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Preface

CiE 2005: New Computational Paradigms
http://www.illc.uva.nl/CiE/

The cooperation Computability in Europe (CiE) is an informal European network
covering computability in theoretical computer science and mathematical logic,
ranging from application of novel approaches to computation to set-theoretic
analyses of infinitary computing models. The cooperation consists of eleven main
nodes and includes over 400 researchers; it is coordinated from Leeds (UK). More
information about CiE can be found in Barry Cooper’s introductory paper to
this volume (p. 1) and at

http://www.amsta.leeds.ac.uk/pure/staff/cooper/cie.html

CiE 2005 was a conference on the special topic “New Computational Para-
digms” and was held in Amsterdam in June 2005. It was initiated by and served
as a focus point for the informal cooperation CiE. The topic of “New Compu-
tational Paradigms” covers connections between computation and physical sys-
tems (e.g., quantum computation, neural nets, molecular computation) but also
higher mathematical models of computation (e.g., infinitary computation or real
computation).

Computability theory is central to large areas of theoretical computer science
and mathematical logic. Traditionally, the computational model of the Turing
machine (or mathematically equivalent models) has been used to reason about
computation or computability. For general computability inquiries (with un-
bounded resources), the choice of the model of computation hardly matters (this
fact is encapsulated in the so-called “Church-Turing thesis”); this could change
as soon as questions of efficiency are investigated. In all areas of computability
theory, alternative models of computation have been investigated, ranging from
the most abstract (generalized recursion theory, Infinite Time Turing Machines)
to the very concrete (physical constructions of quantum computers, applications
in neuroscience and learning theory, fine-grained parallelism, swarm intelligence,
neural nets, agents, games).

We understand CiE 2005 as an interdisciplinary venue for researchers from
computer science and mathematics to exchange ideas, approaches and techniques
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in their respective work, thereby generating a wider community for work on new
computational paradigms that allows uniform approaches to diverse areas, the
transformation of theoretical ideas into applicable projects, and general cross-
fertilization transcending disciplinary borders. The goal to reach out to both
computer scientists and mathematicians resulted in many surprises for both
communities: after many years and decades of experience in academia, we were
astonished about the differences in general practice between two research com-
munities that seem to be so close in content:

– Mathematicians issue a Call for Papers at a conference asking for submis-
sions and publish a proceedings volume after the conference (in most cases,
these will not appear until several years after the conference); in contrast,
computer scientists distribute a proceedings volume at a conference.

– As a consequence, mathematical conferences have a submission deadline for
abstracts about six to eight weeks before the conference, and computer sci-
ence conferences need about half a year to prepare the proceedings volume.

– Also, the typical mathematical submission to a conference is between two
lines and half a page describing the general idea of the talk, whereas in
computer science submissions are papers of ten pages length.

– It is customary in mathematics that submitted abstracts are just checked
cursorily to weed out nonsensical submissions – as a consequence, the ac-
ceptance rate is typically between 95% and 100%, the real quality control
happens after the conference when the submissions for the proceedings vol-
ume are refereed up to journal standards; in computer science, acceptance
rates have to be below 50%, and the lower the acceptance rate the higher
the quality of the conference.

– For a mathematician, it is only invited talks and publications that count as an
indicator of academic standing, a standard mathematical CV of a reasonably
senior researcher wouldn’t even mention contributed talks at conferences
(many mathematicians consider submissions to conferences as something
that only PhD students and recent graduates would do); in computer science,
the list of conferences at which you have presented papers is a prime indicator
of your success.

Depending on whether the reader is a mathematician or computer scientist,
he or she will have nodded at some of the points just mentioned and wrinkled
his or her forehead at others. One of the biggest surprises of our work was how
little the two communities know about the practice of the other. Our Programme
Committee consisted of mathematicians and computer scientists, and all mem-
bers spent a considerable amount of time trying to understand the workings of
the other community, with all the puzzlement, perplexity, irritations, and the
exciting impression of pioneering that this involves.

It is obvious that bringing together two communities with so diametrically
opposed ways of organizing conferences would require compromises and a lot of
innovative ideas on how to make things work. We tried to walk on the ridge
between the two communities and accommodate the needs of both.
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As a consequence, this volume only contains the invited papers and a
selection of 47.2% of the submitted papers. This may sound like a high per-
centage to computer scientists, but has to be seen in the context of the inter-
community aspect of this conference project. As a result, we are proud to have
produced such a high-quality volume that truly stands as a testament to the in-
terdisciplinary nature of the conference. In the style of mathematics conferences,
there will be several postproceedings publications that will be reviewed according
to journal standards. There will be a monograph of edited papers entitled New
Computational Paradigms (edited by B. Cooper, B. Löwe, and A. Sorbi) that
contains surveys and expository papers. For the research papers, we will have
three special issues of journals: a special issue of Theoretical Computer Science
C (edited by T. Bäck and B. Löwe) focusing on computation and the natural
sciences, a special issue of Mathematical Structures in Computer Science (edited
by B. Cooper, B. Löwe, and D. Normann) focusing on the more mathematical as-
pects, and a special issue of Theory of Computing Systems (edited by B. Cooper,
B. Löwe, and P. van Emde Boas). We shall invite the authors of the best papers
at the conference to submit their full versions to these special issues and referee
them to the high standards of the respective journals.

For the most current information about the conference, we refer the reader
to our webpage

http://www.illc.uva.nl/CiE/

The CiE enterprise will continue to thrive: we already received enthusiastic feed-
back from the members of the CiE cooperation, and CiE 2005 developed into a
conference series that is already being planned for the years 2006 to 2009. The
next CiE conference is planned for Swansea (UK) from June 30 to July 5, 2006;
after that, we’ll reconvene in Siena (Italy) in June 2007. This volume is just the
beginning of a larger project bringing mathematics and computer science back
together by trying to accommodate the special styles of both communities. We
felt that there was a need for this, and the positive feedback proves that we were
right.

Scientific Structure of the Conference

The template for the scientific organization of CiE 2005 was the meetings of the
Association for Symbolic Logic with tutorials, plenary talks and special sessions.
The Programme Committee invited speakers for two tutorials (three hours each),
eight plenary talks (one hour each) and organizers for six special sessions (with
four talks of half an hour each). The special session organizers were then asked
to invite their four speakers. All 35 invited speakers were asked to contribute
either an abstract or a paper to this proceedings volume, and most did.

Our tutorial speakers were Harry Buhrman (Universiteit van Amsterdam,
CWI; p. 68) and Klaus Weihrauch (FernUniversität Hagen; p. 530). Plenary talks
were given by Samson Abramsky (Oxford University), Joel D. Hamkins (City
University of New York; p. 180), Ulrich Kohlenbach (Technische Universität
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Darmstadt; p. 233), Jan van Leeuwen (Universiteit Utrecht), Yuri
Matiyasevich (Steklov Institute of Mathematics; p. 310), Yiannis Moschovakis
(Ethnikon and Kapodistriakon Panepistimion Athinon, and University of Cali-
fornia at Los Angeles: p. 350), Gheorghe Paun (The Romanian Academy,
Bucharest; p. 396), and Uwe Schöning (Universität Ulm; p. 429).

The topics of the six special sessions were selected by the Programme Com-
mittee in a way to involve mathematical logic and computer science at the same
time as offering the methodological foundations for models of computation. The
speakers were invited by the special session organizers:

Special Session on Biological Computation, organized by T. Bäck
(Leiden):
Paola Bonizzoni (Milan; with Clelia De Felice & Giancarlo Mauri; p. 65),
Marian Gheorghe (Sheffield; with Francesco Bernardini, Natalio Krasnogor,
German Terrazas; p. 49), Tero Harju (Turku; p. 188), Natalio Krasnogor (Not-
tingham; with German Terrazas, Francesco Bernardini, Marian Gheorghe, Steve
Diggle, Miguel Cámara; p. 479).

Special Session on Complexity, organized by Elvira Mayordomo Cámara
(Zaragoza):
Ricard Gavaldà (Barcelona/Montréal, QC; p. 150), Jack Lutz (Ames, IA; p.
299), Peter Bro Miltersen (Aarhus; p. 342), Jacopo Torán (Ulm; p. 495).

Special Session on Epistemology and Methodology of Computing,
organized by Hartmut Fitz (Amsterdam) and Guglielmo Tamburrini (Pisa):
Angelo Cangelosi (Plymouth; p. 69), Artur d’Avila Garcez (London; p. 139),
Wilfried Sieg (Pittsburgh, PA; p. 440), Giuseppe Trautteur (Naples; p. 507).

Special Session on Proofs and Computation, organized by A. Beckmann
(Swansea) and L. Crosilla (Florence):
Ulrich Berger (Swansea; p. 23), Thierry Coquand (Göteborg; p. 86),
Jan Johannsen (Munich), Stan Wainer (Leeds; with Geoff E. Ostrin; p. 378).

Special Session on Real Computation, organized by A. Edalat (London):
Amin Farjudian (Tehran; p. 128), André Lieutier (Aix-en-Provence/Grenoble;
p. 297), Milad Niqui (Nijmegen; p. 368), Dirk Pattinson (Munich; p. 385), Ning
Zhong (Cincinnati, OH; p. 552).

Special Session on Relative Computability, organized by B. Cooper (Leeds)
and A. Sorbi (Siena):
Denis Hirschfeldt (Chicago, IL; p. 209), Iskander Kalimullin (Kazan; p. 221),
Andrew E. M. Lewis (Leeds; p. 275), Andrey Morozov (Novosibirsk; p. 349).

A number of 62 contributed talks were accepted for presentation at this
conference of which the best appear in the volume. In addition to this, we allowed
researchers to announce informal talks in the style of mathematics conferences.
Abstracts or extended abstracts of all talks not included in this volume will be
published in a booklet appearing in the ILLC Publications.
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Among the papers that will appear in that additional booklet are the
following:

– José L. Balcazar, Query Learning of Horn Formulas Revisited ;
– Giulia Battilotti, Paola Zizzi, The Internal Logic of Bell’s States;
– Yi-Xiang Chen, Jie Zhou, Fuzzy Interval-Valued Processes Algebra;
– Carmen Graciani, Agust́ın Riscos-Núñez, Looking for Simple Common Sche-

mes to Design Recognizer P Systems with Active Membranes That Solve
Numerical Decision Problems;

– Vince Grolmusz, Defying Dimensions Modulo 6 ;
– Miguel Ángel Gutiérrez-Naranjo, Mario Pérez-Jiménez, Francisco José

Romero-Campero, Solving SAT with Membrane Creation;
– Montserrat Hermo, Joxe Gaintzarain, Marisa Navarro, Learning Conjunc-

tions of Horn⊃ Clauses;
– Eiju Hirowatari, Kouichi Hirata, Tetsuhiro Miyahara, Setsuo Arikawa, On

the Prediction of Recursive Real-Valued Functions;
– Paulin Jacobe de Naurois, Olivier Bournez, Felipe Cucker, Jean-Yves

Marion, Logical Characterizations of P and NP over an Arbitrary Struc-
ture K;

– Viv Kendon, William J. Munro, Entanglement and Its Role in Shor’s Algo-
rithm;

– Tien D. Kieu, Hypercomputability in Quantum Mechanics;
– Branimir Lambov, Complexity in a Type-1 Framework for Computable Anal-

ysis;
– Pierluigi Minari, Proof-Theoretical Methods in Combinatory Logic and Lambda-

Calculus;
– Erich Monteleone, On the Infinitary Formal Systems and Infinite Time Tur-

ing Machines;
– Marcin Mostowski, Potential Infinity and the Church Thesis;
– Benedek Nagy, An Interval-Valued Computing Device;
– Stela Nikolova; On the Notion of ∀-definedness of Non-deterministic Pro-

grams;
– Harumichi Nishimura, Tomoyuki Yamakami, Quantum Minimal One-Way

Information for Combinatorial Tasks;
– Igor Potapov, Oleksiy Kurganskyy, Universality of Walking Automata on a

Class of Geometric Environments;
– Dimiter Skordev, A Computability Notion for Locally Finite Lattices;
– Boris Solon, Non-total Enumeration Degrees;
– Haibin Sun, Wenhui Li, Rules-Based Spatial Reasoning Combining Topolog-

ical and Cardinal Directional Relations;
– John V. Tucker, Edwin Beggs, Newtonian Systems, Bounded in Space, Time,

Mass and Energy Can Compute All Functions;
– Raymond Turner, Computability in Specification;
– Puzarenko Vadim, Computable Principles in Admissible Structures;
– Andreas Weiermann, A Very Slow Growing Hierarchy for the Howard Bach-

mann Ordinal ;
– Paola Zizzi, Computability at the Planck scale.
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As it happens, “Computability in Europe” was invented, just over two years
ago, and in a short time has grown beyond all expectations. But even though
the surprise of finding together so many researchers into different aspects of
computability has not worn off, CiE does represent a strand of scientific ende-
vour going back to the earliest times. Even before Euclid of Alexandria devised
his algorithm for finding the greatest common divisor of two integers, human
survival depended on the identification of algorithmic content in the everyday
world. What distinguished Euclid, and successors like Newton, Leibniz, Frege,
Peano, Babbage, Russell, Hilbert, Gödel and Turing, is the reaching for control
over that content through theory and abstraction. Perhaps Albert Einstein had
something like this in mind in 1950 when he wrote (p.54 of Out of My Later
Years, Philosophical Library, New York):

“When we say that we understand a group of natural phenomena, we
mean that we have found a constructive theory which embraces them.”

What is peculiarly contemporary about CiE is the scrutiny it brings to bear on
the quest for algorithmic content, something that was not possible before Turing
and his fellow 1930s pioneers in the area.

Through the work of computability theorists, the search for algorithmic con-
tent goes beyond the ad hoc, and develops into an activity guided by an expanded
consciousness of what we are doing. We can now explain why certain basic prob-
lems are harder than others. We can use our knowledge of logical structure and
language to devise more efficient computer programs. We can relate the struc-
tures of computability theory to real-world situations, and find models which
aid prediction, or make problems in making predictions mathematically explicit.
And, the hope is, we can get enough insight into how physical systems ‘com-
pute’ to ease us past the computational barriers our theory has brought to our
notice. The questions surrounding ‘New Computational Paradigms’ are indeed
fundamental ones. Answers, as so often in the past, will depend on the sort of
mix of the practical and the theoretical that Alan Turing, if he were still with
us, would have recognised, and found fascinating.

� With apologies to Voltaire . . .

S.B. Cooper, B. Löwe, and L. Torenvliet (Eds.): CiE 2005, LNCS 3526, pp. 1–7, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In current terminology, the scientific approach of CiE is interdisciplinary,
approaching real-world problems from different perspectives and using diverse
techniques. CiE seeks to bridge the theoretical divide between mathematics and
computer science, and between computability theory and science, which are
traceable back almost to the birth of computability theory in the mid-1930s.
Of course, the natural scientist of the Enlightenment would have had no prob-
lem with the so-called interdisciplinarity of CiE. It is only since the sixteenth
and seventeenth centuries that scientific specialisms have solidified into exclu-
sive disciplines, regulated by senior figures whose role it is to perseverate the
assumptions and conventions of their areas, complete with their own technical
priorities.

Even ‘new paradigms’ constitutes a project started by Turing — the natural
scientist par excellence, at least to the computability theorist. On the one hand,
the yawning gap between computation and the real-world played a key role in
both his scientific and personal lives, just as it now dominates the work of CiE.
This was a gap he was ever, both practically and conceptually, seeking to bridge,
and many of his ideas anticipate current research. On the other hand, this was a
preoccupation which took him — and now promises to take us — beyond the safe
confines of what Thomas Kuhn calls ‘normal science’. Here is how Kuhn describes
normal science in his influential book The Structure of Scientific Revolutions
(pp.162–164 of the Third Edition, The University of Chicago Press, 1996):

“Normally, the members of a mature scientific community work from a
single paradigm or from a closely related set. . . . once the reception of
a common paradigm has freed the scientific community from the need
constantly to re-examine its first principles, the members of that com-
munity can concentrate exclusively upon the subtlest and most esoteric
of the phenomena that concern it. Inevitably, that does increase both the
effectiveness and the efficiency with which the group as a whole solves
new problems.”

What has become problematic in many areas of science and the humanities
is dealing with globally determined phenomena. Everywhere, we see nonlinear
development, breakdown in inductive and predictive structures, computer sim-
ulation replacing mathematical solutions, and the puzzle of emergence of new
relations in the midst of turbulence. We also see the ad hoc development of par-
ticular solutions to everyday problems which seem to challenge existing concep-
tual frameworks. And we have quite basic obstacles to raising the capabilities of
present-day computers to the needs of the working scientist. All this is reflected
in the wide variety of theoretical directions to be found within CiE. The aim
is to bring a new understanding to existing developments, and to establish the
sort of consciousness of computational issues upon which exciting new practical
innovations can be based.

However, the reader coming to this volume for the weird and wonderful from
today’s scientific fringe will be disappointed. There are indeed contributions
which acknowledge the extent to which the Turing machine paradigm is already
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shifting — see, for instance, Dina Goldin and Peter Wegner on The Church-
Turing Thesis: Breaking the Myth — but this tends to be work which has gone
through a long period of gestation, and received a measure of acceptance and
respect within the computer science community. Here is how one of our reviewers
of Goldin and Wegner’s article described the situation:

“Fifty years ago the Turing Thesis was OK, now it is still OK provided
we know to what computational scenario it should be related. If we are
changing the scenario (as the practice of computing prompts us), we have
to update the notion of a Turing machine (or of any other fundamental
model of computation) as well - that’s all.”

Of course, that may be ‘all’. But extracting useful models from new computa-
tional situations, or — to approach things more theoretically — to develop new
abstractions and make innovative real-world connections, is the essence of the
challenge. So we also see here papers dealing with more overtly mathematical
extensions of the standard Turing model of computation, such as infinite time
Turing machines — see Joel Hamkins on Infinitary computability with infinite
time Turing machines, and the paper of Philip Welch — and, at the other ex-
treme, a number of contributions dealing with natural computation. Membrane
computing is represented by Gheorghe Păun (a seminal figure in this area),
Marian Gheorghe et al, and Shankara Narayanan Krishna, and we have Paola
Bonizzoni, Felice, and Mauri on DNA computing, and Natalio Krasnogor (with
Gheorghe again, and others) on computational modelling of the important mi-
crobiological phenomenon of ‘quorum sensing’. The resurgent topic of analog
computers is touched on by Jérôme Durand-Lose, Giuseppe Trautteur (on Be-
yond the Super-Turing Snare: Analog Computation and Virtual Digitality) and
Jeffery Zucker with John Tucker, and neural networks, another area with a long
history, is represented by Angelo Cangelosi, and Krzysztof Michalak with Halina
Kwasnicka. And, of course, quantum computation is a key topic at CiE 2005
(where from Harry Buhrman we get just a taster from his talks). New paradigms
of computation come in all shapes and sizes, and the growth of quantum com-
puting reminds us that even quite modest improvements (theoretically speaking)
in computing efficiency promise big changes in the world we live in.

Although a number of people associated CiE are involved with these different
areas, most of us do not actually set out to do quantum computing, membrane
computing, neural networks, evolutionary computation, and so on. The agenda
is not so piecemeal. This is not computational tourism, the Readers Digest Con-
densed Books version, with the grown-ups head for the real thing — WCIT,
CINC, CEC, and other myriad specialist meetings. The intervention of CiE is
aimed at using logical and mathematical methods to reveal underlying structures
and unities, to develop general frameworks and conceptual aids — to build the
sort of theoretical and practical synergies which gave Turing and von Neumann
such a key role in the early days of the first computing revolution. For example,
one can recognise within most of the existing proposals for new computational
paradigms a high degree of interactivity, as is picked up on in Goldin and Weg-
ner’s paper. One aspect of this is the importance now given to connectionist
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models of computation, anticipated by Turing himself in his discussion of ‘unor-
ganised machines’ in his 1948 National Physical Laboratory Report Intelligent
machinery. In 1988 Paul Smolensky observed in his influential Behavioral and
Brain Sciences paper On the proper treatment of connectionism (p.3) that:

“There is a reasonable chance that connectionist models will lead to the
development of new somewhat-general-purpose self-programming, mas-
sively parallel analog computers, and a new theory of analog parallel
computation: they may possibly even challenge the strong construal of
Church’s Thesis as the claim that the class of well-defined computations
is exhausted by those of Turing machines.”

This kind of challenge is being met on a number of levels. On the one hand one
has the work on neural networks and logic reported on by Artur Garcez in this
volume, while on the other one has models based on computational reducibili-
ties (such as that derived from Turing’s oracle machines), which promises a new
relevance to the sort of classical computability featuring in the contributions
from Finkel, Harris, Kalimullin, Lewis, Angsheng Li, Selivanov, Soskov, Alexan-
dra Soskova, and Terwijn (describing an interesting application of the Medvedev
lattice). As our anonymous reviewer pointed out above, “Fifty years ago the Tur-
ing Thesis was OK, now it is still OK provided we know to what computational
scenario it should be related.” The world has not lost its algorithmic content, but
there is needed a fundamental process of readjustment to new realities, involving
full use of our powers of theoretical deconstruction of computationally complex
environments. Relevant here is the paper of Udi Boker and Nachum Dershowitz.
As one of our reviewers commented: “The subject of this paper is very central
to the topic of the conference: How can we compare the computational power of
different computational paradigms?”.

As already suggested, we can think of CiE as computation with consciousness ,
in the sense that there is a relatively high level of detachment and abstraction in-
volved. Wonderful things can be achieved without consciousness. Bert Hölldobler
and Edward O. Wilson’s book on The Ants runs to over eight-hundred pages, and
ants and similar biological examples have inspired new problem-solving strate-
gies based on ‘swarm intelligence’. But the limits to what a real-life ant colony
can achieve are more apparent than those of more obviously conscious beings. As
the constructors move in and tarmac over our richly structured ant colony, the
ants have no hope of expanding their expertise to deal with such eventualities.
For us algorithmic content gives rise to new emergent forms, which themselves
become victim to our algorithmic appetites, and even the inevitable limits on
this inductive process we hope to decode. Maybe it is going too far to think of
CiE as the conscious and interventionist observers of the ant-like activities of
our more ad hoc computational colleagues! But any sceptics might remember
how Turing himself put even this aspect of the computational process under the
mathematical microscope. When Turing says in his 1939 paper:

“Mathematical reasoning may be regarded . . . as the exercise of a com-
bination of . . . intuition and ingenuity. . . . In pre-Gödel times it was
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thought by some that all the intuitive judgements of mathematics could
be replaced by a finite number of . . . rules. The necessity for intuition
would then be entirely eliminated. In our discussions, however, we have
gone to the opposite extreme and eliminated not intuition but ingenuity,
. . . ”

he is talking about what happens when one persistently transcends a particular
context by iterating an overview, such as that of Gödel for first-order Peano arith-
metic. We can trace back to this paper the genesis of powerful proof-theoretic
methods which have both benefitted from, and fed back into, computability
theoretic perspectives. One tends to think of computability as being a language-
independent notion, but the need to describe what is going on computationally
reasserts the human dimension, and leads us to appropriate proof theoretic hi-
erarchies. This direction is represented here by Proofs and Computation Special
Sessions contributors Ulrich Berger, Coquand, and Wainer (with Geoff Ostrin),
and by proof mining expert Ulrich Kohlenbach.

An important recent development has been the growth of proof complexity
since the appearance of Sam Buss’ thesis on Bounded Arithmetic back in 1985,
showing that basic complexity classes could be allied with levels of relatively
easily described proof theoretic heirarchies. And if ever there was an area in
need of new paradigms, it is computational complexity. There are, of course,
deep and intactable problems, basic to how we compute in the future, for which
no one seems to be able to even get close to a solution. The appearance of Yuri
Matiyasevich and Yiannis Moschovakis (with the intriguing title Recursion and
complexity) on our list of authors reminds us of similarly basic computational
issues arising from traditional logical frameworks. Contributions from Barra and
Kristiansen, Ricardo Gavaldá (on computational learning theory), Gibson and
Woods, Kristiansen again, Jack Lutz (on The Dimension of a Point: Computabil-
ity Meets Fractal Geometry), Peter Bro Miltersen, Victor Mitrana et al, Pheidas
and Vidaux, and Jacobo Torán give just an indication of the great variety of
output to be encountered.

Also to be found here are articles and abstracts dealing with real computation
— another key topic at CiE 2005 — an implicit acknowledgement of gap between
how the working scientist describes the universe in terms of real numbers, and
the way in which present-day computers are constrained to work with discrete
data. Richard Feynman may have commented, characteristically provocative as
ever, in a 1982 article on Simulating physics with computers in the International
Journal of Theoretical Physics:

“It is really true, somehow, that the physical world is representable in
a discretized way, and . . . we are going to have to change the laws of
physics.”

But the practical realities which faced Feynman the scientist in dealing with
continuous mathematical models of physical systems have not changed. This area
also sees a variety of theoretical approaches to the practical problems involved,
some easily located within the familiar framework of what has been known as
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recursive analysis, and others much more immediately geared to applications. At
the more applied end of the spectrum we have Edalat-Khanban-Lieutier, Amin
Farjudian, Lieutier, Pattinson, and Ning Zhong. More mathematical approaches,
including work on computable and c.e. reals, etc., show up in nice contributions
from George Barmpalias, Klaus Meer, Guohua Wu, Zheng Xizhong and Martin
Ziegler. Korovina and Kudinov take us in the direction of computability over
higher type continuous data, connecting up with more general and set theoretical
work, such as that of Peter Koepke, and Alexey Stukachev.

Amongst other important computational notions not yet mentioned are com-
putable models (Hirschfeldt, Morozov), randomness (Reimann), reverse mathe-
matics (Joseph Berger), and other riches too many to itemise in detail.

In the end, the overall impression is one of normal science at its best —
in its particularities inventive, relevant and soundly based, but a confluence of
perspectives exceeding the sum of its parts. This is the essence of most paradigm
shifts in history. In retrospect we may recognise a particular ‘eureka’ moment,
but closer inspection often reveals revolutionary new ideas emerging out of a
number of contributory and seemingly unrelated developments. Only when the
picture is focused and comprehensive enough one can one clearly distinguish
both its failings and potentialities. As Kuhn says (p.92):

“. . . scientific revolutions are inaugurated by a growing sense, . . . often
restricted to a narrow subdivision of the scientific community, that an
existing paradigm has ceased to function adequately in the exploration
of an aspect of nature to which that paradigm itself had previously led
the way.”

Paradigm shifts are not easily come by. Their underlying ideas must be con-
nected, justified, validated, formed in to a persuasive whole, through the de-
tailed and selfless work of many people. Some of this work may be anticipatory,
brave, but wrong, and in putting together this volume the editors have been
all too aware of this. In particular cases, we have preferred to err on the side
of caution. Again, this is a usual feature of paradigm shifts, and we hope our
readers (and contributors) will understand this. We do believe CiE to provide
a home for those exploring the developing real-world relevance of computability
and complexity, and we hope this volume is a first sign of what we can achieve
as a more coherent scientific community.

It is appropriate to give Thomas Kuhn the (almost) final word (pp.167–168):

“The very existence of science depends upon investing the power to
choose between paradigms in the members of a special kind of commu-
nity. Just how special that community must be if science is to survive and
grow may be indicated by the very tenuousness of humanity’s hold on
the scientific enterprise. Every civilization of which we have records has
possessed a technology, an art, a religion, a political system, laws, and
so on. In many cases those facets of civilization have been as developed
as our own. But only the civilizations that descend from Hellenic Greece
have possessed more than the most rudimentary science. The bulk of
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scientific knowledge is a product of Europe in the last four centuries. No
other place and time has supported the very special communities from
which scientific productivity comes.”

Even if Europe is now but one part of an interconnecting global scientific commu-
nity, computability continues to be an area in which the European contribution
is something quite special.
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Abstract. The strong weak truth table reducibility was suggested by
Downey, Hirschfeldt, and LaForte as a measure of relative randomness,
alternative to the Solovay reducibility. It also occurs naturally in proofs
in classical computability theory as well as in the recent work of Soare,
Nabutovsky and Weinberger on applications of computability to differ-
ential geometry. Yu and Ding showed that the relevant degree structure
restricted to the c.e. reals has no greatest element, and asked for maxi-
mal elements. We answer this question for the case of c.e. sets. Using a
doubly non-uniform argument we show that there are no maximal ele-
ments in the sw degrees of the c.e. sets. We note that the same holds for
the Solovay degrees of c.e. sets.

1 Introduction

The strong weak truth table reducibility was suggested by Downey, Hirsch feldt,
and LaForte as a measure of relative randomness. Versions of this reducibil-
ity are present in computability theory; for instance, these are automatically
produced by the basic technique of ‘simple permitting’ and one of them was
used in the recent work of Soare, Nabutovsky and Weinberger on applications
of computability theory to differential geometry. The strong weak truth table
reducibility naturally induces a degree structure, the sw degrees. Yu and Ding
showed that the sw degrees restricted to the c.e. reals have no greatest element,
and asked for maximal elements. We solve this question for the case of c.e. sets.
Using a doubly non-uniform argument we show that there are no maximal ele-
ments in the sw degrees of the c.e. sets. The strong weak truth table reducibility
was originally suggested as an alternative for the Solovay (or domination) re-
ducibility which has been very successful tool for the study the complexity of
c.e. reals but presents various shortcomings outside this class. Of course, the sw
degrees present other difficulties (as the lack of join operator, see below) but
they are nevertheless very interesting to study from a wider perspective. More-
over, Downey, Hirschfeldt and LaForte [2] noticed that as far as the computably
enumerable sets are concerned, the sw degrees coincide with the Solovay degrees.

S.B. Cooper, B. Löwe, and L. Torenvliet (Eds.): CiE 2005, LNCS 3526, pp. 8–17, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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So we also show that the Solovay degrees of c.e. sets have no maximal element.
In the following we assume basic computability theory background; knowledge
of algorithmic randomness is not essential but can be useful. For definitions,
motivation and history of related notions as the Solovay degrees we refer mainly
to [1] and secondly to [4].

Studying relative randomness, Downey, Hirschfeldt and LaForte [2] found
Solovay reducibility insufficient, especially as far as non-c.e. reals are concerned.
One of the two new measures for relative randomness they suggested is a strength-
ening of the weak truth table reducibility, which they called strong weak truth
table reducibility or sw for short. This reducibility is quite natural since it occurs
in many proofs in classical computability theory: it follows when we apply simple
permitting for the construction of a set ‘below’ a given one.

Definition 1. (Downey, Hirschfeldt and LaForte [2]) We say A ≤sw B if there
is a Turing functional Γ and a constant c such that ΓB = A and the use of this
computation on any argument n is bounded by n + c.

The special case when c = 0 gives a stronger reducibility which was used by
Soare, Nabutovsky and Weinberger (see [7]) in applying computability theory to
differential geometry.

We remind the definition of a c.e. real.

Definition 2. A real number is computably enumerable (c.e.) if it is the limit
of a computable increasing sequence of rationals.

The main justification for ≤sw as a measure of relative randomness was the
following

Proposition 3. (Downey, Hirschfeldt, LaForte [2]) If a ≤sw b are c.e. reals
then for all n, the prefix-free complexity of a � n is less than or equal to that of
b � n (plus a constant).

So ≤sw arguably qualifies as a measure of relative randomness for the c.e. reals
(and in particular, it preserves randomness). Downey, Hirschfeldt, LaForte [2]
have showed that Solovay reducibility (also known as domination) and strong
weak truth table reducibility coincide on the c.e. sets. But, as we see below, this
is not true for the c.e. reals.

Yu and Ding proved the following

Theorem 4. (Yu and Ding [6]) There is no sw-complete c.e. real.

By a ‘uniformization’ of their proof they got two c.e. reals which have no c.e.
real sw-above them. Hence

Corollary 5. (Downey, Hirschfeldt, LaForte [2]) The structure of sw-degrees is
not an upper semi-lattice.

They also asked whether there are maximal sw-degrees of c.e. reals. They con-
jectured that there are such, and they are exactly the ones that contain random
c.e. reals. The main idea of their proof of theorem 4 can be applied for the case
of c.e. sets in order to get an analogous result. Using different ideas we prove the
following stronger result.
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Theorem 6. There are no sw-maximal c.e. sets. That is, for every c.e. set A,
there exists a c.e. set W such that A <sw W .

Since the Solovay degrees and sw-degrees coincide on the c.e. sets we get

Corollary 7. The substructure of the Solovay degrees consisting of the ones with
c.e. members (i.e. containing c.e. sets) has no maximal elements.

2 About the Structure

We state some easy results about the c.e. sets and reals in the structure of sw
degrees. We remind the following definition:

Definition 8. A (total) Solovay test is a c.e. set of binary strings S such that∑
σ∈S 2−|σ| < ∞ (and computable). A real a avoids S if

∃<∞σ ∈ S(σ � a).

(Schnorr) Random is a real which avoids all (total) Solovay tests.

After the discussion in the previous section, it is natural to ask: are there c.e.
reals above all c.e. sets?

Proposition 9. Every random c.e. real is sw-above every set in the finite levels
of the difference hierarchy.

But are there non-random c.e. reals with this property?

Proposition 10. There are non-random c.e. reals sw-above every set in the
finite levels of the difference hierarchy.

E.g. a =
∑

e∈N

∑
n∈We

2−(e+n+2) is non-random and sw-above all c.e. sets.

Question 1. Are the c.e. reals above the c.e. sets necessarily Schnorr random?

3 About the Proof of Theorem 6

Before we get into the technical part of the proof, we draw a map of it. Given a
c.e. set A we construct three c.e. sets W1, W2, W3 one of which will be strictly sw-
above A. Figure 1 illustrates this idea and shows the double non-uniform nature
of the proof, which will become more clear in the technical part (in particular,
W1 will be qualitatively different from W2,W3). We note that some of Wi may
not be able to even compute A. Given a c.e. set A we construct a c.e. W which
satisfy the requirements

Q : A ≤sw W

Ne : ΦA
e �= W
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W1

W2 W3

Fig. 1. Double non-uniformity in the proof of theorem 6

where Φe is the e-th sw-functional in an effective enumeration and has use
(bounded by) n + e on argument n. Although Ne can be satisfied with a non-
uniform proof in the style of [6] (thus showing that there is no sw-maximum c.e.
set), adding Q makes the situation more difficult. In particular, for any number
of W -witnesses that we reserve for Ne, we need to reserve roughly the same
number of W -witnesses for A-coding (i.e. Q), and these must be roughly of the
same level of magnitude as those for Ne. But this is impossible since once you
have occupied an interval of N for Ne (as in [6]) you can’t always find another
equally big (disjoint) interval of numbers not much larger than the ones in the
first interval. Note that building a large (finite) number of (candidates for) W
doesn’t help much since each of these W will have the need of double space
discussed above.

To illustrate the above, consider an attempt to diagonalize against ΦA
0 = W

with a witness w. W.l.o.g. assume that the constant associated with our reduction
A ≤sw W is 0 (i.e. the use is the identity function). We wait until ΦA

0 (w) ↓= 0
and put w ↘ W . Then A � w may change (in order to rectify the computation)
and this change must be coded in W below w. So one diagonalization requires
two witnesses.

To deal with this situation we will require A to be ‘sufficiently charged’ in the
sense that the 1s in its characteristic sequence are sufficiently dense. Relying on
this assumption, we won’t enumerate an axiom for the reduction A ≤sw W unless
we witness a certain amount of enumeration in A. This way we save positions
in W which would have to be used for the A-coding, had we not waited for this
enumeration to occur. If our hypothesis is true, the construction will build one
W which fulfils the requirements.

Of course, this ‘density’ hypothesis (which is the base of case A of the proof)
is not without loss of generality. A second construction (case B) will assume
the failure of the density hypothesis, and produce two sets W1,W2; if indeed
the hypothesis fails, one of these will satisfy all the requirements. Overall we
construct three different sets and so this proof is non-uniform.

Case A. The hypothesis is

∀e, c∃�(|A � (� + e)| + |A ∩ (c, �]| < �− c) (1)
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and the instance of it used by Ne is

∃�(|A � (� + e)| + |A ∩ (c, �]| < �− c) (2)

where c is the largest number reserved for diagonalization and A-coding by the
higher priority requirements Ni, i < e. Every requirement reserves a full interval
of N for enumeration into W and Ne in particular reserves (c, �], where � is the
least witness for (2). So, in this case (−1, c] is full of numbers reserved by Ni, i <
e. Every time a requirement reserves an interval (c, �], it automatically starts
sw-coding A ∩ (c, �] into W ∩ (c, �] (the use function of the reduction being the
identity). This means that from now on every time that a new element n appears
in A∩(c, �], we enumerate a number t ≤ n into W∩(c, �]. In this setting, condition
2 guarantees that although we will need to spend part of (c, �] for A-coding, there
will still be enough witnesses for a successful ripple of Ne-diagonalizations (i.e.
one that finishes with a diagonalization which is not rectified).

Since the largest number reserved by Ne is the � of 2, if ce, �e are the c, � of
condition 2 for Ne then ce = �e−1 where �−1 = −1. It is easy to see that a list

�0 < �1 < �2 < . . .

of suitable endpoints for all the requirements can be effectively obtained by
choosing an �e to be one of the � of 2 for c = �e−1 (say the first that occurs
during the given enumeration of A). So we divide N into

(−1, �0], (�0, �1], . . . ,

sw-code A ∩ (�e−1, �e] into W ∩ (�e−1�e] for each e, and use the rest of the
witnesses for a diagonalization ripple for Ne (i.e. a sequence of diagonalizations
where each of them is performed after the previous one has been rectified). It
is straightforward to use an initial segment of (�e−1, �e] for the A coding and
the rest of it for diagonalizations. So we injectively map (the current value of)
A ∩ (�e−1, �e] onto an initial segment of (�e−1, �e] in an order-preserving way
and for the sake of Q require that whenever an element of that A ∩ (�e−1, �e]
appears in A, the corresponding element (which belongs to the same interval) is
enumerated into W . It is obvious that each element of (�e−1, �e] is mapped to a
number less than or equal to itself and so the coding is sw with the identity as
use function.

Ne-Module.

1. (Set up) Wait until �e−1 has been defined and there is an � > �e−1 as in 2
with c = �e−1. Define �e = � and the attack interval

Ie = (�e−1, �e].

Injectively map Ie ∩ A onto an initial segment of Ie in an order-preserving
way (this can be done in a unique way).

2. (Diagonalization) Wait until �(ΦA
e ,W ) > �e and put max(W ∩ Ie) ↘ W .

Each of these strategies require attention when they are ready to move on to the
next step (note that part 2 is a loop). Step 1 is performed only once for each
requirement and so there will be no injury.
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Q-Module. Let Γ be the functional we build for the reduction A ≤sw W .

1. (Γ rectification) Search Γ up to the finite current level of its definition and
find the least n with

ΓW (n) ↓�= A(n).

Then n ∈ (�i, �i+1] for some i; enumerate into W the corresponding element
of n under the injective mapping defined during the definition of �i+1.

2. (Γ enumeration) Let i be the largest number such that �i ↓. If ΓW (�i) ↑
then enumerate axioms ΓW = A up to �i with use function the identity.

Construction. At each stage:

– Run Q-module
– Run Ne-module for the highest N requiring attention.

Verification. By induction we show that for every e, Ne is satisfied and Γ is
defined and correct up to �e. Since by 1 �e is eventually defined for all e and
�e < �e+1, this is all we need to show. Supposing that it holds for all i < e,
we show that it is true for e. Suppose that �e is defined at stage s0. At this
stage W ∩ (�e−1, �e] is empty and according to the Q-module the only numbers
in (�e−1, �e] enumerated into W by this strategy will be because of numbers
appearing in A ∩ (�e−1, �e] after stage s0.

By the first step of the strategy Ne, at s0 we have

|A � (�e + e)| + |A ∩ (�e−1, �e]| < |(�e−1, �e]|. (3)

Strategy Q can enumerate into W ∩ (�e−1, �e] no more than the first |A[s0] ∩
(�e−1, �e]| elements of (�e−1, �e]. Also, no other strategy apart from Ne can enu-
merate numbers of this interval into W . So according to 3 there will be more than
|A[s0] � (�e + e)| for the use of Ne. Each time the agreement ΦA

e = W exceeds
�e, this strategy will perform a diagonalization. After each diagonalization, the
length of agreement can only exceed �e again if a number enters A below �e + e.
Hence there will be a diagonalization which cannot be rectified and this shows
that Ne succeeds.

On the other hand, since Ne chooses as diagonalization witness the largest
element of (�e−1, �e] not yet in W , it follows from 3 that the first |A[s0]∩(�e−1, �e]|
elements will not be used by this strategy (since, by the time it would need to use
them it will have reached a diagonalization which cannot be rectified). And of
course they are not going to be used by other N strategies nor by Q for the sake
of numbers appearing in A outside (�e−1, �e]. So any of these will stay outside
W until (if ever) its corresponding element (under the injective mapping defined
in step 1 of Ne, which is greater or equal to it) enters A. So Q will always be
able to rectify (and refresh) Γ on (�e−1, �e]. So, using the induction hypothesis,
eventually Γ will be defined and correct up to �e. This concludes the induction
step and the verification. Note that the reduction of A to W just described is
also a many-one reduction.
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Case B. Suppose that 1 does not hold and so

∃e, c∀�(|A � (� + e)| + |A ∩ (c, �]| > �− c)

which can be written as

∃e, c∀� > e, (|A � �| + |A ∩ (c, �− e]| > �− e− c)

which implies
∃c∀� > c, (2|A � �| > �− c).

But the latter can be written as

∃c∀� > c, (2|A � �| < � + c).

If there is some 0 ≤ c1 < c such that

∃∞� > c, (2|A � �| ≥ � + c1)

there will be a greatest such. For that one it would be

∃∞� > c, (2|A � �| = � + c1)

for a possibly different constant c. But then A would be computable which is a
trivial case. So we may assume that there is no such c1 and hence

∃c∀� > c, (2|A � �| < �).

By finitely modifying A (e.g. set it empty up to c) we get

∀� > 0, (2|A � �| < �). (4)

This extra hypothesis does not restrict the result, since if it holds for a set then
it holds for any finite modification of it. Now 1 allows us to sw-code A into W
by only using the even numbers. So we reserve 2N for Q and define the coding
as follows.

Q-Module. If some n has just been enumerated into A, put the largest even
number ≤ n of W into W .

By this procedure for any n, A � n is coded in the even positions of W � n.
We may fix an enumeration of A in which at most one number appears in it at
each stage. To see that the coding succeeds we prove the following

Lemma 11. If W (2k) = 0 at some stage, then

|A � 2k| ≥ |{2t < 2k | W (2t) = 1}|

at the same stage.
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Proof of lemma. Indeed, each even number in W � 2k must have been the
code of some number n enumerated in A in a previous stage. But no such n (i.e.
one that triggered enumeration into W � 2k) can be ≥ 2k since Q would have
chosen 2k or greater (since W (2k) = 0 such codes were available). �

Now the coding works unless there is a stage s where some n ↘ A and all even
numbers ≤ n are already in W . If 2k is the least even not yet in W , 2k > n ≥ 0
and lemma 11 implies that

|A � 2k| ≥ k

holds at this stage, which contradicts 4. So Q indeed makes sure that A ≤sw W .
Of course this is independent with what we do with the odd numbers in relation
to W , which we are going to use for satisfying the N requirements.

We will construct two sets W1,W2 both sw-above A (via the Q-strategy) one
of which will satisfy all N requirements. So we can replace N by

N ′
e : ΦA

e �= W1 ∨ ΨA
e �= W2.

Each N ′
e will occupy the odd numbers of an interval [2ce +1, 2ce+1 +1) of N and

use them as diagonalization witnesses. So the e-th requirement will have

ce+1 − ce := k (5)

numbers available for each of W1, W2, from 2ce + 1 on. To find a k sufficiently
big to guarantee the success of this diagonalization ripple we consider the recti-
fication resources of A below

[2(ce+1 − 1) + 1 + e] + 1 = 2(ce + k) + e

which bounds the use of any of our e-witnesses. By 4,

|A � 2(ce + k) + e| < ce + k +
e

2
and so there can only be less than ce+k+ e

2 rectifications to the e-diagonalizations.
Since we play with two sets W1, W2 (and N ′

e is a disjunction) we have 2k wit-
nesses available. Hence it suffices to choose k so that

2k ≥ ce + k +
e

2
i.e. k ≥ ce + e

2 . By setting k = ce + e
2 , c0 = 0 and using 5 we get an appropriate

sequence (ci) (where ce is the number of witnesses reserved by N ′
i , i < e) and

are able to proceed with the N ′
e-strategy.

N ′
e-Module.

1. Wait until �(ΦA
e ,Wi) > 2ce+1 + 1 for both i = 1, 2.

2. Consider the maximum witness of N ′
e not yet in W1 or W2; that is,

max(2N + 1) ∩ [2ce + 1, 2ce+1 + 1) ∩ (W 1 ∪W 2).

Put it into W1 if it is not in already; otherwise enumerated into W2.

The above strategy requires attention when the condition in the first step is
fulfilled. Now the construction is straightforward: at stage s run the Q-module
for both Wi, and the highest priority N ′

e-module requiring attention.
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Verification. First note that Q uses only even numbers and each N ′
e only odd

ones. So Q does not have any interaction with the rest of the construction and
so A ≤sw Wi can be derived as explained above; note that the characteristic
sequences of W1,W2 are identical on the even positions. Moreover there is no in-
teraction between pairs of N ′ strategies since their witness intervals are disjoint.
Each of these requirements succeeds because of the choice of witness intervals,
as explained above. The operation of such a requirement is a sequence of diag-
onalizations against one of the reductions ΦA

e = W1, ΨA
e = W2, each of which

(except the first one) takes place after an A-change below a certain level. When
we defined the parameters ce we showed that these A-changes cannot be as many
as the number of witnesses for both Wi. This means that one of these reduc-
tions will stop having expansionary stages and thus the N ′ strategy will start
waiting in step 1 indefinitely, after a certain stage. This is obviously a successful
outcome.

Further Remarks. One of the referees has pointed out that theorem 6 can be
proved as follows (this approach is closer to the construction of W1 above). Fix
the density of A

α = limsup
n→∞

|{m ≤ n : A(m) = 1}|
n

and a rational approximation d of it with error less than ε (say = 1
10 ). Then we

can effectively choose diagonalization intervals Ik as we did for the construction
of W1, so that after we enumerate axioms on Ik for the computation of A from
W , only a small number (relative to the length of Ik) of extra elements can enter
A below max Ik (e.g. 1

10 th of max Ik). Then, choosing max Ik big enough we can
ensure that there is space in Ik for A-coding and enough A-diagonalizations,
even for the case when we diagonalize against a functional with use x + c for
arbitrary constant c.

Note that roughly speaking the smaller the error ε of the approximation to
α is, the more non-uniform the proof is. E.g. if we choose ε ≤ 1

n we can divide
the unit interval into n equal parts and consider the centers of these as our
rational approximations d. For any given A one of these must be correct and so
the corresponding construction is successful. Setting ε ≤ 1

3 suffices: we get three
sets W1,W2,W3 one of which satisfies the requirements. It is interesting that
there is no obvious way to succeed with less than three attempts.
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Abstract. In presence of continuous choice the fan theorem is equivalent
to each pointwise continuous function f from the Cantor space to the
natural numbers being uniformly continuous. We investigate whether
we can prove this equivalence without the use of continuous choice. By
strengthening the assumption of pointwise continuity of f to the assertion
that f has a modulus of pointwise continuity which itself is pointwise
continuous, we obtain the desired equivalence.

We work entirely in the system BISH of Bishop’s constructive mathematics [2],
which means we are using intuitionistic logic and an appropriate set-theoretic
foundation like Aczel’s CZF, see [1]. We are interested in the constructive content
of the following assertion:

UC Each pointwise continuous function f : 2N → N is uniformly continuous.

For a binary sequence1 α = (α0, α1, α2, . . . ) we write αn for the initial
segment (α0, . . . , αn−1). The Cantor space 2N is the set of binary sequences
equipped with the compact metric

d(α, β) = inf
{
2−n | αn = βn

}
.

By Theorem 1.2 in Chapter 5 of [4], a function f : 2N → N is pointwise continuous
if and only if

∀α∃N∀β
(
αN = βN ⇒ f(α) = f(β)

)
.

In this case N is called a witness for f being continuous at α. Another
version of this theorem is that a function f : 2N → N is uniformly continuous if
and only if

∃N∀α, β
(
αN = βN ⇒ f(α) = f(β)

)
.

� The author thanks Hajime Ishihara, Robert Lubarsky, Peter Schuster, and
Wim Veldman for fruitful discussions about uniform continuity as well as he
thanks the anonymous referees for helpful comments. Furthermore, he thanks the
Graduiertenkolleg Logik in der Informatik for support.

1 We use Greek letters α, β, γ for infinite binary sequences. For finite binary sequences
we use the letters u, v, w. We use the letters n and N for natural numbers.

S.B. Cooper, B. Löwe, and L. Torenvliet (Eds.): CiE 2005, LNCS 3526, pp. 18–22, 2005.
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We now formulate two major principles of Brouwer’s intuitionism, namely the
fan theorem for detachable bars and the principle of continuous choice. The
fan theorem reads as follows:

FAN Each detachable bar is uniform.

A set B of finite binary sequences is detachable if

∀u (u ∈ B ∨ u /∈ B) .

A detachable set B is a bar if

∀α∃n (αn ∈ B) .

A bar is uniform if
∃N∀α∃n ≤ N (αn ∈ B) .

Note that by the compactness of the Cantor space, FAN holds classically.
Note further that FAN does not hold recursively2; see Corollary 4.7.6 in [8].

The principle of continuous choice consists of two parts:3

CC1 Each function from 2N to N is pointwise continuous.
CC2 If P ⊂ 2N ×N, and for each α there exists n such that (α, n) ∈ P , then

there is a function f : 2N → N such that (α, f(α)) ∈ P for all α.

Thus continuous choice divides into a continuity part CC1 and a choice part
CC2. Using tertium non datur, we can define a discontinuous function; thus
continuous choice fails classically. It also fails recursively; see Theorem 2.2 in
Chapter 5 of [4] or Proposition 4.6.7 in [8]. Bridges and Richman showed that
under continuous choice, FAN and UC are equivalent; see Section 3 of Chapter
5 in [4]. Assuming continuous choice implicitly in their concept of function, Iris
Loeb [3] and Wim Veldman [9] obtain the equivalence of FAN and UC as
well.

Proposition 1. Under continuous choice, UC and FAN are equivalent.

We want to investigate how far we can get without continuous choice. First
we mention that the proof of UC ⇒ FAN does not require this additional choice
assumption; see Theorem 3.3 in Chapter 5 of [4].

Lemma 2. UC implies FAN.

Proof. Let B be a detachable bar. We define

f : 2N → N, α �→ min{n | αn ∈ B} .

2 That means, when you add the Church-Markov-Turing thesis to BISH.
3 This principle is often formulated in terms of sequences of natural numbers, instead

of binary sequences.
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We stress that this definition only makes sense because B is detachable. Note
that f is pointwise continuous, since

∀α, β
(
αf(α) = βf(α) ⇒ f(α) = f(β)

)
. (1)

Thus by UC, f is even uniformly continuous. By Proposition 4.2 in Chapter 4
of [2], f is bounded. Let N be a bound for the range of f . This implies that

∀α∃n ≤ N (f(α) = n) ,

which in turn implies that

∀α∃n ≤ N (αn ∈ B) .

Thus B is a uniform bar.

The next question is whether FAN implies UC. A first step in this direction
is to show that a stronger form of FAN implies UC.

F-FAN Each bar is uniform.

The F in F-FAN stands for full and indicates that F-FAN is the full form
of the fan theorem. From the very formulation it is clear that F-FAN implies
FAN. Since classically every set is detachable, the statements FAN and F-FAN
are equivalent, hence true. For a deeper discussion about this implication, see
[7]. It is well-known that F-FAN implies UC; see for example Theorem 3.6 in
Chapter 6 of [8].

Lemma 3. F-FAN implies UC.

Proof. Let f : 2N → N be pointwise continuous. Set

B = {αn | α ∈ 2N and n is a witness for f being continuous at α}.

This B is a bar because f is pointwise continuous. By F-FAN, B is uniform;
that is, there is N such for each α there is a witness n for f being continuous at
α with n ≤ N . But this amounts to the uniform continuity of f .

Thus UC lies somewhere in the no-man’s-land between FAN and F-FAN. What
we are doing now is to strengthen the property of f being continuous in the
formulation of UC. This gives rise to a weaker condition MUC which still
implies FAN, but now is derivable from FAN. This is in the spirit of constructive
reverse mathematics as practised by Hajime Ishihara [5], [6]. See also the recent
papers of Iris Loeb [3] and Wim Veldman [9].

For this purpose we define:

MUC Each function f : 2N → N which has a modulus of continuity which
itself is pointwise continuous is uniformly continuous.

If f, g : 2N → N are functions, then g is a modulus of pointwise continuity
of f if the following holds:

∀α, β
(
αg(α) = βg(α) ⇒ f(α) = f(β)

)
.
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Classically, each pointwise continuous function has a modulus of pointwise con-
tinuity. But this step requires a strong form of choice, namely CC2. Thus inside
BISH it makes a significant difference to require that the witnesses of pointwise
continuity are given by a function.

We obtain the equivalence of MUC and FAN inside BISH, without any
use of continuous choice.

Proposition 4. MUC and FAN are equivalent.

Proof. First we prove that MUC implies FAN. Considered carefully, our proof
of Lemma 2 still works in this altered situation. Let B be a detachable bar.
Define again

f : 2N → N, α �→ min{n | αn ∈ B} .
By (1) we obtain that g ≡ f is a modulus of continuity for f . By MUC, f is
uniformly continuous. Now the proof that B is uniform proceeds just like the
proof of Lemma 2.

Now we show that FAN implies MUC. Our proof is similar to the proof of
Theorem 3.2 in Chapter 5 of [4], where the authors show that under FAN and
continuous choice each function f : 2N → N is uniformly continuous. Here we
have weakened the assumption of continuous choice to the assumption that f
has a continuous modulus of continuity. Assume that functions f, g from 2N to
N are given such that g is a modulus of continuity for f and that g is pointwise
continuous. We show that f is uniformly continuous. Set

B = {u | g(u∗) ≤ |u|}.

We must explain what we mean by u∗ and by |u|. Suppose that u = (u0, . . . , un−1).
Then

u∗ = (u0, . . . , un−1, 0, 0, 0, . . . )

and |u| is the length of u, that means n. Clearly B is detachable. We show that
B is a bar. Fix any α. Let n be a witness for g being continuous at α, and assume
that n ≥ g(α). Then

g(αn∗) = g(α) ≤ n = |αn| ,
thus αn ∈ B. By FAN, there exists N such that

∀α∃n ≤ N (αn ∈ B) .

Now we can show that

∀α, β
(
αN = βN ⇒ f(α) = f(β)

)
,

which is just the uniform continuity of f . To this end fix α, β with αN = βN .
There is n ≤ N such that αn ∈ B. Set γ ≡ αn∗. Thus g(γ) ≤ n ≤ N . We obtain

γg(γ) = αg(γ) = βg(γ),

which implies that
f(α) = f(γ) = f(β).
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Abstract. We prove a general strong normalization theorem for higher
type rewrite systems based on Tait’s strong computability predicates and
a strictly continuous domain-theoretic semantics. The theorem applies to
extensions of Gödel’s system T , but also to various forms of bar recursion
for which strong normalization was hitherto unknown.

1 Introduction

The problem of proving strong normalization for typed λ-calculi and higher type
rewrite systems has been studied extensively in the literature [14, 9, 15, 10, 17,
7, 5, 8, 1, 16, 6, 11]. In this paper we present a new method for proving strong
normalization of higher type rewrite systems based on a strict domain-theoretic
semantics. The idea is similar to Plotkin’s adequacy proof for PCF [12]: One
gives a suitable interpretation of terms in a domain-theoretic model and uses a
continuity argument to show that any term not denoting ⊥ normalizes. The main
difference between Plotkin’s and our result is that while Plotkin considers terms
with a general fixed point operator, for which, of course, only weak normalization
can be proven, we consider recursion schemes defined by pattern matching and
we prove strong normalization.

Another new aspect of our method is that it allows for a modular normal-
ization proof: First one proves strong normalization for the underlying typed
λ-calculus with stratified constants only, i.e. constants with conversion rules that
do not involve recursion. This can be done by an extension of Tait’s computabil-
ity method [14]. Then one uses a continuity argument to lift strong normalization
to recursively defined constants that have a total value w.r.t. to a strict domain-
theoretic semantics.

We will apply our results to a λ-calculus formulation of Gödel’s system T
extended by two versions of bar recursion in finite types: Spector’s original ver-
sion [13], and a version due to Berardi, Bezem and Coquand [2]. For this system
strong normalization was hitherto unknown.

In this paper we consider a simply typed system over the booleans and the in-
tegers, closed under the formation of list and function types. The motivation for
this (somewhat ad hoc) choice is that this allows for a convenient formulation of

S.B. Cooper, B. Löwe, and L. Torenvliet (Eds.): CiE 2005, LNCS 3526, pp. 23–34, 2005.
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bar recursion. Our results could be easily extended to type systems closed under
arbitrary strictly positive definitions. Also extensions to second-order polymor-
phic types seem to be possible.

2 Extended Gödel’s System T

The set of types, ρ, σ, . . . is generated from the base types boole and nat by the
formation of list types, ρ∗, and function types, ρ → σ. As usual we write ρ → σ
for ρ1 → . . . → ρn → σ where → associates to the right. Types which are not
function types, i.e. boole, nat and list types ρ∗, are called inductive (because their
elements will be generated inductively). We let the letter ι range over inductive
types.

The term language is determined by a set C of typed constants cρ. Typed
terms are constructed from typed variables, xρ, and constants, cρ, by abstrac-
tion, (λxρMσ)ρ→σ, application, (Mρ→σNρ)σ, and constructor term formation,
0nat, S(Mnat)nat, []ρ

∗
, cons(Mρ, Nρ∗

)ρ
∗
. Type information will often be omitted

provided this doesn’t cause ambiguities. Instead of Mρ we will sometimes write
M : ρ. We let the symbol co range over the constructors 0, S, [] and cons. In a
constructor term co(M)ι the terms M are called arguments.

β-conversion is defined as usual by

(λxM)N �→ M [N/x]

where by M [N/x] we mean the usual substitution of every free occurrence of
x in M by N renaming bound variables in M if necessary. More general we
will consider substitutions θ, which are mappings from variables to terms of the
same type, and define Mθ as the simultaneous replacement in M of x by θ(x)
renaming bound variables in M if necessary.

The operational meaning of a constant c ∈ C of type ρ1 → . . . → ρn → σ is
determined by constant-conversion rules of the form

cLρ1
1 . . . Lρn

n �→ Rσ

We require that for any constant c the number n above is fixed, i.e. if cL �→ R
and cL′ �→ R′ are rules, then the vectors L and L′ must have the same length.
In the situation above we say that c takes n arguments.

Consider, for example, the constants if: boole → ρ → ρ → ρ, <: nat → nat →
boole, lh: ρ∗ → nat, get: ρ∗ → nat → ρ, and ++: ρ∗ → ρ∗ → ρ∗,

if Tx y �→ x

if Fx y �→ y

n < 0 �→ F

0 < S(m) �→ T

S(n) < S(m) �→ n < m

lh [] �→ 0
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lh cons(x, s) �→ S(lh(s))

get []n �→ 0ρ

get cons(x, s) 0 �→ x

get cons(x, s)S(n) �→ get s n

[] ++ t �→ t

cons(x, s) ++ t �→ cons(x, s ++ t)

where 0ρ is some closed term of type ρ. These are examples primitive recursion
in higher types. Gödel’s system T summarizes this definition pattern by con-
stants for primitive recursion, Rnat,ρ: ρ → (nat → ρ → ρ) → nat → ρ, with the
conversion rules

Rnat,ρxy0 �→ x

Rnat,ρxyS(z) �→ yz(Rnat,ρxyz)

Similar rules can be introduced for recursion constants for the other inductive
types. In sections 5 we will also consider constants with rules that cannot be
derived from primitive recursion.

By a conversion we mean a β-conversion or an instance of a constant-
conversion rule, i.e. Lθ �→ Rθ for some constant-conversion rule L �→ R and
substitution θ. We write M →1 N if N is obtained from M by replacing one
subterm occurrence of the left hand side of a conversion by its right hand side. We
call a term M strongly normalizing, SN(M), if M is in the accessible part of the
relation →1, i.e. there is no infinite reduction sequence M →1 M1 →1 M2 →1 . . ..
Equivalently, the predicate SN can be inductively defined by the rule

∀K (M →1 K → SN(K))
SN(M)

We call a system of constant-conversion rules R strongly normalizing if every
term is strongly normalizing with respect to R.

It is well-known that Gödel’s system T , i.e. the system of conversion rules for
primitive recursion in finite types is strongly normalizing. In the next section we
will reexamine the proof of this fact using Tait’s strong computability predicates
and generalize it so as to accommodate further constants and conversions.

3 Proving Strong Normalization Using Strong
Computability

We define for every type ρ what it means for a term Mρ to be strongly com-
putable, SCρ(M). The definition is by recursion on (the built up of) ρ. For an
inductive type ι the predicate SCι is defined inductively. We only give the rules
for a list type ρ∗. For boole and nat the rules are similar.
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SCρ∗([])
SCρ(M) SCρ∗(N)

SCρ∗(cons(M,N))

∀K (M→1K → SCρ∗(K))
SCρ∗(M)

(Mnotaconstructorterm)

SCρ→σ is defined explicitely from SCρ and SCσ.

SCρ→σ(M) ≡ ∀N (SCρ(N) → SCσ(MN))

Lemma 1. (a) If SCρ(M) and M →1 M ′, then SCρ(M ′).
(b) A constructor term is strongly computable iff all its arguments are.

Proof. (a) Easy induction on ρ. If ρ is an inductive type the assertion is proved
by a side induction on the definition of SCρ. For function types we use the (main)
induction hypothesis.

(b) Obvious.

Lemma 2. (a) SCρ(M) → SN(M).
(b) SCρ(x) for every variable x of type ρ.

Proof. Induction on ρ. In order to get the proof through we need to strengthen
part (b) to

(b’) SN(A) → SCρ(A) for every term A with ‘variable head’,

where terms with variable head are variables and terms of the form AM where
A is a term with variable head.

(a) If ρ is an inductive type, then the implication follows easily by a side
induction on the definition of SCρ(M), possibly using the main induction hy-
pothesis. Case ρ → σ. Assume SCρ→σ(M). By i.h. (b’) we have SC(xρ). Hence
SCσ(Mx). By i.h. (a), SN(Mx). Hence SN(M).

(b’) Let A be a strongly normalizing term with variable head. If A has an
inductive type, then we show SC(A) by a side induction on SN(A). Since A is
not a constructor term, it suffices to show SC(B) for all one step reducts B
of A. Clearly B has variable head, hence SC(B) by side induction hypothesis.
If A has type ρ → σ, we assume SCρ(M) and have to show SCσ(AM). By
induction hypothesis (a) we have SN(M). Hence SN(AM) (one easily proves
SN(A)∧SN(M) → SN(AM) for terms Aρ→σ with variable head, since a reduction
of AM can only take place in A or in M and any reduct of A has variable head).
Hence SC(AM), by induction hypothesis (b’).

We call a term reactive if it is an abstraction, or of the form (cL1 . . . Lk)θ for
some conversion rule cL1 . . . Ln �→ R with n > k and some substitution θ. The
property of a term M to be neutral is defined by recursion on M . If M is not a
constructor term, then M is neutral if M is not reactive. If M is a constructor
term, then M is neutral iff all its arguments are neutral. Clearly, if Mρ→σ is
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neutral, then for any term Nρ the term is MN is again neutral and any one step
reduction of MN must happen by converting either M or N . However, neutral
terms are not closed under one step reduction.

Lemma 3. A neutral term is strongly computable iff all its one step reducts are.

Proof. Because of Lemma 1 (a) it suffices to show that a neutral term M is
strongly computable provided all of its one step reducts are. The proof is by
induction on the type of M . For inductive types ι the assertion is proved by a
side induction on neutral terms of type ι. Take, for example, we may assume
ι = ρ∗ If M ι is not a constructor term, then the assertion holds by definition of
SCι. Now let M ι = cons(M1,M2). Since we assume that all one step reducts of M
are strongly computable, it follows, by Lemma 1 (b), that all one steps reducts of
the arguments Mi are strongly computable. Hence, by main- respectively side-
induction hypothesis, M1 and M2 are strongly computable. Let finally M be
of type ρ → σ. We show SCσ(MN) for all strongly computable terms N by
a side induction on SN(N). Since the term MN is neutral it suffices, by the
main induction hypothesis, to show the strong computability of all its one step
reducts. If M is reduced, we are done by assumption on M , if N is reduced, we
use the side induction hypothesis.

Lemma 4. If M [N/x] is strongly computable for all strongly computable terms
N , then λxM is strongly computable.

Proof. Let Mρ→σ fulfill the assumption of the lemma, and assume SCρ(N).
We have to show SCσ((λxM)N). Since the latter term is neutral it suffices to
show that all its one step reducts are strongly computable. By Lemma 2 (a) and
Lemma 1 (a) we may argue by induction on SN(M,N). Assume (λxM)N →1 K.
If the conversion has happened within M or N , then we may use the induction
hypothesis. If not, then we must have K = M [N/x] which is strongly computable
by assumption.

Proposition 5. A term containing only strongly computable constants is
strongly normalizable.

Proof. By induction on terms M containing only strongly computable constants
we show that Mθ is strongly computable for every substitution θ such that θ(x)
is strongly computable for all variables x in the domain of θ. For variables and
constants this holds by assumption. For constructor terms and applications we
use the induction hypothesis and the definition of strong computability. Ab-
stractions are taken care of by the induction hypothesis and Lemma 4. The
proposition now follows with the empty substitution and Lemma 2 (a).

Proposition 6. Gödel’s system T is strongly normalizing.

Proof. By proposition 5 it suffices to show that all constants, i.e. the recursors
are strongly normalizing. We have to show that Rσ∗,ρMNL is strongly com-
putable for all strongly computable terms M,N,L of appropriate types. Using
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Lemma 2 (a) and Lemma 1 (a) we argue by induction on SN(M,N,L). We also
use a side induction on L. Since Rσ∗,ρMNL is a neutral term it suffices, by
Lemma 3, to show SCρ(K) for all K such that Rσ∗,ρMNL →1 K. If the conver-
sion took place within one of the terms in M,N,L, then we use the main induc-
tion hypothesis and Lemma 1 (a). Otherwise the visible recursor was involved
in the conversion. If L = [] and K = M , then we are done since, by assumption,
M is strongly computable. If L = cons(H,T ) and K = NHT (Rσ∗,ρMNT ), then
H and T are strongly computable, in particular SCρ(Rσ∗,ρMNT ) by the side
induction hypothesis. Again it follows that K is strongly computable.

4 Stratified Terms

For the rest of this paper we will restrict constant conversion rules to the form

cP1 . . . Pn �→ R

where FV(cP1 . . . Pn) ⊆ FV(R) and the Pi are constructor patterns, i.e. terms
built from variables by constructor application only. All examples of constant
conversion rules we have seen so far are of this form.

The set of stratified terms is defined inductively as follows: Every variable is
stratified; a constant c is stratified if for every rule cP1 . . . Pn �→ R the term R
is stratified; a composite term is stratified if all its immediate subterms are.

Clearly a term is stratified iff it contains stratified constants only.
Note that stratification is a severe restriction. For example any constant with

a recursive conversion rule, i.e. the constant reappears on the right hand side of
the rule, is not stratified. We do not claim that stratified terms are of particular
interest as such. We will just use them as a technical tool in our termination
proof based on strict semantics (section 5).

Proposition 7. Every stratified term is strongly normalizing.

Proof. We proceed similarly as in the proof of proposition 5. By induction on
the stratification of M we show that Mθ is strongly computable for every sub-
stitution θ such that θ(x) is strongly computable for all variables x ∈ FV(M).
Only the case that M is a constant is interesting. All other cases are as in propo-
sition 5, that is, we use the induction hypothesis. Let c be a constant that takes
n arguments. We have to show that cM1 . . .Mn is strongly computable for all
strongly computable Mi. We do a side induction on the strong normalizability
of the Mi (using Lemma 2 (a)). Since cM1 . . .Mn is neutral it suffices to show
that all one step reducts of this term are strongly computable. If one of the Mi

is reduced, we apply the side induction hypothesis. Otherwise there is a rule
cP1 . . . Pn �→ R and a substitution θ with (cP1 . . . Pn)θ = cM1 . . .Mn and the
reduct is Rθ. Since the Pi are constructor patterns, it follows from the strong
computability of the Mi, by repeated application of Lemma 1 (b), that θ(x) is
strongly computable for each x ∈ FV(M). Hence Rθ is strongly computable, by
the main induction hypothesis.
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5 Strong Normalization Based on Strict Semantics

We will now develop a general semantic method for proving strong normalization
of higher type rewrite systems. To begin with we discuss the rewrite systems we
will apply this method to: Spector’s bar recursion [13] and a version of bar
recursion due to Berardi, Bezem and Coquand [2].

Let us write ρω for nat → ρ, if B thenM elseN for if BMN , |M | for lhM ,
M∗N for M ++ 〈N〉 where 〈N〉 := cons(N, []), and M̂ for getM . Spector’s bar
recursion in finite types is given (for each pair of types ρ, σ) by a constant

Φ : (ρω → nat) → (ρ∗ → σ) → (ρ∗ → (ρ → σ) → σ) → ρ∗ → σ

with the following defining equation

Φyghs = if yŝ < |s| then gs elsehs(λx.Φygh(s∗x))

Turning this into a conversion rule would clearly not be strongly normalizing.
Therefore we replace the right hand side by a call of an auxiliary constant Ψ
with an extra boolean argument in order to force evaluation of the test yŝ < |s|
before the subterm Φygh(s∗x) may be reduced further (Vogel’s trick).

Φyghs �→ Ψyghs(yŝ < |s|)
ΨyghsT �→ gs

ΨyghsF �→ hs(λx.Φygh(s∗x))

We denote the rewrite system above by BR.
Berardi, Bezem and Coquand’s variant of bar recursion, which is also dis-

cussed in [4], is given by

Φ: (ρω → nat) → (nat → (ρ → nat) → ρ) → ρ∗ → nat

Φygs = y(λk.if k < |s| then sk else gk(λx.Φyg(s∗x)))

where sk := get s k. Applying Vogel’s trick again we obtain the rewrite system

Φygs �→ y(λk.Ψygsk(k < |s|))
ΨygskT �→ sk

ΨygskF �→ gk(λx.Φyg(s∗x))

which we call MBR (modified bar recursion).
The rewrite systems BR and MBR (and all rewrite systems discussed earlier)

are instances of a class of rewrite systems which are distinguished by the fact
that they induce a semantic interpretation of constants in a canonical way: A
functional rewrite system is a system of constant-conversion rules

cP1 . . . Pn �→ R

(Pi constructor patterns with FV(cP1 . . . Pn) ⊆ FV(R)) which are left linear,
i.e. a variable occurs at most once in the left hand side of a rule, and mutually
disjoint, i.e. the left hand sides of two different rules are non-unifiable.
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Our semantic method will work for arbitrary functional rewrite systems. The
idea is to deduce the termination of a term M directly from the totality of the
constants in M with respect to a strict interpretation of terms as total elements
in the domain theoretic model Ĉ of partial continuous functionals. The model
Ĉ assigns to every type ρ a Scott domain Ĉ(ρ) such that Ĉ(ρ → σ) ≡ [Ĉ(ρ) →
Ĉ(σ)], the domain of continuous functions form Ĉ(ρ) to Ĉ(σ) where ’≡’ means
‘isomorphic’, and Ĉ(ρ∗) is defined by the ‘recursive domain equation’

Ĉ(ρ∗) ≡ 1 + Ĉ(ρ) × Ĉ(ρ∗)

where ‘+’ means the domain theoretic disjoint sum (adding a new bottom el-
ement). We denote the canonical injection of the one point space 1 into Ĉ(ρ∗)
by [] and the other canonical injection by cons. The definitions of Ĉ(boole) and
Ĉ(nat) are similar.

The total elements in Ĉ(ρ) are defined by recursion on ρ in the obvious way: A
continuous function f ∈ Ĉ(ρ → σ) is total if f(a) is total for all total arguments
a. The set of total elements of Ĉ(ρ∗) is given by an inductive definition: [] is total,
and if a ∈ Ĉ(ρ) and b ∈ Ĉ(σ) are total, then cons(a, b) is total. Similar definitions
apply to the other inductive types. Note that the total elements of Ĉ(ρ∗) may be
viewed as finite lists of total elements of Ĉ(ρ) and the total elements of Ĉ(boole)
and Ĉ(nat) are copies of the usual boolean values and the natural numbers
respectively.

Let CEnv denote the domain of all constant environments, that is, families
α assigning to each constant cρ ∈ C some α(c) ∈ Ĉ(ρ). Similarly, VEnv denotes
the domain of all variable environments, i.e. families η assigning to each vari-
able xρ some η(x) ∈ Ĉ(ρ). For every term Mρ we define the strict semantics,
[M ]:CEnv → VEnv → Ĉ(ρ), by

[x]αη = η(x)
[c]αη = α(c)

[λxM ]αη(a) = [M ]αηax

[MN ]αη =
{

[M ]αη(a) if a := [N ]αη �= ⊥
⊥ otherwise

[co(M1, . . . ,Mk)]αη =
{

co(a1, . . . , ak) if ai := [Mi]αη �= ⊥ for all i
⊥ otherwise

Lemma 8. (a) If α(c) is total for all constants c in M and η(x) is total for all
x ∈ FV(M), then [M ]αη is total.

(b) If α(c) = ⊥ for some constant c occurring in M , then [M ]αη = ⊥.
(c) [M ]α([θ]αη) = [Mθ]αη where ([θ]αη)(x) := [θ(x)]αη.
(d) [M ][ζ]

αηη = [Mζ]αη where ζ is a ‘constant substitution’, i.e. ζ(cρ) is a term
of type ρ for each constant cρ, and ([ζ]αη)(c) := [ζ(c)]αη.

Proof. Easy inductions on M .

Next we define the semantics of constants induced by their conversion rules.
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We let ⊥ denote the ‘undefined’ variable environment, i.e. ⊥(x) = ⊥ρ for all
variables xρ.

For a vector P :ρ of constructor patterns containing each variable at at most
one place and a ∈ Ĉ(ρ) we define the P -predecessor of a, predP (a) ∈ VEnv, by
recursion on the number of constructors occurring in P .

predx(a) = ⊥a
x

predx,co(Q),P (a, co(b), c) = predx,Q,P (a, b, c)
predx,co(Q),P (a, b, c) = ⊥ if b is not of the form co(b)

We say a matches P if in the definition of predP (α) the last clause has never
been used.

Let R be a functional rewrite system. For a given vector a ∈ Ĉ there can
be at most one rule cP �→ R ∈ R such that a matches P , because the rules in
R are mutually disjoint. Therefore the following operator ΓR:CEnv → CEnv is
welldefined and continuous.

ΓR(α)(c)(a) :=
⊔

{[R]αpredP (a) | cP �→ R ∈ R, a matches P }

We define the constant environment αR as the least fixed point of ΓR.
We now state the main the result of this paper.

Theorem 9. Let R be a functional rewrite system. If αR(c) is total for every
constant in M , then M is strongly normalizing.

The proof of this theorem needs some preparation. In the following we fix a
functional rewrite system R.

Lemma 10. Let cP �→ R ∈ R be a rule, θ a substitution and η a variable
environment. Set a := [P θ]αRη. If ⊥ �∈ a, then a matches P and αR(c)(a) =
[R]αRpredP (a).

Proof. That [P θ]αRη matches P is easily shown by induction on the number of
constructors in P . The rest follows immediately from the definition of ΓR.

Lemma 11. If M →1 N , then [M ]αRη � [N ]αRη.

Proof. Induction on M , where w.l.o.g. we assume [M ]αRη �= ⊥.
Case (λxM)N →1 M [N/x]. Setting a := [N ]αRη we have [(λxM)N ]αRη �

([λxM ]αRη)(a) = [M ]αRηax = [M [N/x]]αRη, by Lemma 8 (c).
Case cP θ →1 Rθ for some rule cP �→ R ∈ R. [cP θ]αRη � αR(c)(a) =

[R]αRpredP (a) = [Rθ]αRη. The last two equations hold by Lemmas 10 and 8 (c).
All other cases (i.e. conversion of a proper subterm) follow immediately from

the induction hypothesis and the fact that constructors and application are in-
terpreted strictly.

We now introduce a stratified variant Rω of R. Let C be the set of constants
of R. For each c ∈ C and every natural number n we introduce a new constant
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cn. Set Cω := {cn | c ∈ C, n ∈ ω}. For any C-term M let M[n] be the Cω-term
obtained from M by replacing every occurring constant c by cn. We set

Rω := {cn+1P �→ R[n] | cP �→ R ∈ R, n ∈ ω}

Clearly Rω is again a functional rewrite system. Furthermore all constants cn
are stratified (induction on n). We write A � M if M is a C-term and A is a
Cω-term obtained from M by replacing every occurrence of a constant c by some
cn (different occurrences of the same constant may receive different indices).

Lemma 12. If A � M and A contains no constant of the form c0, then to every
C-term M ′ such that M →1 M ′ there is a Cω-term A′ such that A →1 A′ and
A′ � M ′.

Proof. Easy induction on M .

We define the Cω-constant environment αRω
like the C-constant environment

αRω
, but with R replaced by Rω. Hence

αRω
(cn+1)(a) =

⊔
{[R[n]]αRω predP (a) | cP �→ R ∈ R, a matches P }

and αRω
(c0) = ⊥ (there is no rule for c0).

Lemma 13. αR(c) =
⊔

n∈ω αRω
(cn) and αRω

(cn) � αRω
(cn+1) for every con-

stant c ∈ C.

Proof. Set αn(c) := αRω
(cn). Since αR =

⊔
n∈ω Γn

R⊥ and Γn
R⊥ � Γn+1

R ⊥, it
suffices to show αn = Γn

R⊥ for all n. We prove this by induction on n. For n = 0
both sides are ⊥.

αn+1(c)(a) = αRω
(cn+1)(a)

=
⊔

{[R[n]]αRω predP (a) | cP �→ R ∈ R, a matches P }

=
⊔

{[R]αnpredP (a) | cP �→ R ∈ R, a matches P } (Lemma 8 (d))

= ΓR(αn)(c)(a)
= (Γn+1

R ⊥)(c)(a) (induction hypothesis)

Lemma 14. [M ]αRη =
⊔

n∈ω[M[n]]αRω η for every C-term M and every variable
environment η.

Proof. Set, as in the previous proof, αn(c) := αRω
(cn). By Lemma 13 we have

αR =
⊔

n∈ω αn where αn � αn+1. Hence, because [M ] is a continuous function,

[M ]αRη =
⊔
n∈ω

[M ]αnη
8 (d)
=

⊔
n∈ω

[M[n]]αRω η

Now we are ready to prove Theorem 9. Let M be a (C-)term such that αR(c) is
total for every constant in M . Let η be any total environment. Then [M ]αRη is
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total, by Lemma 8 (a), and therefore different from ⊥. By Lemma 14 it follows
that there is some n such that [M[n]]αRω η �= ⊥. Clearly M[n] � M . Therefore
it suffices to show that whenever A � N and [A]αRω η �= ⊥, then N is strongly
normalizing. We prove this by induction on the strong normalizability of the
Cω-term A, using proposition 7. We need to show that all one step reducts
of N are strongly normalizing. So, assume N →1 N ′. Since [A]αRω η �= ⊥ we
know, by Lemma 8 (b), that A does not contain a constant of the form c0. It
follows with Lemma 12 that A →1 A′ with A′ � N ′ for some Cω-term A′. By
Lemma 11 [A′]αRω η �= ⊥, hence we can apply the induction hypothesis to A′

and N ′.
Let us now apply Theorem 9 to prove strong normalization for bar recursion.

Theorem 15. Gödel’s systemT extended by BR and MBR is strongly normal-
izing.

Proof. We only carry out the proof for MBR. For BR the proof is similar and
slightly simpler. Our strict semantics interprets the constants Φ and Ψ of MBR
as continuous functionals ϕ and ψ which satisfy for total arguments y, g, s, k (in
Ĉ) the equations

ϕygs = y(λk.ψygsk(k < |s|))
ψygskT = sk

ψygskF =
{
gk(λx.ϕyg(s∗x)) if ϕyg(s∗x) �= ⊥ for some x
⊥ otherwise

By a continuity argument one shows that for every total y the the binary relation
�y on the total elements of type ρ∗ defined by

s �y t :≡ y(λk.if k < |s| then sk else⊥) = ⊥ ∧ s∗a = t for some total a

is wellfounded. Now the totality of ϕygs and ψygs for total y, g, s can be proven
easily by induction on �y. With Theorem 9 strong normalization follows.

Remarks. Tait [14], Vogel [17], Luckhardt [10] and Bezem [5] proved strong nor-
malization for BR formulated in a combinatorial calculus. Our result is
slightly stronger since we work in a λ-calculus framework which allows more
reductions. Strong normalization for MBR is completely new. Further interest-
ing rewrite rules where Theorem 9 applies to are realizers of the negative- and
A-translations of the axiom schemes of countable choice [2] and open induc-
tion [3].

From a logical point of view our proof is roughly equivalent to the proofs in
the work cited, since the partial continuous functionals can be defined primitive
recursively (finite neighborhoods, or compact elements of Scott domains) and
totality in Ĉ(ρ) has the same logical complexity as, say the definition of strong
computability for infinite terms of type ρ.
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Abstract. In a previous paper, we developed an algebraic theory of
threads and multi-threads based on strategic interleaving. This theory
includes a number of plausible interleaving strategies on thread vectors.
The strategic interleaving of a thread vector constitutes a multi-thread.
Several multi-threads may exist concurrently on a single host in a net-
work, several host behaviors may exist concurrently in a single network
on the internet, etc. Strategic interleaving is also present at these other
levels. In the current paper, we extend the theory developed so far with
features to cover multi-level strategic interleaving.

1 Introduction

A thread is the behavior of a deterministic sequential program under execu-
tion. Multi-threading refers to the concurrent existence of several threads in a
program under execution. Multi-threading is the dominant form of concurrency
provided by recent object-oriented programming languages such as Java [1] and
C# [2]. Arbitrary interleaving, on which theories about concurrent processes
such as ACP [3] are based, is not the appropriate intuition when dealing with
multi-threading. In the case of multi-threading, some deterministic interleaving
strategy is used. In [4], we introduced a number of plausible deterministic in-
terleaving strategies for multi-threading. We also proposed to use the phrase
strategic interleaving for the more constrained form of interleaving obtained by
using such a strategy.

The strategic interleaving of a thread vector constitutes a multi-thread. In
conventional operating system jargon, a multi-thread is called a process. Several
multi-threads may exist concurrently on the same machine. Multi-processing refers
to the concurrent existence of several multi-threads on a machine. Such machines
may be hosts in a network, and several host behaviors may exist concurrently in
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the same network. And so on and so forth. Strategic interleaving is also present
at these other levels. In the current paper, we extend the theory developed so far
with features to cover multi-level strategic interleaving. There is a dependence on
the interleaving strategy considered. We extend the theory only for the simplest
case: cyclic interleaving. Other plausible interleaving strategies are treated in [4].
They can also be adapted to the setting of multi-level strategic interleaving.

Threads proceed by performing steps, in the sequel called basic actions, in
a sequential fashion. Performing a basic action is taken as making a request to
a certain service provided by the execution environment to process a certain
command. The service produces a reply value which is returned to the thread
concerned. A service may be local to a single thread, local to a multi-thread,
local to a host, or local to a network. In this paper, we introduce thread-service
composition in order to bind certain basic actions of a thread to certain services.

An axiomatic description of multi-level strategic interleaving and thread-
service composition, as well as a structural operational semantics, is provided.
One of our objectives is to develop a simplified, formal representation schema
of the design of systems that consist of several multi-threaded programs on
various hosts in different networks. We propose to use the term formal design
prototype for such a schema. Evidence of the correctness of the presented schema
is obtained by a simulation lemma, which states that a finite thread consisting of
basic actions that will not be processed by any available service is simulated by
any instance of the schema that contains the thread in one of its thread vectors.

Thread algebra with multi-level strategic interleaving is a design on top of
BPPA (Basic Polarized Process Algebra) [5, 6]. BPPA is far less general than
ACP-style process algebras and its design focuses on the semantics of determin-
istic sequential programs. The semantics of a deterministic sequential program
is supposed to be a polarized process. Polarization is understood along the axis
of the client-server dichotomy. Basic actions in a polarized process are either
requests expecting a reply or service offerings promising a reply. Thread algebra
may be viewed as client-side polarized process algebra because all threads are
viewed as clients generating requests for services provided by their environment.

The structure of this paper is as follows. After a review of BPPA, we extend
it to a basic thread algebra with cyclic interleaving, but without any feature for
multi-level strategic interleaving. Next, we extend this basic thread algebra with
thread-service composition and other features for multi-level strategic interleav-
ing. Following this, we discuss how two additional features can be expressed and
give a formal representation schema of the design of systems that consist of sev-
eral multi-threaded programs on various hosts in different networks. Finally, we
make some concluding remarks.

2 Basic Polarized Process Algebra

In this section, we review BPPA (Basic Polarized Process Algebra), a form of
process algebra which is tailored to the use for the description of the behavior
of deterministic sequential programs under execution.
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Table 1. Axiom of BPPA

x �tau � y = x �tau � x T1

In BPPA, it is assumed that there is a fixed but arbitrary finite set of basic
actions A with tau �∈ A. We write Atau for A ∪ {tau}. BPPA has the following
constants and operators:

– the deadlock constant D;
– the termination constant S;
– for each a ∈ Atau, a binary postconditional composition operator � a� .

We use infix notation for postconditional composition. We introduce action pre-
fixing as an abbreviation: a◦p, where p is a term of BPPA, abbreviates p� a�p.

The intuition is that each basic action is taken as a command to be processed
by the execution environment. The processing of a command may involve a
change of state of the execution environment. At completion of the processing
of the command, the execution environment produces a reply value. This reply
is either T or F and is returned to the polarized process concerned. Let p and
q be closed terms of BPPA. Then p � a� q will proceed as p if the processing
of a leads to the reply T (called a positive reply), and it will proceed as q if
the processing of a leads to the reply F (called a negative reply). If the reply is
used to indicate whether the processing was successful, a useful convention is to
indicate successful processing by the reply T and unsuccessful processing by the
reply F. The action tau plays a special role. Its execution will never change any
state and always produces a positive reply.

BPPA has only one axiom. This axiom is given in Table 1. Using the abbrevi-
ation introduced above, axiom T1 can be written as follows: x� tau�y = tau◦x.

Following [6], a CPO structure can be imposed on the domain of BPPA.
Then guarded recursion equations represent continuous operators having appro-
priate fixed points. These matters will not be repeated here, taking for granted
that guarded systems of recursion equations allow one to define unique polar-
ized processes. Guardedness is the requirement that repeated substitution of the
right-hand sides of equations for the left-hand side variables eventually produces
an expression of the form D, S or p� a�q. For each guarded system of recursion
equations E and each variable X that occurs as the left-hand side of an equa-
tion in E, we add to the constants of BPPA a constant standing for the unique
solution of E for X. This constant is denoted by XE .

The projective limit characterization of process equivalence on polarized pro-
cesses is based on the notion of a finite approximation of depth n. When for
all n these approximations are identical for two given polarized processes, both
processes are considered identical. This allows one to eliminate recursion in favor
of the infinitary proof rule AIP. Following [5], which in fact uses the notation
of [3], approximation of depth n is phrased in terms of a unary projection op-
erator πn( ). The projection operators are defined inductively by means of the
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Table 2. Axioms for projection

π0(x) = D P0

πn+1(S) = S P1

πn+1(D) = D P2

πn+1(x �a � y) = πn(x) �a � πn(y) P3

(
∧

n≥0 πn(x) = πn(y)) ⇒ x = y AIP

axioms in Table 2. In this table and all subsequent tables with axioms in which
a occurs, a stands for an arbitrary action from Atau.

As mentioned above, the behavior of a polarized process depends upon its
execution environment. Each basic action performed by the polarized process
is taken as a command to be processed by the execution environment. At any
stage, the commands that the execution environment can accept depend only on
its history, i.e. the sequence of commands processed before and the sequence of
replies produced for those commands. When the execution environment accepts
a command, it will produce a positive reply if its processing succeeds and a
negative reply if its processing fails. Whether the processing of the command
succeeds or fails usually depends on the execution history. However, it may also
depend on external conditions.

In the structural operational semantics, we represent an execution environ-
ment by a function ρ : (A× {T,F})∗ → P(A × {T,F}) that satisfies the fol-
lowing condition: (a, b) �∈ ρ(α) ⇒ ρ(α � 〈(a, b)〉) = ∅ for all a ∈ A, b ∈ {T,F}
and α ∈ (A× {T,F})∗.1 We write E for the set of all those functions. Given
an execution environment ρ ∈ E and a basic action a ∈ A, the derived execu-
tion environment of ρ after processing a with success, written ∂

∂a

+
ρ, is defined

by ∂
∂a

+
ρ(α) = ρ(〈(a,T)〉 � α); and the derived execution environment of ρ after

processing a with failure, written ∂
∂a

−
ρ, is defined by ∂

∂a

−
ρ(α) = ρ(〈(a,F)〉 � α).

The following transition relations on closed terms are used in the structural
operational semantics of BPPA:

– a binary relation 〈 , ρ〉 a−→ 〈 , ρ′〉 for each a ∈ Atau and ρ, ρ′ ∈ E ;
– a unary relation 〈 , ρ〉↓ for each ρ ∈ E ;
– a unary relation 〈 , ρ〉↑ for each ρ ∈ E .

The three kinds of transition relations are called the action step, termination,
and deadlock relations, respectively. They can be explained as follows:

– 〈p, ρ〉 a−→ 〈p′, ρ′〉: in execution environment ρ, process p is capable of first
performing action a and then proceeding as process p′ in execution environ-
ment ρ′;

1 We write 〈 〉 for the empty sequence, 〈d〉 for the sequence having d as sole element,
and α � β for the concatenation of sequences α and β. We assume that the identities
α � 〈 〉 = 〈 〉 � α = α hold.
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Table 3. Transition rules for BPPA with projection and recursion

〈S, ρ〉↓ 〈D, ρ〉↑

〈x �a � y, ρ〉 a−→ 〈x, ∂
∂a

+
ρ〉

(a, T) ∈ ρ(〈 〉)
〈x �a � y, ρ〉 a−→ 〈y, ∂

∂a

−
ρ〉

(a, F) ∈ ρ(〈 〉)

〈x �a � y, ρ〉↑
(a, T) 	∈ ρ(〈 〉), (a, F) 	∈ ρ(〈 〉)

〈x �tau � y, ρ〉 tau−−→ 〈x, ρ〉
〈x, ρ〉 a−→ 〈x′, ρ′〉

〈πn+1(x), ρ〉 a−→ 〈πn(x′), ρ′〉
〈x, ρ〉↓

〈πn+1(x), ρ〉↓
〈x, ρ〉↑

〈πn+1(x), ρ〉↑ 〈π0(x), ρ〉↑
〈tE , ρ〉 a−→ 〈x′, ρ′〉
〈XE , ρ〉 a−→ 〈x′, ρ′〉

X = t ∈ E
〈tE , ρ〉↓
〈XE , ρ〉↓

X = t ∈ E
〈tE , ρ〉↑
〈XE , ρ〉↑

X = t ∈ E

– 〈p, ρ〉↓: in execution environment ρ, process p is capable of terminating suc-
cessfully;

– 〈p, ρ〉↑: in execution environment ρ, process p is neither capable of performing
an action nor capable of terminating successfully.

The structural operational semantics of BPPA extended with projection and
recursion is described by the transition rules given in Table 3. In this table and
all subsequent tables with transition rules in which a occurs, a stands for an
arbitrary action from Atau. We write tE for t with, for all X that occur on the
left-hand side of an equation in E, all occurrences of X in t replaced by XE .

Bisimulation equivalence is defined as follows. A bisimulation is a symmetric
binary relation B on closed terms such that for all closed terms p and q:

– if B(p, q) and 〈p, ρ〉 a−→ 〈p′, ρ′〉, then there is a q′ such that 〈q, ρ〉 a−→ 〈q′, ρ′〉
and B(p′, q′);

– if B(p, q) and 〈p, ρ〉↓, then 〈q, ρ〉↓;
– if B(p, q) and 〈p, ρ〉↑, then 〈q, ρ〉↑.

Two closed terms p and q are bisimulation equivalent, written p ↔ q, if there
exists a bisimulation B such that B(p, q).

Bisimulation equivalence is a congruence with respect to the postconditional
composition operators and the projection operators. This follows immediately
from the fact that the transition rules for BPPA with projection and recursion
constitute a transition system specification in path format (see e.g. [7]).

3 Basic Thread Algebra with Foci and Methods

In this section, we introduce a thread algebra without features for multi-level
strategic interleaving. Such features will be added in subsequent sections.
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Table 4. Axioms for cyclic interleaving

‖ (〈 〉) = S CSI1

‖ (〈S〉 � α) = ‖ (α) CSI2

‖ (〈D〉 � α) = SD(‖ (α)) CSI3

‖ (〈tau ◦ x〉 � α) = tau ◦ ‖ (α � 〈x〉) CSI4

‖ (〈x �f.m � y〉 � α) = ‖ (α � 〈x〉) �f.m � ‖ (α � 〈y〉) CSI5

Table 5. Axioms for deadlock at termination

SD(S) = D S2D1

SD(D) = D S2D2

SD(tau ◦ x) = tau ◦ SD(x) S2D3

SD(x �f.m � y) = SD(x) �f.m �SD(y) S2D4

In [5], its has been outlined how and why polarized processes are a natu-
ral candidate for the specification of the semantics of deterministic sequential
programs. Assuming that a thread is a process representing a deterministic se-
quential program under execution, it is reasonable to view all polarized processes
as threads. A thread vector is a sequence of threads.

Strategic interleaving operators turn a thread vector of arbitrary length into
a single thread. This single thread obtained via a strategic interleaving operator
is also called a multi-thread. Formally, however both threads and multi-threads
are polarized processes. In this paper, we only cover the simplest interleaving
strategy, namely cyclic interleaving. Other plausible interleaving strategies are
treated in [4]. They can also be adapted to the features for multi-level level
strategic interleaving that will be introduced in the current paper. The strategic
interleaving operator for cyclic interleaving is denoted by ‖ ( ). In [4], it was
denoted by ‖csi( ) to distinguish it from other strategic interleaving operators.

It is assumed that there is a fixed but arbitrary finite set of foci F and a
fixed but arbitrary finite set of methods M. For the set of basic actions A, we
take the set {f.m | f ∈ F ,m ∈ M}. Each focus plays the role of a name of a
service provided by the execution environment that can be requested to process
a command. Each method plays the role of a command proper. Performing a
basic action f.m is taken as making a request to the service named f to process
the command m.

The axioms for cyclic interleaving are given in Table 4. In this table and
all subsequent tables with axioms or transition rules in which f and m occur,
f and m stand for an arbitrary focus from F and an arbitrary method from
M, respectively. In CSI3, the auxiliary deadlock at termination operator SD( )
is used. This operator turns termination into deadlock. Its axioms appear in
Table 5.

The structural operational semantics of the basic thread algebra with foci and
methods is described by the transition rules given in Tables 3 and 6. Here 〈x, ρ〉 �−→
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Table 6. Transition rules for cyclic interleaving and deadlock at termination

〈x1, ρ〉↓, . . . , 〈xk, ρ〉↓, 〈xk+1, ρ〉 a−→ 〈x′
k+1, ρ′〉

〈‖ (〈x1〉 � . . . � 〈xk+1〉 � α), ρ〉 a−→ 〈‖ (α � 〈x′
k+1〉), ρ′〉

(k ≥ 0)

〈x1, ρ〉 	−→, . . . , 〈xk, ρ〉 	−→, 〈xl, ρ〉↑, 〈xk+1, ρ〉 a−→ 〈x′
k+1, ρ′〉

〈‖ (〈x1〉 � . . . � 〈xk+1〉 � α), ρ〉 a−→ 〈‖ (α � 〈D〉 � 〈x′
k+1〉), ρ′〉

(k ≥ l > 0)

〈x1, ρ〉↓, . . . , 〈xk, ρ〉↓
〈‖ (〈x1〉 � . . . � 〈xk〉), ρ〉↓

〈x1, ρ〉 	−→, . . . , 〈xk, ρ〉 	−→, 〈xl, ρ〉↑
〈‖ (〈x1〉 � . . . � 〈xk〉), ρ〉↑

(k ≥ l > 0)

〈x, ρ〉 a−→ 〈x′, ρ′〉
〈SD(x), ρ〉 a−→ 〈SD(x′), ρ′〉

〈x, ρ〉↓
〈SD(x), ρ〉↑

〈x, ρ〉↑
〈SD(x), ρ〉↑

stands for the set of all negative conditions ¬ (〈x, ρ〉 a−→ 〈p′, ρ′〉) where p′ is a
closed term of BPPA, ρ′ ∈ E , a ∈ Atau. Recall that A = {f.m | f ∈ F ,m ∈ M}.

Bisimulation equivalence is also a congruence with respect to the cyclic in-
terleaving operator and the deadlock at termination operator. This follows im-
mediately from the fact that the transition rules for the basic thread algebra
with foci and methods constitute a complete transition system specification in
relaxed panth format (see e.g. [8]).

4 Thread-Service Composition

In this section, we extend the basic thread algebra with foci and methods with
thread-service composition. For each f ∈ F , we introduce a thread-service com-
position operator /f . These operators have a thread as first argument and a
service as second argument. P /f H is the thread that results from issuing all
basic actions from thread P that are of the form f.m to service H.

A service is represented by a function H:M+ → {T,F,B,R} with the property
that H(α) = B ⇒ H(α � 〈m〉) = B and H(α) = R ⇒ H(α � 〈m〉) = R for all
α ∈ M+ and m ∈ M. This function is called the reply function of the service.
Given a reply function H and a method m, the derived reply function of H after
processing m, written ∂

∂mH, is defined by ∂
∂mH(α) = H(〈m〉 � α).

The connection between a reply function H and the service represented by
it can be understood as follows:

– If H(〈m〉) = T, the request to process command m is accepted by the service,
the reply is positive and the service proceeds as ∂

∂mH.
– If H(〈m〉) = F, the request to process command m is accepted by the service,

the reply is negative and the service proceeds as ∂
∂mH.

– If H(〈m〉) = B, the request to process command m is not refused by the
service, but the processing of m is temporarily blocked. The request will
have to wait until the processing of m is not blocked any longer.

– If H(〈m〉) = R, the request to process command m is refused by the service.
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Table 7. Axioms for thread-service composition

S /f H = S TSC1

D /f H = D TSC2

(tau ◦ x) /f H = tau ◦ (x /f H) TSC3

(x �g.m � y) /f H = (x /f H) �g.m � (y /f H) if f 	= g TSC4

(x �f.m � y) /f H = tau ◦ (x /f
∂

∂m
H) if H(〈m〉) = T TSC5

(x �f.m � y) /f H = tau ◦ (y /f
∂

∂m
H) if H(〈m〉) = F TSC6

(x �f.m � y) /f H = D if H(〈m〉) ∈ {B, R} TSC7

Table 8. Transition rules for thread-service composition

〈x, ρ〉 g.m−−−→ 〈x′, ρ′〉
〈x /f H, ρ〉 g.m−−−→ 〈x′ /f H, ρ′〉

f 	= g
〈x, ρ〉 tau−−→ 〈x′, ρ′〉

〈x /f H, ρ〉 tau−−→ 〈x′ /f H, ρ′〉
〈x, ρ〉 f.m−−−→ 〈x′, ρ′〉

〈x /f H, ρ〉 tau−−→ 〈x′ /f
∂

∂m
H, ρ′〉

H(〈m〉) ∈ {T, F}, (f.m, H(〈m〉)) ∈ ρ(〈 〉)

〈x, ρ〉 f.m−−−→ 〈x′, ρ′〉
〈x /f H, ρ〉↑

H(〈m〉) ∈ {B, R}
〈x, ρ〉↓

〈x /f H, ρ〉↓
〈x, ρ〉↑

〈x /f H, ρ〉↑

The axioms for thread-service composition are given in Table 7. In this table
and all subsequent tables with axioms or transition rules in which g occurs, like
f , g stands for an arbitrary focus from F .

The structural operational semantics of the basic thread algebra with foci and
methods extended with thread-service composition is described by the transition
rules given in Tables 3, 6 and 8.

The action tau arises as the residue of processing commands. Therefore, tau
is not connected to a particular focus, and is always accepted.

5 Guarding Tests

In this section, we extend the thread algebra developed so far with guarding
tests. Guarding tests are basic actions meant to verify whether a service will
accept the request to process a certain method now, and if not so whether it
will be accepted after some time. Guarding tests allow for dealing with delayed
processing and exception handling as will be shown in Section 6.

We extend the set of basic actions. For the set of basic actions, we now take
the set {f.m, f?m, f??m | f ∈ F ,m ∈ M}. Basic actions of the forms f?m
and f??m will be called guarding tests. Performing a basic action f?m is taken
as making the request to the service named f to reply whether it will accept
the request to process method m now. The reply is positive if the service will
accept that request now, and otherwise it is negative. Performing a basic action
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Table 9. Additional axioms for cyclic interleaving & deadlock at termination

‖ (〈x �f?m � y〉 � α) = ‖ (〈x〉 � α) �f?m � ‖ (α � 〈y〉) CSI6

‖ (〈x �f??m � y〉 � α) = ‖ (〈x〉 � α) �f??m � ‖ (α � 〈y〉) CSI7

SD(x �f?m � y) = SD(x) �f?m �SD(y) S2D5

SD(x �f??m � y) = SD(x) �f??m �SD(y) S2D6

Table 10. Additional transition rules for cyclic interleaving & deadlock at termination

〈x1, ρ〉↓, . . . , 〈xk, ρ〉↓, 〈xk+1, ρ〉 γ−→ 〈x′
k+1, ρ′〉

〈‖ (〈x1〉 � . . . � 〈xk+1〉 � α), ρ〉 γ−→ 〈‖ (〈x′
k+1〉 � α), ρ′〉

(α, T) ∈ ρ(〈 〉) (k ≥ 0)

〈x1, ρ〉 	−→, . . . , 〈xk, ρ〉 	−→, 〈xl, ρ〉↑, 〈xk+1, ρ〉 γ−→ 〈x′
k+1, ρ′〉

〈‖ (〈x1〉 � . . . � 〈xk+1〉 � α), ρ〉 γ−→ 〈‖ (〈x′
k+1〉 � α � 〈D〉), ρ′〉

(α, T) ∈ ρ(〈 〉) (k ≥ l > 0)

〈x1, ρ〉↓, . . . , 〈xk, ρ〉↓, 〈xk+1, ρ〉 γ−→ 〈x′
k+1, ρ′〉

〈‖ (〈x1〉 � . . . � 〈xk+1〉 � α), ρ〉 γ−→ 〈‖ (α � 〈x′
k+1〉), ρ′〉

(α, F) ∈ ρ(〈 〉) (k ≥ 0)

〈x1, ρ〉 	−→, . . . , 〈xk, ρ〉 	−→, 〈xl, ρ〉↑, 〈xk+1, ρ〉 γ−→ 〈x′
k+1, ρ′〉

〈‖ (〈x1〉 � . . . � 〈xk+1〉 � α), ρ〉 γ−→ 〈‖ (α � 〈D〉 � 〈x′
k+1〉), ρ′〉

(α, F) ∈ ρ(〈 〉) (k ≥ l > 0)

〈x, ρ〉 γ−→ 〈x′, ρ′〉
〈SD(x), ρ〉 γ−→ 〈SD(x′), ρ′〉

f??m is taken as making the request to the service named f to reply whether it
will accept the request to process method m now or after some time. The reply
is positive if the service will accept that request now or after some time, and
otherwise it is negative.

As explained below, it happens that not only thread-service composition but
also cyclic interleaving has to be adapted to the presence of guarding tests.

The additional axioms for cyclic interleaving and deadlock at termination
in the presence of guarding tests are given in Table 9. Axioms CSI6 and CSI7
state that:

– after a positive reply on f?m or f??m, the same thread proceeds with its
next basic action; and thus it is prevented that meanwhile other threads can
cause a state change to a state in which the processing of m is blocked (and
f?m would not reply positively) or the processing of m is refused (and both
f?m and f??m would not reply positively);

– after a negative reply on f?m or f??m, the same thread does not proceed
with it; and thus it is prevented that other threads cannot make progress.

Without this difference, the Simulation Lemma (Section 7) would not go through.
The additional transition rules for cyclic interleaving and deadlock at termi-

nation in the presence of guarding tests are given in Table 10, where γ stands
for an arbitrary basic action from the set {f?m, f??m | f ∈ F ,m ∈ M}.
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Table 11. Additional axioms for thread-service composition

(x �g?m � y) /f H = (x /f H) �g?m � (y /f H) if f 	= g TSC8

(x �f?m � y) /f H = tau ◦ (x /f H) if H(〈m〉) ∈ {T, F} TSC9

(x �f?m � y) /f H = tau ◦ (y /f H) if H(〈m〉) = B ∧ f 	= t TSC10

(x �f?m � y) /f H = D if (H(〈m〉) = B ∧ f = t) ∨
H(〈m〉) = R TSC11

(x �g??m � y) /f H = (x /f H) �g??m � (y /f H) if f 	= g TSC12

(x �f??m � y) /f H = tau ◦ (x /f H) if H(〈m〉) ∈ {T, F, B} TSC13

(x �f??m � y) /f H = tau ◦ (y /f H) if H(〈m〉) = R TSC14

Table 12. Additional transition rules for thread-service composition

〈x, ρ〉 f?m−−−→ 〈x′, ρ′〉
〈x /f H, ρ〉 tau−−→ 〈x′ /f H, ρ′〉

H(〈m〉) ∈ {T, F}, (f?m, T) ∈ ρ(〈 〉)

〈x, ρ〉 f?m−−−→ 〈x′, ρ′〉
〈x /f H, ρ〉 tau−−→ 〈x′ /f H, ρ′〉

H(〈m〉) = B, f 	= t, (f?m, F) ∈ ρ(〈 〉)

〈x, ρ〉 t?m−−−→ 〈x′, ρ′〉
〈x /t H, ρ〉↑

H(〈m〉) = B
〈x, ρ〉 f?m−−−→ 〈x′, ρ′〉

〈x /f H, ρ〉↑
H(〈m〉) = R

〈x, ρ〉 f??m−−−−→ 〈x′, ρ′〉
〈x /f H, ρ〉 tau−−→ 〈x′ /f H, ρ′〉

H(〈m〉) ∈ {T, F, B}, (f?m, T) ∈ ρ(〈 〉)

〈x, ρ〉 f??m−−−−→ 〈x′, ρ′〉
〈x /f H, ρ〉 tau−−→ 〈x′ /f H, ρ′〉

H(〈m〉) = R, (f?m, F) ∈ ρ(〈 〉)

A service may be local to a single thread, local to a multi-thread, local to
a host, or local to a network. A service local to a multi-thread is shared by all
threads from which the multi-thread is composed, etc. Henceforth, to simplify
matters, it is assumed that each thread, each multi-thread, each host, and each
network has a unique local service. Moreover, it is assumed that t, p, h, n ∈ F .
Below, the foci t, p, h and n play a special role:

– for each thread, t is the focus of its unique local service;
– for each multi-thread, p is the focus of its unique local service;
– for each host, h is the focus of its unique local service;
– for each network, n is the focus of its unique local service.

The additional axioms for thread-service composition in the presence of guard-
ing tests are given in Table 11. Axioms TSC10 and TSC11 are crucial. If f = t,
then f is the focus of the local service of the thread x� f?m�y. No other thread
can raise a state of its local service in which the processing of m is blocked. Hence,
if the processing of m is blocked, it is blocked forever.

The additional transition rules for thread-service composition in the presence
of guarding tests are given in Table 12.
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6 Delays and Exception Handling

We go on to show how guarding tests can used to express postconditional com-
position with delay and postconditional composition with exception handling.

For postconditional composition with delay, we extend the set of basic actions
A with the set {f !m | f ∈ F ,m ∈ M}. Performing a basic action f !m is like
performing f.m, but in case processing of the command m is temporarily blocked,
it is automatically delayed until the blockade is over.

Postconditional composition with delay is defined by the equation given in
Table 13. The equation from this table guarantees that f.m is only performed if
f?m yields a positive reply.

Table 13. Defining equation for postconditional composition with delay

x �f !m � y = (x �f.m � y) �f?m � (x �f !m � y)

For postconditional composition with exception handling, we introduce the
following notations: x � f.m [y]� z and x � f !m [y]� z.

The intuition for x � f.m [y]� z is that x � f.m� z is tried, but y is done
instead in the exceptional case that x � f.m� z fails because the request to
process m is refused. The intuition for x � f !m [y]� z is that x � f !m� z is
tried, but y is done instead in the exceptional case that x� f !m�z fails because
the request to process m is refused. The processing of m may first be blocked
and thereafter be refused; in that case, y is done instead as well.

The two forms of postconditional composition with exception handling are
defined by the equations given in Table 14. The equations from this table guar-
antee that f.m is only performed if f?m yields a positive reply.

Table 14. Defining equations for postconditional composition with exception handling

x �f.m [y] � z = (x �f.m � z) �f??m � y

x �f !m [y] � z = ((x �f.m � z) �f?m � (x �f !m [y] � z)) �f??m � y

An alternative to the second equation from Table 14 is

x � f !m [y]� z = ((x � f.m� z) � f?m� (x � f !m� z)) � f??m� y .

In that case, y is only done if the processing of m is refused immediately.

7 A Formal Design Prototype

In this section, we show how the thread algebra developed so far can be used
to give a simplified, formal representation schema of the design of systems that
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consist of several multi-threaded programs on various hosts in different networks.
We propose to use the term formal design prototype for such a schema. The
presented schema can be useful in understanding certain aspects of the system
designed.

The set of basic thread expressions, with typical element P , is defined by

P ::= D
∣∣ S

∣∣ P � f.m� P
∣∣ P � f !m� P

∣∣
P � f.m [P ]� P

∣∣ P � f !m [P ]� P
∣∣ XE ,

where f ∈ F , m ∈ M and XE is a constant standing for the unique solution for
variable X of a guarded system of recursion equations E.

A thread vector in which each thread has its local service is of the form

〈P1 /t TLS 〉 � . . . � 〈Pn /t TLS 〉 ,
where P1, . . . , Pn are basic thread expressions and TLS is a local service for
threads. TLS does nothing else but maintaining local data for a thread. A multi-
thread vector in which each multi-thread has its local service is of the form

〈‖ (TV 1) /p PLS 〉 � . . . � 〈‖ (TVm) /p PLS 〉 ,
where TV 1, . . . ,TVm are thread vectors in which each thread has its local ser-
vice and PLS is a local service for multi-threads. PLS maintains shared data of
the threads from which a multi-thread is composed. A typical example of such
data are Java pipes. A host behavior vector in which each host has its local
service is of the form

〈‖ (PV 1) /h HLS 〉 � . . . � 〈‖ (PV l) /h HLS 〉 ,
where PV 1, . . . ,PV l are multi-thread vectors in which each multi-thread has
its local service and HLS is a local service for hosts. HLS maintains shared
data of the multi-threads on a host. A typical example of such data are the files
connected with Unix sockets used for data transfer between multi-threads on
the same host. A network behavior vector in which each network has its local
service is of the form

〈‖ (HV 1) /n NLS 〉 � . . . � 〈‖ (HV k) /n NLS 〉 ,
where HV 1, . . . ,HV k are host behavior vectors in which each host has its local
service and NLS is a local service for networks. NLS maintains shared data of
the hosts in a network. A typical example of such data are the files connected
with Unix sockets used for data transfer between different hosts in the same
network.

The behavior of a system that consist of several multi-threaded programs
on various hosts in different networks is described by an expression of the form
‖ (NV ), where NV is a network behavior vector in which each network has its
local service. A typical example is the case where NV is an expression of the
form

‖ (〈‖ (〈‖ (〈P1 /t TLS 〉 � 〈P2 /t TLS 〉) /p PLS 〉 �

〈‖ (〈P3 /t TLS 〉 � 〈P4 /t TLS 〉 � 〈P5 /t TLS 〉) /p PLS 〉) /h HLS 〉 �

〈‖ (〈‖ (〈P6 /t TLS 〉) /p PLS 〉) /h HLS 〉) /n NLS ,
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Table 15. Definition of simulation relation

S sim x

D sim x

x sim y ∧ x sim z ⇒ x sim y �a � z

x sim y ∧ z sim w ⇒ x �a � z sim y �a � w

where P1, . . . , P6 are basic thread expressions, and TLS , PLS , HLS and NLS
are local services for threads, multi-threads, hosts and networks, respectively. It
describes a system that consists of two hosts in one network, where on the first
host currently a multi-thread with two threads and a multi-thread with three
threads exist concurrently, and on the second host currently a single multi-thread
with a single thread exists.

Evidence of correctness of the schema ‖ (NV ) is obtained by Lemma 1 given
below. This lemma is phrased in terms of a simulation relation sim on the closed
terms of the thread algebra developed in the preceding sections. The relation sim
(is simulated by) is defined inductively by means of the rules in Table 15.

Lemma 1 (Simulation Lemma). Let P be a basic thread expression in which
all basic actions are from the set {f.m | f ∈ F \ {t, p, h, n},m ∈ M} and
constants standing for the solutions of guarded systems of recursion equations
do not occur. Let C[P ] be a context of P of the form ‖ (NV ) where NV is a
network behavior vector as above. Then P sim C[P ]. This implies that C[P ] will
perform all steps of P in finite time.

Proof. First we prove P sim C ′[P ], where C ′ is a context of P of the form
‖ (TV ), by induction on the depth of P , and in both the basis and the inductive
step, by induction on the position of P in thread vector TV . Using in each case
the preceding result, we prove an analogous result for each higher-level vector in
a similar way.

8 Conclusions

We have presented an algebraic theory of threads and multi-threads based on
multi-level strategic interleaving for the simple strategy of cyclic interleaving.
The other interleaving strategies treated in [4] can be adapted to the setting
of multi-level strategic interleaving in a similar way. We have also presented a
reasonable though simplified formal representation schema of the design of sys-
tems that consist of several multi-threaded programs on various hosts in different
networks. By dealing with delays and exceptions, this schema is sufficiently ex-
pressive to formalize mechanisms like Java pipes (for communication between
threads) and Unix sockets (for communication between multi-threads, called
processes in Unix jargon, and communication between hosts). The exception
handling notation introduced is only used for single threads and a translation
takes care of its meaning.
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In the last decade and especially after Adleman’s experiment [1] a number of
computational paradigms, inspired or gleaned from biochemical phenomena, are
becoming of growing interest building a wealth of models, called generically
Molecular Computing. New advances in, on the one hand, molecular and theo-
retical biology, and on the other hand, mathematical and computational sciences
promise to make it possible in the near future to have accurate systemic models
of complex biological phenomena. Recent advances in cellular Biology led to new
models, hierarchically organised, defining a new emergent research area called
Cellular Computing.

P-systems represent a class of distributed and parallel computing devices of a
biological type that was introduced in [14] which are included in the wider field
of cellular computing. Several variants of this model have been investigated and
the literature on the subject is now rapidly growing. The main results in this area
show that P-systems are a very powerful and efficient computational model [15],
[16], [13]. There are variants that might be classified according to different cri-
teria. They may be regarded as language generators or acceptors, working with
strings or multisets, developing synchronous or asynchronous computation. Two
main classes of P-systems can be identified in the area of membrane computing
[15]: cell-like P-systems and tissue-like P-systems. The former type is inspired by
the internal organization of living cells with different compartments and mem-
branes hierarchically arranged; formally this structure is associated with a tree.
Tissue P-systems have been motivated by the structure and behaviour of mul-
ticellular organisms where they form a multitude of different tissues performing
various functions [2]; the structure of the system is instead represented as a
graph where nodes are associated with the cells which are allowed to communi-
cate alongside the edges of the graph.

More recently, a notion of population P-systems has been introduced [3], [4]
as a model for tissue P-systems where the structure of the underlying graph
can be modified during a computation by varying the set of nodes and the
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improving the readability of the text.
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set of edges in the graph. Specifically, nodes are associated with cells, each of
them representing a basic functional unit of the system, and edges model bonds
among these cells that are dynamically created and destroyed. Although mainly
inspired by the cell behaviour in living tissues, population P-systems may be also
regarded as an abstraction of a population of bio-entities aggregated together in
a more complex bio-unit (e.g. social insects like ants, bees, wasps etc, organized
in colonies or bacteria of different types). This is the main reason why we use
the term population instead of tissue albeit the term cell is retained to denoting
an individual in the system. The concept also recalls other similar computa-
tional models: grammar systems [8], eco-grammar systems [9], or more recently,
networks of parallel/evolutionary processors [10].

Universality results have been obtained [4] for a number of variants of pop-
ulation P-systems. The following different rules are considered: transformation
rules for modifying the objects that are present inside the cells, communication
rules for moving objects from a cell to another one, cell division rules for intro-
ducing new cells in the system, cell differentiation rules for changing the types
of the cells, and cell death rules for removing cells from the system. As well as
this, bond making rules are considered that are used to modify the links between
the existing cells (i.e., the set of edges in the graph) at the end of each step of
evolution performed by means of the aforementioned rules. In other words, a
population P-system in [4] is basically defined as an evolution-communication
P-system [7] but with the important difference that the structure of the system
is not rigid and it is represented as an arbitrary graph. In particular, bond mak-
ing rules are able to influence cell capability of moving objects from a place to
another one by varying the set of edges in the underlying graph.

Another interesting variant of population P-systems is obtained by consid-
ering the general mechanism of cell communication based on signal molecules
as a mechanism for triggering particular transformations inside of a cell once a
particular signal-object has been received from some other cell in the system [3].
This leads to a notion of population P-systems where the sets of rules associated
with the cell can vary according to the presence of particular objects inside and
outside the cells. Yet again, the introduction of this mechanism is motivated by
the features shared by biological systems at various levels where the behaviour
of an individual is affected both by its internal state and by the external stimuli
received. Some results concerning the power of population P-systems with a rule
activating mechanism have been obtained [5].

Further developments of the area of population P-systems are expected to
cover alternative ways of defining the result of a computation and the use of
string objects. Population P-systems in fact attempt to model aspects of biolog-
ical systems formed by many different individual components cooperating in a
coherent way for the benefit of the system as a whole; a more appropriate no-
tion of computation is therefore necessary in order to characterise the emergent
behaviour of the system. Existing approaches in the area of grammar system
such parallel communicating grammar systems [8] or eco-grammar systems [9],
rely on the use of a single sentential form that is rewritten in parallel by differ-
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ent interacting/cooperating grammar components. In particular, in the case of
eco-grammar systems, this sentential form is associated with the environment
and it can be rewritten both by rules corresponding to action taken from the
individual components in the system and by dedicated rules associated with the
environment. In a similar way, we can consider string-processing population P-
systems where the result of a computation is given by a string (or a language)
produced in the environment at the end of a computation. However, with re-
spect to grammar systems, population P-systems present some other interesting
features like the possibility of moving objects from a place to another one, the
possibility of forming bonds among the cells, the possibility of introducing new
cells in the system by means of cell division, which need to be formalised for
the particular case of string objects. In this respect, we aim to present some
reasonable variants of population P-systems with string objects.

Apart from being a very interesting research area in theoretical computer
science P-systems have been used in modelling different biological systems. One
of the most exciting biological system is represented by the quorum sensing
phenomenon occurring in bacteria.

Recent advances in analytical biotechnology, computational biology, bioin-
formatics and computational modeling promise ever deeper understanding of
the complexity of biological systems, particularly the computations they per-
form in order to survive in dynamic and hostile environments. These insights
will ultimately enable researchers to harness the living cell as a computational
device with its own sensors, internal states, transition functions, actuators, etc,
and to program them as ”nano-bots” for particular tasks such as targeted drug
delivery, chemical factories, nano-structures repairs, bio-film scaffolding and self-
assembling, to name but a few.

Quorum sensing (QS) have been described as ”the most consequential molec-
ular microbiology story of the last decade” [20, 6]. It relies on the activation of a
sensor kinase or response regulator protein by a diffusible, low molecular weight,
signal molecule (a ”pheromone” or ”autoinducer”) [18]. In QS, the concentration
of the signal molecule reflects the number of bacterial cells in a particular niche
and perception of a threshold concentration of that signal molecule indicates
that the population is ”quorated” i.e. ready to make a behavioral decision [19].

An overview on Quorum Sensing in P. aeruginosa with comments on some of
the techniques that have been used to model this phenomenom as well as a more
”computationally flavoured” approach for QS and some research tracks which
could benefit from an in-depth understanding of QS are presented in [11]

This perspective on modelling biological systems at the level mentioned be-
fore is investigated by describing various bio-components as agents. An agent
is a fairly complex computer system that is situated in some environment and
is capable of flexible, autonomous actions in order to meet its design objectives
[12]. The extreme complexity of agent systems is due to substantial differences
between the attributes of their components, high computational power required
by the processes running within these components, huge volume of data manipu-
lated by these processes and finally possibly extensive amount of communication
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in order to achieve coordination and collaboration. The use of a computational
framework that is capable of modelling both the dynamic aspects (i.e. the contin-
uous change of agents’ states together with their communication) and the static
aspects (i.e. the amount of knowledge and information available), will facilitate
modelling and simulation of such complex systems.
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Abstract. We argue that there is currently no satisfactory general
framework for comparing the extensional computational power of arbi-
trary computational models operating over arbitrary domains. We pro-
pose a conceptual framework for comparison, by linking computational
models to hypothetical physical devices. Accordingly, we deduce a math-
ematical notion of relative computational power, allowing the comparison
of arbitrary models over arbitrary domains. In addition, we claim that
the method commonly used in the literature for “strictly more powerful”
is problematic, as it allows for a model to be more powerful than itself.
On the positive side, we prove that Turing machines and the recursive
functions are “complete” models, in the sense that they are not suscep-
tible to this anomaly, justifying the standard means of showing that a
model is “hypercomputational.”

1 Introduction

Our goal is to formalize comparisons of computational models, that is, the de-
termination when one set of partial functions is computationally more powerful
than another set. We seek a robust definition of relative power, one that does
not depend itself on any notion of computability. It should allow one to compare
arbitrary models over arbitrary domains in some quasi-ordering that captures
the intuitive concept of computational strength. Such a comparison notion (or
notions) should also allow one to prove statements like “analogue machines are
strictly more powerful than digital devices,” even though the two models operate
over domains of different cardinalities.

With a satisfactory comparison notion in place, we look into mathematical
relations between computational models, and properties they confer on models.
We call a model that is not as powerful as any of its proper expansions “com-
plete.” We investigate completeness, and check whether some classical models
enjoy this property.
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Extensionality. We are only interested in the computational aspect of compu-
tational models (extensionality), that is, which problems can be solved by a
model, regardless of the solution’s complexity or the model’s mechanisms. Hence,
a computational model is represented simply by a set of (partial) functions (or
multivalued functions) over the domain of its operation.

The Problem. Though model comparison is a common practice in the literature,
it is usually done without a formal comparison notion and without justification
for the chosen method. To the best of our knowledge, there is currently no satis-
factory general means for comparing arbitrary computational models operating
over arbitrary domains. A notion is lacking via which one could show, for exam-
ple, that analogue computers are strictly more powerful than Turing machines,
as well as show that finite automata are more powerful than some weak analogue
model. In Section 4, we list some of the familiar comparison methods and discuss
their ramifications.

The Framework. In Section 2, we propose a general, philosophical, definition of
a computational model and of relative computational power. We understand a
computational model to be a mathematical modeling and idealization of some
hypothetical physical device, from a specific point of view of the world. A model
B is at least as powerful as A if it has the potential to do whatever A does,
under any possible view of the world. Accordingly, we provide, in Section 3, a
method (Definition 3) for comparing arbitrary models over arbitrary domains.

Completeness. In Section 5, we show that the method usually used in the liter-
ature for “more powerful” (�) is mathematically problematic, as it allows for a
model to be more powerful than itself (A � A). We define a model that is not as
powerful as any of its proper expansions to be complete. The standard method
of comparison is suitable only for such complete models. On the positive side,
we prove in Section 6.1 that Turing machines and the recursive functions are
complete with respect to the desired comparison notions.

Computability. In Section 6, we show that some of the models known to be of
equivalent power to Turing machines (the recursive functions, random access
machines and counter machines) are indeed so by our suggested general notion.

Hypercomputation. In Section 6.1, we prove that Turing machines and the re-
cursive functions are complete models. Accordingly, we provide a simpler com-
parison notion for showing that a model is hypercomputational. This notion
provides a justification for the (otherwise improper) comparison method used in
the literature for showing that a model is hypercomputational.

Note. We use the Z-standard [1] for function arrows. For example, −�→ denotes a
partial function, →→ is used for a total surjective function, and � is an injection.
We use double-arrows for mappings (multi-valued functions). So ⇒⇒ denotes a
total surjective mapping.

Proofs are omitted for lack of space.
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2 The Conceptual Framework

We first propose a general, philosophical, definition of a computational model,
and—in Section 2.2—of relative computational power. In Section 3, we will for-
malize these definitions for comparing arbitrary models over arbitrary domains.

W

D

The physical world

The computational
model

v

Device
In

Out

f

In

Out

Fig. 1. A computational model is a mathematical modeling of some hypothetical phys-
ical devices, from a specific point of view of the world

2.1 What Is a Computational Model?

We can think of a computational model as a mathematical modeling and ideal-
ization of some hypothetical physical device, from a specific point of view of the
world (see Fig. 1).

– A physical device gets a physical input and returns a physical output. For
example, an electric device may take some electric voltage at two of its pins
as input, and return a voltage at two other pins as output.

– A corresponding computational model takes a specific point of view of the
physical world. For example, a model of a digital computer might view a
voltage lower than 0.5v as the binary value 0 and of 0.5v or higher as 1.
That is, the domain of the model, D, is a “view” of the physical world, W .
This view is a partial surjective function v : W →�→ D.

– The device computes a function on world entities (in our example above,
ξ : R → R), while from the model’s point of view it computes a function on
its domain (in our example, f :{0, 1} → {0, 1}).

A computational model, by itself, can be viewed as a “black box,” computing
a set of partial functions. The domain and range of functions are identical, except
that the range is extended with ⊥, representing “undefined.”

The modeling of a hypothetical device from a specific point of view of the
world will be at the heart of our method of comparing different models. The world
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can be chosen to be any set of cardinality at least as large as the cardinality of
the model’s domain.

The idea that a model encapsulates a point of view of the world is shared by
Minsky [2]:

We use the term “model” in the following sense: To an observer B, an
object A* is a model of an object A to the extent that B can use A*
to answer questions that interest him about A. The model relation is
inherently ternary. . . . It is understood that B’s use of a model entails
the use of encodings for input and output, both for A and for A*. If A
is the world, questions for A are experiments.

Different Domain and Range. There are models with different domain and range,
e.g. numeral input and boolean output. A generalized view is to consider the
“actual” model’s domain to be the union of the original domain and range.

Uniform Computation. It is common to have models with functions of any fixed
arity, like the recursive functions, for example. We consider the “actual” domain
(and range) to be the set of all finite tuples of elements of the original domain.
This is the view taken for Turing machines, in the BSS model [3–pp. 69–70], and
implicitly with recursive functions when comparing them to Turing machines.

Computing over Structures. There are models defined over structures, that is,
over sets together with “built-in” functions and relations. See, for example, [4,
5, 3]. We consider the structure’s set as the domain, and include the structure’s
functions and relations in the model.

2.2 Comparing Computational Power

We generally say that a model B is at least as powerful as A, written B � A,
if it can do whatever A does. When both models have the same domain repre-
sentation, it means “containment”: B is at least as powerful as A if it computes
all the functions that A does. The question is how one should compare models
operating over different domains, as they compute formally-different functions.

We extend the above characterization as follows: B is at least as powerful as A
if it has the potential to do whatever A does for every possible user (an abstract
user, not necessarily human). In other words, for every view that A has of the
world (v : W →�→ dom A), there is a view by B of the world (u : W →�→ dom B),
such that B has the abstraction capabilities of A, and all the functionality of A
from A’s point of view (see Fig. 2, Definition 2, and Definition 3).

Assumption. We want to allow the world-domain W to be as big as required, as
well as the resolution of its elements to be enlarged as much as required. That
is, all elements x ∈ W may be considered as sets of a fixed cardinality.
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Fig. 2. The “stronger” model, B, should have the potential to provide all the function-
ality of the “weaker” model, A, from any user point of view

3 The Formal Comparison Notion

We need to formalize the conceptual framework of the previous section.

Definition 1 (Computational Model).

– A domain is a nonempty set of elements.
– A computational model A over domain D is an object that computes a set

of partial functions f : D−�→ D, which may be interpreted as total functions
f : D → D ∪ {⊥}.

– We write dom A for the domain over which model A operates.
– The extensionality of a model A, denoted ext A, is the set of partial functions

that A computes.
– For models A and B, and a function f we shall write f ∈ A as shorthand

for f ∈ ext A, and A ⊆ B as short for ext A ⊆ ext B.
– We say that a model B properly expands model A if B � A.

Some clarifications regarding function notations:

– A (partial) function f : D−�→ D′ can be extended to images of subsets of D,
f : P(D)−�→ P(D′), in the standard fashion: f(X) := {f(x) : x ∈ X}.

– A total surjective mapping ρ : D ⇒⇒ D′ is a total function, ρ : D → P(D′),
from D to the subsets of D′, such that

⋃
x∈D ρ(x) = D′.

Directly formalizing the conceptual characterization of “as powerful” (see
Fig. 2), we get the following:

Definition 2 (Conceptual Power Comparison). Model B is at least as
powerful as model A if for every domain W (the world) and view v : W →�→
dom A, there are a view u : W →�→ dom B and abstraction-function g ∈ B, s.t.
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(a) for every function f ∈ A there is a function f ′ ∈ B, s.t. v◦u−1◦f ′◦u◦v−1(x) =
{f(x)} for all x ∈ dom A,

(b) g(z) = g(y) iff v◦u−1(z) = v◦u−1(y) for all y, z ∈ dom B, and
(c) v◦u−1◦g(y) = v◦u−1(y) for all y ∈ dom B.

Here “view” is a partial surjective function, and (by the conceptual assumption)
all elements x ∈ W may be considered as sets of a fixed cardinality. The first
condition, (a), says that B computes every function of A, up to the mapping
between the domains (v◦u−1). Condition (b) says that the function g ∈ B dis-
tinguishes between the equivalence classes generated by the mapping, while (c)
says that the distinction is made by choosing a representative element within
each class.

Definition 2 may be simplified, omitting the world-domain.

Definition 3 (Power Comparison Notion).

1. Model B is (computationally) at least as powerful as model A, denoted B �
A, if there are a total surjective mapping ρ : dom B ⇒⇒ dom A and function
g ∈ B, such that:
(a) for every function f ∈ A there is a function f ′ ∈ B such that

ρ◦f ′◦ρ−1(x) = {f(x)} for all x ∈ dom A,
(b) g(z) = g(y) iff ρ(z) = ρ(y) for all y, z ∈ dom B, and
(c) ρ◦g(y) = ρ(y) for all y ∈ dom B.

2. Model B is (computationally) more powerful than A, denoted B � A, if
B � A but A �� B.

3. Models A and B are (computationally) equivalent if A � B � A, in which
case we write A ≈ B.

Proposition 4. The computational power relation � between models is a quasi-
order. Computational equivalence ≈ is an equivalence relation.

Theorem 5. Definitions 2 and 3.1 are equivalent. That is B � A by Defini-
tion 3.1 iff B is at least as powerful as A by Definition 2.

Example 6. Consider a modeling of a simple electric-cable by a model EC, pro-
viding only the identity function over the reals. Then TM �� EC and EC �� TM.

Inclusion of the Identity Function. When the “weak” model includes the iden-
tity function (λx.x), the general comparison notion may be simplified, replacing
the surjective mapping (ρ) by a surjective function. If the “stronger” model is
closed under functional composition, it may be further simplified, replacing the
surjective function with an opposite injection (ψ : dom A � dom B). This is
similar to the embedding notion (Definition 9 below) with the additional re-
quirement for an abstraction function (g). Comparison via a surjective function
resembles the “representation” of [6–p. 33], just that here we insist on a total
function.



60 U. Boker and N. Dershowitz

Theorem 7. Let A be a computational model with the identity function (λx.x ∈
A). Then a model B, closed under functional composition, is at least as powerful
as A (B � A) iff there exist an injection ψ : dom A � dom B and a total
function g ∈ B onto rng ψ (g : dom B →→ rng ψ), such that for every function
f ∈ A there is a function f ′ ∈ B such that ψ◦f(x) = f ′◦ψ(x) for all x ∈ dom A.

Example 8. Real recursive functions (Rrec) [7], are more powerful than Turing
machines (TM). That is Rrec � TM. The comparison is done via the injection
ψ : N � R, where ψ(n) = n [7–p. 18], and the floor function (λx. "x#) to provide
the abstraction capabilities of Rec (the above function g) [7–p. 10].

4 Ramifications of Familiar Notions

Various methods have been used to compare the computational power of com-
peting models.

Extended Domains. It is common to claim that a function is incorporated in any
of its extensions. That is, a function f : D → D is incorporated in f ′ : D′ → D′

if D ⊆ D′ and f = f ′ �D. See, for example, [8–p. 654]: “Here we adopt the
convention that a function on N is in an analog class C if some extension of it
to R is, i.e. if there is some function f̃ ∈ C that matches f on inputs in N.”

By the conceptual framework, “B extends A” can be interpreted as “B hav-
ing the potential to be at least as powerful as A for a user who has both domain
views.” For example, one can consider a user who views the world as real num-
bers, but can identify the natural numbers among them.

This approach is not appropriate as a general power comparison notion, since
the extended model B doesn’t necessarily have the abstraction capabilities of A.
For example, a mathematician working with paper and pencil may consider
various physical entities to “be” the symbol ‘a’ (e.g. a, a, a, a, a). A model that
lacks the abstraction of the various ‘a’s, treating each of them totally differently,
is not as powerful.

Embedding. Extending the domain is a special case of embedding. A model B
embeds A, if there is an injection from the domain of A to the domain of B, via
which B has all the functionality of A over the range of the injection.

Definition 9 (Embedding). A computational model B embeds a model A,
denoted B �E A, if there is an injection ψ : dom A � dom B, s.t. for every
function f ∈ A there is f ′ ∈ B such that f ′◦ψ(x) = ψ◦f(x) for all x ∈ dom A.

For example, Turing machines and the (untyped) λ-calculus were shown by
Church [9], Kleene [10], and Turing [11] to embed the partial recursive functions.

The reasons for the inadequacy of embedding as a generic power comparison
notion are analogous to that of domain-extending.
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Example 10. Let RE be the recursively enumerable predicates over N. RE may
embed an expansion with infinitely many non-r.e. partial predicates {hi}. Let

h(n) =
{

0 program n halts uniformly
1 otherwise hi(n) =

{
0 n < i ∨ h(n) = 0
⊥ otherwise .

We have that RE �E RE ∪ {hi}, by an injection ψ(n) = 2n + h(n), as

h′
i(n) =

{
0 "n/2# < i or n mod 2 = 0
⊥ otherwise f ′ =

{
f("n/2#) f ∈ RE
h′
i(n) f = hi .

where f ′ ∈ RE and f ′ = ψ◦f◦ψ−1 for every f ∈ RE ∪ {hi}. (Without loss of
generality, we are supposing that ψ(0) = h(0) = 0.)

Effective Encoding. A common approach for comparing models over different
domains is to require some manner of effectiveness of the encoding; see [12–p.
21] and [13–p. 290], for example. There are basically two approaches:

1. One can demand informal effectiveness: “The coding is chosen so that it is
itself given by an informal algorithm in the unrestricted sense” [14–p. 27].

2. Or one can require encoding effectiveness via a specific model, say, Turing
machines: “The Turing-machine characterization is especially convenient for
this purpose. It requires only that the expressions of the wider classes be
expressible as finite strings in a fixed finite alphabet of basic symbols” [14–
p. 28].

By the conceptual framework, an “effective comparison” means that B is
at least as powerful as A for a human user, assuming humans are capable of
“effective” representations.

Effectivity is a useful notion; however, it is unsuitable as a general power
comparison notion. The first, informal approach is too vague, while the second
can add computational power when dealing with subrecursive models and is
inappropriate when dealing with non-recursive models.

5 When Is a Model More Powerful?

In general, the strict part �∗ of a quasi-order �∗ is �∗ ∩ �	∗. That is, B �∗ A
if B �∗ A but not A �∗ B.

The Common Method. Intuitively, one would expect that a proper expansion
of a model (additional functions) is also more powerful, that is, for B � A to
imply B � A. For example, a model that computes more than Turing machines is
considered more powerful (see, e.g., [15]). Hence, the common method of showing
that a model B is more powerful than model A, for some comparison notion �∗,
is to show that B �∗ C � A.
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The Problem. Unfortunately, a proper expansion of a model is not necessarily
more powerful. That is, B � A does not imply B �∗ A, where �∗ may be embed-
ding, our suggested notion, or “containment up to isomorphism” (Theorem 12).

Example 11. Define the set R2 of “even” recursive functions (Rec):

R2 =
{

λn.

{
2f(n/2) n is even
n otherwise

}
: f ∈ Rec

}
R2 embeds all the recursive functions via the injection λn.2n, though R2 � Rec.

See also Example 10, for the embedding of non-r.e. predicates in RE.
Note that the common comparison method (see above) permits a model to

be more powerful than itself! For example, one might say that “R2 �E R2,”
since R2 �E Rec � R2.

Theorem 12. There are models isomorphic to proper expansions of themselves.
That is, there is a set of functions M over a domain D, and a bijection π : D �→
D, s.t. {π◦f◦π−1 : f ∈ M} � M .

The Solution. The general solution is to use the strict part of the quasi-order.
For example, with embedding one should show that “B may embed A, while
there is no injection via which A may embed B.”

In addition, one can check whether a specific model is “complete” in the sense
that it is not equivalent (with respect to the relevant notion) to any of its proper
expansions. For complete models, the common (generally improper) method is
suitable, saving the necessity of precluding all possible mappings.

Definition 13 (Complete Models). Let �∗ be a quasi-order (comparison no-
tion). A computational model A is complete, with respect to �∗, if A �∗ B ⊇ A
implies A = B for all B.

Proposition 14. Let �∗ be a quasi-order (comparison notion), and A a com-
plete model w.r.t. �∗. Then B �∗ A iff there is a model C, such that B �∗ C �
A.

Theorem 15. Let A be a model with the identity function, closed under function
composition, and complete w.r.t. to embedding (�E), then A is complete w.r.t.
power-comparison (�).

Corollary 16. Let A be a model with the identity function, closed under func-
tion composition, and complete w.r.t. to embedding. Then a model B is more
powerful than A iff B is at least as powerful as A and embeds some proper ex-
pansion C of A. That is, B � A iff there is a model C s.t. B � A � C 	E B.

6 Computability

Some computational models considered to be of equivalent power to Turing
machines are still so according to our suggested comparison notion (Definition 3).
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Theorem 17. Turing machines (TM), the recursive functions (Rec), counter
machines (CM), and random access machines (RAM) are all of the same com-
putational power. That is, TM ≈ Rec ≈ CM ≈ RAM.

6.1 Hypercomputation

In Section 5, we saw that a proper expansion of a computational model is not
necessarily more powerful (by any of the common comparison methods). What
does this mean for hypercomputation? Can it be that Turing machines are as
powerful as a model that computes additional functions?

We prove that Turing machines and the recursive functions are complete
models, thus are not susceptible to such an anomaly. Accordingly, we provide
some means to show that a model is hypercomputational.

Definition 18 (Hypercomputation). A model A is hypercomputational if it
is more powerful than Turing machines, that is, if A � TM.

Theorem 19. The recursive functions (Rec) and the partial recursive functions
(PR) are complete w.r.t. embedding.

Theorem 20. Turing machines (TM) are complete w.r.t. embedding.

Corollary 21. Model A is hypercomputational if any one of the following con-
ditions is satisfied:

1. A � TM.
2. A � TM.
3. There is a model C, such that A � C � TM.
4. There is a model C, such that A �E C � TM and also A � TM.

References

1. Bowen, J.P.: Glossary of Z notation. Information and Software Technol-
ogy 37 (1995) 333–334 Available at: http://staff.washington.edu/∼jon/z/
glossary.html.

2. Minsky, M.L.: Matter, mind and models. Proc. International Fed-
eration of Information Processing Congress 1 (1965) 45–49 Available at
http://web.media.mit.edu/∼minsky/papers/MatterMindModels.html.

3. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation.
Springer-Verlag, New York (1998)

4. Bournez, O., Cucker, F., de Naurois, P.J., Marion, J.Y.: Computability over an
arbitrary structure. sequential and parallel polynomial time. FoSSaCS (2003) 185–
199

5. Tucker, J.V., Zucker, J.I.: Abstract versus concrete computation on metric partial
algebras. ACM Transactions on Computational Logic 5 (2004) 611–668



64 U. Boker and N. Dershowitz

6. Weihrauch, K.: Computable Analysis — An introduction. Springer-Verlag, Berlin
(2000)

7. Mycka, J., Costa, J.F.: Real recursive functions and their hierarchy. Journal of
Complexity (2004) In print.

8. Campagnolo, M.L., Moore, C., Costa, J.F.: Iteration, inequalities, and differentia-
bility in analog computers. Journal of Complexity 16 (2000) 642–660

9. Church, A.: An unsolvable problem of elementary number theory. American Jour-
nal of Mathematics 58 (1936) 345–363

10. Kleene, S.C.: Lambda-definability and recursiveness. Duke Mathematical Journal
2 (1936) 340–353

11. Turing, A.M.: On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society 42 (1936–37)
230–265

12. Engeler, E.: Formal Languages: Automata and Structures. Lectures in Advanced
Mathematics. Markham Publishing Company, Chicago, IL (1968)

13. Hennie, F.: Introduction to Computability. Addison-Wesley, Reading, MA (1977)
14. Rogers, Jr., H.: Theory of Recursive Functions and Effective Computability.

McGraw-Hill, New York (1966)
15. Siegelmann, H.T.: Neural Networks and Analog Computation: Beyond the Turing
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Recombinant DNA (rDNA) is a general term which refers to the DNA result-
ing from the process of combining a piece of one DNA with another strand of
DNA. More precisely recombinant DNA is obtained from two or more different
sources that have been cleaved by restriction enzymes and joined by ligases: this
biological mechanism is known as gene splicing. Recently, recombinant DNA
technology has received a rapid increase in interest in Molecular Biology, aimed
at the development of biotechnologies. On the other hand, the surprising power
of this process are stimulating interest towards the design of computational mod-
els inspired by biological phenomena. In this perspective, formal language theory
appears to be a natural framework for formalizing and investigating DNA com-
puting models. In 1987 Tom Head pioneered a language-theoretic approach for
studying splicing and recombinant DNA. He introduced the splicing systems, ab-
stract models which are a formal counterpart of the DNA recombination under
the action of restriction and ligase enzymes. A splicing operation, as a model of
gene splicing, is introduced as an operator on strings. There are at least three
different definitions of this operation, given by Head, Paun and Pixton respec-
tively. A splicing system is defined by giving an initial language I (simulators of
the initial set of DNA molecules) and a set of special words or rules R (simulating
the enzymatic action). The set I is then transformed by repeated applications of
the splicing operation. In Nature DNA occurs in both linear and circular form
and circular splicing occurs in a recombinant mechanism (transposition) between
bacteria and plasmids, that are circular DNA molecules. Depending on the DNA
form and on the definition of the splicing operation we refer to, we have different
definitions of linear splicing systems and of circular splicing systems.

Here, we take into account the definition of the splicing operation which is
usually adopted, given by Paun. Furthermore, we focus on finite splicing systems

� Partially supported by MIUR Project “Linguaggi Formali e Automi: Metodi, Modelli
e Applicazioni” (2003), by the contribution of EU Commission under The Fifth
Framework Programme (project MolCoNet IST-2001-32008) and by 60% Project
“Linguaggi formali e codici: modelli e caratterizzazioni strutturali” (University of
Salerno, 2004).

S.B. Cooper, B. Löwe, and L. Torenvliet (Eds.): CiE 2005, LNCS 3526, pp. 65–67, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



66 P. Bonizzoni, C. De Felice, and G. Mauri

that are closest to the biological process. Indeed, they are defined by a finite set
of rules and a finite set of initial strings. We discuss results concerning both
circular and linear finite splicing systems.

Intensive studies on linear splicing systems and variants have been carried
out, as part of a formal language framework, aimed at proving the universality
of splicing systems or closure properties of splicing languages generated under
different restrictions on I and/or R. In particular, finite splicing systems generate
a proper subclass H of the class of regular languages. The characterization of H
is still an open problem. We do not even know whether it is decidable if a regular
language is in H. We survey the partial known results on these two interesting
problems and their relationships with classical notions in formal language theory.

Unlike the linear case, relatively few works on circular splicing systems and
their languages have been published. Once again classical results in formal lan-
guage theory and combinatorial tools have been of great use. Indeed, circular
splicing systems deal with circular languages the elements of which are equiva-
lence classes under the conjugacy relation (circular words). A main result about
the power of circular splicing systems is due to Pixton who proved that a cir-
cular regular language and a finite set of rules generate a regular language if
the set of rules satisfies some additional hypotheses. It is already known that in
contrast with the linear case, the family of languages generated by finite circular
splicing systems is not intermediate between two classes of (circular) languages
in the Chomsky hierarchy. Indeed, regular circular languages exist which cannot
be generated by any finite circular splicing system whereas context-free circular
languages exist which are generated by such systems. As in the linear case, a
characterization of regular circular languages which are generated by finite cir-
cular splicing is still lacking and, in addition, the computational power of these
systems is still unknown. Once again, we survey the known results on these
problems. A partial list of references follows below.
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Many computational problems that turn up in industry, operations research, net-
work design, artificial intelligence, simulation of physical systems, logic, number
theory, combinatorics, algebra, and computational biology lack a fast or feasible
algorithmic solution. The best known algorithms for these problems are hor-
rendously slow. One of the central open problems in computer science is the
question of whether this slowness is inherent in these problems or that we sim-
ply lack good programming techniques. This question is known as the P versus
NP question. The hardest computational problems of the above type are called
NP-complete problems. It is widely believed that there does not exist a feasible
algorithmic solution for these NP-complete problems.

Quantum computing devices are computing devices that take advantage of
the laws of quantum mechanics, whereas classical computers only use classical
mechanics. Quantum computers can outperform our current, classical, technol-
ogy of computing, due to the possibility of massive exponential parallelism (the
superposition principle) and interference.

Quantum computing gained a lot of momentum after the breakthrough result
of Peter Shor who demonstrated that the factoring problem can be efficiently
solved on a quantum computer, whereas no classical algorithm is known that
solves this problem quickly. His results give some evidence that quantum com-
puters can solve certain computational problems more efficiently than classical
computers. Since most of modern cryptography is based on our inability to ef-
ficiently factor large numbers, Shor’s algorithm breaks all these cryptographic
protocols.

In this course, we will introduce the mathematical framework of quantum
mechanics and show how it can be used to define a quantum computer. We will
then treat some of the known quantum algorithms including Shor’s factorization
algorithm, entanglement and the Einstein-Podolsky-Rozen paradox, quantum
communication complexity, and quantum cryptography. If time permits we will
mention some of the recent developments.

S.B. Cooper, B. Löwe, and L. Torenvliet (Eds.): CiE 2005, LNCS 3526, p. 68, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Symbol Grounding in Connectionist and
Adaptive Agent Models

Angelo Cangelosi

Adaptive Behaviour and Cognition Research Group,
School of Computing, Communications and Electronics,

University of Plymouth, UK
acangelosi@plymouth.ac.uk

Abstract. This paper presents the Cognitive Symbol Grounding frame-
work for modeling language in neural networks and adaptive agent sim-
ulations. This approach is characterized by the hypothesis that symbols
are directly grounded into the agents’ own categorical representations,
whilst at the same time having syntactic relationships with other sym-
bols. The mechanism of grounding transfer is also introduced. This is
the process by which the grounding of basic words, acquired via direct
sensorimotor experience, is transferred to higher-order words via linguis-
tic descriptions. Various simulations are briefly reviewed to demonstrate
the use of the Cognitive Symbol Grounding approach.

1 The Cognitive Symbol Grounding Framework

The grounding of symbols in computational cognitive systems requires that the
simulated cognitive agent is able to access the meaning of its symbols (words)
directly, without the intervention of an external viewer such as the experimenter.
This has been a significant shortcoming of cognitive models only based on sym-
bolic architecture. Such a limit is commonly referred to as the Symbol Grounding
Problem [6].

Recent cognitive models based on connectionist agents and robots use the
Cognitive Symbol Grounding framework to intrinsically link symbols to the
agents’ own cognitive system [1]. This approach is characterized by the hy-
pothesis that symbols are directly grounded into the agents’ own categorical
representations, whilst at the same time having logical/syntactic relationships
with other symbols. First, each symbol is directly grounded into internal cate-
gorical representations. These representations include perceptual categories (e.g.
the concept of blue color, square shape, and male face), sensorimotor categories
(the action concept of grasping, pushing, carrying), social representations (indi-
viduals, groups and relationships) and other categorizations of the agent’s own
internal states (emotions, motivations). Secondly, these categories are connected
to the external world through our perceptual, motor and cognitive interaction
with the environment.

Two main modeling approaches to the symbol grounding are presented here:
(1) the connectionist approach, based on artificial neural network simulations of
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categorization and linguistic tasks, and (2) the embodied agent modeling method
based on multi-agent simulations and robotic studies. Both approaches share an
integrative view of the cognitive systems, in which vision, action and language
are intrinsically linked with one another. This permits the design of cognitive
systems where language is directly grounded in the agent’s own sensorimotor
and cognitive abilities.

The use of an integrated language/cognition/action system is particularly
important for the mechanism of grounding transfer. This is the process by
which the grounding of basic words, acquired via direct sensorimotor experi-
ence, is transferred to higher-order words via linguistic descriptions (i.e. indirect
grounding). For example, I can learn by direct experience that the word horse
is grounded on my sensorimotor experience of seeing (and/or riding) a horses
and that the word horn is grounded on the vision of the horn of an animal. Sub-
sequently, via the linguistic description ”The unicorn is an animal similar
to a horse with a horn” I can learn the new word, and concept, unicorn and
indirectly ground it in my experience of horses and horns.

The following sections will briefly review some modeling work on the Cogni-
tive Symbol Grounding hypothesis developed by the author and collaborators.
These examples will demonstrate the use of connectionist and adaptive agent
models for the direct grounding of symbols and the transfer of grounding from
low level words to higher-level symbols.

2 Connectionist Simulations

The connectionist approach to symbol grounding is based on simulations of artifi-
cial neural networks for category learning and naming tasks. In particular, this has
been possible through the use of dual-route neural networks architectures [8] that
permit the link (a) between perceptual and sensorimotor representations and (b)
between these sensorimotor representations and symbolic knowledge. Typically,
a neural network will have visual and linguistic input units indirectly link, via
hidden units, to motor and linguistic output units. The process of language un-
derstanding can be simulated with the link from linguistic input to motor outputs,
while language production links visual input to linguistic output units.

A seminal paper on categorization and symbol grounding with neural net-
works is that proposed by Harnad et al. [7]. This specifically focused on grounding
symbols in categorical perception. The authors used a multi-layer perceptron to
categorizing lines according to their length. Training consisted of two sequential
backpropagation learning tasks. The first was an autoassociation task to train
networks to discriminate between different stimuli. In the second task, the net-
works were trained to categorize stimuli by sorting lines into three categories:
short, middle, long. The comparison of the pre- and post-categorization hid-
den activations showed the well known categorical perception effects, i.e. within-
category compression and between-category expansion of category members. The
hidden categorical representations constituted the grounding of categorization
names (labels).
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Subsequent symbol grounding models have focused on the mechanisms of
grounding transfer. For example, Riga et al. [9] proposed a connectionist models
in which basic symbols, such as names of shapes and colors, are first intrinsically
connected to the categories being acquired through direct interaction with the
environment. These basic symbols are successively used to construct descriptions
of new categories of stimuli consisting of individual objects made by specific
combinations of a shape and color). New categories (and their symbols) are in
this way defined without the need of a direct experience of their referents. This
process of grounding transfer enables the system to express meanings that go
beyond immediate experience. New symbols, acquired exclusively from symbolic
descriptions, are ultimately grounded in the interaction of the system with its
environment.

