixing matrix W to be orthogonal. Unfortu-
nately, this constraint is too restrictive in our case and amounts to recover-
ing sources that are not correlated. More precisely, on one hand we know that
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(a) Normalized sources (b) FastICA (y1 vs y2); PI(1) =
0.246 and PI(2) = 0.449

(c) Jade (y1 vs y2); PI(1) = 0.497
and PI(2) = 0.687

(d) Swica (y1 vs y2); PI(1) =
1.3 × 10−4 and PI(2) = 0.063

Fig. 4. Scatter plots between normalized images. In (b)-(d), the plots of y1 vs y2 (dark)

are superimposed to the plot of the normalized sources (light gray)

E{yyT } = WE{zzT }WT = WWT = In because of the whiteness property. On
the other hand, we know that E{ssT } is not diagonal, which is contradictory.

4.2 Extraction of the Second Source

The above-mentioned arguments explain why one source can be recovered,
whereas the other ones cannot be recovered when the source images are cor-
related and W is constrained to be orthogonal.

In the easy case where n = 2, the second line of the W matrix given by
SWICA must be modified. Therefore, we minimize Ω̂(y′

2) = w′
2z, where w′

2 is
not constrained to be orthogonal to w1 anymore. In order to avoid converging
to y1, we take w2 as first guess for w′

2. This procedure is applied only on the
second output, without changing the first one, and allows separating the second
source, as shown in Fig. 5. This procedure can be extended for a larger number
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(a) Swica (y1 vs y′
2); PI(1) = 1.3×10−4

and PI(2) = 1.4 × 10−4
(b) Second output y′

2 after
mapping to (0, 255)

Fig. 5. Results after extraction of the second source image: the low PI(.) indicate that

both sources are recovered correctly

of source images, by deriving a deflation algorithm to correct the bias due to the
orthogonality constraint.

5 Conclusion and Future Work

In this paper, the SWM contrast is used to solve the ICA problem involving
correlated images. This approach is motivated by the unsatisfying results of
JADE and FastICA for the same problem, when no other preprocessing than
whitening, like filtering is used.

Regarding the separation of two correlated images, SWICA succeeds in re-
covering one of the images but prewhitening of the mixtures settles on W an
orthogonality constraint that jeopardizes the retrieval of the second source im-
age. To circumvent this problem, the orthogonality constraint is relaxed after
the first deflation step. In this case, both source images are recovered correctly.

Future work will compare the proposed approach to MSD ICA (multiresolu-
tion subband decomposition), a method that preprocesses the image mixtures
using filters. A second target is the development of a new version of SWICA,
without orthogonality constraint.
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Abstract. The authors propose a new solution to the blind robust wa-
termarking of digital images. In this approach we embed the watermark
into the independent components of the image. Since independent com-
ponents are related to the edges of the image, this method has a little
perceptual impact on the watermarked image. Besides, we exploit the
orthogonality of independent components and spread-spectrum gener-
ated watermarks in the blind extraction of the watermark. As extraction
algorithm we use a simple matched filter. We also improve this novel
method with standard techniques such as perceptual masking and holo-
graphic properties. Some experiments are included to illustrate the good
performance of the algorithm against compression, cropping, filtering or
quantization based attacks.

1 Introduction

Robust Watermarking (RW) of digital images [1] is one common solution to
protect owners rights. It consists of embedding another signal or mark into the
to be protected host image. We aim the watermark to be detected after severe
attacks. In addition, our watermark is designed to be transparent to the user
and we do not use the host image at detection, i.e., this is a invisible blind RW
approach.

In some RW approaches we embed the mark in the spatial domain. On the
other hand, we have methods working in a transform domain, such as the DCT
or the DWT. ICA has been recently applied to digital watermarking following
two main approaches. On the one hand, we have those approaches based on
the mixture of the host image, or some transform domain coefficients, and the
watermark [2, 3, 4]. In these methods, ICA is applied at detection to extract the
watermark. On the other hand, based on the original results in [5], we have
methods based on ICA as a transform domain where to embed the watermark
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[6, 7]. The authors in [6] develop a non-blind approach focusing mainly in the
detection stage by using non-linear techniques. In this paper we focus on simple
techniques in the embedding stage [7] such as spread-spectrum watermark, per-
ceptual masking and holographic methods, to greatly improve the blind method
in [5].

2 ICA in Image Processing

2.1 Independent Component Analysis

Independent component analysis (ICA) [8] consists of projecting a set of com-
ponents onto another statistically independent set. In the simple ICA, the l
entries of a sample t of a column vector sequence xt are projected into a space
of l components yt as statistically independent as possible. This projection is
represented by an l × l matrix B.

yt = Bxt (1)

Very much literature has been devoted to ICA algorithms. We will use here batch
algorithms that minimize the marginal entropies ME of the outputs [9]. These
algorithms have a good performance and are easy to use compared to gradient
based methods.

2.2 Application to Image Processing

There are two common applications of ICA to image processing. On the one
hand, we may assume we have l linear mixtures of l images. Therefore, we simply
need to reshape each mixture of images into a vector and then apply ICA to
separate them as in equation (1). The methods in [2, 3, 4] are based on this
approach. On the other hand, we have other approaches where only one image is
involved. These methods first decompose an image into components xt to later
apply ICA [10]. Afterwards, any image processing technique may be applied to
these, so computed, independent components (IC) [11]. Notice that each row
of B provides one independent component (an entry of vector yt). Therefore,
if we reshape each row of B into a matrix, we obtain a set of 2-dimensional
basis functions. These basis functions, also regarded as patches or features, are
closely related to well-localized and oriented Gabor filters [8]. Some other authors
suggest these basis functions to be the edges of the image [10], [12], or even to
model the receptive fields of the primary visual cortical neurons [8]. An analysis
of the image ICA components shows that many independent components are
sparse distributed and that only some basis functions are needed to represent
the image. Besides, the probability of independent components having small
amplitudes is high, but large amplitudes occurs as well [8]. In [11] these features
are used to compress or encode an image. Basic compression algorithms exploit
these ideas as they retain only the independent components with larger energy. In
addition, the authors in [11, 13] show that groups of images with similar features
may be restored from a common set of basis (rows of matrix B). Particularly, the
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projections B computed for one image can be used in the processing of another
one of the same class (text images, natural scenes,...).

The IC of an image I can be computed as follows. Assume matrix I be a
gray-scale image of size n × m.This matrix can be divided into k × k blocks or
patches [8] Cp,q to reshape them into vectors xI

t where t = (p − 1) · m/k + q.
The rows of xI

t may be then projected onto l = k2 independent components,

yI
t = BxI

t t = 1, . . . , mn/k2 (2)

In Fig. 1 we show the spatial basis functions computed for k = 8 and Lena
Image (256 × 256). Each row matrix of the separating matrix B was reshaped
into a 8 × 8 image. They were arranged row wise in descending order of energy,
i.e., those basis functions (rows of B) providing independent components with
larger variance are located at the top rows. The top-left corner basis allows to
represent the DC component of every 8× 8 patch of the image. Notice also that
the first rows are the basis functions to build the borders of the image. Besides,
the last ones provide low energy components, details of the image.

3 Watermarking with ICA

Having the previous ideas in mind, we propose a new algorithm as follows. Firstly,
the edges of the images are the candidate areas where to embed the watermark
if we aim it to be imperceptible. Since some of the ICA basis functions are the
edges of the images, by embedding the watermark in the associate IC we improve
the invisibility of the mark. Hence, at a given PSNR, our watermark will be more
imperceptible than the one embedded by using, e.g., DCT coefficients. Secondly,
we may use a common public set of basis or rather use, following the ideas in
[11, 13], our own private ICA projection. Hence, we fulfill one of the Kerckhoffs
[14] principles, even if the attackers know we embedded the watermark using
ICA they still do not know the exact projections. In addition, this privacy of
the embedded watermark can be improved if we recall about IC tending to be
sparse. In Fig. 2 we depict the power spectral density (PSD) for the independent
components number 1 (Fig 1a) , 5 (Fig 1b) and 9 (Fig 1c) computed for the
image of Lena with k = 3. As the IC have been arranged in descending order of
energy, we have the DC component in Fig. 2a. IC number 5 in Fig. 2b has a white
noise-like frequency response. Finally, the last IC has a high frequency response.
In this paper we propose to use spread-spectrum watermark, with flat frequency
response, to be added to the middle IC. This way we improve the robustness
against any frequency based watermark filtering and most important, we en-
sure a low cross correlation between the IC and the watermark allowing blind
detection by using a simple matched filter. Finally, the spread-spectrum water-
mark can be generated using a circular convolution with the bits of copyright
information. This way we embed every bit into every pixel of the image, improv-
ing the robustness against some attacks such as cropping. We next describe the
algorithm in detail.
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Fig. 1. Example of basis functions for k = 8
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Fig. 2. Power spectral density for independent components number 1 (a), 5 (b) and 9

(c) of the Lena image for k=3

3.1 Embedding

In Fig. 3 we include a scheme for a ICA based RW algorithm. We first will
describe the basic steps of the embedding method to later discuss on its particular
features. The embedding method yields
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Fig. 3. ICA based robust watermarking algorithm

Algorithm 1: Embedding.

1 Image to column vectors. Compute the components xI
t of the n × m host

image I using k × k blocks.
2 ICA components. Compute its IC, yI

t = BxI
t , using an ICA projection B,

the key of the insertion method.
3 Insertion. Compute the IC of the marked image, yV

t , by updating yI
t with

the watermark, W .
4 Restoration. Restore the (watermarked) image V from components xV

t =
B−1yV

t .

As already dicussed, we propose the ICA projection B computed for an image
of the same kind as a private key. We use this matrix B in the watermarking of a
group of (e.g. same owner’s) images. Regarding the watermark, in [5] we used an-
other image as watermark. In this paper we embed a spread spectrum mark, i.e.,
a message (the copyright information) “modulated” by means of spread spec-
trum techniques (SS) [1], hiding every bit of the message over the entire image
(”holographic” property). Hence we endow the method with robustness against
cropping and better synchronization properties [15]. We propose to design the
watermark to have the size of one component, n/k × m/k. This watermark is
computed as the circular convolution of a key-dependent pseudorandom image
P and an image containing the bits of the message Q

W = P ⊗ Q (3)

Let’s M be a p × p matrix whose pixels are the bits of the message. We define
matrix Q as follows

Q(i, j) =
∑
rs

M(r, s)δ(i − r · nr/2, j − s · nc/2) (4)

where nr = n/(k · p) and nc = m/(k · p). Therefore, matrix Q is a zero valued
matrix except for the bits of the message, located at the center of each nr × nc

block. Once we have the watermark, we perform a perceptual masking based on
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edge detection [16] to improve the invisibility of the watermark. Now we have
the watermark ready to be embedded.

By arranging the IC components yt(i), i = 1, ..., k2 in descending order of
magnitude we have the low frequency, the medium frequency and the very high-
frequency coefficients, in this ordering. Next, we reshape the watermark into
a row vector, yW

t , and add it to the first r host image IC, yV
t . Similarly to

other frequency transform watermarking algorithms [1], we propose to embed
the watermark in the r most significant IC, excluding the first one. The first IC
is important since it is the low pass component and it is the more robust one to
compression. However, since it is not orthogonal to spread-spectrum watermarks
we cannot easily blindly extract the mark by using simple detectors. We update
the host IC as follows

yV
t (h) = yI

t (h) + αhyW
t h = 2, . . . , r (5)

where αh is a scaling factor to control the perception of the watermark. Other
techniques such as the multiplicative or exponential approaches are possible
[1]. In [5] we proposed a replacement of high-frequency components instead.
However, these components can be easily removed by a simple, e.g., compression
of the watermarked image.

3.2 Detection

In the detection of the watermark W from the (attacked) watermarked image
V we go back on the steps of the embedding Algorithm 1, as illustrated in Fig.
3. The watermark detection yields

Algorithm 2: Detection.

1 Watermarked image to column vectors. Compute the components xV
t of the

watermarked image V by dividing it in k × k patches.
2 ICA components. Compute the IC, yV

t , of the image as yV
t = BxV

t .
3 Extraction. Extract the watermark from yV

t .
4 Detection. Estimate the message and the probability of watermark detection.

Since we use a SS watermark, detection can be easily achieved by simple corre-
lation, i.e., by using a matched filter. We first compute the IC of the watermarked
image yV

t = BxV
t . Then we average all components h : αh �= 0, improving the

signal (watermark) to noise (image+attacks) ratio,

ŷW
t =

∑
h:αh �=0

yV
t (h) (6)

and reshape the resulting vector into matrix Ŵ . Finally, we estimate the copy-
right message by computing matrix Q in (4) as

Q̂ = P ⊗ Ŵ S (7)
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Table 1. Averaged bit error rate for different attacks and images performed on ICA

and DCT watermarked images, PSNR=41 dB

Attack BER ICA

AWGN 0.0243

Quantization 22 levels 0

Median (5×5) 0.0104

JPEG 20 % 0.0747

Cropping 10% 0.0278

where S denotes symmetry (W S(i, j) = W (j, i)). The values of the peaks of
this convolution are the bits of the message. The probability of detection can be
easily estimated by comparing these peaks to the rest of pixels modeled as zero
mean Gaussian noise.

4 Experimental Results

We next include an example of robust watermarking applied to nine 512×512
intensity images. We first computed xI

t with k = 3 and then the IC of the
image as yI

t = BxI
t , where matrix B was the one obtained for another image.

The watermark was generated as the spread version of a 2-dimensional message
of 8 × 8 bits. The watermark was added to the IC of the image number h =
2, 3, 4, 5, 6. The final peak signal-to-noise ratio (PSNR) was 41 dB. At this point
we must emphasize that for 41 dB the visual perception of the watermark in the
DCT approach was much more significant than in the ICA method. Besides, it
as been further improved by means of a perceptual mask.

We performed the following attacks and obtain the averaged bit error rate
(BER) included in Tab. 1. We first added white Gaussian noise with standard
deviation σ = 0.15, we requantized the image to 22 levels, then we applied a
3 × 3 median filter, the image was also JPEG compressed to 20% of its original
size and finally we cropped the 90% of the image.

5 Conclusions

In this paper we propose a new blind robust image watermarking algorithm,
where we embed the watermark into the independent components of the image.
The orthogonality between spread spectrum signals and IC is exploited in this
novel blind design. This method has a little perceptual impact compared to the
DCT approach. Besides, we propose a double-key algorithm, where the ICA
projection and the spreading codes are needed in the retrieval of the watermark.
We show that by introducing some useful and simple features in the embedding



Robust Blind Image Watermarking with ICA 1107

stage we greatly improve the performance of the method. These are the use of a
perceptual mask and the holographic approach. In the experiments included we
illustrate the good performance of this method.
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Abstract. This paper proposes a new controller based on neural network and 
fuzzy logic technologies for load frequency control to allow for the 
incorporation of both heuristics and deep knowledge to exploit the best 
characteristics of each. A “Dynamical Fuzzy Network (DFN)” that contains 
dynamical elements such as delayers or integrators in their processing units is 
used in the adaptive controller design for load frequency control. A DFN is 
connected between the two area power systems. The input signals of the DFN 
are the ACEs and their changes. The outputs of the DFN are the control signals 
for the two area load frequency control. Adaptation is based on adjusting 
parameters of DFN for load frequency control. This is done by minimizing the 
cost functional of load frequency errors. The cost gradients with respect to the 
network parameters are calculated by adjoint sensitivity. In this paper, it is 
illustrated that this control approach is more successful than conventional 
integral controller for load frequency control in two area systems. 

1   Introduction 

Load frequency control (LFC) is the one of major requirements providing reliable and 
quality operation in multi-area power systems. For satisfactory operation, constant 
frequency and active power balance must be provided. As frequency is a common 
factor throughout the systems, any change in active power demand/generation at 
power systems is reflected throughout the system by a change in frequency.  

Two important technologies, which provide good results in load frequency control 
in power system, are neural networks and fuzzy logic control/decision systems that 
are excellent at developing human-made systems that can perform the same type of 
information processing that our brain performs. In the literature many neural networks 
and fuzzy logic investigations for load frequency control in power systems have been 
presented. In [1], fuzzy logic is used for gain scheduling of PI controllers to control 
the area load frequency. The control scheme adopts a formulation for the area control 
error, which always guarantees zero steady state time error and inadvertent inter- 
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change. This study was developed in [2] based on the refined genetic algorithm 
(RGA) to tune the membership functions and rule sets for the fuzzy control of a two-
area interconnected power system. The work [3] used a two-layer fuzzy controller for 
efficient load frequency control. The first one is the pre-compensator, to generate and 
update the reference value of area control error (ACE), while the second one is a 
feedback fuzzy controller, to make the ACE decay to zero at steady state. The study 
[4] aims to develop a nonlinear neural network controller to control the deviations in 
load frequency of a power system and to overcome the problems of simple neural 
networks such as long training times and requirements large number of neurons.     

This paper proposes a new controller based on neural network and fuzzy logic 
technologies for load frequency control to overcome these drawbacks and may also 
allow for the incorporation of both heuristics and deep knowledge to exploit the best 
characteristics of each. A “Dynamical Fuzzy Network (DFN)” [5-7] that contains 
dynamical elements such as delayers or integrators in their processing units is used in 
the adaptive controller design for load frequency control. 

2   Two Area Load Frequency Control  

In interconnected power system with two or more areas, the generation within each 
area has to be controlled so as to maintain scheduled power interchange [8]. Load 
frequency control scheme have to be on two main control actions: i) Primary control 
and ii) Secondary control. 

Primary control is achieved by turbine-governing system. In this level, only active 
power is balanced and steady state frequency errors can occur. In multi-area power 
systems, frequency must be equal and must be hold a rated value at all areas. So, the 
second control action is realized in large power systems that include two or more 
areas. Active power is controlled at the tie line between neighbor areas. Especially, 
large power plants at these areas join to frequency control. Nowadays computer-aided 
controllers realize this action. Fig.1 shows primary and secondary control action. 

Simulated system consists of an interconnection of two power areas. For the 
simulations, linearized mathematical model given in Fig.2 is used. This model includes 
classical integral secondary controller and its parameters are given in Appendix. 

3   The Architecture of a Dynamic Fuzzy Network   

DFN model has been used in the meaning of a network that has unconstrained 
connectivity and has dynamical elements in the fuzzy processing units. The 
processing unit in the network is called “feuron” [6,7]. The feuron represents a single 
dynamic neuron with fuzzy activation function. The dynamic feuron resembles the 
biological neuron model. This model fires if the inputs of feurons are excited enough. 
The firing procedure is done through a lag dynamics such as Hopfield dynamics. 
Fuzzy activation function φ behaviors as biological neurons which have receptive 
field units in the visual cortex, in part of the cerebral cortex and in outer parts of the 
brain [9-11]. 
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Fig. 1. Primary and Secondary Load Frequency Control in a Power Generation Unit 

     

 

 
 
 
 
 
 
 
 
 
 
 
  

Fig. 2. Block Diagram for Two Area Power Systems with Secondary Control 

The computational model of DFN is given in the following equations; 
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In general, there are L input signals, which can be time-varying, n dynamic feuron 
units, n bias terms, and M output signals. The units have dynamics associated with 
them, and they receive input from themselves, bias term and from all other units. The 
output of a unit yi is a fuzzy activation function φ(xi) of a state variable xi associated 
with the unit. The output of the overall network is a linear weighted sum of the unit 
outputs. The bias term bi is added to the unit inputs. pij is the input connection weights 
from jth input to ith feuron, wij is the interconnection weights from jth feuron to ith 
feuron and qij is the output connection weights from jth feuron to ith output. Ti is the 
dynamic constant of ith feuron and bi is the bias (or polarization) term of ith feuron.  
is the parameters of fuzzy activation function which are centers c, spreads  and 
output centers a. The initial conditions on the state variables xi(0) must be specified. 

This model (DFN) approximates physical dynamic nonlinear systems [6,7]. An 
example of DFN open diagram with two-input/two-output and two-feuron is shown 
in Fig.3. 
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Fig. 3. The state diagram of a DFN with two-feuron two-inputs/two-outputs 

4   Adaptive Load Frequency Control 

Adaptive load frequency control is done by a DFN connected between two area power 
systems as seen in Fig.4. The input signals to the DFN are the ACEs and their 
changes. The outputs of the DFN model are the control signals for the two are load 
frequency control. Adaptation is based on the DFN training that is adjusting 
parameters of DFN for load frequency control in power systems with Broyden-
Fletcher-Golfarb-Shanno (BFGS) gradient algorithm [12]. The cost gradients with 
respect to the network parameters are required for this algorithm. The focus in this 
paper has been adjoint sensitivity analysis for calculating the cost gradients with 
respect to all DFN parameters. 
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As a performance index or cost structure is selected in the simple quadratic form as 
follows: 
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where e(t)=z(t)-zd(t) is error function for the load frequencies of the power system. 
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The size of adjoint vector is n and is independent of network parameters. There are 
n quadratures for computing the sensitivities. The integration of the differential 
equations must be performed backwards in time, from tf to 0. Let p be a vector 
containing all network parameters. Then, the cost gradients with respect to parameters 
are given by the following quadratures: 
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5   Simulation Results  

In simulation examples a DFN with two feurons (Fig.3) were trained for load 
frequency control. In this level, a step disturbance of 5% is applied to system power 
input of linearized block diagram shown in Fig.4. Under these conditions, DFN was 
trained offline and interconnection parameters and time constants of the DFN were 
obtained as: 
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During the disturbances, frequency variations of all areas and changing in power 
flow at tie line for conventional and proposed controller after training DFN are 
illustrated in Fig.5 and Fig.6, respectively.  

In the second case, parameter adjustment of the DFN was done online. To show the 
efficiency of this approach, we only update the parameter value of q12 in the 
simulations for the case of 10% increase in input power of area A. After training, the 
value of q12 is increase form 0.946 to 1.034. As we see from Fig.7, the control 
application is again successful. 
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Fig. 5. Frequency Change in a) Area A b) Area B (5% step change, DFN solid line, Integral 
dotted line) 



1114 Y. Oysal, A.S. Yilmaz, and E. Koklukaya 

 

0 10 20 30 40 50 60 70 80 90 100
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Time(s)

dP
T

ie

Deviation of Tie Line Power
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Fig. 7. Frequency Changes in a) Area A, b) Area B (10% step change, DFN solid line, Integral 
dotted line) 

6   Conclusion 

An alternative and successful controller for load frequency control is proposed. 
Simulation results prove the robustness and effectiveness of the proposed adaptive LFC 
scheme over only the conventional integral control system due to fast response with less 
overshoot and/or undershoot. It is also seen from the simulations that, the proposed 
controller causes less frequency drop than integral controller and oscillations in 
frequency rapidly damp out. Proposed networks can be easily trained and adapted to 
different disturbance cases online. There is one other important motivation for 
investigating dynamic fuzzy networks for load frequency control in power systems is 
that they suggest a simple hardware implementation. It is the simple and plausible VLSI 
implementation for a continuous-time dynamic fuzzy network [10,15]. 
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Appendix 

Mathematical Model for Turbine-Governor Systems  
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For simulated systems, time constants are as follows : 
TT1=TT2=0.3 s, TTT1=TTT2=20 s, KT1=KT2=0.3335, TG1=TG2=0.2 s, R1=R2=2.43, 
B1=B2=0.425, KP1=KP2=120, TP1=TP2=20s. 
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Abstract. In this paper the knowledge extraction from neural and fuzzy
models, and the quality and the explanation capacities of this knowledge
are tracked. Nowadays the application of algorithms and methodologies
based on artificial neural networks and fuzzy logic are very usual in most
of the scientific and technical areas in order to generate models driven
by data. But sometimes to obtain a good model by these techniques
is not enough when some explanations about the model behaviour are
mandatory, and these models are very near, most of the cases, to ”black
boxes” or its explanatory capacity is very poor. In literature, several
methods are been published in order to extraction, simplification and
interpretability of the knowledge stored in these types of models.

In this paper a real problem is involved: to model an AC motor on
several functioning modes (faults) by several neural/fuzzy approaches,
making a comparison on the knowledge extracted from each one: Feed-
forward network + Backpropagation, Substractive Clustering + ANFIS,
FasArt and FasBack.

1 Introduction

The subject of this paper is to study the knowledge extracted from some net-
works and neuro-fuzzy systems by a set of fuzzy rules about fault modes of an
AC motor, that have been learnt by these systems in the learning stage. In ac-
cordance with this, the motor behaviours have been stored in the structure and
weights set of each neuro/fuzzy system employed. If this information is extracted
and interpreted then the neural networks would not be considered as black boxes
because they could explain that has been learnt, discovering in a ”friendly” way
the information structure hidden in the data.

If a compact and interpretable fuzzy rule set was possible from data then the
application of softcomputing techniques on several problems will be improved,

� Corresponding author. This work has been supported by the national research agency
of Spain (CICYT) through the project DPI2003-09373.
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even will be factible. A process from a numeric level to a symbolic level is involved
using neuro-fuzzy systems and a knowledge extraction is made.

This process can involve two tasks: extraction and refine on the fuzzy rules.
In literature there are a lot of approaches for both tasks. The refinement is very
relevant when “fuzzy modelling” is involved due to this approach permits to
reach a good accurate models but their transparency and interpretability are
very low, opposite to the “linguistic modelling”.

In this paper several known artificial, neuro and neuro-fuzzy networks have
been used to studying the quality of their learnt and extracted knowledge by
themselves, when they have been applied to the functioning modes of a real AC
motor:

– Subtractive Clustering + ANFIS (Chiu, 1994; Jang, 1993), this system works
as a Sugeno fuzzy system.

– Feedforward network (Haykin, 1999), that is the well-known multilayer per-
ceptron training with backpropagation algotrithm (Castro et al., 2002).

– FasArt (Cano Izquierdo et al., 2001; Sainz Palmero et al., 2000) and FasBack
(Cano Izquierdo et al., 2001), that can be considered similar to a fuzzy
logic system with fuzzyfication by simple point, inference by product and
defuzzification by average of fuzzy set centers.

These models can be interpreted as fuzzy logic system but in the feedforward
case, here the method proposed in (Castro et al., 2002)has been used in order
to obtain a fuzzy rule base.

The paper is organized as follows: first a introduction to knowledge extraction
and its main concepts is made. Then the description of the AC motor plant
is introduced and the main results obtained are discussed. Finally, the most
relevant conclusions obtained from this work are set out.

2 Knowledge Extraction

One of the most interesting, and in some cases mandatory, aspects of the neu-
ral networks is the extraction, refinement and interpretation of the knowledge
learnt and stored during the training stage by the neural network. In (Mitra and
Hayashi, 2000) and (Andrews et al., 1995) a survey about the rule extraction
methods from neural networks and neuro-fuzzy systems is made.

The term rule generation usually includes rule extraction + rule refinement:

– Rule extraction, the way or algorithm to get some expression type about
the knowledge from the neural networks using the information about them:
weight sets, units, links, etc...

– Rule refinement, this extracted knowledge can be very rough, containing
redundancies, incoherencies, etc. so a ”depuration” process has to be con-
sidered.
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Some popular criteria can be taking in account to evaluate this type of meth-
ods (Taha and Ghosh, 1999):

– Granularity, details about ”taking decisions” of the system.
– Comprehensiveness: amount of embedded knowledge captured by the rules.
– Compressibility: number of rules and number of premises in each extracted

rule.
– Transparency of the extracted rules: how well the decisions or conclusions

are explained.
– Portability of the extraction method.
– Modifiability, updating of the rules from a retrained network.
– Refinement capability.
– Stability and robustness.
– Complexity and scability: computational issues.

The interpretability of the rules is based on the completeness and distin-
guishability that permit to assign a clear meaning to each fuzzy set (Jin and
Sendhoff, 2003). These two conditions are expressed in:

γ1 < Similarity(Ai, Ai+1) < γ2 (1)

if γ1 is small but no zero then the completeness is guarantee, and if γ2 is
different enough than 1 then a good distinguishability is reached.

In general most of the methods are focused on particular networks and prob-
lems. Here, the extraction of rules from the considered neuro/fuzzy systems have
been made by descompositional (Mitra and Hayashi, 2000) approach, and the
criteria have been:

– Quality: accuracy, rule number, etc.
– Interpretability and expressive power
– Refinement capability
– Method complexity.

3 Extraction Fault Rules from AC Motor Models

The AC motor has been modelled on several functioning modes in order to
generate some rule sets, fuzzy rules mainly, describing these motor modes by a
comprehensible and interpretable way. The above mentioned neuro/fuzzy sys-
tems have been used to make this propose and to test the capacities from each.

Laboratory Plant. The motor laboratory plant is composed by two Leroy-
Somer motors of induction with threes phases, 4 poles, 28 rotor bars and 36
stator slots and a power of 5.5 Kw. The power supply frequency is 50 Hz and a
delta connection is employed in the motor. Several sensors have been applied to
each motor in order to achieve as fine monitoring as possible: voltage, current,
temperature, magnetic flux, optical encoders, etc.
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Table 1. RMS Error and rule number from each neural/fuzzy system and each AC

motor mode

S.C. + ANFIS FasArt FasBack Backp.

Mode Error N. Rules Error N. Rules Error N. Rules Error N. Rules

NF 0.00 7 0.01 9 0.01 7 0.01 6

RV1 0.01 5 0.01 4 0.01 4 0.03 5

RV2 0.01 5 0.01 5 0.02 5 0.04 5

RV3 0.01 5 0.01 7 0.01 7 0.03 5

VS1 0.00 12 0.02 6 0.04 4 0.42 5

VS2 0.02 4 0.01 4 0.02 4 0.36 5

VS3 0.01 4 0.02 4 0.02 8 0.31 5

CS1 0.00 6 0.03 4 0.03 4 0.14 5

CS2 0.00 13 0.02 4 0.03 6 0.06 5

CS3 0.00 10 0.02 4 0.03 4 0.04 5

PS1 0.00 12 0.02 6 0.04 7 0.08 5

PS2 0.01 5 0.03 8 0.03 9 0.20 5

PS3 0.01 8 0.05 8 0.10 9 0.04 5

The experiments of this work have involved only non destructive faults due
to economic costs of the destructive ones. Faults in the plant and faults in the
sensors have been considered, in total 13 types of faults have been generated:

– Plant:
• Normal functioning (NF).
• Important unbalanced power supply in each of the three phases (PS1,

PS2, PS3).
• Resistor stator variation (∆) (RV1, RV2, RV3).

– Sensors:
• Fault in the angular speed encoder.
• Fault in voltage sensor in each phase (VS1, VS2, VS3).
• Fault in current sensor in each phase (CS1, CS2, CS3).

The input variables employed are: the 3 phase currents (I1, I2, I3), the 3 phase
power (V1, V2, V3) and the out power (torque). These variables were chosen due
to be the most direct, simple and known features so more intuitive ones.

The data were acquired by a data card whose sampling frequency can get
until 250 KHz. In each data set contains 35000-40000 data vector of the selected
variables, and for each fault o functioning type 2-4 data sets were recorded.

3.1 Experimental Results

In order to make the experiments each involved neural/fuzzy system was training
with data sets containing only information about each motor mode involved.

The best model for each motor mode was chosen by trial and error, varying
the system parameters and using the root mean square error (RMS) of the
output.
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Fig. 1. Similarity values (maximum, minimum, mean a median) for each rule an-

tecedent

The first case is Subtractive Clustering and ANFIS, here the only tuning
parameter is the clustering rate: 0.1 ≤ r ≤ 1. In this case, the hard work is
made by Subtractive Clustering, being ANFIS a refinement method with poor
improvement. When FasArt and FasBack were training the range for their tuning
parameters was: 0.1 ≤ ρ ≤ 1 and 1 ≤ γ ≤ 20. Finally, in the feedforward network
with backpropagation the number of units from the hidden layer was the tuning
parameter.

The results show in Table 1 reflect a good accuracy for all cases, being the
best one SC+ANFIS. Observing the rule number generated in each case by each
system, in general this is small in most of the cases, so compact enough rule
sets have been generated but this does not mean that a refinement process not
is needed. If a rank is made, the best case, and the most homogeneous is the
Feedforward one, next FasArt, FasBack and finally, the worst one is SC+ANFIS.

Similarity. In order to test the quality of the rules for each case, the similarity
among them must be considered for detecting either redundancies or incoheren-
cies so a reduction and simplification process could be taken in account. In
(Setnes et al., 1998; Chao et al., 1996) a similarity criterion is formulated:
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Fig. 2. S(Ai, Ai+1), Ai and Ai+1 are neighboring fuzzy sets, for each partition of each

mode

S(A,B) =
|A ∩ B|
|A ∪ B| =

∑j
i [µa(xj) ∧ µb(xj)]∑j
i [µa(xj) ∨ µb(xj)]

(2)

In Figure 1 the similarities (maximum, minimum, mean and median values)
for the antecedent rule of each considered mode are shown. In general, the best
case is the feedforward one, next the FasArt and FasBack systems. Anyone gen-
erates redundancies/incoherencies (similarity = 1), but the ANFIS and FasBack
cases have similarities near 1 in several modes that indicate a rule simplification
could improve/simplify the fuzzy rule set.

Interpretability: Completeness and Distinguishability. This is other in-
teresting quality goal: to try that the knowledge contained in the fuzzy system
(fuzzy rules) was accessible enough to “experts” in the problem domain. This
can be achieved by studying the interpretability of the generated rules, that is
implemented by the completeness and distinguishability concepts (Jin and Send-
hoff, 2003): any element in each universe of discourse is covered by some fuzzy
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Table 2. Knowledge quality from neural and neurofuzzy systems

SC+Anfis Backp. FasArt Fasback

Accuracy best good good good

Compactness: Rule number worst best good good

Completeness best - bad bad

Distinguishability regular - good good

Refinement yes - yes yes

Complexity method low high low low

set but being different enough these fuzzy sets: S(Ai, Ai+1) must be different
than 0 and lower enough than 1.

The Figure 2 shows the similarities between neighboring fuzzy sets
(S(Ai, Ai+1)) in each fuzzy partition (6) of each model (13) generated by
SC+Anfis (a), FasBack (b) and FasArt (c), in the feedforward networks this
is not possible due to the extraction method employed.

In general, if S(Ai, Ai+1) is considered, the overlapping for each one of
these set pairs is not small, so an ”adequated” degree of completeness could
be achieved, but this measure is not enough for estimating the completeness: it
could have universe parts not covered by any fuzzy set, so a:

n∑
i

µij(x) x ∈ Ui∇i(fuzzyset), j(universe). (3)

must be made, but this last aspect can depend of the problem involved.
According to this, the only neuro system that generates every mode models

with complete partitions is SC+ANFIS, FasArt only produces 3 models with
complete fuzzy partitions for every variable, and 5 models with all their fuzzy
partitions not complete, and Fasback 2 and 5 models respectively.

On the other hand, if the upper limit of S is considered, the similarity values
are lower than 1 but some cases for the three systems these values are near 1 that
indicates low interpretability. In general, for FasArt and FasBack is possible to
achieve ”acceptable” distinguishability with some exceptions, the worst case is
feedforward. This indicates refinement/simplification process could be improved
the compactness and interpretability of the fuzzy rule set.

4 Conclusions

This paper described a little study about the capacity of generating knowledge
by fuzzy rules from well-known neural and neuro-fuzzy systems. Several criteria
described in literature for this goal have been employed and some qualitative
results are summarized in table 2 when the modelling of an AC motor is involved.

In general all systems involved permit obtain fuzzy rule sets with small num-
ber of them, being backpropagation case and the extraction algorithm used the
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worst case. Interpretability can be improved in all system in general by a simplifi-
cation process that will permit achieve a better distinguishability and complete-
ness, in special for FasArt and Fasback cases, so to improve the interpretability
and the expression power of the knowledge extracted.

The complexity of the extraction is low for FasArt, FasBack and Anfis cases
due to their interpretability as fuzzy systems, but in the case of feedforward
network is needed to applied an algorithm that permits to obtain the fuzzy rules
so the complexity arises too much, and several alternatives for this task are
possible.

On other hand, FasBack and FasArt permit to generate Mamdani fuzzy rules
that is a very interesting aspect when expressive power is taken in account. The
rest of models generate TSK rules.
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(2001). Learnning from noisy information in FasArt and fasback neuro-fuzzy sys-
tems. Neural Networks 14(4-5), 407–425.

Castro, J. L., C. J. Mantas and J. M. Benitez (2002). Interpretation of artificial
neural networks by means of fuzzy rules. IEEE Transactions on Neural Networks
13(1), 101–116.

Chao, C. T., Y. J. Chen and C. C. Tang (1996). Simplification of fuzzy-neural systems
using similarity analysis. Transactions on Systems, Man and Cibernetics:Part B
26(2), 344–354.

Chiu, S. L. (1994). Fuzzy model identification based on cluster estimation. Journal of
Intelligent and Fuzzy Systems 2, 267–278.

Haykin, S. (1999). Neural Networks, Second Edition. Prentice Hall. New Jersey.
Jang, J. S. R. (1993). ANFIS: Adaptive-network-based fuzzy inferences systems. IEEE

Transactions on Systems, Man and Cybernetics 23, 665–687.
Jin, Y. and B. Sendhoff (2003). Extracting interpretable fuzzy rules from RBF net-

works. Neural Processing Letters 17(2), 149–164.
Mitra, A. and Y. Hayashi (2000). Neuro-fuzzy rule generation: Survey in soft computing

framework. IEEE Transactions on Neural Networks 11(3), 748–768.
Sainz Palmero, G.I., Y. Dimitriadis, J.M. Cano Izquierdo, E. Gómez Sánchez and
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Abstract. This paper presents an adaptive Power System Stabilizer
(PSS) using an Adaptive Network Based Fuzzy Inference System (AN-
FIS) and Genetic Algorithms (GAs). Firstly, genetic algorithms are used
to tune a conventional PSS on a wide range of operating conditions and
then, the relationship between these operating points and the PSS pa-
rameters is learned by the ANFIS. The ANFIS optimally selectes the clas-
sical PSS parameters based on machine loading conditions. The proposed
stabilizer has been tested by performing nonlinear simulations using a
synchronous machine-infinite bus model. The results show the robust-
ness and the capability of the stabilizer to enhance system damping over
a wide range of operating conditions and system parameter variations.

1 Introduction

Power system control requires a continuous balance between electrical genera-
tion and a varying load demand, while maintaining system frequency and voltage
levels. The use of high performance excitation systems is essential for maintain-
ing steady state and transient stability of modern synchronous generators and
provides fast control of the terminal voltage. However, these fast acting exciters
with high gains can contribute to oscillatory instability in the power system. This
type of instability is characterized by low frequency oscillations which can per-
sist or even grow in magnitude [1, 2]. Several real examples have been recorded
and studied [3, 4].

In order to avoid this effect, supplementary stabilizing signals have been
proposed in the excitation systems through lead/lag power system stabilizers [5]
or PI - PID power system stabilizers [6]. The computation of the fixed parameters
of these stabilizers is based on the linearized model of the power system around
a nominal operating point.

The operating condition does change as a result of load variation and major
disturbances, making the dynamic behaviour of the power system to become dif-
ferent, at different operating points. Thus, if the parameters of the stabilizer are
kept fixed, PSS performance is degraded whenever the operating point changes.

Therefore, a good PSS design must consider a trade-off between: adaptability
to the changes of the dynamics of the plant and easy design.

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 1124–1131, 2005.

c© Springer-Verlag Berlin Heidelberg 2005
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From the seventies, developments in digital technology have made possible
to implement new controllers using adaptive control techniques [7]-[10]. These
stabilizers provide better dynamic performance over a wide range of operating
conditions, but they suffer from the major drawback of requiring parameter
model identification, state observation and feedback gain calculations in real-
time. If there is some error in parameter identification, it can lead to generate
incorrect control signals, reducing the robustness.

In last decade, Fuzzy Logic Controllers (FLCs) and Artificial Neural Net-
work Controllers (ANNCs) being used as power system stabilizers, have been
developed and tested [11]-[18]. Unlike other classical control methods, FLCs and
ANNCs are model-free controllers; i.e they do not required an exact mathemat-
ical model of the controlled system. Moreover, speed and robustness are the
most significant properties in comparison to the other classical schemes. But
these controllers present some disadvantages. There are not practical systematic
procedures for the Fuzzy PSS (FPSS) design, so the rules and the membership
functions of the controller are tuned subjectively, making the design laborious
and a time-consuming task. With respect to ANNCs, they have the capability
of learning and adaptation, but they work like a ’black-box’ and it is difficult to
understand the behaviour of the network.

In order to make the design simpler, Genetic Algorithms (GAs) have been
successfully applied to PSS design [19]-[22]. GAs define a global optimization
technique based on the mechanics of natural selection and survival-of-the-fittest.

In the research reported in this paper, a conventional PSS for a single machine
infinite bus system is tuned by an Adaptive Network based Fuzzy Inference
System (ANFIS) trained from the input-output data generated by a GA. The
advantages of this design are:

– The Genetic Algorithm uses a simple objective function which does not de-
pend on the mathematical model of the electric power system.

– The ANFIS combines the advantages of FLCs and ANNCs, avoiding their
problems.

– The PSS parameters are modified on-line, in order to get a better response
in the entire range of operation.

2 Genetic Algorithms and ANFIS

2.1 Genetic Algorithms

Genetic Algorithms copy the process of the natural evolution and their principles
were firstly published by Holland [23]. In GAs, the features characterizing an
individual are often binary coded in bits and concatenated as a string. The
string package made from different combinations of bits is referred to as a point
in the solution space. The fundamental operations of a GA, detailed in [24], are:

Initialization. The GA work with a population of strings, which evolves iter-
atively by generating new individuals taking the place of their parents. In our
application, each string does code a set of PSS parameters.
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Objective Function. The performance of each structure is evaluated accord-
ing to its ’fitness’, which is defined as the non-negative figure of merit to be
maximized.

Genetic Operations. With the evaluation of the fitness function of all indi-
viduals, the GA generates a new and improved population from the old one.
Most commonly used operations are the following: Reproduction, Crossover and
Mutation.

2.2 ANFIS

ANFIS was proposed by [25]. In this neural fuzzy control system, the conse-
quents of the Takagi-Sugeno (TS) fuzzy rules are linear combinations of their
preconditions.

A more detailed information about ANFIS can be found in [24].

3 Proposed Adaptive PSS

The proposed PSS is shown in Fig. 1, where the ANFIS system adjusts the PSS
parameters processing the operating points data defined by the active power
output, Pt, reactive power output, Qt, and the terminal voltage, Vt of the gen-
erator. A widely used conventional lead-lag PSS is considered in this paper. The
time constant of its wash-out filter, Tω, is set to be 2.0 seconds.

ANFIS outputs are the optimal PSS parameters generated by the genetic
algorithm in this particular operating point defined by the inputs. The PSS
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Fig. 1. Proposed Adaptive PSS

design is divided in two different parts:

– Tuning the conventional PSS using GA in different operating points, storing
the PSS optimal parameters and the operating conditions.

– Training the ANFIS system with the stored data.

3.1 Collecting the Training Data

Firstly, a GA is used to adjust the PSS parameters on a wide spectrum of
operating conditions, i.e., the generator power output ranging from 0.1 p.u. to
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1.1 p.u., and the power factor ranging from 0.7 lead to 0.1 lag. Similarly, a
wide range of possible disturbances is used for the training. These disturbances
are: reference voltage in the range of -0.1 to 0.5 p.u., input mechanical torque
variation from -0.2 p.u. to 0.2 p.u., one transmission line outage and three phase
fault on one of the double circuit transmission lines connected to the generator.

Starting in a particular operating point, the GA searches the PSS parameters
that optimize the fitness function:

fk =
1

1 +
∫ t2

t1
t|∆ω(t)|dt

(1)

where t1 and t2 are the study time limits and ∆ω(t) represents the speed devia-
tion of the generator. The PSS parameters KPSS , T1 and T2 are selected so as to
maximize the objective function fk. The advantage of the selected fitness func-
tion as opposed to other functions proposed in [20], [21] and [26], is that minimal
dynamic plant information is needed. It is only necessary to measure the speed
deviation of the generator instead of identifying on-line the electric power sys-
tem model parameters, needed to design the PSS by a pole-placement technique.
For a given operating point, the objective function is evaluated with an initial
population randomly generated. Each individual in the initial population has
an associated fitness function value. Using this information, GA operations are
applied to produce the next generation. These two steps, evaluation of the objec-
tive function and generation of the new population, are repeated from generation
to generation until the population does converge, producing the optimum PSS
parameters (within GA limitations) for this particular operating point. Once
the PSS parameters are tuned, these data are stored together with the loading
condition and the algorithm starts again in a different operating point. All the
data collected constitute the training set.

3.2 ANFIS Training

A total of 5000 input-output data pairs were obtained for the training of the
ANFIS. The ANFIS transforms a fuzzy inference engine into an adaptive network
that learns the relationship between inputs, defined by the operating conditions,
and outputs, defined by the PSS parameters. These relationships are learned
independently for each PSS parameter, using three ANFIS, in order to improve
the converge speed of the ANFIS hybrid learning algorithm. Choosing the correct
number of membership functions is a fundamental question often raised in these
applications. Usually this number is determined experimentally in a similar way
to choosing the number of neurons in the hidden layer of an artificial neural
network. But there are other methods based on pruning or growing the network.
Pruning algorithms start with a larger network and then prune it to desired
size [27, 28]. On the opposite, growing algorithms start with a small network
and gradually increase it to appropriate size [29]. In this paper, the number of
membership functions for each input variable is determined by trial and error
for simplicity. In this study, five linguistic variables for each input variable were
use to get the desired performance.



1128 J. Fraile-Ardanuy and P.J. Zufiria

4 Simulation Studies

To demonstrate the effectiveness of the proposed PSS whose parameters are
adapted by the ANFIS, time domain simulations were performed for the genera-
tor under major disturbance conditions over a wide range of loading conditions.
Test cases are similar to those proposed in [11]-[13] and [15]-[22], to verify the
PSS behaviour. The considered system is a synchronous machine connected to
an infinite bus through two parallel transmission lines as shown in Fig. 2.
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Fig. 2. Single machine infinite bus system with two transmission lines

The nonlinear model equations and parameters used to simulate the gener-
ating unit, AVR and conventional PSS (CPSS) are given in [26]. The CPSS is
adjusted to give optimal performance for the operating point of 1 p.u. generated
power, and 0.97 power factor lag.

4.1 Switching Off One Line

At an operating point of 0.9 p.u., 0.98 power factor lag, one circuit of the double
circuit transmission line was switched off at t=9 s. Before the line disconnection,
0.2 p.u. step increase in the input torque reference was applied at t=1 s and
removed at t=5 s. A second 0.2 p.u. step increase in the input torque reference
was applied at t=13 s. and removed at t=17 s. during the transmission line fault.
The response of the system with both conventional PSS and the proposed PSS
is shown in Fig. 3. The response with the proposed PSS shows less oscillations
than the conventional PSS and demonstrates better performance.

4.2 Three Phase to Ground Fault

Three phase to ground fault locating at 50 % of the distance along line is applied
at t=0.5 s. and the fault is cleared at t=0.773 s. Responses without stabilizer
and with conventional PSS and proposed PSS are shown in Fig. 4. Systems
without stabilizer and with conventional PSS are both unstable. The system
with proposed PSS is highly oscillatory, but it is stable.
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Fig. 3. Power angle for a ±0.2 p.u. input torque reference step change at P=0.9 p.u.
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5 Conclusions

An adaptive power system stabilizer based on an Adaptive-Network-Based Fuzzy
Inference System and Genetic Algorithms is presented in this paper. The effec-
tiveness of this scheme has been investigated through nonlinear simulations. The
following conclusions are derived from the results:

– Since PSS parameters are adjusted by a genetic algorithm, minimal knowl-
edge about the system is required and there is no need for system model
linearization.

– Due to the selected fitness function, opposite to other functions proposed in
other papers, there is no need to identify the power system model parameters.
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So this PSS design, which is not based on a pole-placement technique, saves
time and reduces the complexity of the design.

– The ANFIS combines the advantages of artificial neural networks and fuzzy
logic controllers, that is, adaptation and robustness.

– Since the proposed design modifies the parameters of the installed classical
PSS, there is no need to change the actual PSS in the generator.

– Test results for various operating conditions and disturbations show that the
proposed stabilizer is able to provide good damping over a wide operating
range and improves the overall system performance.
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Abstract. Six artificial neural networks (ANN) were developed to compute the 
membership values of the consequents of a fuzzy rule evaluation table, which is 
part of a Mamdani type fuzzy controller. This controller is aimed to regulate the 
neutron power of a research nuclear reactor. The neural networks obtained were 
validated over a wide range of input data. These ANN offer the possibility of a 
parallel processing of the fuzzy inputs, thus reducing the response time of the 
controller. 

1   Introduction 

In TRIGA type reactors, the power control algorithms process plant variables such as 
the error between the desired power level and the current power, and the 
instantaneous reactor period value, which is a measure of the rate of change of the 
reactor power. The controller determines the amount of reactivity that is needed to 
increase or decrease power, as well as the corresponding motion of the control rods 
that introduce that required reactivity in the core. A particular control algorithm is 
derived from the control theory used. For instance, classical control methods such as 
proportional, integral, derivative, or modern methods such as pole placement, can be 
applied. More recent techniques, such as fuzzy logic based methods, are being 
proposed for power control [4]. In fuzzy logic based controllers, the input and output 
signals are real-valued quantities, as in any other controller. The main difference is 
the processing of the input data, which is based on the theory of fuzzy sets and fuzzy 
logic. 

A fuzzy controller is a special expert system that utilizes a knowledge base, in turn 
represented in a series of fuzzy inference rules. The operation of a fuzzy controller of 
the Mamdani type is generally divided in the following stages: a) Fuzzification, b) 
Rule evaluation, c) Aggregation, and d) Defuzzification (see Fig. 1) [1]. 

The operating rules are usually of the type "If antecedent, then consequent". These 
rules describe the action that needs to be taken by the controller in response to various 
fuzzy inputs. 
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Fig. 1. Processing stages in a fuzzy controller 

     On the other hand, artificial neural networks (ANN) are composed by an adequate 
interconnection of nodes through which the input data is processed according to the 
specific application for which the ANN is devised [3]. 

These networks can be implemented either in hardware or software. Common 
applications of ANN are found in the areas of system identification and control. 

When the amount of rules of the knowledge base in a fuzzy system is large, the 
number of operations in the stage of rule evaluation is increased. In systems where the 
operations are carried out sequentially, this increase in the number of operations 
results in longer controller's response time. This can lead to difficulties for its 
application in real time. Given that ANN are computing structures with the capability 
of parallel processing, the idea of this work is to design a series of ANN able to 
perform the functions of the rule evaluation stage of a fuzzy controller [2]. This 
controller, together with the ANN, will be tested in a point kinetic model of a research 
TRIGA reactor to regulate the reactor's power. 

2   Fuzzy Control System 

The operation of the reactor is monitored by the continuous measuring of two 
parameters, the reactor period and the normalized deviation of the current power level 
from the set point. Taking into account the safety requirement of maintaining the 
reactor period above the 3-second level, the fuzzy controller brings the neutron power 
from its source level to the desired point. A block diagram of the closed-loop fuzzy 
control system is shown in Fig. 2. 

The reactor dynamics is modelled by a set of three nonlinear differential equations. 
The reactor's measured variables are the neutron power, n(t), and the reactor period, 
T(t). The control input ρext (t) represents the external reactivity applied to the reactor 
by means of the insertion or withdrawal of the control rod [5]. 

The common crisp inputs to a two-input fuzzy controller are the reactor period and 
the normalized percent of the neutron power deviation from its set point, %PD. The 

controller input %PD is computed by the expression setpoint

setpoint 0

n( t ) - n%PD = x100 %
 -  n n

, 

where n0 represents the initial stable neutron power. 
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Fig. 2. Block diagram of the closed-loop fuzzy control system 

     Each set of crisp input variables to the fuzzy controller produces one crisp output 
variable, mρ, which represents the rate of change of external reactivity. Once mρ is 
defined, the external reactivity, ρext (t) (control variable), is determined by the 

expression 11i i i iext ext ( ) =   ( t ) + (    -  )t m t tρρ ρ −− , where ti represents the 

current time and t i - 1 the previous time at which the reactivity value of ρext (ti - 1) was 
applied to the reactor. 

3   Methodology and Design of the ANN that Replace the Rule 
     Evaluation Stage of the Fuzzy Controller 

The design of the neural networks was based on the particular characteristics of the 
rule evaluation stage of the reactor’s power fuzzy controller. The methodology used 
for the design is explained in the following sections. 

3.1   Grouping of Rules Sharing the Same Consequent 

Initially, it was proposed to design a single ANN whose inputs were the membership 
values of the fuzzy sets associated to the variables T (reactor period) and %PD (power 
error in percentage). This would result in 10 inputs to the ANN. The network would 
have, as outputs, the membership values of the four output fuzzy sets that would 
correspond to the ten input values. The output sets are associated to the control signal 
mρ, which represents the rate of change of the reactivity that is inserted into the 
reactor’s core. 

Considering 10 samples for each of the 10 inputs to the ANN, an enormous 
number of patterns (1010) would be generated for the training of the network. The 
training of this single ANN with 10 inputs, 4 outputs, and the unmanageable number 
of training patterns, was foreseen extremely complicated and lengthy. This first 
approach was logically abandoned, giving place to the idea of using several ANN to 
accomplish the pretended functions. 

The next and definite approach was to design one or two ANN for each consequent 
of the set of rules, where the output would be the membership value of this 
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consequent in its corresponding fuzzy set. Each set of ANN would have fewer inputs, 
the number of training patterns would be considerably reduced, and the convergence 
of the training process would hopefully be less complicated. 

3.2   Definition of the ANNs for Each Consequent 

The fuzzy associative memory of the fuzzy controller is shown in Table 1, where the 
labels assigned to the different fuzzy sets represent the following: a) For input T: CR, 
critical; PC, close to critical; NR, normal; GD, big; TI, tends to infinity; b) For input 
%PD: GN, negative big; MN, negative medium; PN, negative small; ID, ideal; PP, 
positive small; and c) For output mρ: NP, negative small; CE, zero; PQ, positive 
small; PG, positive big. 

Table 1. Fuzzy associative memory of the controller 

    T    
  ~CR ~PC ~NR ~GD ~TI  
 ~GN ~CE ~PQ ~PG ~PG ~PG  

 ~MN ~CE ~PQ ~PG ~PG ~PG  
%PD ~PN ~CE ~PQ ~PQ ~PQ ~PQ mρ 
 ~ID ~CE ~CE ~CE ~CE ~CE  
 ~PP ~CE ~NP ~NP ~NP ~NP  

    Based on Table 1, six ANN were defined as follows: a) One ANN for the output 
NP; b) Two ANN for the output CE; c) Two ANN for the output PQ; and d) One 
ANN for the output PG. Two ANN were chosen for each of the outputs CE and PQ 
because the number of patterns was still too large if only one ANN for each output 
had been used. 

3.3   Definition of Inputs and Training Data for Each ANN 

A given ANN only uses training patterns associated with the antecedents participating 
in the consequent associated to that ANN. For example, for the output set NP, Table 1 
shows that the antecedents involved are: PC, NR, GD and TI for variable T and PP for 
variable %PD. The antecedents for the rest of the output fuzzy sets are determined in 
a similar manner, except that two ANN are used for each of the consequents CE and 
PQ. This approach drastically reduces the number of training patterns. The inputs and 
output for each ANN are shown in Table 2. 

The definition of the sample values of the inputs to the ANN is described next. 
Consider the fuzzy sets associated to variable T, and shown in Fig. 3. Each region 
contains one line of one of the input fuzzy sets and another line of a contiguous set. 
Ten values for each of the lines in a given region are selected. Considering the four 
regions, as well as 10 samples per region, then the total number of samples is 40. 
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Table 2. Inputs and output for each ANN 

ANN ANN 
output 

ANN inputs related to variable 
T  

ANN inputs related 
to variable %PD 

ANN 1 ~NP ~PC ~NR ~GD ~TI ~PP 
ANN 2 ~CE1 ~CR All 
ANN 3 ~CE2 All ~ID 
ANN 4 ~PQ1 ~PC ~GN ~MN ~PN 
ANN 5 ~PQ2 ~PC ~NR ~GD ~TI ~PN 
ANN 6  ~PG ~NR ~GD ~TI ~GN ~MN 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Fuzzy sets associated to variable T 

     The training patterns for each ANN are obtained with ease. For instance, if 40 
samples are considered per each variable, T and %PD, the training patterns for the 
ANN associated to output NP are obtained from the membership values of the 
antecedents regions that participate in the rules having NP as their output. Thus, the 
number of training patterns would be as follows: 400 for ANN1 (NP), 400 for ANN2 
(CE1), 800 for ANN3 (CE2), 600 for ANN4 (PQ1), 800 for ANN5 (PQ2), and 600 
for ANN6 (PG). The output values of each ANN are determined by performing the 
inference method that corresponds to the rule evaluation stage for each of their 
corresponding training inputs. 

3.4   Selection of the ANN Structure 

Considering the range of values between 0 and 1 for both inputs and outputs, and the 
availability of input-output patterns for training, the backpropagation neural network 
was chosen. This type of network is widely used in pattern recognition problems. 
Every ANN will have one neuron in the output layer. The number of neurons in the 

Region 1 

Region 2 

Region 3 

Region 4 
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intermediate layer is modified during the training of the network according to an 
iterative process. This number will be modified up to attaining a pre-specified 
convergence. The initial number of intermediate neurons is 10. The number of inputs 
in a given ANN depends on the antecedents associated to the consequent of that 
ANN. Since the ANN output values lie between 0 and 1, an appropriate activation 
function to use is the sigmoidal function. Initially, with ten intermediate neurons, the 
total number of internal interconnections is shown in Table 3. 

Table 3. Internal interconnections in the ANN 

Input neurons Interconnections 
6   (CE1, CE2) 70 

5   (NP, PQ2, PG) 60 
4   (PQ1) 50 

3.5   ANN Convergence and Adjustment of Intermediate Neurons 

The parameters for the training are: an error value of 0.02 and a total of 10000 
epochs. When a training process converges, the final error, attained in 10000 epochs 
or less, should be less than 0.02. None of the six ANN converged in less than 10000 
epochs. Under lack of convergence, the training program increases by one the number 
of intermediate neurons, and proceeds to a new training process. When convergence 
is attained, the weights W, bias b, number of epochs and final error, are available to 
implement the ANN together with the other fuzzy controller stages. 

4   Results and Discussion 

As mentioned in the previous section, with the initial 10 intermediate neurons per 
ANN, none of the six ANN converged to the pre-specified error after 10000 epochs of 
training. After several adjustments on the number of these neurons, convergence of all 
the ANN was obtained. The final configuration of the intermediate layers is shown in 
Table 4. 

Table 4. Final configuration of the intermediate layers 

ANN Number of neurons in the 
input layer 

Number of neurons in the intermediate 
layers 

CE1 6 26 
CE2 6 38 
NP 5 30 
PG 5 42 

PQ1 4 16 
PQ2 5 24 
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     Matlab 5.0 was used for the training process. The membership values of the output 
fuzzy set NP obtained with the ANN and the fuzzy rule evaluation stage are shown in 
Fig. 4. The values are shown for 400 input patterns. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 4. Membership values for the output fuzzy set NP obtained with the ANN and the fuzzy 
stages 

     Similar results were obtained for the other consequents of the fuzzy rule table. 

5   Conclusions 

The values generated by the ANN are practically the same than those obtained by the 
fuzzy rule evaluation stage. Globally, the combined ANNs perform a greater number 
of operations compared to the operations realized with the traditional fuzzy 
algorithms for the evaluation of rules. However, considering the parallel computing 
capability of the ANN, the four ANN output values would be computed in less time. 
The longest sequential operation chain in the ANNs contains 57 operations whereas 
the fuzzy rule evaluation stage carries out 71 sequential operations. 

Membership values of output fuzzy set NP 
 
ANN: Continuous line 
Fuzzy stages: Dotted line 

Pattern number
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For input data not considered in the training pattern but physically possible to 
occur, the output values obtained with the ANN are also very close to those obtained 
with the original rule evaluation algorithm. For instance, the input data vector 
[0.6333, 0.3667, 0, 0, 0, 0, 0, 0, 0.9444, 0.0556] was not used for the training of the 
ANN. The rule evaluation algorithm gives the output vector [ 0, 0, 0, 0.6333], 
whereas the ANN method delivers [ 0.0019,  0.0343, 0.0041, 0.6391]. 

As further work, these ANN are being integrated into the fuzzy control algorithm, 
and, due to government regulation, the performance in the regulation of power will be 
tested using a point kinetic model of the reactor. 
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Abstract. Schizophrenia is a frequent and devastating disorder beginning in 
early adulthood. Until now, the heterogeneity of this disease has been a major 
pitfall for identifying the aetiological, genetic or environmental factors. Age at 
onset or several other quantitative variables could allow for categorizing more 
homogeneous subgroups of patients, although there is little information on 
which are the boundaries for such categories. The Bayesian networks classifier 
approach is one of the most popular formalisms for reasoning under uncer-
tainty. We used this approach to determine the best cut-off point for three con-
tinuous variables (i.e. age at onset of schizophrenia and neurological soft signs) 
with a minimal loss of information, using a data set including genotypes of se-
lected candidate genes for schizophrenia. 

1   Introduction 

Schizophrenia is a frequent disorder (estimated prevalence around 1% of the commu-
nity), that usually becomes apparent during adolescence or in early adulthood [1][2]. 

Compelling evidence support the involvement of genetic factors. For instance, 
family studies have shown that the risk of schizophrenia is higher in a first-degree 
relative of a proband (i.e. 9 percent for a sibling, 13 percent for a child of the affected 
person) [3]. Twin studies using pairwise concordance rates have revealed that the risk 
of developing schizophrenia for the second twin is approxi-mately 60 percent in a 
monozygous pair compared to 20 percent in a dizygous pair [4]. Adoption studies also 
point to genetic factors in schizophrenia, with 11-19 percent of the adopted-away 
offspring of an affected parent later developing the disease compared to 0-11 percent 
of the adopted-away offspring of unaffected parents [5]. Despite recent convergent 
findings pointing to a few candidate genes, the identification of the genes responsible 
for schizophrenia still remains to be completed. 