The simulation consisted of three sequential training stages and a grounding
transfer test phase. During the first training stage, an unsupervised network
learns to discriminate between different stimulus categories by constructing a
feature self-organizing map of different shape and color categories. The network
acquires analogue sensorial representations of their environment that enables
it to categorize the stimuli along the dimensions of shapes and colors. In the
second training phase, symbolic stimuli (the names of the colors and shapes) are
presented to the network, together with the images. These symbols are directly
grounded in the sensorial representations acquired during the first phase. In
the third training phase, the training input is exclusively symbolic. Linguistic
descriptions of new higher-order categories are presented. These contain the
previously acquired symbols in combination with a new symbol that denotes a
new category (e.g. Red + Square = DAX). Finally, in the test phase, the network
is presented with images of the previously unseen objects, such as DAX, to check
if these are recognized and named. The successful naming of these previously-
unseen images would demonstrate that the grounding transfer has occurred.
Simulation results consistently showed that networks are able to recognize and
name the images of new objects, therefore demonstrating that the grounding has
been transferred from basic order categories to higher order concepts. Thus, the
proposed connectionist simulation provides the basis of a working model for the
implementation of an autonomous cognitive system able to use combinations of
previously-grounded symbols to expand its knowledge of the world.

Other neural network models of language have focused on the grounding of
special types of symbol, that is function words. These includes linguistic terms
such as spatial prepositions (e.g. in, on, over, under) and quantifiers (e.g. few,
some, many). Recently, Coventry et al. [5] have developed a neural network model
of the spatial prepositions over, under, above, below. The model addresses the
integration of functional and object knowledge factors (”what”) with geometric
factors such as the relative position of objects (”where”). The model processes
movies of a located object (teapot) pouring a liquid (water) into a reference
object (cup). The task of the network is to name the objects and to select the
most appropriate spatial preposition describing the scene. The model consists of
three modules: (1) a neurally-inspired vision module to process the visual scenes,
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(2) a simple recurrent neural network to learn compressed representations of the
dynamics of interacting objects, and (3) a dual-route network for producing the
names of objects and the spatial prepositions. The dual-route network plays the
core function of the grounding process by integrating visual and linguistic knowl-
edge. The activation values of the linguistic output nodes correspond to rating
values given by subjects in language comprehension experiments. The multi-
layer perceptron is trained via error backpropagation, by converting the rating
data into stimulus presentation frequencies. Simulation results consistently show
that the networks produce rating values similar to that of experimental subjects.
It can also accurately predicts new experimental data on the ratings of scenes
where only the initial frames are shown and the subjects must ”mentally replay”
the scene and predict its end frame (i.e. where the liquid ends). Such a model is
currently being extended to deal with further linguistic terms, such as the vague
quantifiers few, a few, some, many, a lot of. The underlying hypothesis is that this
grounded connectionist approach will permit the identification of the main mech-
anisms responsible for quantification judgment and their linguistic expression.

3 Adaptive Agent Simulations

The adaptive agent approach includes multi-agent simulations of the evolution
of language and cognitive robotics experiment on communication and language
learning. The multi-agent approach uses populations of simulated agents that
interact with each other to develop a shared set of symbols (lexicon) to describe
their interaction with the world. The robotic studies uses embodied evolutionary
and/or epigenetic robotic agents that interact in a simulated (or real) physical
environment and build a linguistic representation of this interaction.

In a grounded multi-agent model of language evolution [2], neural networks
were used to simulate learning and the genetic algorithm to simulate evolution.
The model considers two ways of acquiring categories and language which are
in direct competition with one another: In ”sensorimotor toil,” new categories
are acquired through feedback-corrected, trial and error experience in sorting
input stimuli. In ”symbolic theft,” new categories are acquired by hearsay from
propositions (i.e. language) based on boolean combinations of symbols. In com-
petition, symbolic theft always beats sensorimotor toil. This is hypothesized to
be the basis of the adaptive advantage of language, after basic categories are
learned by toil, to avoid an infinite regress (the symbol grounding problem).
Changes in the internal representations of categories must take place during the
course of learning by toil. These changes were analyzed in terms of the com-
pression of within-category similarities and the expansion of between-category
differences. Such compression/expansion effects, called Categorical Perception,
have previously been reported with categories acquired by sensorimotor toil.
This simulation also shows that they can also arise from symbolic theft alone.

Studies with adaptive robotic agents include simulations of robots that learn
to imitate actions and to communicate linguistically about such motor abilities.
For example, in an epigenetic robotic model [4], agents learn to perform actions
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on objects using imitation and grounding transfer mechanisms. The model is
based on a simulation of two robots embedded in a virtual environment that
accurately models physical constraints present in real-world situations (using
the physics software engine Open Dynamics Engine). Each robot has twelve De-
grees of Freedom (DoF) and consists of two 3-segment arms attached to a torso
and a base with 4 wheels. The teacher robot has preprogrammed behavior to
manipulate objects. The imitator agent learns to perform the same actions by
observing the teacher executing them and using an on-line backpropagation al-
gorithm. This effectively enables the agent to mimic a movement in real-time and
provides the agents with a mechanism to approximate movements without need
for prior learning. The robot’s neural network memorizes action patterns related
to objects and enables the autonomous execution of the movement associated
with an object in absence of the teacher agent. The neural controller receives
in input sensorial data on the object’s visual properties and the proprioceptive
information on the imitator’s joint angles. In output it produces the motor force
applied to each joint. Overall, the simulation results show that it takes just few
online training epochs to obtain a satisfactory performance. Typically, the agents
produce a movement that is very similar to the original after having mimicked
it once, and optimize it during successive training cycles.

Agents simultaneously learn the words corresponding to actions, whist they
are are taught to perform the basic actions by mimicking them. Robot learn the
basic actions of opening and closing their left and right arms (upper arms and
elbows), lifting them (shoulders), and moving forward and backward (wheels),
together with the corresponding words. They also learn higher-level compos-
ite behaviors by receiving linguistic descriptions containing these previously ac-
quired words (grounding transfer). After basic grounding, the robot receives 1st
level linguistic descriptions of combined actions, consisting in a new word and
two known words referring to basic actions. For example, the action of grab-
bing the object in front of them was described as: ”CloseLeft + CloseRight
= Grab”. Grounding is successfully transferred from the basic words CloseLeft
and CloseRight to the higher order symbol Grab. In a test phase, when the agent
is given the command Grab it successfully executes the combined action of push-
ing its arms towards the object and grabbing it. Robots can also receive further
higher-level descriptions, in which a defining word is itself learned exclusively
from a linguistic description. For example, the grabbing and moving forward
actions were combined into the higher-order action of carrying: ”MoveForward
+ Grab = Carry”. Grounding transfer was successfully transferred to the new
word, enabling the agent to correctly perform the action of carrying on hearing
the word Carry. The system learned several of these combined actions simulta-
neously, and also four-word definitions and grounding transfers of up to three
levels have been realized. In addition to demonstrating the grounding transfer
mechanism in robotic agents, this model also highlights the role of language as
a cognitive enhancer tool, i.e. a means through which new behaviors can be ac-
quired quickly and effortlessly, building on experience accumulated by previous
generations of agents.
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4 Conclusions

Overall,these studies demonstrate the feasibility of theCognitive SymbolGround-
ing approach in which neural networks are used to deal with the symbol ground-
ing problems and the grounding transfer. The ”embodiment” of such connec-
tionist architectures in either simulated agents or robots permits a deeper un-
derstanding of the relationship between linguistic/symbolic abilities and other
sensorimotor and cognitive capabilities. For example, adaptive agent models of
verb and noun learning have shown that linguistic and sensorimotor represen-
tations share common neural structures. In these simulations, the same hidden
units are involved or the processing of nouns and sensorimotor representations,
whilst separate hidden units specialize for verb and motor processing [3]. This
approach also has important practical and technological implications. For exam-
ple, in robotics and artificial intelligence, language grounding models can provide
novel algorithms and methodologies for the development of effective interaction
between humans and autonomous computer and robotic systems. As demon-
strated in the epigenetic robotic model of the symbol grounding transfer, the
imitation and language instruction modalities can be integrated to form a situ-
ated learning process in which higher-order linguistic representations can be au-
tonomously grounded into the agents’ own sensorimotor and cognitive abilities.
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Abstract. We study the complexity of computable and Σ0
1 inductive

definitions of sets of natural numbers. For we example, we show how
to assign natural indices to monotone Σ0

1 -definitions and we use these
to calculate the complexity of the set of all indices of monotone Σ0

1 -
definitions which are computable. We also examine the complexity of
new type of inductive definition which we call weakly finitary monotone
inductive definitions. Applications are given in proof theory and in logic
programming.

1 Introduction

Inductive definitions play a central role in mathematical logic. For example, the
set of formulas in a first order language is given by an inductive definition. Given
a set A of axioms for a mathematical theory T and a set of logical axioms and
rules, the theory T is obtained by an inductive definition. The set of computable
functions can be realized by an inductive definition. Similarly, for any Horn logic
program P , the unique stable model of P is obtained by an inductive definition.

It is well-known that any computable or Σ0
1 monotone inductive definition

Γ , one can construct the closure of Γ , Cl(Γ ), in at most ω steps and Cl(Γ ) is
always a Σ0

1 set. In some situations, it is important that Cl(Γ ) is computable.
For example, it is important that the set of formulas in a typical first order
theory is recursive. In other situations, we know that Cl(Γ ) is Σ0

1 but not com-
putable. For example, even a finitely axiomatized theory T may be Σ0

1 but not
decidable (computable). In this paper, we shall explore the complexity of when
a Σ0

1 monotone inductive definition Γ has a computable closure. We shall do
this by assigning indices to Σ0

1 monotone inductive operators. In particular, this
means that we can effectively enumerate the family of all Σ0

1 monotone inductive
operators as Γ0, Γ1, . . . . We shall then show that the set C of indices e such that
the closure, or least fixed point lfp(Γe) is computable is Σ0

3 complete.
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We will also define a new class of inductive operators called weakly finitary
monotone inductive operators. The basic idea is that for a weakly finitary oper-
ator there may exists a finite set of elements x such that x is forced into Γ (A)
only if A contains one of a collection of possibly infinite sets. We will show that if
Γ is a weakly finitary monotone inductive operator, then it will still be the case
that lfp(Γ ) will be Σ0

1 but that it can take more than ω steps to construct lfp(Γ ).
An example of such an operator is when we allow finitely many instances of the
ω-rule to generate a partial theory of arithmetic. We also assign indices to the
family of weakly finite Σ0

1 monotone inductive operators. We shall show that the
set of indices of weakly finitary Σ0

1 monotone inductive operators Γ such that
lfp(Γ ) is computable is also Σ0

3 complete. However, for certain computable sets
R, the set of indices of weakly finitary Σ0

1 monotone inductive operators Γ such
that lfp(Γ ) ∩R is computable lies in the difference hierarchy over the Σ0

3 sets.
We will use standard notation from computability theory [6]. In particular,

we let φe (φAe ) denote the e-th partial computable function (e-th A-partial com-
putable function) from N to N and let We = Dom(φe) (WA

e = Dom(φAe )) be the
e-th computably enumerable (c.e.) (e-th A-computably enumerable) subset of N.
We let We,s (WA

e,s) denote the set of numbers m ≤ s such that φe(m) (φAe (m))
converges in s or fewer steps. Given a finite set S = {a1 < . . . an}, the canonical
index of S is

∑n
i=1 2ai . The canonical index of the empty set is 0. We let Dn

denote the finite set whose canonical index is n. We fix some primitive recursive
pairing function 〈, 〉 : N×N → N. We then code k-tuples for k ≥ 3, inductively by
〈n1, . . . , nk〉 = 〈n1, 〈n2, . . . , nk〉〉. We then let the canonical index [a1, . . . , ak] of
a k-tuple (a1, . . . , ak) ∈ Nk be given by [a1, . . . , ak] = 〈k, 〈a1, . . . , ak〉〉. It easily
follows that for each k, the coding function [, ] : Nk → N and the projection
functions given by [a1, . . . , ak]i = ai are primitive recursive.

2 Inductive Definitions

In this paper, we are going to consider inductive operators Γ : P(N) → P(N)
which inductively define subsets of N. We begin with a review of basic definitions
and results which can be found, for example, in Hinman [5].

Definition 1. Let Γ : P(N) → P(N).

1. Γ is said to be monotone if A ⊂ B implies Γ (A) ⊆ Γ (B) for all A,B.
2. Γ is said to be inclusive if A ⊆ Γ (A) for all A.
3. Γ is said to be inductive if it is either monotone or inclusive.

An inductive operator Γ recursively defines a sequence {Γα : α an ordinal}
by setting Γ 0 = ∅, Γα+1 = Γ (Γα) for all α and Γλ =

⋃
α<λ Γ

α. It is easy to
see that Γα ⊆ Γ β whenever α < β. By cardinality considerations, there exists a
countable ordinal α such that Γα = Γ β for all β > α. The least such α is called
the closure ordinal of Γ and will be denoted by |Γ |. The set Γ |Γ | is called the
closure of Γ or the set inductively defined by Γ and will be denoted by Cl(Γ ).

For a monotone operator, the closure is also the least fixed point lfp(Γ ) as
indicated by the following.
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Lemma 2. If Γ is a monotone operator, then Cl(Γ ) is the unique least set C
such that Γ (C) = C. That is, for any set A such that Γ (A) = A, Γ (C) ⊆ A.

For any operator Γ : P(N) → P(N), let RΓ ⊆ N × P(N) be given by
RΓ (m,A) ⇐⇒ m ∈ Γ (A). In general, we say that a predicate R(x1, . . . , xk, A) ⊆
Nk×P(N) is computable if there is an oracle Turing machine Me such that for any
A ∈ P(N), Me with oracle A and input (x1, . . . , xn) outputs 1 if R(x1, . . . , xn, A)
holds and outputs 0, otherwise. The notation of a predicate being Σ0

n,Π
0
n, Σ

1
1 ,Π

1
1 ,

etc. can then be defined as usual over the class of computable predicates. We
then say that an operator Γ is computable (respectively Σ0

1 , arithmetical, etc.)
if the relation RΓ is recursive (respectively Σ0

1 , arithmetical, etc.). The following
results are well-known.

Theorem 3. 1. If Γ is a computable inductive operator, then the sequence
{Γn : n ∈ ω} is uniformly computable, |Γ | ≤ ω and Cl(Γ ) is Σ0

1 .
2. If Γ is a Σ0

1 inductive operator, then |Γ | ≤ ω and if Γ is monotone, then
Cl(Γ ) is Σ0

1 .
3. Any Σ0

1 set is 1-1 reducible to the closure of some computable monotone
inductive operator.

4. If Γ is a monotone arithmetical operator, then |Γ | ≤ ωCK
1 (the least non-

recursive ordinal) and lfp(Γ ) is Π1
1 .

5. Any Π1
1 set is 1-1 reducible to the closure of a monotone Π0

1 inductive op-
erator.

Example 4. The classic example of a computable monotone operator is given by
the definition of the set of sentences of a propositional logic over an infinite set
a0, a1, . . . of propositional variables. Identifying sentences p, q with their Gödel
number gn(p), gn(q), we have for any i, p, q,and A:

(0) ai ∈ Γ (A),
(1) ¬p ∈ Γ (A) if p ∈ A, and
(2) p ∧ q ∈ Γ (A) if p ∈ A and q ∈ A, and
(3) p ∈ Γ (A) if p ∈ A.

Other clauses could be added to include conjunction, implication or other bi-
nary connectives. This operator is computable because for any sentence p, we
can compute the (at most two) other sentences which need to be in A for p to get
into Γ (A). Similar computable inductive definitions can be given for the set of
terms in a first order language and the set of formulas in predicate logic. In each
case, the closure ordinal of such a Γ is ω and the set of sentences (respectively,
terms, formulas) is is computable since for any sentence (term, formula) p of
length n, p ∈ lfp(Γ ) ⇐⇒ p ∈ Γn.

Example 5. Suppose we are given a computable or Σ0
1 set A0 of axioms for

propositional logic together with the logical axioms ¬p∨p for each p and a finite
set of rules as indicated below. Then the set of consequences of A0 is generated
by the operator Γ where, for all sentences p, q, r and all A:



78 D. Cenzer and J.B. Remmel

(0) p ∈ Γ (A) if p is an axiom,
(1) p ∨ q ∈ Γ (A) if p ∈ A or q ∈ A,
(2) p ∈ Γ (A) if p ∨ p ∈ A,
(3) (p ∨ q) ∨ r ∈ Γ (A) if p ∨ (q ∨ r) ∈ A, and
(4) q ∨ r ∈ Γ (A) if p ∨ q ∈ A and ¬p ∨ r ∈ A.

In this case, Γ is a Σ0
1 operator but is not computable since, for example, the

Cut Rule (4) asks for the existence of a p such that p ∨ q and ¬p ∨ r are in A.

Now in fact the consequences of a recursive set A0 will be a recursive set but
a similar example can be given for first order logic where the consequences of a
finite set of axioms for arithmetic is Σ0

1 but not recursive.

Example 6. The one-step provability operator for a computable Horn logic pro-
gram is a Σ0

1 monotone operator. That is, suppose A is a computable set of
propositional letters or atoms. We assume that A = N. A logic programming
clause is a construct of the form

C = p ← q1, . . . , qn,¬r1, . . . ,¬rn

where p, q1, . . . , qm, r1, . . . , rn are atoms. Given a clause C, we let

[C] = 〈p, [q1, . . . , qn], [r1, . . . , rm]〉

where by convention, we let [q1, . . . , qn] = 0 if n = 0 and [r1, . . . , rm] = 0 if
m = 0. The atoms q1, . . . , qm,¬r1, . . . ,¬rn form the body of C and the atom p
is its head. Given a set of atoms M ⊆ A, we say M is a model of C either (i)
there is an qi such that qi /∈ M or there is an rj such that rj ∈ M ( M does not
satisfy the body of C) or (ii) p ∈ M (M satisfies the head of C). The clauses C
where n = 0 are called Horn clauses.

A program P is a set of clauses. We say that P is computable (Σ0
1 , arith-

metical, etc.) if {[C] : C ∈ P} is computable ( Σ0
1 , arithmetical, etc.). A pro-

gram entirely composed of Horn clauses is called a Horn program. If P is a
Horn program, then there is a one step provability operator associated with P ,
TP : P(N) → P(N), which is defined by

TP (A) equals the set of all p such that there exists a clause C = p ← q1, . . . , qn
in P such that q1, . . . , qn ∈ A.

A Horn program always has a least model which is the closure of Tp. It is the
intended semantics of such a program.

For programs with bodies containing the negation operator not, we will use
the stable model semantics. Following [4], we define a stable model of the pro-
gram as follows. Assume M is a collection of atoms. The Gelfond-Lifschitz reduct
of P by M is a Horn program arising from P by first eliminating those clauses
in P which contain ¬r with r ∈ M . In the remaining clauses, we drop all neg-
ative literals from the body. The resulting program GLM (P ) is a Horn pro-
gram. We call M a stable model of P if M is the least model of GLM (P ). In
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the case of a Horn program, there is a unique stable model, namely, the least
model of P .

It should be pointed out that both Example 1 and Example 2 can refor-
mulated in the framework of logic programming as computable Horn programs.
That is, the set of rules is a computable set, even though the corresponding
inductive operator need not be computable.

3 Index Sets for Σ0
1 Monotone Operators

An important property of Σ0
1 monotone operators Γ is that the relation m ∈

Γ (A) depends only on positive information about A. That is, we have the fol-
lowing lemma, see [5], pg. 92.

Lemma 7. For any Σ0
1 monotone operator Γ , there is a recursive relation R

such that for all m ∈ N and A ∈ P(N),

m ∈ Γ (A) ⇐⇒ (∃n)(Dn ⊆ A & R(m,n)) (1)

It follows from Lemma 7 that the Σ0
1 monotone inductive operators may be

effectively enumerated as Γ0, Γ1, . . . in the following manner. For all e,m ∈ N
and all A ∈ P(N), let

m ∈ Γe(A) ⇐⇒ (∃n)[Dn ⊆ A and 〈m,n〉 ∈ We].

Lemma 8. 1. There is a primitive recursive function f such that for all m, e, a:

Γe(Wa) = Wf(e,a).

2. The relation m ∈ Γ t
e is Σ0

1 .
3. The relation m ∈ lfp(Γe) is Σ0

1 .

Proof. (1) We have

m ∈ Γe(Wa) ⇐⇒ (∃n)[Dn ⊆ Wa and 〈m,n〉 ∈ We].

Thus we may define a partial computable function φc(e, a,m) which will search
for the least pair 〈n, s〉 such that Dn ⊆ Wa,s and 〈m,n〉 ∈ We,s. Then

m ∈ Γe(Wa) ⇐⇒ 〈e, a,m〉 ∈ Dom(φc).

Now the s-m-n theorem will provide a primitive recursive f such φf(e,a)(m) =
φc(e, a,m).

(2) Let W0 = ∅ and let f be given by (1). For any fixed e, let ge be the partial
recursive function defined by ge(a) = f(e, a). Then clearly, Γ t

e = Wgt
e(0).

(3) This follows from the fact that m ∈ lfp(Γe) ⇐⇒ (∃t)(m ∈ Γ t
e). In fact, it

is easy to see that there is computable function h such that lfp(Γe) = Wh(e).
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Theorem 9. {e : lfp(Γe) is computable} is Σ0
3 complete.

Proof. Let C = {e : lfp(Γe) is computable}. Let h be the computable function
defined in the proof of part (3) of Lemma 8. Then C = {e : Wh(e) is computable}.
The predicate “Wa is computable” is Σ0

3 so that C is a Σ0
3 set.

For completeness, we use the well-known fact [6] that Rec = {e : We

is recursive} is Σ0
3 complete. We can use the s-m-n theorem to define the oper-

ator Γg(e) by

〈m, s〉 ∈ Γg(e)(A) ⇐⇒ m ∈ We,s or 〈m, s + 1〉 ∈ A.

It is easy to see that lfp(Γg(e)) = We × N. Thus We is recursive if and only
if lfp(Γg(e)) is recursive. Hence e ∈ Rec ⇐⇒ g(e) ∈ C so that C is Σ0

3

complete.

Computable operators are continuous and we can use the indexing of [3] to
define the eth computable monotone operator Δe for e in the Π0

2 set of indices
such that φe is a total function. Then a similar result to Theorem 9 holds for the
family of computable monotone operators since the operator Γg(e) is computable
for all e.

4 Weakly Finitary Monotone Operators

The idea of a weakly finitary operator is to have a finite set m1, . . . ,mk of
exceptional numbers which may be put into Γ (A) when an infinite set is included
in A. If there are exactly k exceptional numbers, then the operator Γ will be
called k-weakly finitary. For example, we might allow some finite number of
consequences of the ω-rule in a subsystem of Peano arithmetic and still obtain
a c.e. theory.

Definition 10. 1. We say that an inductive operator Γ : P(N) → P(N) is
weakly finitary if there is a finite set SΓ such that for all A,
(a) x /∈ SΓ and x ∈ Γ (A) implies there exists a finite set F ⊆ A such that

x ∈ Γ (F ) and
(b) x ∈ SΓ and there is a family FΓ,s,A of subsets of Γ which includes at

least one infinite subset of Γ such that x ∈ Γ (A) implies there exists an
F ⊆ A such that x ∈ Γ (F ) for some F ∈ FΓ,x,A.

If |SΓ | = k, then we say that Γ is k-weakly finitary.
2. We say Γ = Λk,e is a k-weakly finitary Σ0

1 monotone inductive operator with
index 〈k, e〉 = 〈k, 〈d, 〈m1, e1, . . . ,mk, ek〉〉 if Γ is a weakly finitary monotone
operator with SΓ = {m1 < · · · < mk} and for all A and mi, FΓ,s,A = {Wa :
a ∈ Wei

}. Thus for all A ∈ P(N) and m ∈ N, m ∈ Λk,e(A) if and only if
either
(i) m ∈ Γd(A) or
(ii) for some i, m = mi and (∃a ∈ Wei

)(Wa ⊆ A).



The Complexity of Inductive Definability 81

Example 11. One example of this type of operator comes from attempts to ex-
tend logic programming to be able to reason about infinite sets described in
[1, 2]. That is, suppose that we consider a Horn program P and we construct an
extended program by adding extended clauses of the form

C = p ← a1, . . . , an,We1 , . . . ,Wem
. (2)

We call p the head of C and a1, . . . , an,We1 , . . . ,Wem
the body of C. We say a

set of atoms M satisfies the body of C if {a1, . . . , an} ∪
⋃m

i=1 Wei
is contained

in M . We say that M satisfies C if either M does not satisfy the body of C or
M satisfies the head of C, i.e. p ∈ M . In such a case, there is still a natural
one-step provability operator associated to the extended program P ′, namely,
TP ′(A) equals the set of p such that there exists a clause or an extended clause
C ∈ P ′ which M satisfies of the body of C and p equals the head of C. If the
sets of heads of the extended clauses in P ′ is finite, then TP ′ is a weakly finitary
monotone operator.

It is no longer the case that one can find the least fixed point of TP ′ in ω
steps. For example, consider the following extended program P where We is the
set of even natural numbers. Consider the following program.

0 ←
2x + 2 ← 2x (for every number x)

1 ← We for all n ∈ ω

2x + 3 ← 2x + 1 (for every number x)

Clearly ω is the least model of P but it takes 2ω steps to reach the fixed point.
That is, it is easy to check that TP ↑ω= We and that TP ↑ω+ω= ω.

We note in [1, 2], we consider a much richer class of programs where the
one-step provability operator is a weakly finitary monotone operator.

Theorem 12. Let Λ be a k-weakly Σ0
1 monotone operator with index 〈k, e〉 =

〈k, 〈d, 〈m1, e1, . . . ,mk, ek〉〉. Then

1. |Λ| ≤ ω · (k + 1).
2. lfp(Λ) is Σ0

1 .

Proof. We will present an informal procedure which constructs the closure in
≤ k + 1 rounds where each round may consist of as many ω steps.

Round (1). First let U0 = lfp(Γd). Since Γd is a Σ0
1 monotone inductive oper-

ator, U0 is c.e. by Theorem 3. Next consider the finite set

F0 = {mi : (∃a ∈ Wei
)(Wa ⊆ U0)}.

We can not necessarily find F0 effectively, but, nevertheless, F0 is a finite set so
that A1 = U0 ∪ F0 will be a c.e. set. If F0 = ∅, then lfp(Λ) = U0 and |Λ| ≤ ω.
Otherwise go on to Round 2.
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We now present the description of Round n + 1, for n ≥ 1. Assume that An

is the result of step n.

Round (n+ 1). Consider the set Un = Γω
d (An). It is easy to see that that since

An is c.e., Un is also c.e.. Next consider the finite set

Fn = {mi : (∃a ∈ Wei
)(Wa ⊆ Un)}.

Again we can not necessarily find Fn effectively, but, nevertheless, An+1 = Un ∪
Fn is a c.e. set. Now if Fn = ∅, then lfp(Λ) = Un and |Λ| ≤ ω · (n+1). Otherwise
go on to Round (n + 2).

It is clear that this process must be completed after at most k+1 rounds, so
that |Λ| ≤ ω · (k + 1) and lfp(Λ) is always a c.e. set.

The following lemma gives an alternate approach to proving part (2) of The-
orem 12 and will be needed below.

Lemma 13. Let Λ be a k-weakly finitary Σ0
1 monotone operator with index

〈k, e〉 = 〈k, 〈d, 〈m1, e1, . . . ,mk, ek〉〉.

Then for some finite subset F of {m1, . . . ,mk}, lfp(Λ) = Γω
d (F ).

Proof. Let F = {mi : mi ∈ lfp(Λ)}. Then certainly Γω
d (F ) ⊆ Λω(F ) ⊆ lfp(Λ).

For the reverse inclusion, it suffices to show that C = Γω
d (F ) is closed under Λ.

If Λ(C)−C �= ∅, then either (i) there is some y /∈ SΓ = {m1, . . . ,mk} such that
y ∈ Γd(C) or (ii) there is some mi such Wa ⊆ C for some a ∈ Wei

. Note that
(i) is not possible since Γd(C) ⊆ C because Γd is a Σ0

1 monotone operator, so
Γd(Γω(F )) = Γω(F ). But (ii) is not possible since otherwise mi ∈ F and F ⊆ C.
Thus it must be the case that Λ(C) = Γd(C).

Next we need to define the family of difference sets of Σ0
3 sets. For two Σ0

3

sets A and B , the difference A − B is the intersection of Σ0
3 set and a Π0

3 set
and is said to be a 2-Σ0

3 set. For n > 0, we say that a set C is 2n-Σ0
3 if and only

if A is the union of n 2-Σ0
3 sets and is 2n+ 1-Σ0

3 if and only if A is the union of
a Σ0

3 set with a 2n-Σ0
3 set. We say that A is n-Π0

3 set if the complement of A is
n-Σ0

3 set.
We can then prove the following.

Theorem 14. Fix an infinite coinfinite recursive set Rt. Then for each k, {e :
lfp(Λk,e) ∩Rt is computable} is a (2k+1 − 1)-Σ0

3 set.

Proof. Fix a set F ⊆ {1, . . . , k}. For each index 〈k, e〉 = 〈k, 〈d, 〈m1, e1, . . . ,mk,
ek〉〉, let MF,k,e = Γω

d ({mi : i ∈ F}). We are interested in analyzing the predicate
that

P (F, k, e) : MF,k,e = lfp(Γk,e) & Rt ∩MF,k,e is computable. (3)

It follows from Lemma 13 that lfp(Λk,e) = MF,k,e if and only if

1. {mi : (∃a ∈ Wei
)(Wa ⊆ MF,k,e)} ⊆ {mi : i ∈ F} and

2. for all G � F , {mi : (∃a ∈ Wei
)(Wa ⊆ MG,k,e)} � {mi : i ∈ G}.
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The predicate that {mi : (∃a ∈ Wei
)(Wa ⊆ MG,k,e)} � {mi : i ∈ G} is Σ0

3 since
it holds iff there is an i ∈ {1, . . . , k}−G such that (∃a)(a ∈ Wei

& Wa ⊆ MG,k,e).
Since MG,k,e is uniformly c.e., the predicate Wa ⊆ MG,k,e is Π0

2 and hence the
predicate (∃a)(a ∈ Wei

& Wa ⊆ MG,k,e) is Σ0
3 . It follows that the predicate

{mi : (∃a ∈ Wei
)(Wa ⊆ MF,k,e)} ⊆ {mi : i ∈ F} is Π0

3 if F �= {1, . . . , k}.
Finally, the predicate “MF,k,e∩Rt is computable” is Σ0

3 . Thus if F �= {1, . . . , k},
the predicate P (F, k, e) is the conjunction of a Σ0

3 and Π0
3 predicate and hence

is 2-Σ0
3 predicate. If F = {1, . . . , k}, then, we may omit the Π0

3 predicate so that
P (F, k, e) is a Σ0

3 predicate.
It follows that the predicate that {e : lfp(Γk,e) ∩ Rt is computable} is a

disjunction of 2k − 1 2-Σ0
3 sets and one Σ0

3 set and hence a 2k+1 − 1 set.

It is important to note that the set of all 〈k, e〉 such that lfp(Λk,e) itself is
computable is just Σ0

3 . That is, for each finite F ⊆ {1, . . . , k} and each com-
putable set R, the question of whether R = MF,k,e is a Π0

2 question since
MF,k,e is uniformly c.e.. If there is an F such that R = MF,k,e, then the
question of whether {mi : (∃a ∈ Wei

)(Wa ⊆ R)} ⊆ {mi : i ∈ F} is a Π0
2

question. That is, the question whether Wa ⊆ R is a Π0
1 question so that

the question of whether (∃i ∈ {1, . . . , k} − F )(∃a)(a ∈ Wei
& Wa ⊆ R) is

a Σ0
2 question. Thus lfp(Λk,e) is computable if and only if there is an s and

there exists an F ⊆ {1, . . . , k} such that Ws is computable, MF,k,e = Ws,
{mi : (∃a ∈ Wei

)(Wa ⊆ Ws)} ⊆ {mi : i ∈ F}, and for all G � F , {mi :
(∃a ∈ Wei

)(Wa ⊆ MG,k,e)} � {mi : i ∈ G}. Since the predicates Ws is com-
putable, MF,k,e = Ws, and {mi : (∃a ∈ Wei

)(Wa ⊆ Ws)} ⊆ {mi : i ∈ F} are all
Π0

2 and the predicates {mi : (∃a ∈ Wei
)(Wa ⊆ MG,k,e)} � {mi : i ∈ G} are Σ0

3 ,
the predicate lfp(Λk,e) is computable is Σ0

3 . We can then proceed as in proof of
Theorem 12 to prove {〈k, e〉 : lfp(Λk,e) is computable} is Σ0

3 -complete. Thus we
have the following.

Theorem 15. {〈k, e〉 : lfp(Λk,e) is computable} is Σ0
3 -complete.

Finally, we give a completeness result for Theorem 14 in the case where k = 1.

Theorem 16. Let Rt be a fixed infinite coinfinite recursive set. {e : lfp(Λ1,e) ∩
Rt is computable} is 3-Σ0

3 -complete.

Proof. The upper bound on the complexity is given by the proof of Theorem
14. For the other direction, fix Rt = {2n : n ∈ N} without loss of generality.
Let C = {e : lfp(Λ1,e) ∩ Rt is computable}. Note that it is proved in [6] that
Rec = {e : We is computable} and Cof = {e : We is cofinite} are Σ0

3 complete.
For the completeness, first we claim that

D = {〈a, b, c〉 : (Wa is not cofinite & Wb is recursive) ∨ Wc is recursive}

is 3-Σ0
3 complete. That is, let S = (B−A)∪C, where A,B,C are Σ0

3 . Then there
are functions f, g, h such that a ∈ A ⇐⇒ f(a) ∈ Cof , b ∈ B ⇐⇒ g(b) ∈ Rec,
and c ∈ C ⇐⇒ h(c) ∈ Rec. Thus < a, b, c >∈ S iff [(f(a) /∈ Cof) and g(b) ∈
Rec) or h(c) ∈ Rec] iff φ(s) =< f(a), g(b), h(c) >∈ D. Thus it suffices to reduce
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D to C. That is, we will define a 1-weakly finitary Σ0
1 monotone operator Λf(a,b,c)

such that lfp(Λf(a,b,c))∩Rt is computable} if and only if 〈a, b, c〉 ∈ D. Since Rec
and Cof are Σ0

3 complete, it follows that there exists a computable function g
such that Wc is recursive or Wa is cofinite if and only if Wg(a,c) is cofinite. Let
ω = Wm and let h be a computable function such that for each n, Wh(n) =
{8i+ 3 : i > n}. The inductive operator Λ = Λf(a,b,c) is defined by the following
clauses.

(1) 0 ∈ Λ(A) if Wh(n) ⊆ A for some n.

(2) 8〈i, s〉 + 1 ∈ Λ(A) if i ∈ Wg(a,c),s or 8〈i, s + 1〉 + 1 ∈ A.

(3) 8i + 3 ∈ Λ(A) if 8〈i, 0〉 + 1 ∈ A.

(4) 8〈i, s〉 + 5 ∈ Λ(A) if i ∈ Wb,s or 8〈i, s + 1〉 + 5 ∈ A.

(5) 8i + 2 ∈ Λ(A) if 8〈i, 0〉 + 5 ∈ A.

(6) 8〈i, s〉 + 7 ∈ Λ(A) if 0 ∈ A and either i ∈ Wc,s or 8〈i, s + 1〉 + 7 ∈ A.

(7) 8i + 4 ∈ Λ(A) if 8〈i, 0〉 + 7 ∈ A.

(8) 8i + 2 ∈ Λ(A) if 0 ∈ A.

It is easy to see that clauses (2)-(8) define a computable monotone inductive
operator so that Λ is a 1-weakly finitary Σ0

1 operator where SΛ = {0}.
Clauses of type (2) and (3) ensure that lfp(Λ) must include {8i + 3 : i ∈

Wg(a,c} and clauses of type (4) and (5) ensure that lfp(Λ) must include {8i+ 2 :
i ∈ Wb}.

Let M = lfp(Λ). If Wg(a,c) is cofinite, then one of the clauses of type (1) will
apply and then the clauses of type (6), (7), and (8) will ensure that M∩Rt equals
{0}∪{8i+2 : i < ω}∪{8i+4 : i ∈ Wc} and, hence, M ∩Rt will be computable if
and only if Wc is computable. If Wg(a,c) is not cofinite, then M ∩Rt will consist
of {8i + 2 : i ∈ Wb} and, hence, M ∩Rt will be computable if and only if Wb is
computable.

If 〈a, b, c〉 ∈ D, then there are two cases. First suppose that Wc is com-
putable. Then Wg(a,c) is cofinite so that M ∩Rt is computable as desired. Next
suppose that Wc is not computable. Then we must have Wa not cofinite and Wb

computable. In this case, Wg(a,c) is not cofinite and M ∩Rt is again computable.
If 〈a, b, c〉 /∈ D, then Wc is not computable and either Wa is cofinite or Wb

is not computable. Again there are two cases. First suppose that Wa is cofinite.
Then Wg(a,c) is cofinite, so that M ∩Rt is not computable, as desired. If Wa is
not cofinite, then Wg(a,c) is not cofinite and Wb is not computable. Thus again
M ∩Rt is not computable.

We conjecture that a similar completeness result will hold for k-weakly Σ0
1

operators. Finally, we remark that k-weakly computable monotone operators
may be defined and corresponding versions of Theorems 14, 15 and 16 can be
shown.
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Abstract. Recent work in constructive mathematics show that Hilbert’s
program works for a large part of abstract algebra. Furthermore the ar-
guments we get are not only elementary but also mathematically simpler.
We present an example where the simplification was significant enough
to suggest an improved version of a classical theorem. For this we use a
general method to transform some logically complex first-order formulae
in a geometrical form which may be interesting in itself.

1 Introduction

The purpose of this extended abstract is to survey recent works in constructive
algebra [4, 5, 6, 7, 8, 9] from the point of view of mathematical logic. The goal is
to illustrate the relevance of simple logical considerations in the development of
constructive algebra.

We analyse the logical complexity of statements and proofs in abstract alge-
bra. Two notions of formulae, being geometrical and being first-order, will play
an important role. The two notions are in general incomparable. Both notions
have a fundamental “analytical” property: if a statement is formulated in first-
order logic and has a proof, then we know that it can be proved in a first-order
way. Similarly, if a geometrical statement holds, it has a constructive proof which
has a particularly simple tree form [2, 7, 9].

We present first some basic examples in algebra which are directly formulated
with the required logical complexity: the first one is an implication between equa-
tional statements, and the second one is geometric and first-order. We end with
a more elaborate example, that was a mathematical conjecture and where a first-
order formulation is not obvious. We can transform further it to a geometrical
problem applying a general method which may be interesting in itself. Knowing
a priori that we had to look for an “analytical” proof involving only simple al-
gebraic manipulations helps then in finding a proof. One main theme, which is
also present in the work [10] is the elimination of Noetherianity hypotheses to
get simple first-order statements.
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2 Logical Complexity

The theory of commutative rings is a first-order theory, and actually even equa-
tional. We need 3 symbols of functions +,×,−, we often write ab for a× b, two
constants 0, 1 and the axioms are

x + (−x) = 0, x + (y + z) = (x + y) + z, x + y = y + x, x + 0 = x

x1 = x, xy = yx, x(yz) = (xy)z, x(y + z) = xy + xz

Some elementary concepts and theorems of commutative abstract algebra can
be formulated in this language. For instance the notion of integral ring can be
represented by the formula

xy = 0 → [x = 0 ∨ y = 0]

By the completness theorem of first-order logic, we know that if a theorem can
be formulated as a first-order theorem, it has a proof in first-order logic. If it is
furthermore formulated equationally, we even know, by Birkhoff’s completness
theorem, that there is a purely equational proof. This can be seen as a partial
realisation of Hilbert’s program.

If we take however a basic book in abstract algebra such as Atiyah-Macdonald
or Matsumura [1, 18] we discover that even basic theorems are not formulated in
a first-order way because of the introduction of abstract notions. Such abstract
notions are

1. arbitrary ideals of the rings, that are defined as subsets, which is not a
first-order notion

2. prime or maximal ideals, whose existence relies usually on Zorn’s lemma,
3. Noetherianity

These notions have different levels of non effectivity. The notion of Noethe-
rianity can be captured by a generalised inductive definition [14], but we leave
then first-order logic. The notion of prime ideals seems even more ineffective: it
is rather simple to build effective rings, that is with computable operations and
decidable equality, with an empty set of prime ideals constructively.

Furthermore a notion such as “being nilpotent” cannot be expressed in a first-
order way since it involves an infinite disjunction (or alternatively, an existential
quantification over natural numbers).

G. Wraith [21] points us the relevance of the notion of geometric formula for
constructive algebra. One defines first the notion of positive formulae: a positive
formula is one formula of the language of rings built using positive atomic formula
(equality between two terms) and the connectives ∨,∧. Special cases are the
empty disjunction which is the false formula ⊥, and the empty conjunction which
is the true formula T . We allow also existential quantification and existential
quantification over natural numbers1. A geometrical formula is an implication

1 Sometimes, the notion of “arbitrary” infinite disjunction is allowed, but we shall not
need this generality here.
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between two positive formulae. Notice that, as special cases, any positive formula
is geometrical, and the negation of a positive formula is geometrical.

The notion for a ∈ R to be nilpotent is not first-order but it can be expressed
as a positive formula: a is nilpotent if and only if an = 0 for some n ∈ N. Another
typical example [21] of notion expressed by a geometrical formula if the notion
of flat module M over a ring R. It says that if we have a relation PX = 0 where
P is a line vector in coefficient in R and X a column vector with elements in M
then we can find a rectangular matrix Q and a vector Y such that QY = X and
PQ = 0. Since we don’t say anything about the dimension of Q this statement
involves implicitely an infinite disjunction over natural numbers. Thus the notion
of flat module is not first-order but geometric.

As stressed by G. Wraith the importance of geometric formula comes from
Barr’s theorem: if a geometric formula is provable classically from axioms that
are geometric, then there is a constructive proof. Furthermore this proof has a
simple branching tree form, of a dynamical proof [7, 2, 9].

Both the completeness theorem and Barr’s theorem however are purely heuris-
tic results from a constructive point of view. Indeed, they are both proved using
non constructive means, and do not give algorithms to transform a non effective
proof to an effective one. In practice however, in all examples analysed so far,
it has been possible to extract effective arguments from the ideas present in the
non effective proofs.

3 Some Basic Examples

In this section, we provide two elementary examples where Barr’s theorem can
be invoked. They are directly expressed with the appropriate logical complexity.
In the next section, we present more elaborate examples where some works has
to be done in order to get the right logical complexity. For the first example of
this section, Birkhoff’s completness theorem for equational logic is enough. Both
examples appear at the beginning of [18].

3.1 Dimension over Rings

The following result is usually proved using maximal ideals [18].

Theorem 1. If n < m and f : Rn → Rm is surjective then 1 = 0 ∈ R.

What is the logical complexity of this statement? If we fix n and m, let say
n = 2 and m = 3 the statement becomes an implication from a conjunction of
equalities to 1 = 0. More precisely, the hypothesis is that we have a 2×3 matrix
P and a 3 × 2 matrix Q such that PQ = I. That is we have 9 equations of the
form

pi1q1j + pi2q2j = δij

with i, j = 1, 2, 3.
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The classical proof uses existence of maximal ideals: if R is not trivial it has
a maximal ideal m. If k = R/m we have a surjective map from kn to km and
this is a contradiction.

It is possible to transform this argument in a direct equational reasoning.
Here we simply remark that the concrete statement means that 1 belongs to the
ideal generated by pi1q1j +pi2q2j−δij , seeing pik, qkj as indeterminates, and this
can be certified with a simple algebraic identity.

3.2 Projective Modules over Local Rings

We analyse the following elementary theorem.

Theorem 2. If M is a finitely generated projective module over a local ring R
then M is free.

The concrete formulation of this theorem [17] is the following.

Theorem 3. If F is an idempotent square matrix over a local ring R then F is
similar to a matrix of the form (

I 0
0 0

)
The statement of this theorem, for a fixed size of F is first-order and

geometric.
We have a first-order classical derivation, that we can transform by proof-

theoretic methods to a constructive first-order derivation.

Proof. (Classical) The fact that R is local is expressed by the geometrical formula

Inv(x) ∨ Inv(1 − x)

where Inv(a) means ∃y.ay = 1. We have

Inv(xy) ↔ (Inv(x) ∧ Inv(y))

It follows that we have, for all x and y

Inv(x) ∨ Inv(1 − xy)

Classically it is possible to derive from this

Inv(x) ∨ ∀y.Inv(1 − xy)

that is any element x is invertible or belongs to the Jacobson radical of R, which
is the only maximal ideal of R2. Constructively, this inference is not justified.

2 Classically the Jacobson radical of R is the intersection of all maximal ideals of R.
It is easy to see that this is the same as the set of elements x such that all 1 − xy
are invertible, and this is a first-order characterisation of the Jacobson radical.
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If J is the Jacobson radical of R, we have proved classically

Inv(x) ∨ x ∈ J

We can use this to prove the theorem: we get that the matrix F is similar to a
matrix of the form (

I L
0 G

)
where all the elements of G are in J . Since F is idempotent, so is G and we get
G(I − G) = 0. Since all elements of G are in J , the determinant of I − G is
invertible and hence G = 0. The matrix(

I L
0 0

)
is then similar to the matrix (

I 0
0 0

)
since it is PFP−1, where P is the matrix(

I L
0 I

)
This reasoning is (for a fixed size matrix) done in first-order logic. But it uses

the classical validity of Inv(x) ∨ x ∈ J . It is known from proof theory that we
can transform this argument to a constructive one, using for instance negative
translations or cut-elimination.

It is interesting that the argument we get in this way, when simplified gives
an argument which is mathematically simpler than the classical argument.

Proof. (Constructive) For any square matrix H either the determinant of I −H
is invertible or there is an element in H which is invertible. If H is idempotent
this implies, since H(I −H) = 0, that H = 0 or there is an element in H which
is invertible. Using this remark, we see directly that the matrix F is similar to
a matrix of the form (

I L
0 0

)
and we can conclude as above.

Notice that this last argument can be read as an algorithm: given the matrix
F , and a procedure to decide whether x or 1 − x is invertible, it computes an
invertible matrix Q such that QFQ−1 has the required form.

4 Serre’s Splitting-Off Theorem

4.1 Classical Formulation

The example we are going to present has his origin in a paper of Serre [19] from
1958. It is a purely algebraic theorem, but it has a geometrical intuition. (The
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geometrical statement is roughly that if we have a vector fibre bundle over a
space of finite dimension, and each fiber have a large enough dimension, then we
can find a non vanishing section.) We give first the classical formulation, where
both hypotheses and conclusions have a non elementary form, and then a version
where the conclusion is first-order.

We assume R to be a noetherian ring, and we let Max(R) to be the space of
maximal ideals with the topology induced from the Zariski topology. We assume
that the dimension of Max(R) is finite and < n (that is there is no proper chains
of irreducible closed sets of length n). For instance, if R is a local ring, then
Max(R) is a singleton and we can take n = 1.

If M is a finitely generated module over R and x a maximal ideal of R, then
M/xM is a finite dimensional vector space over k = R/x and we let rx(M) be
its dimension. (Intuitively, M represents the module of global section of a vector
bundle over the space Max(R) and rx(M) is the dimension of the fiber at the
point x ∈ Max(R).) If s ∈ M it is suggestive to write s(x) the equivalence class
of s in M(x) = M/xM . Intuitively s(x) is a continuous family of sections in the
fibers M(x).

Theorem 4 (Serre, 1958). If M is a finitely generated projective module over
R such that n ≤ rx for all maximal ideals x of R. There exists s ∈ M such that
s(x) �= 0 for all x ∈ Max(R).

The first step is to give a more concrete formulation of this result. We give
only the end result [8, 17]. If F is a matrix over R we let Δk(F ) be the ideal
generated by all minors of F of order k. We say that a vector of elements of R
is unimodular if and only if 1 belongs to the ideal generated by these elements.

Theorem 5 (Serre, 1958, concrete version). If F is an idempotent matrix
over R and Δn(F ) = 1 then there exists a linear combination of the columns of
F which is unimodular.

Interestingly, in this form, the theorem can then be seen as a special case
of Swan’s theorem [20], theorem conjectured by Serre. The generalisation of
these theorems to the non Noetherian case has been first established in [8], by
analysing the paper [13] using the techniques that are presented in this note.

Notice that the conclusion of this theorem is expressed in first-order logic,
and even in a positive way. The hypothesis however is non elementary: we sup-
pose both that R is Noetherian and we have an hypothesis on the dimension of
Max(R). It was conjectured that the theorem holds without the hypothesis that
R is Noetherian, and this is the statement that we want to analyse. It is left to
express the hypothesis of the theorem dim (Max(R)) < n in a first-order way.

4.2 Geometric Formulation of Krull Dimension

The first step is to give an elementary formulation of the notion of Krull dimen-
sion. It is not so easy a priori since the usual definition is in term of chain of
prime ideals: a ring R is of Krull dimension < n if and only if there is no proper



92 T. Coquand

chain of prime ideals of length n. An elementary definition is presented in [5].
We introduce first the notion of boundary of an element of a ring: the boundary
Na of a is the ideal generated by a and the elements x such that ax is nilpotent,
that is belong to the nilradical of R. Classically the nilradical is the intersection
of all prime ideals of R. We define then inductively Kdim R < n: for n = 0 it
means that 1 = 0 ∈ R and for n > 0 it means that we have Kdim (R/Na) < n−1
for all a ∈ R.

For each n, we get a formulation of Kdim R < n which is positive, but not
first-order. For instance Kdim R < 1 is expressed by the formula

∀x.∃a.
∨
k∈N

xk(1 − ax) = 0

while Kdim R < 2 is expressed by

∀x, y.∃a, b.
∨
k∈N

yk(xk(1 − ax) − by)) = 0

We can now expressed the concrete form of the non Noetherian version of
Forster’s theorem (that motivated Swan’s theorem in the Noetherian case).

Theorem 6 (Heitmann, 1984, concrete version). If Kdim R < n and if F
is a rectangular matrix over R such that Δn(F ) = 1 then there exists a linear
combination of the columns of F which is unimodular.

The formulation is now geometric (but not first-order). The hypothesis is
a positive statement (of the form ∀∃ but the existential quantification is over
natural numbers) and the conclusion is purely existential. We expect it to have a
constructive proof, of a very simple nature furthermore. In this case, it is enough
to extract this direct proof from the argument in [13]. This is carried out in [8].

4.3 A New Notion of Dimension

We present now a notion of dimension, introduced in [8] and which appears
implicitely in [13]. This notion is finer than the notion of Krull dimension: we
always have Hdim(R) ≤ Kdim R. Interestingly Hdim(R) ≤ n can be expressed by
a first-order formula, but the logical complexity of this formula increases with
n, contrary to Kdim R ≤ n which stays a positive formula (and thus, proof-
theoretically can be considered to be Π0

2 ) for all n.
We get this definition by changing the nilradical in the definition of Krull

dimension by the Jacobson radical J which is classically the intersection of all
maximal ideals, but can be defined in a first-order way as the set of elements a
such that 1 − ax is invertible for all x ∈ R. We introduce then a new notion of
boundary of an element of a ring: the boundary Ja of a is the ideal generated
by a and the elements x such that ax is in the Jacobson radical of R. We define
then inductively Hdim(R) < n: for n = 0 it means that 1 = 0 ∈ R and for n > 0
it means that we have Hdim(R/Na) < n− 1 for all a ∈ R.
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What is the logical complexity of Hdim(R) < n? We introduce the predicate
Inv(x) which means ∃y.xy = 1 and the predicate J(x) which means ∀y.Inv(1−xy).
For n = 1 we get that Hdim(R) < n means

∀x.∃a.J(x(1 − ax))

which is a prenex formula with two alternations of quantifiers. For n = 2 we get
an even more complex formula, and the logical complexity increases with n.

In this way we get a way to state a plausible non Noetherian version of Swan’s
theorem in a purely first-order way, as an implication

Hdim(R) < n → Δn(F ) = 1 → ∃X,Y.1 = XFY

where X is a vector line and Y a vector column. For a given n and a given size
of F this is a first-order statement.

The form of the statement for Hdim(R) < n is particular since it is a purely
prenex formula. It is then possible to conclude, by using general proof-theoretic
arguments that, if we have a first-order classical proof, then we also have an in-
tuitionistic proof. From proof theory, one can use sharpened Gentzen Hauptsatz
[12], or a negative translation.

Alternatively, we can find another statement equivalent to this which can be
expressed in a geometrical and first-order way. We illustrate the idea only for
n = 1. We have see that Hdim(R) < 1 is equivalent to

∀x.∃a.∀y.∃b.1 = b(1 − yx(1 − ax))

We replace this hypothesis by the following geometrical theory φ(I, J)

∀x.∃a.J(x(1 − ax)), ∀x, y.J(x) → I(1 − xy), ∀x.I(x) → ∃y.1 = xy

where J, I are new predicate symbols.
It is quite easy to see that we have, for any statement ψ which does not

contain I, J
(Hdim(R) < 1) → ψ

if and only if
φ(I, J) → ψ

Indeed, we have clearly φ(I, J) → Hdim(R) < 1, so that (Hdim(R) < 1) → ψ
implies φ(I, J) → ψ. Conversely if φ(I, J) → ψ, since ψ does not contain I, J
we can instantiate I(x) to the predicate ∃y.1 = xy and J(x) to the predicate
∀y.I(1 − xy) and we get Hdim(R) < 1 → ψ.

It can be checked that if R is Noetherian then Hdim(R) < n if and only
if dim (Max(R)) < n. A possible generalisation of Serre’s theorem can thus be
formulated as follows.

Theorem 7 ([8], 2004). If Hdim(R) < n and if F is a rectangular matrix over
R such that Δn(F ) = 1 then there exists a linear combination of the columns of
F which is unimodular.
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The formulation of this theorem is now purely first-order and geometric, in a
geometrical theory which has a specially simple form (no branching). If it holds,
it has a purely elementary proof, and knowing this helps in finding a proof [8].

We can read the proof presented in [8] as an algorithm which produces an
unimodular column. To analyse the complexity of this algorithm seems to be an
interesting problem.

It is remarkable that the Noetherian hypothesis could be avoided in this
case. There are examples in algebra, like Krull’s Principal Ideal theorem, or the
regular element property where the Noetherian hypothesis is necessary.
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Abstract. Following Lutz’s approach to effective (constructive) dimen-
sion, we define a notion of dimension for individual sequences based
on Schnorr’s concept(s) of randomness. In contrast to computable ran-
domness and Schnorr randomness, the dimension concepts defined via
computable martingales and Schnorr tests coincide. Furthermore, we
give a machine characterization of Schnorr dimension, based on pre-
fix free machines whose domain has computable measure. Finally, we
show that there exist computably enumerable sets which are Schnorr
irregular: while every c.e. set has Schnorr Hausdorff dimension 0 there
are c.e. sets of Schnorr packing dimension 1, a property impossible in
the case of effective (constructive) dimension, due to Barzdin’s
Theorem.

1 Introduction

Martin-Löf’s concept of individual random sequences was recently generalized
by Lutz [10, 11], who introduced an effective notion of Hausdorff dimension. As
(classical) Hausdorff dimension can be seen as a refinement of Lebesgue measure
on 2N, in the sense that it further distinguishes between classes of measure 0,
the effective Hausdorff dimension of an individual sequence can be interpreted
as a degree of randomness of the sequence. This viewpoint is supported by a
series of results due to Ryabko [15, 16], Staiger [21, 20], Cai and Hartmanis [3],
and Mayordomo [12], which establish that the effective Hausdorff dimension of
a sequence equals its lower asymptotic Kolmogorov complexity (plain or prefix-
free).

Criticizing Martin-Löf’s approach to randomness as not being truly algo-
rithmic, Schnorr [18] presented two alternative randomness concepts, one based
one computable martingales, nowadays referred to as computable randomness,
the other based on stricter effectivity requirements for Martin-Löf tests. This
concept is known as Schnorr randomness.

S.B. Cooper, B. Löwe, and L. Torenvliet (Eds.): CiE 2005, LNCS 3526, pp. 96–105, 2005.
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In this paper we will generalize and extend Schnorr’s randomness concepts to
Hausdorff dimension. Like in the case of randomness, the approach suffers from
some technical difficulties like the absence of a universal test/martingale. We will
see that for dimension, Schnorr’s two approaches coincide, in contrast to Schnorr
randomness and computable randomness. Furthermore, it turns out that, with
respect to Schnorr dimension, computably enumerable sets can expose a complex
behavior, to some extent. Namely, we will show that there are c.e. sets of high
Schnorr packing dimension, which is impossible in the effective case, due to a
result by Barzdin’ [2]. On the other hand, we prove that the Schnorr Hausdorff
dimension of the characteristic sequence of a c.e. set is 0. Thus, the class of
computably enumerable sets contains irregular sequences – sequences for which
Hausdorff and packing dimension do not coincide.

The paper is structured is as follows. In Section 2 we give a short intro-
duction to the classical theory of Hausdorff measures and dimension, as well
as packing dimension. In Section 3 we will define algorithmic variants of these
concepts based on Schnorr’s approach to randomness. In Section 4 we prove
that the approach to Schnorr dimension via coverings and via computable mar-
tingales coincide, in contrast to Schnorr randomness and computable random-
ness. In Section 5 we derive a machine characterization of Schnorr Hausdorff
and packing dimension. Finally, in Section 6, we study the Schnorr dimension
of computably enumerable sets. The main result here will be that on those sets
Schnorr Hausdorff dimension and Schnorr packing dimension can differ as largely
as possible.

We will use fairly standard notation. 2N will denote the set of infinite bi-
nary sequences. Sequences will be denoted by upper case letters like A,B,C, or
X,Y,Z. We will refer to the nth bit (n ≥ 0) in a sequence B by either Bn or
B(n), i.e. B = B0B1B2 . . . = B(0)B(1)B(2) . . ..

Strings, i.e. finite sequences of 0s and 1s will be denoted by lower case letters
from the end of the alphabet, u, v, w, x, y, z along with some lower case Greek
letters like σ and τ . {0, 1}∗ will denote the set of all strings. The initial segment
of length n, A�n, of a sequence A is the string of length n corresponding to the
first n bits of A.

Given two strings v, w, v is called a prefix of w, v � w for short, if there
exists a string x such that vx = w, where vx is the concatenation of v and x.
Obviously, this relation can be extended to hold between strings and sequences
as well. A set of strings is called prefix free if all its elements are pairwise incom-
parable.

Initial segments induce a standard topology on 2N. The basis of the topology
is formed by the basic open cylinders (or just cylinders, for short). Given a string
w = w0 . . . wn−1 of length n, these are defined as [w] = {A ∈ 2N : A �n= w}.
For C ⊆ {0, 1}∗, we define [C] =

⋃
w∈C [w].

Throughout the paper we assume familiarity with the basic concepts of
computability theory such as Turing machines, computably enumerable sets,
computable and left-computable (c.e.) reals. Due to space consideration, formal
proofs of the results are omitted. (Some ideas are sketched.)
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2 Hausdorff Measures and Dimension

The basic idea behind Hausdorff dimension is to generalize the process of mea-
suring a set by approximating (covering) it with sets whose measure is already
known. Especially, the size of the sets used in the measurement process will be
manipulated by certain transformations, thus making it harder (or easier) to
approximate a set with a covering of small accumulated measure. This gives rise
to the notion of Hausdorff measures.

Definition 1. Let X ⊆ 2N. Given δ > 0 and a real number s ≥ 0, define

Hs
δ(X ) = inf

{∑
w∈C

2−|w|s : (∀w ∈ C)[2−|w| ≤ δ] ∧ X ⊆ [C]

}

The s-dimensional Hausdorff measure of X is defined as

Hs(X ) = lim
δ→0

Hs
δ(X ).

Note that Hs(X ) is well defined, since, as δ decreases, there are fewer δ-covers
available, hence Hs

δ is non-decreasing. However, the value may be infinite. For
s = 1, one obtains Lebesgue measure on 2N.

The outer measures Hs have an important property.

Proposition 2. Let X ⊆ 2N. If, for some s ≥ 0, Hs(X ) < ∞, then Ht(X ) = 0
for all t > s.

This means that there can exist only one point s ≥ 0 where a given class
might have finite positive s-dimensional Hausdorff measure. This point is the
Hausdorff dimension of the class.

Definition 3. For a class X ⊆ 2N, define the Hausdorff dimension of X as

dimH(X ) = inf{s ≥ 0 : Hs(X ) = 0}.

For more on Hausdorff measures and dimension refer to the book by Falconer
[7]. A presentation of Hausdorff measures and dimension in 2N can be found in
[13].

2.1 Packing Dimension

We say that a prefix free set P ⊆ {0, 1}∗ is a packing for X ⊆ 2N, if for every
σ ∈ P , there is some A ∈ X such that σ 
 A.

Given s ≥ 0, δ > 0, let

Ps
δ (X ) = sup

{∑
w∈P

2−|w|s : P packing for X and (∀w ∈ P )[2−|w| ≤ δ

}
. (1)
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Ps
δ (X ) decreases with δ, so the limit Ps

0(X ) = limδ→0 Ps
δ (X ) exists. Finally,

define

Ps(X ) = inf

{∑
Ps

0(Xi) : X ⊆
⋃
i∈N

Xi

}
. (2)

(The infimum is taken over arbitrary countable covers of X .) Ps is called, in
correspondence to Hausdorff measures, the s-dimensional packing measure on
2N. Packing measures were introduced by Tricot [24] and Taylor and Tricot [23].
They can be seen as a dual concept to Hausdorff measures, and behave in many
ways similar to them. In particular, one may define packing dimension in the
same way as Hausdorff dimension.

Definition 4. The packing dimension of a class X ⊆ 2N is defined as

dimP X = inf{s : Ps(X ) = 0} = sup{s : Ps(X ) = ∞}. (3)

Again, we refer to Falconer’s book [7] for details on packing measures and
dimension.

2.2 Martingales

It is possible do characterize Hausdorff and packing dimension via martingales,
too. Martingales have become a fundamental tool in probability theory. In Cantor
space 2N, they can be described very conveniently.

Definition 5. A martingale on 2N is a function d : {0, 1}∗ → [0,∞) which
satisfies

d(w) =
d(w01) + d(w1)

2
for all w ∈ {0, 1}∗.

Martingales can be interpreted as capital functions of an accordant betting
strategy, when applied to a binary sequence. The value d(w) reflects the player’s
capital after bits w(0), . . . , w(|w| − 1) have been revealed to him.

Definition 6. Let g : N → [0,∞) be a positive, unbounded function. A martin-
gale is g-successful (or g-succeeds) on a sequence B ∈ 2N if

d(B �n) ≥ g(n) for infinitely many n.

d is strongly g-successful (or g-succeeds strongly) on a sequence B ∈ 2N if

d(B �n) ≥ g(n) for all but finitely many n. (4)

It turns out that, in terms of Hausdorff dimension, the relation between Hs-
nullsets and 2(1−s)n-successful martingales is very close.

Theorem 7. Let X ⊆ 2N. Then it holds that

dimH X = inf{s : ∃ martingale d 2(1−s)n-successful on all B ∈ X}. (5)
dimP X = inf{s : ∃ martingale d strongly 2(1−s)n-successful on all B ∈ X}.(6)
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In the form presented here, equation (5) was first proven by Lutz [9]. How-
ever, close connections between Hausdorff dimension and winning conditions on
martingales have been observed by Ryabko [17] and Staiger [22]. Equation (6)
is due to Athreya, Lutz, Hitchcock, and Mayordomo [1].

Note that, if a martingale 2(1−s)n-succeeds on a sequence A, for any t > s it
will hold that

limsup
n→∞

d(A�n)
2(1−t)n

= ∞. (7)

So, when it comes to dimension, we will, if convenient, use (7) and the original
definition interchangeably. Furthermore, a martingale which satisfies (7) for t = 1
is simply called successful on A.

3 Schnorr Null Sets and Schnorr Dimension

We now define a notion of dimension based on Schnorr’s approach to randomness.

Definition 8. Let s ∈ [0, 1] be a rational number.

(a) A Schnorr s-test is a computable sequence (Sn)n∈N of c.e. sets of finite
strings such that, for all n,

∑
w∈Sn

2−|w|s ≤ 2−n, and
∑

w∈Sn
2−|w|s is a

uniformly computable real number.
(b) A class A ⊆ 2N is Schnorr s-null if there exists a Schnorr s-test (Sn) such

that A ⊆
⋂

n∈N[Sn].

The Schnorr random sequences are those which are (as a singleton class in
2N) not Schnorr 1-null.

Downey and Griffiths [4] observe that, by adding elements, one can replace
any Schnorr 1-test by an equivalent one (i.e., one defining the same Schnorr
nullsets) where each level of the test has measure exactly 2−n. We can apply
the same argument in the case of arbitrary rational s, and hence we may, if
appropriate, assume that

∑
w∈Sn

2−|w|s = 2−n, for all n.
Note further that, for rational s, each set Sn in a Schnorr s-test is actually

computable, since to determine whether w ∈ Sn it suffices to enumerate Sn
until the accumulated sum given by

∑
2−|v|s exceeds 2−n − 2|w|s (assuming the

measure of the n-th level of the test is in fact 2−n). If w has not been enumerated
so far, it cannot be in Sn. (Observe, too, that the converse does not hold.)

One can describe Schnorr s-nullsets also in terms of Solovay tests. Solo-
vay tests were introduced by Solovay [19] and allowed for a characterization
of Martin-Löf nullsets via a single test set, instead of a uniformly computable
sequence of test sets.

Definition 9. Let s ∈ [0, 1] be rational.

(a) An Solovay s-test is a c.e. set C ⊆ {0, 1}∗ such that
∑

w∈C 2−|w|s ≤ 1.
(b) An Solovay s-test is total if

∑
w∈C 2−|w|s is a computable real number.

(c) An Solovay s-test C covers a sequence A ∈ 2N if it contains infinitely
many initial segments of A. In this case we also say that A fails the test C.
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Theorem 10. For any rational s ∈ [0, 1], a class X ⊆ 2N is Schnorr s-null
if and only if there is a total Solovay s-test which covers every sequence A ∈ X .

3.1 Schnorr Dimension

Like in the classical case, each class has a critical value a critical value with
respect to Schnorr s-measure.

Proposition 11. Let X ⊆ 2N. For any rational s ≥ 0, if X is Schnorr s-null
then it is also Schnorr t-null for any rational t ≥ s.

This follows from the fact that every Schnorr s-test is also a t-test. The
definition of Schnorr Hausdorff dimension can now be given in a straightforward
way.

Definition 12. The Schnorr Hausdorff dimension of a class X ⊆ 2N is defined
as

dimS
H(X ) = inf{s ≥ 0 : X is Schnorr s-null}.

For a sequence A ∈ 2N, we write dimS
H A for dimS

H{A} and refer to dimS
H A

as the Schnorr Hausdorff dimension of A.

3.2 Schnorr Packing Dimension

Due to the more involved definition of packing dimension, it is not immediately
clear how to define a Schnorr-type version of packing dimension. However, we will
see in the next section that Schnorr dimension allows an elegant characterization
in terms of martingales, building on Theorem 7. This will also make it possible
to define a Schnorr version of packing dimension.

4 Schnorr Dimension and Martingales

In view of his unpredictability paradigm for algorithmic randomness, Schnorr [18]
suggested a notion of randomness based on computable martingales. According
to this notion, nowadays referred to as computable randomness, a sequence is
computably random if no computable martingale succeeds on it.

Schnorr [18] himself proved that a sequence is Martin-Löf random if and
only if some left-computable martingale succeeds on it. Therefore, one might be
tempted to derive a similar relation between Schnorr null sets and computable
martingales. However, Schnorr [18] pointed out that the increase in capital of
a successful computable martingale can be so slow it cannot be computably
detected. Therefore, he introduced orders (“Ordnungsfunktionen”), which allow
to ensure an effective control over the capital.

In general, any positive, real, unbounded function g is called an order. (It
should be remarked that, in Schnorr’s terminology, an “Ordnungsfunktion” is
always computable.)

Schnorr showed that Schnorr nullsets can be characterized via computable
martingales successful against computable orders.
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Theorem 13 (Schnorr). A set X ⊆ 2N is Schnorr 1-null if and only if there
exists a computable martingale d and a computable order g such that d is g-
successful on all B ∈ X .

Schnorr calls the functions g(n) = 2(1−s)n exponential orders, so much of
the theory of effective dimension is already, though apparently without explicit
reference, present in Schnorr’s treatment of algorithmic randomness [18].

If one drops the requirement of being g-successful for some computable g,
one obtains the concept of computable randomness. Wang [26] showed that the
concepts of computable randomness and Schnorr randomness do not coincide.
There are Schnorr random sequences on which some computable martingale
succeeds. However, the differences vanish if it comes to dimension.

Theorem 14. For any sequence B ∈ 2N,

dimS
H B = inf{s ∈ Q : some computable martingale d is s-successful on B}.

So, in contrast to randomness, the approach via Schnorr tests and the ap-
proach via computable martingales to dimension yield the same concept.

Besides, we can build on Theorem 14 to introduce Schnorr packing dimension.

Definition 15. Given a sequence A ∈ 2N, we define the Schnorr packing di-
mension of A, dimS

P A, as

dimS
P A = inf{s ∈ Q : some comp. martingale is strongly s-successful on A}

Schnorr packing dimension is implicitly introduced as a computable version
of strong dimension in [1]. It follows from the definitions that for any sequence
A ∈ 2N, dimS

H A ≤ dimS
P A. We call sequences for which Schnorr Hausdorff and

Schnorr packing dimension coincide Schnorr regular (see [24] and [1]). It is easy
to construct a non-Schnorr regular sequence, however, in Section 6 we will see
that such sequences already occur within the class of c.e. sets.

5 A Machine Characterization of Schnorr Dimension

One of the most powerful arguments in favor of Martin-Löf’s approach to ran-
domness is the coincidence of the Martin-Löf random sequences with the se-
quences that are incompressible in terms of (prefix free) Kolmogorov complexity.

Such an elegant characterization via machine compressibility is possible nei-
ther for Schnorr randomness nor Schnorr dimension. To obtain a machine char-
acterization of Schnorr dimension, we have to restrict the admissible machines
to those with domains having computable measure.

Definition 16. A prefix free machine M is computable if
∑

w∈dom(M) 2−|w| is
a computable real number.

Note that, as in the case of Schnorr tests, if a machine is computable, then
its domain is computable (but not vice versa). To determine whether M(w) ↓,
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enumerate dom(M) until
∑

w∈dom(M) 2−|w| is approximated by a precision of
2−N , where N > |w|. If M(w) ↓, w must have been enumerated up to this point.

Furthermore, we sometimes assume that the measure of the domain of a
computable machine is 1. This can be justified, as in the case of Schnorr tests,
by adding superfluous strings to the domain.

The definition of machine complexity follows the standard scheme. We restrict
ourselves to prefix free machines.

Definition 17. Given a Turing machine M with prefix free domain, the M -
complexity of a string x is defined as

KM (x) = min{|p| : M(p) = x},

where KM (x) = ∞ if there does not exist a p ∈ {0, 1}∗ such that M(p) = x.

We refer to the books by Li and Vitanyi [8] and Downey and Hirschfeldt [5]
for comprehensive treatments on machine (Kolmogorov) complexity.

Downey and Griffiths [4] show that a sequence A is Schnorr random if and
only if for every computable machine M , there exists a constant c such that
KM (A �n) ≥ n − c. Building on this characterization, we can go on to describe
Schnorr dimension as asymptotic entropy with respect to computable machines.

Theorem 18. For any sequence A it holds that

dimS
H A = inf

M
KM (A) def= inf

M

{
lim inf
n→∞

KM (A�n)
n

}
,

where the infimum is taken over all computable prefix free machines M .

One can use an analogous argument to obtain a machine characterization of
Schnorr packing dimension.

Theorem 19. For any sequence A it holds that

dimS
P A = inf

M
KM (A) def= inf

M

{
limsup
n→∞

KM (A�n)
n

}
,

where the infimum is taken over all computable prefix free machines M .

6 Schnorr Dimension and Computable Enumerability

Usually, when studying algorithmic randomness, interest focuses on c.e. reals
(i.e. left-computable real numbers) rather than on c.e. sets. The reason is that
c.e. sets exhibit a trivial behavior with respect to most randomness notions,
while there are c.e. reals which are Martin-Löf random, such as Chaitin’s Ω.

As regards c.e. reals, we can extend the result of Downey and Griffiths [4]
that every Schnorr random c.e. real is of high Turing degree.
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Theorem 20. Every sequence of positive Schnorr Hausdorff dimension has high
Turing degree. That is, if dimS

H A > 0, then S′ ≡T 0′′.

Using the fact that every noncomputable c.e. set contains an infinite com-
putable subset, and the fact that, for all n, λ{A ∈ 2N : A(n) = 1} = 1/2, it is
not hard to show that no c.e. set can be Schnorr random.

It does not seem immediately clear how to improve this to Schnorr dimension
zero. Indeed, defining coverings from the enumeration of a set directly might not
work, because due to the dimension factor in Hausdorff measures, longer strings
will be weighted higher. Depending on how the enumeration is distributed, this
might not lead to a Schnorr s-covering at all.

However, one might exploit the somewhat predictable nature of a c.e. set
to define a computable martingale which is, for any s > 0, s-successful on the
characteristic sequence of the enumerable set, thereby ensuring that each c.e. set
has Schnorr Hausdorff dimension 0.

Theorem 21. Every computably enumerable set A ⊆ N has Schnorr Hausdorff
dimension zero.

On the other hand, concerning upper entropy, c.e. sets may exhibit a rather
complicated structure, in sharp contrast to the case of effective (constructive)
dimension, where Barzdin’s Theorem [2] ensures that all c.e. sets have effective
packing dimension 0. As the proof of the following theorem shows, this is due
to the requirement that all machines involved in the determination of Schnorr
dimension are total.

Theorem 22. There exists a computably enumerable set A ⊆ N such that

dimS
P A = 1.
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Jerome.Durand-Lose@lifo.univ-orleans.fr

Abstract. In the Cellular Automata (CA) literature, discrete lines in-
side (discrete) space-time diagrams are often idealized as Euclidean lines
in order to analyze a dynamics or to design CA for special purposes.
In this article, we present a parallel analog model of computation corre-
sponding to this idealization: dimensionless signals are moving on a con-
tinuous space in continuous time generating Euclidean lines on (continu-
ous) space-time diagrams. Like CA, this model is parallel, synchronous,
uniform in space and time, and uses local updating. The main difference
is that space and time are continuous and not discrete (i.e. R instead of
Z). In this article, the model is restricted to Q in order to remain inside
Turing-computation theory. We prove that our model can carry out any
Turing-computation through two-counter automata simulation and pro-
vide some undecidability results.

Keywords: Abstract geometrical computation, Analog model of com-
putation, Cellular automata, Geometry, Turing universality.

1 Introduction

Cellular automata (CA) form a well known and studied model of computation
and simulation. Configurations are Z-arrays of cells, the states of which belong
to a finite set. Each cell can only access the states of its neighboring cells. All
cells are updated iteratively and simultaneously. The main characteristics of CA
are: parallelism, synchrony, uniformity and locality of updating. The trace of a
computation, or the orbit starting from an initial configuration, is represented
as a space-time diagram: a coloring of Z × N with states.

Discrete lines are often observed on these diagrams. They can be the key to
understanding the dynamics and correspond to so-called particles or signals as
in, e.g., [1–pp. 87–94] or [2, 3, 4, 5]. They can also be the tool to design CA for
precise purposes and then named signals and used for, e.g., prime number gener-
ation [6], firing squad synchronization [7, 8, 9, 10] or reversible simulation [11, 12].
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These discrete lines systems have also been studied on their own [13, 14]. All the
figures in cited papers exhibit discrete lines which are explicitly refereed to –and
are often idealized as Euclidean lines– for describing or designing. Many more
articles could have been cited, the cited ones were randomly chosen in order to
show the variety.

We want to consider this idealization: Euclidean lines on their own –not
as a passing point for analysis or conception– while remaining with the main
characteristics of CA. As Euclidean lines belong to Euclidean spaces and not
Z × N, the support of space and time is now R × R+. Configurations (at a
given time or the restriction of the space-time diagram to a given time) are not
mappings from Z to a finite set of states but partial mappings from R to the
union of a finite set of meta-signals and a finite set of collision rules, defined
for finitely many positions. The time scale is R+ (not N), so that there is no
such thing as a “next configuration”. The following configurations are defined
by the uniform movement of each signal, the speed of which is defined by its
associated meta-signal. When two or more signals meet, a collision happens.
Each collision follows a collision rule, each of which is defined by a pair of sets of
meta-signals: (incoming meta-signals, outgoing meta-signals). There must be at
least two incoming meta-signals and all sets of incoming meta-signals must differ
(which means determinism). In the configurations following a collision, incoming
signals are removed and outgoing signals corresponding to the outgoing meta-
signals are added.

Due to the continuous nature of space and time and the uniformity of move-
ments, the traces of signals form Euclidean lines on the space-time diagrams,
which we freely call signals. Each signal corresponds to a meta-signal which
indicates its slope. Since there are finitely many meta-signals, there are finitely
many slopes. This limitation may seem restrictive and unrealistic, even awkward
as a finite quantification inside an analog model of computation. Let us notice
that, first, it comes from CA: once a discrete line is identified, wherever (and
whenever) the same pattern appears, the same line is expected, thus with the
same slope. Second, we give two pragmatic arguments: (1) laws to define the
new slopes from the previous ones in collisions are not so easy to design and
pretty cumbersome to manipulate; (2) there is already much computing power
(as presented in this paper and addressed in the conclusion).

Before presenting the results in this paper, we want to convince the reader
that it is not just “one more analog model of computation”. First, it does not
come “out of the blue” because of its CA origin (where it is often implicitly used).
Second, let’s do a brief tour of analog/super-Turing models of computation1. To
our knowledge, the closest model is the Mondrian automata of Jacopini and Son-
tacchi [16]. They also define dynamics and work on space-time diagrams which
are mappings from Rn×R to a finite set of colors. Their diagrams should be com-
posed of bounded finite polyhedra; we are only addressing lines –(hyper-)faces

1 A wider survey can be found in [15–Chap. 2], unfortunately, there is no room here
for more on the subject.
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are not considered– and our diagrams may be unbounded and accumulation
points may appear (they just forbid them; we address them in [17]). Another
close model is the piecewise-constant derivative system [18, 19, 20]. Continuous
space is partitioned into finitely many polygonal regions. The trajectory from
a point is defined by a constant derivative on each region, thus an orbit is a
sequence of (Euclidean) line segments. This model is very different from ours:
it is sequential –there is only one “signal”– and the hyper-faces that delimit the
regions are artifacts that do not exist in our model.

All the other models are based on totally different approaches. Some only
define mapping over R like recursive analysis (type 2 Turing machines) [21] or
analog recursive functions [22]. Many use a discrete iterative time like the BSS
model [23] or analog recurrent neural networks [24]. The models with continuous
time mostly use differential equations, finite support (variables) with uncount-
ably many possible values [25, 26, 27, 28]. To our knowledge, our model is the
only one that is a dynamical system with continuous time and space but finitely
many local values; this is also one of the few parallel ones.

In this paper, space and time are restricted to rationals (this is possible since
all the operations used preserve rationality); this allows manipulation by, e.g.,
Turing machines, thus remaining in the classical discrete computation theory,
and is enough for Turing-computing capability. All intervals should be under-
stood over Q, not R. Extension to R is automatic but only the rational case is
addressed here2.

After formally defining our model in Sect. 2, we show that any Turing-
computation can be carried out through the simulation of two-counter automata
in Sect. 3. The counters are encoded in unary and the instructions are going forth
and back between the two groups of signals. The nature of space is used here:
any finite number of signals can be enclosed in a bounded interval of Q.

In Sect. 4, with simple reductions from the Halting problem, we prove that
the following problems are undecidable: finite number of collisions, collision with
a given signal, appearance of a given signal, and disappearance of all signals.

Conclusion, remarks and perspectives are gathered in Sect. 5.

2 Definitions

Our abstract geometrical computations are defined by the following machines:

Definition 1. A signal machine is defined by (M,S,R) where M is a finite set,
S is a mapping from M to Q, and R is a subset of P(M)×P(M) that corresponds
to a partial mapping of the subsets of M of cardinality at least 2 to the subsets
of M (both domain and range are restricted to elements of different S-images).

2 Our personal opinion is that Q is indeed continuous –if not analog– even if it is
countable because (1) there are no next nor previous element, (2) any interval is
either empty, a singleton or infinite, and (3) its usual topology is not the discrete
one.
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The elements of M are called meta-signals. Each instance of a meta-signal
is a signal which corresponds to a line segment in the space-time diagram. The
mapping S assigns rational speeds to meta-signals, i.e. the slopes of the segments.
The set R defines the collision rules, i.e. what happens when two or more signals
meet. It also defines the intersections / extremities of the segments. The signal
machines are deterministic because R must correspond to a mapping; if it were
just a relation, then the machine would be non-deterministic.

Definition 2. A configuration, c, is a partial mapping from Q to the union of
M and R such that the set { q ∈ Q | c(q) is defined } is finite.

Let us define the dynamics:
A signal corresponding to a meta-signal μ at a position q, i.e. c(q) = μ, is

moving uniformly with constant speed S(μ). A signal must start in the initial
configuration or be generated by a collision. It must end in a collision or in the
last configuration. This corresponds to condition 1. in Def. 2.

A collision corresponds to a collision rule ρ = (ρ−, ρ+), also noted as ρ−→ρ+.
All, and only, signals corresponding to the meta-signals in ρ− (resp. ρ+) must end
(resp. start) in this collision. No other signal should be present. This corresponds
to condition 2. in Def. 2.

Definition 3. The space-time diagram, or orbit, issued from an initial config-
uration c0 and lasting for T 3, is a mapping c from [0, T ] to configurations (i.e.
a partial mapping from Q × [0, T ] to M ∪R) such that, ∀(q, t) ∈ Q × [0, T ] :

1. if ct(q)=μ then ∃ti, tf∈[0, T ] with ti<t<tf or 0=ti=t<tf or ti<t=tf=T s.t.:
– ∀t′ ∈ (ti, tf ), ct′(q + S(μ)(t′ − t)) = μ,
– ti = 0 or cti(qi) ∈ R and μ ∈ (cti(qi))

+ where qi = q + S(μ)(ti − t),
– tf = T or ctf (qf ) ∈ R and μ ∈ (ctf (qf ))− where qf = q + S(μ)(tf − t);

2. if ct(q) = ρ−→ρ+ ∈ R then ∃ε, 0 < ε, ∀t′ ∈ [0, T ],
– if t− ε < t′ < t then ∀μ ∈ ρ−, ct(q + S(μ)(t′ − t)) = μ,
– if t < t′ < t + ε then ∀μ ∈ ρ+, ct(q + S(μ)(t′ − t)) = μ,
– ∃α, 0 < α, c[t−ε,t)([q − α, q + α])=ρ− and c(t,t+ε]([q − α, q + α])=ρ+.

The traces of signals represent line segments whose directions are defined by
(S(.), 1) (1 is the temporal coordinate). Collisions correspond to the extremities
of these segments. Examples of space-time diagrams are provided by the various
figures. Time is always increasing upwards.

3 Turing-Computation Capability

We prove the Turing-computation power of our model by simulating any two-
counter automaton (a finite automaton couple with two counters, A and B).
Each automaton can only add/subtract 1 to a counter and branch if a counter

3 This definition can easily be extended to the case where T = ∞.
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is non-zero. It can be described with a six-operations (the three aforementioned
ones for each of the two counters) assembly language with branching labels as
on the left part of Fig. 6 (see [29] for more on two-counter automata).

Definition 4. A two-counter automaton has two non-negative integer counters
(A and B). Its action is defined by a sequence of labeled instructions; the only
instructions available are:

- A++ : add 1 to the value of A,
- B++ : add 1 to the value of B,
- A-- : if A is not at 0 then subtract 1 from its value,
- B-- : if B is not at 0 then subtract 1 from its value,
- A != 0 m : if A is not at 0 then the next instruction is the one labeled m,
- B != 0 m : if B is not at 0 then the next instruction is the one labeled m.

The simulation is carried out with both counters unary encoded. Configura-
tions are formed by, left to right: a left end-marking signal, a signals amounting
for the value of A, one signal encoding the current instruction, b signals for B
and a right end-marking signal. This is depicted on Fig. 1.

−→n

border a = 6 nth instruction b = 2 border

Fig. 1. Configuration encoding

The only active signal (no collision ever happens without this signal being
present) is the middle one; this signal both carries out the operation and encodes
the line number. It goes forth and back between the signals encoding A and B.
The end-markers are needed when the value is zero; in such a case, there would
be no other signal on the side and the active signal would drift away infinitely.
These end-markers also provide a simple way to test for non-zero: an end marker
is met if and only if the value of the corresponding counter is zero.

They are two kinds of meta-signals: five for the counters and end-markers
and the ones generated for the code as depicted on Fig. 2. The meta-signals of
the first kind are: border, a and b of speed 0 used to mark the borders and to
encode respectively A and B in unary, and aMv and bMv of speed 1/2 and −1/2
used to increment A and B. The use of bMv is explained in the presentation of
B++ (Fig. 5). For the second kind, each line n of the program is converted to −→n
and ←−n of speed 1 and −1 (except for the test B �= 0 which generates −→n , ←−n Y ,
and ←−n N ). The program is encoded in the collision rules.

The full transformation of a program into a signal machine is given in Fig. 3.
We only detail the action of the collision rules generated for B != 0 and B++
instructions (at line n). All other instructions are carried out in a similar way.

In the space-time diagram of figures 4 and 5, we suppose that instructions at
lines n−1 and n+1 are not doing anything, except in the right cases where the
previous one is B++, so that there is some bMv to set in position.
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Name Speed

border 0
a 0
aMv 1
b 0
bMv −1

Name Speed−→n 2←−n −2←−n Y −2←−n N −2

Fig. 2. The two kinds of meta-signals

Instruction Rightwards Leftwards

n A++ {−→n , border}→{←−n , border} {border,←−n }→{border, aMv,
−−→
n+1}

{−→n , b}→{←−n , b} {a,←−n }→{a, aMv,
−−→
n+1}

{−→n , bMv}→{←−n , b} {aMv,←−n }→{a, aMv,
−−→
n+1}

n B++ {−→n , border}→{←−n , bMv, border} {border,←−n }→{border,
−−→
n+1}

{−→n , b}→{←−n , bMv, b} {a,←−n }→{a,−−→n+1}
{−→n , bMv}→{←−n , bMv, b} {aMv,←−n }→{a,−−→n+1}

n A-- {−→n , border}→{←−n , border} {border,←−n }→{border,
−−→
n+1}

{−→n , b}→{←−n , b} {a,←−n }→{−−→n+1}
{−→n , bMv}→{←−n , b} {aMv,←−n }→{−−→n+1}

n B-- {−→n , border}→{←−n , border} {border,←−n }→{border,
−−→
n+1}

{−→n , b}→{←−n } {a,←−n }→{a,−−→n+1}
{−→n , bMv}→{←−n } {aMv,←−n }→{a,−−→n+1}

n A != 0 m {−→n , border}→{←−n , border} {border,←−n }→{border,
−−→
n+1}

{−→n , b}→{←−n , b} {a,←−n }→{a,−→m}
{−→n , bMv}→{←−n , b} {aMv,←−n }→{a,−→m}

n B != 0 m {−→n , border}→{←−n N , border} {border,←−n N}→{border,
−−→
n+1}

{−→n , b}→{←−n Y , b} {a,←−n N}→{a,−−→n+1}
{−→n , bMv}→{←−n Y , b} {aMv,←−n N}→{a,−−→n+1}

{border,←−n Y }→{border,−→m}
{a,←−n Y }→{a,−→m}

{aMv,←−n Y }→{a,−→m}
{−−→stop, border}→{←−−stop, border} {border,

←−−
stop}→{border}

{−−→stop, b}→{←−−stop, b} {a,←−−stop}→{a}
{−−→stop, bMv}→{←−−stop, b} {aMv,

←−−
stop}→{a}

Fig. 3. Translation of instructions

The B != 0 instruction is carried out very simply: the active signal goes right.
If it encounters border (counter B is zero) then it comes back as ←−n N . Otherwise
(counter B is not zero), it encounters b or bMv and comes back as ←−n Y . On the
left it meets border or a and turns to the next instruction (n+1) if it was ←−n N or
the indicated jump (m) if it was ←−n Y . This is all summed up in Fig. 4.

The B++ instruction is carried out by issuing a moving b signal (i.e. bMv)
that will be set in position by the next return of the active signal as depicted
on Fig. 5. The active signal is faster than bMv so that it can fix bMv before bMv
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a
b
or

d
er

−−→
n+1

−→n

←−n
N

←−−n−1

a b

−→m

−→n

←−n
Y

←−−n−1

a

b

bMv

−→m

−→n

←−n
Y

←−−n−1

Fig. 4. Implementation of n B != 0 m

a

b
or

d
er

−→n

←−n

←−−n−1

−−→
n+1

←−−n+1

bMv

b

a b

−→n

←−n

←−−n−1

−−→
n+1

←−−n+1

bMv

b

a

b

bMv

−→n

←−n

←−−n−1

−−→
n+1

←−−n+1

bMv

b

Fig. 5. Implementation of B++

reaches the left side. Since space is continuous there is always room for more
signal in the middle. Each instruction sets the moving bMv (or aMv), if any.

The instruction A++ is carried out similarly. The instructions A-- and B--
are just erasing exactly one corresponding signal, if any. The non-zero test for A
is done by simply noticing that the left border is met only if it is zero; branching
is done on the collision on the left side.

Figure 6 provides three space-time diagrams associated to different initial
values. The pictures are strained vertically in order to fit.

A two-counter automaton stops when it should execute the instruction right
after the last one, i.e., when executing instruction n0+1 (n0 is the number of
instructions). We call the instruction

−−−→
n0+1 (

←−−−
n0+1) −−→

stop and ←−−
stop. These signals

fix any moving aMv or bMv as indicated at the bottom of Fig. 3.
This way, any two-counter automaton can be simulated by a signal machine.

Signal machines thus form a model of computation which has at least Turing-
computing capability.

4 Undecidability Results

Straight from the possibility to simulate Turing Machine comes a few unde-
cidability results. The proofs are not detailed, they are only sketched as they
correspond to classical reduction from the Halting problem.
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beg: B++
A--
A != 0 beg1
B != 0 imp

beg1: A--
A != 0 beg

pair: B--
A++
B != 0 pair
A != 0 beg

imp: B--
A++
A++
B != 0 imp1
A != 0 beg

imp1: B--
A++
A++
A++
B != 0 imp1
A != 0 beg

�

a=1 b=0

�

a=3 b=0

�

a=13 b=0

Fig. 6. A two-counter automaton and its simulations for three different initial values

In all the following problems, a signal machine is rational iff all its speeds
are rationals and all initials positions are rational. A direct recurrence shows
that all collisions take place at rational locations. This is needed for data to be
addressed in classical recursion theory.

[Finite number of collisions]
Instance . A rational signal machine, and an initial configuration.
Question. Does the computation of the machine on the initial configuration
stop?

The undecidability comes from the ability of rational signal machine to sim-
ulate any two-counter automaton in a way that there is finitely many collisions
iff the simulation stops.

[Appearance of a given meta-signal]
Instance . A rational signal machine, an initial configuration, and a meta-
signal.
Question. Does the computation of the machine on the initial configuration
ever generates a signal of this meta-signal?

The undecidability comes from the ability of rational signal machine to sim-
ulate any two-counter automaton in a way that a signal −−→

stop appears iff the
simulation stops.
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[Collision with a given signal]
Instance . A rational signal machine, an initial configuration, and a signal in
the initial configuration.
Question. Is there any collision involving the given signal on the computation
of the machine on the initial configuration?

The undecidability comes from a slight modification of the machine: add a
second border signal on the right and make −−→

stop pass the first one and collide
with the second. This second border takes part in a collision if and only if −−→stop
appears.

[Disappearance of all signals]
Instance . A rational signal machine, and an initial configuration.
Question. Does the computation of the machine on the initial configuration
stop on an empty configuration?

The undecidability also comes from the simulation: it is easy to modify it in
such that −−→

stop and ←−−
stop erase everything.

5 Conclusion

As long as the model is restricted to rationals, there are finitely many sig-
nals present at any instant and there is no accumulation, the model is Turing-
universal and can be simulated by any Turing machine and is thus Turing-
equivalent. If the “finite number of signals” condition is lifted, but signals are
isolated, then this is a super-Turing model of computation following the “Infinity
principle” of [30]. The analog power really appears when one of the remaining
two constraints is lifted.

Allowing real values for speeds or positions is simple. These real values can
be used as oracles and thus provide computing ability that goes beyond Turing-
computation.

With a careful “treatment of accumulations”, it is possible to access infi-
nite Turing computation or computation on ordinals [31, 32]. Our model then
becomes somehow similar to the black hole model [33, 34] as done in [17].
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Abstract. We promote the concept of object directed computability
in computational geometry in order to faithfully generalise the well-
established theory of computability for real numbers and real functions.
In object directed computability, a geometric object is computable if it is
the effective limit of a sequence of finitary objects of the same type as the
original object, thus allowing a quantitative measure for the approxima-
tion. The domain-theoretic model of computational geometry provides
such an object directed theory, which supports two such quantitative
measures, one based on the Hausdorff metric and one on the Lebesgue
measure. With respect to a new data type for the Euclidean space, given
by its non-empty compact and convex subsets, we show that the convex
hull, Voronoi diagram and Delaunay triangulation are Hausdorff and
Lebesgue computable.

1 Introduction

In his “Commentaries on the Difficulties in the Postulates of Euclid’s Elements”,
Omar Khayyam, the 11th century Persian mathematician and poet, developed
the first rudimentary notion of a real number. He first showed the equivalence
of Euclid’s notion of ratios with that of continued fractions. Then, in a stroke of
genius, he defined two ratios as equal “when they can be expressed by the ratio
of integer numbers with as great a degree of accuracy as we like” [17]. This idea
thus contained the first notion of a real number and the germ of the concepts
of computability and computation up to any precision. Three centuries later,
Ghiasseddin Jamshid Kashani, another Persian mathematician, devised the first
fixed point technique for computation in analysis in the beginning of the 15th
century: he used a cubic polynomial in a recursive scheme to approximate the
sine of 1◦ correctly up to 17 decimal places; see [2] for the details.

Following the formalisation of real numbers by Cantor and Dedekind in the
19th century and the development of recursion theory by Turing, Church, Gödel
and Kleene in the first half of the 20th century, the concept of a computable
real number was first defined by Turing in his seminal work in mid 1930’s [18]
and [19]. In the decades since that work, several notions of computability for
real numbers and real functions have been proposed, as for example in [13], [15],
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[20], [16], [10], [1], which turn out to be essentially equivalent. A computable real
number in all these different but equivalent approaches is in essence the limit of
an effective sequence of rational numbers, and a computable real function is one
which maps computable real numbers to computable real numbers in an effective
way. The effective nature of the sequence of rational numbers approximating a
computable number implies that each term of the sequence gives a lower and
an upper bound for the real number, with the distance between the two bounds
providing a quantitative measure of the approximation. Regarding a real number
as an object and a rational number as a finitary object of the same type as a real
number, we can say that a computable object is defined as the effective limit
of two monotonic sequences of finitary objects, providing at each stage finitary
lower and upper bounds for the computable object. In this sense, we say that
the computability theory of real numbers and real functions is object directed.

In more recent years, several attempts have been made to define the notion
of computability for subsets of the Euclidean space and operations on such sub-
sets [12], [11], [4], [7], [8], [9], [14], [3], [21], [22]. Here, there are several different
approaches which give rise to a number of non-equivalent theories of computabil-
ity for subsets of the Euclidean space and operations on them.

The domain-theoretic framework introduced in [7] and [8] for studying com-
putability of subsets of Euclidean spaces and their operations is an object di-
rected theory for computational geometry, which faithfully generalises the object
directed computability theory of real numbers and real functions. As the mem-
bership predicate of a proper subset of a Euclidean space is undecidable on its
boundary, subsets with the same boundary are identified in the domain-theoretic
framework and thus any subset is represented by two disjoint open subsets: its
interior and its exterior1. With respect to any enumeration of a countable basis
of the Euclidean topology, a computable subset is one whose interior and exterior
are each the union of an effective increasing sequence of the basis elements. Thus,
computability of an object is defined by two effective sequences of the same type
converging to the object. In a similar way, computability of all basic operations
on subsets such as union, intersection, and Minkowski sum, as treated in [8], as
well as the convex hull, Voronoi diagram and Delaunay triangulation, as dealt
with in [9] and [14], are always defined in terms of sequences of finitary objects
of similar type. For example, the computability of the convex hull of a finite
number of points in the Euclidean space is defined using two effective sequences
of interior and exterior convex rational polygons converging to the interior and
the exterior of the convex hull of the points.

The object directed computability provided by the domain-theoretic model
provides other distinguished features:

– All basic predicates such as membership, subset inclusion and comparison
as well as all basic operations are Scott continuous and computable in this
model. Thus, algorithms developed in this framework are inherently robust
in contrast with classical algorithms in computational geometry, which are

1 The exterior of a set is the interior of its complement.
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non-robust due to the non-computability of comparison of real numbers or
the membership predicate of a subset in classical geometry.

– In this model, one obtains robust algorithms for computing operations such
as convex hull, Voronoi diagram and Delaunay triangulation with the same
complexity of the corresponding non-robust classical algorithms.

– Since the computability of an object is defined in terms of effective sequences
of finitary objects of a similar type, one can employ two quantitative mea-
sures of approximation: one using the Hausdorff metric and one using the
Lebesgue measure.

Therefore, in this framework the notion of computability of a geometric ob-
ject and the task of computing it up to any required precision by the user are
synthesised into one paradigm, thus providing the foundation of a robust CAD
system.

In this paper, we study the three notions of recursion theoretic computabil-
ity, Hausdorff computability and Lebesgue computability of three basic com-
putational geometry operations, namely the convex hull, Voronoi diagram and
Delaunay triangulation, in the context of a general data type for the Euclidean
space given by the domain of non-empty compact convex subsets of the space
ordered by reverse inclusion.

2 The Mathematical Model and the New Data Type

The solid domain (SRd,�) of Rd is the collection of pairs of disjoint open subsets
of Rd partially ordered componentwise by subset inclusion: (I, E) � (I ′, E′) iff
I ⊆ I ′ and E ⊆ E′; it is a bounded complete ω-continuous dcpo [8]. A classical
geometric object, i.e. a subset A ⊆ Rd is represented in this model as (A◦, (Ac)◦),
where X◦ and Xc denote respectively the interior and the complement of a set
X. More generally, we think of an element (I, E) ∈ SRd as a partial solid or
partial geometric objects with interior I, exterior E and boundary (I ∪ E)c. An
element (I, E) is maximal in SRd iff I = (Ec)◦ and E = (Ic)◦, which imply that
I and E are regular2. The collection of pairs of interiors of disjoint dyadic (or
rational) d-polytopes forms a basis for SRd. Any partial geometric object (I, E)
can be obtained as the union of these basis elements.

Our new data type is described as follows. We assume that we have lower
and upper rational bounds on the coordinates (xk)1≤k≤d of an imprecisely given
point x ∈ Rd in say n given directions, that is we have βj ≤

∑d
k=1 ajkxk ≤ γj ,

where (ajk)1≤k≤d fixes the n given directions for 1 ≤ j ≤ n. We assume that
the set of directions for our data type is known in advance, and is independent
from the data itself. Thus, each data point x is located within a rational d-
polytope, namely the intersection of the finite number of strips given by the
above inequalities. In most applications, we only have the d directions of the
coordinate axes, i.e. when each coordinate of an imprecisely given point is known
to lie within an interval as in interval analysis, for example when the coordinates
2 An open set is regular if it is the interior of its closure
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of x are given by floating point numbers. But this data type is also essential
in cases when we have lower and upper bounds on some linear combination of
coordinates. In Figure 1, we have shown 6 out of the 18 possible types of polygons
for an imprecisely given point in R2, where there are precisely three directions
of possible approximations: along the two coordinate axes and along the (1, 1)
vector, corresponding to the linear combination x1 + x2.

Fig. 1. Imprecise points defined by three directions (1, 0), (0, 1), (1, 1)

Note that the filtered intersection of a non-empty family of convex d-polytopes
in Rd is a non-empty, convex and compact subset. Our domain of computation is
therefore the collection (CRd,⊇) of all non-empty, convex and compact subsets
of Rd ordered by reverse inclusion and equipped with the Scott topology. It is
a bounded complete ω-continuous domain with a countable basis given by the
collection PRd of all rational convex d-polytopes in Rd. The map s : Rd → CRd

with x �→ {x} is a topological embedding, i.e. we can identify the maximal ele-
ments of this domain with Rd. We also note that (CRd,⊇) is order isomorphic
with a sub-domain of SRd by identifying a non-empty convex and compact set
A ∈ CRd with (∅, Ac) ∈ SRd, i.e. with a geometric object whose interior is
empty and its exterior is the complement of A.

In this extended abstract, we restrict ourselves to computational geometry
in R2; our results however extend to Rd as we will show in the full version of the
paper.

2.1 Computability

We assume the reader is familiar with the notion of computability for continuous
domains [10], [5], [8]. Recall that given an effective structure for a bounded
complete ω-continuous dcpo with respect to an enumeration of a countable basis,
a computable element is defined as the lub of an effective increasing sequence of
basis elements. A computable function from a bounded complete ω-continuous
dcpo with an effective structure to another such domain is a map which sends
computable elements to computable elements in an effective way. We fix effective
structures on CR2 and SR2 by using, for example, an enumeration of rational
convex polygons as a basis of CR2 and an enumeration of pairs of disjoint rational
polygons as a basis of SR2. These effective structures induce effective structures
on (CR2)N and (SR2)N for all positive integers N .

We will define the notions of Hausdorff and Lebesgue computability in the
solid domain. Let dH denote the Hausdorff distance between non-empty compact
sets. We put dH(∅, ∅) = 0 and for Y �= ∅, dH(∅, Y ) = ∞. The notion of Hausdorff
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computability for a partial geometric object has been defined in [8]. Here, we
define the notion of a nestedly Hausdorff computable map.

Definition 1. Consider a computable map f : (C[−a, a]2)N → S[−a, a]2, for
some a > 0, with f(Ĉ) = (fI(Ĉ), fE(Ĉ)), where Ĉ = (C1, . . . , CN ) represents
an ordered list of non-empty convex compact subsets of [−a, a]2. Let {B̂i | i ≥ 0}
be an enumeration of the basis of (C[−a, a]2)N . Consider an arbitrary Ĉ =⊔

i≥0 B̂φ(n) with dH(Ĉ, B̂φ(i)) < 2−i, where φ is a total recursive function and
〈B̂φ(i)〉i≥0 is an increasing chain. We say the interior part fI of f is nestedly
Hausdorff computable if there exists a total recursive function ψ1 such that

dH((fI(Ĉ)), fI(B̂φ(ψ1(i)))) < 2−i and dH((fI(Ĉ))
c
, fI(B̂φ(ψ1(i)))

c
) < 2−i

where A is the closure of A and complements are with respect to [−a, a]2. Sim-
ilarly for fE. If both fI and fE are nestedly Hausdorff computable then we say
that f is nestedly Hausdorff computable.

As we will see later, the partial Delaunay triangulation map is nestedly Haus-
dorff computable but not Hausdorff continuous.

Proposition 1. With the assumptions of Definition 1, suppose fI(Ĉ) and fI(B̂φ(i))
are regular. Then fI is nestedly Hausdorff computable if there exists a total re-
cursive function ψ1 such that

dH(∂(fI(Ĉ)), ∂(fI(B̂φ(ψ1(i))))) < 2−i,

where ∂(A) is the boundary of A. Similarly for fE.

Definition 2. With the assumptions of Definition 1, we say fI is nestedly
Lebesgue computable if there exists a total recursive function ψ1 such that

λ((fI(Ĉ)), fI(B̂φ(ψ1(i)))) < 2−i and λ((fI(Ĉ))
c
, fI(B̂φ(ψ1(i)))

c
) < 2−i.

Similarly, for fE. If both fI and fE are nestedly Lebesgue computable then we
say f is nestedly Lebesgue computable.

Proposition 2. With the assumptions of Definition 2, if the boundaries of fI(B̂i)
and fE(B̂i) are continuous curves for each i ∈ ω and if their lengths are uni-
formly bounded, then f is Lebesgue computable.

3 Convex Hull

The convex hull map for compact subsets is defined as:

Γ : (CR2) → CR2

where CR2 is the set of all non-empty compact subsets of R2 and CR2 is the set
of all non-empty compact convex subsets of R2, both with the Hausdorff metric;
for any non-empty compact set C, the image Γ (C) is the convex hull of C.
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The partial convex hull map has type:

H : (CR2)N → SR2

Ĉ �→ (HI ,HE),
(1)

where Ĉ = (C1, . . . , CN ) represents an ordered list of N non-empty compact
convex sets in the plane R2. For a given Ĉ define R(Ĉ) = {{p1, . . . , pN} | pi ∈
Ci, i = 1, . . . , N} to be the collection of all possible N -element sets, each con-
taining precisely one element from each Ci. An element P ∈ R(Ĉ) is called a
representative set for Ĉ.

We define: HI(Ĉ) = (
⋂

P∈R(Ĉ) Γ (P ))◦ and HE(Ĉ) = (
⋃

P∈R(Ĉ) Γ (P ))c.
Thus, HI is the set of points that are inside the convex hull of any representative
set. Similarly, HE is the set of points that are outside the convex hull of any
representative set.

When Ĉ ∈ (CR2)N is a basis element, i.e. a list of N convex rational poly-
gons, an algorithm has been developed [6] that computes (HI ,HE) as follows.
Assume that there are n directions given by the unit normals dj (1 ≤ j ≤ n)
with non-negative y coordinates, and ordered anti-clockwise from the positive
x-axis. The unit circle is partitioned into 2n arcs d̂jdj+1 (1 ≤ j ≤ 2n) with
dn+j = −dj for 1 ≤ j ≤ n and d2n+1 = d1. Then, we have:

• HE(Ĉ) = (Γ ({c | c is a corner of Ci, 1 ≤ i ≤ N}))c
• HI(Ĉ) = (

⋂2n
j=1 Γ ({cij | 1 ≤ i ≤ N}))◦,

where cij is a corner of Ci furthest away from the boundary of any half-plane
containing Ci with unit normal in d̂jdj+1, see Figure 2. The above two expres-
sions give an N logN algorithm to compute the interior and the exterior parts
of the partial convex hull in rational arithmetic.

Theorem 1. The exterior part of the convex hull map is nestedly Hausdorff
computable.

Theorem 2. The map Γ is non-expansive with respect to the Hausdorff metric,
i.e. dH(Γ (A), Γ (B)) ≤ dH(A,B), and therefore Hausdorff continuous.

Theorem 3. The interior part of the partial convex hull map is nestedly Haus-
dorff computable.

Corollary 1. The partial convex hull map is nestedly Lebesgue computable.

d1

d2
d3

d4

d5 d6
c11

c21

c31

c41

c51

(a) (b) (c) (d)

Fig. 2. (a) Three given directions have partitioned the unit circle into six arcs; (b) Par-
tial convex hull of five partial points; (c)–(d) Partial convex hull with refined data
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4 Partial Perpendicular Bisector

For a point x ∈ R2 and a compact C ∈ CR2, we have the following distance
functions appropriate for the Voronoi diagram of partial points. Let ds(x,C) =
min{‖x− p‖ : p ∈ C} and dl(x,C) = max{‖x− p‖ : p ∈ C} be, respectively, the
shortest and longest distance from x to C. For two compact subsets C1 and C2,
we define the partial Voronoi cell of C1 with respect to C2 as:

C12 = {x | dl(x,C1) < ds(x,C2)} (2)

Similarly we define C21. The partial perpendicular bisector (PPB) of C1 and C2

is the remaining points of the plane, B(C1, C2) := (C12 ∪ C21)c = {z ∈ R2 | ∃x ∈
P1, y ∈ P2; ‖z − x‖ = ‖z − y‖}. The domain theoretic definition of the partial
perpendicular bisector map is:

B : CR2 × CR2 → SR2

(C1, C2) �→ (∅, C12 ∪ C21).

For basis elements C1, C2 ∈ CR2, the boundary of C12 ∪C21 consists of segments
of parabolas and straight lines [6], see Figure 3(a).

Proposition 3. The restriction of the partial perpendicular bisector map B to
C[−a, a]2 is Hausdorff continuous for any a > 0.

Proposition 4. The partial perpendicular bisector map B is Scott continuous.

Theorem 4. The restriction of the partial perpendicular bisector map B to
C[−a, a]2 is nestedly Hausdorff and Lebesgue computable for any a > 0.

5 Partial Voronoi Diagram

We define the partial Voronoi map on a list Ĉ = (C1, . . . , CN ) ∈ (CR2)N of N
polygons in the plane:

V : (CR2)N → (SR2)N ,

with the ith component, 1 ≤ i ≤ N , defined as

Vi : Ĉ �→ ((Vi)I , (Vi)E) = (
⋂
j �=i

Cij ,
⋃
j �=i

Cji),

where Cji is defined in Equation 2.

Proposition 5. The restriction of the partial Voronoi diagram map V to
(C[−a, a]2)N is Hausdorff continuous for any a > 0.

Proposition 6. The partial Voronoi diagram map V is Scott continuous.

For a basis element Ĉ ∈ (CR2)N , the boundaries of
⋂

j �=i Cij and
⋃

j �=i Cji consist
of segments of parabolas and straight lines [6] as in the case of the partial
perpendicular bisector.

Theorem 5. The restriction of the partial Voronoi diagram map V to
(C[−a, a]2)N is nestedly Hausdorff and Lebesgue computable for any a > 0.
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(a) (b) (c)

Fig. 3. (a) PPB of two polygons; (b) The interior and exterior of a partial disc; (c) The
exterior of a partial Delaunay triangulation of five black polygons has been shown with
gray colour. Note that there are two indeterminate and six legal edges

6 Partial Disc

Partial disc map has been defined by the authors in [6] as:

D : (CR2)3 → SR2

(C1, C2, C3) �→ (DI ,DE),

where DI = DE = ∅ if C1, C2 and C3 are collinear, i.e. when there exists a
straight line which intersects C1, C2 and C3, otherwise DI = (

⋂
{Dxyz | x ∈

C1, y ∈ C2, z ∈ C3})◦ and DE = (
⋃
{Dxyz | x ∈ C1, y ∈ C2, z ∈ C3})c, where

Dxyz is the disc made by the circle passing through x, y, and z.
Note that O(C1, C2, C3) = {s ∈ R2 | ∃x ∈ C1, y ∈ C2, z ∈ C3; ‖x − s‖ =

‖y− s‖ = ‖z− s‖}, and hence O(C1, C2, C3) is the locus of the centres of circles
which intersect the three convex sets C1, C2 and C3. We call O(C1, C2, C3) the
partial centre of the partial circumcircle of the three partial points.

Let D(o
CCF

, r
CCF

) denote the closed disc with centre o
CCF

and radius r
CCF

,
which passes through the following three points: (i) the point of C1 closest to
o

CCF
, (ii) the point of C2 closest to o

CCF
and (iii) the point of C3 furthest

from o
CCF

; hence the subscript in o
CCF

. Similarly, five other pairs of centres
and radii are defined: (o

CF C
, r

CF C
), (o

F CC
, r

F CC
), (o

F F C
, r

F F C
), (o

F CF
, r

F CF
)

and (o
CF F

, r
CF F

). Now, consider the three discs D1 = D(o
F CC

, r
F CC

), D2 =
D(o

CF C
, r

CF C
) and D3 = D(o

CCF
, r

CCF
) on the one hand and the three discs

D′
1 = D(o

CF F
, r

CF F
), D′

2 = D(o
F CF

, r
F CF

) and D′
3 = D(o

F F C
, r

F F C
) on the

other hand, Figure 3(b). As shown in [6] by the authors, the interior and the
exterior of the partial disc are given by:
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(DI ,DE) = ((D1 ∩D2 ∩D3)◦, (D′
1 ∪D′

2 ∪D′
3)

c) .

Proposition 7. The restriction of the partial disc map D to (C[−a, a]2)3 is
Hausdorff continuous for any a > 0.

Proposition 8. The partial disc map D is Scott continuous.

For a basis element (C1, C2, C3) ∈ (CR2)3, the centres and radii of the six discs
above can be obtained using the partial perpendicular bisectors of each pair of
these three partial points [6].

Theorem 6. The restriction of the partial disc map D to (C[−a, a]2)3 is nest-
edly Hausdorff and Lebesgue computable for any a > 0.

7 Partial Delaunay Triangulation

We define the partial edge Ed(C1, C2) of two partial points C1 and C2 to be the
convex hull of C1 and C2. We also define the partial triangle of three partial points
to be their partial convex hull. Given N partial points C1, . . . , CN ∈ CR2, we say
that Ed(Ci1 , Ci2) is legal if there exists i3 such that for all j �= i1, i2, i3 we have
Cj ⊂ DE(Ci1 , Ci2 , Ci3), illegal if there exists i3 such that there exists j �= i1, i2, i3
with Cj ⊂ DI(Ci1 , Ci2 , Ci3) and indeterminate otherwise. The partial Delaunay
triangulation map is now defined as:

T : (CR2)N → SR2

(C1, . . . , CN ) �→ (TI , TE),

where TI = ∅ and

TE = (
⋃

{Ed(Ci, Cj) | Ed(Ci, Cj) legal or indeterminate})c.

We now proceed to show that the partial Delaunay triangulation map is nest-
edly Hausdorff computable. Since the interior is always empty, we only need to
prove the computability for the exterior. In the example in Figure 3(c), the par-
tial points are shown in black, while the exterior of the Delaunay triangulation,
which is a disconnected set, is shown in gray. Note that the partial Delaunay
triangulation map is not Hausdorff continuous, since an indeterminate partial
edge may become illegal with an arbitrarily small non-nested perturbation of the
input or partial points. The classical Delaunay triangulation map is similarly not
Hausdorff continuous.

Proposition 9. The partial Delaunay triangulation map T is Scott continuous.

In [6], an incremental algorithm has been presented which computes the par-
tial Delaunay triangulation of a set of partial points on average in N logN on
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non-degenerate input, generalising a similar algorithm for the classical Delaunay
triangulation.

Theorem 7. The partial Delaunay triangulation map T is nestedly Hausdorff
and Lebesgue computable.
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Since Di Gianantonio introduced his semantics for exact real number computa-
tion, there has always been a struggle to maintain data abstraction and efficiency
as much as possible. The interval domain model — or its variations — can be
regarded as the standard setting to obtain maximum data abstraction. As for
efficiency there has been much focus on sequentiality to the extent that these
two terms have become almost synonymous. [2, 3] demonstrated that there is not
much one can get by sequential computation in the interval domain model. In
[4, 5] we reinforced this result by exposing the limited power of (some extensions
of) the sequential fragment of Real-PCF.

The previous argument suggests some sort of compromise in the beauty of
the model in order to keep efficiency. One way forward is to try to sacrifice
extensionality. This is exactly what we did in designing Shrad [6]. There we
succeeded in presenting a framework for exact real number computation which
satisfies the following all at the same time:

1. It is sequential.
2. Multi-valuedness is carefully avoided.
3. A ‘good degree’ of expressivity is retained.
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2 Place Jussieu 75251 Paris cedex 05, France

finkel@logique.jussieu.fr.

Abstract. We determine completely the Borel hierarchy of the class of
context free ω-languages, showing that, for each recursive non null ordi-
nal α, there exist some Σ0

α-complete and some Π0
α-complete ω-languages

accepted by Büchi 1-counter automata.

1 Introduction

Languages of infinite words accepted by finite automata were first studied by
Büchi to prove the decidability of the monadic second order theory of one succes-
sor over the integers. The theory of the so called regular ω-languages is now well
established and has found many applications for specification and verification of
non-terminating systems; see [23, 21, 18] for many results and references. More
powerful machines, like pushdown automata, Turing machines, have also been
considered for the reading of infinite words, see Staiger’s survey [21] and the
fundamental study [6] of Engelfriet and Hoogeboom on X-automata, i.e. finite
automata equipped with a storage type X. A way to study the complexity of
ω-languages is to study their topological complexity, and particularly to locate
them with regard to the Borel and the projective hierarchies. On one side all ω-
languages accepted by deterministic X-automata with a Muller acceptance con-
dition are Boolean combinations of Π0

2-sets hence Δ0
3-sets, [21, 6]. This implies,

from Mc Naughton’s Theorem, that all regular ω-languages, which are accepted
by deterministic Muller automata, are also Δ0

3-sets. On the other side, for non
deterministic finite machines, the question, posed by Lescow and Thomas in [15],
naturally arises: what is the topological complexity of ω-languages accepted by
automata equipped with a given storage type X? It is well known that every
ω-language accepted by a Turing machine (hence also by a X-automaton) with
a Muller acceptance condition is an analytic set. In previous papers, we proved
that there are context free ω-languages, accepted by Büchi or Muller pushdown
automata, of every finite Borel rank, of infinite Borel rank, or even being ana-
lytic but non Borel sets, [3, 8, 10, 11]. In this paper we determine completely the
Borel hierarchy of ω-languages accepted by X-automata, for every storage type
X such that 1-counter automata can be simulated by X-automata. In particular,
we show that, for every recursive non-null ordinal α, there are some Σ0

α-complete

S.B. Cooper, B. Löwe, and L. Torenvliet (Eds.): CiE 2005, LNCS 3526, pp. 129–138, 2005.
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and some Π0
α-complete ω-languages accepted by real time 1-counter Büchi au-

tomata, hence also in the class CFLω of context free ω-languages.
We think that the surprising result obtained in this paper is of interest for

both logicians working on hierarchies arising in recursion theory or in descriptive
set theory, and also for computer scientists working on questions connected with
non-terminating systems, like the construction of effective strategies in infinite
games, [24, 27].

The paper is organized as follows. In Section 2 we define multicounter au-
tomata which will be a useful tool in the sequel. Recall on Borel hierarchy is given
in Section 3. In Section 4 is studied the Borel hierarchy of ω-languages accepted
by real time 8-counter automata. Our main result is proved in Section 5.

2 Multicounter Automata

We assume the reader to be familiar with the theory of formal (ω)-languages
[23, 21]. We shall use usual notations of formal language theory.

When Σ is a finite alphabet, a non-empty finite word over Σ is any sequence
x = a1 . . . ak , where ai ∈ Σ for i = 1, . . . , k , and k is an integer ≥ 1. The length
of x is k, denoted by |x|. The empty word has no letter and is denoted by λ; its
length is 0. For x = a1 . . . ak, we write x(i) = ai and x[i] = x(1) . . . x(i) for i ≤ k
and x[0] = λ. Σ� is the set of finite words (including the empty word) over Σ.

The first infinite ordinal is ω. An ω-word over Σ is an ω -sequence a1 . . . an . . .,
where for all integers i ≥ 1, ai ∈ Σ. When σ is an ω-word over Σ, we write
σ = σ(1)σ(2) . . . σ(n) . . ., where for all i, σ(i) ∈ Σ, and σ[n] = σ(1)σ(2) . . . σ(n)
for all n ≥ 1 and σ[0] = λ.

The prefix relation is denoted �: a finite word u is a prefix of a finite word
v (respectively, an infinite word v), denoted u � v, if and only if there exists a
finite word w (respectively, an infinite word w), such that v = u.w. The set of
ω-words over the alphabet Σ is denoted by Σω. An ω-language over an alphabet
Σ is a subset of Σω.

Definition 1. Let k be an integer ≥ 1. A k-counter machine (k-CM) is a 4-
tuple M = (K, Σ,Δ, q0), where K is a finite set of states, Σ is a finite input
alphabet, q0 ∈ K is the initial state, and the transition relation Δ is a subset of
K × (Σ ∪ {λ}) × {0, 1}k × K × {0, 1,−1}k. The k-counter machine M is said
to be real time iff: Δ ⊆ K ×Σ × {0, 1}k × K × {0, 1,−1}k, i.e. iff there are not
any λ-transitions.

If the machine M is in state q and ci ∈ N is the content of the ith counter Ci
then the configuration (or global state) of M is the (k + 1)-tuple (q, c1, . . . , ck).

For a ∈ Σ ∪ {λ}, q, q′ ∈ K and (c1, . . . , ck) ∈ Nk such that cj = 0 for
j ∈ E ⊆ {1, . . . , k} and cj > 0 for j /∈ E, if (q, a, i1, . . . , ik, q′, j1, . . . , jk) ∈ Δ
where ij = 0 for j ∈ E and ij = 1 for j /∈ E, then we write:

a : (q, c1, . . . , ck) �→M (q′, c1 + j1, . . . , ck + jk)

�→�
M is the transitive and reflexive closure of �→M. (The subscript M will be

omitted whenever the meaning remains clear).



Borel Ranks and Wadge Degrees of Context Free ω-Languages 131

Thus we see that the transition relation must satisfy:
if (q, a, i1, . . . , ik, q′, j1, . . . , jk) ∈ Δ and im = 0 for some m ∈ {1, . . . , k}, then
jm = 0 or jm = 1 (but jm may not be equal to −1).

Let σ = a1a2 . . . an be a finite word over Σ. An sequence of configurations
r = (qi, ci1, . . . c

i
k)1≤i≤p, for p ≥ n + 1, is called a run of M on σ, starting

in configuration (p, c1, . . . , ck), iff:

1. (q1, c11, . . . c
1
k) = (p, c1, . . . , ck)

2. for each i ≥ 1, there exists bi ∈ Σ ∪ {λ} such that bi : (qi, ci1, . . . c
i
k) �→M

(qi+1, c
i+1
1 , . . . ci+1

k )
3. a1.a2.a3 . . . an = b1.b2.b3 . . . bp

Let σ = a1a2 . . . an . . . be an ω-word over Σ. An ω-sequence of configurations r =
(qi, ci1, . . . c

i
k)i≥1 is called a run of M on σ, starting in configuration (p, c1, . . . , ck),

iff:

1. (q1, c11, . . . c
1
k) = (p, c1, . . . , ck)

2. for each i ≥ 1, there exists bi ∈ Σ ∪ {λ} such that bi : (qi, ci1, . . . c
i
k) �→M

(qi+1, c
i+1
1 , . . . ci+1

k ) such that either a1a2 . . . an . . . = b1b2 . . . bn . . .
or b1b2 . . . bn . . . is a finite prefix of a1a2 . . . an . . .

The run r is said to be complete when a1a2 . . . an . . . = b1b2 . . . bn . . .
For every such run, In(r) is the set of all states entered infinitely often during
run r.

A complete run r of M on σ, starting in configuration (q0, 0, . . . , 0), will be
simply called “a run of M on σ”.

Definition 2. A Büchi k-counter automaton is a 5-tuple M = (K, Σ,Δ, q0, F ),
where M′ = (K, Σ,Δ, q0) is a k-counter machine and F ⊆ K is the set of
accepting states. The ω-language accepted by M is

L(M) = {σ ∈ Σω | there exists a run r of M on σ such that In(r) ∩ F �= ∅}

Definition 3. A Muller k-counter automaton is a 5-tuple M = (K, Σ,Δ, q0,F),
where M′ = (K, Σ,Δ, q0) is a k-counter machine and F ⊆ 2K is the set of ac-
cepting sets of states. The ω-language accepted by M is

L(M) = {σ ∈ Σω | there exists a run r of M on σ such that ∃F ∈ F In(r)= F}

The class of Büchi k-counter automata will be denoted BC(k).
The class of real time Büchi k-counter automata will be denoted r-BC(k).
The class of ω-languages accepted by Büchi k-counter automata will be denoted
BCL(k)ω.
The class of ω-languages accepted by real time Büchi k-counter automata will
be denoted r-BCL(k)ω.

It is well known that an ω-language is accepted by a (real time) Büchi k-
counter automaton iff it is accepted by a (real time) Muller k-counter automa-
ton [6]. Notice that it cannot be shown without using the non determinism of
automata and this result is no longer true in the deterministic case.
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Remark that 1-counter automata introduced above are equivalent to push-
down automata whose stack alphabet is in the form {Z0, A} where Z0 is the
bottom symbol which always remains at the bottom of the stack and appears
only there and A is another stack symbol. The pushdown stack may be seen like
a counter whose content is the integer N if the stack content is the word Z0.A

N .
In the model introduced here the counter value cannot be increased by more

than 1 during a single transition. However this does not change the class of
ω-languages accepted by such automata. So the class BCL(1)ω is equal to the
class 1-ICLω, introduced in [9], and it is a strict subclass of the class CFLω of
context free ω-languages accepted by Büchi pushdown automata.

3 Borel Hierarchy

We assume the reader to be familiar with basic notions of topology which may
be found in [16, 15, 14, 21, 18]. There is a natural metric on the set Σω of infinite
words over a finite alphabet Σ which is called the prefix metric and defined as
follows. For u, v ∈ Σω and u �= v let δ(u, v) = 2−lpref(u,v) where lpref(u,v) is the
first integer n such that the (n + 1)st letter of u is different from the (n + 1)st

letter of v. This metric induces on Σω the usual Cantor topology for which open
subsets of Σω are in the form W.Σω, where W ⊆ Σ�. A set L ⊆ Σω is a closed
set iff its complement Σω −L is an open set. Define now the Borel Hierarchy of
subsets of Σω:

Definition 4. For a non-null countable ordinal α, the classes Σ0
α and Π0

α of
the Borel Hierarchy on the topological space Σω are defined as follows:
Σ0

1 is the class of open subsets of Σω, Π0
1 is the class of closed subsets of Σω,

and for any countable ordinal α ≥ 2:
Σ0

α is the class of countable unions of subsets of Σω in
⋃

γ<α Π0
γ .

Π0
α is the class of countable intersections of subsets of Σω in

⋃
γ<α Σ0

γ .

For a countable ordinal α, a subset of Σω is a Borel set of rank α iff it is in
Σ0

α ∪ Π0
α but not in

⋃
γ<α(Σ0

γ ∪ Π0
γ).

There are also some subsets of Σω which are not Borel. In particular the
class of Borel subsets of Σω is strictly included into the class Σ1

1 of analytic sets
which are obtained by projection of Borel sets, see for example [21, 15, 18, 14]
for more details. The (lightface) class Σ1

1 of effective analytic sets is the class of
sets which are obtained by projection of arithmetical sets. It is well known that
a set L ⊆ Σω, where Σ is a finite alphabet, is in the class Σ1

1 iff it is accepted
by a Turing machine with a Büchi or Muller acceptance condition [21].

We now define completeness with regard to reduction by continuous func-
tions. For a countable ordinal α ≥ 1, a set F ⊆ Σω is said to be a Σ0

α (respec-
tively, Π0

α, Σ1
1)-complete set iff for any set E ⊆ Y ω (with Y a finite alphabet):

E ∈ Σ0
α (respectively, E ∈ Π0

α, E ∈ Σ1
1) iff there exists a continuous function

f : Y ω → Σω such that E = f−1(F ). Σ0
n (respectively Π0

n)-complete sets, with
n an integer ≥ 1, are thoroughly characterized in [20].
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4 Borel Hierarchy of ω-Languages in r-BCL(8)ω

It is well known that if L ⊆ Σω is accepted by a Turing machine with a Büchi
acceptance condition and is a Borel set of rank α, then α is smaller than ωCK

1 ,
where ωCK

1 is the first non-recursive ordinal, usually called the Church-Kleene
ordinal. Moreover for every non null countable ordinal α < ωCK

1 , there exist
some Σ0

α-complete and some Π0
α-complete sets in the class Σ1

1 of ω-languages
accepted by Turing machines with a Büchi acceptance condition.

On the other hand it is well known that every Turing machine can be simu-
lated by a (non real time) 2-counter automaton. Thus for every non null count-
able ordinal α < ωCK

1 , there exist some Σ0
α-complete and some Π0

α-complete
ω-languages in the class BCL(2)ω. We shall prove the following proposition.

Proposition 5. For every non null countable ordinal α < ωCK
1 , there exist some

Σ0
α-complete and some Π0

α-complete ω-languages in the class r-BCL(8)ω.

In order to prove this result, we first state the two following lemmas.
Let Σ be an alphabet having at least two letters, E be a new letter not in

Σ, S be an integer ≥ 1, and θS : Σω → (Σ ∪ {E})ω be the function defined, for
all x ∈ Σω, by:

θS(x) = x(1).ES .x(2).ES2
.x(3).ES3

.x(4) . . . x(n).ESn

.x(n + 1).ESn+1
. . .

Lemma 6. Let Σ be an alphabet having at least two letters and let L ⊆ Σω be a
Σ0

α-complete (respectively, Π0
α-complete) subset of Σω for some ordinal α ≥ 2.

Then the ω-language θS(L) is a Σ0
α-complete (respectively, Π0

α-complete) subset
of (Σ ∪ {S})ω.

Lemma 7. Let Σ be an alphabet having at least two letters and let L ⊆ Σω be
an ω-language in the class BCL(2)ω. Then there exists an integer S ≥ 1 such
that θS(L) is in the class r-BCL(8)ω.

5 Borel Hierarchy of ω-Languages in r-BCL(1)ω

We shall firstly prove the following result.

Proposition 8. Let k ≥ 2 be an integer. If, for some ordinal α ≥ 2, there is
a Σ0

α-complete (respectively, Π0
α-complete) ω-language in the class r-BCL(k)ω,

then there is some Σ0
α-complete (respectively, Π0

α-complete) ω-language in the
class r-BCL(1)ω.

To simplify the exposition of the proof of this result, firstly, we are going to
sketch the proof for k = 2. Next we shall explain the modifications to do in order
to infer the result for the integer k = 8 which is in fact the only case we shall
need in the sequel. (However our main result will show that the proposition is
true for every integer k ≥ 2).
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For that purpose we define first a coding of ω-words over a finite alphabet Σ
by ω-words over the alphabet Σ ∪ {A,B, 0} where A, B and 0 are new letters
not in Σ. We shall code an ω-word x ∈ Σω by the ω-word h(x) defined by

h(x) = A.06.x1.B.062
.A.062

.x2.B.063
.A.063

.x3.B . . . B.06n

.A.06n

.xn.B . . .

This coding defines a mapping h : Σω → (Σ ∪ {A,B, 0})ω. The function h is
continuous because for all ω-words x, y ∈ Σω and each positive integer n, it
holds that δ(x, y) < 2−n → δ(h(x), h(y)) < 2−n.

Lemma 9. Let Σ be a finite alphabet and (h(Σω))− = (Σ∪{A,B, 0})ω−h(Σω).
If L ⊆ Σω is Σ0

α-complete (respectively, Π0
α-complete), for a countable ordinal

α ≥ 2, then h(L)∪h(Σω)− is a Σ0
α-complete (respectively, Π0

α-complete) subset
of (Σ ∪ {A,B, 0})ω.

In order to apply Lemma 9, we want now to prove that if L(A) ⊆ Σω is
accepted by a real time 2-counter automaton A with a Büchi acceptance condi-
tion then h(L(A))∪h(Σω)− is accepted by a 1-counter automaton with a Büchi
acceptance condition. We firstly prove the following lemma.

Lemma 10. Let Σ be a finite alphabet and h be the coding of ω-words over Σ
defined as above. Then h(Σω)− = (Σ ∪{A,B, 0})ω−h(Σω) is accepted by a real
time 1-counter Büchi automaton.

We would like now to prove that if L(A) ⊆ Σω is accepted by a real time
2-counter automaton A with a Büchi acceptance condition then h(L(A)) is in
BCL(1)ω. We cannot show this, so we are firstly going to define another ω-
language L(A) accepted by a 1-counter Büchi automaton and we shall prove
that h(L(A)) ∪ h(Σω)− = L(A) ∪ h(Σω)−.

We shall need the following notion. Let N ≥ 1 be an integer such that
N = 2x.3y.N1 where x, y are positive integers and N1 ≥ 1 is an integer which
is neither divisible by 2 nor by 3. Then we set P2(N) = x and P3(N) = y. So
2P2(N) is the greatest power of 2 which divides N and 2P3(N) is the greatest
power of 3 which divides N .

Let then a 2-counter Büchi automaton A = (K, Σ,Δ, q0, F ) accepting the
ω-language L(A) ⊆ Σω. The ω-language L(A) is the set of ω-words over the
alphabet Σ ∪ {A,B, 0} in the form

A.u1.v1.x1.B.w1.z1.A.u2.v2.x2.B.w2.z2.A . . . A.un.vn.xn.B.wn.zn.A . . .

where, for all integers i ≥ 1, vi, wi ∈ 0+, ui, zi ∈ 0�, |u1| = 5, |ui+1| = |zi|
and there is a sequence (qi)i≥0 of states of K and integers ji, j

′
i ∈ {−1; 0; 1}, for

i ≥ 1, such that for all integers i ≥ 1:

xi : (qi−1, P2(|vi|), P3(|vi|)) �→A (qi, P2(|vi|) + ji, P3(|vi|) + j′
i)

and
|wi| = |vi|.2ji .3j

′
i

Moreover some state qf ∈ F occurs infinitely often in the sequence (qi)i≥0.
Notice that the state q0 of the sequence (qi)i≥0 is also the initial state of A.
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Lemma 11. Let A be a real time 2-counter Büchi automaton accepting ω-words
over the alphabet Σ and L(A) ⊆ (Σ∪{A,B, 0})ω be defined as above. Then L(A)
is accepted by a 1-counter Büchi automaton B.

Lemma 12. Let A be a real time 2-counter Büchi automaton accepting ω-words
over the alphabet Σ and L(A) ⊆ (Σ ∪ {A,B, 0})ω be defined as above. Then
L(A) = h−1(L(A)), i.e. ∀x ∈ Σω h(x) ∈ L(A) ←→ x ∈ L(A).

Proof. Let A be a real time 2-counter Büchi automaton accepting ω-words over
the alphabet Σ and L(A) ⊆ (Σ ∪ {A,B, 0})ω be defined as above. Let x ∈ Σω

be an ω-word such that h(x) ∈ L(A). So h(x) may be written

h(x) = A.06.x1.B.062
.A.062

.x2.B.063
.A.063

.x3.B . . . B.06n

.A.06n

.xn.B . . .

and also

h(x) = A.u1.v1.x1.B.w1.z1.A.u2.v2.x2.B.w2.z2.A . . . A.un.vn.xn.B.wn.zn.A . . .

where, for all integers i ≥ 1, vi, wi ∈ 0+, ui, zi ∈ 0�, |u1| = 5, |ui+1| = |zi|
and there is a sequence (qi)i≥0 of states of K and integers ji, j

′
i ∈ {−1; 0; 1}, for

i ≥ 1, such that for all integers i ≥ 1:

xi : (qi−1, P2(|vi|), P3(|vi|)) �→A (qi, P2(|vi|) + ji, P3(|vi|) + j′
i)

and
|wi| = |vi|.2ji .3j

′
i

some state qf ∈ F occurring infinitely often in the sequence (qi)i≥0.
In particular, u1 = 05 and u1.v1 = 06 thus |v1| = 1 = 20.30. We can prove

by induction on the integer i ≥ 1 that, for all integers i ≥ 1, |wi| = |vi+1| =
2P2(|wi|).3P3(|wi|). Moreover, setting ci1 = P2(|vi|) and ci2 = P3(|vi|), we can prove
that for each integer i ≥ 1 it holds that

xi : (qi−1, c
i
1, c

i
2) �→A (qi, ci+1

1 , ci+1
2 )

But there is some state qf ∈ K which occurs infinitely often in the sequence
(qi)i≥1. This implies that (qi−1, c

i
1, c

i
2)i≥1 is a successful run of A on x thus

x ∈ L(A).
Conversely it is easy to see that if x ∈ L(A) then h(x) ∈ L(A). This ends the

proof of Lemma 12. �

Remark 13. The simulation, during the reading of h(x) by the 1-counter Büchi
automaton B, of the behaviour of the real time 2-counter Büchi automaton A
reading x, can be achieved, using a coding of the content (c1, c2) of two counters
by a single integer 2c1 .3c2 and the special shape of ω-words in h(Σω) which
allows the propagation of the counter value of B. This will be sufficient here,
because of the previous lemmas, and in particular of the fact that h(Σω)− is in
the class r-BCL(1)ω. and we can now end the proof of Proposition 8.
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End of Proof of Proposition 8. Let α ≥ 2 be an ordinal. Assume that there
is a Σ0

α-complete (respectively, Π0
α-complete) ω-language L(A) ⊆ Σω which

is accepted by a real time 2-counter Büchi automaton A. By Lemma 9, h(L) ∪
h(Σω)− is a Σ0

α-complete (respectively, Π0
α-complete) subset of (Σ∪{A,B, 0})ω.

On the other hand Lemma 12 states that L(A) = h−1(L(A)) and this implies
that h(L(A)) ∪ h(Σω)− = L(A) ∪ h(Σω)−. But we know by Lemmas 10 and
11 that the ω-languages h(Σω)− and L(A) are in the class BCL(1)ω thus their
union is also accepted by a 1-counter Büchi automaton. Therefore h(L(A)) ∪
h(Σω)− is a Σ0

α-complete (respectively, Π0
α-complete) ω-language in the class

BCL(1)ω.
We can now easily show that there is a Σ0

α-complete (respectively, Π0
α-

complete) ω-language in the class r-BCL(1)ω, using the two following facts.
(1) h(Σω)− is accepted by a real time 1-counter Büchi automaton; (2) L(A)
is accepted by a (non real time) 1-counter Büchi automaton B but at most 5
consecutive λ-transitions can occur during the reading of an ω-word x by B (see
the proof of Lemma 11 in the full version of this paper).

In order to prove Proposition 8 for the integer k = 8, we reason in a similar
way. We first replace the integer 6 = 2.3 by the product of the eight first prime

numbers:
K = 2.3.5.7.11.13.17.19 = 9699690

and the mapping h by the mapping hK , defined for all x ∈ Σω, by:

hK(x) = A.0K .x1.B.0K
2
.A.0K

2
.x2.B.0K

3
.A.0K

3
.x3.B . . . B.0K

n

.A.0K
n

.xn.B . . .

We define also, for every 8-counter Büchi automaton A, an ω-language L(A),
accepted by a 1-counter Büchi automaton, such that L(A) = h−1

K (L(A)).
The essential change is that now the content (c1, c2, . . . , c8) of eight counters

is coded by the product 2c1 .3c2 . . . . .(17)c7 .(19)c8 .
Details will be included in the full version of this paper. �
From the results of Section 4 and Proposition 8, we can now state the fol-

lowing result.

Theorem 14. Let C be a class of ω-languages such that:

r-BCL(1)ω ⊆ C ⊆ Σ1
1 .

(a) If L ∈ C is a Borel set of rank α, then α is smaller than ωCK
1 .

(b) For every non null countable ordinal α < ωCK
1 , there exists some Σ0

α-
complete and some Π0

α-complete ω-languages in the class C.

The Wadge hierarchy is a great refinement of the Borel hierarchy, [4, 25].
Looking carefully at the proofs given in this paper, we can easily show the
following strengthening of Theorem 14 (see the proof in the full version of this
paper).

Theorem 15. The Wadge hierarchy of the class r-BCL(1)ω, hence also of the
class CFLω, or of every class C such that r-BCL(1)ω ⊆ C ⊆ Σ1

1 , is the Wadge
hierarchy of the class Σ1

1 of ω-languages accepted by Turing machines with a
Büchi acceptance condition.
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6 Concluding Remarks

We have completely determined the Borel hierarchy of classes r-BCL(1)ω and
CFLω and showed that their Wadge hierarchy is also the Wadge hierarchy of
the class Σ1

1 . The methods used in this paper are different from those used
in previous papers on context free ω-languages [8, 7, 10, 11], where we gave an
inductive construction of some Δ0

ω context free ω-languages of a given Borel
rank or Wadge degree, using work of Duparc on the Wadge hierarchy of Δ0

ω

Borel sets, [4]. However it will be possible to combine both methods for the
effective construction of ω-languages in the class r-BCL(1)ω, and of 1-counter
Büchi automata accepting them, of a given Wadge degree among the εω degrees
obtained in [7] for Δ0

ω context free ω-languages.
Finally we mention that in a forthcoming paper we apply similar methods to

the study of topological properties of infinitary rational relations and we prove
that their Wadge and Borel hierarchies are equal to the corresponding hierarchies
of of the classes r-BCL(1)ω, CFLω or Σ1

1 , [12].
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1992.

20. L. Staiger. Hierarchies of recursive ω-languages. Elektronische Informationsverar-
beitung und Kybernetik, 22(5-6):219–241, 1986.

21. L. Staiger. ω-languages. In Handbook of formal languages, Vol. 3, pages 339–387.
Springer, Berlin, 1997.

22. L. Staiger and K. Wagner. Automatentheoretische und automatenfreie Charak-
terisierungen topologischer Klassen regulärer Folgenmengen. Elektron. Informa-
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Abstract. Seventeen years ago, John McCarthy wrote the note Episte-
mological challenges for connectionism as a response to Paul Smolensky’s
paper On the proper treatment of connectionism. I will discuss the ex-
tent to which the four key challenges put forward by McCarthy have been
solved, and what are the new challenges ahead. I argue that there are
fewer epistemological challenges for connectionism, but progress has been
slow. Nevertheless, there is now strong indication that neural-symbolic
integration can provide effective systems of expressive reasoning and ro-
bust learning due to the recent developments in the field.

1 Introduction

This paper is about the integration of neural networks and symbol processing;
it is about how to represent, learn, and compute expressive forms of symbolic
knowledge using neural networks. I believe this is the way forward towards the
provision of an integrated system of expressive reasoning and robust learning.
The provision of such a system, integrating the two most fundamental phenom-
ena of intelligent cognitive behaviour (i.e. the ability to learn from experience
and the ability to reason from what has been learned) has been recently identi-
fied by Leslie Valiant as a key challenge for computer science [25]. The goal is
to produce biologically plausible models with integrated reasoning and learning
capability, in which neural networks provide the inspiration and the machinery
necessary for cognitive computation and learning, while logics provide practical
reasoning and explanation capabilities to the models, facilitating the interaction
between them and the outside world.

In what follows, I will briefly review my recent work (joint with Luis Lamb
and Dov Gabbay) on how to integrate logic and neural networks [8, 9]. I will then
address the open question of how to represent variables effectively in neural net-
works, which emerges from my recent work (joint with Dov Gabbay) on how to
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combine neural networks in a principled way [7]. Throughout, I will try and put
the recent advances on neural-symbolic integration in the context of John Mc-
Carthy’s note Epistemological challenges for connectionism [17], written as a re-
sponse to Paul Smolensky’s paper On the proper treatment of connectionism [22].
Briefly, McCarthy identifies four knowledge representation problems for neural
networks: the problem of elaboration tolerance (the ability of a representation to
be elaborated to take additional phenomena into account); the propositional fix-
ation of neural networks (based on the assumption that neural networks cannot
represent relational knowledge); the problem of how to make use of any avail-
able background knowledge as part of learning, and the problem of how to obtain
domain descriptions from trained networks as opposed to mere discriminations.

I will start by giving examples of how we represent propositional modal logic
(and thus relational knowledge) in neural networks, pointing the reader to the
papers in the area. I will then discuss our proposal for combining (fibring) neu-
ral networks, and how it may allow us to represent variables. In what regards the
challenges put forward by McCarthy, in a nutshell, the problem of elaboration tol-
erance may be resolved by having networks that are fibred in a hierarchy (this is
similar to the idea of using self-organising maps [12], e.g., for language process-
ing, in which the lower levels of abstraction are used for the formation of concepts
that are then used at the higher levels of the hierarchy); in the case of the so-called
propositional fixation of neural networks, connectionist modal logic shows that,
as a matter of fact, neural networks can encode relational knowledge (in the form
of accessibility relations) [9]; as for learning with background knowledge, this can
be achieved by translating symbolic rules into the initial architecture of a neural
network; whereas problem description can be obtained by rule extraction from
trained neural networks. In the past decade, a number of such translation algo-
rithms [8, 9, 13, 23] and knowledge extraction algorithms [1, 3, 19, 24] has been pro-
posed.

Nevertheless, there are still challenges ahead, particularly in what regards the
effective integration of expressive reasoning and robust learning. In this case, we
cannot afford to lose on the learning capability side as we add reasoning capa-
bility to neural networks. This means that we cannot depart from the idea that
neural networks are composed of simple processing units organised in a massively
parallel way (and allow for some clever neurons to perform complex symbolic
computation). We also would like our models to be biologically plausible, not as
a principle but in a pragmatic way. There have been recent advances in brain
imaging, which offer us data we can make use of to get insight into new forms
of representation. Human beings are quite extraordinary at performing practical
reasoning as they go about their daily business. There are cases where the human
computer, slow as it is, is faster than Artificial Intelligence systems. Why are we
faster? Is it the way we perceive knowledge as opposed to the way we represent
it? Do we know immediately which rules to select and apply? We must look for
the correct representation in the sense that it mirrors the way we perceive and
apply the rules [10]. Ultimately, Neural-Symbolic integration is about asking and
trying to answer these questions.



Fewer Epistemological Challenges for Connectionism 141

2 Neural-Symbolic Integration

For neural-symbolic integration to be effective in complex applications, we need
to investigate how to represent, reason, and learn expressive logics in neural net-
works. We also need to find effective ways of expressing the knowledge encoded
in a trained network in a comprehensible symbolic form.

There are two ways to move forward and benefit from neural-symbolic in-
tegration. The first is to take standard neural networks and try and find out
which logics they can represent. The other is to take well established logics and
concepts (e.g. recursion) and try and encode them in a neural network architec-
ture. This needs to be carried out in a systematic way. Whenever we show that
a particular logic can be represented by a particular neural network, we need to
show that the network and the logic are in fact equivalent (a way to do this is to
prove that the network computes the semantics of the logic). Similarly, if we de-
velop a knowledge extraction algorithm, we need to make sure that it is correct
in the sense that it produces rules that are encoded in the network, and that it
is complete in the sense that it produces rules that increasingly approximate the
exact behaviour of the network.

In the past twenty years, a number of models for neural-symbolic integration
has been proposed. Broadly speaking, researchers have made contributions to
three main areas. Neural-symbolic systems provide either: (i) a logical charac-
terisation of a connectionist system; (ii) a connectionist implementation of a
logic; or (iii) a hybrid system bringing together advantages from connectionist
systems and symbolic artificial intelligence [15]. Key contributions to the area
were given by Ron Sun [23], Lokendra Shastri [20], and Steffen Hölldobler [14] on
the knowledge representation side, by Jude Shavlik [21] on learning with back-
ground knowledge, and by Sebastian Thrun on knowledge extraction [24], among
others. The reader is referred to [6] for a general presentation of the subject of
neural-symbolic integration, and to [4] for a more advanced collection of papers
on the subject.

Neural-symbolic systems [6] contain six main phases: (1) symbolic knowledge
insertion; (2) inductive learning with examples; (3) massively parallel deduction;
(4) theory fine-tuning ; (5) symbolic knowledge extraction; and (6) feedback (see
Figure 1). In phase (1), symbolic knowledge is translated into the initial archi-
tecture of a neural network with the use of a Translation Algorithm. In phase
(2), the neural network is trained with examples by a neural learning algorithm,
which revises the theory given in phase (1) as background knowledge. In phase
(3), the network can be used as a massively parallel system to compute the logi-
cal consequences of the theory encoded in it. In phase (4), information obtained
from the computation carried out in phase (3) may be used to help fine-tuning
the network to better represent the problem domain. This mechanism can be
used, for example, to resolve inconsistencies between the background knowledge
and the training examples. In phase (5), the result of training is explained by
the extraction of revised symbolic knowledge. As with the insertion of rules, the
Extraction Algorithm must be provably correct, so that each rule extracted is
guaranteed to be encoded in the network. Finally, in phase (6), the knowledge
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extracted may be analysed by an expert to decide if it should feed the system
once again, closing the learning cycle. A typical application of Neural-Symbolic
Systems is in safety-critical domains, e.g. power plant fault diagnosis, where the
neural network can be used to detect a fault quickly, triggering safety proce-
dures, while the knowledge extracted from it can be used to explain the reasons
for the fault later on. If mistaken, this information can be used to fine tune the
learning system.
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Fig. 1. Neural-Symbolic Learning Systems

In this paper, we focus on knowledge representation (phase (1) above). First,
let us see how the Translation Algorithm works in the case of general logic
programs1. Before we proceed, let us define the type of neural network used
here. An artificial neural network is a directed graph. A unit in this graph is
characterised, at time t, by its input vector Ii(t), its input potential Ui(t), its
activation state Ai(t), and its output Oi(t). The units (neurons) of the network
are interconnected via a set of directed and weighted connections. If there is a
connection from unit i to unit j then Wji ∈ ' denotes the weight associated
with such a connection. The input potential of neuron i (Ui(t)) is obtained by
applying the propagation rule of neuron i (gi) such that Ui(t) = gi(Ii(t),Wi),
where Ii(t) is the input vector (x1(t), x2(t), ..., xn(t)) to neuron i at time t, and
Wi denotes the weight vector (Wi1,Wi2, ...,Win) to neuron i. In addition, θi (an
extra weight with input always fixed at 1) is known as the threshold of neuron i.

The activation state of neuron i (Ai(t)) is a bounded real or integer number
given by its activation rule (hi). In general, hi does not depend on the previous
activation state of the neuron, and the propagation rule gi is a weighted sum
such that Ai(t) = hi(

∑
j((Wij · xj(t)) − θi)). Finally, in general, the output is

given by the identity function, and thus Oi(t) = Ai(t).
The units of a neural network can be organised in layers. A n-layer feed-

forward network N is an acyclic graph. N consists of a sequence of layers and

1 A general clause is a rule of the form L1, ..., Lk → A, where A is an atom and Li

(1 ≤ i ≤ k) is a literal. A general logic program is a finite set of general clauses.
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connections between successive layers, containing one input layer, n− 2 hidden
layers and one output layer, where n ≥ 2. When n = 3, we say that N is a single
hidden layer network. When each unit occurring in the i-th layer is connected
to each unit occurring in the i + 1-st layer, we say that N is a fully-connected
network.

Now, let P be a general logic program, and let N be a single hidden layer
feedforward neural network. Each clause (rl) of P can be mapped from the input
layer to the output layer of N through one neuron (Nl) in the single hidden
layer of N . Intuitively, the Translation Algorithm from P to N implements the
following conditions: (C1) The input potential of a hidden neuron (Nl) can only
exceed Nl’s threshold (θl), activating Nl, when all the positive antecedents of
rl are assigned the truth-value true while all the negative antecedents of rl are
assigned false; and (C2) The input potential of an output neuron (A) can only
exceed A’s threshold (θA), activating A, when at least one hidden neuron Nl

that is connected to A is activated.

Example: Consider the logic program P = {B ∧C ∧¬D → A;E ∧F → A;B}.
The Translation Algorithm derives the network N of Figure 2, setting weights
(W ) and thresholds (θ) in such a way that conditions (C1) and (C2) above are
satisfied. Note that, if N ought to be fully-connected, any other link (not shown
in Figure 2) should receive weight zero initially.
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Fig. 2. Neural Network for Logic Programming

Note that, in the above example, each input and output neuron of N is
associated with an atom of P. As a result, each input and output vector of
N can be associated with an interpretation for P. Note also that each hidden
neuron Nl corresponds to a rule rl of P. In order to compute the stable models
of P, output neuron B should feed input neuron B such that N is used to iterate
TP , the fixed-point operator of P. N will eventually converge to a stable state
which is identical to a stable model of P [6].

Details about the translation and extraction algorithms, their proofs of cor-
rectness, and extensions to other types of logic program can be found in [6],
together with algorithms to deal with inconsistencies and experimental results
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in the areas of DNA sequence analysis, power systems fault diagnosis, and the
evolution of requirements in software engineering.

3 Connectionist Modal Logic

Let us now consider the case of modal logic programs, which extend logic pro-
grams with the necessity (�) and possibility (♦) modalities, according to an
accessibility relation R(ωi,ωj) on possible worlds ωi and ωj . I will give an ex-
ample of how neural networks can represent such modalities. The basic idea is
simple. Instead of having a single network, if we now allow a number of networks
(like the one in Figure 2) to occur in an ensemble, and we label the networks as
w1, w2, etc, we can talk about having x in w1 and having x in w2. In this way, we
can see w1 as a possible world and w2 as another, and this allows us to represent
modal logic programs2. This is of interest in connection with McCarthy’s con-
jecture on the propositional fixation of neural networks because there is a well
established translation between propositional modal logic and the two-variable
fragment of first order logic3 [26], which indicates that neural-symbolic systems
may go beyond propositional logic, thus contradicting McCarthy’s conjecture.