Nevertheless, there are still unanswered questions concerning the precise clinical 
variable that best predicts the actual age of onset of pathological processes. In particu-
lar, “age at onset” is often defined on the basis of “age at first psychotic episode”, i.e. 
first time when positive symptoms (hallucinations and delusions) present with a suffi-
cient severity and duration. But some patients with early cognitive and adaptive  
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dysfunctions display delayed positive symptoms, leading to misclassification when 
using this classical definition of age at onset. We hypothesized that data mining 
analysis, taking into account clinical or biological attributes, could help to unravel the 
actual age at onset of the disease (unknown variable). We hypothesized that in each 
individual, the actual age of onset would be related to a particular pattern of clinical 
or biological variables. Thus, the variable that most reliably reflects the actual age at 
onset should be the variable that is best predicted by these variables. 

In a previous paper, we examined how two variables related to “age at onset” could 
be predicted by clinical variables including comorbid diagnosis [6]. Using a neuronal 
network to predict age at onset with the clinical attributes, we showed that age of first 
contact (AFC) was more reliably classified than age of first episode (AFE). Neverthe-
less, we had to define cut-off for these two continuous variables and our results may 
have been dependent on those cut-off points. Indeed, we recoded AFC: 0 to 18 years 
coded “0”; “1”, otherwise and AFE: 0 to 20 years coded “0”; “1”, otherwise. There is, 
however, no true consensus in the literature concerning the best cut-off ages for clas-
sifying patients between early vs. late-onset, possibly because it depends on the clini-
cal sample and/or on the variables that are examined. It is thus critical to obtain objec-
tive ways to define such cut-off. There is accumulating evidence suggesting that age 
at onset could be related to genetic background. In this paper, we use a Bayesian net-
work algorithm on genotyping data as predictor variables and in order (i) firstly, to 
develop a more convincing method to choose the cut-off ages for the “age at onset” in 
schizophrenia, and (ii) secondly, to confirm that genetic characteristics influence the 
age at onset, further confirming the link between schizophrenia and genes. 

2   Design of the Study 

We carried out our research on data obtained from genetic studies conducted in the 
University Department of Psychiatry, Sainte Anne Hospital. There were 223 records 
in the data base, which contains healthy subject (controls) and patients. Within this 
dataset, there were heterogeneous clinical variables: different variables related to age 
at onset (for example for age at first contact, at first treatment, at first hospitalization, 
age when the positive symptoms of schizophrenia occurred) and also variables issued 
from the psychopathological or neuro-cognitive assessments. Among those variables, 
we have chosen three numeric variables as defined below: 

Age First Contact (AFC) (with a practitioner for psychological reasons): is defined 
as the first time the subject has to seek help from a psychologist or practitioner be-
cause they are feeling psychological distress or experiencing unspecific symptoms as 
insomnia, anorexia, anxiety, loss of concentration.... 

Age First Psychotic Episode (AFE): is defined as the first time delusions, hallucina-
tions or disorganized behaviour become clinically significant, according to the widely 
used definition found in the literature. 

Score of Neurological Soft-Signs (NSS): Neurological soft signs are highly preva-
lent in patients with schizophrenia. Using a standardized scale defined in the labora-
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tory [7], we have previously shown that NSS scores are related to other variables 
linked to abnormal development (i.e.minor physical abnormalities [8]) and to genetic 
risk [9]. 

Genotyping data were also available and used as predictor variables. The geno-
types were related to genes considered as candidates for schizophrenia, either related 
to neurotransmission (dopaminergic, serotoninergic or cannabinoid) or to neurodevel-
opment (brain derived neurotrophic factor (BDNF), REELIN, ENGRAILED2). Those 
variables were: the Bal-I polymorphism dopaminergic receptor type 3 DRD3, the 48 
bp VNTR polymorphism of the dopaminergic receptor type 4 (DRD4), the 5HTTLPR 
polymorphism of the serotonin transporters, the ATT polymorphism of the cannabi-
noid receptor type 1 (CNR1), the GT and Val66met polymorphisms of brain derived 
neurotrophic factor (BDNF), 5’UTR polymorphism of the reelin gene’s promoter, CA 
repeat polymorphism located in the 3’ region of the homeogene engrailed 2 gene 
(EN2). All these genotypes are nominal variables corresponding to their respective 
alleles for each polymorphism. To simplify the text, we will call these genotypes: A, 
B, C, D, E, E’, F and G, respectively. As indicated, E and E’ concern the same gene 
and are in disequilibrium of transmission (i.e. their transmission is not independent). 
In addition, there are experimental data in the literature stressing that there are func-
tional interactions of the products of DRD3 and BDNF genes as well as Reelin and 
BDNF genes. 

3   Experimental Results 

For this work, a dataset with 223 instances was selected. The three target attributes, 
initially numeric continuous variables (age at onset and NSS scores), were recoded 
into categories. In a binary prediction model (e.g. presence / absence, disease/normal) 
there are two possible prediction errors: false positives (FP) and false negatives (FN). 
The performance of a binary prediction model is normally summarized in a confusion 
or error matrix that cross-tabulates the observed and predicted + / - patterns. 

Table 1. Confusion Matrix  

 Predicted + Predicted - 

Actual + a  c 

Actual - b  d 

3.1   Confusion Matrix Derived Measures  

A variety of error or accuracy measures can be calculated from a confusion matrix. 
All of these measures assume that data are counts and not percentages (See 
Table 2). 

These measures have different characteristics; in particular some are sensitive to 
the prevalence of positive cases. The remaining tables (Table 3, Table 4 & Table 5) 

 Ramdane
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                            Table 2. Some derived measures of the Confusion matrix 

Measure Calculation 

Prevalence (a + c)/N 

Overall Diagnostic Power (b + d)/N 

Correct Classification Rate (a + d)/N 

Sensitivity a/(a + c) 

Specificity d/(b + d) 

False Positive Rate b/(b + d) 

False Negative Rate c/(a + c) 

Positive Predictive Power a/(a + b) 

Negative Predictive Power d/(c + d) 

Odds-ratio (ad)/(cb) 

Kappa (K) 
(a + d) - (((a + c)(a + b) + (b + d)(c + d))/N)  
N - (((a + c)(a + b) + (b + d)(c + d))/N) 

illustrate how prevalence affects some of the prediction of Age of first contact. The 
effect of prevalence, on the predictive AFC using 3 hypothetical examples that as-
sume different prevalence representing three levels of study. O+ and O- are the ob-
served and P+ and P- the predicted presence and absence frequencies respectively. 

Table 3. Prevalence = 0,75            Table 4. Prevalence = 0,53          Table 5. Prevalence =0,18 

14 
years 

P+ P- Total 

O+ 152 14 166 

O- 52 5 57 

Total 204 19 223  

18 
years

P+ P- Total 

O+ 80 33 113 

O- 46 52 98 

Total 126 85 211  

24 
years

P+ P- Total 

O+ 0 42 42 

O- 14 167 181 

Total 14 209 223  

Table 6. Summary Statistics of AFC derived from confusion matrix in Tables 3, 4 & 5 

 Table 3 Table 4 Table 5 

Prevalence 0.75 0.53 0.18 

Overall Diagnostic Power 0.25 0.46 0.81 

Sensitivity 0.91 0.70 0.00 

Specificity 0.08 0.53 0.92 

PPP(ie.Precision) 0.745 0.63 0.00 

NPP(ie.Precision) 0.26 0.61 0.8 

Odds Ratio 1.04 2.7 0.0 

Kappa 0.0043 0.240 -0.10 
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     Only two measures given in Table 2 (odds-ratio, Kappa K) make full use of the 
information contained in the confusion matrix. The odds-ratio has the unfortunate 
characteristic of being infinite when either b or c are 0. Thus, it has the same value 
when the algorithm is perfect or lacks one type of error. 

The measures described in Table 2 serve different purposes and a measure should 
be selected to reflect its intended use. If the aim is to assess the effectiveness of the 
classifier, a measure that assesses improvement over chance is appropriate, e.g. 
Kappa. This is important because it is possible to obtain high overall accuracy using 
trivial rules when, for example, prevalence is low. Indeed, overall accuracy, measured 
by the correct classification rate, is dependent on the prevalence (p) since it can be 
rewritten as [(p.sensitivity) + (1-p). specificity)]. For example, if prevalence is 5% it 
is possible to achieve a 95% correct classification rate by labelling all cases as nega-
tive. Landis and Koch (1977) have suggested the following ranges of agreement for 
the Kappa statistic: poor K < 0.4; good 0.4 < K < 0.75 and excellent K > 0.75. 

3.2   Adjusting Thresholds 

All of the measures described in this section depend on the values assigned to a,b,c & 
d in the confusion matrix. These values are obtained by application of a threshold 
criterion to a continuous variable generated by the classifier (Naïve Bayes & Bayesian 
Network in this case). There are a variety of reasons why the threshold value may 
need to be examined. For example, unequal group sizes (prevalence) can influence the 
scores for many of the classifier methods. This is particularly true for Naïve Bayes 
classifier which produces scores biased towards the larger group. Similarly, if we 
have decided that False Negative (FN) errors are more serious than False Positive 
(FP) errors the threshold can be adjusted to decrease the FN rate at the expense of an 
increased FP error rate. The effect of the threshold on three error rates is shown below 
(Fig 1 for AFC; Fig 2 for AFE and Fig 3 for NSS respectively). For example; in the 
first figure (AFC), at a cut-off point lower than 14 years every case is labelled as 
positive, while a cut-off point higher than 24 years labels every case as negative. As 
the cut-off point is moved from 14 to 24 years the false positive frequency falls while 
the false negative frequency increases. The point where these two curves cross is the 
point with the minimum overall error rate (assuming equal costs for false positive and 
false negative errors). For each of the three target variables, the most accurate statis-
tics for the model vary among prevalence (unequal group sizes), prediction (preci-
sion), kappa, Odd-ration… 

In our data, three potential cut-offs are labelled to satisfy the different criteria and 
the correspondent’s confusion matrix is showed in Table 7. 

• 18 years is the ‘best' cut-off for AFC (Prevalence  0.5, Kappa= 0,24, odds-
ratio=2,7). 

• 21 years is the ‘best' cut-off for AFE (Prevalence  0.48 & Precision for Class a 
and b  0.52). 

• NSS=11 is the 'best' cut-off for NSS (Prevalence  0.44, odds-ratio=1,41). 

A. Ouali, A.  Cherif, and M.-O. Krebs  Ramdane
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Fig. 1. Relative accuracy for different cut-Off of Age First Contact 
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Fig. 2. Relative accuracy for different cut-Off of Age First Episode 
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Fig. 3. Relative accuracy for different cut-Off of NSS 
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Table 7. Confusion matrix and Accuracy with 10 Cross Validation 

 Confusion Matrix Correctly Classified 
Instances 

 a    b   <--classified as 
 X1 X2 |  a = 1 
 X3 X4 |  b = 0 

 

   
AFC 

18 years 
a    b   <--classified as 
80 33 |  a = 1 
46 52 |  b = 0 

62.5592 % 

AFE 
21 years 

a    b    classified as 
51 55 |  a = 1 
53 64 |  b = 0 

51.5695 % 

NSS 
 11 

a    b    classified as 
71 34 |  a = 1 
49 34 |  b = 0 

55.8511 % 

4   Discussion  

We used Bayesian networks in a set of genetics data (genotypes) to study the influ-
ence of the genotypes on clinical features (age at onset and neurological soft signs). 
More particularly, we used Bayesian networks to classify the three target variables 
AFC, AFE & NSS in subgroups with regards to the value of the clinical variables. Our 
results revealed that each of the chosen attributes influenced the classification for age 
at onset and neurological soft signs scores. This is in line with the fact that age at 
onset has been proposed as a valid clinical characteristic that helps to determine sub-
groups of patients that are more homogeneous regarding the origin of the disease (i.e. 
earlier age at onset, more genetic weight). This is also in accordance with the fact the 
neurological soft signs were found to follow the genetic risk [9] and that we and oth-
ers have found that genotypes can be associated with age at onset [10] or AFC [11]. 

Furthermore, our results indicate that these attributes have an influence that is 
apparently independent since the best predictions were obtained for the naïve 
Bayesian models. Indeed, this model requires that attributes are (1) equally important; 
(2) statistically independent for a given class, meaning that the knowledge about the 
value of a particular attribute is not informative about the value of another attribute (if 
the class is known). This first result could appear to contradict the fact that we know 
that those two criteria are not met by the chosen attributes. Indeed, two attributes are 
closely related: the two polymorphisms within the same gene (BDNF; “E” and “E’ ”) 
are statistically related (i.e. in “linkage disequilibrium”). In addition, there have been 
reports of functional interactions between two polymorphisms (DRD3 “A” and BDNF 
E” [11] or “E’ “ (Gourion et al, in revision). Actually, it has already been underlined 
that naïve Bayesian networks work surprisingly well even if independence assump-
tion is clearly violated, since classification does not require accurate probability esti-
mates as long as the maximum probability is assigned to the correct class 
[12][13][14]. Domingos and Pazzani [15] provide an explanation for the relatively 
good performance of Naive-Bayesian classifiers. They argue that even though Naive-

A. Ouali, A.  Cherif, and M.-O. Krebs  Ramdane
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Bayesian classifiers do not estimate the underlying probability densities correctly, 
they provide good enough solutions in terms of zero-one loss (misclassification rate). 

In a different data set and using totally independent attributes and different meth-
odologies, we have confirmed our previous finding, that ‘age at first contact ’ 
classification is better predicted than ‘age at first episode’ (which was itself better 
predicted than NSS scores). Because this result could depend on the chosen cutoff, we 
used a naïve Bayesian network in order to determine whether changing the cutoff for 
age at first episode (before or after 18 y.o) could improve the validity of 
classification. We chose the “best cutoff” as a methodological compromise (taking 
into account more different criteria) between the prevalence of classes in each data 
set,, the percentage of accuracy (i.e. precision) and some statistical constraints (i.e. 
Odds-ratio & Kappa…), this approach could be applied with more complex diseases. 

This study had certain methodological limitations. In particular, the information 
extracted from any set of data is highly dependent on the content of the initial data-
base. The clinical data found in the present set of data are reliable information based 
on direct standardized “lifetime” interviews, ensuring a homogeneous and systematic 
manner of collecting information. In addition, data was collected from patients who 
have mostly been known in the department since the onset of their disease, and their 
case report was reviewed by a senior psychiatrist, using any available source of in-
formation (i.e. family, clinical case report). Nevertheless, age at first episode remains 
particularly difficult to determine, because it implies the determination of when psy-
chotic symptoms first reached clinical significance. Though age of first contact 
clearly depends on accessibility of the care system and on the social or familial toler-
ance regarding the symptoms, it appears as a reliable variable when collecting infor-
mation, since it does not rely on the rater’s opinion. Lastly, as for any assessment 
scale, the score on the Neurological Soft Signs Scale depends on the rater, although 
this scale has a good inter rater reliability between the few fully trained raters in-
volved in the assessment of such patients. 

Keeping in mind those possible limitations, our results show that “age at first con-
tact”, more than “age at first episode”, is predictable by the genetic variation available 
in this data set. They further suggest that age at first contact could better reflect the 
actual age at onset of the pathological processes, which is underlain by genetic char-
acteristics.  

Interestingly, the attributes that were used in this study were all the available geno-
types for the subjects, regardless if an association with age at onset or NSS scores was 
previously reported. For instance, we previously reported an association of both 
BDNF genotypes and age at onset, or DRD3 Bal I polymorphism was also reported to 
be associated with age at onset. In addition, the UTR polymorphism in the Reelin 
gene and a different polymorphism of the gene encoding engrailed was found to be 
associated with autism, a childhood onset psychiatric disease that might share some 
biological mechanisms with early onset forms of schizophrenia. In contrast, no asso-
ciation regarding age at onset was ever reported with the polymorphisms of the CB1, 
the 5HTT or DRD4 genes.  
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5   Conclusion 

The methodology presented here allowed us to bring new information based on the 
present data set to the debated question of the determination of cut-offs for classifying 
subgroups in schizophrenia. In particular, it allowed us to propose objectively based 
cut-offs for age at onset and another continuous variable related to the neurodevelop-
mental origin of the disease.  

Our results further suggest that age at first contact may better reflect the actual age 
at onset of the pathological processes, underlain by genetic characteristics. Since the 
relative weight of each individual attribute varies between AFC and AFE, our results 
also suggest that the three variables (AFC, AFE and NSS) could reflect different 
pathological processes related to different aetiological backgrounds, although all three 
are thought to be in relation to neurodevelopmental features. Altogether, this work 
supports the value of data mining methodology in complex disorders such as psychi-
atric disease. It also highlights the necessity of a close relationship with practitioners 
in order to both provide reliable information and accurate interpretations. 

References 

1. Mueser K.T, McGurk SR. Schizophrenia. Lancet, 363, 63-72, 2004. 
2. McClure R.K, Lieberman J.A. Neurodevelopmental and neurodegenerative hypotheses of 

schizophrenia: a review and a critique. Curr Opin Psychiatry, 16 (Suppl 2):S15-S28, 2003. 
3. I.I.Gottesman, Schizophrenia Genesis, W.H.Freeman, New York, 1991. 
4. E.F.Torrey, Are we overestimating the genetic contribution to schizophrenia?, Schizophr. 

Bull.18, 159-170, 1992. 
5. P.McGuffin et al, Genetic basis of schizophrenia, Lancet 346, 678-682, 1995. 
6. A. Ouali et al. Phenotype Analysis in Schizophrenia using Neural Networks. IASTED In-

ternational Conference on B-E, Innsbruck, Austria. February 16-18, 2005.  
7. Krebs et al. Validation and factorial structure of a standardized neurological examination 

assessing NSS in schizophrenia. Elsevier Schizophrenia Research 45, 245-260, 2000. 
8. D. Gourion et al. Minor physical anomalies in patients with schizophrenia and their par-

ents. Psychiatry Research .Vol 125, Issue 1, 21-28, 2004. 
9. D.Gourion et al, Neurological and morphological anomalies and the genetic liability to 

schizophrenia: a composite phenotype. Schizophrenia Res, 67:23-31, 2004. 
10. MA. Crocq, Mant R et al. Association between schizophrenia and homozygosity at the do-

pamine D3 receptor gene. J Med Genet. Vol 29, 858-60, 1992. 
11. Krebs MO et al, Brain derived neurotrophic factor (BDNF) gene variants association with 

age at onset and therapeutic response in schizophrenia. Mol Psychiatry, 5:558-62, 2000. 
12. A. McCallum and K. Nigam. A comparison of event models for naive bayes text classifi-

cation. In AAAI-98 Workshop on Learning for Text Categorization, 1998. 
13. D. Lewis. Naive (bayes) at forty: The independence assumption in information retrieval. In 

Tenth European Conference on Machine Learning, 1998. 
14. Y. Yang and C.G. Chute. An example-based mapping method for text categorization and 

retrieval. ACM Transactions on Information Systems, 12(3), 1994. 
15. P. Domingos and M. Pazzani. Beyond independence: conditions for the optimality of the 

simple Bayesian classifier. In Proceedings of the Thirteenth International Conference on Ma-
chine Learning, pp105-112, 1996. Morgan Kaufman Publishers. 

A. Ouali, A.  Cherif, and M.-O. Krebs  Ramdane



Graph Partitioning via Recurrent Multivalued
Neural Networks

Enrique Mérida-Casermeiro and Domingo López-Rodŕıguez
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Abstract. In this work, the well-known Graph Partitioning (GP) prob-
lem for undirected weighted graphs has been studied from two points of
view: maximizing (MaxCut) or minimizing (MinCut) the cost of the cut
induced in the graph by the partition. An unified model, based on a neu-
ral technique for optimization problems, has been applied to these two
concrete problems. A detailed description of the model is presented, and
the technique to minimize an energy function, that measures the good-
ness of solutions, is fully described. Some techniques to escape from local
optima are presented as well. It has proved to be a very competitive and
efficient algorithm, in terms of quality of solutions and computational
time, when compared to the state-of-the-art methods. Some simulation
results are presented in this paper, to show the comparative efficiency of
the methods.

1 Introduction

In classical literature, the MinCut (MaxCut) problem is defined as follows: Given
an undirected weighted graph G = (V,E), where V = {vi} is the set of N
vertices and E is the set of ne edges, and edge weights are given by matrix
C = (ci,j)i,j=1,...,N (meaning that the weight or cost of the edge joining nodes i
and j is ci,j ≥ 0), find a minimum (maximum) cut of G, i.e., a partition of V into
two sets that minimizes (maximizes) the total cost of the edges with endpoints
in different sets.

These problems arise in the resolution of many practical or theoretical situ-
ations. Some examples include:
– For MinCut: network reliability theory (if ci,j is the probability of a network

edge to fail, the minimum cut ensures the minimum risk of network discon-
nection) [17, ?], design of compilers (communication costs must be minimized
in order to reduce the swap with memory) [4, 8].

– For MaxCut: pattern recognition, clustering, statistical physics and the de-
sign of communication networks, VLSI circuits and circuit layout [2].

So, these problems are well-known in literature. Due to their wide applicabil-
ity, many variants of these problems have been formulated, placing restrictions
on the original formulation.

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 1149–1156, 2005.
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The original problems, with all the variants, are known to be NP-complete
[6], making their resolution computationally intractable, but in the case of planar
graphs they belong to P , that is, there exists a solution in polynomial time. So,
many algorithms have appeared to tackle GP problems in the general case.

Originally, MinCut was believed to be a variant of the s-t minimum cut
problem, which adds the restriction of being s and t in different sets of the
partition. In the early 60’s, Gomory and Hu showed that a minimum cut in G
can be estimated with N −1 s-t minimum cut computations, see [7]. So, most of
the algorithms to solve MinCut are based in the max-flow/min-cut theorem [5],
which implies that a s-t max-flow solution induces a s-t min-cut solution. The
efforts were then focused, for a long time, in solving max-flow problems.

In 1989, Nagamochi and Ibaraki [16] presented an algorithm that did not
make use of max-flow computations. In 1993 and later in 1996, Karger et al.
[9, 10] presented a class of randomized algorithms, based on the notion of edge
contraction, that can find all minimum cuts with probability 1 − 1

N .
In the recent years, METIS [11] has become one of the most powerful al-

gorithms for this problem, achieving the best results when compared to other
methods, and in a very low computational time, as proved by [20]. To our knowl-
edge, no neural algorithm has been presented to tackle MinCut.

In 1997, Alberti et al. presented a type-Hopfield neural model for MaxCut [1],
but its performance is worse than the presented by Bertoni et al [3]. Takefuyi
and his colleagues [18] developed a powerful neural model named ‘maximum’
and it proved to perform better than the rest of algorithms in solving a wide
range of combinatorial optimization problems. Recently, Galán-Maŕın et al. pro-
posed a new neural model named OCHOM which obtains much more efficient
solutions than ‘maximum’. Moreover, it can be used for many problems and it
also has the advantage of fast convergence to a valid solution without tuning
any parameter. In order to make OCHOM escape from local minima, Wang et
al.[19] have recently proposed a stochastic dynamics for OCHOM, permitting
temporary decreases of the objective function.

In this work, we want to present a neural model, based on a recurrent network,
that has been proved to get very good results in some combinatorial optimization
problems, see for example [12, 13, 14, 15], allowing K-partitioning of a graph.

Note that there exists very few bibliographic references for K-partitioning
(most of the references is focused in bipartition). For MinCut, only METIS and
the algorithm proposed in [8] consider that possibility, no one for MaxCut.

In the next section, we will give a detailed description of GP problem , and
the two variants studied in this work, MinCut and MaxCut.

2 Formal Description of the Problem

Let G = (V,E) be an undirected graph without self-connections. V = {vi} is
the set of vertices and E is the set of ne vertices. For each edge in E there is a
weight ci,j ∈ R

+. All weights can be expressed by a symmetric real matrix C,
with ci,j = 0 when it does not exist an arc with endpoints vi and vj .
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The Minimum Cut Problem (MinCut): consists in finding a partition
of V into two subsets A1 and A2, such that

∑
vi∈A1,vj∈A2,i>j ci,j is minimum.

Generalization of the MinCut Problem (K-MinCut): It looks for a
partition of V into K disjoint sets Ai such that the sum of the weights of the
edges from E that have their endpoints in different elements of the partition is
minimum. So, the function to be minimized is∑

vi∈Am,vj∈An,i>j

ci,j (1)

With this formulation, the trivial solution is A1 = V , Ai = ∅ for i = 2, . . . , K.
So, some constraints have to be made in order to make this problem more in-
teresting. In this work, we have considered a restriction to the cardinality of the
subsets Ai: the number of nodes in each group Ai is constrained to be Ni, such
that

∑K
i=1 Ni = N .

MaxCut and K-MaxCut are defined in a similar way: find a partition (K-
partition) of V such that the cost given by the expression in (1) is maximum.
Contrary to K-MinCut, there are no need for constraints in the definition of
K-MaxCut.

3 The Neural Model

In order to solve the GP problem, we have used the MREM neural model since
this model has been successfully used for other combinatorial optimization prob-
lems [12, 13, 14, 15].

The MREM neural model: It consists in a series of multivalued neurons,
where the state of i-th neuron is characterized by its output (si) that can take
any value in any finite set M. This set can be a non numerical one, but, in this
paper, the neuron outputs only take value in M ⊂ Z

+.
The state vector S = (s1, s2, . . . , sN ) ∈ MN describes the network state at

any time, where N is the number of neurons in the net. Associated with any
state vector, there is an energy function E : MN → R, defined by the expression:

E(S) =
1
2

N∑
i=1

N∑
j=1

wi,jf(si, sj) (2)

where W = (wi,j) is a matrix, f : M×M → R is usually a similarity function
since it measures the similarity between the outputs of neurons i and j. At each
step, the state vector will be evolving to decrease the energy function.

To solve the GP problem with this neural net, we need as many neurons
as number of nodes N in the graph. Each neuron taking value si ∈ M =
{1, 2, . . . , K} points to the subset of the partition where the i-th node is as-
signed to.

The cost function of the K-MinCut and K-MaxCut problems, given by (1),
must be identified with the energy function of (2). So, for the general GP, wi,j =
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ci,j , and f(x, y) = 1 − δx,y (Krönecker delta function) for the K-MinCut and
f(x, y) = δx,y for the K-MaxCut, since it is equivalent to maximize the cost
of the edges cut by the partition and to minimize the cost of the edges whose
endpoints lie within the same group of the partition.

Initially, the state of the net is randomly selected from a subset F ⊂ MN .
At any time, the net is looking for a better solution than the current one, in
terms of minimizing the energy function. To this end, multiple dynamics can be
defined for the net, and we will discuss them in the next section.

4 Neural Implementation for GP Problem

In this work, a simple dynamics, named best-2, has been firstly implemented,
and then it has been combined with two methods to improve solutions: best-3
and the shake phase.

best-2: It consists in getting the greatest decrease of the energy function just
by changing the state of only two neurons at each time. So, a set of neighboring
states must be defined. If neurons to be changed are p and q, this set will be
named Np,q. Then, if S(t) is the state of the net at time t, S(t + 1) will be the
vector from a Np,q that maximizes the decrease of energy, −∆E.

An expression for the decrease of energy is here given in order to reduce the
computational cost of the model. Suppose that neurons p and q are going to be
changed, and that we denote si(t) = si and si(t + 1) = s′i for all i. Then, the
decrease of energy is given by:

Up,q = −∆E =
1
2

N∑
i=1

N∑
j=1

wi,j

(
f(si, sj) − f(s′i, s

′
j)

)
=

N∑
i=1

(∆i,p + ∆i,q) − ∆p,q

(3)

(provided the symmetry of function f), where ∆i,j = wi,j

(
f(si, sj) − f(s′i, s

′
j)

)
.

So, the dynamics best-2 can be summarized as follows:

1. A state for the net is initially randomly assigned.
2. Repeat until no change in state vector:

(a) The scheduling selects a value d ∈ {1, . . . , �N
2 �}. For d > �N

2 �, all of the
following computations are made twice, and this way we can save some
computational effort.

(b) The following can be made parallel: every neuron p studies all possibili-
ties of changing neurons p and q = (p + d) mod (N), with 0 < q ≤ N ,
i.e., p computes the potential associated to the possible changes, it is
stored as a vector up whose components are the decrease of energy as-
sociated to any vector in Np,q, by applying (3).

(c) Neuron p computes α(p) = max up, associated to a state S̃p,q ∈ Np,q.
(d) The scheduling selects the next state of the net, S(t + 1) = S̃p,q for

which p = arg max α.
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In order to achieve better solutions, a pair of techniques has been developed.
best-3: It is an extension of best-2, allowing changes of three neurons out-

puts. In this case, if the neurons to be changed are p, q and r, a neighborhood
Np,q,r must be defined, and the associate expression for the decrease of the en-
ergy is: Up,q,r = Up,q +

∑N
i=1 ∆i,r − (∆p,r + ∆q,r). And the dynamics of best-3

can be easily derived from best-2.
So, the scheme of the complete process is as follows: iterate best-2 until

achieving a solution, then iterate best-3 once. If the solution has been improved,
start with best-2 again and repeat the process.

Shake phase: Given an estimated solution, a good solution for MaxCut
(MinCut) usually has the following property: “High(Low)-weighted arcs must
have their endpoints in different subsets”.

So, we can study the high(low)-weighted arcs. Let A be the set of arcs with
weights greater (lower) than a threshold and endpoints in the same group. Let
V ∗ ⊂ V be the set of endpoints of arcs in A. Then the current solution is saved
and the shake phase begins. It consists in:

– Selecting the nodes that are endpoints of arcs in A and their neighbors:
H = {vi/∃vj ∈ V ∗, ei,j = 1}.

– Nodes in V − H are clamped to their current values, while nodes in H are
randomly assigned.

– With this new initial state vector, the network evolves with the usual dy-
namics (best-2), but only nodes in H will be selected in order to be modified,
until a new stable state is reached.

– This new solution is compared with the previous saved one and the best one
is selected.

Although the shake method can be used to improve the solutions of both
K-MaxCut and K-MinCut, in this work it has been tested for K-MaxCut, as
an example.

So, we must concrete the definitions of F and the neighbors Np,q and Np,q,r

for each problem (K-MinCut and K-MaxCut):

– For K-MinCut:
1. F = {S ∈ MN : exactly Ni of its components are equal to i,∀i =

1, . . . , K} is the set of feasible solutions for this problem. Therefore,
the net must begin in a feasible state and must be kept inside F in any
time.

2. best-2: The only alternative for changing the states of neurons p and
q, and to remain in F is swapping their outputs. So, if S is the current
state vector of the net, we have Np,q = {S,S}, where S(p) = S(q),
S(q) = S(p), and S(m) = S(m) for all m �∈ {p, q}. Note that in this
case, we have ∆p,q = wp,q (f(sp, sq) − f(sq, sp)) = 0.
best-3: Something similar occurs when dealing with Np,q,r: only some
permutations of the outputs of neurons p, q and r are allowed because
many of them are included in some Np,q. This gives Np,q,r = {S,S1,S2},
where S(m) = S1(m) = S2(m) for m �∈ {p, q, r}, and S1(r) = S2(q) =
S(p), S1(p) = S2(r) = S(q) and S1(q) = S2(p) = S(r).
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– For K-MaxCut:
1. Now, F = MN , there are no restrictions in this case, so any state is

feasible.
2. The neighboring states are now defined as in the most general case: if

current state is S, Np,q and Np,q,r include all possible states from MN

that differ from S only in the outputs of neurons p or q (or both), and
p, q or r, respectively. There are K2 vectors in Np,q, and K3 in Np,q,r.

Some experimental results for the dynamics herein proposed are shown in the
next section.

5 Simulation Results

In this work, we have tested our algorithms with the two problems exposed in
the text.

A test set was formed by 240 random graphs depending on two param-
eters, N ∈ {20, 50, 80, 100} (the cardinality of the set of vertices), and ρ ∈
{0.05, 0.15, 0.25} (the density of edges in the graph, meaning that ne ≈ ρN(N−1)

2 ).
Weights for edges were integers randomly chosen in [0, 5]. For this set to be com-
plete, the values for the parameters were chosen to cover a wide range of graphs.

For K-MinCut, we have compared our model with METIS [11], every algo-
rithm implemented in MatLab on a Pentium IV (3.06 Ghz). In Table 1, column
labelled BEST-2 shows the results of applying only the dynamics best-2, and
the column labelled BEST-3, presents the results of applying the composition of
best-2 and best-3, as exposed in Sec. 4.

It can be verified that our model outperforms METIS in many cases. Note
that METIS is a heuristic that always produces the same solution, while the
repetitive use of best-2, best-3 always obtains good solutions that can be im-
proved with new executions.

Table 1. Best and average performance on test set over 10 runs

BEST-2 BEST-3 METIS
N ρ Best Av. t Best Av. t Best/Av. t

20 0.05 0 0.405 0.0006 0 0.395 0.0111 0 0.016
20 0.15 6.3 8.945 0.0007 6.05 8.21 0.012 7.15 0.0005
20 0.25 18.2 21.75 0.0007 17.75 19.965 0.0132 19.4 0.0005

50 0.05 9.35 14.145 0.0021 8.9 13.98 0.0928 9 0.0005
50 0.15 86.1 95.64 0.0019 81.75 91.435 0.1283 90.8 0
50 0.25 180.25 194.025 0.0023 174.5 186.38 0.1428 187.75 0.002

80 0.05 42.5 51.665 0.0032 40.8 50.35 0.2974 47.95 0.0005
80 0.15 269.95 286.61 0.0039 263.2 279.24 0.3998 283.05 0.0015
80 0.25 535.7 556.09 0.003 526.2 544.54 0.4663 551.6 0.0035

100 0.05 82.8 95.66 0.0046 80.3 93.725 0.5178 86.55 0
100 0.15 452.1 472.58 0.0046 440.95 461.68 0.7451 472.6 0.003
100 0.25 869.5 898.165 0.0047 856.75 883.09 0.8182 902.5 0.004
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Table 2. Best and average performance on test set

Wang OCHOM MREM MREM-shake
N ρ Best Av. t Best Av. t Best Av. t Best Av. t

20 0.05 26 21.8 0.003 26 24.4 0.001 26 25.4 0.024 26 25.4 0.023
20 0.15 67 29.0 0.002 69 66.5 0.001 69 68.0 0.027 69 68.0 0.027
20 0.25 80 63.6 0.002 86 78.5 0.001 86 84.4 0.024 86 84.4 0.025

50 0.05 144 113.4 0.016 142 137.4 0.005 149 143.5 0.243 149 143.5 0.265
50 0.15 278 248.8 0.015 273 264.6 0.005 284 276.7 0.234 284 277.0 0.369
50 0.25 460 397.9 0.012 476 448.8 0.006 469 460.6 0.244 472 463.9 0.482

80 0.05 270 238.0 0.031 266 258.6 0.011 279 271.5 0.713 279 271.5 1.025
80 0.15 715 702.5 0.034 739 712.4 0.014 754 735.3 0.943 754 742.2 1.954
80 0.25 1100 878.2 0.034 1106 1080.5 0.016 1117 1091.0 0.857 1117 1095.1 1.717

100 0.05 400 323.7 0.048 407 390.2 0.017 418 406.0 1.539 418 406.6 2.374
100 0.15 1071 843.6 0.068 1060 1029.1 0.023 1081 1062.3 1.629 1084 1068.5 3.257
100 0.25 1697 834.4 0.043 1728 1682.3 0.025 1741 1702.7 1.323 1741 1714.8 2.407

With respect to K-MaxCut simulations, we have compared our proposed
algorithms to OCHOM and Wang’s. All of them have been implemented and
tested in MATLAB, on the same conditions as above. More specifically, Wang’s
network has been tested with its default parameter λ = 30. In the proposed
model, the set A was built by including every edge ei,j whose cost ci,j > c + 3σ,
where c, σ are respectively the mean and the standard deviation of ci,j . So, A
is forced to include exclusively high-weighted edges.

Both best and average solutions obtained are shown in Table 2. So, we can
verify that the proposed algorithm outperforms others, not only giving the best
results, but even on average.

6 Conclusions

The aim of this work has been to present a neural model for the resolution of
combinatorial optimization problems. In particular, it has been proved to be a
good optimizer for some NP-complete problems, as seen in [12, 13, 14, 15].

Contrary to heuristics, producing always the same solution to the problem,
with the neural approach developed in this work, improvement of solutions is
feasible, because the initial state of the net can be changed in each execution,
and the search for the optimum begins from a different point in the search space,
avoiding some local optima.

Another important feature that is present in the model is that it allows the K-
partitioning of graphs, while some other techniques are based in the bipartition.
So, this model is applicable to more general situations than some other methods.

Two important techniques to escape for local optima have been exposed
in this paper. When combined to the original dynamics, best-2, they improve
substantially the quality of the achieved solution.

To end with, the parallelism included in the computation dynamics is a pow-
erful tool to achieve very good results with very little time consumption.
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Abstract. Dynamical Random Neural Network (DRNN) has been suggested as 
tools for the solution of optimization problems [1, 2]. Here DRNN method is 
applied to solve the problem of optimal resource allocation with both minimum 
and maximum activation levels and fixed cost. The problem is NP-hard. The 
conclusion shows that the DRNN method provides results of the optimal 
resource allocation problem better than those given by [3]. 

1   Introduction 

This paper analyzes a problem of optimal resource allocation. A pre-determined 
quantity of a particular resource can be allocated to a number of alternative projects. 
In comparison with other simpler allocation problems, additional constraints are 
considered in order to impose restrictions on the minimum and maximum activation 
levels for the projects to be undertaken. Moreover, both the resource requirements and 
the projects are assumed to a fixed part that is independent of the activation of the 
project level and a variable part that is proportional to this level. The problem consists 
in maximizing the total profit by satisfying simultaneously all the constraints and is 
presented as a mixed integer linear programming problem [3]. 

In this paper, the Dynamical Random Neural Network (DRNN) is approached to 
the recourse allocation problem, which originates with the Random Neural Network 
(RN) model. As a result, a very satisfactory solution has been obtained.  

In the sequel, first the RN model will briefly be recalled in Section 2. Then, Section 3 
introduces the basic ideas related to the DRNN method. Section 4 describes a resource 
allocation model. Section 5 is devoted to a presentation and discussion of the DRNN 
solution to the resource allocation problem. Finally, conclusion is drawn in Section 6. 
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2   Random Neural Network Model 

In the random neural network model signals in the form of spikes of unit amplitude 
circulate among the neurons. Positive signals represent excitation and negative signals 
represent inhibition among a set of neurons. Each neuron’s state is a non-negative 
integer called its potential. This increases when an excitation signal arrives at it  
and decreases when an inhibition signal arrives. Figure 1 shows a single neuron 
representation in RNN [4]. 

 

Fig. 1. Representation of a neuron in the RNN, Where ri is the i-th neuron’s firing rate when it is 

stimulated,
+
jip , 

−
jip are the probabilities that neuron j sends to neuron i excitatory(+) or 

inhibitory(-) signals: 
ii λ,Λ  are the positive and negative external signal arrival rates to neuron i 

In random neural network model, firing occurs when the state of the neuron is 
strictly positive. The significant quantity in this model is the probability qi that the 
neuron i is excited. It is computed from the positive and negative and negative signal 
arrival rates: 
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This is a frequency modulated model inspired by biophysical neuronal activity. 
The signals are spikes of unit amplitude, and the quantities which appear in the 
numerator and denominator of (1) are the frequencies at which excitation or inhibition 
spikes arrive at the neuron, as well as the characteristic or firing frequency ri of the 
neuron. 

3   The Dynamical Random Neural Network Model 

The Dynamical Random Neural Network method consists to construct dynamical 
systems by using random neurons as basic components. DRNN method considers the 
excitation probability expression (1) as the instantaneous input-outputs relation of 
formal neurons. The variables i and qi   constitute respectively the inputs and the 
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outputs of the so-defined limit system. Indeed DRNN uses only positive inputs and 
inhibitory type interactions between neurons, i.e. for all i, j, 0=iλ , +

jiP =0 (see  

Figure 2). Therefore interconnected random neurons can be output vector q.  
In order to allow a dynamical behavior to the random neural network, the DRNN 

model assumes additional time-delayed feedbacks defined by a Cohen-Grossberg like 
equation: 

Ni
q

qF
qBqA

dt

d

i
ii
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∂

∂−=
Λ

 (2) 

Where F(q) is a penalty function which will be optimized: it depends on the vector 
q=(q1,…,qN), the qi are the excitation probabilities of the neurons, A(qi) is the gain 
function that control the convergence rate, B(qi) is the decay function that allows us to 
place the attractors in appropriate positions of the state space. 

The equation (2) shows that the dynamical variables of this network are the neuron 
inputs not as much as that of connectionist methods where the external inputs are kept 
constant once they had initially been set. The time variation of i depends on the 
vector  through an implicit form described by the non-linear transformation (1). 

 

Fig. 2. Representation of a neuron in the DRNN, where 0=iλ , +
jiP =0 

4   Model 

The following resource allocation problem is described in [3]. Suppose that a given 
resource is available at a level b and can be allocated to M projects. Assume that 
project r can be discarded or activated at a level ar not lower than a minimum fraction 

r. Define the binary activation xr, r=1, 2…, M, which take value 1 if the rth project is 
activated and value 0 otherwise. Note that if r>0, i.e., if a minimum activation level 
is required to undertake project r, then 0 r< r entails the rejection of the project 
(xr=0).  

Further assume that the resources need to activate project r is given by the sum of a 
fixed amount sr 0 and a variable quantity tr xr that is proportional to the activation 
level using the coefficient tr>0. A budgetary constraint station that the allocated 
resources are not greater than b can be presented as follows (sr=1 whenever r>0): 
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Moreover, let hr+ rkr, where hr and kr are real coefficients, are the profit obtained if 
the rth project is activated at a level r, while if the project is not stared the associated 
profit is equal to zero. In particular, if negative, hr could represent the quantity of 
fixed costs incurred by project r irrespective of its activation level, while kr is the 
variable part of the profit, proportional to the activation level. The total profit is 
defined as the sum of the profits of the activated projects: 
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+=+ M
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The problem consists in maximizing the total profit (4) subject to the budget cons- 
traint and to the additional constraints that guarantee the feasibility of the pairs (xr, r): 
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5   The DRNN Approach to the Problem of Resource Allocation 

In the problem of resource allocation, a set of M+M*n neurons q is used to code the 
problem, where 2n>max { r }/e+1. e is the minimum error of r which is requested. 
The code of neurons is as follows: 

 

Fig. 3. The figure expresses the code of neurons about the problem of resource allocation, 
where the value of neuron i is di 

The pairs (xr, r) can be formulated as follows: 

xr=di, r=1,2,…,M; 
=

−
+×−+=

n

i

i
irnMr d

1
)1( 2α ,r=M+1,…,M+M×n (7) 

Furthermore, the firing rate ri of neuron i depends on the input-output ratio of the 
project j where neurons i belong to the code of project j. It is as follows:  
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Where L denote a set of ([(i-M)/n]+1, [(i-M)/N]+2,…, [(i-M)/n]+n). 

Equation (9) show −
ijp  is the function of ri. If project j can provide more input-

output ratio than other project, neurons that belong to the code of project j will have a 
smaller firing rate ri and send stronger inhibitory signals to any other neurons. It is 
more efficient for find an optimum solution for resource allocation problem. 

 Excitatory links and negative inputs are null: ( +
ijp =0, 0=iλ ). The parameter 

A(qi) for the dynamics is chosen by: A(qi)=1+ qi. On the other hand B(qi) is chosen as 
a suited value so as to provide the appropriate sign in the derivative of equation (2), 

where it is chosen by: B(qi)= -
=
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Where 14321 ==== ηηηη . Obviously, function (10) is a piecewise function 

which is differentiable.  

The algorithm can be summarized as follows: 

Initialize −
iji Pq ,0 , set t=0; 

While not converge do  
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Calculate 1+Λt
i  from (2) (10), i∀ ; 

T=t+1;} 

In order to test the performance of the DRNN method approach to the resource 
allocation problem, the results have been obtained by solving 50 simulated instances 
of 10 projects (M=10). Coefficients of instance have been simulated as independent 
uniform random such that: -10  hr  0, 0 kr 50, 10 tr 40, sr=0; b=100; r=0.35. For 
each instance, 4 successive tests were run. The performance of DRNN can be 
evaluated by the quality of the best solution ( k is the percentage of optimum 
solutions found by the DRNN up to kth trial where k=1,2,3,4 ) and the average 
relative error ( k) of the DRNN with respect to the optimum for the last solution 
obtained up to kth trial. The results are summarized in the Table 1 and 2. 

Table 1. Optimal solution precentage for allocation problem with DRNN model 

Iterance 1 2 3 4 

500 48.2 53.1 70.4 76.1 

Table 2. Average relative error for allocation problem with DRNN model 

Iterance 1 2 3 4 

500 1.3 1.1 0.6 0.4 

6   Conclusion 

The DRNN method is to assume an output dependent dynamic behavior for the input 
variables of Gelenbe’s stochastic neural network. It is efficient to solve NP-hard 
problem. In this paper, the Dynamic Random Neural network model to solve the 
resource allocation problem completely.  

The result indicated that The DRNN model can approach to the optimal resource 
allocation problem which is NP-hard. Here DRNN used only positive inputs and 
inhibitory signal. Like the survival of the fittest in the biological evolution, the firing 
rate and the intensity of inhibitory signal depended on the input-output ratio of the 
project. As it improves, the DRNN model can quickly find an optimum solution.  
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Abstract. A new approach for personal identification using hand geometry 
based upon geometrical and shape features is presented. We propose a new 
pegless hand geometry verification system where the users are free to put their 
hand in arbitrary fashion. A Linear Discirminant Analysis if applied to the raw 
data in order to perform a best clustering of the feature space. The combination 
of three different neural network classifiers (unsupervised SOM, supervised 
SOM and LVQ) gives 0.35% FAR and 0.15% FRR. The method has been 
tested on a large size database of 1400 images for training and 1400 for test 
from 280 individuals suitable for medium and low security applications. 

1   Introduction 

Biometrics refers to automatic people recognition based on behavioural and/or 
physiological characteristics. A brief overview of the field of biometrics summarizing 
some of its advantages, disadvantages, strengths, limitations, and related privacy 
concerns can be consulted in [1]. Different biometric such as fingerprints, hand ge-
ometry, face, voice, etc., can be used for reliable authentication of individuals. 
Among all, hand geometry can be considered the most suitable modality for medium 
and low-level security applications [6].  

There have been several hand geometry systems for biometric verification pub-
lished in literature. These systems can be broadly classified into two categories: 
pegged systems where pegs are used to fix the placement of the hand; and pegless 
systems where the acquiring hand geometry process is carried out in absence of pegs 
and therefore users can place their hands in arbitrary fashion.  Examples of pegged 
hand geometry system are for instance, the system developed by Raul Sanchez-Reillo 
et. al. [2]. They employed a feature selection and different patter recognition tech-
niques, concluding that Gaussian Mixture Models (GMMs) gives the best perform-
ance. Jain et al. [4] also developed a pegged hand geometry verification system used 
as prototype for web security applications. Later, Jain and Duta [7] developed another 
pegged verification system which perform post processing to remove the pegs and 
aligns finger contours and measure the mean alignment error between them. 

Examples of pegless systems are given by Oden et. al. [8], who developed a system 
for identification and verification applications using implicit polynomials. Wong and 
Shi [10] proposed a feature-based framework for hand geometry recognition, based 
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upon matching of geometrical and shape features. They employed a GMM for the 
first group of features, followed by a distance metric classification of the second 
group of features if necessary. Kumar et. al. [3] developed a personal verification 
pegless system using palmprint and hand geometry features. Bulatov et. al. [6] devel-
oped a hand geometry recognition system for verification, classification, and identifica-
tion of individuals. More recently, Chikkerur et. al. [9] have proposed a pegless hand 
geometry verification system through biometric hardening. This technique increases the 
entropy of the hand geometry template by using user specific random keys. 

In this paper, we present a novel hand geometry recognition system that base upon 
a peg-free hand image acquisition and combining several neural network based classi-
fiers over a transformed geometrical feature space by means of a Linear Discriminant 
Analysis. 

2   System Overview 

Most of the previous work on hand geometry recognition used pegs or similar mecha-
nism to guide the hand in a consistent position. The method here proposed used im-
ages obtained from a document scanner or a digital camera, so users were free to put 
their hands anywhere. The only restriction was to keep their fingers separated.  

To test the system we used a public database [5] of 5600 images obtained from 280 
users with 10 sample of each hand per person. We reduced the biometric recognition 
only to the right hand. Off these 10 right-hand samples, 5 samples are used for train-
ing and 5 samples are used for testing purposes. 

Fig. 1 shows the hand recognition diagram proposed. Every captured grey level 
image is binarized and aligned to extract hand geometry features. Then, we use a 
Linear Discriminant Analysis (LDA) to perform a best clustering of the features from 
the point of view of classification rather than feature reduction. Over this transformed 
space three different neural network-base classifiers are applied, and the combination 
of them allows improving the verification process. 

Capture  
Preprocessing 

and 
Alignment 

Feature 
Extraction, 

Feature Analysis 
and LDA 

Classifiers and 
Fusion of 
Classifiers 

Verification 

 

Fig. 1. Hand recognition diagram 

3   Feature Extraction 

After the image is captured, some pre-processing is performed. The first step is to 
transform the RGB image into a grey-scale one. After that, the image thresholding 
operation is used to obtain a binary image. The threshold value is computed by 
Otsu´s method [11]. With this image is easily to extract the hand boundary, and 
some geometry landmarks like the fingertips points and the valley points between 
adjacent fingers. 
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Fig. 2. Different steps in feature extraction: binarization; valley and fingertips extraction; geo-
metrical features: widths, heights, distances and angles 

These geometry landmarks are used to align the hand with respect to the vertical. 
The second and third valleys are used to form a line. The mid-point of this line and 
the middle fingertip form the reference axis from as a rotation angle is calculated and 
the transformation takes place following equation (1): 
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                                (1) 

Once the hand has been aligned a pattern of features is extracted. The different 
measurements are: 

Widths: Each finger is measured in three heights. The greater and minor widths of 
the palm are also measured. 
Heights: For each finger, the fingertip point and the middle point of its baseline de-
termine its finger length. The baseline is a line formed by a valley point and the point 
which has the same distance from the fingertip to the other side of the boundary of the 
finger. 
Distances: Distances between valleys and distances of each valley to the centre of 
mass of the hand (only until the minor width of the palm). Largest inscribed circle 
radius is also measured. 
Angles: between the valleys points. 

In this way, 34 features were extracted from 280 users with 5 photographs from 
each user. After that, a ratio F was calculated to determine the discriminability of the 
features. This ratio is defined as the quotient between the interclass and the intraclass 
variability.  
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where Fj is the ratio for the jth feature, V is the standard deviation function, N is the 

number of users, fi
j  is the jth feature of the ith user, and i

jf  is the mean of the jth 
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features of the ith user.  The features with great ratio are the most discriminating. The 
features with lowest ratios are eliminated. The resulting pattern has 28 features.  

Principal Component Analysis has also been considered to reduce de dimension-
ality of the features. In both cases we use a Linear Discriminant Analysis (LDA) to 
perform a best clustering of the features from the point of view of classification rather 
than feature reduction. Applying LDA to the features patterns, the length of the pat-
tern is reduced to 19 new features, using a variation percentage of 94.5 % (34 features 
vector) and 96.5 % (28 features vector, considering the discriminability rate). 

4   Neural Networks-Based Classifiers 

The feature pattern obtained has to be compared with the patterns stored in the data 
base to determinate if the user is the person who says to be. The classifiers used to 
verify the identity of the user are 3 neural networks: Two Self- Organizing Maps 
(supervised and unsupervised) and a Learning Vector Quantization, previously trained 
with patterns of those same users. 

4.1   SOM 

The SOM was developed by the Finn Kohonen in the early 1980s. The main reasons 
for which method has been chosen are the great potential of useful applications that it 
has and its simple model of natural neuronal networks. Problems that can be solved 
are: grouping, pattern classification, vector quantification, reduction of dimensions 
and extraction of characteristics.  

The basic idea of SOM is simple: every neuron i of the map is associated with an n 
dimensional codebook vector mi = (mi1,…,min)

T. The neurons of the map are con-
nected to adjacent neurons by a neighbourhood relation, which defines the topology 
of the map.  

The network is trained by finding the codebook vector which is most similar to an 
input vector. This codebook vector and its neighbours are then updated so as to render 
them more similar to the input vector.  

This training can be made in an unsupervised or a supervised fashion. Supervision 
is achieved by attaching information about class membership to the input vector in the 
training phase, while during the recognition phase, the class label is omitted. Super-
vised training is made with the goal to improve the discrimination between pattern 
classes, but the results shows that this is not always true because for every input vec-
tor, the SOM is updated globally. Hence, the processing of an input belonging to a 
class adds noise to the mapping of another input from another class. The effect wors-
ens the greater the number of different classes.  

For the training, we used 1400 patterns, 5 photographs from each user, for 280 us-
ers. The number of map units (neurons) used in the networks is 4000. For training the 
maps in batch mode and for the weight initialization, we used the functions available 
in the SOMPACK [12]. 
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4.2   LVQ 

Learning Vector Quantization (LVQ) performs supervised training, which uses a set 
of inputs with their correctly annotated outputs adjusting the model when an error is 
committed between the model outputs and the known outputs. 

The LVQ algorithm is a classification method based on neural competitive learn-
ing, which allows the definition of a group of categories on the input data space by 
reinforced learning, either positive (reward) or negative (punishment). 

The training patterns are the same that SOM, the number of neurons is 2800  
(10 neurons for each user), the typical class percentage is the same for each user: 
1/280, and the learning rate is 0.01. 

5   On Combining Classifiers 

Once each one of the neural networks has made a decision, these individual opinions 
can be combined to obtain a consensus decision. Different classifiers can offer com-
plementary information about the patterns, and combining this information, we can 
obtain best results.  

One of the measurements we consider is the posterior probability for each classi-
fier. With these probabilities we can use the sum (3), product (4) and maximum (5) 
rules, following the next equations: 
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where R is the number of classifiers, m the number of classes, xi the measurement vec-
tor used by ith classifier, and P(wk|xi) the probability the pattern xi belongs to class wk. 

6   Results 

Two main analyses with different feature patterns have been made to obtain the re-
sults. The first pattern has 34 features, and after applying LDA the feature vector 
length is 19. The second pattern has 28 features, the most discriminating, and reduces 
its length to 19, too. The methods used are SOM unsupervised and supervised and 
LVQ and the results obtained can be seen in Table 1. The results are given in False 
Acceptance Rate (FAR) and False Rejection Ratio (FRR). The FAR numbers are 
obtained training the neural networks with all users excluding the person under rec-
ognition who is considered as an impostor to be rejected by the system.  
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Table 1. FAR and FRR for different feature vector lengths 

 FAR  FRR  
SOM unsupervised 0.3584 % 0.9615 % 
SOM  supervised 0.3571 % 1.0355 % 34 to 19 

LVQ 0.3584 % 2.1450 % 
SOM unsupervised 0.3579 % 0.4438 % 
SOM  supervised 0.3582 % 0.9615 % 28 to 19 

LVQ 0.3584 % 0.5917 % 

Table 2 shows the results for combination rules: sum rule, product rule and maxi-
mum rule, for each one of the previous pattern. It can be seen that in both cases the 
best results are obtained for the pattern of the 28 features. In the first table, the best 
method is the SOM unsupervised for both pattern; and in the second table, the best 
results are obtained for the product rule. 

Table 2. FAR and FRR for different combination rules 

 FAR  FRR  
Sum Rule 0.3584 % 0.5178 % 

Product Rule 0.3578 % 0.1479 % 
 

34 to 19 
Max Rule 0.3576 % 0.4438 % 
Sum Rule 0.3579 % 0.3698 % 

Product Rule 0.3566 % 0.1479 % 
 

28 to 19 
Max Rule 0.3576 % 0.4438 % 

If the user makes several repetitions (user puts the hand again if the system does not 
recognize him), it can be seen that the FRR decreases (Table 3). These results are only 
for the product rule with the pattern of 28 features (Th1). For FAR near 0, the results for 
the FRR are shown in the second row of the table 3 (for a new threshold Th2).  

Table 3. FAR and FRR for several repetitions 

Threshold FAR FRR  FRR 
1 repetition 

FRR  
2 repetitions 

Th1 0.3566 % 0.1479 % 0.0 % 0 % 
Th2 0.0 % 22.855 % 10.2071 % 6.213 % 

7   Conclusions 

We have developed a hand geometry recognition system based on the combination of 
three neural networks used for biometric verification and identification of individuals. 
The method here proposed used images obtained from a document scanner or a digital 
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camera, so users were free to put their hands in an arbitrary fashion. The only restric-
tion was to keep their fingers separated. We have tested the system on a public data-
base of 2800 hand images from 280 people.  

As mentioned in the introduction, several hand geometry verification systems have 
been published in literature. The comparative among previous experimental results 
and the ones given by the proposed method is as follows: 

 Jain et. al. [4] do verification using 500 images, 50 users. FAR=2%, 
FRR=15% 

 Jain and Duta [7] do verification using 353 images, 53 persons. FAR=2%, 
FRR=3.5% 

 Sanchez-Reillo et. al. [2] do verification and classification using 200 images 
from 20 people.  Error rates:  Classification 3%, Verification 10%. 

 Oden et. al. [8] do verification and classification taking 30 images from 28 
people.  95% success in Identification and 99% success in verification. 

 Chikkerur et. al. [9] do verification using 500 images from 50 users. 
FAR=0.07%, FRR=0.80%  

 Wong et. al. [10] do verification and classification using a dataset of 323 im-
ages form 29 users. FAR=2.2%, FRR=11%   

 Bulatov et. al. [6] do verification and classification on a database of 714 im-
ages from 70 people. For FAR less than 1% they achieve FRR=3% for verifi-
cation and FRR=6% for identification. 

 Kumar et. al. [3] do verification on a database of 1000 hand images from 100 
users. For 472 test images the best score is given by the fusion at decision of 
palmprint and hand geometry:  FAR=0%, FRR=1.41% 

 Our work does verification using 2800 images (1400 for training and 1400 for 
test), 280 persons. FAR=0.3566%, FRR=0.1479% 

From the results given by other authors, we can state that the best score is given by 
the system described in this paper. The low scores obtained for FAR and FRR in 
addition to the simplicity of the acquisition, peglless, and the large database used, 280 
individuals, confirm that hand geometry recognition is a suitable modality for me-
dium and low-level security applications. 

This hand geometry recognition system can be further combined with other bio-
metric techniques. Perhaps the most immediate, just considering a digital camera or 
commercial flatbed scanner, is the combination of palmprint features, composed of 
principal lines, wrinkles, minutiae, etc, and hand geometry features, as done by 
Kumar et. al. [3]. Our current work is focused on the combination of different biomet-
ric techniques in a multimodal biometric system to cope with several of the problems 
present in unimodal systems, i.e., to improve matching performance, increase popula-
tion coverage, and facilitate indexing. 

Acknowledgements 

This work is partially supported by grants TIC2003-08382-C05-05 from the Spanish 
Ministry of Science and Technology (MCyT) and FEDER. 



 Biometric Hand Recognition Using Neural Networks 1171 

 

References 

1. Anail K. Jain, Arun Ross, Salil Prabhakar, An Introduction to Biometric Recognition. 
IEEE Trans. on Circuits and Systems for Video Technology. VOL. 14, NO 1 (2004) 4–20. 

2. Raul Sanchez-Reillo, Carmen Sanchez-Avila, Ana Gonzalez-Marcos, Biometric Identifica-
tion through Hand Geometry Measurements. IEEE Trans. on Pattern Analysis and Ma-
chine Recognition. VOL. 22, NO 10 (2000) 1169–1171. 

3. A. Kumar, D.C.M. Wong, H.C. Shen, A.K. Jain,  Personal Verification using Palmprint 
and Hand Geometry Biometrics. Proceedings of the fourth International Conference on au-
dio- and video-based biometric person authentication, (2003). 

4. A.K. Jain, A. Ross and S. Pankanti, A Prototype Hand Geometry-based Verification Sys-
tem, Proc. of the 2nd International Conference on Audio- and Video-based Biometric Per-
son Authentication, (1999) 166-171. 

5. http://visgraph.cs.ust.hk/biometrics/Visgraph_web/index.html  
6. Y. Bulatov, S. Jambawalikar, P. Kumar, and S. Sethia. Hand Recognition Using Geometric 

Classifiers. In proc. of the 1st International Conference on Biometric Authentication 
(ICBA), (2004) 753-759.  

7. Anail K. Jain, Nicole Duta. Deformable matching of hand shapes for verification. In Pro-
ceedings of International Conference on Image Processing, (1999). 

8. Cenker Oden, Aytul Ercil, Hilkmet Kirmizita, and Burak Buke. Hand recognition using 
implicit polynomials and geometric feature. In proceedings of AVBPA, (2001) 336-341. 

9. http://www.eng.buffalo.edu/~ssc5/research/papers/biometric_hardening.pdf. 
10. Alexandra L.N. Wong and Pengcheng Shi. Peg-Free Hand geometry Recognition Using 

Hierarchical Geometry and Shape Matching. IAPR Workshop on Machine Vision Applica-
tions, (2002) 281-284. 

11. N. Otsu. A threshold selection method from grey-scale histogram. IEEE Trans. Syst., Man,  
Cybern., vol. 8 (1978) 62-66 

12. http://www.cis.hut.fi/projects/somtoolbox/ 



 

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 1172 – 1179, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Biometric Identification by Means of Hand Geometry 
and a Neural Net Classifier 

Marcos Faundez-Zanuy and Guillermo Mar Navarro Mérida 

Escola Universitària Politècnica de Mataró 
Universitat Politècnica de Catalunya, Barcelona, Spain 

faundez@eupmt.es 
http://www.eupmt.es/veu 

Abstract. This Paper describes a hand geometry biometric identification sys-
tem. We have acquired a database of 22 people using a conventional document 
scanner. The experimental section consists of a study about the discrimination 
capability of different extracted features, and the identification rate using differ-
ent classifiers based on neural networks. 