Example: Let P = {ω1 : r → �q; ω1 : ♦s → r; ω2 : s; ω3 : q → ♦p; R(ω1;ω2),
R(ω1,ω3)}. The network ensemble N in Figure 3 is equivalent to P. Take network
N1 (representing ω1). To implement the semantics of ♦, output neurons of the
form ♦α should be connected to output neurons α in an arbitrary network Ni

(representing ωi) to which N1 is related. For example, taking i = 2, ♦s in N1

is connected to s in N2. To implement the semantics of �, output neurons �α
should be connected to output neurons α in every network Ni to which N1 is
related. For example, �q in N1 is connected to q in both N2 and N3. Dually,
taking N2, output neurons α need to be connected to output neurons ♦α and
�α in every world Nj related to N2. For example, s in N2 is connected to ♦s in
N1 via the hidden neuron denoted by ∨ in Figure 3, while q in N2 is connected
to �q in N1 via the hidden neuron denoted by ∧. Similarly, q in N3 is connected
to �q in N1 via ∧. The translation terminates when all output neurons have
been considered. The translation algorithm defines the weights and thresholds
of the network in such a way that it can be shown to compute a fixed-point
semantics of the modal logic program associated to it (for any extended modal

2 An extended modal program is a finite set of clauses C of the form ωi :
ML1, ..., MLn → MA, where ωi is a label representing a world in which the associ-
ated clause holds, and M ∈ {�, ♦}, together with a finite set of relations R(ωi, ωj)
between worlds ωi and ωj in C.

3 In [26], Vardi states that “(propositional) modal logic, in spite of its apparent propo-
sitional syntax, is essentially a first-order logic, since the necessity and possibility
modalities quantify over the set of possible worlds... the states in a Kripke structure
correspond to domain elements in a relational structure, and modalities are noth-
ing but a limited form of quantifiers”. In the same paper, Vardi then proves that
propositional modal logics correspond to fragments of first-order logic.
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Fig. 3. Connectionist Modal Logic

program P there exists an ensemble of feedforward neural networks N with a
single hidden layer and semi-linear neurons, such that N computes the modal
fixed-point operator MTP of P). The proof and details about the algorithm
can be found in [9]. Finally, as we link the neurons in the output layer to the
corresponding neurons in the input layer of each network Ni, the ensemble can
be used to compute the modal program in parallel. In this example, we connect
output neurons ♦s and r to input neurons ♦s and r, respectively, in N1, and
output neuron q to input neuron q in N3. The ensemble converges to a stable
state containing {♦s, r,�q} in ω1, {s, q} in ω2, and {q,♦s} in ω3.

4 Fibring Neural Networks

In Connectionist Modal Logic (CML), one needs to create copies of certain con-
cepts. As a result, CML cannot deal with infinite domains, since this would
require infinitely many copies. An alternative is to map the instances of a vari-
able onto the reals, and then use real numbers as inputs to a neural network
as a way of representing variables. This has been done in [15], in which a the-
orem shows that the fixed-point semantics of first order logic programs can be
approximated arbitrarily well by neural networks very similar to the one de-
picted in Figure 2. However, the question of which neural network approximates
a given first order program remained, since no translation algorithm has been
introduced in [15]. Recently, we have followed the idea of representing variables
as real numbers, and proposed a translation algorithm from first order acyclic
programs to neural network ensembles [2]. The algorithm makes use of fibring
of neural networks [7], which we discuss in the sequel. Briefly, the idea is to use
a neural network to iterate a global counter n. For each clause Ci in the logic
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program, this counter is combined (fibred) with another neural network, which
determines whether Ci outputs an atom of level n for a given interpretation I.
This allows us to translate programs having an infinite number of ground in-
stances into a finite neural network structure (e.g. ¬even(x) → even(s(x)) for
x ∈ N, s(x) = x + 1), and to prove that indeed the network approximates the
fixed-point semantics of the program. The translation is made possible because
fibring allows one to implement a key feature of symbolic computation in neural
networks, namely, recursion.

The idea of fibring neural networks is simple. Fibred networks may be com-
posed not only of interconnected neurons but also of other networks, forming a
recursive architecture. A fibring function then defines how this recursive archi-
tecture must behave by defining how the networks in the ensemble relate to each
other. Typically, the fibring function will allow the activation of neurons in one
network (A) to influence the change of the weights in another network (B) (e.g.
by allowing the activation state of a neuron in A to be multiplied by the weights
of neurons in B). Intuitively, this may be seen as training network B at the same
time that one runs network A. Interestingly, albeit being a combination of simple
and standard neural networks, fibred networks can approximate any polynomial
function in an unbounded domain, thus being more expressive than standard
feedforward networks (which are universal approximators of functions in com-
pact, i.e. closed and bounded, domains only) [7]. For example, fibred networks
compute f(x) = x2 exactly for x ∈ R.

Figure 4 exemplifies how a network (B) can be fibred into a network (A).
Of course, the idea of fibring is not only to organise networks as a number of
subnetworks (A, B, etc). In Figure 4, for example, the output neuron of A is
expected to be a neural network (B) in its own right. The input, weights, and
output of B may depend on the activation state of A’s output neuron, according
to the fibring function ϕ. One such function may be simply to multiply the
weights of B by the activation state of A’s output neuron. Fibred networks
can be trained from examples in the same way that standard networks are (for
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Fig. 4. Fibring Neural Networks
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example, with the use of backpropagation [18]). Networks A and B above, e.g.,
could have been trained separately before having been fibred. Notice also that, in
addition to using different fibring functions, networks can be fibred in a number
of different ways as far as their architectures are concerned. Network B above,
e.g., could have been fibred into a hidden neuron of network A.

I believe that fibring can contribute to the solution of the problem of elabora-
tion tolerance by offering a principled and modular way of combining networks.
Network A could have been trained, e.g., with a robot’s visual system, while
network B would have been trained with its planning system, and fibring would
serve to perform the composition of the two systems (along the lines of Gab-
bay’s methodology for fibring logical systems [11]). Of course, a lot of work still
remains to be done in this area, particularly in what regards the question of how
one should go about fibring networks in real applications.

5 Concluding Remarks

I see CML as an example of how neural networks can contribute to logic, and I see
fibring as an example of how logic can bring insight into neural networks. CML
offers a parallel model of computation to modal logic that, at the same time, can
be integrated with an efficient learning system. Fibring is a clear example of how
concepts from symbolic computation may help in the development of new neural
network models (this does not necessarily conflicts with the concept of biological
plausibility, e.g. fibring functions can be understood as a model of presynaptic
weights, which play an important role in biological neural networks).

Together with its algorithms for learning from examples and background
knowledge [6] and for knowledge extraction from trained neural networks [5]
(which I have neglected in this paper), I believe that neural-symbolic integration
finally starts to address all the challenges put forward by McCarthy. On the
other hand, there are new challenges now, which arise directly from our goal of
integrating reasoning and learning in a principled way, as put forward by Valiant
[25].

In my opinion, the key challenges ahead are: how to get a constructive trans-
lation of variables into simple neural networks, and how to have a sound and
complete extraction method that is also efficient for large-scale networks. Let
me try and explain what I mean by a constructive translation. In the proposi-
tional case, when we look at a neural network, we can see the literals and their
relationship with other literals explicitly represented as neurons and their con-
nections with other neurons in the network. In the same way, we would like to
be able to look at a first order neural network and see the variables and their
relationship with other variables explicitly represented in the network. Although
fibring allows us to translate first order programs into neural networks, the cur-
rent translation algorithm does not produce one such constructive view of the
network. As a result, we still do not know how to learn first order programs using
neural networks, and I believe that a constructive translation would help shed
light into this learning problem. Due to the success of the propositional case, I
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am convinced that such a representation would allow for effective learning if it
kept the networks simple. This is still a big challenge. Of course, we will need to
be much more precise as we develop this work, and we will need to keep an eye
on the recent developments in the area of logic and learning [16].
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Computational Learning Theory has two goals: one, proposing rigorous models
of learning tasks that can be carried out by computers. Two, designing algo-
rithms that provably learn whole classes of concepts in these models within
some efficiency criterion.

Angluin’s exact learning from queries [1, 2] is one of the best studied such
models. It assumes that the concept to learn is a function taken from some fixed
class. A learning algorithm is allowed to ask certain types of queries about this
function, and terminate having identified the function exactly. The learning task
is completely specified once a function class and the allowed types of queries are
specified.

We will survey some recent work on the learnability of classes of functions
defined by programs over monoids or semigroups, in the mentioned model of
exact learning from queries. In [3, 4], expressions over a monoid M were consid-
ered; expressions on n variables over M compute functions from Mn to M . More
recently, together with A. Chattopadhyay, K. Arnsfelt Hansen, and D. Thérien,
we have started the study of boolean functions computed by the standard no-
tion of boolean program over a semigroup [5, 6]; these programs, over n variables,
compute boolean functions {0, 1}n �→ {0, 1}.

As was to be expected, there is a strong relation between algebraic properties
of the semigroup and the complexity of the associated learning problems. In
many contexts, it is possible to design learning algorithms that learn whole (and
natural) varieties of semigroups. Often, one can show that in fact the limit of
learnability (e.g., using a fixed set of query types) coincides exactly with such a
natural variety of semigroups.

More in general, we regard this work as trying to identify algebraic prop-
erties that lead to, or prevent, learnability. We believe that this approach may
provide useful insights on the deep reasons why learning tasks are easy or hard,
by explaining why and when some of the algorithmic techniques designed in
Computational Learning Theory will work.
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Of particular interest is the fact that many of the classes of boolean functions
that appear naturally in this study had been independently studied in Compu-
tational Learning Theory, without any reference to semigroups (see [7] for some
more examples).
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Abstract. According to the interactive view of computation, commu-
nication happens during the computation, not before or after it. This
approach, distinct from concurrency theory and the theory of compu-
tation, represents a paradigm shift that changes our understanding of
what is computation and how it is modeled. Interaction machines extend
Turing machines with interaction to capture the behavior of concurrent
systems, promising to bridge these two fields. This promise is hindered
by the widespread belief, incorrectly known as the Church-Turing thesis,
that no model of computation more expressive than Turing machines
can exist. Yet Turing’s original thesis only refers to the computation of
functions and explicitly excludes other computational paradigms such
as interaction. In this paper, we identify and analyze the historical rea-
sons for this widespread belief. Only by accepting that it is false can
we begin to properly investigate formal models of interaction machines.
We conclude the paper by presenting one such model, Persistent Tur-
ing Machines (PTMs). PTMs capture sequential interaction, which is a
limited form of concurrency; they allow us to formulate the Sequential
Interaction Thesis, going beyond the expressiveness of Turing machines
and of the Church-Turing thesis.

1 Introduction

The fields of the theory of computation and concurrency theory have historically
had different concerns. The theory of computation views computation as a closed-
box transformation of inputs to outputs, completely captured by Turing machines
(TMs). By contrast, concurrency theory focuses on the communication aspect
of computing systems, which is not captured by Turing machines – referring
both to the communication between computing components in a system, and
the communication between the computing system and its environment. As a
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result of this division of labor, there has been little in common between these
fields.

According to the interactive view of computation, communication (input/
output) happens during the computation, not before or after it. This approach,
distinct from either concurrency theory or the theory of computation, represents
a paradigm shift that changes our understanding of what computation is and how
it is modeled [21]. Interaction machines extend Turing machines with interaction
to capture the behavior of concurrent systems, promising to bridge these two
fields.

The idea that Turing machines do not capture all computation, and that
interaction machines are more expressive, seems to fly in the face of accepted
dogma, hindering its acceptance within the theory community. In particular, the
Church-Turing thesis is commonly interpreted to imply that Turing machines
model all computation. It is a myth that the original thesis is equivalent to
this interpretation of it. In fact, the Church-Turing thesis only refers to the
computation of functions, and specifically excludes interactive computation. The
original contribution of this paper is to identify and analyze the historical reasons
for this myth.

It is time to recognize that today’s computing applications, such as web ser-
vices, intelligent agents, operating systems, and graphical user interfaces, cannot
be modeled by Turing machines; alternative models are needed. Only by facing
the fact that this reinterpretation is a myth can we begin to properly investi-
gate these alternative models. We present one such model, Persistent Turing
Machines (PTMs), originally formalized in [8]. PTMs capture sequential inter-
action, which is a limited form of concurrency; they allow us to formulate the
Sequential Interaction Thesis, going beyond the expressiveness of Turing ma-
chines and of the Church-Turing thesis.

2 The Turing Thesis Myth

Turing’s famous 1936 paper [18] developed the Turing Machine (TM) model
and showed that TMs have the expressiveness of algorithms (now known as the
Church-Turing Thesis).

Church-Turing Thesis: Whenever there is an effective method (algorithm)
for obtaining the values of a mathematical function, the function can be
computed by a TM.

TMs are identified with the notion of effectiveness; computability is the cur-
rent term for the same notion. Specificially, they capture computable func-
tions as effective transformations from finite strings (natural numbers) to finite
strings.

The Church-Turing thesis has since been reinterpreted to imply that Turing
Machines model all computation, rather than just functions. This claim, which
we call the Strong Church-Turing Thesis, is part of the mainstream theory of
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computation. In particular, it can be found in today’s popular undergraduate
theory textbooks such as [17]:

Strong Church-Turing Thesis: A TM can do (compute) anything that a
computer can do.

It is a myth that the original Church-Turing thesis is equivalent to this inter-
pretation of it; Turing himself would have denied it. In the same famous paper,
he also introduced interactive choice machines as another model of computation
distinct from TMs and not reducible to it. Choice machines extend TMs to inter-
action by allowing a human operator to make choices during the computation.

In fact, the Strong Church-Turing Thesis is incorrect – the function-based
behavior of algorithms does not capture all forms of computation. For example,
as explained in [21], interactive protocols are not algorithmic. Yet the myth of
the correctness of the Strong Turing Thesis is dogmatically accepted by most
computer scientists. As Denning recently wrote [5], “we are captured by a historic
tradition that sees programs as mathematical functions”.

The reasons for the widespread acceptance of what we call the “Turing Thesis
myth” can be traced to the establishment of computer science as a separate
discipline in the 1960’s. To understand these reasons better, we can identify
three distinct claims that make up the myth, and examine them individually:

Claim 1. All computable problems are function-based.
Reason: Adoption of mathematical principles for the fundamental notions of
computation, identifying computability with the computation of functions,
as well as with TMs.

Claim 2. All computable problems can be described by an algorithm.
Reason: Adoption of algorithms as the central and complete concept of com-
puter science.

Claim 3. Algorithms are what computers do.
Reason: Broadening the concept of an algorithm to make it more practical.

We will investigate these claims and analyze why they have emerged in the
computer science community.

3 What Is Computation?

The first reason for the Turing Thesis myth is related to the basic understanding
of the notion of computation, as adopted by the theory of computation commu-
nity; we refer to it as the “mathematical worldview”.

3.1 The Mathematical Worldview

The theory of computation predates the establishment of computer science as
a discipline, having been a part of mathematics before the 1960’s. Its founders
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include such notable mathematicians as Godel, Kleene, Church, and Turing.1

Mathematicians naturally equated the notion of computability with the compu-
tation of functions. Martin Davis’s 1958 textbook [4], popular among computer
scientists, reflected the mathematical worldview that all computation is function-
based, and therefore captured by TMs. It begins as follows:

“This book is an introduction to the theory of computability and non-
computability, usually referred to as the theory of recursive functions...
the notion of TM has been made central in the development.”

In particular, this view assumes that all computation is closed. There is no input
or output taking place during the computation; any information needed during
the computation is provided at the outset as part of the input. These assumptions
are embodied by the semantics of TMs.

Mathematical Worldview: All computable problems are function-based.

The mathematical worldview was enthusiastically adopted by early leaders of the
computer science community, including Von Neumann, Knuth, Karp, Rabin,
and Scott. Mathematics has been used as a foundation of physics and other
scientific disciplines, and it was believed that mathematics could be used as a
basis for computer science. Davis’s book proved very influential, cementing the
acceptance of the mathematical worldview among computer scientists of the
1950’s and 1960’s. The mathematical worldview is the first of the three claims
that constitute the Turing Thesis myth.

TMs, which transform input strings to output strings, have served from the
onset as a formal model for function-based computation:

Turing Thesis Corollary: A problem is solvable if there exists a Turing ma-
chine for computing it.

The legitimacy of this corollary is based on two premises. The first one is the
Turing Thesis, which equates function-based computation with TMs. The second
one, usually left unstated, is the mathematical worldview – the assumption that
all computable problems are function-based.

The perceived validity of this corollary was greatly strengthened by the many
early attempts to find models of computation that are more expressive than TMs,
for example extending the number of tapes or reading heads on the machine.
All these attempts failed, because they continued to adhere to the mathemati-
cal worldview, and never considered problems that are not function-based. We
return to this issue in Section 6.1.

1 While Turing’s training and original contributions were mathematical, we believe
that his later work classifies him as a computer scientist rather than a mathematician
– perhaps the first one.



156 D. Goldin and P. Wegner

3.2 The Interactive Paradigm

The mathematical worldview can be contrasted with the engineering worldview,
where computation is viewed as an ongoing transformation of inputs to outputs
– e.g., control systems, or operating systems. The question “what do operating
systems compute?” has been a conundrum for the theoretical community, since
they never terminate, and therefore never formally produce an output. Yet it
is clear that they do compute, and that their computation is both useful and
important to capture formally.

While the Church-Turing Thesis remains true, the mathematical worldview
no longer reflects the nature of computational problems. An example of such a
problem is driving home from work [21]:

Driving Home from Work: create a car that is capable of driving us home
from work, where the locations of both work and home are provided as input
parameters.

Assuming that the driving is to take place in a real-world environment, this
problem is not computable within a function-based computational paradigm.

Consider the input to such a function. It would have to be detailed enough
so the car could predict the direction and strength of the wind at each point in
the drive, so as to compensate for it. It should also enable the car to anticipate
the location of all pedestrians, so as to avoid running over them. As we discuss
in [6], this is impossible – there is no such computable function. However,
the problem is computable by a control mechanism, as in a robotic car, that
continuously receives video input of the road and actuates the wheel and brakes
accordingly.

The computation performed by automatic cars and operating systems is in-
teractive, where input and output happen during the computation, not before
or after it. This approach, distinct from either concurrency theory or the theory
of computation, represents a paradigm change to our understanding of what is
computation, and how it should be modeled. This conceptualization of compu-
tation allows, for example, the entanglement of inputs and outputs; later inputs
to the computation may depend on earlier outputs. Such entanglement is im-
possible in the mathematical worldview, where all inputs precede computation,
and all outputs follow it.

The driving example represents an empirical proof of the claim that inter-
active computation is more expressive than function-based computation, i.e. it
can solve a greater range of problems. However, to accept this claim, one has
to broaden one’s notion of a problem beyond what is prescribed by the math-
ematical worldview. Driving home from work, queuing jobs within an operat-
ing system, or controlling factory equipment, are all legitimate problems on
par with finding common factors or choosing the next move on a given chess
board.
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4 Algorithms and Computability

The notion of an algorithm is a mathematical concept much older than Turing
machines; perhaps the oldest example is Euclid’s algorithm for finding common
divisors. This concept has been enthusiastically adopted by the computer science
community, who have since broadened its meaning. This adoption and the sub-
sequent broadening are sources of the second and third reasons for the Turing
Thesis myth.

4.1 The Original Role of Algorithms

Algorithms are “recipes” for carrying out function-based computation, that can
be followed mechanically.

Role of Algorithm: Given some finite input x, an algorithm describes the
steps for effectively transforming it to an output y, where y is f(x) for some
recursive function f .

Like mathematical formulae, algorithms tell us how to compute a value; unlike
them, algorithms may involve what we now call loops.

Knuth’s famous and influential textbook, The Art of Computer Program-
ming, Vol. 1 [10] in the late 1960’s popularized the centrality of algorithms in
computer science. In his discussion of an algorithm, Knuth was consistent with
the mathematical function-based foundations of the theory of computation. He
explicitly specified that algorithms are closed; no new input is accepted once the
computation has begun:

“An algorithm has zero or more inputs, i.e., quantities which are given
to it initially before the algorithm begins.”

Knuth distinguished algorithms from arbitrary computation that may involve
I/O. One example of a problem that is not algorithmic is the following instruction
from a recipe [10]: “toss lightly until the mixture is crumbly.” This problem is
not algorithmic because it is impossible for a computer to know how long to
mix; this may depend on conditions such as humidity that cannot be predicted
with certainty ahead of time. In the function-based mathematical worldview, all
inputs must be specified at the start of the computation, preventing the kind of
feedback that would be necessary to determine when it’s time to stop mixing.
The problem of driving home from work also illustrates the sort of problems that
Knuth meant to exclude.

The notion of an algorithm is inherently informal, since an algorithmic de-
scription is not restricted to any single language or formalism. The first high-
level programming language developed expressly to specify algorithms was AL-
GOL (ALGOrithmic Language). Introduced in the late 50’s and refined through
the 1960’s, it was the standard for the publication of algorithms. True to the
function-based conceptualization of algorithms, ALGOL provided no constructs
for input and output, considering these operations outside the concern of algo-
rithms. Not surprisingly, this absence hindered the adoption of ALGOL by the
industry for commercial applications.
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Knuth’s careful discussion of algorithmic computation remains definitive to
this day; in particular, it serves as the basis of the authors’ understanding of
this term. His discussion of algorithms ensures their function-based behavior
and guarantees their equivalence with TMs [10]:

“There are many other essentially equivalent ways to formulate the con-
cept of an effective computational method (for example, using TMs).”

4.2 Algorithms Made Central

The 1960’s saw a proliferation of undergraduate computer science (CS) pro-
grams; this increase was accompanied by intense activity towards establishing
the legitimacy of this new discipline in the eyes of the academic community.
The Association for Computing Machinery (ACM) played a central role in this
activity. In 1965, it enunciated the justification and description of CS as a disci-
pline [1], which served as a basis of its 1968 recommendations for undergraduate
CS programs [2]; one of the authors (PW) was among the primary writers of the
1968 report.

ACM’s description of CS [1] identified effective transformation of information
as a central concern:

“Computer science is concerned with information in much the same sense
that physics is concerned with energy... The computer scientist is inter-
ested in discovering the pragmatic means by which information can be
transformed.”

By viewing algorithms as transformations of input to output, ACM adapted an
algorithmic approach to computation; this is made explicit in the next sentence
of the report:

“This interest leads to inquiry into effective ways to represent informa-
tion, effective algorithms to transform information, effective languages
with which to express algorithms... and effective ways to accomplish
these at reasonable cost.”

Having a central algorithmic concern, analogous to the concern with energy in
physics, helped to establish CS as a legitimate academic discipline on a par with
physics.

Algorithms, modeled by TMs, have remained central to computer science to
this day. The coexistence of the informal (algorithm-based) and the formal (TM-
based) approaches to defining solvable problems can be found in all modern text-
books on algorithms or computability. This has proved tremendously convenient
for computer scientists, by allowing us to describe function-based computation
informally using “pseudocode”, with the knowledge that an equivalent Turing
machine can be constructed.

However, neither mathematics nor the ACM provided an explicit agreed-
upon definition of an algorithm. As we will see, the inconsistencies in the various
definitions of this term greatly contributed to the Turing Thesis myth.
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4.3 Algorithms Redefined

The 1960’s decision by theorists and educators to place algorithms at the center
of CS was clearly reflected in early undergraduate textbooks. However, various
textbooks chose to define this term differently. While some textbooks such as [10]
were careful to explicitly restrict algorithms to those that compute functions, and
are therefore TM-equivalent, most left the restriction unstated.

An early example is [9], one of the first textbooks on the theory of computa-
tion (whose later editions are being used to this day). Their discussion of algo-
rithms does not explicitly preclude non-functional computation, such as driving
home from work:

“A procedure is a finite sequence of instructions that can be mechanically
carried out, such as a computer program... A procedure which always
terminates is called an algorithm.”

However, the prohibition against obtaining inputs dynamically during the com-
putation is implicitly present in [9]. After all, ALGOL, the language then used for
writing algorithmic programs, did not offer any constructs for input and output.
Their examples of various problems also make it clear that only function-based
computation was considered.

Yet other early textbooks, such as [12], explicitly broadened the notion of
algorithms to include problems beyond those that can be solved by TMs. On
the surface, their definition of an algorithm is no different from [9]:

“An algorithm is a recipe, a set of instructions or the specifications of a
process for doing something. That something is usually solving a problem
of some sort.”

However, their examples of computable problems are no longer function based,
admitting just the kind of computation that Knuth had rejected. Two such
examples, that can supposedly be solved by an algorithm, are making potato
vodka and filling a ditch with sand; driving home from work would fit right in,
too.

The subject of [12] was programming methodology rather than the theory
of computation, and the mathematical principles that underpin our models of
computation were cast aside for the sake of practicality. This approach, reflect-
ing the centrality of algorithms without being restricted to the computation of
functions, is typical of non-theory textbooks.

[12] made no claims of TM-equivalence for their “algorithms”. However, the
students were not made aware that their notion of algorithms is different from
Knuth’s, and that the set of problems considered computable had thereby been
enlarged. By pairing Rice’s broader conceptualization of algorithms (and hence
of computable problems) with theories claiming that every computable problem
can be computed by TMs, the algorithm-focused CS curriculum left students
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with the impression that this broader set of problems could also be solved by
TMs, giving rise to the Turing Thesis myth.2

4.4 Algorithms Today

A recent ACM SIGACT Newsletter acknowledges that of all undergraduate CS
subjects, theoretical computer science has changed the least over the decades [16].
While the practical computer scientists have long since followed the lead of
[12] and broadened the concept of algorithms beyond the computation of func-
tions, theoretical computer science has retained the mathematical worldview
that frames computation as function-based, and delimits our notion of a com-
putational problem accordingly. This is true at least at the undergraduate level,
despite advanced complexity theoretic work that ventures outside this worldview,
such as on-line and distributed algorithms, Arthur-Merlin games, and interactive
proofs.

The result is a dichotomy, where the computer science community thinks
of algorithms as synonymous with the general notion of computation (“what
computers do”) yet at the same time as being equivalent to Turing machines.
This dichotomy can be found in today’s popular textbooks such as [17]. Their
discussion of algorithms is very broad, but the equivalence with TMs is taken
for granted:

“an algorithm is a collection of simple instructions for carrying out some
task. Commonplace in everyday life, algorithms sometimes are called
procedures or recipes... The TM merely serves as a precise model for the
definition of algorithm.”

While their traditional selection of computational problems is all function-based,
this description of algorithms certainly leaves an impression that tasks such as
operating system processes are considered algorithmic. After all, these are tasks
that computers carry out all the time.

The result of this dichotomy is the Strong Turing Thesis. It is commonplace
in the computing literature, including [17]:

“A TM can do anything that a computer can do.”

5 What Is a Turing Machine?

Other claims have been used in support of the Strong Turing Thesis. We do not
believe they played a major role in giving rise to the myth, yet they continue to
serve as “corroboration” of its correctness. In this section, we discuss two such
claims:

2 In private conversation with one of the authors (DG) in the fall of 1999, Knuth
expressed some misgivings about his definition of an algorithm, and shared plans
to broaden it if that text were ever rewritten. It is not clear what his plans were
regarding the claim of equivalence between algorithms and TMs.
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Claim 4. TMs serve as a general model for computers.
Reason: Misunderstanding the definition of a TM.

Claim 5. TMs can simulate any computer.
Reason: Misattributing general purpose computing to TMs.

These claims, related to the limitations of early computers, are discussed in this
section.

5.1 Syntax and Semantics

According to the set-theoretic definition, a TM consists of a finite set of states,
a read/write head, a tape, and a control mechanism for transitioning between
states and performing read/write actions on the tape. At this level, the descrip-
tion of a TM is similar to that of a computer. The differences, as pointed out
in [20], are that the computer’s memory is not infinite, and it is accessed ran-
domly rather than sequentially. But these differences are relatively minor, and
the following claim has been made:

Nature of computers: TMs serve as a general model for computers.

This claim has been used in support of the Turing Thesis myth.
Just as for any other class of automata such as FSA (finite state automata),

the set-theoretic definition does not completely capture TMs; it captures their
syntax, but not semantics.

Syntax of a TM: what does it consist of?
Semantics: how does it compute?

As defined by Turing [18], TM semantics prescribe that every computation starts
in an identical configuration (except for the contents of the read/write tape),
and the contents of the tape cannot be modified from the “outside” during the
computation. This can be contrasted with Turing’s alternative models of choice
machines and oracle machines. The complete TM definition includes both the
set-theoretic syntactic definition and the semantic definition.

Statements about TM expressiveness, such as the Turing Thesis, funda-
mentally depend on their semantics, as defined by Turing. If these seman-
tics were defined differently, it may (or may not) produce an equivalent
machine.

Early computers did in fact compute as prescribed above. However, while per-
haps reflecting TM syntax, the computation of modern computers is no longer
based on the same semantics. Unlike TMs, new inputs arrive continuously (think
of an operating system, or a document processor); the output is also produced
continuously (in case of the document processor, it is the screen display of the
document). There is I/O entanglement; later inputs are affected by earlier out-
puts and vise-versa. All this renders a computer’s behavior non-functional; it
no longer computes a function from the input to the output, and TM no longer
serves as an appropriate model for this interactive computation.
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5.2 The Universal Turing Machine

A Universal Turing Machine is a special TM introduced by Turing [18], that can
simulate any other TM. It served as the inspiration for the notion of general-
purpose computing. Turing himself saw a direct parallel between the capability
of a computer to accept and execute programs, and his notion of a universal
machine.

The principle of universality can easily be extended to any other class of
algorithmic machines. As long as each machine in that class can be captured by
a finite description, prescribing what this machine would do in every possible
configuration, a TM can be created to simulate all machines in that class:

Universality Thesis: Any class of effective devices for computing functions
can be simulated by a TM.

Analogously to the Turing Thesis, the Universality Thesis combines with the
mathematical worldview to obtain the following corollary:

Universality Corollary: Any computer can be simulated by a TM.

This corollary is the second of the two claims that have been used to “corrob-
orate” the Turing Thesis myth. Again, the undergraduate textbooks played a
key role. In order to present the expressiveness of TMs in a more accessible (and
dramatic) fashion, the Universality Corollary was melded with the Turing The-
sis Corollary, resulting in the following statement that (incorrectly) summarized
the role of TMs:

Strong Turing Thesis: A TM can do anything that a computer can do.

6 Time for New Models

6.1 Extending Turing Machines

The history of modifying or extending TMs is at least as old as the theory of
computation. By TMs, we mean Turing’s automatic machines as defined in his
original paper [18], and all the versions of these machines that are equivalent to
the original. Indeed, the versions one obtains by modifying or extending TMs
are not TMs, unless and until equivalence with the original has been proven. For
example, Turing’s automatic machines had a binary alphabet and an infinite
tape; the Turing machine we use now typically has an arbitrary alphabet and a
semi-infinite tape. Before this version could be called a Turing machine, a proof
was needed of the equivalence of the two models. In general, the equivalence of
TM versions cannot be taken for granted. For example, if only right transitions
are allowed, the resulting model is not equivalent, having the expressiveness of
an FSA rather than a TM.

The example above is a restriction on TM computations. More common are
extensions. All TM extensions that can be found in theory textbooks, such as
increasing the number of tapes or changing the alhabet, are algorithmic. In the
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case of algorithmic extensions, the Church-Turing thesis applies, and it can be
taken from granted that the new model is equivalent to the original. However,
as a result of the Turing Thesis myth, it is common to assume the equivalence
of any TM extension to the original, and we no longer expect formal proofs of
this.

To capture the contemporary interactive use of computers, the more recent
TM extensions have tended to be non-algorithmic, with computation that spans
multiple inputs and outpus to the underlying TM. Nowadays we consider non-
terminating interactive computations of Turing machines, persistent Turing ma-
chines, nets of Turing machines, Turing machines with evolvable architecture,
etc., exactly for reasons of capturing “all computers”, or “all computations”. In-
deed, the recent proliferation of such models can be viewed as a paradigm shift
in the field of models of compuation.

While they usually share TM syntax, the semantics of these new extensions
is different; for example, in the case of persistent Turing machines, it is based on
dynamic input streams and persistence. Out of habit, researchers have continued
to assume that these extensions are equivalent to the original TM. But in the
case of such non-algorithmic extensions, Turing’s thesis does not apply, and
equivalence can no longer be taken for granted. Indeed, it no longer holds, as
discussed next.

6.2 Modeling Interactive Computation

Wegner [21, 22] has conjectured that interactive models of computation are more
expressive than “algorithmic” ones such as Turing machines. It would therefore
be interesting to see what minimal extensions are necessary to Turing machines
to capture the salient aspects of interactive computing. Motivated by these goals,
[8] investigates a new way of interpreting Turing-machine computation, one that
is both interactive and persistent – persistent Turing machines (PTMs); we
discuss this work here.

A PTM is a nondeterministic 3-tape Turing machine (N3TM) with a read-
only input tape, a read/write work tape, and a write-only output tape. Upon
receiving an input token from its environment on its input tape, a PTM computes
for a while and then outputs the result to the environment on its output tape,
and this process is repeated forever. A PTM computes concurrently with its
environment, both acting as consumers of each other’s outputs and producers of
each other’s inputs.

In addition to having dynamic stream semantics, PTM computations are
persistent in the sense that a notion of “memory” (work-tape contents) is main-
tained from one computation step to the next, where each PTM computation
step represents an N3TM computation. Decider PTMs are an important sub-
class of PTMs; a PTM is a decider if it does not have divergent (non-halting)
computations.

The notions of interaction and persistence in PTMs are formalized in terms
of the persistent stream language (PSL) of a PTM. Given a PTM, its persistent
stream language is the set of infinite sequences (interaction streams) of pairs
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of the form (wi, wo) representing the input and output strings of a single PTM
computation step. Persistent stream languages induce a natural, stream-based
notion of equivalence for PTMs.

The first result concerning PTMs is that the class of PTMs is isomorphic
to interactive transition systems (ITS), a very general kind of effective transi-
tion systems, thereby allowing one to view PTMs as ITSs “in disguise”. ITSs
come with three notions of behavioral equivalence: ITS isomorphism, interactive
bisimulation, and interactive stream equivalence, where ITS isomorphism refines
interactive bisimulation, and interactive bisimulation refines interactive stream
equivalence.

A similar result is established for decider PTMs and decider ITSs. These
results address a question heretofore left unanswered concerning the relative
expressive power of Turing machines and transition systems, namely: “What
extensions are required of Turing machines so that they can simulate transitions
systems?”

An infinite hierarchy is defined, of successively finer equivalences for PTMs
over finite interaction-stream prefixes; it is shown that the limit of this hierar-
chy does not coincide with PSL-equivalence. The presence of this “gap” can be
attributed to the fact that the transition systems corresponding to PTM com-
putations naturally exhibit unbounded nondeterminism. In contrast, classical
Turing-machine computations have bounded nondeterminism, i.e., any nonde-
terministic TM can produce only a finite number of distinct outputs for a given
input string.

Amnesic PTMs are a special type of PTMs where each new computation
begins with a blank work tape, with a corresponding notion of amnesic stream
languages (ASLs). The class of ASLs is strictly contained in the class of PSLs.
Also, ASL-equivalence coincides with the equivalence induced by considering
interaction-stream prefixes of length one, the bottom of the equivalence hierar-
chy; this hierarchy therefore collapses in the case of amnesic PTMs.

ASLs are representative of the classical view of Turing-machine computation,
extending TMs with dynamic stream-based semantics but without persistence.
One may consequently conclude that, in a stream-based setting, the extension
of the Turing-machine model with persistence is a nontrivial one.

Finally, the notion of a universal PTM is introduced. Similarly to a universal
Turing machine, a universal PTM can simulate the behavior of an arbitrary
PTM. The class of sequential interactive computations is also introduced:

Sequential Interactive Computation: A sequential interactive computation
continuously interacts with its environment by alternately accepting an in-
put string and computing a corresponding output string. Each output-string
computation may be both nondeterministic and history-dependent, with the
resultant output string depending not only on the current input string, but
also on all previous input strings.

Examples of sequential interaction include sequential JAVA objects, static C
routines, single-user databases, network protocols, and our original example of
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driving home from work. A sequential interactive analogue to the Turing Thesis
is provided:

Sequential Interaction Thesis: Any sequential interactive computation can
be performed by a persistent Turing machine.

This hypothesis, when combined with other results in the paper, implies that
the class of sequential interactive computations is more expressive than the class
of algorithmic computations, and thus is capable of solving a wider range of
problems – proving Wegner’s conjecture.

TMs capture effective transformations over finite strings, but the notion of
effectiveness also applies to operations on higher-level objects such as functions,
see the theory of recursive functionals [14, 15]. Extensions are needed to the
Church-Turing thesis to capture this effectiveness [15]; it is conjectured that the
Sequential Interaction Thesis captures the expressiveness of recursive function-
als.

It has been also conjectured [22] that multi-agent interaction is more expres-
sive than sequential, or single-agent interaction. These conjectures remain to be
proven.

6.3 Turing Thesis Myth Corrected

We have discussed the origins for the popularity of the Turing Thesis myth,
having identified three distinct claims that comprise it:

Claim 1. (Mathematical worldview) All computable problems are function-
based.

Claim 2. (Focus on algorithms) All computable problems can be described by
an algorithm.

Claim 3. (Practical approach) Algorithms are what computers do.

Furthermore, we looked at two more claims that have been used to corroborate
the Turing Thesis myth:

Claim 4. (Nature of computers) TMs serve as a general model for computers.
Claim 5. (Universality corollary) TMs can simulate any computer.

For each of these claims, there is a grain of truth. By reformulating them to
bring out the hidden assumptions, misunderstandings are removed. The following
versions of the above statements are correct:

Corrected Claim 1. All algorithmic problems are function-based.
Corrected Claim 2. All function-based problems can be described by an

algorithm.
Corrected Claim 3. Algorithms are what early computers used to do.
Corrected Claim 4. TMs serve as a general model for early computers.
Corrected Claim 5. TMs can simulate any algorithmic computing device.

Furthermore, the following claim is also correct:
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Claim 6: TMs cannot compute all problems, nor can they do everything that
real computers can do.

This claim, while incompatible with original claims, is perfectly consistent with
their corrected versions. It contradicts the Strong Turing Thesis, exposing the
fallacy of the Turing Thesis myth. Dispelling this myth has grown more impor-
tant as the practice of computing is becoming more and more interactive. Its
algorithmic fundamental identity no longer serves it well.

7 Conclusion

Hoare, Milner and others have long realized that TMs do not model all of compu-
tation [23]. However, when their theory of concurrent computation was first de-
veloped in the late ’70s, it was premature to openly challenge TMs as a complete
model of computation. Concurrency theory positions interaction as orthogonal
to computation, rather than a part of it. By separating interaction from compu-
tation, the question whether the models for CCS and the π-calculus went beyond
Turing machines and algorithms was avoided.

Researchers in other areas of theoretical computer science have also found
need for interactive models of computation, such as Input/Output automata
for distributed algorithms [11] and Interactive TMs for interactive proofs [7].
However, the issue of the expressiveness of interactive models vis-a-vis TMs was
not raised until the mid-1990’s, when the model of interaction machines as a
more expressive extension of TMs was first proposed by one of the authors [21].

The theoretical framework for sequential interaction machines, as a persistent
stream-based extension to TMs, was completed by the other author in [8]; it is
discussed above. Van Leeuwen, a Dutch expert on the theory of computation,
proposed an alternate extension in [19]. In addition to interaction, other ways
to extend computation beyond Turing machines have been considered, such as
quantum computing.

While not part of CS Theory, the field of AI has perhaps gone the furthest
in explicitly recognizing the expressiveness gains of moving beyond algorithms.
In the early 1990’s, Rodney Brooks convincingly argued against the algorith-
mic approach of “good old-fashioned AI”, positioning interaction is a prereq-
uisite for intelligent system behavior [3]. This argument has been adopted by
the mainstream AI community, whose leading textbooks recognize that interac-
tive agents are a better model of intelligent behaviors than simple input/output
functions [13].

In the last three decades, computing technology has shifted from mainframes
and microstations to networked embedded and mobile devices, with the corre-
sponding shift in applications from number crunching and data processing to
the Internet and ubiquitous computing. We believe it is no longer premature to
encompass interaction as part of computation. A paradigm shift is necessary in
our notion of computational problem solving so it can better model the services
provided by today’s computing technology.
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The Strong Church-Turing Thesis reinterprets the Church-Turing Thesis to
imply that Turing Machines model all computation. In this paper, we provided a
new analysis of the historical reasons for the widespread acceptance of the myth
that the two versions of the thesis are equivalent. However, the assumption that
all of computation can be algorithmically specified is still widely accepted in the
CS community, and interaction machines have been criticized as an unnecessary
Kuhnian paradigm shift.

By facing the fact that this reinterpretation is a myth we can move forward with
formalmodels of interactionmachines, which extendTuringmachineswith interac-
tion to capture the behavior of concurrent systems. We presented one such model,
PersistentTuringMachines (PTMs),thatpromisestobridgetheoryof computation
and concurrency theory. PTMs capture sequential interaction, which is a limited
form of concurrency.They can alsobeviewed as interactive transition systems, with
correspondingnotionsofobservationalequivalence.Furthermore,theyarehavebeen
shown to be more expressive than Turing machines. It is hoped that PTMs will lay
the foundation for a new theory of interactive computation which will bridge the
current theories of computation and concurrency.
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Abstract. In this paper, we show that closed-form analytic maps and flows can
simulate Turing machines in an error-robust manner. The maps and ODEs defin-
ing the flows are explicitly obtained and the simulation is performed in real time.

1 Introduction

Since the pioneering work of Turing in the 1930s, the Turing machine has become
the standard paradigm for computation. With the appearance and rapid development of
digital computers its role has become increasingly important. In this paper we show
that the behavior of Turing machines can be embedded in robust and analytic analog
systems defined on continuous spaces.

Several authors have proved that finite dimensional maps and flows can simulate
Turing machines. The general approach is to associate each configuration of a Turing
machine to a point of Rn, and to show that there is a dynamical system with state space
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in Rn that embeds its evolution. It is known that Turing machines can be simulated on
compact spaces, even of low dimension [1, 2, 3]. While compactness is a desirable prop-
erty of dynamical systems, it is probably too strong a requirement since it is believed
that no analytic map on a compact, finite dimensional space can simulate a Turing ma-
chine through a reasonable encoding [4]. However, most physical systems turn out to be
analytic, at least in the classical world of Physics. Even the physical model underlying
digital computers is analytic, although their behavior is idealized as discrete.

The requirement of compactness has another drawback since it prevents systems
capable of simulating an arbitrary Turing machine to exhibit robustness to noise. For
instance, Casey [5, 6] showed that in the presence of bounded analog noise, recurrent
neural networks can only recognize regular languages. This result was later generalized
in [7] to other analog discrete-time computational systems. Robustness is a critical issue
in analog models since non-computable behavior might arise when the use of exact real
quantities is allowed. For instance, the results of Pour-El, Richards and Zhong [8, 9]
show that there is a three-dimensional wave equation, with computable initial condi-
tions, such that its unique solution is not computable. However, that behavior is ruled
out in the presence of noise [10]. Recurrent analog neural networks are another known
case where non-computable behavior can occur if real parameters are represented with
infinite precision [3].

In this paper we will show that Turing machines can be simulated by finite dimen-
sional maps and flows which are both analytic and robust. We will consider simulations
on unbounded spaces. Our work is in some sense related to [11], where a constructive
simulation of Turing machines using closed-form analytic maps is presented. However,
in [11] it is not discussed how the presence of noise affects the computational power of
the model. We prove here that any Turing machine M can be simulated by a closed-form
analytic map fM : R3 → R3, even in the case where some noise is added to the initial
configuration or during the evolution of the system.

The previously mentioned results show that finite dimensional maps are capable of
simulating the transition function of an arbitrary Turing machine. In that respect, those
are results about the computational power of hybrid systems, which are continuous with
respect to the state space but evolve discretely in time. Another approach has been to
simulate the evolution of Turing machines with continuous flows in Rn [12, 13, 14].
Even if it is known that those flows can be infinitely differentiable, no analytic form of
iterating the map that simulates the transition function of a Turing machine had been
proposed before. Furthermore, it is known that analytic differentially algebraic func-
tions, which include most of the usual mathematical analytic functions, are not closed
under iteration [15], which suggests that continuous-time computational models which
are closed under iteration must contain some non-analytic functions [16]. However,
since we only have to iterate functions in the vicinity of integers, we are able to show
that any Turing machine M can be robustly simulated by some system of differential
equations y′ = gM (y, t), where gM is analytic and t represents the time steps of M .

It is worthwhile to notice that our work can be included, in some sense, in the wider
topic of stable dynamical systems. In fact, there has been a long tradition of considering
only structurally stable systems [17] when modelling physical systems. The argument
is that, due to measurement uncertainties, qualitative properties of a system should not
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change with small perturbations. Guckenheimer and Holmes [18] refer to this approach
as the “stability dogma”. However, recent developments in the theory of dynamical
systems suggest that this is too restrictive to account for all meaningful systems [19]. In
fact, one can relax the previous condition and demand stability only for those properties
of interest for the system under consideration. Here, we have chosen the latter line of
work: our only concern is that each system performs a simulation of a Turing machine
robust to perturbations.

The paper can be outlined as follows. In Section 2 we introduce the ideas and con-
cepts related to simulations robust to perturbations. Section 3 provides tools that will
be necessary in Section 4. In Section 4, we prove (in a constructive manner) the main
results of this paper: each Turing machine can be simulated by an analytic map, or by
ODEs even under the influence of (small) errors. The maps and ODEs are explicitly
obtained, by using expressions involving the composition of polynomials and trigono-
metric functions, and only computable constants are used. We end describing some con-
nections of this paper with previous results on continuous-time models of computation.

2 Simulation of Turing Machines

Before stating the main results, we describe succinctly some aspects of our error-robust
simulation of Turing machines. For now, we will be only concerned with discrete time
simulations. Therefore we want to obtain a map that “captures” the behavior of the
transition function. We will code each configuration into a triple (x, y, z) ∈ N3, and
prove that the simulation still works if this triple is slightly perturbed. Without loss of
generality, consider a Turing machine M using 10 symbols, the blank symbol B = 0,
and symbols 1, 2, ...9. Let

...B B B a−k a−k+1... a−1 a0 a1... anBBB... (1)

represent the tape contents of the Turing machine M. We suppose the head to be reading
symbol a0 and ai ∈ {0, 1, ..., 9} for all i. We also suppose that M has m states, rep-
resented by numbers 1 to m. For convenience, we consider that if the machine reaches
a halting configuration it moves to the same configuration. We assume that, in each
transition, the head either moves to the left, moves to the right, or does not move. Take

y1 = a0 + a110 + ... + an10n y2 = a−1 + a−210 + ... + a−k10k−1

and let q be the state associated to the current configuration. Then the triple (y1, y2, q) ∈
N3 gives the current configuration of M. We now can state the first main result of this
paper as follows:1

Theorem 1. Let θ : N3 → N3 be the transition function of a Turing machine M, under
the encoding described above and let 0 < δ < ε < 1/2. Then θ admits an analytic
extension fM : R3 → R3, robust to perturbations in the following sense: for all f such

1 We take ‖(x1, ..., xn)‖∞ = max1≤i≤n |xi| and ‖f‖∞ = supx∈R ‖f(x)‖∞ , where f is a
real function. If f : A → A is a function, then f [k] denotes the kth iterate of f.
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that ‖f − fM‖∞ ≤ δ and for all x̄0 ∈ R3 satisfying ‖x̄0 − x0‖∞ ≤ ε, where x0 ∈ N3

represents an initial configuration,∥∥∥f [j](x̄0) − θ[j](x0)
∥∥∥

∞
≤ ε for all j ∈ N.

A few remarks are in order. First, and as noticed before, we implicitly assumed that
if y is a halting configuration, then θ(y) = y. Secondly, we notice that the upper bound
( 1
2 ) on ε results from the encoding we have chosen, which is over the integers. In fact,

the bound is maximal with respect to that encoding.
Incidentally, we notice that Theorem 1 can be stated using the notion of shadowing

in dynamical systems (cf. [20, 21]), which is formally defined as below.

Definition 2. Let f : A → A be a map, ε > 0, and {pi}i∈N ⊆ A. Then {pi}i∈N is
a ε-pseudo-orbit of f if |pi+1 − f(pi)| < ε for all i ∈ N. For x ∈ A, we say that
{f [i](x)}i∈N ε-shadows the pseudo-orbit {pi}i∈N if

∣∣f [i](x) − pi
∣∣ < ε.

In short, we say that {pi}i∈N is a good approximation of some system whose dy-
namics is given by f , if {f [i](x)}i∈N ε-shadows {pi}i∈N. Using the previous definition,
we can restate Theorem 1 by saying that the sequence {f [j]

M (x0)}j∈N of configurations
ε-shadows {f [j](x̄0)}j∈N. We now present the other main results.

Theorem 3. Let θ : N3 → N3 be the transition function of a Turing machine M, under
the encoding described above and let 0 < ε < 1/4. Then there is an analytic function
z : R4 → R3 with the following property:∥∥∥z(x0, j) − θ[j](x0)

∥∥∥
∞

≤ ε

for all j ∈ N, where x0 ∈ N3 represents an initial configuration.

As a matter of fact, we will prove the following “robust” version of Theorem 3.

Theorem 4. In the conditions of Theorem 3, there is an analytic function gM : R6 →
R6 such that the ODE z′ = gM (z, t) robustly simulates M in the following sense: there
is some 0 < η < 1/2 such that for all g satisfying ‖g − gM‖∞ < 1/2, and for all
x̄0 ∈ R3 satisfying ‖x̄0 − x0‖∞ ≤ ε, the solution z of

z′ = g(z, t), z(0) = (x̄0, x̄0)

has the following property: for all j ∈ N and for all t ∈ [j, j + 1/2],2∥∥∥z2(t) − θ[j](x0)
∥∥∥

∞
≤ η.

2 For simplicity, we denote z by (z1, z2), where z1, z2 ∈ R3.
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3 Preliminary Results

This section is devoted to the presentation of results that, while not very interesting
on their own, will be useful when proving Theorem 1. As our first task, we introduce
an analytic extension ω : R → R for the function f : N → N defined by f(n) =
nmod 10. This function will be necessary when simulating Turing machines. It will be
used to read symbols written in the tape. To achieve this purpose, we can use a periodic
function, of period 10, such that ω(i) = i, for i = 0, 1, ..., 9. Then, using trigonometric
interpolation (cf. [22–pp. 176-182]), one may take

ω(x) = a0 + a5 cos(πx) +

⎛⎝ 4∑
j=1

aj cos
(
jπx

5

)
+ bj sin

(
jπx

5

)⎞⎠ , (2)

where a0, ..., a5, b1, ..., b4 are computable coefficients that can be explicitly obtained by
solving a system of linear equations.

It is easy to see that ω is uniformly continuous in R. Hence, for every ε ∈ (0, 1/2),
there will be some ζε > 0 satisfying

∀n ∈ N, x ∈ [n− ζε, n + ζε] ⇒ |ω(x) − nmod 10| ≤ ε. (3)

When simulating a Turing machine, we will also need to keep the error under con-
trol. In many cases, this will be done with the help of the error-contracting function
defined by

σ(x) = x− 0.2 sin(2πx).

The function σ is a contraction on the vicinity of integers:

Lemma 5. Let n ∈ Z and let ε ∈ [0, 1/2). Then there is some contracting factor
λε ∈ (0, 1) such that, for ∀δ ∈ [−ε, ε], |σ(n + δ) − n| < λεδ.

Remark 6. Throughout the remainder of this paper, we suppose that ε ∈ [0, 1/2) is
fixed and that λε is the respective contracting factor given by Lemma 5.

The function σ will be used in our simulation to keep the error controlled when
bounded quantities are involved (e.g., the actual state, the symbol being read, etc.). We
will also need another error-contracting function that controls the error for unbounded
quantities. This will be achieved with the help of the function l3 : R2 → R, that has the
property that whenever ā is an approximation of a ∈ {0, 1, 2}, then |l3(ā, y)−a| < 1/y,
for y > 0. In other words, l3 is an error-contracting map, where the error is contracted
by an amount specified by the second argument of l3. We start by defining a preliminary
function l2 satisfying similar conditions, but only when a ∈ {0, 1}.

Lemma 7. Let l2 : R2 → R be given by l2(x, y) = 1
π arctan(4y(x − 1/2)) + 1

2 .
Suppose also that a ∈ {0, 1}. Then, for any ā, y ∈ R satisfying |a− ā| ≤ 1/4 and
y > 0, we get |a− l2(ā, y)| < 1/y.
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Lemma 8. Let a ∈ {0, 1, 2} and let l3 : R2 → R be given by

l3(x, y) = l2((σ[d+1](x) − 1)2, 3y).(2l2(σ[d](x)/2, 3y) − 1) + 1,

where d = 0 if ε ≤ 1/4 and d = (− log(4ε)/ log λε) otherwise. Then for any ā, y ∈ R
satisfying |a− ā| ≤ ε and y ≥ 2, we have |a− l3(ā, y)| < 1/y.

The following lemma can be easily proved by induction on n.

Lemma 9. If |αi|, |ᾱi| ≤ K for i = 1, ..., n then

|α1...αn − ᾱ1...ᾱn| ≤ (|α1 − ᾱ1| + ... + |αn − ᾱn|) Kn−1.

4 Robust Analytic Simulations of Turing Machines

In this section we show, in a constructive manner, how to simulate a Turing machine
with an analytic map robust to (small) perturbations. We will first prove the following
theorem.

Theorem 10. Let θ : N3 → N3 be the transition function of some Turing machine.
Then, given some 0 ≤ ε < 1/2, θ admits an analytic extension hM : R3 → R3 with the
property that

‖(y1, y2, q) − (ȳ1, ȳ2, q̄)‖∞ ≤ ε ⇒ ‖θ(y1, y2, q) − hM (ȳ1, ȳ2, q̄)‖∞ ≤ ε. (4)

Proof. We will show how to construct hM with analytic functions:

1. Determine the symbol being read. Let a0 be the symbol being actually read by
the Turing machine M. Then ω(y1) = a0, where ω is given by (2). But what about
the effect of the error present in ȳ1? Since |y1 − ȳ1| ≤ ε,

|a0 − ω ◦ σ[l](ȳ1)| ≤ ε, with l =
⌈∣∣∣∣ log(ζε/ε)

log λε

∣∣∣∣⌉ , (5)

where ζε is given by (3). Then pick ȳ = ω ◦ σ[l](ȳ1) as an approximation of the
symbol being currently read. Similarly, ω ◦σ[l](ȳ2) gives an approximation of a−1,
with error bounded by ε.

2. Determine the next state. The map that returns the next state is defined by polyno-
mial interpolation. This can be done as follows. Let y be the symbol being currently
read and q the current state. Recall that m denotes the number of states and k = 10
is the number of symbols. One may take

qnext =
9∑

i=0

m∑
j=1

⎛⎜⎝ 9∏
r=0
r �=i

(y − r)
(i− r)

⎞⎟⎠
⎛⎜⎝ m∏

s=1
s �=j

(q − s)
(j − s)

⎞⎟⎠ qi,j ,
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where qi,j is the state that follows symbol i and state j. However, we are dealing
with the approximations q̄ and ȳ. Therefore, we define instead

q̄next =
9∑

i=0

m∑
j=1

⎛⎜⎝ 9∏
r=0
r �=i

(σ[n](ȳ) − r)
(i− r)

⎞⎟⎠
⎛⎜⎝ m∏

s=1
s �=j

(σ[n](q̄) − s)
(j − s)

⎞⎟⎠ qi,j , (6)

with

n =
⌈

log(10m2Km+7(m + 8))
− log λε

⌉
, K = max{9.5,m + 1/2}.

With this choice for n, the error of σ[n](ȳ) and σ[n](q̄) is such that

9|y − σ[n](ȳ)| + (m− 1)|q − σ[n](q̄)| ≤ ε

10m2Km+7
. (7)

Thus, from (6), (7) and Lemma 9, we conclude that |q̄next − qnext| ≤ ε.

3. Determine the symbol to be written on the tape. Using a similar construction,
the symbol to be written, snext, can be approximated with precision ε, i.e. |snext−
s̄next| ≤ ε.

4. Determine the direction of the move for the head. Let h denote the direction of
the move of the head, where h = 0 denotes a move to the left, h = 1 denotes a “no
move”, and h = 2 denotes a move to the right. Then, again, the “next move” hnext
can be approximated by means of a polynomial interpolation as in steps 3 and 4,
therefore obtaining |hnext − h̄next| ≤ ε.

5. Update the tape contents. We define functions P̄1, P̄2, P̄3 which are intended to
approximate the tape contents after the head moves left, does not move, or moves
right, respectively. Let H be a “sufficiently good” approximation of hnext, yet to
be determined. Then, the next value of y1, y

next
1 , can be approximated by

ȳnext1 = P̄1
1
2 (1 −H)(2 −H) + P̄2 H(2 −H) + P̄3 (− 1

2 )H(1 −H), (8)

with

P̄1 = 10(σ[j](ȳ1) + σ[j](s̄next) − σ[j](ȳ)) + σ[j] ◦ ω ◦ σ[l](ȳ2),

P̄2 = σ[j](ȳ1) + σ[j](s̄next) − σ[j](ȳ), P̄3 =
σ[j](ȳ1) − σ[j](ȳ)

10
,

where j ∈ N is sufficiently large and l is given by (5). Notice that when exact
values are used, ȳnext1 = ynext1 . The problem in this case is that P̄1 depends on ȳ1,
which is not a bounded value. Thus, if we simply take H̄ = h̄next, the error of the
term (1−H)(2−H)/2 is arbitrarily amplified when this term is multiplied by P̄1.
Hence, H̄ must be a sharp estimate of hnext, proportional to ȳ1. Therefore, using
Lemma 8 and the definition of y1, one can see that it is suffices to take

H = l3(h̄next, 10000 (ȳ1 + 1/2) + 2).
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Using the same argument for P̄2 and P̄3, we conclude that |ȳnext1 − ynext1 | < ε.
Similarly, and for the left side of the tape, we can define ȳnext2 such that
|ȳnext2 − ynext2 | < ε,.

Finally, hM : R3 → R3 is defined by hM (ȳ1, ȳ2, q̄) = (ȳnext1 , ȳnext2 , q̄next). *+

We shall now prove the main results of this paper.

Proof of Theorem 1. Let 0 ≤ δ < ε. Then, using Theorem 10, one can find a map hM
such that (4) holds. Let i ∈ N satisfy σ[i](ε) ≤ ε − δ. Define a map fM = σ[i] ◦ hM .
Then, if x0 ∈ N3 is an initial configuration,

‖x̄0 − x0‖∞ ≤ ε ⇒ ‖fM (x̄0) − θ(x0)‖∞ ≤ ε− δ.

Thus, by triangular inequality, if ‖x̄0 − x0‖∞ ≤ ε, then

‖f(x̄0) − θ(x0)‖∞ ≤ ‖f(x̄0) − fM (x̄0)‖∞+‖fM (x̄0) − θ(x0)‖∞ ≤ δ+(ε−δ) = ε.

This proves the result for j = 1. For j > 1, we proceed by induction. *+

Proof of Theorem 4. (Sketch) We adapt the construction in [12] to simulate the itera-
tion of the transition function of a TM with ODEs, using our Theorem 1 to generalize
Branicky’s construction to analytic and robust flows. To iterate a function θ we use a
pair of functions to control the evolution of two “simulation” variables z1 and z2. Both
simulation variables have values close to x0 at t = 0. The first variable is iterated during
half of an unit period while the second remains approximately constant (its derivative is
kept close to zero by a control function that involves our error-contracting function l2).
Then, the first variable remains controlled during the following half unit period of time
and the second variable is brought up close to it. Therefore, at time t = 1 both variables
have values close to θ(x0). Theorem 1 shows that there exists some analytic function
robust to errors that simulates θ. This allow us to repeat the process an arbitrary number
of times, keeping the error under control.

We begin with some preliminary results. There exists an ODE whose solution can be
as close as desired to an arbitrary fixed value b ∈ R at t = 1/2, for any initial condition
at t = 0. Let φ : R → R+ be some function. For an arbitrary error γ > 0 we define a
perturbed version, where we allow an error ρ ≥ 0 on b and a perturbation term bounded
by δ ≥ 0:

z′ = −c(z − b̄(t))3φ(t) + E(t), with c ≥
(
2γ2

∫ 1/2

0
φ(t)dt

)−1

. (9)

where
∣∣b̄(t) − b

∣∣ ≤ ρ and |E(t)| ≤ δ. Using the theory of ODEs, we can conclude that∣∣z(1
2 ) − b

∣∣ < γ + ρ + δ/2 regardless to the initial condition at t = 0.
For the control functions mentioned above, we use s : R → [− 1

8 , 1] defined by

s(t) =
1
2
(
sin2(2πt) + sin(2πt)

)
.

On [0, 1/2] s ranges between 0 and 1 and on [1/2, 1] s ranges between −1
8 and 0.
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We can now present the proof of the theorem. Let M be some Turing machine,
let fM be a map satisfying the conditions of Theorem 10 (replacing ε by γ), and let
x̄0 ∈ R3 be an approximation, with error ε, of some initial configuration x0. Take also
δ < 1/2 and γ > 0 such that 2γ + δ/2 ≤ ε < 1/2 (we suppose, without loss of
generality, that δ/2 < ε). This condition will be needed later. Consider the system of
differential equations z′ = gM (z, t) given by

z′
1 = c1(z1−fM ◦σ[m](z2))3 φ1(t, z1, z2), z′

2 = c2(z2−σ[n](z1))3 φ2(t, z1, z2) (10)

with initial conditions z1(0) = z2(0) = x̄0, where

φ1(t, z1, z2) = l2

(
θ(t), c1γ (z1 − fM ◦ σ[m](z2))4 + c1

γ + 10
)

φ2(t, z1, z2) = l2

(
θ(−t), c2γ (z2 − σ[n](z1))4 + c2

γ + 10
)
.

Because we want to show that the ODE z′ = gM (z, t) simulates M in a robust manner,
we also assume that an error of amplitude not exceeding δ is added to the right side
of the equations in (10). Our simulation variables are z1, z2 and the control functions
are φ1, φ2. Since φ1, φ2 are analytic they cannot be constant on any open interval as
in [12]. However, our construction guarantees that one of the control functions is kept
close to zero, while the other one reaches a value close to 1. For instance, on [0, 1/2]
|s(−t)| ≤ 1/8 and, by Lemma 7, φ2 is therefore less than γ(c2

∥∥z2 − σ[n](z1)
∥∥3

∞)−1.
This guarantees that z′

2 is sufficiently small on [0, 1/2] and, therefore,∥∥z2( 1
2 ) − x0

∥∥
∞ < (γ + δ)/2 + ε < 1

2 .

Hence, for m large enough ‖σ[m](z2) − x0‖ < γ. Moreover, on some subinterval of
[0, 1/2] s(t) is close to 1 and therefore φ1 is also close to 1. Thus, the behavior of z1 is
given by (9) and

∥∥z1( 1
2 ) − θ(x0)

∥∥
∞ < 2γ + δ/2 ≤ ε.

Now, for interval [1/2, 1] the roles of z1 and z2 are switched. One concludes that if
n ∈ N is chosen so that σ[n](5γ/2+δ) < γ, then ‖z2(1) − fM (x0)‖∞ < 2γ+δ/2 ≤ ε.
We can repeat this process for z1 and z2 on subsequent intervals, which shows that for
j ∈ N, if t ∈ [j, j + 1

2 ] then ‖z2(t) − θ[j](x0)‖∞ ≤ ε as claimed. *+
Notice that all the functions we use in the proof above are analytic. Moreover, note

that if we apply the error-contracting function σ to z1 we can make the error arbitrarily
small. Therefore, Theorem 4 implies Theorem 3.

5 Final Remarks

We showed that robust analytic maps and flows can simulate Turing machines, filling
some existing gaps on the literature on this subject.

There are several connections of this work and previous results on continuous-time
computational models. In particular, it is not difficult to verify [23] that the function z
in Theorem 4 is computable by Shannon’s General Purpose Analog Computer (GPAC).
Moreover, according to [16] z also belongs to the (analytic) subclass [0, 1,−1, U ;
COMP, I] of Moore’s real recursive functions.
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We proved lower computational bounds for analytic systems robust in the sense of
Theorems 1 and 4. Can we show that the computational power of those systems lies in
the realm of Turing computability, in analogy with the upper bounds in [5] for compact
domains? We leave this question to the reader.
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Abstract. Recent developments in the theory of infinite time Turing
machines include the solution of the infinitary P versus NP problem and
the rise of infinitary computable model theory.

Infinite time Turing machines extend the operation of ordinary Turing machines
into transfinite ordinal time. By doing so, they provide a theoretical model of
infinitary computability, while remaining close in spirit to many of the methods
and concepts of classical computability. The model gives rise to a robust theory
of infinitary computability on the reals, such as notions of computability for
functions f : IR → IR and notions of decidability for sets A ⊆ IR, with a rich
degree structure. In this brief article, I would like to announce and explain
a few of the most recent developments in the theory of infinite time Turing
machines. These developments include the rise of infinitary complexity theory,
with a solution of the infinite time Turing machine analogue of the P versus NP
question, and the development of infinitary computable model theory. Much of
the work on infinite time Turing machines lies within the boundaries between
set theory, descriptive set theory, computability theory and computable model
theory.

1 Infinite Time Turing Machines

Infinite time Turing machines were first considered by Hamkins and Kidder in
1989, with the main introduction provided by Hamkins and Lewis [1], to which
I refer all readers for a full development of the introductory theory. Here, let me
review the basic operation of the machines and the key concepts. An infinite time
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Turing machine has the same hardware as a classical three-tape Turing machine,
with a head reading and writing on a semi-infinite paper tape, moving left and
right in accordance with the rigid instructions of a finite program with finitely
many states. At successor steps of computation, the machine operates in exactly

input:

scratch:

output:

1

0

0

1

1

0

q

0

1

1

0

1

0

1

1

1

1

1

0

1

0

1

1

0

1

· · ·
· · ·
· · ·

the classical manner, following the program instructions. The computation is
extended into transfinite ordinal time simply by defining the configuration of
the machine at limit ordinal stages. For any limit ordinal ξ, the configuration
of the machine at time ξ, by definition, places the machine in the special limit
state, with the head on the left-most cell, and each cell of the tape displaying
the limsup of the values appearing in that cell before ξ. Thus, if the values
in that cell had previously stabilized before ξ, then the limit value agrees with
this stabilized value, and otherwise, when the cell has alternated infinitely often
between 0 and 1, the limit value is 1 (using lim inf and 0 in this case gives rise
to an equivalent theory). Since this completely specifies the configuration of the
machine at time ξ, the machine can naturally continue computing to stage ξ+1
and so on according to the program. Output is given only when the machine
explicitly attains the halt state, and computation ceases when this occurs.

The machines provide a notion of infinitary computability. Specifically, for
any program p the corresponding infinite time computable function ϕp is defined
by ϕp(x) = y when program p on input x gives output y. Since there is plenty of
time for computation, the natural context for input and output involves infinite
binary sequences, or Cantor space ω2, and with the readers’ permission I will
denote this space by IR and refer to such sequences as reals. Thus, we have a
notion of infinite time computable functions f : IR → IR. A set A ⊆ IR is infinite
time decidable if its characteristic function is infinite time computable. The set
A is infinite time semi-decidable if the constant function 1 � A with domain A is
infinite time computable. This is equivalent to A being the domain of an infinite
time computable function (but not equivalent to A being the range of such a
function). The initial results in [1] show that the arithmetic sets are exactly
those that are decidable in time uniformly less than ω2 and the hyperarithmetic
sets are those that are decidable in time less than some recursive ordinal. Every
Π1

1 set is decidable, and the class of decidable sets is contained in Δ1
2.

An easy cofinality argument establishes that every computation either halts
or repeats by some countable ordinal stage. An ordinal α is clockable if there
is a computation ϕp(0) halting in exactly α steps (meaning that the αth step
moves to the halt state). A real x is writable if it is the output of a computation
ϕp(0), and an ordinal is writable if it is coded by such a real. There are of
course only countably many clockable and writable ordinals, because there are
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only countably many programs. Both the clockable and writable ordinals extend
through all the recursive ordinals and far beyond; their supremum is recursively
inaccessible and more. While the writable ordinals form an initial segment of
the ordinals, there are gaps in the clockable ordinals, intervals of non-clockable
ordinals below the supremum of the clockable ordinals. The gap structure itself
becomes quite complicated, with limits of gaps sometimes being gaps and so
on, and ultimately it exhibits the same complexity as the infinite time version
of the halting problem. Nevertheless, [2] established that the supremum of the
clockable and writable ordinals is the same. A real x is eventually writable if
there is a computation ϕp(0) for which x appears on the output tape from some
point on (even if the computation does not halt), and x is accidentally writable
if it appears on any of the tapes at any stage during a computation ϕp(0). By
coding ordinals with reals, we obtain the notions of eventually and accidentally
writable ordinals. If λ is the supremum of the clockable or writable ordinals, ζ is
the supremum of the eventually writable ordinals and Σ is the supremum of the
accidentally writable ordinals, then [1] establishes λ < ζ < Σ. Welch [3] showed
that Lλ ≺Σ1 Lζ ≺Σ2 LΣ , and furthermore, these ordinals are characterized as
the least example of this pattern.

Many of the fundamental constructions of classical finite time computability
theory carry over to the infinite time context. For example, one can prove the
infinite time analogues of the smn-theorem, the Recursion theorem and the
undecidability of the infinite time halting problem, by essentially the classical
arguments. Some other classical facts, however, do not directly generalize. For
example, it is not true in the infinite time context that if the graph of a function
f is semi-decidable, then the function is computable. This is a consequence of
the following:

Theorem 1 (Lost Melody Theorem). There is a real c such that {c} is
infinite time decidable, but c is not writable.

The real c is like the lost melody that you can recognize yes-or-no when
someone sings it to you, but which you cannot sing on your own; it is a real that
exhibits sufficient internal structure that {c} is decidable, but is too complicated
itself to be writable. If f(x) = c is the function with constant value c, then f is
not computable because c is not writable, but the graph is decidable, because
we can recognize whether a pair has the form (x, c).

The infinite time analogue of the halting problem breaks into lightface and
boldface versions, h = { p | ϕp(p) ↓ } and H = { (p, x) | ϕp(x) ↓ }, respectively.
These are both semi-decidable and not decidable, but in the infintary context,
they are not computably equivalent.

When it comes to oracles, one can of course use an individual real as an oracle
in exactly the classical manner, by starting the computation with the oracle real
written out on an extra tape. But because we have a notion of decidability and
undecidability for sets of reals, one wants of course to be able to use a set of
reals as an oracle. This is done by adding an extra oracle tape, initially filled
with 0s, but allowing the machine to write on this tape and make queries of the
oracle. Thus, the machine is able to know of any given real that it can produce,
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whether that real is in the oracle set or not. The result is a notion of relative
computabiliy ϕA

p (x), a notion of reduction A <∞ B and a notion of equivalence
A ≡∞ B, with a rich theory of the infinite time Turing degrees. For any set A,
we have the lightface jump A� and the boldface jump A�, corresponding to the
two halting problems. One can show A <∞ A� <∞ A�, as well as A�� ≡∞ A�

and a great number of other interesting interactions. In [4], we settled the infinite
time analogue of Post’s problem, the question of whether there are intermediate
semi-decidable degrees between 0 and the jump 0�. The answer cuts both ways:

Theorem 2. The infinite time analogue of Post’s problem has both affirmative
and negative solutions.

1. There are no reals z with 0 <∞ z <∞ 0�.
2. There are sets of reals A with 0 <∞ A <∞ 0�. Indeed, there are incomparable

semi-decidable sets of reals A ⊥∞ B.

In other work, Welch [5] found minimality in the infinite time Turing degrees.
Hamkins and Seabold [6] analyzed one-tape versus multi-tape infinite time Tur-
ing machines, and Benedikt Löwe [7] observed the connection between infinite
time Turing machines and revision theories of truth.

2 P vs. NP for Infinite Time Turing Machines

Let me now turn to more recent work. Ralf Schindler [8] initiated the study
of infinite time complexity theory by solving the infinite time Turing machine
analogue of the P versus NP question. To define the class polynomial class P in
the infinite time context, Schindler observed simply that all reals have length ω
and the polynomial functions of ω are bounded by those of the form ωn. Thus,
a set A ⊆ IR is in P if there is a program p and a natural number n such that p
decides A and halts on all inputs in time before ωn. The set A is in NP if there
is a program p and a natural number n such that x ∈ A if and only if there
is y such that p accepts (x, y), and p halts on all inputs in time less than ωn.
Schindler proved P �= NP for infinite time Turing machines in [8], using methods
from descriptive set theory to analyze the complexity of the classes P and NP.
This work has now been improved in [9] to the following, where the class co-NP
consists of the complements of sets in NP.

Theorem 3. P �= NP ∩ co-NP for infinite time Turing machines.

Proof. This proof appears in [9]. Since P is contained in NP and closed under
complements, it follows that P ⊆ NP∩co-NP. To see that the inclusion is proper,
consider the halting problem for computations halting before ωω:

hωω = { p | ϕp(p) halts in fewer than ωω steps }.

I claim that hωω /∈ P . If one could decide hωω in time before ωω, then one could
compute the function f(p) = 1, if p /∈ hωω , diverge otherwise, and one could
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do so in time before ωω for input p /∈ hωω . If this algorithm for computing f is
carried out by program q, then q /∈ hωω if and only if f(q) ↓= 1, which holds if
and only if ϕq(q) halts in fewer than ωω steps, which holds if and only if q ∈ hωω ,
a contradiction.

Let me now show that hωω ∈ NP. The idea is to verify whether p ∈ hωω

by inspecting (a code for) the computation sequence of ϕp(p) up to ωω. To set
this up, fix a recursive relation  on ω having order type ωω and a computable
method of coding infinite sequences of reals as reals, so that any real z can be
interpreted as coding an infinite sequence of reals 〈zn | n ∈ ω〉. Viewing n as
representing the ordinal α of its order type in  , we may therefore view any real
z as an ωω-sequence of reals 〈(z)α | α < ωω〉. This coding is computable in the
sense that given any n ∈ ω representing α with respect to  , we can uniformly
compute any digit of (z)α.

Consider the algorithm accepting (p, z) if in the sense above the real z codes
a halting sequence of snapshots 〈(z)α | α < ωω〉 of the computation ϕp(p).
That is, first, each (z)α codes the complete configuration of an infinite time
Turing machine, including the tape contents, the head position, the state and the
program; second, the snapshot (z)α+1 is computed correctly from the previous
snapshot (z)α, taking the convention that the snapshots should simply repeat
after a halt; third, the limit snapshots (z)ξ for limit ordinals ξ are updated
correctly from the previous snapshots (z)α for α < ξ; and finally, fourth, one of
the snapshots shows the computation to have halted. Since these requirements
are merely an arithmetic condition on the code z, they can be checked by an
infinite time Turing machine in time uniformly before ω2. And since p ∈ hωω if
and only if the computation sequence for ϕp(p) halts before ωω, it follows that
p ∈ hωω exactly if there is a real z such that (p, z) is accepted by this algorithm.
Thus, hωω ∈ NP.

To see that hωω ∈ co-NP, simply change the fourth requirement to check
that none of the snapshots show the computation to have halted. This change
means that the input (p, z) will be accepted exactly when z codes a sequence
of snapshots of the computation ϕp(p), exhibiting it not to have halted in ωω

many steps. Since there is a real z like this if and only if p /∈ hωω , it follows that
the complement of hωω is in NP, and so hωω ∈ co-NP. *+

Corollary 4. P �= NP for infinite time Turing machines.

The analysis of [9] provides a deeper analysis of the complexity classes, re-
vealing the structural reasons why P �= NP∩ co-NP must be true. This analysis
places the classes P and NP within a larger hierarchy of complexity classes.
Specifically, for any ordinal α, we define the class Pα to include all A ⊆ IR such
that there is an ordinal β < α and a program p such that p decides A and halts
on all inputs in time less than β. Similarly, A is in NPα when there is an ordinal
β < α and a program p such that x ∈ A if and only if there is y such that p
accepts (x, y) and p halts on all inputs in time less than β. In this terminology,
the classes P and NP are simply Pωω and NPωω , in the lower middle part of the
hierarchy. Two of the structural facts we identified in [9] are the following:
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Theorem 5. The classes NPα are identical for ω + 2 ≤ α ≤ ωCK
1 . Nevertheless,

Pα+1 � Pα+2 for any clockable limit ordinal α.

Corollary 6. Pα � NPα ∩ co-NPα for any ordinal α with ω + 2 ≤ α < ωCK
1 .

Proof. The point is that by Theorem 5 the classes Pα are steadily increasing,
while the classes NPα ∩ co-NPα remain the same. Since Pα is contained within
NPα ∩ co-NPα, it follows for α in that range that Pα can never equal NPα ∩
co-NPα. *+

Nevertheless, we attain equality at the supremum ωCK
1 with

PωCK
1

= NPωCK
1

∩ co-NPωCK
1
.

In fact, [9] shows that this is an instance of the equality Δ1
1 = Σ1

1 ∩Π1
1 .

This same pattern of inequality Pα � NPα ∩ co-NPα is mirrored higher in
the hierarchy, whenever α lies strictly within a contiguous block of clockable
ordinals, with the corresponding Pβ = NPβ ∩ co-NPβ for any β that begins a
gap in the clockable ordinals. In addition, the question is settled in [9] for the
other complexity classes P+, P++ and Pf .

3 Infinite Time Computable Model Theory

Computable model theory is model theory with a view to the computability of
the structures and theories that arise. Infinite time computable model theory
carries out this program with the notion of infinite time computability provided
by infinite time Turing machines. The classical theory began decades ago with
such topics as computable completeness (Does every decidable theory have a
decidable model?) and computable categoricity (Does every isomorphic pair of
computable models have a computable isomorphism?), and the field has now
matured into a sophisticated analysis of the complexity spectrum of countable
models and theories.

The motivation for a broader context is that, while classical computable
model theory is necessarily limited to countable models and theories, the infini-
tary computability context allows for uncountable models and theories. Many
of the computational constructions in computable model theory generalize from
structures built on IN, using finite time computability, to structures built IR, us-
ing infinite time computability. The uncountable context opens up new questions,
such as the infinitary computable Löwenheim-Skolem Theorem, which have no
finite time analogue.

In joint work, Miller, Seabold, Warner and I have observed that the infinite
time version of Myhill’s theorem, a computable version of the Cantor-Schröder-
Bernstein Theorem, holds when the inverses of the computable injections are
also computable, but can fail when they are not. The infinite time computable
Completeness Theorem holds for countable languages coded in the natural num-
bers, but can fail for uncountable languages coded in the reals. The computable
downward Löwenheim-Skolem theorem fails:
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Theorem 7. There is an infinite time computable structure of size continuum
having no proper infinite time computable elementary substructure.

Some of the most interesting current results involve computable quotients.
A structure has an infinite time computable presentation if it is isomorphic
to a computable structure, and has a computable quotient presentation if it is
isomorphic to the quotient of a computable structure by a computable equiv-
alence relation (a congruence). For structures on IN, in either the finite or in-
finite time context, these notions are equivalent, because one can computably
find the least element of any equivalence class. For structures on IR, however,
computing such distinguished elements of every equivalence class is not always
possible.

Question 8. Does every structure with an infinite time computable quotient pre-
sentation have an infinite time computable presentation?

Our answer is that it depends on the set theoretic background.

Theorem 9. The answer to Question 8 is independent of ZFC. Specifi-
cally,

1. It is relatively consistent with ZFC that every structure with an infinite time
computable quotient presentation has an infinite time computable presenta-
tion.

2. It is relatively consistent with ZFC that there is a structure having an infi-
nite time computable quotient presentation, but no infinite time computable
presentation.

Let me briefly sketch some of the ideas appearing in the proof. In order
to construct an infinite time computable presentation of a structure, given a
computable quotient presentation, we’d like somehow to select a representa-
tive from each equivalence class, in a computably effective manner, and build a
structure on these representatives. Under the set theoretic assumption V = L,
we can attach to the L-least member of each equivalence class an escort real
that is powerful enough to reveal that it is the L-least member of its class,
and build a computable presentation out of these escorted pairs of reals. (In
particular, the new presentation is not built out of mere representatives from
the original class, since these reals may be too weak; they need the help of
their escorts.) Thus, if V = L, then every structure with a computable quo-
tient presentation has a computable presentation. On the other side of the
independence, we prove statement 2 by the method of forcing. The structure
〈ω1, <〉 always has a computable quotient presentation built from reals cod-
ing well orders, but there are forcing extensions in which no infinite time com-
putable set has size ω1, on descriptive set theoretic grounds. In these extensions,
therefore, 〈ω1, <〉 has a computable quotient presentation, but no computable
presentation.
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1 Introduction

We consider formal recombination operations presented in terms of string, graphs
and permutations. These operations are faithful to the molecular operations of
gene assembly introduced by Prescott, Ehrenfeucht, and Rozenberg [17]. The
results mentioned here on the formal operations are mostly stated in the recent
book [8], where one also finds the original references.

Ciliates are complex unicellular organisms with a unique nuclear dimorphism:
they possess two kinds of nuclei (see reviews by Prescott [14, 15]; Jahn and
Klobutcher [12]). The active genome (macronucleus) is formed from an inactive
genome (micronucleus). In the process ciliates undergo complex genomic reorga-
nization involving massive parallel DNA elimination, sequence rearrangement,
telomere formation, and extensive gene amplification.

The micronucleus (MIC) is an inactive storage of genes consisting of long
chromosome(s) that code genes in scrambled manner, that is, a gene can occur
fragmented in MIC. MIC becomes functional only during sexual reproduction.
The macronucleus (MAC) contains the active genome. It consists of short, gene
size, DNA molecules; see Prescott et al. [16]. The genes in MAC are unfrag-
mented.

A species of ciliates often has many identical MICs and MACs. E.g., in
Sterkiella nova the MAC genome has about 1 000 copies of some 20 000 different
chromosomes. Each chromosome has usually only one gene. In the formation of
MAC from MIC much of the DNA is lost. E.g., in Stylonychia lemnae 98% of
the DNA in the MIC genome is eliminated in this process.

In the micronuclear version, a gene can be dispersed in many parts, macronu-
clear destined segments (MDSs). These parts are dispersed by non-coding seg-
ments, internally eliminated segments (IESs). Not only can the order of the
MDSs be changed in the MIC, but also some of the MDSs may have been in-
verted. During gene assembly the genes are defragmented: the order of the parts
(MDSs) and their direction is recovered. This process can be spectacular: e.g.,
the whole MIC of Sterkiella nova has more than 100 000 IESs and they are all
excised and equally many MACs are spliced in their final order to form the
functional genes.

In the MIC the MDSs are permuted, possibly inverted, and they are separated
by IESs. They assemble either to linear or circular genes as illustrated in Fig. 1.

S.B. Cooper, B. Löwe, and L. Torenvliet (Eds.): CiE 2005, LNCS 3526, pp. 188–195, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Two micronuclear genes; MDSs M1 and M4 are inverted

At the final stage both of these cases are excised to linear genes and telomeres
are added at the ends. In this way, the genes are rearranged in the orthodox
order M1 −M2 −M3 −M4 −M5.

The MDSs are spliced through ‘pointers’: the ith MDS (enumerated in the
order in MAC) has the form Mi = (πi, Bi, πi+1), where πi and πi+1 are pointers
and Bi is the body. Thus MDSs in MIC have a linked list structure. The MDSs
M1 and Mn have the forms (b,B1, π2) and (πn, Bn, e), where b and e are special
notations for ‘beginning’ and ‘ending’. When the MDSs Mi and Mi+1 are spliced
they form a structure (πi, Biπi+1Bi+1, πi+2), and πi+1 ceases to act as a pointer.
Note that one copy of πi+1 is part of the gene! After all splicings, the MAC gene
forms (b,B1π2B2π3 . . . πnBn, e).

2 Models

Signed permutations. Let Σ∗ denote the set of all strings over an alphabet Σ,
and let Σ = {a | a ∈ Σ} be a disjoint copy of Σ together with a = a. It is
convenient also to use notations a = a+ and a = a− for each letter a ∈ Σ ∪Σ.
A string s = ae11 ae22 . . . aen

n over Σ ∪Σ is a signed string (over Σ). The inversion
of s is s = a

−en

n a
−en−1
n−1 . . . a−e1

1 . A signed string α is a signed permutation,
if it has exactly one occurrence from {a, a} for each a ∈ Σ. We say that α is
uniformly signed if all letters in α have the same sign, that is, α ∈ Σ∗ or α ∈ Σ

∗
.

Consider a gene that has MDSs M1,M2, . . . ,Mn in the MIC enumerated in
their order in MAC. Such a gene can be represented as a signed string

Me1
r1 I1M

e2
r2 I2 . . . In−1M

en
rn

,

where Mr1 ,Mr2 , . . . ,Mrn
is a permutation of M1,M2, . . . ,Mn, and each Ii de-

notes an IES.
The IESs are excised in the process of forming MAC, therefore we can them

from the representation of the MIC gene, which then becomes as Me1
r1 M

e2
r2 . . .Men

rn

or simpler still: a signed permutation re11 re22 . . . ren
n of {1, 2, . . . , n}.

The MAC version of the gene (before telomere addition) has presentation i(i+
1) . . . n1 . . . (i − 1) or i(i− 1) . . . 1n . . . (i + 1). For i > 1, these strings represent
circular molecules.
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Fig. 2. The MDS/IES structure of actin gene in Sterkiella nova

Example 1. Consider the actin gene in Sterkiella nova, represented in Fig. 2.
The micronuclear gene is represented by the string M3M4M6M5M7M9M2M1M8

which then gives the signed permutation α = 3 4 6 5 7 9 2 1 8. *+

Let ω = 12 . . . n be the identity on [1, n]. A conjugate ω̃ of ω or of the inversion
ω is an assembled permutation. Hence for signed permutations, assembling means
sorting up to conjugation and inversion.

A related problem concerns sorting by inversions, where the operation is more
general: xyz �→ xȳz. Reversals can sort (even to ω) all signed permutations.
There is a fast polynomial time algorithm for finding the minimum number of
inversions needed to sort a signed permutation; Hannenhalli and Pevzner [11].
Note that the problem of sorting unsigned permutations by reversals is NP-hard;
Caprara [7].

Legal strings. Let [k, n] denote the interval {k, k+1, . . . , n}. A signed string s is
legal, if every letter x in s has exactly two occurrences from {x, x}. Each signed
permutation on [1, n] (MIC gene) can be mapped to a legal string over [2, n] as
follows

p �→ p(p + 1) , p �→ (p + 1)p ,

1 �→ 2 , 1 �→ 2 ,
n �→ n , n �→ n .

A letter p ∈ Σ is positive in s, if both p and p occur in s; otherwise p is negative
in s.

Example 2. The MIC version of the actin gene in Sterkiella nova has the pre-
sentation M3M4M6M5M7M9M2M1M8 (see Fig. 2). The corresponding signed
permutation gives the legal string: 3 4 6 5 7 9 2 1 8 �→ 3 4 4 5 6 7 5 6 7 8 9 3 2 2
8 9 . *+

Overlap graphs. A signed graph γ consits of a set V of vertices, each signed by
+ or − (positive/negative), and a set E ⊆ {{x, y} | x, y ∈ V, x �= y} of edges.
(In literature, also known as ‘marked graphs’; Zaslavsky [18].)

Let s be a legal string over an alphabet Σ. Then the overlap graph γs of s is
the signed graph with Σ as its vertex set such that a vertex p ∈ Σ has a sign
+, if p is positive in s, Also, {p, q} is an edge if the intervals of their occurrences
overlap in s: . . . p . . . q . . . p . . . q . . . or . . . q . . . p . . . q . . . p . . . ; see Fig. 3.
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Fig. 3. The overlap graph of s = 3 4 5 2 3 2 4 5

Overlap graphs are also known as (signed) circle graphs or (signed) interleav-
ing graphs; Bouchet [4, 6], de Fraysseix [10]. The latter are well known from their
connection to the Gauss problem on intersecting plane curves. Circle graphs have
a geometric presentation as chord diagrams, which are auseful in knot theory
and the theory of braids; Birman and Trapp [3].

Let s = a1a2 . . . ak be a legal string over an alphabet Σ. It is clear that the
reversal sR = akak−1 . . . a1 as well as the complement sC = a1a2 . . . ak have the
same overlap graph as s, and hence so does the inversion s = (sR)C of s. Also,
all conjugates (vu and uv) have the same overlap graph. For two signed strings
s and s′ over Σ, denote s ≈ s′, if s is obtained from a conjugate of s′ by a
composition of the operations of reversal and complementation.

Theorem 3. Let s and s′ be legal strings that are images of signed permutations.
Then s and s′ have the same overlap graph if and only if s ≈ s′.

The problem in the general setting is much more difficult.
Problem. Give necessary and sufficient conditions for general legal strings s
and s′ to have the same overlap graph.

3 The Assembly Rules: ld, hi, dlad

The basic biological question for gene assembly is the following: How is MAC
formed from MIC? Kari and Landweber [13] took a computational approach by
introducing an intermolecular model on strings, and then Prescott et al. [17]
proposed an intramolecular model with three rearrangement operations: ld, hi
and dlad. For strings and graphs, these operations are reductive: the letters and
vertices are removed when an operation is applied to them. For signed permu-
tations, the operations are nonreductive, that is, they modify the permutations
without removing any parts.

ld-rule: (loop, direct repeat)-excision. The molecular operation ld is applied to a
molecule with a direct repeat pattern (– π – π –) of a pointer such that the
occurrences of π are separated by one IES only or they are at the two opposite
ends of the part of the molecule containing the MDSs of the gene.
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The ld-rule yields two molecules: a linear and a circular one; the circular molecule
consists either of the whole gene or one IES only.
(1) For legal strings, ld-rule removes a factor pp: for each (signed) p, uppv → uv
or puvp → uv.
(2) For signed graphs, ld-rule removes an isolated negative vertex.
(3) In the model of signed permutations, this operation is not used, since an
excision of an IES does not change the order or direction of the MDSs, and hence
this operation does not manifest itself in the sorting operations of permutations.

hi-rule: (hairpin, inverted)-excision. The operation hi is applied to a molecule
with an inverted repeat pattern (– π – π –) of a pointer. This operation inverts
a part of the molecule.

(1) For legal strings, hi-rule is defined as follows: for each p, upxpv → uxv.
(2) For signed graphs, hi-rule complements the neighbourhood N(p) of a positive
vertex p, (and p is removed). The signs in N(p) are changed, and the edges are
changed to nonedges and vice versa. This is a generalization of local complemen-
tation of unsigned graphs; Bouchet [5], Fon-Der-Flaas [9].

If we allow both ld-rules and hi-rules for graphs, then Anderson et al. [1]
showed.

Theorem 4. A signed graph γ can be reduced to the empty graph by ld-rules
and hi-rules if and only if every connected component of γ has a positive vertex.

(3) For signed permutations, hip, with p ∈ [1, n], is one of the following rules; see
Fig. 4 for the first case.

p δ (p + 1) −−→ p (p + 1) δ ,

p δ (p + 1) −−→ δ p (p + 1) ,

and the dual rules of these obtained by inverting the strings:

(p + 1) δ p −−→ δ (p + 1) p ,

(p + 1) δ p −−→ (p + 1) p δ .

Example 5. We write α
i−→ α′, if α′ is obtained from α by applying hii. We

have that 2 3 1 2−−→ 2 3 1 and 2 3 1 1−−→ 2 1 3 . This case corresponds to a cyclic
molecule. *+

Note that if hip is applicable to a signed permutation α, then p and p + 1
have opposite signs in α and they have the same sign in the resulting signed
permutation hip(α).
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Fig. 4. The case of hi for the order p − p + 1

Lemma 6. Let α be a signed permutation on [1, n]. Then there is a composition
ϕ = hipk

hipk−1 . . . hip1 for different p1, . . . , pk such that ϕ(α) is uniformly signed.

dlad: (double loop, alternating direct repeat)-excision. The operation dlad is ap-
plied to a molecule with an alternating direct repeat pattern (– π – π′ – π – π′–)
for pointers π, π′. The operation transposes the substrings between π and π′:

(1) For legal strings, dlad-rule has the following effect: for each p and q,
upxqwpyqv → uywxv.

(2) For signed graphs, dlad-rule complements the connections between N(p)
and N(q) of adjacent negative p and q (which are removed). This operation
corresponds to the pivot operation for general graphs; see [2].

(3) For signed permutations, we have first the following ‘4-rules’ dladp,q, with
p, q ∈ [1, n].

p δ1 q δ2 (p + 1) δ3 (q + 1) −−→ p (p + 1) δ3 δ2 δ1 q (q + 1)

and the conjugate rules:

p δ1 (q + 1) δ2 (p + 1) δ3 q −−→ p (p + 1) δ3 q (q + 1) δ2 δ1
(q + 1) δ1 (p + 1) δ2 q δ3 p −−→ δ3 p (p + 1) δ2 q (q + 1) δ1
(p + 1) δ1 q δ2 p δ3 (q + 1) −−→ δ3 δ2 p (p + 1) δ1 q (q + 1)

In these it can be q = p + 1:

(p + 2) δ1 (p + 1) δ2 p −−→ δ2 p (p + 1) (p + 2) δ1
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and the conjugate rules:

p δ1 (p + 2) δ2 (p + 1) −−→ p (p + 1) (p + 2) δ2 δ1
(p + 1) δ1 p δ2 (p + 2) −−→ δ2 δ1 p (p + 1) (p + 2)

Also, we have the duals rules obtained by inverting both sides of the rules.

Fig. 5. The case of dlad for the order p − q − (p + 1) − (q + 1)

Theorem 7. Each unsigned permutation can be sorted to a conjugate of ω by
dlad-rules.

Universality. The operations for strings, graphs and permutations have (almost)
unique correspondence to each other with respect to sequences of their compo-
sitions; [8].

A composition ϕ of operations hi and dlad (and ld in the case of strings and
graphs) is said to be successful for a signed permutation α, if ϕ(α) is assembled (a
conjugate of ω or ω). That is, if it sorts α up to taking inversion and conjugates.

Theorem 8. Every signed permutation α has a successful composition.

Using hi-rules every legal string s can be reduced to a string with only negative
letters, and by the dlad-rules, we terminate in a string with no overlapping letters.
Hence

Theorem 9. For each legal string s, there is a composition ϕ = ϕ3ϕ2ϕ1 such
that ϕ(s) is the empty string and ϕ1 consists of hi-rules, ϕ2 of dlad-rules, and
ϕ3 of ld-rules.

Similarly, we have

Theorem 10. For each signed graph γ, there is a composition ϕ = ϕ3ϕ2ϕ1 such
that ϕ(γ) is the empty graph and ϕ1 consists of hi-rules, ϕ2 of dlad-rules, and
ϕ3 of ld-rules.

It should be noted that a signed permutation can have many successful com-
positions, but all these give basically the same result. In particular, circularity
is invariant, that is, if one composition assembles a signed permutation α to the
identity permutation ω, then so do all successful compositions. This result is
stated in the following theorem; see [8].

Theorem 11. Let ϕ and ϕ′ be two successful compositions of a signed permu-
tation α. If ϕ(α) = ω, then also ϕ′(α) = ω.
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Abstract. Symmetric Enumeration reducibility (≤se) is a subrelation
of Enumeration reducibility (≤e) in which both the positive and nega-
tive information content of sets is compared. In contrast with Turing
reducibility (≤T) however, the positive and negative parts of this rela-
tion are separate. A basic classification of ≤se in terms of standard
reducibilities is carried out and it is shown that the natural embedding
of the Turing degrees into the Enumeration degrees easily translates to
this context. A generalisation of the relativised Arithmetical Hierarchy
is achieved by replacing the relation c.e. in by ≤e and ≤T by ≤se in the
underlying framework of the latter.

1 Introduction

The structure of the relativised Arithmetical Hierarchy is dictated by the relation
computably enumerable in (c.e. in) in the sense that a set belongs to level n+ 1
of the hierarchy if either it or its complement is c.e. in some set belonging to
level n. This of course means that each level is the union of a positive (Σ) class
and a negative (Π) class. The intersection (Δ) of these classes comprises, by
definition, those sets B such that B is Turing reducible to (i.e. B and B are
both c.e. in) a set in the antecedent level.

A natural question to ask is whether one can refine the framework of the
relativised Arithmetical Hierarchy to the context of Enumeration Reducibility.
In other words, can one define a similar hierarchy in which the levels are dic-
tated by the relation enumeration reducible to (≤e) and which is identical to the
Arithmetical Hierarchy when relativised to graphs of characteristic functions
(i.e. Turing embedded sets, see Section 4). One approach to this question, is to
find an appropriate relation to define the intersection (Δ) levels of the structure
(in the place of ≤T ). This is the initial motivation behind the introduction of
Symmetric Enumeration Reducibility since the latter allows us to define a hier-
archy which is a generalisation of the relativised Arithmetical Hierarchy in the
required sense.

2 Preliminaries

Background Notation. We let N denote the set of natural numbers and
A,B, . . . denote subsets of N. Lower case letters n, x, . . . and f, g, . . . represent

S.B. Cooper, B. Löwe, and L. Torenvliet (Eds.): CiE 2005, LNCS 3526, pp. 196–208, 2005.
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numbers and functions (from N to N) respectively, whereas A,B, . . . represent
classes of sets. A denotes the complement of A. The set {n · x + m | x ∈ A } is
written nA + m and 2A ∪ 2B+1 is written A ⊕ B. We use 〈 , 〉 to denote the
standard diagonal coding function defined by 〈x, y〉 = 1/2(x2+y2+2xy+3x+y).
The characteristic function of A is written cA, and for any function f , its graph
is written F (and so CA stands for the graph of cA). We assume the availability of
effective enumerations of (oracle) Turing machines ϕ0, ϕ1, . . ., computably enu-
merable (c.e) sets W0,W1, . . ., and finite sets D0, D1, . . . Note that, to simplify
notation, we usually use D,D′ etc. to denote both the finite sets themselves and
their indices. For example if i, j are the indices of D,D′ then 〈D,D′〉 is short-
hand for 〈i, j〉.
Basic Reducibilities. We assume the standard multitape Turing machine
model for computing partial functions and we suppose an oracle Turing ma-
chine to be equipped with a function oracle. We say that the set A is Turing
reducible to the set B (A≤TB) if there is an oracle machine ϕ that computes
cA when equipped with oracle cB (written cA . ϕB). A is said to be computably
enumerable in B (A c.e. in B) if, A is the range of some function f computable
in B or, equivalently, if A = {x | ϕB(x) ↓ } for some oracle Turing machine ϕ.
KB denotes the set {x | ϕB

x (x) ↓ } and K(n)
B denotes the iterated form of KB :

K(0)
B = B and K(n+1)

B = KK(n)
B

. K and K(n) are shorthand for K∅ and K(n)
∅ . For

Turing reductions we use Q(ϕ, x,B) to denote the set of oracle queries made by
ϕB on input x. Likewise we use Q+(ϕ, x,B) to denote the set of positive queries
of the computation and Q−(ϕ, x,B) to denote the set of negative queries. Note
that, for fixed x (and ϕ) these sets are c.e. in B and, if ϕB(x) ↓ they are com-
putable in B. We say that A is many one reducible to B (A≤mB) if there is
a computable function f such that A = f−1(B). Furthermore, if f is one-one,
A is said to be one-one reducible to B (A≤1B). We say that A is enumeration
reducible to B (A≤e B) if there exists a computably enumerable set W such
that, for all x,

x ∈ A iff ∃D( 〈x,D〉 ∈ W & D ⊆ B )

and in this case we also say that A≤eB via W. Similarly, the e-th enumeration
operator Φe is defined such that, for any set A,

Φe(B) = {x | ∃D( 〈x,D〉 ∈ We & D ⊆ B ) } .

A is said to be positive reducible to B, (A≤pB) if there exists a computable
function f such that, for all x ≥ 0, x ∈ A ⇔ ∃y(y ∈ Df(x) & Dy ⊆ B). We
say that A is wtt-reducible to B (A≤wttB), if there exists a Turing machine
ϕ and computable function f such that cA . ϕB and such that for all x ≥ 0,
Q(ϕe, x,B) ⊆ {0, . . . , f(x)}.

degr(A) denotes the degree of A under the reducibility ≤r , i.e. the class
{B | B ≡r A }. We use ar, br, . . . to denote the degrees derived according to
this definition and 〈Dr,≤〉 to denote the corresponding degree structure (with
≤ the ordering induced by ≤r ). Subscripts are dropped if the context is clear.
A is said to be r-hard for a class C if X≤rA for all X in C and A is said to
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be r-complete for C if A also belongs to C. We use the shorthand Comp(A),
Enum(A) and Ce(A) to denote the classes { E | E R A } such that (respec-
tively) R is ≤T , ≤e or “ c.e. in ”. Accordingly, we use Comp and Ce to denote
the classes of computable and c.e. sets. Also we will employ the abbreviations
r-reduction, r-degree etc. when appropriate.

String Notation. A string is a partial function σ : N → {0, 1} with finite
domain. λ denotes the empty string and |σ| the length of σ (i.e. the cardinal-
ity of its domain). For (s, i) ∈ { (+, 1) , (−, 0) }, we use σs to denote the set
{n | σ(n)↓= i } and (σ�A)s to denote the set {n | n ∈ A & σ(n)↓= i } (and
so σs = (σ�N)s for s ∈ {+,−}). If the domain of σ is an initial segment of N,
σ is said to be an initial segment. Note that this means that, if |σ| = n + 1
the domain of σ is {0, . . . , n}. We use the shorthand σ′ = σ̂(i) to denote the
extension of σ of length |σ| + 1, such that σ′(|σ|) = i.

3 Introduction to Symmetric Enumeration Reducibility

Enumeration reducibility compares the positive information content of two sets.
Symmetric enumeration reducibility, as we will see, compares both positive and
negative information content. We will now introduce this reducibility and con-
sider how it relates to other standard reducibilities. Firstly, however we draw
the reader’s attention to the fact that Alan Selman defined this reducibility in
Section 4 of [5] and exhibited some of its basic properties. In particular Selman
noted the inclusion ≤m⊆ ≤se ⊆≤T and proved Theorem 6 (below) relative to
the pair (≤tt , ≤se ).

Definition 1. For any sets A and B, A is defined to be symmetric enumeration
reducible to B (A≤seB) if A≤eB and A≤eB.

Notation. For any set A, s-Enum(A) denotes the class {E | E≤seA }.

Note 2. Clearly ≤se inherits reflexivity and transitivity from ≤e . It thus gives
rise to a degree structure (〈Dse,≤〉). The least upper bound of any two degrees
ase, bse (written ase∪bse) always exists: it is the degree of A⊕B for any A ∈ ase

and B ∈ bse . Therefore 〈Dse,≤〉 is an upper semi lattice. The zero element (0se)
of 〈Dse,≤〉 is Comp. Each of these properties is easily checked.

Lemma 3. For any sets A and B, if A≤seB then A≤eB and A≤TB. In other
words,

≤se ⊆ ≤e

⋂
≤T .

Moreover, this inclusion is proper.

Proof. Since ≤se is a subrelation of ≤e by definition, in order to prove the
inclusion it suffices to note that, for any sets A and B, A≤e B implies that
A c.e. in B. Also, CK ≤r K for r ∈ {e,T} whereas CK �se K (since this would
imply K≤eK). Thus the inclusion is proper. *+
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Theorem 4. ≤p ⊆ ≤se .

Proof. Let A and B be any sets such that A≤p B and suppose that f is a
computable function that witnesses this reduction in the sense that, for all x ≥ 0,
x ∈ A ⇔ ∃y(y ∈ Df(x) & Dy ⊆ B). Now define the two c.e. (in fact computable)
sets W and Ŵ as follows:

W = { 〈x, y〉 | y ∈ Df(x) }
Ŵ = { 〈x, y〉 | Df(x) = ∅ & y = f(x) }⋃

{ 〈x, y〉 | Df(x) �= ∅ & ∀z(z ∈ Df(x) ⇒ Dz ∩Dy �= ∅) } .

Then A≤eB via W and A≤eB via Ŵ . *+

Note 5. Theorem 4 implies that all conjunctive and disjunctive subreducibilities
of ≤T are contained in ≤se and, in particular, that ≤1 ⊆ ≤m ⊆ ≤se .

Theorem 6. It is neither the case that ≤wtt ⊆ ≤se nor the case that
≤se ⊆ ≤wtt .

Proof. The first inequality is witnessed by K in that K≤wtt K (and in fact
K≤btt(1)K) whereas K�eK. The second inequality is proved by a straightfor-
ward diagonalisation construction that we sketch below. Note that we assume
a fixed (effective) enumeration of partial computable functions f0, f1 . . . in ad-
dition to the enumeration of oracle Turing machines ϕ0, ϕ1, . . . stipulated by
Section 2. We construct sets A and B by finite initial segments {αn}n≥0 and
{βn}n≥0, such that A =

⋃
{α+

n | n ≥ 0 } and B =
⋃
{β+

n | n ≥ 0 }. In order
that A≤seB the construction ensures that, for all x ≥ 0,

x ∈ A iff ∃y( 〈2x, y〉 ∈ B )

x ∈ A iff ∃y( 〈2x+1, y〉 ∈ B ) .

To enable this to happen, we impose the constraint that, for all s ≥ 0,

β+
s+1 − β+

s = { 〈2x + 1, y〉 | |βs| ≤ 〈2x + 1, y〉 < |βs+1| } (A-coding)

except for the number |βs+1| − 1 (defined to be “ns” below) which is used for
the diagonalisation at stage (s + 1).
The construction. At each stage (s+ 1) we diagonalise against oracle Turing
machine ϕe and partial computable function fd, where s = 〈e, d〉. We define

B̂s := β+
s

⋃
{ 〈2x+1, y〉 | 〈2x+1, y〉 ≥ |βs| }

and we define ms to be max {|βs|, fd(s)+1} if fd(s)↓ or to be |βs| otherwise.
If either fd(s) ↑ or it is not the case that ϕB̂s

e ↓= 1, then we insert s into A,
we set ns := 〈2s,m〉 with m the least number such that 〈2s,m〉 ≥ ms, and we
insert ns into B. Otherwise—in the case that both computations converge and
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ϕe(s) = 1—we put s into A, we set ns := 〈2s + 1,m′〉 with m′ the least number
such that 〈2s + 1,m′〉 ≥ ms, and we insert ns into B. αs+1 and βs+1 are defined
to be the resulting extensions of αs and βs of length s+1 and ns+1 respectively,
and such that βs+1 conforms to the constraint (A-coding) above.

Note that, at the end of the construction, if s ∈ A then there is a unique
number 〈2s,m〉 in B and if s /∈ A then there is no such number in B. Likewise
if s ∈ A then there is a unique number 〈2s + 1,m′〉 in B and if s /∈ A then there
is no such number in B. Also, the choice of ns and ms at each stage (s + 1)
ensures that the diagonalisation at this stage is preserved for the resulting sets
A and B. *+

4 Embedding the Turing Degrees

The isomorphic embedding ιe of the Turing degrees (〈DT,≤〉) into the Enumera-
tion degrees (〈De,≤〉) induced by the map X �→ CX is essentially an embedding
into 〈Dse,≤〉. Moreover the range of this embedding contains gaps similar to
those appearing in the range of ιe. These results are presented below. We begin
with an easy but useful Lemma.

Lemma 7. For any set A the following equivalences hold:
(a) CA ≡se A⊕A (b) CA ≡se CA (c) CA ≡se CA.

Notation. We say that a set A is characteristic if A = B⊕B for some set B. For
the sake of simplicity, and in view of Lemma 7, we sometimes prefer to work with
a characteristic set (X ⊕X) rather than with the corresponding characteristic
function graph (CX).

Definition 8. An e-degree is said to be total if it contains the graph of a total
(or, equivalently, characteristic) function . A se-degree is said to be charac-
teristic if it contains the graph of a characteristic function (or, equivalently, a
characteristic set).

Proposition 9. For any se-degree a the following are equivalent:
(a) a is characteristic.
(b) For all A in a, A ≡se A.

Proof. Apply Lemma 7 and use the transitivity of ≤se . *+

Note 10. 0se is characteristic.

Lemma 11. Every total e-degree contains exactly one characteristic se-degree.

Proof. Suppose that B,C ∈ ae and that B ≡se B and C ≡se C. This means
that CB ≡e CC , and by applying Lemma 7, it follows that CB ≡se CC . Hence
B ≡se C. *+
Lemma 12. For any sets A and B, A c.e. inB iff A≤eCB .
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Proof. Suppose that A and B are sets such that A = WB
i for some i ≥ 0. Then

Wei
:= { 〈x,D ⊕D′〉 | ϕD

i (x) ↓ & Q+(ϕi, x,D) = D & Q−(ϕi, x,D) = D′ }

is a c.e. set and A≤eB ⊕B via Wei
. The opposite implication is obvious. *+

Lemma 13. For any sets A and B,

A≤TB iff A≤seCB iff CA≤seCB .

Proof. Apply Lemma 12 in conjunction with Lemma 7.

Corollary 14. The embedding ιse of the Turing degrees into the se-degrees in-
duced by the map X �→ CX is structure preserving (i.e. isomorphic).

Definition 15. An se-degree a is said to be quasi-minimal if a > 0 and
∀d(d < a & d characteristic ⇒ d = 0 ).

Theorem 16. For any se-degree b there exists a degree a such that b < a and
such that, for any characteristic degree c, if c ≤ a then c ≤ b.

Proof. The proof is a straightforward modification of the corresponding result
relative to 〈De,≤〉 due to Medvedev ([4]). Indeed, suppose that B is any set.
Then it suffices to construct a set A such that B≤seA and such that A satisfies
the following requirements:

R3e : A �= Φe(B)
R3e+1 : Φe(A) characteristic ⇒ Φe(A)≤eB

R3e+2 : Φe(A) characteristic ⇒ Φe(A)≤eB

We ensure that B≤seA by encoding B into A in the following manner:

∀x(x ∈ B iff 2x ∈ A ) (B-coding)

Notation. We say that an initial segment σ is B-compatible if, for all x such that
2x < |σ|, x ∈ B iff 2x ∈ σ+.

The construction. The set A is constructed by finite initial segments {σn}n≥0,
such that A =

⋃
{σ+

n | n ≥ 0 }.
Stage (0) σ0 = λ
Stage (s+1) σs has already been defined.
• If s = 3e then, letting ns := |σs|, we satisfy R3e by defining

σs+1 :=

{
σŝ( 1 − Φe(A)(ns) ) if ns is odd
σŝ( B(ns/2) )̂( 1 − Φe(A)(ns+1) ) if ns is even.
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• If s = 3e+ 1 then we try to satisfy R3e+1 vacuously by searching for a
B-compatible initial segment σ ⊇ σs such that, for some n : 2n, 2n+1 ∈ Φe(σ+).
If this search is successful, choose the least such σ and set σs+1 := σ. Otherwise
set σs+1 := σs.
• If s = 3e+ 2 then we try to satisfy R3e+2 vacuously by searching for a
B-compatible initial segment σ ⊇ σs such that, for some n : 2n, 2n+1 ∈ Φe(σ−).
If this search is successful, choose the least such σ and set σs+1 := σ. Otherwise
set σs+1 := σs.

Analysis of the construction. The construction obviously ensures that the
constraint (B-coding) holds, which means that B≤seA. Also the requirements
{R3e}e≥0 prevent A≤seB and hence B <se A. So suppose that there exists a
set E such that E ⊕ E≤seA. Thus by definition, Φi(A) = E ⊕ E and
Φj(A) = E ⊕ E for some i, j ≥ 0. Now set s := 3i+1 and t := 3j + 2,
and define

Ps := {n | (∃σ ⊇ σs)( n ∈ Φi(σ+) & (σ�2N)+ ⊆ B ⊕ ∅ ) }
Nt := {n | (∃σ ⊇ σt)( n ∈ Φj(σ−) & (σ�2N)− ⊆ B ⊕ ∅ ) } .

Clearly Ps≤e B and Nt≤e B and also Φi(A) ⊆ Ps and Φj(A) ⊆ Nt. So now
suppose that Nt � Φj(A). Wlog choose 2n+1 ∈ Nt − Φj(A). Thus there exists
β ⊇ σt such that 2n+1 ∈ Φj(β−) and (β�2N)− ⊆ B⊕∅. Also, by hypothesis (that
Φj(A) is characteristic), there exists B-compatible α ⊇ σt such that 2n ∈ Φj(α−).
Define initial segment γ of length max{ |α)|, |β| } such that, for all m < |γ|,

γ(m) =

{
0 if α(m)↓= 0 ∨ β(m)↓= 0 ∨ cB⊕N(m) = 0
1 otherwise.

Then γ is a B-compatible extension of σt and 2n, 2n+1 ∈ Φj(γ−). Thus at
stage (t+1) the construction would prevent Φj(A) from being characteristic in
contradiction with the hypothesis. Ps ⊆ Φi(A) is proved in a similar way. *+

Corollary 17. There exists a quasi-minimal se-degree.

Corollary 18. For any quasi-minimal se-degree b there exists a quasi-minimal
se-degree a such that b < a.

5 The Jump Operator

We now consider the problem of defining the jump operator with respect to
se-reducibility. By analogy with the Turing jump we will require that such an
operator be derived from a map that sends any set A to a set A′ that is ordered
strictly above A by ≤se and that, in addition, possesses certain hardness prop-
erties (relative to A). We begin with a reminder of some standard results in the
study of enumeration reducibility.
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Notation. For any set A, KA denotes the set {x | x ∈ Φx(A) } and JA denotes
the set KA ⊕ KA. Similarly J

(k)
A denotes the iterated form of JA defined by:

J
(0)
A = A and J

(k+1)
A = J

J
(k)
A

.

Lemma 19. For any set A, KA is 1-complete for Enum(A).

Lemma 20. For any sets A and B: A≤eB iff A≤1KB iff KA≤1KB.

Note 21. A jump operator on the enumeration degrees is defined by Cooper and
McEvoy in ([1]) as the function induced by X �→ JX . We employ the term e-jump
to refer to this operator. We use a′

e to denote the e-jump of ae. The iterated
e-jump of ae is written a

(k)
e (and is defined by a

(0)
e = ae and a

(k+1)
e = (a(k)

e )′ ).

Notation. For any set A, HA denotes the set KA ⊕ KA and H
(k)
A denotes the

iterated form of HA defined by: H
(0)
A = A and H

(k+1)
A = H

H
(k)
A

.

Lemma 22. For any sets A and B, if A≤seB then HA≤1HB.

Proof. Let A and B be any sets such that A≤seB. Then, by definition A≤eB
and A≤eB. Now apply Lemma 20. *+

Lemma 23. For any set A: A<seHA.

Proof. Let A be any set. Then by Lemma 19 we know that A≤seHA. Also notice
that HA≤seA would imply KA ≤e A from which we easily derive a
contradiction. *+

Lemma 24. For any set A, HA is 1-hard for Enum(A). Moreover, if degse(A)
is characteristic, then HA is 1-complete for Enum(A).

Proof. Let A be any set. Then Lemma 19 implies that HA is 1-hard for Enum(A).
Now suppose that degse(A) is characteristic. Then A ≡se A by Proposition 9 and
so KA ≡1 KA by Lemma 20. However this means that HA ≡1 KA. Therefore
HA is 1-complete for Enum(A) by Lemma 19. *+

Definition 25. Let ase be any se-degree. The se-jump of ase (written a′
se ) is

defined to be degse(HA) for any A in ase. The iterated se-jump of ase is written
a

(k)
se and is defined by: a

(0)
se = ase and a

(k+1)
se = (a(k)

se )′ .

Proposition 26. Let ase be any se-degree, let ae be the e-degree of which it is
a subclass, and let de be the e-degree that contains a

(2)
se ; then ae < de. In other

words the double se-jump is strictly increasing relative to the relation induced by
≤e over 〈Dse,≤〉.
Proof. Suppose that ase ⊆ ae and pick any A in ase. Then HA is 1-hard for
Enum(A) by Lemma 24 and this implies that bse ≤ a

(1)
se for any se-degree

bse ⊆ ae. Now, by Lemma 23, a
(1)
se < a

(2)
se and so a

(2)
se � ae. *+
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6 The Symmetric Enumeration Hierarchy

We now proceed to formulate a generalisation of the relativised Arithmetical
Hierarchy based on ≤e and ≤se (in place of “ c.e. in ” and ≤T ) in such a way
that the two hierarchies are identical when relativised to any set A whose se-
degree is characteristic. Note that this work develops on methods used by Kevin
McEvoy in [2] Chapter 4 to define a similar hierarchy. We start by presenting an
alternative definition of the relativised Arithmetical Hierarchy. The equivalence
of the latter with the standard definition (see for example [6] Chapter 4) is easily
checked.

Notation. For any classes C and D we use C⊕D as shorthand for the class
{A⊕B | A ∈ C & B ∈ D }. Also, for R ∈ {Ce,Comp,Enum, s-Enum },
R(C) denotes the class

⋃
{R(E) | E ∈ C }.

Definition 27. Let A be any set. The Arithmetical Hierarchy relativised to A
is defined to be. . . {ΣA

n ,Π
A
n ,ΔA

n : n ≥ 0 }
where ΣA

0 = ΠA
0 = ΔA

0 = Comp(A) and, for n ≥ 0,
ΣA
n+1 = Ce(ΣA

n ⊕ΠA
n ), ΠA

n+1 = co-ΣA
n+1 and ΔA

n+1 = Comp(ΣA
n ⊕ΠA

n ).
The Arithmetical Hierarchy {Σn,Πn,Δn : n ≥ 0 } is the special case of this
definition with A = ∅.

Note 28. Comp(A) = Comp({A} ⊕ {A}), so if we define ΣA
−1 = ΠA

−1 = ΔA
−1 to

be {A}, we obtain ΔA
0 = Comp(ΣA

−1 ⊕ΠA
−1) in conformity with the definition of

ΔA
n+1.

Proposition 29 ([3]). For any set A, ΣA
n+1 = Enum(J (n)

CA
), for all n ≥ 0.

Definition 30. Let A be any set. The SE-hierarchy relativised to A (written
SE(A)- hierarchy) is defined to be. . . {ΣSE,A

n ,ΠSE,A
n ,ΔSE,A

n : n ≥ 0 }
where ΣSE,A

0 = ΠSE,A
0 = ΔSE,A

0 = s-Enum(A)
and, for n ≥ 0, ΣSE,A

n+1 = Enum(ΣSE,A
n ⊕ΠSE,A

n ), ΠSE,A
n+1 = co-ΣSE,A

n+1

and ΔSE,A
n+1 = s-Enum(ΣSE,A

n ⊕ΠSE,A
n ).

The SE-hierarchy {ΣSE
n ,ΠSE

n ,ΔSE
n : n ≥ 0 } is the special case of this defini-

tion with A = ∅.

Note 31. s-Enum(A) = s-Enum({A} ⊕ {A}) and so in this case also (see
Note 28), if we define ΣSE,A

−1 = ΠSE,A
−1 = ΔSE,A

−1 to be {A} we obtain
ΔSE,A

0 = s-Enum(ΣSE,A
−1 ⊕ΠSE,A

−1 ). Notice also that obviously, for all n ≥ 0,
ΣSE,A
n

⋃
ΠSE,A

n ⊆ ΔSE,A
n+1 and that ΣSE,A

n+1 and ΔSE,A
n are closed under ≤e

and ≤se respectively (by transitivity).

Proposition 32. Let A be any set. Then for all n ≥ 0, ΣSE,A
n+1 = Enum(J (n)

A )
and ΔSE,A

n+1 = s-Enum(J (n)
A ).
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Proof. It suffices to show that J (n)
A is e-complete for ΣSE,A

n+1 and se-complete for
ΔSE,A

n+1 (for all n ≥ 0), since the latter are closed under ≤e and ≤se respec-
tively. The case (n = 0) is straightforward, so we assume that (n > 0).
• Suppose that B ∈ ΣSE,A

n+1 . Then there exist sets C ∈ ΣSE,A
n and D ∈

ΠSE,A
n such that B≤e C ⊕ D. By the Induction Hypothesis, C ≤e J

(n−1)
A and

D≤e J
(n−1)
A . Hence by Lemma 20, C≤1 K

J
(n−1)
A

and D≤1 K
J

(n−1)
A

. However this

implies that B ≤e C ⊕ D ≤1 K
J

(n−1)
A

⊕ K
J

(n−1)
A

=def J
(n)
A . Thus B≤e J

(n)
A .

Also, by the Induction Hypothesis, and the closure of ΣSE,A
n under ≤e (using

K
J

(n−1)
A

≤eJ
(n−1)
A ) we obtain J

(n)
A =def K

J
(n−1)
A

⊕ K
J

(n−1)
A

∈ ΣSE,A
n ⊕ΠSE,A

n . It

follows that J
(n)
A ∈ ΔSE,A

n+1 ⊆ ΣSE,A
n+1 .

• Suppose that B ∈ ΔSE,A
n+1 . Then B≤eC ⊕D and B≤eC ⊕D ≡1 D ⊕ C, for

some C ∈ ΣSE,A
n and D ∈ ΠSE,A

n . Thus B,B≤e J
(n)
A by the first part of this

proof. It follows that B≤eJ
(n)
A since J

(n)
A is characteristic (using Lemma 7); i.e.

B≤seJ
(n)
A . Moreover, J (n)

A ∈ ΔSE,A
n+1 by the first part of this proof. *+

Note 33. It follows from Lemma 19 and Proposition 32 that, for all n ≥ 0, K
J

(n)
A

is 1-complete for ΣSE,A
n+1 .

Proposition 34. Let A be any set such that degse(A) is characteristic. Then,
for all n ≥ 0, ΔSE,A

n = ΣSE,A
n

⋂
ΠSE,A

n .

Proof. Let A be any set of characteristic se-degree. We argue by cases for n ≥ 0.
The case (n = 0) holds by definition. For (n > 0) we use the fact that

J
(n−1)
A ≡se J

(n−1)
A for all n (by Lemma 7 for n > 1 and by hypothesis for n = 1).

Accordingly, by Proposition 32, B ∈ ΔSE,A
n iff B≤e J

(n−1)
A & B≤e J

(n−1)
A

iff B≤eJ
(n−1)
A & B≤eJ

(n−1)
A iff B ∈ ΣSE,A

n

⋂
ΠSE,A

n . *+

Note 35. The proof of Proposition 34 clearly also implies that, for any set A,
ΔSE,A

n = ΣSE,A
n

⋂
ΠSE,A

n for all n �= 1.

Theorem 36. Suppose that Γ ∈ {Σ,Π,Δ} and let be A be any set. Then, for
all n ≥ 0, ΓA

n = ΓSE,CA
n .

Proof. Let A be any set. We reason by cases for n ≥ 0.
(n = 0) An easy application of Proposition 13.
(n > 0) ΣA

n = Enum(J (n−1)
CA

) = ΣSE,CA
n by Propositions 29 and 32 and so

the case Γ = Σ holds. The case Γ = Π then follows by definition and the case
Γ = Δ follows from the other two cases by applying Proposition 34. *+

Theorem 37. For any set A, if degse(A) is characteristic then the Arithmetical
Hierarchy relativised to A and the SE(A)-hierarchy are identical.
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Proof. Suppose that Γ ∈ {Σ,Π,Δ} and let be A be any set with characteristic
se-degree. By Theorem 36, it suffices to show that ΓSE,A

n = ΓSE,CA
n for all n ≥ 0.

We reason by induction.
(n = 0) Since degse(A) is characteristic, A ≡se CA by Proposition 9 (and
Lemma 7) and so ΓSE,A

0 = s-Enum(A) = s-Enum(CA) = ΓSE,CA

0 .
(n > 0) Note that the identity ΣSE,A

n = ΣSE,CA
n is, by definition, equivalent

to Enum(ΣSE,A
n−1 ⊕ΠSE,A

n−1 ) = Enum(ΣSE,CA

n−1 ⊕ΠSE,CA

n−1 ) which holds by the
Induction Hypothesis (i.e. that ΣSE,A

n−1 = ΣSE,CA

n−1 ). This proves the case Γ = Σ.
The case Γ = Π then follows by definition and the case Γ = Δ follows from the
other two cases by applying Proposition 34. *+

Corollary 38. The Arithmetical Hierarchy is identical to the SE-hierarchy.

Note 39. A≤e A implies that A ≡e CA and so it follows, by application of
Lemma 12, that Ce(A) = Enum(A). Thus by modifying the proof of Theo-
rem 37, it can be shown that ΓA

n = ΓSE,A
n holds for Γ ∈ {Σ,Π} and n ≥ 1, and

for Γ = Δ and n ≥ 2, whenever A≤eA.

In addition to the above results it is easy to show (by induction) that, for
Γ ∈ {Σ,Π,Δ}, and for any set A

Γn ⊆ ΓSE,A
n ⊆ ΓA

n . (1)

However, despite the similarities between the hierarchies it should be emphasised
that, for any set A, the SE(A)-hierarchy distinguishes between A and CA when-
ever A is not of characteristic se-degree (i.e. A ≡/ se A) whereas for the relativised
Arithmetical hierarchy, A and CA are equivalent. In particular, if A ≡/ se A then
CA ∈ ΔA

n −ΔSE,A
n for n ≤ 1 and if (the stronger condition) A�eA holds, then

CA ∈ ΣA
1 −ΣSE,A

1 . This leads to the obvious question of whether the difference
ever propogates up the hierarchy and if so, what conditions have to be fulfilled by
A for this to happen. For example, supposing that Γ ∈ {Σ,Π,Δ}, does A�eA
imply that ΓA

n �= ΓSE,A
n for all n ≥ 0 ? We proceed by giving a partial answer

to this question.

Note 40. For any set A, if A≤eA then KA≤eKA (since (a) A≤eA iff A≤1KA

iff A≤1KA and (b) KA≤eA).

Lemma 41. For all n ≥ 0, J (n)
K ∈ Σn+1.

Proof. By induction on n ≥ 0. Note that the Case (n = 0) is just the fact
that K ∈ Σ1. Case (n = 1) holds because J

(1)
K =def KK ⊕ KK ≤e KK ∈ Π1

(which implies that J (1)
K ∈ Σ2). For the Case (n + 2) note that J (n+1)

K ≤e J
(n+1)
K

since J
(n+1)
K is characteristic, and so J

(n+2)
K =def K

J
(n+1)
K

⊕ K
J

(n+1)
K

≤e K
J

(n+1)
K

,

by Note 40. However J
(n+1)
K ∈ Σn+2 by the Induction Hypothesis and hence

K
J

(n+1)
K

∈ Σn+2 (since K
J

(n+1)
K

≤e J
(n+1)
K ), which implies that K

J
(n+1)
K

∈ Πn+2.

Therefore J
(n+2)
K ∈ Σn+3. *+
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Proposition 42. Suppose that Γ ∈ {Σ,Π,Δ}. There exists a set A such that
ΓSE,A
n �= ΓA

n for all n ≥ 0.

Proof. Let A = K. Note firstly that K(n+2) and K
J

(n)
K

are 1-complete for ΣK
n+1 and

ΣSE,K
n+1 respectively for all n ≥ 0. Choose any n and suppose that ΣK

n+1 = ΣSE,K
n+1 .

This would mean that K(n+2) ≡1 K
J

(n)
K

. Now, by Lemma 41, J (n)
K ∈ Σn+1 and so

K
J

(n)
K

∈ Σn+1 (since K
J

(n)
K

≤eJ
(n)
K ). Thus K(n+2)≤1K(n+1) (contradiction). This

proves the cases Γ ∈ {Σ,Π,Δ} for n ≥ 2 (using Note 35) and Γ ∈ {Σ,Π} for
n = 1. Also CK ∈ ΔK

n −ΔSE,K
n for n ≤ 1 and so the proof is complete. *+

A further point to be underlined is that the methodology inherent to the SE-
hierarchy relates to enumeration reducibility (and indeed symmetric enumeration
reducibility) in much the same way in which that of the Arithmetical Hierarchy
relates to Turing reducibility. Our last result (Theorem 45) is an example of this
relationship and of the manner in which the SE-hierarchy might contribute to
certain aspects of the theory of enumeration reducibility.

Definition 43. An e-degree ae ≤ 0(1)
e is defined to be lown if a

(n)
e = 0(n)

e and
highn if a

(n)
e = 0(n+1)

e , for all n ≥ 0 (the case n = 0 being trivial). A set A≤eJ
is said to be e-lown ( e-highn) if dege(A) is lown (highn). If n = 1 we abbreviate
these terms to low, high etc.

Lemma 44. For all n ≥ 0, KJ(n) ≡1 K(n+1).

Proof. For all n ≥ 0, ΣSE
n+1 = Σn+1 by Corollary 38. Hence it suffices to note that

KJ(n) is 1-complete for ΣSE
n+1 whereas K(n+1) is 1-complete for Σn+1. *+

Theorem 45. For any set A≤eJ and n ≥ 1:
(a) A is e-lown iff ΣSE,A

n ⊆ Πn+1 ,
(b) A is e-highn iff Πn+1 ⊆ ΣSE,A

n+1 iff K(n+1)≤eJ
(n)
A .

Proof. Assume that n ≥ 1 and that A≤eJ.
A is e-lown iff J

(n)
A ≤e J

(n) (which means that ΣSE,A
n+1 ⊆ ΣSE

n+1) iff
K

J
(n−1)
A

≤TK
J

(n−1) by an easy modification of Lemma 13, iff K
J

(n−1)
A

≤TK(n)

by Lemma 44, iff ΣSE,A
n ⊆ Δn+1 by Note 33, iff ΣSE,A

n ⊆ Πn+1 since
ΣSE,A
n ⊆ ΣSE,A

n+1 ⊆ ΣSE
n+1 (see above) and ΣSE

n+1 = Σn+1 by Corollary 38.
A is e-highn iff J (n+1)≤eJ

(n)
A iff J (n+1)≤seJ

(n)
A since J (n+1) and J

(n)
A

are characteristic, iff KJ(n)≤seJ
(n)
A by Lemma 13, iff K(n+1)≤seJ

(n)
A

by Lemma 44, iff Σn+1 ⊆ ΔSE,A
n+1 iff Σn+1 ⊆ ΠSE,A

n+1 (as Σn+1 ⊆ ΣSE,A
n+1

by Equation 1) iff Πn+1 ⊆ ΣSE,A
n+1 iff K(n+1)≤eJ

(n)
A since K(n+1) is 1-

complete for Πn+1. *+
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Aspects of Vaughtian Model Theory
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I will discuss some recent results in the analysis of the computability-theoretic
and proof-theoretic content of Vaughtian model theory, that is, the study of spe-
cial models such as prime, saturated, and homogeneous models, and associated
results such as the omitting types theorem. This is a research program dating
back to the 1970’s (see [4]), but which has recently picked up steam with the
application of finer computability-theoretic tools. Here are two examples.

Goncharov-Nurtazin [1] and Millar [2] showed that there is a complete de-
cidable theory T such that all the types of T are computable, but T has no
decidable prime model. However, as I will show, for any noncomputable D, such
a theory T must have a D-decidable prime model. This fact yields as a corollary
the existence of a noncomputably presentable structure with D-computable pre-
sentations for all noncomputable D, a result due to Slaman [5] and to Wehner [6].

Given a complete decidable atomic theory T , a natural way to try to obtain
a decidable prime model of T is to effectively omit the nonprincipal types of T .
And indeed, Millar [3] showed that if S is a uniformly computable set of complete
types of T , then there is a decidable model of T omitting all the nonprincipal
types in S. Unfortunately, in the same way that we cannot effectively list all
the computable functions, we may not be able to effectively list the computable
complete types of T . On the other hand, we can list the computable partial
types of T , so it becomes interesting to ask for which D is it the case that there
is always a D-decidable model of T omitting all the nonprincipal types in a
uniformly computable family of partial types of T . I will show that this is the
case if and only if D has hyperimmune degree.
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Abstract. Finite trees are given a well ordering in such a way that
there is a 1-1 correspondence between finite trees and an initial segment
of the ordinals. The ordinal ε0 is the supremum of all binary trees. We
get the (fixpoint free) n-ary Veblen hierarchy as tree functions and the
supremum of all trees is the small Veblen ordinal φΩω (0).

1

We work with ordinary finite trees with immediate subtrees ordered sequentially
from left to right and with no labels at the nodes. Here we just call them trees.
The smallest tree is · and we draw the trees with the root at the bottom. Here
are four examples where we have indicated the corresponding ordinals in the
ordering defined below

We write 〈A〉 for the finite sequence of immediate subtrees of the tree A, and
〈·〉 is the empty sequence. Equality between trees is the usual equality. Given
that we already know the ordering of some trees we let

A ≤ 〈B〉 : There is an immediate subtree Bi of B such that either A < Bi or
A = Bi

〈A〉 < B : For all immediate subtrees Aj of A we have Aj < B
〈A〉 < 〈B〉 : The inverse lexicographical ordering of the immediate subtrees —

we first check which sequence have smallest length, and if they have equal
length we look at the rightmost immediate subtree where they differ

We are now ready to define the ordering of trees by recursion over the im-
mediate subtrees.

A < B ⇔ A ≤ 〈B〉 ∨ (〈A〉 < B ∧ 〈A〉 < 〈B〉)

We must prove that this defines an ordering. The following decision tree
shows (by induction) that we have a total relation

S.B. Cooper, B. Löwe, and L. Torenvliet (Eds.): CiE 2005, LNCS 3526, pp. 211–220, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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To get that this total relation is a total ordering we prove that it is transitive.
As before the argument is by induction over the heights of the trees. So assume
we have

A < B < C

and want to prove by induction over the sum of heights of the three trees that
we get A < C. This is done by cases

– B ≤ 〈C〉 : Then A < B ≤ 〈C〉, and by induction A ≤ 〈C〉 and A < C
– 〈B〉 < 〈C〉 and 〈B〉 < C : Then

• A ≤ 〈B〉 : Then A ≤ 〈B〉 < C and by induction A < C
• 〈A〉 < 〈B〉 and 〈A〉 < B : Then we have A < C from

∗ 〈A〉 < 〈B〉 < 〈C〉 which gives by induction 〈A〉 < 〈C〉
∗ 〈A〉 < B < C which gives by induction 〈A〉 < C

Theorem 1. The ordering between finite trees is a total ordering where the
equality is the usual equality between trees.

By induction over the build up of trees we prove

Theorem 2. Let T(x) be a tree where x indicates a place where we can substi-
tute trees. Then

A < B ⇔ T(A) < T(B)

Furthermore by induction over the build up

Theorem 3. If tree S can be embedded in tree T, then S ≤ T.
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2

We note here that we have the following:

But we need to develop more of the theory to come to these and other calcu-
lations. First we give approximations of a tree from below. Given a tree A with
immediate subtrees

The immediate subtrees ai of A are smaller.
Now assume

– bl < al
– ci < A for all i < l

Then the following tree is less than A

This can be rephrased that for bl < al the function which to x0, . . . , x�−1

gives

is closed under A. We also get that for s < p that A is closed under the function
which to x0, . . . , xs gives

In the usual theory of ordinal notations we use fundamental sequences as a
way to approach ordinals from below. [2] For a given tree A we call

Fundamental subtrees of A : The immediate subtrees of A.
Fundamental functions of A : The two types of functions above.
Fundamental set of A : The set of trees generated by the fundamental func-

tions starting with the fundamental subtrees.
Elementary fundamental function of A : We first get unary functions by

letting all variables except the rightmost be 0. Then use all such unary
functions of the first type. If there are no functions of the first type use the
one of the second type with largest branching.
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Elementary fundamental set of A : The set of trees generated by the ele-
mentary fundamental functions starting with the fundamental subtrees.

We denote the fundamental set of A with F(A) and we shall write it as

[S, . . . , T |F, . . . , G]

where we have displayed the fundamental subtrees S, . . . , T and the fundamental
functions F, . . . , G. Similarly for the elementary fundamental set H(A)

We have the following:

Here x, y, z are variables used for describing fundamental functions.
The following theorem shows the importance of the fundamental sets.

Theorem 4. For any tree A:

B < A ⇔ ∃C ∈ F(A).C ≥ B

We prove this by induction over the height of B. It is trivial for height 0. So
assume it proved for smaller heights than the height of B. The direction ⇐ is
obvious. We assume B < A and divide up into cases:

B ≤ 〈A〉 : But then B is less than or equal to one of the fundamental subtrees
of A.

〈B〉 < A ∧ 〈B〉 < 〈A〉 : By induction — to each immediate subtree Bi there is
an Ci ∈ F(A) with Ci ≥ Bi. Depending on how we prove 〈B〉 < 〈A〉 we
get a fundamental function which we can apply to some of the Ci’s to get a
C ∈ F(A) with C ≥ B
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And the theorem is proved. We can also use the elementary fundamental set

Theorem 5. For any tree A:

B < A ⇔ ∃C ∈ H(A).C ≥ B

We only need to note that

where γ > max(α, β) and that the result of of an application of the second type
of fundamental function can be embedded into an application of the first type.

We have also

Theorem 6. Assume that all trees less than or equal to the fundamental subtrees
of A is contained in F(A), then

B < A ⇔ B ∈ F(A)

The proof follows the lines above. We have induction over the height of B
and get to the cases

B ≤ 〈A〉 : Then by assumption B ∈ F(A).
〈B〉 < A ∧ 〈B〉 < 〈A〉 : By induction — for each immediate subtree Bi we have

Bi ∈ F(A). Depending on how we prove 〈B〉 < 〈A〉 we get a fundamental
function which we can apply to the Bi’s to get B ∈ F(A).

We call a fundamental set which is an initial segment of the ordinals for full.
The fundamental sets mentioned above are full.

Theorem 7.

We can prove this by simple induction over trees. We prove

or we can use that the ordering is a wellordering and then induction over α
noting that

We are now getting a clearer picture of the ordering. The trees can be divided
into layers — we let Ti be the trees with at most i-branchings. We then get that
T1 is majorised by

and this tree is the least in T − T1. The T2 is majorised by
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and this tree is the least in T − T2. The T3 are majorised by

and this tree is the least in T − T3. And so on.

3

So far the properties could be proved by simple inductions over the heights.
Below we shall prove that the trees are well ordered. This requires a stronger
method of proof. Let T be the initial segment of trees which are well ordered.
We then prove

Theorem 8. Assume S1, . . . , Sk are well ordered. Then so is S given by

Let A < S be as low as possible and not well ordered. We shall show that A
is well ordered. This is done by the inverse lexicographical ordering of S1, . . . ,
Sk where the field of the inverse lexicographical ordering is the set T of well
ordered trees. We now have the following cases

A ≤ 〈S〉 : Then A ≤ Si and is therefore well ordered.
〈A〉 < S ∧ 〈A〉 < 〈S〉 : Then all immediate subtrees of A are less than S and

since A is lowest, then all the immediate subtrees of A are well ordered.
But the immediate subtrees of A comes before the immediate subtrees of S
in the inverse lexicographical ordering of well ordered sets and with field T .
We conclude that A is well ordered.

The proof is finished. Observe that this proof can be formalized and proved
within the theory of inductive definitions. This means — in proof theoretical
terms — that the trees give an initial segment of the ordinals, and this segment
is below the Howard ordinal. Using that the ordering respects embedding we can
lower this estimate considerably to the small Veblen ordinal. [3]

Theorem 9. The ordering is a well order.

For the rest of the paper when we talk about ordinals, we mean ordinals from
the initial segment given by the (finite) trees. With our orderings on the trees we
have obtained an easy translation between ordinals and trees. Note that this is
an improvement over the usual theories of ordinal notations. Then we can have
multiple representations of an ordinal and must worry how to pick a notation
for an ordinal.

The function below are well defined:

where α, β, γ, δ, . . . are ordinals corresponding to (finite) trees. The first function
is the successor, but the other functions have not been characterized so far.
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4

Here we want to describe the trees T2 with at most binary branching. We know
that the supremum of it is

We shall prove that this is in fact the ordinal ε0. We can describe T2 as the
set of ordinals/trees given by

Furthermore we have a 1-1 correspondence between the terms given above
and the ordinals in T2. This can be used to describe the ordinals less than

The ordinals are given by terms built up from f+ and f0. For simplicity
we just write down the sequence of indices. So we have a finite sequence of +
and 0. The empty sequence correspond to 0, and the finite ordinals are +,++,
+++, ++++, . . . . The tree ordering correspond exactly to the lexicographical
ordering of the sequences where we let the 0’s be signs separating the +’s. The
sequence 0++0+00+++0++ correspond to the sequence 〈0, 2, 1, 0, 3, 2〉 and
this is again given by the ordinal

ω5 + ω4 · 2 + ω3 · 1 + ω2 · 0 + ω1 · 3 + 2

We get

Theorem 10.

It is no surprise that we get connections to the lexicographical ordering in
the ordering of binary trees. Let us note that we have

and
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where α− < α and βi− < β. These are the crucial properties for the lexico-
graphical ordering.

We now want to characterize the function

The fundamental set is

where α− runs over the ordinals < α. Furthermore the fundamental set gives all
the ordinals less than g(α). We get that the ordinals less than g(α) are those that
are built up from f+ and the fα− where α− < α. We can write them as finite
sequences of + and the ordinals α−. As before we have a lexicographical ordering
where we have as separating sign the largest ordinal in the finite sequence and
+ is the least element. Hence

g(α + 1) = g(α)ω

We get a recursion equation for g(α). We have the same recursion equation
in

ω(ωα+1) = (ωωα

)ω

and both function behaves continuously at limits and have the same start. There-
fore

Theorem 11. For all α ∈ T2

The ordinal g(α) majorises all ordinals built up from f+ and fα− where
α− < α. Hence

Theorem 12.

5

Consider now the function

It has as fundamental set



Finite Trees as Ordinals 219

where α− runs over the ordinals < α , β− runs over the ordinals < β and x
and y are variables indicating functions. The fundamental set gives a recursion
equation for the function ψ(α, β). We note that it is the least ordinal such that

– ψ(α, β) > ψ(α−, β)
– ψ(α, β) > α
– ψ(α, β) > β
– ψ(α, β) is a limit ordinal
– ψ(α, β) is a fixpoint for all x �→ ψ(x, β−)

But this is the fix point free Veblen hierarchy starting with x �→ ω · x. This
hierarchy does not grow so fast. The first critical point is ε0.

Consider now the function

We first observe that φ(α, 0) gives a fixpoint free enumeration of the ε-
numbers. This is immediately seen from its fundamental set. But then we get
φ(α, β) is the fixpoint free Veblen hierarchy starting with the ε-numbers. This is
almost the same as the usual Veblen hierarchy [2] where the start is the function
ωα enumerating the multiplicative principal numbers. The first critical number
is of course the fixpoint of x �→ φ(0, x) which gives

Theorem 13.

Its elementary fundamental set is

To go further along this line we need the Veblen hierarchy generalized to
n-ary functions as defined by Kurt Schütte [4] based on work by Wilhelm
Ackermann[1]. Assume we have the ordinary binary Veblen function φ(α, β).
We get the ternary Veblen function by

φ(α, β, 0) = φ(α, β)
γ > 0 : φ(α, 0, γ) = the α common fixpoint of all φ(0, x, γ−)

β, γ > 0 : φ(α, β, γ) = the α common fixpoint of all φ(x, β−, γ)

And we recognize these cases in the elementary fundamental set (for the case
when one of the subtrees is different from 0)
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and

So here we have a fixpoint free version of the ternary Veblen hierarchy.

Theorem 14. The ordinal is the ordinal of the ternary Veblen
hierarchy.

The same argument is lifted up.

Theorem 15. The ordinal of the trees with n-ary branching where n > 2 is the
ordinal of the n-ary Veblen hierarchy.

Theorem 16. The ordinal of all finite trees is the small Veblen ordinal φΩω0.

The small Veblen ordinal φΩω0 is the ordinal of finitary Veblen functions. It
is also the ordinal connected with Kruskals theorem. [3]
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Informally, the enumeration degree dege(A) (or e-degree) of a set A of natural
numbers is a class of sets which have the same enumeration difficulty (see [2] for
the exact definition).

We say that an e-degree is total if it contains the set X ⊕X for some X ⊆ ω.
The class TOT of total e-degrees forms a subsemilattice in the upper semilattice
De of all e-degrees and are isomorphic to the Turing degrees under the natural
embedding ι : degT (X) �→ dege(X ⊕X).

There are several open problems of definabilty in the enumeration degrees.
In particular, at 1967 Rogers [2] posed the problem on definabilty of the class
of total degrees in the upper semilattice De. It is interesting to note that if we
replace in this problem the class TOT by the class TOT(≥ 0′

e) of all total
enumeration enumeration degrees above the e-degree 0′

e of the complement of a
creative set then the obtained problem has a positive solution.

Theorem 1. ([1]) The class TOT(≥ 0′
e) is definable by the formula

Ψ(x) = (∃a > 0e)(∃b > 0e)[x = a ∪ b & (∀z)[(a ∪ z) ∩ (b ∪ z) = z]] &
(∀c > 0e)(∀d > 0e)(∀e > 0e)[(∀z)[(c ∪ z) ∩ (d ∪ z) = (c ∪ z) ∩ (e ∪ z) = z] →
d ∪ x = e ∪ x].

The proof of this theorem essentially uses properties of the e-degrees from the
next definition.

Definition 2. For an e-degree u a pair of e-degrees u and b is u-e-ideal if there
are sets A ∈ a, B ∈ b and U , dege(U) ≤ u, such that A×B ⊆ U and A×B ⊆ U.

In fact, this notion is definable in the enumeration degrees ([1]): a pair of e-
degrees a and b is u-e-ideal iff (∀z ≥ u)[(a ∪ z) ∩ (b ∪ z) = z]. Thus, the first
conjunct of the formula Ψ(x) from Theorem 1 simply says that x splits into
a 0e-e-ideal pair of e-degrees a > 0e and b > 0e (the second conjunct is the
order-theoretical definition of the predicate x ≥ 0′

e).
By results from [1] each half of a u-e-ideal pair a > u and b > u is u-

quasiminimal and hence can not be total (a e-degree x > u is u-quasiminimal
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if y ≤ u for all total e-degrees y ≤ x). Thus the class defined by the formula
(∃a > 0e)(∀z)[(a ∪ z) ∩ (x ∪ z) = z] is a definable subclass of the non-total
degrees. Of course, this class is not equal to the class of all non-total e-degrees
since not every non-total e-degree is 0e-quasiminimal.

The following theorem shows that at least each nontotal e-degree below 0′ is
u-quasiminimal for some u and this can help to solve the problem for the total
degrees below 0′

e.

Theorem 3. For every non-total e-degree x ≤ 0′
e there are an e-degree u < x

such that x is u-quasiminimal.

It is not known yet does this theorem holds for all e-degrees x. If yes and,
moreover, the e-degree u can be chosen such that for some a > u the pair of
e-degrees a and x is u-e-ideal, then we get a definability of the total e-degrees

More generally, we can consider the following definable class containing the
class of total e-degrees.

Definition 4. An e-degree x is pseudo-total if for all e-degrees u and a such
that the pair of e-degrees a and x is u-e-ideal we have either a ≤ u, or x ≤ u.

It is easy to check that this class is closed under sups like the class of total
e-degree and this presents an indirect argument in favour of coincidence of these
two classes.

In the remaining part of the talk we will study definability properties for
some other classes of enumeration degrees.
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Abstract. We define the notion of ordinal computability by generalizing
standard Turing computability on tapes of length ω to computations
on tapes of arbitrary ordinal length. The generalized Turing machine
is able to compute a recursive bounded truth predicate on the ordinals.
The class of sets of ordinals which can be read off the truth predicate
satisfies a natural theory SO. SO is the theory of the sets of ordinals in a
model of the Zermelo-Fraenkel axioms ZFC. Hence a set of ordinals
is ordinal computable from ordinal parameters if and only if it is an
element of Gödel’s constructible universe L.

1 Introduction

A standard Turing computation may be visualized as a time-like sequence of
elementary read-write-move operations carried out by one or more “heads” on
“tapes”. The sequence of actions is determined by the initial tape contents and
by a finite Turing program. We may assume that Turing machines act on
tapes whose cells are indexed by the set ω (= N) of natural numbers 0, 1, . . . and
contain 0’s or 1’s.

SPACE
0 1 2 3 4 5 6 7 . . . . . .

0 1 0 0 1 1 1 0 0 0 0
1 0 0 0 1 1 1 0 0

T 2 0 0 0 1 1 1 0 0
I 3 0 0 1 1 1 1 0 0
M 4 0 1 1 1 1 1 0 0
E :

n 1 1 1 1 0 1 1 1
n+1 1 1 1 1 1 1 1 1

:

A standard Turing computation. Head positions are indicated by underlining.

An obvious generalization from the perspective of transfinite ordinal theory is
to extend Turing calculations to tapes whose cells are indexed by the class Ord
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of all ordinal numbers. At limit ordinals we define the tape contents, program
states and head positions by appropriate limit operations which may be viewed
as inferior limits.

Ordinal Space
0 1 2 3 4 5 6 7 . . . . . . ω . . . α . . . κ . . .

O 0 1 1 0 1 0 0 1 1 . . . . . . 1 . . . 1 0 0 0
r 1 0 1 0 1 0 0 1 1 1
d 2 0 0 0 1 0 0 1 1 1
i 3 0 0 0 1 0 0 1 1 1
n 4 0 0 0 0 0 0 1 1 1
a :
l n 1 1 1 1 0 1 0 1 1

n+1 1 1 1 1 1 1 0 1 1

T
...

...
...

...
...

...
i ω 0 0 1 0 0 0 1 1 . . . . . . 1
m ω+1 0 0 1 0 0 0 1 1 0
e :

θ 1 0 0 1 1 1 1 0 . . . . . . . . . . . . 0 . . . . . . . . .
...

...
...

...
...

...
...

An ordinal computation.

This notion of ordinal computability obviously extends Turing computabil-
ity. By the Church-Turing thesis many operations on natural numbers are
ordinal computable. The ordinal arithmetical operations (addition, multiplica-
tion, exponentiation) and other basic operations on ordinals are also ordinal
computable.

Using Gödel’s pairing function G : Ord×Ord → Ord one can view each
ordinal α as a first-order sentence with constant symbols for ordinals < α. One
can then define a recursive truth predicate T : Ord → {0, 1} by:

T (G(α, β)) = 1 iff (α,<,G ∩ α3, T � α) � α[β].

This recursion can be carried out by an ordinal Turing machine. For ordinals
μ and α the function T codes the set

T (μ, α) = {β < μ|T (G(α, β)) = 1}.

The class
S = {T (μ, α)|μ, α ∈ Ord}

is the class of sets of ordinals of a transitive proper class model of set theory.
Since the ordinal Turing computations can be carried out in the ⊆-smallest
such model, namely Gödel’s model L of constructible sets, we obtain our main
result characterizing ordinal computability:
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Theorem 1. A set x ⊆ Ord is ordinal computable from finitely many ordinal
parameters if and only if x ∈ L.

This theorem may be viewed as an analogue of the Church-Turing the-
sis: ordinal computability defines a natural and absolute class of sets, and it is
stable with respect to technical variations in its definition. This work was in-
spired by the infinite time Turing machines introduced by Joel D. Hamkins,
Jeff Kidder and Andy Lewis [3]. A more comprehensive technical account of
ordinal computability, also indicating set theoretical applications is given in [5].

2 Ordinal Turing Machines

Ordinal Turing machines are defined in close analogy with standard Turing
machines. At successor ordinals we use standard Turing steps. The behaviour
at limit ordinals will be defined by simple limit operations.

Definition 2.

a) A command is a 5-tuple C=(s, c, c′,m, s′) where s, s′ ∈ ω and c, c′,m ∈
{0, 1}; the natural number s is the state of the command C. The intention
of the command C is that if the machine is in state s and reads the symbol
c under its read-write head, then it writes the symbol c′, moves the head left
if m = 0 or right if m = 1, and goes into state s′. States correspond to the
“line numbers” of some programming languages.

b) A program is a finite set P of commands satisfying the following structural
conditions:

i. If (s, c, c′,m, s′) ∈ P then there is (s, d, d′, n, t′) ∈ P with c �= d; thus in
state s the machine can react to reading a “0” as well as to reading a
“1”.

ii. If (s, c, c′,m, s′) ∈ P and (s, c, c′′,m′, s′′) ∈ P then c′ = c′′,m = m′, s′ =
s′′; this means that the course of the computation is completely deter-
mined by the sequence of program states and the initial cell contents.

c) For a program P let

states(P ) = {s|(s, c, c′,m, s′) ∈ P}

be the set of program states.

Definition 3. Let P be a program. A triple

S : θ → ω,H : θ → Ord, T : θ → (Ord2)

is an ordinal computation by P if the following hold:

a) θ is a successor ordinal or θ = Ord; θ is the length of the computation.
b) S(0) = H(0) = 0; the machine starts in state 0 with head position 0.
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c) If t < θ and S(t) �∈ state(P ) then θ = t+1; the machine stops if the machine
state is not a program state of P .

d) If t < θ and S(t) ∈ state(P ) then t + 1 < θ; choose the unique command
(s, c, c′,m, s′) ∈ P with S(t) = s and T (t)H(t) = c; this command is executed
as follows:

T (t + 1)ξ =
{
c′, if ξ = H(t);
T (t)ξ , else;

S(t + 1) = s′;

H(t + 1) =

⎧⎨⎩H(t) + 1, if m = 1;
H(t) − 1, if m = 0 and H(t) is a successor ordinal;
0, else.

e) If t < θ is a limit ordinal, the machine constellation at t is determined by
taking inferior limits:

∀ξ ∈ OrdT (t)ξ = lim inf
r→t

T (r)ξ;

S(t) = lim inf
r→t

S(r);

H(t) = lim inf
s→t,S(s)=S(t)

H(s).