1   Introduction 

In recent years, hand geometry has become a very popular access control biometrics 
which has captured almost a quarter of the physical access control market [1]. Even if 
the fingerprint is most popular access system [2-4], the study of other biometric sys-
tems is interesting, because the vulnerability of a biometric system [5] can be improved 
using some kind of data fusion [6] between different biometric traits. This is a key point 
in order to popularize biometric systems [7], in addition to privacy issues [8]. 

Although some commercial systems, such us the system shown in figure 1 rely on 
a three-dimensional profile of the hand, in this paper we study a system based on two 
dimensional profiles. Although three dimensional devices provide more information 
than two dimensional ones, they require a more expensive and voluminous hardware. 

 

Fig. 1. Commercial three-dimensional scanner 
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A two-dimensional profile of a hand can be get using a simple document scanner, 
which can be purchased for less than 100 USD. Another possibility is the use of a 
digital camera, whose cost is being dramatically reduced in the last years. 

In our system, we have decided to use a conventional scanner instead of a digital 
photo camera, because it is easier to operate, and cheaper. On the other hand, al-
though a digital camera is extremely fast in taking a photo, the last generation scan-
ners (such as EPSON 4870 Photo perfection) are able to capture a DIN A4 size colour 
document (24 bit) at a 150 dpi resolution in less than 15 seconds when using the USB 
2 port, which is a quite reasonable time. 

This paper can be summarized in three main parts: section two describes a database 
which has been specially acquired for this work. In section three, we describe the pre-
processing and we study the discrimination capability of several measurements on the 
sensed data. Section four provides experimental results on identification rates using 
neural net classifiers. 

2   Database 

We have acquired a database of 22 people, and 10 different acquisitions per person. If 
some acquisition has not let to extract some of the parameters described in the next 
section, this capture has been rejected and replaced by a new one. Figure 2 shows an 
example of defective acquisitions and the reason. 

The database has been stored in bmp format using 8 bits per pixel (256 gray lev-
els), a resolution of 100 dpi, and an image size of 216x240 mm. Higher resolutions 
would imply more details but also more computational time in order to process a hand 
image. In our preliminary experiments we have found that 100 dpi offers a good com-
promise. Obviously this resolution is insufficient for other related applications such as 
palm print, which is analogous to fingerprint recognition, but using the ridge and valley 
pattern of the hand skin. Thus, the system will rely on the silhouette of the hand and will 
ignore other details such as fingerprints, lines, scars and color. For this reason, the first 
step of the pre-processing described in the next section will be a binarization and a con-
tour extraction. Although this procedure discards useful information for discrimination, 
it also alleviates other problems, such as the perspiration of the skin which blots the thin 
details of the image. Figure 3 shows an example of this phenomenon. 

 
  

Fig. 2. Example of defective acquisitions. The first one is defective because it is cut on the 
base. In the second one, some fingers are joined. In the third one, one finger is cut 
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Fig. 3. Example of hand acquisition at 150 dpi and 24 bit per pixel (color image), with perspira-
tion problem. This problem can be neglected after the binarization step 

3   Feature Extraction 

3.1   Pre-processing Algorithm 

Figure 4 shows a block diagram of the pre-processing algorithm. 
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CONTOUR
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Parameters 
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Fig. 4. Block diagram for the proposed pre-processing scheme 

The description of each block is the following: 

Filter 
We apply a low-pass filtering in order to remove spurious noise. 

Binarization 
The goal is the conversion from an image ( ),I x y at 8 bit per pixel to a monochrome 

image ( ),I x y′  (1 bit per pixel. “0”=black, “1”=white), applying a threshold: 

( ) ( )1 ,
,

0

if I x y threshold
I x y

otherwise

≥
′ =  (1) 

We use threshold=0.07. 

 Navarro
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Contour Detection 
The goal is to find the limits between the hand and the background. For this purpose 
the algorithm detects the intensity changes, and marks a closed set of one pixel wide 
and length the perimeter of the hand. Edge points can be thought of as pixel locations 
of abrupt grey-level change. For example it can be defined an edge point in binary 
images as black pixels with at least one white nearest neighbour. We use the 
Laplacian of Gaussian method, which finds edges by looking for zero crossings after 
filtering the image with a Laplacian of Gaussian filter. 

Coding 
This step reduces the amount of information. We translate a bmp file to a text file that 
contains the contour description. The encoding algorithm consists of a chain code. In 
chain coding the direction vectors between successive boundary pixels are encoded. 
Figure 5 shows our code, which employs 8 possible directions and can be coded by 3-
bit code words. 

0 1 

2 

3 4 5 

6 

7 

                      

         Fig. 5. Contour coding algorithm             Fig. 6. Maximum of first and middle fingers 

Once upon the chain code is obtained, the perimeter can be easily computed: for 

each segment, an even code implies +1 and an odd code + 2  units. the beginnings 
and ends of the fingers and wrist are found looking for minimum and maximum val-
ues in the chain code. 

The finger limits (base and maximum height) are detected in the middle of a region 
with a “5” and “3”·code. Figure 6 shows, for example, the maximum of the first and 
middle fingers. 

3.2   Proposed Features 

Using the result of the previous section as input, we propose the following measure-
ments (see figure 7): 

1. Thumb finger length. 
2. First finger length. 
3. Middle finger length. 
4. Ring finger length. 
5. Little finger length. 
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6. Wrist length. 
7. Thumb base width. 
8. First finger width. 
9. Middle finger width. 
10. Ring finger width. 
11. Little finger width. 
12. Hand perimeter. 
13. Hand surface. 
 

 
 

Fig. 7. Measured features 

Some of these features have been removed in the experiments due to their low dis-
crimination capability. Our experiments have revealed that results are improved delet-
ing features 1, 6, 7 and 13. Thus, we will select the remaining nine features per image. 

4   Experimental Results and Conclusions 

4.1   Conditions of the Experiments 

Our results have been obtained with the database described in section 2, the preproc-
essing of section 3, and the selected parameters of section 4, in the following situa-
tion: 22 persons, images 1 to 5 for training, and images 6 to 10 for testing. 

4.2   Nearest Neighbour Classifier 

We obtain one model from each training image. During testing each input image is 
compared against all the models inside the database (22x5=110 in our case) and the 
model close to the input image (using Mean Square Error criterion) indicates the rec-
ognized person. 

In our experiments, we are making for each user, all other users’ samples as im-
postor test samples, so we finally have, N=22×5 (client)+22×21×5 (impostors)=2420 
different tests. We have used two different distance measures: 

( ) ( )2

1

,
P

i i
i

MSE x y x y
=

= −  
(2) 

( )
1

,
P

i i
i

MAD x y x y
=

= −  
(3) 

Where P is the vector dimension. 

4.3   Multi-layer Perceptron Classifier Trained in a Discriminative Mode 

We have trained a Multi-Layer Perceptron (MLP) [9] as discriminative classifier in 
the following fashion: when the input data belongs to a genuine person, the output 
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(target of the NNET) is fixed to 1. When the input is an impostor person, the output is 
fixed to –1. Figure 8 shows the neural network architecture. We have used a MLP 
with 30 neurons in the hidden layer, trained with the Levenberg-Marquardt algorithm, 
which computes the approximate Hessian matrix, because it is faster and achieves bet-
ter results than the classical back-propagation algorithm. We have trained the neural 
network for 10 epochs (50 epochs when using regularization). We also apply a multi-
start algorithm and select the best result. 

The input signal has been fitted to a [–1, 1] range in each component. 

 

input layer

hidden layer

output layer 

inputs: 

outputs 

x[1] x[2] x[P] 

O[1] O[22] 

 

Fig. 8. Multi-layer Perceptron architecture 

One of the problems that occur during neural network training is called overfitting. 
The error on the training set is driven to a very small value, but when new data is pre-
sented to the network the error is large. The network has memorized the training ex-
amples, but it has not learned to generalize to new situations. The adopted solution to 
the overfitting problem has been the use of regularization. The regularization involves 
modifying the performance function, which is normally chosen to be the sum of 
squares of the network errors on the training set.  So, this technique helps take the 
mystery out of how to pick the number of neurons in a network and consistently leads 
to good networks that are not overtrained. The classical Mean Square Error (MSE) 
implies the computation of (4): 

2

1

1
( )

P

i i
i

MSE t a
N =

= −  
(4) 

Where t, a are the P dimensional vectors of the test input and the model, respectively. 
The regularization uses the following measure (5): 

2

1

1
(1 )

n

j
n j

MSEREG MSE wγ γ
=

= + −  
(5) 

Thus, it includes one term proportional to the modulus of the weights of the neural net. 
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In addition, there is another important topic: the random initialization. We have 
studied two strategies: 

a) To pick up the best random initialization (the initialization which gives the higher 
identification rate) 

b) A committee of neural networks, which combines the outputs of several MLP, 
each one trained with a different initialization. 

4.4   Radial Basis Function Classifier Trained in a Discriminative Mode 

We have trained a Radial Basis Function (RBF) in a similar fashion than MLP of pre-
vious section. Figure 9 shows the architecture. Taking into account that a RBF is 
faster to train, we have worked out a exhaustive study varying the number of centres. 
Figure 10 shows the identification rate as function of the number of centres. It can be 
seen that the maximum value is 89.09%, which is achieved using 50 centres. 
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   Fig. 9. Radial Basis Function architecture             Fig. 10. Identification rate vs. number of  
    centers for the RBF network 

4.5   Experimental Results 

Table 1 compares the neural net results with the classical nearest neighbour classifier 
with two different distance measures. It can be appreciated that the neural networks 
outperform the Nearest Neighbour classifier. 

Table 1. Comparison between different Classifiers 

Classifier Identification rate (%) 
Nearest Neighbor (MAD) 64,55% 
Nearest Neighbor (MSE) 73,64% 
Multi-Layer Perceptron (MSE, 10 epoch) 91,82% 
Multi-Layer Perceptron (MSEREG, 50 epoch) 92,73% 
MLP committee 3 nets (MSE, 10 epoch) 93,64% 
MLP committee 3 nets (MSEREG, 50 epoch) 93,64% 
Radial Basis Function 90% 
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Although hand-geometry does not offer the good results of fingerprint biometric 
recognition [10-11], it can be more accepted by the uses, because fingerprint are more 
related to police, and criminal records. 
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Abstract. This Paper studies different committees of neural networks for bio-
metric pattern recognition. We use the neural nets as classifiers for identifica-
tion and verification purposes. We show that a committee of nets can improve 
the recognition rates when compared with a multi-start initialization algorithm 
that just picks up the neural net which offers the best performance. On the other 
hand, we found that there is no strong correlation between identification and 
verification applications using the same classifier. 

1   Introduction 

Neural networks are one of the most powerful tools for pattern recognition [1]. On the 
other hand, one of the applications of pattern recognition, person identification by 
means of biometrics [2], has gain market share. Nevertheless, still remain some un-
solved problems [3-5]. 

In this paper, we focus on a biometric identification system improvement by means 
of a committee of neural networks. Figure 1 shows the general scheme of a biometric 
system. 

These systems can be operated in two ways: 

a) Identification: In this approach no identity is claimed from the person. The auto-
matic system must determine who is trying to access. 

b) Verification: In this approach the goal of the system is to determine whether the 
person is who he/she claims to be. This implies that the user must provide an 
identity and the system just accepts or rejects the users according to a successful 
or unsuccessful verification. Sometimes this operation mode is named 
authentication or detection. 

We will focus on a study of the third block of figure 1. Without loss of generality 
we will use a set of features and a database extracted from hand-geometry images ob-
tained from a 22 people and 10 different realizations per person set (5 for training and 
5 for testing). The feature extraction section and the digital signal input (blocks 1 and 
2 of figure 1) can be found in [6]. Our matching algorithm will be a neural network or 
a committee of neural networks. 
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Fig. 1. General scheme of a biometric recognition system 

1.1   Biometric Identification 

The system performance can be evaluated using an identification rate. This is ob-
tained by the ratio between the number of properly assigned identities and the number 
of trials of the experiment. For this purpose, having a labelled training set that con-
tains examples of each person, we train a neural network in a discriminative mode: for 
each input pattern we force the neural net to learn +1 at the output of the correspond-
ing user and –1 at the other outputs. 

( )1 [1], [2], , [ ] #
[ ]

1

if x x x x P person i
O i

otherwise

= ∈
=

−
 

(1) 

Figure 2 shows the neural network scheme. 

 

input layer

hidden layer

output layer 

inputs: 

outputs 

x[1] x[2] x[P] 

O[1] O[22] 

 

Fig. 2. Neural network architecture 

For identification, if we have a population of N different people, and a labelled test 
set, we fill a matrix S, where the elements are interpreted in the following way: 

[ ]
#

, 1, #ijk x person i
s O j k trials

∈
= =  (2) 

Where trials is the number of different testing images per person (k=5 in our ex-
periments), and sijk is the similarity from the k realization of an input signal belonging 
to person i, to the model of person j. 
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This matrix can be drawn as a three dimensional data structure (see figure 3). 
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Fig. 3. Proposed data structure 

Thus, the identification rate looks for each realization, in each raw, if the maximum 
similarity is inside the principal diagonal (success) or not (error), and works out the 
identification rate as the ration between successes and number of trials (successes + 
errors): 
 for i=1:N, 

  for k=1:#trials, 
   if(siik>sijk) ∀ ≠j i, then success=success+1 
   else error=error+1 
   end 

  end 
 end 

1.2   Biometric Verification 

Verification systems can be evaluated using the False Acceptance Rate (FAR, those 
situations where an impostor is accepted) and the False Rejection Rate (FRR, those 
situations where a user is incorrectly rejected), also known in detection theory as 
False Alarm and Miss, respectively. This framework gives us the possibility of distin-
guishing between the discriminability of the system and the decision bias. The dis-
criminability is inherent to the classification system used and the discrimination bias 
is related to the preferences/necessities of the user in relation to the relative impor-
tance of each of the two possible mistakes (misses vs. false alarms) that can be done 
in verification. This trade-off between both errors has to be usually established by ad-
justing a decision threshold. The performance can be plotted in a ROC (Receiver Op-
erator Characteristic) or in a DET (Detection error trade-off) plot [7]. DET curve 
gives uniform treatment to both types of error, and uses a scale for both axes, which 
spreads out the plot and better distinguishes different well performing systems and 
usually produces plots that are close to linear. DET plot uses a logarithmic scale that 
expands the extreme parts of the curve, which are the parts that give the most infor-
mation about the system performance. For this reason the speech community prefers 
DET instead of ROC plots. Figure 4 shows an example of DET plot. 
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Fig. 4. Example of a DET plot for a user verification system (dotted line) 

We have used the minimum value of the Detection Cost Function (DCF) for com-
parison purposes. This parameter is defined as [7]: 

  miss miss true fa fa falseDCF C P P C P P= × × + × ×  (3) 

Where Cmiss is the cost of a miss (rejection), Cfa is the cost of a false alarm (accep-
tance), Ptrue is the a priori probability of the target, and Pfalse = 1 − Ptrue. Cmiss= Cfa =1. 

Using the data structure defined in figure 3, we can easily apply the DET curve 
analysis. We just need to split the distances into two sets: intra-distances (those inside 
the principal diagonal), and inter-distances (those outside the principal diagonal). 

2   Experimental Results and Conclusions 

We have trained a neural network on the conditions of previous section, and evaluated 
the identification rates and minimum value of the DCF. The experiments have been 
done with the following parameters: 

a) Multi-Layer Perceptron 9×30×22 trained with the Levengerb-Marquardt algo-
rithm during 10 epochs. 

b) Multi-Layer Perceptron 9×30×22 trained with the Levengerb-Marquardt algo-
rithm during 50 epochs using regularization [8]. 

c) A committee of three MLP, each one trained on the conditions of section a) 
d) A committee of three MLP, each one trained on the condition of section b). 

2.1   Committee of Neural Networks 

In pattern recognition applications it is well known that a number of differently 
trained neural networks (that can be considered as “experts”), which share a common 
input, can produce a better result if their outputs are combined to produce an overall 
output. This technique is known as ensemble averaging, committee machine [9], data 
fusion [10], etc. The motivation for its use is twofold [9]: 
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 If the combination of experts were replaced by a single neural network, the 
number of equivalent adjustable parameters would be large, and this implies 
more training time and local minima problems [11]. 

 The risks of over-fitting the data increases when the number of adjustable pa-
rameters is large compared to the size of the training data set. 

Figure 5 shows the equivalent scheme for an M experts’ combination. We have 

considered each classifier as an expert with scalar output [ ]iy n and vectorial input x : 

( ) [ ] [ ] [ ]( )[ ] 1 , 2 , ,i i iy n F x F x n x n x n P= = − − −  (4) 
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Fig. 5. Committee machine based on ensemble-averaging 

The expectation is that differently trained experts converge to different local min-
ima on the error surface, and overall performance is improved by combining the out-

puts in some way. Let x  denote an input vector and yd the desired response (predicted 

output value) for this input value. If the output of the neural net number i is ( )iF x , 

we can compute the mean squared error (MSE) of the obtained output as: 

( ) ( )( )2

i d iMSE F x E y F x= −  (5) 

We can average the performances for a set of different neural networks (or the 
same architecture trained with the same algorithm but using a different random ini-
tialization) to obtain the average mean square error: 

( ) ( )( )2

1

1 M

i d i
i

E MSE F x E y F x
N =

= −  (6) 

We can define the Basic Ensemble Method (BEM) regression function [12] as: 

( ) ( ) ( )( )
1 1

1 1M M

BEM i d d i
i i

F x F x y y F x
M M= =

≡ = − −  (7) 

If we assume that the errors ( )i d im y F x= − , i=1,…M of each individual predic-

tor are mutually independent with zero mean, we can calculate the MSE of ( )BEMF x : 
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≠
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This result shows that, by averaging regression estimates, we can reduce the MSE 
by a factor of M when compared to the individual population performance. By in-
creasing the population size, we can, in principle, make the estimation error arbitrarily 
small, but if M → ∞  the assumption that the errors are mutually independent is not 
valid. In practice there is saturation on performance, and after a given value of M 
there is no improvement with an increase on the number of combined neural net clas-
sifiers. In our experiments, we will use M=3. 

2.2   Results and Conclusions 

We have done 100 random initializations for each one of the four schemes defined in 
the introductory part of section 2. Figure 6 shows the histograms for Identification 
rate and minimum value of DCF (left and right respectively). Figure 7 shows a fitted 
Gaussian to the previous histograms (fig. 6). It is clear that the committee of experts 
improves the mean value and decreases the variance. Thus, with a committee of ex-
perts a better recognition result is achieved. 

Another interesting study is the correlation between identification and verification 
rates. That is: if we get a good system for identification, does it mean that we have a 
good verifier? Table 1 shows the identification and verification results for each stud-
ied scenario along with the correlation factor between both parameters. 

Although these results are not as good as other biometric traits such us fingerprints 
[13-16], for our purpose we prefer this set of experimental data, where the classifier 
produces more errors. Figure 8 shows a two-dimensional plot, where for each classi-
fier, the identification versus the verification results are plotted. Surprisingly, we  
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Fig. 6. Histograms of identification rates (on the left) and DCF (on the right) for different clas-
sification strategies and 100 random initializations 
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Fig. 7. A fitted Gaussian to each histogram of figure 6 
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Fig. 8. 2-D plot of identification versus DCF pair values for each trained classifier 

Table 1. Comparison between different schemes performance 

Classifier Identification rate 
(%) 

Min(DCF) Corr(Ident,DCF) 

MLP (MSE) 91,82% 2.92% –0.52 
MLP (MSEREG) 92,73% 2.94% –0.66 
MLP (MSE) committee 93,64% 2.64% –0.39 
MLP (MSEREG) commit-
tee 

93,64% 3.01% –0.53 

observe that the best classifier for identification does not necessarily imply the best 
performance for verification. We have also interpolated a first-order polynomial in 
order to see the tendency. Fortunately, the best the classifier for identification is, the 
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better the tendency for verification. However, there are several classifiers that achieve 
the best identification rate, and the equivalent DCF can differ significatively. We 
think that an interesting research line should solve the question: what needs a good 
identifier in order to also be a good verifier? This question is not easy to solve. How-
ever, we have observed that regularization provides higher correlation (absolute value 
of the correlation coefficient) between a good classifier and a good verifier than its 
counterpart without regularization. 
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Abstract. The aerodynamic design of wind turbine blades is carried out by 
means of evolutionary techniques within an automatic design environment 
based on evolution. A simple, fast, and robust aerodynamic simulator is embed-
ded in the design environment to predict the performance of any turbine pro-
duced as intermediate individual of the evolutionary process. The aerodynamic 
simulator is based on blade element theory in which a panel method is com-
bined with an integral boundary layer code to calculate blade airfoils’ character-
istics. In order to reduce computations some simplifications were contemplated 
and the results corrected by means of the application of neural network based 
approximations. Results of the simulations obtained using this technique, of the 
application of the automatic design procedure and of the operation of the wind 
turbines thus obtained are presented. 

1   Introduction 

In the last decade or so, wind turbines have become a common sight in our landscape 
and an increasingly important source of clean energy. Economical performance of a 
wind turbine is determined by the efficiency of the blade. Thus, any improvement in 
the aerodynamic design of wind turbines implies a significant profit increase during 
the 20 years of its lifetime.  

Analytical optimal solutions for each specific operational condition in terms of 
blade chord and angle distribution can be easily calculated as shown by Hansen [1]. 
However, wind turbines find themselves immersed in many different operational 
conditions throughout their lifetimes and designing for a particular one will not opti-
mize the performance during its lifetime and thus its efficiency in energetic and eco-
nomic terms. Thus, for a good design of a wind turbine, the target is to consider its 
operation in a range of real conditions and for this case there is no analytical solution. 
Consequently, until now, in most cases, what engineers have done to obtain these 
designs is to start with an analytical solution for a point and apply some empirically 
determined corrections. This approach is not fail proof and requires a lot of experi-
ence on the part of the designer. In addition it does not provide a simple way to de-
velop particular blades for specific locations taking into account their wind patters.  

To provide one way of doing this, this paper proposes a different approach. We 
propose developing and using an evolutionary design environment where the design 
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can be optimized for the range of conditions the blade will find itself in when in real 
operation. This approximation to the design problem is based on work by other au-
thors in the application of evolution for the design and optimization of different types 
of systems in other realms. Examples of applications in this line are described in the 
work by Kirsch and Rozvany for the structural optimization of bridges and transmis-
sion towers [2] or in the work by Keane et al. [3], Song et al. [4] or Ong et al. [5] in 
airplane and airfoil design optimization. 

However, these optimization systems present two important disadvantages: first, 
they are exclusively created for the optimization of existing designs; and secondly, 
they can only optimize some type of designs. In this work we are creating the designs 
in a general purpose evolutionary design environment created in our group which 
through standardized interfaces provides a way to include the simulators or human 
evaluation systems necessary for its adaptation to different design problems. In addi-
tion, the system is not aimed at the optimization of a given design, but at the creation 
of possible design alternatives. This design system integrates all of the stages of the 
design process through the integration of advanced search and analysis strategies. 
Thus, the design process is approached as an optimization problem in a space of very 
high, and usually variable, dimensionality. This is the reason why the selection of the 
search paths must not be left only to the designer, as his/her limitations would se-
verely constrain the search process giving rise to fictitious constraints, specially in the 
case of complex, non-linear or multidimensional structures that require the interaction 
of multiple knowledge sources such as the ones we want to consider here. 

Thus, the design environment reduces the participation of the human to the formu-
lation of the problem (specification stage) and the subjective evaluation stage, liberat-
ing him/her from the classical search for solutions and decision making. 

2   Design Environment 

The Basic structure of the design system comprises three blocks:  

• Solution search block. 
• Decision making block (evaluation with or without human participation). 
• Computational distribution block. 

The search stage is based on different types of evolutionary algorithms which em-
ploy a decision block for the evaluation of candidate solutions. In the particular case 
of the design of blades for wind turbines, the algorithm that was chosen, as indicated 
in the experimental section, was a standard genetic algorithm. The reason for this 
choice was that the emphasis of the work was on evaluating the operation of the sys-
tem and this could be done more easily through the standard GA. The GA uses a deci-
sion module based on a blade simulator that was developed ad hoc for the evaluation 
of each possible candidate and providing the fitness value needed for evolution to be 
carried out. 



1190 V. Díaz Casás et al. 

 

3   Implementation of the Decision Module 

The decision module consists of a blade simulator which takes into account the aero-
dynamic processes governing the wind-blade interaction under different angle and 
wind speed conditions. The simulator should calculate the lift, drag and the rotation of 
the rotor generated under the conditions under study. Obviously, to obtain the best 
possible simulation, a realistic CFD code (computational fluid dynamics) should be 
used as simulator. The environment presented here provides the framework to intro-
duce any simulator we wish, commercial or not. However, in order to reduce compu-
tation time so that the system could run within time spans compatible with industrial 
computing resources, a specific simplified blade simulator was developed.  

 
Fig. 1. Structure of the Design Environment 

The simulator is based on the well known blade element theory. This classic theory 
evaluates each blade as divided into small portions, called blade elements, along its 
span. The blade’s efficiency is obtained through the study of each element after con-
sidering how it is influenced by the other elements and by the wake produced by the 
rotating set of blades. Under these assumptions, each element can be analyzed as a 
two-dimensional airfoil in which the attack angle (the angle of the incoming wind) is 
modified by taking into account the flow velocity perturbations induced by the above 
mentioned elements. In this way, for each element, lift and drag coefficients can be 
easily computed, and from these the lift, and drag forces and the torque of the whole 
windmill rotor can be obtained. 
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The simulator is divided into two main parts: the first one computes the perform-
ance of two-dimensional airfoils and the other one applies the blade element theory in 
order to obtain the resulting forces and moments. The analysis of two-dimensional 
airfoils can be greatly simplified in cases where the main flow could be considered as 
ideal or potential, which is mostly true when analyzing windmills. The ideal flow 
condition occurs in all cases where the Reynolds number (Re) achieves values much 
larger than one. The Reynolds number is a non-dimensional parameter obtained as the 
ratio between the inertial and the viscous forces acting within the fluid. However, in 
all cases certain regions exist within the flow-field, the so called boundary layers, 
where the viscous effects are dominant, thus the flow cannot be considered as ideal 
inside these regions. Therefore, in aerodynamic calculations it is customary to analyze 
the main flow by using the Euler equations governing the ideal flow motion and, after 
that, applying the boundary layer equations to obtain the viscous drag on the solid 
surfaces. When applying such an approximation, it should be taken into account that 
in cases where the pressure along the wall increases when moving downstream, the 
boundary layer can separate from de wall. This separation will induce a further in-
crease of drag forces [7] , [8].   

With these considerations the process of calculation of the characteristics of the 
airfoil has been divided in three phases:   

• Analysis of the ideal flow around the airfoil.   
• Study of the bounded layer. 
• Estimation, if needed, of forces values correction due to the detachment of 

the boundary layer.   

Lift and drag forces acting on any airfoil are calculated by integrating the pressure 
acting on its surface. As the flow is considered ideal or potential, pressure forces are 
obtained by calculating the flow kinetic energy variation along the airfoil surface. The 
velocity field of an ideal flow is given as the gradient of a potential function. This 
potential function can be evaluated by calculating the circulation of the flow velocity 
around the airfoil.  

In potential flow theory viscous forces are neglected, therefore an important com-
ponent of drag forces –friction forces- is not considered. This situation makes it nec-
essary to add the effects of viscous processes appearing in the boundary layer. These 
effects are modelled by Thwaites [9], Michel [10] and Head [11] methods, used in 
laminar, transitional and turbulent boundary layers, respectively. From them, drag 
coefficient is calculated by using the Squire-Young formula [12], [13]. Nevertheless, 
as all these methods use the velocity distribution calculated after applying potential 
flow consideration, when turbulent processes gain importance, the methods’ accuracy 
diminishes. 

The effective power produced by each blade is consequently calculated by integrat-
ing the effects of each element’s airfoil along the blade. To extrapolate 2D airfoil 
results to 3D blade element, it is necessary to account for the effect of fluid circula-
tion around the blade and its wake. This effect is introduced by applying the Prandtl 
[14],  [15]. In addition, the attack angle of each airfoil is calculated such to be the 
angle maximizing the drag-lift ratio. 
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3.1   Correction by Neural Network   

The range of angles in which it is necessary to carry out the study of the airfoil de-
mands analyzing positions where flow detachment takes place along the surface of the 
airfoil. In these types of flow configurations the error of the calculations is quite high, 
since they are based on potential flow studies while, in these cases, the vorticity of the 
system is high. A neural network was used to correct the deviations that appear when 
the detachment of the boundary layer takes place below 90% of the chord.  

We made use of a simple multilayer perceptron neural network with 6 input neu-
rons (Reynolds number, angle of attack, lift coefficient, drag coefficient, % upper 
detachment, %lower detachment), two hidden layers of 8 neurons each and 2 output 
neurons (lift coefficient, drag coefficient). We applied a backpropagation algorithm to 
obtain the weights of the synapses (training process) using a set of 450 real data. 
These data were obtained from real analyses from  NACA 2410, NACA 0009, NACA 
2415, NACA 2541, CLARKY, ClarkySM and DAE11 airfoils [13]. 

After 1000 steps of training, an average error of around 5% was obtained, showing 
that this kind of mathematical approach is a very appropriate technique for our prob-
lem. We selected a relatively low precision in terms of error in the solution in order to 
obtain a more general result. Better results for the training error could be achieved, 
but these led to networks that produced artefacts when new airfoils were analysed. By 
using this correction, errors in large angle analyses are reduced from over 30% to 8% 
in the worst cases. The correction achieved by the neural network can be appreciated 
in Fig. 2. 
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Fig. 2. Real, calculated and corrected lift coefficient for NACA 6409 airfoil. The correction is 
done by an ANN 

The use of neural network based correction implied a significant increase in the ac-
curacy of the method: over 20% in some airfoils. The calculation process, however, 
only increased by 12 ms over approximately 10s it took for the potential flow  
calculation. 
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4   Experiment 

This study is part of a project which purpose is to develop a systematic process for 
automatic design. We aim to use it as a platform for complex future projects. This 
requires to use simulation applications and/or commercial calculation and to study the 
relationships and transmission of information among them.   

The use of evolutionary techniques in an automatic design process requires to de-
termine the parameters that define each individual and the requirements that condition 
the project. In this case these conditions are three: theoretical maximum power to 
extract, speed of the wind and longitudinal resistance. In the first phase of the project 
this last constraint has not been introduced.   

The objective of this study is to generate a windmill blade whose restrictions are a 
maximum diameter of 5 m. and maximum wind operation conditions of 10 m/s. A 
theoretical maximum power, called the Betz limit [16], can be easily obtained for a 
windmill. This limit is never achieved in reality, but it is useful as a measure of the 
goodness of a blade by comparison. A simplification is introduced as it is not neces-
sary to contemplate the effect of the terrestrial boundary layer. Rejecting its effect 
permits considering a potential flow due to the vorticity introduced by the presence of 
the terrestrial boundary layer.   

Since the diameter is taken as an initial restriction, in order to define the blade it 
will be necessary to define the distributions of chord, twist and airfoil shape along the 
blade span. In this case we have settled for five halfway control sections, considering 
the rest of the sections as interpolations from these. In order to define the blade sec-
tions or airfoils, we decided to resort to the NACA four digits family of airfoils, 
which permits their definition through four parameters. Although whole numbers are 
usually employed to define them, this formulation allows for the use of floating num-
bers, defining intermediate situations.  Thus, the individual genotype is defined by 
means of twenty-five genes, five per section, where the first four parameters generate 
the airfoil and the other defines the chord.  
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Fig. 3. The right figure displays the number of valid individuals during. The left figure displays 
the average power produced by valid individual is represented 
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In this project we used a simple genetic algorithm. The population was 200 
individuals. The selection was carried out through a tournament scheme among three 
individuals. The crossover was a simple two point crossover with a rate of 50% and 
the mutation was random with a rate of 10%.  

One of the problems that the algorithm had to face was that there existed chromo-
somes that did not encode valid individuals. In the first few generations the evolution-
ary system tried to eliminate the non-valid individuals. When a valid population was 
stabilized, the population quality started to increase. 

In Fig. 3. we provide some data on the evolution process. Before the 65th genera-
tion, the evolution process was totally functional. In the following generations, the 
population tended to become genetically stable. The power levels shown in the Fig. 4. 
are overstated by the simulator due to the simplification of some mechanical effects. 
Anyway, the power levels achieved by the best individuals come very close to the 
theoretical optimal. 

 

Fig. 4. 3D blade representation for best individual. Notice the twist 

To implement the evolutionary process, a cluster of 18 WindowsXP computers was 
created. We opted for a WINDOWS cluster because great part of the commercial 
engineering design and numeric simulation applications run under this operating sys-
tem. This cluster’s objective was to make use of idle cpu time of the computers when 
nobody was using them. To develop the distributed process we used the MPICH2 by 
Argonne National Laboratory. This conditioned the system vastly since the processes 
generated by physical users were given priority. It was also decided that the programs 
were started and closed by the distributed computation program. Since a standardiza-
tion of the process was sought, this option was chosen despite the fact that it was not 
the most computationally efficient.  
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In Fig. 4. 4 we display the best blade obtained for the conditions stated above. This 
blade produced a power that is very close for the achievable optimum for the case 
under considerations. 

5   Conclusions 

In this work we have presented an automatic design environment and an aerodynamic 
simulation strategy for windmill blades that has allowed us to design the blade’s pro-
file using a neural network to correct effects having to do with detachment of the flow 
that cannot be taken into account by potential flow methods. The results obtained 
clearly meet all of the design parameters that were established leading to very precise 
behaviours without having to resort to very complicated non-linear models of the 
plant within the simulator. In the first tests of the design environment, taking some 
particular conditions into account, near optimal results for the blade were achieved. 
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Abstract. Sign language, which is a highly visual-spatial, linguistically complete 
and natural language, is the main mode of communication among deaf people. In 
this paper, an American Sign Language (ASL) word recognition system is being 
developed using artificial neural networks (ANN) to translate the ASL words into 
English. The system uses a sensory glove Cyberglove™ and a Flock of Birds® 3-
D motion tracker to extract the gesture features. The finger joint angle data 
obtained from strain gauges in the sensory glove define the hand-shape while the 
data from the tracker describe the trajectory of hand movement. The trajectory of 
hand is normalized for increase of the signer position flexibility. The data from 
these devices are processed by two neural networks, a velocity network and a 
word recognition network. The velocity network uses hand speed to determine the 
duration of words. To convey the meaning of a sign,  signs are defined by feature 
vectors such as hand shape, hand location, orientation, movement, bounding box, 
and distance.  The second network is used as a classifier to convert ASL signs into 
words based on features. We trained and tested our ANN model for 60 ASL 
words for different number of samples. Our test results show that the accuracy of 
recognition is 92 %. 

1   Introduction 

American Sign Language (ASL) is the main mode of communication for most deaf 
people in the United States. However, most people outside the deaf community do not 
understand ASL. This communication problem affects deaf people’s lives and 
relationships negatively. Deaf people usually communicate with hearing people either 
through interpreters or text writing. Although interpreters can help the communication 
between deaf persons and hearing persons, they are often expensive and their use 
leads to loss of independence and privacy. Communication by writing is used by 
many deaf people with hearing people, but it is very inconvenient while walking, 
standing at a distance, or when more than two people are in the conversation. If ASL 
can be translated automatically into English text and speech, it will be much easier for 
deaf people to communicate with others. Words in ASL are represented by about 
6000 signs, which consist of complex body movements. The signs are created by 
using the right hand, the left hand or both hands. Some signs also involve facial 
expressions[1]. 
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Many researchers have studied sign languages (SL) recognition and gesture 
recognition, but there are major difficulties due to the complexity of hand and body 
movements in SL expressions. SL recognition research can be categorized into three 
major classes: (i) computer vision based, (ii) data glove and motion sensor based, and 
(iii) a combination of these two methods. Computer vision based SL recognition relies 
on image processing and feature extraction techniques for capturing and classifying 
body movement and handshape when a deaf person makes a SL sign. On the other 
hand, data glove and motion tracker based SL recognition methods use a special data 
glove and a motion tracker for detecting handshape and movement. The third method 
includes a combination of techniques from each of these two methods. 

In parallel to the advancement in sensor and computer technology, some successful 
computer vision based  ASL and  other SL recognition systems have been developed 
[2,3,4,5,6,7,8,9]. There are also many studies in the area of glove and motion sensor 
based ASL and other SL recognition [10,11,12]. These studies are generally based on 
Artificial Neural Networks (ANN) [2,10,12,13], Hidden Markov Models (HMM) 
[3,4,6,7,9], and statistical methods [5,8]. Some recently published papers include the 
use of both methods for SL recognition [13]. 

In this paper, we present the design of an ASL word recognition system using 
ANN. The neural network for word recognition is triggered using a velocity neural 
network. If the response of the velocity network is positive, then the feature vectors, 
which are based on linguistic properties of ASL, are extracted by using   the data from 
the Cyberglove™ and Flock of Birds® for every time cycle until the response of the 
velocity network becomes negative. We do not use all of these extracted features for 
actual word recognition, but we choose the feature vectors at six time instants. The 
system is able to recognize a vocabulary of 60 ASL words successfully. 

2   Hardware of System 

We use a right-hand Cyberglove™ to retrieve the finger joint angle values for gesture 
features. The glove has 18 sensors which measure the bending angles at various 
positions when the frequency of data collection is up to 150 Hz. We have used 15 
sensors of the glove. To track the position and orientation of the hand in 3-D space, 
the Flock of Birds® motion tracker mounted on the wrist is used.  

Open Inventor SDK (Software Development Kit) is used in the software 
development for the 3-D scene rendering and interactive programming. We use the 
Microsoft® Speech SDK for the programming of speech synthesis. Figure 1 shows 
the system input devices.  

 
 
 
 
 
 
 

Fig. 1. The image on the right is Cyberglove™. The image on the left is Flock of birds® 3-D 
motion tracker 
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3   Data Collection for Word Recognition 

A velocity network is designed which classifies the hand movement at any time 
instant as “signing” (1) or “not signing” (0). It is detailed in our earlier paper [14]. 
Figure 2 shows an example of the hand velocity profile during a typical signing 
movement. During the signing movement, the hand velocity can rise or drop 
momentarily due to momentary shaking and stopping of the hand. Hence, the use of a 
threshold value of velocity does not give a good solution for classification of hand 
movement. The ideal output for the shown velocity graph should be 1 from the time 
the first sudden change in velocity is seen till the time the velocity graph shows a 
series of low velocities. Hence, after numerous trials, the input to the velocity neural 
network was selected as the 'summation of velocities during the previous five time 
instants'. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Velocity network performance during  determining the duration of ASL words 

If the output of velocity network is 1, feature vectors, hand-shape, hand-location, 
hand-orientation and movement are extracted using the 15 data elements from the 
glove and 6 data elements from motion tracker, then feature vectors and sensors data 
are recorded in an array. This data is collected at a frequency of 33.33 Hz. No features 
are extracted, and sensor data are recorded if the output of the velocity network is 
zero. When the speed network output changes from 1 to 0, the features and data 
recording for the given sign are completed, and the sign recognition phase starts. The 
data at five equally divided time instants are chosen from the recorded data, giving a 
total of 300 data elements. In our study, a virtual hand model in VRML displayed on 
the computer screen is updated at 33.33 Hz using the data gathered from the glove and 
motion tracker. 

4   Feature Extractions  

In this study, the feature vectors of a sign are extracted based on an earlier linguistic 
description of ASL, which were defined by Stokoe and Battison [15,16], Their 
purpose  was developing a national system for writing sign, containing symbols 
defined by hand-shape, location, movement and orientation. Distance, time and 
bounding box are also used additionally.  
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Distance and time. Each time a speaker signs an ASL word, information is instantly 
gathered as to x, y, z position, wrist rotation and finger bending. Let xi, yi, zi be the x-
position, y-position and z-position stored in the ith cycle of the sample. A change in 
direction from the last cycle is indicated by the vector ( xi, yi, zi) pointing in the 
direction the signer is going when 

1−−=∆ iii xxx  

 1−−=∆ iii yyy  

1−−=∆ iii zzz  

 
 

(1) 

Thus, if we take the length of this vector and call it  

222
iiii zyx ∆+∆+∆=∆  

(2) 

then the sum of i would give us a measure of total distance covered by the sign. 
Every sign covers a different distance from others. We define the feature distance as:  

Distance=
=

∆
n

i
i

1

  
 

(3) 

where n is the number of cycles in the sample. 

Bounding boxes. Some signs are bigger than others and differ in their location 
around the body The whole sign fits in the box represented by (xmin , ymin , zmin) and 
(xmax , ymax , zmax). So we can use this bounding box as a feature vector. Our working 
space boundaries were between (-30,-30,-30) and (30,30, 30), and we normalized 
bounding boxes data from 0 to 1. 

 

Fig. 3. American Sign Language hand-shapes [15] 

Hand shape. Most of the hand shapes are the ASL alphabet, basic numbers and some 
possible hand shapes for signing words. ASL has 36 hand shapes. We designed an 
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ANN model for hand shape recognition. Hand shape recognition depends on finger 
bending data which are collected from the CyberGlove. Our ANN hand shape 
recognition model consists of 15 input neurons, 28 hidden neurons and 36 output 
neurons. Figure 3 shows ASL hand shapes.     

We trained and tested our model for both single users and multiple users. It has an 
accuracy of 98%. This model is not given in this paper because it was detailed in an 
earlier paper [1]. We used hand shapes as a feature for sign recognition. The 
drawback of this system is that it has a glove constant-size. This glove produces 
different data for different hand sizes. Therefore, the system can only be reliable for a 
hand which has the same size as the training hand. 

Hand Location. One of our feature vectors is hand position. It is based on four 
measurement points (a), (b), (c), and (d) as shown in fig. 4. Sign speaking space is 
designated as a rectangular prism shape and divided into 14 regions by using four 
measurement points. The (d) point is measured when the hand is parallel to the floor 
and the palm faces the floor. According to our system, (a), (b) and (c) points are used 
for dividing a two dimensional coordinate system; (d) is used for the third dimension. 
These points are used together for dividing the action space into regions. Every signer 
has to establish his own reference points, which can then be called up from a stored 
file at any time. Figure 4 shows how we form the hand position locations.  

 

Fig. 4. Location of hand position 

Orientation. Orientation features are produced with a neural network classifier using 3 
of Flock of Birds’ alpha, beta, and gamma sensors.  We used a total of six orientations; 
palm facing up, palm facing down, palm facing left, palm facing right, palm facing 
front, and palm facing body.  The accuracy of orientation module is 95.7%. 

Movement. Movement features are produced by calculating differences between   
present and previous coordinate values for every time instant There are three axes and 
every axis has three states; zero, minus, and positive. There are 27 features in total. 

5   Design of ASL Word Recognition System  

Two of the ASL words used in the training set for the ANN are given in Table 1 as 
example. When we look at the definition, we see that each word has a start position 
with a hand shape and continues by changing hand shape and position.  
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Table 1. Two words in American Sign Language [1] 

ASL words Definition 

and 

The right “5” hand, palm facing the body, finger facing left, 
moves from left to right, meanwhile closing until all its finger 
touch around it’s thumb. 

Are

The right hand “R” position, palm facing left, is held at the 
lips, and the hand moves straight out and away from the lips. 

A multi-layer ANN is designed to recognize all possible ASL words. Although the 
developed system is fully flexible for any number of words, in demonstration the 
system is trained for recognition of 60 words in ASL. The input to the network is the 
extracted feature vectors of ASL words, which are produced from collected data 
during the signing period. The signing period is the time period over which the output 
of velocity network is 1. At each time interval, the data from Cyberglove and Flock of 
Birds and extracted features are recorded. We used a total of 300 data for every sign, 
two for distance and time, six for bounding box, 180 (36X5) for hand-shape, 70 
(14X5) for hand-location, 30 (6x5) for hand-orientation, 135 (27x5) for movement.   
The input to the network is the 300 data elements at five time instants recorded by the 
data collection algorithm. The proposed ANN, a multi-layer feedforward network, 
consists of 300 input neurons, 100 hidden neurons, and 60 output neurons and it is 
 

 

Fig. 5. Block diagram of ASL word recognition system 

designed to recognize the isolated words in ASL. A Levenberg-Marquardt 
backpropagation algorithm is used for training. The ANN is trained and tested for two 
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different data sets, a single-user data and a multi-user data. The output vector consists 
of 60 elements, the maximum of which corresponds to a word or sign. 

The design of the recognition system is shown in fig. 5. It consists of four parts: 
data collection and features extraction, selection of input data, trained network, and 
output decoding.  

It the data collection and features extraction, the velocity network triggers the 
data recording and feature extraction. The sensor data and extracted features are 
recorded until the velocity network output becomes zero. As explained earlier, the 
data at six time instants are selected by the selection of input data part in Fig. 5. 
Every input group represents   a feature vector, which is selected form the recorded 
data, corresponding to six selected time instants. This data of 300 elements is an 
input to the ANN. The three-layer word recognition network has 300 inputs, 100 
hidden neurons and 60 output neurons. In the final part, the output selection block 
determines the maximum output of ANN, and then the threshold block checks 
whether the maximum output value is acceptable or not. If it is acceptable, the 
corresponding index of the output vector is the recognized word. If it is not 
acceptable, the recognized word is considered to be out of the known ASL 
vocabulary. The recognized word is displayed on the screen using the Open 
Inventor interface. As illuestration, two of the ASL words recognized by our system 
are shown in Fig. 6. 

     

Fig. 6. Examples of recognized signs by our system 

6   Test Results 

We tested the model with single-user and multi-user data. In both tests, the word 
recognition system trained with three, six and twelve samples of data with 60 words. 
At the testing stage, the real time data were used. In total, 360 ASL words were in the 
training set used for the test.  Both the single user model and the multiple-user model 
were tested sequentially. The model tested started with abortion and ended with 
beautiful in alphabetical order, and than it continued with ten additional words which 
were taken randomly like you, I, yes etc.  Some hand-shape feature extraction data 
were signed by deaf teachers from the Missouri School for Deaf. The word 
recognition system testing results are given in the Table 2. 
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Table 2. ASL word recognition system test results 

 Single person trained ANN Multiple person trained ANN 
Training data 

for every word
3 6 12 3 6 12 

Total test data 360 (6*60) 360 (6*60) 
Missed 42 20 14 43 23 16 

Misrecognized 29 20 16 35 19 20 
Recognized 289 320 330 282 318 324 

7   Conclusion 

A real-time American Sign Language word recognition system is being developed 
using ANN to translate the ASL words into English. The data from sensors of 
CyberGlove and Flock of Birds are processed by a velocity network, a feature 
extraction module, and a word recognition network. Features are extracted using 
sensor data based on linguistic properties of ASL words. The system was trained and 
tested for single and multiple users for a vocabulary of 60 ASL words. Test results 
have shown that the proposed technique is capable of recognition in real time and the 
recognition accuracy of the system is 92 %.  
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Abstract. The paper presents the application of the wavelet transform
of the frequency histogram of connected elements to the detection of
very thin cracks in used pallets. First, the paper presents this novel
concept and introduces the parameters that define a connected element,
showing that the conventional grayscale intensity histogram of a digital
image is a particular case of the histogram of connected elements. Then,
the discriminant capability of the wavelet transform of this generalized
histogram is analyzed. In particular, the information conveyed by the
histogram of connected elements is exploited to detect very thin cracks in
used pallets. An artificial neural network classifier to discriminate sound
wood from defective wood with very thin cracks has been designed. The
exhaustive experimental test carried out with numerous boards of used
pallets has validated the proposed method, in particular its remarkably
low ratio of false alarms.

1 Introduction

The authors have been working for several years on the development of auto-
mated wooden pallet inspection systems using computer vision techniques, and
as a result of this work there are several industrial inspection plants in full
operation in a number of European countries. The objective of the automatic
inspection of pallets is to gradually substitute manual inspection, which, apart
from being a hard and painstaking job, is prone to errors, both false alarms -i.e.,
ready-for-use pallets classified as defective- and false negatives. After several
years of R+D efforts, the ratios currently achieved by the inspection systems
in which the authors have been working are comparable to those of qualified
human operators. Concerning operating times, automation inspection has sur-
passed manual operation by almost one order of magnitude: 3 seconds versus 20
seconds on average, respectively.

The pallets arrive at the visual inspection plants after a period of several
months of use. This means that inspection can be really complex as many po-
tential defects may be present: splinters, cracks, fissures, broken elements, lack of
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volume in several elements of the object, etc. To make things worse, the surface
of wooden pallets is often stained with different kinds of remains, such as grease,
mud, paint and so on. This paper focuses on the detection of very thin cracks
-in the 1 mm range-. The main difficulty in recognizing thin cracks does not lie
in actual detection -which can be successfully performed when applying appro-
priate segmentation techniques and provided that there is enough resolution in
the digital images- but in the numerous false alarms generated by wood veins,
paint remains, shadows induced by the lighting system, etc. Roughly speaking,
the better the detection ratio of thin cracks is, the higher the false alarm ratio is,
which means that a very delicate balance between both ratios has to be struck.

As a consequence of our work on this hard recognition problem, we have in-
troduced a novel concept for digital image segmentation: the so-called frequency
histogram of connected elements (FHCE), [1]. Being a conventional unidimen-
sional histogram, the FHCE incorporates all the computational advantages, in
terms of both simplicity and speed, inherent to histogram-based segmentation
methods. At the same time, it includes information about the spatial distribu-
tion of the specific discriminant feature in the digital image, as bidimensional
histograms also do.

Taking into account how much information that the FHCE conveys as com-
pared with the conventional gray-level histogram, we explore the application of
the FHCE wavelet transform to texture discrimination in this paper. Our main
objective in this paper is to compare the discriminant capability of different
mother functions, also known as analyzing wavelets. More specifically, we are
looking for the best mother functions for dividing regions of a digital image into
two classes: sound wood and defective wood.

The paper has been divided in to two parts. The first one is focused on
the FHCE wavelet transform. We then address the selection of discriminant
features based on wavelet functions. The paper ends with the discussion of the
experimental results concerning the detection of very thin cracks.

2 FHCE Wavelet Transform

In textured images, as is well known, the basic idea is to apply a window whose
size is big enough to capture the essential structure of any texture present in
the image. In our particular application of detecting thin cracks, we have found
that a window of 40 × 30 pixels seems to be optimum in most cases.

In our process design, we have to decide about the two FHCE parameters:
spatial predicate and connectivity level (see [1]). After exhaustive experimentation
with a plethora of digital images of sound and defective wooden boards, we
have selected a 5x3 window as the spatial predicate or morphological structure.
Note that the number of horizontal pixels is higher than the vertical pixels,
owing to the a priori knowledge available about the problem at hand. In fact,
there is empirical evidence that cracks in a piece of wood tend to appear in
the same direction as the wood grain. As the computer vision inspection is
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performed horizontally from the wooden boards standpoint, the shape of the
selected neighborhood function is easily deduced.

To conclude the selection of the FHCE parameters, the connectivity level that
a particular morphological structure should possess to be considered as such must
be selected. The FHCE is computed for each image portion by moving a window
of the same 5x3 shape as the neighborhood across all the pixels. This scanning
process is performed by means of a top-bottom and left-right movement and
by computing, at each pixel, the maximum and the minimum gray level within
its neighborhood. Each pixel’s neighborhood is classified as a connected element
if and only if the difference between the maximum and the minimum values
is small as compared with the dynamic range of the histogram in the whole
window. After experimental work, we have chosen a 10% ratio, which is a good
compromise between wooden portions in good and bad conditions. Therefore,
if a particular neighborhood possesses a gray-level variability of less than ten
percent of the dynamic range of the global window, the respective pixel is a
connected element and the FHCE will compute a new event.

Figure 1 illustrates an example of FHCE computation for sound wood and
defective wood.

Fig. 1. Instances of FHCE for digital images of (a)sound and (b)defective wood. The

FHCE shown in the right-hand column match the windows appearing in the digital im-

ages in the left-hand column. Note that the main differences between the two instances

are on the left-hand side of the FHCE

It is clear from Figure 1, that there is a distinction between the FHCE for
portions of sound wood and for defective wood with cracks, respectively. Note,
in particular, the left side of the FHCE: whereas side lobes appear in the im-
age for defective wood, this characteristic is not present in the FHCE of sound
wood. Because each FHCE is shaped quite differently, we are in an excellent
starting position to embark upon the task of selecting optimal features for the
automatic wood classification. We can view the FHCE of a window for a portion
of wood with a defect –a crack in our case- as a signal with two distributions.
The first distribution corresponds to the connected elements that belong to the
defect –i.e. the crack- and the second distribution to the connected elements be-
longing to the sound wood portion. Moreover, it is quite evident that the sound



Crack Detection in Wooden Pallets Using the Wavelet Transform 1209

wood portion has a FHCE with a single distribution. In conclusion, there is clear
evidence that sound wood can be discriminated from defective wood using the
low frequency components of the FHCE spectrum [2] –i.e. by computing the
Fourier transform of the FHCE-. However, as the FHCE of a textured region
is a non-stationary function, it is advisable to work with spatio-temporal rep-
resentations. The wavelet transform is able to represent both the spatial and
temporal domains of a particular function.

Broadly speaking, the wavelet transform is a mathematical tool that divides
a function into a set of functions, which are in turn scaled and shifted versions
of a primitive function, called the mother wavelet function. In principle, there is
an infinite number of functions that hold the condition of being mother wavelet
functions, but only a few of them have been used in practice. Figure 2 shows the
mother functions used in our work.

Fig. 2. Mother functions used in our experimentation: BATTLE-LEMARIE [3];

BURT-ADELSON [4]; COIFLET 2, COIFLET 4, COIFLET 6 [5]; DAUBECHIES 4,

DAUBECHIES 6, DAUBECHIES 8, DAUBECHIES 10, DAUBECHIES 12,

DAUBECHIES 20 [4]; HAAR [4]; PSEUDOCOIFLET [6]; SPLINE 2 2, SPLINE 2 4,

SPLINE 3 3, SPLINE 3 7 [4]

Although the wavelet transform has been intensively applied as a powerful
and efficient tool in the pattern recognition discipline, it really has a clear limita-
tion as regards time shift. Let g(k) and f(k) be two generic FHCEs and WTg(u)
and WTf(u) their respective wavelets transforms, then
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g(k) = f(k + τ) does not mean that (1)
WTg(u) = WTf(u + τ)

This is a significant drawback [3] affecting the usual pyramidal multiscale
representation. Although several attempts to solve this problem have appeared
in the technical literature, we have chosen an alternative way based on applying
a pre-processing technique to recognize the normalization of the FHCE. To de-
termine whether a particular FHCE belongs to a sound wood or to a defective
window, we confine our analysis to the left half of the respective FHCE and then
apply the following algorithm.

Step 1. Let h(k) be a generic FHCE, then compute the following parameters:
o gmin: the lowest gray level in h(k) with frequency higher than zero.
o gmax: gray level in h(k) with the highest frequency.
o max: maximum frequency in h(k) for h(kmax).

Step 2. Compute the normalized FHCE as follows:

h∗(k) =
{

h(gmin+k)
max ∗ 100 for 0 ≤ k ≤ gmax − gmin

0 for gmax − gmin < k ≤ N − 1
(2)

Finally, the feature vector is put together from the application of the wavelet
transform to the normalized FHCE. We also use an alternative normalization
based on the definition of the energy distribution of the wavelet transform [7].
Therefore, the feature vector contains 4744 discriminant variables (18 transforms
–17 wavelet transforms plus 1 fourier transform– by 256 coefficients for each
transform, plus 17 wavelet transforms by 8 energy levels).

3 Feature Selection

Obviously, the number of discriminant features is too high (as we mentioned
above 4744), and many of them are irrelevant for discrimination purposes.

We have selected 60 boards of defective wood –i.e. with cracks- and 150
boards of sound wood, and we have run a program to automatically generate
a set of training and testing samples from these 210 boards. After exhaustive
experimentation, the optimum window size chosen for the generation of digital
image samples was 40× 30. Finally, for benchmark purposes, 1365 digital image
samples (973 of sound wood and 392 of defective wood) have been employed. Note
that sound wood samples account for approximately 70% of the complete set.
This proportion is quite similar to the rate of occurrence in real-life inspections.

To reduce the number of discriminant variables, we have applied the so-called
incorporation method [8] and we have output the following discriminant features
as the optimum subset:

o Coiflet4(31). Coefficient 31 of the wavelet transform whose mother function is
Coiflet4.
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o Energy(1).Daubechies4. Energy percentage of level 1 of the Daubechies4
wavelet transform.

o Spline3,7(14). Coefficient 14 of the wavelet transform whose mother function
is Spline 3,7.

Figure 3(a) shows the scatter diagram of 100 samples taken at random from
the 1365 discriminant vectors used in our experimental tests. Obviously, each
coordinate matches one of the three selected discriminant variables.

Fig. 3. (a) Scatter diagram of 100 samples taken at random from the experimental

data. (b) Results of the ANN in crack detection and recognition

4 Classifier Design and Experimental Results

Having selected a particular feature vector, the next step is classifier design.
In this respect, we have chosen a classifier based on artificial neural networks
(ANN), as our own experience with many pattern recognition techniques indi-
cates that ANNs are particularly well suited for dealing with the problem of
discriminating textures of sound wood from textures of defective wood -in our
case, with a crack-. More specifically, of the numerous existing ANN models, we
have focused on the feedforward multilayer perceptron (MLP), trained with the
backpropagation (BP) algorithm, as the detection ratio and the false alarms ra-
tio can be balanced across a judicious selection of the MLP parameters: namely,
the learning coefficient, the number of iterations and the maximum permitted
deviation, [9].

The most demanding and reliable method for evaluating any automatic clas-
sifier is the leave-one-out policy. Using this policy, the classifier –in our case, the
feedforward multilayer perceptron- is trained with all the available training sam-
ples except one, which is used to evaluate the classifier itself. By repeating the
process with all the training samples, the average success ratio of the classifier
is an excellent estimation of its future performance for new samples or cases, i.e.
working in real-life situations. The average success ratio is computed as follows:

P = f (defect /defect ) ∗ f (defect) + (3)
f (good /good ) ∗ f (good)
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Fig. 4. Several wood boards with very thin cracks (left hand) and the binarization of

the wood boards using the method described in the paper (right hand). Note that all

the existing thin cracks have been detected and that there are no false alarms which

is a real plague for any method aimed at detecting very thin cracks in wood

where f(defect) and f(good) are the relative frequency of a defective and a good
sample, respectively; f(defect/defect) and f(good/good) are the a posteriori rela-
tive frequency of success for defective and good samples, respectively.

The evaluation was carried out using different values for the maximum num-
ber of iterations and maximum deviation design parameters. Just to give an idea
of the evaluation results, Figure 3(b) shows the results obtained for maximum
deviation = (0.1; 0.2; 0.3) and for several values of the maximum number of
iterations. The best result is obtained with a maximum deviation of 0.1 and for
5 iterations (96.52%). Another remarkable result that it is worth mentioning in
our experimentation is the Fourier transform of the FHCE performed poorly, as
compared with the wavelet transforms.

The final detection of cracks is based on scanning the whole image with
a small window with a horizontal and vertical overlapping. For each 40 × 30
individual window, the ANN-based recognizer makes the decision to classify the
window either as sound wood or as defective wood. For every window labelled
as defective wood, the next step is to segment the pixels of the crack, which can
done straightforwardly by an adaptive thresholding algorithm [1], because of the
clear bimodal nature of the FHCE, in which one distribution is formed by the
connected elements of the crack and the other by pixels of the sound wood.

Figure 4 shows several wood boards with very thin cracks and the excellent
crack detection results achieved by the proposed method. These results have
been achieved thanks to the information conveyed by the histogram of connected
elements.
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5 Conclusion

In this paper, we have exploited the information conveyed by the histogram of
connected elements to address the detection of very thin cracks. We have also in-
vestigated the discriminant capability of the wavelet transform of the histogram
of connected elements and designed an ANN-based classifier to discriminate
sound wood from defective wood. The signal inputs of the ANN classifier are
three components of a wavelet transform of the histogram of connected ele-
ments. An exhaustive experimental test has validated the proposed method for
detecting very thin cracks. As it is depicted in Figure 4, an additional advantage
is the very low ratio of false alarms achieved by the proposed method.
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Abstract. A proper gait assessment in patients with knee or hip injuries 
strongly determines the diagnosis and consequently the evolution of the 
pathology, the quality of life of implanted patients, and the overall costs 
involved.  Among the different strategies to clinically assess gait, 3D optical 
tracking provides a reliable and objective evaluation.  This method involves 
state-of-the-art image analysis that performs anatomical measurements upon 
bony landmarks identified by markers attached to the patient.  We show how 
this technology can be used to perform patients diagnosis and follow-up by 
grouping the results of gait measurement with a competitive neural network 
where the number of clusters is automatically determined. 

1   Introduction 

3D optical tracking has been extensively applied in recent years [1], [2], [3], [4], [5], 
[6], [7], [8], [9], either with expensive commercial set-ups [1], [2], [3], [4], [7], [8], or 
with home-made cheap machinery [6], [9].  Both approaches provide a reliable 
method to assess human gait in clinic and high performance applications [1], [2], [4], 
[5], [6], [8], [9]. 

This new field has been widely analyzed from the computer vision perspective, 
while data processing still remains open to researchers.  Most efforts has been done 
with conventional statistical techniques, but the application of artificial neural 
networks in gait pattern identification has inspired very few works [10], [11], [12]. 

The following results show that competitive learning is an alternative to SOM for 
gait patterns generation. 

2   Data Acquisition for Gait Analysis 

Human gait was recorded in a room wide enough for the subjects to perform a gait 
start, a normal gait (including at least one complete cycle for each leg) and a gait end.  

Isaac López1,
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MJPEG video was recorded from six synchronized PCs, each connected to a camera 
(1/500 sec shutter speed) as shown in Fig. 1.  Each video stream contains a particular 
view of the gait, where the markers reflect the highest level of intensity of light in the 
image, since the scene is illuminated with six halogen focus (300 W), each on top of a 
camera.  This arrangement maximizes the light returned by the reflecting material that 
covers the markers. 