The computation is obviously recursively determined by the initial tape contents
T (0) and the program P . We call it the ordinal computation by P with input
T (0). If the computation stops, θ = β + 1 is a successor ordinal and T (β) is the
final tape content. In this case we say that P computes T (β) from T (0) and
write P : T (0) �→ T (β).

This interpretation of programs yields associated notions of computability.

Definition 4. A partial function F :Ord 2 ⇀Ord 2 is ordinal computable if
there is a program P such that P : T �→ F (T ) for every T ∈ dom(F ).

By coding, the notion of ordinal computability can be extended to other
domains. We can e.g. code an ordinal δ ∈ Ord by the characteristic function
χ{δ} : Ord → 2, χ{δ}(ξ) = 1 iff ξ = δ, and define:

Definition 5. A partial function F : Ord ⇀ Ord is ordinal computable if the
function χ{δ} �→ χ{F (δ)} is ordinal computable.

We also consider computations involving finitely many ordinal parameters.

Definition 6. A subset x ⊆ Ord is ordinal computable from finitely many
ordinal parameters if there a finite subset z ⊆ Ord and a program P such that
P : χz �→ χx.
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3 Ordinal Algorithms

The intended computations will deal with ordinals and sequences of ordinals.
The simplest way of representing the ordinal α ∈ Ord in an ordinal machine is
by a tape whose content is the characteristic function of {α}:

χ{α} : Ord → 2, χ{α}(ξ) = 1 iff ξ = α.

A basic task is to find or identify this ordinal α: initially the head is in position
0, it then moves to the right until it stops exactly at position α. This is achieved
by the following program:

P = {(0, 0, 0, 1, 0), (0, 1, 1, 1, 1), (1, 0, 0, 0, 2), (1, 1, 1, 0, 2)}.

The program is in state 0 until it reads a 1, then it goes one cell to the right,
one cell to the left, and stops because 2 is not a program state. Informally the
algorithm may be written as

Find_Ordinal:
0 if head = 1 then STOP otherwise moveright, go to 0

It will be convenient to work with several tapes side-by-side instead of just
one. One can simulate an n-tape machine on a 1-tape machine. The contents
(T i

ξ |ξ ∈ Ord) of the i-th tape are successively written into the cells of tape T
indexed by ordinals 2nξ + 2i:

T2nξ+2i = T i
ξ .

The head position Hi on the i-th tape is simulated by writing 1’s into an initial
segment of length Hi of cells with indices of the form 2nξ + 2i + 1:

T2nξ+2i+1 =
{

1, if ξ < Hi;
0, else.

So two tapes with contents a0a1a2a3a4 . . . and b0b1b2b3b4 . . . and head positions
3 and 1 respectively are coded as

T = a01b01a11b10a21b20a30b30a40b40 . . . . . . .

There are canonical but tedious translations from programs for n-tape machines
into corresponding programs for 1-tape machines. One can assume that one or
more of the machine tapes serve as standard Turing tapes on which ordinary
Turing recursive functions are computed.

Basic operations on ordinals are ordinal computable. The Gödel pairing
function for ordinals is defined recursively by

G(α, β) = {G(α′, β′)|max(α′, β′) < max(α, β) or
(max(α′, β′) = max(α, β) and α′ < α) or
(max(α′, β′) = max(α, β) and α′ = α and β′ < β)}.
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We sketch an algorithm for computing γ = G(α, β) which can be implemented
straightforwardly on a Turing machine with several tapes, each holding one of
the variables.

Goedel_Pairing:
0 alpha’:=0
1 beta’:=0
2 eta:=0
3 flag:=0
3 gamma:=0
4 if alpha=alpha’ and beta=beta’ then print gamma, stop fi
5 if alpha’=eta and and beta’=eta and flag=0 then

alpha’=0, flag:=1, go to 4 fi
6 if alpha’=eta and and beta’=eta and flag=1 then

eta:=eta+1, alpha’=eta, beta’=0, gamma:=gamma+1, go to 4 fi
7 if beta’<eta and flag=0 then

beta’:=beta’+1, gamma:=gamma+1, go to 4 fi
8 if alpha’<eta and flag=1 then

alpha’:=alpha’+1, gamma:=gamma+1, go to 4 fi

Observe that at limit times this algorithm will always cycle to command 4. The
inverse functions G0 and G1 satisfying

∀γγ = G(G0(γ), G1(γ))

are also ordinal computable. To compute G0(γ) compute G(α, β) for α, β < γ
until you find α, β with G(α, β) = γ; then set G0(γ) = α.

4 A Recursive Truth Predicate

The gödel pairing function G allows to code a finite sequence α0, . . . , αn−1 of
ordinals as a single ordinal

α = G(. . . G(G(α0, α1), α2) . . .).

The usual operations on finite sequences like concatenation, cutting at a certain
length, substitution, etc. are ordinal computable using the Gödel functions
G,G0, G1. We can thus code terms and formulas of a first-order language by
single ordinals in an ordinal computable way.

We introduce a language LT suitable for structures of the form

(α,<,G ∩ α3, f)

where G ∩ α3 is viewed as a ternary relation and f : α → α is a unary function.
The language has variables vn = G(0, n) for n < ω and constant symbols cξ =
G(1, ξ) for ξ ∈ Ord; the symbol cξ will be interpreted as the ordinal ξ. Terms
are defined recursively: variables and constant symbols are terms; if t is a Term
then G(2, t) is a term as well which stands for f(t). Atomic formulas are of the
forms
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− G(3, G(t1, t2)) where t1, t2 are terms; this stands for the equality t1 = t2;
− G(4, G(t1, t2)) where t1, t2 are terms; this stands for the inequality t1 < t2;
− G(5, G(G(t1, t2), t3)) where t1, t2, t3 are terms; this stands for the relation

t3 = G(t1, t2).

LT -Formulas are defined recursively: atomic formulas are formulas; if ϕ and ψ
are formulas then the following are formulas as well:

− G(6, ϕ); this stands for the negation ¬ϕ;
− G(7, G(ϕ,ψ)); this stands for the conjunction (ϕ ∧ ψ);
− G(8, G(vn, ϕ)) where vn is a variable; this stands for the existential quantifi-

cation ∃vnϕ.

Then the satisfaction relation

(α,<,G ∩ α3, f) � ϕ[b]

for ϕ an LT -formula and b an assignment of values in α can be defined as usual. If
the function f is ordinal computable then this property is ordinal computable,
since the recursive Tarski truth definition can be carried out by an ordinal
Turing machine.

Define the truth predicate T : Ord → {0, 1} recursively by

T (α) = 1 iff (α,<,G ∩ α3, T � α) � G0(α)[G1(α)].

The assignments α �→ T (α) can be enumerated successively by an ordinal Tur-
ing machine. Hence T is ordinal computable. We shall see shortly that T is a
strong predicate which codes a model of set theory.

5 The Theory SO of Sets of Ordinals

It is well-known that a model of Zermelo-Fraenkel set theory with the axiom of
choice (ZFC) is determined by its sets of ordinals [4], Theorem 13.28. We define
a natural theory SO which axiomatizes the sets of ordinals in a model of ZFC.
This theory was first defined and examined in [6].

The theory SO is two-sorted: ordinals are taken as atomic objects, the other
sort corresponds to sets of ordinals. Let LSO be the language

LSO := {Ord,SOrd, <,=,∈, g}

where Ord and SOrd are unary predicate symbols, <, = and ∈ are binary pred-
icatesymbols and g is a two-place function. To simplify notation, we use lower
case greek letters to range over elements of Ord and lower case roman letters to
range over elements of SOrd.

1. Well-ordering axiom:
∀α, β, γ(¬α < α ∧ (α < β ∧ β < γ → α < γ) ∧
(α < β ∨ α = β ∨ β < α)) ∧
∀a(∃α(α ∈ a) → ∃α(α ∈ a ∧ ∀β(β < α → ¬β ∈ a)));
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2. Axiom of infinity (existence of a limit ordinal):
∃α(∃β(β < α) ∧ ∀β(β < α → ∃γ(β < γ ∧ γ < α)));

3. Axiom of extensionality: ∀a, b(∀α(α ∈ a ↔ α ∈ b) → a = b);
4. Initial segment axiom: ∀α∃a∀β(β < α ↔ β ∈ a);
5. Boundedness axiom: ∀a∃α∀β(β ∈ a → β < α);
6. Pairing axiom (Gödel Pairing Function):

∀α, β, γ(g(β, γ) ≤ α ↔ ∀δ, ε((δ, ε) <∗ (β, γ) → g(δ, ε) < α)).
Here (α, β) <∗ (γ, δ) stands for
∃η, θ(η = max(α, β) ∧ θ = max(γ, δ) ∧ (η < θ ∨
(η = θ ∧ α < γ) ∨ (η = θ ∧ α = γ ∧ β < δ))),
where γ = max(α, β) abbreviates (α > β ∧ γ = α) ∨ (α ≤ β ∧ γ = β);

7. g is onto: ∀α∃β, γ(α = g(β, γ));
8. Axiom schema of separation: For all LSO-formulae φ(α, P1, . . . , Pn) postulate:

∀P1, . . . , Pn∀a∃b∀α(α ∈ b ↔ α ∈ a ∧ φ(α, P1, . . . , Pn));
9. Axiom schema of replacement: For all LSO-formulae φ(α, β, P1, . . . , Pn) pos-

tulate:
∀P1, . . . , Pn(∀ξ, ζ1, ζ2(φ(ξ, ζ1, P1, . . . , Pn)∧ φ(ξ, ζ2, P1, . . . , Pn) → ζ1 = ζ2) →
∀a∃b∀ζ(ζ ∈ b ↔ ∃ξ ∈ aφ(ξ, ζ, P1, . . . , Pn)));

10. Powerset axiom:
∀a∃b(∀z(∃α(α ∈ z) ∧ ∀α(α ∈ z → α ∈ a) → ∃=1ξ∀β(β ∈ z ↔ g(β, ξ) ∈ b))).

6 T Codes a Model of SO

The truth predicate T contains information about a large class of sets of ordinals.

Definition 7. For ordinals μ and α define

T (μ, α) = {β < μ|T (G(α, β)) = 1}.

Set
S = {T (μ, α)|μ, α ∈ Ord}.

Theorem 8. (Ord,S, <,=,∈, G) is a model of the theory SO.

Proof. The axioms (1)-(7) are obvious. The proofs of axiom schemas (8) and (9)
rest on a Levy-type reflection principle. For θ ∈ Ord define

Sθ = {T (μ, α)|μ, α ∈ θ}.

Then for any LSO-formula ϕ(v0, . . . , vn−1) and η ∈ Ord there is some limit
ordinal θ > η such that

∀ξ0, . . . , ξn−1 ∈ θ((Ord,S, <,=,∈, G) � ϕ[ξ0, . . . , ξn−1] iff

(θ,Sθ, <,=,∈, G) � ϕ[ξ0, . . . , ξn−1]).
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Since all elements of Sθ can be defined from the truth function T and ordinals
< θ, the right-hand side can be evaluated in the structure (θ,<,G ∩ θ3, T ) by
an LT -formula ϕ∗which can be recursively computed from ϕ. Hence

∀ξ0, . . . , ξn−1 ∈ θ((Ord,S, <,=,∈, G) � ϕ[ξ0, . . . , ξn−1] iff

(θ,<,G ∩ θ3, T ) � ϕ∗[ξ0, . . . , ξn−1]).

So sets witnessing axioms (8) and (9) can be defined over (θ,<,G ∩ θ3, T ) and
are thus elements of S.

The powerset axiom can be shown by a similar reflection argument.

7 Ordinal Computability Corresponds to Constructibility

Kurt Gödel [2] defined the inner model L of constructible sets as the union of
a hierarchy of levels Lα:

L =
⋃

α∈Ord

Lα

where the hierarchy is defined by: L0 = ∅, Lδ =
⋃

α<δ Lα for limit ordinals δ,
and Lα+1 =the set of all sets which are first-order definable in the structure
(Lα,∈). The model L is the ⊆-smallest inner model of set theory. The standard
reference for the theory of the model L is the monograph [1].

The following main result provides a characterization of ordinal computability
which does not depend on any specific machine model or coding of language:

Theorem 9. A set x of ordinals is ordinal computable from a finite set of ordinal
parameters if and only if it is an element of the constructible universe L.

Proof. Let x ⊆ Ord be ordinal computable by the program P from the finite set
{α0, . . . , αk−1} of ordinal parameters: P : χ{α0, . . . , αk−1} �→ χx. By the simple
nature of the computation procedure the same computation can be carried out
inside the inner model L:

(L,∈) � P : χ{α0, . . . , αk−1} �→ χx.

Hence χX ∈ L and x ∈ L.
Conversely consider x ∈ L. Since (Ord,S, <,=,∈, G) is a model of the theory

SO there is an inner model M of set theory such that

S = {z ⊆ Ord |z ∈ M}.

Since L is the ⊆-smallest inner model, L ⊆ M . Hence x ∈ M and x ∈ S. Let
x = T (μ, α). By the computability of the truth predicate, x is ordinal computable
from the parameters μ and α.
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In recent years (though much influenced by writings of G. Kreisel going back to
the 50’s as well as subsequent work by H. Luckhardt and others) an applied form
of proof theory systematically evolved which is also called ‘Proof Mining’ ([10],
see also [1]). It is concerned with transformations of prima facie ineffective proofs
into proofs from which certain quantitative computational information as well
as new qualitative information can be read off which was not visible beforehand.
We will present general logical metatheorems ([3, 6]) which guarantee a priorily
for large classes of theorems and proofs in analysis the extractability of effective
bounds which are independent from parameters in general classes of metric, hy-
perbolic and normed spaces if certain local boundedness conditions are satisfied.
Unless separability assumptions on the spaces involved are used in a given proof,
the independence results from parameters only need metric bounds but no com-
pactness. Obviously, certain restrictions on the logical form of the theorems to
be proved as well as on the axioms to be used in the proofs are necessary. These
restrictions in turn depend on the language of the formal systems used as well as
the representation of the relevant mathematical objects such as general function
spaces. The correctness of the results, moreover, depends in subtle ways on the
amount of extensionality properties used in the proof which has a direct analytic
counterpart in terms of uniform continuity conditions.

We discuss a number of new qualitative existence results in the area of non-
linear functional analysis which follow from the metatheorems but so far did not
have a functional analytic proof. Applying the extraction algorithm provided by
the proofs of the metatheorems to these results then yields explicit quantitative
versions and at the same time direct proofs which no longer rely on the logical
metatheorems themselves ([2, 4, 5, 8, 9, 7]).

References

1. Berger, U., Buchholz, H., Schwichtenberg, H., Refined program extraction from
proofs. Ann. Pure Appl. Logic 114, pp. 3-25 (2002).

2. Gerhardy, P., A quantitative version of Kirk’s fixed point theorem for asymptotic
contraction. Submitted.
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Abstract. This paper extends the logical approach to computable anal-
ysis via Σ–definability to higher type continuous data such as functionals
and operators. We employ definability theory to introduce computability
of functionals from arbitrary domain to the real numbers. We show how
this concept works in particular cases.

1 Introduction

In this paper we address the problem of computability of higher type continuous
data such as real-valued functionals. This topic is motivated by problems from
Physics and Engineering concerning infinite computational processes evaluating
on continuous data types. Formalisation of such problems involve abstract math-
ematical objects of complex structures such as real numbers and real-valued func-
tions. Such continuous data is usually represented by approximations to them
[15]. The main difficulty here is that different representations lead to different,
and often non-equivalent, concepts of computability. In this case it is desirable
to have a notion of computability of higher type objects which does not rely
upon representations. It turns out that such a notion is difficult to give even for
particular cases such as real-valued functions and functionals.
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In this paper we extend the logical approach to computability on the reals,
which was first proposed in [6], to deal with functionals from arbitrary struc-
tures to the reals. The main results of this paper are as follows. We introduce
a notion of computability of higher type functionals defined on arbitrary struc-
tures, called majorant-computability. This notion is based on logical definability
in extensions of the structures by hereditarily finite sets. One of the main fea-
tures of this notion is that it is independent from concrete representations of the
elements of structures. We also give a semantic characterisation of this notion
of computability for some concrete structures such as continuous functions on
reals. Such characterisation allows us to show that our notion of computability
on such structures captures the same class of computable objects as the notion
of computability from computable analysis (see [15]).

2 Basic Definitions and Notions

According to general concepts of computable analysis [15], it is natural to con-
sider structures with languages without equality [9, 10]. In this paper we consider
the standard model of the real numbers 〈IR, 0, 1,+, ·, <〉 = 〈IR, σ0〉 , denoted also
by IR, and an abstract model 〈F , σF 〉. We assume that the predicate < and all
predicates from σF occur positively in all formulas.

In order to introduce a notion of computability of functionals f : F → IR we
extend the structure R = IR ∪ F by the set of hereditarily finite sets HF(R)
which is rich enough for information to be coded and stored. We construct the set
of hereditarily finite sets, HF(R) over a structure R, as follows:

1. HF0(R)  R,
2. HFn+1(R)  Pω(HFn(R)) ∪ HFn(R), where n ∈ ω and for every set B,

Pω(B) is the set of all finite subsets of B.
3. HF(R) =

⋃
m∈ω HFm(R).

We define HF(R) as the following model: HF(R)  〈HF(R), R, F, σ0, σF , ∅,∈〉 
〈HF(R), σ〉 , where the constant ∅ stands for the empty set and the binary predi-
cate symbol ∈ has the set-theoretic interpretation. We also add predicate symbols
R for elements of IR and F for elements of F .

For our convenience, we use variables subject to the following conventions:
r, x, y, z, α, β . . . range over IR (reals),
f1, f2, g1, g2 . . . range over F (elements of F),
K, L,M,N, S, . . . range over HF(R).

We use the same letters as for variables to denote elements from the correspond-
ing structures.

The set of Δ0-formulas is the closure of the set of atomic formulas un-
der ∧,∨,¬, bounded quantifiers (∃M ∈ S) and (∀M ∈ S), where (∃M ∈ S) Ψ
denotes ∃M(M ∈ S ∧ Ψ), (∀M ∈ S) Ψ denotes ∀M(M ∈ S → Ψ) and S ranges
over sets.

The set of Σ-formulas is the closure of the set of Δ0-formulas under ∧,∨,
(∃M ∈ S), (∀M ∈ S) and ∃, where S ranges over sets. We define Π-formulas
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as negations of Σ-formulas. We are interested in Σ-definability of subsets on
Rn which can be considered as a generalisation of recursive enumerability. The
analogy of Σ-definable and recursive enumerable sets is based upon the following
fact. If we consider the structure HF = 〈HF(∅),∈〉 with the hereditarily finite
sets over ∅ as its universe and membership as its only relation, then the Σ-
definable sets are exactly the recursively enumerable sets. The notion of Σ-
definability has a natural meaning also in the structure HF(R).

Definition 1. 1. A relation B ⊆ HF(R)n is Σ-definable, if there exists a Σ-
formula Φ such that M̄ ∈ B ↔ HF(R) |= Φ(M̄).

In a similar way, we define the notions of Π-definable sets.

3 Higher Type Majorant-Computability

Now we are ready to extend the concept of majorant-computability, which was
first proposed for real functions in [6], to functionals F : F → IR.

Definition 2. A functional F : F → IR is called majorant-computable if
there exists a Σ-formula Φ(s, f, y) and a Π-formula Ψ(s, f, y) such that the fol-
lowing conditions hold.

1. For all s ∈ ω, f ∈ F , the formulas Φ(s, f, ·) and Ψ(s, f, ·) define nonempty
intervals < αs, βs > and [δs, γs].

2. For all f ∈ F , the sequences {< αs, βs >}s∈ω and {[δs, γs]}s∈ω decrease
monotonically and < αs, βs >⊆ [δs, γs] for all s ∈ ω.

3. For all f ∈ dom(F ), F (f) = y ↔
⋂

s∈ω < αs, βs >= {y} ↔⋂
s∈ω[δs, γs] = {y} holds; for all f �∈dom(F ), || ∩s∈ω [δs, γs]|| > 1.

The formulas Φ(s, ·, ·) and Ψ(s, ·, ·) define effective sequences {Φs}s∈ω and se-
quences {Ψs}s∈ω. The sequence {Φs}s∈ω is called a sequence of Σ-approximati-
ons for F . The sequence {Ψs}s∈ω is called a sequence of Π-approximations for F .
As we can see, the process which carries out the computation is represented by
two effective procedures. These procedures produce Σ-formulas and Π-formulas
which define approximations closer and closer to the result.

Below we will write ϕ1(f, ·) < ϕ2(f, ·) if HF(R) |= ϕ1(f, y)∧ϕ2(f, z) → y < z
for all real numbers y, z. The following theorem connects a majorant-computable
functional with validity of finite formulas in the set of hereditarily finite sets,
HF(R).

Theorem 3. For every functional F : F → IR the following assertions are
equivalent:.

1. The functional F is majorant-computable.
2. There exists Σ–formulas ϕ1(f, y), ϕ2(f, y) such that ϕ1(f, ·) < ϕ2(f, ·) and

F (f) = y ↔ ∀z1∀z2 (ϕ1(f, z1) < y < ϕ2(f, z2)) ∧
{z | ϕ1(f, z)} ∪ {z | ϕ2(f, z)} = IR \ {y}.
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Proof. →)Let F : F → IR be majorant-computable. By Definition 2, there exists
a sequence {Fs}s∈ω of Σ-approximations for F and a sequence {Ψs}s∈ω of Π-
approximations for F . Let

ϕ1(f, y)  (∃s ∈ ω) (y �∈ [δs, γs] ∧ (∃z ∈< αs, βs >) (y < z))

and
ϕ2(f, y)  (∃s ∈ ω) (y �∈ [δs, γs] ∧ (∃z ∈< αs, βs >) (y > z)) .

By construction, ϕ1 and ϕ2 are the sought formulas.
←) Let ϕ1 and ϕ2 satisfy the requirements of the theorem. Let us construct
approximations in the following way:

Φs(f, y)  ∃z∃v (ϕ1(f, z) ∧ ϕ2(f, v) ∧ y ∈ (z, v) ∧ v − z < 1/s) ,

Ψs(f, y)  ∀z (ϕ1(f, z) → z − y ≤ 1/s) ∧ ∀z (ϕ2(f, z) → y − z ≤ 1/s) .

4 Majorant-Computability and Computable Analysis

In order to illustrate how the concept of majorant-computability works in some
particular cases let us consider computability of functionals F : C[0, 1] → IR,
where C[0, 1] is the set of continuous real functions defined on [0, 1].

For this purpose we define F = 〈C[0, 1], E, H〉, where predicates E and H
have the following meaning:

E(f, x1, x2, z)  f |[x1,x2] < z ∨ (x1 < 0) ∨ (x2 > 1) and
H(f, x1, x2, z)  f |[x1,x2] > z ∨ (x1 < 0) ∨ (x2 > 1) .

Below we will use the notations Ef and Hg for E(f, ·, ·, ·) and H(g, ·, ·, ·).
In this case we get the following characterisation of majorant-computable

functionals as a straightforward corollary of the theorem 3.

Definition 4. A partial functional F : C[a, b] → IR is said to be shared by two
Σ-formulas ϕ1 and ϕ2 if the following assertions hold. For every u ∈ C[a, b]
and y ∈ IR, F (f) = y holds if and only if

y > z ↔ HF(R)|= ϕ1(Hf , Ef , x1, x2, z) and
y < z ↔ HF(R)|= ϕ2(Hf , Ef , x1, x2, z).

Corollary 5. A partial functional F : C[a, b] → IR majorant-computable
if and only if F is shared by two Σ-formulas.

The following theorem reveals algorithmic properties of Σ-formulas over
HF(R).
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Theorem 6 (Semantic Characterisation of Σ-definability).
A set B ⊆ Rn is Σ-definable if and only if there exists an effective sequence of
quantifier free formulas in the language σ0 ∪ {E,H}, {Φs(x)}s∈ω, such that

x ∈ B ↔ HF(R) |=
∨
s∈ω

Φs(x).

The proof of this theorem is based on Gandy’s theorem for abstract structures
without equality [9] and the technique developed in [10]. For the complete proof
we refer to the full version of this paper [11].

Now we compare majorant-computability and computability in the sense of
computable analysis [15]. Informally, a real-valued functional is computable if
there is a Turing machine which from approximations of arguments produces
approximations of the functional value. In the framework of computable analysis
[15], approximations are given by representations. Below we use the following
appropriate representations. For the real numbers we take the representation
ρI , where the name of a real number is a sequence of compact intervals with
rational endpoints fast converging to it. We use the Cauchy representation δ

[0,1]
C

of C[0, 1], where the name of a function f is a sequence of rational polygons fast
converging to it. Let us recall their formal definitions according to [15].

Definition 7 (Interval representation of IR). Let νInt be the standard no-
tation of the set of compact intervals with rational endpoints.

ρI(p) = x : ⇐⇒

⎡⎢⎢⎣
there are words u0, u1 . . . ∈ dom(νInt)
such that p = u0 ι u1 . . . ,
(∀k)

(
νInt(uk+1) ⊆ νInt(uk) and length(νInt(uk)) ≤ 2−k

)
and {x} = νInt(u0) ∩ νInt(u1) ∩ . . . ,

where ι is a special symbol for separating words.

Definition 8 (Cauchy representation of C[0, 1]). A rational polygon is a
function g ∈ C[0, 1] for which there are rational numbers a0, b0, . . . , ak, bk such
that 0 ≤ a0 < a1 < . . . < ak ≤ 1 and for all x ∈ A,

g(x) = bi−1 + (x− ai−1)(bi − bi−1)/(ai − ai−1) if ai−1 ≤ x ≤ ai

for i = 1, . . . , k. Let νPg be a standard notation of the set Pg of rational polygons
on [0, 1]. The Cauchy representation δ

[0,1]
C of C[0, 1] is defined as follows:

δAC (p) = f : ⇐⇒

⎡⎢⎢⎣
there are words w0, w1 . . . ∈ dom(νPg)
such that p = w0 ι w1 . . .
d(νPg(wi), νPg(wk)) ≤ 2−i for i < k
and f = limi→∞ νPg(wi) .

If δ
[0,1]
C (w0 ι w1 . . .) = f , then for each n, f is in the ball with center νPg(wn)

and radius 2−n.
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Theorem 9. The class of majorant-computable real-valued functionals coincides
with the class of

(
δ
[0,1]
C , ρI

)
-computable real-valued functionals.

Proof. Suppose F : C[0, 1] → IR is
(
δ
[0,1]
C , ρI

)
-computable and δ

[0,1]
C (p) = f

and p = w0 ι w1 . . . . By assumption, there is a Type-2 machine T which given
input p = w0 ι w1 . . . ∈ dom(δ[0,1]

C ) prints a list of names of fast converging
intervals [q1

m, q2
m] such that F (f) ∈ [q1

m, q2
m]. It is easy to see that the relations

νPg(wn) − 2−n < f and f < νPg(wn) + 2−n are Σ-definable by formulas with
occurrences of Ef and Hf . Let νPg(wn)−2−n < f be defined by Φn(Ef ,Hf ) and
νPg(wn) + 2−n < f be defined by Ψn(Ef ,Hf ). Assume that T produces [q1

m, q2
m]

on nth step. Then the Σ-formula

ϕ1(Ef ,Hf , z) 
∨
n∈ω

⎛⎝∧
i≤n

Φi(Ef ,Hf ) ∧ z < q1
m

⎞⎠
defines the left Dedekind cut of F (f). In the same way, we can construct a Σ-
formula ϕ1(Ef ,Hf , z) which defines the right Dedekind cut of F (f).

Let F : C[0, 1] → IR be majorant-computable. We consider the functional
domain If [0, 1] which has been introduced and shown to be an effective ω-
continuous domain in [7]. The set {〈νPg(wn) − 2−n, νPg(wn) + 2−n〉 |n ∈ ω} can
be taken as an effective basis of this domain. In the similar way, as in [8], it
is possible to show that the formulas ϕ1 and ϕ2, from the definition 4, induce
operator F ∗ : If [0, 1] → I, where I is the interval domain. This, in particular,
means that the set{

(n,m)|F (
〈
νPg(wn) − 2−n, νPg(wn) + 2−n

〉
) � νInt(um)

}
is computable enumerable. Then a program for a strong

(
δ
[0,1]
C , ρI

)
-realization

of F can be programmed straightforwardly.

5 Future Work

In this paper we extend the notion of majorant-computability to real-valued
functionals. One of the main features of this notion is that it is independent
from concrete representations of the elements of structures. We also have given
a semantic characterisation of this notion of computability for some concrete
structures such as continuous functions on reals. Such characterisation allows us
to show that our notion of computability on such structures captures the same
class of computable objects as the notion of computability from computable
analysis. In this respect the following direction of research is of special interest:
to propose and study reasonable requirements on the universe and the language
of an abstract structure without the equality test under which a similar charac-
terisation can be obtained.
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Abstract. We continue the study of P systems with mobile membranes
introduced in [6], which is a variant of P systems with active membranes
having none of the features like polarizations, label change and division
of non-elementary membranes. This variant was shown to be universal
using only the simple operations of endocytosis and exocytosis; more-
over, if elementary membrane division is allowed, it is capable of solving
hard problems. Here, we investigate the power of the two operations (en-
docytosis, exocytosis) in more detail: 2 membranes can generate sets of
vectors outside PsMAT , and four membranes give universality.

1 Introduction

P systems are a class of distributed parallel computing models inspired from the
way the living cells process chemical compounds, energy, and information. One
of the central operations in cell biology is cell division, and with this inspira-
tion, P systems with active membranes were introduced in [7]. This variant was
shown to be computationally universal as well as to be able to solve hard prob-
lems. The features used by this variant include the use of polarizations (+, -, 0)
and division of non-elementary as well as elementary membranes, giving rise to
an exponential workspace. These features are quite powerful, thus making the
system powerful. Many attempts have been made to define equivalent systems
having none of the above features, but in general, removal of one feature has
requested the introduction of other powerful operations [8], [9]. [6] is an attempt
in this direction, wherein we introduce a variant of P systems with none of the
above mentioned features, but instead use two simple operations : endocytosis
and exocytosis. These operations are different and simpler than the operations
considered in [1], [2], [4] and [3].

In this paper, we take a closer look at the power of endocytosis and exocytosis
rules. We have investigated the generative capacity of systems with 2 and 4
membranes and understand that endocytosis and exocytosis have a surprising
power : universality is obtained with 4 membranes in contrast to achieving the
same using label changing, membrane division and membrane dissolution keeping
at most 3 membranes all the while [9].

S.B. Cooper, B. Löwe, and L. Torenvliet (Eds.): CiE 2005, LNCS 3526, pp. 242–251, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Some Prerequisites

We refer to [5], [10] for the elements of formal language theory we use here. We
only specify that for a string x ∈ V ∗ and a symbol a ∈ V , we denote by |x| the
length of x and by |x|a the number of occurrences of the symbol a in the string
x. For w ∈ V ∗ with V = {a1, . . . , an}, we denote by ΨV (w) the Parikh vector of
w, that is, ΨV (w) = (|w|a1 , . . . , |w|an

); this is extended to languages in a natural
way. For a family FL of languages, we denote by PsFL the family of Parikh
sets of vectors associated with languages in FL.

A multi set over an alphabet V is represented by a string over V (and by
all its permutations) and each string precisely identifies a multi set; the Parikh
vector associated with the string indicates the multiplicities of each element of
V in the corresponding multi set. For basic elements of membrane computing
we refer to [8]; for the state-of-the art of the domain, the reader may consult the
bibliography from the web address http://psystems.disco.unimib.it.

We recall the definition of the family MAT . A context-free matrix grammar
without appearance checking is a construct G = (N,T, S,M) where N,T are
disjoint alphabets of non-terminals and terminals, S ∈ N is the axiom, and M is
a finite set of matrices of the form (A1 → x1, . . . , An → xn) of context-free rules.
For a string x, a matrix m : (r1, . . . rn) is executed by applying the productions
r1, . . . , rn one after the another, following the order in which they appear in the
matrix. We write w ⇒m z if there is a matrix m : (A1 → x1, . . . An → xn) in
M and the strings w1, . . . wn+1 in (N ∪ T )∗ such that w = w1, wn+1 = z, and
for each i = 1, 2, . . . , n we have wi = w′

iAiw
′′
i , wi+1 = w′

ixiw
′′
i . The language

generated by L(G) = {w ∈ T ∗ | S ⇒∗ w}. The family of languages generated by
context-free matrix grammars is denoted by MAT .

For proving computational universality, we use the notion of a matrix gram-
mar with appearance checking in the improved strong binary normal form, in-
troduced in [6]. Such a grammar is a construct G = (N,T, S,M,F ), where
N = N1∪N2∪{S,#}, with these three sets mutually disjoint, two distinguished
symbols B(1), B(2) ∈ N2, and the matrices in M of one of the following forms:
1. (S → XA), with X ∈ N1, A ∈ N2,
2. (X → Y,A → x), with X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗,
3. (X → Y,B(j) → #), with X,Y ∈ N1, j = 1, 2,
4. (X → a,A → x), with X ∈ N1, A ∈ N2, x ∈ T ∗.

Moreover, there is only one matrix of type 1 and F consists of all the rules
B(j) → #, j = 1, 2, appearing in matrices of type 3; # is a trap-symbol, once
introduced it is never removed. (Clearly, a matrix of type 4 is used only once, in
the last step of a derivation.)

3 P Systems with Mobile Membranes

We now briefly recall P systems with mobile membranes introduced in [6].
A P system with mobile membranes is a construct

Π = (V,H, μ,w1, . . . , wn, R),
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where: n ≥ 1 (the initial degree of the system); V is an alphabet (its elements are
called objects); H is a finite set of labels for membranes; μ is a membrane struc-
ture, consisting of n membranes, labeled (not necessarily in a one-to-one manner)
with elements of H; w1, w2, . . . , wn are strings over V , describing the multi sets
of objects placed in the n regions of μ, and R is a finite set of developmental
rules, of the following forms:

(a) [ma → v]m, for m ∈ H, a ∈ V, v ∈ V ∗; object evolution rules.
(b) [

h
a]

h
[
m

]
m

→ [
m

[
h
b]

h
]
m

, for h,m ∈ H, a, b ∈ V ;
endocytosis rules: an elementary membrane labeled h enters the adjacent
membrane labeled m, under the control of object a; the labels h and m
remain unchanged during this process, however, the object a may be modified
to b during the operation; m is not necessarily an elementary membrane.

(c) [m[ha]h]m → [hb]h[m ]m, for h,m ∈ H, a, b ∈ V ;
exocytosis: an elementary membrane labeled h is sent out of a membrane
labeled m, under the control of object a; the labels of the two membranes
remain unchanged, but the object a from membrane h may be modified
during this operation; membrane m is not necessarily elementary.

(d) [ha]h → [hb]h[hc]h, for h ∈ H, a, b, c ∈ V ;
division rules for elementary membranes: in reaction with an object a, the
membrane labeled h is divided into two membranes labeled h, with the object
a replaced in the two new membranes by possibly new objects.

We do not use rules of type (d) for our investigations in this paper. The rules
are applied according to the following principles:

1. All rules are applied in parallel, non-deterministically choosing the rules,
the membranes, and the objects, but in such a way that the parallelism is
maximal; this means that in each step we apply a set of rules such that no
further rule can be added to the set, no further membranes and objects can
evolve at the same time.

2. The membrane m from each type (a) – (c) of rules as above is said to
be passive, while the membrane h is said to be active. In any step of a
computation, any object and any active membrane can be involved in at
most one rule, but the passive membranes are not considered involved in the
use of rules (hence they can be used by several rules at the same time as
passive membranes); for instance, a rule [

m
a → v]

m
, of type (a), is considered

to involve only the object a, not also the membrane m.
3. The evolution of objects and membranes takes place in a bottom-up manner.

After having a (maximal) set of rules chosen, they are applied starting from
the innermost membranes, level by level, up to the skin membrane (all these
sub-steps form a unique evolution step, called a transition step).

4. When a membrane is moved across another membrane, by endocytosis or
exocytosis, its whole contents (its objects) are moved; because of the bottom-
up way of using the rules, the inner objects first evolve (if there are rules
applicable for them), and then any membrane is moved with the contents as
obtained after this inner evolution.
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5. If a membrane exits the system (by exocytosis), then its evolution stops,
even if there are rules of type (a) which would be applicable to it provided
that the membrane would be in the system.

6. All objects and membranes which do not evolve at a given step (for a given
choice of rules which is maximal) are passed unchanged to the next config-
uration of the system.

By using the rules in this way, we get transitions among the configurations
of the system. A sequence of transitions is a computation, and a computation is
successful if it halts (it reaches a configuration where no rule can be applied).
During a computation, membranes can leave the skin membrane (by means of
rules of type (c)). The multiplicity vector of the multi set from such a mem-
brane is considered as a result of the computation. Thus, the result of a halting
computation consists of all vectors describing the multiplicity of objects from all
membranes sent out of the system during the computation; a non-halting com-
putation provides no output. The set of all vectors of natural numbers produced
in this way by a system Π is denoted by Ps(Π). Each membrane which exits
the system gives a vector, hence a computation can produce several vectors, all
of them considered in the set Ps(Π).

The family of all sets Ps(Π) generated by systems of degree atmost n using
endocytosis and exocytosis rules, is denoted by PsMPn(endo, exo). If a type of
rules is not used, then we omit its “name” from the list. For instance, if only
exocytosis rules are used, we write PsMPn(exo). It has been shown in [6] that
P systems with mobile membranes having n membranes, n ≥ 9 can compute the
family of all Turing computable sets of vectors of natural numbers.

4 The Power of Endocytosis and Exocytosis

We adopt the convention that when comparing the sets of vectors generated
(accepted) by two devices, we ignore the empty vector. We also follow the
shorthand notation [

i
a1 → a2, b1 → b2, . . . ,m1 → m2] i for representing rules

[
i
a1 → a2] i, [ ib1 → b2] i, . . . , [ im1 → m2] i of membrane i in a compact way.

Theorem 1. PsMP2(exo) − PsMAT �= ∅.

Proof. Consider the system Π = ({a, b}, {1, 2}, [
1
[
2

]
2
]
1
, ∅, ab, R) where R con-

tains the following rules:

R = {[1[2b]2]1 → [2b]2[1 ]1, [2b → b]2, [2a → aa]2}

Clearly, PsΠ = {(2n, 1) | n ≥ 1}, which is not in PsMAT .
*+

Theorem 2. PsMP4(endo, exo) = PsRE.

Proof. Consider a matrix grammar G = (N,T, S,M,F ) with appearance check-
ing in the improved strong binary normal form (N = N1 ∪N2 ∪ {S,#}), having
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n1 matrices of types 2 and 4 and n2 matrices of type 3. Let B(1) and B(2) be
the two objects in N2 for which we have rules B(j) → # in matrices of M .
The matrices of the form (X → Y,B(j) → #) are labeled by m′

i, 1 ≤ i ≤ n2

with i ∈ labj , for j ∈ {1, 2}, such that lab1, lab2, and lab0 = {1, 2, . . . , n1} are
mutually disjoint sets.

We construct a P system with mobile membranes of degree 4,

Π = (V,H, μ,w1, w2, w3, w4, R)

where

V = N1 ∪N2 ∪ {Yi,j , ai,j , Ak,j | 0 ≤ i ≤ 2n1 + 1, 2 ≤ k ≤ 2n1 + 1, 1 ≤ j ≤ n1}
∪ {#, Y ′, Y ′′, Y ′′′, a′, Y (1), Y (1)′

, Y (1)′′
, Y (2), Y (2)′

, Y (2)′′
, Y (2)′′′

, B(1), B(2)}
∪ {al, bm, 〈x〉i, 〈x〉 |0≤ l≤7,m∈{1, 3, 5, 7}, i∈{0, 1}, (X→Y/a,A→x)∈M},

H = {1, 2, 3, 4},
μ = [1[2 ]2[3[4 ]4]3]1,
w2 = XA, where (S → XA) is the initial matrix of G,wi = ∅, i �= 2.

and R consists of the following rules:

1. Simulation of matrices mj : (X → Y,A → x) or mj : (X → a,A → x),
2 ≤ j ≤ n1.

1. [
2
X → Y2j+1,j ]2, mj : (X → Y,A → x), and

[2X → a2j+1,j ]2, mj : (X → a,A → x),
2. [

2
A]

2
[
3

]
3
→ [

3
[
2
A2j+1,j ]2]3,mj : (X→Y,A→x)ormj : (X→a,A→x),

[2#]2[3 ]3 → [3[2#]2]3,
3. [2Ai,k]2[4 ]4 → [4[2Ai−1,k]2]4, i ≥ 3,
4. [4[2Ai,k]2]4 → [2Ai−1,k]2[4 ]4, i ≥ 3,
5. [2Ai,k → #]2, i ≥ 2,
6. [

4
[
2
A2,k]2]4 → [

2
〈x〉0]2[4 ]

4
,

7. [2〈x〉0 → 〈x〉1, 〈x〉1 → #]2,
8. [

2
Yi,j → Yi−1,j , ai,j → ai−1,j , Y0,j → #]

2
, i ≥ 1,

9. [2Y1,j ]2[4 ]4 → [4[2Y
′]2]4, mj : (X → Y,A → x),

[
2
a1,j ]2[4 ]

4
→ [

4
[
2
a′]

2
]
4
, mj : (X → a,A → x),

10. [4[2〈x〉1]2]4 → [2〈x〉]2[4 ]4,
11. [2Y

′ → Y ′′, a′ → a0, Y
′′ → Y ′′′, 〈x〉 → x]2,

12. [
3
[
2
Y ′′]

2
]
3
→ [

2
Y ]

2
[
3

]
3
.

In the initial configuration, we have the objects X,A corresponding to the
initial matrix in membrane 2. To simulate a matrix of the above type (2
or 4), rules 1 and 2 have to be applied in parallel. This results in X being
replaced by Y2j+1,j and the endocytosis rule 2 ensures that a single A ∈ N2
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is replaced by A2j+1,j . No other A ∈ N2 can be replaced until membrane 2
comes out of membrane 3 by using the exocytosis rule 12. Inside membrane 3,
the rules 8 (for Y ) and 3,4 (for A) are used to decrement the indices of Y,A.
This is done to check if the indices of Y,A are the same, and in that case to
rewrite A according to the matrix mj . This is continued until Ai,j becomes
A2,j . At this point of time, if the indices are the same, then the index of Y
should be Y2,j . Observe that since we started out with an odd index for A,
when the index reaches 2, membrane 2 should be inside membrane 4. Using
rules 6 and 8 for i = 2, we get [2w〈x〉0w1Y1,jw2]2, w, w1, w2 ∈ V ∗. At this
point of time, membrane 2 will be inside membrane 3. Now, rules 9, 7 should
be used, replacing Y1,j by Y ′ and 〈x〉0 by 〈x〉1. Rules 10 and 11 should be
applied next, replacing Y ′ by Y ′′. Once this is done, membrane 2 is inside
3 and can move out of 3 using rule 12. A new simulation is started after
membrane 2 exits membrane 3.

Observe that a correct simulation of a type 2 or 4 matrix is obtained if
and only if rules are applied in the order as mentioned above. In case the
endocytosis rule 15 is used instead of 3,9 and/or the exocytosis rule 21 is
used instead of 4,6,10, the object # is introduced in the system. This will
prevent any output being sent out of the system, by blocking membrane 2
inside membrane 3 or 4.

Now let’s examine what happens if the indices of A, Y are not the same.

Case 1 : Index of Y > Index of A.
In this case, when membrane 2 comes out of membrane 4 using rule 6, the
index of Y will not be decremented from 2 to 1. Observe that the indices of
A, Y will always have the same parity (if not, there will be no Ai,j ; it would
be replaced by a #) . Hence, the index of Y will be decremented from 2j
to 2j − 1, j ≥ 2. The smallest possible value of the index is 3 (decremented
from 4 to 3). We have the following possible transitions:

(a) Assume that rules 1-12 are the only ones which are applied.

[
2
〈x〉0Y3,j ]2[4 ]

4
→ [

2
〈x〉1Y2,j ]2[4 ]

4
→ [

2
#Y1,j ]2[4 ]

4

→ [4[2#Y ′]2]4 → [4[2#Y ′′]2]4 → [4[2#Y ′′′]2]4

We then have the above sequence of transitions, leading to blocking
membrane 2 inside membrane 4.

(b) Assume that rules 1-12, and rule 15 are applied.

[2〈x〉0Y3,jB
(1)]2[4 ]4 → [4[2〈x〉1Y2,j#]2]4 → [2〈x〉Y1,j#]2[4 ]4

→ [
4
[
2
xY ′#]

2
]
4
→ [

4
[
2
xY ′′#]

2
]
4
→ [

4
[
2
xY ′′′#]

2
]
4

There is another possibility in the second transition of the above se-
quence, viz., replacing 〈x〉1 by #, but that will again mean blocking
membrane 2. Similarly, it is possible to replace Y1,j by Y0,j in the third
transition, blocking membrane 2 inside membrane 3 or 4.
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(c) Assume that rules 1-12, and 21 are used.

[2〈x〉0Y3,jB
(2)]2[4 ]4 → [2〈x〉1Y2,jB

(2)]2[4 ]4 → [2#Y1,jB
(2)]2[4 ]4

→ [
4
[
2
#Y ′B(2)]

2
]
4
→ [

2
#Y ′′#]

2
[
4

]
4
→ [

2
#Y #]

2
[
3

]
3

(d) Assume that rules 1-12, 15 and 21 are applied.

[2〈x〉0Y3,jB
(1)B(2)]2[4 ]4 → [4[2〈x〉1Y2,j#B(2)]2]4 → [2#Y1,j##]2[4 ]4

→ [
4
[
2
#Y ′##]

2
]
4
→ [

4
[
2
#Y ′′##]

2
]
4
→ [

4
[
2
#Y ′′′##]

2
]
4

We also have other sequences of transitions; but in all cases, the symbol
# is introduced in membrane 2. We have similar cases if we consider
Y2j+1,j , j ≥ 2.

Case 2 : Index of Y < Index of A.
In this case, it is possible to have [

2
A2j+1,jY1,j ]2 inside membrane 3. The

smallest possible value for A2j+1,j then is A3,j . Since the index of Y has
reached 1, and since membrane 2 is inside membrane 3, rule 9 can be used.
This will replace Y1,j by Y ′, taking membrane 2 inside 4, but will replace the
A3,j by #. There is also the possibility of replacing Y1,j by Y0,j in case rule
15 or rule 3 is used, but the point to note is that if the indices are not the
same, or if rules are not applied in the correct order, the blocking symbol #
is introduced.

Observe that simulation of a type 4 matrix is on similar lines, except
that we have an a in place of Y . During the finishing stages of a type 4
simulation, we use rules 9 and 11 to replace a1,j by a′ and the to rewrite it
to a0. We will see later how this is useful for verifying if all simulations are
done correctly.

2. Simulation of matrices m′
i : (X → Y,B(j) → #), j = 1, 2, and 1 ≤ i ≤ n2.

13. [2X]2[3 ]3 → [3[2Y
(1)]2]3, m′

i : (X → Y,B(1) → #),

14. [
2
Y (1) → Y (1)′

, Y (1)′ → Y (1)′′
]
2
,

15. [2B
(1)]2[4 ]4 → [4[2#]2]4,

16. [3[2Y
(1)′

]2]3 → [2Y ]2[3 ]3,

17. [
2
X]

2
[
3

]
3
→ [

3
[
2
Y (2)]

2
]
3
, m′

i : (X → Y,B(2) → #),

18. [2Y
(2)]2[4 ]4 → [4[2Y

(2)′
]2]4,

19. [2Y
(2)′ → Y (2)′′

, Y (2)′′ → Y (2)′′′
]2,

20. [2Y
(2) → Y (2)′′′

]2,

21. [
4
[
2
B(2)]

2
]
4
→ [

2
#]

2
[
4

]
4
,

22. [4[2Y
(2)′′

]2]4 → [2Y
′′]2[4 ]4.
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The simulation of matrices of type 3 begins by rule 13 or 17. To simulate
(X → Y,B(1) → #), rule 13 is used. This is followed by rules 14 and 15 in
parallel in case B(1) exists. If no B(1) exists, then rule 16 can be used to
send out membrane 2, successfully completing the simulation.

If B(1) exists, we will have membrane 2 inside membrane 4. There is no
way for membrane 2 to come out of 4, except in case a B(2) exists. Even
then, membrane 2 cannot come out of 3, since the Y (1)′

would have evolved
to Y (1)′′

, preventing application of rule 16.

To simulate (X → Y,B(2) → #), rule 17 is used. For a correct simu-
lation, this should be followed by rule 18. If instead, one chooses rule 15,
then membrane 2 will be blocked inside membrane 3 since Y (2) evolves to
Y (2)′′′

. Assuming that 18 was applied, we need to apply rules 19 and 21 (if
applicable) in the next step. If rule 21 was not applicable, we are done; rules
22 and 12 can be used, bringing membrane 2 back home. However, if rule 21
was applied, then membrane 2 will be blocked inside membrane 3 or 4 since
Y (2)′′

evolves to Y (2)′′′
.

3. Checking for non-terminals after simulation of a terminal matrix
(X → a,A → x).

23. [
2
a0 → a1, a1 → b1]2,

24. [2a1]2[4 ]4 → [4[2a2]2]4,
25. [

2
a2 → a3, a3 → b3]2,

26. [4[2a3]2]4 → [2a4]2[4 ]4,
27. [

2
a4 → a5, a5 → b5]2,

28. [3[2a5]2]3 → [2a6]2[3 ]3,
29. [2a6 → a7, a7 → b7]2,
30. [

1
[
2
a7]2]1 → [

2
a]

2
[
1

]
1
.

Once the type 4 matrix is simulated, we need to ensure that there are no more
A,B(1), B(2) ∈ N2’s and no #’s to ensure a correct simulation. If this is indeed
the case, then membrane 2 can be sent out as the output of the system. Observe
that the ai,j are the counterparts of Yi,j ’s in a type 4 matrix simulation, and
do the same thing, until a1,j is replaced by a′ using the endocytosis rule 9. We
have already seen that if this was obtained (application of rule 9) not by correct
means, then a # will be present in the system.

Assuming that things took place correctly and rule 9 was applied, in the next
step, we use rules 10 and 11 (a′ → a0). In the next step, we replace 〈x〉 by x
and a0 by a1 (rule 23). We ultimately have membrane 2 inside membrane 3 with
a1. (This scenario is possible in other wrong ways, but remember that these
will introduce a #). In case membrane 2 with a1 is not inside membrane 3, the
computation will halt in the next step replacing a1 by b1 with no output.

Lets see what happens when membrane 2 is inside membrane 3 with a0.
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[
3
[
2
a0]2[4 ]

4
]
3
→ [

3
[
2
a1]2[4 ]

4
]
3
→ [

3
[
4
[
2
a2]2]4]3 (⇒ no B(1))

↓ rule 15
[
3
[
4
[
2
a1#]

2
]
4
]
3
→ [

3
[
4
[
2
b1#]

2
]
4
]
3

↓ rule 21
[3[2b1##]2[4 ]4]3

Thus it is possible to get a2 only if there were no B(1)’s, otherwise, rule 15 would
be applied when a0 evolves to a1. Now let us see what happens with a2 inside
membrane 4.

[3[4[2a2]2]4]3 → [3[4[2a3]2]4]3 → [3[2a4]2[4 ]4]3 (⇒ no B(2))
↓ rule 21

[3[2a3#]2[4 ]4]3 → [3[2b3#]2[4 ]4]3
↓ rule 15

[3[4[2b3##]2]4]3

Thus, it is possible to get a4 only if there are no B(1), B(2). Now we need to
check only for A ∈ N2,#. Finally, we will have membrane 2 adjacent to mem-
brane 3 only if it contains no A,B(1), B(2),#. Observe that the only ways for
membrane 2 to come out of membrane 3 are via the rules 12, 16 and 28. If
the last matrix has been simulated (giving an a′), then rule 28 is the only op-
tion.

[1[3[2a4]2[4 ]4]3]1 → [1[3[2a5]2[4 ]4]3]1 → [1[2a6]2[3 ]3]1 → [1[2a7]2[3 ]3]1 (no A,#)
↓ ↓ rule 2

[3[2b5]2[4 ]4]3 [1[3[2a7# or a7Ai,j ]2]3]1 →∗ [1[3[2b7#]2]3]1

Thus, if we have a7 in membrane 2, and if membrane 2 is inside membrane
1, then it means that all simulations are carried out correctly. Membrane 2 can
now be sent out of the system replacing a7 by a.

*+

5 Conclusion

We have established a universality result with 4 membranes, using the oper-
ations of endocytosis and exocytosis and conjecture that the result is optimal
with respect to the number of membranes and depth. We also conjecture that
these operations can be coupled with some basic (already existing) operations
to simulate P systems with active membranes, thereby giving rise to an equiv-
alent, but much simpler counterpart for P systems with active membranes. An
interesting open problem worthwhile consideration is the power of these systems
with 3 membranes.
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1 Introduction

The class ΔN
0 of rudimentary relations and the small relational Grzegorczyk

classes E0
� , E1

� , E2
� attracted fairly much attention during the latter half of the

previous century, e.g. Gandy [6], Paris-Wilkie [20], and numerous others. Yet,
the open problems imposed by these classes are still there for new generations
to battle. It is well know, and rather obvious, that ΔN

0 ⊆ E0
� ⊆ E1

� ⊆ E2
� , but it

is not known whether any of the inclusions are strict, indeed it is open if the
inclusion ΔN

0 ⊆ E2
� is strict. It is proved in Bel’tyukov [3] that E1

� = E2
� implies

E0
� = E2

� . Furthermore, we know that ΔN
0 = E0

� implies ΔN
0 = E2

� (We do not know
if this is proved anywhere in the literature, but it will be a corollary of some of
the theorems below.). The open problems can be traced back to Grzegorczyk’s
initial paper [7] from 1953, and it is fair to say that the problems belong to sub-
recursion theory, but they are closely related to complexity theory and computer
science. Let linspace be the class of number-theoretic relation decidable by a
a deterministic Turing machine working in linear space; let nlinspace be the
corresponding class for a nondeterministic Turing machines; and let etime be the
class of number-theoretic relation decidable by a a deterministic Turing machine
working in exponential. Ritchie [21] proved that linspace = E2

� , and of course
linspace ⊆ nlinspace ⊆ etime. Again neither inclusion is known to be strict
(It is not even known if the inclusion ΔN

0 ⊆ etime is strict.). These unsolved
problems do again relate to other, and perhaps more notorious, problems, e.g.
linspace �= etime implies that logspace is strictly included in p. For more on
complexity theory, see Odifreddi [19]; for more the Grzegorczyk classes and the
rudimentary relations see Clote [4], Rose [22], Kutylowski [17], Esbelin-More [5].

In this paper we introduce the L-hierarchy L0 ⊆ L1 ⊆ L2 ⊆ · · · which
might shed some new light on the open problems described above. We have
ΔN

0 ⊆ L0
� ⊆ E0

� ⊆ E1
� ⊆ L1

� ⊆ · · · ⊆ L� = E2
� , and Li = Lj iff Li

� = Lj
� for any

i, j ∈ N. Hence, E0
� �= E2

� if Li �= Lj for some i, j > 0; and ΔN
0 �= E2

� if L0 �= Li

for some i > 0.

S.B. Cooper, B. Löwe, and L. Torenvliet (Eds.): CiE 2005, LNCS 3526, pp. 252–262, 2005.
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A class in the L-hierarchy is defined by a certain fragment of a typed λ-calculi.
No explicit bounds are embodied in the definition. Thus, we have so-called im-
plicit characterisation of E2

� (linspace). To get rid of explicit resource bounds
and obtain implicit characterisations of sub-recursive and complexity classes, so-
called ramification techniques (also known as tiering techniques) have shown to
be successful. Numerous examples of ramification can be found in the literature,
Simmons [23] may be the first, Bellantoni and Cook’s [2] distinction between
normal and safe variables is probably the best known. Leivant [18], Beckmann-
Weiermann [1], Simmons [24], and Kristiansen-Niggl [13] are other examples.
In this paper we achieve implicit characterisations by a qualitatively different
technique: We remove successor-like functions from a standard computability-
theoretic framework (typed λ-calculi). Jones [10, 11] uses the same technique
(with functional programming languages). So do Kristiansen-Voda [15] (with
functionals of higher types), Kristiansen-Voda [14] (with imperative program-
ming languages) and Kristiansen [12] (with function algebras).

In [16] Kristiansen and Voda show that all the well known deterministic com-
plexity classes can be characterised by fragments of a typed λ-calculi (Gödel’s
T ). It is also sketchy proved that the “type 0 fragment” defining L captures
linspace, and thus E2

� . The proof is based on Turing machines. In this paper we
make no detours via Turing machines and give a direct and detailed proof of the
equality L� = E2

� . (The hierarchy L0 ⊆ L1 ⊆ L2 ⊆ · · · is not introduced in [16].)

2 Preliminaries

We assume that the reader is familiar with the basics of the (typed) λ-calculus,
the reader which is not, should consult a standard textbook on the subject, e.g.
[9] or [25]. We assume some familiarity with sub-recursive classes and hierarchies.
In this section we recall some definitions and results.

We will use some notation and terminology from Clote [4]. An operator, here
also called (definition) scheme, is a mapping from functions to functions. Let X
be a set of functions (possibly given in a slightly informal notation), and let op
be a collection of operators. The function algebra [X ;op] is the smallest set of
functions containing X and closed under the operations of op. comp denotes the
definition scheme called composition, i.e. the scheme f(%x) = h(g1(%x), . . . , gm(%x))
where m ≥ 0. pr denotes the scheme for primitive recursion, i.e.

f(%x, 0) = g(%x) f(%x, y + 1) = h(%x, y, f(%x, y))

br denotes the scheme bounded (primitive) recursion, i.e. the scheme

f(%x, 0) = g(%x) f(%x, y + 1) = h(%x, y, f(%x, y)) f(%x, y) ≤ j(%x, y)

Let S denote the successor function. Let Ini denote the projection function
Ini (x1, . . . , xi, . . . , xn) = xi where 1 ≤ i ≤ n are fixed numbers. Let I de-
note the set of all such projection functions. Let Ck denote the 0-ary con-
stant function Ck = k where k ∈ N. For any set F of number-theoretic func-
tions, F� = {f | f ∈ F and ran(f) = {0, 1}}; i.e. the 0-1-valued functions
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of F . We follow the standard conventions, and identify a 0-1-valued function
with a relation over the natural numbers. The Grzegorczyk classes E0, E1 and
E2 are defined by E0 = [I, C0, S;comp,br], E1 = [I, C0, S,+;comp,br] and
E2 = [I, C0, S,+, x2 + 2;comp,br]. The next lemma, which we state without
proof, gives some important and well known properties of the classes.

Lemma 1. (i) For any f ∈ E0 there exist fixed numbers i, k where 1 ≤ i ≤ n
such that f((x1, . . . , xn) ≤ xi+k. (ii) For any f ∈ E1 there exists a fixed number
k such that f(%x) ≤ kmax(%x). (iii) For any f ∈ E2 there exists a polynomial p
such that f(%x) ≤ p(%x).

A relation R(%x) is rudimentary when there exist a Δ0
0 statement φ(%x) in

Peano Arithmetic such that R(%x) holds iff N |= φ(%x). We will use ΔN
0 to denote

the class of rudimentary relations.

3 A Hierarchy Stratifying E2

The next definition yields hierarchy G =
⋃

n∈N Gn stratifying the class E2. The
hierarchy is Grzegorczyk-like in the sense that the growth of the functions in the
class Gn is restricted by explicit bounds.

Definition 2. Let bcomp denote the definition scheme called bounded compo-
sition, i.e. the scheme

f(%x) = h(g1(%x), . . . , gm(%x)) f(%x, y) ≤ j(%x, y)

where m ≥ 0.

Define the bounded successor function Ŝ by Ŝ(x, y) =
{
x + 1 if x < y
y otherwise.

Define the function Gk,n by Gk,n(x1, . . . , xk) = (max(x1, . . . , xk, 1)+1)n+1 − 1 .
We will normally suppress the k and use Gn to denote the function Gk,n for any
k ≥ 0. Further, we will overload notation and also use Gn to denote the set of
all Gi,j such that i ≥ 1 and j ≤ n.

Let Gn def= [I, C0, Ŝ, Gn;bcomp,br], and define the hierarchy G by G =⋃
n∈N Gn *+

The next lemma states some basic properties of the classes in the hierarchy.

Lemma 3. (i) we have f(%x) ≤ Gn(%x) for any f ∈ Gn; (ii) the graph of Gn,
i.e. the relation Gn(%x) = y, is in G0

� ; (iii) the relations of Gn are closed under
Boolean connectives and quantification bounded by a function; (iv) ΔN

0 ⊆ G0
� .

Proof. We prove (i) by induction on a build-up of f from the functions in the
algebra [I, C0, Ŝ, Gn;bcomp,br]. When f is one of the initial functions in the
algebra, we have f(%x) ≤ Gn(%x). (In particular we have Ŝ(x, y) ≤ Gn(x, y) in the
case when n = 0.) Assume f is generated by bounded composition, i.e. defined by



The Small Grzegorczyk Classes and the Typed λ-Calculus 255

the scheme bcomp, then we have f(%x) ≤ Gn(%x) straightaway from the induction
hypothesis. Assume f is generated by bounded recursion, i.e. defined by the
scheme br, then we also have f(%x) ≤ Gn(%x) straightaway from the induction
hypothesis. We skip (ii), (iii) and (iv). *+

The next lemma relates the hierarchy to the small Grzegorczyk classes.

Lemma 4. (i) G = E2; (ii) E0 and G0 are incomparable, viz. E0 �⊆ G0 and
G0 �⊆ E0; (iii) E1 and G1 are incomparable; (iv) G0

� ⊆ E0
� ; (v) E1

� ⊆ G1
� .

Proof. The inclusion G ⊆ E2 is obvious. Assume f ∈ E2. By Lemma 1, we have
f(%x) ≤ p(%x) for some polynomial p. Then we also have f(%x) ≤ Gn(%x) for a
sufficiently large n. It follows that we have f ∈ Gn for some n, whence E2 ⊆ G.
This proves (i). To see that we have E0 �⊆ G0, let e.g. f(x) = x + 17 and note
that f ∈ E0, but f �∈ G0 by Lemma 3 (i). To see that G0 �⊆ E0, notice that
G0(x, y) �∈ E0 by Lemma 1. To see that E1 �⊆ G1, let e.g. f(x) = x× 17 and note
that f ∈ E1, but f �∈ G1 by Lemma 3 (i). To see that G1 �⊆ E1 note that the
function x2 ∈ G1, but, by Lemma 1, it is not in E1. This proves (ii) and (iii). (iv)
follows from a result of Bel’tyukov, see Kutylowski [17]. (v) is a consequence of
the fact that for any f ∈ E1, f(%x) is almost everywhere less than G1(%x) ∈ G1. *+

Definition 5. We define the class P of number-theoretic functions by
P = [I, C1;comp,pr]. *+

Note that the definition of the class P does not embody explicit bounds.

Proposition 6 (Basic functions). The following functions belong to P. (i)
C0,C1; (ii) for each fixed k ∈ N the function Ck(x) where Ck(x) = k if x ≥ k,
and Ck(x) = x otherwise (so Ck(x) is the almost everywhere constant function
yielding k for all but finitely many values of x); (iii) P(x) (predecessor); (iv) x−̇y
(modified subtraction); (v) the function x ⊕y+1 1 where x ⊕y+1 1 = 0 if x ≥ y,
and x⊕y+1 1 = x+ 1 otherwise; (vi) Ŝ(x, y); (vii) c(x, y, z) where c(x, y, z) = x
if z = 0 and c(x, y, z) = y if z �= 0; (viii) max(x, y).

Proof. We will argue that the functions of the lemma can be defined from pro-
jections and the constant 1 by composition and primitive recursion.

To define the constant function C0 is slightly nontrivial. Define g by primitive
recursion such that g(x, 0) = x and g(x, y + 1) = y. Then we can define the
predecessor P from g since P (x) = g(x, x). Further, we can define the constant
function C0 by C0 = P (1). This proves that (i) and (iii) holds; (iv) holds since
we have x−̇0 = x and x−̇(y + 1) = P (x−̇y). For (vii), c(x, y, 0) = I2

1 (x, y)
and c(x, y, z + 1) = I4

2 (x, y, c(x, y, z), z)), is an instance of pr. (viii) follows by
max(x, y) = c(x, y, C1−̇(x−̇y)); (v) from x⊕m+1 1 = c(0,m−̇((m−̇x)−̇1),m−̇x).
(ii) remains; thus let M0(z) = 0 and Mn+1(z) = Mn(z) ⊕z+1 1. We can define
Mn for any fixed n ∈ N. Further, Mn(z) = n (mod z + 1). Hence Ck(x) =
c(x,Mk(x), P (k)(x)) where P (k) is the predecessor function repeated k times.

*+
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Corollary 7. P = G0.

Proof. G0 = max(%x,C1). Since all functions of P are non-increasing, it is easy to
see that replacing pr and comp by br and bcomp in the definition of P leaves
the resulting class of functions unchanged. By Proposition 6 (vi) and (viii) and
the fact that C1 = G0(C0) ∈ G0 the corollary follows. *+

Lemma 8 (Normal form). For any f ∈ Gn there exists f ′ ∈ P such that
f(%x) = f ′(Gn(%x), %x).

Proof. Let f ∈ Gn. By an easy induction on a (any) definition of f , using the
fact that any intermediate function is bounded by Gn(%x) (Lemma 3). *+

Corollary 9. If G0
� ⊆ ΔN

0 , then E2
� ⊆ ΔN

0 .

Proof. Assume G0
� ⊆ ΔN

0 and R ∈ E2
� . We will prove R ∈ ΔN

0 . By Lemma 8
we have R′ ∈ G0

� and a fixed n ∈ N such that R(%x) holds iff R′(Gn(%x), %x) > 0.
Lemma 3 (iii) says that the relation Gn(%x) = y is in G0

� . Let p be a polynomial
expressible in the theory ΔN

0 such that p(%x) ≥ Gn(%x). Now, R(%x) is true iff
∃y ≤ p(%x) [Gn(%x) = y ∧ R′(y, %x) ], thus R ∈ ΔN

0 . *+

4 The Level-0 Typed λ-Calculus and the Hierarchy L

The following are standard definitions and notation from type-theory.
0 is a type; ϑ → ϑ′ is a type if ϑ and ϑ′ are types; ϑ × ϑ′ is a type if ϑ and

ϑ′ are types. ϑ1, . . . , ϑn → ϑ′ denotes the type ϑ1 → (ϑ2 → · · · (ϑn → ϑ′) · · · ).
We say a type ϑ has level n when lev(ϑ) = n where lev(0) = 0;

lev(ϑ → ϑ′) = max(lev(ϑ) + 1, lev(ϑ′)); and lev(ϑ× ϑ′) = max(lev(ϑ), lev(ϑ′)).
Also each type ϑ may be uniquely written as ϑ1, . . . , ϑn → ϑn+1 where

lev(ϑn+1) = 0, then the arity of ϑ, ar(ϑ) = n.

Definition 10. Define the terms of the standard level-0 λ-calculus by (M : ϑ
means M is a term of type ϑ)

– (Variables) We have a set X of variables xϑ0 , x
ϑ
1 , x

ϑ
2 , . . . for each type ϑ with

lev(ϑ) = 0. An xϑi ∈ X is a term of type ϑ.
– (λ-abstraction.) (λx.M) : ϑ → ϑ′ is a term if x : ϑ and M : ϑ′ is a term.
– (Application) (MN) is a term of type ϑ′ if M : ϑ → ϑ′ and N : ϑ are terms.
– (Product) 〈M,N〉 : ϑ× ϑ′ is a term if M : ϑ and N : ϑ′ are terms.
– (Projections) (fstM : ϑ) is a term ((sndM) : ϑ′) if M : ϑ× ϑ′ is a term.

The reduction rules of the calculus are (λxM)N → M [x := N ] (β-conversion);
fst〈M,N〉 → M ; and snd〈M,N〉 → N . We will study extensions L− and L of the
standard typed λ-calculus. Both extensions will normalise, and we will say that
the two terms M and N are equal, in symbols M = N , when M and N reduce
to the same normal form. M ≡ N means syntactical identity. M ∈ N means M
is a sub-term of N . The set of free variables in M is denoted FV(M) *+
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Note that by level-0 typed λ-calculus, we mean that only variables of level
zero type is included; hence only level zero abstraction is allowed.

We assume the reader is familiar with the typed λ-calculus, and we will use
the standard conventions from the literature: MNPQ abbreviates (((MN)P )Q)
and λxyz.M means λx.(λy.(λz.M)). Superscripts indicating type is usually omit-
ted.

For more on the λ-calculus see e.g. [9] or [25]

Definition 11. The calculus L− is the standard level-0 λ-calculus extended
with the constant 1 : 0, and for each type ϑ with lev(ϑ) = 0 the recursor Rϑ of
type 0 → ϑ → ϑ, ϑ,0 → ϑ.

Extend the calculus L− to the calculus L by introducing constants 0 : 0
(zero), S : 0 → 0. The extended reduction-relation is given by adding the rules

1 → S0 ; RϑHG0 → G and RϑHG(SN) → HN(RϑHGN)

We use n to denote the numeral S(n)0. Here S(n)0 is the standard shorthand for
iterated application, i.e. M (0)N ≡ N ; M (n+1)N ≡ M(M (n)N). Num denotes
the set of numerals. *+

The above definitions may be summarised as follows:
The standard level-0 λ-calculus is the fragment of standard typed λ-calculus

with products where all higher-type variables are removed.
L− is a very restricted fragment of Gödels T (identify 1 with S0); reduction

rules for the recursors are omitted and higher-type variables are banned. Also
no successor constant is included. e.g. the term Rϑ(M,N,1) is irreducible in the
calculus L− when M and N are. The calculus L− should be thought of as a
calculus for defining functions.

The calculus L is the fragment of Gödels T where only the type-restrictions
are upheld (if one temporarily ’forgets’ the constant 1 and the rule 1 → S0). It
is well known that any closed L-term of type 0 normalises to a unique numeral.
Thus, a closed term M of type 0n → 0 defines a unique function f : Nn → N,
and the value f(%n) can be computed by normalising the term Mn. The calculus
L should be thought of as a calculus for computing functions.

The calculus L captures the primitive recursive functions, and thus is far too
powerful for our purposes. However, if we disallow occurrences of the successor
S in the term M , the class of functions definable is of course severely restricted.
At a first glance it is easy to think that most interesting functions are thrown
out with the successor function. We will see that this is not the case, indeed, any
0 − 1 valued function computable by a Turing machine working in linear space
can be defined by an L−-term, and then computed in the L-calculus.

In the following we will also see that a further refinement of the L−-terms
into a hierarchy of terms, in turn induces an interesting sub-recursive hierarchy.

Definition 12. A function f :Nk → N is defined by M if M : 0, . . . ,0 → 0 and
∀%n ∈ Nn

(
M%n =L f(%n)

)
. A term defining f is denoted Mf . If M : 0, . . . ,0 → 0,

then fM is the unique function defined by fM (%n) =L M%n.
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Define the product rank π(ϑ) of a type ϑ by π(0) = 0;
π(ϑ → ϑ′) = max(π(ϑ), π(ϑ′)) and π(ϑ× ϑ′) = π(ϑ) + π(ϑ′) + 1.

Define the product rank π(M) of the L−-term M by

π(M) def= max{π(ϑ) | M has a sub-term of type ϑ }

Let Ln def= {fM | π(M) ≤ n} and define the hierarchy L by L =
⋃

n∈N Ln. *+

The next lemma shows that a surprisingly large arsenal of functions is defin-
able by terms of product rank 0.

Proposition 13. We have P ⊆ L0, and thus all the basic functions given in
Proposition 6 belong to L0.

Proof. We recall that P = [I, C1;comp,pr]. The constant function C1 is defined
by the initial L−-term 1. The projection function Ini (x1, . . . , xn) = xi is defined
by the L−-term λx1 · · ·xn.xi (for any fixed i, n ∈ N such that 1 ≤ i ≤ n). The
set of functions defined by L−-terms of product rank 0 is obviously closed under
composition and primitive recursion. Thus, it follows that P ⊆ L0. *+

Note that if the relation f(%x) = y is in Ln
� then f ∈ Ln, since f(%x) =

μy ≤ max(%x, 1)[f(%x) = y] and we can show that Ln is closed under bounded
μ-operator. Hence Li

� = Lj
� iff Li = Lj .

The aim of this section is to prove the following theorem.

Theorem 14. We have Gn
� = Ln

� for every n ∈ N.

Note that Gn(b) equals the greatest number in base max(b, 1)+1 of of (n+1)-
digits, and that a term containing a sub-term of type 0n, will have product rank
at least n.

Definition 15. Let 0n be defined by 00 = 0; 0n+1 = 0 × 0n.
For 0 ≤ n we define the set Numn of generalised numerals of product rank n

inductively by

(i) Num0 = Num and (ii) Numn+1 = {〈N,M〉 | N ∈ Num,M ∈ Numn}

It is readily checked from previous definitions that N ∈ Numn satisfies N : 0n

and π(N) = n. We write 〈N0, . . . , Nn〉 or 〈 %N〉 for 〈N1, . . . 〈Nn−1, Nn〉 . . .〉.
Next, define a map [·]nb : {m | m ≤ Gn(b)} → Numn, for each b ≥ 1 and

n ≥ 0, by [m]nb = 〈a0, . . . , an〉, where a0, . . . , an ≤ b are the unique natural
numbers such that m = Σn

i=0ai(b + 1)i. Clearly, each [·]nb is an injection onto a
set Numn

b ⊆ Numn. Also, whenever [m]nb is written it is tacitly assumed that
m ≤ (b + 1)n+1 − 1. We may also write M [%α := m] to indicate that some list
of (free) variables in M are substituted for the numerals a0, . . . , an such that
m = Σn

i=0ai(b + 1)i when b and n are clear from context. *+
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We first attack the Gn
� ⊆ Ln

� direction of Theorem 14. We need a technical
lemma.

Lemma 16. Let β be a fixed variable of type 0. For any f ∈ P there exists an
L−-term Fn : 0n, . . . ,0n → 0n of product rank n, such that

(Fn[β := b])[m1]nb · · · [mk]nb =L [f(%m)]nb

for all b, %m where max(%m, 1) ≤ (b + 1)n − 1.

Proof. For n = 0 we have G0 = P ⊆ L0 by Corollary 7 and Proposition 13. For
n ≥ 1 The proof is by induction, for all n simultaneously, on a (any) definition of
f in P. The induction is quite straightforward due to the non-increasing nature
of P. The only involved step is when f is defined from h and g by primitive
recursion.

By the I.H, we then have terms H ′ and G′ satisfying the hypothesis of the
lemma. Let H = H ′ %X and G = G′ %X. Then H : 0n,0n → 0n and G : 0n We need
to construct a term RH,G which satisfies RH,G[m]nb [m1]nb · · · [mk]nb =L H{m}nbG
where H{0}G ≡ G and H{m+ 1}nbG ≡ H[m]nb (H{m}nbG). For the construction
we need terms with the following properties: A term <β : 0n,0n → 0 which
satisfies <b [m0]nb [m1]nb =L 1 if m0 < m1 and <b [m0]nb [m1]nb =L 0 else (we skip
the details). Furthermore, define a term H̃ by

H̃ ≡ λγ.R
(
λδ0δ1.H〈α0, . . . , αn〉γ

)
γ(< 〈α0, . . . , αn〉μ)

Here %α, μ, γ are all fixed variables, while the δi are dummy variables. Notice
that the %α and μ are free in H̃ It is easy to verify that

H̃[%α := m0;μ := [m1]nb ] =L

{
λγ.γ if m1 < m0

λγ.H[m]nb γ else

Now construct a term H̃k by induction on k by

H̃0 ≡ R
(
λα0.(H̃[α0 := Ŝα0β])

)(
(H̃[α0 := 0])γ

)
β and

H̃k+1 ≡ R
(
λαk+1γ.(H̃k[αk+1 := Ŝαk+1β])

)(
H̃k[αk+1 := 0]

)
β

It is important to note that the αi are the same fixed variables as in the construc-
tion of H̃. It is k = n which is useful for us, even if the definition is well defined
for all k. The term Ŝ is here a (any) term defining the function Ŝ; 0 is formally
shorthand for any L−-term defining the function C0. It is readily checked from
the definition that π(H̃k) = n for all k

It follows by a straightforward induction on k (accompanied by rather tedious
book-keeping) that (λμ %X.H̃nG[β := b])[m]nb %N =L (H ′ %N)(m){m}(G′ %N). The
induction step now follows directly. *+

Informally, the term (λμ %X.H̃G[β := b])[m]nb %N reduces to a term
λ %X(H̃((b+1)n+1)G) %N where each H̃ ’knows it’s position p’ in the row by the
information carried by the αi. It then reduces to λγ.γ if it is not supposed to be
there, and λγ.H[p]n+1

b γ if it should.
We obtain Gn

� ⊆ Ln
� as a corollary.
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Proof (of Gn
� ⊆ Ln

� ). Let Gn
� 0 f : Nk → N, and choose f ′ ∈ P as guaranteed by

Lemma 8, i.e. f(%m) = f ′(Gn(%m), %m). Let F ′ be a term as in Lemma 16,
b = max{%m}, and define F ∈ L− by

F ≡ λ%x.(fst(λβ.(F ′〈β, . . . , β〉〈x1, [0]nb 〉 · · · 〈xk, [0]nb 〉)max(%x)

Here max %x is shorthand for a (any) term defining the function max, [0]nb ≡
〈0, . . . , 0〉, and we obtain

F %m =L fst(λβ.(F ′〈β, . . . , β〉〈m1, [0]nb 〉 · · · 〈mk, [0]nb 〉)max(%m) =L

fst
(
(F ′[β := b])[Gn(b)]nb [m1]nb · · · [mk]nb

)
=L fst[f(%m)]nb =L f(%m)

The second equality is [Gn(b)]nb ≡ 〈%b〉, the third equality is Lemmata 8 and 16
and the last follows from fst[m]nb = m when m ≤ b. *+

We now turn to the other direction, Ln
� ⊆ Gn

� , of Theorem 14, and prove the
stronger result Ln ⊆ Gn. Thus given a term M : 0, . . . ,0 → 0, we must show
that the function fM defined by fM (%n) = k iff M%n =L k. The converse does not
hold, since f ∈ Ln implies f non-increasing, while e.g. G2 ∈ G2 is not.

The natural way to proceed, is by an inductive argument of some sort. If
M : 0, . . . ,0 → 0 is an L−-term, we may assume w.l.o.g. that M is L−-normal
i.e. no redex fst〈N0, N1〉 (snd〈N0, N1〉) or (λx.N0)N1 occurs in M . We will in the
continuation also assume that all abstractions λx.M0 are unique with respect to
the variable, something which may always be achieved with a suitable renaming
of bound variables.

Under these assumptions it is possible to show that any sub-term N ∈ M
must be on one of the following forms: (B1) N ≡ x; (B2) N ≡ 1; (PRJ)
N ≡ fstN0 (sndN0) where lev(N0) = 0 (i.e. N0 : ϑN and lev(ϑN ) = 0); (PRD)
〈N0, N1〉 where lev(N0) = lev(N1) = 0; (ABS) N ≡ λx.N0 where lev(N0) ≤ 1;
(REC) N ≡ RHGN .

This all follows from type considerations, except for item (REC). A closed
L−-term may actually have the form RHG and still be closed type 0 → 0. In
that case we may replace any such sub-term by λx.RHGx without changing the
defined function.

In order to make this work, we will need to attach some meaning to ’fN ’
for ’most’ sub-terms N ∈ M ; since in general, they are neither closed nor typed
0, . . . ,0 → 0. In order to get around this obstacle we first address the typing
issue.

Consider a member σ = n1, . . . , nk of N<ω, i.e. a finite sequence of natural
numbers, and let σσ′ denote concatenation of sequences. Armed with pairing
such a sequence may be represented a number of ways, inductively defined by n =
n and σσ′ = 〈σ, σ′〉. Obviously every sequence of length |σ |= k is representable
by k−1 applications of such pairings, and the representation is not unique. Indeed
we get one representation for each type ϑ with π(ϑ) = k − 1 and lev(ϑ) = 0.
Also if z > max{n | n ∈ σ} we may code such a representation as a number
(σ)ϑz with the following inductive schema

(n) = n and (〈σ, σ′〉)ϑz = (σ)ϑz · (Gk(z) + 1) + (σ′)ϑz where k =|σ′ |
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That (σ)ϑz ≤ Gπ(ϑ)(z) is easily verified.
Every closed L-term N : ϑ with lev(ϑ) = 0 is identified in a canonical way

with a represented sequence σ, e.g. 〈〈n1, n2〉, n3〉 with 〈〈n1, n2〉, n3〉.
We are now ready to sketch a proof of Ln ⊆ Gn

Proof (of Ln ⊆ Gn (sketch)). O denotes a set-theoretic bijection between a finite
subset of X (the set of variables of the calculus L−) and an initial segment of
N\{0}, hence O induces an ordering of dom(O). We next define inductively over
the build-up of a term M an interpretation [[M ]]O ∈ G, when FV(M) ⊆ dom(O).
It has the desired property that

fM (%n) def= M%n = [[M ]]∅(max(%n, 1), %n) and [[M ]]O ∈ Gπ(M)

for any closed normal M : 0, . . . ,0 → 0.
A fully detailed proof uses the fact that Gn(k) ≥ (N)ϑk , where N : ϑ is closed,

lev(ϑ) = 0 and k ≥ max{m | m ∈ N}. Combined with the non-increasing nature
of numerals in L-terms, we are able to interpret open and/or type ϑ1, . . . , ϑn →
ϑn+1, in a meaningful way. This enables us to carry out the induction step
for sub-terms N of M by interpreting e.g. N : 0 × 0 → 0 × 0 as a function
f : N2+k → N2, where k depends on O. The key point is that Gn(%x) is exactly
large enough to encode a sequence of length n + 1. Piecing things together, the
result follows. *+

Why do we think Ln
� = Gn

� is worth mentioning? Simply because it provides
a fresh (to our knowledge) point of attack for the original E0

� vs. E2
� problem.

λ-calculi is very well known, thoroughly studied and of intuitive nature. It con-
stitutes a relatively concrete mathematical theory, possibly suited for settling
this long open problem.

An interesting possible generalisation of the hierarchies Gn and Ln arises from
the more general function Gϑ for all types. Define G′

0(b) = b + 1; G′
ϑ×ϑ′(b) =

G′
ϑ(b)G′

ϑ′(b) and G′
ϑ→ϑ′(b) = G′

ϑ′(b)G
′
ϑ(b), and let Gϑ = G′

ϑ − 1. Then our Gn

corresponds with Gϑ when π(ϑ) = n and lev(ϑ) = 0. We suspect that this
construction gives rise to (transfinite) hierarchies Gϑ and Lϑ based on a suitable
well-ordering of the types.
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1 Introduction

Let C be a program written in a formal language in order to be executed by some
kind of machinery. A statement about C might be true or false and has the form
C : M . For the time being, just consider the statement C : M as a collection of
data yielding information about the resources required to execute C; and if we
know that C :M is true (or false), we know something useful when it comes to
determine the computational complexity of C. Let Γ be a set of statements, and
let Γ |= C :M denote that C :M will be true if all the statements in Γ are true.
(The statements in Γ might say something about the computational complexity
of the subprograms of C.) If Γ = ∅, we will simply write |= C :M .

Overview: We will define the semantic relation |= mathematically, and then
introduce a corresponding provability relation 1 by a syntactic proof calculus
for deriving statements of the form Γ 1 C :M . We have a soundness theorem for
the calculus, i.e., we can prove Γ 1 C :M ⇒ Γ |= C :M , and we are also able to
prove an important completeness property of the calculus.

Our proof calculus is based on a careful and detailed analysis of the rela-
tionship between the resource requirements of a computation and the way data
might flow during the computation. This analysis extends and refines the in-
sights acquired by researches as done by Bellantoni & Cook ([2] normal and safe
variables), Simmons ([16], active and dormant variables), Leivant ([14], rami-
fication), and in particular, Kritiansen & Niggl ([9, 10] measures). The insight
that there is a relationship between the absence and presence of successor-like
functions and the computational complexity of a program is a part of the foun-

S.B. Cooper, B. Löwe, and L. Torenvliet (Eds.): CiE 2005, LNCS 3526, pp. 263–274, 2005.
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dation of our calculus, see e.g., Jones [5, 6], Kristiansen & Voda [11, 12], and
Kristiansen [8].

Even if our research builds on, and is comparable to, the research discussed
above, it has a different emphasis, e.g., we are not aiming at implicit char-
acterisations of complexity classes (even if such characterisations will be easy
corollaries of our results). The overall goal of our research is to achieve a better
understanding of the relationship between syntactical constructions in natural
programming languages and the computational resources required to execute the
programs.

Not much research has been conducted along these lines previously. Some
exceptions are a thesis by Caseiro [3]; papers by Lee, Jones & Ben-Amram, and
Jones & Bohr [13, 7] which analyse the relationship between program syntax and
program termination; and a thesis by Frederiksen [4] that contains syntactical
flow analyses sufficient to recognise that a functional program to runs in polyno-
mial time. The work of Kristiansen & Niggl [9, 10] and some work of Niggl (see
[15] for an overview) are also to a certain extent exceptions.

Our programming language is not well equipped syntactically, but is natural
in the sense that it is an essential fragment of many popular real-life program-
ming languages, e.g., C. By doing derivations in our calculus, we are able to
establish useful information about the computational complexity of programs,
and as our theorems show, the calculus is powerful. Thus, it might be tempting
to discuss real-life applications. Be that as it may, such applications are hardly
required to justify this paper. We believe this paper conveys a theoretical insight
that has a value in its own right.

2 Programs, Commands and Expressions

We consider nondeterministic imperative programs that manipulate natural num-
bers held in a fixed number of program variables X1, . . . , Xn. Programs may be
iterative but not recursive. We will call such a program a command in the vari-
ables X1, . . . , Xn.

2.1 Syntax

The core expression and the core commands have forms given by the grammar

X ∈ Variable ::= X1 | X2 | X3 | . . .
e ∈ Expression ::= X | (e + e) | (e * e)

C ∈ Command ::= skip | X:=e | C1;C2 | loop X {C}
| if ? then C else C | while ? do {C}

The variable X� is not allowed to occur in the body C of the loop loop X� {C},
and we will usually omit parentheses in the expressions.
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2.2 Semantics

A core command is executed as expected from its syntax, so we omit a de-
tailed formalisation. Each variable holds a natural number. The loop command
loop X {C} executes the command C in its body n times in a row, where n
is the value stored in X when the loop starts. The content of X will not be
modified during the execution (X is not allowed to occur in C). The command
if ? then C1 else C2 makes a nondeterministic choice and executes one, and only
one, of the commands C1 and C2. The command C1;C2 executes first the com-
mand C1 and then the command C2. Commands of the form X:=e are ordinary
assignment statements, and the command skip does nothing. Finally, the com-
mand while ? do {C} makes a nondeterministic choice and executes either the
command skip or the command C; while ? do {C}.

Although generally familiar, the language above fails Turing completeness
owing to the lack of constants, and uninterpreted tests in if and while. On
the other hand, the forthcoming inference rules will be seen both sound and
complete. A straightforward extension yields sound but incomplete inference
rules for a Turing complete language.

Let C be a command in the variables X1, . . . , Xn. The relation

[[C]](x1, . . . , xn � x′
1, . . . , x

′
n)

holds iff there exists an execution of C such that variables X1, . . . , Xn respectively
hold the numbers x1, . . . , xn when the execution starts, and variables X1, . . . , Xn
respectively hold the numbers x′

1, . . . , x
′
n when the execution terminates. It is

defined in the expected way.

2.3 mwp-Bounds on Variable Growth

Given command C and variables Xi, Xj , our goal is to discover data-flow relations
between the initial value xi of Xi and the final value x′

j of Xj that hold whenever
[[C]](x1, . . . , xn � x′

1, . . . , x
′
n). An mwp-bound is a number-theoretic expression

of the form
max(%x, %y, %z, q(%y, %z)) + p(%z)

where %x, %y, and %z are disjoint lists of variables, and q and p are honest polyno-
mials1, and any of the lists %x, %y and %z might be empty.

In mwp, m stands for “maximum”, p stands for “polynomial”, and w stands
for “weak polynomial”. We call %x the m-variables of the mwp-bound; %y the
w-variables of the mwp-bound; %z the p-variables of the mwp-bound.

We will use W,V,U, . . . to denote mwp-bounds. When convenient we will
display the variables in an mwp-bound W by the notation W (%x; %y;%z) where %x,
%y and %z are respectively the m-variables, w-variables and p-variables of W .

1 A polynomial p is honest if it is monotone in all its variables, e.g., if y in p implies
p(y, 
x) ≤ p(y + 1, 
x).
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Given a command C in X1, . . . , Xn, a set of bounds has the form

[[C]](x1, . . . , xn � x′
1, . . . , x

′
n) ⇒ x′

1 ≤ W1 ∧ . . . ∧ x′
n ≤ Wn (*)

where W1, . . . ,Wn are mwp-bounds.
Truth of (*) implies that any values computed by the command C will be

polynomially bounded in the inputs. The value computed into X1 by command
loop X2 {X1:= X1+X1} grows exponentially, and thus the command has no mwp-
bounds.

Example. An example of a set of bounds:

[[loop X3 {X1:= X1+X2}]](x1, x2, x3 � x′
1, x

′
2, x

′
3) ⇒ x′

1 ≤ W1∧x′
2 ≤ W2∧x′

3 ≤ W3

where W1(x1; ;x2, x3) = x1 +x2 ·x3 and W2(x2; ; ) = x2 and W3(x3; ; ) = x3. *+

3 A Matrix Algebra of mwp-Bounds

We introduce the mwp-algebra and some basic matrix-theoretic notation.

3.1 The Form of mwp-Matrices

For mathematical convenience, we will group all the relations between pairs of
variables into a single data structure, an n×n matrix M that records the kinds of
dependencies, but not the exact polynomials. We write i

α→
M

j in case Mij = α.
If the relation i

α→
M

j holds, then α ∈ {⊥,m,w, p} yields information about
the data flow from the source variable Xi to the target variable Xj that occurs
while executing a command C.

– If α = ⊥, the source variable’s value is not used to compute the target
variable’s new value

– If α = m, the source variable’s value will not be increased, and will not
be added to the target variable’s original value. This happens, e.g., in the
program Xj:= Xi.

– If α = w, the source variable’s value might be increased, but will not be added
to the target variable’s original value. This happens, e.g., in the program
Xj:= Xi * Xi.

– If α = p, the source variable’s value might be increased and might also be
added to the target variable’s original value. This happens, e.g, in the pro-
gram Xj:= Xj + (Xi * Xi).

Our calculus will deduce statements C :M of a more concise (and less specific)
form that imply that mwp-bounds exist. Let C be a command in X1, . . . , Xn and
let M be a n× n matrix over the set {⊥,m,w, p}.

By definition statement C :M is true, written |= C :M , iff there exist mwp-
bounds W1, . . . ,Wn such that (*) holds, where xi is an m-variable of Wj iff
Mij = m; xi is an w-variable of Wj iff Mij = w; and xi is a p-variable of Wj iff
Mij = p.
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Example. The example above can now be expressed much more concisely in
matrix form, but the exact polynomials involved are lost:

loop X3 {X1:= X1+X2} :
⎛⎝ m ⊥ ⊥

p m ⊥
p ⊥ m

⎞⎠
*+

3.2 The Matrix Algebra

Let V = {⊥,m,w, p}. The elements in V are ordered as follows: ⊥ < m < w < p.
We use Greek letter α, β, γ . . . to denote the elements in V. The least upper bound
of α, β ∈ V is denoted by α+β, i.e., α+β = α if α ≥ β; otherwise α+β = β. Let
α1, . . . , αn be a sequence of values of form V, then

∑
i=1...n αi

def= α1 + · · · + αn.
The product of α, β ∈ V is denoted by α × β and defined by α × β = α + β if
α, β ∈ {m,w, p}; otherwise α× β = ⊥.

Fix some n ∈ N. We use M,A,B,C, . . . to denote (n × n) matrices over V,
and Mij denotes the element in the i’th row and j’th column in the matrix M .
We define the least upper bound A⊕B of the matrices A and B by M = A⊕B
iff Mij = Aij + Bij . We say that the matrix M is an upper bound the matrix
A, in notation M ≥ A, if there exists a matrix B such that M = A ⊕ B. Thus
we have a partial ordering of the universe of matrices. The ordering symbols
≥,≤, >,< have their standard meaning with respect to this ordering, and we will
use standard terminology, that is, we may say that A lies above B when A ≥ B,
that A is a matrix strictly below B when A < B, etcetera. We define the product
A ⊗ B of the matrices A and B by M = A ⊗ B iff Mij =

∑
k=1,...,nAik × Bkj

(standard matrix multiplication). The zero matrix is denoted by 0. We define 0
by M = 0 iff Mij = ⊥ for all indices i, j. The identity matrix is denoted by 1.
We define 1 by M = 1 iff Mij = m if i = j, and Mij = ⊥ if i �= j. A unary
operation on matrices, denoted ∗ and called closure, is defined by the infinite
sum

M∗ = 1 ⊕ M ⊕ (M ⊗M) ⊕ (M ⊗M ⊗M) ⊕ (M ⊗M ⊗M ⊗M) ⊕ . . .

Let M denote the set of (n×n) matrices. The algebraic structure (M,⊕,⊗,0,1)
is a finite closed semiring. The closure operator is defined in any closed semiring,
and we have M∗ = 1 ⊕ (M ⊗M∗). For the definition of a closed semiring and
more on related algebra, see, e.g., [1].

We use V,U, T . . . to denote vectors over V, and Vi denotes the i’th element
in the vector V . We define the product V ×α of the vector V and the value α ∈ V
by V ′ = V × α iff V ′

i = Vi × α. We define the least upper bound by T ⊕U of the
vectors T and U by V = T ⊕ U iff Vi = Ti ⊕ Ui. We define the zero vector 0 by
V = 0 iff Vi = ⊥ for any index i.

Let V k← α denote the modification of the vector V defined by V ′ = V
k← α iff

V ′
i = α if i = k, and V ′

i = Vi if i �= k. Let M be a matrix and let V be a vector.
Then M

k← V denotes the matrix obtained by replacing the k’th column in M

by the vector V , that is, M ′ = M
k← V iff M ′

ij = Vi if j = k, and M ′
ij = Mij if

j �= k.
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Example. Assume n = 4 and let V =
⎛⎜⎜⎝

m
p
⊥
p

⎞⎟⎟⎠ . Then

1 2← V =
⎛⎜⎜⎝

m ⊥ ⊥ ⊥
⊥ m ⊥ ⊥
⊥ ⊥ m ⊥
⊥ ⊥ ⊥ m

⎞⎟⎟⎠ 2←
⎛⎜⎜⎝

m
p
⊥
p

⎞⎟⎟⎠ =
⎛⎜⎜⎝

m m ⊥ ⊥
⊥ p ⊥ ⊥
⊥ ⊥ m ⊥
⊥ p ⊥ m

⎞⎟⎟⎠
*+

Before we proceed to define the proof calculus, let us indicate how the matrices
will be used in a book-keeping process recording information on the data flow
in program executions. Recall that the matrix M induces the relations m→

M
,

w→
M

,
p→

M
in a natural way, that is, i α→

M
j iff Mij = α. If the statement C :M

is derivable in the calculus, the relations m→
M

, w→
M

,
p→

M
will give information

on how data might flow during an execution of the program C. The closure
operator plays an important role in the derivation rules for the loop statements.
It is easy to see the closure A∗ is the least matrix B above 1 ⊕ A such that
i

α→
B
k ∧ k

β→
B
j ⇒ i

α+β→
B
j.

4 The Calculus

We now introduce a proof calculus that allows formal derivations of true state-
ments.

We derive 1 e :V , for core expression e and vector V , by the rules

(E1) 1 Xi :0
i← m

(E2)
1 e1 :V 1 e2 :U
1 e1*e2 : (V ⊕ U) × w

(E3)
1 e1 :V 1 e2 :U
1 e1+e2 : (V ⊕ U) × w

(E4)
1 e1 :V 1 e2 :U
1 e1+e2 : (V × p) ⊕ U

(E5)
1 e1 :V 1 e2 :U
1 e1+e2 :V ⊕ (U × p)

Explanation of rules (E3), (E4), (E5): An expression such as X1+X2 can be as-
signed more than one correct vector:

1 X1+X2 :
(

w
w

)
or 1 X1+X2 :

(
p
m

)
or 1 X1+X2 :

(
m
p

)
.

Let Γ be a set of statements, and let C : M be a statement. We can derive
Γ 1 C :M by applying the rules

(S) Γ 1 skip :1 (I)
Γ1 1 C1 :A Γ2 1 C2 :B

Γ1 ∪ Γ2 1 if ? then C1 else C2 :A⊕B

(A)
1 e :V

Γ 1 X�:=e :1 �← V
(C)

Γ1 1 C1 :A Γ2 1 C2 :B
Γ1 ∪ Γ2 1 C1;C2 :A⊗B

further, we can apply the rule



The Flow of Data and the Complexity of Algorithms 269

(L)
Γ 1 C :A

Γ 1 loop X� {C} :B

if the following conditions are satisfied: (1) w→
A∗ and

p→
A∗ are irreflexive, and (2)

B is the least matrix above A∗ such that ∃j[j p→
B
i] ⇒ �

p→
B
i. We can apply

the rule

(W )
Γ 1 C :M

Γ 1 while ? do {C} :M∗

if the following conditions are satisfied: (1) w→
M∗ is irreflexive, and (2)

p→
M∗ is

empty. Finally, we have the weakening and assumption rules

Γ 1 C :M
Γ ∪ Γ ′ 1 C :M ⊕M ′ and {C :M} 1 C :M

for any matrix M ′, set of statements Γ ′, and statement C :M .

Theorem 1 (Soundness). Γ 1 C :M ⇒ Γ |= C :M .

We say that a core command is feasible if there exists a matrix M such that
|= C : M . We say that a core command is derivable if there exists a matrix M
such that 1 C :M .

Theorem 2 (Completeness). Any feasible core command is derivable.

Theorem 2 does not assert that we have |= C :M ⇒1 C :M for any matrix M .
That is not true.

Note the relationship between the forms of the core commands and the calcu-
lus. For each syntactic construction in the core language there is a corresponding
derivation rule in the calculus. The core language is carefully constructed to ob-
tain Theorem 2. This completeness property does not contradict the “halting
problem” as in certain respects the core language is a weak language. A core
command can compute very rapidly increasing functions and even enter an in-
finite loop, but it cannot set the value of a variable to , e.g., 0. Thus the core
language does not yield full Turing computability.

Suppose we e.g. extend the language by adding expressions 0, 1, and inter-
preting tests in if and while commands. With these assumptions, we will obtain
full Turing computability. The assumption rule {C : M} 1 C : M permits us to
integrate these, and other commands working on natural numbers, in the calcu-
lus. If the language yields full Turing computability, the calculus will of course
be incomplete, i.e., there exists a set of statements Γ and a statement C :M such
that Γ |= C :M and Γ �1 C :M .

Theorem 1 is proved by induction on the height of the derivation of 1 C :M .
Here is a proof sketch for Theorem 2: Let C′ be a command in X1, . . . , Xn. Assume
that the command C′ is not derivable. (We will prove that C′ is not feasible.)
Then there exists a subcommand C of C′ such that C is derivable, but either
loop X� {C} or while ? do {C} is not. Prove that there exist fixed m, k ∈ N such
that for any x1, . . . , xn ≥ 2 we have

[[Cm]](x1, . . . , xn � x′
1, . . . , x

′
n) ∧ x′

k ≥ 2xk (†)
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where C0 ≡ skip and C�+1 ≡ C; C�. (Perhaps it will be helpful to phrase (†) more
lyrically: There exist m ∈ N and a variable Xk such that when C is executed m
times in a row on inputs ≥ 2, the content of Xk will be at least doubled.) It
follows that there exists an execution of the command C′ such that the value
the command computes into the variable Xk is not bounded by a polynomial in
the inputs. Thus, there will be no matrix M such that |= C′ :M . Thus, C′ is not
a feasible command. In this proof it is essential that a core command cannot
decrease the value of a variable when its inputs are ≥ 1 (otherwise it might
multiply by zero).

5 Examples

Example. Let X1:= X2; X2:= X3; X3:= X1 be a command in X1, X2, X3, X4. We
have the derivation

 X2 :
⎛⎜⎜⎝

⊥
m
⊥
⊥

⎞⎟⎟⎠
 X1:= X2 :

⎛⎜⎜⎝
⊥ ⊥ ⊥ ⊥
m m ⊥ ⊥
⊥ ⊥ m ⊥
⊥ ⊥ ⊥ m

⎞⎟⎟⎠

 X3 :
⎛⎜⎜⎝

⊥
⊥
m
⊥

⎞⎟⎟⎠
 X2:= X3 :

⎛⎜⎜⎝
m ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥
⊥ m m ⊥
⊥ ⊥ ⊥ m

⎞⎟⎟⎠
 X1:= X2; X2:= X3 :

⎛⎜⎜⎝
⊥ ⊥ ⊥ ⊥
m ⊥ ⊥ ⊥
⊥ m m ⊥
⊥ ⊥ ⊥ m

⎞⎟⎟⎠

 X1 :
⎛⎜⎜⎝

m
⊥
⊥
⊥

⎞⎟⎟⎠
 X3:= X1 :

⎛⎜⎜⎝
m ⊥ m ⊥
⊥ m ⊥ ⊥
⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ m

⎞⎟⎟⎠

 X1:= X2; X2:= X3; X3:= X1 :
⎛⎜⎜⎝

⊥ ⊥ ⊥ ⊥
m ⊥ m ⊥
⊥ m ⊥ ⊥
⊥ ⊥ ⊥ m

⎞⎟⎟⎠

Assume [[X1:= X2; X2:= X3; X3:= X1]](x1, x2, x3, x4 � x′
1, x

′
2, x

′
3, x

′
4). Since the

calculus is sound, there exist mwp-bounds W1,W2,W3,W4 such that

x′
1 ≤ W1(x2; ; ) ∧ x′

2 ≤ W2(x3; ; ) ∧ x′
3 ≤ W3(x2; ; ) ∧ x′

4 ≤ W4(x4; ; ) .

By inspecting the command we can check that this indeed is the case since we
have x′

1 ≤ x2, x′
2 ≤ x3, x′

3 ≤ x2, and x′
4 ≤ x4. *+

Example. We continue the derivation from the previous example and apply the
L-rule

...
1 X1:= X2; X2:= X3; X3:= X1 : M

1 loop X4{X1:= X2; X2:= X3; X3:= X1} : A
L

where M =
⎛⎜⎜⎝

⊥ ⊥ ⊥ ⊥
m ⊥ m ⊥
⊥ m ⊥ ⊥
⊥ ⊥ ⊥ m

⎞⎟⎟⎠. What should the matrix A be like? The conditions

for applying the L-rule are (1) w→
M∗ and

p→
M∗ are irreflexive, and (2) A is the

least matrix above M∗ such that ∃j[j p→
A

i] ⇒ �
p→

A
i. To check if (1) is

satisfied we have to compute M∗. The outright boring computation results in

M∗ =
⎛⎜⎜⎝

m ⊥ ⊥ ⊥
m m m ⊥
m m m ⊥
⊥ ⊥ ⊥ m

⎞⎟⎟⎠, and we see that (1) is satisfied satisfied since the diagonal

of M∗ does not contain any w or p. In order to find the matrix A satisfying
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condition (2) note that M∗ ≥ M∗ and that ∃j[j p→
M∗ i] ⇒ 4

p→
M∗ i holds

trivially since the value p does not occur in M∗. Thus, (2) is satisfied when
A = M∗ and

1 X1:= X2; X2:= X3; X3:= X1 : M
1 loop X4{X1:= X2; X2:= X3; X3:= X1} : M∗ L

is an admissible inference. Now, assume

[[loop X4{X1:= X2; X2:= X3; X3:= X1}]](x1, x2, x3, x4 � x′
1, x

′
2, x

′
3, x

′
4)

Since the calculus is sound, there exist mwp-bounds W1,W2,W3,W4 such that

x′
1 ≤ W1(x1, x2, x3; ; ) ∧ x′

2 ≤ W2(x2, x3; ; ) ∧ x′
3 ≤ W3(x2, x3; ; )

∧ x′
4 ≤ W4(x4; ; )

The reader is encouraged to analyse the command and verify that we have
x′

1 ≤ max(x1, x2, x3), x′
2 ≤ max(x2, x3), x′

3 ≤ max(x2, x3), and x′
4 ≤ x4. Note

that x1 has to occur in the bound on x′
1 since the loop’s body might not be

executed at all. *+

Example. Let X1+X2 be an expression in the variables X1, X2, X3. We can find
several (three) vectors V such that 1 X1+X2 :V . If we apply (E3), we can derive

 X1 :
⎛⎝ m

⊥
⊥

⎞⎠  X2 :
⎛⎝ ⊥

m
⊥

⎞⎠
 X1+X2 :(

⎛⎝ m
⊥
⊥

⎞⎠ ⊕
⎛⎝ ⊥

m
⊥

⎞⎠ ) × w
and (

⎛⎝ m
⊥
⊥

⎞⎠ ⊕
⎛⎝ ⊥

m
⊥

⎞⎠ ) × w =
⎛⎝ w

w
⊥

⎞⎠ (I)

if we apply (E4), we can derive

 X1 :
⎛⎝ m

⊥
⊥

⎞⎠  X2 :
⎛⎝ ⊥

m
⊥

⎞⎠
 X1+X2 :(

⎛⎝ m
⊥
⊥

⎞⎠ × p) ⊕
⎛⎝ ⊥

m
⊥

⎞⎠ and (
⎛⎝ m

⊥
⊥

⎞⎠ × p) ⊕
⎛⎝ ⊥

m
⊥

⎞⎠ =
⎛⎝ p

m
⊥

⎞⎠ (II)

and if we apply (E5), we can derive

 X1 :
⎛⎝ m

⊥
⊥

⎞⎠  X2 :
⎛⎝ ⊥

m
⊥

⎞⎠
 X1+X2 :

⎛⎝ m
⊥
⊥

⎞⎠ ⊕ (
⎛⎝ ⊥

m
⊥

⎞⎠ × p)
and

⎛⎝ m
⊥
⊥

⎞⎠ ⊕ (
⎛⎝ ⊥

m
⊥

⎞⎠ × p) =
⎛⎝ m

p
⊥

⎞⎠ . (III)

*+

Example. Let C ≡ loop X3 {X1:= X1+X2}. Assume [[C]](x1, x2, x3 � x′
1, x

′
2, x

′
3).

One can easily prove by induction on x3 ∈ N that x′
1 ≤ x1 + x2 × x3, x′

2 ≤ x2,
and x′

3 ≤ x3. Hence, we have |= C :M for some matrix M . Let us try to find a
matrix M ′ such that 1 C :M ′. (Theorem 2 assures that at least one such matrix
exists, but note that theorem does not state that |= C :M implies 1 C :M .) We
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will try to extend each of the three derivations from the previous example. We
start with (I).

...
 X1+X2 :

⎛⎝ w
w
⊥

⎞⎠
 X1:= X1+X2 :

⎛⎝ w ⊥ ⊥
w m ⊥
⊥ ⊥ m

⎞⎠
 loop X3 {X1:= X1+X2} : ?

L

When trying to apply the L-rule, we find that we cannot. Let A =
⎛⎝ w ⊥ ⊥

w m ⊥
⊥ ⊥ m

⎞⎠. Then

A∗ = A. One of the conditions for applying the rule, states that the relation w→
A∗

should be irreflexive. This is not the case as 1 w→
A∗ 1. The same thing occurs

when we extend derivation (II). We do not succeed as the conditions for applying
the L-rule are not fulfilled. Let us see what happens when we extend (III).

...
 X1+X2 :

⎛⎝ m
p
⊥

⎞⎠
 X1:= X1+X2 :

⎛⎝ m ⊥ ⊥
p m ⊥
⊥ ⊥ m

⎞⎠
 loop X3 {X1:= X1+X2} : ?

L

Now the L-rule is applicable. Let B =
⎛⎝ m ⊥ ⊥

p m ⊥
⊥ ⊥ m

⎞⎠. We have B∗ = B. There are no

w’s or p’s on the diagonal of B∗, i.e., the relations w→
B∗ and

p→
B∗ are irreflexive,

and hence condition (1) for applying the L-rule is satisfied. Next we have to find
a matrix C such that condition (2) will be satisfied. Let C =

⎛⎝ m ⊥ ⊥
p m ⊥
p ⊥ m

⎞⎠. Then C

is the least matrix above B∗ such that ∃j[j p→
C

i] ⇒ 3
p→

C
i. Thus, we can

complete the derivation

...
 X1:= X1+X2 : B

 loop X3 {X1:= X1+X2} : C

Note that we got the matrix C “by adding a p” to B∗ such that 3
p→

C
1. This

reflects that the variable X3 governing the loop influences the value computed
into X1. In general, when the inference

(L)
Γ 1 C :A

Γ 1 loop X� {C} :B

is admissible, we get the matrix B by computing the closure A∗ and then “add
some p’s”. Why we have to compute the closure is obvious, the matrix B has
to yield an mwp-bound for the command C;C; . . . C︸ ︷︷ ︸

k

for any k ∈ N. The reason

we (possibly) have to “add some p’s” is that the loop variable X� will have an
impact on the bounds of (some of) the values computed in C. *+
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Example. Let X1+X1 be an expression in the variables X1, X2, X3. We can find
three possible derivations of a statement of the form X1+X2 : V . Two of them
have the same bottom line.

 X1 :
⎛⎝ m

⊥
⊥

⎞⎠  X1 :
⎛⎝ m

⊥
⊥

⎞⎠
 X1+X1 :(

⎛⎝ m
⊥
⊥

⎞⎠ ⊕
⎛⎝ m

⊥
⊥

⎞⎠ ) × w
and (

⎛⎝ m
⊥
⊥

⎞⎠ ⊕
⎛⎝ m

⊥
⊥

⎞⎠ ) × w =
⎛⎝ w

⊥
⊥

⎞⎠ (I)

 X1 :
⎛⎝ m

⊥
⊥

⎞⎠  X1 :
⎛⎝ m

⊥
⊥

⎞⎠
 X1+X1 :(

⎛⎝ m
⊥
⊥

⎞⎠ × p) ⊕
⎛⎝ m

⊥
⊥

⎞⎠ and (
⎛⎝ m

⊥
⊥

⎞⎠ × p) ⊕
⎛⎝ m

⊥
⊥

⎞⎠ =
⎛⎝ p

⊥
⊥

⎞⎠ (II)

 X1 :
⎛⎝ m

⊥
⊥

⎞⎠  X1 :
⎛⎝ m

⊥
⊥

⎞⎠
 X1+X1 :

⎛⎝ m
⊥
⊥

⎞⎠ ⊕ (
⎛⎝ m

⊥
⊥

⎞⎠ × p)
and

⎛⎝ m
⊥
⊥

⎞⎠ ⊕ (
⎛⎝ m

⊥
⊥

⎞⎠ × p) =
⎛⎝ p

⊥
⊥

⎞⎠ (III)

In the derivations we apply respectively the rules (E3), (E4), and (E5). *+

Example. The command loop X3 {X2:= X1+X1} is derivable. We give two deriva-
tions. They extend respectively derivation (I) and (II) of the previous example.

...
 X1+X1 :

⎛⎝ w
⊥
⊥

⎞⎠
 X2:= X1+X1 :

⎛⎝ m w ⊥
⊥ ⊥ ⊥
⊥ ⊥ m

⎞⎠
 loop X3 {X2:= X1+X1} :

⎛⎝ m w ⊥
⊥ m ⊥
⊥ ⊥ m

⎞⎠ L

...
 X1+X1 :

⎛⎝ p
⊥
⊥

⎞⎠
 X2:= X1+X1 :

⎛⎝ m p ⊥
⊥ ⊥ ⊥
⊥ ⊥ m

⎞⎠
 loop X3 {X2:= X1+X1}:

⎛⎝ m p ⊥
⊥ m ⊥
⊥ p m

⎞⎠ L

In the derivation to the right we are forced to add a p in the matrix when the L-
rule is applied, whereas in the left one we are not. (See condition (2) for applying
the L-rule.) Assume

[[loop X3 {X2:= X1+X1}]](x1, x2, x3 � x′
1, x

′
2, x

′
3) .

Let us study the form of the mwp-bounds the derivations yield for x′
2. The

left one yields a bound x′
2 ≤ W (x2;x1; ), whereas the right one yields a bound

x′
2 ≤ W ′(x2; ;x1, x3). Thus, the left derivation is the preferred one in the sense

that the derivation actually record that we can find a polynomial bound on the
value computed into the variable X2 which does not depend on the content of
X3. (If X3 stores 0, the assignment X2:= X1+X1 will not be executed; otherwise it
will be executed. So the value computed into X2 does depend on X3, but there
exists a polynomial bound on the value which does not.) *+

Example. The command loop X2 {X1:= X1+X1} is not derivable. The value com-
puted into X1 is doubled each time the loop’s body is executed. Thus, the value
cannot be bounded by a polynomial in the inputs, and then by Theorem 1, the
command is not derivable. Let us see what happens when we search for a deriva-
tion of the command. There are two vectors V such that 1 X1+X1 :V . We have
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1 X1+X1 :
(

w
⊥

)
and 1 X1+X1 :

(
p
⊥

)
. We try to search for a derivation from each

of them.
 X1+X1 :

(
w
⊥

)
 X1:= X1+X1 :

(
w ⊥
⊥ m

)
 loop X2 {X1:= X1+X1} : ?

L

 X1+X1 :
(

p
⊥

)
 X1:= X1+X1 :

(
p ⊥
⊥ m

)
 loop X2 {X1:= X1+X1} : ?

L

In both cases we find that condition (1) for applying the L-rule is violated, and
if we study the other rules of the calculus, we easily see that there will be no
way to derive the command. *+
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On a Question of Sacks — A Partial Solution on
the Positive Side

Andrew E.M. Lewis

University of Leeds, Leeds LS2 9JT, England

Abstract. Let us say that a c.e. operator E is degree invariant on any
given Turing degree a if X, Y ∈ a → E(X) ≡T E(Y ). In [4] we construct
a c.e. operator E such that ∀X[X <T E(X) <T X ′]. While we are
unable to produce degree invariance everywhere, we are able to ensure
that for every degree a there exists b such that a ∨ 0′ = b ∨ 0′ and E
is degree invariant on b. What appears here is an abbreviated version of
the material from that paper, stopping short of most technical details.

1 Introduction

The following question, first asked by Sacks [7] in 1963, has been a matter of
great interest to computability theorists over the last forty years.

Definition 1. A c.e. operator is a c.e. subset of 2<ω×ω. Let E be a c.e. operator
and X ⊆ ω. Identifying sets with their characteristic functions we denote by
E(X) the set {x : (∃σ ⊂ X)[(σ, x) ∈ E]}. We call E degree invariant if it is the
case ∀X,Y (X ≡T Y → E(X) ≡T E(Y )).

Question 2. (Sacks) Does there exist a c.e. operator E which is degree invariant
and such that for all X ⊆ ω: X <T E(X) <T X ′?

The work that has been done to date has been largely concentrated on an
attempt to show that such a degree invariant c.e. operator cannot exist, or
at least to limit the kinds of solutions that might exist. The reason for this is
likely two-fold. Most believed that Sacks’ question would eventually be answered
in the negative and the unapproachability of the positive side also provided a
formidable obstacle. Lachlan [3] has shown that if we are to construct a positive
solution then we cannot require the degree invariance to be uniform i.e. we can-
not require that there is a function h which takes (pairs of) indices of reductions
between any sets A and B to (pairs of) indices of reductions between E(A) and
E(B). Downey and Shore have shown that if E is a degree invariant c.e. operator
which is at least the identity on a cone, then either E(A)′′ ≡T A′′ on a cone or
E(A)′′ ≡T A′′′ on a cone. Perhaps the most useful result on the negative side is
that of Slaman and Steel [8], that AD implies ≡T admits no finite resolution. This
result implies serious restrictions as regards those approaches that could possibly
lead to a positive solution. Despite extensive study over a number of years no
proof that a positive solution to Sacks’ question cannot exist has been found.

S.B. Cooper, B. Löwe, and L. Torenvliet (Eds.): CiE 2005, LNCS 3526, pp. 275–286, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Some results have been obtained on the positive side without being written
up. Slaman and Steel have constructed a c.e. operator which acts like a positive
solution to Sacks’ question for the degrees c.e. in 0′. Downey and Shore have
constructed a positive solution for the tt-degrees. In [4] we present the following
partial solution on the positive side: we construct a c.e. operator E which, given
any X ⊆ ω, produces a set E(X) such that X <T E(X) <T X ′ and such that for
every degree a there exists b such that a∨0′ = b∨0′ and E is degree invariant on
b. What appears here is an abbreviated version of the material from that paper,
stopping short of most technical details.

2 The Atomic Strategies

In his paper [9] ‘Post’s problem and degree invariant functions’, written in 1996,
Xiaoding Yi attempted to construct a degree invariant solution to Post’s prob-
lem. Let {(Ψi, Φi, Υi, Λi)}i∈ω be an effective listing of all the (ordered) quadruples
of Turing functionals. Yi suggested that we should construct two c.e. operators
E and D such that for every X ⊆ ω, X ≤T E(X) and such that for every i ∈ ω
the following requirements are satisfied:

Ri : (∀X,Y ⊆ ω)[(X = ΦY
i ) ∧ (Y = ΨX

i ) → E(Y ) ≤T E(X)],
Pi : (∀X ⊆ ω)[E(X) �= ΥX

i ],
Ni : (∀X ⊆ ω)[D(X) �= Λ

E(X)
i ].

In order to ensure that X ≤T E(X) for all X ⊆ ω we can simply insist that
(∀X ⊆ ω)(∀n ∈ ω)[E(X)(2n) = X(n)]. The atomic strategies that we might
use in order to satisfy individual requirements are also quite simple. In order to
satisfy Pi requirements we might suppose that to each σ ∈ 2<ω there may be
associated a witness, pσi say. If we find that Υ σ

i (pσi ) ↓= 0 then we enumerate
the axiom (σ, pσi ) ∈ E. The requirement Pi will then be satisfied for all sets X
extending σ. For any σ ∈ 2<ω, n ∈ ω and at any point in the construction let
us say, hopefully without causing undue confusion, that E(σ)(n) = 1 iff we have
already enumerated an axiom (σ′, n) ∈ E for some σ′ ⊆ σ and that E(σ)(n) = 0
otherwise.

In order to satisfy an Ni requirement we might similarly suppose that to each
σ ∈ 2<ω there may be associated a witness, nσi say. If we find at any stage that
Λτ
i (n

σ
i ) ↓= 0 for some τ ⊂ E(σ) and that τ ⊂ E(σ′) for all strings σ′ extending

σ then we can enumerate the axiom (σ, nσi ) ∈ D and restrain the enumeration of
axioms of the form (σ′, n) ∈ E such that σ′ is compatible with σ and τ(n) ↓= 0.

(†) In what follows it will be convenient to adopt the convention that for any
σ ∈ 2<ω and i, n ∈ ω, Ψσ

i (n) ↓ only if the computation converges in less than σ
steps (so that n < σ − 1) and Ψσ

i (n′) ↓ for all n′ < n (and similarly for Φi, Υi
and Λi).

Definition 3. Given σ, φ ∈ 2ω we shall denote σφ if σ and φ are incompatible.
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For the sake of requirement Ri certain numbers are reserved for enumeration
into E(X), those of the form 2〈1, i, j〉 + 1 let’s say (so that those of the form
2〈0, i, j〉 + 1 may be used as witnesses for the requirement Pi). Suppose that at
some stage of the construction we find that there exist strings φ, φ′ and σ such
that φ ⊆ φ′, σφ, σ ⊆ Φφ′

i and Ψσ
i = φ. Let φ = n0 and let n1 be the maximum

such that 〈1, i, n1〉 < σ. Define n = min{n0, n1 + 1} and let τ be the initial
segment of E(φ) of length 2n. For every n′ < n, if τ(2n′+1) = 1 and it is the case
that E(σ)(2〈1, i, n′〉+1) = 0 then enumerate the axiom (σ, 2〈1, i, n′〉+1) ∈ E (we
insist that if any axiom (σ′, n′′) ∈ E is to be enumerated then n′′ < 2 σ′ – this
allows us to maintain a certain ‘tidiness’). Restraints to which the requirement
Ri is subject mean that, even where the requirement is satisfied, the relevant
Turing reductions will not be uniform. Of course, if we use only these techniques
in order to satisfy the requirement Ri then the possibility remains that there
exist distinct X,Y ⊆ ω such that Y = ΨX

i , ΦY
i is partial but is not incompatible

with X and for infinitely many φ ⊂ Y there exists φ′ extending φ and σ ⊂ X

such that σ ⊆ Φφ′
i and φ = Ψσ

i , so that we act in order to try and ensure
E(Y ) ≤T E(X). We shall address this matter in the next section.

In order to satisfy all of the Ni and all of the Pi requirements it is clear
that a simple finite injury construction would suffice. When we try to satisfy
these together with the Ri requirements, however, several problems are imme-
diately apparent. Let us suppose, momentarily only, that we were to prioritize
the requirements thus: R0, P0, N0, R1, P1, N1, ... Then define:

Definition 4. Given X,Y ⊆ ω and n ∈ ω we denote Ln(X,Y ) if there exists a
finite sequence of sets X = X0, X1, ..,Xm = Y such that for each m′ < m there
exists i ≤ n, ΨXm′

i = Xm′+1 and Φ
Xm′+1
i = Xm′ .

Since for each X ⊆ ω and n ∈ ω there may exist an infinite number of Y ⊆ ω
such that Ln(X,Y ) any N requirement for that set, for example, may be injured

Fig. 1
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by the actions taken on behalf of P requirements of higher priority for infinitely
many other sets, and the action of higher priority R requirements on infinitely
many other sets in order to accomodate those enumerations (see fig 1). Similarly
P and R requirements may be injured an infinite number of times by higher
priority requirements.

In order to get the partial result, then, we do not act to satisfy all R re-
quirements. We begin, infact, by not acting to satisfy any R requirements at all
and then proceed to define ‘priority cones’ (where a cone in this context is all
those sets which extend a specified initial segment) on which we act to satisfy a
specific R requirement with a certain priority. So for each set X and i ∈ ω we
may not act to satisfy Ri with respect to X or we may eventually act to satisfy
Ri with a certain priority n. In the latter case denote Pri(X) = n and otherwise
leave Pri(X) undefined.

Definition 5. Given X,Y ⊆ ω and n ∈ ω we denote L′
n(X,Y ) if there exists a

finite sequence of sets X = X0, X1, ..,Xm = Y such that for each m′ < m there
exists i, ΨXm′

i = Xm′+1, Φ
Xm′+1
i = Xm′ and Pri(Xm′) ↓≤ n.

We allocate priority cones in such a way that for any X ⊆ ω and n ∈ ω there
are a finite number of distinct sets Y such that L′

n(X,Y ). For every set Y we
are able to show that there is a set X such that X ⊕∅′ ≡T Y ⊕∅′ and for which
we act to satisfy all requirements

R′
i(X) : (∀Y ′ ⊆ ω)[(X = ΦY ′

i ) ∧ (Y ′ = ΨX
i ) → E(Y ′) ≡T E(X)].

In defining priority cones we are, in effect, constructing a total tree of sets X for
which we are able to satisfy all requirements of the form R′

i(X). It is the fact that
the priority cones, once initially defined, may need to be adjusted (redefined) a
finite number of times which means that, in order to compute this total tree, an
oracle for 0′ is required – so that we are only able to achieve the partial result.

There is another difficulty which immediately presents itself. The following
is just one example of this difficulty. Let us suppose that a requirement Ri

is allocated priority n on all sets extending a certain string σ. Later we may
wish to act in order to satisfy a requirement Ni′ with i′ ≥ n on some string σ′

extending σ. Suppose that at that stage of the construction we have previously
found strings φ, φ′ such that φ ⊆ φ′, σ′φ, σ′ ⊆ Φφ′

i and Ψσ′
i = φ. If φ = m then

let τ be the initial segment of E(φ) of length 2m. For the sake of simplicity, let
us suppose that σ′ is of length at least 〈1, i,m− 1〉+ 1. It may be the case that,
because of the action taken on behalf of some Pi′′ with i′′ > i′ we have already
enumerated an axiom so that for some ψ extending φ, τ is not an initial segment
of E(ψ). We may later find σ′′, ψ′ such that σ′ ⊂ σ′′, ψ ⊂ ψ′, σ′′ ⊆ Φψ′

i and
Ψσ′′
i = ψ. Thus the action taken on behalf of the lower priority requirement Pi′′

on all sets extending ψ, combined with the action that we take on behalf of Ri,
injures the requirement Ni′ on all sets extending σ′′. Even if such an enumeration
(for Pi′′) has not already taken place before the stage at which we wish to act in
order to satisfy the requirement Ni′ , we cannot subsequently restrain (on behalf
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of this requirement Ni′) such an enumeration from taking place unless ψ is of
sufficient length such that σ′ ⊆ Φψ

i . We shall discuss how to solve this problem
using infinite injury techniques shortly, but let us first describe the priority cone
construction.

3 The Priority Cone Construction

In what follows we shall introduce terminologies and notations which are used
in [4], but which are more complicated than is necessary in order to present the
material which appears in this paper, since most technical details are omitted. We
shall make their use since it seems preferable that all notations and terminologies
should be in line with [4].

We shall proceed to define priority cones by enumerating ‘priority axioms’
of the form (σ, i, c, n) for σ ∈ 2<ω, i, n ∈ ω and c ∈ {0, 1}. We shall enumerate
the priority cones in pairs. Each such pair will consist of a ‘primary cone’ and a
‘secondary cone’. If we enumerate a priority axiom of the form (σ, i, 0, n) then
this defines a primary cone and means that we will act to satisfy requirement Ri

on all sets X such that σ ⊂ X with priority n so long as if ΨX
i is total then it

is in the corresponding secondary cone. Let r : ω → ω be a computable function
such that for all i ∈ ω, Φr(i) = Ψi, Ψr(i) = Φi, Υr(i) = Υi and Λr(i) = Λi and such
that for all i, j ∈ ω, if r(i) = j then r(j) = i. If we enumerate a priority axiom of
the form (σ, i, 1, n) then this defines a secondary cone and means that we shall
act to satisfy requirement Rr(i) on all sets X such that σ ⊂ X with priority n
so long as if ΨX

r(i) is total then it is in the corresponding primary cone. We shall
also define what will be called ‘satisfaction cones’. If we define the satisfaction
cone (σ, i, n) for σ ∈ 2<ω and i, n ∈ ω then this will mean that for all sets X
such that σ ⊂ X, if there exists a set Y such that Y = ΨX

i and X = ΦY
i then

we shall act in order to guarantee that E(X) ≡T E(Y ).
We have initially that J is defined to be the emptyset. Into J we shall enumer-

ate triples of the form (σ,m, t) such that σ ∈ 2<ω and m, t ∈ ω. If we enumerate
the triple (σ,m, t) into J then this will mean that we are looking to define a pri-
mary cone ‘above’ σ i.e. we are looking to enumerate a priority axiom of the form
(σ′, i, 0, n) for some σ′ ⊇ σ and for some i, n ∈ ω. If (σ,m, t), (σ′′,m′, t′) ∈ J and
m < m′ then we shall look to define a primary cone above σ before we look to
do so above σ′′. We shall also have initially that S is defined to be the emptyset.
It is into the set S that we shall enumerate priority axioms when we wish to
define a priority cone. Priority axioms may be removed from this set. It is into
the set S′ that we shall enumerate axioms defining satisfaction cones. We may
also remove axioms from S′.

It will be convenient, infact, to ‘name’ the priority cones that we enumerate
into S. The priority axiom defining any such cone might, of course, be regarded
as a name for that cone but would certainly prove cumbersome in what is to
follow. We shall name, then, the nth primary cone to be enumerated into S,
cone(n, 0). Now an axiom may be enumerated into S, then removed and subse-
quently enumerated into S again. When such an axiom defining a primary cone
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is enumerated back into S we shall regard this axiom as defining a new cone,
and it will receive a new name accordingly. The secondary cone associated with
the primary cone cone(n, 0), we shall name cone(n, 1) (so that, as will become
apparent form the construction, the axiom defining this cone may change a finite
number of times). If cone(n, c) is defined by an axiom of the form (σ, i, c, n′) we
shall say that the priority of this cone is n′.

Let us return to one of the problems that we discussed earlier. We must deal
appropriately with the situation in which for some i ∈ ω there exist distinct
X,Y ⊆ ω such that Y = ΨX

i , ΦY
i is partial but is not incompatible with X and

for infinitely many φ ⊂ Y there exists φ′ extending φ and σ ⊂ X such that
σ ⊆ Φφ′

i and φ = Ψσ
i . In order to solve this problem, then, we shall computably

enumerate sets υ(a, σ). All such sets are initially empty. Given σ ∈ 2<ω, a ∈ ω
suppose that a = 〈n, c〉, that at stage s of the construction cone(n, c) is presently
in S and is defined by the priority axiom (σ′, i, c, n′) say, and that we find strings
φ, and φ′ extending φ, such that all of the following apply.

(i) The strings σ and σ′ are compatible.

(ii) Let (σ′′, i, c′, n′) be the priority axiom defining the secondary/primary cone
corresponding to the primary/secondary cone(n, c). Then σ′′ ⊆ φ′.

(iii) If c = 0 then define r′(i) = i and if c = 1 then define r′(i) = r(i). Then
σ ⊆ Φφ′

r′(i) and φ = Ψσ
r′(i).

(iv) Let φ′′ be the longest string such that φ′′ ∈ υ(a, σ) if there exists such and
otherwise define φ′′ = ∅ (we let ∅ denote the empty string). Then Φφ′′

r′(i) ⊂ Φφ
r′(i).

In this case we should enumerate at stage s all strings φ′′′ ⊆ φ into all sets
υ(a, σ′′′) such that σ ⊆ σ′′′. In what follows it will often be notationally con-
venient to freely identify partial functions defined on initial segments, finite
sequences and k-tuples for varying k ∈ ω.

Definition 6. Given σ, σ′ ∈ 2<ω and α = (a1, .., ak) ∈ ω<ω for k ≥ 0 we shall
denote at stage s of the construction, ls,α(σ, σ′) if σ′ = ∅ or if there exists a finite
sequence of strings σ = σ1, ..., σk+1 ⊇ σ′ such that for all k′ if 1 ≤ k′ ≤ k then
σk′+1 ∈ υ(ak′ , σk′). For any n ∈ ω we shall denote at stage s of the construction,
ls,n(σ, σ′) if there exists α = (a1, .., ak) such that for all k′ with 1 ≤ k′ ≤ k, if
ak′ = 〈n′, c′〉 then cone(n′, c′) is a priority cone presently in S of priority ≤ n,
and such that ls,α(σ, σ′). We shall denote ls,n,a(σ, σ′) if it is also the case that
a1 = a.

Definition 7. At any stage in the construction and for any σ′ ∈ 2<ω we define
m(σ′) to be the number of axioms in S′ of any form (σ, i, n) such that σ ⊂ σ′.
Note that for any σ′ ∈ 2<ω the value m(σ′) may change as the construction
progresses.

Definition 8. Given pairwise incompatible strings σ1, .., σk for some k ∈ ω
we say that σk′ for some k′ with 1 ≤ k′ ≤ k is the ‘leftmost’ (‘rightmost’) if
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for each k′′ with 1 ≤ k′′ ≤ k such that k′′ �= k′, there exists a least m such
that σk′(m) ↓�= σk′′(m) ↓ and in each case for this least m, σk′(m) = 0 (σk′

(m) = 1).

Definition 9. Given any σ, σ′ ∈ 2<ω we let σ ) σ′ be the finite binary string
which is σ concatenated with σ′.

At stage s = 0: enumerate the triples (0, 0, 0) and (1, 0, 0) into J .

At stage s > 0:
Step 1) For each string σ of length ≤ s (taken in lexicographical order) and
each a ∈ ω such that if a = 〈n, c〉 then cone(n, c) is a priority cone presently
in S, defined by the priority axiom (σ′, i, c, n′) say, check to see whether there
exist φ and φ′ extending φ of length ≤ s which satisfy (i)–(iv) above. If so then
enumerate every string φ′′′ ⊆ φ into every set υ(a, σ′′′) such that σ ⊆ σ′′′.

Step 2) First we check to see whether there exists an axiom (σ0, i, c, n) ∈ S and
two incompatible strings σ1 and σ2 extending σ0 such that if (σ0, i, c, n) defines
cone(n′, c) presently in S and a = 〈n′, c〉 then ls,n,a(σ1, σ2). If not then proceed
to step 3). Otherwise, of all such axioms consider those such that n has the least
value and of these choose that such that c has the least value (there will only
be one such). Choose σ1, σ2 as above such that there is the shortest possible
α = (a1, .., ak) (that with the least value of k) that witnesses that it is the case
ls,n,a(σ1, σ2) and such that, this latter condition satisfied, σ1 takes the shortest
possible value and perform the following:

(i) Remove that axiom (σ0, i, c, n) from S. If c = 0 then remove all axioms from
S of any form (σ3, i

′, c′, n′′) such that n′′ ≥ n. If c = 1 then remove all axioms
from S of any form (σ3, i

′, c′, n′′) such that n′′ > n. For all n′′, c′, σ3, make
υ(〈n′′, c′〉, σ3) empty unless cone(n′′, c′) is presently in S and of priority < n.
Remove all axioms from S′ of any form (σ3, i

′, n′′) such that n′′ ≥ n. Remove all
triples from J of any form (σ3,m, t) such that t ≥ n.
(ii) If c = 0; then let σ3 = Ψσ1

i . Enumerate the axioms (σ1, i, 0, n) and (σ3, i, 1, n)
into S. If this is the kth time that we have enumerated an axiom defining a
primary cone into S then the priority cones that these axioms define shall be
called cone(k, 0) and cone(k, 1) respectively. Enumerate the axiom (σ1, i, n) into
S′ and enumerate the triples (σ1 )0,m(σ1 )0), n) and (σ1 )1,m(σ1 )1), n) into J .
(iii) If c = 1; then there exists σ3 of length ≤ s lying in the primary cone cor-
responding to this secondary cone (i.e. the only cone in S defined by a priority
axiom of the form (σ4, i, 0, n) for some σ4) such that σ1 ⊆ Ψσ3

i . Enumerate the
axiom (σ1, i, 1, n) into S. Suppose that the name of the primary cone correspond-
ing to this secondary cone is cone(k, 0). Then the name of this cone is cone(k, 1).
Enumerate the axiom (σ3, i, n) into S′. Enumerate the triples (σ3)0,m(σ3)0), n)
and (σ3 ) 1,m(σ3 ) 1), n) into J .
d) Proceed to stage s + 1.

Definition 10. Given any triple (σ,m, t) ∈ J we shall say that this triple has
an ‘extension’ in J if there exists a triple (σ′,m′, t′) ∈ J such that σ ⊂ σ′. At
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any stage of the construction we define the set J ′ to be all of those triples in J
which do not have an extension in J .

Step 3) Let m be the least such that there exists a triple (σ,m, t) in J ′ (for some
σ ∈ 2<ω and t ∈ ω). For that value of m let (σ,m, t) be that triple in J ′ such
that σ is leftmost. Let i be the least such that Ψσ

i is incompatible with σ and
there is no axiom in S of any form (σ′, i, 0, n′) for any σ′ ⊂ σ and n′ ∈ ω. If
no such i exists then remove the triple (σ,m, t) from J , enumerate into J the
triple (σ ) 0,m, t) and proceed to stage s + 1. Otherwise enumerate the axioms
(σ, i, 0, n) and (Ψσ

i , i, 1, n) into S where n is the least ≥ 1 such that there does
not exist any axiom in S of any form (σ′, i′, c′, n). If this is the kth time that we
have enumerated an axiom defining a primary cone into S then the priority cones
that these axioms define shall be called cone(k, 0) and cone(k, 1) respectively.
Enumerate the axiom (σ, i, n) into S′. Enumerate the triples (σ)0,m+1, n) and
(σ ) 1,m + 1, n) into J . Proceed to stage s + 1.

Lemma 11. Given σ ∈ 2<ω let us denote m�(σ) = n if there exists a stage s
such that after stage s it is always the case m(σ) = n. Then for each n ∈ ω
there exist precisely 2n+1 axioms of any form (σ, i, n′) such that m�(σ) ↓= n
(and for some i, n′ ∈ ω) which are enumerated into S′ and which are never
subsequently removed. For each such axiom there exist precisely two axioms of
the form (σ′, i′, n′′) such that m�(σ′) ↓= n+1 and σ ⊂ σ′, which are enumerated
into S′ and which are never subsequently removed (and the two such strings σ′

are incompatible).

Lemma 12. Fix X ⊆ ω and n ∈ ω. Suppose that A ⊆ 2<ω satisfies the following
properties; 1) the strings in A are pairwise incompatible and 2) for each σ′ ∈ A
there exists some s ∈ ω and σ ⊂ X such that ls,n(σ, σ′). Then A is finite.

Fig. 2. The satisfaction cones
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So for each Y ⊆ ω consider the set X which is defined as follows. There are two
axioms that are enumerated into S′ of any form (σ, i, n) such that m�(σ) ↓= 0
and which are never subsequently removed. If Y (0) = 0 then choose that such
that σ is the leftmost of the two and if Y (0) = 1 then choose that such that σ
is the rightmost. Then σ ⊂ X. There are two axioms that are enumerated into
S′ of any form (σ′, i′, n′) such that m�(σ′) ↓= 1, σ ⊆ σ′, and which are never
subsequently removed. If Y (1) = 0 then choose that such that σ′ is the leftmost
of the two and if Y (1) = 1 then choose that such that σ′ is the rightmost. Then
σ′ ⊂ X, and so on. Then X ⊕ 0′ ≡T Y ⊕ 0′ and we shall act to satisfy all
requirements R′

i(X).

4 Further Considerations

In satisfying the R requirements it will be simplest, in fact, to have a different
set of numbers reserved for enumeration into E(X) associated with each priority
cone that we enumerate into S (just because then there is a fixed priority asso-
ciated with each such). For cone(n, c) it will be the numbers 2〈1, 〈n, c〉, j〉 + 1
that are available for enumeration into E(X).

Let us return to the problem that we addressed briefly before describing
the priority cone construction. We wish to avoid a situation in which an N
requirement with respect to a set X may be ‘injured’ an infinite number of
times by the actions of lower priority P requirements. We propose to solve this
problem using infinite injury techniques. So suppose that at some stage of the
construction we wish to act in order to satisfy a requirement Ni on some string
σ. Then there is a witness that we wish to enumerate into D, nσi = n say.
For the reasons described previously we should not immediately enumerate the
axiom (σ, n) ∈ D – enumerate instead an ‘attention notification’ δ, of the form
(σ, i, n) maybe. We might then proceed as follows. Let τ be the shortest initial
segment of E(σ) such that Λτ

i (n) ↓= 0. At any stage s of the construction we
shall act to satisfy P and N requirements on strings of length s and for any
axioms that we enumerate (σ′, n′) ∈ E it will be the case σ′ = s (generally
speaking we shall ‘act on’ strings of length s at stage s). Thus we shall have that
τ ⊂ E(σ′) for all strings σ′ extending σ. It is then a finite task to enumerate
all of the ‘N -demands’ and ‘N -requests’ in the set, lets call it T (δ), which we
shall define for now (although this definition is subsequently revised in [4]) to
be the smallest set satisfying the following conditions. Given any k ≥ 0 and any
k-tuple, α = (a1, .., ak):

(i) Define τ0 as follows. For all m ∈ ω, if τ(2m + 1) is defined then τ0(m) ↓=
τ(2m + 1), and otherwise τ0(m) is undefined.

(ii) For � = 1 to k, given τ�−1 (a finite binary string) find all of those m < τ�−1

which are of the form 〈1, a�, j〉 for some j ∈ ω. If a� is of the form 〈n′, c〉 and
cone(n′, c) is presently in S and of priority ≤ i then for each such m define
τ�(j) = τ�−1(m). Otherwise define τ� = ∅.
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(iii) Given τk. Find all of those m < τk which are of the form 〈1, a, j〉 for some
a, j ∈ ω. If a is not of the form 〈n′, c〉 such that cone(n′, c) is presently in S and
of priority ≤ i then the ‘N -demand’ (R,α, 2m + 1, τk(m)) is in T (δ). Then find
all of those m < τk which are of the form 〈0, i′, j〉 for some i′, j ∈ ω. For each
such m, if i′ > i then the ‘N -demand’ (P, α, 2m + 1, τk(m)) is in T (δ) and if
i′ ≤ i then the ‘N -request’ (P, α, 2m + 1, τk(m)) is in T (δ).

Definition 13. Given α = (a1, .., ak) ∈ ω<ω let α′ = (a′
1, .., a

′
k) be defined as

follows. For all � such that 1 ≤ � ≤ k, if a� = 〈n, c〉 then a′
k+1−� = 〈n, 1 − c〉.

We shall call α′ the ‘reverse cone map’ of α.

These N -demands may be regarded as a form of ‘restraint’ (to appeal to the
standard intuition), as we shall see. Now for any string σ′ we may subsequently
find that at some stage s′ and for some α′ ∈ ω<ω we have ls′,α′(σ′, σ). Suppose
that σ′ is of length s′ so that E(σ′) = E(σ′′) for all σ′′ ⊇ σ′. Let α be the
reverse cone map of α′. Let’s say that an N -demand or an N -request (H,α,m, t)
for H ∈ {P,R}, m, t ∈ ω in T (δ) is ‘consistent’ with σ′ if E(σ′)(m) = t.
If all of the N -demands and N -requests in T (δ) of the form (H,α,m, t) for
H ∈ {P,R}, m, t ∈ ω are consistent with σ′ we might then proceed as follows.
First consider those N -demands of this form for which H = P . Of these consider
those for which t = 0 and find that which has the largest value of m. For
this value of m enumerate the ‘P -restraint’ (P, δ, σ′,m). Next consider those N -
demands for which H = R. Of these consider those for which t = 0 and find
that which has the largest value of m. For this value of m enumerate the ‘R-
restraint’ (R, δ, σ′,m). In order to record this action we should then enumerate
a ‘satisfaction notification’ (δ, σ′, α).

If we subsequently find some extension of σ, σ′′ say, such that for s′′ = σ′′

we have ls′′,α(σ′′, σ′) then we may now be in a position to be able to enumerate
the axiom (σ′′, n) ∈ D. There may, however, be other values of α which we must
consider. Suppose, in fact, that for every α for which we have enumerated some
N -demand or N -request (H,α,m, t) into T (δ), there is a string σ′ for which we
have enumerated a satisfaction notification (δ, σ′, α), and such that at stage s′′

we have ls′′,α(σ′′, σ′). Then we may enumerate the axiom (σ′′, n) ∈ D.
Suppose that at some stage of the construction we enumerate the P -restraint

or the R-restraint (H, δ, σ,m). At any subsequent stage of the construction we
may enumerate a restraint cancellation (H, δ, σ′,m) for σ′ ⊇ σ. The restraint
(H, δ, σ,m) is then considered to be void with respect to all strings extending
σ′. Whenever a priority cone of priority ≤ i is enumerated into or removed from
S all witnesses for the requirement Ni will become undefined and all associated
attention notifications, satisfaction notifications and restraints made void.

Definition 14. Given any σ ∈ 2<ω and i ∈ ω consider (at any stage of the con-
struction) all of the P -restraints that we have enumerated of any form
(P, δ, σ′,m), for any δ which is an attention notification enumerated in order
to satisfy a requirement Ni′ such that i′ < i and for σ′ ⊆ σ, and which are
not void with respect to σ. Let m be the greatest such that there exists such a
P -restraint (P, δ, σ′,m). Then P (σ, i) = m. We define R(σ, i) similarly.
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There are three significant problems which remain in applying the techniques
we have just described. It is actually in dealing with these problems that the
construction becomes complicated and we shall finish here just by giving some
impression of the approach that is required. The first of these problems is the
fact that Turing functionals may be partial. Thus we must consider witnesses
for N requirements which have associated with them a ‘guess’ as to which of
the relevant Turing functionals will be partial. In [4] we define the notion of
a partiality guess γ for i. Since the details are a little involved we shall omit
them here. The second problem of some significance is caused by the restraints
to which an R requirement may be subject. Consider the following sequence
of events. At some stage of the construction we wish to act in order to satisfy
the requirement Ni with respect to a string σ. Thus we wish to enumerate a
witness n, which has associated with it a partiality guess γ for i, into D(X) for
all X ⊃ σ. Rather than doing so we enumerate an attention notification δ for the
reasons that have been discussed. Let τ be the shortest initial segment of E(σ) for
which Λτ

i (n) ↓= 0. Upon enumerating the attention notification we enumerate
the N -demand (H,α,m, t) into T (δ) (since γ does not assert the partiality of
α). At some subsequent stage of the construction s we find σ′ ⊃ σ and σ′′ such
that ls,α(σ′, σ′′) and such that the N -demand (H,α,m, t) is not consistent with
σ′′. Now there may exist X ⊃ σ′, α′ an initial segment of α and Y such that
lα′(X,Y ) and such that the R restraints on Y are always large enough so that,

Fig. 3
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despite the fact that (H,α,m, t) is not consistent with σ′′, it remains the case,
τ ⊂ E(X). Thus, even in the case that γ is correct as a partiality guess for i with
respect to X, the requirement Ni is not satisfied. Therefore we must actually
consider witnesses for N requirements which have associated with them, not
only a partiality guess, but also a restraint function for that partiality guess.
The restraint function should be thought of as a guess as regards each value lim
infs R(σYs , i), such that li(X,Y ) and as regards the finite number of times that
restraints will drop below each such value. Having established the precise nature
of the witnesses that we shall use in order to satisfy N requirements we must
then find some way of ensuring that the restraints imposed by N requirements
drop infinitely often along the length of any given X ⊆ ω – for all remaining
details we refer the reader to [4].
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Abstract. It is shown that for any 2-computably enumerable Turing de-
grees a, l, if l′ = 0′, and l < a, then there are 2-computably enumerable
Turing degrees x0, x1 such that both l ≤ x0, x1 < a and x0 ∨ x1 = a
hold, extending the Robinson low splitting theorem for the computably
enumerable degrees to the difference hierarchy.

1 Introduction

A set A ⊆ ω is called computably enumerable (c.e., for short) if there is an
algorithm to enumerate the elements of it. Ershov defined the difference hierarchy
of sets by generalising the notion of a computably enumerable set.

Definition 1 (Ershov, [11] [12]). A set A ⊆ ω is called n-computably enu-
merable (n-c.e., for short), if there is a computable function g such that for all
x ∈ ω,
(a) g(x, 0) = 0,
(b) lims g(x, s) = A(x), and
(c) |{s | g(x, s) �= g(x, s + 1)}| ≤ n.

For n = 0, the only 0-c.e. set is just the empty set ∅, the 1-c.e. sets are the
c.e. sets, and the 2-c.e. sets are the differences of two c.e. sets. Because of the
latter coincidence, we also call the 2-c.e. sets d.c.e. sets. In [11], [12], Ershov
has extended the definition to all computable ordinals, providing a hierarchy
that resolves the Δ0

2 subsets of ω, the sets which can be approximated by a
computable function. For n ≥ 1, we say that a Turing degree is n-computably
enumerable (n-c.e., for short), if it contains an n-c.e. set. Let En be the set of
all n-c.e. Turing degrees. Then E1 = C, the set of all c.e. Turing degrees, and it
is also known that for all n, En ⊂ En+1. Lachlan observed that for n ≥ 1, the
n-c.e. Turing degrees are downward dense.
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Lemma 2 (Lachlan). Given any n-c.e. degree a > 0, there is a c.e. degree b
such that a > b > 0.

The Lachlan’s lemma gives an elementary difference between the global Tur-
ing degrees and the n-c.e. Turing degrees below any nonzero c.e. degree, because
in the Δ0

2 Turing degrees, every nonzero c.e. degree bounds a minimal degree
(Yates, 1970, [4], [16]). Then an interesting question is whether or not the c.e.
degrees and the n-c.e. degrees are elementarily equivalent for n ≥ 2. This was
answered negatively by Arslanov [1] by proving that every nonzero n-c.e. de-
gree joins to 0′ with a low d.c.e. degree, while in the c.e. case, Cooper [5] and
Yates (unpublished) proved that there is a nonzero c.e. degree a such that for
any c.e. degree x, a ∨ x = 0′ if and only if x = 0′ (a is called noncuppable).
This theorem gives an elementary difference between the c.e. degrees and the
n-c.e. degrees, for every n ≥ 2, and also indicates that, for every n ≥ 2, the
ideal of n-c.e. degrees noncuppable in En is trivial, i.e., {0}. Downey [10] proved
that the diamond lattice can be embedded into the 2-c.e. degrees preserving
both 0 and 1, giving another difference between the c.e. degrees and the n-c.e.
degrees for all n ≥ 2, because Lachlan [13] had previously shown that the di-
amond lattice cannot be embedded into the c.e. degrees preserving both 0 and
1. Furthermore, Li and Yi [14] have shown that there are two incomplete d.c.e.
degrees a0, and a1 such that every nonzero n-c.e. degree joins to 0′ with one of
them, extending both the Arslanov’s cupping theorem and Downey’s diamond
theorem. In fact, the n-c.e. degrees for n ≥ 2 are not even dense, provided by
Cooper et al. [7], in contrast with the Sacks’ density theorem of the c.e. de-
grees [17].

On the other hand, the n-c.e. degrees for n ≥ 2 do share some “nice” proper-
ties with the computably enumerable degrees. Cooper [6] proved that the Sacks’
splitting theorem [16] can be generalised to the n-c.e. degrees for n ≥ 2: For any
nonzero n-c.e. degree a, there are n-c.e. degrees b, c such that b < a, c < a
and b ∨ c = a. This theorem was further improved by Cooper and Li [9]:

Theorem 3. For any 2-c.e. degree a, and c.e. degree b, if b < a, then there
are 2-c.e. degrees x0, x1 such that both b < x0, x1 < a and x0 ∨x1 = a hold.

The theorem suggests an interesting question on whether or not the 2-c.e.
degrees a such that every 2-c.e. degree above it is splittable over it in the 2-c.e.
degrees are the same as the c.e. degrees.

Noting that in the c.e. degrees, Sacks’ splitting theorem can be extended with
jump restrictions, Robinson [15] showed the following:

Theorem 4 (Robinson Low Splitting Theorem). For any c.e. degrees l < a,
if l′ = 0′, then there are c.e. degrees x0, x1 such that both l < x0,x1 < a, and
x0 ∨ x1 = a hold.

It is natural to ask whether the Robinson low splitting theorem can be ex-
tended to the finite levels of the difference hierarchy. In the present paper, we



The Low Splitting Theorem in the Difference Hierarchy 289

try to answer this question. Our main theorem is an extension of the Robinson
low splitting theorem to the difference hierarchy at level 2.

Theorem 5. Let m be a natural number such that 0 < m ≤ 2. Then for any
m-c.e. set A, any 2-c.e. set L, if L

′ ≤T ∅′
, then there are 2-c.e. sets X0, and

X1 with the following properties,
(1) X0 ≤T A⊕ L, X1 ≤T A⊕ L, and A ≤T X0 ⊕X1,
(2) If A ≤T Xi ⊕ L for some i ≤ 1, then there is an (m− 1)-c.e. set I such

that both I ≤T A⊕ L and A ≤T I ⊕ L hold.

In fact, the result in the case of m = 1 has already been proved previously by
Arslanov, Cooper and Li in [3]. We consider only the case of m = 2. The proof
for Theorem 5 is a non-uniform inductive argument. By applying the result, we
have a generalisation of the Robinson’s low splitting theorem in the difference
hierarchy.

Theorem 6. For any 2-c.e. degrees a, l, if l < a and l′ = 0′, then there are
2-c.e. degrees x0, and x1 such that both l < x0, x1 < a, and a = x0 ∨ x1 hold.

Proof. By applying Theorem 5 twice. *+
To analyse more applications of Theorem 6, we look at some previous results.

Using the techniques in the proof of the Sacks’ density theorem, Cooper, Lempp
and Watson [8] showed that for any n > 1, any c.e. degrees b < a, there is a
properly n-c.e. degree c such that b < c < a. Therefore, for any n > 1, there is
a low proper n-c.e. degree l. Let Pn, and Qn be the sets of all n-c.e. degrees x
above which every n-c.e. degree y is splittable over x in the n-c.e. degrees, and
of all n-c.e. degrees x such that for every n-c.e. degree y, if y > x, then there
is an n-c.e. degree z satisfying y > z > x, respectively.

By Theorem 6, we have that both (i) and (ii) below hold,
(i) C ⊂ P2,
(ii) C ⊂ Q2,

where C is the set of all computably enumerable degrees.
This refutes an appealing candidate of possible definitions of the computably

enumerable degrees in the d.c.e. Turing degrees. The result stated in (ii) above
answers a question by Arslanov in [2] ( Question 2.6). However it is still open
whether or not for any natural number n, there is a low splitting theorem for
n-c.e. degrees.

In this article, we sketch a proof of our main result, Theorem 5. After for-
mulating the conditions of the theorem according to requirements, we describe
the strategies to satisfy the requirements, and analyse the consistency of the
strategies so that a priority argument can work for a full construction and the
verification of the construction. Our notation and terminology are standard, and
generally follow that of Soare [18]. A few special notations are taken from the
paper Cooper and Li [9].
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2 The Requirements and the Strategies

We first formulate the requirements.

2.1 The Requirements

Suppose that A, L are 2-c.e. sets such that L
′ ≤T ∅′

. Let Θ be a Turing
functional such that Θ(K) is total and L

′
= Θ(K), where L

′
= {x | Ψx(L;x) ↓},

{Ψx | x ∈ ω} is an effective enumeration of all Turing functionals Ψ .
To prove Theorem 5, we construct 2-c.e. sets X0, X1 to satisfy the following

requirements,
T : X0, X1 ≤T A⊕ L, A ≤T X0 ⊕X1

R2i: A = Φi(X0, L) → (∃I2i computably enumerable )[I2i ≤T A⊕L & A ≤T

I2i ⊕ L]
R2i+1: A = Φi(X1, L) → (∃I2i+1 computably enumerable)[I2i+1 ≤T A ⊕

L & A ≤T I2i+1 ⊕ L]
where i ∈ ω, {Φi | i ∈ ω} is an effective enumeration of all Turing functionals Φ.
Furthermore, if A is a computably enumerable set, then the Ij in requirement
Rj is the empty set ∅.

Clearly meeting the requirements is sufficient to prove the theorem.

2.2 The Lowness Approximation

Since L
′ ≤T ∅′

, we suppose that Θ is a Turing functional such that Θ(K) is
total and L

′
= Θ(K). The lowness condition of L is necessary, with which we

will construct an auxiliary Turing functional Δ. By the s-m-n Theorem, there is
a computable function f such that for all x, y,

Δ(L;x, y) = Ψf(x)(L; y).

By the Recursion Theorem, we assume that the computable function f is
given in advance of the construction.

Δ will be built as a computably enumerable set of axioms of the form
(σ,w, f(w)) for σ ∈ ω<2, and for w ∈ ω. We say that (σ,w, f(w)) ∈ Δ is invalid
at stage s, if there is an l such that σ(l) ↓�= Ls(l), and |{v | v < s, Lv(l) �=
Lv+1(l)}| = 2, and valid at stage s, otherwise; and that (σ,w, f(w)) ∈ Δ is cor-
rect at stage s, if σ ⊂ Ls holds, in the sense that σ is an initial segment of the
characteristic function of Ls, and incorrect at stage s, otherwise.

We define Δ(L;w, f(w)) ↓= 0 if and only if there is an axiom (σ,w, f(w)) ∈ Δ
such that σ ⊂ L holds.

We say that s is a progressive stage, if for every witness w defined by some
strategy, we have that

(i) Θ(K; f(w)) ↓,
(ii) If Θ(K; f(w)) ↓= 0, then Δ(L;w, f(w)) ↑, and
(iii) If Θ(K; f(w)) ↓= 1, then Δ(L;w, f(w)) ↓.

We build Δ at progressive stages, and we define Δ(L;w, f(w)), only if Θ(K;
f(w)) ↓= 0, and whenever we define Δ, we define Δ(L;w, f(w)) ↓= 0.
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Suppose that we have defined Δ(L;w, f(w)) ↓= 0 at stage v. Then at the
next progressive stage s > v, we have that either (1) or (2) below occurs,

(1) Δ(L;w, f(w)) is undefined at the beginning of stage s,
(2) Θ(K; f(w)) ↓= 1 holds at the beginning of stage s.

The whole construction will be delayed at non-progressive stages, in the sense
that no axiom for any functional can be built at these stages.

2.3 The T -Strategy

To satisfy X0 ≤T A⊕ L and X1 ≤T A⊕ L, we build Turing functionals Ξ0 and
Ξ1 such that both X0 = Ξ0(A,L) and X1 = Ξ1(A,L) hold. Ξ0 and Ξ1 are built
similarly, so we only describe the definition of Ξ0. Intuitively speaking, Ξ0 will
be built as a computably enumerable set of axioms of the form (σ, τ, y, z). Then
we define Ξ0(A,L; y) ↓= z if and only if there is an axiom (σ, τ, y, z) ∈ Ξ0 such
that both σ ⊂ A and τ ⊂ L hold. We say that an axiom (σ, τ, y, z) ∈ Ξ0 is
invalid at stage s, if either (i) or (ii) below holds,

(i) There is an a such that σ(a) ↓�=As(a), and |{v < s | Av(a) �=Av+1(a)}| = 2.
(ii) There is an l such that τ(l) ↓�= Ls(l) and |{v < s | Lv(l) �= Lv+1(l)}| = 2.

If an axiom (σ, τ, y, z) ∈ Ξ0 is not invalid at stage s, then we say that
it is valid at stage s. We say that an axiom (σ, τ, y, z) ∈ Ξ0 is correct at
stage s, if both σ ⊂ As and τ ⊂ Ls hold, and incorrect at stage s
otherwise.

To satisfy X0 = Ξ0(A,L), we ensure that the definition of Ξ0 and X0 will
satisfy the following properties:

(i) If an axiom (σ, τ, y, z) is enumerated into Ξ0 at stage s, then σ ⊂ As,
τ ⊂ Ls, and z = X0,s(y) hold.

(ii) We enumerate an element y into X0 at stage s, only if every axiom
(σ, τ, y, 0) ∈ Ξ0 is incorrect at stage s.

(iii) We extract a number y from X0 at stage s, only if every axiom (σ, τ, y, 1) ∈
Ξ0 is invalid at stage s.

(iv) For a fixed y, there are only finitely many axioms (σ, τ, y, z) which are
enumerated into Ξ0 during the course of the construction.

We say that (i)–(iv) are Ξ0-rules. By the Ξ0-rules, if Ξ0(A,L) is total, then
Ξ0(A,L) = X0. In addition, we also ensure that for a fixed y, Ξ0(A,L; y) will
be defined eventually. Therefore Ξ0(A,L) = X0.

To satisfy A ≤T X0⊕X1, we define, for each x, a use block Ux of x as follows:

(i) Define U0 = {0, 1}.
Let y be the greatest element z ∈ Ux.
(ii) Define Ux+1 = [y + 1, y + (x + 2)2x+2].

Notice that for each y ∈ Ux, we have that y ≥ x, and that the union of all
Ux is exactly ω.

We say that an element y ∈ Ux is an x-trace, or a trace of x.
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To realise the reduction of A to X0⊕X1, we ensure that for every x, we have
the following

x ∈ A if and only if (∃y ∈ Ux)[X0(y) �= X1(y)].

We call this the splitting rule of the construction. It is easy to see that the
splitting rule ensures that A ≤T X0 ⊕X1. T is satisfied.

Before moving to the R-strategy, we introduce the instructions to split an
x ∈ A into X0 ⊕X1.

During the course of the construction, for every j, we define rj to be the
restraint of the Rj-strategy. We define for each x, a height function h(x) of x
according to the restraints rj , and an upward permitting marker m(x) of x.

We define h(x) to be the least k such that k < x ≤ rk, and m(x) to be the
A⊕ L-permitting marker corresponding to rk, where k = h(x).

If x ∈ A and h(x) = k, then we enumerate the least unused y ∈ Ux into Xi,
where i = (h(x) + 1)(mod 2).

However if A ⊕ L changes such that rk for k = h(x) drops, then A ⊕ L
changes below m(x), in which case, we redefine the height function h(x) to be
some number k′ > k. In this sense, we call m(x) the upward permitting marker
of x.

For every x, if x ∈ A, the x-splitting will maximize its height function h(x),
which is of course bounded by x.

In contrast to the upward permitting marker, we may define a downward
permitting marker of x, denoted by p(x) as follows.

Suppose that x ∈ A, and h(x) = h. For every j < h, suppose that (σ1, w1,
f(w1)), · · · , (σl, wl, f(wl)) are all Δ-axioms which have been defined by the Rj-
strategy, which are incorrect, and which may be injured by the x-splitting, then
we define the j-th downward permitting marker of x by

pj(x) = max{|σk| | k = 1, 2, · · · , l}.
And define p(x) by

p(x) = max{pj(x) | j < h(x)}.
The intuition is as follows. Suppose that (σ,w, f(w)) ∈ Δ is an axiom defined

by some Rj-strategy for some j < h(x). Since now the axiom for Δ(L;w, f(w))
is not L-correct, so that the x-splitting may injure the Φ-computation, at the
same time, the ξi-use for every y ∈ Ux is lifted to be greater than |σ|. So if
at a later stage, σ becomes correct, in the sense that σ ⊂ L, some l such that
σ(l) = 1 leaves L, a permanent A⊕ L-permission occurs for every y ∈ Ux, then
the x-splitting will require Rj-attention by redefining the height function h(x) of
x to be ≤ j. In so doing, the x-splitting will not injure the Rj-strategy anymore.

One of the key points is to make sure that for a fixed x > j, the x-splitting
requires Rj-attention at most 2j many times. This allows us to determine the
size of the use block Ux in advance of the construction.

With this intuition in mind, we look at the R-strategies in the next
subsection.
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2.4 An R-Strategy

Suppose that j = 2i for some i, and that we want to satisfy the following
requirement:

Rj : A = Φi(X0, L) → (∃Ij , c.e. )[Ij ≤T A⊕ L & A ≤T Ij ⊕ L].

Before describing the R-strategy, we introduce the idea how to preserve a
computation Φi(X0, L; k)[v] ↓= 0 say. We open a cycle k of the R-strategy. Cycle
k will define a witness w, say, as fresh. At a stage v, say, at which we have that
both Θ(K; f(w)) ↓= 0 and Φi(X0, L; k) ↓= A(k) hold, define Δ(L;w, f(w)) ↓= 0
with δ(w, f(w)) = a for some a ≥ φi(k)[v], and define Γj(Ij , L; k) ↓= A(k) with
γj(k) fresh and with L-use a. If at a later stage s > v at which Φi(X0, L; k)[v]
becomes non-recoverable due to an X0-extraction, then either there is an x ≤ a
such that x ∈ Av −As, in which case, we enumerate γj(k)[v] into Ij and cancel
the witness w, or there is an x ≤ a such that x ∈ Lv − Ls, in which case, both
Δ(L;w, f(w))[v] and Γj(Ij , L; k)[v] become invalid at stage s.

Therefore if both Δ(L;w, f(w)) and Γj(Ij , L; k) are defined, then Φi(X0, L;
k)[v] has not been injured by redefining the height function of x ≤ φi(k)[v] for
those x which had been enumerated into A before the Γj(Ij , L; k)[v] was defined
at stage v. On the other hand for any x, if x will enter A after stage v, and
x ≤ φi(k)[v], then the height function h(x) will be less than or equal to j unless
Φi(X0, L; k)[v] is L-incorrect, in which case, the height function h(x) maybe
defined to be some n > j, under the condition that the x-splitting may require
Rj-attention at the stage at which Φi(X0, L; k)[v] becomes L-correct. This will
be realised by requiring that the ξi(y)-use for all y ∈ Ux will be greater than
φi(k)[v], before an x-splitting occurs.

In summary, we ensure that if both Δ(L;w, f(w)) and Γj(Ij , L; k) are defined,
then Φi(X0, L; k)[v] has not been injured by x-splitting for any x which was in
A and which had been split before stage v. And for any x, if x enters A (or x-
splitting occurs for the first time) after stage v, then the injury of Φi(X0, L; k)[v]
by the x-splitting can be restored at the stage at which Φi(X0, L; k)[v] be-
comes L-correct. With this intuition, we now describe the instructions of the
Rj-strategy.

To satisfy the R-requirement Rj , we construct a computably enumerable set
Ij and Turing functionals Γj and Λj such that the following properties hold:

(a) A = Γj(Ij , L).
(b) Ij = Λj(A,L).
(c) If A is a computably enumerable set, then Ij = ∅.

Λj is built by a usual permitting method, but we enumerate an element x into
Ij , only if there is some y < x which leaves A. Therefore if A is a computably
enumerable set, then Ij is ∅.

Γj will be built by an infinite sequence of cycles k ≥ 0. Cycle k of the Rj-
strategy will be responsible for defining Γj(Ij , L; k), and will proceed as follows.

1. Define a witness w(j, k) as fresh.
2. Wait for a stage v at which

(2a) for any k′ < k, if w(j, k′) ↓= w′, then Θ(K; f(w′)) ↓= 1,
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(2b) for w = w(j, k), Θ(K; f(w)) ↓= 0 holds,
(2c) l(Φi(X0, L), A) > k,
then:
– define a(j, k, w) = max{φi(k),m(x), p(x) | x ≤ φi(k), x ∈ A, h(x) ↓},
– define Δ(L;w, f(w)) ↓= 0 with δ(w, f(w)) = a(j, k, w),
– define Γj(Ij , L; k) ↓= A(k) with γj(k) fresh, and with L-use a(j, k, w),
– let σ = L � (a(j, k, w) + 1),
– create a conditional restraint cj(k) = (j, k, w, σ, φi(k), v), and
– let Cj be the set of all conditional restraints cj(k) = (j, k, w, σ, r, v) which
are still valid.

[ Remark. (1). The conditional restraint cj(k) = (j, k, w, σ, r, v) allows an
x-splitting for x ≤ r to enumerate a y ∈ Ux into X0 if σ is both valid and
incorrect, in which case, the Ξi-permitting markers for all y ∈ Ux have been
lifted to |σ|. In so doing if at a later stage, σ proves a correct initial segment
of L, we get a permanent A ⊕ L-permission for all y ∈ Ux via Ξi for both
i = 0 and 1, and then we can restore the computation Φi(X0, L; k)[v] by
extracting the x-traces which have been enumerated into X0 since stage v
from X0. In this case, we say that the x-splitting receives Rj-attention.
(2). For a given x, the x-splitting receives Rj-attention at most once unless
it has received Rj′ -attention for some j′ < j.
(3). The definition of a(j, k, w) will ensure that if Δ(L;w, f(w)) is valid (of
course w has not been cancelled), then Φi(X0, L; k)[v] has not been injured
by any x-splitting for those x with which h(x) had been defined at the stage
at which we defined Δ(L;w, f(w)).
(4). If we build Γj for some j at a stage v, say, there is no x-splitting occurs
during stage v.
(5) After we defined Δ(L;w, f(w)) at stage v, we will wait for the next
progressive stage s say. Now we know that either Θ(K; f(w)) ↓= 1, or Lv �
(δ(w, f(w))[v] + 1) has changed, or w can be cancelled during stage s.]

3. If at a stage s > v, there is a ≤ a(j, k, w)[v] such that a ∈ Av −As, then
– enumerate γj(k)[v] into Ij ,
– set w to be undefined,
– cancel cycle k′ for all k′ > k, and go back to step 1.

4. Otherwise, and there is an l such that l ≤ a(j, k, w)[v] and l ∈ Lv −Ls, then
both Δ(L;w, f(w))[v] and Γj(Ij , L; k)[v] become invalid automatically.

5. (Special Attention) If at stage s > v:
(5a) Θ(K; f(w)) ↓= 1,
(5b) Δ(L;w, f(w)) ↓,
then:

– let cj(k) = (j, k, w, σ, r, v) be the conditional restraint defined by the Rj-
strategy at the stage we defined the current Δ(L;w, f(w)),
– for every x, if x ≤ r, h(x)[v] ↑, and h(x) ↓> j, then extract every y ∈ Ux

from X0 ∪X1, and we say that x-splitting receives Rj-attention at stage s,
– let Rj be the set of all conditional restraints cj(k′) = (j, k′, w′, σ′, r′, v′)
which are still valid at stage s,
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– define the X0-restraint of the Rj-strategy by rj = max{r | (∃k′, w′, σ′, r, v′)
[(j, k′, w′, σ′, r, v′) ∈ Rj ]}, and
– we say that the Rj-strategy receives special attention.

The Possible Outcomes The possible outcomes of the R-strategy are as
follows.

Case 1. There is a k such that step 3 of cycle k of the Rj-strategy acts
infinitely many times. In this case, both Γj(Ij , L) and Φi(X0, L) are partial, Rj

is satisfied.
Note that there are only finitely many conditional restraints (j, k′, w′, σ, r, v)

which are created by the Rj-strategy, and which are valid permanently. So we
have that lim infs rj [s] ↓= rj < ω exists.

Case 2. Otherwise, and there is a k (the least) such that step 2 of cycle k
of the Rj-strategy acts infinitely often. In this case, lims w(j, k)[s] ↓= w < ω
exists, and Θ(K; f(w)) ↓= 0, but a(j, k, w)[s] is unbounded during the course of
the construction, so is φi(k)[s]. Rj is satisfied.

Notice that there are only finitely many stages at which cycle k′ of the Rj-
strategy acts for k′ �= k. And almost every conditional restraint (j, k, w, σ, r, v)
is either invalid or incorrect at every progressive stage.

By the action in step 5 of the Rj-strategy, Rj is a finite set, so that lims rj [s] ↓=
rj < ω exists.

Case 3. Otherwise, and Γj(Ij , L) is built infinitely many times. In this case,
Γj(Ij , L) is total. If there is a k such that Γj(Ij , L; k) ↓�= A(k) holds permanently,
then by step 5 of the Rj-strategy, Φi(X0, L; k) ↓�= A(k) holds permanently. By
condition (2c) in step 2 of the Rj-strategy, the Rj-strategy acts only finitely
many times. It is impossible that Γj(Ij , L) is built infinitely often.

Therefore, in this case, for every k, we have that Γj(Ij , L; k) ↓= A(k), giving
A = Γj(Ij , L). In addition, Ij is reducible to A⊕L. So for every j, Rj is satisfied.

Case 4. Otherwise. Then let k be the least x such that Γj(Ij , L;x) diverges.
Then lims w(j, k)[s] ↓= w < ω exists. By the choice of k, Δ(L;w, f(w)) diverges.
Therefore Θ(K; f(w)) ↓= 0 holds. And for almost every progressive stage s,
l(Φi(X0, L), A)[s] �> k occurs at stage s. Rj is satisfied, and the Rj-strategy acts
only finitely many times.

In summary, if there is no c.e. I such that I ⊕L ≡T A⊕L, then we have the
following:

(a) Rj is satisfied.
(b) Γj(Ij , L) is partial, and
(c) lim infs rj [s] ↓= rj < ω exists.

Property (c) ensures that for a fixed j, for almost every x, the height function
h(x) of x will be eventually greater than j. This again ensures that an Rj-
strategy is injured permanently only finitely many times by x-splitting for those
x with height function h(x) < j. So every Rj is satisfied eventually.

Based on the strategies, we can build a priority construction, and show that
all the requirements are satisfied, establishing the main result, Theorem 5.
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A significant proportion of algorithms for solid modelling and, more generally,
algorithms based on geometric representations suffer of robustness problems.
In fact, the impacted algorithms reveal to have numerical computations deeply
nested with combinatorial computations. Traditionally, the numerical part of
the computation is implemented in double precision floating-point numbers and
generally leads to small rounding errors.

It is generally possible to control the condition numbers in the geometric
computation and, therefore, these rounding errors have no serious consequences
on the accuracy of the output. But an arbitrary small numerical error may break
the consistency of the combinatorial part of the algorithm, provoking a fatal
failure or an erroneous output. Typically, the numerical information produces
combinatorial decisions through comparison tests: if(F (x) > 0){}.

In computational geometry, most studied algorithms deal with simple geo-
metric primitives such as lines, circles or spheres and the computations involved
in comparison tests, also called predicates, are polynomials of low algebraic de-
gree. The depth of computation is usually low.

For these situations, the exact computation paradigm has been introduced. It
consists in computing the predicate exactly, by evaluating the sign of low degree
polynomials using for instance extended precision or modular arithmetic. The
exact computation paradigm has successfully solved problems of consistency in
algorithms that produce only a combinatorial output, such as Delaunay trian-
gulation for meshing algorithms. However, as soon as one has to construct some
geometry in the output, one has to produce consistent outputs, which are outputs
for which the numerical part of the data is consistent with the combinatorial part.

The point is that these numerical outputs are necessarily rounded, in practice
in floating point values. Indeed, the usage of alternate representations, such as
extended arithmetic, rational and algebraic numbers is feasible only for small
depth of computation. Sooner or later, it has to be rounded, and this numerical
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rounding has to be consistent with some sort of topological or combinatorial
rounding.

The BRep data structure is widely used in computer aided design software
for the representation of solids and shapes. These data structures aggregate very
general classes of curves and surfaces together with the combinatorial struc-
ture of their incidence/boundary relations. Geometric algorithms operating on
these data structures have to deal with the complexity of geometric operations on
complex curves and surfaces while preserving the integrity of the resulting struc-
ture. Therefore, the problem of the inconsistencies in the combinatorial structure
arising from numerical inaccuracies, well known for many usual computational
geometry algorithms, can only be worse in the context of BRep data structures.
Within the software architecture of modern computer aided geometric software,
a curve or a surface is potentially any computable function. Therefore, in theory,
an exact predicate would be in principle semi-decidable only.

In practice, such exact predicates are absolutely unrealistic. Looking at the
workflow of geometric data in the industry, one has to consider a model of com-
putation in which the depth of computation is not a priori bounded and, in
this context, some kind of rounding, with a controlled loss of information, is
unavoidable. This is why in CAD software, an uncertainty is, explicitly or not,
associated to any numerical value, a technique that could be called the “up to
epsilon” programming paradigm. However, today, the necessary “up to epsilon”
model is more the art of skilled engineers than a well founded model of com-
putation. In practice, algorithms particularly exposed to robustness problems
are very expensive. In fact, studying the rounding process leads to look at the
continuity of algorithms. One has to define a topology on both input and output
spaces for which the function computed by the algorithm is continuous. An effi-
cient way to do this makes use of continuous domain theory and computability
in uncountable sets. Today, only a few algorithms have been devised in this the-
oretical framework. But it has the merit to formalize what is often understood
as street wisdom or engineer skill.

Apparently, discontinuous operations in geometric modelling have a realistic
Scott continuous formulation in this context and the rounding, that can be
numerical rounding, geometrical rounding or topological/combinatorial rounding
has a uniform theoretical formulation: one has to lose information, that is the
rounded object is lower, in the information order, than the original object. Of
course, this loss of information has still to be controlled to be acceptable. One
related issue is the notion of persistent homology and homotopy, allowing to
capture some topological information from partial geometric information.
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Recent developments in the theory of computing give a canonical way of assigning
a dimension to each point of n-dimensional Euclidean space. Computable points
have dimension 0, random points have dimension n, and every real number
in [0, n] is the dimension of uncountably many points. If X is a reasonably
simple subset of n-dimensional Euclidean space (a union of computably closed
sets), then the classical Hausdorff dimension of X is just the supremum of the
dimensions of the points in X. In this talk I will discuss the meaning of these
developments, their implications for both the theory of computing and fractal
geometry, and directions for future research.
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Abstract. We present linear time solutions to two NP-complete prob-
lems, namely SAT and the directed Hamiltonian Path Problem (HPP),
based on accepting networks of splicing processors (ANSP) having all re-
sources (size, number of rules and symbols) linearly bounded by the size
of the given instance. The underlying structure of these ANSPs does not
depend on the number of clauses, in the case of SAT, and the number of
edges, in the case of HPP. Furthermore, the running time of the ANSP
solving HPP does not depend on the number of edges of the given graph
and this network provides all solutions, if any, of the given instance of
HPP.

1 Introduction

In this paper, we modify the evolutionary processors placed in the nodes of
the networks of evolutionary processors (NEP for short) by splicing processors.
The origin of networks of evolutionary processors is twofold. In [6] we consider
a computing model inspired by the evolution of cell populations, which might
model some properties of evolving cell communities at the syntactical level. Cells
are represented by words which describe their DNA sequences. Informally, at
any moment of time, the evolutionary system is described by a collection of
words, where each word represents one cell. Cells belong to species and their
community evolves according to mutations and division which are defined by
operations on words. Only those cells are accepted as surviving (correct) ones
which are represented by a word in a given set of words, called the genotype
space of the species. This feature parallels with the natural process of evolution.

On the other hand, a basic architecture for parallel and distributed sym-
bolic processing, related to the Connection Machine [12] as well as the Logic
Flow paradigm [7], consists of several processors, each of them being placed in
a node of a virtual complete graph, which are able to handle data associated
with the respective node. Each node processor acts on the local data in accor-
dance with some predefined rules, and then local data becomes a mobile agent
which can navigate in the network following a given protocol. Only such data
can be communicated which can pass a filtering process. This filtering process
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may require to satisfy some conditions imposed by the sending processor, by
the receiving processor or by both of them. All the nodes send simultaneously
their data and the receiving nodes handle also simultaneously all the arriving
messages, according to some strategies, see, e.g., [8, 12].

In [1](further developed in [2, 14, 3]), we modify this concept (considered in
[5] from a formal language theory point of view) in the following way inspired
from cell biology. Each processor placed in a node is a very simple processor,
an evolutionary processor. By an evolutionary processor we mean a processor
which is able to perform very simple operations, namely point mutations in a
DNA sequence (insertion, deletion or substitution of a pair of nucleotides). More
generally, each node may be viewed as a cell having genetic information encoded
in DNA sequences which may evolve by local evolutionary events, that is point
mutations. Each node is specialized just for one of these evolutionary operations.
Furthermore, the data in each node is organized in the form of multisets of words
(each word appears in an arbitrarily large number of copies), and all copies
are processed in parallel such that all the possible events that can take place
do actually take place. Obviously, the computational process described here is
not exactly an evolutionary process in the Darwinian sense. But the rewriting
operations we have considered might be interpreted as mutations and the filtering
process might be viewed as a selection process. Recombination is missing but it
was asserted that evolutionary and functional relationships between genes can be
captured by taking only local mutations into consideration [16]. Consequently,
networks of evolutionary processors might be viewed as bio-inspired computing
models.

Here we replace the point mutations associated with each node by the missing
operation mentioned above, that of splicing. This computing model is similar to
some extent to test tube distributed systems based on splicing introduced in
[4] and further explored in [15]. However, there are several differences: first,
the model proposed in [4] is a language generating mechanism while ours is
an accepting one, we use a single splicing step, that seems to be more realistic,
while every splicing step in [4] is actually an infinite process consisting of iterated
splicing steps, each splicing step in our model is reflexive and takes part between
a so-called auxiliary word (proper to the node) and a word present in the node
at some moment, the filters of our model are very simple and based on random
context conditions which appear to us more suitable to be implemented. We
want to stress from the very beginning that we are not concerned here with a
possible biological implementation, though a matter of great importance.

In a series of papers, we present linear time solutions to some NP-complete
problems using NEPs. Such solutions are presented for the Bounded Post Corre-
spondence Problem in [1], for the “3-colorability problem” in [2] (with simplified
networks), and for the Common Algorithmic Problem in [14]. In [13] we present
two linear time solutions to two NP-complete problems, namely the 3CNF-SAT
and the HPP (Hamiltonian Path Problem), based on accepting networks of evo-
lutionary processors (ANEP) having all resources (size, number of rules and sym-
bols) linearly bounded by the size of the given instance. However, [13] presents
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for the first time such solutions based on ANEPs, and more important, by the
definition of ANEPs, one can evaluate the descriptional (number of nodes, rules,
symbols) and computational (time) complexity of these ANEPs with respect to
their input word which is actually the given instance of the problem.

This paper fits the same line of research. First, we define two complexity
classes on ANSP similarly to the classical time and space complexity classes
defined on the standard computing model of Turing machine. By definition,
ANSPs are always deterministic. Second, we present linear time solutions to two
NP-complete problems, namely SAT and the directed Hamiltonian Path Problem
(HPP), based on accepting networks of splicing processors (ANSP) having all
resources (size, number of rules and symbols) linearly bounded by the size of
the given instance. The underlying structure of these ANSPs does not depend
on the number of clauses, in the case of SAT, and the number of edges, in the
case of HPP. Furthermore, the running time of the ANSP solving HPP does not
depend on the number of edges of the given graph and this network provides all
solutions, if any, of the given instance of HPP.

2 Basic Definitions

We start by summarizing the notions used throughout the paper. An alphabet is
a finite and nonempty set of symbols. The cardinality of a finite set A is written
card(A). Any finite sequence of symbols from an alphabet V is called word over
V . The set of all words over V is denoted by V ∗ and the empty word is denoted
by ε. The length of a word x is denoted by |x| while alph(x) denotes the minimal
alphabet W such that x ∈ W ∗.

A splicing rule over the alphabet V is a quadruple written in the form σ =
[(x, y); (u, v)], where x, y, u, v are words over V . Given a splicing rule σ over V as
above and a pair of words (w, z) over the same alphabet V we define the action
of σ on (w, z) by:

σ(w, z) = {t | w = αxyβ, z = γuvδ for some words over V α, β, γ, δ

and t = αxvδ or t = γuyβ}.

This action on pair of words can be naturally extended to pair of languages A,B
by

σ(A,B) =
⋃

w∈A,z∈B
σ(w, z).

Furthermore, if M is a finite set of splicing rules over V , then we set

M(A,B) =
⋃
σ∈M

σ(A,B).

For two disjoint and nonempty subsets P and F of an alphabet V and a word
w over V , we define the predicates
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ϕ(1)(w;P, F ) ≡ P ⊆ alph(w) ∧ F ∩ alph(w) = ∅
ϕ(2)(w;P, F ) ≡ alph(w) ⊆ P
ϕ(3)(w;P, F ) ≡ P ⊆ alph(w) ∧ F �⊆ alph(w)
ϕ(4)(w;P, F ) ≡ alph(w) ∩ P �= ∅ ∧ F ∩ alph(w) = ∅.

The construction of these predicates is based on random-context conditions
defined by the two sets P (permitting contexts/symbols) and F (forbidding con-
texts/symbols). Informally, the first condition requires that all permitting sym-
bols are and no forbidding symbol is present in w, the second one requires that
all symbols of w are permitting ones, while the last two conditions are weaker
variants of the first one such that some forbidding symbols may appear in w but
not all of them, and at least one permitting symbol appears in w, respectively.

For every language L ⊆ V ∗ and β ∈ {(1), (2), (3), (4)}, we define:

ϕβ(L,P, F ) = {w ∈ L | ϕβ(w;P, F )}.

A splicing processor over V is a 6-tuple (S,A, PI, FI, PO, FO), where:

– S is a finite set of splicing rules over V .
– A is a finite set of auxiliary words over V . These auxiliary words are to be

used by this node for splicing.
– PI, FI ⊆ V are the input permitting/forbidding contexts of the proces-

sor, while PO,FO ⊆ V are the output permitting/forbidding contexts of the
processor (with PI ∩ FI = ∅ and PO ∩ FO = ∅).

We denote the set of splicing processors over V by SPV .
An accepting network of splicing processors (ANSP for short) is a 6-tuple

Γ = (V,U,G,N , α, xI , xO), where:

– V and U are the input and network alphabet, respectively, V ⊆ U .
– G = (XG, EG) is an undirected graph with the set of vertices XG and the

set of edges EG. G is called the underlying graph of the network.
– N : XG −→ SPU is a mapping which associates with each node x ∈ XG the

splicing processor N (x) = (Sx, Ax, P Ix, F Ix, POx, FOx).
– α : XG −→ {(1), (2), (3), (4)} defines the type of the input/output filters

of a node. More precisely, for every node, x ∈ XG, the following filters are
defined:

input filter: ρx(·) = ϕβ(x)(·;PIx, F Ix),
output filter: τx(·) = ϕβ(x)(·;POx, FOx).

That is, ρx(w) (resp. τx) indicates whether or not the word w can pass the
input (resp. output) filter of x. More generally, ρx(L) (resp. τx(L)) is the set
of words of L that can pass the input (resp. output) filter of x.

– xI , xO ∈ XG are the input and the output node of Γ , respectively.

We say that card(XG) is the size of Γ . If α is a constant function, then the
network is said to be homogeneous. In the theory of networks some types of
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underlying graphs are common, e.g., rings, stars, grids, etc. Networks of evolu-
tionary processors with underlying graphs having these special forms have been
considered in [1, 2, 14, 3]. We focus here on complete ANSPs, i.e., ANSPs having
a complete underlying graph denoted by Kn, where n is the number of vertices.

A configuration of a ANSP Γ as above is a mapping C : XG −→ 2V
∗

which
associates a set of words with every node of the graph. A configuration may
be understood as the sets of words which are present in any node at a given
moment. Given a word w ∈ V ∗, the initial configuration of Γ on w is defined by
C

(w)
0 (xI) = w and C

(w)
0 (x) = ∅ for all x ∈ XG − {xI}.

A configuration can change either by a splicing step or by a communication
step. When changing by a splicing step, each component C(x) of the configu-
ration C is changed in accordance with the set of splicing rules Mx associated
with the node x and the set Ax. Formally, we say that the configuration C ′ is
obtained in one splicing step from the configuration C, written as C =⇒ C ′, iff

C ′(x) = Sx(Ax, C(x)) for all x ∈ XG.

When changing by a communication step, each node processor x ∈ XG sends
one copy of each word it has, which is able to pass the output filter of x, to all
the node processors connected to x and receives all the words sent by any node
processor connected with x providing that they can pass its input filter.

Formally, we say that the configuration C ′ is obtained in one communication
step from configuration C, written as C 1 C ′, iff

C ′(x) = (C(x) − τx(C(x))) ∪
⋃

{x,y}∈EG

(τy(C(y)) ∩ ρx(C(y))) for all x ∈ XG.

Let Γ be an ANSP, the computation of Γ on the input word w ∈ V ∗ is a
sequence of configurations C

(w)
0 , C

(w)
1 , C

(w)
2 , . . ., where C

(w)
0 is the initial con-

figuration of Γ on w, C
(w)
2i =⇒ C

(w)
2i+1 and C

(w)
2i+1 1 C

(w)
2i+2, for all i ≥ 0. By

the previous definitions, each configuration C
(w)
i is uniquely determined by the

configuration C
(w)
i−1. Otherwise stated, each computation in an ANSP is deter-

ministic. A computation halts (and it is said to be finite) if one of the following
two conditions holds:

(i) There exists a configuration in which the set of words existing in the
output node xO is non-empty. In this case, the computation is said to be an
accepting computation.

(ii) There exist two consecutive identical configurations.
The language accepted by Γ is

La(Γ ) = {w ∈ V ∗ | the computation of Γ on w is an accepting one}.

We say that an ANSP Γ decides the language L ⊆ V ∗, and write L(Γ ) = L iff
La(Γ ) = L and the computation of Γ on every x ∈ V ∗ halts.

The reader is referred to [10, 11] for the classical time and space complexity
classes defined on the standard computing model of Turing machine.
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In a similar way, we define two computational complexity measures using
ANSP as the computing model. To this aim we consider an ANSP Γ with the
input alphabet V that halts on every input. The time complexity of the finite
computation C

(x)
0 , C(x)

1 , C(x)
2 , . . . C(x)

m of Γ on x ∈ V ∗ is denoted by TimeΓ (x)
and equals m. The length complexity of the above computation is defined by

LengthΓ (x) = max{|w| : w ∈ C
(x)
i (z), 1 ≤ i ≤ m, z ∈ XG}.

The time complexity of Γ is the partial function from N to N,

TimeΓ (n) = max{TimeΓ (x) | x ∈ V ∗, |x| = n}.

Analogously, the length complexity of Γ is the partial function from N to N,

LengthΓ (n) = max{LengthΓ (x) | x ∈ V ∗, |x| = n}.

It is easy to note that for any ANSP Γ if TimeΓ is bounded by a linear polyno-
mial, then LengthΓ is also linearly bounded.

3 Solving Problems with ANSPs

We discuss very briefly and informally how ANSPs could be used as problem
solvers. A possible correspondence between decision problems and languages can
be done via an encoding function which transforms an instance of a given decision
problem into a word, see, e.g., [9]. We say that a decision problem is solved in
linear time by ANSPs if the following conditions are satisfied:

1. The encoding function can be computed by a deterministic Turing machine
in linear time. Therefore each instance of the problem is linearly related to
its associated word.

2. For each instance of the problem one can effectively construct an ANSP
which decides in linear time the word encoding the given instance. This
means that the word is accepted if and only if the solution to the given
instance of the problem is “YES”. This effective construction is called a
linear time solution to the considered problem.

In this section we present linear solutions to two NP-complete problems: SAT
(Satisfiability) and HPP (Hamiltonian Path Problem).

Satisfiability is perhaps the best studied NP-complete problem because one
arrives at it from a large number of practical problems. It has direct applica-
tions in mathematical logic, artificial intelligence, VLSI engineering, computing
theory, etc. It can also be met indirectly in the area of constraint satisfaction
problems.

An instance of SAT consists of a formula E with n variables and m clauses.
More precisely, the formula E is a conjunction (i.e., ∧) of m clauses, with each
being the disjunction (i.e., ∨) of several different variables or their negations
(i.e., .̄) from a set of n variables. We naturally assume that each variable or its
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negation appear in at least one clause. The problem asks whether or not there
exists an assignment of the n boolean variables such that the m clauses are all
satisfied.

Theorem 1. SAT can be solved in linear time by ANSPs. Furthermore, the
other resources (size, total number of symbols, number of splicing rules and aux-
iliary words associated with any node) of the ANSPs solving a given instance of
SAT are linearly bounded by the size of the instance.

Proof. Let V be the set of variables, V = {x1, x2, . . . , xn} and φ = (C1) ∧
(C2) ∧ . . . (Cm) be a boolean formula, where the negation of a variable xi is
denoted by x̄i. Each such formula may be viewed as a word over the alphabet
V ∪ V̄ ∪ {∧,∨, (, )}, where V̄ = {x̄ | x ∈ V }. We define the alphabet

W = {[xi = 1], [xi = 0] | 1 ≤ i ≤ n} ∪ V ∪ V̄ ∪ {∨,∧, (, ), $,#, ↑}.

We now consider the ANSP Γ = (V,W,K2n+2,N , α, In,Out), where K2n+2 is
the complete graph with the 2n+2 nodes In, Out, (xi ← 0), (xi ← 1), 1 ≤ i ≤ n,
and the other parameters are defined as follows:

– In:
• SIn = {[($[xn = b], ε); ($, ()] | b ∈ {0, 1}} ∪ {[($[xi = b], ε); ($, [xi+1 =

c]) | b, c ∈ {0, 1}, 1 ≤ i ≤ n− 1},
• AIn = {$[xi = b] | b ∈ {0, 1}, 1 ≤ i ≤ n},
• PIIn = ∅, FIIn = W , POIn = {[x1 = 0], [x1 = 1]}, FOIn = ∅, α(In) =

(4).
– (xi ← 0), 1 ≤ i ≤ n:

• S(xi←0) contains all splicing rules of the form [(↑, C ′β#); ([xn = b],
(C)β#)], where

(i) b ∈ {0, 1}, C)β is a suffix of φ, with C ∈ (V ∪ V̄ ∪ {∨})+,

(ii) C ′ =

⎧⎨⎩ε, if C starts with x̄i,
(γ), if C = xi ∨ γ, γ ∈ (V ∪ V̄ )+,
↑, if C = xi or C starts with xj or x̄j for some j �= i

• A(xi←0) = {↑ C ′β# | C ′ and β are defined as above },
• PI(xi←0) = {[xi = 0]}, FI(xi←0) = {↑}, PO(xi←0) = ∅, FO(xi←0) = ∅,
α((xi ← 0)) = (1).

– (xi ← 1), 1 ≤ i ≤ n:
• S(xi←1) contains all splicing rules of the form [(↑, C ′β#); ([xn = b],

(C)β#)], where

(i) b ∈ {0, 1}, C)β is a suffix of φ, with C ∈ (V ∪ V̄ ∪ {∨})+,

(ii) C ′ =

⎧⎨⎩ε, if C starts with xi,
(γ), if C = x̄i ∨ γ, γ ∈ (V ∪ V̄ )+,
↑, if C = x̄i or C starts with xj or x̄j for some j �= i

• A(xi←1) = {↑ C ′β# | C ′ and β are defined as above },
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• PI(xi←1) = {[xi = 1]}, FI(xi←1) = {↑}, PO(xi←1) = ∅, FO(xi←1) = ∅,
α((xi ← 1)) = (1).

– Out:
• SOut = AOut = PIOut = POOut = ∅,
• FIOut = V ∪ V̄ ∪ {(, )∨,∧, ↑}, FOOut = W , α(Out) = (1).

Let us outline the working mode of Γ on the input word w = $φ#. We can
assume that there are no identical clauses in φ. In the initial configuration the
word w lies in the input node In. In the first 2n − 1 computational steps, out
of which n are splicing ones, no word can be communicated since no word can
leave the node In. More precisely, after k splicing steps all words

$[xn−k+1 = bk] . . . [xn = b1]φ#

with bj ∈ {0, 1}, 1 ≤ j ≤ k are in In. After the first 2n − 1 steps all these
words are communicated to all the other nodes. All these words have two parts:
a prefix where either 0 or 1 is assigned to each variable, called the value-prefix,
and another part consisting of a word representing a suffix of the input formula,
called the formula-suffix. All words of this form will be referred to as correct
words. Every word that contains [xk = bk], k ∈ {1, . . . , n}, in its value-prefix can
enter the node N(xk ← 1), if bk = 1, or the node N(xk ← 0), otherwise.

Let us suppose it enters N(xk ← 1). If the input formula has the form
(xk ∨ F ) ∧ G, then the formula-suffix of the word is replaced by G, which still
represents a formula-suffix. If the input formula has the form (x̄k ∨F )∧G, then
the formula-suffix of the word is replaced by (F ) ∨ G, which is still a formula-
suffix. Finally, if the formula-suffix has the form (x̄k)G, then it is replaced by
↑ G which is not a formula-suffix anymore, so that this is an incorrect word. It
is easy to note that all incorrect words are lost as soon as they leave the node
where they were produced. The special form of the splicing rules require that the
splicing operation can be done between the value-prefix and the formula-suffix
of a correct word only. By this reason, any word having a formula-suffix that
starts with xj or x̄j is transformed into an incorrect word as soon as it enters a
node N(xk ← b) with k �= j. Now the process is iterated; it is plain that after
each such pair of steps (splicing/communication) a correct word is transformed
into either a correct word with a shorter formula-suffix or an incorrect word.
Therefore, the node Out contains a word after at most 2n + 2|φ|, where |φ|
denotes the length of the formula φ, if and only if there exists an assignment of
the n variables which satisfies the given formula φ. If such an assignment does
not exist, then the ANSP halts after 2n+ 2|φ|+ 1 steps having the output node
Out empty.

We want to stress that also the other resources of Γ are linearly bounded:
this is trivial for the size of Γ and the number of symbols while the number
of auxiliary words and splicing rules in every node is linearly bounded by the
length of the input formula. *+

It is worth mentioning the fact that the underlying structure does not change
if the number of variables in the given instance remains the same. We also can
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say that the network, excepting the input and output nodes, may be viewed as a
“program”: we choose the filters, the splicing words and rules, we “guess” a value
assignment for the variables, and then we compute the formula by replacing the
variables with their values, one by one, from left to right. The ANSP presented
in the previous proof is not homogeneous but the reader can easily construct a
homogeneous ANSP having two extra nodes able to solve any instance of SAT
as efficiently as the above one.

The HPP is to decide whether or not a given directed graph has a Hamiltonian
path. A Hamiltonian path in a directed graph is a path which contains all vertices
exactly once. It is known that the HPP is an NP -complete problem.

Theorem 2. HPP can be solved by ANSPs in linear time. Furthermore, the
other resources (size, total number of symbols, number of splicing rules and aux-
iliary words associated with any node) of the ANSP solving a given instance of
HPP are linearly bounded by the number of nodes of the given graph.

Proof. Let us consider a directed graph γ = (V,E), with V = {x1, x2, . . . , xn}
for which we are looking for a Hamiltonian path starting with x1. First we
define the alphabet U = V ∪ {$,#,⊥} and the the homogeneous ANSP Γ =
(V,U,Kn+1,N , α, In,Out), where Kn+1 is the complete graph with the nodes
In, y2, y3, . . . , yn, Out, and the other parameters are defined as follows:

– In:
• SIn = {[($, x1#n−1); (⊥,#)]},
• AIn = {$x1#n−1},
• PIIn = ∅, FIIn = V , POIn = FOIn = ∅, α(In) = (1).

– yi, 2 ≤ i ≤ n:
• Syi

= {[($, xi#p−1); (xj ,#p)] | (xj , xi) ∈ E, p ≥ 1} ∪ {[($, $); (xj ,#p)] |
(xj , xi) /∈ E, p ≥ 1}.

• Ayi
= {$xi#p | p ≥ 0} ∪ {$$}.

• PIyi
= ∅, F Iyi

= {xi, $}, POyi
= FOyi

= ∅, α(yi) = (1).
– Out:

• SOut = AOut = ∅, P IOut = ∅, POOut = ∅,
• FIOut = {$,#}, FOOut = U , α(Out) = (1).

The above construction needs a very short explanation. One starts with the in-
put word ⊥#n in the input node In. After a splicing step, two words go out
from In: $#n and ⊥x1#n−1. The first one is lost while a copy of the second
one enters each node yi, 2 ≤ i ≤ n. Actually, it is easy to note that any word
containing the symbol $ produced by splicing in any node is lost in the com-
munication step. Let us follow a copy of ⊥x1#n−1 that entered yi for some i.
The next splicing step produces a word that can continue the computational
process, namely ⊥x1xi#n−2, if and only if (x1, xi) ∈ E. The words obtained in
this way contain, between ⊥ and the first occurrence of #, paths in G. Note that
the number of occurrences of # in the suffix of these words stores the number
of nodes which are still needed for completing a Hamiltonian path. Further-
more, a word containing a symbol xj , for some j, cannot enter again the node
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yj . By these explanations, after exactly 2n steps Out contains all Hamiltonian
paths, if any, or the computation halts after at most 2n− 2, if the graph has no
Hamiltonian path.

It is obvious that also the other resources of Γ are linearly bounded by the
number of nodes of the given graph. It is worth mentioning the fact that the
underlying structure of Γ does not change if the number of nodes in the given
graph remains the same. *+
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15. G. Păun, Distributed architectures in DNA computing based on splicing: Limiting
the size of components, Unconventional Models of Computation, Springer Verlag,
Berlin 1998, 323–335.

16. D. Sankoff et al. Gene order comparisons for phylogenetic inference:Evolution of
the mitochondrial genome. Proc. Natl. Acad. Sci. USA, 89 (1992) 6575–6579.



Hilbert’s Tenth Problem and Paradigms
of Computation

Yuri Matiyasevich

Steklov Institute of Mathematics
Laboratory of Mathematical Logic

27, Fontanka
St.Petersburg, Russia 191023

yumat@pdmi.ras.ru

http://logic.pdmi.ras.ru/∼yumat

Abstract. This is a survey of a century long history of interplay between
Hilbert’s tenth problem (about solvability of Diophantine equations) and
different notions and ideas from the Computability Theory.

1 Statement of the Problem: Intuitive Notion of
Algorithm

In the year 1900 the prominent German mathematician David Hilbert delivered
to the Second International Congress of Mathematicians (held in Paris) his fa-
mous lecture titled Mathematische Probleme [12]. There he put forth 23 (groups
of) problems which were, in his opinion, the most important open problems in
mathematics that the pending 20th century would inherit from passing 19th
century. Problem number 10 was stated as follows:

10. Entscheidung der Lösbarkeit einer diophantischen Gle-
ichung.

Eine diophantische Gleichung mit irgendwelchen Unbekannten und
mit ganzen rationalen Zahlkoefficienten sei vorgelegt : man soll ein Ver-
fahren angeben, nach welchem sich mittels einer endlichen Anzahl von
Operationen entscheiden läßt, ob die Gleichung in ganzen rationalen
Zahlen lösbar ist. 1

A Diophantine equation is an equation of the form

P (x1, . . . , xm) = 0 (1)

1 10. Determination of the Solvability of a Diophantine Equation. Given a
Diophantine equation with any number of unknown quantities and with rational
integral numerical coefficients: Devise a process according to which it can be deter-
mined by a finite number of operations whether the equation is solvable in rational
integers.

S.B. Cooper, B. Löwe, and L. Torenvliet (Eds.): CiE 2005, LNCS 3526, pp. 310–321, 2005.
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where P is a polynomial with integer coefficients. Hilbert raised the question
about solving Diophantine equations in “rational integers” which were nothing
else but numbers 0,±1,±2, . . . ; without loss of generality in this paper we will
deal with solving Diophantine equations in natural numbers so all lower-case
Latin letters will range over 0, 1, 2, . . .

Since Diophantus’s time (3rd century A.D.) number-theorists have found
solutions for plenty of Diophantine equations and also have proved the unsolv-
ability of a large number of other equations. However, for different classes of
equations, or even for different individual equations, one had to invent different
specific methods. In the 10th problem Hilbert asked for a universal method for
recognizing the solvability of Diophantine equations, i.e., in modern terminology
the 10th problem is a decision problem (the only one among the 23 problems).

Note that Hilbert did not use the word “algorithm” in his statement of the
tenth problem. Instead, he used the rather vague wording “a process according
to which it can be determined by a finite number of operations ...”. Although
he could have used the word “algorithm,” it would not really have helped much
to clarify the statement of the problem because, at that time, there was no
rigorous definition of the general notion of an algorithm. What existed was a
number of examples of particular mathematical algorithms (such as celebrated
Euclid’s algorithm for finding the greatest common divisor of two integers), and
an intuitive conception of an algorithm in general.

Does it imply that Hilbert’s tenth problem was ill-posed? Not at all. The
absence of a general definition of an algorithm was not in itself an obstacle to
finding a positive solution of Hilbert’s tenth problem. If somebody invented the
required “process”, it should be clear that in fact this process does the job, so
an intuitive conception of an algorithm would be sufficient for positive solution
of the tenth problem which was, most likely, Hilbert’s expectation.

2 Davis’s Conjecture: Are All Effectively Enumerable
Sets Diophantine?

The first investigations aimed at a proof of algorithmic undecidability of Hilbert’s
tenth problem appeared at the beginning of 1950’s. In particular, at that time
Martin Davis considered Diophantine sets which are sets of natural numbers
having Diophantine representations, i.e., definitions of the form

a ∈ M ⇐⇒ ∃x1 . . . xm[P (a, x1, . . . , xm) = 0] (2)

where P is again a polynomial with integer coefficients one of the variables of
which, a, is now a parameter. Davis’s aim was to give a characterization of the
whole class of Diophantine sets. The computability theory immediately puts a
condition which is necessary for a set to be Diophantine: every Diophantine set
is, evidently, effectively enumerable. Davis conjectured ([5, 6]) that this necessary
condition is also sufficient:

Davis’s conjecture. A set of natural numbers is Diophantine if and only if it
is effectively enumerable.
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Effectively enumerable sets can be defined via the notion of an algorithm,
but the things can be taken in the reversed order: having given an indepen-
dent definition of a effectively enumerable set, one can develop the whole the-
ory of computability in terms of effectively enumerable sets instead of algo-
rithms; examples of such an approach can be found in G.S. Tseitin’s paper
[38] and P. Martin-Löf’s book [25]. Thus Davis’s conjecture opened a way to
base the computability theory on the number-theoretical notion of a Diophan-
tine set.

3 Davis’s Conjecture: First Step to the Proof via
Arithmetization

Martin Davis’s made the first step to proving his conjecture by showing in [6] that
every effectively enumerable set M has an almost Diophantine representation:

Theorem (Martin Davis). Every effectively enumerable set M has a repre-
sentation of the form

a ∈ M ⇐⇒ ∃z∀y≤z∃x1 . . . xm[P (a,x1, . . . , xm, y, z) = 0] (3)

where P is a polynomial with integer coefficients and ∀y≤z is the bounded uni-
versal quantifier “for all y not greater than z”.

A representation of this type became known as the Davis normal form. To ob-
tain it, Davis started in [6] with a representation of the set M by an arbitrary
arithmetical formula with any number of bounded universal quantifiers. The ex-
istence of such arithmetical formulas for every effectively enumerable set was
demonstrated by Kurt Gödel in his classical paper [10]. Thanks to the bound on
the universal quantifiers, every such formula defines an effectively enumerable
and hence these formulas could be used for foundation of the Computability
Theory.

4 Original Proof of Davis: Post’s Normal Forms

According to a footnote in Davis’ paper [6], the idea of obtaining the representa-
tion (3) by combining universal quantifiers from a general arithmetic represen-
tation was due to the (anonymous) referee of the paper. The original proof of
Davis (outlined in [5] and given with details in [8]) was quite different. Namely,
Davis managed to arithmetize Post normal forms using only one universal quan-
tifier. These forms are a special case of more general canonical forms introduced
by Emil L. Post [36] as a possible foundation of computability theory (and the
above cited book [25] uses just Post canonical forms).
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5 Davis’s Conjecture Proved: Effectively Enumerable
Sets Are Diophantine

It took two decades before Davis’s conjecture became a theorem (for historical
details see, for example, [29]; for an extensive bibliography on Hilbert’s tenth
problem visit [43]). The following weaker result due to Martin Davis, Hilary
Putnam, and Julia Robinson [9] was a mile-stone on the way to the proof of
Davis’s conjecture:

DPR-Theorem. For every effectively enumerable set M there exists a repre-
sentation of the form

a ∈ M ⇐⇒ ∃x1 . . . xm[E(a, x1, x2, . . . , xm) = 0] (4)

where E is an exponential polynomial, i.e., an expression constructed by combin-
ing the variables and particular integers using the traditional rules of addition,
multiplication and exponentiation.

The last step in the proof of Davis’s conjecture was done in [26], and nowadays
corresponding theorem is often called

DPRM-Theorem. The notions of a Diophantine set and the notion of an ef-
fectively enumerable set coincide.

Thus a (seemingly narrow) notion from the Number Theory turned out to be
equivalent to the very general notion from the Computability Theory.

6 Existential Arithmetization I: Turing Machines

Already the very first proof of the DPRM-theorem given in [26] was constructive
in the sense that as soon as a set M is presented in any standard form, it is
possible to find corresponding Diophantine representation (2). This was done in
the following four steps:

1. construction of an arithmetical formula with many bounded universal quan-
tifiers;

2. transformation of this formula into Davis normal form (3);
3. elimination the single bounded universal quantifier at the cost of passing

to exponential Diophantine equations, getting an exponential Diophantine
representation (4);

4. elimination of the exponentiation.

Now that we know that in fact no universal quantifier is necessary at all, it
would be more natural to try to perform the whole arithmetization by using only
purely existential formulas. From technical point of view for the success of this
approach it is crucial to select an appropriate device for the initial representation
of the set M.
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For the first time such a purely existential arithmetization was done in [28]
with the set M being recognized by a Turing machine; a simplified way of con-
structing Diophantine representation by arithmetization of Turing machines is
presented in [29]; yet another construction based on Turing machines is given
in [39].

7 Existential Arithmetization II: Register Machines

When arithmetizing Turing machine, one has first to introduce a method to
represent the content of the tape of the machine by numbers. In this respect
another kind of abstract computing devices, register machines, turned out to be
more suitable as a starting point for constructing Diophantine representations.
Register machines were introduced almost simultaneously by several authors:
J. Lambek [22], Z. A. Melzak [32], M. L. Minsky [33, 34], and J. C. Shepherdson
and H. E. Sturgis [37]. Like Turing machines, register machines have very prim-
itive instructions but, in addition, they deal directly with numbers rather than
with words. This led to a “visual proof” of simulation of register machines by
Diophantine equations (see [17, 18, 31]).

8 Existential Arithmetization III: Partial Recursive
Functions

Another classical tool for the foundations of the Computability Theory are par-
tial recursive functions. Existential arithmetization of these functions was done
in [30] where Diophantine representations are constructed inductively, alongside
construction of a partial recursive function from the initial functions. In order
to deal with the primitive recursion and with the operator of minimization it
turned out useful to generalize the notion of a partial recursive function: instead
of dealing, say, with one-argument function f it was more convenient to work
with a function F , defined on arbitrary n-tuples of natural number by

F (〈a1, . . . , an〉) = 〈f(a1), . . . , f(an)〉. (5)

9 Universality in Number Theory: Collapse of
Diophantine Hierarchy

The DPRM-theorem allows a transfer of a number of ideas from the Computabil-
ity Theory to the Number Theory. One example of such a transfer is the existence
of a universal Diophantine equation, i.e., an equation

U(a, k, y1, . . . , yM ) = 0 (6)

with the following property: for arbitrary Diophantine equation

P (a, x1, . . . , xm) = 0 (7)
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there exist (effectively calculable) number kP such that for arbitrary value of the
parameter a the equation (7) has a solution in x1, . . . , xm if and only if equation

U(a, kP , y1, . . . , yM ) = 0 (8)

has a solution in y1, . . . , yM . This implies that traditional number-theoretical
hierarchy of Diophantine equations of degree 1, 2, . . . with 1, 2 , . . . unknowns
collapses at some level. While the existence of (6) immediately follows from
DPRM-theorem and the existence of, say, a universal Turing machine, the mere
idea of the existence of a such universal object in the theory of Diophantine
equations looked quite implausible not only for number-theorists, but for some
logicians also (see [21]).

The existence of a universal Diophantine equation is an example of a result
which is number-theoretical by its statement, but which was originally proved by
tools from Computability Theory; today such an equation (6) can be constructed
by purely number-theoretical methods (see [29]).

10 Growth of Solution: Speeding Up Diophantine
Equations

Another example of a transfer of ideas from Computability Theory to Number
Theory is as follows. M.Davis [7] used the DPRM-theorem in order to get for
Diophantine equations an analog of a speed-up theorem of Manuel Blum [3].
Namely, for every total computable function α(a, x) one can construct two one-
parameter Diophantine equations

P1(a, x1, . . . , xk) = 0, P2(a, x1, . . . , xk) = 0 (9)

such that

(i) for every value of the parameter a exactly one of these two equations has a
solution;

(ii) if Diophantine equations

Q1(a, y1, . . . , yl) = 0, Q2(a, y1, . . . , yl) = 0 (10)

are solvable for the same values of the parameter a as, respectively, equations
(9), then one can construct a third pair of Diophantine equations

R1(a, z1, . . . , zm) = 0, R2(a, z1, . . . , zm) = 0 (11)

such that
• these equations are again solvable for the same values of the parameter
a as, respectively, equations (9);

• for all sufficiently large values of the parameter a for every solution
y1, . . . , yl of one of the equations (10) there exists a solution z1, . . . , zm
of the corresponding equation (11) such that

y1 + · · · + yl > α(a, z1 + · · · + zm). (12)
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These formulation of a Diophantine speed-up contains, for the sake of the
most generality, the notion of a total computable function; by substituting for
α any particular (fast growing) total computable function, one would obtain
a purely number-theoretic result which, however, has never been imagined by
number-theorist.

11 Diophantine Machines: Capturing Nondeterminism

The DPRM-theorem allows one to treat Diophantine equations as computing
devices. This was done in a picturesque form by Leonard Adleman and Ken-
neth Manders in [2]. Namely, they introduced the notion of Non-Deterministic
Diophantine Machine, NDDM for short.

A NDDM is specified by a parametric Diophantine equation (7) and works
as follows: on input a it guesses the numbers x1, . . . , xm and then checks (7); if
the equality holds, then a is accepted.

NDDM

P (a, x1, . . . , xm) ?= 0 ��

� � �

input

a

guess

x1, . . . , xm

YES NO

accept a reject

The DPRM-theorem is exactly the statement that NDDMs are as powerful as,
say, Turing machines, i.e., every set acceptable by a Turing machine is accepted
by some NDDM, and, of course, vice versa.

The idea behind the introduction of a new computing device was as follows:
in NDDM we have full separation of guessing and deterministic computation,
and the latter is very simple—just the calculation of the value of a polynomial.

12 Unambiguity: Equations with Unique Solution

NDDMs are essentially non-deterministic computing devices. For such devices
non-determinism is sometimes fictitious in the sense that at most one path can
lead to accepting; if this is so one speaks about unambiguous computations. Cor-
responding property for (exponential) Diophantine representations was called
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single-foldness: a representation (2) or (4) is called single-fold representation if
for given value of the parameter a there exists at most one choice of the unknowns
x1, . . . , xm.

The existence of single-fold exponential Diophantine representations for every
effectively enumerable set was established in [27] and later was improved to
the existence single-fold exponential Diophantine representations with only 3
existential variables (see [14, 29]).

The existence of single-fold (or even weaker finite-fold) Diophantine represen-
tations is a major open problem; the positive answer would shed light on some
difficulties met in Number Theory in connection with effectivisation of some
results about Diophantine equations (for more details see, for example, [27, 29]).

Single-fold exponential Diophantine representations found applications in the
descriptional complexity (see below).

13 Diophantine Complexity: D Versus NP

While the DPRM-theorem implies that NDDMs are as powerful as any other
abstract computational device, the intriguing crucial question remains open: how
efficient are the NDDMs? Adleman and Manders supposed that in fact NDDMs
are as efficient as Turing machines.

For the latter there are two natural complexity measures: TIME and SPACE.
For NDDMs there is only one natural complexity measure which plays the role
of both TIME and SPACE. This measure is SIZE, which is the size (in bits) of
the smallest solution of the equation (it is not essential whether we define this
solution as the one with the smallest possible value of max{x1, . . . , xm}, or of
x1 + · · · + xm).

Adleman and Manders obtained in [2] the first results comparing the efficiency
of NDDMs and Turing machines by estimating the SIZE of a NDDM simulating
a Turing machine with TIME in special ranges.

Imposing bounds on the SIZE, we can define a corresponding complexity
class. It was shown by A.K. Vinogradov and N.K. Kossovskii [40] that in this
way one can define all Grzegorczyk classes starting from E3. Of course, the lower
classes are of greater interest, and, what is typical, they turned out to be more
difficult.

Adleman and Manders [1] also introduced the class D consisting of all sets
M having representations of the form

a ∈ M ⇐⇒ ∃x1 . . . xm
[
P (a, x1, . . . , xm) = 0& |x1| + · · · + |xm| ≤ |a|k

]
where |a| denotes, as usual, the (binary) length of a. It is easy to see that
D ⊆ NP and the class D is known (see [24]) to contain NP-complete problems
but otherwise the class D is little understood. Adleman and Manders asked
whether in fact D = NP. Recently Chris Pollett [35] showed that this is so
provided that D ⊆ co-NLOGTIME, and indicated a number of other ways to
tackle D = NP question.
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An arithmetical definitions of the class NP via bounded analog of Davis
normal form (3) were given by Bernhard R. Hodgson and Clement F. Kent
[19, 13] and by Stasis Yukna [41, 42].

Helger Lipmaa [23] introduced PD, the “deterministic part” of the class D,
and used Diophantine equations for secure information exchange protocols.

14 Random Diophantine Equations: Complexity on
Average

The class NP contains thousands of equivalent problems which are supposed
to be difficult (unless P = NP). However, only few problems from NP were
proved to be of the maximal difficulty on average. Ramarathanam Venkate-
san and Sivaramakrishnan Rajagopalan considered the Randomized Diophantine
Problem and proved that it is average-case complete; unfortunately, their proof
is conditional, and their assumption (on existence of a Diophantine equation
with a special property) is equivalent to D = NP.

15 Parallel Computations: Calculation of a Polynomial
on a Petri Net

Petri nets and systems of vector addition were introduced as tools for describing
parallel computations. Michael Rabin used the undecidability of (exponential)
Diophantine equation to prove that some relations between systems of vector
addition (and hence also between Petri nets, because the latter easily simulate
systems of vector addition) are not recognizable (see paper of Michel Hack [11]
where a stronger result was obtained, or [29–Section 10.2]). The crucial point was
a definition (introduced by Rabin) of a calculation of the values of (exponential)
polynomials by systems of vector addition.

16 A Step Above Hilbert’s Tenth Problem:
Computational Chaos in Number Theory

Diophantine equations are undecidable. However, every Diophantine set is effec-
tively enumerable and hence its descriptive complexity is the least possible: for
every polynomial P the initial segment of the set M from (2), i.e., the intersection
of the set M with the set

{a | a ≤ N}, (13)

can be coded by O(log(N)) bits only. However, we can reach the maximal descrip-
tive complexity by considering questions which are only slightly more compli-
cated than those from Hilbert’s tenth problem. Gregory Chaitin [4] constructed
a one-parameter exponential Diophantine equation such that the set



Hilbert’s Tenth Problem and Paradigms of Computation 319

{a | ∃∞x1 . . . xm[E(a, x1, x2, . . . , xm) = 0]} (14)

requires N bits (up to an additive constant) for prefix-free coding of its intersec-
tion with the set (13); here ∃∞ means the existence of infinitely many solutions
of the equation. Informally, one can say that the set (14) is completely chaotic.

More recently Toby Ord and Tien D. Kieu [20] constructed another expo-
nential Diophantine equation which for every value of a has only finitely many
solutions but the parity of the number of solutions again has completely chaotic
behavior in the sense of the descriptive complexity. I was able to generalize this
result in the following way: instead of asking about the parity of the number
of solutions one can ask whether the number of solutions belongs to any fixed
decidable infinite set with infinite complement.

All these results were obtained for exponential Diophantine equations because
they are based on the existence of single-fold exponential Diophantine represen-
tations; the existence of similar chaos among genuine Diophantine equations is
a major open question.
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Abstract. In [7] it was recently shown that NPR ⊆ PCPR(poly, O(1)),
i.e.the existence of transparent long proofs for NPR was established. The
latter denotes the class of real number decision problems verifiable in
polynomial time as introduced by Blum, Shub and Smale [6].

The present paper is devoted to the question what impact a poten-
tial full real number PCPR theorem NPR = PCPR(O(log n), O(1)) would
have on approximation issues in the BSS model of computation. We study
two natural optimization problems in the BSS model. The first, denoted
by MAX-QPS, is related to polynomial systems; the other, MAX-q-CAP,
deals with algebraic circuits. Our main results combine the PCP frame-
work over R with approximation issues for these two problems. The first
main result characterizes validity of a full PCPR theorem by the existence
of a certain reduction from MAX-QPS to MAX-q-CAP. The second re-
sult proves non-existence of particular approximation algorithms if we
assume NPR = PCPR(O(log n), O(1)) to hold.

1 Introduction

One of the certainly most important achievements in Theoretical Computer Sci-
ence within the last decade is the PCP theorem [2, 3]. It characterizes NP by
the class PCP(O(log n), O(1)) of problems accepted by a verifier that gener-
ates a logarithmic number of random bits and then checks a constant num-
ber of proof components. The PCP theorem has shown tremendous impact on
(non-)approximability results in combinatorial optimization. For a short intro-
duction see the next section, full details can be found in [4].

A branch of complexity theory that has seen increasing interest in recent years
is real number complexity. A machine model, called Blum-Shub-Smale (for short:
BSS) machine, was introduced together with a real analogue PR �= NPR? of the
classical P versus NP question in [6]; see also [5] for a detailed presentation.
Considering the PCP theorem and its importance in classical complexity theory
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on the one hand side and real number computations on the other hand it is a
natural question to ask whether some kind of PCP theorems hold as well in the
BSS model, for example in relation with the class NPR. In [7], see also [8], the in-
vestigation of such questions was started by showing the existence of transparent
long proofs for NPR; in precise terms, the inclusion NPR ⊆ PCPR(poly,O(1))
was proven. The question whether a “full” PCPR theorem is true remains a
challenging open problem:

PCPR-Conjecture: NPR = PCPR(O(log n), O(1)).

Though this at the moment only is a conjecture we could ask what impact its
potential truth would have on approximation problems over the reals. In this pa-
per we shall study such consequences. We investigate the following optimization
problems over the reals:

Definition 1. a) The MAX-Quadratic Polynomial Systems MAX-QPS op-
timization problem is defined as follows: The input consists of two numbers
n,m ∈ N together with m polynomials p1, . . . , pm ∈ R[x1, . . . , xn], all pi of de-
gree of most two and depending on at most three variables among x1, . . . , xn.
The task is to compute the maximal number of polynomials among the pi’s that
simultaneously can be made zero by an assignment y ∈ Rn.

The corresponding decision problem, i.e. deciding whether there is a common
zero for all pi, is denoted by QPS.

b) The MAX-q-Circuit Acceptance Problem MAX-q-CAP is defined as fol-
lows. Let q ∈ N be fixed. Input for the problem are natural numbers n,m with
q ≤ n together with m algebraic circuits C1, . . . , Cm, (see [5] for more details
on algebraic circuits). Each Ci has q input nodes that are labelled with indices
i1, . . . , iq ∈ {1, . . . , n}. All circuits compute a result in {0, 1}. Moreover, the
circuits have additional special constant input nodes through which real circuit
constants are introduced into the circuit’s computation.

The optimization problem is to find the maximal number of circuits that com-
monly are satisfiable using an input vector y ∈ Rn. Here, Ci is satisfiable by y iff
Ci computes the result ‘0’ in case it takes the value yij as input value for input
node ij , 1 ≤ j ≤ q.

Remark 2. Both the MAX-QPS and the MAX-q-CAP problem for q ≥ 3 are
NPR-hard. For the former this follows directly from NPR-completeness of the re-
lated decision problem. For the latter use the fact that the evaluation of polyno-
mials can be represented by the computation of an algebraic circuit of polynomial
size in the size of the given polynomial and having the same number of inputs
as the polynomial has variables. The transformation between BSS computations
and algebraic circuits is explained in detail in Chapter 18 of [5].

The MAX-QPS problem is a natural real analogue of the MAX-3-SAT prob-
lem in combinatorial optimization that asks for maximizing the number of clauses
in a 3-SAT formula that can be commonly satisfied. The classical PCP theo-
rem implies that there is no PTAS (polynomial time approximation scheme)
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for MAX-3-SAT unless P = NP. We show that for MAX-QPS a similar though
weaker statement holds if the above conjecture is true: There is no FPTASR

(fully polynomial time approximation scheme) for MAX-QPS unless PR = NPR.
With respect to MAX-q-CAP more can be shown. We prove that validity of the
PCPR-conjecture is equivalent to the existence of a certain reduction from the
QPS decision problem to MAX-q-CAP realizing a gap (as in the classical setting
with respect to 3-SAT and MAX-3-SAT, see [1]). This result implies that no
PTASR for MAX-q-CAP exists unless PR = NPR if the full real PCPR theorem
is true.

2 Basic Notions

In this section we very briefly define the notion of real verifiers and PCPR classes.
We expect the reader to be familiar with the BSS model and the classical PCP
theorem. Full details of all that can be found in [4, 5, 7].

Definition 3. a) Let r, q : N �→ N be two functions. A (r(n), q(n))-restricted
verifier V in the Turing model is a particular randomized Turing machine work-
ing as follows. For an input x ∈ {0, 1}∗ of size n and another vector y ∈ {0, 1}∗

representing a potential membership proof of x in a certain language, the verifier
first produces a sequence of r(n) many random bits (under the uniform distri-
bution on {0, 1}r(n)). Given x and these r(n) many random bits V computes in
deterministic polynomial time in n the indices of q(n) many components of y.
Finally, V uses the input x together with the values of the chosen components of
y in order to perform a deterministic polynomial time algorithm. At the end of
this algorithm V either accepts or rejects (x, y).

b) Part a) can be adapted almost word by word in order to define verifiers for
the BSS model. The randomized part will be a real number algorithm that tosses

coins. The input x and the verification y now belong to the set R∗ :=
∞⋃
n=1

Rn.

The bit-length of x ∈ Rn is replaced by its algebraic size sizeR(x) := n.
We denote by V (x, y, ρ) the result of V supposed the random sequence gen-

erated for input (x, y) was ρ ∈ {0, 1}r(sizeR(x)).

Definition 4. Let r, q : N �→ N; a real number decision problem L ⊆ R∗ is in
the real number complexity class PCPR(r(n), q(n)) iff there exists a (r(n), q(n))-
restricted verifier V such that conditions i) and ii) below hold:

i) For all x ∈ L there is a y ∈ R∗ such that for all randomly generated strings
ρ ∈ {0, 1}r(sizeR(x)) the verifier accepts:

Pr
ρ
{V (x, y, ρ) = ′accept′} = 1.

ii) For any x �∈ L and for each y ∈ R∗ it is

Pr
ρ
{V (x, y, ρ) = ′reject′} ≥ 1

2
.

The probability is chosen uniformly over all strings ρ ∈ {0, 1}r(sizeR(x)).
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The PCP framework is closely related to approximation issues. Thus, we
have to introduce the following notions of approximability for certain optimiza-
tion problems in the real number setting. These definitions are motivated by the
corresponding notions of the classes APX, PTAS and FPTAS used in combi-
natorial optimization, see [4]. However, we mention that such a generalization
is not completely analogous due to the real number framework, see Remark 6
below.

Definition 5. Let f : R∗ × R∗ �→ R∗ and consider the following maximization
problem: Given an instance I ∈ R∗ find

max
x∈R∗

f(I, x) =: OPT (I) .

a) The maximization problem belongs to class APXR (it has an approximation
scheme) over R if and only if there is a constant r ≥ 1 together with a
BSS algorithm A running in polynomial time in sizeR(I) such that for each
problem instance I ∈ R∗ algorithm A computes a value A(I) satisfying

OPT (I)
A(I)

≤ r

and there exists an x ∈ R∗ with f(I, x) = A(I) (i.e. A(I) occurs as a
function value of f).

b) The maximization problem belongs to class PTASR (it has a polynomial time
approximation scheme) over R if there is a BSS algorithm A that for all
problem instances I ∈ R∗, ε > 0 computes a value A(I, ε) in polynomial
time in sizeR(I) satisfying

OPT (I)
A(I)

≤ 1 + ε .

Moreover, we require that there exists an x ∈ R∗ with f(I, x) = A(I).
c) The maximization problem belongs to class FPTASR (it has a fully polyno-

mial time approximation scheme) over R if there is a BSS algorithm A as
in part b), but this time the running time of A depends polynomially both on
sizeR(I) and on 1

ε .

Remark 6. We do not intend to present here a more detailed study of approxi-
mation classes in the BSS model. Instead, we only consider approximation prop-
erties of some specific maximization problems related to PCPR classes. This is,
for example, the reason why above we are not more specific about the kind of
maximization (or minimization) problems to study (as it is done by defining the
class NPO of combinatorial optimization problems). In a more detailed develop-
ment of such an approach first the class NPOR would have to be defined carefully.
Here, we just want to point out that there are some differences with respect to
the classical definitions of these classes in combinatorial optimization. Whereas
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in the latter to each problem instance I there is attached a finite (though expo-
nential in cardinality) set of feasible solutions, for our problems the search space
might be uncountable. As a consequence we do not require our approximation
algorithms to produce a feasible solution, but only a value guaranteed to come
from a feasible solution. In general, the construction of a feasible solution might
even be impossible.

3 Results

In this section we analyse relations between a full PCPR theorem over the reals
and approximation issues to obtain the main results of this paper.

3.1 The MAX-3-QPS Problem

Starting point for our considerations is the following well known result in the
Turing model.

Theorem 7. ([1]) The following two statements are equivalent:

a) NP= PCP(O(log n), O(1));
b) There exist an ε > 0 and a polynomial time reduction Φ from 3-SAT to

MAX-3-SAT such that for each instance I for 3-SAT we have
i) if I is satisfiable, then all clauses in Φ(I) are commonly satisfiable;
ii) if I is not satisfiable, then at most a fraction of 1

1+ε many clauses in
Φ(I) are commonly satisfiable.

Whereas the implication b) ⇒ a) is easy the reverse one needs the PCP
theorem in order to construct a gap between Φ(I) for satisfiable and for unsat-
isfiable I’s. In particular, the above theorem implies that there is no PTAS for
MAX-3-SAT unless P = NP.

We now want to study whether a similar statement holds in the BSS model
over R. So far, the existence of long transparent proofs for NPR is known: NPR =
PCPR(poly,O(1)) (see [7]). It is an open problem whether also a full PCPR

theorem is true: Is NPR = PCPR(O(log n), O(1))?
Therefore it is interesting to analyze whether one can characterize such a

result as well by means of a reduction property similar to the one given in
Theorem 7. Moreover, what implications would result from a full PCPR theorem
with respect to certain approximation properties over the reals?

A natural problem to start with is the MAX-QPS problem from Definition 1.
It was used in [7] to establish the existence of transparent long proofs for NPR.

We shall see that for the MAX-QPS problem proving a similar statement to
Theorem 7 is not obvious. The following result (in particular its proof) indicates
what might go wrong.

Theorem 8. Suppose the real PCPR-conjecture holds, i.e. the equation NPR =
PCPR(O(log n), O(1)) is true. Then there exists no fully polynomial time approx-
imation scheme (FPTASR) for MAX-QPS in the BSS model unless PR = NPR.
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Proof. The proof at the beginning follows the one in [2] showing that MAX-3-
SAT does not have a PTAS unless P = NP. However, major differences occur
due to the semi-algebraic framework our problem is situated in.

Let L be an arbitrary, fixed NPR-complete decision problem and let x ∈ Rn

be an input for deciding whether x ∈ L. Consider a (O(log n), O(1))-restricted
verifier V for problem L. Such a verifier V is existing according to the assumption
that the PCPR-conjecture is true. If c · log n (c > 0 constant) many random bits
are produced and q components are inspected, then we introduce q · nc many
real variables z1, . . . , zq·nc . An assignment for z1, . . . , zq·nc represents a potential
membership proof for x ∈ L. For a fixed choice r ∈ {0, 1}c·log n for the random
bits the verifier chooses q among the components of z1, . . . , zq·nc . Let us denote
the values of the chosen components by z1(r), . . . , zq(r). Given these real values
together with the input x the verifier determines in deterministic polynomial time
whether it accepts (x, z1(r), . . . , zq(r)). Let A(x) ⊆ Rq denote the semi-algebraic
set of values (z1(r), . . . , zq(r)) such that the verifier accepts (x, z1(r), . . . , zq(r))
if and only if the components z1(r), . . . , zq(r) belong to A(x).

Next, we apply the reduction procedure in [6] to construct a QPS instance
P(r) of polynomially many polynomial equations:

P(r) ≡ pr1(x, z1(r), . . . , zq(r), tr1, . . . , t
r
k) = 0 ∧ . . .∧

∧ pr�(x, z1(r), . . . , zq(r), tr1, . . . , t
r
k) = 0.

The system P(r) has the following properties:

– all pri are polynomials of degree at most 2;
– all pri depend on at most three variables among the z1(r), . . . , zq(r),

tr1, . . . , t
r
k;

– both the numbers � of equations and k of newly introduced variables during
the reduction are polynomially bounded in n, say both are at most p(n) for
a polynomial p;

– for fixed x the system has a solution with respect to z1(r), . . . , zq(r),
tr1, . . . , t

r
k iff the verifier accepts (x, z1(r), . . . , zq(r)) iff

(z1(r), . . . , zq(r)) ∈ A.

In particular, if V does not accept (x, z1(r), . . . , zq(r)), then at most p(n)−1
of the polynomials in P(r) do have a common root (without loss of generality
we can assume that P(r) precisely has p(n) many equations). Note as well that
P(r) is a QPS instance.

Next, we construct another QPS instance P by building all conjunctions of
the P(r)’s:

P :=
∧

r∈{0,1}c·log n

P(r)

P has p(n) · nc many equations. Moreover, if an instance x belongs to L all
equations have a solution because the verifier accepts the correct proof for all
random strings. Contrary, if x �∈ L the verifier rejects each proof for at least half
of the random strings. This means that at most
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p(n) · nc − nc

2
= nc · (p(n) − 1

2
)

many equations in P can be solved simultaneously.
Finally, if there were a FPTASRA for MAX-QPS we could solve the NPR-

complete problem L in polynomial time as follows. For input x construct in
polynomial time the above instance P as well as an ε ≤ 1

2·p(n) . Compute an
ε-approximation of the MAX-QPS instance P using A in polynomial time in
n := sizeR(x) and (ε)−1, i.e. in polynomial time in n. Easy calculation shows
that for the above choice of ε algorithm A will yield a result > nc · (p(n) − 1) if
and only if the original instance x belongs to L. *+

Let us comment on the above proof. The problem when comparing it with
Theorem 7 is the following. It shows that a real version of the full PCP the-
orem implies the existence of a polynomial p together with a polynomial time
BSS reduction from the QPS decision problem to the MAX-QPS maximization
problem such that

i) if P is an instance for QPS that has a solution (i.e. the involved polynomials
have a common zero), then the same is true for all the polynomials in Φ(P);

ii) if P is an instance with no solution, then at most a fraction of 1 − 1
2·p(n)

many polynomials of Φ(P) have a common zero.

The point here is that our proof cannot generate a constant gap independent
of n. This is due to the fact that the reduction above uses the polynomial time
computation of the verifier to produce a semi-algebraic description of the set
A of suitable values for the q components of a potential proof y. Contrary to
the situation in the corresponding proof for MAX-3-SAT in the Turing model,
where there is a constant description of A independently of the (polynomial)
running time of the verifier simply because A is finite of cardinality at most 2q,
this seems to be not the case in the real framework. There is no obvious way to
obtain a constant length description of A only depending on q.

This fact also ‘destroys’ equivalence in the above statement. If we suppose
the reduction Φ to exist, then the natural way to construct a verifier out of it is
the following. For a set of polynomials representing an instance for MAX-QPS
and for a guess y ∈ R∗, pick one polynomial at random and evaluate it in y.
Repeat this procedure as many times as it is necessary to detect a fault in the
verification y with probability at least 1

2 . The problem is that now this needs
polynomially many attempts, so we do not obtain a verifier that reads a constant
number of components in y, only.

This leads us to the following

Problem 9. Assuming NPR = PCPR(O(log n), O(1)), is there a polynomial time
BSS reduction from QPS to MAX-QPS that realizes a constant gap in the above
sense?

It is even unclear whether MAX-QPS admits approximation algorithms with
any fixed error guarantee:
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Problem 10. Does MAX-QPS belong to APXR, i.e. is there a constant r > 1
and a polynomial time (in the algebraic size of an input) BSS algorithm that
computes for an instance P of QPS the maximal number of commonly feasible
polynomials up to factor r?

Whereas for MAX-3-SAT such an algorithm is trivially designed the question
for MAX-QPS seems to be much more involved. If we allow the m polynomials
involved to have altogether O(m2) terms instead of at most O(m) (as is the case
with instances for QPS), then the following negative result can be obtained.
Note that in the QPS problem we can assume m ≥ n

3 since each variable occurs
at least once.

Theorem 11. Consider the following approximation problem over the reals: Gi-
ven a system of polynomials p1, . . . , pm ∈ R[x1, . . . , xn] in n variables such that

- each pi has degree 2 and
- the total number of non-vanishing terms in all pi is bounded by O(m2).

Then there is no polynomial time BSS algorithm approximating the value
max
x∈Rn

|{i|pi(x) = 0}| within a constant factor r > 1 unless PR = NPR.

Proof. Suppose such an approximation algorithm exists. We then show how to
decide the NPR-complete QPS decision problem in polynomial time. Let Q =
(Q1, . . . , Qs) be an input system for QPS such that each Qi has degree 2 and
depends on at most 3 of the variables x1, . . . , xn. Clearly, the question to decide
whether max

x∈Rn
|{i|Qi(x) = 0}| = s is NPR-complete as well. Consider a polynomial

time approximation algorithm A that approximates the above maximum within
a factor r > 1, i.e. A computes a result A(Q) ∈ N with

max
x∈Rn

|{i|Qi(x) = 0}|

A(Q)
≤ r .

Thus, if all s polynomials Qi have a common zero, then A produces a result ≥ s
r

on input Q. We construct a new polynomial system with the same set of variables
and r · s many polynomials. Choose a matrix A ∈ Rr·s×s such that each (s, s)
submatrix of A is regular. For example, A can be taken as a Vandermonde matrix
with r·s rows with entries (i, i2, . . . , is), i ∈ {1, . . . , r·s}. The new system consists
of the r · s polynomials obtained when multiplying A · (Q1(x), . . . , Qs(x))T ; it
has ≤ 3 · s many terms per polynomial, thus O(r · s2) altogether. It then follows:

i) If the original polynomial system has a solution x∗, then the system A ·
(Q1(x), . . . , Qs(x))T = 0 as well has the solution x∗. Consequently, all r ·s many
polynomials of that system have a common solution and the (exact) result of
the maximization problem is r · s.

ii) If the original system has no common solution, then among the polyno-
mials in A · (Q1(x), . . . , Qs(x))T at most s− 1 can have a common zero. This is
true because regularity of all (s, s) submatrices of A implies that for each such
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submatrix Ã the system Ã · y = 0 only has the trivial solution y = 0 ∈ Rn.
But this solution cannot be obtained as y = (Q1(x), . . . , Qs(x))T for an x ∈ Rn

because of the assumption. In this case, the maximum value of the optimization
problem therefore is ≤ s− 1.

Algorithm A in case i) has to give a result ≥ r·s
r = s, in case ii) the result

will be ≤ s − 1. We can decide solvability of the original polynomial system Q
in polynomial time by applying A to the new instance A · (Q1(x), . . . , Qs(x))T

and deciding, whether the result is ≥ s or not. *+

Remark 12. The above proof can be used to obtain a slightly sharper result. The
proof works as long as we introduce a new system that has a polynomial in s
number of polynomials. Thus, the matrix A constructed can have p(s) many rows
instead of only r ·s many, where p is an arbitrary polynomial. The corresponding
calculations then will yield a slight improvement on the previous result.

3.2 The MAX-q-CAP Problem

The previous subsection leads to the question whether there are other approxi-
mation problems over the reals than MAX-QPS that do satisfy a statement like
the MAX-3-SAT problem in Theorem 7. The problem in our proof for MAX-QPS
was the reduction used. If we are able to define a problem for which the similar
reduction only results in a constant number of introduced ‘similar’ objects, then
we might hope for a stronger result. The MAX-q-CAP problem from Definition
1 has this property.

Theorem 13. The following two statements are equivalent:

a) NPR = PCPR(O(log n), O(1));
b) There exist an ε > 0 and a polynomial time BSS reduction Φ from the QPS

decision problem to the MAX-3-CAP optimization problem such that for each
instance P for QPS we have
i) if the polynomials in P are commonly satisfiable, then all circuits in Φ(P)

are commonly satisfiable;
ii) if not all polynomials in P are commonly satisfiable, then at most a

fraction of 1
1+ε many circuits in Φ(P) are commonly satisfiable.

Proof. For the implication a) ⇒ b) we consider once again the proof of Theorem
8. Given an input x for QPS and the verifier we define the set A ⊆ Rq as above.
Now instead of applying the reduction to QPS we just perform the transforma-
tion of the verifier’s polynomial time computation on x and an r ∈ {0, 1}c·log n
as constants and a z ∈ Rq as input to one algebraic circuit of polynomial size,
see [5]. This circuit has q many input nodes and gives result 0 on z iff the verifier
accepts (x, z, r). Thus, we can construct an instance of the MAX-q-CAP problem
that has nc many circuits. The main point is that we introduce just one circuit
for one choice of r. Following the same arguments as before if the verifier rejects
a guess y it rejects it for at least 1

2 of the random strings, and this implies the
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same for the MAX-q-CAP instance we obtain. This yields the existence of the
required reduction with ε := 1.

The converse follows by producing a MAX-q-CAP instance using the assumed
reduction. We pick at random a circuit and check for a guess y, whether the cir-
cuit computes result 0. If not we reject. Note that this happens with probability
at least 1− 1

1+ε if the verification was false. We repeat that procedure until the
failure probability is less than 1

2 . This gives the required verifier. *+

Corollary 14. Assume that the real PCPR-conjecture is true and that PR �=
NPR. Let q ≥ 3 be fixed. Then there exists no polynomial time approximation
scheme PTASR for MAX-q-CAP.

Proof. Assume that a PTASR A exists. Applying A to an input P = (n,m, p1,
. . . , pm) of MAX-QPS and an ε ≤ 1 we could decide solvability of the MAX-QPS
decision problem (i.e. whether the pi have a common zero) in polynomial time
as follows: By using Theorem 13, part b) we produce a MAX-q-CAP instance
Φ(P) in polynomial time. Let � be the number of circuits in the instance Φ(P).
Then we apply A to (Φ(P), 1) and check whether the result is less than �

2 or not.
If it is less we reject, otherwise we accept. *+

In this paper approximation issues for some natural real number maximiza-
tion problems were studied. We have seen that there is a closed relation between
a potential full PCPR theorem for NPR and (non-)approximability properties
of such real number problems. This substantiates that working towards proving
the conjecture NPR = PCPR(O(log n), O(1)) is a major challenge in this area of
real number complexity theory.
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Abstract. The problem addressed in this paper is searching for a depen-
dence between the correlation dimension of a time series and the mean
square error (MSE) obtained when predicting the future time series val-
ues using a multilayer perceptron. The relation between the correlantion
dimension and the ability of a neural network to adapt to sample data
represented by in-sample mean square error is also studied. The depen-
dence between correlation dimension and in-sample and out-of-sample
MSE is found in many real-life as well as artificial time series. The re-
sults presented in the paper were obtained using various neural network
sizes and various activation functions of the output layer neurons.

1 Introduction

The correlation dimension is one of the measures that can be used to describe
the behaviour of a dynamic system. For a countable set of points x1, x2, . . . ∈ Rk

the correlation dimension is usually defined using the correlation integral:

C(r) = lim
n→∞

1
n2

n∑
i,j=1

H(r − |xi − yj |) . (1)

where H(z) = 1 for positive z, and 0 otherwise. The correlation dimension Dcorr

is then defined as:

Dcorr = lim
r→0

log(C(r))
log(r)

. (2)

Given the time series representing the output of a dynamic system one can
compute the correlation dimension of the attractor representing the dynamics of
the underlying system [1]. Due to the fact that the estimation of the correlation
dimension is relatively easy, this measure is widely used to describe the dynamics
of a time series in a quantitative way.

Apart from being a fundamental dynamical invariant correlation dimension
is often used for estimation of the complexity of the model of a dynamic system,
such as an autoregresive (AR) model. When neural networks are concerned the
correlation dimension is often used to estimate the optimal size of the network
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[2, 3]. In such an approach, especially when implications of an embedding the-
orem by Takens [4] are concerned only large-scale differences in correlation di-
mension are considered important.

In this paper some more subtle effects are studied. Time series used in ex-
periments had values of correlation dimension estimate falling into a range of
length of about 3. They were fed into a multilayer perceptron with fixed struc-
ture and for each time series values of in-sample and out-of-sample mean square
error were recorded. It is shown, that both in case of real-life and artificial data a
dependence between the correlation dimension and MSE values can be observed.

This paper is structured as follows. Section 2 describes data used and defines
the problem. Section 3 describes the experiments performed on real-life data.
Experiments performed on artificial data are described in Section 4. Finally,
Section 5 concludes the paper.

2 Data Description and Problem Definition

This paper addreses the issue of measuring prediction error made when using
a multilayer perceptron for predicting future values of some time series {pt}.
In order to feed a time series into the neural net it must be preprocessed to
form sets of input and output vectors. Usually, a set of time lagged vectors
xt = (pt−d+1, pt−d+2, . . . , pt) is used as an input set. The most common approach
is to use one-dimensional output vectors, so the output vector corresponding to
the input vector xt is yt = (pt+1).

Considering the definition of input and output data the neural network is
required to have Nin = d neurons in the input layer and Nout = 1 neuron in
the output layer. The number of neurons in the hidden layer Nhid can vary
arbitrarily.

In order to measure how well a neural network adapts to training data and
how good a prediction of future time series values is, the values of in-sample mean
square error MSEin and out-of-sample mean square error MSEout respectively
are used.

Given a set of time-lagged vectors one can calculate the correlation dimension
Dcorr of the set consisting of consecutive vectors xd, xd+1, . . . in an embedding
space Rd. Note, that in general one can calculate the value of Dcorr using em-
bedding space of other dimensionality than was used to create input data set
for the neural net. Nevertheless, in the experiments presented in this paper the
dimension d of the embedding space used to calculate Dcorr was always set to
be equal to the number of inputs of the neural network Nin. Thus, the same
set of time lagged vectors was fed to the network and was used to calculate the
correlation dimension. For calulating the correlation dimension a well-known
Grassberger-Procaccia algorithm [1] was used.

In order to calculate the MSEin and MSEout values obtained when pro-
cessing time series with different values of Dcorr sets of 10 to 50 time series
were tested. These time series were chosen so that the behaviour of the series
in a given set was expected to be ”similar” to each other. Values of MSEin and
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MSEout obtained from the time series from a given set were then plotted against
values of Dcorr. To the data points obtained linear or quadratic approximation
was applied.

3 Real-Life Data

In order to prepare sets of real-life time series showing similar behaviour average
monthly land-surface temperature series were used. Source data was obtained
from [5]. These data sets consist of time series of temperatures recorded at some
fixed points on Earth surface. Recording stations are spaced evenly every 0.5
degree latitude and longitude. Each time series contains temperature values from
years 1930-2000. It was assumed that time series recorded at stations which are
placed at close locations behave in a similar way. Especially, sets of measurements
from stations placed at the same latitude were considered interesting. Table 1
summarizes the data sets used in the experiments.

Table 1. Summary of real-life data

Set name Latitude Longitude Number of time series

Victoria Island 69.75 100.25 to 119.75 40
Canada 52.25 100.25 to 119.75 40
Azores 40.25 20.25 to 43.25 40
Beaufort Sea 69.75 120.25 to 139.75 40

Each time series {pt} contains N = 852 points. Values in each series were
normalized to [0, 1]. Tests were performed using many different values for the
number of input neurons Nin, the number of hidden neurons Nhid and vari-
ous activation functions in the output layer. Some example parameter sets are
summarized in Tab. 2.

Table 2. Parameters of neural networks used for prediction

Set name Nin Nhid Output activation function

Victoria Island 16 100 sigmoid
Victoria Island 16 32 sigmoid
Victoria Island 16 100 linear
Victoria Island 6 20 sigmoid
Canada 16 100 sigmoid
Azores 16 100 sigmoid
Beaufort Sea 16 100 sigmoid

Networks of other sizes using sigmoid and linear output activation functions
produced results very similar to these presented in the paper. Other output
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activation functions such as softmax and tanh were also tested but learning
process convergence in case of these functions was very poor.

For each data set the correlation dimension of each individual time series
calculated using the embedding space with dimension d = Nin falls within the
range [1.9, 3.5].

A set of time-lagged vectors (pt−Nin+1, . . . , pt) for t = Nin, . . . , N − 1 was
constructed from each of the series in the set using the sliding window tech-
nique. The length of the window was equal to the number of input neurons Nin.
Respective desired output for each input vector was pt+1.

The learning process was performed using all but the last 150 vectors of each
input set. Initial weights of each perceptron were drawn from a zero-mean unit
variance gaussian. Then, weights optimization using a scaled conjugate gradient
algorithm was performed. Optimization was stopped when a change of all of the
weigths in a single optimization step was smaller than 10−15, but no later than
after 1000 iterations.

After the weight optimization was complete all the training input vectors
were forwarded through the network so that the MSEin could be measured.
Then, the last 150 input vectors which had not been used for network training
were forwarded and the MSEout was calculated. For each time series the whole
process starting with random weights initialization was performed 10 times and
mean values of MSEin andMSEout were recorded. For all tested time series the
value of MSEin fell within the range [0.0008, 0.003] and the value of MSEout

fell within the range [0.001, 0.008].
Results obtained are presented on Fig. 1-6. For all data sets linear trends

were plotted. Note that due to space limitations not all data sets listed in Tab. 2
were illustrated on the figures.

The results illustrated on Fig. 1 and 2 were obtained using relatively large
networks. Very similar behaviour was observed for most of experiments per-
formed using neural networks of similar size regardless of the data set used. As
it can clearly be seen the linear fit in these cases is almost perfect.
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Fig. 1. MSEin for Victoria Island data set
(Lat. = 69.75, Lon. ∈ [100.25, 119.75]) ob-
tained for Nin = 16, Nhid = 100 and linear
activation function
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set (Lat. = 69.75, Lon. ∈ [100.25, 119.75])
obtained for Nin = 16, Nhid = 100 and
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The correlation dimension of time series in Victoria Island data set ranges
from 2.1 to 2.7. From the Takens embedding theorem, it follows, that the un-
derlying dynamical system could in this case be adequately represented by a
model with a number of degrees of freedom between 5.2 and 6.4. As an integer
is required, Nin = 6 was used. In this case a good linear approximaxtion could
also be found albeit some outliers appeared as it can be seen on Fig. 3 and 4.
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Fig. 3. MSEin for Victoria Island data set
(Lat. = 69.75, Lon. ∈ [100.25, 119.75]) ob-
tained for Nin = 6, Nhid = 20 and sigmoid
activation function
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Fig. 4. MSEout for Victoria Island data
set (Lat. = 69.75, Lon. ∈ [100.25, 119.75])
obtained for Nin = 6, Nhid = 20 and sig-
moid activation function
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Fig. 5. MSEin for Azores data set (Lat.
= 40.25, Lon. ∈ [20.25, 43.25]) obtained
for Nin = 16, Nhid = 100 and sigmoid ac-
tivation function
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Fig. 6. MSEout for Azores data set (Lat.
= 40.25, Lon. ∈ [20.25, 43.25]) obtained
for Nin = 16, Nhid = 100 and sigmoid ac-
tivation function

Values of mean square errors for the Azores data set are clearly much more
spreaded than for the other sets as it is shown on Fig. 5 and 6. However, in this
case also a relatively good linear fit could be found.

It is interesting to plot all the results on one chart. Of course, to obtain a
consistent plot, it is required to use the results obtained using a fixed network
structure. On Fig. 7 and 8 the results for MSEin and MSEout respectively,
obtained for Nin = 16 and Nhid = 100 for data sets described in Tab. 1 are
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Fig. 7. MSE infor all meteorological data
sets obtained for Nin = 16, Nhid = 100 and
sigmoid activation function
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Fig. 8. MSEout for all meteorological
data sets obtained for Nin = 16, Nhid =
100 and sigmoid activation function

presented. In all cases a sigmoid activation function was used. Observations
obtained for all data sets using the same network structure follow the linear
trend closely.

Tests performed on real-life data, presented in this section suggest that the
ability of a neural network to adapt to training data and the quality of the
forecasts given by a network is related to the correlation dimension of the input
time series. However, the parameters of the linear approximation of the results
are in each case different. It is thus apparent that the characteristics of the
relationship may vary and to obtain consistent results the time series in each
set must be in some way ”similar” to each other. In case of meteorological data
this similarity is ensured by using test sets containing temperature time series
recorded at neigbouring stations.

4 Artificial Data

In the previous section it was shown that in meteorological data a relationship
between the correlation dimension of data and the ability of a neural network to
adapt to data and to predict future values can be observed. However, it was also
noted that for this relationship to be clearly visible the test time series must be
in some way ”similar”. One of the ways to achieve such similarity is to exploit
additional information from the problem domain. In case of meteorological data
this additional information is the geographic location at which the temperature
series was recorded. Unfortunately, such kind of information does not give any
clues of what features of the time series itself are responsible for two time series
being ”similar” or ”dissimilar”.

To provide some more insight into this issue tests on artificially generated
data were performed. Usually, artificial time series are generated by iterating
a model of a dynamical system. By changing parameters of the model a wide
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variety of time series can usually be generated. However, due to the chaotic
nature of nonlinear dynamical systems commonly used for this task, there is
very little or no control over how similar any of these time series are, even if
only slight modifications in model parameters are introduced. For example it
was observed that if the MSE values are plotted against Dcorr for the time series
generated by a Mackey-Glass model, the results do not form any recognizable
structure no matter what sets of parameters are applied to the model. The time
series generated by this model for various parameters are too ”dissimilar”.

Therefore, to generate suitable time series sets other methods have to be
employed. In this paper artificial data sets were constructed by transforming
existing real-life time series, namely return rates of 5 companies from the Warsaw
Stock Exchange. The length of a single time series varies from about 1420 to
about 2660 depending how long a company has been present at the stock market.
The longest time series cover the period since July 1994 till November 2003.
Details of stock price time series used are presented in Tab. 3.

Table 3. Summary of stock price data

Set name Company name Number of samples

AMERBANK AmerBank 2296
DZPOLSKA DZ Bank Polska 2310
FORTISPL Fortis Bank Polska 2223
ODLEWNIE Odlewnie Polskie 1415
TONSIL Tonsil 2661

Test data sets were created using two methods: by adding random noise
and by applying a step function to each base time series. In the random noise
approach random values drawn from a zero-mean gaussian were added to each
element of the base series. Apart from original series the test set contained
series created using gaussian distribution with 0.00001, 0.00002, 0.00005, 0.0001,
0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2 and 0.5 variance.
Thus, each test set contained 16 time series. In the step function approach base
time series were transformed using a step function returning 0 and 1 with the
threshold value 0.0100, 0.0125, 0.0150, 0.0175, 0.0200, 0.0225, 0.0250, 0.0275,
0.0300, 0.0325, 0.0350, 0.0375, 0.0400, 0.0425, 0.0450, 0.0475 and 0.0500. Base
time series containing untransformed return rates was not included in the test
set in this approach, so the total number of series in each set was 17.

The tests performed on noised data were identical to those performed on real-
life data. The network used was a two-layer perceptron with Nin = 16, Nhid =
50 and a sigmoid activation function. The results obtained are also very similar
to the ones obtained using the real-life data. In case of noised data the points
obtained are more spreaded and the ranges for the MSE and Dcorr are wider.
Some of the results are shown on Fig. 9-12. Results for other data sets are very
similar in following the linear trend to those visualised on figures, even though
values of the correlation dimension and MSE sometimes fall into different ranges.
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Fig. 9. MSEin for noised AMERBANK
data set obtained for Nin = 16, Nhid =
50 and sigmoid activation function
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Fig. 10. MSEout for noised AMERBANK
data set obtained for Nin = 16, Nhid = 50
and sigmoid activation function
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Fig. 11. MSEin for noised DZPOLSKA
data set obtained for Nin = 16, Nhid = 50
and sigmoid activation function
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Fig. 12. MSEout for noised DZPOLSKA
data set obtained for Nin = 16, Nhid = 50
and sigmoid activation function

For artificial data created by adding noise to base time series of stock prices
a linear dependence between MSE and Dcorr can be observed. However, the
observations are more spreaded than in case of meteorological data. It is worth
noticing, that the linear dependence holds regardless of how big the MSE is.
Similar characteristics is observed when the MSE is below 0.004 and for MSE
reaching 0.05. Due to the fact that for different data sets the values of the MSE
fall into different ranges when all recorded results are plotted on one chart no
particular structure can be observed.

The other tests were performed on sets of time series created using step
function. These tests were identical to those performed on real-life data, with
the only difference that in case of step function approach the output of the
neural network was passed through the step function with threshold 0.5 before
calculating the MSE. The network used in each case was a two-layer perceptron
with Nin = 16, Nhid = 50 and with sigmoid activation function.

In this case the correlation dimension of the time series was very small, rang-
ing from 0.0025 to 0.05. This was caused by the fact that the step function
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preprocessing generates binary vectors in Rd which form the set with dimen-
sionality very close to zero.

On the other hand, values of both in-sample MSE and out-of-sample MSE
were relatively high, the MSEin ranging from 0 to 0.1 and MSEout ranging
from 0.03 to 0.5. Of course, the values of the MSE cannot be compared to those
obtained using other approaches because a step function on the network output
allows the error on single sample to be 0 or 1 only.

The most interesting effect that can be observed is that while the MSEout is
still linearly dependent of the Dcorr the values of MSEin plotted against Dcorr

look more like a quadratic function. The results for AMERBANK data set are
presented on Fig. 13 and 14. Results for other data sets look very much similar.
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Fig. 13. MSEin for step-function trans-
formed AMERBANK data set obtained
for Nin = 16, Nhid = 50 and sigmoid acti-
vation function
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Fig. 14. MSEout for step-function trans-
formed AMERBANK data set obtained
for Nin = 16, Nhid = 50 and sigmoid acti-
vation function
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Fig. 15. MSEin for all step-function
transformed stock prices data sets ob-
tained for Nin = 16, Nhid = 50 and sig-
moid activation function
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Fig. 16. MSEout for all step-function
transformed stock prices data sets ob-
tained for Nin = 16, Nhid = 50 and sig-
moid activation function

For artificial data created by transforming a base time series of stock prices
with a step function a quadratic dependence between MSEin and Dcorr can be
observed. Nevertheless, for MSEout the characteristics is still linear. This linear
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dependence in case of step-function transformed data is observed for values of
Dcorr from a quite different range than in other cases. As, similarly to the results
for meteorological data, the values of MSE for step-function transformed data
fall into the same range for all data sets, all of these results can be plotted on
one chart. As can be seen on Fig. 15 and 16 the results are somewhat spreaded
but they form distinct structures around the proposed approximation curves.

5 Conclusion

The experiments presented in this paper were aimed at finding dependence be-
tween the correlation dimension of a time series and the ability of a neural
network to predict future values of the time series. Experiments were performed
on real-life data as well as some artificially constructed data sets. Neural net-
works used were of different sizes and various output activation functions were
studied. Also, two different methods of pre- and post processing were used.

In all presented cases a clear dependence between the in-sample and out-of-
sample MSE and the correlation dimension of the time-series was found. This
dependence was observed for various values of the correlation dimension and
the MSE. The characteristics of this dependence varies between data sets which
suggests that the time series in a single data set must be in some way ”similar”.
Finding proper measures of such similarity requires further study. Also, more
theoretical studies are required to explain how the two factors in question are
related.
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Abstract. We prove that the one-dimensional sandpile prediction prob-
lem is in AC1. The previously best known upper bound on the ACi-scale
was AC2. We also prove that it is not in AC1−ε for any constant ε > 0.

1 Introduction

In physics, a complex dynamical system can be informally defined as a system
operating on the “edge of chaos” (a phrase coined by Langton [7]). Thus, com-
plexity is neither rigid order, with the future development of the system being
easily and completely understood, nor chaos, with the system being virtually
unpredictable and exhibiting “quasi-random” behavior. For the computer scien-
tist, complex dynamical systems are interesting as they are exactly the physical
systems capable of performing non-trivial computation.

In an attempt to put the above considerations on more rigorous ground,
Machta, Moore and collaborators have, in a series of papers [5, 8, 9, 12, 11, 13],
put forward a general program seeking to capture and measure the physicists’
informal notion of the “complexity” of a system by the rigorous notion of the
computational complexity of the problem of predicting the behavior of the sys-
tem. This approach gives us the opportunity of getting a fine-grained view of the
complexity of a system by using the hierarchy of complexity classes of compu-
tational complexity theory. As a simple example, if the prediction problem for
a system is complete for P, we can say that the system is capable of efficiently
emulating general sequential computation, while, if the prediction problem is
in, say, NL, the system can only perform computations obeying a severe space
bound and thus not all computations, assuming P �= NL.

An important model in complex systems theory is the Bak-Tang-Wiesenfeld
sandpile model [1, 2]. The prediction problem for this model was considered from
the computational complexity point of view by Moore and Nilsson [10]. The
problem is defined for any dimension d ≥ 1, but in this paper we concentrate on
the one-dimensional case.
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The one-dimensional sandpile prediction problem can be described as follows
(the description of Moore and Nilsson is slightly different but can be easily seen
to be equivalent to the following). A one-dimensional sandpile is a map h :
Z → {0, 1, 2, . . .}. The value h(i) is interpreted as the height of a pile of sand at
position i. A pile of height 2 or more is unstable, and may topple, distributing sand
evenly to the two neighboring positions. Formally, if map h′ : Z → {0, 1, 2, . . .}
satisfies that for some i, h′(i) = h(i) − 2, h′(i − 1) = h(i − 1) + 1, h′(i + 1) =
h(i + 1) + 1, and h′(x) = h(x) for all x �∈ {i − 1, i, i + 1}, we’ll say that h′ is a
possible successor to h, or h → h′. If there is no possible successor to h, we’ll
say that h is stable. If h is zero outside some interval I, say, I = {1, 2, . . . , n},
it can be shown that there is a unique stable g, so that h →∗ g. We will denote
this unique g by h∗. The one-dimensional sandpile prediction problem is the
following: Given h : {1, 2, . . . , n} → {0, 1, 2}, find h∗. A similar definition can be
made for the d-dimensional sandpile problem for any d ≥ 1, but in this paper,
we concentrate on the one-dimensional case.

Following their general program, Moore and Nilsson showed that the d-
dimensional sandpile prediction problem is in P for all d, that it is P-complete
for d ≥ 3 and that the 1-dimensional problem is in AC1[NL] ⊆ AC2 ⊆ NC3.
They also present an efficient sequential algorithm for the 1-dimensional problem
with a time bound of O(n log n).

The purpose of this paper is to present two pieces of information about the
complexity of the one-dimensional sandpile prediction problem, narrowing down
the possible range of its exact complexity considerably.

First we show the following improvement of the parallel upper bound of
Moore and Nilsson.

Theorem 1. The one-dimensional sandpile prediction problem is in AC1 ⊆
NC2.

Conceptually, the algorithm is much simpler than the parallel algorithm of
Moore and Nilsson. It is based on refining their sequential algorithm. and then
noticing that the refined algorithm can be carried out by a deterministic poly-
time logspace Turing machine with access to an auxiliary pushdown store. It is
known that the class of languages so computed is LOGDCFL [15], the class
of languages logspace reducible to a deterministic context-free language, and as
LOGDCFL ⊆ AC1 [14], the result follows.

Second, we prove the following hardness result.

Theorem 2. The one-dimensional sandpile prediction problem is hard for TC0

with respect to constant depth reductions.

That the one-dimensional sandpile prediction problem is hard for TC0 means
that the one-dimensional sandpile is sufficiently complex to carry out at least
somes slightly non-rudimentary computation, such as computing the parity or
majority of n bits. This provides formal justification for the statement of Moore
and Nilsson that the dynamics of the one-dimensional sandpile problem is “non-
trivial”. It also implies the following lower bound:
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Corollary 1. The one-dimensional sandpile prediction problem is not in AC1−ε

for any constant ε > 0.

As ACi is the class of problems solvable by CRCW (concurrent-read,
concurrent-write) PRAMs (parallel random access machines) with polynomi-
ally many processors in time O((log n)i), we thus have fairly tight upper and
lower bounds for solving the one-dimensional sandpile problem in this model of
computation.

1.1 Organization of the Paper

In Section 2, we sketch the proof of Theorem 1 and in Section 3, we sketch the
proofs of Theorem 2 and corollary 3. We conclude with some open problems in
Section 4.

2 The Upper Bound

In this section, we sketch the proof of Theorem 1.
In their paper, Moore and Nilsson show that the one-dimensional sandpile

problem can be solved by the following sequential algorithm. Given an input
sandpile h : {1, . . . , n} → {0, 1, 2}, extend it to Z by making zero the values of
h outside the interval from 1 to n. We maintain two subsets T and N of the
integers. Initially T is the set {i ∈ Z|h(i) = 2} and N is the set {i ∈ Z|h(i) = 0}.
Note that while N is an infinite set, it has an obvious finite representation. Now,
while T is not empty repeat the following two steps, a round:

1. Pick an t ∈ T . Find z1, z2 ∈ N so that z1 ≤ t < z2.
2. Let N = (N − {z1, z2}) ∪ {z1 + z2 − t}. Let T = T − {t}.

When T is empty, h′ defined to be 0 on N and 1 on Z−N is the unique stable
successor of h. We refer the reader to the argument for this in Moore and Nilsson.

Moore and Nilsson suggest implementing the above algorithm directly by
maintaining the “finite part” of the set N in sorted order, and, for each t ∈ T ,
do a binary search in N to find z1 and z2. Our first observation is that this
binary search can be eliminated when going through the list T in increasing
order. Indeed, we can maintain the following invariant. Between rounds, if T =
{t1 < t2 < . . . < tm}, we can maintain a partition of N into N1 and N2 in such
a way that the following properties are true:

1. All elements in N1 are smaller than each element in N2.
2. The elements z1, z2 so that z1 ≤ t1 < z2 are either

(a) The largest element of N1 and the smallest element of N2 or
(b) Both in N2.

First note that we can easily establish the invariant at the beginning of the
computation. Now given the invariant, we want to perform one round of the
algorithm of Moore and Nilsson. We should find an appropriate z1, z2 so that
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z1 ≤ t1 < z2. If case (a) applies, we remove t1 from T (so t2 will be the “new” t1
in the next round), z1 from N1 and z2 from N2. Note that z1 < z1 + z2 − t1 ≤ z2

and also note the t2 is greater than the new largest element of N1 (since t1 was).
Thus, if we insert z1 +z2− t1 as the new largest element of N1 if z1 +z2− t1 ≤ t2
and we insert z1+z2−t1 as the new smallest element of N2 if t2 < z1+z2−t1, we
have maintained the invariant. If case (b) applies, we move elements from N2 to
N1 until case (a) applies, reducing it to this case. This completes the description
of the algorithm.

Because of case (b), the reader may conclude that we have replaced binary
search with linear search which does not sound like such a grand idea, but note
that the size of N2 is never increased during a round. Thus, the total cost of
moving elements from N2 during the entire execution of the algorithm is linear.

Concerning the complexity of the refined algorithm, viewed as a sequential
algorithm we have to be somewhat careful about the exact model of computation.
On a log cost RAM, the unrefined algorithm of Moore and Nilsson has complexity
O(n log n) because of

1. The binary searches which cost O(log n) time each.
2. Adding and subtracting O(log n)-bit integers, each operation costing O(log n)

time.

The refined algorithm also has complexity O(n log n) in the log-cost model. How-
ever, it is common practice to only use the log-cost time measure when integers
of bit length much bigger than the log of the input are involved (e.g., as in case
of the problem of multiplying two n-bit integers). When only O(log n)-bit length
integers are involved, the unit cost RAM model is much more commonly used. In
the unit cost RAM model, the refined algorithm has complexity O(n) while the
Moore-Nilsson version keeps having complexity O(n log n) because of the binary
searches.

More important than its sequential complexity in various RAM models is
the consequences of the refined algorithm for the parallel complexity of the
sandpile prediction problem. Indeed, we next note that the refined algorithm
can be implemented by a polynomial time, logspace Turing machine with access
to an auxiliary pushdown store (i.e., an extra “free” tape, where a tape cell is
erased when the head moves from the cell to its left neighbor). Because of the
robustness of logarithmic space, we just have to argue that the algorithm can be
implemented by a while-program using O(1) variables, each holding an integer
of O(log n) bits and an auxiliary object STACK where such O(log n) bit integers
can be pushed and popped. We show how each variables in the refined algorithms
can be represented using such objects.

N1 will be represented by the STACK object and a single integer variable v.
The invariants of the representation are the following:

1. N1 is exactly {. . . ,−v − 2,−v − 1,−v} ∪ {the elements in STACK}.
2. The elements of STACK are sorted, with the largest at the top.

With this representation, we can remove the largest element from N1, and add
an element to N1 larger than the largest one. These are the only operations we
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need to perform on N1 when running the refined algorithm. We can also easily
initialize the representation to the correct content in the beginning of the refined
algorithm.

N2 will be represented by three integer variables l, i and w. The invariant
of the representation is that N2 = {l} ∪ {j ≥ i|H[i] = 0} ∪ {j ∈ Z|j ≥ w}.
Here H[1..n] is the structure holding in the input, representing the map h :
{1, . . . , n} → {0, 1, 2}. With this representation, we can replace the smallest
element of N2 by another element and remove the smallest element from N2.
These are the only two operations the refined algorithm uses.

T is represented in a way similar to N2.
We have now shown that the refined algorithm for one-dimensional sandpile

prediction can be implemented by a deterministic, polynomial time, logspace
Turing machine with access to an auxiliary pushdown store. At the end of the
algorithm, the output is contained in the representation of N1 and N2. If we
are interested in the i’th bit of the output for some i, we can find it by either
inspecting the structure for N2 or the structure for N1, in the last case popping a
sufficient number of elements from the stack. Thus the language 1SANDPILE =
{〈h, i〉| the i’th bit in h∗ is 1} can be decided by a deterministic logspace Turing
machine with an auxiliary pushdown store. By a result of Sudborough [15], this
means that the language is in LOGDCFL which, by a result of Ruzzo [14] is a
subset of AC1. The functional version of the problem, i.e. the map h → h∗ itself
is therefore computable in the same class.

3 The Lower Bound

In this section, we sketch the proofs of Theorem 2 and Corollary 3.
Moore and Nilsson showed P-completeness of higher-dimensional versions of

the sandpile prediction problem; here we show hardness for much lower complex-
ity classes of the one-dimensional problem. When considering P-completeness,
logspace reductions are most often used. However, these are not meaningful for
classes below L, as those classes are not closed under logspace reductions. Here,
we use a weaker notion of reductions, DLOGTIME-uniform constant depth re-
ductions [4, 3]. All classes considered here are closed under those reductions. A
language π1 reduces to an language to π2 by such reductions if we can build
DLOGTIME-uniform, constant depth, polynomial size circuit for π1, using un-
bounded fan-in AND-gates, unbounded fan-in OR-gates, NEGATION-gates, and
oracle-gates computing π2.

Let MAJORITY be the problem of deciding whether a string of n input
bits (n odd) have more 1’s than zeros. We shall show that MAJORITY reduces
to 1SANDPILE. Since MAJORITY is complete for TC0 by constant depth
reductions (indeed, the definition of TC0 is that it is the closure of MAJORITY
under constant depth reductions), it follows that 1SANDPILE is hard for TC0

under constant depth reductions.
Let PARITY be the problem of deciding whether a string of n input bits

have an odd number of ones. As PARITY is in TC0, PARITY is not in AC1−ε
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for any ε > 0 [6], and AC1−ε is closed under constant depth reductions, we get
the corollary that 1SANDPILE is not in AC1−ε for any constant ε > 0.

It remains to show that MAJORITY constant depth reduces to 1SANDPILE.
We have to construct a uniform circuit for MAJORITY using unbounded fan-in
AND gates, unbounded fan-in OR gates and 1SANDPILE oracle-gates.

Given an input x1x2 . . . xn of the MAJORITY problem, we can assume that n
is odd. Our circuit first constructs an instance 1y11y12y13y21y22y23 . . . yn1yn2yn3

of the sandpile problem where yi1 = xi, yi2 = 1 − xi and yi3 = 2, except
for yn3 = 1 . For example, we reduce 0101011 to 1 012 102 012 102 012 101.
Applying the Moore-Nilsson algorithm, we see that this instance reduces to a
stable value with exactly one zero with an index between 1 and 3n, this index
being n+ 1 + #ones in x1x2 . . . xn. Thus, to find the majority of x1x2 . . . xn, we
just need to check if the index of the unique one in the reduced pile is bigger
than 3n

2 + 1. This is easily checked with a uniform constant depth circuit.

4 Discussion and Open Problems

In general, to carry out the program of making formal the informal notion of the
“complexity” of a complex dynamical system by identifying “complexity” with
the computational complexity of the prediction problem, it seems appropriate
to use the finest scale available in the theory of computational complexity.

We have shown a TC0 lower bound and a LOGDCFL upper bound for the
one-dimensional sandpile prediction problem. Obviously, getting tighter bounds
would be desirable. In particular, is the one-dimensional problem hard for NC1?
Is it in L or NL?

Moore and Nilsson classified the d-dimensional sandpile prediction problem
as P-complete for d ≥ 3 and left open whether the 2-dimensional sandpile pre-
diction problem is also hard for P. We may note that the reduction used by
Moore and Nilsson to show that the 3-dimensional problem is hard for P also
establishes that the 2-dimensional problem is hard for NC1: Their reduction is
a reduction from the monotone circuit value problem and the third dimension
is only used when implementing crossovers of wires. Thus, the monotone pla-
nar circuit value problem reduces to 2-dimensional sandpile prediction, and this
problem is hard for NC1. Getting a better lower bound than NC1 or a better
upper bound than P for the 2-dimensional sandpile prediction problem would
be most interesting.
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It is well known that only a few structures can be described up to isomorphism
by their elementary theories in the class of all models of fixed cardinality. Unfor-
tunately, most of the natural and interesting structures fail to have this property.

The situation changes if we restrict the class of models by adding some more
requirements. S.Tennenbaum [4] was the first to prove the standard model of
arithmetics is finitely axiomatizable and categorical in the class of all computable
models. Later on, A.Morozov [1, 3], A.Nies [2], and others proved categoricity
and finite axiomatizability of some other structures in natural restricted classes.

In my talk I will present a survey of results on categoricity and finite axiom-
atizability of some structures in restricted classes of models and outline main
ideas of proofs. It is remarkable that these results essentially use computability
theory.
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My purpose in this lecture is to explain how the representation of algorithms by
recursive programs can be used in complexity theory, especially in the derivation
of lower bounds for worst-case time complexity, which apply to all—or, at least,
a very large class of—algorithms. It may be argued that recursive programs
are not a new computational paradigm, since their manifestation as Herbrand-
Gödel-Kleene systems was present at the very beginning of the modern theory
of computability, in 1934. But they have been dissed as tools for complexity
analysis, and part of my mission here is to rehabilitate them.

I will draw my examples primarily from van den Dries’ [1] and the joint work
in [3, 2], incidentally providing some publicity for the fine results in those papers.
Some of these results are stated in Section 3; before that, I will set the stage in
Sections 1 and 2, and in the last Section 4 of this abstract I will outline very
briefly some conclusions about recursion and complexity which I believe that
they support.

1 Partial Algebras

A (pointed) partial algebra is a structure of the form

A = (A, 0, 1,Φ) = (A, 0, 1, {φA}φ∈Φ), (1)

where 0, 1 are distinct points in the universe A, and for every φ ∈ Φ,

φA : An ⇀ A

is a partial function of some arity n associated by the signature Φ with the
symbol φ. Typical example is the structure of arithmetic

N = (N, 0, 1,=,+, ·),

� This is an outline of a projected lecture, in which I will refer extensively to and draw
conclusions from results already published in [2]; and to make it as self-contained as
possible, it has been necessary to quote extensively from [2], including the verbatim
repetition of some of the basic definitions.
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which happens to be total, i.e., the symbols ‘=’, ‘+’ and ‘·’ are interpreted by total
functions, the characteristic function of the identity in the first case, and addition
and multiplication for the other two. Genuinely partial algebras typically arise
as restrictions of total algebras, often to finite sets: if {0, 1} ⊆ B ⊆ A, then

A�B = (B, 0, 1, {φA �B}φ∈Φ),

where, for any f : An ⇀ A,

f �B(x1, . . . , xn) = w ⇐⇒ x1, . . . , xn, w ∈ B & f(x1, . . . , xn) = w.

An imbedding ι : B � A from one partial algebra into another (of the same
signature) is any injective (total) map

ι : B � A,

such that ι(0) = 0, ι(1) = 1, and for all φ ∈ Φ, x = (x1, . . . , xn), w in B,

if φB (x) = w, then φA(ι(x)) = ι(w),

where, of course, ι(x1, . . . , xn) = (ι(x1), . . . , ι(xn)). If the identity ι(x) = x is an
imbedding of B into A, we call B a partial subalgebra of A and write B ⊆p A.
Notice that the definitions here are in the spirit of graph theory, not model
theory, i.e., we do not insist that partial subalgebras be closed under the given
operations; in particular, for any B ⊆ A,

({0, 1},−−) ⊆p A�B ⊆p A,

where ({0, 1, },−−)) is the trivial algebra with universe {0, 1} and all symbols
in Φ interpreted by completely undefined partial functions.

For any X ⊆ A and any number m, we define the set Gm(X) generated in A
from X in m steps in the obvious way:

G0(X) = {0, 1} ∪X,

Gm+1(X) = Gm(X) ∪ {φA(x) | x ∈ Gm(X), φ ∈ Φ, φA(x)↓}.
(2)

Notice that if X is finite, then each Gm(X) is a finite set. The set generated by
X is the union

G(X) =
⋃

m∈NGm(X),

and it determines the partial subalgebra A�G(X) of A generated by X.

The Complexity of Values

Suppose now that A is a partial algebra as in (1) and

χ : An → A

is an n-ary function on A which we want to compute from the givens {φA}φ∈Φ
of A—and nothing else. It is natural to suppose that this cannot be done unless
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each value χ(x) can be generated from the arguments x by successively applying
the givens, i.e.,

χ(x) ∈ G(x) (x ∈ An);

and that if this holds and we set

gχ(x) = the least m such that χ(x) ∈ Gm(x),

then any algorithm which computes χ(x) will need at least gχ(x) steps. This
can be argued very generally, and it can be used to derive hard lower bounds for
all algorithms which compute χ(x) from specific givens. Van den Dries used it
in [1] to derive a triple logarithmic lower bound for the function

gcd(x, y) = the greatest common divisor of x and y (x, y ∈ N, x ≥ y ≥ 1)

from addition, subtraction and division with remainder, i.e., the two functions

iq(x, y) = q, rem(x, y) = r,

where q and r are the unique natural numbers such that

x = yq + r 0 ≤ r < y.

His proof introduced some ingenious ideas from number theory (which we will
mention further down), and the result was at least a first step in an effort to
establish that the classical Euclidean algorithm is optimal; the Euclidean, of
course, has single logarithmic complexity, and it uses only the remainder function
rem(x, y).

The big advantage of the complexity function gψ(x) is that lower bound
results about it apply to all algorithms, whatever algorithms are. On the other
hand, it cannot be used to establish lower bounds for decision problems, where
the function that we want to compute takes on only the values 0 or 1: for that
we need to make some assumptions about algorithms, which we do next.

2 Recursive Programs

The terms of the language L(Φ) of programs in the signature Φ are defined by
the recursion

E :≡ 0 | 1 | vi | φ(E1, . . . , En) | pni (E1, . . . , En) | if (E0 = 0) then E1 else E2,

where vi is one of a list of individual variables; pni is one of a list of n-ary (partial)
function variables; and φ is any n-ary symbol in Φ. These terms are interpreted
as usually in any Φ-partial algebra A and relative to any assignment π which
assigns some π(vi) ∈ A to each individual variable vi, and some n-ary partial
function π(pni ) : An ⇀ A to each function variable pni :

[[E]](π) = [[E]](A, π) = the value (if defined) of E in A for the assignment π;
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and if the variables which occur in E are in the list (x1, . . . , xn, p1, . . . , pm), then
E defines a (partial) functional

FE(x,p) = [[E]]({(x1, . . . , xn, p1, . . . , pm) := x,p}) (3)

which is monotone and continuous.
A recursive (or McCarthy) program of L(Φ) is any system of recursive term

equations

α :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pα(x) = E0

p1(x1) = E1

...
pK(xK) = EK

(4)

such that pα, p1, . . . , pK are distinct function variables; p1, . . . , pK are the only
function variables which occur in E0, . . . , EK ; and for each i, the free, individual
variables in each Ei are in the list xi. The term E0 is the head of α, the remaining
terms are its body, and we may describe the mutual recursive definition expressed
by α by the simple notation

α ≡ E0 where {p1 = E1, . . . , pK = EK}.

The function variables p1, . . . , pK are bound in this expression.
To interpret a program α on a Φ-structure A, we observe that its parts define

the system of mutually recursive equations

pα(x) = FE0(x, p1, . . . , pK),
p1(x1) = FE1(x1, p1, . . . , pK),

...
pK(x) = FEK

(xK , p1, . . . , pK),

using (3), which by the usual methods has a set of least, mutual solutions

pα, p1, . . . , pK ;

we then let
[[α]] = [[α]](A) = pα : An ⇀ A,

so that the partial function “computed” by α on A is the component of the tuple
of least solutions of the mutual recursion determined by α which corresponds to
the head term.

A partial function f : An ⇀ A is A-recursive if it is computed by some
recursive program.

Except for the notation, these are the programs introduced by John Mc-
Carthy in [6]. McCarthy proved that if N 0 = (N, 0, 1, S, P ) is the simplest
structure on the natural numbers with just the successor and the predeces-
sor operations as given, then the N 0-recursive partial functions are exactly the
Turing-computable ones. To justify the connection with computability in general,



354 Y.N. Moschovakis

one must of course explain how recursive programs compute partial functions, in
effect to construct an implementation of L(Φ) on an arbitrary partial Φ-algebra
A; but it is well-known how to do this (in many ways), and we will not be
concerned with it.

We note two basic lemmas, whose proofs are very easy:

Lemma 1 (Imbedding). If ι : B → A is an imbedding from one Φ-algebra
into another, then for every Φ-program α and all x, w ∈ B,

if [[α]](B,x) = w, then [[α]](A, ι(x)) = ι(w).

In particular, if B ⊆p A, then for every Φ-program α and all x, w ∈ B,

if [[α]](B,x) = w, then [[α]](A,x) = w.

Lemma 2 (Finiteness). For every Φ-algebra A, every recursive Φ-program α
and all x, w ∈ A, if [[α]](A,x) = w, then there exists some m such that

w ∈ Gm(x) and [[α]](A�Gm(x),x) = w.

The Finiteness Lemma expresses the simple proposition that computations
are finite, and so they live in some finite subset Gm(x) of A generated by the
input; but it leads directly to the next, fundamental notion of complexity.

The Basic (Structural) Complexity

For each recursive program α, each partial algebra A, and each x such that
[[α]](x)↓ , we set

Cα(x) = the least m such that [[α]](A�Gm(x),x) = [[α]](x).

Roughly speaking, the basic complexity Cα(x) measures the minimum num-
ber of nested calls to the givens which is required for the computation of [[α]](x).
It cannot be realistically attained by any actual implementation of α, but it is
a plausible lower bound for the time complexity of any implementation.

The Finiteness Lemma now yields immediately the key tool for deriving lower
bound results about the basic complexity of recursive programs:

Lemma 3 (The Imbedding Test). Let A be a partial algebra as in (1), sup-
pose that χ : An → A, and assume that for some x ∈ An and some m, there is
an imbedding

ι : A�Gm(x) → A

such that
χ(ι(x)) �= ι(χ(x));

it follows that for every recursive program α which computes χ in A,

Cα(x) > m.
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3 Two Lower Bound Results About Coprimeness

We quote here from [2] two lower bound results about the relation of coprimeness

x ⊥ y ⇐⇒ x, y ≥ 1 & (∀d > 1)[d � x ∨ d � y],

which are obtained using the Imbedding Test, Lemma 3.
For the first, let

Lin0 = {=, <,parity, 2·, 1
2
·,+,−· } (5)

where the relations stand for their characteristic functions and

2 · (x) = 2x,
1
2
· (x) = iq(x, 2).

Knuth [5] describes the binary algorithm algorithm of Stein which computes
the gcd (and hence decides coprimeness) from Lin0 in logarithmic time.1 The
Stein algorithm is optimal among recursive algorithms (up to a multiplicative
constant), because of the following:

Theorem 4 ([2]). If a recursive program α decides the coprimeness relation in
the algebra A0 = (N,Lin0), then for all a > 2,

Cα(a, a2 − 1) ≥ 1
10

log(a2 − 1). (6)

The proof goes by showing that if m <
1
10

log(a2 − 1), then there is an
imbedding

ι : A0 �Gm(a, a2 − 1) → A

such that for some λ,

ι(a) = λa, ι(a2 − 1) = λ(a2 − 1),

so that ι carries the coprime pair (a, a2 − 1) to a pair of numbers which are not
coprime, and hence Cα(a, a2−1) > m by the Imbedding Test. It is not possible to
describe in this abstract how this imbedding is defined, but it is quite simple. Not
so for the next result—the Main Theorem of [2]—where the same idea is used,
but the relevant imbedding is much harder to define and depends on Liouville’s
Theorem on “good approximations” of algebraic irrationals, cf. [4]:

Theorem 5 ([2]). If a recursive program α decides the coprimeness relation
in the algebra A1 = (N,Lin0, iq, rem), then for infinitely many coprime pairs
a > b > 1,

Cα(a, b) ≥ 1
10

log log a. (7)

In fact, (7) holds for all coprime a > b > 1 such that

1 This is also specified in [2].
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−
√

2
∣∣∣ < 1

b2
(8)

(and there are infinitely many such a, b by a classical result).

The target here is the Euclidean algorithm which decides coprimeness in log-
arithmic time, and so the theorem is one log short of what is needed to establish
the (plausible) optimality of the Euclidean. But it is as good as any known lower
bound for coprimeness from its givens, and perhaps unique in its uniformity—it
yields the same lower bound, on the same inputs for all recursive programs.

4 Inessential (Logical) Extensions of Partial Algebras

The next natural question is whether Theorems 4 and 5 also hold for other
“computational paradigms”, for example random access machines. Of course
they do, and by more-or-less the same proofs, adapted to the idiosyncracies of
each model which do not affect the basic, arithmetical facts that enter into the
arguments. Rather than do this one computation model at a time, however, we
look for a general result which might suggest that these lower bounds hold for
all algorithms.

Let A = (A, 0, 1, {φA}φ∈Φ) be a partial algebra. An inessential extension of
A is any partial algebra

B = (B, 0, 1, {φA}φ∈Φ, {ψB}ψ∈Ψ )

with the following properties:
(IE1) A ⊆ B, and A and B have the same 0 and 1;
(IE2) every permutation π of A fixing 0 and 1 can be extended to a per-

mutation πB of B such that for every “new given” ψ = ψB of arity n and all
x1, . . . , xn ∈ B,

πBψ(x1, . . . , xn) = ψ(πBx1, . . . , π
Bxn). (9)

Here we view each “old given” φA as a partial function on B, undefined when
one of its arguments is not in A.

We might also call these extensions logical, since the property we demand
of the new givens in B is reminiscent (or better: a relativization to the given
algebra A) of Tarski’s logical functions. In any case, Lemma 3 extends directly
(and easily) to them:

Lemma 6 (The Extended Imbedding Test, [2]). Let A be a partial algebra
as in (1), suppose that χ : An → A, and assume that for some x ∈ An and some
m, there is an imbedding

ι : A�Gm(x) → A

such that
χ(ι(x)) �= ι(χ(x));

it follows that for every recursive program α which computes χ in some inessen-
tial extension B of A,

Cα(x) > m.
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And, of course, random access machines relative to any set Φ of functions on
N can be faithfully represented by recursive programs on inessential extensions
of (N, 0, 1,Φ), as are all computational models relative to Φ; and so Theorems 4
and 5 also hold for them.

In fact, the familiar computational paradigms for computation on N accept
some fixed, number-theoretic functions Φ as givens (the successor and predeces-
sor, equality, addition, etc.), and they also assume some “computational con-
structs” which are characteristic of them and independent of Φ, e.g., branching,
recursion, reading from and writing to registers or stacks, higher-type logical
operations like λ-abstraction and β-conversion, etc. In [7, 8] it is argued that all
algorithms from given operations can be faithfully represented by suitable re-
cursive programs on the structure determined by the givens: now the results we
have discussed here suggest the following, more concrete interpretation of that
proposal for algorithms from first-order givens on some set A:

Refined Church-Turing Thesis for Algorithms, ([2]). Every algorithm
α from a set Φ of partial functions and relations on a set A can be represented
faithfully by a recursive program β on some inessential extension B of the partial
algebra A = (A, 0, 1,Φ).

If we assume this Thesis, then the Extended Imbedding Test makes it possible
to establish lower bounds for all algorithms from a set of first-order givens Φ on
A, whenever we can produce the appropriate imbeddings.

References

1. Lou van den Dries. Generating the greatest common divisor, and limitations of
primitive recursive algorithms. Foundations of computational mathematics, 3:297–
324, 2003.

2. Lou van den Dries and Yiannis N. Moschovakis. Is the Euclidean algorithm optimal
among its peers? The Bulletin of Symbolic Logic, 10:390–418, 2004.

3. Lou van den Dries and Yiannis N. Moschovakis. Arithmetic complexity. 200? in
preparation.

4. G. H. Hardy and E. M. Wright. An introduction to the theory of numbers. Clarendon
Press, Oxford, fifth edition (2000). originally published in 1938.

5. D. E. Knuth. The Art of Computer Programming. Fundamental Algorithms.
Addison-Wesley, second edition, 1973.

6. J. McCarthy. A basis for a mathematical theory of computation. In P. Braffort and
D Herschberg, editors, Computer programming and formal systems, pages 33–70.
North-Holland, 1963.

7. Yiannis N. Moschovakis. On founding the theory of algorithms. In H. G. Dales and
G. Oliveri, editors, Truth in mathematics, pages 71–104. Clarendon Press, Oxford,
1998.

8. Yiannis N. Moschovakis. What is an algorithm? In B. Engquist and W. Schmid,
editors, Mathematics unlimited – 2001 and beyond, pages 919–936. Springer, 2001.



FM-Representability and Beyond

Marcin Mostowski1 and Konrad Zdanowski2

1 Department of Logic, Institute of Philosophy, Warsaw University,
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Abstract. This work concerns representability of arithmetical notions
in finite models. It follows the paper by Marcin Mostowski [1], where the
notion of FM–representability has been defined. We discuss how far this
notion captures the methodological idea of representing infinite sets in
finite but potentially infinite domains.

We consider mainly some weakenings of the notion of FM–
representability. We prove that relations weakly FM–representable are ex-
actly those being Σ0

2–definable. Another weakening of the notion, namely
statistical representability, turns out to be equivalent to the original one.
Additionally, we consider the complexity of sets of formulae naturally
defined in finite models. We state that the set of sentences true in al-
most all finite arithmetical models is Σ0

2–complete and that the set of
formulae FM–representing some relations is Π0

3–complete.

1 Introduction

This work concerns mainly the following problem.

Let us suppose that our world is finite, but not of a restricted size. It
means that everytime it can be enlarged by a finite number of new enti-
ties. This assumption says, in Aristotelian words (see [2], Physics, book
3), that the world is finite but potentially infinite. Then, which infinite
sets can be reasonably described in our language?

For simplifying the problem we restrict our attention to sets (and relations) of
natural numbers and we assume that our world contains only natural numbers.

Technically, the problem appears when one is trying to transfer some classical
ideas into finite–models theoretic framework. It requires frequently a uniform
representation for various infinite relations in finite models. As a rule, uniformity
means that the representation of a relation is given by one formula. Of course
in a single finite model only a finite approximation of any infinite relation can
be defined. Therefore we have to consider representability in infinite classes of
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finite models — intuitively finite but potentially infinite models.1 In the paper [1]
an attempt to make the notion precise has been made and FM–representability
theorem has been proved (see Theorem 5).2

Let R be a set of natural numbers. Then we say that R is FM–represented
by a formula ϕ(x) if for each initial segment I of natural numbers ϕ(x) cor-
rectly describes R for all elements from I in all sufficiently large finite inter-
pretations. Originally the notion was motivated by an attempt to transfer the
Tarski’s method of classifying concepts by means of truth definitions to finite
models.3 In this case we have to describe syntax of considered languages in fi-
nite models. Needed syntactical relations are essentially infinite. Therefore, the
notion of FM–representability appeared as an answer to this problem.

In this paper we concentrate on the notion of FM–representability and some
possible weakenings of it. We show that, in a sense, the notion captures strongly
the idea of representing relations in finite models.

2 Basic Notions

We start with the crucial definition of FM–domain.

Definition 1. Let R = {R1, . . . , Rk} be a finite set of arithmetical relations
on ω. By an R–domain we mean the model A = (ω, R1, . . . , Rk). We consider
finite initial segments of these models. Namely, for n ≥ 1, by An we denote the
structure

An = ({0, . . . , n− 1}, Rn
1 , . . . , R

n
k ),

where, for i = 1, . . . , k, the relation Rn
i is the restriction of the relation Ri to

the set {0, . . . , n− 1}. We treat n-ary functions as n + 1-ary relations.
The FM–domain of A (or FM–domain of R), denoted by FM(A), is the

family {An : n ∈ ω}.

Throughout this paper we are interested mainly in the family FM(N), for
N = (ω,+,×). By arithmetical formulae we mean first order formulae with
addition and multiplication treated as ternary predicates. The standard ordering
x ≤ y is definable by the formula ∃z x + z = y. Its strict version, x < y, is
defined as x ≤ y ∧ x �= y. The constants 0 and MAX are defined respectively as
≤–smallest and ≤–greatest elements. For each n ∈ ω, by n̄ we mean the constant
denoting the n-th element in the ordering ≤ counting from 0. If there is no such

1 In the context of foundations of mathematics a very similar approach to potential
infinity is presented by Jan Mycielski in [3].

2 Some consequences of this idea are also discussed in [4], [5].
3 The basics of the method of truth definitions in finite models were formulated in [6].

The paper [1] covers [6], giving additionally some refinement of the method. It was
applied then in [4], and [7] for classifying finite order concepts in finite models. Some
applications of the method for classifying computational complexity classes can be
found in [8].
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element we take n̄ = MAX. We write x|y for ∃z ≤ y(1 < z ∧ zx = y). It is
known that all these notions are definable by bounded formulae. Thus, their
interpretations conform to their intended meaning also in models from FM(N).

Let us mention, that in [4] a finite axiomatization ST has been presented
which characterizes, up to isomorphism, the family FM(N) within the class of
all finite models.

The other notions which we use here are fairly standard, one can consult
e.g. [9] and [10] for model or recursion theoretic concepts, respectively. We write
{e} to denote the partial function computed by the Turing machine with the
index e. {e}(n)

7⏐ means that the function {e} is not defined on n, and {e}(n)
⏐9

means that {e}(n) is defined. We put We = {n ∈ ω : {e}(n)
⏐9}.

We consider the family of Σ0
n (Π0

n) relations which are definable in N by Σ0
n

(Π0
n) formulae. Δ0

n are relations which are definable by Σ0
n and Π0

n formulae.
R ⊆ ωr is many one reducible to S ⊆ ωs (R ≤m S) if there exists a total

recursive function f such that for all a1, . . . , ar ∈ ω,

(a1, . . . , ar) ∈ R if and only if f(a1, . . . , ar) ∈ S.

A relation S is complete for a class K if S ∈ K and for any other R ∈ K, R ≤m S.
We say that R is Turing reducible to S (R ≤T S) if there is an oracle Turing

machine which decides R using S as an oracle. R and S are Turing equivalent
if R ≤T S and S ≤T R. The degree of R, denoted by deg(R), is the class of
all relations which are Turing equivalent to R. In particular, 0′ is the degree
of any recursively enumerable (RE) complete set, and 0′′ is the degree of any
Σ0

2–complete set.
We use bald characters, e.g. a, for valuations in a given model A. We write

|A| for the universe of a model A. If ϕ(x1, . . . , xk) is a formula in the vocabulary
of A with all free variables between x1, . . . , xk we write A |= ϕ[a1, . . . , ak], for
a1, . . . , ak ∈ |A|, when ϕ holds in A under any valuation a for which a(xi) = ai,
for i = 1, . . . , k.

Definition 2. Let ϕ(x1, . . . , xr) be an arithmetical formula and a1, . . . , ar ∈ ω.
We say that ϕ is true of a1, . . . , ar in all sufficiently large finite models ( |=sl

ϕ[a1, . . . , ar]) if and only if ∃k∀n ≥ k Nn |= ϕ[a1, . . . , ar] (or, in other words, if
ϕ is true of a1, . . . , ar in almost all finite models from FM(N)).

For each unbounded family of finite models K, by sl(K) we denote the set of
formulae which are true in almost all models from K. In particular, |=sl ϕ means
that ϕ ∈ sl(FM(N)).

Definition 3. We say that R ⊆ ωr is FM–represented by a formula
ϕ(x1, . . . , xr) if and only if for each a1, . . . , ar ∈ ω both of the following con-
ditions hold:

(i) |=sl ϕ[a1, . . . , ar] if and only if R(a1, . . . , ar).
(ii) |=sl ¬ϕ[a1, . . . , ar] if and only if ¬R(a1, . . . , ar).

We say that R is FM–representable if there is an arithmetical formula ϕ which
FM–represents R.
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The notion of FM–representability has been defined in [1] in a slightly differ-
ent way. We summarize various equivalent conditions in the following

Proposition 4. Let R ⊆ ωr and ϕ(x1, . . . , xr) be a formula in a vocabulary of
FM(N). The following conditions are equivalent:

1. ϕ(x1, . . . , xr) FM–represents R,
2. for each m there is k such that for all a1, . . . , ar ≤ m,

R(a1, . . . , ar) if and only if Ni |= ϕ[a1, . . . , ar],

for all i ≥ k.

The second condition expresses the intuition that ϕ FM–represents R in FM(N)
if each finite fragment of R is correctly described by ϕ in all sufficiently large
models from FM(N).

The main characterization of the notion of FM–representability is given by
the following

Theorem 5 (FM–representability theorem, see [1]). Let R ⊆ ωr. R is
FM–representable if and only if R is of degree ≤ 0′ (or, equivalently, is Δ0

2–
definable).

The theorem does not depend on the strength of the underlying logic provided
that the truth relation for this logic restricted to finite models is recursive and
it contains first order logic. On the other hand, it is surprising that the theorem
requires relatively weak arithmetical notions. In [11] it is proved that it holds in
FM–domain of multiplication. It is improved in [12] to the divisibility relation.

3 Weak FM-Representability

As the most natural weakening of the notion of the notion of FM–representability
we consider the following:

Definition 6. A relation R ⊆ ωr is weakly FM–representable if there is a for-
mula ϕ(x1, . . . , xr) with all free variables among x1, . . . , xr such that for all
a1, . . . , ar ∈ ω,

(a1, . . . , ar) ∈ A if and only if |=sl ϕ[a1, . . . , ar].

Since the definition of |=sl ϕ can be expressed as an Σ0
2–sentence the following

holds.

Fact 7. Let R ⊆ ωr. If R is weakly FM–representable, then R ∈ Σ0
2 .

The reverse of the implication from Fact 7 will be proved after evaluating the
degree of the theory sl(FM(N)).

As an analogue of the relation between FM–representability and weak FM–
representability we recall the relation between strong and weak representability
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in Peano arithmetic. We say that a relation R ⊆ ωr is strongly PA–representable
if there is a PA–formula ϕ(x1, . . . , xr) with all free variables among x1, . . . , xr
such that for all n1, . . . , nr ∈ ω,

(n1, . . . , nr) ∈ R ⇐⇒ PA 1 ϕ(n̄1, . . . , n̄r)
(n1, . . . , nr) �∈ R ⇐⇒ PA 1 ¬ϕ(n̄1, . . . , n̄r).

R ⊆ ωr is weakly PA–representable if there is a PA–formula ϕ(x1, . . . , xr)
with all free variables among x1, . . . , xr such that for all n1, . . . , nr ∈ ω,

(n1, . . . , nr) ∈ R ⇐⇒ PA 1 ϕ(n̄1, . . . , n̄r).

A relation R is strongly PA–representable if and only if it is decidable.
R is weakly PA–representable if and only if R is recursively enumerable. If
R and its complement are weakly PA–representable, then R is strongly PA–
representable. We state the analogous fact for FM–representability and weak
FM–representability. It follows easily from the known relations between the
classes Σ0

2 and Δ0
2.

Fact 8. Let R ⊆ ωr. R and ωr −R are weakly FM–representable if and only if
R is FM–representable.

Below, we prove the stronger fact that weakly FM–representable relations
are exactly the Σ0

2 relations.
Firstly, we consider some properties of coding computations and the for-

mula Comp(e, c) which says that c is a finished computation of the machine
e. (Here and in what follows by a Turing machine we mean a deterministic
Turing machine.) We construct Comp(e, c) using Kleene predicate T(e, x, c),
which means that c is a finished e–computation with the input x. It is known
that this predicate is definable by an arithmetical formula with all quantifiers
bounded by c. Moreover, if T(e, x, c) then e < c and x < c. We define Comp(e, c)
as ∃x < cT(e, x, c).

Now let us state a few facts about the formula Comp(e, c). All quantifiers in
Comp(e, c) are bounded by c. It follows that the truth value of Comp(e, c) in a
given model M does not depend on the elements in M greater than c and that
Comp(e, c) will hold in a given model M ∈ FM(N) as soon as the code of the
computation appears in M .

Now, we state the lemma summarizing these considerations.

Lemma 9. There is a formula Comp(x, y) such that

∀e ∀c ∀M ∈ FM(N)(card(M) > c ⇒
(c is a finished computation of e ⇐⇒ M |= Comp[e, c]))).

Definition 10. By Fin we mean the set of indices of Turing Machines
having finite domains, i. e.

Fin = {e ∈ ω : ∃n ∈ ω card(We) = n}.
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By a well known result from recursion theory (see e.g. [10]) Fin is Σ0
2–

complete.

Lemma 11. Fin is weakly FM–representable.

Proof. Let ϕ(x) be the formula ¬Comp(x,MAX), where Comp(x, y) is the for-
mula from the last lemma. By properties of Comp stated there, for all e,

e ∈ Fin if and only if |=sl ϕ[e].

If e ∈ Fin then there are only finitely many finished computations of e. (Here,
we use the assumption that all machines are deterministic.) In this case ϕ is
true of e in all models in which MAX is greater than the biggest computation
of e. On the other hand, if |=sl ϕ[e], then there are only finitely many finished
computations of e. Thus, the domain of e is also finite.

Thus, Fin is weakly FM–representable. *+

We have the following lemma.

Lemma 12. The family of weakly FM–representable relations is closed on
many–one reductions.

Proof. For simplicity we consider only sets A,B ⊆ ω. Let f : ω −→ ω be a
reduction from A to B that is for all z,

z ∈ A if and only if f(z) ∈ B

and let ϕB(x) weakly FM–represent B. Additionally, let ψf (x, y) FM–represent
the graph of f . Now, the following formula ϕA(x) FM–represents A,

∃y (ψf (x, y) ∧ ∀y′ < y¬ψf (x, y′) ∧ ϕB(y)).

Here, we need to add the conjunct ∀y′ < y¬ψf (x, y′) to force the uniqness
of y. *+

As a corollary from Lemmas 11 and 12 we obtain the following characteriza-
tion of weak FM–representability.

Theorem 13. Let R ⊆ ωr. R is weakly FM–representable if and only if A is
Σ0

2 .

Now, we are in a position to solve some questions which were put, explicitly
or implicitly, in [1]. Let us recall that sl(FM(N)) = {ϕ : |=sl ϕ}. So, sl(FM(N))
is the theory of almost all finite models from FM(N). By the definition of |=sl

the above set is in Σ0
2 .

In [1], it was proven by the method of undefinability of truth, that

0′ < deg(sl(FM(N))) ≤ 0′′.

Here we strengthen this result by the following,
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Theorem 14. sl(FM(N)) is Σ0
2–complete, so its degree is 0′′.

Proof. We know that sl(FM(N)) is Σ0
2 . It is Σ0

2–complete by the procedure
from the proof of Lemma 11 which reduces Fin to sl(FM(N)). We put f(e) =
�¬Comp(ē,MAX)�. By properties of Comp(x, y) we obtain:

e ∈ Fin if and only if f(e) ∈ sl(FM(N)).

Since Fin is Σ0
2–complete then sl(FM(N)) is also complete. *+

Let us observe that the degree of sl(FM(N)) does not depend on the underlin-
ing logic provided it has decidable “truth in a finite model” relation and contains
first order logic.

Now, let us consider the complexity of the question whether a given for-
mula ϕ(x1, . . . , xk) with free variables x1, . . . , xk FM–represents some relation
in FM(N). Let us define the set

FDet = {ϕ(x1, . . . , xk) :
∀n1 . . . nk ∈ ω |=sl ϕ[n1, . . . , nk] or |=sl ¬ϕ[n1, . . . , nk]}.

FDet is the set of formulae which are determined for all substitutions of constant
numerical terms for their free variables. In other words, this is the set of formulae
which FM–represent some concepts.

We have the following theorem characterizing the degree of FDet.

Theorem 15. FDet is Π0
3–complete.

Proof. FDet has a Π0
3 definition so it is a Π0

3 relation. Now, let A ⊆ ωk be a
Π0

3–relation. We show a many–one reduction from A to FDet.
There is a recursive relation R such that for all n1, . . . , nk ∈ ω,

(n1, . . . , nk) ∈ A if and only if ∀x∃y∀zR(n1, . . . , nk, x, y, z).

Since Fin is Σ0
2–complete, we have a total recursive function g : ωk+1 −→ ω

such that for all n1, . . . , nk ∈ ω,

∀x∃y∀zR(n1, . . . , nk, x, y, z) if and only if ∀x g(n1, . . . , nk, x) ∈ Fin.

Now, let ψg(x1, . . . , xk, x, y) FM–represent the graph of g and let
ϕ(x1, . . . , xk, x) be the following formula

∃y(ψg(x1, . . . , xk, x, y) ∧ ∀z < y¬ψg(x1, . . . , xk, x, z) ∧ ¬Comp(y,MAX)),

where Comp(x, y) is the formula from Lemma 9. Because we consider only de-
terministic Turing machines Comp(y,MAX) can be determined only negatively.
Thus, for all n1, . . . , nk ∈ ω,

(n1, . . . , nk) ∈ A if and only if ∀m ∈ ω |=sl ϕ(n̄1, . . . , n̄k, m̄)
if and only if ϕ(n̄1, . . . , n̄k, x) ∈ FDet.