Dedicated software was developed to automatically obtain the 2D coordinates of 
the markers in every scene, that merged into 3D coordinates.  This operation is 
performed using DLT (Direct Linear Transformation) coefficients [13] generated 
upon a calibrating structure.  This information allows a reliable three-dimensional 
reconstruction of the walking subject, and the precise computation of a number of 
measurement (distances and angles) that characterize human gait. 

In order to automatically detect the patient’s anatomical coordinates, 19 markers 
where placed on characteristic bony landmarks on the legs and hip of the patient 
(sacrum, up-front iliac bone, lateral-external area at the bottom of the thigh, frontal 
area at the bottom of the thigh, tibia -upper frontal area-, fibula -upper external area-, 
ankle, second metatarsal head, and heel).  This markers are spherical, reflecting, 
hollow wood balls, 2.5 mm diameter, fixed to the skin with clinical sticking tape.  The 
reflecting cover makes possible the automatic detection in the image (Fig. 2). 

The experiment was performed on 166 patients, classified in three groups: healthy, 
pathologic, and implanted patients (with a PFC® Sigma™ prosthesis1 of either type 
simple, non-rotating anatomic, or non-rotating stable). 

Dedicated software was coded to automatically obtain the 3D coordinates of each 
marker, and to compute anatomic measurements (distances and angles) upon theses 
coordinates.  The selected measurements were: pelvic obliquity, hip obliquity, knee 
obliquity, pelvic tilt, hip flex-extension, knee flex-extension, plantar flexion, pelvic 
rotation, and ankle rotation2. 

 

Fig. 1. Arrangement of cameras around the recording area where gait is performed, and 
calibrating structure 
                                                           
1 PFC Sigma is a trademark of DePuy Orthopaedics, Inc. 
2 Legs trajectories, pelvic tilt and pelvic rotation can also be obtained, but were not considered 

in this study. 
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Fig. 2. Placement of markers on bony landmarks, and scenario for gait analysis, as recorded 
from the six cameras, where the markers are clearly identified in the image 

The evolution of the complete gait cycle comprises five different phases: early 
swing (which results in the maximum flexion of the knee joint), late swing (which is 
characterized by the heel gently touching the floor), weight acceptance (which occurs 
when the other leg is about to be lifted up and the body weight is shifted to the leg of 
interest), mid-stance (characterized by a straight leg with the foot flat on the floor), 
and terminal stance (in which the body weight shifts to the other leg and the heel is 
taken off the floor).  In our experiments the complete cycle was analyzed for each 
measurement (Fig. 3), and principal components analysis was performed to reduce the 
dimensionality, resulting that knee flex-extension is the measurement that contributes 
the most to describe gait variability. 

3   Clustering with Competitive Learning 

The problem of clustering a set of n-dimensional points (patterns) consists in finding a 
set of points in this space (prototypes) that minimize the overall distance of the 
patterns to their corresponding prototypes, i.e., the lowest distance from each pattern 
to the prototypes.  Determining the number of prototypes and their location in this 
space is a NP-complete problem for a dimensionality equal or greater than two.  
Among other algorithms, competitive neural networks [14] have been proposed to 
approximate solutions to the clustering problem for a fixed number of prototypes. 

Competitive learning operates in a neural network by (1) selecting the closest 
prototype (winner weight vector) to the input pattern according to a given distance 
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measure, and (2) moving the winner neuron’s weights to the input.  The system is 
then defined in a formal way as a fully connected two-layers network, where the n 
inputs neurons (x) store the input patterns, and the k output neurons (y) raise a value 
according to the equation: 

=
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where i ranges from 1 to k, and hi is the synaptic potential, given by the expression: 
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and wij is the synaptic weight from input neuron i to output neuron j. Considering     
wi as the weights vector reaching output neuron i, notice that we the term wi’wi/2  
has been introduced in the synaptic potential to warranty that 

22
xxhh ji −≤−⇔≥ ji ww , for all j≠i, where ·  represents the Euclidean distance.  

Then, the winner neuron will be the one closest to the input pattern, x. 
Competitive learning is implemented by modifying the winner neuron’s weight 

vector according to this equation: 

))()(()1( kkk rr wxw −=+∆ η  

0)1( =+∆ kiw , ∀ i ≠ r 
(3) 

where r is the winner neuron, and η is the learning rate that controls the speed of 
convergence to the solution. 

The cumulative effect of this rule has the result of pushing the weight vectors to 
the centroids of the clusters, i.e. areas with high density of patterns.  In the learned 
configuration wi will store the coordinates of the prototype for cluster i, as a new 
point in the n-dimensional space.  The sample is then classified by assigning each 
pattern to the closest prototype. 

As in many neural models, the main drawback of this learning rule is its sensitive 
dependence on initial conditions. The set of prototypes obtained strongly depends on 
the random initial value of the weights. Another important problem when applied to a 
sample of highly dimensional patterns is that the number of desired prototypes (output 
neurons) must be specified, even that no prior knowledge is available. 

The first drawback can be avoided by performing multiple runs of the algorithm, in 
a way we obtain statistically good solutions. The second problem is very much 
application-dependent, but can also be attacked from a statistical approach.  Here we 
propose to determine the number of groups by looking at the reduction in overall 
dispersion of the sample with respect to the obtained prototypes.  As it can be seen in 
Fig. 3 this measurement defines a curve that decreases strongly at the beginning, to 
enter later on a steady level. We propose to determine the number of groups by 
thresholding this measurement. A change rate below, say, 5% would indicate that 
further refinement does not achieve a significant improvement, so the previous option 
defines a proper level that balances the ratio between overall dispersion and number 
of groups. The proposed method derives from an evolutionary version of the 
competitive algorithm that has been successfully applied to cluster images of olive 
pomace in an industrial set-up [15]. 
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4   Gait Patterns Generation 

The application of competitive learning to clustering the gait cycle generates the 
prototypes that better fit the different patterns of gait.  In this experiment, knee flex-
extension was computed for a complete cycle of each of the 166 patients.  The curves 
obtained for the three classes of patients are presented in Fig. 4(a).   

Clustering this sample of patterns with equation (3) and a variable number of 
clusters results in a high overall dispersion of the patterns (with respect to the closest 
prototype).  Fig. 3 shows this dispersion graphically.  We can appreciate that the 
reduction in overall dispersion from one to two prototypes is high, as it is when we 
increase to three prototypes.  On the contrary, using more than three prototypes does 
not reduce dispersion significantly.  Three is, indeed, the number of classes that we 
can clinically distinguish.  The resulting groups of patterns are represented in Fig. 
4(b), and they closely reshape the distribution in Fig. 4(a).  This comparison can also 
be checked by matching original and obtained prototypes (Fig. 5). 

1 2 3 4 5 6 7
0 

10 

20 

30 

40 

de
cr

ea
se

 in
 o

ve
ra

ll 
di

sp
er

si
on

 (
%

) 

number of clusters
0 1 2 3 4 5 6 7 8 600 

800 

1000 

1200 

1400 

di
sp

er
si

on
 

 

Fig. 3. Dispersion of the patterns with respect to the closest prototype (line, right axis), and 
reduction of overall dispersion in percentage with respect to the previous number of classes 
(bars, left axis) 
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Fig. 4. Temporal evolution (1000 samples) of a complete gait cycle.  (a) Original classes (pre- 
and post-operatory, and healthy patients).  (b) Result of clustering the sample into three groups 
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Fig. 5. Prototypes of original classes (dashed line), and clusters obtained (solid line) 

Training the network to cluster the 166 patterns was done in real time on a 
conventional PIV-based computer. 

Clustering with competitive neural networks is a powerful technique that generate 
prototypes of behaviour at a low computational cost.  The application of this learning 
model to cluster gait patterns from 3D optical tracking measurements yields a number 
of gait patterns that precisely fit clinical assessment. 

This clustering process demonstrates the existence of robust gait patterns, and 
confirms the clinically tested beneficial effects of total knee joint replacement, since 
the pattern of pre-operatory patients moves in the direction of a healthy gait after 
surgery (post-operatory pattern). 

This method allows the dynamical computation of prototypes that can be used to 
assess gait, in diagnosis, as well as in patient follow-up. 
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Knowledge Extraction from Neural Networks
Using the All-Permutations Fuzzy Rule Base:

The LED Display Recognition Problem

Eyal Kolman and Michael Margaliot�

School of Electrical Engineering, Tel-Aviv University, Tel-Aviv, Israel 69978

Abstract. A major drawback of artificial neural networks is their black-
box character. In this paper, we use the equivalence between artificial
neural networks and a specific fuzzy rule base to extract the knowledge
embedded in the network. We demonstrate this using a benchmark prob-
lem: the recognition of digits produced by a LED device. The method
provides a symbolic and comprehensible description of the knowledge
learned by the network during its training.

1 Introduction

The ability of artificial neural networks (ANNs) to learn and generalize from
examples makes them very suitable for use in numerous real-world applications
where exact algorithmic approaches are unknown or too difficult to implement.
The knowledge learned during the training process is distributed in the weights
of the different neurons and it is very difficult to comprehend exactly what
the ANN is computing. The problem of representing the knowledge learned by
the network in a comprehensible form received a great deal of attention in the
literature (see, e.g., [1, 2, 3]).

Rule based systems process information in a manner that is much easier to
comprehend because the system’s knowledge is stated using symbolic If-Then
rules. In particular, fuzzy rule bases (FRBs) enable the use and manipulation of
expert knowledge stated using natural language [4, 5, 6]. Thus, the knowledge is
easy to understand, verify, and, if necessary, refine.

Recently, a great deal of research has been devoted to designing hybrid in-
telligent systems that fuse subsymbolic and symbolic techniques for informa-
tion processing [7] and, in particular, to creating a synergy between ANNs and
FRBs [8]. Such a synergy may lead to systems with the robustness and learning
capabilities of ANNs and the “white-box” character of FRBs.

A well-known neuro-fuzzy model is the Adaptive Network-Based Fuzzy In-
ference System (ANFIS) developed by Jang et al. [9], which is a feedforward
network representation of the fuzzy reasoning process. A similar mapping of a
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rule base into an ANN was suggested by Fu and Fu [10]. However, these ap-
proaches cannot be used to extract knowledge from a standard ANN.

Jang and Sun [11] showed that radial basis function networks (RBFNs) are
mathematically equivalent to FRBs with Gaussian membership functions. How-
ever, this equivalence holds only for the special case of RBFNs.

Benitez et al. [12] showed that ANNs with Logistic activation functions are
equivalent to the result of inferencing a set of Mamdani-type fuzzy rules (see
also [13, 14]). However, this is not a standard FRB, as the operators used in the
inferencing method are not those commonly used in FRBs.

Recently, the authors introduced a new Mamdani-type FRB referred to as the
All-Permutations Fuzzy Rule Base (APFRB) [15, 16]. Inferencing the APFRB,
using standard tools from fuzzy logic theory, yields an input-output relationship
that is mathematically equivalent to that of a feed-forward ANN. More precisely,
there exists an invertible transformation T such that

T (ANN) = APFRB and T−1(APFRB) = ANN. (1)

This equivalence enables bidirectional information flow between the ANN and
the corresponding APFRB. It also enables application of tools from the theory
of ANNs to APFRBs and vice versa.

In this paper, we use the equivalence T (ANN) = APFRB to extract knowl-
edge from an ANN in the form of symbolic rules. We demonstrate this approach
on a benchmark problem involving the recognition of the digits displayed by a
LED device. An ANN is trained to recognize the ten possible digits. Calculat-
ing APFRB = T (ANN), and simplifying the rules, yields a simple symbolic de-
scription of the ANN’s knowledge. The final result is an FRB with ten rules that
correctly classifies all the training examples. Furthermore, this FRB is tractable,
and provides a comprehensible representation of the ANN’s functioning. For ex-
ample, it is possible to deduce that the ANN learned to focus its efforts on the
digits that are harder to recognize.

The rest of the paper is organized as follows. In section 2, we review the
APFRB and its equivalence to an ANN. In Section 3, we present the benchmark
problem and the ANN trained to solve it. In Section 4, we apply the equiva-
lence (1) to extract information from the trained ANN. In Section 5, we show
that the FRB is tractable and allows us to represent the ANN’s functioning in a
comprehensible form. The final section concludes. Due to space limitations, some
of the technical details have been omitted. They can be found in an extended
version of this paper [17].

2 All-Permutations Fuzzy Rule-Base

We briefly review the APFRB and its equivalence to an ANN (more details
and the proofs can be found in [15]). For the sake of simplicity, we consider the
case of an FRB with output f ∈ R

2; the generalization to the case f ∈ R
n is

straightforward.
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Definition 1 (APFRB). A fuzzy rule base with input x ∈ R
m and output

f ∈ R
2 is called an APFRB if the following conditions hold.

1. Every input variable xi is characterized by two linguistic terms: termi
− and

termi
+. The membership functions µi

−(·) and µi
+(·) that model these terms satisfy

the following constraint: there exists a vi ∈ R such that

(µi
+(y) − µi

−(y))/(µi
+(y) + µi

−(y)) = tanh(y − vi), ∀ y ∈ R. (2)

2. The form of every rule is

If x1 is term1
+/−and . . . and xm is termm

+/− Then f =
(

a0 ± a1 · · · ± am

b0 ± b1 · · · ± bm

)
(3)

where termi
+/− stands for either termi

+ or termi
−, ± stands for either the plus or

the minus sign, and ai, bi ∈ R. The actual signs in the Then-part are determined
in the following manner: if the term characterizing xi in the If-part is termi

+,
then in the Then-part, ai and bi appear with a plus sign; otherwise ai and bi

appear with a minus sign.
3. The rule base contains exactly 2m rules spanning, in their If-part, all the
possible assignment combinations of x1, ..., xm.

Several commonly used fuzzy membership functions satisfy the constraint (2).
For example, the pair of Gaussian membership functions

µ=k(y) := exp(−(y − k)2/(2k)) and µ=−k(y) := exp(−(y + k)2/(2k)), (4)

satisfy (2) with v = 0. The sigmoid functions

µ>k(y) := (1 + exp(−2(y − k))−1 and µ<k(y) := (1 + exp(2(y − k))−1, (5)

satisfy (2) with v = k. Thus, the linguistic terms equals k and equals −k
(modeled by Gaussians) and larger than k and smaller than k (modeled by
sigmoids) can be used in an APFRB.

Summarizing, an APFRB with input x ∈ R
m and output f ∈ R

2 is defined
using 2m rules and 3m + 2 parameters: the 2(m + 1) ais and bis in (3), and the
m vis in (2) (in the general case where f ∈ R

n, the number of parameters is
n(m + 1) + m). The next result shows that the APFRB is an ANN in disguise.

Theorem 1. Applying the product-inference rule, singleton fuzzifier, and the
center of gravity defuzzifier to an APFRB yields

f =
(

a0 +
∑m

i=1 ai tanh(xi − vi)
b0 +

∑m
i=1 bi tanh(xi − vi)

)
. (6)

Proof. See [15].
In other words, each output fi of the APFRB can be obtained by first feeding
the inputs xi to a hidden layer computing the activation functions tanh(xi−vi),
and then computing a weighted sum of the hidden layer’s outputs.
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Note that if we choose a0 =
∑m

i=1 ai and b0 =
∑m

i=1 bi, then (6) becomes

f =
(∑m

i=1 2ai/(1 + exp(−2(xi − vi)))∑m
i=1 2bi/(1 + exp(−2(xi − vi)))

)
. (7)

The hyperbolic tangent functions in (6) and the Logistic functions in (7) are
standard activation functions in numerous ANNs. Thus, the APFRB’s outputs f
can be represented as the output of a standard ANN.

Conversely, consider an ANN with input z ∈ R
n, a single hidden layer with

m units, and two output units. Its output f ∈ R
2 is given by

f =
( ∑m

j=1 cjh(yj + θj)∑m
j=1 djh(yj + θj)

)
, (8)

where yj :=
∑n

i=1 wjizi is the input to the jth neuron in the hidden layer, θj is
the bias of this neuron, and cj (dj) is the weight from this neuron to the first
(second) output neuron. Comparing (8) with (6) yields the following.

Corollary 1. If the activation function in the ANN is h(z) = tanh(z), then (8)
is the output of an APFRB with: a0 = 0, b0 = 0, ai = ci, bi = di, vi = −θi,
xi = yi, i = 1, . . . , m.

If h(z) = 1/(1 + exp(−z)), then (8) is the output of an APFRB with: a0 =∑m
i=1 ai, b0 =

∑m
i=1 bi, ai = ci/2, bi = di/2, vi = −θi/2, and xi = yi/2,

i = 1, . . . , m.

Summarizing, Theorem 1 establishes an equivalence between a single1 hidden
layer ANN and an APFRB, and explicitly defines the transformation T in (1).

Corollary 1 implies that we can immediately extract the knowledge embedded
in an ANN in the form of fuzzy If-Then rules. We demonstrate the usefulness of
this approach using a benchmark problem.

3 The LED Display Recognition Problem

The LED display recognition problem [18] concerns learning to recognize digits
displayed using a seven-segment light emitting diodes (LED) display. Several
pattern recognition algorithms were applied to this problem including classifica-
tion trees [18], instance-based learning algorithms [19], and ANNs [20].

The database contains 2050 supervised examples in the form (z1, z2, . . . ,
z24, v). The first seven inputs, z1 . . . z7, are the diodes’ states (1 for on, 0 for
off) (see Fig. 1). For example, the vector {1, 1, 0, 1, 1, 1, 1} represents the digit 6,
and {1, 1, 1, 1, 0, 1, 1} the digit 9. The value v ∈ {0, 1, . . . , 9} is the displayed
digit. The inputs z8 . . . z24 are independent random variables with prob(0) =
prob(1) = 1/2. These noise inputs make the recognition task more challenging
as it becomes necessary to discriminate between meaningful and useless inputs.

1 The equivalence is easily generalized to ANNs with multiple hidden layers; see [15].
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z3
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z5 z6

z7

z2

z1

Fig. 1. The LED device

We trained a 24-6-10 ANN using the backpropagation algorithm. The number
of hidden units was determined using a trial and error approach; a network
with less than 6 hidden units could not be trained to correctly classify all the
examples2. Each of the ten outputs f0, . . . , f9 corresponds to a different digit
and the final classification is based on the winner-takes-all approach. That is,
the ANN’s classification is digit i, where i = arg max0≤k≤9{fk}. After training,
the ANN correctly classified the database. The ANN’s parameters (204 weights
and 16 biases), however, provide no insight on its functioning.

4 Knowledge Extraction

Let xj :=
∑24

i=1 wjizi, j = 1, . . . , 6, denote the input of the ANN’s jth hidden
neuron. We applied Corollary 1 to represent the ANN as an APFRB with 26 = 64
fuzzy rules and an output f ∈ R10. For example, one of the rules is:3

If x1 equals 1 and x2 equals 1 and x3 equals −1 and x4 equals 1 and x5 equals −1
and x6 equals 1 Then f =(−1.4,−2.5,−0.6,−0.7,−0.2,−0.5,−11,−1.4, 0, 0.4)T

.
The membership functions defining the terms equals ± 1 are the Gaussian
functions in (4).

The inferencing amounts to computing a weighted sum, f , of the sixty-four
vectors in the Then-part of the rules, and the final digit classification is i :=
arg max0≤k≤9{fk}, where fk is the kth entry in f .

This rule base provides a symbolic representation of the ANN’s functioning.
In particular, we have a fuzzy classifier that solves the LED recognition problem.
However, the comprehensibility of this classifier is hindered by the large number
and the complexity of the rules. To gain more insight, we applied a rule reduction
and simplification technique for the APFRB (due to lack of space, the technique
is not presented here; see [15] for more details). This reduces the number of rules
from 64 to 10. Furthermore, the resulting FRB is simple enough to allow us to
interpret its functioning.

2 A similar network was used in [20].
3 The numerical values were rounded to one decimal digit, without affecting the clas-

sification accuracy.
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Rule 0 Rule 1 Rule 2 Rule 3 Rule 4

Rule 5 Rule 6 Rule 7 Rule 8 Rule 9

Fig. 2. The pattern yielding maximal DOF for each rule

5 Interpreting the FRB

The symbolic structure of FRBs makes them much easier to understand than
ANNs. In particular, we can analyze the operation of an FRB by understanding
the If-part and the Then-part of each rule.

The If-part: Consider the degree of firing (DOF) of the ten rules for each
possible input (namely, the 27 = 128 possible binary vectors (z1, . . . , z7)). The
ratio of the highest DOF and the second highest DOF for the ten rules is: 9.3,
12.7, 3.4, 1.5, 5.4, 5.4, 4.5, 2.3, 19.4 and 2.4. Thus, with the exception of the
fourth rule, every rule is tuned to a single specific input pattern and yields a
much smaller DOF for any other pattern.

Figure 2 depicts the pattern yielding the highest DOF for each rule. It may
be seen that rules 1, 5, 6 and 8 are tuned to recognize the digits 1, 5, 6 and 8,
respectively. Rules 0 and 7 are tuned to patterns that are one Hamming distance
away from the real digits 0 and 7.

Comparing the DOF for the ten patterns representing the digits 0, . . . , 9 only,
we find that rules 2 and 3 have the highest DOF when the input is the digit one,
and rule 4 has the highest DOF when the input is the digit five. For all other
rules, rule i yields the highest DOF when the input is digit i.

The Then-part: Considering the output vectors f i, i = 0, . . . , 9, and let-
ting (f i)k denote the kth entry of the vector f i, we find that arg maxk(f i)k = i
for all i. In other words, if only rule i fired, then the inferencing would yield
digit i. In most rules, there is a considerable difference between entry i and the
second largest entry in f i. In five of the ten rules, the largest entry is positive
and the other nine entries are negative. Thus, when such a rule fires it not only
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contributes to the classification towards a specific digit, but also contributes
negatively to all other possible classifications.

Summarizing, we see that the FRB includes seven rules that are tuned to a
specific digit. These are rules 0, 1, 5, 6, 7, 8, and 9. Each of these rules responds
with a high DOF when the input is the appropriate digit.

On the other hand, rules 2, 3 and 4 are not tuned to the corresponding digit.
For example, rule 2 displays the highest DOF when the input is the digit 1. The
fact that the rule base correctly classifies digits 2, 3 and 4 is due to the weighted
combination of all the rules’ outputs, and not to the specific action of a single
rule.

This behavior motivated us to try to reach an understanding as to the dis-
tinction between the two sets of digits

S1 := {0, 1, 5, 6, 7, 8, 9} and S2 := {2, 3, 4}. (9)

Let H(d1, d2) denote the Hamming distance between the LED representations
of the digits d1 and d2 (e.g., H(1, 7) = 1). Let Mi denote the set of digits d that
satisfy min0≤j≤9{H(d, j)} = i (i.e., the digit closest to digit d is at distance i).
Then,

M1 = {0, 1, 3, 5, 6, 7, 8, 9} and M2 = {2, 4}. (10)

The definition of Mi suggests that the digits in the set M1 are more difficult to
recognize than those in the set M2.

Comparing (9) with (10), we see that there is a high correspondence be-
tween Mi and Si. Thus, the FRB (or the original ANN) dedicates specially
tuned rules for the more ”tricky” digits.

The notion that digits that are more difficult to recognize deserve more at-
tention is quite intuitive. However, understanding that the ANN implements
this notion by observing its weights and biases is all but impossible. It is only
through the knowledge extraction process that this notion emerges.

6 Conclusions

The output of a feed-forward ANN can be represented as the result of infer-
encing a fuzzy rule base with a special structure–the APFRB. This equivalence
allows the bi-directional flow of information between the subsymbolic knowledge
representation in the ANN and the symbolic rules of the APFRB.

In this paper, we studied one application of this equivalence. The transforma-
tion APFRB = T (ANN) extracts the knowledge from a trained ANN in the form
of symbolic fuzzy rules. We demonstrated this approach using a medium-size
ANN trained to solve a benchmark problem. The 24-6-10 network was trans-
formed into a set of 64 fuzzy rules. Simplification of this rule base yields a
comprehensible representation of the ANN’s functioning. In particular, it is pos-
sible to conclude that the ANN dedicates special rules to digits that are more
difficult to recognize.
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Abstract. This paper addresses the development of a new control strategy to 
regulate cutting force in a high-speed machining process. Fuzzy basis functions 
(FBF), on the basis of L.X.Wang’s approach, serve as basement for designing 
and implementing adaptive fuzzy control system in an open computerized 
numerical control (CNC). The controller uses cutting force measured from a 
dynamometric platform, and mathematically processed by means of an 
integrated application, to perform real-time modification of feed rate. The 
integration process, design steps and results of applying the adaptive fuzzy-
control system in actual high-speed machining operations corroborate the 
suitability of the proposed control strategy for real-time applications. Moreover, 
the results show a good transient response in the cutting force pattern despite 
the complexity of the mechanized part. 

Keywords: Fuzzy control, Radial Fuzzy Functions, high-speed machining 
processes. 

1   Introduction 

Manufactured products are mainly made by machine tools that perform the basic 
functions such as removing material, joining material, and assembling discrete parts 
into products. The role of the machine tool in today’s integrated manufacturing 
environment is changing dramatically, driven by the necessity of achieving 
productivity improvements year-after-year to remain cost competitive against a global 
market. Based on the past advancements with computerized numerical control (CNC), 
PC-based controller platforms, and innovative sensing, the machine tool’s utilization 
rate and precision has risen while failures, problems, and downtime have fallen.  
                                                           
* Corresponding author. 
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The newer machine tools are increasingly able to interact electronically with their 
surroundings on the basis of open CNCs. However there is a large gap of needed 
technologies and modelled intelligence to capture the next significant level of 
productivity and cost benefit. Continuous increases are required in the machine 
utilization rate, precision, and autonomic operation.  

Nowadays most machine tools are equipped with open CNC. In CNC systems, 
machining parameters are usually selected according to operators experience, 
handbooks or the result of a post-processing stage from CAD/CAM systems. 
Therefore the machining parameters selected are usually conservative and off-line 
optimization to produce optimized cutting conditions can not deal with process 
variability (e.g., tool wear), complexity and uncertainty.  

In order to increase the machining efficiency it is necessary to modify in real time 
machining parameters. Adaptive control of relevant variables such as cutting force, 
torque or vibration signals is one of the most effective methods. Nowadays, the 
research effort in machining force control continues due to the economic profits that 
this technology can provide. Recent studies reveal that model-based force controllers 
perform well in a laboratory environment, however up to date, many control systems 
are not applicable for all production environments [1,2]. 

The complexity and uncertainty of processes like the high-speed machining 
processes are what make the realm known as intelligent systems technology a feasible 
option to classical control strategies.  Indeed, artificial-intelligence techniques have 
roused considerable interest in the scientific community and have been applied to 
machining [3,4,5]. The current study is focused on the design and implementation of 
an adaptive fuzzy controller in an open CNC system in order to improve machining 
efficiency. From all available techniques, an approach inspired in the adaptive fuzzy 
control scheme proposed in [6,7] is selected due to its viability of real time 
implementation, and the possibility of guaranteeing asymptotic stability. To the best 
of our knowledge, the main advantage of the herein suggested approach are: (i) 
adaptive fuzzy controller in an open CNC to deal with a real industrial process, (ii) a 
simple computational procedure to fulfil the time requirements, (iii) a few expert 
knowledge required, and (iv) easy implementation and synchronization with CNC. 
The results with adaptive fuzzy control strategy through industrial tests show a higher 
machining efficiency. 

This paper is organized as follows. In Section 2 we present a brief study of the 
machining process, explaining why it is considered a complex process and setting up 
the milling process as a case study; in Section 3 we design the adaptive fuzzy 
controller to optimize a high speed milling (HSM) process. In Section 4 we describe 
how the adaptive fuzzy controller can be embedded in open CNCs. Finally, in Section 
5 we show the experimental results. 

2   High-Speed Milling Process 

From the whole range of operations involved in high-speed machining [8], a high-
speed milling process was chosen for this case study. This choice obeys a pessimistic 
criterion, for high-speed milling is one of the most complex machining operations 
there is. From the viewpoint of tool-wear monitoring, some of the most significant 
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variables and parameters involved in the HSM process are the spatial position of the 
cutting tool (on Cartesian coordinate axes), spindle speed sp [rpm], relative feed 
speed between tool and worktable (feed rate) f [mm/min], cutting speed Vc [m/min], 
cutting power invested in removing metal chips from the workpiece Pc [kW], cutting 
force exerted during the removal of metal chips F [N], radial depth of cut DoC [mm] 
and cutting-tool diameter d [mm]. In order to evaluate system performance, we need 
to select certain suitable performance indices. This work deals essentially with rough 
milling, so the main index is the metal-removal rate (MRR). 

In the world of machining, cutting force is considered to be the variable that best 
describes the cutting process. Recent studies reveal the relevance of cutting-force 
signatures for tool-wear monitoring in high-speed machining processes. The mean 
and peak values of cutting force exhibit the best performance for tool-condition 
monitoring [9]. 

3   Fuzzy Logic Controller for HSM Processes 

The design and mathematical background of the adaptive fuzzy control system to 
regulate the cutting force F are briefly described in this section. Details about FBF in 
control systems are well-described and analysed in [6], including stability analysis. 
The design can be summarized as follows. 

The adaptive controller has two inputs: the cutting force error ( F=x1) and the 
change in cutting force error ( 2F=x2). Gaussian membership functions are 
considered for input variables, defined as: 
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where ix is the value of the i-th input variable, l
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iσ  are the label of the 

membership function, centre and the shape, respectively of the l-th fuzzy membership 
function, l=1..mi is the number of the fuzzy intervals. 

The manipulated (action) variable we selected is the feed-rate increment ( f in 
percentage of the initial value programmed into the CNC). Singletons are considered 
for output membership functions. The feed per tooth is considered constant and preset 
by the operator.  

The controller performs on-line actions to control the feed rate. We consider a set 
of rules consisting of linguistic statements that link each antecedent with its respective 
consequent: 

     If F is lA1  and 2F is lA2 THEN f is jz   (2) 

where initial values for jz  can be selected on the basis of expert criteria. 

The Product compositional operator was selected for the compositional rule of 
inference. The crisp controller output, which is used to change the machine feedrate, 
was obtained by defuzzification employing the center-average defuzzifier defined as 
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The crisp control action (generated at each sampling instant) defines the final actions 
that will be applied to the CNC set points. From (3), Fuzzy Basis Functions FBF’s can 
be defined as: 
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and the control action  
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llT zz 2,,1θ  is the vector modified according to the following 

adaptive control law. Initial fuzzy basis functions are automatically generated for all 

combinations. The vector θ  is calculated using the adaptive law: 
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where 
n

p is extracted from P matrix solving the Lyapunov equation [7], θM is the 

actuator constraint, γ  is the parameter to modify the speed of the adaptive law. 

The projection operator { }*Γ can be calculated as: 
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     Feedrate values (f) were generated on-line by the controller and fed in with the set 
point for the cutting force setpoint and the measured value. Adaptation is performed 
on-line according to (6)-(8) in each cycle of control at 0.02 seconds. 