Thus, we obtained a reduction from A to FDet. *+
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4 Statistical Representability

In this section we present another weakening of the original concept of FM–
representabiliy.4 Now, we do not require that for all a1, . . . , ak a given formula
correctly describes a given relation R on a1, . . . , ak. We only want that the
description is more likely to be correct than incorrect.

Definition 16. Let ϕ(x1, . . . , xk) be a formula and a be a valuation in N. By
μn(ϕ,a) we denote

μn(ϕ,a) =
card{A ∈ FM(N) : max1≤i≤k{a(xi)} ≤ card(A) ≤ n ∧ A |= ϕ[a]}

n
.

By μ(ϕ,a) we denote the limit value of μn for n → ∞, if it exists.

μ(ϕ,a) = lim
n→∞μn(ϕ,a).

Since, μ(ϕ(x1, . . . , xk),a) is determined by values a on the free variables of ϕ
we write also μ(ϕ, a1, . . . , ak) with the obvious meaning. If ϕ is a sentence then
the value of μ(ϕ,a) does not depend on a. In this case we write μ(ϕ).

Definition 17. The relation R ⊆ ωr is statistically representable if there is a
formula ϕ(x1, . . . , xr) with all free variables among x1, . . . , xr such that for all
a1, . . . , ar ∈ ω,

– μ(ϕ, a1, . . . , ar) exists,
– if (a1, . . . , ar) ∈ R then μ(ϕ, a1, . . . , ar) > 1/2
– if (a1, . . . , ar) �∈ R then μ(ϕ, a1, . . . , ar) < 1/2.

Theorem 18. Let R ⊆ ωr. Then, R is statistically representable if and only if
R is FM–representable.

Proof. The implication from right to left is obvious. To prove the converse let us
assume that R ⊆ ωr is statistically represented by ϕ(x1, . . . , xr). We will give a
Σ0

2 definition of R. Then, since the set of statistically representable relations is
obviously closed on the complement, we get that R has to be Δ0

2. We have the
following: for all a1, . . . , ar ∈ ω,

(a1, . . . , ar) ∈ R ⇐⇒ ∃N∀n ≥ Nμn(ϕ, a1, . . . , ar) >
1
2
. (*)

The formula on the right side of (*) is Σ0
2 so it remains to show that it gives a

good description of R.
If the right side of (*) holds then of course μ(ϕ, a1, . . . , ar) is greater or equal

1
2 . But, by the definition of statistical representability, μ(ϕ, a1, . . . , ar) cannot
be equal to 1

2 . Thus,

μ(ϕ, a1, . . . , ar) >
1
2

and (a1, . . . , ar) ∈ R.

4 The results contained in this section are based on [13].
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On the other hand, if (a1, . . . , ar) ∈ R then μ(ϕ, a1, . . . , ar) = 1
2 + ε, for some

ε > 0. Now, if we choose N in such a way that for all n ≥ N ,

|μ(ϕ, a1, . . . , ar) − μn(ϕ, a1, . . . , ar)| <
ε

2
then the right side of (*) holds. *+
Definition 19. The relation R ⊆ ωr is weakly statistically representable if there
is a formula ϕ(x1, . . . , xr) such that for all a1, . . . , ar ∈ ω,

(a1, . . . , ar) ∈ R if and only if the value μ(ϕ, a1, . . . , ar) exists and equals 1.

Since the statistical representability coincides with FM–representability one
could expect that relations which are weakly statisticaly representable are ex-
actly relations which are weakly FM–representable. On the other hand, the quan-
tifier prefix in the expression μ(ϕ) = 1 suggests that these relations are exactly
relations which are Π0

3 in the arithmetical hierarchy. The second guess is correct.
Before we present the theorem we define some auxiliary notions. We write√

MAX < x for the formula ∀z(xx �= z). We write Input(c) = n for ∃e <
cT(e, n, c) and x ∈ We for ∃c T (e, x, c).

Theorem 20. The family of relations which are weakly statistically repre-
sentable is exactly the family of Π0

3 relations in the arithmetical hierarchy.

Proof. By the method from the proof of Lemma 12, It may be easily shown that
the family of weakly statistically representable relations is closed on many one
reduction. Thus, it suffices to show that a Π0

3–complete set is in this family. We
take the Π0

3–complete set coInf of Turing machines with coinfinite domain:

coInf = {e : ω \We is infinite}.
Now, we write the formula ϕ(z) :=

∀n∀c[{
√

MAX < c ∧ n = Input(c) ∧ ∀c1(
√

MAX < c1 ⇒ n ≤ Input(c1)} ⇒
∀x{([(x �∈ Wz ∧ x < n) ∨ x=1] ∧ ∀y((y �∈Wz ∧ y < n)⇒y ≤ x))⇒¬(x|MAX)}]
with the property that for all e ∈ ω,

e ∈ coInf if and only if μ(ϕ, e) = 1. (**)

The formula ϕ in a model on {0, . . . ,m− 1} looks for a computation c greater
than

√
m− 1 with the smallest imput n. Then, it takes the greatest x < n which

is not an input of any e–computation in the model (or it takes 1 if there is no such
a x) and forces its own density close to 1− 1/x. If there is no such computation
c then ϕ is simply true. Now, we show (**).

Let us assume that We is coinfinite and let ε > 1/k such that k �∈ We. Let
N = max{c2 : Input(c) ≤ k}+1. We show that for all m > N , |1−μm(ϕ, e)| < ε.
In the model Nm there is no computation c such that

√
m− 1 < c and Input(c) <

k. Thus, ϕ forces its density at least to 1 − 1/k in models greater than N .
Now, let us assume that We is cofinite and let k = max(ω \We). Let us fix

arbitrary large N and c0 = max{c : Input(c) ≤ N}. Starting from Nc0+1 up to
Nc20

, ϕ forces its density to 1 − 1/k. It follows that |1 − μc20(ϕ, e)| ≥ 1/2k. *+
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5 Conclusions

We have investigated some variants and weakenings of the notion of FM–
representability. Summarizing we observe that:

1. The notion of FM–representability has a natural characterization in terms
of arithmetical definability.

2. It captures in a natural way the idea of a relation which can be in a mean-
ingfull way described in finite but potentially infinite domains.

3. FM–representing formulae can be considered as computing devices finitely
deciding some relations. So the notion of FM–representability behaves simi-
larly to recursive decidability. The main difference is that in the former case
the halting condition – being still finite – cannot be determined in a single
finite model. Let us observe that weak FM–representability corresponds – in
this sense – to recursive enumerability.
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Abstract. In this work we focus on a formalisation of the algorithms of
lazy exact arithmetic à la Potts and Edalat [1]. We choose the construc-
tive type theory as our formal verification tool. We discuss an extension
of the constructive type theory with coinductive types that enables one to
formalise and reason about the infinite objects. We show examples of how
infinite objects such as streams and expression trees can be formalised
as coinductive types. We study the type theoretic notion of productivity
which ensures the infiniteness of the outcome of the algorithms on infi-
nite objects. Syntactical methods are not always strong enough to ensure
the productivity. However, if some information about the complexity of
a function is provided, one may be able to show the productivity of that
function. In the case of the normalisation algorithm we show that such
information can be obtained from the choice of real number representa-
tion that is used to represent the input and the output.

1 Introduction

In the exact arithmetic approach to numerical computations the emphasis lies
on the precision of the outcome of the computation. Due to this the algorithms
of exact arithmetic are suitable objects for applying formal methods. Both of
the fields of exact arithmetic and formal methods benefit from the verification
of exact arithmetic by means of formal tools such as theorem provers or proof
assistants. On one hand such formalisations often expose some rarely considered
subtleties in the object of the formalisation. On the other hand formalising ex-
act arithmetic provides a serious test to assess the expressiveness of the formal
framework that is chosen for the formalisation. This is especially the case if one
uses the approaches to the exact arithmetic whose formalisation require a com-
plex type system, such as the lazy exact arithmetic à la Potts and Edalat [1, 2].

Formalising Potts and Edalat’s algorithms requires a type theory that is en-
riched with infinite objects. This is because the Normalisation Algorithm (NAlg)
— which is the core of Potts and Edalat’s lazy exact arithmetic— has infinite
objects as its input and output, namely streams and expression trees. Streams
and expression trees are both relatively simple infinite objects1 and therefore

1 This is because the corresponding categorical objects — final coalgebras— are gen-
erated by ‘simple’ functors, namely polynomial functors [3–§ 4.2].
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they can be formalised as function types in simple type theories. However, such
formalisations require modifying NAlg in order to fit in the said type system.
Usually this means that the formalised version of NAlg is not a lazy algorithm
anymore; rather, it performs the computation in a sequential manner.

In our work we intend to formalise the NAlg while keeping its lazy nature, be-
cause in our view laziness is an important characteristic of NAlg. Thus in order
to formalise these algorithms we choose a type theory extended with coinduc-
tive types. More specifically we choose the Calculus of Inductive Constructions
(CIC) extended with coinductive types [4]. There are two reasons for this choice:

1. CIC distinguishes between propositions (computationally irrelevant proofs)
and sets (computational content of proofs);

2. CIC is implemented as the Coq proof assistant [5].

Thus, once formalising the algorithms in Coq one can extract programs from the
formalisation. This is due to the distinction between propositions and compu-
tational contents: one can put all complicated proof objects in the universe of
propositions with the knowledge that they will be discarded once the computa-
tional content of the formalisation is extracted. Ideally the extracted computa-
tional content is identical to the original algorithms. In practice and during the
formalisation, in many cases one has to modify the computational content of the
original algorithm. From our point of view these changes are acceptable as long
as they do not alter the computational complexity of the original algorithm. In
other words in order to be able to claim that a given algorithm is formalised,
the computational complexity of the algorithm and its formalisation should not
differ.This is the path that we follow in our formalisation and verification of the
NAlg algorithm.

2 Coinductive Types

Coinductive types were added to the type theory in order to make it capable of
dealing with infinite objects. This extension was done by Hagino [6] using the
categorical semantics. The idea is to consider an ambient category for the type
theory, and interpret the final coalgebras of this category as coinductive types.
The standard way to consider a categorical model for type theory is to interpret
types as objects and typing rules as morphisms [7]. But one can also base the
presentation of coinductive types on Martin-Löf’s constructive type theory. That
means that in order to present the rules for a type, one should present the
formation, introduction, elimination and equality rules [8]. Here we use this
approach to define coinductive types for polynomial functors. Such coinductive
types are all that is needed for formalising NAlg.

In the Martin-Löf’s setting, the formation rule is originally a set formation
rule. Since we do not put any constraints on the ambient category C, the for-
mation rule will be modified to the formation of the objects of C. For a symbol
t to be a type, it should be an object of C. We fix a distinguished symbol s.
Then ‘t is a type’ can be written as t : s. Furthermore to present the method of
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construction, we should assume that we have a description of final coalgebras
of endofunctors on C. This means that there exists a partial decision procedure
is-νF, which determines whether F has a final coalgebra. We assume

is-νF := F is polynomial .

There are slightly larger classes of functors for which a total decision procedure
exists. Among them are continuous functors and functors that correspond to
strictly positive type operators. Strictly positive type operators and their functo-
rial extensions are used in defining inductive types in CIC; their definition can
be found e.g. in [9].

Below we shall present the rules of coinductive types. The method of con-
struction will be given as a type constructor symbol ν, with a total decision
procedure is-νF. This method of construction is characterised by the following
rules and produces the coinductive type νF.

νF-Formation
is-νF
νF: s

νF-Introduction
U : s x : U 1 u(x) : F(U)
y : U 1 (ν-it u y) : νF

νF-Elimination
x : νF

(ν-out x) : F(νF)

νF-Equality
U : s x : U 1 u(x) : F(U)

y : U 1 (ν-out (ν-it u y)) = (F(ν-it u) u(y))

The rule νF-Equality speaks about the intensional equalities between terms.
This means that it can be considered as a reduction or conversion rule. This way
we can present the following rule.

νF-Reduction (ν-out (ν-it u y)) � (F(ν-it u) u(y))

The rule νF-Introduction is inspired by the coiteration scheme of the final
coalgebra of F. There are alternative schemes that can be used for defining
functions into a final coalgebra, such as the corecursion scheme or the dual of
course-of-value iteration scheme [3–§ 4.4].

At this point we are able to use ν-Formation to introduce the coinductive
types. Evidently we only need to know whether the given functor is polynomial.
This can be done if we present the functor by means of its constructors (for a
definition see [3–p. 99]). In fact all we need for defining a coinductive type is
the type of its constructors and not the constructors themselves. This approach
is taken in Coq for defining coinductive types [4]. Consequently, one can use
the remaining rules for defining functions on infinite objects and proving the
properties of these function.
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3 Streams and Expression Trees

We introduce the coinductive types that are used in NAlg. Let A,B be two sets
and define the following functors.

F1(X) = A×X ,F2(X) = A×X + B ×X2 .

The above functors have final coalgebras. The final coalgebra of F1 is just the
set Aω of stream of elements of A. It is well-known that the set of streams with
as destructor the map 〈hd, tl〉 : Aω → A×Aω is a final coalgebra.

The final coalgebra of F2 is the set of E(A,B) of expression trees with A-
elements and B-operations. These are infinite binary trees in which every node
has one or two children. A unary node is an element of A and a binary node is an
element of B. The proof of finality of E(A,B) can be found in [3–Example 4.2.4].
The destructor is the following map.

psuppA,B(θ) :=

{
inl(〈a, θ′〉) if θ has root a and child θ′ ,

inr(〈b, θ′, θ′′〉) if θ has root b and children θ′,θ′′ .

Using this, one can define the constructors of this final coalgebra, but here
we give (and need) only the type of the constructors:

ucons : A× E(A,B) → E(A,B),

bcons : B × E(A,B)2 → E(A,B) .

We write 〈〈a; θ〉〉 and 〈〈b; θ, θ′〉〉 respectively for ucons(a, θ) and bcons(b, θ, θ′).
Similarly the constructor of the final coalgebras of streams of A is cons : A → Aω.
We write a : α for cons(a, α).

Thus, by presenting the above constructors we can form coinductive types of
streams and expression trees using νF1-Formation and νF2-Formation rules.

4 The Normalisation Algorithm

We can present NAlg [10] using the constructors for expression trees and streams.
For this let R+ = (0,+∞) and let M (resp. T) be the set of Möbius maps (resp.
2 × 2 × 2 tensors over Z) which are refining on R� := R+ ∪ { 0,+∞}2. Let Φ
be a digit set, i.e., a finite set of refining Möbius maps such that there is a total
surjective map (a representation) ρ from Φω to R� and that for all f0f1 · · · ∈ Φω

we have

{ ρ(f0f1 . . . ) } =
∞⋂
i=0

f0 ◦ . . . ◦ fi(R�) .

2 Instead of R�, we could pick any proper closed subinterval of R ∪ {−∞, +∞} [3–
Chap. 5].
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By ξ 〈x, y〉 we denote the application of the tensor ξ considered as a quadratic
map to the points x, y ∈ R�. Let φ ∈ Φ. For each μ ∈ M (resp. ξ ∈ T) we define
the emission condition as the predicate

Incl(μ, φ) := μ(R+) ⊆ φ(R+) ,

Incl(ξ, φ) := ξ〈R+, R+〉 ⊆ φ(R+) .

Furthermore we define left product (denoted by •1) and right product (denoted
by •2) of a tensor and a Möbius map as follows.[

a b c d
e f g h

]
•1

[
A B
C D

]
=
[
aA + cC bA + dC aB + cD bB + dD
eA + gC fA + hC eB + gD fB + hD

]
,

[
a b c d
e f g h

]
•2

[
A B
C D

]
=
[
aA + bC aB + bD cA + dC cB + dD
eA + fC eB + fD gA + hC gB + hD

]
.

Finally we are able to present the NAlg in a functional from:

nfΦ〈〈μ; θ〉〉:=
{
φ : nfΦ〈〈φ−1 ◦μ; θ〉〉 if ∃φ ∈ Φ, Incl(μ, φ) ,

nfΦ〈〈μ ◦ hd (nfΦ(θ)); tl (nfΦ(θ))〉〉 otherwise.

nfΦ〈〈ξ; θ1, θ2〉〉:=

⎧⎪⎨⎪⎩
φ : nfΦ〈〈φ−1 ◦ ξ; θ1, θ2〉〉 if ∃φ ∈ Φ, Incl(ξ, φ) ,

nfΦ〈〈ξ •1 hd (nfΦ(θ1)) •2 uhd(nfΦ(θ2))
; tl (nfΦ(θ1)), tl (nfΦ(θ2))〉〉 otherwise.

One can observe that the NAlg as presented above is a composition of continuous
functions on suitably chosen dcpos. Therefore, being a continuous functional, it
has a fixpoint [3–§ 4.5]. Thus the above definition is meaningful and indeed it
can be written as such in a functional programming language. But the functions
in the type theory should be introduced using the introduction rules of the type
theory. Thus NAlg can not be formalised as above in the type theory of CIC
extended with coinductive types.

First, there is a type checking problem in the above presentation of NAlg.
According to the type of input and output, the type of NAlg should be E→Φω.
This means that we should define the matrix multiplication (and left and right
products) between a digit (which is a refining Möbius map) and a refining Möbius
map which is a unary node of an expression tree. Note that in CIC there is no
subtyping by inheritance. Hence we should coercive subtyping, i.e., we should
define a map between Φ and M and declare it to be a coercion [11]. This also
solves the problem that in the nested branches the argument of NAlg is an
expression tree with streams as children.

The second problem with formalising the above presentation of NAlg is more
difficult to tackle and corresponds to the productivity of NAlg, which we discuss
in the next section.
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5 Productivity

If we formalise NAlg in our type theory, we should only use the rules of CIC plus
those presented in Sect. 2. More specifically, the rule ν-Introduction should
be used to define infinite objects. This is the rule which builds the stream that
is the outcome of NAlg. This rule is based on the coiteration scheme and hence
it can only be used to define infinite objects whose construction does not involve
an unbounded search. This also would be the case had we chosen more complex
schemes of corecursion or the dual of course-of-value recursion to propose an
alternative introduction rule. But one can see that the nested branches of NAlg
require an unbounded search: they absorb from the input expression tree and
modify the input until the condition Incl(–, –) holds.

This means that NAlg might not produce output for some inputs, i.e., it might
be a partial function. If a function on infinite objects, produces an output for a
given input, we say that this function is productive for that input. Productivity is
dual to the notion of termination which is used to ensure the totality of recursive
functions.

One can give a more formal definition of productivity using the theory of
partially ordered sets. Let [A] be the pointed dcpo of partial lists and streams
over set A as defined in [3–p. 111]. By partial lists we refer to the finite lists of
elements of A ∪ {⊥A }, where ⊥A is a fresh element added to A. Let [A;B] be
the pointed dcpo of partial expression trees with A-elements and B-operations,
as defined in [3–p. 114].

Definition 1. For nonempty sets A and B, in the dcpos [A] and [A;B] we shall
call each maximal element a productive element.

For finite partial lists we use the dual term terminative. A finite partial list
σ in [A] is terminative if and only if

∀0 ≤ i < length (σ), σ(i) is maximal.

Note that the empty partial list is vacuously terminative.
We call a function between two pointed dcpos productive, if it takes productive

elements to productive elements.

It is immediate from this definition that a maximal element of the function
space of standard dcpos is productive. On the other hand, in the function space,
productivity is a weaker notion than maximality [3–Example 4.6.3]. Furthermore
it is immediate from the above definition that composition of two productive
functions is productive.

It is not always easy to directly verify the productivity of functions. For
the case of productive streams there is a criterion which is usually easier to
apply than the direct application of the above definition [12–Theorem 32]. Our
goal is to present a similar criterion for functions on streams. As we are mainly
interested in productivity of fixpoints, we will use the following equation which
holds in every pointed dcpo (μf denotes the fixpoint of f).

μf =
⊔↑

n∈N

fn(⊥)
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In what follows we assume D and A to be two pointed dcpos with F a con-
tinuous functional from D −→ [A] to D −→ [A]. We denote F j(⊥D−→[A]) by f j

which is a function from D to [A]. Note that because of monotonicity of F if i ≤ j
then f i � f j . By (α)j we denote the list consisting of the first j elements of α. We
introduce a predicate which we use as a criterion for productivity of fixpoints.

Definition 2. For d ∈ D we define the predicate cont(F, d) as

cont(F, d) := ∀j ≥ 0, ∃k ≥ 0, (fk(d))j is terminative.

If cont(F, d), then we call F to be terminative at d. We define the predicate
Cont(F ) as the global version of cont on all maximal elements, i.e.,

Cont(F ) := (∀d ∈ D, d is maximal =⇒ cont(F, d)) .

If Cont(F ) holds, then we shall say that F is terminative.

Proposition 3. If F is terminative then μF is productive.

The converse of the above proposition does not hold in general. However,
the converse result holds if we restrict ourselves to dcpos in which the maximal
elements are accessible.

Definition 4. We call an element d of a pointed dcpo accessible, if there are
finitely many elements strictly between d and ⊥.

Proposition 5. Let D be a dcpo in which maximal elements are accessible and
assume that μF is productive. Then F is terminative.

6 Productivity of NAlg

We will show that the NAlg is productive on some families of expression trees.
First note that the behaviour of the NAlg is dependent of the digit set that is
chosen for representing the output. This is because each non-nested branch of
NAlg emits an output when the property Incl(–, φ) holds, which is basically a
topological property of the chosen digit set. We base our work on representations
that are admissible (cf. [13]), because it is known tat such representations have
enough redundancy to be used for computing real computable functions such as
elementary functions [13].

Let S(x) = (x−1)/(x+1) and given an interval [x, y] ⊆ R�, let diam([x, y]) =
|S(x) − S(y)|.
Definition 6. Let Φ be a finite set of refining increasing Möbius maps. We call
Φ an admissible digit set for R� if both following conditions hold.

1. lim
j→∞

max{diam(φ0 ◦φ1 ◦ . . . ◦φk−1(R�)) | φ0, . . . , φk−1 ∈ Φ} = 0 ;

2.
⋃

φi∈Φ
φi(R+) = R+ .
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It is immediate that an admissible digit set is a digit set. Therefore there exists

a RepΦ : Φω −→ R� such that
∞⋂
i=0

φ0 ◦ . . . ◦φi(R�) = {RepΦ(φ0φ1 . . . ) }. The

following proposition justifies the above definition. The proof can be found in [3–
Theorem 5.4.9])

Proposition 7. Let Φ be an admissible digit set. Then RepΦ is an admissible
representation.

We study productivity on the families defined below.

Definition 8. Let θ ∈ [M; T]. Then θ is open, if for every j > 0 the initial
segment of length j of each branch of θ is a terminative list.

Let α ∈ Φω. For an open expression tree θ we define θ++α to be the productive
expression tree which is obtained by concatenating finite branches of θ with α.

Definition 9. Let θ̇ be an open expression tree. Then we define the family of
expression trees specified by θ̇ to be the set Θ(θ̇) = {θ̇++α | α ∈ Φω}

The next thing we need is a basic quantity which characterises the redundancy
of an admissible digit set.

Definition 10. Let Φ be an admissible digit set. We define the redundancy of
Φ as

red(Φ) = min{|S(φi(0)) − S(φj(+∞))| | φi, φj ∈ Φ, φi(0) �= φj(+∞)}.

Using the the following important property of redundancy we can show that the
emission condition holds after finitely many absorption steps (nested branches).

Proposition 11. Let μ ∈ M be such that diam(μ(R�)) < red(Φ). Then there
exists φi ∈ Φ such that Incl(μ, φi).

To state a similar result for the tensor maps note that if I1, I2 are two closed
intervals and ξ ∈ T, then ξ〈I1, I2〉 is a closed interval.

Proposition 12. Let ξ ∈ T such that diam(ξ〈R�, R�〉) < red(Φ). Then there
exists φi ∈ Φ such that Incl(ξ, φi).

The Propositions 11 and 12 give us enough information about the complexity of
NAlg. Applying these and Proposition 3 we obtain the following.

Proposition 13. Let Φ be an admissible digits sets. Then for any accessible
open tree θ̇, NAlg is productive on Θ(θ̇).

7 Formalisation in Coq

The Proposition 13 ensures that NAlg should be formalisable as a partial func-
tion in our type theory. From the proof of this proposition one can extract a
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function κ : E −→ Φ× E that given an expression tree θ, outputs a digit φi and
an expression tree θ′. The digit φi is the next digit that would be emitted by
NAlg with the input θ, and the θ′ would be the rest of the input (or the new
input) after emitting φi. Subsequently, the function κ can be used to rewrite
NAlg as

nfΦ(θ) := ψ : nfΦ(θ′) where 〈ψ, θ′〉 = κ(θ) .

This shape of NAlg can be generated using the ν-Introduction rule. That
is to say, for θ ∈ E we define NAlg(θ) := (ν-it κ θ). Because of the way the
function κ is defined, this change will not alter the complexity of NAlg.

Practically, when we are using the Coq proof assistant the modification of
NAlg using the function κ will also help in satisfying the guardedness condi-
tion. This condition is a syntactic criterion added to the Coq type checker in
order to ensure the productivity of infinite objects [4]. The guardedness condi-
tion is not very powerful and can only be used for formalising infinite objects
that have a canonical shape: the recursive occurrence of the infinite object is
the immediate (i.e., unguarded) argument of the constructor of the coinductive
type of the codomain. Fortunately, the function κ enables us to satisfy this
condition.

Note that in the present paper we have only dealt with formalising the NAlg
in type theory. That means we tried to write it in the language of our type theory.
After formalising the algorithm we need to verify its correctness. This involves
proving that the formalised algorithm satisfies its specifications. In the case of
NAlg we should prove that for various choices of families of expression trees as
given in [10], this algorithm computes the respective elementary function. This
part of work, although mathematical in nature, involves some type theoretic
issues and deserves a separate treatment.

8 Further Work

Several extensions to the present work are imaginable. First of all one should
try to extend the Proposition 13 to include the families of expression trees as
large as possible. This is closely related to assessing the strength of the notion
of E-computability which was presented in [3–§ 5.6].

Another ongoing project is to formalise NAlg in an alternative way. The idea
is to add a proof obligation to the type theoretic version of NAlg as an extra
argument. This argument would have as type a coinductively defined predicate
that states that the input expression tree will emit infinitely many times. Con-
sequently, this can be used in combination with a non-structurally recursive
function that behaves as the function κ but is defined on an inductively defined
domain. This latter inductively defined domain is also a predicate and it has a
constructor for each branch of NAlg. The advantage of this method is that it uses
the separation between computationally important objects and non-informative
objects (predicates) of CIC.
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Abstract. Complexity classes between Grzegorczyk’s E2 and E3 are
characterized in terms of provable recursion in a theory EA(I;O) formal-
ising basic principles of Nelson’s Predicative Arithmetic. Extensions by
inductive definitions enable full arithmetic PA and higher systems to be
recaptured in a setting where the natural bounding functions are “slow”
rather than “fast” growing.

Keywords: provable recursion, ordinal analysis, slow growing hierarchy.

1 Introduction

By incorporating the normal/safe variable separation of Bellantoni and Cook [1]
into a proof–theoretic setting, results of Leivant [3] are reworked and extended.
The resulting theory EA(I;O) formalizes basic principles of Nelson’s Predicative
Arithmetic [4], and provides a natural “slow growing” analogue of full arithmetic,
with the strength of IΔ0(exp). The predicative induction principle is

A(0) ∧ ∀a(A(a) → A(a + 1)) → A(x)

where the (normal) “input” x is a numerical constant, and the (safe) “output”
variables a range over values defined, or computed, from the given inputs. This
induction is weak since one cannot universally quantify over x once it has been
introduced. Complexity classes between Grzegorczyk’s E2 and E3 are charac-
terized by the logical complexity of induction formulas A (for further detail see
Ostrin and Wainer [5]). Recent work of the second author with Williams [6]
shows how full arithmetic PA is recaptured by adding inductive definitions to
EA(I;O).

2 The Theory EA(I;O)

There will be two kinds of individuals: “input” parameters (constants) denoted
x, y, z, . . . , and “output” variables denoted a, b, c, . . . , both intended as ranging
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over natural numbers. The basic terms are: variables, input parameters, the con-
stant 0, or the result of repeated application of the successor S or predecessor P .
General terms are built up in the usual way from the constants and variables,
by application of S, P and arbitrary function symbols f, g, h, . . . denoting par-
tial recursive functions given by sets E of Herbrand-Gödel-Kleene-style defining
equations. t ↓ is shorthand for ∃a(t . a).

Atomic formulas will be equations t1 . t2 between arbitrary terms, and
formulas A,B, . . . are built from these by applying propositional connectives
and quantifiers ∃a, ∀a over output variables.

It will be convenient, for later proof theoretic analysis, to work with minimal
logic in a sequent-style formalism. This is computationally more natural, and it
is not a restriction for us, since a classical proof of f(x) ↓ can be transformed,
by the double-negation interpretation, into a proof in minimal logic.

The derivation–rules are quite standard in appearance. However there is a
crucial restriction on the right-∃ and left-∀ rules:

Γ 1 A(t)
Γ 1 ∃aA(a)

Γ, ∀aA(a), A(t) 1 B

Γ, ∀aA(a) 1 B

namely, the term t must only be a basic term.
The logical axioms are, with A atomic, Γ, A 1 A and the equality axioms

are Γ 1 t . t and, again with A atomic, Γ, t1 . t2, A(t1) 1 A(t2). The logic
allows these to be generalised straightforwardly to an arbitrary formula A and
the quantifier rules allow one to derive immediately

Γ, t ↓, A(t) 1 ∃aA(a) and Γ, t ↓, ∀aA(a) 1 A(t) .

Thus witnessing terms must be provably defined .
Two further principles are needed, describing the data-type N, namely in-

duction and cases (a number is either zero or a successor). We present these as
rules rather than their equivalent axioms, since this will afford a closer match be-
tween proofs and computations. The predicative induction rule (with “induction
formula” A(.)) is

Γ 1 A(0) Γ, A(a) 1 A(Sa)
Γ 1 A(x)

where the output variable a is not free in Γ and where, in the conclusion, x is
an input, or a basic term on an input.

The cases rule is
Γ 1 A(0) Γ 1 A(Sa)

Γ 1 A(t)

where t is any basic term. Note that with this rule it is easy to derive ∀a(a .
0 ∨ a . S(Pa)) from the definition: P (0) . 0 and P (Sa) . a.

Definition. Σ1 formulas are those of the form ∃aA(a) where A is a conjunction
of atomic formulas and a = a1, . . . , ak. A typical example is f(x) ↓.
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Definition. A k-ary function f is provably recursive in EA(I;O) if it can be
defined by a system E of equations such that, with input parameters x1, . . . , xk,

Ē 1 f(x1, . . . , xk) ↓

where Ē denotes the universal closures of the defining equations in E.

2.1 Elementary Functions Are Provably Recursive

Let E be a system of defining equations containing the usual primitive recursions
for addition and multiplication, and equations defining polynomials p. Extend E
further by adding definitions of iterated exponentials 2k(p(x)) where 20(p) = p
and 2i+1(p) = 22i(p).

Definition. The progressiveness of a formula A(a) with distinguished free vari-
able a, is expressed by the formula

ProgaA ≡ A(0) ∧ ∀a(A(a) → A(Sa))

thus the induction principle of EA(I;O) is equivalent to ProgaA 1 A(x).

The following result gives extensions of this principle to any finitely iterated
exponential. A consequence is that every elementary function (i.e. computable in
a number of steps bounded by some iterated exponential) is provably recursive
in EA(I;O). In the next section we shall see that this is the most that EA(I;O)
can do.

Theorem 1. In EA(I;O) we can prove, for each k and any formula A(a),

Ē, ProgaA 1 A(2k(p(x))).

3 Provably Recursive Functions Are Elementary

For each fixed number k, we inductively generate an infinitary system of sequents

E, n : N, Γ 1α A

where (i) E is a (consistent) set of Herbrand-Gödel-Kleene defining equations
for partial recursive functions f, g, h, . . . ; (ii) n is a numeral; (iii) A is a closed
formula, and Γ a finite multiset of closed formulas, built up from atomic equa-
tions between arbitrary terms t involving the function symbols of E; and (iv)
α, β denote ordinal bounds which we shall be more specific about later (for the
time being think of β as being smaller than α “with respect to projection at k”).

Note that we do not explicitly display the parameter k in the sequents below,
but if we later need to do this we shall insert an additional declaration k : I in
the antecedent thus:

E, k : I, n : N, Γ 1α A .

Intuitively, k will be a bound on the heights of “unravelled inductions”.
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The first two rules are just the input and substitution axioms of the equation
calculus, the next two are computation rules for N , and the rest are essentially
just formalised versions of the truth definition, with Cut added.

E1 E, n : N, Γ 1α e(n) where e is either one of the defining equations of
E or an identity t . t, and e(n) denotes the result of substituting, for its
variables, numerals for numbers n = n1, . . . , nr ≤ n.

E2 E, n : N, Γ, t1 . t2, e(t1) 1α e(t2) where e(t1) is an equation between
terms in the language of E, with t1 occurring as a subterm, and e(t2) is the
result of replacing an occurrence of t1 by t2.

N1
E, n : N, Γ 1α m : N provided m ≤ n + 1

N2
E, n : N, Γ 1β n′ : N E, n′ : N, Γ 1β′

A

E, n : N, Γ 1α A

Cut
E, n : N, Γ 1β C E, n : N, Γ, C 1β′

A

E, n : N, Γ 1α A

∃L
E, max(n, i) : N, Γ, B(i) 1βi A for every i ∈ N

E, n : N, Γ, ∃bB(b) 1α A

∃R
E, n : N, Γ 1β m : N E, n : N, Γ 1β′

A(m)
E, n : N, Γ 1α ∃aA(a)

∀L
E, n : N, Γ 1β m : N E, n : N, Γ, ∀bB(b), B(m) 1β′

A

E, n : N, Γ, ∀bB(b) 1α A

∀R
E, max(n, i) : N, Γ 1βi A(i) for every i ∈ N

E, n : N, Γ 1α ∀aA(a)

In addition, there are of course two rules for each propositional symbol, but it is
not necessary to list them since they are quite standard. However it should be
noted that the rules essentially mimic the truth definition for arithmetic. They
provide a system within which inductive proofs in EA(I;O) can be unravelled in
a uniform way.

Ordinal Assignment à la Buchholz [2]
The ordinal bounds on sequents above are intensional, “tree ordinals”, generated
inductively by: 0 is a tree ordinal; if α is a tree ordinal so is α + 1; and if
λ0,λ1,λ2, . . . is an ω-sequence of tree ordinals then the function i �→ λi denoted
λ = supλi, is itself also a tree ordinal. Thus tree ordinals carry a specific choice of
fundamental sequence to each “limit” encountered in their build-up, and because
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of this the usual definitions of primitive recursive functions lift easily to tree
ordinals. For example exponentiation is defined by:

20 = 1, 2β+1 = 2β + 2β , 2λ = sup 2λi .

For ω we choose the specific fundamental sequence ω = sup(i + 1). For ε0 we
choose the fundamental sequence ε0 = sup 2i(ω2).

Definitions. For each integer i there is a predecessor function given by:

Pi(0) = 0, Pi(α + 1) = α, Pi(λ) = Pi(λi)

and by iterating Pi we obtain, for each non-zero tree ordinal α, the finite set α[i]
of all its “i-predecessors” thus:

α[i] = {Pi(α), P 2
i (α), P 3

i (α), . . . , 0}.

The Slow Growing Hierarchy is given by: G(α, n) = the cardinality of α[n].

Call a tree ordinal α “structured” if every sub-tree ordinal of the form
λ = supλi (occurring in the build-up of α) has the property that λi ∈ λ[i + 1]
for all i. Then if α is structured, α[i] ⊂ α[i + 1] for all i, and each of its sub-
tree ordinals β appears in one, and all succeeding, α[i]. Thus we can think of
a structured α as the directed union of its finite sub-orderings α[i]. The basic
example is ω[i] = {0, 1, . . . , i}. All tree ordinals used here will be structured ones.

Ordinal Bounds. The condition on ordinal bounds in the above sequents is to
be as follows:

– In rules E1, E2, N1, the bound α is arbitrary.
– In all other rules, the ordinal bounds on the premises are governed by

β, β′, βi ∈ α[k] where k is the fixed parameter.

Lemma 2. (Embedding) If Ē 1 f(x) ↓ in EA(I;O) there is a fixed number d
determined by this derivation, such that: for all inputs n of binary length ≤ k,
we can derive

E, k : I, 0 : N 1ω.d f(n) ↓

in the infinitary system. Furthermore the non-atomic cut-formulas in this deriva-
tion are the induction-formulas occurring in the EA(I;O) proof.

3.1 Complexity Bounds

Notation. We signify that an infinitary derivation involves only Σ1 cut formulas
C, by attaching a subscript 1 to the proof-gate thus: n : N, Γ 1α1 A. If all cut
formulas are atomic equations (or possibly conjunctions of them) we attach a
subscript 0 instead.
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Lemma 3. (Bounding) Let Γ,A consist of (conjunctions of) atomic formulas
only.

1. If E, k : I, n : N, Γ 1α1 m : N then m ≤ n + G(2α, k).
2. If E, k : I, n : N, Γ 1α1 ∃aA(a) then there are numbers m ≤ n+G(2α, k)

such that E, k : I, n : N, Γ 12.α
0 A(m).

Theorem 4. (Complexity) Suppose f is defined by a system of equations E and
Ē 1 f(x) ↓ in EA(I;O) with induction formulas of size at most r. Then there
is an α = 2r−1(ω.d) such that: for all inputs n of binary length at most k we
have

E, k : I, 0 : N 12.α
0 f(n) . m where m ≤ 2r((k + 1).d) .

This is a computation of f(n) from E, and the number of computation steps
(nodes in the binary branching tree) is less than 42r−1((k+1).d).

Proof. First apply the Embedding Lemma to obtain a number d such that for
all inputs n of binary length ≤ k,

E, k : I, 0 : N 1ω.d f(n) ↓

with cut rank r. Then apply Cut Reduction r − 1 times, to bring the cut rank
down to the Σ1 level. This gives α = 2r−1(ω.d) such that

E, k : I, 0 : N 1α1 f(n) ↓ .

Then apply the Bounding Lemma to obtain m ≤ G(2α, k) = 2r((k + 1).d) such
that

E, k : I, 0 : N 12.α
0 f(n) . m .

This derivation uses only the E axioms, the N rules and equational cuts, so it
is a computation in the equation calculus. Since all the ordinal bounds belong
to 2.α[k], the height of the derivation tree is no greater than G(2.α, k) and the
number of nodes (or computation steps) is therefore ≤ G(4α, k) = 4G(α,k) =
42r−1((k+1).d).

Theorem 5. The functions provably recursive in EA(I;O) are exactly the el-
ementary (Grzegorczyk E3) functions. The functions provably recursive in the
Σ1 inductive fragment of EA(I;O) are exactly the Linear Space or E2 functions.
The functions provably recursive in the “level-2” inductive fragment of EA(I;O)
are exactly those computable in a number of steps bounded by an exponential
function of their inputs.

Proof. By the above, if f is provably recursive in EA(I;O) then it is computable
in a number of steps bounded by a finitely iterated exponential function of its
inputs. This means it is elementary.

If f is provably recursive in the Σ1 inductive fragment then we can take r = 1
in the above. So f is computable in a number of steps bounded by 4(k+1).d. But k
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is the maximum binary length of the inputs n, so this bound is just a polynomial
in max n. Therefore f is in E2.

If f is provably recursive using “level-2” inductions then, taking r = 2, we
obtain the bound 421((k+1).d) which is ≤ 2p(n) for some polynomial p.
Remark. If the theory EA(I;O) were formulated as a theory of binary (rather
than unary) arithmetic then a similar analysis would characterize PTIME as the
functions provably recursive in the Σ1 inductive fragment.

4 Recapturing Peano Arithmetic

EA(I;O) is a predicative analogue of full PA – its proof theoretic ordinal is still ε0

but the bounding functions are slow–growing rather than fast–growing (see also
Wirz [8]). By extending EA(I;O) with inductive definitions one obtains a theory
ID1(I;O) with the same strength as PA. Its ordinal is now the Bachmann–Howard
ordinal, but since the bounding functions are slow growing this means that the
provably recursive functions are just those of PA, i.e. fast growing below ε0 (see
Wainer and Williams [6]). Williams’ Ph.D. thesis [7] treats further extensions
to theories of finitely–iterated inductive definitions IDn(I;O) having the same
strength as classical IDn−1.
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Domain-Theoretic Formulation of Linear
Boundary Value Problems

Dirk Pattinson

Department of Computing, Imperial College London, UK�

Abstract. We present a domain theoretic framework for obtaining ex-
act solutions of linear boundary value problems. Based on the domain of
compact real intervals, we show how to approximate both a fundamental
system and a particular solution up to an arbitrary degree of accuracy.
The boundary conditions are then satisfied by solving a system of im-
precisely given linear equations at every step of the approximation. By
restricting the construction to effective bases of the involved domains,
we not only obtain results on the computability of boundary value prob-
lems, but also directly implementable algorithms, based on proper data
types, that approximate solutions up to an arbitrary degree of accuracy.
As these data types are based on rational numbers, no numerical errors
are incurred in the computation process.

1 Introduction

We consider the linear non-homogeneous system of differential equations

ẏ(t) = A(t)y(t) + g(t) 0 ≤ t ≤ 1 (1)

where g : [0, 1] → [0, 1]n is a continuous, time dependent vector function and
A : [0, 1] → [−a, a]n×n is a continuous, time dependent n× n matrix.

As A is continuous on [0, 1], every entry aij of A will attain its supremum,
and we can assume without loss of generality that A takes values in [−a, a]n×n

for a ∈ R large enough. We consider the differential equation (1) together with
n linear boundary conditions of the form

dTi y(0) − cTi y(1) = pi (i = 1, . . . , n) (2)

where d1, . . . , dn, c1, . . . , cn ∈ Rn are (column) vectors and p1, . . . , pn ∈ R.
For any solution y of (1),(2) and c > 0, we have that z = cy solves the

equation ż = Az+ cg, together with the boundary conditions dTi z(0)− cTi z(1) =
cpi for i = 1, . . . , n. By rescaling the original equation, we can therefore assume
‖g‖ ≤ 1 without loss of generality.

� On leave from LMU München, Germany.

S.B. Cooper, B. Löwe, and L. Torenvliet (Eds.): CiE 2005, LNCS 3526, pp. 385–395, 2005.
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Standard software packages numerically compute solutions of boundary value
problems, but due to the floating point representation of the real numbers in-
volved, there is no guarantee on the correctness of the computed results. In-
deed, the accumulation of round-off errors can lead to grossly incorrect values,
see e.g. [13].

Correctness guarantees for numerical computations can be given in the frame-
work of interval analysis [14]. There, real numbers are represented as intervals,
and one applies outward rounding, if the result of an arithmetical operation is
not machine representable. While this yields provably correct estimates of the
solution, one has no control over the outward rounding, which can produce un-
duly large intervals. For an implementation of the interval analysis approach one
can therefore not give any guarantees on convergence speed.

The approach of this paper is to integrate techniques from domain theory
[1, 11] with methods of mathematical analysis. While standard numerical analysis
generally pre-supposes exact real numbers and functions as a basic data type, the
domain theoretic approach is based on finitely representable data types, which
are faithful towards the computational process on a digital computer. In this
model, real numbers and real functions arise as limits of finite approximations.
In the computation process, a sequence of finitely representable approximations
of the input data is transformed into a sequence of finite approximations of the
output.

As we can compute without loss of arithmetical precision on finite approxima-
tions of numerical data, we can guarantee of the convergence speed of a process
also for an implementation. Moreover, if we equip the involved domains with
an effective structure, we obtain results about the computability of numerical
constructions.

The integration of domain theory and mathematical analysis has already
proven a healthy marriage in many application areas. We mention the survey
paper [3] and refer to [9, 2, 4, 6] for applications in exact real arithmetic, integra-
tion theory and computing with differentiable functions.

Recently, the domain theoretic approach was applied to the solution of initial
value problems [5, 8, 7]. In the present paper, this approach is adapted accord-
ingly to deal with linear boundary value problems. We compute approximations
to both a fundamental system of solutions and a particular solution by solving
n+ 1 initial value problems and then solve a system of approximately given lin-
ear equations to obtain a linear combination of the particular solution and the
fundamental system that satisfies the boundary conditions. As the solutions of
initial value problems in general only exist locally, we cannot use the methods of
[5, 8, 7] directly. We therefore need to develop a new technique which is specific
to linear differential equations, and produces approximations to the solution on
the whole of the unit interval. Using an interval-version of Cramer’s rule, the
solutions of the initial value problems are then combined to satisfy the bound-
ary conditions. The main contribution of the present paper is twofold: First,
we present a domain theoretic method for obtaining global solutions of linear
non-homogeneous initial value problems. In a second step, the solution of the
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initial value problems are then combined to a solution which satisfies the bound-
ary conditions. The resulting algorithm then produces a sequence of functions,
which converge to the solution iff the solution is unique, and to the everywhere
undefined function ⊥ otherwise.

Related Work. We are not aware of any work regarding the computability of
boundary value problems. For treatments in the framework of interval analysis,
see [15, 12]. Compared with these methods, we believe that the main novelty of
our approach is the fact that the computations can be carried out on the basis
of proper data types and the resulting guarantee on the convergence speed for
implementations.

2 Preliminaries and Notation

We use standard notions of domain theory, see for example [16, 1, 11]. Our ap-
proach is based on the interval domain (IR,�) where

IR = {[a, a] : a, a ∈ R, a ≤ a} ∪ {R} and a � b iff b ⊆ a

is the set of compact real intervals augmented with R, ordered by reverse in-
clusion. For an interval [a, a], we write I[a, a] for the sub-domain IR of all in-
tervals contained in [a, a] and IRn (resp. I[a, a]n) for the n-fold product of the
IR (resp. I[a, a]) with itself, equipped with component-wise order; ⊥ denotes
the least element of a partial order. We use the canonical extension of arith-
metic operations to intervals without mention, that is, for a, b ∈ IR we let
a op b = {x op y : x ∈ a, y ∈ b} for op ∈ {+,−, ·, /} where a/b = R if 0 ∈ b.
For example, this gives a function det : IRn×n → IR computing interval deter-
minants.

The width of a compact interval [a, a] is w([a, a]) = a − a and w(R) = ∞.
We let w(a1, . . . , ak) = max{w(ai) : 1 ≤ i ≤ k} for (a1, . . . , ak) ∈ IRk; note that
this includes the case of interval matrices G ∈ IRk×k. If f : [0, 1] → IRk is a
function, we put w(f) = sup{w(f(t)) : t ∈ [0, 1]}.

Our constructions will live in the following function spaces, which capture
approximation of the matrix A, the non-homogeneous part g of the equation
and of the constructed solution, respectively. We let

M = [0, 1] ⇒ I[−a, a]n×n G = [0, 1] ⇒ I[−1, 1]n S = [0, 1] ⇒ IRn

equipped with the pointwise order, where [0, 1] ⇒ D is the space of functions
that are continuous w.r.t. the euclidean topology on [0, 1] and the Scott topology
on D for a directed-complete partial order D.

We identify a real number x with the degenerate interval [x, x]; in particular
this allows us to view any real valued function f : dom(f) → Rn as taking values
in IRn.

For an interval a = [a, a] and r ∈ R, we let a ⊕ r = [a − r, a + r]; moreover
(a1, . . . , an) ⊕ r = (a1 ⊕ r, . . . , an ⊕ r) for (a1, . . . , an) ∈ IRn.

Given x = (x1, . . . , xn) ∈ Rn, we write the sup-norm of x as ‖x‖ = max{|ai| :
i = 1, . . . , n}. For interval vectors a ∈ IRn, we put ‖a‖ = sup{‖x‖ : Rn 0 x � a}.
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By a partition of an interval [a, b] we mean a sequence Q = (q0, . . . , qk) with
a = q0 < · · · < qk = b; we denote the norm of Q by |Q| = max{qi+1 − qi :
0 ≤ i < k} and write P[a, b] for the set of partitions of [a, b]. A partition
Q = (q0, . . . , qk) refines a partition P = (p0, . . . , pl), denoted by P � Q, if
{p1, . . . , pl} ⊆ {q1, . . . , qk}.

If f : [a, b] → IR is a function, we write f = [f, f ] in case f(t) = [f(t), f(t)] for
all t ∈ [a, b] and let

∫ t

s
f(x)dx = [

∫ t

s
f(x)dx,

∫ t

s
f(x)dx] if s ≤ t. This is extended

component-wise to functions f : [a, b] → IRn.

3 Construction of Fundamental Matrices and Particular
Solutions

It is well known that the set of solutions of equation (1) carries the structure
of an n-dimensional affine space, which is the translation of the vector space of
solutions of the homogeneous problem

ẏ(t) = A(t)y(t) 0 ≤ t ≤ 1 (3)

by any solution of the non-homogeneous problem (1). We recall the following
classical terminology.

Definition 1. A fundamental matrix of the homogeneous problem (3) is a time-
depended n × n matrix Y (t) = (y1(t), . . . , yn(t)) where y1, . . . , yn are linearly
independent solutions of (3). A solution of the differential equation (1) is called
a particular solution.

Given a fundamental matrix Y = (y1, . . . , yn) for (3) and a particular solution
yp of the inhomogeneous equation (1), all solutions of (1) are of the form yp +∑n

i=1 αiyi for a sequence α1, . . . , αn of scalars. One then tries to satisfy the
boundary conditions by an appropriate choice of α1, . . . , αn.

In this section, we describe a method for obtaining a fundamental matrix
and a particular solution of the equation (3). This is achieved by solving n + 1
initial value problems with linearly independent initial conditions. The following
classical lemma ensures, that this gives rise to a fundamental matrix.

Lemma 2. Suppose y1, . . . , yn are solutions of (3) and t ∈ [0, 1]. Then y1, . . . , yn
are linearly independent iff y1(t), . . . , yn(t) are linearly independent.

In particular, this entails that y1(s), . . . , yn(s) are linearly independent for
all s ∈ [0, 1] provided that there is some t ∈ [0, 1] such that y1(t), . . . , yn(t) are
linearly independent. For the remainder of this section, we therefore focus on
solving the differential equation (1), together with the initial condition

y(0) = y0, assuming ‖y0‖ + ‖g‖ ≤ 1. (4)

This allows to compute both a fundamental system of (3) and a particular so-
lution of (1): to obtain a fundamental system, we let g = 0 and it suffices to
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consider n linearly independent initial conditions (in fact, we will be using n unit
vectors e1, . . . , en). For a particular solution, we let y0 = 0; recall our convention
‖g‖ ≤ 1.

We cannot directly apply the methods outlined in [8, 7], since there it is pre-
supposed that the function f(t, y) defining the differential equation ẏ = f(t, y)
is defined in a rectangle [0, δ] × [−K,K]n → [−M,M ]n with δM ≤ K. In the
case of Equation (3), this condition only allows us to compute solutions on a
subinterval [0, δ] of [0, 1], where δ depends on K and M . Note that in general,
we cannot expect to obtain a solution of an initial value problem ẏ = f(t, y),
y(0) = y0 for f : [0, 1] × Rn → Rn to exist on the whole of [0, 1].

Example 3. The initial value problem ẏ = y2, y(0) = 1 has no solution defined
on the whole of [0, 1]. To see this, note that y(t) = 1

1−t is the unique solution on
[0, 1) and a solution defined on the whole of [0, 1] would need to agree with y on
[0, 1) as well as being continuous.

However, the situation is different for linear systems. Instead of using a glue-
ing method to extend a domain theoretic solution to the whole of [0, 1], we
present a variant of Euler’s technique that directly allows us to obtain solutions
of (1),(4) on the whole of [0, 1].

The idea of the method is the observation that any solution of (1),(4) is
bounded in norm on [0, 1]. An a priori estimate of the bound on every subinterval
of [0, 1] provides us with the necessary information to compute enclosures of the
real solution based on a partition of [0, 1]. As we cannot assume that the data
defining the initial value problem is exactly given, our general treatment assumes
that we are dealing with approximations of this data throughout. Assuming that
these approximations converge to the data defining the problem, we obtain a
solution of the original problem in the limit. Technically, we therefore work with
interval matrices, an interval initial condition and an interval valued function
g : [0, 1] → I[0, 1]n that defines the non-homogeneous part of the equation.

We now fix the terminology we are going to use in the remainder of the paper.

Terminology 4. We collect approximations of the data that defines problem
(1),(4) in the domain

D = {(A,g,y0) ∈ M× G × I[0, 1]n : ‖g‖ + ‖y0‖ ≤ 1}

with partial order inherited from M×G×I[0, 1]n. For a partition Q = (q0, . . . , qk)
of [0, 1] we define the following constants, which we will meet throughout the
exposition:

Δ
(Q)
i = qi−qi−1 K

(Q)
0 = 1 K

(Q)
i =

K
(Q)
i−1

1 −Δ
(Q)
i M

L
(Q)
i = MK

(Q)
i +‖g‖

where 1 ≤ i ≤ k and M = an (recall our assumption that the matrix A defining
the problem takes values in [−a, a]n). We drop the superscript (Q) if the partition
is clear from the context and only consider partitions Q satisfying |Q| ≤ 1

2M .
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As we will see later, the constant Ki is an upper bound for approximate
solutions on the interval [0, qi] and Li gives a bound on the growth in the inter-
val [0, qi]. Using the terminology introduced above, our construction takes the
following form.

Definition 5. Suppose D = (A,g,y0) ∈ D and Q ∈ P[0, 1]. We define yQD :
[0, 1] → IR by yQD(0) = y0 and

yQD(t) = yQD(qi) +
∫ t

qi

A(t) (yQD(qi) ⊕ L
(Q)
i+1Δ

(Q)
i+1) + g(x)dx

for all t ∈ (qi, qi+1].

The idea behind this definition is that the term Li+1Δi+1 acts as a bound
on the growth of any solution y of the original problem, and extending the
approximate solution yQD with this bound therefore gives rise to an enclosure.
Technically, this guarantees the soundness of our construction, which needs the
following additional lemma.

Lemma 6. Suppose y is a solution of the IVP (1),(4) and Q = (q0, . . . , qk) ∈
P[0, 1]. Then

‖y0 +
∫ t

0

A(x)y(x) + g(x)dx‖ ≤ K
(Q)
i

for all t ∈ [0, qi].

This statement gives the promised bound on the growth of the (unique)
solution of the IVP in the subintervals [qi, qi+1], and is the essential step in the
proof of the soundness of our construction.

Proposition 7 (Soundness). Suppose y is the unique solution of the initial
value problem (1),(4), D ∈ D with D � (A, g, y0) and Q ∈ P[0, 1]. Then yQD � y.

In order to approximate the solution of the problem (1),(4), we will refine the
partitions and approximate data that defines the problem simultaneously. Our
next goal is therefore to show, that this gives rise to an increasing sequence of
approximate solutions. Monotonicity in D is straightforward:

Lemma 8. Suppose D � E ∈ D and Q ∈ P[0, 1]. Then yQD � yQE .

Montonicity in Q is suprisingly difficult to show; we include a proof sketch.

Proposition 9 (Monotonicity in Q). Suppose D ∈ D and P � Q. Then
yPD � yQD.

Proof. We assume that D = (A,g,y0), Q = (q0, . . . , qk) and P = (p0, . . . , pl).
We show, by induction on i, that

yPD � [0, qi] � qQD � [0, qi],
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where the case i = 0 is trivial. To get the statement for i + 1, let t ∈ [qi, qi+1]
and put j = max{j : pk ≤ qi}. Then, by additivity of integrals,

yPD(t) = yPD(qi) +
∫ t

qi

A(x)(yPD(pj) ⊕ L
(P )
j+1Δ

(P )
j+1) + g(x)dx

� yQD(qi) +
∫ t

qi

A(x)(yPD(qi) ⊕ L
(P )
j+1Δ

(Q)
i+1) + g(x)dx

� yQD(qi) +
∫ t

qi

A(x)(yQD(qi) ⊕ L
(Q)
i+1Δ

(Q)
i+1) + g(x)dx = qQD(t)

by induction hypothesis.

The last proposition shows, that we can construct an increasing sequence
of functions yQk

Dk
from an increasing sequence (Dk)k∈ω in D and an increasing

sequence of partitions (Qk)k∈ω. Our next concern is to show, that this sequence
actually converges to a solution of the IVP (1),(4).

Proposition 10 (Convergence Speed). Suppose Dk = (Ak,gk,y0
k) is an

increasing sequence in D with
⊔

k Dk = (A, g, y0) and (Qk) is an increasing se-
quence in P[0, 1] such that w(Ak), w(gk), w(y0

k), |Qk| ∈ O(2−k). Then w(yQk

Dk
) ∈

O(2−k).

Proof. Similar to the corresponding statement in [7].

As a corollary, we obtain completeness, that is, our iterates converge to the
(unique) solution of the problem.

Corollary 11. Under the hypothesis of the previous proposition, y =
⊔

k∈ω yQk

Dk

where y is the unique solution of the problem (1),(4).

4 Computability of Fundamental Matrices and Particular
Solutions

In the previous section, we have used arbitrary interval valued functions to con-
struct approximations to fundamental matrices and particular solutions. In this
section, we restrict our attention to the bases of the effectively given domains
involved. This lead to computability assertions for both a fundamental matrix
and a particular solution. Our construction is parametric in an effective, recur-
sively enumerable, dense subring R ⊆ R, such as the rational or dyadic numbers.
We use the following terminology.

Definition 12. We denote by IRR = {[a, a] ∈ IR : a, a ∈ R} the set of intervals
with endpoints in R and P[0, 1]R the partitions whose points lie in R. We put
IRn

R = (IRR)n. A function f = [f, f ] : [0, 1] → IRk is called
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1. piecewise R-constant, if there exists a partition Q = (q0, . . . , qk) ∈ P[0, 1]D
s.t. f � (qi−1, qi) is constant with value αi ∈ IRR for i = 1, . . . , k and
f(qi) = αi * αi+1 for i = 1, . . . , k − 1 where * denotes least upper bound.

2. piecewise R-linear, if there exists a partition Q = (q0, . . . , qk) ∈ P[0, 1]D such
that f � [qi−1, qi] and f � [qi−1, qi] are linear for i = 1, . . . , k and f(qi) ∈ IRR

for i = 0, . . . , k.

With this terminology, we consider the following bases of the domains M,G,S.

– MR = {A ∈ M : A piecewise R constant}
– SR = {y ∈ S : y piecewise R-linear }
– GR = {h ∈ G : h piecewise R-constant }

and we let DR = {(A,g,y0) ∈ D : A ∈ MR,g ∈ GR,y0 ∈ I[0, 1]R}.

It is known these bases provide an effective structure for the domains under
consideration. We refer to [16] for the notion of effectively given domains; for
ease of presentation we suppress the explicit enumeration of the base.

Proposition 13. The set XD is a base of X for X ∈ {M,G,S, IR} which pro-
vides X with an effective structure.

Proof. It has been shown in [10] that XD is a base of X ; the effectiveness re-
quirement is a straightforward verification.

It can now easily be seen that our constructions from the previous section
restrict to the bases just introduced.

Lemma 14. Suppose D ∈ DR and Q ∈ P[0, 1]R. Then yQD ∈ SR, and yQD can be
effectively constructed.

Proof. Given D = (A,g,y0) and Q = (q0, . . . , qk), the function λt.A(t)yQD(qi)⊕
Li+1Δi+1 +g(t) is piecewise constant on [qi, qi+1], hence its integral is piecewise
linear and can be computed without divisions.

Recall that an element e ∈ E of a domain E with effective base E0 is com-
putable, if the set of basis basis elements {e0 ∈ E0 : e0 5 e} is recursively
enumerable, where 5 is the approximation order of E (see [16, 1] for details).
As the data (A, g, y0) ∈ M × G × I[0, 1]) consists of (maximal) elements of ef-
fectively given domains, we can therefore speak of a computable initial value
problem. This immediately gives the following corollary.

Corollary 15. Suppose that A, g, y0 are computable. Then the unique solution
of the problem (1),(4) is computable. In particular, both a fundamental matrix
of (3) and a particular solution of (1) are computable.

Proof. As A, g, y0 are computable, we can obtain recursive increasing sequences
(Ak), (gk), (y0

k) in MR,GR, I[0, 1]R, respectively. Choosing a recursive increasing
sequence (Qk) in P[0, 1]R with limk→∞ |Qk| = 0, we obtain an recursive increas-
ing sequence yQk

Dk
∈ SR that converges to the solution y of (1),(4), showing that

y is computable.
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5 Satisfaction of Boundary Conditions

For a fundamental system (y1, . . . , yn) of (3) and a particular solution yp of (1),
we have already seen that all solutions y of the problem (1) are of the form
y = yp +

∑n
i=1 αiyi. We now address the problem of finding the correct scalars

α1, . . . , αn such that y satisfies the boundary conditions (2). In order to make
notation manageable, we introduce the matrices

B0 =

⎛⎜⎝dT1
...
dTn

⎞⎟⎠ B1 =

⎛⎜⎝ cT1
...
cTn

⎞⎟⎠ Y = (y1, . . . , yn)

where Y is a fundamental system of the linear equation (3). Classically, we have
the following result:

Proposition 16. The boundary value problem (1),(2) has a unique solution iff
det(B0Y (0)−B1Y (1)) �= 0 and this condition is independent of the fundamental
system.

Knowing only approximations of the fundamental system, it can be only
semi-decidable whether the boundary value problem has a unique solution. In
order to make this precise, we need the following definition.

Definition 17. An effectively given boundary value problem of the form (1),(2)
is a recursive and monotone sequence of four-tuples (Ak,gk,B0

k,B
1
k)k∈ω in MR×

GR × IRn×n
R × IRn×n

R such that w(Ak), w(gk), w(B0
k), w(B1

k) → 0 as k → ∞.
A solution of an effectively given boundary value problem is a solution of

(1),(2) for A =
⊔

k Ak, g =
⊔

k gk and Bi =
⊔

k Bi
k for i = 0, 1.

Together with the computability results of the previous section, we arrive at
our first genuine statement about boundary value problems.

Proposition 18. It is semi-decidable whether an effectively given boundary value
problem has a unique solution.

Proof. We have shown in Corollary 15 that a fundamental system Y of the
homogeneous problem (3) can be constructed effectively. Suppose (Yk)k∈ω is a
sequence approximating a fundamental system of (3). By Scott continuity of the
determinant, we have

detB0Y (0) = B1Y (1) =
⊔
k

detB1
kYk(0) −B1

kYk(1)

and therefore detB0Y (0) = B1Y (1) �= 0 iff 0 /∈ det(B1
kYk(0)−B1

kYk(1)) for some
k ∈ ω.

The following example shows that unique solvability of boundary value prob-
lems is not decidable in general.



394 D. Pattinson

Example 19. Consider a recursive increasing sequence (ak) in IRD with limk→∞
w(ak) = 0 and the effectively given boundary value problem (ak, 0, 0, 0)k∈ω,
representing the equation ẏ = ay, y(0) = y(1) = 0 for a =

⊔
k ak. This problem

has a unique solution iff a = 0 thus if solvability of boundary value problems
were decidable, we could decide whether

⊔
k∈ω ak = 0 for a recursive increasing

sequence (ak).

Assuming that det(B0Y (0) − B1Y (1)) �= 0, our next task is to determine
the scalar values for the combination of the solution constituting the funda-
mental system. If Y is a fundamental system for the linear equation (3) and
p = (p1, . . . , pn)T , this boils down to solving the linear system of equations

(B0Y (0) −B1Y (1)) · (α1, . . . , αn)T = B1yp(1)

assuming that the particular solution yp satisfies the initial condition yP (0) = 0.
For simplicity, we use Cramer’s rule, as it can be easily seen to be Scott contin-
uous with an exponential speed of convergence. In practice, one will probably
want to use more sophisticated techniques like a Scott-continuous version of
Gauss elimination.

Definition 20. Suppose G = (g1, . . . , gn) ∈ IRn×n and b ∈ IRn. We define
C(G, b) = (x1, . . . , xn)T where xi = det(g1, . . . , gi−1, b, gi+1, . . . , gn)/det(G) and
call y the result of applying Cramer’s Rule to G and b.

Note that C(G, b) =⊥ if 0 ∈ det(G). Clearly for G ∈ Rn×n and b ∈ Rn,
C(G, b) gives the unique solution of the linear equation Gx = b. Our concern is
continuity and speed of convergence, if G and b are approximated by interval
matrices and vectors, respectively.

Lemma 21. Suppose (Gk)k∈ω and (bk)k∈ω are monotone sequences of inter-
val matrices and vectors, respectively. Then C(

⊔
k Gk,

⊔
k bk) =

⊔
k∈ω C(Gk, bk).

Moreover, 0 /∈ det(G0) and w(Gk), w(bk) ∈ O(2−k), then w(C(Ak, bk)) ∈ O(2−k).

This lemma puts us in the position to calculate the coefficients for obtaining
the solution of the boundary value problem (1),(2), as applying Cramer’s Rule
restricts to a computable map C : IRn×n

R × IRn
R → IRn

R.

Theorem 22. Suppose (Ak,gk,B0
k,B

1
k) is an effectively given boundary value

problem. Then we can effectively construct an increasing recursive sequence (yk)k∈ω
in SR such that

⊔
k yk = y if the problem has a unique solution y, and

⊔
k yk =⊥,

otherwise.
Moreover, if w(Ak), w(gk), w(B0), w(B1) ∈ O(2−k) and yk0 �=⊥ for some

k0, we have w(yk) ∈ O(2−k) for k ≥ k0.

As all these operations can be carried out on the basis of the domains in-
volved, we have the following corollary:

Corollary 23. Suppose A, g,B0, B1 are computable. If problem (1),(2) has a
unique solution, this solution is computable.
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Abstract. Membrane computing is an young but already well developed
branch of natural computing, having as its goal to abstract computing
models from the structure and the functioning of the living cell.

The present paper is an informal introduction to membrane comput-
ing, presenting the basic ideas, some central (mathematical) results, and
the main areas of application.

1 Starting from Cells

The traditional branches of natural computing, genetic algorithms (more gener-
ally, evolutionary computing), neural computing, DNA (molecular) computing,
start from/use/imitate either processes taking place at the molecular level in
the cell, or processes developing in populations of cells with various levels of
organization, never considering the cell itself as a structured body, with inner
compartments. Membrane computing, the youngest branch of natural comput-
ing, fills in this gap.

It starts from the observation that the living cell is one of the most mar-
vellous machineries evolved by nature. The cell is the smallest living unit, a
microscopic “factory”, with a complex structure, an intricate inner activity, and
an exquisite relationship with its environment. Both substances, from ions to
large macromolecules, and information are processed in a cell, according to in-
volved reactions, organized in a robust and at the same time sensitive manner,
having as the goal the processes themselves, the life itself of the cell and of the
structures where the cells are included – organs, organisms, populations.

Obviously, any cell means membranes. The cell itself is defined – separated
from its environment – by a membrane, the external one. Inside the cell, several
membranes enclose “protected reactors”, compartments where specific biochem-
ical processes take place.

The membranes also allow a selective passage of substances among the com-
partments delimited by them. This can be a simple selection by size, in the case
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of small molecules, or a much more intricate selection, through protein channels,
which not only select, but can also move molecules from a low concentration to
a higher concentration, perhaps coupling molecules, through so-called symport
and antiport processes.

Much more: the membranes of a cell do not only delimit compartments where
specific reactions take place in solution, hence inside the compartments, but
many reactions in a cell develop on the membranes, catalyzed by the many
proteins bound on them.

The biology of the cell contains many fascinating facts from a computer sci-
ence point of view, and the reader is encouraged to check the validity of this
assertion browsing, e.g., through [2], [16]. Sometimes, explicit statements about
the cell as a computing unit [15], about the computational-like informational
processes taking place in a cell [7], about the role of membranes in making pos-
sible the life itself (life means surfaces inside surfaces is stated in [14], while
[17] puts it in computational terms: Life = DNA software + membrane hard-
ware).

From a computer science point of view, these statements, about the computa-
tions taking place in a cell, raise the question whether they are mere metaphors
or they correspond to computations in the standard (mathematical) understand-
ing of this term; on the other hand, a more general temptation appears here:
having in mind the encouraging experience of other branches of natural com-
puting, to get inspired from the structure and the functioning of the living cell
and define new computing models, possibly of interest for computer science, for
computability in general.

Membrane computing emerged [22] as an answer to this double challenge,
proposing a series of models (actually, a general framework for devising mod-
els) inspired from the cell structure (a compartmentalized space, defined by a
hierarchical arrangement of membranes) and functioning (biochemical processes
taking place in the compartments of the membrane hierarchy and, rather im-
portant, the way the compartments cooperate/communicate by passing chem-
icals and information across membranes), as well as from the cell organiza-
tion in tissue. These models, called P systems, were investigated as mathe-
matical objects, with the main goals being of a (theoretical) computer science
type: computation power (in comparison with Turing machines and their re-
strictions), and usefulness in solving computationally hard problems. The field
simply flourished at this level. Comprehensive information can be found in
the web page (organized under the auspices of the European Molecular Com-
puting Consortium, EMCC) [31]; a presentation at the level of the spring of
year 2002 can be found in [23], while several applications are presented
in [9].

In this paper we discuss only the cell-like P systems, whose study is much
more developed than that of tissue-like P systems or of neural-like P systems.
In short, such a system consists of a hierarchical arrangement of membranes,
which delimit compartments, where abstract objects are placed. These objects
correspond to the chemicals from the compartments of a cell, and they can be
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either unstructured, a case when they can be represented by symbols from a
given alphabet, or structured. In the latter case, a possible representation of
objects is by strings over a given alphabet (but also more complex structures
were considered, such as two-dimensional arrays, trees, etc). Here we discuss only
the case of symbol-objects. Corresponding to the situation from reality, where
the number of molecules from a given compartment matters, also in the case of
objects from the regions of a P system we have to take into consideration their
multiplicity, that is why we consider multisets of objects assigned to the regions
of P systems. These objects evolve according to rules, which are also associ-
ated with the regions. The rules say both how the objects are changed and how
they can be moved (we say communicated) across membranes. By using these
rules, we can change the configuration of a system (the multisets from its com-
partments); we say that we get a transition among system configurations. The
way the rules are applied imitates again the biochemistry (but goes one further
step towards computability): the reactions are done in parallel, and the objects
to evolve and the rules by which they evolve are chosen in a non-deterministic
manner, in such a way that the application of rules is maximal. A sequence of
transitions forms a computation, and with computations which halt (reach a con-
figuration where no rule is applicable) we associate a result, for instance, in the
form of the multiset of objects present in the halting configuration in a specified
membrane.

All these basic ingredients of a membrane computing system (a P system) will
be discussed further below. This brief description is meant, on the one hand, to
show the passage from the “real cell” to the “mathematical cell”, as considered
in membrane computing, and, on the other hand, to give a preliminary idea
about the computing model we are investigating.

It is important to note at this stage the generality of the approach. We start
from the cell, but the abstract model deals with very general notions: membranes
interpreted as separators of regions, objects and rules assigned to regions; the
basic data structure is the multiset (a set with multiplicities associated with
its elements); the rules are used in the non-deterministic maximally parallel
manner, and in this way we get sequences of transitions, hence computations. In
such terms, membrane computing can be interpreted as a bio-inspired framework
for distributed parallel processing of multisets.

We close this introductory discussion by stressing the basic similarities and
differences between membrane computing and other areas of natural computing.
All these areas start from biological facts and abstract computing models. Neu-
ral and evolutionary computing are already implemented (rather successfully,
especially in the case of evolutionary computing) on the usual computer. DNA
computing has a bigger ambition, that of providing a new hardware, leading
to bio-chips, to “wet computers”. For membrane computing it seems that the
most realistic attempt for implementation is in silico (some successes are already
reported) rather than in vitro (no attempt was made yet).
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2 The Basic Classes of P Systems

We introduce now the fundamental ideas of membrane computing in a more pre-
cise way. What we look for is a computing device, and to this aim we need data
structures, operations with these data structures, an architecture of our “com-
puter”, a systematic manner to define computations and results of computations.

Thus, inspired from the cell structure and functioning, the basic elements
of a membrane system (P system) are (1) the membrane structure and the sets
of (2) evolution rules which process (3) multisets of (4) objects placed in the
compartments of the membrane structure.
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A membrane structure is a hierarchically arranged set of membranes. A
suggestive representation is as in the figure above. We distinguish the exter-
nal membrane (corresponding to the plasma membrane and usually called the
skin membrane) and several internal membranes (corresponding to the mem-
branes present in a cell, around the nucleus, in Golgi apparatus, vesicles, etc); a
membrane without any other membrane inside it is said to be elementary. Each
membrane determines a compartment, also called region, the space delimited
from above by it and from below by the membranes placed directly inside, if any
exists. The correspondence membrane–region is one-to-one, so that we identify
by the same label a membrane and its associated region.

In the basic class of P systems, each region contains a multiset of symbol-
objects, described by symbols from a given alphabet.

The objects evolve by means of evolution rules, which are also localized,
associated with the regions of the membrane structure. The typical form of such
a rule is cd → (a, here)(b, out)(b, in), with the following meaning: one copy of
object c and one copy of object d react and the reaction produces one copy
of a and two copies of b; the newly produced copy of a remains in the same
region (indication here), one of the copies of b exits the compartment, going to
the surrounding region (indication out) and the other enters one of the directly
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inner membranes (indication in). We say that the objects a, b, b are communicated
as indicated by the commands associated with them in the right hand member
of the rule. When an object exits a membrane, it will go to the surrounding
compartment; in the case of the skin membrane this is the environment, hence
the object is “lost”, it never comes back into the system. If no inner membrane
exists (that is, the rule is associated with an elementary membrane), then the
indication in cannot be followed, and the rule cannot be applied.

A rule as above, with several objects in its left hand member, is said to be
cooperative; a particular case is that of catalytic rules, of the form ca → cx, where
a is an object and c is a catalyst, appearing only in such rules, never changing.
A rule of the form a → x, where a is an object, is called non-cooperative.

The rules associated with a compartment are applied to the objects from
that compartment, in a maximally parallel way: all objects which can evolve by
means of local rules should do it (we assign objects to rules, until no further
assignment is possible). The used objects are “consumed”, the newly produced
objects are placed in the compartments of the membrane structure according
to the communication commands assigned to them. The rules to be used and
the objects to evolve are chosen in a non-deterministic manner. In turn, all
compartments of the system evolve at the same time, synchronously (a common
clock is assumed for all membranes). Thus, we have two layers of parallelism,
one at the level of compartments and one at the level of the whole “cell”.

Note that evolution rules are stated in terms of names of objects, they are
“multiset rewriting rules”, while their application/execution is done using copies
of objects.

A membrane structure and the multisets of objects from its compartments
identify a configuration of a P system. By a non-deterministic maximally parallel
use of rules as suggested above we pass to another configuration; such a step
is called a transition. A sequence of transitions constitutes a computation. A
computation is successful if it halts, it reaches a configuration where no rule can
be applied to the existing objects. With a halting computation we can associate
a result in various ways. The simplest possibility is to count the objects present
in the halting configuration in a specified elementary membrane; this is called
internal output. We can also count the objects which leave the system during
the computation, and this is called external output. In both cases the result is
a number. If we distinguish among different objects, then we can have as the
result a vector of natural numbers. The objects which leave the system can also
be arranged in a sequence according to the moments when they exit the skin
membrane, and in this case the result is a string.

This last possibility is worth emphasizing, because of the qualitative differ-
ence between the data structure used inside the system (multisets of objects,
hence numbers) and the data structure of the result, which is a string, it con-
tains a positional information, a syntax.

Because of the non-determinism of the application of rules, starting from an
initial configuration, we can get several successful computations, hence several



Membrane Computing: Power, Efficiency, Applications 401

results. Thus, a P system computes (one also uses to say generates) a set of
numbers, or a set of vectors of numbers, or a language.

Of course, the previous way of using the rules from the regions of a P system
reminds the non-determinism and the (partial) parallelism from cell compart-
ments, with the mentioning that the maximality of parallelism is mathematically
oriented (rather useful in proofs); when using P systems as models of biologi-
cal systems/processes, the parallelism should be replaced with more realistic
features (e.g., reaction rates, probabilities, partial parallelism).

We do not give here a formal definition of a P system. The reader interested
in mathematical and bibliographical details can consult the mentioned mono-
graph [23], as well as the relevant papers from the bibliography from [31]. Of
course, when presenting a P system we have to specify: the alphabet of objects
(a usual finite non-empty alphabet of abstract symbols identifying the objects),
the membrane structure (usually represented by a string of labelled matching
parentheses), the multisets of objects present in each region of the system (repre-
sented by strings of symbol-objects, with the number of occurrences of a symbol
in a string being the multiplicity of the object identified by that symbol in the
multiset represented by the considered string), the sets of evolution rules asso-
ciated with each region, as well as the indication about the way the output is
defined.

Many modifications/extensions of the very basic model sketched above are
discussed in the literature, but we do not mention them here.

3 Computing by Communication

In the systems described above, the symbol-objects were processed by multi-
set rewriting-like rules (some objects are transformed into other objects, which
have associated communication targets). Coming closer to the trans-membrane
transfer of molecules, we can consider purely communicative systems, based on
the three classes of such transfer known in the biology of membranes: uniport,
symport, and antiport (see [2], [5] for details). Symport refers to the transport
where two (or more) molecules pass together through a membrane in the same
direction, antiport refers to the transport where two (or more) molecules pass
through a membrane simultaneously, but in opposite directions, while the case
when a molecule does not need a “partner” for a passage is referred to as uniport.

In terms of P systems, we can consider object processing rules of the following
forms: a symport rule (associated with a membrane i) is of the form (ab, in) or
(ab, out), stating that the objects a and b enter/exit together membrane i, while
an antiport rule is of the form (a, out; b, in), stating that, simultaneously, a exits
and b enters membrane i; uniport corresponds to a particular case of symport
rules, of the form (a, in), (a, out). An obvious generalization is to consider sym-
port rules (x, in), (x, out) and antiport rules (x, out; y, in) with x, y arbitrary
multisets of objects.

A P system with symport/antiport rules has the same architecture as a sys-
tem with multiset rewriting rules: alphabet of objects, membrane structure, ini-
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tial multisets in the regions of the membrane structure, sets of rules associated
with the membranes, possibly an output membrane – with one additional com-
ponent, the set of objects present in the environment. If an object is present
in the environment at the beginning of a computation, then it is considered
available in arbitrarily many copies (the environment is inexhaustible). This is
an important detail: because by communication we do not create new objects,
we need a supply of objects, in the environment, otherwise we are only able to
handle a finite population of objects, those provided in the initial multiset.

The functioning of a P system with symport/antiport rules is the same as
for systems with multiset rewriting rules: the transition from a configuration
to another configuration is done by applying the rules in a non-deterministic
maximally parallel manner, to the objects available in the regions of the sys-
tem and in the environment, as requested by the used rules. When a halting
configuration is reached, we get a result, in a specified output membrane. (Note
that the environment takes an active part in the computation, which is one of
the attractive features of this class of P systems, together with the conserva-
tion of objects, the mathematical elegance, the computational power, the direct
biological inspiration.)

4 Computational Completeness

As we have mentioned before, many classes of P systems, combining various in-
gredients (as described above or similar) are able of simulating Turing machines,
hence they are computationally complete. Always, the proofs of results of this
type are constructive, and this have an important consequence from the com-
putability point of view: there are universal (hence programmable) P systems.
In short, starting from a universal Turing machine (or an equivalent universal
device), we get an equivalent universal P system. Among others, this implies
that in the case of Turing complete classes of P systems, the hierarchy on the
number of membranes always collapses (at most at the level of the universal P
systems). Actually, the number of membranes sufficient in order to characterize
the power of Turing machines by means of P systems is always rather small.

We only mention here three of the most interesting universality results:

1. P systems with symbol-objects with catalytic rules, using only two catalysts
and two membranes, are computationally universal, [10].

2. P systems with symport/antiport rules of a rather restricted size (example:
three membranes, symport rules of weight 2, and no antiport rules, or three
membranes and minimal symport and antiport rules) are universal, [4].

3. P systems with symport/antiport rules (of arbitrary size), using only four
membranes and only three objects, are universal, [24].

We can conclude that the compartmental computation in a cell-like mem-
brane structure (using various ways of communicating among compartments) is
rather powerful. The “computing cell” is a powerful “computer”.

Universality results were obtained also in the case of P systems working in the
accepting mode (either we introduce a number in the initial configuration and
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we say that it is accepted if the computation halts, or we simply consider the se-
quence of objects taken from the environment during a computation as the string
recognized by the computation). An interesting problem appears in this case,
because we can consider deterministic systems. Most universality results were
obtained in the deterministic case, but there also are situations where the deter-
ministic systems are strictly less powerful than the non-deterministic ones. This
is proven in [13], where a class of P systems is also produced for which the deter-
ministic versus non-deterministic problem is equivalent with the LBA problem.

The hierarchy on the number of membranes collapses in many cases also for
non-universal classes of P systems, [23], but there also are cases when “the num-
ber of membrane matters”, to cite the title of [12], where two classes of P systems
were defined for which the hierarchies on the number of membranes are infinite.

5 Computational Efficiency

The computational power (the “competence”) is only one of the important ques-
tions to be dealt with when defining a new (bio-inspired) computing model. The
other fundamental question concerns the computing efficiency. Because P sys-
tems are parallel computing devices, it is expected that they can solve hard
problems in an efficient manner – and this expectation is confirmed for systems
provided with ways for producing an exponential workspace in a linear time.
Three main such biologically inspired possibilities have been considered so far
in the literature, and all of them were proven to lead to polynomial solutions to
NP-complete problems.

These three ideas are membrane division, membrane creation, and string
replication. The standard problems addressed in this framework were decidability
problems, starting with SAT, the Hamiltonian Path problem, the Node Covering
problem, but also other types of problems were considered, such as the problem
of inverting one-way functions, or the Subset-sum and the Knapsack problems
(note that the last two are numerical problems, where the answer is not of the
yes/no type, as in decidability problems). Details can be found in [23], [27], as
well as in the web page from [31].

Roughly speaking, the framework for dealing with complexity matters is that
of accepting P systems with input: a family of P systems of a given type is
constructed starting from a given problem, and an instance of the problem is
introduced as an input in such systems; working in a deterministic mode (or a
confluent mode: some non-determinism is allowed, provided that the branching
converges after a while to a unique configuration, or, in the weak confluent case,
all computations halt and all of them provide the same result), in a given time
one of the answers yes/no is obtained, in the form of specific objects sent to the
environment. The family of systems should be constructed in a uniform mode
by a Turing machine, working a polynomial time.

This direction of research is very active at the present moment. More and
more problems are considered, the membrane computing complexity classes are
refined, characterizations of the P�=NP conjecture were obtained in this frame-
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work, improvements are looked for. An important recent result concerns the
fact that PSPACE was shown to be included in PMCD, the family of prob-
lems which can be solved in polynomial time by P systems with the possibility
of dividing both elementary and non-elementary membranes. The PSPACE-
complete problem used in this proof was QSAT (see [29] for details).

There are in this area a series of open problems, mainly related to the border-
line between “efficiency” (the possibility to solve computationally hard problems
in polynomial time) and “non-efficiency”. From [30] we know that membrane
division is necessary for efficiency. However, all constructions from the papers
mentioned above about P systems with membrane division use membranes which
are “polarized”, marked with one of the three “electrical charges” +,−, 0. It was
recently shown [3] that the number of polarizations can be decreased to two, but
it is an intriguing open problem whether or not the polarizations can be com-
pletely removed. A similar borderline question concerns the fact that the systems
constructed in [29] use division of non-elementary membranes (membranes with
other membranes inside can be divided, and on this occasion the contents – the
inner membranes included – is replicated), which is a rather powerful operation;
can this be avoided, thus solving QSAT in polynomial time by using systems with
division of only elementary membranes?

6 Applications

Finally, let us shortly discuss some applications of membrane computing – start-
ing however with a general discussion about the features of this area of research
which make it attractive for applications in several disciplines, especially for
biology.

First, there are several keywords which are genuinely proper to membrane
computing and which are of interest for many applications: distribution (with
the important system-part interaction, emergent behavior, non-linearly result-
ing from the composition of local behaviors), algorithmicity (hence easy pro-
grammability), scalability/extensibility (this is one of the main difficulties of
using differential equations in biology), transparency (multiset rewriting rules
are nothing else than reaction equations as customarily used in chemistry and
bio-chemistry), parallelism (a dream of computer science, a common sense in
biology), non-determinism, communication (with the marvellous and still not
completely understood way the life is coordinating the many processes taking
place in a cell, in contrast with the costly way of coordinating/synchronizing
computations in parallel electronic computing architectures, where the commu-
nication time become prohibitive with the increase of the number of processors),
and so on and so forth.

Then, for biology, besides the easy understanding of the formalism and the
transparency of the (graphical and symbolic) representations, encouraging should
be also the simple observation that membrane computing emerged as a bio-
inspired research area, explicitly looking to the cell for finding computability
models (though, not looking initially for models of relevance for the biological
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research), hence it is just natural to try to use these models in the study of
the very originating ground. This should be put in contrast with the attempt
to “force” models and tools developed in other scientific areas, e.g., in physics,
to cover biological facts, presumably of a genuinely different nature as that of
the area for which these models and tools were created and proven to be ade-
quate/useful.

Now, in what concerns the applications themselves reported up to now, they
are developed at various levels. In many cases, what is actually used is the lan-
guage of membrane computing, having in mind three dimensions of this aspect:
(i) the long list of concepts either newly introduced, or related in a new manner
in this area, (ii) the mathematical formalism of membrane computing, and (iii)
the graphical language, the way to represent cell-like structures or tissue-like
structures, together with the contents of the compartments and the associated
evolution rules (the “evolution engine”).

However, this level of application/usefulness is only a preliminary, superficial
one. The next level is to use tools, techniques, results of membrane computing,
and here there appears an important question: to which aim? Solving problems
already stated, e.g., by biologists, in other terms and another framework, could
be an impressive achievement, and this is the most natural way to proceed –
but not necessarily the most efficient one, at least at the beginning. New tools
can suggest new problems, which either cannot be formulated in a previous
framework (in plain language, as it is the case in biology, whatever specialized
the specific jargon is, or using other tools, such as differential equations) or have
no chance to be solved in the previous framework.

Applications of all these types were reported in the literature of membrane
computing. As expected and as natural, most applications were carried out in
biology, but also applications in computer graphics (where the compartmental-
ization seems to add a significant efficiency to well-known techniques based on
L systems), linguistics (both as a representation language for various concepts
related to language evolution, dialogue, semantics, and making use of the par-
allelism, in solving parsing problems in an efficient way), management (again,
mainly at the level of the formalism and the graphical language), in devising sort-
ing and ranking algorithms, cryptography, approximate algorithms for optimiza-
tion problems, etc. Applications of all these kinds – excepting the case of man-
agement, for which we refer to [6] and the references therein – can be found in[9].

These applications are usually based on experiments using programs for simu-
lating/implementing P systems on usual computers, and there are already several
such programs, more and more elaborated (e.g., with better and better inter-
faces, which allow for the friendly interaction with the program). We avoid to
plainly say that we have “implementations” of P systems, because of the inherent
non-determinism and the massive parallelism of the basic model, features which
cannot be implemented, at least in principle, on the usual electronic computer
– but which can be implemented on a dedicated, reconfigurable, hardware, as
done in [28], or on a local network, as reported, e.g., in [8]. This does not mean
that simulations of P systems on usual computers are not useful; actually, such
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programs were used in all biological applications mentioned above, and can also
have important didactic and research applications. An overview of membrane
computing software reported in literature (some programs are available in the
web page [31]) can be found in [11].

An application of a completely different type, much related to evolutionary
computing, is that recently proposed in [20], [21]: looking for approximate solu-
tions to hard optimization problems by means of membrane algorithms. In short,
such algorithms consists of a membrane structure in the compartments of which
one places local sub-algorithms and candidate solutions to the problem to solve.
In each time unit, the local algorithms (they can be genetic algorithms or other
type of easy to implement approximate algorithms) improve the solutions from
the associated region. After that, the locally best solution is communicated to
an inner membrane and the worst solution is moved out. In this way, the good
solutions migrate towards the inner-most membranes. Several architectures were
considered in [20], [21]: a linear structure of membranes, a tissue-like structure,
dynamical structures. Experiments were made with the travelling salesman prob-
lem, and, for standard benchmark instances the obtained results were rather
encouraging: in several cases the solutions were better than those obtained by
simulated annealing; in almost all cases the average and the worst solutions were
better than those given by simulated annealing (hence the approach seems to
be trustful, we do not need to make too many experiments); in all cases, the
convergence is initially very rapid, and a solution which is almost optimal is ob-
tained in a small number of steps, and after that the improvements are very slow.
The membrane algorithms are now subject of a particular interest, and several
issues are under current research: addressing in this framework other problems,
adding further membrane computing ingredients, implementing the algorithms
in a distributed manner.
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ceedings of the Second Brainstorming Week on Membrane Computing, Sevilla,
February 2004. Technical Report 01/04 of Research Group on Natural Computing,
Sevilla University, Spain, 2004.
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Abstract. Büchi’s problem asked whether a surface of a specific type,
defined over the rationals, has integer points other than some known ones.
A consequence of a positive answer would be the following strengthening
of the negative answer to Hilbert’s tenth problem : the positive existential
theory of the rational integers in the language of addition and a predicate
for the property ‘x is a square’ would be undecidable. Despite some
progress, including a conditional positive answer (pending on conjectures
of Lang), Büchi’s problem remains open.

In this article we prove an analogue of Büchi’s problem in rings of
polynomials of characteristic either 0 or p ≥ 13.
As a consequence we prove the following result in Logic :
Let F be a field of characteristic either 0 or ≥ 17 and let t be a variable.
Let R be a subring of F [t], containing the natural image of Z[t] in F [t].
Let Lt be the first order language which contains a symbol for addition
in R, a symbol for the property ‘x is a square in F [t]’ and symbols
for multiplication by each element of the image of Z[t] in F [t]. Then
multiplication is positive-existentially definable over the ring R, in the
language Lt. Hence the positive-existential theory of R in Lt is decidable
if and only if the positive-existential ring-theory of R in the language of
rings, augmented by a constant-symbol for t, is decidable.

1 Introduction

In unpublished work J. Richard Büchi asked the following problem :

Problem 1. Is it true that, for large enough M , the only integer solutions of the
recurrence relation

� The first author completed the research towards the present paper while visiting the
University of Cyprus. The hospitality of the Cypriot mathematicians is gratefully
acknowledged.

�� The second author acknowledges the hospitality of the University of Oxford, where
the main part of this work was done under a European Marie Curie fellowship
MCFI-2002-00722.
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x2
n + x2

n−2 = 2x2
n−1 + 2 n = 2, . . . ,M − 1 (1)

satisfy ±xn = ±xn−1 + 1?

Büchi’s problem remains unsolved. In this paper :

1. We prove a positive answer to the analogous problem for a sequence of non-
constant xn in F [t] if the characteristic of F is either 0 or p ≥ 17, for M ≥ 14.
This is Theorem 4. The result for p > 0 are new while that for characteristic
0 follows (for M ≥ 8) from results of Vojta. Our proofs are of an elementary
nature.

2. As a consequence of (1) we prove a theorem in Logic (Theorem 7).

Büchi’s problem and its implications were made public by Leonard Lipshitz
in [10]. It was discussed publicly by Joseph Lipman and Barry Mazur (cf. [13]).
In [25] Paul Vojta gave two pieces of evidence that Büchi’s problem may have a
positive answer :

(A) He proved that a conjecture of Serge Lang implies a positive answer to it for
M ≥ 8. In fact Vojta’s result gives the same kind of (conditional) answer over
the field Q of rational numbers.

(B) He showed (using Nevanlinna theory) that the analogous problem for holo-
morphic functions has a positive answer. This may be regarded as evidence in
favor of a positive answer to Büchi’s problem in the light of the observation that
algebraic varieties which posses infinitely many points in some number field are
often of a special geometric type (Kobayashi hyperbolic) - conjectures have been
made that this correspondence is an equivalence ([24]).

In what follows XM is the projective subvariety of the projective M -
space PM , over C, cut out by the equations (in projective coordinates
(x, x0, . . . , xM−1))

x2
n + x2

n−2 = 2x2
n−1 + 2x2, n = 2, . . . ,M − 1

Vojta observed that

Proposition 2. For M ≥ 6 the variety XM is a surface of general type.

Then he showed

Theorem 3. (i) ([25], Theorem 3.1) For M ≥ 8, the only curves on XM

of geometric genus 0 or 1 are the ‘trivial’ lines ±xn = ±x0−nx, n = 0, . . . ,M−1.
(ii) ([25], Theorem 6.1) Let M ≥ 8 be an integer and let f : C → XM be a non-

constant holomorphic curve. Then the image of f lies in one of the ‘trivial’ lines.

Statement (i) of the Theorem has as a consequence that if a conjecture of
Lang (or a weaker ‘question’ of Bombieri) is true then Büchi’s problem has a
positive answer. Statement (ii) shows that the analogue of Büchi’s problem for
holomorphic functions has a positive answer.

Our main result in this article is an analogue of Büchi’s problem for rings of
polynomials.
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Theorem 4. Let F be a field and t be a variable. Assume that (xn)M−1
n=0 is a

sequence of polynomials xn ∈ F [t], not all constant, which satisfy the recurrence
relation (1). Assume that the characteristic of F is either 0 or p ≥ 17 and
M ≥ 14.

Then there are ε0, . . . , εM−1 with εn ∈ {−1, 1} such that for each n, εnxn =
ε0x0 + n.

We prove it in Section 2. The case of zero characteristic follows also from any
of the two statements of Theorem 3, for M ≥ 8 (for a proof of both statements
see [15]).

Theorem 4, and especially the case of positive characteristic, may be regarded
as evidence in favor of a positive answer to Büchi’s problem, independent of that
provided by Vojta.

Büchi’s problem, besides being a testing ground for number theoretical tech-
niques and conjectures, has some interesting applications in Logic. Büchi had in
mind to apply the answer, if positive, in order to prove a negative answer to the
following question.

Let L be the language (set of symbols) which contains a symbol for addition,
a symbol for the property ‘x is a square’, a symbol for equality and symbols for
the elements 0 and 1 (all symbols, operations and relations are interpreted in Z
in the usual manner).

Question 5. Is the positive existential theory of L over Z decidable?

If answered negatively, Question 5 will be one of the strongest forms of neg-
ative answer to Hilbert’s tenth problem (cf. [12] and [1]) known today - and
optimal in many ways (for example cf. the decidability results in [10] and [20]
and the surveys in [21] and [17]). A negative answer to Question 5 would imply
that there is no algorithm to answer the solvability of systems A ·X = B over
Z, where A is an n × m matrix and B an m × 1 matrix with entries in Z and
X is an m× 1 matrix whose i-th entry is x2

i - each xi is an unknown. (But the
solvability of one - only - quadratic equation is decidable, cf. [4] and the more
general result in [5]).

We define the languages (sets of symbols) Lt and LT , in which we will write
statements (formulas) which we will interpret in the field F (t) of rational func-
tions. The language Lt extends L by the following symbols

– Constant-symbols for the elements of the natural image of Z[t] in F [t];
– For each element c of the natural image of Z[t] in F [t], a unary function-

symbol for the function fc : x �→ cx.

The language LT extends L by the following symbol

– A one-place predicate symbol T which will be interpreted as ‘T (x) if and
only if x �∈ F ’.

A sentence of Lt (resp. LT ) is positive-existential if it is of the form ∃xψ(x)
where x = (x1, . . . , xn) is a tuple of variables and ψ(x) is a disjunction of con-
junctions of formulas of the form g(x) = 0 and ‘xi is a square’ (resp. and T (xi)),
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where g(x) = a1x1+ · · ·+anxn−b, with the ai, b ∈ Z[t] (resp. ∈ Z). The positive-
existential theory of a subring R of F [t] in the language Lt (resp. LT ) is the set
of positive-existential sentences of Lt (resp. LT ) which are true in R. We ask

Question 6. Let R be a ring of functions of the independent variable t.
(a) Is the positive-existential theory of R in Lt decidable?
(b) Is the positive-existential theory of R in LT decidable?

Büchi’s problem is crucial in answering Question 6 in the following way : Let
Lring
t (resp. Lring

T ) be the extension of Lt (resp. LT ) by a symbol for multiplication
in F [t]. Consider a ring R satisfying the hypothesis of Theorem 4. The conclusion
of Theorem 4 implies that multiplication in R is positive-existentially definable
both in Lt and in LT (we will show this in the last section). Hence, if the
analogue of Hilbert’s tenth problem over R, in the language Lring

t (resp. Lring
T )

has a negative answer, then the positive-existential theory of R in Lt (resp. LT )
is undecidable.

Theorem 7. Let F be a field of characteristic either 0 or p ≥ 17. Let t be
transcendental over F (a variable) and let R be a subring of F [t], containing the
natural image of Z[t] in F [t]. Then

(i) Multiplication over R is positive-existential in the language Lt. Conse-
quently (cf. [2] and [3]) the positive-existential theory of R in Lt is undecidable.

(ii) Multiplication over R is positive-existential in the language LT . Conse-
quently (cf. [16]) the positive-existential theory of R in LT is undecidable.

Negative answers to the analogue of Hilbert’s tenth problem are known for
all rings of polynomials over integral domains (for the language Lring

t see [2] and
[3] and for the language Lring

T see [16]). For the status of problems regarding
decidability of Diophantine problems over rings of functions, see [17] and [21].

The proof of Theorem 7 which is given in Section 3, is an easy adaptation of
the analogous argument for Z, which is due to Büchi (made public by Lipshitz).
The same, essentially, proof shows a similar result for the ring of holomorphic
functions on the complex plane, using Vojta’s Theorem 3(ii). We state it :

Theorem 8. (Vojta) Let R be a subring of the ring of holomorphic functions of
the variable t, on the complex plane, containing the ring Z[t]. Then multiplication
in R is positive-existentially definable in the languages Lt. Consequently, if the
positive-existential theory of R in the language Lring

t is undecidable, then the
positive-existential theory of R in Lt is undecidable as well.

But it is an open problem whether the positive-existential theory of the ring
of holomorphic functions in the language Lring

t is decidable or undecidable (but
cf. [11], [22] and [19]).

2 Büchi’s Problem for Polynomials

In this section we prove Theorem 4. For reasons of space we leave some (relatively
easy) proofs to the reader.
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We suppose that the characteristic of the field F is either 0 or p ≥ M . We can
suppose without loss of generality that the base field F is algebraically closed.
Also observe that if the characteristic of F is p > 0 and all the xn are p-th
powers, that is, xn ∈ F [tp], then if the sequence (xn)n satisfies (1), so does the
sequence

(x
1/p
n )n

hence it suffices to consider only the case in which not all the xn’s are p-th
powers. So from now on we assume :

Assumption 9. (a) The field F is algebraically closed.
(b) One of the following holds :

1. The characteristic of F is 0 and at least one of the xn is not in F .
2. The characteristic of F is p ≥ 3, p ≥ M ≥ 3 and not all xn are elements of

F [tp].

Lemma 10. (i) The recurrence relation (1) is equivalent to :

x2
n = (1 − n)x2

0 + nx2
1 + n(n− 1), n = 0, . . . ,M − 1. (2)

(ii) For any two distinct non-zero indices n and m we have

mx2
n = (m− n)x2

0 + nx2
m −mn(m− n) (3)

The proof is left to the reader.
From Equation (3) we observe :

Corollary 11. (i) Assume that the characteristic of F is 0. Then all but possibly
one of the xn are non-constant polynomials.

(ii) Assume that the characteristic of F is p > 0. Then all but possibly one
of the xn are in F [t] \ F [tp].

The next lemma gives us an invariant of the sequence (xn) which will be used
often from now on.

Lemma 12. For any two integers n �= m the expression

x2
m − x2

n

m− n
−m− n

does not depend on n and m.

Proof. The proof follows from Equation (3) and is left to the reader.

Definition 13. (i) For any n,m = 0, . . . ,M − 1 with n �= m we will be writing

ν =
x2
m − x2

n

m− n
−m− n (4)

(and we will be recalling that it does not depend on n and m).
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(ii) For any k = 0, . . . ,M − 1 we will be denoting by

νk = ν + 2k

that is,

νk =
x2
m − x2

n

m− n
−m− n + 2k .

Lemma 14. Let m, n, k be pairwise different integers. Then the greatest com-
mon divisor of {xm, xn, xk} is (1) (the unit ideal).

The proof follows fro Lemma 12 and is left to the reader.

Definition 15. For any x ∈ F [t] \ {0}, deg(x) is the degree of x. We write
deg(0) = −∞. We denote by d the maximum of the degrees of the xn for n =
0, . . . ,M − 1.

Lemma 16. One of the following is true :

1. All xn have the same degree d.
2. There is an index � such that for each n �= � we have deg(xn) = d and

deg(x�) < d.

The proof follows from Lemma 12 and is left to the reader.

Definition 17. Recalling Lemma 16, we let � be an index such that for each
index n we have

deg(x�) ≤ deg(xn) = d .

Definition 18. For each index n we define

Δn = 2νnν′x′
n − ν′2xn − 4xnx′2

n .

Lemma 19. Assume that the characteristic of F is either 0 or p ≥ 17 and that
M ≥ 14. Then for each index n we have

Δn = 0 . (5)

Proof. We list a sequence of claims which lead to the proof. The proof of each
claim is left to the reader.

Claim 1 : For each two indices m and n,

xmΔm = xnΔn .

Claim 2 : We have deg(ν) ≤ 2d.
Claim 3 : The function Δn is a polynomial in F [t], of degree at most 5d− 2.
We want to prove that for each index n, we have Δn = 0. For the sake of

contradiction we assume that for some index r, Δr �= 0. Throughout the rest of
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the proof we fix an arbitrary index r for which Δr �= 0. By the definition of Δr

it follows that xr �= 0, so xrΔr �= 0.
We write β for the least common multiple of the elements of the set {xn |

n �= r}.

Claim 4 : We have deg(β) ≤ 6d− 2.
Claim 5 : We have∏

n �=r

xn|β2 and deg(β) ≥ M − 2
2

d

where | means ‘divides in F [t]’.
The proof of the Lemma follows. By Claims 4 and 5 we obtain

M − 2
2

d ≤ deg(β) ≤ 6d− 2 ,

which can not hold if M ≥ 14.

Lemma 20. With the assumptions of Lemma 19 we have

ν′ �= 0 .

The proof is left to the reader.

Lemma 21. With the assumptions of Lemma 19, for each index n, one of the
following two statements is true :
(a) There is a γn ∈ F (t) \ {0} such that γ′

n = 0 and

νn =
x2
n

γn
+ γn (6)

(b) There is an εn = ±1 and there is a δn such that δ′
n = 0 and

νn = 2εnxn + δn . (7)

Outline of proof: Rewrite Equations Δn = 0 as

2νnν′
nx

′
n = xn(ν′2

n + 4x′2
n )

and write νn

xn
by ζn

ρn
and ν′

n

x′
n

by an

bn
, for some polynomials an, bn, ζn and ρn with

(an, bn) = (ζn, ρn) = (1), hence obtain

2ζnanbn = ρn(a2
n + 4b2n) ,

hence ζn = βn(a2
n + 4b2n) and ρn = 2βnanbn for some non-zero βn in the base

field F . Defining
μn = βn

νn
ζn
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express

νn =
1
βn

ζnμn = (a2
n + 4b2n)μn (8)

xn =
ρn
ζn

νn =
2βnanbn

βn(a2
n + 4b2n)

(a2
n + 4b2n)μn = 2anbnμn . (9)

Compute the derivatives ν′ and x′
n in terms of μn, an, bn and their derivatives.

Conclude with

2[4b2n − a2
n]b′

nμn = [−4b2n + a2
n]bnμ′

n .

The case a2
n = 4b2n gives Equation (7). Otherwise obtain

μn =
αn

b2n

for some non-zero αn which gives Equation (6).

Lemma 22. With assumptions and notation as in Lemma 21 the following
holds : if Equation (7) holds for some index r then we have δr = 0.

The proof is left to the reader.

Corollary 23. With assumptions and notation as in Lemma 21 if for some r
Equation (7) holds then it holds for all indices and the conclusion of Theorem 4
holds.

The proof is left to the reader.

Lemma 24. With assumptions and notation as in Lemma 21 we have : Equa-
tion (6) can not hold for any index.

Outline of proof: By Lemma 23 Equation (6) holds for each index. Using
Equation (6) and Equation (4) show that there is a γ ∈ F (tp) such that for each
index n we have γn = γ + n, hence x2

n = (γ + n)(ν − γ + n). Show that γ ∈ F [t]
and, eventually, γ ∈ F .

Let k be an index other than m,h. Then, by Equation (6), the elliptic curve

Y 2 = (X + m)(X + h)(X + k)

has as solutions

(X,Y ) =
(
ν − γ,

xm√
γ + m

xh√
γ + h

xk√
γ + k

)
which is impossible since an elliptic curve is of genus 1 and does not admit a
non-constant rational parametrization.

Proof of Theorem 4. Clear by Lemmas 21, 22 and 24 and Corollary 23.
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3 Consequences for Logic

Proof of Theorem 7 Our proof is an adjustment of the proof of Theorem 1.4
of [15].

We write P2(x) to mean ‘x is a square in F (t)’. We consider a ring R as in
the hypothesis of the Theorem. Let φ(z, w) denote the formula

∃w0, . . . , w13 ∈ R

[w = w0 ∧ 2z = w1 − w0 − 1
∧

i=2,...,13

wi + wi−2 = 2wi−1 + 2
∧

i=0,...,13

P2(wi)] .

Assume that w = z2. Then it is trivial to see that φ(z, w) holds true by taking
wi = (z + i)2.

Now assume that φ(z, w) is true. We claim that either w = z2 or w ∈ F .
For the sake of contradiction assume that w �∈ F . Assume that the sequence
(wn)13n=0 = (x2

n)13n=0 satisfies the quantifier-free part of φ(z, w). Then (wn)13n=0

satisfies the hypothesis of Theorem 4 and consequently w1 = x2
1 = (±x0 + 1)2,

hence, since 2z = w1 − w0 − 1, we have

2z = x2
1 − x2

0 − 1 = (±x0 + 1)2 − x2
0 − 1 = ±2x0

and w = z2.
Hence the following formula ψ(z, w) is equivalent to w = z2 :

ψ(z, w) : φ(z, w)∧φ(tz, t2w)∧φ(z+ t, w+ 2tz+ t2)∧φ(t(z+ t), t2(w+ 2tz+ t2))

(the details are left to the reader). Thus squaring and, consequently, multiplica-
tion is positive-existentially definable in Lt.

The similar arguments for LT hold with ψ(z, w) replaced by

φ̄(z, w) : ∃w0, . . . , w13 ∈ R

[w = w0∧2z = w1−w0−1
∧

i=2,...,13

wi+wi−2 = 2wi−1+2
∧

i=0,...,13

P2(wi)∧T (w)] .

It is easily seen that Theorem 4 implies that φ̄(z, w) is equivalent to w = z2.
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Abstract. The d-c.e. (difference of c.e.) and dbc (divergence bounded
computable) reals are two important subclasses of Δ0

2-reals which have
very interesting computability-theoretical as well as very nice analytical
properties. Recently, Downey, Wu and Zheng [2] have shown by a double
witness technique that not every Δ0

2-Turing degree contains a d-c.e. real.
In this paper we show that the classes of Turing degrees of d-c.e., dbc
and Δ0

2 reals are all different.

1 Introduction

According to Turing [10], a real number x is computable if there is a computable
function f : N → {0, 1, · · · , 9} such that x =

∑
n∈N f(n) · 10−n. Equivalently,

by Robinson [9] and others, a real x ∈ [0; 1] is computable iff its Dedekind
cut Lx := {r ∈ Q : r < x} is a computable set; iff x has a computable bi-
nary expansion in the sense that x = xA :=

∑
n∈A 2−(n+1) for a computable

set A ⊆ N; and iff there is a computable sequence (xs) of rational numbers
which converges to x effectively in the sense that |xs − xs+1| ≤ 2−s for all s,
and so on. Analogously, the Turing reducibility between real numbers and the
Turing degree of a real can be equivalently defined based on binary expansion,
Dedekind cut or Cauchy sequence representations, respectively (see e.g., [5]).
For example, xA is Turing reducible to xB (denoted by xA ≤T xB) if A ≤T B
and xA ≡T xB if xA ≤T xB & xB ≤T xA. The Turing degree of a real x
is defined as the class of all reals which are Turing equivalent to x, namely,
degT (x) := {y ∈ R : y ≡T x}. Thus, the degree of a computable real consists
of all computable reals. On the other hand, Ho [6] shows that a real is Turing
reducible to 0′, the Turing degree of the halting problem, if and only if it is
computably approximable (c.a.), i.e., it is the limit of a computable sequence of
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rational numbers (see [1]). Since the binary expansion of a c.a. real is a Δ0
2-

set, the Turing degree of a c.a. real is also called a Δ0
2-Turing degree or simply

Δ0
2-degree.
A lot of interesting classes of reals between computable and c.a. reals have

been introduced in literature (see, [1, 8, 11]). For instance, a real x is left (right)
computable if it is the limit of an increasing (decreasing) computable sequence of
rational numbers. The left computable reals are also called computably enumer-
able (c.e., for short) (see [3, 4]) because their left Dedekind cuts are c.e. sets of
rational numbers and they play a similar role in computable analysis as c.e. sets
in classical computability theory. A real x is d-c.e. (difference of c.e.) if it is the
difference of two c.e. reals. The class of d-c.e. reals is the arithmetical closure of
c.e. reals and is actually a real closed field (see [1, 7]). More importantly, as shown
in [1], a real x is d-c.e. iff there is a computable sequence (xs) of rational numbers
converging to x weakly effectively in the sense that the sum

∑
s∈N |xs−xs+1| ≤ 1.

Therefore, d-c.e. reals are also called weakly computable (wc) and the class of all
d-c.e. reals is denoted by WC.

Another interesting class of reals is introduced in [8] where a real x is called
divergence bounded computable (dbc, for short) if there are a total computable
function h and a computable sequence (xs) of rational numbers which con-
verges to x h-bounded effectively, i.e., for all n, there are at most h(n) non-
overlapping index pairs (i, j) such that |xi − xj | ≥ 2−n (so-called 2−n-jumps).
The class of all dbc reals is denoted by DBC. It is shown in [8] that the class
DBC is strictly between the classes of d-c.e. and computably approximable re-
als. Besides, like WC, the class DBC is also a real closed field. Furthermore,
the class DBC is closed under total computable real functions while WC is
not. Actually, DBC is the closure of WC under computable total real func-
tions.

In the following, we call a Turing degree c.e., d-c.e. or dbc if it contains a c.e.,
d-c.e. or dbc real, respectively. In [12], it is shown that there is a d-c.e. Turing
degree which does not even contain an ω-c.e. set. Here a set A ⊆ N is ω-c.e. if
there are a computable function h and a computable sequence (As) of finite sets
which converges to A such that |{s ∈ N : As(n) �= As+1(n)}| ≤ h(n) for all n
and a Turing degree is called ω-c.e. if it contains an ω-c.e. set. Recently, Downey,
Wu and Zheng showed in [2] that any ω-c.e. Turing degree contains at least a
d-c.e. real, but there exists also a Δ0

2-Turing degree which does not contain any
d-c.e. real. That is, the class of d-c.e. degrees is strictly between the classes of
ω-c.e. degrees and Δ0

2-degrees.
In this paper, we extend the result of [2] and show that, even the class of

dbc Turing degrees does not exhaust all Δ0
2-Turing degrees. In [2], the double

witness technique is used. Here we use a different construction technique. This
technique closely connects the Turing reducibility with the Euclidean topology of
R and has potentially more applications. For example, by this technique we can
separate the class of dbc Turing degrees from the class of d-c.e. Turing degrees.
Therefore, the classes of d-c.e. degrees, dbc degrees and Δ0

2-degrees, respectively,
are all different.
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2 Preliminaries

Let Σ := {0, 1} be a binary alphabet. For convenience we identify a real x ∈ [0, 1]
with its binary characteristic sequence x ∈ Σω and identify a dyadic rational
number r ∈ [0, 1] with its binary characteristic string r ∈ Σ∗. For any binary
string w, an open interval of w is defined by I(w) := wΣω \{w1ω, w0ω}. For I :=
I(w) and n ∈ N, we define two subintervals Ln(I) := I(w00n1) and Rn(I) :=
I(w10n1). Let I, J be any intervals, their minimal and maximal distances are
denoted by d(I, J) := min{|x− y| : x ∈ I & y ∈ J} and D(I, J) := max{|x− y| :
x ∈ I & y ∈ J}, respectively. Given two intervals I1 := I(w1) and I2 := I(w2) of
a distance d(I1, I2) = δ > 0 and a number n, let w0 be the shortest string such
that |w0| ≥ n and d(I1, I(w0)) = d(I(w0), I2) > 2−n. Thus the interval I(w0)
has at most a length 2−n and locates exactly in the middle between I1 and I2.
This interval I(w0) is denoted by Mn(I1, I2). The middle point of an interval I
is denoted by mid(I).

Let (NA
e ) be a computable enumeration of all Turing machines with oracle

A and suppose that NA
e computes the computable functional ΦA

e . By definition,
a real x is Turing reducible to y if there is an i ∈ N such that x = Φy

i i.e.,
x(n) = Φy

i (n) hold for all n ∈ N. Thus, in order to construct two non-Turing
equivalent reals x, y we have to guarantee that x �= Φy

i & y �= Φx
j for all i, j.

To this end, we define a “length function” recording the maximal temporal
agreement between (x, y) and (Φy

i , Φ
x
j ) and try to destroy this agreement if it

is possible to keep it finite. This is usually quite complicated if we consider
all (i, j) in a priority construction. The following observation will simplify the
matter a lot. If x = Φy

i , then there is another computable functional Φj such
that x � n = Φy

j (n) for all n, where x � n is the initial segment of x of length
n. (Here we identify a natural number n with the n-th binary word under the
length-lexicographical ordering.) Thus, two reals x and y are Turing equivalent
iff there are i, j ∈ N such that x is (i, j)-Turing equivalent to y (denoted by
x ≡(i,j)

T y) in the following sense

(∀n ∈ N)
(
x � n = Φy

i (n) & y � n = Φx
j (n)

)
. (1)

Although this is only a simple variation of usual Turing equivalence of the form
x = Φy

i & y = Φx
j , it connects the Turing equivalence to the topological structure

of R. To see that, we show the following lemma which is essential for the proofs
of our main results later.

Lemma 1. Given an open interval I0 ⊆ Σω, i, j, t ∈ N, there exist two open
intervals I ⊆ I0 and J ⊆ Σω of at most length 2−t such that

(∀x, y)
(
(x ∈ I ∧ x ≡(i,j)

T y =⇒ y ∈ J) & (y ∈ J ∧ x ≡(i,j)
T y =⇒ x ∈ I0)

)
. (2)

Notice that, if the intervals I, J satisfy (the first part of) condition (2), then
any real of I can only be (i, j)-Turing equivalent to a real of J . In other words,
if the reals x, y satisfy x ∈ I & y /∈ J , then they are not (i, j)-Turing equivalent!
Thus, to avoid the constructed real x being (i, j)-Turing equivalent to a given
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real y, it suffices to fix two interval pairs (Il, Jl) and (Ir, Jr) of this property,
then choose x from Il whenever y seems not in Jl and change x to Ir if y
enters Jl and so on. This is simply the usual “jump trick”. For convenience,
we call an interval I (i, j)-reducible to J (denoted by I ≺(i,j) J) if, for all x, y,
x ∈ I ∧ x ≡(i,j)

T y =⇒ y ∈ J . The second part of (2) guarantees that, if two
distinct I0-intervals are give, then the corresponding J-intervals are also distinct.

The lemma 1 can be strengthened to the following effective version.

Corollary 2. There exists a partial computable θ :⊆ N3 ×Σ∗ → (Σ∗)2 so that
if there exist x ∈ I(w) and y ∈ Σω with x ≡(i,j)

T y, then θ(i, j, t, w) ↓= (u, v) and
the intervals I := I(u) and J := I(v) satisfy Lemma 1 for I0 := I(w).

Later on, θ(i, j, n, w) is also denoted by θ(i, j, 2−n, I(w)). Suppose that Mθ

is a Turing machine which computes the function θ. Then, for any s, θs is the
function computed by Mθ up to step s.

3 A Δ0
2-Degree Containing no DBC Reals

In [2] it is shown that not every Δ0
2-Turing degree contains a d-c.e real. Since

the class of dbc reals is a proper superset of the class of d-c.e. reals, it is natural
to ask, if this result can be extended to the case of dbc reals. Namely, whether
there exists a Δ0

2-Turing degree which contains no dbc reals. The next theorem
gives a positive answer of this question.

Theorem 3. There exists a c.a. real which is not Turing equivalent to any dbc
real, i.e., not every Δ0

2-Turing degree contains a dbc real.

Proof. We first prove the theorem by the double witnesses technique of [2]. That
is, we construct a computable sequence (As) of finite subsets of natural numbers
which converges to A such that A is not Turing equivalent to any divergence
bounded computable real. To this end, let (be, he, Φe, Ψe) be an effective enu-
meration of all tuples of computable functions be :⊆ N → D, he :⊆ N → N, and
computable functionals Φe, Ψe. For any e, s ∈ N, if be(s) is defined, then let Be,s

be a finite set of natural numbers such that be(s) = xBe,s
. Thus, the set A has

to satisfy all the following requirements.

Re : be and he are total functions and (be(s))
converges he-bounded effectively to xBe

}
=⇒ A �= ΦBe

e ∨Be �= ΨA
e .

Let As be the approximation of A constructed at the end of stage s. We define
a length function l as follows:

l(e, s) := max{x : As � x = ΦBe,s
e,s � x & Be,s � ϕe,s(x) = ΨAs

e,s � ϕe,s(x)},

where ϕe is the use function of the functional Φe.
To satisfy a requirement Re, it suffices to guarantee that l(e, s) is bounded

from above. To this end, we first choose a witness ne large enough. At the
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beginning, let A(ne−1)(ne) = 00. If there does not exist s such that l(e, s) > ne,
then we are done. Otherwise, suppose that l(e, s1) > ne for an s1. Let me :=
ψe,s1(ϕe,s1(ne)). Assume w.l.o.g. that ne < me. If he,s1(me) is also defined, then
let As1+1(ne − 1)(ne) = 10. Wait for a new stage s2 > s1 such that l(e, s2) >
ne holds again. If no such a stage exists, then we are done again. Otherwise,
let As2+1(ne − 1)(ne) := 11. If there exists another stage s3 > s2 such that
l(e, s3) > ne, then let As3+1(ne − 1)(ne) := 00. In this case, the set As3+1 is
recovered to that of stage s1, i.e., As3+1 = As1 . This closes a cycle in which the
values A(ne − 1)(n2) change in the order of 00 → 10 → 11 → 00. This process
will continue as long as the number of 2−me-jumps of the sequence (xBe,s

) (i.e.,
the sequence (be(s)) ) does not exceed he(me) yet.

Thus, we achieve a temporary disagreement between A and ΦBe
e by changing

the values A(ne − 1)(ne) whenever the length of agreement goes beyond the
witness ne. After that, if the agreement becomes bigger than ne again, then the
corresponding value ΦBe

e (ne − 1)(ne) has to be changed too and this forces the
initial segment Be � ϕe(ne) to be changed, say, Be,s � ϕe,s(ne) �= Be,t � ϕe,t(ne).
There are two possibilities now.

Case 1. |xBe,s
− xBe,t

| ≥ 2−me . If the sequence (be(s)) converges he-bounded
effectively, then (be(s)) has at most he(me) non-overlapping 2−me-jumps. Thus,
this can happen at most he(me) times.

Case 2. |xBe,s
− xBe,t

| = 2−m < 2−me for an m > me. Let n be the least
natural number n < me such that Be,s(n) �= Be,t(n). In this case, as binary
word, Be,s has either forms 0.w10 · · · 0v or 0.w01 · · · 1v for some w, v ∈ {0, 1}∗

and Be,t takes another one. This implies that, if the sequence (xBe(s)) does not
have 2−me -jumps after some stage s any more, then the initial segment Be,s � me

can have only two possible forms: 0.w10 · · · 0 or 0.w01 · · · 1. Correspondingly, the
combination Φ

Be,s
e,s (ne − 1)(ne) can have at most two possibilities too. However,

in every circle described above, A(ne − 1)(ne) takes three different forms, i.e.,
00, 10 and 11. In other words, we can always achieve a disagreement A �= ΦB

e at
some stage and hence the requirement Re is satisfied eventually.

To satisfy all requirements simultaneously, we apply a finite injury priority
construction. The details are omitted here.

In the following, we give another proof based on the “interval-jumping” tech-
nique. This technique will be used again in the next section.

A New Proof. We will construct a computable sequence (xs) of rational numbers
converging to a real x which satisfies, for all i, j, k ∈ N, the following require-
ments.

R〈i,j,k〉 : ϕk and hk are total functions and (ϕk(s))
converges hk-bounded effectively to yk

}
=⇒ x �≡(i,j)

T yk,

where (ϕk, hk) is a computable enumeration of all pairs of partial computable
functions ϕk :⊆ N → D and hk :⊆ N → N.

To satisfy a single requirement Re for e = 〈i, j, k〉, we fix a base interval Ie−1

and try to find a witness interval Ie ⊆ Ie−1 such that any real x ∈ Ie satisfies
Re. As the first candidate, let Ie := R1(Ie−1). If no real of this interval is (i, j)-
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Turing equivalent to some real, then we are done. Otherwise, by Corollary 2,
we can find an interval pair (Ir, Jr) such that Ir ⊆ Ie and Ir ≺(i,j) Jl. Then
let Ie := L1(Ie−1). Analogously, either Ie is already a correct witness interval
or we can find another interval pair (Il, Jl) such that Il ⊆ Ie and Il ≺(i,j) Jl.
Suppose that we have obtained two such interval pairs. We can choose Ir or Il as
witness interval depending on whether the sequence (ϕk(s)) enters the interval
Jl or Jr. This trick works if the intervals Jl and Jr are not connected, i.e.,
d(Jl, Jr) ≥ δe > 0. In this case, let ne := (μn)(2−n ≤ δe). Then at most hk(ne)
jumps suffice if the sequence (ϕk(s)) converges hk-bounded effectively.

To guarantee d(Jl, Jr) > 0 we introduce a third interval pair: Let Ie be a new
interval between the intervals Il and Ir, say Ie := Me(Il, Ir). Again, either Ie is
a correct witness interval or we can get a third interval pair (Im, Jm) such that
Im ⊆ Ie and Im ≺(i,j) Jm. Since, by condition (2), three intervals Jl, Jm and Jl
cannot be overlapping and hence at least two of them have a positive minimal
distance by which we can apply the normal jump trick comfortably. To satisfy
all requirements simultaneously, a finite injury priority construction suffices.

Notice that, in the double-witnesses construction, a reasonable upper bound
of the number of changes among the candidate intervals is not available and
hence the constructed number x is computably approximable. However, in the
construction based on the interval-jumping technique, we consider two interval
pairs (Il, Jl) and (Ir, Jr) and choose x from Il or Ir whenever y enters Jr or
Jl, respectively. In this case, it is possible to estimate the number of necessary
jumps of x by calculate the allowed number of y jumps. This idea can be used
to separate the classes of Turing degrees of dbc reals and d-c.e. reals in the next
section.

4 Separating DBC-Degrees from D-C.E. Degrees

In this section we will show that the classes of d-c.e. and dbc degrees are different
and hence Theorem 3 extends the result of [2] properly.

Theorem 4. There exists a Turing degree of divergence bounded computable
reals which does not contain any d-c.e. reals.

Proof. We construct a computable sequence (xs) of rational numbers which con-
verges h-bounded effectively to x for some computable function h such that the
limit x is not Turing equivalent to any d-c.e. reals. Since any d-c.e. real is the
limit of a computable sequence (ys) of rational numbers such that

∑
s∈N |ys −

ys+1| ≤ 1, it suffices to satisfy, for all i, j, k ∈ N, the following requirements

R〈i,j,k〉 :
∑
s∈N

|ϕk(s) − ϕk(s + 1)| ≤ 1 & lim
s→∞ϕk(s) = yk =⇒ x �≡(i,j)

T yk,

where (ϕe) is a computable enumeration of all partial computable functions
ϕe :⊆ N → D.
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To satisfy a single requirement Re for e = 〈i, j, k〉, we use a “jump trick” as
in the proof of Theorem 3. Namely, choose two interval pairs (Il, Jl) and (Ir, Jr)
with d(Jl, Jr) := δ > 0 according to Corollary 2 such that Il ≺(i,j) Jl and
Ir ≺(i,j) Jr. If such interval pairs do not exist, then we can obtain an interval
I such that no reals of I is (i, j)-Turing equivalent to any real. In this case, the
interval I is a witness interval of Re because any real x from I satisfies Re and
we are done. Otherwise, depending on whether the sequence (ϕk(s)) enters the
interval Jl or Jr, we can choose xs’s from Ir or Il accordingly. If the sequence
(ϕk(s)) satisfies the condition

∑
s∈N |ϕk(s)−ϕk(s+ 1)| ≤ 1, then the inequality

x := lims xs �= yk := lims ϕk(s) can be achieved by at most 1/δ jumps of the
sequence (xs) between the intervals Il and Ir and Re can be satisfied.

Unfortunately, this strategy does not guarantee that the constructed sequence
(xs) converges h-bounded effectively for some computable function h, because
the number of required jumps depends only on the distance δ := d(Jl, Jr) but
not on the size of the jumps themselves which are bounded by Δ := D(Il, Ir).
To solve this problem, we look for new interval pairs such that their Δ and δ are
related reasonably.

Suppose that we have two interval pairs (Il, Jl) and (Ir, Jr) with Il ≺(i,j) Jl
and Ir ≺(i,j) Jr. Let a := max{n : D(Il, Ir) ≤ 2−n} and b := (μn)(d(Jl, Jr) ≥
2−n). Then the above strategy contributes at most 2b jumps of a distance up
to 2−a to the sequence (xs). Suppose in addition that l(Il), l(Ir) ≤ D(Il, Ir)/8.
Let Ie be an interval of length l(Ie) ≤ d(Il, Ir)/8 which locates in the middle
between Il and Ij , then max{D(Ie, Il), D(Ie, Ir)} ≤ D(Il, Ir)·5/8 ≤ 2−a ·2−1/2 ≤
2−(a+1/2). If we can find intervals Im ⊆ Ie and Jm of length l(Jm) ≤ d(Jl, Je)/4
according to Lemma 1 such that Im ≺(i,j) Jm, then we have max{d(Jr, Jm),
d(Jl, Jm)} ≥ d(Jl, Jr)/4 ≥ 2−(b+2). (If such Jm do not exit, then no real of
Im is (i, j)-Turing equivalent to other reals and we are done). Suppose that
d(Jr, Jm) ≥ d(Jl, Jm) (the other case can be treated similarly), then we have
d(Jm, Jr) ≥ 2−(b+2) and D(Im, Il) ≤ 2−(a+1/2).

Now, let (Im, Jm) and (Ir, Jr) be our new interval pairs which are denoted by
(I1

l , J
1
l ) and (I1

r , J
1
r ), respectively. This procedure is called an “interval length

reduction”. If we repeat this procedure n times, then we possibly arrive at the
interval pairs (Inl , J

n
l ) and (Inr , J

n
r ) such that

1. Inl ≺(i,j) J
n
l and Inr ≺(i,j) J

n
r , and

2. D(Inl , I
n
r ) ≤ 2−(a+n/2) and d(Jn

l , J
n
r ) ≥ 2−(b+2n).

If we stop in between, then we have an interval, say Itm, such that no reals
of this interval is (i, j)-Turing equivalent to any real and hence we are done.
Otherwise, fix an n large enough such that 28(a+n/2) ≥ 2b+2n and apply the
“jump trick” for the interval pairs (Inl , J

n
l ) and (Inr , J

n
r ). In this case, each jump

of (xs) (between new Il and Ir) has at most a distance 2−(a+n/2) while each jump
of (ϕk(s)) (between new Jl and Jr) has at least a distance 2−(b+2n). Because of
the condition

∑
s∈N |ϕk(s) − ϕk(s + 1)| ≤ 1, we need at most 2b+2n ≤ 28(a+n/2)

jumps of a distance up to 2−(a+n/2). In other words, 28t jumps of a length up to
2−t suffice for t = a+ 2/n. Actually, for smaller t the above strategy contributes
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no more jumps than 28t of the distance up to 2−t. If we fix a base interval I in
advance for Re of at most length 2−e and choose the intervals Il and Ir only
from I, then the improved strategy for Re satisfies the following conditions

(A) It causes only 2−n-jumps for n ≥ e; and
(B) It contributes 2−n-jumps at most 28n times totally for any n.

By a priority technique we can combine above strategies for all Re’s together
and construct a computable sequence (xs) of rational numbers whose limit x
satisfies all Re simultaneously. If we can arrange that conditions (A) and (B)
are still satisfied, then the sequence (xs) converges 29n-bounded effectively. The
reason is, for any n, a 2−n-jump can only be caused by a requirement Re for
e < n and the action for Re contributes at most 28n 2−n-jumps. Therefore, the
total number of 2−n-jumps is not larger than 29n and hence x is divergence
bounded computable.

Let’s give a formal construction of the sequence (xs) now. At any stage s, all
requirements are appointed a state from the following set:

S := {waiting, prepare(t), reduce(n), jump(n), satisfied : t ≤ 4 & n ∈ N}.

At stages s, there is a number cs such that all Re for e > cs are in the state
“waiting”. For any e ≤ cs, Re is in the other state and is appointed a parameter
εe > 0, a base interval Ie−1, four supplementary intervals Ie,l, Ie,r, Je,l, Je,r and
a witness interval Ie which is at the same time the base interval for Re+1. The
middle point of Ics

is defined as xs. Besides, Re is appointed two parameters
ne and me whenever it arrives the state “prepare(3)”, and an additional ze
when it obtains the state “jimp(0)”. If it is necessary, these parameters can be
appended by [s] (for instant Ie,l[s]) to denote its actual values at stage s. In
the construction, all parameters which are not redefined explicitly at stage s+1
remain the same as that of stage s.

The formal construction:
Stage s = 0: Let I−1 := I(0) and define

(I0,l, I0,r, J0,l, J0,r, I0) := (L1(I−1), R1(I−1), ∅, ∅, R1(I−1)).

and ε0 := l(I0)/2. Set R0 to state “prepare(0)”. All other Re for e > 0 are
initialized by setting its state to “waiting” and all of its parameters to undefined.

Stage s + 1: A requirement Re for e = 〈i, j, k〉 requires attention if either

R1: Re is not in the state “waiting” or “jump(t)” for any t and θs(i, j, εe, Ie) ↓=
(u, v), or

R2: Re is in the state “jump(t)” for some t ∈ N and there exists a z > ze[s] such
that ϕk,s(z) ↓= q ∈ Je where Je = Je,l if Ie = Ie,l or Je = Je,r otherwise.

If no requirement requires attention, then let Re be the requirement of highest
priority which is in the state waiting. Thus, Ie−1 = I(w) is defined for some
w ∈ Σ∗. Let n be the minimal number such that 2−n+1 is less than all jumps of
the sequence (xt)t≤s. Then define

(Ie,l, Ie,r, Je,l, Je,r, Ie) := (Ln(Ie−1), Rn(Ie−1), ∅, ∅, Rn(Ie−1)). (3)
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Let εe := l(Ie)/2 and set Re into the state “prepare(0)”.
Otherwise, suppose that Re is the requirement of the highest priority which

requires attention. We consider the following cases.
Case 1. Re is in the state “prepare(0)”. Define

(Ie,r, Je,r, Ie)[s + 1] := (I(u), I(v), Ie,l[s]).

Let εe := l(Ie)/2 and set Re to the state “prepare(1)”.
Case 2. Re is in the state “prepare(1)”. Redefine (Ie,l, Je,l) := (I(u), I(v)).

Let t := (μt)(d(Ie,l, Ie,r) ≥ 2−t). Then define further Ie := Mt+1(Ie,l, Ie,r),
εe := l(Ie)/2 and set Re to the state “prepare(2)”.

Case 3. Re is in the state “prepare(2)”. Now we have three “(i, j)-reducible”
intervals pairs (Ie,l, Je,l), (Ie,r, Je,r) and (I(u), I(v)). The intervals Je,l, Je,r and
I(v) are obviously distinct. This means that at least one of d(Je,l, Je,r), d(Je,l,
I(v)) or d(Je,r, I(v)) is positive. Let δe be the maximal one of them and be :=
(μn)(δe ≥ 2−n). Redefine{

(Ie,r[s + 1], Je,r[s + 1]) := (Ie[s], I(v)) if d(Je,l, I(v)) = δe;
(Ie,l[s + 1], Je,l[s + 1]) := (Ie[s], I(v)) if d(Je,r, I(v)) = δe.

(For the case d(Je,l, Je,r) = δe, nothing should be changed.) That is, the new
intervals Je,l[s + 1] and Je,r[s + 1] achieve the largest distance δe. Choose a
maximal a ∈ N such that D(Ie,l[s + 1], Ie,r[s + 1]) ≤ 2−a. Now Re is ready for
the procedure of “interval-length reduction”. As mentioned before, the number
ne of required iterations is determined by 28(a+n/2) ≥ 2b+2n and therefore we
define ne := ((b−8a)/2). Remember that the reduction produce demands on the
length of the I-intervals to be relative small compared to their maximal distance.
Furthermore, the procedure inserts a new interval between the I-intervals and
possibly also a new interval between the J-intervals. To guarantee this procedure
can be iterated n times without confliction, all interval length should be small
enough relative to their minimal distance. More precisely, all intervals can have
a length at most 2−me where me is the least natural number satisfying

2−me ≤ min{2−be , 2−de} · 4−(ne+2) (4)

where de = (μt)(2−t ≤ l(Ie,l, Ie,r)). Now let Ie := Ie,r and εe := 2−me and set
Re into the state “prepare(3)”.

Case 4. Re is in the state “prepare(3)”. Define

(Ie,r, Je,r, Ie)[s + 1] := (I(u), I(v), Ie,l[s])

and set Re to the state “prepare(4)”.
Case 5. Re is in the state “prepare(4)”. Redefine (Ie,l, Je,l) := (I(u), I(v)).

Then define further Ie := Mme
(Ie,l[s + 1], Ie,r[s + 1]) and set Re to the state

“ reduce(0)”.
Case 6. Re is in the state “reduce(t)”. Redefine{
(Ie,l[s + 1], Je,l[s + 1]) := (I(u), I(v)) if d(Je,r, I(v)) ≥ d(Je,l, I(v));
(Ie,r[s + 1], Je,r[s + 1]) := (I(u), I(v)) otherwise.
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Notice that the distances of new and old intervals have the following relation:

D(Ie,l[s + 1], Ie,r[s + 1]) ≤ D(Ie,l[s], Ie,r[s]) · 2−1/2 (5)
d(Je,l[s + 1], Je,r[s + 1]) ≥ d(Je,l[s], Je,r[s]) · 2−2. (6)

If t < ne, then define further Ie := Mme
(Ie,l[s + 1], Ie,r[s + 1]) and set Re into

the state “reduce(t + 1)”. Otherwise, if t = ne, then let Ie := Ie,r, ze := −1 and
set Re into the state “jump(0)”.

Case 7. Re is in the state “jump(t)”. Redefine

Ie :=
{
Ie,l, if ϕk,s(z) ∈ Je,r;
Ie,r, if ϕk,s(z) ∈ Je,l.

where z is the number satisfying the requiring condition R2. If t·d(Je,l, Je,r) < 1,
then let ze[s+ 1] := z and set Re into the state “jump(t+ 1)”. Otherwise set Re

into the state “satisfied”.
In all these cases, we say that Re receives attention. In addition, if Re receives

attention, then all requirements Re′ for e′ > e are initialized by setting it into
the state “waiting” and letting all its parameters to be undefined. If Re′ is not
in the state “waiting” at stage s, then Re′ is injured at this stage.

This ends the construction. We can show that our construction succeeds.
That is, the computable sequence (xs) converges to a dbc real x which is not
Turing equivalent to any d-c.e. real.
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Difficult combinatorial problems typically require exponential time algorithms.
Recently there is a new point of view that algorithms operating in (worst-case)
exponential time can still be quite useful if the constants in the exponential
complexity function are small enough. On the other hand, we do not know many
algorithmic design principles for such algorithms up to now. This talk discusses
various ways of designing good exponential time algorithms which reduce the
value of the respective constants.

It seems that randomization is a particularly successful concept in the con-
text of exponential-time algorithms. It turns out that the kind of randomization
needed in exponential algorithms differs from the known examples of random-
ization in the context of polynomial-time algorithms.

Our running examples in this talk will be NP-complete problems like 3-
satisfiability or 3-colorability.

S.B. Cooper, B. Löwe, and L. Torenvliet (Eds.): CiE 2005, LNCS 3526, p. 429, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Some Reducibilities on Regular Sets�

Victor L. Selivanov

A.P. Ershov Institute of Informatics Systems,
Siberian Division of the Russian Academy of Sciences, Russia

vseliv@nspu.ru

Abstract. We discuss some known and introduce some new reducibili-
ties on regular sets. We establish some facts on the corresponding degree
structures and relate some reducibilities to natural hierarchies of reg-
ular sets. As an application, we characterize regular languages whose
leaf-language classes (in the balanced model) are contained in the poly-
nomial hierarchy. For any reducibility we try to give some motivation and
interesting open questions, in a hope to convince the reader that study of
these reducibilities is important for automata theory and computational
complexity.

1 Introduction

The notion of reducibility appeared in computability theory and plays a central
role there . Afterwards, different notions of reducibility were employed in different
branches of computation theory and of definability theory (in descriptive set
theory this is Wadge reducibility, in complexity theory — polynomial-time m-
reducibility, in finite model theory — logical reducibilities [8], and so on). Some
of these reducibilities turned out to be also quite important for the corresponding
fields.

More recently, people began to consider reducibilities inducing nontrivial de-
gree structures on regular sets (i.e., on languages recognized by finite automata)
[3, 19, 17, 5]. In this paper, we continue to discuss some known and introduce
some new reducibilities on regular sets. We establish some facts on the corre-
sponding degree structures and relate the reducibilities to natural hierarchies of
regular sets. For any reducibility we try to give some motivation and interesting
open questions, in a hope to convince the reader that study of these reducibilities
is important for automata theory and complexity theory.

We use (mostly without definitions here) some standard terminology and no-
tation from computability theory, automata theory and complexity theory, say
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the University of Würzburg in pre-Christmas days of 2004, and to him and Christian
Glaßer for helpful discussions. Thanks are also due to anonymous referees for the
careful reading.
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terminology on reducibilities and degrees, notation of languages by regular ex-
pressions or the concept of a polynomial-time non-deterministic Turing machine.
Letters A,B will denote alphabets which are always assumed to contain at least
two symbols. By A+ we denote the set of all non-empty words over A, and by
A∗ the set of all words (including the empty word ε). Since usually we work
with a fixed alphabet A, we normally do not mention the alphabet explicitly.
The length of a word w is denoted |w|. Since we use the logical approach to
regular languages [4, 9, 18], we work mostly with languages of non-empty words
L ⊆ A+. Correspondingly, the complement L of such a language L is defined by
L = A+\L. As usual, P (A+) denotes the power set of A+. By P ′(A+) we denote
the class of all non-trivial (i.e. distinct from ∅ and A+) subsets of A+. By R (R′)
we denote the class of all regular (resp., regular non-trivial) languages over A.

In Section 2 we discuss two important reducibilities closely related to so
called leaf language approach to complexity classes which is described in detail
in a recent survey [21]. In Section 3 we remind the reader of some known facts
and state some new facts related to the logical approach to automata theory.
In Section 4 we generalize most results from [17] and establish some new facts
about versions of the quantifier-free reducibility. In Section 5 we present some
results on first-order reducibilities. We conclude in Section 6 with mentioning
some other reducibilities and open questions.

2 plt- and ptt-Reducibilities

A language L ⊆ A∗ is polylogtime reducible to K ⊆ B∗, for short L ≤plt K ([3,
19]), iff there exist functions f : A∗×N → B and g : A∗ → N, computable in poly-
logarithmic time on a deterministic Turing machine with random access to the in-
put bits, such that x ∈ L ↔ f(x, 1)f(x, 2) . . . f(x, g(x)) ∈ K for every x ∈ A∗. By
a plt-function we mean any function of the form x �→ f(x, 1)f(x, 2) . . . f(x, g(x))
where f and g are computable in polylogarithmic time.

To explain relationship of this reducibility to complexity theory, let us recall
some relevant definitions. Consider a polynomial-time nondeterministic Turing
machine M working on an input word x over some alphabet B and printing
a letter from another alphabet A after finishing any computation path. These
values are the leaves of the binary tree defined by the nondeterministic choices
of M on input x. An ordering of the tuples in the program of M determines
a left-to-right ordering of all the leaves. In this way, M may be considered as
a deterministic transducer computing a total function M : B∗ → A+. Now,
relate to any language L ⊆ A+ (called in this situation a leaf language) the
language M−1(L) ⊆ B∗. Denote by Leafb(L) the set of languages M−1(L), for
all machines M specified above which have balanced computation trees, and
denote by Leafu(L) the set of languages M−1(L), for all machines M specified
above (which may have unbalanced computation trees).

Obviously, we have Leafb(L) ⊆ Leafu(L) for every language L, and there
exist languages L where Leafb(L) = Leafu(L) is unlikely. It turns out that many
inportant complexity classes have natural and useful descriptions in terms of leaf
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languages (see [21] and references therein). The following theorem was proved
by D.P. Bovet, P. Crescenzi and R. Silvestri [3] and independently by N.K.
Vereshchagin [19].

Theorem 1. For all languages L and K, L ≤plt K iff Leafb(L)O ⊆ Leafb(K)O

for every oracle O.

In [21] a notion of reducibility (called ptt-reducibility) was introduced which
is related to the unbalanced leaf language definability exactly in the same way as
plt-reducibility is related to the balanced leaf language definability in Theorem
1. For these reasons (and because regular languages are most natural to use as
leaf languages) investigation of plt- and ptt-reducibilities (especially on regular
languages) seems important. For some results in this directions see [17, 21, 5].
We start with the following obvious fact in which we, for simplicity of notation,
identify preorders with the corresponding quotient partial orders (i.e., degree
structures).

Proposition 2. 1. {∅} and {A+} are two distinct minimal elements of the
degree structures (P (A+);≤plt) and (R;≤plt) which are below any other el-
ement.

2. The structures (P (A+);≤plt) and (R;≤plt) are upper semilattices under the
supremum operation L⊕ K = aL ∪ (A \ a)K, where a is a fixed letter from
A.

3. The structure (P ′(A+);≤plt) is a distributive upper semilattice.

We do not know whether the structure (R′;≤plt) is a distributive upper
semilattice.

Are there greatest elements in (R;≤plt) and (R;≤ptt) (as usual, the corre-
sponding languages are called complete)? From [7] we get the positive answer and
even a clear descripion of complete languages. Namely, for a regular language L
the following statements are equivalent: L is plt-complete; L is ptt-complete; the
syntactic monoid M(L) is not solvable (i.e., contains a non-solvable subgroup).

The following characterization of the relation L ≤plt 0∗1(0∪1)∗ is a ‘balanced’
version of the corresponding result from [10, 2] for the ‘unbalanced’ model. We
need to define some patterns (i.e. subgraphs in automata).

Definition 3. Let A be a (deterministic) finite automaton (over A), q its initial
state, and let s.w denote the state reached by A when reading the word w starting
from the state s.

1. A balanced coNP-pattern for A is formed by states s0, s1 and words x, y, u, v
such that: q.x = s0, si.u = si for both i < 2, s0.v = s1 = s1.v, s0.y is
accepting, s1.y is rejecting, and |u| = |v|.

2. A balanced co1NP-pattern for A is formed by states s0, s1, . . . , sn (n > 1)
and words x, y, u, v such that: q.x = s0, si.u = si for all i ≤ n, si.v = si+1

for all i < n, sn.v = sn, the states s0.y, s2.y, . . . , sn.y are accepting while the
state s1.y is rejecting, and |u| = |v|.
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3. A balanced n-counting pattern (n > 1) for A is formed by states s0, . . . , sn−1

and words x, y, u, v such that: q.x = s0, si.u = si for all i < n, si.v = si+1 for
all i < n− 1, sn−1.v = s0, s0.y is accepting, s1.y is rejecting, and |u| = |v|.

Theorem 4 ([5]). Let L be a regular language and A the minimal automaton
recognizing L. Then L ≤plt 0∗1(0∪1)∗ iff A does not have balanced coNP, co1NP
and n-counting patterns (n > 1).

From results in [5] it also follows that a non-trivial regular language L defines
the smallest degree in (R′;≤plt) iff L ≤plt 0∗1(0 ∪ 1)∗ and L ≤plt 0∗1(0 ∪ 1)∗.

Next we prove a result on initial segment of the structure (R′;≤plt). This
result is implicit in [5] (provided we use Theorem 1 and some known facts on
oracle separations). Nevertheless, we present a direct proof because its ideas are
also used in some proofs below. Let (P ;≤) be un upper semilattice with a least
element 0. Recall that an atom of P is a minimal non-zero element of P . The
semilattice is called atomic if below every non-zero element there is an atom.

Theorem 5. The semilattice (R′;≤plt) is atomic with infinitely many atoms.

Proof. Let E ⊆ A+ be the language of words having at least one letter distinct
from a fixed letter a ∈ A. Obviously, E ≡plt 0∗1(0 ∪ 1)∗. For any prime p, let
Mp ⊆ A+ consist of all words such that the number of occurences of letters
distinct from a is divided by p. We claim that the languages E,E,Mp (p prime)
define exactly the atoms of (R′;≤plt), i.e.:

1) the languages E,E,Mp are pairwise plt-incomparable,
2) for any L ∈ R′ of non-smallest plt-degree, at least one of E,E,Mp is

plt-reducible to L,
The assertion 1) follows form Theorem 1 and well-known oracle separations

(alternatively, it maybe easily observed from definition of plt-reducibility).
2) Let L ∈ R′ be of non-smallest degree. Then L �≤plt E or L �≤plt E. We

consider only the first case, the second being dual. By Theorem 4, A contains a
balanced coNP-pattern, or co1NP-pattern, or n-counting pattern. In the case of
coNP-pattern, consider the plt-function f(w) = xh(w)y, where h : A+ → A+ is
the homomorphism satisfying h(a) = u and h(b) = v for any b ∈ A \ {a}. The
function f satisfies E = f−1(L), hence E ≤plt L. In case of co1NP-pattern, we
similarly get 0∗10∗ = f−1(L). Since E ≤plt 0∗10∗, we get E ≤plt L.

The case of the balanced n-counting pattern is a bit more tedious. Let K ⊆
{0, 1}+ be the language of all binary words w with #1(w) ≡ i (mod n) to some
i < n such that si.y is an accepting state of A (so 0 ∈ K and 1 �∈ K). Here
#1(w) denotes the number of occurances of 1 in w. As above, the plt-function
f : {0, 1}+ → A+ with properties f(w) = xh(w)y, h(0) = u and h(1) = v,
reduces K to L. By the proof of Lemma 6 from [1], we may assume w.l.o.g. that
n is prime. Hence, it suffices to reduce Mn to K. Let M ′

n ⊆ {0, 1}+ be the set of
words with #1(w) ≡ 0 (mod n). Obviously, Mn ≡plt M

′
n, so it sufices to reduce

M ′
n to K.
Define a function g on {0, 1}+ as follows. Let |g(w)| = |w|n−1 and for every i ∈

{1, . . . , |w|n−1} the i-th letter in g(w) is 1 iff w(i1) = · · · = w(in−1) = 1, where
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(i1, . . . , in−1) is the i-th tuple in the lexicographic ordering of {1, . . . , |w|}n−1.
Here w(i) denotes the i-th letter of w. One easily checks that g is a plt-function
and #1(g(w)) = (#1(w))n−1. By Fermat’s theorem, #1(g(w)) ≡ 0 (mod n) if
#1(w) ≡ 0 (mod n) and #1(g(w)) ≡ 1 (mod n) otherwise. Hence, g reduces M ′

n

to K. *+
plt and ptt-reducibilities are not well enough related to natural hierarchies of

regular sets [5, 21]. In Section 4 we consider reducibilities which behave better
in this respect.

3 Regular Languages and Logic

Relate to any alphabet A = {a, . . .} the signature σ = σA = {≤, Qa, . . . ,⊥,
6, p, s}, where ≤ is a binary relation symbol, Qa (for any a ∈ A) is a unary
relation symbol, ⊥ and 6 are constant symbols, and p, s are unary function
symbols. A word u = u0 . . . un ∈ A+ may be considered as a structure u =
({0, . . . , n};<,Qa, . . .) of signature σ, where < has its usual meaning, Qa(a ∈ A)
are unary predicates on {0, . . . , n} defined by Qa(i) ↔ ui = a, the symbols ⊥ and
6 denote the least and the greatest elements, while p and s are respectively the
predecessor and successor functions on {0, . . . , n} (with p(0) = 0 and s(n) = n).
For a sentence φ of σ, let Lφ = {u ∈ A+|u |= φ}. In [9] it was shown that
the class of all languages of the form Lφ, where φ ranges through first-order
sentences of σ, coincides with the class of star-free languages (known also as
aperiodic languages).

We will consider also some enrichments of the signature σ. Namely, for any
positive integer d let τd be the signature σ ∪ {P 0

d , . . . , P
d−1
d }, where P r

d is the
unary predicate true on the positions of a word which are equivalent to r mod-
ulo d (we again think that positions are numbered by non-negative integers
{0, 1, . . .}). Note that signature τ1 is essentially the same as σ because P 0

1 is the
valid predicate. In contrast, for d > 1 languages Lφ for sentences φ of τd need
not be star-free. E.g., the sentence P 1

2 (6) defines the language consisting of all
words of even length.

For n > 0, let Σn be the class of all languages Lφ, where φ ranges through
the Σn-sentences of σ. Let Πn = co(Σn) denote the class of complements of Σn-
languages, and Δn = Σn ∩Πn. In the same way we define classes of languages
Στd
n and so on related to signature τd. In [18] it was shown that the sequence

{Σn}n>0 essentially coincides with dot-depth hierarchy which is a popular object
of automata theory.

To our knowledge, the hierarchy Στd
n for d > 1 was not so far considered in the

literature. It turns out that methods developed in [18, 14, 15] for the dot-depth
and Straubing-Therien hierarchies (based on Ehrenfeucht-Fraisse games) gener-
alize in a straightforward way to hierarchies Στd

n and to the diference hierarchy
over any Στd

n . E.g., any of these hierarchies does not collapse. Most of results
from [11, 6] related to the difference hierarchy over Σ1 also generalize to simi-
lar hierarchies over Στd

1 . We plan to give more details on this in a forthcoming
paper.
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We are also interested in the signature τ =
⋃

d τd. By Στ
n we denote classes

of the hierarchy of languages induced by the quantifier-alternation hierarchy
of τ -sentencies. From results presented in [16] it follows that the hierarchy Στ

n

exhausts the class of so called quasiaperiodic languges. It is easy to show that
Στ
n =

⋃
dΣ

τd
n for every n > 0.

For any set P of positive integers, let FO + MOD(P) denote the class of
languages defined by σ-sentences using counting quantifiers ∃q,r with moduli in
P, along with the usual first order quantifiers. It is known (see e.g. [16]) that
the class FO + MOD = FO + MOD({1, 2, . . .}) consists exactly of languages
with solvable syntactic monoid. More information on the logical approach maybe
found in [16, 18, 11].

4 Quantifier-Free Reducibilities

In [17] the reducibility by quantifier-free formulas of signature σ was introduced
and studied. Here we generalize notions and results of [17] to signature τd for
every fixed d > 0, and present some new results. A qfτd-interpretation I over
alphabets A = {a, . . .} and B = {b, . . .} is given by a tuple

(φU (x̄), φ<(x̄, ȳ), φ⊥(x̄), φ�(x̄), φS(x̄, ȳ), φb(x̄), . . . , φrd(x̄))

where x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , yn) are sequences of different variables of
the same length n > 0 (n is fixed in advance) and φU (x̄), . . . , φrd(x̄) are quantifier-
free formulas of τAd with the following properties. Letu = u0 · · ·ul be any word over
A of length |u| = l + 1. Then the set T = {x̄ ∈ {0, . . . , l}n|u |= φU (x̄)} should be
non-empty and φ<(x̄, ȳ), ..., φ⊥(x̄), φ�(x̄), φS(x̄, ȳ)), φb(x̄), φrd(x̄) interpreted in u
should define a model the universe T isomorphic to a word over B (the formulas
φ⊥(x̄), φ�(x̄) should be true exactly on the first and the last element, respectively).
Any qfτd-interpretation I induces a function u �→ uI from A+ into B+.

Examples. 1. Let u �→ pu be the function on A+ which adds a fixed prefix
p ∈ A∗ to a word u. Is there a qfτd-interpretation I over A and A such that
uI = pu for any u? For p = ε the answer is of course positive, otherwise it
is negative (since any qfτd-interpretation sends words of length 1 to words of
length 1). But it is easy to see that there is a qfτd-interpretation I such that
uI = pu for any u of length > 1. The same of course applies to the operation of
adding a suffix to a word.

2. Let h : A+ → B+ be a semigroup morphism. Such functions are defined
by their values h : A → B+ on the letters of A (i.e., words of length 1) because
we have h(a0 · · · al) = h(a0) · · ·h(al), where ai ∈ A. It is easy to see that for
any such h with the property ∀a, b ∈ A(|h(a)| ≡ |h(b)| (mod d)) there is a qfτd-
interpretation I over A and B such that uI = h(u) for almost all u ∈ A+ (i.e.
for all but finitely many of words).

Definition 6. 1. A function f : A+ → B+ is called a qfτd-function if there
is a qfτd-interpretation I over A and B such that uI = f(u) for almost all
u ∈ A+.
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2. We say that L ⊆ A+ is qfτd-reducible to K ⊆ B+ (in symbols L ≤qfτd K)
if L = f−1(K) for some qfτd-function f : A+ → B+.

The next theorem generalizes corresponding facts from [17] obtained there
for the case of qfσ-reducibility.

Theorem 7. 1. The relation ≤qfτd is reflexive and transitive.
2. {∅} and {A+} are two distinct minimal elements of the degree structure

(P (A+);≤qfτd) which are below any other element.
3. The structure (P (A+);≤qfτd) is an upper semilattice.
4. The structure (P ′(A+);≤qfτd) is a distributive upper semilattice with a least

element which consists exactly of non-trivial Δτd
1 -languages.

5. The classes
⋃

nΣ
τd
n , R, FO + MOD(P) (P is any set of positive integers

containing d) are ideals of (P (A+);≤qfτd).
6. The classes Στd

n ,Πτd
n , as well as all levels of the difference hierarchy over

Στd
n , are principal ideals of (P (A+);≤qfτd).

7. Let Dn be a qfτd-complete set in the n-th level of the difference hierarchy
over Στd

1 . Then Dn ⊕Dn is the infimum of sets Dn+1,Dn+1 under ≤qfτd .

In [17] some relationships between plt- and qfσ-reducibilities were estab-
lished. These results also generalize to signatures τd.

Theorem 8. 1. If L ≤qfτd M and M is of counting type then L ≤plt M .
2. If both L and M are of finite counting type then L ≤qfτd M iff L ≤plt M .
3. Within the class of differences of Στd

1 sets there are infinitely many languages
modulo ≡qfτd .

Our next result states some relationships of the hierarchy Στ
n to plt-reducibility.

Theorem 9. 1. There exists K ∈ Σσ
n such that L ≤plt K for every L ∈ Στ

n.
2. For any regular language L, L ≤plt 0∗1(0 ∪ 1)∗ iff L ∈ Στ

1 .

Proof. (1) Let K = Hn be the ‘standard’ set witnessing that Σσ
n �⊆ Πσ

n from
the proof of Lemma 3.1 in [17]. Let L ∈ Στ

n, then L ∈ Στd
n for some d > 0. Let

f : A+ → A+
n be the function constructed in the proof of that lemma (only this

time φ is a quantifier-free formula of signature τd). One easily checks that f is a
plt-function. Since L = f−1(K), L ≤plt K.

(2) Let L ∈ Στ
1 . By the proof of (1), L ≤plt K1 = 0∗1(0 ∪ 1)∗. Conversely,

let L ≤plt 0∗1(0 ∪ 1)∗. By [5], L is a finite union of languages of the form
w0(Ad)∗w1 · · · (Ad)∗wn, where n ≥ 0, d > 0 and wi ∈ A+. One easily writes down
an existential sentence φ of signature τd such that w0(Ad)∗w1 · · · (Ad)∗wn = Lφ.
Therefore, L ∈ Στ

1 . *+
We do not know whether the converse of (1) holds, i.e. whether Στ

n is a
principal ideal of (R;≤plt) for any n > 1 (for n = 1 this follows from (2)).

Next we consider an application to leaf language classes. First we characterize
quasiaperiodic languages (which coincide with languages in

⋃
nΣ

τ
n, see [16]) in

terms of forbidden patterns. The proof of the next result is obtained rather easily
from the proof of Theorem VI.4.1 in [16] (for more details see [13]).
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Theorem 10. 1. A regular language L is qausiaperiodic iff every finite au-
tomaton recognizing L has no balanced n-counting pattern (n > 1).

2. For any regular language L and any d > 0, L ∈ ∪nΣ
τd
n iff every finite

automaton recognizing L has no d-balanced n-counting pattern (n > 1).

Now we are able to characterize (uniformly on oracles) regular languages
L with the property Leafb(L) ⊆ PH, where PH is the class of languages in
the polynomial-time hierarchy. Similar characterization for the unbalanced leaf
language definability is well known.

Theorem 11. A regular language L is quasiaperiodic iff Leafb(L)O ⊆ PHO for
all oracles O.

Proof. Let L be quasiaperiodic, then L ∈ Στ
n for some n > 0. By Theorem 9(1),

L ≤plt K for some K ∈ Σσ
n . By Theorem 1, Leafb(L)O ⊆ Leafb(K)O for all O.

It is known [21] that Leafb(K)O ⊆ PHO for all O, hence Leafb(L)O ⊆ PHO for
all O.

Conversely, let L be non-quasiaperiodic. By Theorem 10, there is an au-
tomaton which recognizes L and has a balanced n-counting pattern (n > 1).
By the proof of Theorem 5, Mp ≤plt L for some prime p. By Theorem 1,
Leafb(Mp)O ⊆ Leafb(L)O for all O. It is known [21] that Leafb(Mp)O �⊆ PHO

for some O. Therefore, Leafb(L)O �⊆ PHO for some O. *+
Corollary 12. The class of quasiaperiodic languages is an ideal of (R;≤plt).

We conclude this section with an analog of Theorem 5. For this we need the
following parametrized version of Theorem 4. The notions of d-balanced coNP-,
co1NP- and n-counting patterns are obtained from Definition 3 by replacing the
equality |u| = |v| on the equivalence |u| ≡ |v| ≡ 0 (mod d).

Theorem 13. Let L be a regular language and A the minimal automaton recog-
nizing L. Then L ≤qfτd 0∗1(0∪ 1)∗ iff A does not have d-balanced coNP, co1NP
and n-counting patterns (n > 1).

Note that for d = 1 we get the corresponding result from [2] (and that other
forbidden-pattern results from [2, 5] are also parametrizable in the same way).
The proof of the last theorem is obtained by easy modifications of the proofs of
Claim 1 and Corollary 2 in [5].

With Theorem 13 at hand, the following result is proved in the same way as
Theorem 5.

Theorem 14. The semilattice (R′;≤qfτd) is atomic with infinitely many atoms.

From distributivity of the semilattice (R′;≤qfτd) we immediately get the
following.

Corollary 15. The lattice (Fin;⊆) of all finite subsets of ω is isomorphic to
an ideal of (R′;≤qfτd).

We note that the result from [17] on the pincipal ideal generated by the
set U ⊕ U , where U = 0∗1∗, is also true for the structure (P (A+);≤qfτd). In
particular, this ideal consists exactly of 11 degrees.
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5 First Order Reducibilities

Here we consider weaker logical reducibilities, namely reducibilities ≤foτd by first
order formulas of signature τd. Definition of ≤foτd is the same as that of ≤qfτd ,
only now the interpretation I consists of arbitrary first order formulas of τd. The
following assertion is straightforward.

Theorem 16. 1. The relation ≤foτd is reflexive and transitive.
2. {∅} and {A+} are two distinct minimal elements of (P (A+);≤foτd) which

are below any other element.
3. The structure (P (A+);≤foτd) is an upper semilattice.
4. The classes R, FO+MOD(P) (P is any set of positive integers containing

d) are ideals of (P (A+);≤foτd).
5. The structures (P ′(A+);≤foτd) and (R′;≤foτd) are distributive upper semi-

lattices with a least element consisting exactly of non-trivial languages from⋃
nΣ

τd
n .

The next theorem is an analog of Theorem 14 and is proved in the same way
(using Theorem 10(2)).

Theorem 17. The semilattice (R′;≤foτd) is atomic with infinitely many atoms
which are defined exactly by the sets Mp (p prime).

The reducibility ≤foσ seems to be related to a well-known open problem
of automata theory, namely the problem of generalized star-height. We believe
that better understanding of the structure (R;≤foσ) may shed some light on this
problem.

6 Other Reducibilities and Open Questions

There are also other natural reducibilities on regular sets. E.g., let ≤fom be
defined in the same way as ≤foτd but this time the interpretation I consists of
arbitrary (FO + MOD)-formulas. One can easily establish for this reducibility
an analog of Theorem 16 and that there are two distinct (modulo ≡fom) non-
trivial regular languages. We do not know whether there exist three non-trivial
regular languages which are pairwise distinct modulo ≡fom.

We do not currently know whether there exist regular languages which are
complete under ”logical” reducibilities considered above. Analogs of open ques-
tions from [17] for qfτd-reducibilities seem also interesting, as well as questions
on relationships between qfτd-reducibilities for different d (it may be shown that
these reducibilities are pairwise incomparable).

One could consider also reductions by functions computable by natural classes
of finite transducers. Such reducibilities were successfully applied for classifica-
tion of regulat ω-languages (see [20]).
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Church’s and Turing’s theses dogmatically assert that an informal notion of com-
putability is captured by a particular mathematical concept. I present an analysis
of computability that leads to precise concepts, but dispenses with theses.

To investigate computability is to analyze processes that can in principle be
carried out by calculators. Drawing on this lesson we owe to Turing and recasting
work of Gandy, I formulate finiteness and locality conditions for two types of
calculators, human computing agents and mechanical computing devices; the
distinctive feature of the latter is that they can operate in parallel.

The analysis leads to axioms for discrete dynamical systems (representing
human and machine computations) and allows the reduction of models of these
axioms to Turing machines. Cellular automata and a variety of artificial neural
nets can be shown to satisfy the axioms for machine computations.
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Abstract. We present the definition and a normal form of a class of
operators on sets of natural numbers which generalize the enumeration
operators.

1 Introduction

In his book [1–p.145] Rogers gives the following intuitive explanation of the
notion of enumeration reducibility:

Let sets A and B be given. . . . To put it as briefly as possible: A is
enumeration reducible to B if there is an effective procedure for getting
an enumeration of A from any enumeration of B.

On the next page Rogers continues with the formal definition of the enu-
meration reducibility, where Wz denotes the c.e. set with Gödel number z and
Du denotes the finite set having canonical code u.

Definition 1. A is enumeration reducible to B (notation: A ≤e B) if

(∃z)(∀x)[x ∈ A ⇐⇒ (∃u)[〈x, u〉 ∈ Wz & Du ⊆ B]].

A is enumeration reducible to B via z if

(∀x)[x ∈ A ⇐⇒ (∃u)[〈x, u〉 ∈ Wz & Du ⊆ B]].

Finally Rogers defines for every z the enumeration operator Φz : P(IN) →
P(IN).

Definition 2. Φz(X) = Y if Y ≤e X via z.

Though the relationship of the intuitive definition with the formal one is well
explained in [1] it is tempting to formalize the intuitive definition in a more
direct way. Consider again the sets A and B. To get an enumeration of B we
need an oracle X and if we have such an enumeration relative to X than B will
be c.e. in X, so B = WX

b for some b ∈ IN, where WX
b denotes the domain of

the b-th Oracle Turing Machine using as oracle the characteristic function of X.
From the intuitive remarks it follows that if A ≤e B, and B = WX

b , then there
exists an a such that A = WX

a and we can obtain such an a from b in a way
which does not depend on the oracle X. So it seems reasonable to consider the
following definition of a class of operators which we call uniform operators.
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Definition 3. A mapping Γ : P(IN) → P(IN) is called uniform operator if there
exists a total function γ on the natural numbers such that for all b ∈ IN and
X ⊆ IN we have that Γ (WX

b ) = WX
γ(b).

The following result shows that the intuitive remarks quoted at the beginning
correspond exactly to the formal definition of the enumeration operators.

Theorem 4. The uniform operators coincide with the enumeration operators.

The theorem above can be considered as a uniform version of a result of
Selman [2].

Theorem 5 (Selman).

A ≤e B ⇐⇒ ∀X(B is c.e. in X ⇒ A is c.e. in X).

Selman’s theorem is generalized by Case [3] and Ash [4]. Following the same
fashion we come to the following definition.

Definition 6. Let n, k ∈ IN. A mapping Γ : P(IN) → P(IN) is uniform operator
of type (n → k) if there exists a total function γ on the natural numbers such
that for all b ∈ IN and X ⊆ IN we have that Γ (WX(n)

b ) = WX(k)

γ(b) .

The characterization of the uniform operators of type (n → k) uses the notion
of enumeration jump defined in Cooper [5] and further studied by McEvoy [6].
Here we shall use the following definition of the e-jump which is m-equivalent
to the original one, see [6]:

Definition 7. Given a set A, let K0
A = {〈x, z〉 : x ∈ Φz(A)}. Define the e-jump

A′
e of A to be the set K0

A ⊕ (IN \ K0
A).

For any set A by A
(n)
e we shall denote the n-th e-jump of A.

Theorem 8. 1. Let k < n. Then the uniform operators of type (n → k) coin-
cide with the constant mappings λB.S, where S is some Σ0

k+1 set.
2. Let n ≤ k. Then the uniform operators of type (n → k) are exactly those

mappings of Γ : P(IN) → P(IN) for which there exists an enumeration oper-
ator Φ such that for all B ⊆ IN, Γ (B) = Φ((B ⊕ ∅(n))(k−n)

e ).

Finally let us consider the general case.

Definition 9. Let k0 < · · · < kr and k be natural numbers. A mapping Γ :
P(IN)(r+1) → P(IN) is a uniform operator of type (k0, . . . , kr → k) if there exists
a function γ : INr+1 → IN such that for all b0, . . . , br ∈ IN and X ⊆ IN,

Γ (WX(k0)

b0 , . . . ,WX(kr)

br
) = WX(k)

γ(b0,...,br).

Let us fix the natural numbers k0, . . . , kr. Denote by k̄ the sequence k0, . . . , kr.
Given sets of natural numbers B0, . . . , Br, we define the set P(k)

k̄
(B0, . . . , Br) by

induction on k.
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Definition 10. (i) Set

P(0)

k̄
(B0, . . . , Br) =

{
B0, if k0 = 0,
∅, otherwise.

(ii) Let

P(k+1)

k̄
(B0, . . . , Br) =

{
(P(k)

k̄
(B0, . . . , Br))′

e, if k + 1 �∈ {k1, . . . , kr},
(P(k)

k̄
(B0, . . . , Br))′

e ⊕Bi, if k + 1 = ki.

For example, for any two natural numbers n and k and any B ⊆ IN we have
that

P(k)
n (B) =

{
∅(k), if k < n,

(∅(n) ⊕B)(k−n)
e , if n ≤ k.

The theorem below is our main result.

Theorem 11. 1. The uniform operators of type (k0, . . . , kr → k) are exactly
those mappings Γ : P(IN)r+1 → P(IN) for which there exists an enumeration
operator Φ such that for all subsets B0, . . . , Br of IN,

Γ (B0, . . . , Br) = Φ(P(k)
k0,...,kr

(B0, . . . , Br)).

2. For every uniform operator Γ of type (k0, . . . , kr → k) there exists a total
computable function γ(b0, . . . , br) such that for all b0 . . . , br ∈ IN and X ⊆ IN,

Γ (WX(k0)

b0 , . . . ,WX(kr)

br
) = WX(k)

γ(b0,...,br).

In the rest of the paper we present a proof of Theorem 11.

2 Regular Enumerations

The proof of Theorem 11 uses the technique of the regular enumerations, pre-
sented in [7] and [8].

Let us consider a sequence {Bi} of sets of natural numbers.
Roughly speaking a k-regular enumeration f is a kind of generic function

such that for all i ≤ k, Bi is computably enumerable in f (i) uniformly in i.
Let f be a total mapping on IN. We define for every i, e, x the relation f |=i

Fe(x) by induction on i:

Definition 12. (i) f |=0 Fe(x) ⇐⇒ ∃v(〈x, v〉 ∈ We & (∀u ∈ Dv)(f((u)0)
= (u)1));

(ii)

f |=i+1 Fe(x) ⇐⇒ ∃v(〈x, v〉 ∈ We & (∀u ∈ Dv)((u = 〈eu, xu, 0〉 &
f |=i Feu

(xu)) ∨ (u = 〈eu, xu, 1〉 & f �|=i Feu
(xu)))).

Set f |=i ¬Fe(x) ⇐⇒ f �|=i Fe(x).
The following lemma can be easily proved by induction on i:
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Lemma 13. For every i there exists a total computable function hi(a) such that
for all a,

W f(i)

a = {x : f |=i Fhi(a)(x)}.

In what follows we shall use the term finite part for finite mappings of IN into
IN defined on finite segments [0, q− 1] of IN. Finite parts will be denoted by the
letters τ, δ, ρ. If dom(τ) = [0, q − 1], then let lh(τ) = q.

We shall suppose that an effective coding of all finite sequences and hence
of all finite parts is fixed. Given two finite parts τ and ρ we shall say that τ is
less than or equal to ρ if the code of τ is less than or equal to the code of ρ.
By τ ⊆ ρ we shall denote that the partial mapping ρ extends τ and say that ρ
is an extension of τ . For any τ , by τ � n we shall denote the restriction of τ on
[0, n− 1].

Set for every i, Bi = IN ⊕Bi.
Below we define for every i the i-regular finite parts.
The 0-regular finite parts are finite parts τ such that dom(τ) = [0, 2q+1] and

for all odd z ∈ dom(τ), τ(z) ∈ B0.
If dom(τ) = [0, 2q+ 1], then the 0-rank |τ |0 of τ is equal to the number q+ 1

of the odd elements of dom(τ). Notice that if τ and ρ are 0-regular, τ ⊆ ρ and
|τ |0 = |ρ|0, then τ = ρ.

For every 0-regular finite part τ , let Bτ
0 be the set of the odd elements of

dom(τ).
Given a 0-regular finite part τ , let

τ �0 Fe(x) ⇐⇒ ∃v(〈x, v〉 ∈ We & (∀u ∈ Dv)(τ((u)0) . (u)1))

τ �0 ¬Fe(x) ⇐⇒ ∀(0-regular ρ)(τ ⊆ ρ ⇒ ρ ��0 Fe(x)).

Proceeding by induction, suppose that for some i we have defined the i-
regular finite parts and for every i-regular τ – the i-rank |τ |i of τ , the set Bτ

i

and the relations τ �i Fe(x) and τ �i ¬Fe(x). Suppose also that if τ and ρ are
i-regular, τ ⊆ ρ and |τ |i = |ρ|i, then τ = ρ.

Set Xi
j = {ρ : ρ is i-regular & ρ �i F(j)0((j)1)}.

Given a finite part τ and a set X of i-regular finite parts, let μi(τ,X) be the
least extension of τ belonging to X if any, and μi(τ,X) be the least i-regular
extension of τ otherwise. We shall assume that μi(τ,X) is undefined if there is
no i-regular extension of τ .

A normal i-regular extension of an i-regular finite part τ is any i-regular finite
part ρ ⊇ τ such that |ρ|i = |τ |i + 1.

Let τ be a finite part defined on [0, q− 1] and r ≥ 0. Then τ is (i+1)-regular
with (i + 1)-rank r + 1 if there exist natural numbers

0 < n0 < l0 < m0 < b0 < n1 < l1 < m1 < b1 · · · < nr < lr < mr < br < nr+1 =q

such that τ � n0 is an i-regular finite part with i-rank equal to 1 and for all j,
0 ≤ j ≤ r, the following conditions are satisfied:
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a) τ � lj is a normal i-regular extension of τ � nj ;
b)

τ � mj =
{
μi(τ � (lj + 1), Xi

〈p,lj〉), if τ(nj) . 〈i + 1, p〉 + 1,
a normal i-regular extension of τ � lj , otherwise;

c)

τ � bj =
{
μi(τ � (mj + 1), Xi

〈p,q〉), if τ(mj) . 〈p, q〉 + 1,
a normal i-regular extension of τ � mj , if τ(mj) . 0;

d) τ(bj) ∈ Bi+1;
e) τ � nj+1 is a normal i-regular extension of τ � bj .

The following lemma shows that the (i + 1)-rank is well defined.

Lemma 14. Let τ be an (i + 1)-regular finite part. Then

1. Let n′
0, l

′
0,m

′
0, b

′
0, . . . , n

′
p, l

′
p,m

′
p, b

′
p, n

′
p+1 and n0, l0,m0, b0, . . . , nr, lr,mr, br,

nr+1 be two sequences of natural numbers satisfying a)–e). Then r=p,np+1 =
n′
p+1 and for all j ≤ r, nj = n′

j , lj = l′j ,mj = m′
j and bj = b′

j.
2. If ρ is (i + 1)-regular, τ ⊆ ρ and |τ |i+1 = |ρ|i+1, then τ = ρ.
3. τ is i-regular and |τ |i > |τ |i+1.

Let τ be (i + 1)-regular and n0, l0,m0, b0, . . . , nr, lr,mr, br,nr+1 be the se-
quence satisfying a)–e). Then let Bτ

i+1 = {b0, . . . , br} and Mτ
i+1 = {m0, . . . ,mr}.

To conclude with the definition of the regular finite parts, let for every (i+1)-
regular finite part τ

τ �i+1 Fe(x) ⇐⇒ ∃v(〈x, v〉 ∈ We & (∀u ∈ Dv)((u = 〈eu, xu, 0〉 & τ �i

Feu
(xu)) ∨ (u = 〈eu, xu, 1〉 & τ �i ¬Feu

(xu)))).

τ �i+1 ¬Fe(x) ⇐⇒ (∀(i + 1)-regular ρ)(τ ⊆ ρ ⇒ ρ ��i+1 Fe(x)).

Definition 15. Let f be a total mapping of IN in IN. Then f is a k-regular
enumeration (with respect to {Bi}) if the following conditions hold:

(i) For every finite part δ ⊆ f , there exists a k-regular extension τ of δ such
that τ ⊆ f .

(ii) If i ≤ k and z ∈ Bi, then there exists an i-regular τ ⊆ f such that z ∈ τ(Bτ
i ).

(iv) If i < k, then for every pair 〈p, q〉 of natural numbers, there exists an i + 1-
regular finite part τ ⊆ f such that for some m ∈ Mτ

i+1, τ(m) . 〈p, q〉 + 1.

Clearly, if f is a k-regular enumeration and i ≤ k, then for every δ ⊆ f , there
exists an i-regular τ ⊆ f such that δ ⊆ τ . Moreover there exist i-regular finite
parts of f of arbitrary large rank.

Given a regular f , let for i ≤ k,Bf
i = {b : (∃τ ⊆ f)(τ is i-regular & b ∈ Bτ

i )}.
Clearly f(Bf

i ) = Bi.
Now let us turn to the properties of the regular finite parts and of the regular

enumerations.
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3 Properties of the Regular Enumerations

First of all, notice that the clause (iv) of the definition of the regular enumer-
ations ensures that a k-regular enumeration f is generic with respect to the
family {Xi

j : i < k, j ∈ IN}. So we have the following Truth Lemma:

Lemma 16. Let f be a k-regular enumeration. Then

1. For all i ≤ k, f |=i Fe(x) ⇐⇒ (∃τ ⊆ f)(τ is i-regular & τ �i Fe(x)).
2. For all i < k, f |=i ¬Fe(x) ⇐⇒ (∃τ ⊆ f)(τ is i-regular & τ �i ¬Fe(x)).

Let us define for every natural k the set Pk by induction on k:

Definition 17. (i) P0 = B0;
(ii) Pk+1 = (Pk)′

e ⊕Bk+1.

Denote by Ri the set of all i-regular finite parts.
For j ∈ IN let μi(τ, j) . μi(τ,Xi

j),

Y i
j = {τ : (∃ρ ⊇ τ)(ρ is i-regular & ρ �i F(j)0((j)1))}

Zi
j = {τ : τ is i-regular & τ �i ¬F(j)0((j)1)}.

Proposition 18. For every i ∈ IN the following assertions hold:

1. There exists an enumeration operators Ri such that for every sequence {Bi}
of sets of natural numbers, Ri = Ri(Pi).

2. There exist computable functions xi(j) and yi(j) such that for every j and
every sequence {Bi} of sets of natural numbers,

Xi
j = Φxi(j)(Pi) and Y i

j = Φyi(j)(Pi).

3. There exists a computable function zi(j) such that for every j and every
sequence {Bi} of sets of natural numbers,

Zi
j = {zi(j)}P

′
i .

4. There exists an Oracle Turing Machine mi such that for every sequence {Bi}
of sets of natural numbers,

μi = {mi}P
′
i .

The following proposition is important for the proof of Theorem 11.

Proposition 19. For every i ∈ IN there exists an Oracle Turing Machine bi
such that for every sequence {Bi} of sets of natural numbers and every k-regular
with respect to {Bi} enumeration f ,

(∀i ≤ k)(Bi = W f(i)

bi
).
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Proof. We shall define the machines bi by induction on i. Clearly for every se-
quence {Bi} of sets of natural numbers and every k-regular with respect to {Bi}
enumeration f , B0 = {x : 2x+ 1 ∈ B0}, B0 = f(Bf

0 ) and Bf
0 is equal to the set

of all odd numbers.
So we may define the machine b0 as follows:

input X;
Y:= 0;
while (2X + 1 =\= f(2Y+1)) do
Y := Y+1;

end.

Suppose that i < k and the machines b0, . . . , bi are defined. Following the
definition of Pi we can define an oracle machine p′ which given a sequence {Bi}
and a k-regular f computes the characteristic function of P ′

i using f (i+1) as an
oracle. So it is sufficient to show that we can enumerate the set Bi by means of
P ′
i and f , uniformly in P ′

i and f .
Since f is (i + 1)-regular, for every finite part δ of f there exists an (i + 1)-

regular τ ⊆ f such that δ ⊆ τ . Hence there exist natural numbers

0 < n0 < l0 < m0 < b0 < n1 < l1 < m1 < b1 < · · · < nr < lr < mr < br < . . . ,

such that for every r ≥ 0, the finite part τr = f � nr+1 is (i + 1)-regular and
n0, l0,m0, b0, . . . , nr, lr,mr, br, nr+1 are the numbers satisfying the conditions
a)–e) from the definition of the (i + 1)-regular finite part τr. Clearly Bf

i+1 =
{b0, b1 . . . }. We shall describe a procedure which lists n0, l0,m0, b0, . . . in an
increasing order using the oracles P ′

i and f .
Clearly f � n0 is i-regular and |f � n0|i = 1. By Lemma 18 Ri is uniformly

computable in P ′
i . Using f we can generate consecutively the finite parts f � q

for q = 1, 2 . . . . By Lemma 14 f � n0 is the first element of this sequence which
belongs to Ri. Clearly n0 = lh(f � n0).

Suppose that r ≥ −1 and n0, l0,m0, b0, . . . , nr, lr,mr, br, nr+1 have already
been listed. Since f � lr+1 is a normal i-regular extension of f � nr+1 it is the
shortest finite part of f which extends f � nr+1 and belongs to Ri. So we can
find the number lr+1. Now, we have to consider two cases:

a) f(nr+1) = 0 or f(nr+1) = 〈j, p〉+1, where j �= i+1. Then again f � mr+1

is the shortest finite part of f which belongs to Ri and extends f � lr+1.
b) f(nr+1) = 〈i + 1, p〉 + 1. Then f � mr+1 = μi(f � (lr+1 + 1), Xi

〈p,lr+1〉).
In both cases we can find f � mr+1 effectively in f and P ′

i . Clearly mr+1 =
lh(f � mr+1). From mr+1 we reach br+1 in a way similar to the previous one.
Finally, from br+1 we reach nr+2 using the fact that f � nr+2 is a normal i-
regular extension of f � br+1. Now we have a machine which decides the set
Bf
i+1 using the oracle f (i+1). From here, since B = f(Bf

i+1) we can easily obtain
the machine bi+1. *+
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4 Constructions of Regular Enumerations

Suppose that a sequence {Bi} of sets of natural numbers is fixed.
Given a finite mapping τ defined on [0, q − 1], by τ ∗ z we shall denote the

extension ρ of τ defined on [0, q] and such that ρ(q) . z.

Lemma 20. Let τ be an i-regular finite part defined on [0, q−1]. Let x, y1, . . . yi ∈
IN and z0 ∈ B0, . . . , zi ∈ Bi. There exists a normal i-regular extension ρ of τ
such that:

1. ρ(q) . x;
2. (∀j < i)(yj+1 ∈ ρ(Mρ

j+1)).
3. (∀j ≤ i)(zj ∈ ρ(Bρ

j )).

Proof. Induction on i. The assertion is obvious for i = 0. Let τ be an (i +
1)-regular finite part s.t. dom(τ) = [0, q − 1]. Let x, y1, . . . , yi+1 ∈ IN, z0 ∈
B0, . . . , zi+1 ∈ Bi+1 be given. Suppose that |τ |i+1 = r+1 and n0, l0,m0, b0, . . . , nr,
lr,mr, br, nr+1 are the natural numbers satisfying the conditions a)–e) from the
definition of the (i+1)-regular finite parts. Notice that nr+1 = q. Since τ is also
i-regular, by the induction hypothesis there exists a normal i-regular extension
ρ0 of τ ∗ x such that (∀j < i)(yj+1 ∈ ρ(Mρ

j+1)) and (∀j ≤ i)(zj ∈ ρ(Bρ
j )). Let

lr+1 = lh(ρ0). Clearly there exists a normal i-regular extension δ of ρ0 ∗ 0 and
hence the function μi(ρ0 ∗ 0, Xi

p) is defined for all p ∈ IN. Set

ρ1 =
{
δ, if x = 0 ∨ (∃j)(x = 〈j, p〉 + 1 & j �= i + 1),
μi(ρ0 ∗ 0, Xi

p), if x = 〈i + 1, p〉.

Set mr+1 = lh(ρ1). Let ν be a normal extension of ρ1 ∗ yi+1 and set

ρ2 =
{
ν, if yi+1 = 0,
μi(ρ0 ∗ 0, Xi

yi+1−1), if yi+1 > 0.

Set br+1 = lh(ρ2) and let ρ be a normal i-regular extension of ρ2 ∗ zi+1. *+

Corollary 21. If i ≤ k, then every i-regular finite part of rank 1 can be extended
to a k-regular finite part of rank 1 and to a k-regular enumeration.

Using similar arguments we may prove and the following proposition.

Proposition 22. Let δ be an i-regular finite part. Let y = 0 or y = 〈j, p〉 + 1
for some j > i. There exists a normal i-regular extension ρ of δ ∗ y such that
(∀x ∈ dom(ρ))(x > lh(δ) ⇒ ρ(x) . 0).

Corollary 23. For every i ∈ IN there exists a canonical i-regular finite part δi
of rank 1 such that (∀x ∈ dom(δi))(δi(x) . 0).

Now we are ready to present a proof of Theorem 11.



Uniform Operators 449

Proof (of Theorem 11).
Let us fix natural numbers k0 < · · · < kr and k. Given sets A0, . . . , Ar of

natural numbers, we define the sequence {Bi} by setting

Bi =
{
Aj , if i = kj ,
∅, if i �∈ {k0, . . . , kr}.

We call a finite part or an enumeration i-regular with respect to A0, . . . , Ar

if it is i-regular with respect to the sequence {Bi}.
As in the previous sections by Bi we denote IN⊕Bi and by Pi we denote the

set
(...((B0)′

e ⊕B1)′
e ⊕ · · · ⊕Bi− 1)′

e ⊕Bi.

Clearly there exist computable functions p1(i) and p2(i) which do not depend
on the choice of the sets A0, . . . , Ar and such that

Pi = Φp1(i)(P
(i)
k0,...,kr

(A0, . . . , Ar)) and P(i)
k0,...,kr

(A0, . . . , Ar) = Φp2(i)(Pi).

Now let us consider a uniform operator Γ of type (k0, . . . , kr → k). Let
γ be the respective index function of Γ . By Proposition 19 there exist Oracle
Turing Machines bk0 , . . . , bkr

such that for every i ≥ kr, every sequence of sets
A0, . . . , Ar and every i-regular enumeration f ,

A0 = W f(k0)

bk0
, . . . , Ar = W f(kr)

bkr
.

Let b = γ(bk0 , . . . , bkr
). Clearly for every sequence A0, . . . , Ar of sets, for every

i ≥ kr and every i-regular enumeration f we have that

Γ (A0, . . . , Ar) = W f(k)

b .

Therefore there exists a c such that for every sequence A0, . . . , Ar of sets, every
i ≥ kr and every i-regular enumeration f ,

(∀n)(f(n) ∈ Γ (A0, . . . , Ar) ⇐⇒ f |=k Fc(n)).

Consider the canonical k-regular finite part δk of rank 1. Set n0 = lh(δk).
Let δ be a normal k-regular extension of δk ∗ (〈k + 1, c〉 + 1) such that (∀x ∈
dom(δ))(x > lh(δk) ⇒ δ(x) . 0). Let lh(δ) = l0. We shall show that

x ∈ Γ (A0, . . . , Ar) ⇐⇒ (∃τ ⊇ δ)(τ is k-regular with respect to A0, . . . , Ar &
τ(l0) . x & τ �k Fc(l0)).

Indeed, suppose that there exist a τ ⊇ δ which is k-regular with respect to
A0, . . . .Ar, τ(l0) . x and τ �k Fc(l0). Then there exists a max(kr, k+1)-regular
with respect to A0, . . . , Ar enumeration f which extends the least such τ . Clearly
f |=k Fc(l0) and f(l0) . x. So, x ∈ Γ (A0, . . . , Ar).

Suppose now that x ∈ Γ (A0, . . . , Ar). Consider a max(kr, k+1)-regular enu-
meration f which extends δ ∗ x. Then f(l0) . x and hence f |=k Fc(l0). Then
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there exists a τ ⊆ f such that τ �k Fc(l0). Clearly we may assume that δ ⊆ τ
and τ(l0) . x.

From here using Proposition 18 one can find easily an enumeration operator
Φ such that for all A1, . . . , Ar,

Γ (A0, . . . , Ar) = Φ(P(k)
k0,...,kr

(A0, . . . , Ar)).

By this we have proved the nontrivial part of the theorem. The proof of the
rest is routine. *+
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Abstract. Two properties of the Co-spectrum of the Joint spectrum of
finitely many abstract structures are presented — a Minimal Pair type
theorem and the existence of a Quasi-Minimal degree with respect to the
Joint spectrum of the structures.

1 Introduction

Let A be a countable abstract structure. The Degree spectrum DS(A) of A is
the set of all enumeration degrees generated by all enumerations of A. The Co-
spectrum of the structure A is the set of all enumeration degrees which are
lower bounds of the DS(A). A typical example of a spectrum is the cone of
the total degrees greater then or equal to some enumeration degree a and the
respective Co-spectrum which is equal to the set all degrees less than or equal
to a. There are examples of structures with more complicated degree spectra
e.g. [5, 4, 1, 3, 7]. The properties of the Degree spectra are presented in [7] which
show that the degree spectra behave with respect to their Co-spectra like the
cones of enumeration degrees.

In [8] a generalization of the notions of Degree spectra and Co-spectra for
finitely many structures is presented. Let A0, . . . ,An be countable abstract struc-
tures. The Joint spectrum of A0, . . . ,An is the set DS(A0,A1, . . . ,An) of all
elements of DS(A0), such that a(k) ∈ DS(Ak), for each k ≤ n.

Here we shall prove two properties of the Co-spectrum of DS(A0, . . . ,An) —
the Minimal Pair type theorem and the existence of a quasi-minimal degree with
respect to the Joint spectrum.

The proofs use the technique of regular enumerations introduced in [6], com-
bined with partial generic enumerations used in [7].

2 Preliminaries

Let A = (IN;R1, . . . , Rk) be a partial structure over the set of all natural numbers
IN, where each Ri is a subset of INri and = and �= are among R1, . . . , Rk.

S.B. Cooper, B. Löwe, and L. Torenvliet (Eds.): CiE 2005, LNCS 3526, pp. 451–460, 2005.
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An enumeration f of A is a total mapping from IN onto IN.
For every A ⊆ INa define f−1(A) = {〈x1 . . . xa〉 : (f(x1), . . . , f(xa)) ∈ A}.

Denote by f−1(A) = f−1(R1) ⊕ · · · ⊕ f−1(Rk).
For any sets of natural numbers A and B the set A is enumeration reducible

to B (A ≤e B) if there is an enumeration operator Γz such that A = Γz(B). By
de(A) we denote the enumeration degree of the set A and by De the set of all
enumeration degrees. The set A is total if A ≡e A

+, where A+ = A⊕ (IN\A). A
degree a is called total if a contains a total set. The jump operation “′” denotes
here the enumeration jump introduced by Cooper [2].

Definition 1. The Degree spectrum of A is the set

DS(A) = {de(f−1(A)) : f is an enumeration of A} .

Let B0, . . . , Bn be arbitrary subsets of IN. Define the set P(B0, . . . , Bi) as follows:

1. P(B0) = B0;
2. If i < n, then P(B0, . . . , Bi+1) = (P(B0, . . . , Bi))′ ⊕Bi+1.

In the construction of minimal pair we shall use a modification of the “type
omitting” version of Jump Inversion Theorem from [6]. In fact, the result follows
from the proof of the Theorem 1.7 in [6].

Theorem 2 ([6]). Let {Ak
r}r, k = 0, . . . , n be a sequence of subsets of IN such

that for every r and for all k, 0 ≤ k < n, Ak
r �≤e P(B0, . . . , Bk). Then there

exists a total set F having the following properties:

1. Bi ≤e F
(i), for all i ≤ n;

2. Ak
r �≤e F

(k), for all r and all k < n.

Definition 3. A set F of natural numbers is called quasi-minimal over B0 if
the following conditions hold:

1. B0 <e F ;
2. For any total set A ⊆ IN, if A ≤e F , then A ≤e B0.

In the construction of the quasi-minimal degree we shall use the following fact:

Theorem 4. There exists a set of natural numbers F having the following prop-
erties:

1. B0 <e F ;
2. For all 1 ≤ i ≤ n, Bi ≤e F

(i);
3. For any total set A, if A ≤e F , then A ≤e B0.

The set F from Theorem 4 is quasi-minimal over B0. We shall prove this theorem
in the last section using the technique of partial regular enumerations.
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3 Joint Spectra of Structures

Let A0, . . . ,An be abstract structures on IN.

Definition 5. The Joint spectrum of A0, . . . ,An is the set

DS(A0,A1, . . . ,An) = {a : a ∈ DS(A0),a′ ∈ DS(A1), . . . ,a(n) ∈ DS(An)} .

Definition 6. For every k ≤ n, the k th Jump spectrum of A0, . . . ,An is the set

DSk(A0, . . . ,An) = {a(k) : a ∈ DS(A0, . . . ,An)} .

In [8] is shown that DSk(A0, . . . ,An) is closed upwards, i.e. if a(k) ∈ DSk(A0,
. . . , An), b is a total e-degree and a(k) ≤ b, then b ∈ DSk(A0, . . . , An).

Definition 7. The kth Co-spectrum of A0, . . . ,An, k ≤ n, is the set of all lower
bounds of DSk(A0, . . . ,An), i.e.

CSk(A0, . . . ,An) = {b : b ∈ De&(∀a ∈ DSk(A0, . . . ,An))(b ≤ a)} .

From [8] we know that the kth Co-spectrum for k ≤ n depends only of the first
k structures:

CSk(A0, . . . ,Ak, . . . ,An) = CSk(A0, . . . ,Ak) .

Let f0, . . . , fn be enumerations of A0, . . . ,An. Denote by f̄ = (f0, . . . , fn) and
P f̄
k = P(f−1

0 (A0), . . . , f−1
k (Ak)), k = 0, . . . , n.

Let W0, . . . ,Wz, . . . be a Gödel’s enumeration of the c.e. sets and Dv be the
finite set having canonical code v.

For every i ≤ n, e and x in IN define the relations f̄ |=i Fe(x) and f̄ |=i ¬Fe(x)
by induction on i:

1. f̄ |=0 Fe(x) ⇐⇒ (∃v)(〈v, x〉 ∈ We & Dv ⊆ f−1
0 (A0));

2. f̄ |=i+1 Fe(x) ⇐⇒ (∃v)(〈v, x〉 ∈ We & (∀u ∈ Dv)(u = 〈0, eu, xu〉 &
f̄ |=i Feu

(xu) ∨ u = 〈1, eu, xu〉 & f̄ |=i ¬Feu
(xu) ∨ u = 〈2, xu〉 &

xu ∈ f−1
i+1(Ai+1)));

3. f̄ |=i ¬Fe(x) ⇐⇒ f̄ �|=i Fe(x).

It is easy to check that for any A ⊆ IN and k ≤ n

A ≤e P f̄
k ⇐⇒ (∃e)(A = {x : f̄ |=k Fe(x)}) .

The forcing conditions which we shall call finite parts are n + 1 tuples τ̄ =
(τ0, . . . , τn) of finite mappings τ0, . . . , τn of IN in IN.

For any i ≤ n, e and x in IN and every finite part τ̄ we define the forc-
ing relations τ̄ �i Fe(x) and τ̄ �i ¬Fe(x) following the definition of relation
“|=i”.
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Definition 8. 1. τ̄ �0 Fe(x) ⇐⇒ (∃v)(〈v, x〉 ∈ We & Dv ⊆ τ−1
0 (A0));

2. τ̄ �i+1 Fe(x) ⇐⇒ ∃v(〈v, x〉 ∈ We & (∀u ∈ Dv)(u = 〈0, eu, xu〉 &
τ̄ �i Feu

(xu) ∨ u = 〈1, eu, xu〉 & τ̄ �i ¬Feu
(xu) ∨ u = 〈2, xu〉 &

xu ∈ τ−1
i+1(Ai+1)));

3. τ̄ �i ¬Fe(x) ⇐⇒ (∀ρ̄ ⊇ τ̄)(ρ̄ ��i Fe(x)).

For any i ≤ n, e, x ∈ IN denote by Xi
〈e,x〉 = {ρ̄ : ρ̄ �i Fe(x)}.

Definition 9. An enumeration f̄ of A0, . . . ,An is i-generic if for every j < i,
e, x ∈ IN

(∀τ̄ ⊆ f̄)(∃ρ̄ ∈ Xj
〈e,x〉)(τ̄ ⊆ ρ̄) =⇒ (∃τ̄ ⊆ f̄)(τ̄ ∈ Xj

〈e,x〉) .

In [8] the following properties of the k-generic enumertions are shown:

1. If f̄ is an k-generic enumeration, then

f̄ |=k Fe(x) ⇐⇒ (∃τ̄ ⊆ f̄)(τ̄ �k Fe(x)) .

2. If f̄ is an (k + 1)-generic enumeration, then

f̄ |=k ¬Fe(x) ⇐⇒ (∃τ̄ ⊆ f̄)(τ̄ �k ¬Fe(x)) .

Definition 10. The set A ⊆ IN is forcing k-definable on A0, . . . ,An if there
exist a finite part δ̄ and e ∈ IN such that

x ∈ A ⇐⇒ (∃τ̄ ⊇ δ̄)(τ̄ �k Fe(x)) .

In [8] the following characterization of the sets which generates the elements of
the kth Co-spectrum of DS(A0, . . . ,An) is given:

Theorem 11 ([8]). For every A ⊆ IN, the following are equivalent:

1. de(A) ∈ CSk(A0, . . . ,An).
2. A ≤e P f̄

k , for all f̄ = (f0, . . . , fk) enumerations of A0, . . . , Ak.
3. A is forcing k-definable on A0, . . . ,An.

Theorem 12. Let {Xk
r }r, k = 0, . . . , n be n + 1 sequences of sets of natural

numbers. There exists a (n + 1)-generic enumeration f̄ of A0, . . . ,An such that
for any k ≤ n and for all r ∈ IN, if the set Xk

r is not forcing k-definable on
A0, . . . ,An, then Xk

r �≤e P f̄
k .

4 Minimal Pair Theorem

In [7] a Minimal Pair Theorem for Degree spectrum of a structure A is presented.
Using the technique of splitting generic enumerations it is proven there that for
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each constructive ordinal α there exist elements f and g of DS(A) such that for
any enumeration degree a and any β < α

a ≤ f(β) & a ≤ g(β) ⇒ a ∈ CSβ(A) .

We shall prove an analogue of the Minimal Pair Theorem for the Joint spectrum.

Theorem 13. For all structures A0,A1, . . . ,An, there exist enumeration degrees
f and g in DS(A0,A1, . . . ,An), such that for any enumeration degree a and
k ≤ n:

a ≤ f(k) & a ≤ g(k) ⇒ a ∈ CSk(A0,A1, . . . ,An) .

Proof. We shall construct two total sets F and G, such that de(F ) ∈ DS(A0,
. . . , An), de(G) ∈ DS(A0, . . . ,An) and for each k ≤ n, if a set X, X ≤e F

(k) and
X ≤e G

(k), then de(X) ∈ CSk(A0, . . . ,An). And take f = de(F ) and g = de(G).
First we construct enumerations f̄ and h̄ of A0, . . . ,An such that for any

k ≤ n, if a set A ⊆ IN, A ≤e P f̄
k and A ≤e P h̄

k , then A is a forcing k-definable
on A0, . . . ,An.

Let g0, . . . , gn be arbitrary enumerations of A0, . . . , An. By Theorem 2 for
B0 = g−1

0 (A0), . . . , Bn = g−1
n (An) there exists a total set F , such that:

g−1
0 (A0) ≤e F, g

−1
1 (A1) ≤e F

′,. . . , g−1
n (An) ≤e F

(n). Since DS(A0,A1, . . . ,An) is
closed upwards, then de(F ) ∈ DS(A0,A1, . . . ,An), i.e. de(F ) ∈ DS(A0), de(F ′) ∈
DS(A1), . . . , de(F (n)) ∈ DS(An).

Hence, there exist enumerations h0, h1, . . . , hn of A0,A1, . . . , An, respectively,
such that h−1

0 (A0) ≡e F, h−1
1 (A1) ≡e F ′, . . . , h−1

n (An) ≡e F (n). Notice, that for
each k ≤ n, F (k) ≡e P h̄

k .
For each k ≤ n, let {Xk

r }r be the sequence of all sets enumeration reducible
to P h̄

k .
By Theorem 12 there is an (n+ 1)-generic enumeration f̄ such that for all r,

and all k = 0, . . . , n if the set Xk
r is not forcing k-definable then Xk

r �≤e P f̄
k .

Suppose now that the set A ≤e P f̄
k and A ≤e P h̄

k . Then A = Xk
r for some

r. From the omitting condition of f̄ it follows that A is forcing k-definable on
A0, . . . ,An.

Now we apply again the Theorem 2. Let B0 = f−1
0 (A0), . . . , Bn = f−1

n (An)
and Bn+1 = N . For each k ≤ n consider the sequence {Ak

r}r of these sets among
the sets {Xk

r }r, which are not forcing k-definable on A0, . . . ,An. From the choice
of the enumeration f̄ it follows that each of these sets Ak

r , A
k
r �≤e P f̄

k . Then by
Theorem 2 there is a total set G, such that

1. For all k ≤ n, f−1
k (Ai) ≤e G

(k);
2. For all r and all k ≤ n, Ak

r �≤e G
(k).

Note, that since G is a total set, and because of the fact that each spectrum
is closed upwards, we have that de(G) ∈ DS(A0), . . . , de(G(n)) ∈ DS(An), and
hence de(G) ∈ DS(A0, . . . ,An).
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Suppose now, that a set X, X ≤e F (k) and X ≤e G(k), k ≤ n. From X ≤e

F (k) and F (k) ≡e P h̄
k , it follows that X = Xk

r for some r. It is clear that X ≤e P f̄
k .

Otherwise from the choice of G it follows that X �≤e G(k). Hence X is forcing
k-definable on A0, . . . ,An. By the normal form of the sets which enumeration
degrees are in CSk(A0, . . . ,An), we have that de(X) ∈ CSk(A0, . . . ,An). *+

5 Quasi-minimal Degree

Given a set A of enumeration degrees denote by co(A) the set of all lower bounds
of A. Say that the degree q is quasi-minimal with respect to A if the following
conditions hold ([7]):

1. q �∈ co(A).
2. If a is a total degree and a ≥ q, then a ∈ A.
3. If a is a total degree and a ≤ q, then a ∈ co(A).

In [7] it is shown that there is a quasi-minimal degree q0 with respect to DS(A0),
i.e. q0 �∈ CS(A0) and for every total degree a: if a ≥ q0, then a ∈ DS(A0) and if
a ≤ q0, then a ∈ CS(A0).

We are going to prove the existence of a quasi-minimal degree with respect
to DS(A0,A1, . . . , An).

Theorem 14. For all structures A0,A1, . . . , An there exists an enumeration
degree q such that:

1. q′ ∈ DS(A1), . . . ,q(n) ∈ DS(An), q �∈ CS(A0,A1, . . . ,An);
2. If a is a total degree and a ≥ q, then a ∈ DS(A0,A1, . . . ,An);
3. If a is a total degree and a ≤ q, then a ∈ CS(A0,A1, . . . ,An).

Proof. Let q0 be a quasi-minimal degree q0 with respect to DS(A0) from [7].
Let B0 ⊆ IN, such that de(B0) = q0, and f1, . . . , fn be fixed total enumer-

ations of A1, . . . ,An. Set B1 = f−1
1 (A1), . . . , Bn = f−1

n (An). By Theorem 4
there is quasi-minimal over B0 set F , such that B0 <e F , Bi ≤e F (i), for each
1 ≤ i ≤ n, and moreover for any total set A, if A ≤e F , then A ≤e B0. We will
show that q = de(F ) is quasi-minimal with respect to DS(A0, . . . ,An).

Since q0 is quasi-minimal with respect to DS(A0), q0 �∈ CS(A0). But q0 < q
and thus q �∈ CS(A0). Hence q �∈ CS(A0,A1, . . . ,An).

For each 1 ≤ i ≤ n, the set F (i) is total and f−1
i (Ai) ≤e F

(i). Since any degree
spectrum is closed upwards it follows that de(F (i)) ∈ DS(Ai), i.e. q(i) ∈ DS(Ai).

Consider a total set X, such that X ≥e F . Then de(X) ≥ q0. From the fact
that q0 is quasi-minimal with respect to DS(A0) it follows that de(X) ∈ DS(A0).
Moreover for each 1 ≤ i ≤ n, X(i) ≥e F (i) ≥e f−1

i (Ai), and X(i) is a total set.
Then for each i ≤ n, de(X(i)) ∈ DS(Ai), and hence de(X) ∈ DS(A0, . . . ,An).

Suppose that X is a total set and X ≤e F . Then, from the choice of F ,
since X is total, X ≤e B0. Apply again the quasi-minimality of q0 and then
de(X) ∈ CS(A0). But CS(A0, . . . ,An) = CS(A0) and therefore de(X) ∈ CS(A0,
. . . ,An). *+

In the rest of the paper we shall present the proof of Theorem 4.
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6 Partial Regular Enumerations

Let B0, . . . , Bn be fixed sets of natural numbers. Combining the technique of
the (total) regular enumerations from [6] with the partial generic enumerations,
introduced in [7], we shall construct a partial regular enumeration f , which graph
will be quasi-minimal over the set B0 and such that Bi ≤e f (i), for 0 ≤ i ≤ n.
In [7] a partial generic enumeration of B0 is constructed, which is quasi-minimal
over B0. In addition, the enumeration f we are going to obtain, will code the
sets B1, . . . , Bn in its jumps (Bi ≤e f

(i)).

Definition 15. A partial enumeration f of B0 is a partial surjective mapping
from IN onto IN with the following properties:

1. For all odd x, if f(x) is defined, then f(x) ∈ B0;
2. For all y ∈ B0, there is an odd x, such that f(x) . y.

It is clear that if f is a partial enumeration of B0, then B0 ≤e f .
Let ⊥ �∈ IN.

Definition 16. A partial finite part τ is a finite mapping of IN into IN ∪ {⊥},
such that (∀x)(x ∈ dom(τ) & x is odd ⇒ (τ(x) = ⊥ ∨ τ(x) ∈ B0)).

If τ is a partial finite part and f is a partial enumeration of B0, say that

τ ⊆ f ⇐⇒ (∀x ∈ dom(τ))((τ(x) = ⊥ ⇒ f(x) is not defined ) &
(τ(x) �= ⊥ ⇒ τ(x) . f(x)) .

A 0-regular partial finite part is a partial finite part τ such that dom(τ) =
[0, 2q + 1] and for all odd z ∈ dom(τ), τ(z) ∈ B0 or τ(z) = ⊥. The 0-rank of τ ,
|τ |0 = q+1 we call the number of the odd elements of dom(τ). If ρ is a 0-regular
partial extention of τ we shall denote this by τ ⊆0 ρ. It is clear that if τ ⊆0 ρ
and |τ |0 = |ρ|0, then τ = ρ. Let

τ �0 Fe(x) ⇐⇒ ∃v(〈v, x〉 ∈ We & (∀u ∈ Dv)(u = 〈s, t〉, & τ(s) . t & t �= ⊥))

τ �0 ¬Fe(x) ⇐⇒ (∀ρ)(τ ⊆0 ρ ⇒ ρ ��0 Fe(x)) .

The (i + 1)-regular partial finite part τ , the (i + 1)-rank |τ |i+1 of τ and the
relations τ �i+1 Fe(x) and τ �i+1 ¬Fe(x) are defined by induction on i, in the
same way as in [6]. The only difference is that instead of i-regular finite parts
we use i-regular partial finite parts. Denote by Ri the set of all i-regular partial
finite parts.

For any i-regular finite part τ and any set X of i-regular finite parts, denote
by μi(τ,X) = μρ[τ ⊆ ρ & ρ ∈ Ri & ρ ∈ X] if any, and μi(τ,X) = μρ[τ ⊆
ρ & ρ ∈ Ri], otherwise.

Denote by Xi
〈e,x〉 = {ρ : ρ is i-regular & ρ �i Fe(x)}.

Let τ be a finite part and m ≥ 0. The finite part δ is called an i-regular m
omitting extension of τ if δ ⊇ τ , δ ∈ Ri, dom(δ) = [0, q − 1] and there exist
natural numbers q0 < · · · < qm < qm+1 = q such that:
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1. δ � q0 = τ .
2. For all p ≤ m, δ � qp+1 = μi(δ � (qp + 1), Xi

〈p,qp〉).

If δ and ρ are two i-regular m omitting extensions of τ and δ ⊆ ρ then δ = ρ.
Given an index j, by Si

j we shall denote the intersection Ri∩Γj(P(B0, . . . , Bi)),
where Γj is the jth enumeration operator.

Let τ be a finite part defined on [0, q− 1] and r ≥ 0. Then τ is (i+1)-regular
with (i + 1)-rank r + 1 if there exist natural numbers

0 < n0 < l0 < b0 < n1 < l1 < b1 · · · < nr < lr < br < nr+1 = q

such that τ � n0 is an i-regular finite part with i-rank equal to 1 and for all j,
0 ≤ j ≤ r, the following conditions are satisfied:

(a) τ � lj . μi(τ � (nj + 1), Si
j);

(b) τ � bj is an i-regular j omitting extension of τ � lj ;
(c) τ(bj) ∈ Bi+1;
(d) τ � nj+1 is an i-regular extension of τ � (bj + 1) with i-rank equal to

|τ � bj |i + 1.

If τ is an i-regular partial finite part, then τ is a j-regular partial finite part
for each j < i and |τ |j > |τ |i.

Definition 17. A partial regular enumeration is a partial enumeration, such
that:

1. For every partial finite part δ ⊆ f , there exists an n-regular partial extension
τ of δ such that τ ⊆ f .

2. If i ≤ n and z ∈ Bi, then there exists an i-regular partial finite part τ ⊆ f ,
such that z ∈ dom(τ).

If f is a partial regular enumeration, δ ⊆ f and i ≤ n, then there exists an
i-regular partial finite part τ of an arbitrary large rank such that δ ⊆ τ and
τ ⊆ f .

Denote by Pi = P(B0, . . . , Bi). It is clear that Ri ≤e Pi.

Definition 18. A partial enumeration f is i-generic if for any j < i and for
every enumeration reducible to Pj set S of j-regular partial finite parts the
following condition holds:

(∃τ ⊆ f)(τ ∈ S ∨ (∀ρ ⊇ τ)(ρ ∈ Ri ⇒ ρ �∈ S)) .

Proposition 19. Every partial regular enumeration is (i + 1)-generic enumer-
ation, for every i < n.

Proposition 20. Suppose that f is a partial regular enumeration. Then

1. For each i ≤ n, Bi ≤e f
(i).

2. If i < n, then f �≤e Pi.
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Definition 21. If f is a partial enumeration define:

f |=0 Fe(x) ⇐⇒ ∃v(〈v, x〉 ∈ We & (∀u ∈ Dv)(f((u)0) . (u)1)) .

Proof of Theorem 4. By Proposition 20 it is sufficient to show that there
exists a partial regular enumeration f which is quasi-minimal over B0.

We shall construct f as a union of n-regular partial finite parts δs such that
for all s, δs ⊆ δs+1 and |δs|n = s + 1. Suppose that for i ≤ n, σi is a recursively
in Bi enumeration of Bi.

Let δ0 be a 0-regular partial finite part such that |δ0|n = 1. Suppose that δs
is defined. Set z0 = σ0(s), . . . , zn = σn(s). We can construct effectively in P ′

n−1

a n-regular partial finite part ρ ⊇ δs such that |ρ|n = |δs|n+1, ρ(lh(δs)) = s and
z0 = ρ(x0) for some x0 ∈ B0, . . . , zn = ρ(xn) for some xn ∈ Bn. Set δs+1 = ρ.

The obtained enumeration f is surjective on IN and it is a union of n-regular
partial finite parts. From the construction is obvious that for every z ∈ Bi there
is an i-regular partial finite part τ of f , such that z ∈ dom(τ). Hence f is a partial
regular enumeration. By Proposition 19 f is (i + 1)-generic for each i < n.

Then by Proposition 20, for i ≤ n, Bi ≤ f (i). Moreover f is a partial 1-generic
enumeration and hence B0 <e f .

To prove that f is quasi-minimal over B0, it is sufficient to show that if ψ
is a total function and ψ ≤e f , then ψ ≤e B0. It is clear that for any total set
A ⊆ IN one can construct a total function ψ, ψ ≡e A. Let ψ be a total function
and ψ = Γe(f). Then

(∀x, y ∈ IN)(f |=0 Fe(〈x, y〉) ⇐⇒ ψ(x) . y) .

Consider the set

S0 = {ρ : ρ ∈ R0 & (∃x, y1 �= y2 ∈ IN)(ρ �0 Fe(〈x, y1〉) & ρ �0 Fe(〈x, y2〉))} .

Since S0 ≤e B0, we have that there exists a 0-regular partial finite part τ0 ⊆ f
such that either τ0 ∈ S0 or (∀ρ ⊇0 τ0)(ρ �∈ S0). Assume that τ0 ∈ S0. Then
there exist x, y1 �= y2 such that f |=0 Fe(〈x, y1〉) and f |=0 Fe(〈x, y2〉). Then
ψ(x) . y1 and ψ(x) . y2 which is impossible. So, (∀ρ ⊇0 τ0)(ρ �∈ S0).

Let

S1 = {ρ : ρ ∈ R0 & (∃τ ⊇0 τ0)(∃δ1 ⊇0 τ)(∃δ2 ⊇0 τ)(∃x, y1 �= y2)(τ ⊆0 ρ &
δ1 �0 Fe(〈x, y1〉) & δ2 �0 Fe(〈x, y2〉) & dom(ρ) = dom(δ1) ∪ dom(δ2)
&(∀x)(x ∈ dom(ρ) \ dom(τ) ⇒ ρ(x) . ⊥))} .

We have that S1 ≤e B0 and hence there exists a 0-regular partial finite part
τ1 ⊆ f such that either τ1 ∈ S1 or (∀ρ ⊇0 τ1)(ρ �∈ S1).

Assume that τ1 ∈ S1. Then there exists a 0-regular partial finite part τ such
that τ0 ⊆0 τ ⊆0 τ1 and for some δ1 ⊇0 τ , δ2 ⊇0 τ and x0, y1 �= y2 ∈ IN we have

δ1 �0 Fe(〈x0, y1〉) & δ2 �0 Fe(〈x0, y2〉) & dom(τ1) = dom(δ1) ∪ dom(δ2) &
& (∀x)(x ∈ dom(τ1) \ dom(τ) ⇒ τ1(x) . ⊥) .
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Let ψ(x0) . y. Then f |=0 Fe(〈x0, y〉). Hence there exists a ρ ⊇0 τ1 such that
ρ �0 Fe(〈x0, y〉). Let y �= y1. Define the partial finite part ρ0 as follows:

ρ0(x) .
{
δ1(x) if x ∈ dom(δ1),
ρ(x) if x ∈ dom(ρ) \ dom(δ1).

Then τ0 ⊆0 ρ0, δ1 ⊆0 ρ0 and notice that for all x ∈ dom(ρ) if ρ(x) �. ⊥, then
ρ(x) . ρ0(x). Hence ρ0 �0 Fe(〈x0, y1〉) and ρ0 �0 Fe(〈x0, y〉). So, ρ0 ∈ S0. A
contradiction.

Thus, (∀ρ)(ρ ⊇0 τ1 ⇒ ρ �∈ S1).
Let τ = τ1 ∪ τ0. Notice that τ ⊆ f . We shall show that

ψ(x) . y ⇐⇒ (∃δ ⊇0 τ)(δ �0 Fe(〈x, y〉)) .

And hence ψ ≤e B0.
If ψ(x) . y, then f |=0 Fe(x), and since f is regular, (∃ρ ⊆ f)(ρ �0 Fe(x))

and ρ is 0-regular. Then take δ = τ ∪ ρ.
Assume that δ1 ⊇0 τ , δ1 �0 Fe(〈x, y1〉). Suppose that ψ(x) . y2 and y1 �= y2.

Then there exists a δ2 ⊇0 τ such that δ2 �0 Fe(〈x, y2〉). Set

ρ(x) .
{
τ(x) if x ∈ dom(τ),
⊥ if x ∈ (dom(δ1) ∪ dom(δ2)) \ dom(τ).

Clearly ρ ⊇0 τ1 and ρ ∈ S1. A contradiction. *+
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Abstract. For given real α ∈ {0, 1}∞, a presentation V of α is a
prefix-free and recursively enumerable subset of {0, 1}∗ such that α =∑

σ∈V 2−|σ|. So, α has a presentation iff α is a left-r.e. real. Let A be the
class of all reals which have only computable presentations. Downey and
LaForte proved that A has an incomputable member. Call α strongly
Kurtz-random if there does not exist any recursive function f with
K(α(0) . . . α(f(n) − 1)) < f(n) − n for all n. It is shown that every
α ∈ A is either computable or strongly Kurtz-random. In particular, all
K-trivial members of A are computable where α is K-trivial iff there is
a c such that, for all n, K(α(0) . . . α(n − 1)) < K(n) + c. Thus there
is a natural and nontrivial Turing ideal of left-r.e. α not containing any
incomputable member of A.

1 Introduction

In this paper, we work with machines with input and output alphabets {0, 1}. A
Turing machine M is prefix-free if M(τ)↓ ⇒ M(τ ′)↑ for all finite binary strings
τ ′ 7 τ where 7 denotes string extension. It is universal if for each prefix-free
machine N there is a constant c such that, for all binary strings τ , if N(τ) ↓
then there is some σ such that |σ| ≤ |τ | + c and M(σ) ↓= N(τ). c is called
the coding constant of N . For a prefix-free machine M and a binary string τ ,
KM (τ) denotes the length of the shortest binary string σ such that M(σ)↓= τ ,
if such σ exists and let KM (τ) be undefined otherwise. In the following we fix
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a universal prefix-free machine U and let K(τ) = KU (τ), which is called the
Kolmogorov complexity of τ . We remark here that the choice of U does not
affect the Kolmogorov complexity by more than an additive constant.

For convenience, we identify subsets of the natural numbers with the reals
between 0 and 1. So α ∈ {0, 1}∞ stands for both, for the set {n : α(n) = 1} and
for the real number

∑
n=0,1,... α(n) · 2−n−1. We write α < β iff α is less than β

as a real number. By α[m] we denote the string α(0)α(1) . . . α(m− 1) which we
identify with the finite set {n ∈ α : n < m} and the number

∑
n<m α(n) ·2−n−1.

α is called recursively enumerable iff it is recursively enumerable as a set and it
is called left-r.e. iff it has a recursive approximation α0, α1, . . . such that αn ≤ α
for all n; the left-r.e. sets are also known as “nearly computable” and in the case
that they are more viewed upon as real numbers than as sets, they are often just
referred to as “r.e. reals”. In order to keep the notation between numbers and
sets consistent, we do not follow this notation and our “r.e. reals” correspond
to those which some people call “strongly r.e.” in order to distinguish them
from the left-r.e. reals. Note that we can choose the approximation such that
α0 < α1 < . . . < α and αn ⊂ {0, 1, . . . , h(n)} for some computable function h
and all n.

Calude, Hertling, Khoussainov and Wang [4] proved that α is left-r.e. if and
only if there is an infinite recursively enumerable prefix-free set of strings V such
that α =

∑
σ∈V 2−|σ| if and only if there is an infinite computable prefix-free set

of strings V such that α =
∑

σ∈V 2−|σ|, where a set V is prefix-free means that
if σ ∈ V , then no extension of σ can be in V . So, based on the convention that
α =

∑
n=0,1,... 2

−1−nα(n), Downey and LaForte [10] introduced the following
notion.

Definition 1. V is a presentation of α iff V is a recursively enumerable and
prefix-free set with α =

∑
σ∈V 2−|σ|.

Downey and LaForte [10] proved that there are incomputable sets having only
computable presentations.

In this paper, we will give a characterization for the existence of an incom-
putable presentation in terms of the existence of a certain type of approxima-
tion. This characterization will be the basis for showing that the Kolmogorov
complexity of any incomputable left-r.e. α without incomputable presentations
cannot be bounded for any recursively selected set of prefixes of α, neither from
below nor from above. More precisely, if α is incomputable and left-r.e. set which
has only computable presentations and f is a computable function then neither
∀n (K(α[f(n)]) > n) nor ∀n (K(α[f(n)]) < f(n) − n).

The first condition can be interpreted as α being unable to wtt-compute
fixed-point free functions, that is, of α being wtt-incomplete. This condition
follows already from the result of Downey and LaForte [10] that every left-r.e.
set of promptly simple degree has an incomplete presentation.

So the really interesting condition is the second one. The second notion is a
stronger version of Kurtz-randomness and thus we assign to it the corresponding
name.
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Definition 2. An α ∈ {0, 1}∞ is strongly Kurtz-random iff there is no com-
putable function f such that K(α[f(n)]) < f(n) − n for all n.

Normally Kurtz-random is defined in terms of computable martingales. We drop
the computability constraint and consider the martingale M given as the sum
over all Mτ,σ with U(τ) = σ and

Mτ,σ(η) =

⎧⎪⎨⎪⎩
2|σ|−|τ | if σ ≺ η;
2|η|−|τ | if η � σ;
0 otherwise.

Then α is strongly Kurtz-random if there is no computable function f with
M(α[f(n)]) ≥ n for all n. Since M is a universal martingale, this condition
is stronger than the following one: (∗) There is no computable martingale M̃

and no computable function f such that M̃(α[f(n)]) ≥ n for all n. It follows
from Wang’s martingale characterization [16] that (∗) is equivalent to Kurtz-
randomness. This justifies our notion “strongly Kurtz-random” which we use to
state the first main result that every left-r.e. set is either computable or has an
incomputable presentation or is strongly Kurtz-random.

Theorem 3. If α is left-r.e., incomputable and every presentation of α is com-
putable then α is strongly Kurtz-random.

As a direct corollary, every such α is also Kurtz-random with respect to the
original definition. Theorem 3 is also the basis for the other main result of the
paper. We say that α is K-trivial if the Kolmogorov complexity of each initial
segment of α is minimal, that is, if there is a constant c such that for all n,
K(α[n]) ≤ K(n)+c. K-trivial reals are interesting due to the connection between
algorithmic complexity and effective randomness. We, for example, exploit the
fact that no K-trivial set is Kurtz-random. Chaitin [5] proved that if an α is
K-trivial then α must be Δ2. In 1974, Solovay [15] proved that there is an
incomputable K-trivial real. Downey, Hirschfeldt, Nies and Stephan [9] proved
the existence of an incomputable recursively enumerable K-trivial real. Recently,
Nies [12] proved that all the K-trivials are low and that α is K-trivial if and
only if α is low for random if and only if there is a constant c such that for all
x, K(x) ≤ Kα(x) + c, that is, adding the oracle α does not change the prefix-
free complexity by more than a constant. In this paper, we show that every
incomputable left-r.e. K-trivial has always an incomputable presentation and
that thus Downey and LaForte’s reals cannot be K-trivial.

Theorem 4. Every K-trivial and incomputable left-r.e. real α has an incom-
putable presentation.

Our notation is standard and generally follows the books of Cutland [7], Downey
and Hirschfeldt [8], Odifreddi [13] and Soare [14]; but we differ from the notation
in [7] by requiring that computable functions are total. Since we identify subsets
of the natural numbers with reals, we use the names of notions in the version
which is defined for sets.



464 F. Stephan and G. Wu

2 A Characterization

The existence of an r.e. but incomputable presentation can be obtained from the
following characterization.

Theorem 5. Let α be left-r.e. and incomputable. Then α has an incomputable
presentation iff there is a recursive approximation α0, α1, . . . such that

(1) α0 < α1 < . . . < α;
(2) there is a recursive function h such that αn ⊆ {0, 1, . . . , h(n)} for

all n;
(3) for every computable function g and every m there exist n ≥ m and

s ≥ g(n) with αs+1 ≥ αs + 2−n.

Proof. Assume that α has an incomputable presentation V . Now let σ0, σ1, . . .
be a one-one recursive enumeration of V ; this sequence is infinite since V is not
computable. Now define an approximation αs by the equation

αs =
∑
t<s

2−|σt|

where α0 = 0. Clearly (1) is satisfied. (2) is obtained by defining

h(s) = max{|σt| : 0 ≤ t ≤ s}.

Now consider any computable function g and any m. Since V is not computable
there is a length n > m and an element of V of length n which is not enumerated
into V within g(n) steps. It follows that this element is of the form σs for some
s ≥ g(n). Thus αs+1 ≥ αs + 2−n. So (3) is satisfied.

For the converse direction, let α0, α1, . . . be a recursive approximation of α
satisfying the three conditions together via the computable function h. Now
define recursive sets Ts to consist of all strings τ such that

(a) αs ≤ τ , where τ is interpreted as the real number
∑

k<|τ | 2
−1−kτ(k);

(b) the reals given by k and τ differ at a digit and the least position k
of such a digit satisfies k < |τ |, τ(k) = 0 and αs+1(k) = 1;

(c) every proper prefix τ ′ ≺ τ violates either (a) or (b).

Here |τ | is the length of τ and τ can end with a 0. Note that the τ ∈ Ts are the
shortest prefixes of reals between β with αs ≤ β < αs+1 such that every binary
extension γ of τ , including the extension τ1111 . . ., also satisfies αs ≤ γ < αs+1.
Thus every set Ts is prefix-free and satisfies

∑
τ∈Ts

2−|τ | = αs+1 − αs. Let V be
the union of all Ts. It is easy to see that V is also prefix-free. Since the αs are
monotonically increasing, the sets Ts are not empty and the equations

α =
∑
s

(αs+1 − αs) =
∑
s

∑
τ∈Ts

2−|τ | =
∑
τ∈V

2−|τ |

hold. By the existence of h, the sets Ts are uniformly recursive and thus V is
recursively enumerable. So V is a presentation for α.
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For any given s, let l(s) be the length of the shortest string of Ts. It is easy
to see that −2 − log(αs+1 − αs) < l(s) < 2 − log(αs+1 − αs). For example,
assume that αs = {2, 3, 5, 7} and αs+1 = {2, 3, 4, 5, 6, 9}. Then αs and αs+1 are
the real numbers 0.00110101 and 0.0011111001 in binary notation. The value
αs+1−αs is 0.0000100101 and − log(αs+1−αs) is between 5 and 6. The shortest
string in Ts is 001110 since the binary numbers since αs ≤ 0.001110000 . . . and
0.0011101111 . . . = 0.001111000 . . . < αs+1. The value of l(s) is |001110| = 6.

To complete the proof, assume by way of contradiction that V is recursive.
One can compute for any given n the value g(n) = max{t : t = 0 or t = s + 1
and ∃τ ∈ Ts (|τ | ≤ n + 2)} by simply taking all τ ∈ V with |τ | ≤ n + 2 and
then searching for the s with τ ∈ Ts, which is possible since the Ts are uniformly
recursive. It follows that for every s ≥ g(n), Ts does not contain any string of
length n+2 or less and thus αs+1 < αs+2−n. This contradicts the third property
of the approximation α0, α1, . . . from the statement of the theorem. *+

An application of this result is that every α which has only computable presen-
tations is either recursive or hyperimmune. The proof of the following result is a
model for the proof of the first main result that every left-r.e. and incomputable
set without incomputable presentation is Kurtz-random.

Theorem 6. Let α be left-r.e., incomputable and not hyperimmune. Then α has
an incomputable presentation.

Proof. Since α is not hyperimmune, there is a computable function f such that
α∩{n+1, n+2, . . . , f(n)} is not empty for every n. Let β0, β1, . . . be a recursive
approximation of α from below. Now one defines inductively a new approxi-
mation α0, α1, . . . and a recursive function h such that αn = βs[f(t) + 1] and
h(n) = t for the first pair (s, t) in some fixed enumeration of all pairs of natural
numbers with

(d) s > h(m) and t > h(m) for all m < n;
(e) αm < βs[f(t) + 1] for all m < n;
(f) βs intersects {m + 1,m + 2, . . . , f(m)} for all m ≤ t.

Then the resulting approximation α0, α1, . . . of α has the following properties.

(g) α0 < α1 < . . . < α;
(h) h(n + 1) > h(n) and αn ⊆ {0, 1, . . . , f(h(n))} for all n;
(i) the intersection αn ∩ {m + 1,m + 2, . . . , f(m)} is not empty for any

n and any m ≤ h(n).

It remains to show that (3) of Theorem 5 is true for every computable function
g and m. Suppose not. Let g be a computable function with g(x) > x for all x
and m be a number at which (3) is false. Then, for any n ≥ m and s ≥ g(n),
αs+1 < αs + 2−n. Thus, for any given x, f(x) + m + 2 > m, and for any
s > g(f(x) + m + 2), αs+1 < αs + 2−f(x)−m−2.

Now fix x. Then by (h), h(x) > x. Let t(x) = max{h(x), g(f(x) + m + 2)}.
We prove that for any s > t(x), αs(x) = αt(x)(x) and hence α(x) = αt(x)(x).
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Suppose not, and let s > t(x) be a stage with αs+1(x) �= αs(x). Then h(s+1) >
h(x) > x. By the choice of the approximation α0, α1, . . . and (i), there is some y
in {x + 1, x + 2, . . . , f(x)} such that αs+1(y) = 1. As a consequence,

αs+1 ≥ αs + 2−y ≥ αs + 2−f(x) > αs + 2−f(x)−m−2,

a contradiction.
Thus, for any x, α(x) = αt(x)(x) and α would be computable, contradicting

the assumption of α. Thus (3) of Theorem 5 is also satisfied and hence α has an
incomputable but recursively enumerable presentation. *+

Since every wtt-complete left-r.e. set has promptly simple degree, it has an in-
computable presentation, by a result of Downey and LaForte [10]. An applica-
tion of Theorem 6 gives an alternative proof for this fact. The connection to
Kolmogorov complexity is based on the fact that a left-r.e. α is wtt-complete iff
it can wtt-compute an DNR function [2, 3]. Note that Arslanov’s criterion also
applies to left-r.e. sets since those are tt-equivalent to r.e. ones. Furthermore,
Kjos-Hanssen, Merkle and Stephan [11] proved that a set wtt-computes a DNR
function iff there is a computable function f such that K(α[f(n)]) > n for all n.
Theorem 7 is given in terms of Kolmogorov complexity and not in terms of
wtt-completeness.

Theorem 7. (Downey and LaForte [10]) If α is left-r.e. and there is a com-
putable function f such that, for all n, K(α[f(n)]) > n then α has an incom-
putable presentation.

Proof. Without loss of generality one can take f to be monotonically increasing;
so assume that for α there is a monotonically increasing function f such that
K(α[f(n)]) > n for all n. Now let g(0) = 1 and g(n + 1) = f(4g(n)). Given a
string τ ∈ {0, 1}g(n), one can compute from τ the number n, the value g(n + 1)
and the string τ0g(n+1)−g(n). Since there is a constant c with K(τ) < 3|τ | + c for
all τ ∈ {0, 1}∗, it holds for almost all n that

K(α[g(n + 1)]) = K(α[f(4g(n))]) > 4g(n) ≥ K(α[g(n)] · 0g(n+1)−g(n)).

Thus, α(g(n))α(g(n) + 1) . . . α(g(n+ 1)− 1) differs from 0g(n+1)−g(n) for almost
all n and α cannot be a hyperimmune set. It follows from Theorem 6 that α has
an incomputable presentation. *+

3 The Main Results

We now prove that every α which has a recursively enumerable but not incom-
putable presentation is either computable or strongly Kurtz-random. That is,
the following second main result is proven on the way to get the first one. Since
strongly Kurtz-random sets are Kurtz-random, a direct corollary is that every
left-r.e. and incomputable α where every presentation of α is computable, is also
Kurtz-random.
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Theorem 3. If α is left-r.e., incomputable and every presentation of α is com-
putable then α is strongly Kurtz-random.

Proof. Assume that α is incomputable, left-r.e. and not strongly Kurtz-random.
We will prove that α has an incomputable presentation. This is done by show-
ing that there is an approximation α0, α1, . . . satisfying the three conditions of
Theorem 5.

Let f be a computable function witnessing that α is not strongly Kurtz-
random: ∀n (K(α[f(n)]) < f(n) − n). Furthermore, let β0, β1, . . . be an approx-
imation of α from below. Now one defines inductively a new approximation
α0, α1, . . . and a recursive function h such that αn = βs[f(t)] and h(n) = t for
the first pair (s, t) with

(j) s > h(m) and t > h(m) for all m < n;
(k) αm < βs[f(t)] for all m < n;
(l) Ks(βs[f(m)]) < f(m) −m for all m ≤ t.

The resulting approximation α0, α1, . . . of α has the following properties:

(m) α0 < α1 < . . . < α;
(n) h(n + 1) > h(n) and αn ⊆ {0, 1, . . . , f(h(n))} for all n;
(o) Ks(αs[f(m)]) < f(m) −m for all n and m ≤ h(n).

It remains to show that (3) of Theorem 5 is also true.
Assume by way of contradiction that this is false for a function g and an m;

without loss of generality, g(n) > n for all n. Now for any n ≥ m, search for the
first pair (o, t) found such that

(p) o > n;
(q) h(t) > o + 1;
(r) t > g(f(o + 1));
(s) αt(o) = 0.

This search terminates since there α has the digit 0 infinitely often and the
search condition is satisfied whenever α(o) = 0 and t is sufficiently large. So the
search for o and t can be realized by a computable function.

For every s ≥ t, by (q), K(αs[f(o+1)]) < f(o+1)−o−1. Thus, by the choice
of m and o > n ≥ m, there are less than 2f(o+1)−o−1 many stages s ≥ t with
αs+1[f(o+1)] �= αs[f(o+1)]. Each of them satisfies that αs+1−αs < 2−f(o+1) by
s ≥ g(f(o+ 1)). Therefore, αs+1[f(o+ 1)] = 2−f(o+1) +αs[f(o+ 1)]. Since there
are less than 2f(o+1)−o−1 many places s ≥ t where αs+1[f(o+ 1)] �= αs[f(o+ 1)]
and since the value goes up each time by exactly 2−f(o+1), one has

α[f(o + 1)] < αt[f(o + 1)] + 2f(o+1)−o−1 · 2−f(o+1) = αt[f(o + 1)] + 2−o−1.

Since αt(o) = 0, the finite β = {o} ∪ αt[f(o + 1)] satisfies αs[f(o + 1)] ≤ β for
all s. It follows that α(n) = αt(n) and one can compute α(n) by searching for
(o, t) as above and taking the approximation αt(n) as the desired value. Since
α is incomputable, the assumed g does not exist. Thus the conditions on the
approximation α0, α1, . . . from Theorem 5 are all satisfied and hence α has an
incomputable presentation. *+
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One might ask whether also randomness notions stronger than Kurtz-random-
ness are implied. The answer is negative. Kurtz-randomness is something special
since for each not Kurtz-random set there is a computable martingale M and
a recursive function f such that M(α[f(n)]) > n for all n. The other random-
ness notions require the corresponding condition only for infinitely many n.
Thus randomness happens “much less frequently” and no hyperimmune set is
Schnorr-random or Martin-Löf-random. So it follows from Theorem 6 that every
Schnorr-random and every Martin-Löf-random left-r.e. set has an incomputable
presentation.

In order to see the other main result, note that there is a constant c with
K(n) < c + n/2 for all n. If α is K-trivial then there is a constant c′ such that
K(α[n]) < K(n) + c′. Taking f(n) = 2n+ c+ c′, one has K(α[f(n)]) < f(n)−n
for all n. Thus a K-trivial set is not strongly Kurtz-random and so one has the
following.

Theorem 4. Every K-trivial and incomputable left-r.e. real α has an incom-
putable presentation.

4 A Degree-Theoretic Conclusion

Theorem 4 has some degree-theoretic consequences since the K-trivial sets are
closed downward under Turing reduction and since below every incomputable
r.e. degree there is an incomputable, K-trivial r.e. degree. Let R be the set of
nonzero r.e. Turing degrees and A be the subset of those degrees in R which
contain an left-r.e. α without an incomputable presentation. Then every a in R
bounds an b ∈ R not bounding any degree in A. That is,

∀a ∈ R∃b ∈ R∀c ∈ R (b ≤ a ∧ (c ≤ b ⇒ c /∈ A)).

In particular, every a ∈ R bounds a degree in R−A. Nies [12] showed that there
is a K-trivial and promptly simple set, let s be its degree. As seen, no a ≤ s is
in A. Ambos-Spies, Jockusch, Shore and Soare [1] showed that the degrees of
promptly simple sets form a filter in the r.e. Turing degrees. Following the result
of Downey and LaForte [10] that every left-r.e. of promply simple degree has
an incomputable presentation, one has that the degrees of incomputable left-r.e.
sets without incomputable presentation are incomparable to s:

∀a ∈ A (a �≤ s ∧ a �≥ s).

So, the Turing degrees of the incomputable left-r.e. sets having only computable
presentations are disjoint from a filter and from a ideal in the Turing degrees
where this filter and this ideal intersect. Both the ideal and the filter are impor-
tant: Nies [12] showed that the K-trivial sets are closed under Turing reduciblity
and that they coincide with several other natural notions being around for many
years [12]; Ambos-Spies, Jockusch, Shore and Soare [1] showed that the degrees
of promptly simple set coincide with the non-cappable degrees and the low cup-
pable degrees, see [14–Chapter XIII] for a discussion.
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Abstract. We consider copies and constructivizations of structures in
admissible sets. In the first section we survey results about copies of
countable structures in hereditary finite superstructures and definability
(so called syntactical conditions of intrinsically computable properties)
and state some conjectures about the uncountable case. The second sec-
tion is devoted to constructivizations of uncountable structures in “sim-
plest” uncountable admissible sets (more precisely, in hereditary finite
superstructures over the models of c-simple theories). The third section
contains some results on constructivizations of admissible sets within
themselves.

1 Copies of Structures in Admissible Sets

The classical computable model theory studies computable properties of struc-
tures by considering their presentations on natural numbers. This means that
only countable structures can be studied this way. One of the most natural ways
to avoid this restriction is to consider presentations of structures in admissible
sets. The theory of admissible sets [2] gives a beautiful example of interaction
between model theory, computability theory and set theory.

We consider copies and constructivizations of structures in admissible sets.
It is well known that in classical computable model theory (on natural numbers)
these approaches are equivalent: a structure has a computable (decidable) copy
if and only if it is constructivizable (strongly constructivizable). However, in
admissible sets the “if” part of this statement is not true in general, so we must
consider two different cases.

The notations we use in this paper are standard and corresponds to [1, 2].
For a structure M and admissible set A their domains are denoted by M and
A respectively. We denote by F (σ) the set of finite first order formulas of a
signature σ. We also fix some Gödel numbering (·) : F (σ) → ω (so (ϕ) is the
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Gödel number of a formula ϕ). In all that follows we consider only computable
signatures and suppose that Gödel numberings are effective. We also denote by
Fn(σ) (n � ω) the set of (finite first order) formulas of signature σ with no more
than n alterating groups of quantifiers in prenex normal form. F0(σ) is the set
of quantifier-free formulas of signature σ.

Let M be a structure of signature σ, A an admissible set, and let M ⊆ A.
Then the atomic diagram

D(M) = {〈(ϕ), m̄〉| ϕ ∈ F0(σ) – atomic formula, m̄ ∈ M<ω, M |= ϕ(m̄)}

is in fact a subset of A.

Definition 1. Let M be a structure of computable signature σ, A an admissible
set, and let M ⊆ A. The structure M is n-decidable in A (n � ω) if

{〈(ϕ), m̄〉 | ϕ ∈ Fn(σ), m̄ ∈ M<ω,M |= ϕ(m̄)}

is Δ-definable in A.

A structure M is computable in A if M is 0-decidable in A, and decidable in
A if M is ω-decidable in A. It is obvious that if M is n-decidable in A for some
n then M is Δ-definable in A.

It is easy to show that a structure M is computable (decidable) in the classical
sense if and only if it is computable (decidable) in the least admissible set HF(∅).

Definition 2. Let A be an admissible set and P (A) be the set of all subsets of A.
F : P (A)n → P (A) is a Σ-operator if there exists a Σ-formula Φ(x0, . . . , xn−1, y)
such that for any S0, . . . , Sn−1 ∈ P (A)

F (S0, . . . , Sn−1) = {a | ∃a0 . . . ∃an−1(
∧
i<n

ai ⊆ Si ∧ A |= Φ(a0, . . . , an−1, a))}.

Let F : P (A)n → P (A) be a Σ-operator and δc(F ) be a set of elements of
P (A)n in which F is strongly continous [1]. It is easy to show that in HF(M)
any subset belongs to δc(F ) for any Σ-operator F .

Definition 3. Suppose B,C are subsets of an admissible set A. B is Σ-reducible
to C (B �Σ C) if there exists a binary Σ-operator F0 such that 〈C,A \ C〉 ∈
δc(F0) and B = F0(C,A \ C). If besides there exists binary Σ-operator F1 such
that 〈C,A \ C〉 ∈ δc(F1) and A \ B = F1(C,A \ C) then B is said to be TΣ-
reducible to C (B �TΣ C).

Let A be an admissible set, M a structure such that M ⊆ A, and let P ⊆ Mn.
P is relatively computable in A if P is TΣ-reducible to D(M) in A, and relatively
c.e. in A if P is Σ-reducible to D(M) in A.

Definition 4. Let M be a structure of computable signature σ, A an admissible
set, and let M ⊆ A. The structure M is relatively n-decidable in A (n � ω) if

{〈(ϕ), m̄〉 | ϕ ∈ Fn(σ), m̄ ∈ M<ω,M |= ϕ(m̄)}

is TΣ-reducible to D(M) in A.
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Definition 5. A copy of a structure M in an admissible set A is a structure N
such that N . M and N ⊆ A.

The following theorem characterizes so called relatively intrinsically c.e. re-
lations of countable structures in terms of definability in hereditary finite super-
structures.

Theorem 6 (Ash, Knight, Manasse, Slaman [3], Chisholm [4]). Let M
be a countable structure and let P ⊆ Mn. Then the following are equivalent:

– P is Σ-definable in HF(M);
– for any copy N of M in HF(M) and any isomorphism f from M onto N,

f(P ) is relatively c.e.;
– for any copy N of M in HF(∅) and any isomorphism f from M onto N,

f(P ) is relatively c.e..

However, for (absolutely) intrinsically c.e. relations there is no such syntac-
tical criteria. We recall

Theorem 7 (Goncharov [5], Manasse [6]). There exists a countable struc-
ture M with a computable copy in HF(∅) and P ⊆ M such that for any com-
putable copy N of M in HF(∅) and any isomorphism f from M onto N, f(P )
is c.e., but P is not Σ-definable in HF(M).

Now we consider the notion of intrinsically decidable structure.

Theorem 8. Let M be a countable structure, n � ω. Then the following are
equivalent:

– M is n-decidable in HF(M);
– any copy of M in HF(M) is relatively n-decidable;
– any copy of M in HF(∅) is relatively n-decidable.

Theorem 9 (Nurtazin [7]). Let M be a countable structure with computable
copy in HF(∅), n � ω. Then the following are equivalent:

– M is n-decidable in HF(M);
– any copy of M in HF(∅) is relatively n-decidable;
– any computable copy of M in HF(∅) is n-decidable.

The previous theorem shows that in case of decidability it is impossible to
construct an analog of the Goncharov-Manasse example from Theorem 7. About
the existence of relatively decidable copies we recall

Theorem 10 (Harizanov, Knight, Morozov [8]). Let M be a countable
structure. Then in HF(∅) there exists a relatively decidable copy of M.

We prove the following

Theorem 11. Let M be a structure (of computable signature). Then in HF(M)
there exists a relatively decidable copy of M.
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Suppose that M is an arbitrary (possibly uncountable) structure of com-
putable signature and S be a structure of empty signature of the same cardinality
as M.

Conjecture 12. There exists a relatively decidable copy of M in HF(S).

Conjecture 13. For any n � ω the following are equivalent:
– M is n-decidable in HF(M);
– any copy of M in HF(M) is relatively n-decidable;
– any copy of M in HF(S) is relatively n-decidable.

Conjecture 14. Suppose M is a structure with computable copy in HF(S), n � ω.
Then the following are equivalent:

– M is n-decidable in HF(M);
– any copy of M in HF(S) is relatively n-decidable;
– any computable copy of M in HF(S) is n-decidable.

We now give some examples of structures decidable in hereditary finite ad-
missible sets and demonstrate some connections of decidability with various
computable properties of such sets.

A theory T is regular [1] if it is model complete and decidable.

Proposition 15. If Th(M) is regular then M is decidable in HF(M).

Example 16. R, Qp, C are structures with regular elementary theories.

We describe decidable linear orders in the following way:

Theorem 17. A linear order L is 1-decidable in HF(L) iff L is a sum of a finite
number of dense linear orders and points.

A structure M is n-complete [5] (n � ω) if for any formula ϕ(x̄) ∈ Fn(σ)
and for any m̄ ∈ M<ω s.t. M |= ϕ(m̄) there exists a ∃-formula ψ(x̄) such that
M |= ψ(m̄) and M |= ∀x̄(ψ(x̄) → ϕ(x̄)).

Proposition 18. Suppose M is n-decidable in HF(M) (n � ω). Then M is
n-complete in some finite constant expansion.

Proposition 19. Suppose M is n-complete and Th(M) is decidable. Then M
is n-decidable in HF(M).

Suppose M is 1-decidable in HF(M). Then HF(M) has a universal Σ-function
and the reduction property, but not necessarily the uniformization property.

Let M be a structure of signature σ and let signature σ∗ consists of all sym-
bols of σ and new functional symbols fϕ(x1, . . . , xn) for all existential formulas
ϕ(x0, x1, . . . , xn) of signature σ. The structure M∗ of signature σ∗ is called exis-
tential Skolem expansion of M if M∗ = M , M �σ= M∗ �σ and for any existential
formula ϕ(x0, x1, . . . , xn) of signature σ

M∗ |= ∀x1 . . . ∀xn(∃xϕ(x, x1, . . . , xn) → ϕ(fϕ(x1, . . . , xn), x1, . . . , xn)).

The next theorem is a generalization of the main result from [13].
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Theorem 20. Suppose M is 1-decidable in HF(M). Then HF(M) has the uni-
formization property iff some existential Skolem expansion of M is computable
in HF(M).

Theorem 21. For any n ∈ ω there exists ω-categorical structure M such that
M is n-decidable in HF(M) but not (n + 1)-decidable HF(M). There also exists
ω-categorical structure M such that for any n ∈ ω M is n-decidable in HF(M)
but M is not decidable in HF(M).

An admissible set A is quasiresolvable [1] if there exists a sequence B0 ⊆ B1 ⊆
. . . ⊆ Bα ⊆ . . . , α ∈ OrdA of transitive subsets of A such that ∪α∈OrdABα= A,
and the subsets {〈α, a〉|a ∈ Bα} and

{〈α, (Φ), ā〉 | α ∈ OrdA, Φ(x̄) ∈ F (σA), ā ∈ B<ω
α , A � Bα |= Φ(ā)}

are Δ-definable in A.
An admissible set A is 1-quasiresolvable if there exists a sequence B0 ⊆ B1 ⊆

. . . ⊆ Bα ⊆ . . . , α ∈ OrdA of transitive subsets of A such that ∪α∈OrdABα = A,
and the subsets {〈α, a〉|a ∈ Bα} and

{〈α, (Φ), ā〉 | α ∈ OrdA, Φ(x̄) − Π-formula of σA, ā ∈ B<ω
α , A � Bα |= Φ(ā)}

are Δ-definable in A.
If admissible set A is 1-quasiresolvable then A has a universal Σ-function

and the reduction property [1]. If M is (1-)decidable in HF(M) then HF(M) is
(1-)quasiresolvable. The converse is not true in general.

Theorem 22. Suppose M is an ω-categorical. Then

1) M is decidable in HF(M) iff HF(M) is quasiresolvable;
2) M is 1-decidable in HF(M) iff HF(M) is 1-quasiresolvable.

2 Constructivizations of Structures in Admissible Sets

Let N be a structure of relational computable signature 〈Pn0
0 , . . . , Pnk

k , . . .〉 and
let A be an admissible set.

Definition 23 (Ershov [1]). N is Σ-definable (constructivizable) in A if there
exists a computable sequence of Σ-formulas

Φ(x0, y), Ψ(x0, x1, y), Ψ∗(x0, x1, y), Φ0(x0, . . . , xn0−1, y),

Φ∗
0(x0, . . . , xn0−1, y), . . . , Φk(x0, . . . , xnk−1, y), Φ∗

k(x0, . . . , xnk−1, y), . . .

such that for some parameter a ∈ A, and letting

N0 � ΦA(x0, a), η � ΨA(x0, x1, a) ∩N2
0
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one has that N0 �= ∅ and η is a congruence relation on the structure

N0 � 〈N0, P
N0
0 , . . . , PN0

k , . . .〉,

where PN0
k � ΦA

k (x0, . . . , xnk−1) ∩Nnk
0 , k ∈ ω,

Ψ∗A(x0, x1, a) ∩N2
0 = N2

0 \ ΨA(x0, x1, a),

Φ∗A
k (x0, . . . , xnk−1, a) ∩Nnk

0 = Nnk
0 \ ΦA

k (x0, . . . , xnk−1)

for all k ∈ ω and the structure N is isomorphic to the quotient structure N0�η.

Definition 24. A theory T is c-simple [1] if it is ω-categorical, model complete,
decidable and has decidable set of complete formulas.

It is well known that c-simple theories have very nice computable properties.
For example, any two decidable (in classical sense) models of a c-simple theory
are computably isomorphic. One of the most important examples of c-simple
theories is the theory of dense linear orders (without endpoints).

Conjecture 25 (Ershov [9]). If T is c-simple theory then some uncountable model
of T is constructivizable in HF(L) for some (uncountable) dense linear order L.

In connection with this conjecture we mention the following result about
ω-categoricity and orderings.

Theorem 26 (Schmerl [10]). If A is countable infinite ω-categorical structure
then there is a linear order < of A with order type of the rationals such that
〈A, <〉 is ω-categorical.

The next definition is a generalization of the well-known notions of order
indiscernibility and total indiscernibility from model theory.

Definition 27 ([14]). For arbitrary structures A and B a set I ⊆ A ∩ B is
called a set of A-indiscernibles in B if for any tuples ī, ī′ ∈ I<ω of the same
length

〈A, ī〉 ≡ 〈A, ī′〉 implies 〈B, ī〉 ≡ 〈B, ī′〉.

Let T and T ′ be c-simple theories. If some uncountable model of T ′ is con-
structivizable in the HF-superstructure over some model of T , then there are
decidable models A and B of T and T ′ respectively such that there is an infinite
computable set of A∗-indiscernibles in B, where B∗ is an expansion of B by
finite number of constants.

For some c-simple theories this necessary condition of constructivizability is
also sufficient. We denote by TDLO the theory of dense linear orders and by TE
the theory of infinite models of equality.

Theorem 28 ([14]). Let T be c-simple theory and A be any decidable model of
T . Then
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1) T has an uncountable model which is constructivizable in HF(L) for some
L |= TDLO if and only if there exists an infinite computable set of order
indiscernibles in A;

2) T has an uncountable model which is constructivizable in HF(S) for some
S |= TE if and only if there exists an infinite computable set of total indis-
cernibles in A.

Theorem 29 (Kierstead, Remmel [11]). There exists a c-simple theory T
s.t. any infinite set of order indiscernibles in any decidable model of T is not
computable.

By using this result we obtain a counterexample for Ershov conjecture.

Corollary 30 ([14]). There exists a c-simple theory (of infinite signature) such
that none of its uncountable models is constructivizable in HF(L), where L is a
dense linear order.

Conjecture 31. For any c-simple theory T there exists a c-simple theory T ′ such
that for any uncountable M |= T and M′ |= T ′ M′ is not constructivizable in
HF(M).

3 Inner Constructivizability of Admissible Sets

Consider a signature σ and let P be unary predicate symbol not in σ. For a
QR-formula (i.e. formula which possibly contain restricted quantifiers of the
form ∀x ∈ y and ∃x ∈ y) Φ of signature σ ∪ {∈} we define inductively the
relativization ΦP of the formula Φ by the predicate P as follows:

– if Φ is atomic then ΦP = Φ;
– if Φ = (Φ1 ∗ Φ2), ∗ ∈ {∧,∨,→} then ΦP = (ΦP

1 ∗ ΦP
2 );

– if Φ = ¬Ψ then ΦP = ¬ΦP ;
– if Φ = (Qx ∈ y)Ψ , Q ∈ {∀,∃} then ΨP = (Qx ∈ y)ΨP ;
– if Φ = ∃xΨ then ΦP = ∃x(P (x) ∧ ΨP );
– if Φ = ∀xΨ then ΦP = ∀x(P (x) → ΨP ).
In case A is an admissible set, B ⊆ A and Φ(x0, . . . , xn−1) is a QR-formula

of signature σA, we define

(Φ(x0, . . . , xn−1))B = {〈a0, . . . , an−1〉 ∈ An | 〈A, B〉 |= ΦP (a0, . . . , an−1)}.

Definition 32. A structure M of computable predicate signature 〈Pn0
0 , Pn1

1 , . . .〉
is constructivizable in an admissible set A inside B ⊆ A if there exists computable
sequence of formulas

Φ(x0, y), Ψ(x0, x1, y), Ψ∗(x0, x1, y), Φ0(x0, . . . , xn0−1, y),

Φ∗
0(x0, . . . , xn0−1, y), . . . , Φk(x0, . . . , xnk−1, y), Φ∗

k(x0, . . . , xnk−1, y), . . .
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and b ∈ B such that, letting

M0 � ΦB(x0, b), M0 ⊆ B, η � ΨB(x0, x1, b) ∩M2
0

one has that M0 �= ∅ and η is a congruence relation on the structure

M0 � 〈M0, P
M0
0 , . . . , PM0

k , . . .〉,

where PM0
k � (Φk(x0, . . . , xnk−1))B ∩Mnk

0 , k ∈ ω,

(Ψ∗(x0, x1, a))B ∩M2
0 = M2

0 \ (Ψ(x0, x1, a))B ,

(Φ∗
k(x0, . . . , xnk−1, a))B ∩Mnk

0 = Mnk
0 \ (Φk(x0, . . . , xnk−1))B

for all k ∈ ω, and M is isomorphic to M0�η.

If A is an admissible set then for arbitrary B ⊆ A we define rnk(B) in the
usual way:

rnk(B) = sup{rnk(b)|b ∈ B}.

Definition 33. The rank of inner constructivizability of an admissible set A is
the ordinal

cr(A) = inf{rnk(B) | A is constructivizable in A inside B}.

The next theorem gives the precise estimates of the rank of inner construc-
tivizability for hereditary finite superstructures.

Theorem 34 ([15]). Suppose M is a structure of computable signature. Then
1) if M is finite then cr(HF(M)) = ω,
2) if M is infinite then cr(HF(M)) � 2.

From this theorem we obtain effective analogs of some results from [12] about
definability in multisorted languages.

Examples of structures M for which cr(HF(M)) = 2 are infinite models of
empty signature, dense linear orders, and, more interesting, the structure 〈ω, s〉
of natural numbers with successor function. Indeed, if we denote by ThWM(M)
the theory of M in the language of weak monadic second order logic, then the
following lemma is true.

Lemma 35. If ThWM(M) is decidable then cr(HF(M)) = 2.

From Büchi result about decidability of ThWM(〈ω, s〉) and the previous lemma
we get that

cr(HF(〈ω, s〉)) = 2.

An example of structure M for which cr(HF(M)) = 0 is, obviously, the stan-
dard model of arithmetic N. An example of structure for which rank of inner
constructivizability is equal to 1 is the field R of real numbers.

Theorem 36 ([15]).
cr(HF(R)) = 1.
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Abstract. “Quorum Sensing” has been identified as one of the most
consequential microbiology discoveries of the last 10 years. Using Quo-
rum Sensing bacterial colonies synchronize gene expression and pheno-
type change allowing them, among other things, to protect their niche,
coordinate host invasion and bio-film formation. In this contribution we
briefly describe the elementary microbiology background and present a
P-systems based model for Quorum Sensing which includes environmen-
tal rules and a topological representation.

1 Introduction

Recent advances in analytical biotechnology, computational biology, bioinfor-
matics and computational modeling promise ever deeper understanding of the
complexity of biological systems, particularly the computations they perform
in order to survive in dynamic and hostile environments. These insights will
ultimately enable researchers to harness the living cell as a computational de-
vice with its own sensors, internal states, transition functions, actuators, etc,
and to program them as “nano-bots” for particular tasks such as targeted drug
delivery, chemical factories, nano-structures repairs, bio-film scaffolding and self-
assembling, to name but a few.

In this paper we will focus on one of the most important mechanisms for
bacterial cell-to-cell communication and behavior coordination under changing
environments: “quorum sensing (QS)”. QS have been described as “the most
consequential molecular microbiology story of the last decade” [21, 3]. It relies
on the activation of a sensor kinase or response regulator protein by a diffusible,
low molecular weight, signal molecule (a “pheromone” or “autoinducer”) [12].
In QS, the concentration of the signal molecule reflects the number of bacterial
cells in a particular niche and perception of a threshold concentration of that
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signal molecule indicates that the population is “quorated”, i.e. ready to make
a behavioral decision [20].

Natural QS is a powerful computational mechanism[5] that endows Pseu-
domonas aeruginosa with the capabilities to coordinate a population-wide at-
tack necessary to breach host’s immunological defences. Other bacteria (both
Gram-negative and Gram-positive), like V. fischeri, A. tumefaciens, E. caro-
tovora, V. harveyi, B. subtilis, S. aureus, S. pneumoniae, etc., also use QS for
different purposes and it is usually mediated by a variety of sensors/receptors,
regulons, etc.

In this paper we will present an overview of Quorum Sensing in P. aerug-
inosa and we will also show a more “computationally flavored” approach for
Quorum Sensing which is based on a modified version of P-systems that takes
into consideration topological aspects of the environment where cells live.

2 Cell-to-Cell Communication by Means of Quorum
Sensing

The QS mechanism is a communication strategy based on diffusible signals, S,
which kick-in under high cellular density. Bacteria use this mechanism to obtain
a population-wide coordination of infection, invasion, and evasion of a host’s
defenses.

Once the mechanism is activated it usually triggers a cascade of transcrip-
tional activity which results in phenotypic changes that are frequently related to
the activation of virulence encoded regulons. As we mentioned before both Gram-
negative and Gram-positive bacteria employ similar coordination mechanism al-
beit with different messenger molecules. The messenger molecules are often called
(auto)inducers or pheromones(to be denoted by S). Under low bacterial densities
molecule S is synthesized and accumulate. According to the specific geometry
of the inducer molecule, more precisely its length, the synthesized S are either
pumped out of the cell or simply diffuse into the surrounding environment1.

Once in the environment, the inducer molecules that are usually much smaller
than small proteins (and certainly tiny compared to the bacterium itself), dis-
perse quickly and sometimes get in contact with other individual bacteria who
occasionally ends up absorbing the inducer molecule. In addition to the inducer
molecule, bacteria also produce a receptor molecule R. At high inducer’s con-
centrations (within the cellular membranes) and once a specific threshold con-
centration is reached, the receptor molecules R binds to the inducers S forming
a molecular complex. In turn the pheromone bound version of R, R ◦ S, binds
to a specific chromosome region thus activating or repressing the transcription
of certain genes. Moreover, as the gene encoding the syntethase I for the inducer
S (denoted with i, i.e. it is represented with the same letter as the synthetase, I,
but in italics) is positively regulated by the complex R ◦ S, a rapid signal ampli-

1 In Gram-positive bacteria S is always actively transported out of the cellular mem-
brane.
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fication, i.e. positive feedback and hence the name autoinducer, takes place. The
transcription of i into I results in the synthesis of excess molecules S that diffuse
out of the bacteria and into the local environment. It is important to note that
although it is possible to speak of “diffusion” in the case of Gram-negative, in
Gram-positives the signal molecules don’t diffuse out of the cell, instead they
are secreted using active transport systems which in some cases activate the
appropriate signals as they are getting out (e.g.Staphylococcus aureus). Also in
Gram-positives the active molecule does not get into the cell; instead it activates
cellular surface receptors which in turns relays the activation to other proteins
resulting in the transcriptional response.

The amplification loop is shown in Figure 1(a). Under high cellular density,
and once the QS is activated, the positive feedback effectively triggers a chain
reaction that bridges the gap between various physical scales. That is, Quorum
Sensing is a mechanism which processes and integrates information that ranges
from the nano-level of the cell interior to the macro-level of a bacterial colony
(sometimes visible with the naked eye) in a short period of time. Figure 1(b)
gives a graphical representation for this phenomenom.

(a) (b)

Fig. 1. (a) Overlapped Quorum Sensing systems in P. aeruginosas. (b) Multi-scale
effects mediated by Quorum Sensing. A cell (from among a group of cells) senses
an increase in inducer molecules (small dots) in the surrounding environment. The
internal feedback loop is activated and, in turn, deposits more inducers into the external
medium. The increase in inducers concentration in turn triggers other cells to react
leading to a chain reaction
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The chain reaction, mediated by the high mobility of S in the environment,
ensures that more and more individual bacteria are activated within a short
period of time producing a population wide behavioral shift. This behavioral
shift is possible because QS activates the coordinated transcription of multiple
genes. Consequently, in QS, the concentration of the signal molecule reflects
the number of bacterial cells in a particular niche and perception of a threshold
concentration of that signal molecule indicates that the population is “quorated”,
i.e. ready to make a behavioral decision. Wagner et al. [17] report that in P.
aeruginosa up to 394 genes are activated by QS while 222 are repressed. In a
recent review [7] it is estimated that between 6% to 10% of the whole genome
is affected by this mechanism. Some of the phenotypic changes actuated by QS
are increase in virulence, changes in the production of secondary metabolites,
conjugation, growth inhibition, motility, swarming and bio-film formation. The
reader must note that the autoinducers mentioned before are mainly used for
bacterial intraspecies communication. A newly reported autoinducer called AI-
2 has been proposed as a potential universal signals that mediate interspecies
communication.

Important in governing the size of the “quorum” is ’compartment sensing’
[21]. As noted above, the concentration of a given QS signal molecule may be
a reflection of bacterial cell number, or at least the minimal number of cells
(quorum) in a particular physiological state. To achieve the accumulation of
a QS signal there is a need for a diffusion barrier, which ensures that more
molecules are produced than lost from a given microhabitat. This ’compartment
sensing’ enables the QS signal molecule to be both a measure of the degree
of compartmentalization and the means to distribute this information through
the entire population. Likewise, the diffusion of QS signal molecules between
detached sub-populations may convey information about their numbers, physi-
ological state and the specific environmental conditions encountered. QS is thus
a natural efficient, robust and simple mechanism for cell-to-cell communication.

3 An Environment-Aware P-System for Quorum Sensing

In this section we present an environment-aware P-system to simulate the process
which occur in bacterial colonies which are capable of quorum sensing commu-
nications.

An environment-aware P-system Ω is defined as a collection of “environ-
ments”, which contain both cells and metabolites, and communication channels
between the environments. Both the environments and the channels are limited
in their capacity of metabolite storage and transmission respectively. Formally:
Ω = (Π1, . . . , Πn, τ1, . . . , τn, Γ1, . . . , Γn, Θ1, . . . , Θn) where:

1. Πi is an environment defined as Πi = (V,wEi
, REi

, CEi1
, . . . , CEin

)
2. τi is the maximum amount of metabolites that Πi can contain. The limit

could arise for example from diffusion rate constraints. The metabolites are
represented by objects in wEi

.
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3. Γi = (Πo,Πt)1 ≤ o, t ≤ n is a transmission channel between 2 environments.
4. Θi is the “bandwidth” of channel Γi.

An environment Πi has:

1. V is a finite alphabet of symbols which represent secreted “metabolites” (e.g.
signaling molecules or mRNA molecules).

2. wEi
∈ V ∗ is a finite multiset of metabolites initially assigned to it.

3. Ri is a finite set of transformation rules associated with the environment.
These rules can be of the form:
– synthesis rules, a → y, for a ∈ V , and y ∈ V ∗

– carriers construction rules (see [13]), vim1, . . . ,mp → [vim1, . . . ,mp] for
vi ∈ V , and mi ∈ V .

– carriers deconstruction rules, [vim1, . . . ,mp] → vim1, . . . ,mp for vi ∈ V ,
and mi ∈ V .

4. Ci = (wi, Si, Ri, >) , for each 1 ≤ i ≤ mi, a cell with:
(a) wi ∈ V ∗ is a finite multiset of metabolites internal to cell Ci;
(b) Si is a finite set of communication rules; each rule has the form (x; y, enter),

where x, y ∈ V ∗. These rules are used by the cell Ci to receive objects y
from the environment when x is present in the cell.

(c) Ri is a finite set of transformation-communication rules of the form
b1 . . . br → (a1)t1 . . . (aq)tq , for bi ∈ V , and 1 ≤ i ≤ r, ai ∈ V , and
ti ∈ {here, out}, 1 ≤ i ≤ q;

(d) > is a partial order on Ri. These rules are used by a cell to consume a
multiset b1 . . . br in order to produce a new multiset a1 . . . aq of which
those with tj = here remain inside of the cell Ci and those with tj = out
go out in the environment. A rule r1 from Ri is used in a step if there is
no rule r2 in Ri which can be applied at the same step and r2 > r1.

In turn, each environment Πi has a set of neighboring (i.e. overlapping re-
gions) environments. This neighborhood set is involved in the “channel rules”:

N(Πi) = {Πj |∃Γ = (Πi,Πj) or Γ = (Πj ,Πi)}. The channel rule is composed
of three steps:

– Πi ◦ [vim1, . . . ,mp]→
Γi
N(Πi), for vi ∈ V , and mi ∈ V

– Πj = (V,wEj
+ m1 + . . . + mp, Rj , CEj1

, . . . , CEjn
).

– Πi = (V,wEi
−m1 − . . .−mp, Ri, CEi1

, . . . , CEin
)

These rules state that a channel Γi = (Πi,Πj) will be able to transfer already
formed carriers (e.g. [vim1, . . . ,mp]) from, let say, Πi to Πj if the capacity of
the Γi channel , Θi, is large enough to contain the p metabolites in the carriers
and if the available storage in the target environment is enough to contain the
additional metabolites once the carrier is unbuild. The target environment Πj

is non-deterministically chosen from N(Πi). After the movement of the carrier
from one of the environments to the other, the appropriate number of metabolites
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are substracted and added in each one2. Please note that this is just one rule
composed of various steps not three independent rules, as such it should be
considered atomic.

In general, biological Quorum Sensing once switched on it is never turned
off but rather fine tuned and regulated by other concurrent processes within the
cells. As such, we will not consider here halting computations but rather non-
halting processes, we thus refrain from specifying an output membrane. This
simple P-system model can mimic the basic behavior of a “quorated” system.

4 Conclusions and Future Research

A deeper understanding of biological Quorum Sensing could have an important
impact not only in the biological sciences but also in computer science applica-
tions. Quorum sensing is a mechanism that, although complex in its biological
details, is simple in its fundamental principles. Its appeal resides in the fact
that, by exploiting a simple feedback loop and the limited capacity of both the
cell and the environment to diffuse and carry a signal molecule, it is possible to
bridge the “scale gap” between the individual bacterium and the colony. Such a
mechanism should be useful in many applications beyond biological ones where
multiple agents needs to robustly and efficiently coordinate their collective be-
havior based only on very limited information of the local environment. We are
actively following several lines of research on both biological Quorum Sensing per
se, modeling techniques based on P-systems, and we are also considering a range
of computational applications. In particular we will investigate in the future the
computational power of environment-aware P-systems and we will extend them
to allow cell migration through the channels and channel/environment creation
and removal. All of these will be reported elsewhere.
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Abstract. We define a simple variation of the standard Kripke seman-
tics motivated by the connection between constructive logic and the
Medvedev lattice. We show that while the new semantics is still com-
plete, it gives a simple and direct correspondence between Kripke models
and algebraic structures such as factors of the Medvedev lattice.

1 Introduction

Immediately after Heyting had isolated the axioms of intuitionistic logic in [1]
people began to wonder what the precise interpretation of these axioms was. In
the course of history many (complete) interpretations have been given, one of
the most famous being Kripke semantics [6]. Also several interpretations were
suggested that later turned out to be incomplete. Among these are Kleene’s
realizability [4] and the approach by Kolmogorov and Medvedev that will be
discussed below. Early on certain complete algebraic interpretations were given,
for example in Jaśkowski [3]. It is to be noted that these algebraic interpreta-
tions, as well as the later Kripke semantics, have little or nothing to do with
the basic intuitions surrounding intuitionistic logic, namely those of effectivity,
constructivity, or computability (cf. the informal Brouwer-Heyting-Kolmogorov
interpretation [16]). Kolmogorov [5] suggested to interpret the propositional con-
nectives constructively using a “calculus of problems”. This idea was later im-
plemented in various ways by Medvedev [7, 8]. Although this approach initially
failed to give a complete semantics for the intuitionistic propositional logic IPC,
the structures introduced by Medvedev turned out to be interesting for different
reasons as well. In particular, there are interesting connections with the Turing
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degrees and other structures from computability theory, cf. Sorbi [13]. More-
over, Skvortsova [10] showed that the main idea of the Kolmogorov/Medvedev
approach could be used to give a complete computational semantics for IPC
after all (see below). The results in this area are a particularly attractive blend
of results and methods from computability theory (such as lattice embedding
results) with proof-theoretic ones (coming from the study of intuitionistic and
intermediate logics).

In this note we present a variant of Kripke semantics in which only the in-
terpretation of “or” is different. We show that this alternative interpretation is
sound and complete for “distributive” structures, where the notion of distribu-
tivity is a rather liberal one, applying to partial orders in general instead of just
lattices. The new notion of forcing will be denoted by �∗, and the new kind of
Kripke models under this forcing notion will be called Kripke∗ models. The vari-
ation is motivated by the observation that every configuration in the Medvedev
lattice can be interpreted as a Kripke∗ model. This gives a direct relation between
Kripke∗ models on the one hand and the Medvedev lattice on the other.

We briefly recall the definition of the Medvedev lattice M. Let ω denote
the natural numbers and let ωω be the set of all functions from ω to ω (Baire
space). A mass problem is a subset of ωω. One can think of such subsets as
a “problem”, namely the problem of producing an element of it, and so we
can think of the elements of the mass problem as its set of solutions. A mass
problem A Medvedev reduces to mass problem B if there is an effective procedure
of transforming solutions to B into solutions to A: A ≤ B if there is a partial
computable functional Ψ : ωω → ωω such that for all f ∈ B, Ψ(f) is defined
and Ψ(f) ∈ A.1 This can be seen as an implementation of Kolmogorov’s idea
of a calculus of problems. The relation ≤ induces an equivalence relation on the
mass problems: A ≡ B if A ≤ B and B ≤ A. The equivalence class of A is
denoted by [A] and is called the Medvedev degree of A. We denote Medvedev
degrees by boldface symbols. Note that there is a smallest Medvedev degree,
denoted by 0, namely the degree of any mass problem containing a computable
function. There is also a largest degree 1, the degree of the empty mass problem,
of which it is impossible to produce an element by whatever means. Finally, it
is possible to define a meet operator × and a join operator + on mass problems:
For functions f and g, as usual define the function f⊕g by f⊕g(2x) = f(x) and
f ⊕ g(2x+ 1) = g(x). Let n̂A = {n̂f : f ∈ A}, where ̂ denotes concatenation.

Define
A + B =

{
f ⊕ g : f ∈ A ∧ g ∈ B

}
1 Note that although Medvedev reducibility is designed especially for sets of functions,

it is close in spirit to ordinary Turing reducibility ≤T for individual functions: g ≤T f
if there is a partial computable functional Φ that is defined at least on f such that
Φ(f) = g. One may also compare Medvedev reducibility to Wadge reducibility ≤W

from descriptive set theory: For sets of reals (or mass problems) A and B, A ≤W B
if there is a continuous functional Φ such that Φ−1(B) = A. Note that this notion
is quite different: the continuity is in the other direction, there is no ‘if and only if’,
and no effectivity.
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and
A× B = 0̂A ∪ 1̂B.

It is not hard to show that × and + indeed define a greatest lower bound and
a least upper bound operator on the Medvedev degrees. For more information
and discussion on M we refer to Sorbi [13], Terwijn [14, 15].

A distributive lattice L with 0, 1 is called a Brouwer algebra if for any elements
a and b it holds that the element a → b defined by

a → b := least
{
c ∈ L : b ≤ a + c

}
always exists. L is called a Heyting algebra if its dual is a Brouwer algebra.
Medvedev [7] showed that M is a Brouwer algebra, and Sorbi [11] showed that
M is not a Heyting algebra.

Above we have already defined the operations ×, +, and → on M. We can
also define a negation operator ¬ by defining ¬A = A → 1 for any Medvedev
degree A.

Given any Brouwer algebra L (such as M) with join denoted by + and meet
by ×, we can evaluate formula’s as follows. An L-valuation is a function σ :
Form → L from propositional formulas to L such that for all formulas A and B,
σ(A∨B) = σ(A)× σ(B), σ(A∧B) = σ(A) + σ(B), σ(A → B) = σ(A) → σ(B),
σ(¬A) = σ(A) → 1. (Note the upside-down reading of ∧ and ∨ when compared
to the usual lattice theoretic interpretation. For more remarks regarding notation
see [14].) Write L |= A if σ(A) = 0 for any L-valuation σ. Finally, define

Th(L) =
{
α : L |= α

}
.

A B-homomorphism is a mapping between Brouwer algebras preserving +,
×, →, and 0 and 1. A B-embedding is an injective B-homomorphism. Note that if
L1 is B-embeddable into L2 then Th(L2) ⊆ Th(L1) because every L1-valuation
is also a L2-valuation. If there is a (not necessarily injective) B-homomorphism
from L1 onto L2 we obtain the converse Th(L1) ⊆ Th(L2). Note that the top
element has to be preserved in order to fix the meaning of negation.

It follows from results of Medvedev [8] and Jankov [2] that Th(M) is the
deductive closure of IPC and the weak law of the excluded middle ¬α ∨ ¬¬α
(also known as De Morgan, or Jankov logic). Although this shows that the
Kolmogorov/Medvedev approach for providing a semantics for IPC does not
work directly, the ideas can still be used to interpret IPC. Namely, one can
consider factors of M, i.e. study M modulo a filter or an ideal. Given a Brouwer
algebra L and an ideal I in L, L/I is still a Brouwer algebra. If G is a filter in L
then L/G is not necessarily a Brouwer algebra, but if G is principal then L/G
is again a Brouwer algebra. In such a factorized lattice G plays the role of 1.
E.g. if G is the principal filter in M generated by the degree D then negation
in M/G can be defined by ¬A = A → D. The algebraic properties of M/G
are directly related to the theories Th(M/G). For example, whether the weak
law of the excluded middle holds in Th(M/G) is related to whether the element
that generates G is join-reducible in M. (For more information see [13, 14].)
Skvortsova [10] showed that there are indeed factors that capture IPC: There
exists a principal filter G such that Th(M/G) = IPC.



Kripke Models, Distributive Lattices, and Medvedev Degrees 489

2 A Variant of Kripke Semantics

The reader may observe that a configuration in the Medvedev degrees bears
much resemblance to a Kripke model. We have already seen that negation in
M causes problems, but this can be remedied by considering suitable factors
M/G. Let us for the moment consider only formulas without negation, so that
Medvedev’s theorem (that the positive fragments of Th(M) and IPC coincide
[8]) applies. Consider for example the following formula ϕ:

(p → q ∨ r) → ((p → q) ∨ (p → r))

This formula is not derivable in IPC. The left part of the following figure shows
a Kripke countermodel for ϕ, and the right part is a configuration of Medvedev
degrees that shows that ϕ �∈ Th(M).

P

p, q RQp, r

If P, Q, and R are interpreted by Medvedev degrees as in the configuration on
the right, where P = Q×R, then ϕ does not evaluate to 0, because P ≥ Q×R
but neither P ≥ Q nor P ≥ R. This example shows that there is a difference
in interpretation between ∨ in Kripke models and × in the Medvedev lattice:
A∨B holds in a node k in a Kripke model only if A or B holds in k, but in the
above configuration Q×R “holds” in P but neither Q nor R does. We now show
that a rather harmless variation of the standard Kripke semantics, where only
the interpretation of ∨ is changed, gives a precise connection between Kripke
models on the one hand and configurations in M on the other.

Let � denote the usual forcing relation in Kripke models, cf. [16]. We define
a variant �∗ where only ∨ has a slightly different interpretation. Namely, for
a propositional Kripke model M , a node k ∈ M , and propositional formulas A
and B, we let k �∗ A ∨B if any one of the following holds:

1. k �∗ A or k �∗ B,
2. (∃k′ ≤ k)[k′ �∗ A ∨B]
3. There exist k0, k1 ∈ M such that k0 �∗ A, k1 �∗ B, and k is the greatest

lower bound of k0 and k1 in M .

Also, if k �∗ A ∨ A we let k �∗ A. The clauses for ∧, →, and ¬ for �∗ are
identical to those for �. For example, k �∗ A → B if in every k′ ≥ k with
k′ �∗ A it holds that k′ �∗ B. Thus, in the new semantics, if a node k is the
meet of a node where A holds and another where B holds, then A ∨B holds in
k. We will call a Kripke model under this new semantics a Kripke∗ model.
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First we note that the Kripke∗ semantics is sound only for distributive struc-
tures: Consider the nondistributive lattice N5, interpreted as a Kripke∗ model
with the atoms p, q and r holding in the nodes as in the following figure:

r

p

q

Then for the distributive law A = (q ∨ p) ∧ (r ∨ p) → (q ∧ r) ∨ p it holds that
in the “q-node” k we have that k � A but not k �∗ A: k �∗ (q ∨ p) ∧ (r ∨ p)
because of the new interpretation of ∨, but still k ��∗ (q ∧ r) ∨ p. Since A is of
course intuitionistically valid, we see that the Kripke∗ semantics is in general
not sound for IPC. It is so, however, if we restrict it to distributive structures:

Definition 1. We call a partial order 〈P,≤〉 distributive if for all k0, k1, l ∈ P ,
if k0 and k1 have a greatest lower bound k in P such that k ≤ l, then there are
l0 ≥ k0 and l1 ≥ k1 in P such that l is the greatest lower bound of l0 and l1.

One can easily check that for lattices the property from Definition 1 is equivalent
to distributivity. I.e. a lattice is distributive (satisfies the distributive laws) if
and only if it is distributive as a partial order (in the sense of Definition 1). But
note that the property from Definition 1 is more general since it may also hold
on structures that are not lattices. Thus we will call a Kripke∗ model that is
distributive as a partial order a distributive Kripke∗ model.

Proposition 2. (Soundness) For all propositional formulas A, 1 A (i.e. A is
derivable in IPC) implies that L �∗ A for all distributive Kripke∗ models L.

Proof. We prove this by induction on derivations in the natural deduction pre-
sentation of IPC, cf. [16]. Let L be a distributive Kripke∗ model. Suppose that
the last inference rule used in the derivation is the elimination rule ∨E:

Γ1 1 A ∨B Γ2, A 1 C Γ3, B 1 C

Γ1, Γ2, Γ3 1 C

The induction hypothesis is that for all l ∈ L, l �∗ Γ1 ⇒ l �∗ A∨B, l �∗ Γ2, A⇒
l �∗ C, and l �∗ Γ3, B ⇒ l �∗ C. Suppose that for k ∈ L we have k �∗ Γ1, Γ2, Γ3.
We have to prove that k �∗ C. By induction hypothesis we have k �∗ A ∨B. If
k �∗ A or k �∗ B we are done. Otherwise, there are nodes k0 and k1 with greatest
lower bound l such that k0 �∗ A, k1 �∗ B, and l ≤ k. Now by distributivity there
are k′

0 ≥ k0 and k′
1 ≥ k1 with meet k. We then have k0 �∗ A and k0 �∗ Γ2, hence

by induction hypothesis k′
0 �∗ C. Similarly we have k′

1 �∗ C. Hence k �∗ C ∨C,
and thus k �∗ C.
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The induction steps for the other IPC-rules are all straightforward, and do
not need distributivity. �

The following correspondence between Kripke∗ models and Brouwer algebras
will be useful, both for the proof of completeness (Theorem 4) and in section 3.
Let L be any Brouwer algebra with largest element 1 and let K = L−{1}. Then
we can interpret K as a Kripke∗ model by stipulating that for every node P ∈ K,
P (as a propositional atom) holds in every node Q ∈ K with Q ≥ P . So the
degrees in K play the role of the nodes as well as of the propositional atoms. Let
A be a propositional formula, with atoms from K ∪ {⊥}. Then we can interpret
A as a point of K as in section 1, where ∨ is interpreted by × and ∧ by +, and
⊥ by 1. The reason that 1 is left out of the subalgebras that we consider is to
guarantee that no degree forces ⊥. We now have the following simple observation
about such formula’s A and the forcing relation �∗.

Proposition 3. For any P ∈ K, P �∗ A (in the Kripke∗ model K) if and only
if P ≥ A (in the Brouwer algebra K). In particular we have that K �∗ A if and
only if K |= A.

Proof. By formula induction on A. The atomic case: For Q ∈ K we have P �∗ Q
⇔ P ≥ Q by definition of the interpretation of K as a Kripke∗ model. For A = ⊥
we have P ��∗ ⊥ by definition of �∗, and P �≥ 1 because 1 /∈ K.

For the case A ∨ B note that P �∗ A ∨ B if and only if P �∗ A or P �∗ B
(in which cases we immediately obtain P ≥ A × B) or there is P ′ ≤ P with
P ′ = Q × R such that Q �∗ A and R �∗ B. In the latter case we have Q ≥ A
and R ≥ B, and hence also P ≥ Q×R ≥ A×B.

For the case A → B we have

P �∗ A → B ⇐⇒ (∀Q ≥ P )[Q �∗ A ⇒ Q �∗ B]
⇐⇒ (∀Q ≥ P )[Q ≥ A ⇒ Q ≥ B]
⇐⇒ (∀Q ≥ P )[Q + A ≥ B]
⇐⇒ P + A ≥ B

⇐⇒ P ≥ A → B.

The case ¬A is a special case of the previous case, and the case A∧B is straight-
forward. �
The next theorem shows that under the restriction to distributive models we
still have completeness for IPC, so we see that our variation does not change
anything essential. In fact, we can apply an old result of Jaśkowski [3] to show
completeness with respect to the smaller class of Kripke∗ models whose frame
is a finite Brouwer algebra. Note that in such Kripke∗ models, by definition of
�∗, every atom occurs essentially only once. (Namely an atom P is forced in
the meet of all nodes where P is forced, so that modulo upwards consistency P
occurs only once.)



492 S.A. Terwijn

Theorem 4. (Completeness) For any propositional formula A the following
are equivalent:

(i) � A (A is valid on all Kripke models)
(ii) L �∗ A for all distributive Kripke∗ models L.
(iii) L �∗ A for all Kripke∗ models L that are also distributive lattices.
(iv) L �∗ A for all finite Kripke∗ models L that are also Brouwer algebras.

Proof. (i)=⇒(ii). Suppose that K is a distributive Kripke∗ model on which A
does not hold. We claim that K is automatically a Kripke countermodel for A.
Namely, we prove that for all k ∈ K and formulas A

k � A =⇒ k �∗ A

We prove this by formula induction on A.
The atomic case is immediate. The cases A = B∧C and B∨C are immediate

by definition of �∗.
Suppose that A = B → C. Suppose that k ∈ K has k � B → C, and suppose

for a contradiction that k ��∗ B → C. This can only be if, in going from � to �∗,
B holds on more k′ ≥ k and C holds on less k′ ≥ k. By induction hypothesis,
the latter does not occur. So there must be k′ ≥ k such that k′ �∗ B, k′ �� B,
and k′ ��∗ C. Ultimately, the points in K responsible for k′ �∗ B all have � B.
By distributivity all these points are above k. But k � B → C, so in all these
points � C. But then also k′ �∗ C, contradiction.

Finally, the case that A = ¬B is similar (and easier) than the case A = B →
C. This completes the induction.

(ii)=⇒(iii) and (iii)=⇒(iv) are immediate.
(iv)=⇒(i). This follows from Proposition 3 and the result of Jaśkowski [3]

that IPC =
⋂{

Th(L) : L is a finite Brouwer algebra
}
. (A proof of this result is

in Rose [9]2.) �
We noted above that in a semantics for IPC we can restrict ourselves to finite
Kripke∗ models were every propositional atom occurs at most once, modulo
upward consistency. This will enable us in the next section to obtain the desired
correspondence between Kripke∗ models and sets of Medvedev degrees.

We note that in infinite distributive Kripke∗ models it is not necessarily the
case that every propositional atom occurs at most once. (For a counterexample,
consider a frame with an infinite descending chain of nodes without infimum, in
each of which p is forced.) However, the property that every atom occurs essen-
tially only once holds for all Kripke∗ models that are also κ-complete lattices,
where κ is the cardinality of the lattice.

2 Instead of algebras, Jaśkowski and Rose use the more general notion of matrix in
the proof of this result. It can be checked that the sequence of matrices Ji in [9]
that give IPC is in fact a sequence of Brouwer algebras. The order can be defined
by x ≤ y :≡ x ∨ y = x.
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3 Kripke Semantics and the Medvedev Lattice

After the groundwork from the previous section we can now finally give the
correspondence between Kripke semantics and configurations in the Medvedev
lattice.

Consider any Brouwer subalgebra K of M. Then we can interpret K − {1},
ordered by the Medvedev reducibility ≤, as a Kripke∗ model as in section 2. In
particular, by Proposition 3 we have that for any P ∈ K, P �∗ A if and only if
P ≥ A. This holds equally well for any factor M/G of the Medvedev degrees,
where 1 is interpreted by a principal filter G.

For a Kripke∗ model K and a subalgebra K ⊆ M − {1} let us write K ∼= K
if K is isomorphic to K as a Kripke∗ model.

Theorem 5. For every Kripke∗ model K that is also a finite Brouwer algebra
there is a finite set of degrees K ⊆ M − {1} such that K ∼= K, and vice versa.

Proof. We have just seen that every K ⊆ M−{1} can be seen as a Kripke∗ model.
Conversely, if K is a Kripke∗ model whose frame is a finite Brouwer algebra then
by Sorbi [12], K is embeddable (as a Brouwer algebra) into M (maybe without
preserving 1; If K has an irreducible 1 then the top can be preserved as well). �

Of course, Theorem 5 does not make it any easier to find examples of G with
Th(M/G) = IPC. It merely points out the relation between Kripke semantics
and validity in degree structures such as M.

Theorem 5 also holds for any of the factors Th(M/G) if G is generated by a
degree different from 0 or 0′:

Theorem 6. Let G be a principal filter generated by a degree D > 0′. For every
Kripke∗ model K that is also a finite Brouwer algebra there is a finite set of
degrees K ⊆ M/G− {D} such that K ∼= K, and vice versa.

Proof. As noted above, every K ⊆ M/G− {D} can be interpreted as a Kripke∗

model. Conversely, if K is a Kripke∗ model whose frame is a finite Brouwer
algebra then by the proof of [12–Theorem 2.11], K is embeddable (as a Brouwer
algebra, but maybe without preserving 1) into M/G. �
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Abstract. We survey some recent results related to the complexity of
isomorphism testing in different algebraic structures. We concentrate on
isomorphism problems for finite groups and rings. The complexity of
these problems depends not only on the particular underlying algebraic
structure, but also on the way the input instances are encoded. As in the
case of better studied isomorphism questions, like graph isomorphism,
Arthur-Merlin games provide a good tool for proving upper bounds for
these problems in terms of complexity classes. We consider questions re-
lated to the number of random and nondeterministic bits used in the
Arthur-Merlin protocols for isomorphism testing as well as the deran-
domization of these protocols.

1 Introduction

Arthur-Merlin games were introduced by Babai in [4] providing a better way to
classify some computational problems that did not fit very well in the complex-
ity classes of the polynomial time hierarchy. The class AM can be considered
as a natural randomized version of NP. In the same way as NP is the class of
languages with short membership proofs, the languages in AM have also effi-
cient membership proofs, but in this case the process of proving membership
can use randomness and it is based on statistical evidence. It turns out that
several important algebraic problems are in either NP ∩ coAM or AM ∩ coAM.
In particular it is well known that problem of testing isomorphism of two given
graphs, GRAPH-ISO lies in NP ∩ coAM. Babai conjectures in [5] that some of
the group problems classified in AM actually belong to NP but the proof of
this fact should rely on involved results related to the classification of finite sim-
ple groups, some of which are still open. Babai’s motivation for introducing the
Arthur-Merlin games was to trade the group theory and unproven hypothesis
needed for proving these results for the randomization in the definition of AM.

With the development of derandomization techniques, several researchers
have tried to eliminate the randomness needed in the Arthur-Merlin games.
Arvind and Köbler [2] use an average-case hardness assumption to construct
a pseudo-random number generator that suffices for derandomizing AM and
therefore for showing that graph isomorphism is in NP ∩ coNP. This result is
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improved to a worst-case hardness assumption by Klivans and van Melkebeek
in [12]. Another attempt was made by Miltersen and Vinodchandran [16], using
hitting sets instead of pseudo-random generators. In a surprising recent result
[18] it has been shown that the three hardness hypothesis are in fact equivalent.

These results are examples of hardness versus randomness trade-offs in deran-
domization. Somehow they go the opposite way as Babai with his Arthur-Merlin
games: they trade randomness for unproven hypothesis, but in this case unproven
hypothesis related to complexity separations instead of group theory.

In this survey we consider the problem of testing isomorphism of two further
finite algebraic structures: groups and rings. For the group isomorphism problem,
GROUP-ISO, the input consists of the operation tables (Cayley tables) of two
groups of the same order n. The input has therefore polynomial length in n. For
the case of ring isomorphism, RING-ISO, the input is given in a more succinct
way (explained in Section 2) so that rings of order n are encoded as strings of
polylogarithmic length in n. These two different ways to encode the structures
provide an example on how the input encoding affects the complexity of the
problem. Intuitively speaking, the shorter the input relative to the size of the
structure, the harder becomes the problem. Presented this way, GROUP-ISO is
reducible to graph isomorphism while GRAPH-ISO is reducible to RING-ISO[11]

GROUP-ISO ≤p
m GRAPH-ISO ≤p

m RING-ISO.

On the other hand GROUP-ISO seems to be strictly easier that GRAPH-ISO.
This is because groups of order n have generator sets of size bounded by log n
and because of this fact an isomorphism algorithm running in time nlog n+O(1)

can be obtained by computing a generator set of size log n in one of the groups,
and mapping this set in every possible way to a set of elements in the second
group. The map has to be extended to the entire group using the Cayley table
and then it has to be checked that it defines an isomorphism. This algorithm is
attributed to Tarjan in [15]. A stronger result showing that GROUP-ISO can be
solved in space O(log2 n) was given in [13].

RING-ISO appears to be strictly the hardest of the three problems. Kayal and
Saxena prove in [11] that the problem of factoring natural numbers is reducible
to the counting version of ring isomorphism. This is not known to hold for
GRAPH-ISO.

The purpose of studying these two problems in connection with GRAPH-ISO
is twofold. On the one hand we want to know how far the techniques known for
the derandomization of the AM protocols for GRAPH-ISO can further be pushed
when an easier problem is considered. The goal here is to show that GROUP-ISO
is in NP ∩ coNP. On the other hand, since RING-ISO seems to be a more struc-
tured problem than GRAPH-ISO, the use of algebraic properties of rings might
provide a way to design an efficient algorithm for the ring isomorphism prob-
lem, thus solving also graph isomorphism. For example, in [11] it is shown that
the ring automorphism problem is in P, a result that is not known for graph
automorphism.

This survey is organized as follows: we give in Section 2 the group theoretic
notions needed in the paper as well as the formal definitions of GROUP-ISO and
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RING-ISO. In Section 3 we present an AM protocol for ring non-isomorphism
[11], and show that GROUP-NONISO can be solved by Arthur-Merlin games of a
restricted kind in which only a polylogarithmic amount of random bits (for the
verifier) and nondeterministic bits (for the prover) are needed [3]. We explain
in Section 4 how the existing derandomization results for AM protocols can be
improved for the protocols for GROUP-NONISO. This survey ends with some
conclusions and open problems.

2 Encodings of Finite Groups and Rings

A finite group of order n can be given by the Cayley table of its elements. Since
each element can be encoded as a sting of log n bits, the whole table can be
presented as a string of size O(n2 log n). Two groups G1 and G2 are isomorphic
if there is a bijection (isomorphism) ϕ between the groups such that for every
pair i, j ∈ G1, ϕ(ij) = ϕ(i)ϕ(j). The group isomorphism problem is defined as

GROUP-ISO={(G1, G2) | G1, G2 are isomorphic groups given as Cayley tables}

Many groups however can be encoded in a much more succinct way than the
Cayley tables.

Definition 1. A presentation of a group G with n elements is a pair (X,R)
where X is a generating set for G, R is a set of relations written as equations
using powers of the generators. w ∈ R defines the equation w = 1 and (X,R)
defines the group G in the sense that there is an algorithm that on input a
presentation for a group G computes the Cayley table of a group G′ isomorphic
to G.

For a constant c > 0 we say that a presentation (X,R) is c-short if its length
|(X,R)| is at most logc n.

For example, the cyclic group of order 6 can be encoded by the pair (X,R)
with X = {a} and R is the relation a6 = 1. Observe that a group can have
several different presentations, for example (X ′, R′) with X ′ = {b, c} and R′ =
{b3 = 1, c2 = 1, b−1c−1bc = 1} is a different presentation for the same group.
Every Abelian group of order n can be encoded by a presentation of size at most
log2 n. This follows by the Structure Theorem for Abelian groups, that states
that any such group of order n can be expressed as direct product of cyclic
groups of orders q1, . . . , qm with

∏
qi = n, and the fact that the direct product

of two groups with short presentations has also a short presentation (cf. [8]).
The short presentation conjecture (see [7–Conjecture 1] for details) states

that there is a constant c such that every finite group has a c-short presenta-
tion.

Our results for derandomizing Arthur-Merlin protocols for GROUP-NONISO,
work for the case groups satisfying certain conditions: the groups must have
short presentations that are efficiently computable. Moreover, from the short
presentation it has to be possible to compute the table of the group using only
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polylogarithmic space. We showed in [3] that the class of solvable groups fulfill
these properties.

Theorem 2. [3] Let G be solvable group with n elements, given by its Cayley
table, there is a polynomial (in n) time algorithm that inductively computes a
short presentation (X,R) for G. Moreover, the size |(X,R)| is c logc n, where c
is a fixed constant independent of the group.

Theorem 3. Let (X,R) be a short presentation as obtained by Theorem 2, for a
solvable group G with n elements. There is a polynomial time-bounded algorithm
that on input (X,R) constructs the Cayley table of a group G′ that is isomorphic
to G.

A ring can be encoded in a similar way as a group providing explicitly the
tables for its additive and multiplicative groups. But these structures admit also
succinct representations. A ring R can be encoded by giving first a short presen-
tation of its additive group in terms of generators and relations (this is always
possible since the additive group is Abelian), and then giving the multiplication
by expressing the product of each pair of generators as a linear combination
of the generators. (R,+, ·) = 〈d1, d2, . . . , dm, A1, . . . Am〉. This expression repre-
sents that R is generated by m elements a1, . . . , am, each ai being of additive
order di. (R,+) = 〈a1〉 ⊕ 〈a2〉 ⊕ . . . 〈am〉 and for each i, j ai · aj =

∑m
k=1 A

k
ijak.

Again by the Structure Theorem for Abelian groups, the values of the d′
is are

prime powers, and they are unique up to permutations. Observe that the size of
the representation is polylogarithmic in the number of elements in R. We will
refer to this representation as the basis representation of the ring, as opposed
to the table representation mentioned above. The ring isomorphism problem is
defined [11] as

RING-ISO = {(R1, R2) | R1, R2 are isomorphic rings in basis representation}

An homomorphism between rings given in basis representation can also be
expressed in a succinct form. If R1 and R2 are two rings given by their additive
generators a1, . . . , am and b1, . . . , bm, a homomorphism ϕ : R1 → R2 can be
expressed by the images of a1, . . . , am, and these can be represented by an m×m
matrix F such that

ϕ(ai) =
m∑
j=1

Fijbj .

The homomorphism is considered to extend linearly to all the elements. In order
to test whether ϕ is an isomorphism, it has to be verified that for every generator
pair ϕ(ai · aj) = ϕ(ai)ϕ(aj), and that ϕ does not map any non-zero element
of R1 to zero. This last condition can be tested by solving a system of linear
equations. Since an isomorphism can be encoded by a string of polynomial length
with respect to the ring representation, and its correctness can be tested in
polynomial time, it follows:

Theorem 4. [11] RING-ISO ∈ NP.
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3 AM Protocols

Denote by AM(r(n), s(n)) the class of languages accepted by 2-round AM pro-
tocols, with error probability 1/4, in which Arthur uses O(r(n)) random bits
and Merlin uses O(s(n)) nondeterministic bits. Formally, a language L is in
AM(r(n), s(n)) if there is a set B ∈ P such that for all x, |x| = n,

x ∈ A ⇒ Probw∈R{0,1}r′(n) [∃y, |y| = s′(n) : 〈x, y, w〉 ∈ B] ≥ 3/4,

x �∈ A ⇒ Probw∈R{0,1}r′(n) [∀y, |y| = s′(n) : 〈x, y, w〉 ∈ B] ≤ 1/4,

where r′ and s′ are functions in O(r(n)) and O(s(n)) respectively. Notice that the
above definition is equivalent to the definition in terms of 2-round Arthur-Merlin
protocols. Indeed, the standard AM class is AM(nO(1), nO(1)).

The class AM is very well suited to deal with isomorphism problems. The fact
that ring non-isomorphism belongs to this class is not surprising. The protocol
is similar to the one for graph non-isomorphism [4]. In fact all the protocols
presented here have the same flavor, they boil down to construct a set related
to the given structures with the property that the number of elements in the set
is small in case the structures are isomorphic, and large otherwise.

Theorem 5. [11] RING-ISO ∈ coAM

Proof. We give an AM protocol for non-isomorphism. On input two rings R1, R2

in basis form, Arthur can first check whether their additive groups (R1,+) and
(R2,+) are isomorphic. This can be done using the fact that the basis representa-
tion for the additive group is unique. If the additive groups are non-isomorphic,
then Arthur accepts. Otherwise let a1, . . . , am and b1, . . . , bm be the generators
for (R1,+) and (R2,+) and consider the set

C(R1) := {〈A1, . . . Am, Aφ〉 | there is an automorphism π of (R1,+)

such that π(ai)π(aj) =
∑

k
Ak
ij and Aφ is a matrix describing

an automorphism φ of (R1,+) expressed on the basis {π(ai)}}

and define G(R2) in a similar way. It is not hard to see that C(R1) and C(R2)
coincide in case R1

∼= R2 while the set are disjoint if the rings are non isomorphic.
Also, the cardinality of C(Ri) is exactly s, the number of automorphisms in the
additive group (Ri,+), which can be computed in polynomial time. A standard
AM protocol using hash functions can distinguish between C(R1)∪C(R2) having
cardinality s or 2s.

GROUP-ISO is reducible to RING-ISO and therefore the above result also
shows that GROUP-ISO ∈ coAM. But in case of GROUP-ISO we can do much
better. We present a two-round AM protocol for group non-isomorphism from
[3] that has constant success probability, and Arthur uses O(log6 n) random bits
and Merlin uses O(log2 n) nondeterministic bits. Thus group non-isomorphism
is in AM(log6 n, log2 n).
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Let G be a group with n elements. A sequence of k group elements X =
(g1, . . . , gk) is called a cube generating k-sequence for G if

G = {gε11 gε22 · · · gεk

k | εi ∈ {0, 1}}.

The set {gε11 gε22 · · · gεk

k | εi ∈ {0, 1}} is the cube Cube(X) generated by the
sequence X. Erdős and Renyi [9] proved the following important theorem about
the probability that Cube(X) = G, for a k-sequence X chosen uniformly at
random from Gk.

Theorem 6. [9] Let G be a finite group with n elements. For k ≥ log n +
log log n + 2 log(1/δ) + 5,

ProbX∈RGk [X is a cube generating sequence for G] > 1 − δ.

For G with n elements we choose k = 4 log n and obtain:

Corollary 7. Let G be a finite group with n elements and k = 4 log n. Then

ProbX∈RGk [u is a cube generating sequence for G] > 1 − 1/n.

Now, let G be a group with n elements and X = (g1, g2, . . . , gk) be a cube
generating sequence for G. There is a natural 1-1 mapping πX : G → {0, 1}k
that is defined by the cube generating sequence X. The mapping πX is defined
as follows: πX(g) = (ε1, ε2, . . . , εk), where (ε1, ε2, . . . , εk) is the lexicographically
first k-tuple in {0, 1}k such that g = gε11 gε22 · · · gεk

k . Clearly πX is an injective
mapping and, given the Cayley table for G as input, πX can be computed in
polynomial time.

Lemma 8. Let G be a group with n elements given by its Cayley table, and X is
a cube generating k-sequence for G. There is a polynomial (in n) time procedure
B that takes as input the pair (X,G) and outputs a pair (Y,H), where H is the
Cayley table of a group defined on the set πX(G) ⊆ {0, 1}k and Y = πX(X) is a
cube generating sequence for H.

The following proposition is an important property of B.

Proposition 9. Let G1 and G2 be groups of order n and φ be an isomorphism
from G1 to G2. Let X be a cube generating k-sequence of G1. Then B(X,G1) =
(Y,H) implies B(φ(X), G2) = (Y,H).

Now, for a group G with n elements we define the following set.

C(G) = {(S,H,ψ) | there is a cube generating 4 log n-sequence X ⊂ G

such that B(X,G) = (S,H) and ψ ∈ Aut(H)}.

Lemma 10. If G1 and G2 are isomorphic finite groups then C(G1) = C(G2)
and if G1 and G2 are non-isomorphic then C(G1) ∩ C(G2) = ∅.
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Let C(G1, G2) = C(G1) ∪ C(G2). The size of C(G1, G2) in the two cases
G1

∼= G2 and G1 �∼= G2 can be estimated as:

Lemma 11. For a group G with n elements

(1 − 1/n)n4 log n ≤ |C(G)| ≤ n4 log n.

We have the immediate corollary which is crucial to the AM protocol.

Corollary 12. Let G1 and G2 be groups of n elements. For n > 4 we have:

1. G1
∼= G2 implies |C(G1, G2)| ≤ n4 log n.

2. G1 �∼= G2 implies |C(G1, G2)| > 1.5n4 log n.

A standard AM protocol could distinguish using hash functions the cardinal-
ity of C(G1, G2) in the two cases. However, since we we want to save on the use
of random and nondeterministic bits, more careful arguments are needed. The
idea is to consider the elements of C(G1, G2) as numbers, and do the computa-
tions modulo a random prime number p of log3 n bits. In order to approximate
the size of C(G1, G2) we estimate the number of strings in this set (modulo p)
that are mapped to 0 by a randomly chosen linear transformation of small size.
The AM(log6 n, log2 n) protocol in given below. We refer the reader to [3] for a
detailed analysis of the protocol.

Arthur Randomly sample numbers of log3 n bits until a prime number p is found.
If after 5 log n trials no prime number has been found, then reject the
input. Otherwise pick a random F2-linear function h : Σt → Σk, where
t = log3 n and k = log(4 log2 n). Send p and h to Merlin.

Merlin Sends back two 7-tuples 〈x1, . . . , x7〉 and 〈i1, . . . , i7〉. Where for j =
1, . . . , 7, ij ∈ {1, 2} and xj = (Sj , Tj , ψj), where Sj is a sequence of
elements of {0, 1}4 log n of length 4 log n, Tj is a cube generating 4 log n-
sequence for the group Gij , and ψj : Sj → {0, 1}4 log n is a 1-1 mapping.

Arthur For each j = 1, . . . , 7, Arthur does the following verification, all in poly-
nomial time: Let xj = (Sj , Tj , ψj). Computes B(Tj , Gij ) = (S,Hj) and
verifies that S = Sj . Then using the group multiplication of Hj , Arthur
extends ψj to all of Hj and verifies that it is an automorphism of Hj .
Now, let yj = (Sj ,Hj , ψj) for 1 ≤ j ≤ 7 and let y = 〈y1, . . . , y7〉 which is
an element of X. Verify that h(num(y) (modp)) = 0k and if so, accept
the pair (G1, G2) as non-isomorphic.

It follows:

Theorem 13. There is a 2-round AM protocol with error probability 1/4 for
the Group Non-isomorphism problem in which Arthur uses O(log6 n) random
bits and Merlin uses O(log2 n) nondeterministic bits. Hence, the problem is in
AM(log6 n, log2 n).

There is a similar AM protocol using only a polylogarithmic number of ran-
dom and nondeterministic bits for ring non-isomorphism in the case the input
rings are given explicitly by their operation tables.
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4 Derandomization

As mentioned in the introduction, in the last years several authors [2, 12, 16]
have tried to derandomize the class AM to NP by using hardness assumptions.
The assumptions state that some high complexity class requires exponential size
circuits of a certain kind. These results derandomize the whole class AM. As an
immediate consequence of of [12] and Theorem 5 we can state for example:

Corollary 14. If there is a function in NE ∩ coNE requiring boolean circuits
with oracle gates for Satisfiability of size 2Ω(n) then RING-ISO ∈ NP ∩ coNP.

We present here results from [3] showing a way to use a specific property
of the group isomorphism problem in order to derandomize its AM protocol
under weaker hypothesis. These methods work for the case of groups that have
short presentations that can be efficiently computed from the Cayley table of the
group. This is for example the case of solvable groups. We assume throughout
this section that the input instances (G1, G2) for GROUP-ISO are such that
G1 and G2 are solvable groups. Given an instance (G1, G2), by applying the
algorithm of Theorem 2 and then the algorithm of Theorem 3 to both G1 and
G2 we can obtain a new pair of groups (G′

1, G
′
2) such that G1

∼= G2 if and only if
G′

1
∼= G′

2. We call such an instance (G′
1, G

′
2) a reduced instance of GROUP-ISO.

The key observation is that there is a constant c such that the number of reduced
instances (G′

1, G
′
2) for pairs of graphs with n elements is bounded by 2logc n. This

is immediate from the bound on the size of short presentations for solvable groups
given in Theorem 2.

Lemma 15. The number of reduced instances (G′
1, G

′
2) is bounded by 2logc n for

a fixed constant c > 0, where G′
1 and G′

2 are groups with n elements.