4   Implementation of Adaptive Fuzzy Control System 

This section explains how the adaptive fuzzy controller designed in Section 3 is 
implemented in the open CNC. Nowadays the integration of any control system in the 
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CNC is a complex task that requires the use of various software utilities, technologies 
and development tools. Three classical technologies are used:  a software-developing 
tool (LABVIEW and MATLAB), an open- and real-time CNC (Sinumerik 840D) and 
communications technology. 

The general outline of the control system is depicted in Figure 1. First, the fuzzy 
controller was programmed, compiled and verified through simulations. A dynamic-
link library (DLL) was generated as a result. The general framework for data 
acquisition and processing was programmed in LABVIEW including the user-
interface PC (MMC). Inter-module communications between the MMC and the 
numerical control kernel of the CNC were established through DDE. The whole 
system consists of a Daqboard-2005 data-acquisition module to measure the force 
signal (at 10 kHz and a 0.1-10kHz bandpass filter) in the PC.  

 

Fig. 1. Diagram of the control system 

Cutting-force measurement is performed using a three-component platform 
featuring a Kistler 9257A dynamometer. The dynamometer is installed on the 
machine-tool table and connected to a series of Kistler 5011A amplifiers. LABVIEW 
includes drivers for this acquisition card and allows to enable the connection of the 
numerical control kernel (NCK) through dynamic date exchange (DDE). The physical 
connection between the application running in the PC and the open CNC is through 
multipoint interface (MPI). The system developed in LABVIEW sends control action 
to NCK using DDE. This system can be started and stopped either manually through 
an MMC application or under the NC program’s control. 

5   Experimental Tests – Evaluation 

All cutting tests were performed on an HS1000 Kondia milling machine equipped 
with a Sinumerik 840D open CNC. The workpiece material used for testing was 
GGG40-quality steel. The actual dimensions of the profile were 180x105 (mm). The 
profile is depicted in Figure 2. A two-fluted Karnasch 30.6472 carbide end mill 12 
mm in diameter was used as the tool for rough milling operations. The maximum 
depth of cut was 2 mm, the nominal spindle speed was sp=17000 rpm, and the 
nominal feedrate, f =1740 mm/min. The dimensions of the profile were 180x105 
(mm). The profile and tool are depicted in Figure 2. 
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Fig. 2. Cutting tool,  b) Testing profile 

The design parameters for the adaptive fuzzy control system were 

[ ]16,8,0,8,1621 −−== xx , [ ]4,4,4,4,421 == σσ , 100=θM , including different 

values of gamma ( 2.0=γ and 05.0=γ ). Neither expert knowledge nor training 

procedure was used after design. The set point of 100N was estimated according to 
constraint given by the power available at the spindle motor, material and the tool 
characteristics.  

The behavior of cutting force without control systems is shown in figure 3. The 
cutting force can reach high values that can increase tool wear and deteriorate the 
quality and geometric profile of the cutting surface. Likewise, peaks in the cutting-
force pattern may be the result of overloading, which would indicate a process 
irregularity and an increased danger of tool breakage or workpiece damage. 

In order to evaluate the performance of the control systems, several runs with 
various set points were carried out. The results of applying the adaptive fuzzy 
controller to mechanize an irregular profile (see Figure 2b) are depicted in Figure 4. 
The response of system (cutting force) and the control action (feed rate)  are plotted 
considering two values of gamma, in solid line for gamma=0.05 and in dashed line for 
gamma=0.2. The transient response is better for higher values of gamma but the  
 

 

Fig. 3. Behavior of cutting force without control systems (CNC working alone) 
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a) b) 

Fig. 4. a) Time response of the cutting force, b) manipulated variable (feed rate) for two values 
of gamma 

machining time is slightly higher. From the technological viewpoint, the overshoot is 
allowable for rough milling operations. It is important to note that in some approaches 
the goal of the controller design is to limit the percent overshoot to 20% [10].  

In general, the machining time is reduced slightly using the adaptive fuzzy control 
and the cutting force pattern is kept constant according with geometric profile and 
preserving the tool useful life. Furthermore, the developed system does not require 
synchronization steps or a calibration procedure. 

6   Conclusions 

This work shows preliminary results of the design and implementation of an adaptive 
fuzzy control system in a high speed milling process, on the basis of fuzzy basis 
functions (FBF). The effectiveness of the developed system is shown through actual 
machining operations in real time. The proposed system does not requiere any a 
priori knowledge during the design stage and the controller parameters are adjusted on-
line according to the adaptation law dealing with process disturbances. Moreover, it can 
run in parallel with other CNC applications without any synchronization problems. 
Real-time tests show a higher machining efficiency: in-process time is reduced by 5% 
and the cutting force is kept constant preserving the useful tool life. 

References 

1. Landers R.G, Ulsoy A.G., Ma Y.-H: A comparison of model-based machining force 
control approaches, Int. Journal of Machinte Tools and Manufacture 44 (2004) 733-748 

2. Haber-Guerra R. E.: Preliminary results in high speed machining control and monitoring. 
A personal perspective, School of Mechanical Engineering, Georgia Institute of 
Technology, July 7, (2004) Summary:  
http://pmrc.marc.gatech.edu/fmpr/PMR CSeminars.html. 



Controlling Force Based on Radial Fuzzy Functions in High-Speed Machining Processes 1237 

 

3. Haber-Guerra R.E., Alique J.R., Alique A., Haber-Haber R.: Controlling a complex 
electromechanical process on the basis of a neurofuzzy approach, Future Generation of 
Computer Systems (doi:10.1016/j.future.2004.03.001), (2004) 

4. Haber-Guerra R.E., Alique J.R.: Nonlinear internal model control using neural networks: 
Applications to machining processes, Neural Computing and Applications 13 (2004) 47-55  

5. Liu Y., Zhuo L., Wang C.: Intelligent adaptive control in milling process, International 
Journal of Computer Integrated Manufacturing 12(5) (1999) 453-460 

6. Wang L.X.: Stable adaptive fuzzy controllers with application to inverted pendulum 
tracking, IEEE Transaction on Systems, Man, and Cybernetics, (1996) 667-691 

7. Wang L.X.: Automatic design of fuzzy controllers, Automatica 35 (8) (1999) 1471-1475  
8. Haber-Guerra R. E., Jiménez J.E., Coronado J.L., Jiménez A.: Cutting force model for 

high speed machining processes, Revista Metalurgia Madrid 40(4) (2004) 247-258  
9. Haber-Guerra R. E., Jiménez J.E., Peres C.R., Alique J.R.: An investigation of tool wear 

monitoring in a high-speed machining process, Sensors and Actuators A: Physics 116 
(2004) 539-545 

10. Rober S.J., Shin Y.C., Nwokah O.D.I.: A digital robust controller for cutting force control 
in the end milling process, Journal of Dynamic Systems, Measurement and Control 119 
(1997) 146-152 

 



Sequential PN Acquisition Scheme Based on a
Fuzzy Logic Controller

Rosa Maria Alsina, Jose Antonio Morán, and Joan Claudi Socoró
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Abstract. One of the most important problems to be solved in a DS-SS
system is the acquisition of the PN sequence. In time-varying environ-
ments this fact becomes even more important because the data decoding
depends on the performance of the acquisition and tracking. In this work
a new sequential acquisition system based on a fuzzy logic controller is
proposed. The fuzzy logic controller extracts rellevant information about
the transmission conditions improving the the stability and robustness
of the receiver.

1 Introduction

The acquisition system is the most sensitive stage in a spread spectrum receiver
[1, 2]. There are several schemes to deal with this problem. The most used is the
serial search strategy due to its low complexity, where the local code phase is
changed step by step in equal increments until the correct acquisition point is
found.

The serial search strategy has some drawbacks. The decisional system of
the acquisition state is a key process in the overall system performance. This
becomes more important when we deal with a time-varying channel, i.e. iono-
spheric channel. Several factors contribute to the randomness of the acquistion
problem [3] i.e. uncertainty about the code phase, channel distorsion, noise and
interference, data randomness and unknown carrier phase and doppler offset.

In our system, a ionospheric channel acquisition strategy is studied [11, 12,
13] dealing especially with the specific problems of ionospheric transmission, as
channel distorsion and multipath. In this paper, a brief review of serial search
acquisition strategies is made in section 2, a new fuzzy logic controller for the
acquisition stage is presented in section 3 and some results of the tests made on
the proposal are shown in section 4.

2 Serial Search Acquisition Improvements

The stucture of a serial search system is shown in figure 1. Once obtained the
energy estimation, the system must decide whether it is acquired or not. A
threshold value is needed for this purpose.

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 1238–1245, 2005.
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Fig. 1. Serial search strategy for spread spectrum acquistion

Fig. 2. AD-TLC acquisition scheme [4]

Firstly, the threshold level will be set to a constant value, without taking
into account the received signal power or the noise level. Despite it is not an
optimal solution when working with a fading channel, it is the most used in
conventional systems due to its simplicity. The second approach was presented
in [4] with some approximations to Automatic Decision Threshold Level Control
(AD-TLC) (see figure 2).

There are some differences between both structures. The AD-TLC consists
on two branches of a serial search model, controlled by different versions of the
same PN sequence. The aim of the structure is to reach acquisition in the upper
branch and the lower branch is used as a noise power reference, preventing both
branches from being acquired simultaneously. This brings us to the Constant
False Alarm Algorithm (CFAR)[4].

The goal of CFAR algorithm is to adapt the threshold value dynamically
to keep a parameter called Pfa

1 in a constant value. In that algorithm [4] the
desired Pfa is set by the quotient r

R where r and R are integer parameters set
by the controller. So the algorithm operates in the following way:

– The parameter y = min(ener1, ener2) is evaluated at each integration time
τd where ener1 and ener2 are the energies of both branches. This value is
used as an estimation of the received noise level.

1 False Alarm Probability.
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– After R integration times, ȳ will resume the number of times that the noise
level is being over the threshold. The quotient ȳ

R is an estimation of the Pfa,
which optimum value is r

R .
– The current threshold is increased if the estimated Pfa is greater than the

desired or decreased if its lower.

This algorithm has been tested over the ionospheric communication channel
presented in [11]. The results show that the acquisition scheme is too slow in
most situations. This can be overcome by the use of an adaptive step depending
on the difference of the instantaneous Pfa and the desired one. Another problem
of this algorithm is that the control system waits R integration times to operate,
so there is a compromise between the tracking speed and the robustness of the
estimations.

Our proposal to improve the behaviour of the receiver is a dynamical estima-
tion of Pfa using a low pass filter (LPF). This filter dynamically estimates the
mean value of ȳ, so the computation time is then reduced. The knowledge of the
dynamical response of the filter will help us in the controller design, choosing a
classical PI2 controller will be used for this purpose.

Some differences are shown between the features of the original CFAR con-
troller and our improved system, because the problem of the original CFAR is its
high dependence on the parameters R and r. The use of a low-pass filter provides
a robust and dynamical estimation of the Pfa, improving the acquisition time.

Other possibilities have been investigated to improve the results achieved
with the PI controller. Fuzzy logic controllers offered better results but they
needed higher computational load.

3 The Fuzzy Logic Controller

Up to this point we have to deal with the problem of setting the correct threshold.
This can be achieved with a CFAR algorithm as we have seen in the previous
section. Nevertheless, the use of this serial search scheme does not offer the
optimum performance. Its response highly depends on the channel variability
and this difficults the design of the parameters of the serial search acquisition
system.

A symbol time can be considered as a good choice for the integration time (τd)
as results show. On the other hand, it also simplifies the design of the receiver
blocks. Nevertheless, depending on the transmission conditions (SNR) this time
may not be enough. At low signal to noise ratios a longer time must be used.
The use of a sequential algorithm can overcome this problem using a variable
integration time depending on the measures reliability.

It is known in [2] than the sequential method is optimum at known signal
to noise ratios (SNR). This is not the case through a ionospheric channel as
deep fading cause high SNR fluctuations [11]. Nevertheless, the structure of the

2 Proportional integral.
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receiver provides a measure of the received noise level. This value can be used
to improve dynamically the system performance.

In a serial search method the decision is just taken depending on the measured
value against the threshold. If it is higher an acquisition state is set and the other
way round. A few amount of information is being used so the performance is far
from the optimal. A logical reasoning system based on fuzzy logic theory [5, 6]
has been developed to improve the system results using the knowledge about
the channel. The reasoning system consists in a set of logical laws that generate
a final decision [7]. Other examples of fuzzy logic applied to spread spectrum
communications can be found, especially working in detection [9, 10].

In our case the result of the fuzzy logic controller is a variable actresult ∈ [0, 2]
and its value is proportional to the probability of being acquired: on low proba-
bility of acquistion situations a value lower than the one is generated depending
on the input values and the other way round. Each integration time τd a sequence
dec[n] = dec[n−1] ·actresult is updated. Considering the case of boundary values
for the variable, some limits have been set using the channel behaviour knowl-
edge. If the sequence value is higher than 1.8 an acquisition state is set. On the
other hand, a non-acquisition state is reached if the sequence is lower than 0.2.
For example, if the fuzzy logic controller gives a value equal to 1.9 an acquisi-
tion will be set only in one step. Otherwise the system waits for another value.
Depending if it is greater or lower than the one the sequence will increase or
decrease its final value. A positive slope will take us to an acquisition state and
a negative slope to a non-acquisition.

Fig. 3. Result computation for the fuzzy logic controller

Finally, we must design the rules to set an optimal reasoning control logic.
In our case four rules have been used. More rules can be added if necessary on
future implementations. However, the use of a great set of rules will increase
the computational cost, so we must take care about this fact. In figure 3 we can
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Fig. 4. actresult in function of ener1 and ener2

see the fuzzy logic controller implemented. Three different parameters control
the acquisition algorithm as can be seen in figure 3. The variables used in the
controller are the ratios ener1

threshold , ener2
threshold and ener1

ener2
. The variables were selected

using the knowledge about the system performance.
The input variables are used in the following way:

– The first law uses the ratio ener1
threshold and ener2

threshold . If the first ratio is greater
than one and the second one is lower there is a high probability of being
acquired.

– The second law is active when ener1 is near the threshold. Then the ratio
ener1
ener2

is compared to one. If it is bigger than one the system is probably
acquired, but maybe the threshold is not set on its optimum value, i.e. there
is a fading.

– If ener1 is lower than the threshold and ener1
ener2

is nearly one it shows than
both measures of energy are nearly equal and lower than the threshold. The
system is in a non-acquisition situation.

– Similar to the one above but now ener1
ener2

is greater than one. The threshold
is not correct but we may be acquired, as there is a great difference between
ener1 and ener2.

The results will be obtained using a defuzzyfication method based on the
centroid [8]. The parameters have been used in order to generate a set of laws
that control the acquistion system. The advantage of this system is that some
impossible situations in a single dwell can be evaluated. The use of three different
parameters gives us more information about the channel state and we can apply
a different criterion depending on the values of this parameters as figure 4 shows.
As a conclusion the reasoning capability of the receiver has been increased.
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4 Results

In this section the results obtained with the new acquisition approach will be
summarized. One of the most severe problems found was that the variations on
the signal to noise ratio had a direct influence on the performance of the system.

The results obtained with this new system offer better stability to the acqui-
sition system. In the ionospheric channel it is very important to keep acquired
until there is an evidence of being lost. This needs to have a system evaluating
the situation and taking the suitable decision. On the other hand, the reliability
of the measures is not always the same, because it depends on the channel state.
The sequential algorithm takes a variable time to conclude the acquisition state
depending on the channel conditions. If we have a good signal to noise ratio a
short time will be used. On the other hand we will wait until we are sure about
the decision.

The final implementation of this new approach has increased the mean time
of the system remaining acquired. Simulations have been done up to -17dBs
of signal to noise ratio and good results have been obtained through a white
gaussian channel. Obviously, the results are better than those of the CFAR
algorithm. In the figure 5 we can see some results of the proposed algorithm
compared to the CFAR.

Fig. 5. Mean time of acquisition pdf ′s for CFAR and Fuzzy Logic Controller

As we can see, the mean time of acquisition is highly improved with the new
approach. It’s also important to remark that the Pfa is even decreased with the
use of the new approach. Nevertheless, at low SNR the algorithm is a bit slower
in the initial synchronization due to the fuzzy logic controller.
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5 Conclusions

Up to this point we have seen the process to develop the new proposed acquisition
system and some results have been compared against other strategies. The main
advantage of a sequential fuzzy logic based algorithm is its robustness. When it
is acquired it is really difficult to leave this state even with low signal to noise
ratios. This is very important when working with the ionospheric channel as the
SNR is variable with time.

To fight against this problem the system uses a time varying integration.
Depending on the conditions a variable is generated as an indicator of the prob-
ability of being acquired. This variable is modified on a sequential way reaching
a great value of confidence. Then the system makes the decision. Although its
good response when the system is acquired we should take into account that the
first acquisition time is just a bit higher. This is not an important fact in our
channel and in our application. The reason is that the first acquisition is going
to happen fewer times than the reacquisition so we have an improvement on the
total mean value. On the other hand, when a non-acquisition happens there are
optimal strategies to search the correct position.

There are very important points that we must take care about. The computa-
tional load of developing a fuzzy logic controller on a DSP is very important. The
mean number of FLOPS needed to do all the process related to fuzzy controller
is greater compared to the conventional serial search system (including CFAR
algorithm). In our experiments, we have used the received samples of the iono-
spheric transmission and we have processed them offline on a PC. Nevertheless,
it is important to remark that some criterions can be used on the design of the
controller to reduce the total number of operations. Some of them have already
been used, and others will be implemented in future work, but the number of
FLOPS is still too high.

As a final conclusion a new proposal for acquisition system with very good
performance on a highly varying channel has been proposed. We must remark
that although the cost is high over a serial search method is far away from the
cost of a parallel strategy. On the other hand a new line of investigation has
been opened to motivate the use of logical reasoning systems on the acquisition
schemes. In our opinion the fuzzy logic theory is the best way to transfer the
expert knowledge about the channel to a set of logical rules.

References

[1] M.K.Simon, J.K.Omura, R.A.Scholtz, B.K.Levitt: Spread Spectrum Communica-
tions Handbook, McGraw Hill, 1994.

[2] R.L.Peterson, R.E.Ziemer, D.E.Borth: Spread Spectrum Communications Hand-
book, Prentice Hall, 1995.

[3] S.G.Glisic, B.Vucetic: Spread Spectrum CDMA Systems for Wireless Communi-
cations, Artech House Publishers, 1997.



Sequential PN Acquisition Scheme Based on a Fuzzy Logic Controller 1245

[4] S.G.Glisic: Automatic Decision Threshold Level Control (ADTLC) in Direct Se-
quence Spread Spectrum System based on Matched Filtering, IEEE Transactions
on Communications, Vol. 36, No. 4, April 1991.

[5] L.A.Zadeh: Fuzzy Sets, Information and Control, Vol. 8, pages 338-353, 1965.
[6] L.A.Zadeh: Fuzzy Logic, Computer, p. 83-92, April 1988.
[7] L.A.Zadeh: Outline of a new approach to the analysis of complex systems and

decision processes. IEEE Transactions Systems Man Cybernetics, 3, 28-44, 1973.
[8] Werner Van Leekwijck, Etienne E. Kerre: Defuzzification: Criteria and classifica-

tion. Fuzzy Sets and Systems 108, 159-178, 1999.
[9] J.Jang, K.Ha, B.Seo, S.Lee, C.W.Lee: A Fuzzy Adaptive Multiuser Detector in

CDMA Communication Systems, International Conference on Communications
ICC1998.
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Abstract. A fuzzy evaluation system to decide critical students’ final
marks is presented. The marks of the assessment tests made by stu-
dents along the academic year are transformed into linguistic terms and
used for assigning values to linguistic variables. Subjective criteria as i.e.
student’s interest or student’s progression are used in order to decide
whether every analyzed student passes or fails the considered subject.
This paper presents the features of the subject where the fuzzy system
has been applied in, the proposed fuzzy decision system, and results when
it is applied using real students’ marks.

1 Introduction

The evaluation of learning achieved by a student is a very difficult task for
teachers. Results from tests, exams and exercises are normally used to decide
whether the learning of a student is proper or not. It is important to remember
that assessments should focus on students acquiring knowledge, as well as the
disposition to use skills and strategies and apply them appropriately [1, 2]. The
design of all these tests must be matched with subject objectives for this purpose.
Assuming that proposed tests are adequate, the question is: how can the results
of these tests be used in order to decide the students’ final marks? Normally,
teachers use to weigh up every partial result in the most adequate way, in order
to obtain the final mark. However, this final mark is sometimes very close to
threshold mark, which indicates the limit between passing and failing, and it is
not clear if that student (critical student along this paper) should pass or fail.

In this paper, a fuzzy logic system to help the teacher deciding the final mark
of critical students is presented. Firstly, we briefly review the subject which this
model is applied in, and the reasons why we have used fuzzy logic to solve this
situation. Secondly we propose our fuzzy logic system, based on the features
presented in the previous section. Finally, results obtained when the proposed
model is used with real student marks are discussed.

2 Scenario Description

The proposed fuzzy system has been applied using marks obtained by students
at Linear Algebra subject. This subject belongs to first academic year curricu-

J. Cabestany, A. Prieto, and D.F. Sandoval (Eds.): IWANN 2005, LNCS 3512, pp. 1246–1253, 2005.
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lum of telecommunications engineering in Enginyeria i Arquitectura La Salle
from Barcelona (Spain). Details of methodological reform process applied along
previous two years in this subject can be consulted in [3, 4, 5].

There are four different teachers for this subject and there are six groups
of students, each one of about sixty pupils. Students make periodic tests every
week. These tests are i.e., an exercise during the class, a little exam, or some
homework exercises can be given. These different tests are of medium difficulty
level. At the end of every trimester1, about ten marks have been obtained from
these monitoring tests made by every student. Moreover, students must do the
trimester exam, which is corrected by all teachers2. The difficulty level of this
exam is high and his mark supposes the 70% of the trimester final mark3. At the
end of the third trimester, teachers review all these marks and decide whether
students pass or fail the subject. To calculate this final mark, trimester marks
are averaged and the threshold mark is fixed to five (being ten the best mark).
It is important to be taken into account that the minimum trimester mark to
compute a valid final mark is four. If a trimester mark is lower than four, the
student is required to do another exam at the end of the academic year.

A problem is presented when a student’s final mark is near the passing limit.
Does a critical student with a 4.9 i.e. as final mark have less knowledge than a
student with a 5 as final mark? It is really necessary to put a threshold mark
to decide if a student passes or fails the subject, but all four teachers think that
other criteria should be used to decide the critical students’ final mark. Criteria
as progression, interest shown by student, or students’ general results, i.e., could
help to decide the final marks of critical students. These criteria are not objective
as calculating average marks and, as a consequence, it is more difficult to apply
them equally for all students. Despite teachers decide all together how to take
into account each criterion, it is very difficult to guarantee their application in
the same sense by all teachers due to their subjectivity.

Fuzzy logic theory can solve this problem because allows an approximation to
teacher reasoning. Fuzzy set theory was formalized by Professor Lotfi A. Zadeh
in 1965 [6, 7] and, since then, it is applied to solve situations in a lot of disciplines.
Application of fuzzy logic in control systems can be prominent [8, 9, 10] but fuzzy
theory can be also found in others fields as, i.e. education [11, 12, 13].

In this paper, an approximation to teacher reasoning using fuzzy theory is
presented. Concepts as student’s interest are treated defining different fuzzy sets
(i.e. the following fuzzy sets null, low, normal, high and very high can be defined).
All additional criteria used to evaluate critical students can be handled as this,
and several rules (implications) can be fixed by teachers in order to decide the
critical students’ final marks. The whole model proposed is presented in following
section.

1 The academic year is divided into three trimesters.
2 Every teacher corrects a problem of every student’s exam, this way objectivity in

the criteria is maintained.
3 Every trimester, teachers put a partial mark to each student.
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3 Fuzzy Decision System

The fuzzy system will be employed in the evaluation process of critical students
to decide their final marks. A student is assigned into the critical students set
when his final mark, calculated averaging his trimester marks, is below but close
to five or when his final mark is over five but not all his trimester marks are
over four. The first thing we must define is the criteria we should use in order
to decide these students’ final marks.

Teachers of Linear Algebra take into account the following criteria in order to
decide the final mark: interest and effort shown by student, his progression along
the academic year, the others students’ results, and how about those trimester
marks are lower than four if this situation occurs. Therefore, the fuzzy evaluation
system should use this information to offer to the teacher a final recommendation
about every critical student’s mark.

3.1 Linguistic Variables Defined in the Fuzzy Model

Recommendation: The output fuzzy system offers to the teacher a recom-
mendation regarding critical students’ final mark. Four possible recommenda-
tions are defined: strongly fail, fail, pass and strongly pass. These different kinds
of recommendation correspond to the fuzzy sets defined of the output linguistic
variable recommendation. The offered recommendation depends on four input
linguistic variables: interest and effort, progression, student’s mark in relation to
mean group mark, and trimester mark in relation to four. These variables are
presented in following points.

Interest and Effort: During the trimester, students are requested to deliver to
the teacher different kind of exercises, controls and exams. The results of these
tests, and the number of tests presented to the teacher by every student, allow
calculate an indicator of the interest shown by student. I.e., if 30 tests have been
proposed by the teacher along the academic year and a student has presented
all tests with proper results, interest and effort shown by him can be accepted
as very high. On the other hand, if a student has only presented 10 tests and
their marks are low, his interest and effort towards Linear Algebra subject can
be considered as low. Fuzzy sets null, low, normal, high and very high have been
defined for the linguistic variable Interest and effort.

Progression: The linguistic variable progression is function of student’s trimes-
ter partial marks. The second trimester mark is compared to the first trimester
mark, and the third trimester mark is compared with the second trimester mark.
These comparisons allow to generate an indicator of student progression. Fuzzy
sets decreasing, regular, and increasing have been defined for this linguistic vari-
able.

Student’s Mark in Relation to Mean Group Mark: The position of stu-
dent into a ranking about all students’ marks is another data to be taken into
account in our context. I.e., if the best all students’ mark is 6, then a 4.7 mark
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can be considered a good mark. On the other side, if the best all students’ mark
is 10, a 4.7 will be considered a bad mark. Fuzzy sets which have been defined
for this variable are below mean, mean and above mean.

Trimester Mark in Relation to Four: All three student’s trimester marks
must be larger than four in order to average them to calculate his final mark.
But it is not the same situation whether a student has a 3.75 mark or a 1.25
mark as trimester mark. Furthermore, it is not the same case if the student has
only one trimester mark below four or two trimester marks.

Fuzzy sets defined for this variable, if this situation is presented, are very
below four and little below four. If this situation is not presented the linguistic
variable trimester mark in relation to four is fixed to not below four value.

Figure 1 shows a general diagram of the proposed system.

Fig. 1. General diagram of the proposed system

3.2 Linguistic Rules

We use rules in natural language to describe teacher’s reasoning. Experienced
teachers can give us the necessary information to construct the fuzzy system
rules. A set of rules like the following is created:

IF (Trimester mark in relation to four is very below four) THEN (recommen-
dation is strongly fail).

IF (Trimester mark in relation to four is little below four) AND (Student’s
mark in relation to mean group mark is above mean) AND (progression is in-
creasing) AND (interest and effort is very high) THEN (recommendation is
strongly pass).

Tables 1 to 6 show rules used to model teacher’s reasoning. Each table is
presented assuming two fixed variables. SF, F, P and SP represent strongly fail,
fail, pass and strongly pass output fuzzy sets respectively.

Finally, the linguistic values of the linguistic variable recommendation are
defuzzified using the center of gravity method.
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Table 1. Recommendation whether Trimester mark in relation to four is little below
four and progression is decreasing for all cases of Interest and effort

Student’s mark
in relation to null low normal high very high

mean group mark

above mean F F F F P

mean SF SF SF F F

below mean SF SF SF SF F

Table 2. Recommendation whether Trimester mark in relation to four is little below
four and progression is regular for all cases of Interest and effort

Student’s mark
in relation to null low normal high very high

mean group mark

above mean F F P P P

mean SF SF F F P

below mean SF SF F F F

Table 3. Recommendation whether Trimester mark in relation to four is little below
four and progression is increasing for all cases of Interest and effort

Student’s mark
in relation to null low normal high very high

mean group mark

above mean F P P P SP

mean F F F P P

below mean SF SF F F P

Table 4. Recommendation whether Trimester mark in relation to four is not below
four and progression is decreasing for all cases of Interest and effort

Student’s mark
in relation to null low normal high very high

mean group mark

above mean F F P P SP

mean F F F P P

below mean SF SF F F P
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Table 5. Recommendation whether Trimester mark in relation to four is not below
four and progression is regular for all cases of Interest and effort

Student’s mark
in relation to null low normal high very high

mean group mark

above mean P P SP SP SP

mean F F P P SP

below mean F F F P SP

Table 6. Recommendation whether Trimester mark in relation to four is not below
four and progression is increasing for all cases of Interest and effort

Student’s mark
in relation to null low normal high very high

mean group mark

above mean P SP SP SP SP

mean P P SP SP SP

below mean F F P P SP

4 Results

In this section, the results applying the fuzzy logic system with real students’
marks are presented. Matlab fuzzy logic toolbox is used to implement this fuzzy
decision system. Students’ marks are contained in an Excel file, and Matlab
handles these marks using Matlab Excel Link toolbox.

Results of 2003-04 academic year have been introduced to the fuzzy advisor
system. Fifty critical students have been selected. These students have been
evaluated by teachers and also by the fuzzy system. The teachers met to analyze
critical students and lasted about four hours to adopt the final decision for all
cases. All final recommendations were decided by the fuzzy system immediately.
A comparison between two strategies to decide critical students’ final marks is
now presented: forty six critical students were equally evaluated by the fuzzy
system and teachers. The system did not evaluate four critical students and
listed them with the very difficult to decide label.

The system should be tested on more case studies, but no performance com-
parison can be made with previous courses marks, because the evaluation criteria
did not fit the fuzzy system rules. This will be experimented in the future, using
2004-05 academic year results.

5 Conclusions

A fuzzy system to help teacher to decide the final mark of students who are very
close to the pass limit mark has been presented. The validity of the proposed
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fuzzy system has been proved with real students’ marks. The proposed system
recommendation agrees with the teacher’s final decision in 92% of cases. In 8%
of cases, the system does not offer any advice. It is important to emphasize
that the system did not offer any incorrect recommendation. After applying the
fuzzy system, the number of critical students who must be evaluated by teacher
is reduced from fifty to four.

Guaranteeing the same way to apply subjective criteria by different teachers
is a very difficult task and, also, very time consuming. The use of the proposed
fuzzy system guarantees the lack of bias when subjective criteria are applied and
time dedicated by teacher is strongly reduced.

Nowadays Europe is immersed in a very deep reform process regarding uni-
versity education [14]. This reform will demand methodological and pedagogical
changes and, because of that, application of new students’ assessment and eva-
luation methods will be needed. Different subjective criteria will be taken into
account along the students’ evaluation process and teacher’s final decision will
be adopted using both subjective and objective criteria [2].

The design of new fuzzy systems in order to be applied when new pedagogical
and methodological models are used by teachers is proposed as future work.
How can these fuzzy systems improve their results applying different methods of
implication and defuzzification [15], or defining different kinds of fuzzy set forms
is proposed as another future work line.
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