For a first derandomization of the AM protocol for GROUP-NONISO we give
an easy generalization of a theorem from the Goldreich and Wigderson paper [10–
Theorem 3] for a nondeterministic setting. The idea is to try and derandomize
certain advice-taking randomized algorithms by extracting randomness from the
input. It can be proved almost exactly as [10–Theorem 3].

Theorem 16. Let M be an advice-taking NP machine for a problem Π, where
the length of the advice is bounded by logcm for some constant c, for inputs
x ∈ {0, 1}m. Suppose it holds that at least 2/3 fraction of the logcm-bit advice
strings are good advice strings. More precisely

Probw∈{0,1}logc m [∀x ∈ {0, 1}m it holds that M(x,w) is correct] ≥ 2/3.

Then for every ε > 1, there is an NP machine M ′ for Π that is incorrect on at
most 2logcε m inputs x ∈ {0, 1}m.

In order to be able to use this result we have to transform the AM protocol
for GROUP-NONISO of Section 3 into an advice taking NP machine (with short
advice) for the problem. The standard amplification of the success probability
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of the AM protocol would not work since the resulting advice string would be
of polynomial length. We show how the AM protocol can be modified in order
to avoid this problem.

Fix a standard encoding of an instance (G1, G2) of groups of with n ele-
ments by a binary string of length m = Cn2(log n), where C is some fixed
constant. Furthermore, we can assume that both this encoding and its inverse
are computable in time polynomial in n. . We can assume that the AM protocol
Section 3 takes as input a string x ∈ {0, 1}m and first checks if it encodes an
instance (G1, G2) of solvable groups and rejects if it does not. We can think of
the binary strings x as the input to the AM protocol.

The AM protocol of Section 3 is modified as follows: on input x ∈ {0, 1}m,
first Arthur decodes x to get (G1, G2) and checks that G1 and G2 are solvable
groups. Then, applying the algorithms of Theorems 2 and 3 in succession, Arthur
converts (G1, G2) to a reduced instance (G′

1, G
′
2). Now, Arthur starts the AM

protocol for the reduced instance (G′
1, G

′
2). Merlin is also supposed to compute

(G′
1, G

′
2) and execute his part of the protocol for (G′

1, G
′
2). Observe that by

Lemma 15 there are only 2logc n reduced instances for a fixed constant c > 0.
Notice that effectively the original AM protocol is now being applied only to
reduced instances. By standard methods of amplifying the success probability
of the AM protocol, we can convert the AM protocol to a (logO(1) n size) advice
taking NP machine M . We summarize the above observation as a theorem.

Theorem 17. There is an (log(O(1) n size) advice-taking NP machine M for
GROUP-NONISO such that that for inputs x ∈ {0, 1}m the following holds:

Probw∈{0,1}logc n [∀x ∈ {0, 1}m it holds that M(x,w) is correct] ≥ 2/3.

The AM protocol can be transformed using well-known techniques into a one-
sided error protocol for GROUP-NONISO such that when the input groups are
non-isomorphic, the protocol accepts with probability 1, where the protocol still
uses only a polylogarithmic number of random bits. Consequently, the advice-
taking NP machine M defined above also has only one-sided error.

Now, applying Theorems 17 and 16 we immediately have the following con-
sequence for GROUP-ISO in the case of solvable groups.

Theorem 18. For some constant c > 1 there is an NP ∩ coNP machine M
for GROUP-ISO for solvable groups that is incorrect on at most 2logc m inputs
x ∈ {0, 1}m for every m.

The proof follows by combining the standard NP machine for GROUP-ISO
with the NP machine M ′ for GROUP-NONISO given by Theorem 16. Observe
that M ′ may be incorrect only when its input is a pair of isomorphic groups.

We show a second derandomization result applying the Nisan-Wigderson
pseudorandom generator. We prove that GROUP-ISO for solvable groups is in
NP ∩ coNP assuming EXP �⊆ i.o−PSPACE/poly1. EXP ⊆ i.o−PSPACE/poly

1 A language L is in i.o−PSPACE/poly if there is a PSPACE machine that takes
polynomial-size advice and is correct on L for infinitely many input lengths.
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implies EXP ⊆ i.o−PSPACE and therefore the result holds also under the uni-
form hardness assumption EXP �⊆ i.o−PSPACE.

Theorem 19. If EXP �⊆ i.o−PSPACE/poly then GROUP-ISO for the case of
solvable groups is in NP ∩ coNP.

Proof. (Sketch) In order to derandomize the AM protocol for GROUP-NONISO,
it suffices to build a pseudorandom generator that stretches O(log n) random
bits to O(log6 n) random bits, such that the pseudorandom string of O(log6 n)
bits cannot be distinguished from a truly random string of the same length by
the protocol. The AM protocol for GROUP-NONISO can be transformed in the
following way, substituting Merlin’s computation by a query to oracle L.

1. On input G1 and G2, Arthur computes their short presentations (Y1, R1)
and (Y2, R2).

2. Uniformly at random, Arthur picks a hash function h and a prime number
p using O(log6 n) random bits.

3. Arthur queries an oracle L for ((Y1, R1), (Y2, R2), h, p) and accepts if the
string is in L.

L is a set of short representations of groups G1, G2 with the property that
there is some element in C(G1, G2) that is mapped by h to 0k, thus showing that
the set C(G1, G2) is large. L can be computed within polylogarithmic space
in the size of the input groups, n, On all inputs (G1, G2) the above sketched
computation has the same acceptance probability as the AM protocol.

We shall use the Nisan-Wigderson pseudorandom generator [17], that stret-
ches O(log n) random bits to O(log6 n) random bits using an EXP complete
language as the hard function. This is done by constructing from a hard boolean
function g : {0, 1}m → {0, 1} a new one gD : {0, 1}l → {0, 1}r for suitable values
of l,m and r, so that the output of gD looks random to a small deterministic
circuit, provided g is hard to approximate by deterministic circuits of a certain
size.

For a set A let CIRA(n, s) stand for the set of n-input boolean functions that
can be computed by deterministic circuits of size at most s, having besides the
normal gates oracle gates evaluating the characteristic function of A.

We state a crucial lemma due to Nisan and Wigderson [17].

Lemma 20. [17] Let g : {0, 1}m → {0, 1} be an CIRA(m, r2 + r2k)-hard func-
tion (for some oracle A). Then the function gD has the property that for every
r-input circuit c of size at most r2,∣∣Proby∈R{0,1}r [cA(y) = 1] − Probs∈R{0,1}l [cA(gD(s)) = 1]

∣∣ ≤ 1/r.

In the AM protocol, the random bits are used in Phase 3 and the computation
of this phase can be simulated by a polylog(n) size circuit with oracle L that
takes as input the short presentations (Y1, R1) and (Y2, R2) and the random bits
h and p.
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Now, let g be the characteristic function of an EXP-complete language in E.
Furthermore, let the language L defined above be the oracle A of Lemma 20. As
already explained, the computation in Phase 3 can be carried out by a polylog(n)
size circuit with L as oracle.

We claim that the derandomization is correct on all but finitely many inputs.
Suppose not. In particular, suppose the derandomization of the AM protocol
fails for some input pair (G1, G2) of solvable groups. Let (Y1, R1) and (Y2, R2)
be their short presentations computed in Phase 1. As a consequence of the failure
of the derandomization, it follows that the polylog(n) size circuit with oracle L
for Phase 3 with input fixed as (Y1, R1) and (Y2, R2) is a distinguisher circuit
that distinguishes between the output of gD and the truly random bits. Applying
Yao’s method as explained in [17], we can convert the distinguisher into a next
bit predictor, and finally obtain a polylog(n) size circuit with oracle L that com-
putes g correctly on a 1/2 + 1/ logO(1) n fraction of O(log n) size inputs. Notice
here that we are using the fact that gD can be computed in time polynomial in
log n.

By applying the methods of [6], we can use Yao’s XOR lemma and the fact
that EXP has random-self reducible complete sets to conclude that an EXP-
complete set can be correctly computed on all log n size inputs by a polylog(n)
size circuit with oracle L. This is true for infinitely many input lengths logn
(since we assumed that the derandomization fails for infinitely many inputs). But
that implies EXP ⊆ i.o−PSPACE/poly, contradicting the hardness assumption.

5 Conclusions

We have considered the isomorphism problem for groups and rings encoded in
different ways. While in GROUP-ISO the inputs include explicitly the group op-
eration table, in the version of RING-ISO considered here [11] the input is a
succinct representation of the rings. Both problems are related to graph iso-
morphism, one being easier and the other probably harder. These are only two
of the many possibilities for encoding the inputs. It is well known that in gen-
eral the complexity of the problem increases when the input is given is a more
succinct way. For example, for an “easier” version of RING-ISO with the rings
given in the table representation, the results presented here for GROUP-ISO also
hold. Also, group isomorphism becomes harder with a succinct group encoding.
For example, GRAPH-ISO is reducible to permutation group isomorphism, when
the groups are given by generator sets [14]. But in all the mentioned examples,
the complexity of the problems does not change too much: the succinct repre-
sentations are in NP, while the explicit versions are not known to be in P. The
number of random and nondeterministic bits in Arthur-Merlin protocols for non-
isomorphism provide a good setting to measure the relative complexity of these
problems. Improving upper bounds for the isomorphism problems that seem eas-
ier that GRAPH-ISO and improving the lower bounds for the harder problems
(in terms of completeness for complexity classes [19], for example) might be a
way to better understand the complexity of GRAPH-ISO. A related question is
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the study of the complexity of GRAPH-ISO when the input graphs are given in
a succinct form.
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Abstract. Conceptual difficulties involved in attempts to build analog
super-Turing sources are examined in the light of epistemic problems of
physical measurement. Basic concepts of computability theory are ap-
pealed to in order to set up a procedural comparison between analog
and digital computations which is not affected by similar conceptual dif-
ficulties: Is the interpretation of program code within the capacities of
some analog computer? The epistemological significance of this “virtual-
ity” problem is emphasized by reference to explanation requests arising
in the cognitive neurosciences.

1 Analog, Digital, and Hybrid Computations

Analog computation is computation carried out by apparatuses whose action is
described by means of continuous variables, that is, variables whose values can
be put in correspondence with some interval of the real continuum. An analog
computation may be regarded as a continuous trajectory in the appropriate state
space of the computing device.

The origin of the term ‘analog’ is rooted in methods that were initially
adopted to implement analog computers. Electronic, mechanical, fluidic, etc.
devices were connected in such a way that the functional description of the re-
sulting apparatus A coincided with or approximated a differential system T to
be integrated. Often, but by no means in principle, system T models the be-
haviour of some other physical system P , so that A and P are both described
by T . Historically, the system A was built as an analogue of some physical
system P, hence the name. And indeed analog computers have been used for
design purposes in the simulation of systems that are too complex and difficult
to experiment with in real world situations (going as far back in time as the
tide prediction systems built by Lord Kelvin out of springs, levers, and other
mechanical components). Moreover, analog computers have been used as direct
controlling agents for some external system (e.g.: automatic piloting, avionics,

� This paper would not have been written without the encouragement of Guglielmo
Tamburrini.

S.B. Cooper, B. Löwe, and L. Torenvliet (Eds.): CiE 2005, LNCS 3526, pp. 507–514, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



508 G. Trautteur

plant control, etc.). But in the end, analog computers are to be regarded as
computing devices performing symbol processing, insofar as they are used to
find solutions to numerical problems usually associated with differential equa-
tions. In analog computers, numerical values can be extracted by measuring the
value of some physical quantity, typically a voltage. From the viewpoint of this
intended use, analog computers are on a par with present-day software packages
like MATLAB, Mathematica, Maple V, and so on. Nevertheless, the computa-
tional processes carried out by analog computers significantly differ from the
computational processes carried out by other kinds of computational systems,
whose description requires no essential appeal to continuous variables. Let’s see.

Digital computation is computation carried out by an apparatus D whose
action is described in purely discrete terms: the progress of any computation
by D is given by a sequence s0, s1, . . ., of states, where each sj is adequately
described in finite terms by means of discrete variables.

We take a variable to be discrete or quantized (where ‘quantized’ has no im-
plication of a quantum mechanical treatment of the physical system supporting
the computation) when: (i) it takes real values within mutually disjoint intervals
that are separated by non-zero measure intervals; (ii) the particular value taken
on by the variables within an interval is of no empirical or theoretical conse-
quence,1 and (iii) the intervals can be put in correspondence with a countable
set.

In the above definition of a discrete variable, condition (ii) expresses an epis-
temic requirement, warranting the use of a discrete variable in the description
of some given system S, insofar as nothing in the way of empirical or theoret-
ical adequacy is lost by substituting the discrete variable for a continuous one.
Turing [11–1950] seems to advance a similar epistemic motivation when he re-
marks: “there are many kinds of machine which can profitably be thought of as
being discrete state machines”.2 Arguably, the advantage envisaged by Turing
is simplicity without loss of significant information relative to some context of
inquiry fixed by particular explanatory or predictive needs.

Assuming that analog devices and digital ones are distinct kinds of devices,
one may explore devices whose parts are either analog (A) or digital (D). Let us
call such devices hybrid AD devices.

1 This condition restricts the nature of the dynamical system supporting the compu-
tation in the following sense: the trajectories in the state space of the system must
fulfil a stability condition such that for every interval in which the state takes value it
must be the case that all trajectories issuing from states within that interval (taking
all the points in the interval as initial states) must give rise to trajectories which
subsequently visit the same intervals.

2 Cp. [11–p. 439, my emphasis]. A similar point is made in Turing’s 1948 report enti-
tled Intelligent Machinery : “We may call a machine ‘discrete’ when it is natural to
describe its possible states as a discrete set, the motion of the machine occurring by
jumping from one state to another. The states of ‘continuous’ machinery on the other
hand form a continuous manifold and the behaviour of the machine is described by
a curve on this manifold.”
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Hybrid analog-digital computation is computation carried out by some AD
apparatus, whose action is described by means of both continuous and discrete
variables. A particular kind of AD apparatus is one whereby one process in
which continuous variables occur is squeezed in between two processes that are
described in purely discrete terms (from now on, a DAD apparatus).

2 Analog Computations Beyond Turing Computations?

In the light of the above definitions, Turing machine computations are, as ex-
pected, digital computations. The notion of a Turing machine computation em-
bodies distinctive idealizations that are needed to make sense of the idea that
Turing machines determine the values of number-theoretic functions: finite, but
not a priori bounded resources, usually space (locations of tape) or time (num-
ber of computational steps), are to be made available to carry on a generic
Turing machine computation. Distinctive idealizations are also involved in the
notion of an analog computable function in general, and in (the decidedly more
problematic) endeavours to envisage analog computable functions that are not
Turing computable3 in particular. In this section, we examine ontological and
epistemological problems raised by these idealizations. As an entry point, let
us consider John Myhill’s extensive discussion [6–1963], Myhill regarded as the
more promising suggestion for constructing such a machine out of conventional
analog equipment (chiefly comprising adders, multipliers, and integrators). How-
ever, he was careful to note that some idealizations are required “in order to make
Scarpellini’s work a basis for constructing an actual computer which can solve
problems which are not digitally (= recursively) solvable.” [4–p. 12]. Out of the
four idealizations he formulated, the following he deemed to be indispensable:

1. The perfect functioning of analog components.
2. The existence of a perfect sensing mechanism - more specifically, the exis-

tence of a perfect zero sensor, i.e., a discontinuous physical device.

Let us distinguish between three senses of Id. 1.
The first one is “tautological”: it just means that the analog components

(physical entities) do behave as physical entities, that is, behave according to
whatever physical laws govern their behaviour.

The second sense is conformity to the blueprint. Imperfection, in this case,
is perfect functioning, but with respect to some different blueprint.

The third sense is absence of any random perturbation, essentially thermal
noise. The environment interacts with the system in uncontrollable ways.

Let us consider the content of Id. 1 in the light of epistemic problems of phys-
ical measurement. Id. 1 embodies an ontological assumption which is consistent

3 It has been a long time now since the search for digital “non-Turing” machines,
i.e. digital machines with stronger, more inclusive processing power, has been aban-
doned.
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with a traditional picture of what happens in real-world measurement processes
of physical quantities. The physical quantities in terms of which one describes
the behaviour of some analog device, independently of its “perfection” or “im-
perfection” (see above senses of Id. 1), are nonetheless assumed to take on exact
values within a continuous range. The relations between a physical entity, its
dimensions, and its value stand in need of deeper understanding even though
scientific progress seem unaffected by (and therefore oblivious to) this relative
lack of clarity. In particular, when one says, as we do above, that a physical
quantity assumes an exact value, it is not clear whether we are assuming that
that physical entity embodies an actual infinity.

This thorny problem can be swept under the carpet, although by no means
solved, in the digital treatment as well as in the measurement problem when one
takes as outcome of the measurement only rational numbers—in fact integers.
But in the case of an analog computational device, super-Turing power is usually
sought for by an essential appeal to the assumption that physical entities possess
that character of infinite precision that real numbers do.

The discrepancy between this ontological assumption and measurement op-
erations manifests itself in the course of repeated measurements of the same
physical quantity, for thermal effects (see third meaning of Id. 1) and other dis-
turbing factors (by which we mean, in accordance with the second meaning of
Id. 1, the exact compliance of the given analog device with another blueprint
than the one intended for the computation) will change in unknown ways the
successive measurement’s outcomes. Since Id. 1, in senses 2-3, never obtains in
real-world measurements, a series of such measurements will end up into a pop-
ulation of different measured values. Therefore, we only have an effective access
to physical quantities through statistical populations.

Notice that the unavoidable occurrence of a final measurement in any analog
computational process rules out the existence of pure A devices. Indeed the
measurement operation maps the possibly infinitely precise value of the analog
variable onto a discrete one. Therefore only AD devices are possible and, when
an input must be additionally specified, only DAD devices are possible. All of
this, and in particular the digitality of the outcome of a measurement process,
is a consequence of the fact that intersubjective knowledge is symbolic, and
therefore finite and discrete, whatever else ‘symbolic’ means.

Notice, however, that the digital character of intersubjective communication
and information processing does not exclude that conscious understanding and
inner processing depend in an ineffable way on the infinitely precise values of
some physical quantity of the brain. For example feelings in Damasio’s sense [2–p.
36/38], i.e. experience directly associated with the inner operation of the brain,
might be expressed/supported/caused—however far-fetched this may appear—
by analog physical quantities of the nervous system.

Turning to Id. 2 we notice that it cannot be asserted without assuming Id. 1:
an exact zero detection instrument would not make sense in the absence of exact
values of physical quantities. However, it might well be the case that physical
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quantities assume exact values even though this fact is not physically detectable
(and thus Id. 1 can be asserted without implying Id. 2).

The remarks above make it very implausible that one can build on Scarpel-
lini’s work toward an effective, analog, non-recursive computation, because the
measurement process involved in Scarpellini’s proposal needs infinite precision
in evaluating analogically certain integrals and discriminating between the val-
ues a = 0, assumed by some continuous physical variable described by those
integrals, and every other value a > 0, no matter how small is the difference
between a and 0. Id. 1 and Id. 2 are necessary for such use of Scarpellini’s work,
and they are implausible to the point of physical impossibility.

A different framework which suggests the possibility of analog super-Turing
sources is provided in [8]. Let us consider Siegelmann’s work in the light of Id. 1-2.
The focus of this work is on artificial neural networks (ANNs), even though other
variants of analog computation are taken into account and carefully compared
with results on ANNs. These include recurrent networks with rational or real
states and weights. Activation functions considered are mostly piece-wise linear,
and thus continuous, functions.

While comparing such ANNs with Turing machines, various equivalences and
inclusions are proved along the way. In particular, Siegelmann defines a class of
ANNs with real weights which is shown to include all discrete languages: the real
weights are used there as information enabling one to decide every set of natural
numbers. However, this capability depends, from a mathematical point of view,
on trivial cardinality reasons.4 Siegelmann admits that any physical model for
those ANNs would still involve something like Id. 1 for the real weights to work
as required. She writes:

In nature, the fact that the constants are not known to us, or cannot
even be measured, is irrelevant for the true evolution of the system. For
example, the planets revolve according to the exact values of G, p, and
their masses. [8–p. 59].

A quote that nicely upholds the first meaning of Id. 1. Indeed, no measurement is
involved (no need for third meaning of Id. 1) nor the “true” blueprint is identified
(no need for second meaning of Id. 1).

However, it seems that Siegelmann and Sontag [9] are able to bypass Id. 2
for some forms of analog neural computation through a very clever (4-Cantor)
encoding scheme for neural weights and states that allows for finitely distinguish-
able, i.e. discrete, output values even with piecewise linear discrimination func-
tions. The scheme certainly works for recursively computable processes, which
need only the power of the rationals. Briefly, the precision required for a process
is finite, but is allowed to increase unboundedly. This is on a par with the usual
idealization for Turing machine resources mentioned above. As Siegelmann and
Sontag follow a different route in their treatment of neural computations with
real weights, it is not obvious that Id.2 is bypassed in that case too.

4 Cp. [3–sect. 4].
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In any case the epistemological and ontological problems emphasized in My-
hill’s reflections about the possibility of building analog super-Turing sources
apply to Siegelmann’s work, and are readily brought to bear on state-of-the-art
work on analog super-Turing sources, for none of the approaches taken into ac-
count in recent comprehensive reviews (Copeland [1], Stannett [10]) seems to
suggest a promising strategy to cope with both Id.1-2.

3 Analog Computation and Digital Virtuality

Conjectures about non-recursive behaviours allegedly implemented in the brain
have provided broad epistemological motivations for investigating analog super-
Turing sources. However, technical developments from Scarpellini’s result up
to the present day add no positive reason to support these speculations, while
the philosophical reflections above suggest that these speculations give rise to
vexing epistemological and ontological problems. Scarpellini’s [7] retrospective
comments in 2003 on the possible import of his 1963 result on the understand-
ing of brain mechanisms parallel, although with a less pessimistic outlook, the
remarks we made above on a far-fetched hypothesis about the experience of
feelings according to Damasio:

. . . it does not seem unreasonable to suggest that the brain may rely on
analogue processes for certain types of computation and decision-making.
Possible candidates which may give rise to such processes are the axons
of nerve cells. . . it is conceivable that the mathematics of a collection of
axons may lead to undecidable propositions like those discussed in my
paper.

Similar epistemological motivations (i.e. understanding brain information proces-
sing) can be adduced to investigate additional problems which (a) concern the
relationship between analog and digital computation, (b) are expressed by means
of basic concepts in computability theory, but (c) have nothing to do with the
question whether analog machines can solve classes of problems that a univer-
sal Turing machine cannot solve. One such problem is suggested by the very
notion of universal Turing machine in general, and by the effective coding of
programs involved in Turing’s definition of universal machine in particular. Uni-
versal Turing machines can emulate, when receiving in input numbers x and y,
the computation on input x carried out by the Turing machine whose numerical
code is y. Is there anything resembling this general purpose behaviour in analog
or hybrid AD computation? Is this interpretation of program code in the capa-
bilities of some analog computer? Notice that Myhill’s idealizations concerning
infinite precision will not be needed here, for the analog machines in question
are not supposed to break the effective computability barrier, but to handle in a
different way tasks that are well within the bounds of the effectively computable.

The effective coding and decoding of Turing machine descriptions enables one
to prove fundamental computability theory results showing how a program can
create, modify or simulate a(nother) program. And the needed coding machinery
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is made available at low levels of subrecursive hierarchies: functions belonging to
Grzegorczyk’s class E2, which includes Smullyan’s concatenation operation, are
known to provide sufficient coding machinery [5]. Is the possibility of effectively
operating on machine codes granted to analog computers of some complexity?
And if this is not so, is “virtual machine behaviour” accessible to digital com-
puters only, so that the species analog and digital of the genus computation
fundamentally differ from each other in this respect?

Notice that these procedurally motivated questions may be independent of
the extensional relationships between the classes of functions that are analog
and digitally computable, respectively. Now, the fundamental results of partial
recursive function theory, like the normal form theorem, the S−m−n theorem,
the recursion theorems, all depend on the possibility of effectively enumerating
the PRF . Most biologically motivated computational systems—neural networks,
p-systems, cellular automata, etc.—have been shown to be universal, usually by
implementing in them a universal Turing machine. But the nature of the actual
coding is usually neglected. Thus the possibility exists of an abstract extensional
equivalence of that computational system’s capabilities with the PRF , but with
no attention paid to the management capabilities, the compiling, the linking, the
interpreting that are used in everyday Computer Science and thus in algorithmic
simulations of biological behaviour.

A deeper examination of these procedural relationships can be further moti-
vated by the problem of understanding how brain information processing gives
rise to intelligent behaviours. In particular, under the supposition that the hu-
man brain is able to work as an interpreter with respect to a wide variety of
different algorithms, a thoroughly satisfactory explanatory account of these be-
havioural manifestations and related introspective evidence will have to comprise
an explanation of how virtual machine behaviours arise in brain processing.5

Is it reasonable to suppose that the human brain works as an interpreter? In-
deed it is difficult to understand how imagination, hallucinations, the processes
supporting so called theory of mind (TOM) or mind reading behaviour, the oc-
currence of so called higher order thoughts (HOT s) or even simple planning in
unstructured domains may take place in a system in which some form of virtu-
ality would not be possible. Indeed, a natural suggestion towards implementing
these forms of behaviour in a machine would involve calling different routines
or the same routine in a different environment. However, no mechanism in the
brain has been detected so far that one may interpret as a call to subroutine,
let alone the definition of a virtual machine or simply the capability of running

5 Alternatively, if brain processing does give rise to intelligent behaviour, including
mind reading via TOM or introspective behaviour via HOT s, by analog processes
which involve no virtuality, any duplication of those intelligent behaviours by digital
processes is unlikely to pave the way to an explanation of how these behaviours take
origin in the brain. Thus, a thorough rethinking of functionalist approaches to the
explanation of intelligent behaviours is called for, if it turns out that analog and
digital computation procedures fundamentally differ from each other in the way of
virtual machine behaviour.
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different programs. Despite the glib talk about brain, mind, hardware, and soft-
ware, there is no hint of software in the brain. Everything seems to be handled by
repetition. To identify a parameter value (e.g. the slope of a visually presented
segment) a parallel battery of yes-no scanners, each one set to a specific slope,
is found in the nervous system instead of a single device outputting a graded
response (digital or otherwise). While this appears to be a reasonable biological
solution to problems of early sensory processing, it is rather puzzling to try and
understand how changes of behaviour in response to environmental or internal
activity are in fact realized, without resorting to the programming scheme, i.e.
to an effective enumeration of the available effective capabilities.
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Abstract. We define a general concept of a network of analogue mod-
ules connected by channels, processing data from a metric space A, and
operating with respect to a global continuous clock T. The inputs and
outputs of the network are continuous streams u : T → A, and the
input-output behaviour of the network with system parameters from A
is modelled by a function Φ : C[T, A]p×Ar → C[T, A]q (p, q > 0, r ≥ 0),
where C[T, A] is the set of all continuous streams equipped with the
compact-open topology. We give an equational specification of the net-
work, and a semantics which involves solving a fixed point equation over
C[T, A] using a contraction principle. We analyse a case study involving a
mechanical system. Finally, we introduce a custom-made concrete com-
putation theory over C[T, A] and show that if the modules are concretely
computable then so is the function Φ.

1 Introduction

Let us take analogue computation to be computation by the application of ex-
perimental procedures, notably measurement, to physical, chemical or biological
systems. Analogue computation is based on continuous data, such as real num-
bers and data streams. The systems are networks of components or modules that
operate in continuous time.

Historically, in analogue computation as conceived by Kelvin [12] and Bush
[1], data are represented by measurable physical quantities such as length, volt-
age, etc., processed by networks of mechanical or electrical components. Cur-
rently, analogue computation can involve a much wider range of technologies,
inspired, for example, by neural networks and cellular automata.

Digital computation, on the other hand, is fundamentally computation by
algorithms on discrete data in discrete time. Starting in the 1930s, classical
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computability theory has matured into a comprehensive and mathematically
deep theory of digital computation. Turing computability and its equivalents have
become the standard for what we mean by computation. The subject continues
to develop in new directions [4]. Of particular relevance is Computable Analysis,
where it is applied to computable functions on real numbers, Banach spaces,
and, more generally, metric and topological spaces.

The theory of analogue computation is less developed. The general purpose
analog computer (GPAC) was introduced by Shannon [11] to model Bush’s Dif-
ferential Analyzer. Shannon discovered that a function can be generated by a
GPAC if, and only if, it is differentially algebraic, but his proof was incom-
plete. Marian Pour-El [10] gave a characterisation of the analogue computable
functions, focusing on the classic analogue systems built from adders, scalar
multipliers and integrators. This yielded a new proof of Shannon’s equivalence
and a proof that these analogue models do not compute all algorithmically (or
“digitally”) computable functions on the reals.

Cristopher Moore [8] defined a system of schemes rather like Kleene’s [6], but
with primitive recursion replaced by integration. Félix Costa and his colleagues
[3, 7] have presented improved models extending GPAC.

We present two questions related to analogue technology:

1. What characteristics of data, physical components, transmissions, and sys-
tem architecture, make up a suitable technology for analogue computation?

2. Given a technology that builds analogue systems from components, do these
systems produce, by measurements, the same functions as those algorithmi-
cally computed?

Thanks to the work of Shannon, Pour-El, Moore and Costa, we have one possi-
ble precise formulation of question 1, and negative answer to question 2. Their
models are based on the traditional components of analogue computing up to
the 1960s (adders, integrators, etc.). However, even for the case of traditional
analogue technologies, the conceptual basis is not sufficiently clear to answer
(even) the first question fully.

We begin, in Section 2, with a definition of an analogue network, with modules
connected by channels, processing data from a metric space A, with a global
continuous clock T modelled by the set of non-negative reals. Let C[T, A] be the
set of all continuous streams u : T → A with the compact-open topology. The
input-output behaviour of a network N with p input channels, q output channels
and r parameters from A is modelled by a function Φ : C[T, A]p×Ar → C[T, A]q.
The module functions must satisfy an important physically motivated condition:
causality. We give an equational specification for N .

In Section 3 we give a semantics for the equational specification of a network
satisfying causality. This involves solving a fixed point equation over C[T, A]
using a custom-made contraction principle, based on the fact that C[T, A] can
be locally approximated by metric spaces. This extends the well-known Banach
fixed point theorem for metric spaces [2]. We also derive continuity of Φ, as-
suming continuity of the module functions. This gives a mathematical model of
computation by measurements on an analogue system.
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In Section 4 we analyse in detail a case study of analogue computation with a
mechanical system in which data are represented by displacement, velocity and
acceleration.

In Section 5 we compare analogue and digital computation. For this we in-
troduce a custom-made concrete (digital) computation theory over C[T, A]. This
is an extension to the non-metric space C[T, A] of the theory of concrete com-
putations on metric algebras [15]. We prove a soundness theorem for analogue,
relative to concrete, computation:

Theorem. If the functions defined by the components of an analogue network
are concretely computable, then so is the function defined by the whole network.

Settling a converse result, i.e. completeness of analogue with respect to digital
computation, would be of great importance.

We have studied computation on discrete time streams in [14], and networks
that process discrete time streams in [13].

2 Analogue Networks

An analogue network N consists of a number of modules and channels computing
and communicating with data from a topological algebra A.

2.1 Data and Time

Assume we are working with data from a complete metric space (A, d). The
network operates in continuous time T, modelled by the non-negative reals with
its usual topology. The channels carry signals in the form of continuous streams
of data from A, represented as continuous functions u : T → A. Let C[T, A] be
the set of continuous streams on A, with the compact-open topology [2].

2.2 Modules

A module M has finitely many input channels, one output channel, and loca-
tions for some parameters. Associated with M is a function FM : C[T, A]kM ×
AlM → C[T, A], with kM > 0 input streams, lM ≥ 0 parameters and one out-
put stream. We put FM (u , c) = v, where u = (u1, . . . , ukM

) ∈ C[T, A]kM and
c = (c1, . . . , clM ) ∈ AlM .

Examples 2.2.1. Typical module operations (assuming A = IR) are the classi-
cal analogue processing units: (a) pointwise addition of two streams, (b) point-
wise multiplication of a stream by a constant (“scalar”), (c) integration. There
are parameters in (a) and (c), namely the scalar multiplier in (a), and the con-
stant of integration in (c).

We will assume a causality property of the module functions, which states
that the output is “causally” related to the inputs, in the sense that the output
at any time depends only on the inputs up to that time. Precisely:
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(Caus): For u1,u2 ∈ C[T, A]kM , c ∈ AlM and t ≥ 0:
u1�[0,t) = u2�[0,t) ⇒ FM (u1, c)(t) = FM (u2, c)(t).

Note that this condition depends on an assumption of instantaneous response of
the modules. All the common module operations (including those listed in 2.2.1)
satisfy (Caus).

2.3 Network Architecture

Consider now (Figure 1) a network N withm modules M1, . . . ,Mm and m
channels α1, . . . , αm. Each module Mi(i = 1, . . . ,m) has some input channels
αi1 , . . . , αiki

(ki > 0) (which are the outputs of modules Mi1 , . . . ,Miki
respec-

tively), some (local) parameter locations ci1 , . . . , cili (li ≥ 0) and one output
channel αi. It computes the function Fi = FMi

: C[T, A]ki ×Ali → C[T, A].

Miki

Mi

Mi1
αi1

αiki

αi

M1

αp

α1

αp

α1
x1(t)

xp(t)

x1(t)

xp(t)

αj1
= β1

αjq
= βq

yq(t)

y1(t)

Mp

Fig. 1. A network

The network N itself has p input channels and q output channels (p, q ≤ m).
We assume (for notational convenience) that the first p modules M1, . . . ,Mp are
the identity module MI, and the p network input channels α1, . . . , αp are both
the input and output channels for MI. The remaining (non-trivial) modules of
the network are Mp+1, . . . ,Mm. For i = 1, . . . ,m, the channel αi is the output
channel for module Mi. The q network output channels are β1, . . . , βq, where
(say) βi = αji

for i = 1, . . . , q.
There are also locations for global or network parameters c = (c1, . . . , cr)

(r ≥ 0), which include the local parameters of all the modules in N . For each
global parameter ci and module Mj , it is specified which of the local parameters
of Mj are to be identified with ci.

We make an assumption of input determinacy :

(InDet): There is a well-determined value for the stream on each input channel
at all times.

2.4 Network Operation: The Model

Under the assumptions (InDet) and (Caus), we want to prove a network
determinacy condition:
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(NetDet): For certain input streams and parameter values, there is a well-de-
termined value for the stream on each channel at all times.

This means that, at least for a certain set U ⊆ C[T, A]p × Ar of inputs and
parameters, there is a well-determined tuple of total functions ui : T → A(i =
1, . . . ,m) that describes the data on every channel αi.

Assuming (NetDet), there is associated with each module Mi (i = 1, . . . ,m)
a function Φi : C[T, A]p × Ar ⇀ C[T, A] where Φi(x , c) = ui for (x , c) ∈ U .
From these module functions follows the existence of the network function

ΦN : C[T, A]p ×Ar ⇀ C[T, A]q,

ΦN (x , c) = (Φj1(x , c), . . . ,Φjq
(x , c)) for (x , c) ∈ U.

(2.1)

2.5 Network Operation: Algebraic Specification

Given the above assumptions, we can specify the model by the following system
equations:

ui(t) = Fi(ui1, . . . , uiki
, ci1, . . . , cili)(t) (i = 1, . . . ,m, t ≥ 0) (2.2a)

ui(t) = xi(t) (i = 1, . . . , p, t ≥ 0), (2.2b)

In the next section we will derive the existence and uniqueness of a solution
of this specification as a fixed point of a certain function.

3 Solving Network Equations; Fixed Point Semantics

We are looking for an m-tuple of channel functions satisfying the equational
specifications (2.2). First, we define some general concepts and give some results
concerning stream spaces and stream transformations. Recall that (A, d) is a
complete metric space.

3.1 Stream Spaces and Stream Transformations

Let 0 ≤ a < b, and let C[[a, b], A] be the set of continuous functions from [a, b]
to A. For u, v ∈ C[[a, b], A] (or u, v ∈ C[T, A]), define

da,b(u, v) =df sup {d(u(t), v(t)) | t ∈ [a, b]}.

This makes C[[a, b], A] a complete metric space, with the uniform convergence
topology [2–§2.6]. The product space C[[a, b], A]m (m > 0) has the metric

dma,b(u , v) = (
m∑
i=1

(
dk(ui, vi)

)p) 1
p (3.1)

(where u = (u1, . . . , um) and v = (v1, . . . , vm)) for some fixed p (1 ≤ p ≤ ∞).
We will sometimes drop the superscript ‘m’ from dma,b. We also write dk for d0,k

(k = 1, 2, . . . ).
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The stream space C[T, A] is, in general, not a metric space, and da,b is only
a pseudometric on C[T, A]. Nevertheless we can define a notion of convergence
in C[T, A] as follows. A sequence (u0, u1, u2, . . . ) of elements of C[T, A] is said
to converge locally uniformly to the limit u ∈ C[T, A] if for all k there exists
N such that for all n ≥ N , dk(un, uN ) ≤ 2−k. The space C[T, A] is given the
compact open topology [2–§3.4]. This is equivalent to the topology of local uniform
convergence, which can be characterised as follows. Given a set X ⊆ C[T, A] and
a point u ∈ C[T, A], u is in the closure of X if, and only if, there is a sequence
of elements of X which converges locally uniformly to u.

This topology on C[T, A] can also be characterised as the inverse limit [2]
of the family of topological spaces C[[0, k], A] (k = 0, 1, 2, . . . ) with mappings
πk : C[[0, k + 1], A] → C[[0, k], A] defined by πk(u) = u�k.

The space C[T, A] is complete in the following sense. We must first define:

Definition 3.1.1 (Locally uniform Cauchy sequence). A sequence (u0,
u1, u2, . . . ) of elements of C[T, A] is locally uniform Cauchy if ∀k ∃N ∀m,n ≥
N : dk(um, un) ≤ 2−k.

Lemma 3.1.2 (Completeness of C[T, A]). A locally uniform Cauchy se-
quence in C[T, A] converges locally uniformly to a limit.

We are interested in stream transformations f : C[T, A]m → C[T, A]m.

Definition 3.1.3 (Contracting stream transformations). Let 0 < κ < 1
and τ > 0. A stream transformation f : C[T, A]m → C[T, A]m is contracting
w.r.t. (κ, τ), or in Contr(κ, τ), if for all T ≥ 0 and all u , v ∈ C[T, A]m:

dT,T+τ (f(u), f(v)) ≤ κ · dT,T+τ (u , v).

Lemma 3.1.4. Suppose f satisfies (Caus). If f ∈ Contr(κ, τ) for some τ > 0,
then f ∈ Contr(κ, τ ′) for all τ ′ > 0.

Remark 3.1.5. Hence if f ∈ Contr(κ, τ), we can choose τ freely. We will
henceforth write Contr(κ) instead of Contr(κ, τ), and generally take τ = 1.

Theorem 1 (Fixed point of contracting stream transformation).
Suppose f ∈ Contr(κ) for some κ < 1. Then f has a unique fixed point, i.e.,
there is a unique u ∈ C[T, A]m such that f(u) = u .

Proof. Uniqueness is an easy exercise. We prove existence by constructing a
fixed point u of f as a limit of a locally uniformly convergent Cauchy sequence
of stream tuples:

u0, u1, u2, . . . (3.2)

Define u0 arbitrarily, and un+1 = f(un). Then for all k, n, by induction on n:

dk(un+1, un) ≤ κndk(u1, u0).

The sequence (3.2) can then be seen to be a locally uniform Cauchy sequence,
by choosing N (for a given k, in Definition 3.1.1) such that

κN <
2−k

dk(u1,u0)
.
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Thus by Lemma 3.1.2, the sequence (3.2) converges locally uniformly to a limit
u . Hence, also, the sequence

f(u0), f(u1), f(u2), . . . (3.3)

converges locally uniformly to f(u), since by the contraction property of f ,

d(f(un), f(u)) ≤ κ · d(un,u).

Since (3.3) is the sequence (3.2) shifted by 1, it also converges to u , and so
f(u) = u . �

In Section 5, where we consider the computability of the fixed point u as a
function of the inputs (x , c), we will need a stronger property of the sequence
(3.2) than local uniform convergence, namely effective local uniform convergence.

We turn to apply the above theory to the network N .

3.2 Network Function

Recall the network function ΦN (2.1) and the specifications (2.2). Notice next
that a stream tuple (u1, . . . , um) satisfying the specifications (2.2) can be char-
acterised as a fixed point of the function

ΨN
c : C[T, A]m → C[T, A]m

defined by ΨN
c (u1, . . . , um) = (F1(u1, c1), . . . ,Fm(um, cm)) (3.4)

(where, on the r.h.s., u i, ci are the lists of input streams and local parameters
associated with Fi) subject to the constraint (2.2b). Now by equation (2.2b), the
first p components (u1, . . . , up) of the tuple (u1, . . . , um) on the left hand side
are identical to x . Similarly, on the right hand side, for i = 1, . . . , p, Fi is the
identity function, with argument ui = xi, and so (3.4) can be rewritten as

ΨN
c (x , up+1, . . . , um) = (x , Fp+1(up+1, cp+1), . . . ,Fm(um, cm)). (3.5)

Therefore ΨN can be reformulated as a function only of the non-input streams
u = (up+1, . . . , um), with the input streams x as further parameters, thus:

ΨN
c,x : C[T, A]m−p → C[T, A]m−p

ΨN
c,x (u) =df ΨN

c (x ,u). (3.6)

So a fixed point for ΨN
c,x will be a solution to (2.2). Thus the basic questions are:

• Under what conditions does ΨN
c,x have a fixed point?

• Under what conditions is it unique?

We will give at least a partial solution to this, namely a sufficient condition
for a fixed point, by applying the theory of contracting stream transformations
developed above.
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3.3 Solution of Fixed Point Equation

Recall Def. 3.1.3 and Remark 3.1.5.

Definition 3.3.1 (Contracting condition for network). Given c ∈ Ar,
x ∈ C[T, A]p and 0 < κ < 1, the network N satisfies Contrc,x (κ) if the stream
transformation ΨN

c,x is in Contr(κ). It is contracting at (c,x ) if it satisfies
Contrc,x (κ) for some κ < 1.

Theorem 2.
(a) Suppose for all (x , c) ∈ U ⊆ C[T, A]p × Ar, there exists κ < 1 such that

the network N satisfies Contrc,x(κ). Then for all (x , c) ∈ U there is a
unique u = (u1, . . . , um) ∈ C[T, A]m satisfying (2.2). It is given by specifying
ui = xi for i = 1, . . . , p, and u = (up+1, . . . , um) as the unique fixed point
of the function ΨN

c,x defined by equations (3.5) and (3.6). This defines the
network function ΦN as in (2.1), with ΦN (x , c) = u for all (x , c) ∈ U .

(b) If, in addition, the module functions are continuous, then ΦN is continuous
at all points in U at which κ can be defined continuously.

Part (a) is immediate from Theorem 1. We omit the proof of (b).

4 A Case Study

We apply the theory of Section 3 to an example from a standard text [5].

4.1 The Physical System

(See Figure 2.) A mass M is suspended by a spring with stiffness K and damping
coefficient D. A force f (varying with time t) is applied to M . We want to
compute its displacement x as a function of t.

K D

f

x

M

Fig. 2. Case study: The physical system
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4.2 Equational Specification

Three forces act on the mass: the external force f , the spring force −Kx, and the
damping force −Ddx/dt. By Newton’s second law of motion, Ma+Dv+Kx = f ,
where v = dx/dt is the velocity, and a = dv/dt the acceleration.

4.3 Network

The analogue network N for this system is shown in Figure 3. It is simplified
from the one in [5], by combining each scalar multiplier with the preceding or
following module. There is also an extra “identity” module M1 for the input
stream f .

M2M1
I

a
M4

v

v

f

M3∫ ∫⊕̂

f

xx

v

x

Fig. 3. Case study: The network

There are 3 other modules M2,M3,M4, with associated functions Fi (i = 2, 3, 4):

a(t) = F2(f, x, v)(t) = (f(t) − Kx(t) −Dv(t))/M

v(t) = F3(a)(t) = (
∫ t

0
a) + v0

x(t) = F4(a)(t) = (
∫ t

0
v) + x0

The integration constants v0 and x0 represent initial velocity and displacement.

4.4 Network Semantics

The parameter list is c = (M,K,D, v0, x0), the single input stream is f , and
the list of non-input streams is u = (a, v, x). So we want a fixed point of the
function Ψc,f : C[T, IR]3 ⇀ C[T, IR]3, where Ψc,f (a, v, x) = (a′, v′, x′) with

a′(t) = (f(t) − Kx(t) −Dv(t))/M

v′(t) = (
∫ t

0
a) + v0 (4.1)

x′(t) = (
∫ t

0
v) + x0.

For changes δa, δv, δx in a, v, x, and corresponding changes δa′, . . . in a′, . . . :

Ψc,f (a + δa, v + δv, x + δx) = (a′ + δa′, v′ + δv′, x′ + δx′).
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Then (using the pseudonorm ‖u‖ =df sup {u(t) | T ≤ t ≤ T + τ}) from (4.1):

‖δa′‖ ≤ (K‖δx‖ + D‖δv‖)/M (4.2a)
‖δv′‖ ≤ τ‖δa‖ (4.2b)
‖δx′‖ ≤ τ‖δv‖. (4.2c)

Now assume M > max(K, 2D) (4.3)
and put κ =df max(K, 2D)/M, (4.4)

τ =df D/M. (4.5)

By (4.3), κ < 1. Define the product pseudonorm ‖(δa, δv, δx)‖ =df ‖δa‖ +
‖δv‖ + ‖δx‖. (This corresponds to taking p = 1 in (3.1).) Then

‖(δa′, δv′, δx′)‖ = ‖δa′‖ + ‖δv′‖ + ‖δx′‖
≤ (K/M)‖δx‖ + (D/M + τ)‖δv‖ + τ‖δa‖ by (4.2)
≤ κ ‖(δa, δv, δx)‖ by (4.4) & (4.5)

which proves Contrc,f (κ). Note that the only assumption needed to prove the
contraction property was (4.3), i.e., that the mass M be sufficiently large relative
to the stiffness K and damping coefficient D. No assumption was needed on
either the initial values v0 and x0 of velocity and displacement, or the external
force f(t). Hence, from Theorem 2:

Theorem 3. The network of Figure 3 is contracting, and hence satisfies(NetDet),
for any input stream f(t), provided M > max(K, 2D).

Corollary. The system of Figure 2 has a well-determined solution (a(t), v(t),
x(t)) for the acceleration, velocity and displacement as functions of time t ≥
0, for any input force f(t) as a continuous function of time t ≥ 0, and any
initial conditions (v0, x0) for the velocity and displacement, provided only that
M > max(K, 2D). Moreover, under this condition, the solution streams (a, v, x)
depend continuously on the input stream f and the parameters (M,K,D, v0, x0).

5 Computability of the Solution

We want to show that the network function which solves the network specifica-
tion (2.2) according to Theorem 2 is computable relative to the module functions;
in other words, the output streams are computable from the input streams, pa-
rameters, and module functions. Hence if the module functions are computable,
then so is the network function.

By “computable” here we mean: computable according to some concrete
model of computation on C[T, A]. We give a new model, inspired by the ap-
proximation of C[T, A] by the metric spaces C[[0, k], A].

An alternative treatment of concrete computation on the space C[X,Y ] with
the compact-open topology is given in [16], with X ⊆ IRm and Y = IRn.
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5.1 Topological Algebra of Streams

Consider the 5-sorted topological algebra

C = (A, IR, T, C[T, A], IN; d, eval)

where d : A2 → IR and eval : C[T, A] × T → A are, respectively, the distance
function on A and the evaluation function: eval(u, t) = u(t). C is a topolog-
ical algebra, because each of the five carriers has an associated topology with
respect to which the basic functions (d and eval) are continuous. The carrier
IR is needed for the metric on A. The set of sorts of the signature Σ of C is
Sort = Sort(Σ) = {A, R, T, C, N }. For ease of notation, we also refer to the
five carriers of C as Cs for s ∈ Sort.

5.2 Enumerations of Subfamilies of C
The following extends the concepts in [15] on concrete computation on metric
algebras to the case of the topological (non-metric) algebra C[T, A]. We will fix
an enumeration of certain subsets of the carriers, i.e., a family α of bijections
αs : IN � Xs ⊆ Cs (s ∈ Sort) of IN with certain subsets Xs of Cs. The pair
(Xs, αs) is called an enumerated subset of Cs. The enumerations are as follows.

First, the mapping αA : IN � X ⊆ A is an enumeration of some dense subset
X of A. Here we need a separability assumption:

(Sep): A is separable.

From (Sep) follows that C[T, A] is also separable. This enumeration αA (or
rather its “computational closure” αA, see below) must also satisfy a Σ-effectivity
assumption, to be described below (5.4.3). The mapping αR : IN � Q ⊂ IR is
a standard enumeration of the rationals. (In case A = IR, αA is the same as
αR.) Similarly αT : IN � Q+ ⊂ T is a standard enumeration of the non-
negative rationals. The mapping αN is just the identity on IN. Finally, and most
interestingly, the mapping αC : IN � Z ⊂ C[T, A] is a “standard” enumeration
of some countable dense subset Z of C[T, A], which must satisfy a Σ-effectivity
assumption (5.4.3 below), as well as the following:

Assumption 5.2.1 (Effective locally uniform continuity of (Z,αC)).
There is a recursive function μ : IN3 → IN such that for all k, �, n, writing
zn = αC(n):

∀t1, t2 ∈ [0, k] : |t1 − t2| < 2−μ(k,�,n) ⇒ d(zn(t1), zn(t2)) < 2−�.

5.3 Computational Closure

For our model of concrete computation on C[T, A], we construct the computa-
tional closures Cαs

(Xs) of the enumerated subsets (Xs, αs) of the spaces Cs, with
enumerations αs : Ωαs

� Cαs
(Xs), so that Xs ⊆ Cαs

(Xs) ⊆ Cs for s ∈ Sort,
as we now describe.
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First, for the metric space A, we define the set CαA
(X) of α-computable

elements of A, to be the limits in A of effectively convergent Cauchy sequences
of elements of the enumerated subset X, with corresponding enumeration αA.
Details of the construction of CαA

(X) and αA can be found in [15]. We omit
them, since below, for the computational closure of Z ∈ C[T, A], we describe a
model of concrete computability for a more general situation — the non-metric
topological space C[T, A].

The computational closures CαR
(Q) and CαT

(Q+) in IR and T respectively
are defined in the same way. The computational closure of IN is, trivially, IN,
with (again) the identity enumeration. Finally, for the space C[T, A] with its
enumerated subset (Z,αC) (where we henceforth usually drop the subscripts of
α and α), let Cα(Z) ⊂ C[T, A] be the set of all limits in C[T, A] of α-effectively
locally uniform Cauchy sequences of elements of Z — such limits always existing
by the completeness of C[T, A] (Lemma 3.1.2) — and let Ωα ⊂ IN be the set
of codes for Cα(Z). More precisely, Ωα consists of pairs of numbers c = 〈e,m〉
where (i) e is an index for a recursive function defining a sequence

z0, z1, z2, . . . (5.1)

of elements of Z, where zn = α({e}(n)); and (ii) m is an index for a modulus of
local uniform convergence, i.e., ∀k,∀n, p ≥ {m}(k) : dk(zn�k, zp�k) ≤ 2−k. For
any such code c, α(c) is defined as the limit in C[T, A] of the Cauchy sequence
(5.1), and Cα(Z) is the range of α.

5.4 Concrete Computation on C[T, A]

For a tuple of sorts σ = (s1, . . . , sm) we have the product space Cσ

=df Cs1 × · · · × Csm
, the product domain Ωσ

α =df Ωαs1
× · · · × Ωαsm

⊆ INm,
and the product enumeration ασ = (αs1 , . . . , αsm

) : Ωσ
α → Cσ.

Definition 5.4.1 (Tracking function). Let f : Cσ ⇀ Cs. A function ϕ :
Ωσ
α ⇀ Ωαs

is an α-tracking function for f if the following diagram commutes:

Cσ f−−−−→ Cs

ασ
7⏐⏐ 7⏐⏐αs

Ωσ
α −−−−→

ϕ
Ωα

Definition 5.4.2 (Concrete computability on C[T, A]). Suppose f, g1, . . . ,
gk are functions on C[T, A] with α-tracking functions ϕ, ψ1, . . . , ψk respectively.
Then f is α-computable in (or relative to) g1, . . . , gk iff ϕ is partially recursive
in ψi, . . . , ψk.

We need one more assumption on the enumeration α.

Assumption 5.4.3 (Σ-effectivity of α). The basic functions of the algebra
C[T, A], namely d and eval, are α-computable.
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Example 5.4.4 (Concrete computation on C[T, IR]). Consider, in particu-
lar, the case that the metric space A is IR. As stated above, for αA we would
take the same as αR, i.e., a standard enumeration of the rationals.

As an example of a countable dense subset of C[T, IR], take Z = ZZ, the
set of all continuous “zigzag functions” from T to IR with finitely many turning
points, all with rational coordinates. Clearly, the set ZZ, under any reasonable
enumeration αC, satisfies the effective locally uniform continuity assumption
(5.2.1). Also, the enumeration α derived from α is clearly Σ-effective (Assump-
tion 5.4.3).

We could use instead, as our starting point, the set of polynomial functions
of t with rational coefficients. This yields the same set Cα(Z) of computable
elements of C[T, IR].

5.5 Relative Concrete Computability of Functions Defined by
Analog Networks

Given a network N , we want to show the network function ΦN is α-computable
relative to the module functions, provided it is contracting at the parameter and
stream inputs.

For this we need a constructive concept of contraction, namely that a con-
tracting factor κ < 1 can be found effectively in the parameters and stream
inputs c,x over some domain.

Definition 5.5.1 (Effectively contracting network). Given U ⊆
C[T, A]p×Ar, the network N is (α)-effectively contracting on U if a contracting
factor κx ,c can be found α-effectively in (x , c) ∈ U .

Note that this certainly holds with the case study in Section 4, where a
value for κ can be found effectively in the parameters M,K,D (and independent
of the input stream f), by equations (4.3) and (4.4), in the region U =df

{ (M,K,D) ∈ IR3 | M > max(K, 2D) }.

Theorem 4. Suppose the network N satisfies (Caus), (Z,αC) satisfies effective
local uniform continuity, and α is Σ-effective. Suppose also N is α-effectively
contracting on U ⊆ C[T, A]p×Ar. Then the network function ΦN is defined (at
least) on U , and is α-computable relative to the module functions of N . Hence
if the module functions are α-computable, then so is ΦN .

Proof (outline). For an input (x , c) ∈ U , the output of ΦN is a sub-tuple of
the fixed point u of ΨN

c,x (§3.2). So it suffices to show that the function from
(x , c) ∈ U to this u is computable. (Here “computable” means α-computable
relative to the module functions.)

Consider the sequence of stream tuples un, defined in the proof of Theorem
1, with f = ΨN

c,x . First, each un is computable in (x , c), by induction on n.
Further, (un) is an effectively locally uniform Cauchy sequence, i.e. (in the

notation of Definition 3.1.1) N can be obtained effectively from k. From this it
follows that the limit u of this sequence, which is the fixed point of ΨN

c,x , is also
computable in (x , c). �
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5.6 Concrete Computability of Module Functions

The standard module functions on C[T, IR] are α-computable. For (a) pointwise
addition and (b) scalar multiplication this is obvious. The interesting case is
(c) integration. Here, in taking the integral as the limit of a Cauchy sequence
of Riemann sums, we use the effective locally uniform continuity assumption
(5.2.1).

Thus all the module functions in the case study in Section 4 are concretely
computable. Combining this with Theorem 4, we conclude that the function
which solves the network equations in that example is concretely computable.

6 Concluding Remarks

Most current research on analogue systems is focused on computation on the
reals with the traditional processing units (adders, integrators etc.). Our net-
work models, involving arbitrary processing units on data from metric spaces in
continuous time, are new.

Several questions and problems are left open:

1. For the modules, it turned out that we did not need the assumption of time
invariance (satisfied by the standard module functions in §5.6) which, like
causality (which we did need) is common in dynamical system theory [9].
What is the significance of this assumption — or its absence?

2. What if we allow partial or many-valued module functionsor partial streams?

3. Find reasonable conditions, other than the contraction property, that guar-
antee “good behaviour” of these networks.

4. Characterise the networks that produce all (and only) computable functions
on C[T, A].
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Computable Analysis studies those functions on the real numbers and related
sets which can be computed by machines such as digital computers. It con-
nects two traditionally disjoint fields, namely Analysis/Numerical Analysis on
the one hand and Computability/Computational Complexity on the other hand,
combining concepts of approximation and of computation. In particular, Com-
putable Analysis supplies an algorithmic foundation of numerical computation.
While essentially all computablity models for number functions are equivalent
(Church’s Thesis) several non-equivalent mathematical models for real number
computation are still being discussed.

In this tutorial we mainly concentrate on the representation model of compu-
tation (TTE) which is based on a definition of computable real functions intro-
duced by A. Grzegorczyk and D. Lacombe in 1955. In TTE, infinite sequences
of symbols (more generally and informally, of rational numbers, rational balls,
finite rational step functions etc.) are used as “names” of the points of sets like
real numbers, continuous real functions, open subsets of Euclidean space or L2-
functions. Computability is defined by Turing machines which read from infinite
files and write to infinite files. We introduce and explain basic concepts and
definitions, discuss many examples, and present a number of applications. The
following topics will be treated:

– approaches to Computable Analysis (Banach/Mazur, Markov, Grzegorczyk/
Lacombe, Pour-El/Richards, real RAM, Scott domain, Interval Analysis, ...);

– computable real numbers, non-computable real numbers;
– computable real functions, examples and counter-examples;
– representations, reducibility, induced computability, induced continuity;
– admissible representations, main theorem for admissible representations;
– constructions of new representations;
– computability on subsets of Euclidean space (closed, open, compact);
– computability on the space of continuous real functions;
– zero-finding for continuous real functions;
– computational complexity of real functions;
– degrees of discontinuity (Wadge reducibility);
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– some interesting results (Baire category theorem, Riemann mapping theo-
rem, solution operators of differential equations, computational complexity
of Julia sets).

Despite remarkable progress during recent years Computable Analysis is still
in it Infancy, still only the surface of what can be done has been scratched.
Numerous secrets are waiting for becoming detected. The tutorial is addressed
to participants who have some basic knowledge in Analysis as well as in Com-
putability.
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Abstract.

• We produce a classification of the pointclasses of sets of reals pro-
duced by infinite time turing machines with 1-tape. The reason for
choosing this formalism is that it apparently yields a smoother clas-
sification of classes defined by algorithms that halt at limit ordinals.

• We consider some relations of such classes with other similar notions,
such as arithmetical quasi-inductive definitions.

• It is noted that the action of ω many steps of such a machine can
correspond to the double jump operator (in the usual Turing sense):
a−→ a′′.

• The ordinals beginning gaps in the “clockable” ordinals are admissi-
ble ordinals, and the length of such gaps corresponds to the degree
of reflection those ordinals enjoy.

1 Introduction

This paper is concerned with exploring the actions of certain models of transfinite
time Turing machines. The idea of formulating such a model is due to Hamkins
and Kidder, and [1] is the standard reference here. We refer the reader to this
article for basic description of these machines. There is some discussion there on
relating these machines to other types of “supertasks” (thus computations in-
volving Rapidly Accelerating Machines, Zeno machines, and computations done
in Malament-Hogarth spacetimes). We take the view that the infinite time Tur-
ing machines are an idealised laboratory for discussing notions of computation
involving the transfinite, much as ordinary Turing machines do for ordinary
forms of algorithmic computation. The advantage of these infinite time Turing
machines is that they may simulate these others, whilst coming uncluttered with
any “Thompson-Lamp” like worries about what state the machine is in after a
limit number of steps: we simply define a behaviour for them at limit stages of
time.

There have been suggestions of other models: a 1-tape version ([1] had three
tapes, one for input, one for scratch work, and one for output.) The one defining
feature of such machines is that, of course, if they can take transfinite time,
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they can read and out put infinite strings of {0, 1} bits. Such a string we shall
identify with a subset of N or equivalently with a member of Cantor space
ω2. Such devices work acording to an ordinary Turing program at “ordinary”
successor stages of time, but of course one must specify what these machines do
at limit stages of ordinal time. A limit rule is needed to specify what a cell on
the tape contains at limit time λ if it has altered unboundedly in λ. The class
of “computable” functions is surprisingly robust if one alters these limit rules
within reason, but the pointclasses of what kinds of real numbers is on the tape
at particular times can and does vary.

We can relate these “infinite time Turing Machines” (ITTM’s) to some other
notions that have appeared: the arithmetical quasi-inductive definitions (Burgess)
[2]; distilled from the notion of sets of integers defined by Herzberger revision
sequences ([3],[4]; the partial fixed point semantics of Kreutzer [5]. In one sense
these definitions are all different facets of the same many sided coin: any one
such notion can be replicated or simulated by another, and proofs and techniques
formulated with one notion are usually translatable to another.

Pointclasses can be defined by functions delimiting the number of steps that
an infinite time Turing machine was allowed to take before converging. We in-
vestigate these, so to speak, “TIME” classes a little here. The questions these
pointclasses raise are really in turn unanswered questions about the action of
such machines. [1] mentions the existence of “gaps” in the order types of halting
times of machines on integer inputs. The issue of what those gaps were was not
resolved. It was also at that time an open question as to whether a machine on
an integer input could require longer time, meaning more ordinal stages, to run,
than could be coded by any other nachine’s output.

There is a further issue of what are these “machine” processes really? In [6] we
looked at the “global” set-theoretical properties of these machines and analysed
the relationships between halting times and ordinals produced by such machines,
and determined exactly what were the decidable sets of integers etc.However the
actual detailed analysis of what the machines were producing was passed over.
What a machine can produce in ω many steps can be concretely given (see
Theorem 10 below). One could thus view a universal such machine as a “double
jump” operator, (Corollary 12), which can be iterated through the ordinals, with
a specific non-monotone limit operation of “eventual value”.

Instead of the 3-tape machines of [1], we shall use instead the 1-tape machine
model that we proposed in [7]. We feel that the results here about classifying
these classes support the use of this model.

There already has been an analysis of 1-tape machines (in [8]) where it was
surprisingly shown that 1-tape machines could not replicate all the features of
the standard 3-tape machines for functions f : ω2 −→ ω2 (although they could
for f : ω2 −→ N.)

The difference between the machine of [8] and that of [7] is the use of a third
symbol besides 0, 1 a blank (denoted “B”) to be interpreted as “undetermined”.
We enumerate the cells of the tape by 〈Ci|i < ω〉 with C0 being the leftmost one.
We let the contents of the i’th cell at time ν be denoted by Ci(ν). At successor
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stages of time, the cells’ contents are specified according to the usual Turing
machine program finitary rules.

We need to introduce a limit rule to specify cell values at limit times. We
declare that a cell of the machine Ci at a limit time μ should have contents Ci(μ)
determined by the contents Ci(α) for α < μ, according to a scheme where Ci(μ)
is a symbol (i.e. a 0 or 1 or B) if Ci(α) was 0 (or 1 or B) for all sufficiently large
ordinals α < μ; if there has been cofinally in μ a value change, then Ci(μ) is set
to the blank symbol B.

One Tape machine limit rule: If μ is a limit ordinal, then the contents
of the i’th cell on the (single) tape at time μ, Ci(μ), is given by:
(∃ν < μ)(∀ν′ < μ)(ν < ν′ → Ci(ν) = Ci(ν′)) → Ci(μ) = Ci(ν); other-
wise set Ci(μ) to be a blank.

Thus if a cell’s value has varied cofinally often below μ, we set the value to the
“non-determined” value of a blank. The formalism is otherwise similar to that
of [1]: at limit times, by fiat, it is in a special limit state qL viewing cell C0. At
successor steps of time, the action is just as for an ordinary Turing machine: it
acts according to its finite program, reading/writing and moving one cell to the
left or right.

If we identify the reals R with Cantor space 2ω one then has:

Theorem 1. (cf. [7] Theorem 1 ) Let C be the class of functions F : R → R
computable by the Hamkins-Lewis machines of [1], and C′ those of the one-tape
machine just specified. Then C = C′.

In general we feel that the 1-tape model has conceptual advantages, not just
that it provides a smoother theory of the classes P f as below. The model

– has a “physical” construction that of a normal Turing machine: namely one
infinite tape

– it treats 0’s and 1’s symmetrically at limits;
– the use of a blank to assign truth values at a limit indicating “undetermined”

accords with one’s perceptions of a process that going through time vacillates
cofinally in that limit ordinal;

– allows a “clean” halting process at limits: algorithms that produce an output
only can use the “bit” in the single cell C0 at the beginning of the tape.

The latter may seem somewhat obscure, but it is the feature of the standard
model that there are 3 cells observable that creates an “odd” class of sets of
reals computable in exactly certain limit times. It should be emphasised that
for the vast majority of results, especially those of a more “global” nature, it
makes no difference whatsoever which model one uses. It is only in the mechanics
of halting, and the results pertaining thereto that can be affected. (See also a
discussion in [8] as to which ordinals are “clockable”1 on 1-tape machines: there

1 They call an ordinal clockable if it is the length of a halting computation on 0 input.
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are possibly minor variations here, but the overall picture of the machines, the
functions they compute etc, is no different if one takes the [1] or the [7] model.)

We shall define these classes as follows:

Definition 2. Let A ⊆ ω2.
We say that A is semi-decidable if there is an (infinite time) Turing machine
computable functional ϕe so that
(i) x ∈ A if and only if ϕe(x)↓1
(ii) A is decidable if both A and its complement are semi-decidable.

By “ϕe(x)↓1” we mean that the machine has halted with the first cell of the
tape containing a 1; similarly 0 etc.

We recall a definition from [1]:

Definition 3. λx =df sup{α | ∃eϕe(x)↓y ∧ y ∈ WO ∧ rk(y) = α} .

Equivalently (and the reader may take this as a definition):

Fact 4. ([9] Theorem 1.1) λx is the supremum of halting times of any Turing
computable function on input x.

Prior to the last Fact’s proof it was thought possible that halting times might
have outrun the ordinals producible by such machines. Without the last Fact
one could not have proven:

Theorem 5. (Normal form theorem) ∀e∃e′∀x ∈ ω2 :
[ϕe(x)↓−→ ϕe′(x)↓y ∈ ω2 where y is a code for a wellordered computation
sequence for ϕe(x)].
The map e �→ e′ can be made effective (in the usual sense).

Implicit in Fact 4 - when taken with the definition of decidable sets of reals
[1] - (see the discussion in [7]) is the following characterisation of such sets.

Fact 6. A ∈ ω2 is decidable if and only if there are Σ1 formulae in the language
of set theory ϕ0(v0), ϕ1(v0) so that

x ∈ A ⇐⇒ Lλx [x] � ϕ0[x] ⇐⇒ Lλx [x] � ¬ϕ1[x]

We shall be concerned with classifying certain pointclasses of sets of reals
that fall strictly within Δ1

2.
Suppose we are given any function f : D → ω1 of ordinary Turing degrees

to countable ordinals that is definable via a Σ1 formula ψ(v0, v1), so that for
any (ordinary) Turing degree [y]T we have f([y]T ) = α iff L[y] � ψ(y, α); then
we may define a slice through Δ1

2 defining a lightface pointclass Γ0 as follows:
A ∈ Γ0 if and only if for some formula θ(v0) we have x ∈ A ←→ Lf(x)[x] � θ(x).
(A boldface definition would add in a real parameter here to ψ and θ.) How high
a rank f has in Dℵ1 modulo the Martin measure (cf [10] p386), determines the
complexity of the pointclass.

In [11] we were initially motivated by certain questions of Schindler [12]
where certain pointclasses P f were defined that can be seen to fit into the above



536 P.D. Welch

general scheme. The pointclasses are strictly within a proper initial segment of
Δ1

2, bounded by the function f(x) = λx (recalled below.)
We shall define these classes as follows:

Definition 7. Let f : D −→ ω1 be (standard) Turing invariant. Let A ⊆ ω2.
We say that A ∈ P f if there is a total (infinite time) Turing machine computable
functional ϕe so that
(i) A is decidable by ϕe, that is x ∈ A if and only if ϕe(x)↓1
(ii) ∀z ∈ ω2 ϕe(z)↓ in ≤ f(z) steps.

By “Turing invariant” we mean that the value of f(x) is the same irrespective
of which choice of x from a degree d ∈ D is made. Here, in this phrase, we
mean the standard notion of Turing recursion, and degree; hereafter we shall use
the notions of infinite time Turing recursion only, and shall always mean these,
unless otherwise specified.

If the value of f(x) is some constant α then the classes P f lie strictly within
the Borel hierarchy ([12] Lemma 2.7). Recall that ωx

1 denotes the first ordinal
not recursive in x and (see [13]) that ωx

1 is also the first x-admissible ordinal,
beyond ω, where α is x-admissible, if it is the ordinal height of a transitive model
of Kripke-Platek set theory containing x. (It is admissible if it is ∅-admissible.)
Thus the smallest transitive set model of KP+ Axiom of Infinity, containing x is
Lωx

1
[x]. The ordinals λx are x-admissible, and enjoy strong reflecting properties

(cf[1]).
If we now define f(x) = ωx

1 then P f coincides with hyperarithmetic (and
so we are really still within the realms of Kleene recursion e.g. see [14]). When
f(x) > ωx

1 for all x we then truly enter for the first time the world of sets that
are essentially computed by infinite time Turing machines.

Clearly then:

Lemma 8. If f dominates the function x �−→ λx then P f equals the class of
decidable sets.

Let fk be defined as fk(x) = ωx
1 + ω + k. As [ωx

1 ,ω
x
1 + ω) is a gap in the

x-clockable ordinals (in either formulation of machine: cf. [1] 3.4 and [8] 3.3)
thus f0 is the first one to interest us beyond g(x) = ωx

1 . (In [12] P f0 is denoted
P++.)

We classify P f0 as follows. We take Γ to be the pointclass of sets of reals A
so that there are formulae ϕ0(v0), ϕ1(v0), which are

Σ4 in the language L{∈̇,ẋ}, with the property that

∀x x ∈ A ⇐⇒ Lωx
1
[x] � ϕ0(x) ←→ ¬ϕ1(x).

In other words A is in “Δ4(Lωx
1
[x])”.

By the above comments then P g is the pointclass of sets of reals that are
“Δ1(Lωx

1
[x])”. Here we have:

Theorem 9. P f0 = Γ .
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The theme from the above analysis is that ω many steps of the ITTM can add
two levels of definability (in the arithmetical hierarchy) to the tape’s contents,
and hence the double Turing jump nature of this operation. As a corollary to
the method of proof of Γ ⊆ P f0 in the above, we may state this as: that:

Theorem 10. There is an infinite time program Pe so that on 0 input (0, 0, 0, . . .),
after ω many steps the tape contains a code for Fin =df {n|Wn is finite } (where
Wn = domϕn for ϕn a standard Turing computable function.)

Fin is complete Σ2 whence follows our remarks on the double jump of the
abstract. To be more precise, as the tape works in 3ω (rather than 2ω), for the
program Pe under discussion, Fin = {n|C2n(ω) = 1}. Fin is thus recursive in
〈Ck(ω)|k < ω〉.

This is result is best possible. More formally put:

Theorem 11. Let g = 〈Ck(ω)|k < ω〉 code the contents of the tape after some
program on 0 input has run for ω steps. Then g ≤T 0′′.

Corollary 12. If, then, g is the tape’s contents after running the program Pe

of Theorem 10, then g ≡T Fin ≡T 0′′.

It is also not hard to see from the form of Γ above that if A ∈ Diff(< ωck
1 , Σ1

1)
the Hausdorff difference hierarchy for levels below the first non-recursive ordinal,
then A ∈ P f0 . (Here ωck

1 is the first non-recursive ordinal.)
Theorem 9 generalises:

Theorem 13. Let f(x) be an x-admissible ordinal which is uniformly not Π3-
reflecting. (That is, we suppose there is a Π3 formula ϕ(ẋ) so that for all x ∈
ω2 Lf(x)[x] � ϕ(ẋ) whilst for all α < f(x) Lf(x)[x] � ¬ϕ(ẋ).) Then P f =
Δ4(Lf(x)[x]).

Let Bool(Γ1) be the class of sets of reals that are Boolean combinations of
Γ1 where Γ1 is the class of similarly defined Σ4(Lωx

1
[x]) sets of reals.

Our methods show:

Theorem 14.
⋃

k<ω P fk = Bool(Γ1).

Let Γ2 be the Δ6(Lωx
1
[x]) definable sets.

Theorem 15. Γ2 = P fω

The reader can imagine further extensions. It is to be emphasised that these
results on the classes P f hold only for the one tape model described in some
more detail below. For the model from [1], one has that the class P f0 would turn
out to be the class of sets A that are differences of two sets in Σ4(Lωx

1
[x]), and

their complements. It is inadequate in the sense of Moschovakis [15] p.158, not
being closed under finite unions or intersections. For the comments on the double
jump operation, either model will do. In [8] a comparison of the halting times of
2-valued 1-tape machines and the 2-valued 3-tape machines was made. It was left
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open (Question 3.3 of [8]) whether clockables that were not 1-tape clockable (in
the 2-valued sense) were those of compound limit length. The following (using
the methods here) provides a counterexample, and so the answer is negative (for
either type of 1-tape machine).

Theorem 16. Let γ be the least ordinal that is Π3 reflecting. Then γ + ω is
3-tape clockable but not 1-tape clockable. However γ + ω + 1 is 1-tape clockable.

In [1] it is proven that no admissible ordinal is clockable: thus every admissible
ordinal either starts a gap, or lies within a gap, in the clockable ordinals. We
show:

Theorem 17. If α is an ordinal starting a gap in the clockables, then α is
admissible.

Again, this is for any machine formulation.
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Abstract. We investigate the computational complexity of an optical
model of computation called the continuous space machine (CSM). We
characterise worst case resource growth over time for each of the CSM’s
ten operations with respect to seven resource measures. Many operations
exhibit unreasonably large growth rates thus motivating restrictions on
the CSM, in particular we give a restriction called the C2-CSM.

1 Introduction

The computational model we study is relatively new and is called the contin-
uous space machine (CSM) [11, 12, 13, 18, 19]. The CSM is inspired by classical
Fourier optics and uses complex-valued images, arranged in a grid structure, for
data storage. The program also resides in images. The CSM has the ability to
perform Fourier transformation, complex conjugation, multiplication, addition,
thresholding and resizing of images. It has simple control flow operations and
is deterministic. To analyse such a model we define a total of seven complex-
ity measures inspired by real-world resources. For example, spatial resolution
corresponds to number of pixels.

A variant of the model with real inputs was previously shown [19] to decide
the membership problem for all recursively enumerable languages, and as such
is unreasonable in terms of implementation. Here, we build on this work by
showing the growth in resource usage for each CSM operation. This leads to a
restriction of the CSM that is more suited to the standard tools from analysis
of algorithms and complexity theory.

� We thank Tom Naughton for many fruitful discussions and in particular for his
collaboration on the CSM definition.

�� The first author is funded by the Irish Research Council for Science, Engineering
and Technology.
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2 The CSM

We begin by informally describing the model, this brief overview is not intended
to be complete: Detailed definitions and discussions can be found in [18, 19].

Definition 1 (complex-valued image). A complex-valued image (or simply,
image) is a function f : [0, 1)× [0, 1) → C, where [0, 1) is the half-open real unit
interval.

We let I denote the set of all complex-valued images. N+ = {1, 2, 3, . . .} and
N = N+ ∪ {0}. For a given CSM M we let N be a countable set of images that
encode M ’s addresses. Also for a given M there is an address encoding function
E : N → N such that E is Turing machine decidable, under some reasonable1

representation of images as words. An address is simply an element of N × N.

Definition 2 (CSM). A CSM is a quintuple M = (E, L, I, P,O), where
E : N → N is the address encoding function
L = ((sξ, sη) , (aξ, aη) , (bξ, bη)) are the addresses: sta, a, and b,
I = ((ι1,ξ, ι1,η), . . . , (ιk,ξ, ιk,η)) are the addresses of the k input images,
P = {(ζ1, p1,ξ, p1,η), . . . , (ζr, pr,ξ, pr,η)} are the r programming symbols and

their addresses where ζj ∈({h, v, ∗, ·,+, ρ, st, ld,br,hlt} ∪ N ) ⊂ I,
O = ((o1,ξ, o1,η), . . . , (o�,ξ, o�,η)) are the addresses of the � output images.

Each address is an element from {0, 1, . . . , Ξ − 1} × {0, 1, . . . , Υ − 1} where
Ξ, Υ ∈ N+. Addresses a and b are distinct.

Addresses whose contents are not specified by P in a CSM definition are assumed
to contain the constant image f(x, y) = 0. We interpret this definition to mean
that M is (initially) defined on a grid of images bounded by the constants Ξ
and Υ , in the horizontal and vertical directions respectively.

In our grid notation the first and second elements of an address tuple refer
to the horizontal and vertical axes of the grid respectively, and image (0, 0) is
at the bottom left-hand corner of the grid. The images in a grid have the same
orientation as the grid. Figure 1 gives the CSM operations in this grid notation.
Configurations are defined in a straightforward way as a tuple 〈c, e〉 where c is
an address called the control and e represents the grid contents. In the sequel we
write ĉ to mean the image (or instruction) at address c. It is beyond the scope of
this paper to give CSM algorithms and so this informal description is sufficient
for our analysis in Section 4. For a more thourough introduction, cf. [18, 19].

3 Complexity Measures

We want our complexity measures to be straightforward to analyse, while at
the same time to be meaningful by reflecting the reality of optical computing.
All finite resource bounding functions are from N into N and have the usual
properties [1].

1 Other authors have also raised this representation issue for different models, but
with similar motivations. See [18] for further discussion.
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h : replace image in a with its horizontal 1D Fourier transform (FT).
v : replace image in a with its vertical 1D FT.
∗ : replace image in a with its complex conjugate.
· : multiply (point by point) the two images in a and b. Store result in a.
+ : perform a complex addition of a and b. Store result in a.

ρ z	 zu : z	, zu ∈ I; filter the image in a by amplitude using zl and zu as lower
and upper amplitude threshold images, respectively.

st ξ1 ξ2 η1 η2 : ξ1, ξ2, η1, η2 ∈ N; copy the image in a into the rectangle of images
whose bottom left-hand corner address is (ξ1, η1) and whose top right-
hand corner address is (ξ2, η2).

ld ξ1 ξ2 η1 η2 : ξ1, ξ2, η1, η2 ∈ N; copy into a the rectangle of images whose bottom
left-hand corner address is (ξ1, η1) and top right-hand corner address is
(ξ2, η2).

br ξ η : ξ, η ∈ N; unconditionally branch to the image at address (ξ, η).
hlt : halt.

Fig. 1. The set of CSM operations, given in our informal grid notation

Definition 3. The time complexity of a CSM M is the number of configura-
tions in the computation sequence of M , beginning with the initial configuration
and ending with the first final configuration.

Definition 4. The grid complexity of a CSM M is the minimum number of
images, arranged in a rectangular grid, for M to compute correctly on all inputs.

From the CSM definition grid is at least Ξ Υ . In previous work [11, 12, 13, 19]
the number of grid images remained constant throughout a computation. Here
we alter the CSM (by introducing the address encoding function E) so that grid
may grow over time.

Next we define spatialRes. Let a pixel λ be a constant complex function
defined on a real-valued rectangle with rational endpoints, λ : [0,W )×[0,H) → z
where z ∈ C; W,H ∈ Q; 0 < W,H � 1; and [0,W ), [0,H) ⊂ R. A raster image
is an image composed entirely of nonoverlapping pixels, each pixel is of equal
height H, equal width W , identical orientation, and arranged into Φ columns
and Ψ rows where ΦW = 1 = ΨH. Let the spatial resolution of a raster image
be ΦΨ . Let S : I × (N×N) → I, where S(f(x, y), (Φ, Ψ)) is a raster image, with
ΦΨ pixels arranged in Φ columns and Ψ rows, that approximates f(x, y). If we
choose a reasonable and realistic S then the details of S are not important.

Definition 5. The spatialRes complexity of a CSM M is the minimum
ΦΨ such that if each image f(x, y) in the computation of M is replaced with
S(f(x, y), (Φ, Ψ)) then M computes correctly on all inputs.

If no such ΦΨ exists then M has infinite spatialRes complexity.
For amplRes complexity consider the function A : I × N+ → I,

A(f(x, y), μ) =
⌊
|f(x, y)|μ +

1
2

⌋
1
μ

exp(i × arg(f(x, y))) , (1)
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where | · | gives the amplitudes of its image argument, arg(·) gives the phase
angles in the range (0, 2π], and the floor operation operates separately on each
image value. The value μ is the cardinality of the set of discrete nonzero am-
plitude values that each complex value in A(f, μ) can take, per half-open unit
interval of amplitude. To aid in the understanding of Equation (1), recall that
f(x, y) = |f(x, y)| exp(i × arg(f(x, y))).

Definition 6. The amplRes complexity of a CSM M is the minimum μ such
that if each image f(x, y) in the computation of M is replaced by A(f(x, y), μ)
then M computes correctly on all inputs.

If no such μ exists then M has infinite amplRes complexity.
Consider the function P : I × N+ → I defined as

P (f(x, y), μ) = |f(x, y)| exp
(

i
⌊
arg(f(x, y))

μ

2π
+

1
2

⌋
2π
μ

)
. (2)

The value μ is the cardinality of the set of discrete phase values that each complex
value in P (f, μ) can take.

Definition 7. The phaseRes complexity of a CSM M is the minimum μ such
that if each image f(x, y) in the computation of M is replaced by P (f(x, y), μ)
then M computes correctly on all inputs.

If no such μ exists then M has infinite phaseRes complexity.

Definition 8. The dyRange complexity of a CSM M is the ceiling of the max-
imum of all the amplitude values stored in all of M ’s images during M ’s com-
putation.

Definition 9. The freq complexity of a CSM M is the minimum optical fre-
quency such that M computes correctly on all inputs.

The concept of minimum optical frequency is explained in [19]. If approximations
of a FT are sufficient for M , or if M does not execute h nor v, then M requires
finite freq. If the original (unbounded) definitions of h and v must hold then M
requires infinite freq. Using the traditional optical methods, any lower bound
on spatialRes will impose a lower bound on freq [19], we should be aware of
this in our complexity analysis.

Often we wish to make analogies between space on some well-known model
and ‘space-like’ resources on the CSM. For this purpose we define the following
convenient term.

Definition 10. The space complexity of a CSM M is the product of all of M ’s
complexity measures except time.

We argue that this definition is reasonable as it gives an upper bound on the
information (e.g. number of bits) stored throughout a CSM computation.

We have defined the complexity of a computation (sequence of configurations)
for each measure. We extend this definition to the complexity of a (possibly
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Table 1. CSM resource usage after one timestep. For each operation and complexity
measure pair, the table entry defines the worst case upper bound on CSM resource
usage at time T + 1, in terms of resources used at time T : grid = GT , spatialRes
= RS,T , amplRes = RA,T , dyRange = RD,T , phaseRes = RP,T and freq = νT .
“unb.” stands for “unbounded”. Theorems are cited in parentheses

grid spatialRes amplRes dyRange phaseRes freq
h GT ∞ (11) ∞ (11) ∞ (12) ∞ (11) ∞ (11)
v GT ∞ (11) ∞ (11) ∞ (12) ∞ (11) ∞ (11)
∗ GT RS,T RA,T RD,T RD,T (14) νT

· GT RS,T (RA,T )2 (15) (RD,T )2 (16) RP,T (17) νT

+ GT RS,T ∞ (18) 2RD,T (19) ∞ (20) νT

ρ unb. (21) RS,T RA,T RD,T RP,T νT

st unb. (21) RS,T RA,T RD,T RP,T νT

ld unb. (21) unb. (22) RA,T RD,T RP,T unb. (22)
br GT (23) RS,T RA,T RD,T RP,T νT

hlt GT RS,T RA,T RD,T RP,T νT

non-final) configuration in the obvious way. Also, we sometimes talk about the
complexity of an image, this is simply the complexity of the configuration that
the image is in. A more detailed explanation of the complexity measures can be
found in [19], including a discussion on defining energy of computations in terms
of the above measures.

4 Worst Case CSM Resource Usage

For the case of sequential computation it is usually obvious how the execution of a
single operation will effect resource usage. In parallel models, execution of a single
operation can lead to large growth in one timestep. For example a multiplication
or shift operation in a unit cost parallel model (such as Pratt and Stockmeyer’s
unrestricted vector machines [16]) can double the length of a binary string in
one step. When binary strings are interpreted as numbers, such multiplications
and shifts quickly generate large values. Characterising resource growth is useful
for proving upper bounds on power and setting model restrictions [1].

In this section we investigate the growth of complexity resources over time,
with respect to CSM operations. We tackle this question for each operation and
complexity measure pair. As expected, under certain operations some measures
do not grow at all. Others grow at rates comparable to massively parallel models.
By allowing operations like the FT we are mixing the continuous and discrete
worlds, hence some measures grow to infinity in one timestep. This gives strong
motivation for CSM restrictions and raises some interesting questions.

Table 1 summarises our results; the table defines the value of a complexity
measure after execution of an operation (at time T + 1). The complexity of a
configuration at time T+1 is at least the value it was at time T , since complexity
functions are nondecreasing. Our definition of time assigns unit time cost to each
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operation, hence we do not have a time column. Many entries are immediate
from the definitions, otherwise a theorem is cited to the right of the entry.

In the sequel 〈c, e〉T is an an arbitrary CSM configuration at time T and ĉ
is the instruction pointed to by the program control c. Also, GT , RS,T , RA,T ,
RD,T , RP,T and νT are the grid, spatialRes, amplRes, dyRange, phaseRes
and freq respectively of configuration 〈c, e〉T . Our resource growth analysis is
worst case, hence we assume that at each computation step we want to preserve
all information in each image (however for specific computations this may not be
the case). Each of Theorems 11–23 trivially hold if the resources in question are
infinite at time T , proofs are given only for the non-trivial finite case. We begin
with resource usage after operations h or v for a number of complexity measures.

Theorem 11. (h/v & spatialRes, amplRes, phaseRes and freq) Let ei-
ther ĉ = h or ĉ = v. Then RS,T+1 = RA,T+1 = RP,T+1 = νT+1 = ∞.

Proof. We give a proof for the non-trivial case where each measure is finite at
time T . The statement is proved for the measure in question if there is no finite
minimum value for that measure at time T + 1. We use any rectangular step
image, such as

a(x, y) =

{
1

RA,T
, if 1

2 − 1
RShor,T

� x < 1
2 and 1

2 − 1
RSver,T

� y < 1
2 ,

0, otherwise .

RShor,T and RSver,T are the spatial resolutions in the horizontal and vertical direc-
tions, respectively. The image a(x, y) is representable with finite spatialRes,
amplRes, phaseRes and freq. However its (horizontal or vertical) Fourier
spectrum is a sinc function containing an infinite number of spatially separated
components and is therefore not representable by finite spatialRes nor freq.
The amplitudes of the peaks in this Fourier spectrum monotonically decrease in
value, never reaching zero, and hence are not representable by finite amplRes.

Goodman and Silvestri [9] discuss a method of phase quantisation that is
equivalent to phaseRes. They prove that phase quantisation in the Fourier
domain causes degradation in the resulting inverse FT, in general. In particular
they show that the step function can not be perfectly reconstructed from its
phase discretised FT, thus we need infinite phaseRes to represent its FT. *+

All theorems in this section are a worst case analysis. The previous theorem
tells us that applying standard complexity theory to analyse continuous FTs is
pointless. Obviously the result is of little relevance to CSMs that do not use the
FT, or only use approximations of the FT. Typically in optical setups it will be
the case that at some point of the computation, discretisations are introduced.

Theorem 12. (h/v & dyRange) Let either ĉ=h or ĉ= v. Then RD,T+1 = ∞.

Proof. Take the constant image a = 1. The horizontal FT h(a) has value 0 every-
where except at x = 0 where it is a δ function, for all y. Hence there is no finite
minimum dyRange that bounds the value at h(a(0, y)). A similar argument
holds for v, the only difference is that we get the δ function at v(a(x, 0)). *+
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It is worthwhile noting that restrictions on images (e.g. finite spatialRes) en-
able us to use Rayleigh’s theorem [3–page 112] to specify a finite upper bound
on the dyRange of h(a) in terms of the complexity of image a [18].

Lemma 13. Let z ∈ C, μ ∈ N+ and given P from Equation (2), then

P (z, μ) ∈
{
z′ | z′ = |z| exp

(
iμ′ 2π

μ

)
, μ′ ∈ {1, 2, . . . , μ}

}
.

Proof. Let j =
⌊
arg(z) μ

2π + 1
2

⌋
, hence j ∈ Z. Let arg(z) have range 0 < arg(z) �

2π. By substituting for arg(z) in j it is clear that j ∈ μ′ ∪ {0}. Since we are
working in radians, j = 0 gives the same value in P as j = μ, hence j ∈ μ′. *+

Theorem 14. (∗ & phaseRes) Let ĉ = ∗. Then RP,T+1 = RP,T .

Proof (Sketch). We give a proof for the non-trivial case of finite phaseRes.
The ∗ operation affects only image a. By Lemma 13 the set of phase angles in
range(a) at time T is of the form {Θ |Θ = μ′(2π/μ)}. Our notation is in radians
hence nΘ, for all n ∈ Z, is in the above set of μ angles. For the case of complex
conjugation, n = −1. Thus the set of possible phases in range(a) at time T + 1
is a subset of the set of phases in range(a) at time T . For details see [18]. *+

Theorem 15. ( · & amplRes) Let ĉ = · , then RA,T+1 = (RA,T )2 .

Proof. We give a proof for the non-trivial case of finite amplRes. The · op-
eration affects only image a. For any x, y ∈ [0, 1), let za = range(a(x, y)),
zb = range(b(x, y)). At time T + 1, a(x, y) is replaced with a′(x, y) = zazb =
|za||zb| exp(i(arg(a(x, y)) + arg(b(x, y)))). Let RA,T = μ in Equation (1), the
values in a and b at time T are of the form

A(z, μ) =
⌊
|z|μ +

1
2

⌋
1
μ

exp(i × arg(z)) .

We are interested only in amplRes so we ignore the phase term. At time T +1

|A(za, μ)||A(zb, μ)| =
⌊
|za|μ +

1
2

⌋⌊
|zb|μ +

1
2

⌋
1
μ2

.

We are proving the theorem for the case that amplRes is finite, hence we know
that at time T , |za| and |zb| are rationals, moreover they are of the form |za| =
n/μ and |zb| = m/μ for some n,m ∈ N. By substitution we simplify the above
expression to get |A(za, μ)||A(zb, μ)| = nm/μ2 In the worst case we require
amplRes μ2 = (RA,T )2 to represent the values in image a at time T + 1. *+

Theorem 16. ( · & dyRange) Let ĉ = · , then RD,T+1 = (RD,T )2.

Proof. We give a proof for the non-trivial case of finite dyRange. The · opera-
tion affects only image a. Let za and zb be defined as above. If |za| = |zb| = RD,T

then at time T + 1 we get the worst case of RD,T+1 = |a(x, y)| = (RD,T )2. It is
easy to see that for all other values of |za| and |zb|, RD,T+1 < (RD,T )2 . *+
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Unlike amplRes and dyRange, phaseRes is unaffected by multiplication:

Theorem 17. ( · & phaseRes) Let ĉ = · , then RP,T+1 = RP,T .

Proof. We give a proof for the non-trivial case of finite phaseRes. The operation
· affects only image a. We will show that the set of possible phases in range(a)
at time T + 1 is a subset of the possible phases in range(a) ∪ range(b) at time
T . For some (x, y) let za = a(x, y) and zb = b(x, y). By definition ·(za, zb) =
|za||zb| exp (i(arg za + arg zb)). At time T (from Equation (2)), arg za = n

RP,T
2π

and arg zb = m
RP,T

2π, where n,m ∈ N. Thus ·(za, zb) = |za||zb| exp
(
i
(
n+m
RP,T

)
2π
)

which is in the set of possible phase values in range(a)∪ range(b) at time T . *+

Theorem 18. (+ & amplRes) Let ĉ = +. Then RaT+1 = ∞.

Proof. Suppose RA,T = 1 and RP,T = 4, then let a(x, y) = i and b(x, y) = 1.
After the + operation, at time T +1, image a has value a(x, y) = 1+i =

√
2ei 14π.

The CSM requires ∞ amplRes to represent the amplitude value
√

2. *+

If we restrict phaseRes to be 1 or 2 then we don’t meet the worst case scenario
described in the previous theorem, we introduce this restriction in Section 5.

Theorem 19. (+ & dyRange) Let ĉ = +. Then RD,T+1 = 2RD,T .

Proof. The operation + has no effect on spatialRes hence without loss of gen-
erality we assume that a and b are everywhere constant, a(x, y) = za = rae

iΘa2π

and b(x, y) = zb = rbe
iΘb2π. Let za = zb and |za| = RD,T , in this case za + zb =

2za = 2raeiΘa2π and hence RD,T+1 = 2RD,T . In fact this is the worst case since
adding any pair of complex values that lie on the origin-centred disk of radius
RD,T gives a new complex value on the origin-centred disk of radius 2RD,T . *+

Theorem 20. (+ & phaseRes) Let ĉ = +. Then RP,T+1 = ∞.

Proof. We give a proof for the non-trivial case of finite phaseRes. The operation
+ has no effect on spatialRes hence without loss of generality we assume that
a and b are everywhere constant. Let a = 2 and b = i = ei 12π. At time T +1, a =√

5 exp
(
i tan−1 (1/2)π

)
. Niven [14], Corollary 3.12, shows that (tan−1 (1/2))/π

is irrational, thus we require infinite phaseRes for addition. *+

Theorem 21. (st/ld/ρ & grid) Let either ĉ = st, ĉ = ld or ĉ = ρ. Then there
is no upper bound on the value of GT+1.

Proof. The address decoding function E−1 : N → N is Turing machine decidable.
This is the only specific restriction on E−1. Thus there is no upper bound on the
natural number that an address parameter of st maps to. After a st operation
we cannot bound grid in terms of GT , or any other complexity measure. The
same argument holds for ld and ρ. *+
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The previous theorem highlights the caveat of reasonableness in the defini-
tion of E in Section 2. When we defined E we did not wish to restrict the CSM
programmer from coming up with a novel E suited to her needs. However, for
reasonable addressing functions we should expect the growth rate of E−1, with
respect to the ordering on N , to be reasonable. For example, in Section 5 we
restrict E to being logspace Turing machine computable, which is an agreed
notion of reasonableness in parallel complexity theory. As one can imagine, a
complicated E will leave lots of headaches for the optical engineer who has to
implement it. Not only that, we would also have an incomplete complexity anal-
ysis of the CSM in question (unless of course we work the growth rate of E into
our analysis). The same remark applies to the next theorem.

Theorem 22. (ld & spatialRes/ freq) Let ĉ = ld. Then there is no upper
bound on the value of RS,T+1 nor νT .

Proof. After a ld operation with parameters ξ1, ξ2, η1, η2 ∈ N, image a has spa-
tialRes RS,T+1 = RS,T (ξ2 − ξ1 + 1)(η2 − η1 + 1). From Theorem 21 there is
no upper bound on the growth of E−1. Thus there is no upper bound on the
ld parameters. After a st operation there is no upper bound on spatialRes
in terms of RS,T , or any other complexity measure. Analogously, for freq the
upper bound is in terms of E−1 rather than any of the complexity measures. *+

If we have agreed upon a reasonable (bound on) E, then it is straightforward to
derive an upper bound on spatialRes and freq at time T + 1.

Even though br has address parameters, the previous arguments do not apply.

Theorem 23. (br & grid/ freq) Let ĉ = br. Then GT+1 = GT .

Proof. From the definition of a CSM configuration [19] the control must always
be inside the initial (time 1) grid. Branching outside the current grid will always
result in an undefined computation, hence br does not increase grid. *+

5 C2-CSM

Motivated by a desire to apply standard complexity theory tools to the model,
we define a restricted class of CSM.

Definition 24 (C2-CSM). A C2-CSM is a CSM whose computation time is
defined for t ∈ {1, 2, . . . , T (n)} and has the following restrictions:
– For all time t both amplRes and phaseRes have constant value of 2.
– For all time t, space is bounded above by c123t + c2 for constants c1 and c2

that depend on the program and the input, and space is redefined to be the
product of all complexity measures except time and freq.

– Operations h and v compute the discrete FT (DFT) in the horizontal and
vertical directions respectively.

– Given some reasonable binary word representation of the set of addresses N ,
the address encoding function E : N → N is decidable by a logspace Turing
machine.
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We have replaced the FT with the DFT [3]. freq is now solely dependent
on spatialRes (rescaling the Fourier spectrum by changing freq is no longer
necessary); hence freq is not an interesting complexity measure for C2-CSMs.
The DFT is defined over a ring. Since dyRange is bounded, and amplRes
and phaseRes are constant, we satisfy the definition of the DFT. The space
restriction is not unique to our model, such restrictions can be found in [15, 7].

In Section 2 we stated that address encoding functions should be Turing
machine computable, here we strengthen this condition. At first glance sequential
logspace computability may perhaps seem like a strong restriction, but in fact it
is quite weak. From an optical implementation point of view it should be the case
that E is not complicated, otherwise we cannot assume fast addressing. Other
(sequential/parallel) models usually have a very restricted ‘addressing function’:
in most cases it is simply the identity function on N. Without an explicit or
implicit restriction on the computational complexity of E, finding non-trivial
upper bounds on the power of C2-CSMs is impossible as E could encode an
arbitrarily complex halting Turing machine. As a weaker restriction we could
give a specific E. However, this restricts the generality of the model and prohibits
the programmer from developing novel, reasonable, addressing schemes.

A C2-CSM resource usage table would contain no “∞” or “unbounded” en-
tries. In further work we will give exact characterisations of the power of this
model.

6 Discussion

We have analysed the growth of CSM complexity measures with respect to its
operations over time. Table 1 shows that many variations on the CSM can not
be analysed if we restrict ourselves to the standard tools from complexity theory.

The results in this paper are independent of any particular data representa-
tions or program restrictions. If we restrict ourselves to certain (continuous or
discrete) data representations then clearly we change the properties of compu-
tations and can reduce the upper bounds on resource growth. Another way to
restrict the model is to place restrictions on the syntactic structure of programs.

Earlier CSM versions [11, 12, 13, 19] used constant grid. The function E al-
lows grid to be a more useful complexity resource (see [18] for further remarks).

Table 1 describes growth in complexity if inputs are finite. The irrational
values that give rise to the infinities in Table 1 are computable reals (say, in
the sense of [17]). It would be interesting to analyse this aspect of the model by
making use of results from the framework of real recursive function theory [10,
4, 5] or other approaches to analog or real computation [2, 17]. There has been
little work towards a parallel complexity theory for analog computation, this
would be interesting future work.

The results from this paper are not only interesting from a computational
complexity viewpoint, but from a physical viewpoint also. For example Good-
man [9] studies phaseRes in the same way we do, and is motivated by practical
concerns (reconstructing digital holograms). The C2-CSM is more realistic than
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the CSM in terms of optical implementation; many optical information process-
ing devices are pixellated (e.g. liquid-crystal displays and digital cameras) and
operate over a finite set of grey levels [8]. Positive and negative rationals are
routinely represented in optical architectures [6]. Clearly, the space limitation
decreases the difficulty of implementation.

This work is a starting point for developing CSM restrictions; in particular
we defined the C2-CSM. Any restriction will exhibit resource growth less than or
equal to that given by Table 1. Interesting future work would be to characterise
the power of such restrictions. In further publications we will exactly characterise
standard sequential and parallel complexity classes in terms of the C2-CSM.
For example, we will show that the C2-CSM satisfies the parallel computation
thesis [1, 7, 15] and that the class NC is characterised in terms of the C2-CSM [18].
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Computable Analysis of a Non-homogeneous
Boundary-Value Problem for the Korteweg-de

Vries Equation
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This note is concerned with computability of the solution operator associated
with the wave maker problem for the classical Korteweg-de Vries equation. The
Korteweg-de Vries equation is one of several non-linear partial differential equa-
tions which have been most intensively studied in the past fifty years due to its
physical and mathematical importance.

The problem is usually posted in the form of the following initial-boundary-
value problem (henceforth, the abbreviation “IBVP” will stand for “initial-
boundary-value problem”){

ut + ux + uux + uxxx = 0, t, x ≥ 0,
u(x, 0) = ϕ(x), u(0, t) = h(t). (1)

The IBVP arises as a model whenever waves determined at an entry point
propagate into a patch of a medium for which disturbances are governed ap-
proximately by the Korteweg-de Vries equation, for example, in modeling near-
shore zone motions generated by waves propagating from deep water, or when
modeling the effect in a channel of a wave maker mounted at one end. In this
conception, the wave profile in the channel is imagined to be determined every-
where at a given instant of time with a wave maker mounted at one end of the
channel and the corresponding solution models the further wave motion.

Classically the IBVP (1) is known to be well-posed for initial- and boundary-
data in certain Sobolev spaces (see, for example, [2]). Because of well-posedness,
the problem (1) defines a nonlinear continuous map from the spaces where the
auxiliary data are drawn to the space of solutions. A natural question arises:
Is this nonlinear map computable? This is one of the open problems raised by
Pour-El/Richards in their 1989 book “Computability in Analysis and Physics”.
The pure initial value problem posed on the whole line R was shown to be
computable in the space Hs(R) for any integer s ≥ 3 by Weihrauch-Zhong [9].
The present note will provide an affirmative answer to the initial-boundary-
value problem (1) by making use of modern methods for the study of nonlinear
dispersive wave equations. Speaking technically, for any T > 0 the solution map:
H3(R+) × H

4
3 (0, T ) → C([0, T ];H3(R+)) is computable for initial data ϕ in

the space H3(R+) and boundary data h in the space H
4
3 (0, T ) satisfying the
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compatibility condition ϕ(0) = h(0) with respect to canonical representations of
H3(R+), H

4
3 (0, T ), and C([0, T ];H3(R+)).

The crux of the modern analysis of nonlinear dispersive equations is the linear
estimates. For example, the estimates established for the linear problem{

ut + ux + uxxx = 0, t, x ≥ 0,
u(x, 0) = ϕ(x), u(0, t) = h(t), (2)

associated to the problem (1) in the work of Bourgain, Kenig-Ponce-Vega, and
Bona-Sun-Zhang [3, 4, 6, 2] made it possible to apply the contraction mapping
principle to establish directly the well-posedness of the IBVP (1).

To study computability of the solution operator of the IBVP (1), the linear
estimates play the same central role as they do in the study of classical well-
posedness. The problem (1) is nonlinear and has no explicit solution formula.
This implies that the best possible way to compute future wave motions, if the
computation is possible, is to compute their approximations with arbitrary pre-
cision on computers, provided sufficiently precise information is given on the
initial- and boundary-data. Two preconditions are necessary for such computa-
tions: The solutions can be approximated by functions computable on digital
machines (called finite-objects) and it is possible to preassign the precision of
approximations. The linear estimates make it possible to establish a predefined
rate of approximation.

The plan of the present note is as follows. Section 1 is devoted to the in-
troduction of certain codings on Sobolev functions. Computations on Sobolev
functions are performed on their codes on Type-two Turing machines. Section
2 begins with establishing computability of the solution operators of the associ-
ated linear problems. Armed with these computable linear estimates, the main
result is then set down. Due to page limit, proofs are either omitted or sketchy.

1 Encoding Sobolev Functions

The computational model used in this note is the Type-Two-Theory of Effectiv-
ity, or TTE for abbreviation, developed by Weihrauch and others [8]. In TTE
model, computations on functions are performed on digital machines via their
names (codes) which are finite or infinite sequences of finite words. In this sec-
tion, a coding for Sobolev functions is introduced.

Speaking roughly, in TTE model, a real number or a real function is com-
putable if it can be approximated with arbitrary precision at a predefined rate
by a sequence of finite-objects produced by a machine. Such a sequence is called
a name or a code of the real number or the real function. Examples of finite-
objects include rational numbers and rational polynomials. A map T : X → Y
from one function space to another is computable if there is a machine which
computes a sequence of finite-object approximations to T (x) arbitrarily well on
a given sequence of finite-object approximations to x.

More precisely, let Σ be a sufficiently large finite alphabet, Σ∗ the set of finite
words over Σ with the discrete topology, and Σω the set of infinite words over Σ
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Σω Σω

M M ′

ψ

f

δ δ′
f ◦ δ(p) = δ′ ◦ ψ(p)

for p ∈ dom(f ◦ δ)

Fig. 1. ψ is a (δ, δ′)-realization of f

with the Cantor topology. The symbol 〈 〉 denotes various tupling functions. In
particular, the infinite tupling on Σω is defined by 〈p0, p1, p2, · · · 〉(〈k, n〉) = pk(n)
(pk ∈ Σω) for all k, n ∈ N, where N is the set of natural numbers, including 0.

In TTE, Turing computability is extended from finite words w ∈ Σ∗ to
infinite words p = (a0a1a2 . . .) ∈ Σω. A Type-2 Turing machine T computes a
function fT : Σω → Σω (fT might be partial) in the following way: fT (p) = q if
and only if the machine T reads the input sequence p = (a0a1a2 . . .) symbol by
symbol from the left to the right, computes (in the same way as ordinary Turing
machines), and writes the output sequence q = (b0b1b2 . . .) symbol by symbol
from the left to the right. A function f : Σω → Σω is computable if it is the
input-output function of a Type-2 Turing machine.

A notation (representation) of a set M is a surjective map δ : Σ∗ → M
(δ : Σω → M). Via δ the elements of M are encoded by finite or infinite words.
For any x ∈ M , if δ(p) = x, then p is called a δ-name or δ-code of x; x is called
δ-computable if p is computable in Σω.

For a set M with a notation or a representation computations on M are
defined by means of computations on names from Σ∗ or Σω which can be per-
formed by ordinary or Type-2 Turing machines. If δ and δ′ are representations of
M and M ′, respectively, then a function f : M → M ′ is called (δ, δ′)-continuous
(-computable) if there exists a continuous (computable) function ψ : Σω → Σω

such that the diagram in Fig. 1 commutes. In other words, f is (δ, δ′)-computable
if there is a machine which computes a δ′-name of f(x) when given a δ-name of
x as input. The concepts can be generalized straightforwardly to (δ1, . . . , δn, δ0)-
realizations of functions f :⊆ M1 × . . .×Mn → M0.

Two representations of a set M are called equivalent if and only if they induce
the same kind of computability on M .

For any representations δ of M and δ′ of M ′, there is a canonical represen-
tation [δ → δ′] of the set of all (δ, δ′)-continuous functions f : M → M ′. If both
M and M ′ are topological T0-spaces with countable bases and both δ and δ′ are
admissible representations, then f : M → M ′ is continuous if and only if it is
(δ, δ′)-continuous. In this case, [δ → δ′] is a representation of C(M ;M ′), the set
of all continuous functions from M to M ′ (see [8] for more details).

Next attention is turned to Sobolev functions. We start by laying out defini-
tion for the Sobolev functions defined on an interval I ⊆ R, where I stands for
(a, b), R+ or R.
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Definition 1. (a) Assume m is a non-negative integer. The Sobolev space Hm(I)
consists of all locally finitely integrable functions f : I → R such that the
kth order weak derivative Dkf exists and Dkf ∈ L2(I) (i.e. Dkf is square
integrable over I) for all integers 0 ≤ k ≤ m. Hm(I) is a Banach space with
the norm

||f ||Hm(I) =

⎛⎝∑
k≤m

∫
I

|Dkf |2dx

⎞⎠1/2

.

(b) For s ≥ 0, write s = m+θ where 0 ≤ θ < 1 and m is a non-negative integer.
Thus m = [s], the greatest integer in s. For f ∈ C∞(I) ∩ Hm(I), where
C∞(I) is the set of all infinitely differentiable functions defined on I, define
a function Js

xf by

Js
xf(x) =

{
|f (m)(x)| if θ = 0,(∫

I
τ−(2θ+1)|f (m)(x + τ) − f (m)(x)|2dτ

)1/2
if θ > 0

for any x ∈ I. Because f (m) is smooth and an L2(I)-function and θ < 1,
Js
xf(x) is finite for all x. The quantity

||f ||2Hs(I) = ||f ||2L2(I) + ||Js
xf ||2L2(I) (3)

defines a norm on C∞(I) ∩Hm(I) and the completion of this space in the
norm (3) is denoted by Hs(I).

There are several natural ways, different yet equivalent, to encode Sobolev
functions by sequences of finite or infinite words. Among them the coding δHs(I)

defined below is particularly user-friendly for the purpose of this note. This
coding is based on a representation of the Schwartz space S(R). The following
is a brief review on S(R).

Definition 2. Let S(R) be the Schwartz space defined by

S(R) = {φ ∈ C∞(R) : ∀α, β ∈ N, sup
x∈R

|xαφ(β)(x)| < ∞}.

Define the metric dS by

dS(φ, ϕ) =
∞∑

α,β=0

2−〈α,β〉 ||φ− ϕ||α,β
1 + ||φ− ϕ||α,β

, ∀φ, ϕ ∈ S(R),

where ||φ||α,β := supx∈R |xαφ(β)(x)|. The space (S(R), dS) is a complete separa-
ble metric space. Moreover, the set P∗ of “smoothly rationally truncated” poly-
nomials with rational coefficients is dense in S(R) (see, for example, Weihrauch-
Zhong [9]). The functions in P∗ are used as basic computational objects for
computations on Schwartz functions.

Let I ⊆ R be an interval and let P∗|I denote the set of restrictions to I of
functions in P∗ and S(R)|I the set of restrictions to I of functions in S(R). Then
P∗|I is dense in S(R)|I .
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Definition 3. Let δI : Σω → S(R)|I be the representation of S(R)|I defined as
follows: for any φ ∈ S(R)|I and any infinite word p = (p0p1 . . .) ∈ Σω, δI(p) = φ
if each pj encodes an element Pj ∈ P∗|I such that dS(φ, Pj) ≤ 2−j for all j ∈ N.

The following definition is sound, for the set of restrictions to R+ or to (0, T )
of functions in S(R) is dense in Hs(R+) or Hs(0, T ), respectively (see [1]).

Definition 4. For s ≥ 0 and T > 0, let I denote either R+ or (0, T ). The
representation δHs(I) : Σω → Hs(I) is defined as follows: for any f ∈ Hs(I)
and any p ∈ Σω, p is a δHs(I)-name of f , i.e. δHs(I)(p) = f , if p is an infinite
tupling p = 〈p0, p1, p2, . . .〉 such that each pj encodes a Schwartz function δI(pj)
in S(R)|I and ||δI(pj) − f ||Hs(I) ≤ 2−j for all j ∈ N.

Let ρ be the standard Cauchy representation of real numbers. That is, for
any real number x and any infinite word p = (p0p1p2 . . .) ∈ Σω, ρ(p) = x if
each pj encodes a rational number rj and |x − rj | ≤ 2−j for all j ∈ N. Since ρ
and δHs(R+) are admissible representations, [ρ → δHs(R+)] is a representation of
C(I;Hs(R+)), where C(I;Hs(R+)) is the set of all continuous functions from I
to Hs(R+).

2 Computing Solutions of Initial-Boundary Value
Problems

We make use of a solution formula for the non-homogeneous linear equation
associated with the IBVP (1) and linear estimates established in the work of
Bona-Sun-Zhang [2]. In this section, propositions will be used for classical results
while lemmas are reserved for results related to computability.

Proposition 5. The solution, SL(ϕ, h, f) = u, of the non-homogeneous linear
initial-boundary value problem{

ut + ux + uxxx = f, t, x ≥ 0,
u(x, 0) = ϕ(x), u(0, t) = h(t), (4)

where ϕ and h are assumed to satisfy the compatibility condition ϕ(0) = h(0),
may be written as

u(x, t) = Wc(t)(ϕ(x) − e−xϕ(0)) +
∫ t

0

Wc(t− τ)
(
f(x, τ) + 2e−x−τh(0)

)
dτ

+
[
Wb(t)(h(t) − e−th(0)

]
(x) + e−x−th(0), (5)

where Wc(t)ϕ(x) =
∑2

j=0

(
U+
j (t)ϕ(x) + U+

j (t)ϕ(x)
)

with

U+
0 (t)ϕ(x) =

1
2π

∫ ∞

1

eiμ
3t−iμt

∫ ∞

0

eiμ(x−ξ)ϕ(ξ)dξdμ,

U+
1 (t)ϕ(x) =

1
2π

∫ ∞

1

eiμ
3t−iμte−(

iμ+
√

3μ2−4
2 )x

∫ ∞

0

e−iμξϕ(ξ)dξdμ,

U+
2 (t)ϕ(x) =

1
2πi

∫ ∞

1

e−μ3t−μte−(
μ−i

√
3μ2+4
2 )x

∫ ∞

0

e−μξϕ(ξ)dξdμ,
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and [Wb(t)h](x) = [Ub(t)h](x) + [Ub(t)h](x) with

[Ub(t)h](x) =
1
2π

∫ ∞

1

eiμ
3t−iμte−(

√
3μ2−4+iμ

2 )x(3μ2 − 1)
∫ ∞

0

e−(μ3i−iμ)ξh(ξ)dξdμ.

for x, t ≥ 0. Here U denotes the complex conjugate of U . �

Lemma 6. For any computable real number T > 0, the solution map SL :
S(R)|R+ × S(R)|(0,T ) × C([0, T ];S(R)|R+) → C([0, T ];S(R)|R+), ϕ, h, f �→ u, of
the linear problem (4) is (δR+ , δ(0,T ), [ρ → δR+ ], [ρ → δR+ ])-computable. �

Considered next is the fully nonlinear initial-boundary-value problem (1){
ut + ux + uux + uxxx = 0, t, x ≥ 0,
u(x, 0) = ϕ(x), u(0, t) = h(t)

for the KdV equation. Here is the main theorem of this note.

Theorem 7. For any computable real number T > 0, the nonlinear solution
map S : H3(R+) ×H4/3(0, T ) → C([0, T ];H3(R+)), (ϕ, h) �→ u, where ϕ(0) =
h(0) and u is the unique solution of the problem (1), is (δH3(R+), δH4/3(0,T ), [ρ →
δH3(R+)])-computable.

Apparently, by the solution formula (5) of the non-homogeneous linear prob-
lem (4), if set f = −uux in (4), then the IBVP (1) is equivalent to the following
integral equation

u = LI(ϕ) + LB(h) −N(u, u), (6)

where

LI(ϕ)(t)(x) = Wc(t)(ϕ(x) − e−xϕ(0)) + ϕ(0)
[
e−x−t + 2

∫ t

0

Wc(t− τ)e−x−τdτ

]
,

LB(h)(t)(x) = Wb(t)
[
h(t) − e−th(0)

]
(x), and

N(u, v)(t)(x) =
∫ t

0

Wc(t− τ) (uvx) (x, τ)dτ.

The local well-posedness of the problem (1) may be proved by showing that
the iteration

(∗)
{
u0(t) = LI(ϕ)(t) + LB(h)(t),
uj+1(t) = u0(t) −N(uj , uj)(t)

is a contraction near t = 0, based on several linear estimates. The following
seminorms are used in presenting these linear estimates. For any s ≥ 0, T > 0
and any function w ≡ w(x, t) : R+ × [0, T ] → R, define
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ΛT
1,s(w) ≡ sup

0≤t≤T
||w(·, t)||Hs(R+),

ΛT
2,s(w) ≡

(
sup
x∈R+

∫ T

0

|Js+1
x w(x, t)|2dt

)1/2

,

ΛT
3,s(w) ≡ sup

x∈R+
||w(x, ·)||H(s+1)/3(0,T ) + sup

x∈R+
||Dxw(x, ·)||Hs/3(0,T ),

ΛT
4 (w) ≡

(∫ T

0

sup
x∈R+

|Dxw(x, t)|4dt
)1/4

,

ΛT
5 (w) ≡

(∫ T

0

sup
t∈[0,T ]

|w(x, t)|2dx
)1/2

.

In addition, let

λT,s(w) = max{ΛT
1,s(w), ΛT

2,s(w), ΛT
3,s(w)} + ΛT

4 (w) + ΛT
5 (w).

For any T > 0 and s ∈ [3/4, 3], let XT,s be the collection of all functions
u ∈ C([0, T ];Hs(R+)) satisfying λT,s(u) < ∞. For u ∈ XT,s, define its norm
||u||XT,s

as ||u||XT,s
= λT,s(u).

The following proposition summarizes the linear estimates established in the
work of Bona-Sun-Zhang. These linear estimates are central in showing that the
iteration (∗) is a contraction.

Proposition 8. Let T > 0 and s ∈ [1, 3] be given. There exists a constant C
depending only on T and s such that for any 0 ≤ θ ≤ T ,

(1) ||LI(ϕ)||Xθ,s
≤ C||ϕ||Hs(R+) for any ϕ ∈ Hs(R+);

(2) ||LB(h)||Xθ,s
≤ C||h||H(s+1)/3(0,T ) for any h ∈ H(s+1)/3(0, T );

(3) ||N(u, v)||Xθ,s
≤ C(θ1/2 + θ1/4)||u||Xθ,s

||v||Xθ,s
for any u, v ∈ Xθ,s. �

Lemma 9. If both T and s are computable real numbers, then the constant C
in Proposition 8 is also computable and it can be computed from (codes of) T
and s. �

Proposition 10. Let T > 0 be given. Then there exists a T ∗ ∈ (0, T ] depending
only on ||ϕ||H3(R+) + ||h||H4/3(0,T ) such that the iteration (∗) is a contraction on
XT∗,3.

Proof. Let r = 2C(||ϕ||H3(R+) + ||h||H4/3(0,T )) and choose T ∗ ∈ (0, T ] such that

C((T ∗)1/4 + (T ∗)1/2)r ≤ 1
2
.

By the linear estimates given in Proposition 8, it is clear that

||uj ||XT∗,3 ≤ r and ||uj+1 − uj ||XT∗,3 ≤ 1
2 ||uj − uj−1||XT∗,3 for all j ∈ N \ {0}.

Thus (∗) is a contraction. Its unique fixed point is the solution of the IBVP (1)
defined on the temporal interval [0, T ∗]. �
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Lemma 11. Let T > 0 be given. Assume that T is a computable real number.
Then the function V : S(R)|R+ × S(R)|[0,T ] × N → C([0, T ];S(R)|R+),{

V (ϕ, h, 0) = LI(ϕ) + LB(h)
V (ϕ, h, j + 1) = V (ϕ, h, 0) −N(V (ϕ, h, j), V (ϕ, h, j)), j ≥ 0

is (δR+ , δ[0,T ], νN, [ρ → δR+ ])-computable, where νN : Σ∗ → N is a standard
notation of N.

Proof. Combine Lemma 6 and the fact that V is defined by primitive recursion.
�

The rest of this section is devoted to the proof of Theorem 7. Let T > 0 be
given. Assume that T is a computable real number. Let p be a δH3(R+)-name
of the initial data ϕ ∈ H3(R+) and q a δH4/3(0,T )-name of the boundary data
h ∈ H4/3(0, T ). Then p encodes a sequence {ϕk} of restrictions to R+ of Schwartz
functions such that ||ϕk − ϕ||H3(R+) ≤ 2−k and q encodes a sequence {hk} of
restrictions to [0, T ] of Schwartz functions such that ||hk − h||H4/3(0,T ) ≤ 2−k.

Solving the problem (1) computationally will be shown that, for any t ∈
(0, T ], a sequence of Schwartz functions can be computed from p, q, a ρ-name
of T , and a ρ-name of t such that it is effectively convergent to u(t) in H3(R+)-
norm. Since

||ϕk||H3(R+) ≤ ||ϕk−ϕ||H3(R+)+ ||ϕ−ϕ0||H3(R+)+ ||ϕ0||H3(R+) ≤ ||ϕ0||H3(R+)+2

and

||ϕ||H3(R+) ≤ ||ϕ− ϕ0||H3(R+) + ||ϕ0||H3(R+) ≤ ||ϕ0||H3(R+) + 1,

if set r1 = ||ϕ0||H3(R+) + 2, then ||ϕ||H3(R+) ≤ r1 and ||ϕk||H3(R+) ≤ r1 for all
k ∈ N. A similar argument shows that for r2 = ||h0||H4/3(0,T ) +2, ||h||H4/3(0,T ) ≤
r2 and ||hk||H4/3(0,T ) ≤ r2 for all k ∈ N. r1 and r2 are computable form p and q,
respectively.

Let r = 2C(r1+r2) and choose T ∗ ∈ (0, T ] such that C((T ∗)1/2+(T ∗)1/4)r ≤
1/2. Then a similar argument as of the proof of Proposition 10 implies that
||u||XT∗,3 ≤ r, where u is the solution of the original IBVP (1); in addition, the
following iterative sequence

vk0 = LI(ϕk) + LB(hk), vkj+1 = vk0 −N(vkj , v
k
j ), j ∈ N (7)

satisfies the inequalities

||vkj ||XT∗,3 ≤ r and ||vkj+1 − vkj ||XT∗,3 ≤ (
1
2
)j ||vk1 − vk0 ||XT∗,3 (8)

for all j, k ∈ N. Let vk be the unique fixed point of the iteration (7), then vk

satisfies the equation vk = LI(ϕk) + LB(hk) − N(vk, vk) and ||vk||XT∗,3 ≤ r.
Recall that, by (6), u is the solution of the IBVP (1) if and only if it satisfies
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the integral equation u = LI(ϕ)+LB(h)−N(u, u). A simple calculation reveals
that the difference u− vk may be written as

u− vk = LI(ϕ− ϕk) + LB(h− hk) −N(u + vk, u− vk).

Let T̃ ∈ (0, T ∗] be a number to be determined. Since

||u− vk||XT̃ ,3

≤ C(||ϕ− ϕk||H3(R+) + ||h− hk||H4/3(0,T ) +

+(T̃ 1/2 + T̃ 1/4)||u + vk||XT̃ ,3
||u− vk||XT̃ ,3

)

≤ C(||ϕ− ϕk||H3(R+) + ||h− hk||H4/3(0,T ) +

+(T̃ 1/2 + T̃ 1/4) · 2r · ||u− vk||XT̃ ,3
), (9)

if choose T̃ such that C(T̃ 1/2 + T̃ 1/4) · 2r < 1/2, then (9) implies

||u− vk||XT̃ ,3
≤ 2C(||ϕ− ϕk||H3(R+) + ||h− hk||H4/3(0,T )). (10)

The inequality (10) establishes the fact that vk effectively converges to u in
|| · ||XT̃ ,3

-norm as k → ∞ for ||ϕ−ϕk||H3(R+) ≤ 2−k and ||h−hk||H4/3(0,T ) ≤ 2−k

for all k ∈ N. Since T̃ ≤ T ∗, vkj converges to vk in || · ||XT̃ ,3
-norm effectively

in k and uniformly in j by (8). Combine Lemma 11, estimates (8) and (10),
appropriate numbers kn and jn can be computed from p (a δH3(R+)-code of ϕ),
q (a δH4/3(0,T )-code of h) and any ρ-code of T such that ||u−vkn

jn
||XT̃ ,3

≤ 2−n for
all n. Since ||u(t)−vkn

jn
(t)||H3(R+) ≤ ||u−vkn

jn
||XT̃ ,3

for any t ∈ (0, T̃ ], the sequence
{vkn

jn
(t)} of Schwartz functions is effectively convergent to u(t) in H3(R+)-norm

for any t ∈ (0, T̃ ]. This is the desired sequence for t, t ∈ (0, T̃ ].
It remains to show that the construction for the desired sequences can be

extended from [0, T̃ ] to [0, T ]. The above construction shows that the map R+ →
R+, ||ϕ||H3(R+) + ||h||H4/3(0,T ) �→ T̃ is computable and non-increasing. Thus for
any r̃ > 0, if ||ϕ||H3(R+) + ||h||H4/3(0,T ) ≤ r̃, then the solution of the problem (1)
exists on the temporal interval [0, T̃ (r̃)]. Make use of a priori estimate in [2], a
constant R > 0 can be computed from ϕ, h and T such that

sup
0≤t≤T

||u(·, t)||H3(R+) + ||h||H4/3(0,T ) ≤ R.

Since u(x, 0) = ϕ(x), ||ϕ||H3(R+)+||h||H4/3(0,T ) ≤ R. Choose T̃ = T̃ (R). Then the
solution exists on the temporal interval [0, T̃ ]. In addition, when taking T̃ as the
initial time and u(x, T̃ ) as the initial data, since ||u(·, T̃ )||H3(R+)+||h||H4/3(0,T ) ≤
R, the solution of the problem

wt + wx + wxxx = −wwx, x ≥ 0, t ≥ T̃ , w(x, T̃ ) = u(x, T̃ ), w(0, t) = h(t)

exists on [T̃ , 2T̃ ]. This solution is also the solution of the IBVP (1) over the tem-
poral interval [T̃ , 2T̃ ]. Repeat the process finitely many times until the solution
is extended to the interval [0, T ]. �
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Abstract. The sometimes so-called Main Theorem of Recursive Anal-
ysis implies that any computable real function is necessarily continuous.
We consider three relaxations of this common notion of real computabil-
ity for the purpose of treating also discontinuous functions f : R → R:
– non-deterministic computation;
– relativized computation,

specifically given access to oracles like ∅′ or ∅′′;
– encoding input x ∈ R and/or output y = f(x) in weaker ways

according to the Real Arithmetic Hierarchy.
It turns out that, among these approaches, only the first one provides
the required power.

1 Motivation

What does it mean for a Turing Machine, capable of operating only on discrete
objects, to compute a real number x:
ρb,2ρb,2ρb,2: To decide its binary expansion?
ρCnρCnρCn: To compute a sequence (qn) of rational numbers eventually converging

to x?
ρρρ: To compute a fast convergent sequence (qn) ⊆ Q for x, i.e.

with |x− qn| ≤ 2−n (in other words: to approximate x with error
bounds)?

ρ<ρ<ρ<: To approximate x from below, i.e., to compute (qn) such that
x = supn qn ?

All these notions make sense in being closed under arithmetic operations like
addition and multiplication. In fact they are well (known equivalent to variants)
studied in literature1; e.g. [11], [2], [12], [13] in order.

Now what does it mean for a Turing Machine M to compute a real function
f : R → R? Most naturally it says that, upon input of x ∈ R given in one of

� Supported by project 21-04-0303 of Statens Naturvidenskabelige Forskningsr̊ad SNF.
1 Their above names by Greek letters are taken from [13, Section 4.1].

S.B. Cooper, B. Löwe, and L. Torenvliet (Eds.): CiE 2005, LNCS 3526, pp. 562–571, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Computability and Continuity on the Real Arithmetic Hierarchy 563

the above ways, M outputs y = f(x) also in one (not necessarily the same)
of the above ways. And, again, many possible combinations have already been
investigated. For instance the standard notion of real function computation in
Recursive Analysis [3, 6, 5, 13] refers (or is equivalent) to input and output given
according to ρ. Here, the Main Theorem of Computable Analysis implies that
any computable f will necessarily be continuous [13, Theorem 4.3.1].

We are interested in ways of lifting this restriction.

A first approach might equip the Turing Machines under consideration with
access to an oracle, say, for the Halting Problem ∅′ or its iterated jumps ∅(d) in
Kleene’s Arithmetic Hierarchy. However closer inspection in Section 3.1 reveals
that this Main Theorem relies solely on information rather than recursion theo-
retic arguments and therefore requires continuity also for oracle-computable real
functions with respect to input and output of form ρ. (For the special case of an
∅′–oracle, this had been observed in [4, Theorem 16].)

A second idea changes the input and output representation for x and y = f(x)
from ρ to a weaker form like, say, ρCn. This relates to the Arithmetic Hier-
archy, too, however in a completely different way: Computing x in the sense
of ρCn is equivalent to computing x in the sense of ρ [4, Theorem 9] rela-
tive (i.e., given access) to the Halting Problem ∅′. And, most promisingly, the
Main Theorem [13, Corollary 3.2.12] which previously required continuity
of computable real functions now does not apply any more since ρCn, in con-
trast to ρ, lacks the technical property of admissibility. It therefore came to
quite a surprise when Brattka and Hertling established that any (ρCn →
ρCn)–computable f (that is, with respect to input x and output f(x) encoded
according to ρCn) still satisfies continuity; see [13, Exercise 4.1.13d] or
[2, Section 6].

In Section 3.2, we extend this result. Specifically it is proven that continuity
is necessary for (ρ′′ → ρ′′)–computability of f ; here, ρ ρ′ ≡ ρCn ρ′′

. . . denote the first levels of an entire hierarchy of real number representations
emerging naturally from the Real Arithmetic Hierarchy of Weihrauch and
Zheng [14].

The class of (ρ → ρ)–computable functions f : R → R is well-known to admit
an alternative characterization based on Caldwell’s and Pour-El’s famous
Effective Weierstraß Theorem. Its extension based on relativization gives rise to
a hierarchy of continuous functions f : R → R. The (ρ → ρ)′–computable ones
for example have been investigated in [4, Section 4]. Section 4 of the present
work locates the class of (ρ′ → ρ′)–computable functions among this hierarchy.

Rather than endowing deterministic Turing Machines with oracles, in Sec-
tion 5 we finally consider nondeterministic computation. Remarkably and in
contrast to the classical (Type-1) theory, this significantly increases the princi-
pal capabilities. For example, discontinuous real functions now do become com-
putable and so does conversion among the aforementioned representations ρCn

and ρb,2.
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2 Arithmetic Hierarchy of Reals

In [4], Ho observed an interesting relation between computability of a real num-
ber x in the respective senses of ρ and ρCn in terms of oracles: x = limn qn for
an (eventually convergent) computable rational sequence (qn) iff x admits a
∅′–computable fast convergent rational sequence, that is, a sequence (pm) ⊆ Q
recursive in ∅′ with |x − pm| ≤ 2−m. This suggests to write ρ′ for ρCn; and
denoting by Δ1R = Rc the set of reals computable in the sense of Recursive
Analysis (that is with respect to ρ), it is therefore natural to write, in analogy to
Kleenes classical Arithmetic Hierarchy, Δ2R for the set of all x ∈ R computable
with respect to ρ′. Weihrauch and Zheng extended these considerations and
obtained for instance [14, Corollary 7.3] the following characterization of
Δ3R: A real x ∈ R admits a fast convergent rational sequence recursive in ∅′′ iff
x is computable in the sense of ρ′′ defined as follows:

ρ′′ρ′′ρ′′: x = limi limj q〈i,j〉 for some computable rational sequence (qn).
Similarly, Σ1R contains of all x ∈ R computable with respect to ρ< whereas Σ2R
includes all x computable in the sense of ρ′

< defined as follows:
ρ′

<ρ
′
<ρ′
<: x = supi infj q〈i,j〉 for some computable rational sequence (qn).

To Σ2R belongs for instance the radius of convergence r = 1/ limsupn→∞ n
√
an

of a computable power series
∑∞

n=0 anx
n [14, Theorem 6.2]. More generally we

take from [14, Definition 7.1 and Corollary 7.3] the following

Definition 1 (Real Arithmetic Hierarchy). Let d = 0, 1, 2, . . .
ρ
(d)
<ρ
(d)
<ρ
(d)
< : Σd+1R consists of all x ∈ R of the form x = supn1 infn2 . . . Θnd+1

q〈n1,...,nd+1〉 for a computable rational sequence (qn),
where Θ=sup or Θ=inf depending on d’s parity;

ρ
(d)
>ρ
(d)
>ρ
(d)
> : Πd+1R similarly for x = infn1 supn2 . . .

ρ(d)ρ(d)ρ(d): Δd+1R contains all x ∈ R of the form x = lim
n1

lim
n2

. . . lim
nd

q〈n1,...,nd〉
for a computable rational sequence (qn).

(For levels beyond ω see [1]. . . )

The close analogy between the discrete and this real variant of the Arithmetic
Hierarchy is expressed in [14] by a variety of elegant results like, e.g.,

Fact 2.
a) x ∈ ΔdR iff deciding its binary expansion is in Δd.
b) x is computable with respect to ρ(d)

iff there is a ∅(d)–computable fast convergent rational sequence for x.
c) x is computable with respect to ρ

(d)
<

iff x is the supremum of a ∅(d)–computable rational sequence.
d) ΔdR = ΣdR ∩ ΠdR.
e) ΣdR ∪ ΠdR � Δd+1R.

2.1 Type-2 Theory of Effectivity

Specifying an encoding formalizes how to feed some general form of input like
graphs or integers into a Turing Machine with fixed alphabet Σ. Already in the
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discrete case, the complexity of a problem usually depends heavily on the chosen
encoding; e.g., numbers in unary versus binary. This dependence becomes even
more important when dealing with objects from an continuum like the set of reals
and their computability. While Recursive Analysis usually considers one particu-
lar encoding for R, the Type-2 Theory of Effectivity (TTE) due to Weihrauch
provides (a convenient formal framework for studying and comparing) a variety
of encodings for different universes. Formally speaking, a representation α for R
is a partial surjective mapping α :⊆ Σω → R; and an infinite string σ̄ ∈ dom(α)
is regarded as a name for the real number x = α(σ̄). In this way, (α → β)–
computing a real function f : R → R means to compute a transformation on
infinite strings F :⊆ Σω → Σω such that any α–name σ̄ for x = α(σ̄) gets
transformed to a β–name τ̄ = F (σ̄) for f(x) = y, that is, satisfying β(τ̄) = y;
cf. [13, Section 3].

Now observe that (the above characterization of) each level of the Real Arith-
metic Hierarchy gives rise not only to a notion of computability for real numbers
but also canonically to a representation for R; for instance let
ρρρ : encode (arbitrary!) x ∈ R as a fast convergent rational sequence (qn);
ρ<ρ<ρ< : encode x ∈ R as supremum of a rational sequence: x = supn qn;
ρ′ρ′ρ′ : encode x ∈ R as limit of a rational sequence: x = limn qn;
ρ′

<ρ
′
<ρ′
< : encode x ∈ R as (qn) ⊆ Q with x = supi infj q〈i,j〉;

ρ′′ρ′′ρ′′ : encode x ∈ R as (qn) ⊆ Q with x = limi limj q〈i,j〉.

In fact the first three of them are known in TTE as ρ, ρ<, and ρCn, respectively
[13, Section 4.1]. In general one obtains, similar to Definition 1, a hierarchy of
real representations as follows:

Definition 3. Let ρ(0) := ρ, ρ
(0)
< := ρ<, ρ

(0)
> := ρ>. Now fix 1 ≤ d ∈ N:

A ρ(d)–name for x ∈ R is a (νωQ–name for a) rational sequence (qn) such that

x = lim
n1

lim
n2

. . . lim
nd

q〈n1,...,nd〉 .

A ρ
(d)
< –name for x ∈ R is a (name for a) sequence (qn) ⊆ Q such that

x = supn1 infn2 . . . Θnd+1 q〈n1,...,nd+1〉 .

A ρ
(d)
> –name for x ∈ R is a sequence (qn) ⊆ Q such that x = infn1 supn2 . . .

Results from [14] about the Real Arithmetic Hierarchy are easily re-phrased in
terms of these representations. However this leads only to non-uniform claims.
Fact 2d) for example translates as follows:

x is ρ(d)–computable iff it is both ρ
(d)
< –computable and ρ

(d)
> –computable.

Closer inspection of the proofs in particular of Lemma 3.2 and Lemma 3.3 in
[14] reveals them to hold even uniformly. More precisely we can prove

Lemma 4. ρ ≡ ρ<* ρ> ρ< ρ′ ≡ ρ′
<* ρ′

> ρ′
< ρ′′ ≡ . . . ,

where “ ” and “≡” denote computable reducibility and equivalence, respectively,
of representations and “*” their join, i.e., the least upper bound w.r.t. “ ”; see
[13, Definition 2.3.2].
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3 Computability and Continuity

Recursive Analysis has established as folklore that any computable real function
is continuous. More precisely, computability of a partial function from/to infinite
strings f :⊆ Σω → Σω requires continuity with respect to the Cantor Topology
τC [13, Theorem 2.2.3]; and this requirement carries over to functions f :⊆
A → B on other topological spaces (A, τA) and (B, τB) where input a ∈ A and
output b = f(a) are encoded by respective admissible representations α and β.
Roughly speaking, this property expresses that the mappings α :⊆ Σω → A
and β :⊆ Σω → B satisfy a certain compatibility condition with respect to the
topologies τA/τB and τC involved. For A = B = R, the (standard) representation
ρ for example is admissible [13, Lemma 4.1.4.1], thus recovering the folklore
claim.

Now in order to treat and non-trivially investigate computability of discon-
tinuous real functions f : R → R as well, there are basically two ways out: Either
enhance the underlying Type-2 Machine model or resort to non-admissible rep-
resentations. It turns out that for either choice, at least the straight-forward
approaches fail:
• extending Turing Machines with oracles as well as
• considering weakened representations for R.

3.1 Type-2 Oracle Computation

Specifically concerning the first approach we make the following

Observation 5. Let O ⊆ Σ∗ be arbitrary. Replace in [13, Definition 2.1.1]
the Turing Machine M by MO, that is, one with oracle access to O. Then
Lemma 2.1.11, Theorem 2.1.12, Theorem 2.2.3, Corollary 3.2.12, and
Theorem 4.3.1 in [13] still remain valid.

In particular, the Main Theorem of Computable Analysis relativizes.

Corollary 6. A partial function on infinite strings f :⊆ Σω → Σω is Cantor-
continuous iff it is computable relative to some oracle O.

This is to be compared with Type-1 Theory (that is, computability on finite
strings) where any function f :⊆ Σ∗ → Σ∗ becomes recursive in some appropri-
ate O ⊆ Σ∗.

Proof. If f is recursive in O, then it is also continuous by the relativized version
of [13, Theorem 2.2.3]. Conversely let f be continuous; then a monotone total
function h : Σ∗ → Σ∗ with hω = f according to [13, Definition 2.1.10.2] can
be seen to exist. But being a classical Type-1 function, h is recursive in a certain
oracle O ⊆ Σ∗. The relativization of [13, Lemma 2.1.11.2] then asserts also f
to be computable in O. *+

While oracles thus do not increase the computational power of a Type-2 Machine
sufficiently in order to handle also discontinuous functions, Section 5 reveals that
nondeterminism does.
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3.2 Weaker Representations for Reals

Concerning the second approach, we are interested in relaxations of the standard
representation ρ for single reals and their effect on the computability of function
evaluation x �→ f(x). Since, with exception of ρ, none of the ones introduced in
Definition 3 is admissible [13, Lemma 4.1.4, Example 4.1.14.1], chances are
good for this problem to become computable even for discontinuous f : R → R.

Example 7. Heaviside’s Function

H : R → R, x �→ 0 for x ≤ 0, x �→ 1 for x > 0

is both (ρ<→ρ<)–computable and (ρ′
<→ρ′

<)–computable.

Proof. Given (qn) ⊆ Q with x = supn qn, compute pn := H(qn). Then indeed,
(pn) ⊆ Q has supn pn = H(x): In case x ≤ 0, qn ≤ 0 and hence pn = 0 for all n;
whereas in case x > 0, qn > 0 and hence pn = 1 for some n.

Let x ∈ R be given by a rational double sequence (qi,j) with x = supi infj qi,j .
Proceeding from qi,j to q̃i,j := max{q0,j , . . . , qi,j}, we assert infj q̃i+1,j ≥ infj q̃i,j .
Now compute pi,j := H(q̃i,j−2−i). Then in case x ≤ 0, it holds ∀i∃j : q̃i,j ≤ 2−i,
i.e., pi,j = 0 and thus supi infj pi,j = 0 = H(x). Similarly in case x > 0, there is
some i0 such that infj q̃i0,j > x/2 and thus infj q̃i,j > x/2 for all i ≥ i0. For i ≥ i0
with 2−i ≤ x/2, it follows pi,j = 1 ∀j and therefore supi infj pi,j = 1 = H(x). *+

It turns out that the implication “(ρ<→ρ<) ⇒ (ρ′
<→ρ′

<)” is not specific to H:

Theorem 8. Consider f : R → R.
a) If f is (ρ→ρ)–computable, then it is also (ρ′→ρ′)–computable.
b) If f is (ρ→ρ<)–computable, then it is also (ρ′→ρ′

<)–computable.
c) If f is (ρ<→ρ<)–computable, then it is also (ρ′

<→ρ′
<)–computable.

d) If f is (ρ′→ρ′)–computable, then it is also (ρ′′→ρ′′)–computable.
Our proof exploits Fact 9 and Theorem 10 below.

By the Main Theorem of Recursive Analysis, any (ρ→ ρ)–computable real
function is continuous. This claim has been extended in various ways.

Fact 9. Consider f : R → R.
a) If f is (ρ→ρ<)–computable, then it is lower semi continuous.
b) If f is (ρ<→ρ<)–computable, then it is monotonically increasing.
c) If f is (ρ′→ρ′)–computable, then it is continuous.
The claims remain valid under oracle-supported computation.

Proof. For a) see e.g. [7, Chapter 6.7]; c) is established in [2, Section 6].

These claims also generalize to the above hierarchy of representations:

Theorem 10. Consider f : R → R.
a) If f is (ρ′′→ρ′′)–computable, then it is continuous.
b) If f is (ρ′→ρ′

<)–computable, then it is lower semi-continuous.
c) If f is (ρ′

<→ρ′
<)–computable, then it is monotonically increasing.

The claims remain valid under oracle-supported computation.
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This allows us to strengthen Lemma 4:

Corollary 11. ρ ≡ ρ<*ρ> t ρ< t ρ′ ≡ ρ′
<*ρ′

> t ρ′
< t ρ′′ ≡ . . .

where “ t” denotes continuous reducibility of representations [13, Def. 2.3.2].

Proof. The positive claims follow from Lemma 4 with Corollary 6. For a negative
claim like for example “ρ′′

< t ρ′′” suppose the contrary. Then by Corollary 6,
with the help of some appropriate oracle O, one can convert ρ′′

<–names to ρ′′–
names. As Heaviside’s Function H is (ρ′′ →ρ′′

<)–computable by Example 7 and
Theorem 8b), composition with this conversion implies (ρ′′→ρ′′)–computability
of H relative to O — contradicting Theorem 10a). *+

4 Arithmetic Weierstraß Hierarchy

Recall that Weierstraß Approximation Theorem asserts any continuous real
function f : [0, 1] → R to be the uniform limit f = ulimn Pn of a sequence of ra-
tional polynomials (Pn) ⊆ Q[X]. Here, ‘ulim’ suggestively denotes uniform limits
of continuous functions, that is, with sup

0≤x≤1
|f(x) − Pn(x)| =: ‖f − Pn‖ → 0 as

n → ∞.
For (ρ → ρ)–computable (and thus continuous) f , the well-known Effective

Weierstraß Theorem yields even a computable and fast convergent such sequence
(Pn). Furthermore by allowing this sequence (Pn) to be computable relative
to ∅(d), one naturally obtains, in analogy to the Real Arithmetic Hierarchy, a
hierarchy of real functions f : [0, 1] → R with the effective case as lowest level.
In fact its second level, too, has already been characterized namely by Ho.

Lemma 12.
a) A real function f : [0, 1]→ R is (ρ→ ρ)–computable if and only if it holds

(ρ→ρ)(ρ→ρ)(ρ→ρ): There exists a computable sequence of (degrees and coefficients of)
rational polynomials (Pn) ⊆ Q[X] such that ‖f − Pn‖ ≤ 2−n (1)

b) To a real function f : [0, 1] → R, there exists a ∅′–computable sequence of
polynomials (Pn) satisfying Equation (1) if and only if it holds

(ρ→ρ)′(ρ→ρ)′(ρ→ρ)′: There is a computable sequence (Qm) ⊆ Q[X] converging uniformly
(although not necessarily ‘fast’) to f , that is, with f =ulimm→∞ Qm.

c) To a real function f : [0, 1] → R, there exists a ∅′′–computable sequence of
polynomials (Pn) satisfying Equation (1) if and only if it holds

(ρ→ρ)′′(ρ→ρ)′′(ρ→ρ)′′: There is a computable sequence (Qm) ⊆ Q[X] s.t. f = ulimi ulimj Q〈i,j〉.

We emphasize the similarity to Fact 2b).

Proof. a) See, e.g., [6, Section 0.7]. b) See [4, Theorem 16]. c) follows
similarly from Shoenfield’s Limit Theorem.

Recall that the (ρ′ → ρ′)–computable functions are continuous by [2, Sec-
tion 6] and thus applicable to the Weierstraß Theorem. The following result
relates this class to relativized computation of Weierstraß approximations.
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Theorem 13. a) Let f : [0, 1] → R be (ρ → ρ)′–computable in the sense of
Lemma 12b). Then, f is (ρ′→ρ′)–computable.

b) Let f : [0, 1] → R be (ρ′→ρ′)–computable. Then, f is (ρ→ρ)′′′′–computable.
c) There is a (ρ′→ρ′)–computable but not (ρ→ρ)′–computable f : [0, 1] → R.

As opposed to d = 0, the hierarchies of (ρ(d) → ρ(d))–computable functions on
the one hand and of (ρ→ρ)(d)–computable functions on the other hand thus lie
skewly to each other for d ≥ 1.

5 Type-2 Nondeterminism

Observing that the proofs of the Main Theorem in Recursive Analysis as well
as its generalizations to oracle- and weakened real computation in Theorem 10
crucially exploit the underlying Turing Machines to be deterministic, the ques-
tion becomes evident whether nondeterminism might yield the additional power
necessary for computing discontinuous real functions like Heaviside’s.

In the discrete (i.e., Type-1) setting where any computation is required to
terminate, the finitely many possible choices of a nondeterministic machine can
of course be simulated by a deterministic one — however already here subject
to the important condition that all paths of the nondeterministic computation
indeed terminate, cf. [9].

In contrast, a Type-2 computation realizes a transformation from/to infinite
strings and is therefore a generally non-terminating process. Therefore, nonde-
terminism here involves an infinite number of guesses which turns out cannot
be simulated by a deterministic Type-2 machine. We also point out that non-
determinism has already before been revealed not only a useful but indeed the
most natural concept of computation on infinite strings. More precisely Büchi
extended Finite Automata from finite to infinite strings and proved that, here,
nondeterministic ones are closed under complement [10] as opposed to determin-
istic ones. Since automata and Turing Machines constitute the bottom and top
levels, respectively, of Chomsky’s Hierarchy of classical languages (Type-1 set-
ting), we suggest that over infinite strings (Type-2 setting) both their respective
counterparts, that is Büchi Automata as well as Type-2 Machines, be considered
nondeterministically.

Definition 14. Let A and B be uncountable sets with respective representations
α :⊆ Σω → A and β :⊆ Σω → B. A function f :⊆ A → B is called nonde-
terministically (α → β)–computable if some nondeterministic one-way Turing
Machine,
– upon input of any α–name for some a ∈ dom(f),
– has a computation which outputs a β–name for b = f(a) and
– any infinite string output by some computation is a β–name for b = f(a).

This definition is sensible insofar as it leads to closure under composition:

Lemma 15. Let f :⊆ A → B be nondeterministically (α→β)–computable and
g :⊆ B → C be nondeterministically (β→γ)–computable. Then, g ◦ f :⊆ A → C
is nondeterministically (α→γ)–computable.
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A subtle point in Definition 14, computations leading only to finite output are
semantically ignored. This enables algorithms to ‘withdraw’ a nondeterministic
choice once its unfavourability is detected. In particular, one can nondetermin-
istically convert forth and back among representations on the Real Arithmetic
Hierarchy from Definition 1:

Theorem 16. For each d = 0, 1, 2, . . ., the identity R 0 x �→ x is nondetermin-
istically (ρ(d+1)→ρ(d))–computable. It is furthermore (ρ→ρb,2)–computable.

In particular and in striking contrast to usual Type-2 Theory, nondeterministic
computability of real functions is largely independent of the representation under
consideration. This notion includes discontinuous functions as, by Example 7,
the Heaviside Function is nondeterministically computable in any reasonable
sense.

Proof (Theorem 16). Consider for simplicity the case d = 0. Let x ∈ R be given
by a sequence (qn) ⊆ Q eventually converging to x. There exists a strictly in-
creasing sequence (nk) ⊆ N such that (qnk

) converges fast to x, that is, satisfying

∀� ≤ k : qnk
∈ [qn�

− 2−�, qn�
+ 2−�] (2)

For each k ∈ N, the algorithm iteratively guesses nk > nk−1, prints qnk
, and

checks Equation (2): If violated, abort having output only a finite string.
For (ρ → ρb,2)–computability, let x ∈ (0, 2) be given by a fast convergent

sequence (qn) ⊆ Q. We guess the leading digit b ∈ {0, 1} for x’s binary expansion
b.∗; in case b = 0, check whether x > 1 — a ρ–semi decidable property — and if
so, abort; similarly in case b = 1, abort if it turns out that x < 1. Otherwise (that
is, proceeding while simultaneously continuing the above semi-decision process
via dove-tailing) replace x by 2(x− b) and repeat guessing the next bit. *+
We point out that for non-unique binary expansion (i.e., for dyadic x), nonde-
terminism in the above (ρ → ρb,2)–computation, in accordance with the third
requirement of Definition 14, generates both possible expansions.

6 Conclusion

Recursive Analysis is often criticized for being unable to (non-trivially) treat
discontinuous functions.

Strictly speaking, this reproach does not apply since for instance Zhong and
Weihrauch do investigate the computability of generalized (and in particular
of discontinuous) functions by suitable representations in [16]. However here,
evaluating x �→ f(x) an L2 function or a distribution f at a point x ∈ R does
not make sense already mathematically and therefore is not supported.

Another reply to the aforementioned critics, Heaviside’s function — although
discontinuous — is (ρ → ρ<)–computable; and this notion of function com-
putability does allow for (lower) evaluation. On the other hand, it lacks closure
under composition. Closure under composition holds for (ρ<→ρ<)–computability,
but here closure under inversion f �→ −f fails.
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The present work investigates on sufficient and necessary conditions for some
f : R → R to be (ρ(d)→ρ(d))–computable. Being closed both under composition
and inversion, respectively, these notions emerging from the Real Arithmetic
Hierarchy are not applicable to the Main Theorem for d = 1, 2, . . . and might
therefore include discontinuous functions.

We extend the surprising result [2, Section 6] that (ρ′→ρ′)–computability
does imply continuity to the case d ≥ 2.

Due to the purely information-theoretic nature of the arguments employed
by Brattka and Hertling, their result immediately relativizes, that is, even
oracle support does not lift the continuity condition. So we looked for other ways
of enhancing the underlying model. Replacing, in analogy to Büchi Automata,
deterministic Turing machines by nondeterministic ones turned out to do the
job. While their practical realizability is admittedly questionable, the obtained
notion of function computability benefits from its elegance and invariance under
encodings of real numbers.
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6. M.B. Pour-El, J.I. Richards: “Computability in Analysis and Physics”,

Springer (1989).
7. J.F. Randolph: “Basic Real and Abstract Analysis”, Academic Press (1968).
8. R.I. Soare: “Recursively Enumerable Sets and Degrees”, Springer (1987).
9. E. Spaan, L. Torenvliet, P. van Emde Boas: “Nondeterminism, Fairness and

a Fundamental Analogy”, pp.186–193 in The Bulletin of the European Association
for Theoretical Computer Science (EATCS Bulletin) vol.37 (1989).

10. Thomas, W.: “Automata on Infinite Objects”, pp.133–191 in Handbook of Theo-
retical Computer Science, vol.B (Formal Models and Semantics), Elsevier (1990).

11. Turing, A.M.: “On Computable Numbers, with an Application to the Entschei-
dungsproblem”, pp.230–265 in Proc. London Math. Soc. vol.42(2) (1936).

12. Turing, A.M.: “On Computable Numbers, with an Application to the Entschei-
dungsproblem. A correction”, pp.544–546 in Proc. London Math. Soc. vol.43(2)
(1937).

13. K. Weihrauch: “Computable Analysis”, Springer (2001).
14. X. Zheng, K. Weihrauch: “The Arithmetical Hierarchy of Real Numbers”,

pp.51–65 in Mathematical Logic Quarterly vol.47 (2001).
15. X. Zheng: “Recursive Approximability of Real Numbers”, pp.131–156 in Mathe-

matical Logic Quarterly vol.48 Supplement 1 (2002).
16. N. Zhong, K. Weihrauch: “Computability Theory of Generalized Functions”,

pp.469–505 in J. ACM vol.50 (2003).



Author Index

Barmpalias, George 8
Barra, Mathias 252
Berger, Josef 18
Berger, Ulrich 23
Bergstra, Jan A. 35
Bernardini, Francesco 49, 479
Boker, Udi 54
Bonizzoni, Paola 65
Buescu, Jorge 169
Buhrman, Harry 68
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Edalat, Abbas 117

Farjudian, Amin 128
Finkel, Olivier 129

Garcez, Artur S. d’Avila 139
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